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Abstract 

Heat stress has a significant impact on the productivity and yield of crops grown 

in the hot, arid zones of the world. There is mounting evidence that what has 

classically been termed ‘drought stress’ may in some cases be caused not by 

water stress per se, but rather by the uncontrolled elevation in leaf temperature 

that occurs when a plant loses its capacity for transpirational cooling. A previous 

screen of activation-tagged Arabidopsis thaliana seeds for novel halotolerant 

mutants implicated elevated levels of the transcription factor MYB64 in 

mediating improved survival on high salt growth medium, and subsequent 

transcript profiling of this activation-tagged halotolerant line (HT5) revealed the 

upregulation of several members of the heat shock protein family. 

Based on these preliminary findings, expression of two of the small heat shock 

proteins reported to be among the most highly upregulated in the HT5 line was 

investigated under various stress conditions in wild type Arabidopsis. Transcript 

and protein levels were measured in response to heat; their subcellular 

localisation was observed; and the phenotype of various knockout mutants was 

recorded. These studies have contributed to an understanding of how these 

might function in relation to one another and to the rest of the heat shock 

protein family. 

This thesis also reports on the investigations of a transgenic line created to 

constitutively overexpress the MYB64 transcription factor. Transcript profiling 

produced a list of ‘upregulated’ sequences, of which a significant proportion 

were previously shown to play key roles in abiotic (and, to an extent, biotic) 

stress responses. The robustness of these responses in the transgenic lines was 

investigated by qPCR under heat stress, and the phenotype of the plants was 

characterised in response to various stress regimes. The findings implicate 

MYB64 in the regulation of a wide range of stress responses, and as plants are 

unlikely to encounter stress factors individually outside of the controlled 

conditions of a laboratory, these findings highlight the importance of considering 

such stresses in concert rather than isolation. 
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1 Introduction 

1.1 Crops in a Changing Climate: The Problem 

Climate change is predicted to manifest in two main effects: an increase in 

global average temperature, and an alteration in the hydrological cycle. 

Temperatures will rise and cause increased evapotranspiration, and as this water 

returns precipitation rates will rise. As reviewed by Lobell & Gourdji (2012) this 

has the potential to affect crops in five ways. The first of these could be called 

the ‘productivity race’ in which high temperatures are known to accelerate 

development towards the seed-setting stage, and in doing so a plant produces 

fewer grains, thus reducing agricultural output (Stone, 2001). This can be 

understood in evolutionary terms as a trade-off between the goal of producing 

more seed in times of plenty and simply producing enough seed to ensure 

genetic continuity is assured in times of hardship. Second, higher temperatures 

and atmospheric carbon dioxide (CO2) concentrations could prove favourable for 

many crop pathogens including weeds, insects and microbial pathogens (Ziska et 

al., 2011). Third, photosynthetic rate is negatively correlated with an increase in 

average growing temperatures. Even plants such as maize (a C4 plant, adapted 

to high temperature and its inactivating effect on RuBisCO (ribulose-1,5-

bisphosphate carboxylase/oxygenase, a critical enzyme involved in the initial 

steps of carbon fixation from atmospheric CO2)), suffer photosynthetic decline at 

leaf temperatures greater than 38 °C (Crafts-Brandner and Salvucci, 2002). 

Fourth, the overall effect of alterations in the pattern of rainfall and 

temperature will affect the water vapour pressure deficit between the 

atmosphere and leaves (Dai, 2011, Lobell et al., 2013b), and the rate at which 
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water is taken up by the roots and subsequently lost to transpiration will 

quicken. Loss of turgor pressure at a cellular level eventually leads to wilting of 

the entire plant, the natural response to which is closure of stomata to reduce 

water loss, but the knock-on effect of this is to reduce the influx of CO2. When 

the increased internal ratio of O2:CO2 is paired with the temperature-dependent 

increase in RuBisCO photorespiration (Crafts-Brandner and Salvucci, 2002) it 

becomes clear how drought can lead to inhibition of photosynthesis and growth. 

This is an effect that leads (in the short term) to growth stasis, however, rather 

than lethality, and at normal temperatures plants can recover from wilting if 

irrigated. The fifth, related, effect of climate change is heat stress, which 

occurs when a plant is unable to counteract heating effects with sufficient 

transpirational cooling. Although the number of frost-free days in the growing 

season would increase, so would the number of days where the temperature 

reaches critical levels high enough to damage crops at a cellular level (Teixeira 

et al., 2013). Battisti and Naylor (2009) combined 23 different climate change 

models and predicted that average growing season temperatures in the tropics 

and the subtropics will be higher in 2050 than any maximum seasonal 

temperature recorded between 1900 and 2006. Gourdji et al. (2013) measured 

the percentage of farmland area subjected to five consecutive days of 

temperatures higher than the critical temperature during the reproductive days 

of the crop planted there; by 2050 those percentages are projected to increase 

from 5% to 18% for wheat, 8% to 27% for rice, and 15% to 44% for maize. Without 

effective management this represents a major threat to global food security. 
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1.1.1 Changes in Productivity and Population 

It has been projected by the International Food Production Research Institute 

(IFPRI) that, without intervention, the global production of wheat in the year 

2050 will have declined from 2000 levels by 27.4%, rice by 13.5%, and maize by 

0.4% (focussing only on developing countries the equivalent figures are 33.5%, 

13.6%, and 10%) (Nelson et al., 2009, Table 1). Following this worst-case 

scenario, daily per-capita calorie availability is expected to drop by 7.6% in 

developed countries and by 10.7% in developing countries (Nelson et al., 2009, 

Table 5). In the same period the world’s population is projected to reach 9 

billion. Accordingly, food prices will rise consistent with the principles of falling 

supply and rising demand (Nelson et al., 2009, Table 2). In short, from a figure 

of 881 million in 2005, the number of people at risk of food shortage in 

developing nations is projected to rise to more than 1 billion (Rosegrant et al., 

2014).  

However, with the instigation of a programme of ‘adaptive investments’ (i.e. 

those designed to allow the population to cope with such a change, as opposed 

to ‘mitigation investments’, which would reduce the extent of the change 

(United Nations Environmental Protection Agency; UNEP, 2014)) the best-case 

scenario for developing countries projected by the IFPRI forecasts a 5% increase 

in calorie availability (Nelson et al., 2009, Table 8). Such adaptive investments 

range from improvements to infrastructure such as roads and irrigation 

mechanisms, to low-tech local farming solutions such as the expansion of 

fertiliser use, to research & development (R&D) type solutions such as selective 

breeding or genetic engineering (Rosegrant et al., 2014).  
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Lobell et al. (2013a) performed a cost/benefit analysis of adaptation to climate 

change as opposed to attempting to mitigate the problem. They predict that an 

investment of 225bn USD (at year 2000 value) by 2050 would prevent the 

clearing and conversion of 61 megahectares (MHa) of land for arable use (261 

MHa converted instead of 322 MHa), and in doing so would reduce the release of 

greenhouse gases over that period from 87 to 72 gigatonnes (Gt) of CO2 

equivalents; a saving of 15 Gt, or 17 %.  

1.1.2 Management Strategies 

The agricultural literature relating to climate change focuses heavily on 

strategies of adaptation rather than mitigation, the latter perhaps being seen as 

the domain of economic policy makers and energy industries, and of those 

involved in the emerging field of geoengineering. Solar radiation management, 

for example, would involve the dissemination of reflective particles into various 

levels of the atmosphere, and one of the current challenges is to design a system 

capable of managing the effects on a regional rather than a global scale. 

However, a synchronised planetary perturbation of temperature and 

precipitation levels would endanger food security just as much as current 

projections of unmanaged climate change (Pongratz et al., 2012). Historical 

evidence suggests that even while we have been aware of the threat of climate 

change, and while nations have signed accords to reduce the anthropogenic 

effects, mitigation strategies have simply not been effective. In the United 

States, one of the largest contributors to greenhouse gas emissions, CO2 output 

increased 10% in the two decades to 2011 (United Nations Environmental 

Protection Agency, n.d.) and are projected to rise by a further 5-11% between 
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2011 and 2030 (depending on the effectiveness of carbon sequestration policies) 

(U.S. Dept. of State, 2014). 

With the overwhelming impact of climate change expected to be higher 

temperatures and the related dehydration and salinity effects, perhaps it is 

necessary for plant biologists to change from the historical type of thinking that 

characterises heat and drought stresses as distinct, and instead to characterise 

the responses to these in terms of their interrelated effectiveness at dealing 

with heat and dehydration. Ultimately the principal damage caused by drought 

in a changing climate would be elevation of leaf temperatures to unacceptable 

levels, causing the loss of cellular and sub-cellular integrity before water 

shortage per se causes an irreversible effect, and the combined message from a 

number of projections on climate change over the last decade suggest that heat 

stress (and related) responses should be one of the most urgent focuses of plant 

biotechnology in the coming years (Battisti and Naylor, 2009, Ciais et al., 2005, 

Lobell et al., 2012, Lobell et al., 2013b). 

1.2 Crop Responses to Climate Change-Related 

Stresses: Prospects for Adaptation 

If we are to move towards an integrated model of the stress responses elicited 

by a changing climate, it is important to first of all recognise what has been 

discovered about the individual components thus far.  
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1.2.1 Heat Stress Responses 

As described above, one response to elevated temperatures is the rapid 

acceleration of development towards the seed-setting stage (the ‘productivity 

race’). Kumar et al. (2012) describe the involvement of the bHLH transcription 

factor PIF4 (phytochrome interacting factor 4) in accelerated flowering in 

response to elevated temperatures. PIF4 activates expression of Flowering Locus 

T (FT) at 27 °C in short day conditions, demonstrating that this mechanism is 

independent of photoperiod and thus crops may be at risk of engaging in this 

productivity race even before the seasonal transition from short to long days. 

Heat shock proteins (HSPs) are a ubiquitous class of proteins that help cells cope 

with the physical stresses of increasing temperature, drought and salinity 

(Waters et al., 1996) and have been reported in, and have homology across, 

bacteria, yeast, and higher eukaryotes (Kotak et al., 2007a, Vierling, 1991). 

HSPs can be broadly distinguished into two subfamilies: those which have 

molecular masses grouped around 70 kDa, 90 kDa and 100 kDa; and small heat 

shock proteins (smHSPs) which have molecular masses of ≤30 kDa. 

In most organisms, the larger HSPs are the main effectors of thermotolerance 

and this is reflected in both their abundance at the protein level and the number 

of genes (Lindquist, 1986). They are ubiquitously expressed upon heat shock and 

serve to chaperone denatured proteins back into a re-folded conformation. 

Homologs in bacterial systems include ClpB (homolog of plant HSP100), HtpG 

(HSP90), DnaK (HSP70) and GroEL (HSP60). Small HSPs are comparatively over-

represented in plants and have a different mode of action; their role is to 

interact with and protect native proteins in danger of denaturing as a result of 
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the increased kinetic energy conferred by a heat stress (Waters, 2013). 

Transgenic studies have repeatedly shown that overexpression of various plant 

and fungal smHSPs and HSPs has improved the thermotolerance of the host 

plants at critical temperatures (Cho and Choi, 2009, Sun et al., 2012, Katiyar-

Agarwal et al., 2003, Kim et al., 2012, Liu et al., 2009, Neta-Sharir et al., 2005, 

Ogawa et al., 2007, Ono et al., 2001, Qi et al., 2011, Queitsch et al., 2000, 

Uchida et al., 2008, Xin et al., 2010, Xue et al., 2010, Yoshida et al., 2008, Zhou 

et al., 2012, Zhu et al., 2009). Notably, overexpression of HSP70 from 

Trichoderma harzianum (a fungus) in Arabidopsis caused an upregulation of SOS1 

(salt overly sensitive 1; a Na+/H+ antiporter (Wu et al., 1996) – see section 1.2.3 

“Salt Stress Responses” for more on this gene) and APX1 (ascorbate peroxidase 

1; a heat-shock-activated scavenger of reactive oxygen species (ROS) (Panchuk 

et al., 2002)), and overexpression of HSP70 and of Arabidopsis HSP26 both 

independently caused a downregulation of HSFs and other HSPs (Montero-

Barrientos et al., 2010, Rhoads et al., 2005). This demonstrates a mechanism of 

feedback between an HSP and the regulatory network which directs its 

expression as well as the expression of other effector components. 

The main activators of the smHSP response are termed heat shock factors 

(HSFs), of which there are 21 in Arabidopsis (Kotak et al., 2007a). They share a 

common basic structure of an N-terminal DNA binding domain, a hydrophobic 

multimerisation domain, a nuclear localisation signal (NLS) and an activation 

domain (Kotak et al., 2007b), and are separated into 3 classes (A, B, and C) on 

the basis of structural differences. Knockout studies have implicated HSFA1a and 

HSFA1b in the initial phase of the heat-stress response, and HSFA2 in the 

recovery phase or in responses to extended periods of high temperature 

(Lohmann et al., 2004, Busch et al., 2005, Schramm et al., 2006).  
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The HSF response also appears to be activated by stimuli other than heat. In one 

study by (Nishizawa et al., 2006) expression of HSFA2 was inducible by H2O2 and 

high light, implying a role in oxidative stress responses. In recent years, several 

studies have reported the involvement of oxidative stress in abiotic stress 

tolerances (Huang et al., 2012, Atkin and Macherel, 2009) and levels of H2O2 

have indeed been shown to rapidly accumulate shortly after a period of high 

temperature (Vacca et al., 2004). It has also been noted that HSFA3 is inducible 

by DREB2A, one of the classic signalling intermediates of drought stress 

responses (Sakuma et al., 2006, Yoshida et al., 2008). Overexpression of HSFA1b 

has also been shown to improve drought tolerance in Arabidopsis by preventing 

wilting and decreasing the rate of water loss of detached rosettes, and also to 

improve pathogen resistance via an alteration in the transcription levels of 

several hundred genes (Bechtold et al., 2013). 

At least one HSF has been demonstrated to mediate some exclusively 

developmental processes despite belonging to the HSF class. HSP17.6 and 

HSP17.6a have been demonstrated to be inducible, at least under 

experimentally-induced conditions, by HSFA9 (Kotak et al., 2007b), a seed- 

specific transcription factor which is in turn under the control of ABI3 (abscissic 

acid (ABA) insensitive), a transcription factor which responds to ABA. 

Constitutive expression of HSFA9 from the 35S promoter increased levels of 

HSP17.6 and HSP17.6a. HSFA9 under the control of its own promoter was 

inducible upon application of ABA, and yet there was no evidence of HSFA9 

expression under heat-shock, nor does knocking out ABI3 have any effect on 

thermotolerance. It appears, then, that the HSPs may also play an important 

role in maturing seeds and it can be hypothesised that their role in this situation 

is to protect proteins from loss of conformation during desiccation, a process by 
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which solutes would become more concentrated and thus ionic strength would 

be perturbed. 

1.2.2 Hydration Stress Responses 

As already discussed, the distinction between drought, salinity and heat stress 

responses is not as clear-cut as some of the literature would suggest. This is 

particularly evident in the range of responses noted to confer an advantage upon 

naturally drought-tolerant and naturally salt-tolerant crops.  

Such responses to drought may include overt phenotypes like growth arrest; this 

is advantageous as the cessation of growth means that any metabolic activity 

can be focussed on avoiding or ameliorating the effects of the stress. One 

example is the inhibition of lateral root development observed in Arabidopsis in 

favour of extension of the main tap root, which would be able to extract water 

from deeper in the growth substrate (Xiong et al., 2006). Cessation of growth is 

perhaps a normal and active response to drought stress, but it is also partly 

imposed by necessity when stomatal closure occurs in order to prevent further 

loss of water. Stomatal closure is partly dependent on ABA signalling and partly 

dependent on turgor pressure, and it represents a temporary measure, 

reversible when the hormone signal is relieved or the water status of the plant 

improves (Chaves et al., 2009, Wilkinson and Davies, 2010).  

On a molecular level, with the loss of transpirational pull through the xylem and 

a state of early dehydration, cells can act to increase turgor pressure by 

increasing the osmotic potential of the vacuole to draw in water from the roots 

(for more detail see section 1.2.3). In order to maintain osmotic potential 

balance between the vacuole and the cytoplasm, the plant also produces 
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compatible solutes (i.e. solutes that are not toxic to metabolism) using carbon 

which is now available, having been diverted from overall growth mechanisms 

(Blum, 2005, DaCosta and Huang, 2006, Lei et al., 2006, Xue et al., 2008). 

Carbon fixation mechanisms can also be enhanced to make more efficient use of 

the reduced CO2 levels in the leaf. In one crop-based study, a naturally drought-

resistant variety of Sorghum (Sorghum bicolor (L) Moensch) was shown to have 

increased levels of RuBisCO after drought stress, accompanied by an increase in 

the level of HSP60 (Jagtap et al., 1998), demonstrating the importance of 

molecular chaperones in a variety of stress conditions that threaten protein 

structure (in this case, solute concentration and thus ionic strength). 

1.2.3 Salt Stress Responses 

Soil salinisation is a problem for agriculture and is associated with several human 

activities, the main one of which is irrigation. Fifty-five percent of all the food 

produced globally is estimated to come from irrigated land (Food and Agriculture 

Organisation of the United Nations; FAO, 2013). As the water applied to a soil is 

lost by evapotranspiration, it leaves behind solutes which accumulate over time. 

While farmers might know this, shortages of water in areas where subsistence 

farming is practiced might mean there is no choice in the short term but to 

irrigate with brackish water. This is relatively common in, for example, 

Bangladesh, China, Egypt, India, Iran, Pakistan, Syria, Spain and parts of the 

United States (FAO, 2014). Forestry clearing is another human activity that 

impacts indirectly on salinity levels. When deep-rooted trees are removed and 

replaced with short-rooted crops, the transpiration activity that would have 

normally drawn up water from deep water tables via long taproots is lost. 
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Without this water sink the water table begins to rise, bringing with it the same 

solutes that lead to increased salinisation.  

It is important to note here that seawater has a concentration of approximately 

500 mM Na+ and 550 mM Cl-. Arabidopsis is a glycophyte, and as such is able to 

complete a life cycle at salt concentrations up to approximately 100 mM 

(Flowers, 2004). It is the Na+ rather than the Cl- ions that are responsible for the 

toxicity, as evidenced by tolerance to equivalent concentrations of KCl (Wu et 

al., 1996). Plants deal with this Na+ toxicity in one of three main ways: efflux, 

sequestration, or exclusion. The main structural components of these strategies 

are membrane-bound proteins which act as channels through which excess Na+ 

ions are shuttled out of the cytoplasm.  

The classical Na+ efflux pathway is the salt overly-sensitive (SOS) pathway 

comprising three parts. SOS3 is a Ca2+-binding protein, activated by a calcium 

wave initiated when intracellular Na+ levels reach a critical threshold (Liu and 

Zhu, 1998). The Ca2+-bound form then interacts with SOS2, a serine/threonine 

kinase (Liu et al., 2000) which becomes myristoylated and translocates to the 

plasma membrane where it phosphorylates SOS1 (Ishitani et al., 2000), a Na+/H+ 

antiporter (Shi et al., 2000). This has the effect of shuttling excess Na+ out of 

the cytoplasm into the apoplast. Another antiporter, HKT1 (H+/K+ Transporter 

1), operates in shoots in a similar way to SOS1 by depositing excess Na+ into the 

phloem where it is recirculated to the roots (Berthomieu et al., 2003). 

There are at least 27 Na+/H+ antiporters in the Arabidopsis genome (Ward, 2001) 

and they do not all perform efflux at the plasma membrane. Others include 

NHX1 (Na+/H+ exchanger 1), a tonoplast antiporter, which sequesters excess Na+ 

in the vacuole (Gaxiola et al., 1999). The primary reduction in cytoplasmic salt 
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concentration is an obvious advantage, but a secondary benefit is conferred by 

increasing vacuolar osmotic potential. This encourages water to enter, 

increasing the vacuolar volume and thus increasing turgor of the plant, without 

which the stomata would close and thus CO2 assimilation rates would drop.  

Homologs of all these types of Arabidopsis membrane channels have been 

identified in the major crops and research is underway to capitalise on their 

functions in order to improve halotolerance in the field (for a review, see Zhang 

and Shi (2013)). 

1.3 Aims of This Research 

This thesis focuses primarily on investigation of thermotolerance phenotypes of 

Arabidopsis mutants, touches on other related abiotic stress phenotypes, and 

ultimately leads to a discussion of cross-talk between abiotic stress tolerances 

more generally, and it is based on a previous research project aimed at finding 

novel regulators of halotolerance. That previous research (Price, 2005) led to 

the identification of a series of distinct and previously uncharacterised mutants, 

one of which was shown to have altered levels of the transcription factor MYB64. 

A microarray experiment performed on mature, long-term salt-stressed 

Arabidopsis plants comparing the MYB64 overexpressing line with wild type 

revealed an upregulation of stress response transcripts, the highest of which 

encoded several members of the small heat shock protein family. An 

understanding of that previous characterisation underpins any understanding of 

the work contributing to this thesis, so it will be briefly summarised here. 
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1.4 Project History – MYB64: A MYB Transcription Factor 

Conferring Salt Tolerance 

1.4.1 Mutant Search Strategy: Activation Tagging 

Price aimed to identify and characterise novel mutations that led to an increase 

in survival rates among Arabidopsis seedlings grown in the presence of toxic 

levels of NaCl. This was done by obtaining a large collection of seed from 

parents that had been subjected to Agrobacterium-mediated insertional 

mutagenesis (Weigel et al., 2000) and sowing this seed on a screening medium – 

in this case, agar supplemented with 80 mM NaCl. Those seedlings that survived 

the screening were transferred to soil and grown for further characterisation. 

One particular halotolerant mutant, sequentially designated Halotolerant 5 

(HT5, Figure 1.1), carried a T-DNA insertion in the intergenic region between 

genes At5g11040, encoding an uncharacterised protein, and At5g11050, encoding 

the transcription factor MYB64. It has been shown experimentally that the 35S 

enhancer elements in this insertion are able to affect transcription patterns 

from insertion loci up to 3.6 kB upstream from the transcriptional start site (TSS) 

of a gene, as well as from loci downstream of the transcriptional stop site 

(Weigel et al., 2000) so both genes were considered to be candidates for altered 

expression mediated by the activation tag and leading to the phenotype. Semi-

quantitative RT-PCR showed no difference in the levels of At5g11040 between 

wild type and the HT5 insertional mutant, but did show a clear increase in the 

level of At5g11050 transcript (Figure 1.1, panel D). 
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Figure 1.1 Characterisation of Halotolerant Activation-Tagged Mutant HT5  

 

A HT5 (left) and background wild type line (Col 0; right) were grown on agar plates 
supplemented with NaCl to a final concentration of 80 mM. HT5 seedlings are more halotolerant 
and have a short-root phenotype. B There is no observable difference between growth of HT5 
and wild type in the absence of NaCl. C TAIL-PCR was used to identify the genomic location of 
the T-DNA insertion in line HT5 as the intergenic region between At5g11040 and At5g11050. 
The gene annotations available from The Arabidopsis Information Resource (Swarbreck et al., 
2008) identify these as ‘Expressed protein’ and MYB64, respectively. D RT-PCR was carried 
out to measure levels of At5g11040 and At5g11050 transcripts in the halotolerant activation-
tagged line HT5, and on the background line Col 0 as a wild type control. Actin was used as an 
internal loading control. 

 

(Figure adapted from Price, 2005)  
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1.4.2 MYB64 Functional Characterisation 

MYB64 was largely uncharacterised in the literature. It has since been implicated 

in embryo sac development by whole-transcriptome expression profiling 

experiments (Johnston et al., 2007, Wuest et al., 2010) though not by functional 

studies at a gene product level. Very recently it has been implicated in the 

cellular development of the female gametophyte in Arabidopsis, working 

redundantly with MYB119 (Rabiger and Drews, 2013). Since it is a transcription 

factor, it was of interest to determine which genes might be under its regulatory 

control and might therefore be responsible for effecting the halotolerant 

phenotype. A microarray experiment was conducted to compare the global 

transcript profile of the HT5 mutant with that of wild type, both grown with a 

long-term salt stress to replicate the conditions under which the phenotype was 

first identified (80 mM NaCl). The most 45 highly upregulated genes in line HT5 

are presented in Table 1.1. It was perhaps surprising that the transcript with the 

highest increase in measured abundance encoded a smHSP gene rather than one 

associated explicitly with halotolerance. Several other genes close to the top of 

the list also encode members of the smHSP and the larger HSP70/HSP101 

families. In addition, several genes with unknown functions at that time have 

since been updated in the database at TAIR with annotations describing a variety 

of stress-response functions (not shown).  
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Table 1.1 HT5 Microarray Analysis – Most Highly Upregulated Transcripts  

Wild type (Col 0) and HT5 plants were grown for 2 weeks on agar plates with MS media (modified 
to contain 530µM Ca2+ and 200µM K+) supplemented with 80 mM NaCl. Whole-seedling tissue was 
harvested, RNA was extracted and microarray analysis performed to compare expression levels. 
The most highly upregulated transcripts are presented here. AGI = Arabidopsis Genome Initiative 
gene number. Avg FC = Average fold change. RP UP = Rank Product (Upregulated). FDR = False 
Discovery Rate.  
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1.4.3 MYB64 Transgenic Overexpression Line 

The activation-tagging technique used to create the HT5 mutant, in which the 

tetramerised enhancer elements are inserted at random, did not necessarily 

lead to maximal overexpression of MYB64. To confirm the connection between 

MYB64 and any phenotype, a stronger overexpressing line was created by 

directly fusing the 35S promoter to the transcriptional start site of the gene. 

MYB64 genomic DNA was cloned into the T-DNA region of Ti plasmid pMN19 

directly 3’ to the tetramerised 35S enhancer elements (Weigel et al., 2000), 

then wild type Arabidopsis (Col 0) was transformed, selected on appropriate 

media, and insertion was confirmed by PCR on genomic DNA using primers 

designed to detect the transgene. These transformants (referred to hereafter as 

35Spro:MYB64 lines) were shown to express MYB64 at significantly higher levels 

than wild type.  

These lines were used for all subsequent investigations of MYB64 expression 

described in this thesis. 

1.5 Project History – The Small Heat Shock Proteins 

The discovery that 15% of the 45 most highly upregulated transcripts in line HT5 

belong to the heat shock protein gene families made thermotolerance an 

appealing avenue of investigation. If MYB64 activates the expression of smHSPs, 

it would be important to gain an understanding of how they function before any 

phenotypic characterisation was undertaken. 
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1.5.1 smHSPs in Plants 

Small heat shock proteins are important components of the heat stress response 

in every organism where they have yet been investigated, whether archaea, 

bacteria, or eukarya (Waters and Rioflorido, 2007, Waters, 2013). They function 

as ATP-independent chaperones to stop denaturation caused by molecular 

vibrations resulting from an increase in kinetic energy, and thus prevent any 

subsequent irreversible polypeptide aggregation. The larger HSPs (which are 

evolutionarily unrelated and are named based on size: HSP100, HSP90, HSP70, 

HSP60 families), in contrast, are ATP-dependent and their function is to re-fold 

proteins which have already denatured (Haslbeck et al., 2005). As those are 

unrelated to the smHSPs by sequence and as they operate in a fundamentally 

different way, the focus of this introduction will remain solely with the smHSPs. 

The Arabidopsis genome database currently holds records for 21 smHSPs and 3 

ʻsmHSP-like proteinsʼ (Kotak et al., 2007b). These are classified into 11 

subfamilies based on sub-cellular localisation, 6 of which are thought to be 

cytosolic and 5 of which are localised to organelles (Scharf et al., 2001, Waters, 

2013). They are all measurably expressed, suggesting that none are 

pseudogenes, while at the same time there appears to be a difficulty in ascribing 

individual chaperoning roles as there have been no publications documenting 

differences in chaperone clients to date. The large number of smHSPs and high 

degree of sequence similarity suggests there might be a high degree of 

functional redundancy. On the other hand, the fact that the family is so large, 

and that this is true across plant species as divergent as Arabidopsis and rice, 

reflects distinct functional roles and suggests conservation of all of them (for 

comparison, the human genome only encodes 10 smHSPs (Arrigo, 2013) while 
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rice (Oryza sativa) has 23 and poplar (Populus trichocarpa) has 36 (Waters et al., 

2008)). One aim of this thesis, therefore, was to investigate the functions and 

expression patterns of some of the smHSPs found to be upregulated in the HT5 

line and to determine if they perform different roles.  

1.5.1.1 smHSP Sequences, Structures and Functions 

The 21 smHSPs in Arabidopsis thaliana are, as already mentioned, classed based 

on their phylogenetic relationships and on their putative sub-cellular 

localisations (Scharf et al., 2001). Classes CI - CVI are thought to be localised in 

the cytosol. The two Class M subfamilies are associated with the mitochondrion 

(Lenne and Douce, 1994), Class CP with the chloroplast (Osteryoung and 

Vierling, 1994), Class E with endomembranous structures such as the 

endoplasmic reticulum (ER), and Class P with the peroxisome (Helm et al., 1995, 

Waters, 2013).  

The sequences of smHSPs show a high degree of conservation both between and 

within genomes. At the heart of their classification as smHSPs is the ‘α-crystallin 

domain’ (ACD) found towards the C- terminal end. This domain is also found in 

proteins of the vertebrate eye lens whose function is to prevent aggregation of 

denatured polypeptides that might lead to the formation of cataracts (Clark et 

al., 2012). This duality of expression in different tissues in different organisms 

where denatured proteins would be problematic supported the development of 

the theory that this conserved domain contributes to a chaperone activity. 

Early studies on the structure of smHSPs includes the work performed by Kim et 

al (1998) on the single smHSP from the archaeon Methanococcus jannaschii 

(Figure 1.2, panel A). Shaped into a hollow 24-mer octahedral shell, the C-
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termini lie on the surface and make hydrophobic and backbone contacts with the 

β-strands of neighbouring subunits. Only half of the N-termini are resolvable, 

and they are present in the centre of the sphere and interact with each other in 

a similar fashion to linking arms. Kim et al. suggested that the large percentage 

of surface contacts given to the dimer interface (48% for this one interaction) 

make the dimer likely to be the most stable, long-lived structure.  

The only smHSP from the plant kingdom currently to have had a crystallographic 

structure published is the 16.9 kDa protein from wheat (Triticum aestivum; 

TaHSP16.9). It forms a dodecameric double-doughnut ‘stack’ with one 6-mer 

ring laid directly on top of the other, forming a 3-fold crystallographic axis 

through the hole and a 2-fold axis at 90° to this (Figure 1.2, panel B) (van 

Montfort et al., 2001). An examination of the N-terminal arm reveals several 

hydrophobic contacts between both helical domains and α-crystallin domain β-

strands of neighbouring subunits. The subunit compositions of several other 

Arabidopsis smHSPs have also been reported as dodecameric (Painter et al., 

2008). Using nano-electrospray ionisation mass spectrometry (nESI-MS) to 

investigate the various quaternary organisations adopted by purified Arabidopsis 

HSP18.1-CI and HSP17.6-CI (two proteins closely related to those which are the 

subject of this thesis, but belonging to a separate class) Painter et al. 

demonstrated that the building block of those dodecamers is indeed the dimer. 

They report masses of 216,301 kDa and 210,258 kDa respectively, corresponding 

to the predicted masses of dodecamers, plus very small peaks corresponding to 

solution-phase dimers which had not yet been assimilated into oligomers. 

Although not proven experimentally, a model of the Arabidopsis chloroplast   
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Figure 1.2 Crystal Structures of Two Previously Characterised smHSPs 

A (Left) The single smHSP (16.5 kDa) from the archaeon Methanococcus janaschii forms a hollow, 
spherical 24-mer in vitro. (Right) An isolated view of three dimers within the sphere reveals C-
terminal interactions between dimers.  

 

(Adapted from Kim et al., 1998) 

 

B 1: 16.9 kDa small heat shock protein from wheat (Triticum aestivum, TaHSP16.9) forms 
dodecameric double-doughnut structures, i.e. one doughnut on top of the other in vitro. 2: 
Monomers have a C-terminal extension which protrudes from the body of the subunit. 3: The basic 
unit of the dodecamer is the dimer. 4: When viewed in cross-section, the C-terminal extensions can 
be seen to facilitate dimer-dimer interactions as in the M. janaschii homolog, both within a ring, and 
between rings (four dimers shown, each dimer coloured differently). 

 

(Adapted from van Montfort et al., 2001) 
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family member HSP21 also predicts a similar dodecamer of two doughnut-shaped 

discs (Lambert et al., 2011).  

Painter et al. also explored what happens when HSP18.1-CI and HSP17.6-CI are 

mixed in vitro. The detail of the mass spectra for each of the two proteins 

reveal several peaks each representing multiple charge states. Treating these as 

fingerprints for each species, a simulated ʻmixture’ fingerprint can be obtained 

by overlaying the two, however when the purified proteins are mixed at a 1:1 

ratio they give rise to a spectrum with an intermediate pattern with peaks 

corresponding to mass/charge ratios that could only be explained by the 

exchange of dimers to form hetero-dodecamers (see Figure 1.3). Following this 

equilibration in real-time it became evident that this occurs on a timescale of 

minutes and does so more rapidly with increasing temperature. This further 

supported the notion that the dimer is the building block of the dodecamer and 

also possibly the functional form of the protein. Similar results were obtained in 

other in vitro studies of quaternary dynamics (Baldwin et al., 2011a, Stengel et 

al., 2010) 

It is interesting to speculate on the significance of this promiscuity between 

members of the smHSP family. If these proteins, which belong to the same class 

and are highly homologous, readily exchange subunits in vitro, does this imply 

that the same would happen in vivo? If so, this would seem to contradict the 

hypothesis supporting the existence of, and implied evolutionary selection for, 

so many smHSPs in plants; that each must have a distinct target range, temporal 

expression pattern, or tissue-specific pattern. Why is the family so large and 

distinct if the proteins so easily form hetero-dodecamers? Sobott et al. (2002) 

provide evidence that promiscuity is even wider – they report subunit exchange  
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Figure 1.3 Temperature-dependent and Time-Dependent Dissociation of smHSP 
Dodecamers into Dimers and Monomers in vivo 

A As temperature increased, the mass spectrometry profile of Arabidopsis HSP18.1 
changed from that of a solely dodecameric species to a mixture of dodecamers, 
monomers and dimers. 

 

(Figure adapted from Stengel et al., 2010) 

 

B As time passed, the mass spectrometry profile of Arabidopsis HSP17.6 and HSP18.1 
changed from that of two distinct groups of homodimers into that of a heterodimeric 
species, apparently proportional to the molar ratio of input dimers. 

 

(Figure adapted from Painter et al., 2008)  
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between different organisms – an 18.1 kDa HSP from pea (Pisum sativum; 

PsHSP18.1) and TaHSP16.9. Again, dimers appear to be the currency of exchange 

and the authors showed that the final bias of one species in an  oligomer over 

the other is determined simply by the molar ratio of monomers in the solution, 

and that homocomplexes fall to 50% of their original abundance within 3-4 

minutes of mixing. 

It will be crucial to understanding the role of the smHSPs in plants to resolve this 

apparent conflict. The distinct sub-cellular localisations of proteins on different 

branches of the phylogenetic tree go some way to explaining why so many genes 

are required, and yet, if these proteins are tasked with ensuring the stability of 

the whole gamut of proteins that exist in each cell, they must surely have a low 

specificity for their targets. This would explain the ease of exchange, but not 

the requirement for the large number of unique smHSP proteins. 

The localisation signals that have been found so far are encoded in the variable 

N-terminal region, while the hydrophobic C-terminal extension remains 

relatively conserved in hydrophobic composition and size across classes. Kim et 

al. (1998) also expressed rice (Oryza sativa) HSP16.9 in E. coli with a deletion in 

the C-terminal two-thirds of the α-crystallin domain. Cells carrying this mutant 

protein were protected from heat-shock, controversially suggesting that the 

most highly-conserved domain is not necessary for function. Yeh et al. (1997) 

substituted several phenylalanine residues N-terminal of the α-crystallin domain 

and abolished thermotolerance but not oligomerisation. It has been suggested 

that the N-terminal extension plays a role specifically in client-binding (Siddique 

et al., 2008, Waters and Vierling, 1999). This then leads us to the conclusion 

that the thermoprotective function is encoded partly in the N-terminal region 
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and partly in the C-terminal extension which is most exposed and most easily 

accessible by proteins outside of an oligomer.  

1.5.1.2 Regulation of smHSP Activation 

The precise expression and localisation patterns of the full complement of 

smHSPs in Arabidopsis has yet to be published at a protein level, mainly due to 

high homology within classes which causes difficulties in raising antibodies 

specific to any particular one (Jinn et al., 1993) and it is apparent that much 

work has instead been done in vitro (as discussed above – see section 1.5.1.1 

smHSP Sequences, Structures and Functions). This could be resolved by epitope 

tagging but this has yet to be reported in the literature; something the research 

reported in this thesis aimed to address. Much of the analysis published to date 

instead concerns expression at the transcript level. 

The main initiators of the heat shock response with respect to HSPs are a family 

of transcriptional activators termed heat shock factors (HSFs), of which there 

are 21 in Arabidopsis (Kotak et al., 2007a). They share a common basic structure 

of an N-terminal DNA binding domain, a hydrophobic multimerisation domain, a 

nuclear localisation signal (NLS) and an activation domain (Kotak et al., 2007b). 

The fact that there are several HSFs which activate different components of the 

heat stress response suggests that they may play divergent roles within the 

plant, or that subsets of the smHSP family are responsible for discrete, non-

redundant functions (Waters et al., 1996). 

In general the HSFs are directly or indirectly responsible for the expression of 

smHSPs (Kotak et al., 2007a). As described in section 1.2.1, one notable 

exception is HSFA9 which induces HSP17.6 and HSP17.6a transcription in seeds in 
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a manner that is independent of heat shock (Kotak et al., 2007b). This HSF 

therefore appears to have adapted to a role in seed development rather than 

heat shock, perhaps mitigating the ionic-strength-induced protein conformation 

changes that would take place as a maturing seed desiccates.  

1.5.2 MYB Genes in Plants 

The heat shock proteins represent one avenue of research. A second aim of this 

study was to add depth to our understanding of the role of the transcription 

factor MYB64 in stress tolerance responses by further investigating the other 

genes that it might activate. 

The first MYB gene characterised was the oncogenic v-Myb, a gene found in avian 

myeloblastosis virus (Klempnauer et al., 1982). Sequence analysis suggests that 

it was inherited from a genetic transfer event between the virus and a 

vertebrate host. The defining feature of a MYB transcription factor is its N-

terminal DNA-binding domain; a 53 residue stretch comprising two main alpha-

helices joined by a shorter helix in a ʻhelix-turn-helixʼ motif (Ogata et al., 1992). 

This domain can occur on its own, but usually it is accompanied by 1 or 2 

imperfect repeats, all of which share a conserved tryptophan–rich hydrophobic 

core. MYB proteins, therefore, are classified based on the number of imperfect 

repeats: ‘MYB1R’ factors, ‘R2R3-type MYB’ factors, and ‘MYB3R’ factors; R2R3-

type MYB factors are the largest of the three families in Arabidopsis, with the 

most recent count placing the figure at 198 genes (Yanhui et al., 2013). The 

functions attributed to the members of the R2R3-family (for a phylogenetic tree 

of this family see Figure 1.4) mainly include phenylpropanoid biosynthesis, cell 

development & identity (e.g. glabrous GL1), responses to plant hormones, and 
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responses to environmental stimuli such as drought, temperature, and salt (Urao 

et al., 1993, Abe et al., 2003, Ambawat et al., 2013). A striking feature of these 

roles is that they represent mainly plant-specific processes, especially when 

compared with the more general roles of MYB1R factors (telomeric DNA binding 

(Yu et al., 2000), circadian clock control (Schaffer et al., 2001)) and MYB3R 

factors (cell cycle control (Ito et al., 2001)). Combined with the evidence that 

there are so many more R2R3-type MYB factors in higher plants than in other 

eukaryotes, there is speculation that this family has contributed to the evolution 

of land plants (Martin and Paz-Ares, 1997, Stracke et al., 2001). These authors 

also report evidence that although they are closely related at the protein 

sequence level, many of them are expressed differentially so that functional 

redundancy is ruled out by spatial or temporal displacement.  

In the context of responses relevant to tolerance of climate change, Seo and 

Park (2009) described the action of MYB96, an R2R3-type identified from an 

activation-tagging screen where its overexpression caused a reduction in lateral 

root growth in response to drought conditions (consistent with typical drought 

responses noted in section 1.2.2 “Hydration Stress Responses”, above). They also 

showed that ABA signaling was important in the activation of this MYB TF. Other  



Chapter 1: Introduction  42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4 Phylogenetic Tree of the R2R3 Family of MYB Transcription Factors in 
Arabidopsis 

MYB64 is most closely related to MYB119. Groups (designated by coloured boxes) are 
determined on the basis of short motifs (4-20 residues) outside of the conserved R2R3 domains. 
(Figure adapted from Stracke et al., 2001)  
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ABA-inducible, abiotic stress-responsive MYBs include MYB13, MYB15, MYB33 

MYB70, MYB73, MYB77, and MYB101 in conditions of drought, osmotic stress, and 

other environmental factors, and work is underway to translate this research on 

the model species Arabidopsis into crops (for a review, see Ambawat et al., 

2013). To date, outside of the research conducted in our lab, there has been no 

reported involvement of MYB64 (the R2R3 MYB on which the research presented 

in this thesis is based) in the halo- or thermotolerant response in plants. 

There is controversy in the literature over the existence of a consensus MYB DNA 

binding domain. Martin & Paz-Ares (1997) report that MYB transcription factors 

are highly divergent in their target sequences, quoting the wide variation 

between specificities found in various plant species, none of which are similar to 

the consensus sequence from vertebrates. Martin & Paz-Arez go on to detail 

three possible consensus sequences found in various plant contexts. A year later, 

however, Romero et al (1998) rather more confidently published a different 

series of three consensus binding sites.  

A preliminary search for all six sequences referred to above revealed no 

instances in the putative promoter regions of HSP17.6, HSP17.6a, or HSP17.6b 

(three of the smHSPs near the top of the list of the 45 most highly upregulated 

transcripts in line HT5 – see Table 1.1), which would leave open the possibility 

that perhaps there is an intermediate step between the activation of MYB64 and 

the expression of these two smHSPs mediated by an unidentified regulator in the 

pathway. 

By investigating the relationship between MYB64 overexpression, transcript 

profiles, and stress-response phenotypes, this latter part of this thesis aims to 

begin to elucidate the likely intermediate steps in such pathways.  
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2 Materials & Methods 

2.1 Nomenclature 

The Arabidopsis Information Resource (TAIR, available at www.arabidopsis.info, 

Swarbreck et al., 2008) is a central repository for Arabidopsis information. Their 

guidelines were followed when naming lines, vectors and genetic constructs 

(available at www.arabidopsis.org/portals/nomenclature/guidelines.jsp, TAIR, 

2007). The TAIR guidelines are a development of the original community 

proposals set out by Meinke & Koornneef (1997). 

2.1.1 Gene Numbers 

After the completion of the project to sequence the Arabidopsis genome, gene 

numbers were assigned according to the following convention: ‘At’ represents 

the species name (Arabidopsis thaliana); 1, 2, 3, 4, or 5 represent the 

chromosome number (or M for Mitochondrial and C for Chloroplast); ‘G’ stands 

for Gene (other letters assigned to different features, such as repeats); and the 

final five digits were allocated sequentially to the genes identified by in silico 

sequence analysis along each piece of DNA. In the initial annotation exercise the 

final digit in the gene number was always 0, allowing space for 9 other gene 

numbers to be inserted should more be discovered by further experiments or 

improved in silico analysis. Example: locus At5g12020 – Arabidopsis thaliana; 

chromosome 5; gene; 1202nd feature found from the ‘top’ of the chromosome. 

Alternatively spliced products would be labelled as At5g12020.1, At5g12020.2 

etc. 



Chapter 2: Materials & Methods  45 

2.1.2 Gene Names / Symbols 

Where possible, this thesis uses the standard 3-letter symbols for genes followed 

by a number, if necessary, to help distinguish one relative from another. Wild 

type genes are referred to in UPPER CASE ITALICISED text, while gene products 

are referred to in UPPER CASE NON-ITALICISED text. Traditional mutant alleles 

arising from single nucleotide polymorphisms (SNPs) are not discussed in this 

thesis.  

The heat shock protein (HSP) gene family in Arabidopsis represents a historical 

exception to convention as it encodes many similar proteins which have been 

named and numbered to reflect their molecular masses rather than being 

numbered sequentially by date of discovery. The HSP gene family is broadly 

classified into two sub-groups based on size: those encoding proteins in the 

region of 70 – 100 kDa, and those in the region of 17 kDa (the latter termed 

“small HSPs” - smHSPs). The 3-letter functional symbol for the smHSPs is 

appended with their molecular mass in kDa, measured to 1 decimal place where 

necessary, e.g. HSP70, HSP17.4, and HSP17.6. A further letter is appended 

where two smHSPs are of equivalent mass at an accuracy of 1 decimal place, 

e.g. HSP17.6, HSP17.6a, HSP17.6b. In order to avoid redundancy in databases 

and in publications among the scientific community, the use of the letters “At” 

before the gene symbol has been discouraged (TAIR, 2007), so for the sake of 

brevity these prefixes have not been included for Arabidopsis gene names in this 

thesis either. Species prefixes have been used, however, for genes from species 

other than A. thaliana (e.g. TaHSP16.9 for a homolog found in the wheat 

Triticum aestivum).  
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2.1.3 Genetic Constructs 

Since TAIR gives no advice on naming genetic constructs, guidelines were sought 

from the journal with the highest impact factor in the field of plant biology that 

published primary research (Journal Citation Reports, Web of Knowledge, 2012) 

which, at the time of writing, was Plant Cell (Impact Factor 9.24; rank: 4th). 

Double-colons are to be reserved for inserted genetic elements, e.g. LFY::TAG1, 

and genetic fusions are to be written with a single colon between elements 

(Instructions for Authors, Plant Cell, 2013), so genetic constructs are written in 

this thesis with single colons. Where an exogenous promoter is incorporated into 

a construct, its source name is appended with “pro” to avoid confusion with the 

lower case “p” at the start of plasmid names, e.g. 35Spro:HSP17.6:RFP.  

2.1.4 Transgenic Lines (Gain- and Loss-of-Function) 

Lines generated by T-DNA insertion and obtained from stock centres are initially 

referred to in this thesis using the names given by their originators for 

consistency with the literature. Following the proposal of Young et al. (2001), 

those confirmed to have a knockout phenotype are thereafter referred to using 

the standard italicised gene name written in lower case to represent a loss-of-

function. 

Lines generated by T-DNA insertion in the laboratory during this course of work 

were all designed to overexpress a gene of interest. These are referred to using 

the terminology discussed in section 2.1.3, appended with any identifier 

assigned to distinguish it during the course of transgenesis e.g. line 

35Spro:MYB64 line 127, or 35Spro:MYB64 line 141. 
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2.2 Materials 

2.2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich Chemical Co. ltd, Dorset UK, 

or Fisher Scientific Ltd., Loughborough UK. 

2.2.2 Antibiotics 

Antibiotics were made up as stock solutions described in Table 2.1, filter 

sterilised (Sartorius Minisart disc filter, 0.2 µm), then stored at -20 °C. 

Table 2.1 Antibiotics 

Antibiotic Solvent Stock concentration 
Working 

concentration Supplier 

Carbenicillin 60 % EtOH 50 mg / ml 50 µg / ml Fisher Scientific 

Spectinomycin H2O 100 mg / ml 100 µg / ml Sigma Aldrich 

Kanamycin H2O 50 mg / ml 50 µg / ml Melford 

Gentamycin H2O 30 mg / ml 30 µg / ml Melford 

Rifampicin DMSO 50 mg / ml 50 µg / ml Sigma Aldrich 

 

2.2.3 Bacterial Strains 

2.2.3.1 General Escherichia coli Cloning Host 

During cloning experiments, plasmids and the constructs generated therefrom 

were maintained in Top10 Escherichia coli cells (Invitrogen, Paisley, Scotland), 

genotype F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 recA1 araD139 

Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG λ-. 
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2.2.3.2 Agrobacterium tumefaciens Strain for Plant Transformation 

Agrobacterium tumefaciens strain AGL1 was used for all plant transformations 

and transfections. This strain was obtained from Craig Carr (University of 

Glasgow). 

2.2.3.3 Agrobacterium tumefaciens Transformation-booster 

Agrobacterium strain AGL1 carrying expression constructs of interest were co-

infiltrated along with Agrobacterium strain AGL1 carrying a pair of 

transformation-boosting vectors, pGreen and pSoup, to improve transfection 

efficiency. The pGreen/pSoup transfection system consists of a binary Ti vector 

(pGreen) which is able to replicate independently in E. coli, but which requires a 

second vector (pSoup) to provide replication capability in trans when in 

Agrobacterium (Hellens et al., 2000). This binary system was used to express 

VirGN54D (an overactive variant of VirG; a transcriptional activator of the rest 

of the Agrobacterium virulence (vir) genes (Pazour et al., 1992)) from pRT18 

(pGreen-based), which was used to transform Agrobacterium along with pSa-Rep 

(which is pSoup-based) (Vain et al., 2004). This transformation-boosting strain 

was obtained from Craig Carr (University of Glasgow). 
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2.2.4 Bacterial Growth Media 

2.2.4.1 Lysogeny Broth (LB) and Plates for E. coli and Agrobacterium 

Lysogeny broth (Bertani, 2004) was used as the culture medium for E. coli. The 

following was added to 900 ml dH2O: 

• 5 g NaCl 
• 10 g Tryptone 
• 5 g Yeast extract 

The pH was adjusted to 5.8 then volume was adjusted to 1 l before autoclaving. 

For plates, agar was added at 15 g/l before autoclaving. 

2.2.5 Plasmid Vectors  

2.2.5.1 Cloning Vector 

All cloning procedures were carried out using the vector pENTR-D-TOPO 

(Invitrogen, Paisley, Scotland). This is the ‘entry vector’ for the GATEWAY 

system, from which cloned DNA can be transferred into ‘destination vectors’ 

(Table 2.2) carrying a range of 5’ and 3’ sequences for various purposes. 

2.2.5.2 Expression Vectors 

The destination vectors in Table 2.2 encoding fluorescent tags were used to 

transfect Nicotiana benthamiana with GFP, YFP or RFP-tagged small heat shock 

proteins (smHSP), and the destination vectors encoding epitope tags were 

created for future experiments involving immunoprecipitation of smHSPs. 
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Table 2.2 Vectors for Plant Transfection 

Vector Construct Tag size 
(amino acids) 

Fluorescent tags 

pH7FWG21 35Spro :: GATEWAY cassette :: GFP 240 

pH7YWG21 35Spro :: GATEWAY cassette :: YFP 240 

pB7RWG21 35Spro :: GATEWAY cassette :: RFP 226 

Epitope tags 

pGWB102 GATEWAY cassette ::  FLAG 8 

pGWB112 35Spro :: GATEWAY cassette :: FLAG 8 

pGWB132 GATEWAY cassette :: HA 40 

pGWB142 35Spro :: GATEWAY cassette :: HA 40 

pGWB162 GATEWAY cassette :: 4xMYC 56 

pGWB172 35Spro :: GATEWAY cassette :: 4xMYC 56 

1 (Karimi et al., 2002) 
2 (Nakagawa et al., 2007) 

 

2.2.6 Arabidopsis Lines 

2.2.6.1 Wild-type Arabidopsis 

Where segregated wild-type was not available as a control for screening 

experiments (for example, when lines acquired from outside sources were 

already homozygous and therefore the mutation was not segregating with each 

generation) stocks of the corresponding background line acquired from NASC 

were used (usually Col-0 or Col-7). 

2.2.6.2 Small Heat Shock Protein (smHSP) Knockout Lines 

The TAIR database was interrogated to find insertional mutations in and around 

the heat shock protein (HSP) genes of interest. Mutations were deemed to be of 

interest either if they were within the coding region of the gene, or if they were 

within 1 kb upstream or downstream of either end. These insertional mutants 
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were acquired and labelled as putative HSP knockout lines. The insertional lines 

were generated by Alonso et al. (2003) who subjected wild-type Arabidopsis 

(ecotype Columbia; Col-0) to Agrobacterium-mediated insertional mutagenesis 

and interrogated the genomic sequences of the resulting progeny to determine 

the precise locations of the insertions. Over 88,000 unique individuals were 

identified and seed was deposited at the Nottingham Arabidopsis Stock Centre 

(NASC, Scholl et al., 2000). Several lines from this collection were chosen based 

on the location of insertions either within, or near to, HSP genes of interest and 

acquired for further study. The details of each insertion are presented in Table 

2.3. 

Table 2.3 Knockout Arabidopsis Lines 

Gene AGI 
number Original line name NASC stock ID Line details 

HSP17.6 At5g12020 SALK_007510 N507510 
Single exon gene; insertion 65bp 

upstream of stop codon. 

HSP17.6a At5g12030 SALK_072448 N572448 Single exon gene; insertion 152bp 
upstream of start codon. 

 

2.2.6.3 Arabidopsis Activation-Tagged Lines 

Activation-tagged lines of Arabidopsis used in screens for novel thermotolerant 

mutants were acquired from a collection initially generated by Weigel et al. 

(2000) and subsequently deposited at the NASC. The wild-type background for 

this collection was ecotype Columbia (Col-7). The entire Weigel collection 

comprises three sets deposited at the NASC at various times. Each set was 

available in various sizes of pools of individual transformant lines. Set 1 was 

acquired as 86 pools of 100 lines each (stock code N21995). Set 2 was acquired 

as 82 pools of 96 lines each (stock code N21991). Set 3 was acquired as 62 pools 
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of 100 lines each (stock code N23153). In total, these 3 sets represent 22,672 

individual transformant lines for screening. 

2.3 Tissue Culture Methods  

2.3.1 Sowing Arabidopsis on Soil 

Soil (Levington F2) was autoclaved and infused with a solution of the insecticide 

Intercept (Scotts, UK) at the working concentration according to the 

manufacturer’s instructions to prevent the growth of fly larvae among plant 

roots.  

Seeds were sown directly onto the surface of damp soil, then watered from 

above. Pots were covered with cling-film to prevent cross-contamination, seeds 

were stratified for 2-3 nights at 4°C in the dark, then pots were then transferred 

to the growth room at 22 °C to allow germination. 

2.3.2 Sowing Arabidopsis on Agar Plates  

2.3.2.1 Seed Surface Sterilisation 

Seeds to be grown on agar medium were first surface-sterilised to prevent 

contamination of the agar with fungi and bacteria. Bleach solution was prepared 

as follows: 1 Covchlor 1000 Chlorine tablet was dissolved in 35ml dH2O; 5ml of 

this solution was added to 45ml ethanol with 1 drop (~500 µl) Tween-20; then 

the solution was allowed to sit at room temperature for 10 minutes before 

centrifugation at 800 x g for 10 minutes to pellet the white precipitate. This 

bleach was prepared fresh each time it was required.  
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Arabidopsis seeds were decanted into a 1.5 ml microfuge tube. At each step in 

the following procedure, silique (i.e. seed pod) debris was removed by pipetting 

at each change of solution to ensure the only material remaining was seed itself. 

(This was necessary as the presence of silique material correlated with 

subsequent contamination of the plates. It is hypothesised that this is related to 

the porosity of the dried silique material and the action of surface tension 

slowing the progress of the bleach solution at the openings of these pores, 

wherein microbiological contaminants would remain protected from the bleach.) 

Under sterile conditions, seeds were washed twice briefly with 70 % ethanol to 

remove as much excess material as possible, then 1 ml of bleach solution was 

added for no less than 5 minutes (to avoid incomplete sterilisation) and no 

longer than 7 (to avoid reduced viability). Five washes with 90 % ethanol were 

used to remove the chlorine, then the seeds were either pipetted onto an 

ethanol-soaked Whatman filter paper, grade 42 (Sigma-Aldrich, UK), allowed to 

dry, then sprinkled across an agar plate, or suspended in 0.1 % MSMO (Murashige 

and Skoog with Minimal Organics) agar (see below) to accurately pipette onto an 

agar plate. 

Where required and noted in the text, borders were marked on plates in order 

to divide them into two or three sections (bipartite or tripartite split plates). 

This was so that lines of different genotypes could be sown and analysed on the 

same plate, thereby removing a source of experimental variation. This was 

especially important for heat stress experiments due to challenges in ensuring 

even heating conditions throughout an incubation chamber. 
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2.3.2.2 Preparation of Agar Plates and Top Agar 

Agar for plates was prepared by dissolving MSMO powder (Sigma-Aldrich 

Company Ltd., Dorset, UK) in dH2O to 1/10 normal strength and supplemented 

with 0.75 % sucrose as a carbon source. The pH was adjusted to 5.8, and 1.5 % 

agar (Fisher Scientific, UK) was added before autoclaving. 

For experiments where positioning of seeds on the plate was important (e.g. on 

vertical plates where root length was to be measured) seeds were suspended in 

top agar after the final sterilisation wash step so that they could be accurately 

and easily positioned by pipette. Top agar was prepared as above but with a 

reduced concentration of 0.1 % agar. 

2.3.3 Growth of Arabidopsis on Soil and Plates: ‘Normal 

Conditions’ 

Seeds sown either on soil or on agar plates were grown in long day conditions: 16 

hour photoperiod; light intensity approximately 100 – 150 µM.m-2.s-1; 22 °C/18 °C 

day/night temperature. 

2.4 Salt Stress Methods 

Salt stress experiments were carried out on plate-grown seedlings. A 5 M stock 

solution of NaCl was prepared in dH2O and filter-sterilised (Sartorius Minisart 

disc filter, 0.2 µm). Agar was prepared as described above in section 2.3.2.2 and 

supplemented with a sufficient volume of the NaCl stock solution to reach the 

desired final concentration (40, 60 or 80 mM). Top agar was also supplemented 

to the same final concentration. 
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2.5 Heat Stress Methods 

An optimum thermal acclimation and heat stress regime was empirically 

determined as part of this work, as described in section 3.5.1 

(“Thermotolerance of Wild Type Arabidopsis”). Briefly, plants were acclimated 

by incubating at 37 ± 0.5 °C in the dark using a fan-circulated incubator for a 

period of 1 hour, returned to Normal Conditions for 3 hours, then exposed to a 

heat stress temperature of 44 ± 0.5 °C in the same incubator for a period of 3 

hours (unless stated otherwise). 

2.6 Molecular Methods 

2.6.1 Isolation of Nucleic Acids from Plant Tissue 

2.6.1.1 Genomic DNA Isolation 

Approximately 200 mg tissue was removed from plants (when sampling leaves) or 

200 mg of whole seedling tissue was transferred to a sterile microfuge tube. 

Tissue was frozen by submerging the tube in liquid nitrogen, a sterile ball 

bearing was added, and the tissue was ground in a TissueLyser automated 

grinder (Qiagen, West Sussex, UK) at 26 rpm for 30 seconds. 1 ml plant DNA 

extraction buffer (200 mM Tris (pH 7.5), 250 mM NaCl, 25 mM EDTA, 0.5 % SDS) 

was added and allowed to stand for 10 minutes at 4°C. Samples were pelleted by 

centrifugation at 13,000 rpm in a benchtop microcentrifuge at 4 °C for 15 

minutes, then the supernatant was discarded. Pellets were washed repeatedly 

with DNA extraction buffer until the green colour had gone (~5 times). 

Supernatant was removed one final time then 50 µl dH2O was added to extract 
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DNA from the pellet, mixed by vortexing briefly, then cell debris was pelleted 

once again at 13,000 x g for 15 minutes. The resulting supernatant with DNA in 

solution was removed to a fresh sterile microfuge tube. 

2.6.1.2 Quantification of DNA  

Where necessary, DNA was quantified by UV spectrophotometry. Absorbance was 

measured at 260 nm and 280 nm and a ratio of the two values calculated as an 

indicator of purity (optimal value 2.0; Sambrook and Russell, 2001) then 

satisfactorily pure samples were quantified according to the following formula: 

A260    x    50 µg/µl    x    Final volume    =   [DNA] (µg/µl) 
         Sample volume 

 

2.6.1.3 Total RNA Isolation 

Approximately 200 mg tissue was excised with a razor blade (individual leaves) 

or harvested from plates (whole seedlings), put into microfuge tubes and snap-

frozen in liquid nitrogen. A sterile ball bearing was added to each tube to 

facilitate automated grinding in a TissueLyser automated grinder (Qiagen, West 

Sussex, UK) at 26 vibrations per second for 30 seconds. 

RNA was extracted using Tri Reagent (Sigma-Aldrich Company Ltd., Dorset, UK): 

1 ml of Tri Reagent was added to each microfuge tube of ground tissue and 

allowed to stand for 5 minutes at 4 °C. Samples were centrifuged for 5 minutes 

at 13,000 x g to pellet any cellular debris, the supernatant was removed to a 

fresh microfuge tube, then 0.2 ml chloroform was added and the sample was 

shaken vigorously for 15 seconds to create an evenly mixed emulsion, then 

placed back on ice for 10 minutes. Another centrifugation was performed for 10 
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minutes at 13,000 x g to encourage complete separation of the aqueous phase 

(containing nucleic acid) from the phenolic phase (containing protein and lipid), 

then the aqueous upper phase was removed to a fresh microfuge tube containing 

0.5 ml isopropanol on ice to precipitate the nucleic acid. After 10 minutes the 

precipitate was pelleted by centrifugation for 15 minutes at 13,000 x g then 

washed twice in ice-cold 100% ethanol. The supernatant was discarded and the 

pellet was resuspended in 30 µl DEPC-treated (i.e. nuclease-free) water and 

stored at -20 °C. 

2.6.1.4 DNase Treatment of RNA 

Contaminating genomic DNA was removed using the TURBO DNA-free kit 

(Ambion, Texas, USA): 0.1 volumes of 10x TURBO DNase Buffer and 1 µl of 

TURBO DNase were added to the RNA and the mixture incubated at 37 °C for 20-

30 minutes. 0.1 volumes of DNase Inactivation Reagent were added to remove 

divalent cations and thereby cease the reaction. The Inactivation Reagent was 

pelleted by centrifugation at 13,000 x g for 2 minutes, and the RNA removed to 

a fresh microfuge tube and stored at -20 °C. 

2.6.1.5 Quantification of RNA 

RNA extraction and purification, described above, were the first steps in 

comparing gene expression levels by the Reverse-Transcriptase Polymerase Chain 

Reaction (RT-PCR; see section 2.6.3). In order to be able to standardise the 

quantity of RNA in each RT-PCR reaction, each sample was quantified by UV 

spectrophotometry. Absorbance was measured at 260 nm and 280 nm. The ratio 

of the two values was calculated as an indicator of purity (optimal value 1.8; 
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Sambrook and Russell, 2001) then satisfactorily pure samples were quantified 

according to the following formula: 

A260    x    40 µg/µl    x    Final volume    =   [RNA] (µg/µl) 
          Sample volume 
 
In order to ensure that each complementary DNA (cDNA) sample within an 

experiment would be synthesised to an equal concentration, it was important to 

standardise the amount of RNA that would be added to the reverse transcription 

reaction. 1 µg was chosen. When the extracted RNA concentration was 

insufficient to provide 1 µg within the volume limits specified by the protocol, 

the maximum permitted volume of RNA was used and the mass of RNA contained 

therein calculated, so that all other samples could be adjusted proportionally 

downwards for equal input. 

2.6.2 Polymerase Chain Reaction (PCR) 

PCR was performed in an MJ Research DNA Engine PTC-200 Peltier Thermal 

Cycler (Genetic Research Instrumentation, Essex, UK) on genomic DNA using 

ReddyMix complete master mix (Catalog #AB0785B, ThermoScientific, Belgium) 

with constituents as listed in Table 2.4. Thermal cycling followed the pattern 

described in Table 2.5 

Table 2.4 Components of PCR Reaction Mix 

Component Final Concentration 

Primers 1.25 µM each 

DNA template Variable 

ReddyMix Master Mix 1x 

dH2O To 20 µl 
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Table 2.5 Generic Thermal Cycle Used with ReddyMix for Standard PCR 

Step Temperature Duration 

1 95 °C 3 minutes 

2 95 °C 30 seconds 

3 (Primer-specific annealing temperature) 30 seconds 

4 72 °C 1 min/kb 

4 Go to step 2 for an empirically-determined number of cycles N/A 

5 72 °C 5 minutes 

6 4 °C Forever 

 

2.6.3 Reverse-Transcriptase PCR (RT-PCR) 

2.6.3.1 cDNA Synthesis 

In the first step of reverse transcriptase PCR (RT-PCR) first-strand cDNA was 

synthesised using the Omniscript RT Kit (Qiagen, West Sussex, England). A 

master mix was prepared consisting of the following components per cDNA 

synthesis reaction: 2 µl 10 x Omniscript reverse transcriptase buffer; 1 µl (4 

units) Omniscript reverse transcriptase; deoxyribonucleotide (dNTP) mix at a 

final concentration of 0.5 mM each; 1 µl (10 units) RNase inhibitor, 

oligodeoxythymidine (oligodT) primer at a final concentration of 1 µM, and 

RNase-free water to a final concentration of 20 µl (taking account of the volume 

of RNA template to be added). Master mix was briefly vortexed, aliquoted into 

reaction tubes, and RNA templates were added. These final reaction mixtures 

were mixed by pipetting, then incubated at 37 °C for 1 hour. 

2.6.3.2 RT-PCR 

From each RT reaction, an equal volume of first-strand cDNA was added to 

normal PCR mixes (see section 2.6.2) in place of genomic DNA. PCR was carried 

out as normal. 
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2.6.4 Agarose Gel Electrophoresis of DNA 

Agarose gels were prepared by melting 1 % agarose (w/v) in 1 x TAE buffer (40 

mM Tris-acetate, 1 mM EDTA) then pouring into gel casts. To stain DNA, SYBR 

Safe (Invitrogen, Paisley, UK) was added to molten Agarose at a dilution of 

1:10,000 and mixed thoroughly. DNA samples were loaded alongside a molecular 

weight marker (1kb DNA Ladder, Promega, Southampton, UK) and separated by 

electrophoresis in 1 x TAE buffer at approximately 70 V and visualised by UV 

illumination. 

2.6.5 Agarose Gel Electrophoresis of RNA 

Where required, integrity of RNA was checked by agarose gel electrophoresis.    

1 µg of RNA (see section 2.6.1.5) was separated on a 1.5 (w/v) agarose gel 

containing 10 % formaldehyde and 1 x MOPS buffer, pH 7.0 (20 mM MOPS, 5 mM 

sodium acetate, 1 mM EDTA (Sambrook and Russell, 2001)). Before loading, the 

RNA was mixed with 1 % (v/v) formaldehyde, 30 % (v/v) formamide, 1 x MOPS pH 

8.0, and 0.1 volumes of ethidium bromide as a staining agent. RNA mixtures 

were heated at 65 °C for 10 minutes, cooled on ice, then mixed with 0.2 

volumes of loading dye (Promega UK, ltd., Southampton, UK) then loaded on the 

MOPS gel. Electrophoresis was performed in 1 x MOPS buffer pH 7.0 for 2 hours 

at 100 V and visualised by UV illumination. RNA integrity was assessed by the 

presence of defined bands.  
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2.6.6 Quantitative PCR (qPCR) 

2.6.6.1 Reference Gene Selection 

Actin 2 (At3g18780) was initially selected as an internal reference gene 

candidate because of its widely assumed nature as a housekeeping gene with a 

stable expression pattern, but this was proven not to be the case when MYB64 

was constitutively overexpressed and under heat stress. Various sources were 

consulted to find a more suitable reference gene candidate, and a protein 

phosphatase subunit was selected (PP2A; At1g13320) (for a full account see 

section 4.5.1). As primers had already been designed, tested and published, it 

was decided that these were the best reference genes against which to 

normalise during heat-stress qPCR investigations (for all primer sequences, see 

section 2.6.13). 

2.6.6.2 Determination of qPCR Efficiency 

All primer sets were tested to determine the reaction efficiency before use in 

qPCR analysis. Reaction efficiency was determined using a plasmid containing 

each gene of interest to generate a standard curve. Six 10-fold dilutions were 

made from a stock solution of 100 pg of plasmid containing the gene of interest 

(GOI) in order to generate a standard curve. Each dilution was mixed with     

12.5 µl SYBR Green and 0.5 µl of each primer and qPCR was performed. 

For calculation of reaction efficiency, the log of the RNA concentration was 

plotted on the X-axis and Ct (number of cycle) values on the Y-axis. A line of 

best fit was generated and reaction efficiencies (RE) were determined using the 

equation: RE = 10(-1/m)/2*100, where m is the slope of the line. Each data point 
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was tested in duplicate (technical replication). Two negative control reactions 

were also carried out with no DNA template. Primer pairs that resulted in 

efficiencies of >90 % were deemed acceptable; those with efficiencies of <90 % 

were redesigned. 

2.6.6.3 Reaction Setup Used in qPCR 

Quantitative PCR reactions were set up using an automated liquid handling 

system (CAS- 3200; Corbett Robotics, Sydney, Australia). One microgram of total 

RNA was converted into cDNA and each cDNA was diluted 1:3. PCR reactions 

were performed using the Brilliant II SYBR Master Mix kit (Stratagene, UK) 

containing 5 µl of each cDNA sample in a reaction mixture (20 µl) containing 1 x 

SYBR Green and 0.5 µM of each primer. Reactions were set up in duplicate 

(technical replication). The thermal cycle was as described in Table 2.6. The 

fluorescence emitted during this final step allowed the specificity of the 

amplified PCR product to be determined; a single PCR product of the correct 

sequence should dissociate at one discrete temperature, and thus the 

fluorescence signal should exhibit a narrow peak somewhere within the range 

from 55 to 85 °C. 

Table 2.6 Generic Thermal Cycle Used for qPCR 

Step Temperature Duration 

1 95 °C 10 minutes 

2 95 °C 30 seconds 

3 55 °C 1 minute 

4 72 °C 1 minute 

5 Go to step 2 for 40 cycles N/A 

6 95 °C 1 minute 

7 55 °C to 85 °C 30 seconds 
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2.6.7 Cloning 

2.6.7.1 Primer Design for Directional Cloning  

The open reading frame (ORF) of each gene of interest was cloned into the 

GATEWAY system (Invitrogen, Paisley, UK). This comprises an ‘entry vector’ into 

which a gene of interest can be cloned, and from which the gene of interest can 

subsequently be transferred by means of an enzyme reaction to a range of 

expression vectors with the appropriate GATEWAY receiving cassette (see 

section 2.2.5). The entry vector used to clone all constructs, pENTR/D-TOPO, 

was supplied as a linearised plasmid with a molecule of topoisomerase 

covalently linked to the 3’OH of each end. This facilitates recombination and 

circularisation with a PCR product without the need to supply a ligase enzyme. 

The sequence of the plasmid allows for directional cloning; the end of the vector 

that is to be recombined adjacent to 5’ end of the PCR product has a 3’ 

overhang with the sequence CACC. By incorporating this short sequence as a 5’ 

extension to the 5’ cloning primer, base complementarity ensures that the PCR 

product anneals and recombines with the entry vector in only the intended 

direction.  

Cloning primers for the three smHSP genes (At5g12020, At5g12030 and 

At1g53540) were designed to anneal to the extreme 5’ and 3’ ends (excluding 

the stop codon) of each gene’s ORF for use in expression vectors with an 

endogenous promoter, or alternatively to the 5’ end of the 1kb putative 

promoter for native-promoter versions (see Figure 2.1). The sequence upstream 

of At1g53540 contained part of the ORF of the adjacent gene. While it is not 

unknown for a coding region to also contain transcriptional regulation sequences   



Chapter 2: Materials & Methods  64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Small HSP Cloning Primer Positions.  

All three smHSP ORFs were cloned using primers designed to anneal to the extreme 5’ and 3’ 
ends. Versions of the genes containing the putative promoter regions were cloned using 5’ primers 
designed to anneal 1kb upstream of the transcription start sites, except At1g53540 which encoded 
the end of the adjacent gene. While it is not unprecedented for a coding region of one gene to also 
function as an in cis regulator of another, only the last exon of this adjacent gene was incorporated 
in order to keep the complexity of the construct low. The 5’ primers carried a 5’ extension with the 
sequence CACC to facilitate directional recombination with the entry vector pENTR/D-TOPO.  
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for neighbouring genes, only the final exon of this adjacent gene was 

incorporated in an effort to keep the complexity of the construct as low as 

possible.  

PCR was performed on genomic DNA using the Expand High Fidelity PCR System 

(Roche, West Sussex, UK) (Section 2.6.7.2). The 5’ cloning primer for each gene 

carried the required 5’ CACC extension for directional recombination with the 

entry vector (Table 2.10). 

2.6.7.2 High Fidelity PCR for Cloning 

When cloning genes, PCR was performed using a high-fidelity proof-reading DNA 

polymerase to reduce the chance of incorporating mismatched bases. The 

Expand High Fidelity System (Roche, UK) was used and reaction mixes were 

prepared according to the manufacturer’s instructions as described in Table 2.7 

and Table 2.8. 

Table 2.7 Expand High-Fidelity PCR System: Reaction Mix 1 

Component Final Concentration 

Expand High Fidelity Buffer with MgCl2 
1 x 

(MgCl2: 1.5 mM) 

High fidelity Taq polymerase 2.6 Units / reaction 

dH2O To 25 µl 

 

 

Table 2.8 Expand High-Fidelity PCR System: Reaction Mix 2 

Component Final Concentration 

Primers 1 and 2 300 nM each 

dNTP mix 200 µM each 

Template DNA Variable 

dH2O To 25 µl 
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These were combined into one reaction mixture just prior to incubation in the 

thermal cycler to prevent 3’–5’ exonuclease activity of the proofreading 

polymerase upon the template. The thermal cycle was as described in Table 2.9. 

Table 2.9 General Thermal Cycle Pattern Used for High-Fidelity PCR for Cloning 

Step Temperature Duration 

1 95 °C 3 minutes 

2 95 °C 30 seconds 

3 Primer-specific 30 seconds 

4 72 °C 1 min/kb 

4 Go to step 2 for an empirically-determined number of cycles N/A 

5 72 °C 5 minutes 

6 4 °C Forever 

 

2.6.7.3 Isolation of PCR Products from Agarose Gel 

After agarose gel electrophoresis of the PCR product to be cloned, the DNA was 

extracted from the agarose gel. The fragment was excised using a clean, sharp, 

razor blade and transferred to a sterile microfuge tube. The DNA fragment was 

purified using a QIAquick Gel Extraction Kit (Qiagen, West Sussex, UK) following 

the manufacturer’s instructions. 

2.6.7.4 Cloning into GATEWAY Entry Vectors 

The isolated PCR product was then recombined with the pENTR D-TOPO entry 

vector according to the manufacturer’s instructions. A cloning reaction was set 

up incorporating 5 ng PCR product, 20 ng pENTR D-TOPO vector (supplied in a 

solution with final working concentrations of: 8.33 % glycerol, 8.33 mM Tris-HCl 

pH 7.4, 0.17 mM EDTA, 0.33 mM DTT, 0.017% Triton X-100, 17 µg/mL BSA, and 5 

µM bromophenol blue), 200 mM NaCl, and 10 mM MgCl2, made up to 6 µl with 

dH2O. The reaction mix was left at room temperature for 5-10 minutes then 2 µl 

of the finished reaction mixture was used to transform chemically competent 



Chapter 2: Materials & Methods  67 

E.coli. Transformants were selected on LB agar plates containing kanamycin and 

analysed by miniprep, restriction digestion, and sequencing. 

2.6.8 Transformation of Chemically Competent E. coli Cells 

Half of the plasmid DNA from the cloning reaction described above was added to 

a 50 µl aliquot of chemically competent Top10 E. coli cells (Invitrogen, Paisley, 

UK) kept on ice; the other half was retained for repetition in the event of 

technical failure. This cell suspension was briefly mixed by flicking and 

immediately placed back on ice for 5 to 30 minutes to allow DNA uptake by the 

cells. The suspensions were heat-shocked in a water bath at 42 °C for 30 seconds 

and returned to ice immediately. After two minutes, 250 µl LB broth was added 

and suspensions were then incubated at 37 °C with at shaking at 200 rpm for one 

hour. Suspensions were spread on LB agar plates containing appropriate 

antibiotics for plasmid selection and incubated at 37 °C overnight. 

2.6.8.1 Colony PCR 

Transformant colonies were checked for the presence of the intended plasmid 

the following day using primers to the PCR product that was intended to be 

cloned. Master mixes for normal PCR were set up according to the protocol in 

section 2.6.2. A sterile pipette tip was used to pick cells from a bacterial colony, 

then the tip was then stirred into an aliquot of master mix in place of template 

DNA. The thermal cycle used was as described in Table 2.5, and the high 

temperatures were sufficient to lyse cells and allow the PCR mixture to gain 

access to the plasmid templates therein. 
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2.6.8.2 Plasmid DNA Isolation 

A single colony that had been shown to be successfully transformed was used to 

inoculate 5 ml of LB broth supplemented with the appropriate antibiotic. The 

culture was grown overnight at 37 °C with constant shaking at 200 rpm. The 

plasmid DNA was isolated from the overnight culture using the QIAprep Spin 

Miniprep Kit (Qiagen, West Sussex, UK) according to the manufacturer’s 

instructions. 

2.6.8.3 Confirmation of Cloned Sequences 

Sequencing was carried out by GATC Biotech (London, UK) in order to confirm 

that the clones carried the correct sequences. Sequencing results were analysed 

with CLC Genomics Workbench v3 using the Sequencing Data Analysis tool. 

2.6.8.4 Transfer into GATEWAY Destination Vectors – The LR Reaction 

After confirming that the GATEWAY entry vectors contained the correct 

sequences, they were ‘flipped’ into the appropriate destination vectors which 

include 5’ and 3’ sequences to express the genes of interest in various ways (see 

section 2.2.5.2 for a complete of vectors used). The destination vectors are 

supplied as empty plasmids carrying only the ccdB gene (used for negative 

selection) in the cloning site. The cloning site in the destination vectors are 

flanked by sequences utilised for recombination by bacteriophage λ (attL sites) 

and the entry vectors have corresponding sequences on either side of the cloned 

gene of interest (attR sites). When mixed, the recombination reaction is 

mediated by bacteriophage λ Int and Excisionase (Xis), as well as the E. coli 
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Integration Host Factor (IHF). These three enzymes are provided as a proprietary 

mix in the GATEWAY LR recombination kit (Invitrogen, Paisley, UK). 

The kit protocol was carried out as follows: 300 ng of entry vector plasmid DNA 

carrying the gene of interest was added to 300 ng of destination vector, along 

with 4 µl of 5 x LR Clonase reaction buffer, and TE Buffer pH 8.0 to a  total 

volume of 16 µl. The reaction was incubated at room temperature for 1 hour, 

then 4 µg of the supplied Proteinase K was added to terminate the reaction. 

Transformation of chemically competent E. coli cells with the LR reaction 

product was then carried out as described in section 2.6.8. 

2.6.9 Transformation of Electrocompetent Agrobacterium Cells 

2.6.9.1 Preparation of Electrocompetent Agrobacterium 

An aliquot of the Agrobacterium strain AGL1 was used to inoculate 5 ml LB broth 

supplemented with gentamycin (to select for the Ti plasmid) and grown to 

culture in a 28 °C incubator shaking at 200 rpm for 16 hours. The 5 ml culture 

was used to inoculate 500 ml LB broth supplemented with gentamycin. This was 

then placed in a 28 °C incubator shaking at 200 rpm until the culture reached an 

OD600 of 0.5 to 0.8, after which it was centrifuged at 3000 x g for 5 minutes. The 

supernatant was removed and the cell pellet resuspended in 30 ml sterile, cold 

dH2O and then transferred to a sterile 50 ml falcon tube. The sterile cold dH2O 

wash was repeated three times, centrifuging 3000 x g for 5 minutes between 

each. After the final wash, cells were resuspended in 1 to 5 ml sterile 10% (v/v) 

glycerol and 100 µl aliquots were placed on dry ice before storing at -80 °C. 
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2.6.9.2 Transformation 

500 ng of plasmid DNA was added to a 50 µl aliquot of electrocompetent 

Agrobacterium strain AGL1 thawed on ice. The cells were then transferred to an 

electroporation cuvette and pulsed at with electric current at 2500 V. The cells 

were then transferred to a 15 ml falcon tube, 1 ml of LB broth was added and 

the suspension was placed in a 28°C incubator shaking at 200 rpm for three 

hours. Finally, the cells were plated out on LB agar containing rifampicin to 

select for Agrobacterium, gentamycin (to select for the Ti-plasmid) and the 

appropriate antibiotic to which the plasmid construct carries resistance, and 

placed in a 28°C static incubator for two days. 

2.6.10 Transient Transfection in Nicotiana benthamiana 

Transformation was performed as described in Bazzini (2007): Agrobacterium 

carrying the construct of interest was streaked from a glycerol stock onto a 

freshly prepared LB agar plate supplemented with the appropriate antibiotics 

and grown for 2 days at 28 °C. A single colony was picked and used to inoculate 

a 10 ml culture of LB broth with the appropriate antibiotics, and this was 

incubated at 28 °C with shaking at 200 rpm overnight. The resulting culture was 

centrifuged 3000 x g for 15 minutes and the pellet was resuspended in 10 – 15 ml 

sterile 10 mM MgCl2.6H2O. The OD600 was measured and diluted down to a value 

of 0.2. A 1:1000 dilution of 200 mM acetosyringone was added then the culture 

was inverted several times and incubated at room temperature for 2 hours.  

A small incision was made on the underside of a leaf of N. benthamiana using a 

razor blade, taking care to slice through only the lower epidermis and mesophyll 

layers. The Agrobacterium was taken up into a syringe, the syringe was pressed 
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over the incision, and the plunger was gently depressed to force the culture into 

the intercellular spaces of the leaf. Plants were then returned to the growth 

cabinet for 3 – 5 days to allow transfection to take place. 

2.6.11 Stably Transformed Arabidopsis Lines 

Wild type Arabidopsis (Col 0) was transformed using the floral dip method of 

(Clough and Bent, 1998). Pots containing six to eight evenly spaced A. thaliana 

Col-0 seeds were grown in long day conditions (see section 2.3.3) for five to six 

weeks, after which any inflorescence stems were removed to encourage growth 

of secondary inflorescences. The plants were ready to transform five to ten days 

later, when roughly one fifth of the flowers had opened. A single colony of a 

confirmed positive A. tumefasciens transformant was used to inoculate 10 ml LB 

broth containing appropriate antibiotics for plasmid selection and the culture 

was grown in a 28 °C incubator shaking at 200 rpm for 8 hours. The cultures 

were then transferred to 500 ml LB broth with appropriate antibiotics and left to 

grow in a 28 °C incubator shaking at 200 rpm overnight. When cell density 

reached an OD600 of 0.8 to 1.0, the cells were centrifuged at 4000 x g for 10 

minutes and supernatant removed. The cell pellet was resuspended in a 5 % 

sucrose solution containing 0.03 % Silwet L-77 (a wetting agent), and the total 

volume made up to 500 ml. The cell suspension was then transferred to beakers 

approximately the diameter of the plant pots, and the A. thaliana Col-0 plants 

were upturned into the suspension for 1 min. Dipped plants were covered to 

increase humidity for 24 hours at room temperature and returned to growth 

room. Plants were allowed to set seed, and these were collected as normal. 
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2.6.12 Confocal Microscopy 

The subcellular localisation of fluorescently tagged proteins was visualised using 

a confocal laser scanning microscope (Zeiss LSM 510). GFP tags were excited at 

488 nm and emission was collected between 505 – 530 nm. RFP tags were 

excited at 543 nm and emission was collected between 560 – 615 nm. YFP tags 

were excited at 514 nm and emission was collected between 530 – 600 nm. 

2.6.13 Primer Sequences 

Unless otherwise stated, primers were designed in CLC Genomics Workbench v3 

using the ‘Design Primers’ module. 

2.6.13.1 Small HSP Cloning Primers 

Small HSPs cloning was performed using the primers detailed in Table 2.10 in 

order to tag and express in N. benthamiana.  

Table 2.10 Primers Used to Clone smHSPs 
Gene Sequence bound Sequence 

HSP17.6 
 

(At5g12020) 

5’ end of promoter caccCACATTGGCCATCAAATCC 

5’ end of ORF caccATGGATTTAGGAAGGTTTC 

3’ end of ORF AGCAACTTGAACTTGAATTGTCTTT 

HSP17.6a 
 

(At5g12030) 

5’ end of promoter caccAGACGATACCACTAGCTCATAC 

5’ end of ORF caccATGGATTTGGAGTTTG 

3’ end of ORF AGCGACTTGAACTTGTATAGTCTTTG 

HSP17.6b 
 

(At1g53540) 

5’ end of promoter caccGGCCACCAGAATACTTTG 

5’ end of ORF caccATGTCTCTAATTCCAAGC 

3’ end of ORF ACCAGAGATATCAATGGACTTAAC 
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2.6.13.2 Small HSP RT-PCR Primers 

Levels of smHSP expression in Arabidopsis were assessed by RT-PCR using the 

primers detailed in Table 2.11. 

Table 2.11 RT-PCR Primers Used to Distinguish Between HSP17.6 and HSP17.6a 
Gene Sequence bound Sequence 

HSP17.6 
 

(At5g12020) 

5’ end of unique region  
(i.e. region with no homology to HSP17.6a) GAAGACCACAACAACGAG 

3’ end of ORF AGCAACTTGAACTTGAATTGTCTTT 

HSP17.6a 
 

(At5g12030) 

5’ end of unique region 
(i.e. region with no homology to HSP17.6) 

CCTGAAGAACAAACCGAG 

3’ end of ORF AGCGACTTGAACTTGTATAGTCTTTG 

 

 

2.6.13.3 Small HSP Knockout Genotyping Primers 

Knockout lines of hsp17.6 and hsp17.6a were obtained and PCR was carried out 

to determine genotyping using the primers detailed in Table 2.12. 

Table 2.12 Primers Used to Genotype Putative smHSP Knockouts 
Gene Sequence bound Sequence 

hsp17.6 K/O 
 

(At5g12020) 

Region 5’ of T-DNA insertion 
in line N507510 

GAAGACCACAACAACGAG 

Region 3’ of T-DNA insertion 
in line N507510 AGCAACTTGAACTTGAATTGTCTTT 

hsp17.6a K/O 
 

(At5g12030) 

Region 5’ of T-DNA insertion 
in line N572448 

CCTGAAGAACAAACCGAG 

Region 3’ of T-DNA insertion 
in line N572448 

AGCGACTTGAACTTGTATAGTCTTTG 

 

2.6.13.4 MYB64 Regulon qPCR Primers 

Table 2.13 details the primers used to validate the reported upregulation of a 

suite of genes in response to MYB64 overexpression (the MYB64 ‘regulon’) as 

reported by next generation sequencing. 
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Table 2.13 Primers Used for qPCR Confirmation of MYB64 Regulon Upregulation 
Gene Name Sequence Source 

MYB64 
 

(At5g11050) 

5g11050 f q new GGACAGCCGATGAAGACAGGAAG 
n/a 

5g11050 r q new AGTCTTCGAGAATGCGCGGC 

ERF11 
 

(At1g28370) 

At1g28370qPCR f CCAACGAAGGTAACGGAG 
n/a 

At1g28370qPCR f CTCCACGAAACTCAATAGCAC 

MPK11  
(Splice variant 1) 

(At1g01560.1) 

01560.1 q f new CATTCACGGTTCTTCCTG 
n/a 

01560.1 q r new GTGAAAAGTTTACCTCAGTGATGAGTC 

MPK11 
(Splice variant 2) 

(At1g01560.2) 

01560.2 f q new AACAGACGCATTACAGTCGATGAAGCC 
n/a 

At1g01560.2qPCR r AATCAAAATGGAACGGTCTC 

CBF1 
 

(At4g25490) 

At4g25490qPCR f AGAGCCAAACAAGAAAACCA 
n/a 

At4g25490qPCR r GATATCCTTGGCGCATGT 

PP2C 
 

(At5g59220) 

12020_for_unique GAAGACCACAACAACGAG 
n/a 

12030_rev_pENTRD AGCAACTTGAACTTGAATTGTCTTT 

CZF2 
 

(At5g04340) 

12030_for_unique CCTGAAGAACAAACCGAG 
n/a 

12030_rev_pENTRD AGCGACTTGAACTTGTATAGTCTTTG 

PP2A-A3 
 

(At1g13320) 

At1g13320 qFwd TAACGTGGCCAAAATGATGC 
(Czechowski et al., 2005) 

At1g13320 qRev GTTCTCCACAACCGCTTGGT 

Actin 2 
 

(At3g18780) 

Act2Sens4 fwd CTAAGCTCTCAAGATCAAAGGCTTA 
(Love et al., 2005) 

Act2Sens4 rev ACTAAAACGCAAAACGAAAGCGGTT 

UBQ10 
 

(At4g05320) 

At4g05320 qFwd GGCCTTGTATAATCCCTGATGAATAAG 
(Czechowski et al., 2005) 

At4g05320 qFwd AAAGAGATAACAGGAACGGAAACATAGT 

 

2.6.14 Isolation of Protein from Plant Tissue 

A razor blade was used to excise a mature section of leaf approximately 3 inches 

long. This section was placed into a microfuge tube along with a sterile ball 

bearing and snap-frozen in liquid nitrogen. Tissue samples were ground using the 

TissueLyser automated grinder (Qiagen, West Sussex, UK) for 1 minute at 25 

rpm. In a modified version of the extraction and precipitation protocol described 

by Jacobsen and Shaw (1989), samples were removed to ice and 1 ml of 

extraction buffer (20 mM Tes-KOH pH 8.0, 0.5 M NaCl, 1 protease inhibitor 

cocktail tablet (Roche catalog number 11836153001) per 10 ml of buffer) was 

added quickly before the tissue sample was able to thaw. Samples were mixed 

by vortexing and ball bearings were removed. Debris was pelleted by 
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centrifugation at 10,000 x g for 10 minutes at 4 °C, and the supernatant was 

decanted to a fresh 15 ml tube. 10 volumes of acetone were added to 

precipitate proteins. Samples were incubated at -20 °C for 8 – 12 hours to aid 

precipitation. Proteins were pelleted by centrifugation at 3000 x g for 5 minutes 

at 4 °C. Acetone was removed by pipetting and the pellets were allowed to 

almost completely dry at 50 °C for 10 minutes. Pellets were then resuspended in 

500 µl dH2O and stored at – 20 °C. 

2.6.14.1 Quantification of Protein Samples 

Protein samples were quantified using the Bradford assay (Bradford, 1976). 

Briefly, standard solutions of bovine serum albumin (BSA) were prepared to 

concentrations of 0, 0.25, 0.5, 0.75, 1.0, and 1.4 mg/ml to facilitate the 

construction of a standard curve. Samples of unknown concentration were 

prepared in a final volume adjusted to 33 µl, then this 33 µl was added to 1 ml 

Bradford Reagent (BioRad, USA) and mixed by gentle inversion. Absorbance was 

measured at 595 nm after an incubation of 5 minutes, blanked against a mixture 

of 33 µl of water and 1 ml of Bradford Reagent. If the concentration of the 

unknown samples was found to be outwith the range of the standard curve, the 

protein:dH2O ratio in the 33 µl sample was adjusted and the sample reanalysed. 

2.6.15 SDS-Polyacrylamide Gel Electrophoresis (PAGE) of 

Proteins 

SDS-PAGE was carried out on the Protean Mini gel kit from BioRad (Hercules, 

USA). Resolving gels were made according to Sambrook and Russell (2001) to an 

acrylamide concentration of between 7.5 and 15 % (depending on the molecular 
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weight of the proteins to be resolved) (0.375 M Tris HCl pH 8.8, 0.1 % SDS, 0.1 % 

ammonium persulfate and 0.1 % TEMED) and immediately poured into casts. A 

thin layer of isopropanol was laid over the top to ensure an even surface. Once 

the resolving gel had set a stacking gel was made to a concentration of 5.7 % 

acrylamide (0.125 M Tris HCl pH 6.8, 0.1 % SDS, 0.1 % ammonium persulfate and 

0.1 % TEMED). The isopropanol was removed and the stacking gel was poured on 

top, then a plastic comb was inserted to create wells. After the stacking gel had 

set, the plastic comb was removed and the wells washed out with water, before 

assembling the gel running kit, after which enough 1x running buffer (20 mM Tris 

base, 0.195 M glycine, 0.1 % SDS, pH 8.3) was added to the protein tank to cover 

both electrodes. Equal amounts of protein were added to each well and a broad 

range pre-stained protein marker was run alongside samples. The acrylamide gel 

was electrophoresed at 65 V until the proteins reached the end of the stacking 

gel, after which the voltage was increased to 135 V until the end of the gel was 

reached.  

2.6.16 Silver Staining of SDS-PAGE Gels  

SDS-PAGE gels were placed into a clean plastic dish and bathed in fixing solution 

(ethanol : glacial acetic acid : dH2O at a ratio of 3:1:6) with gentle shaking 

action for 8 – 12 hours. The gel was rinsed five times with dH2O. Freshly 

prepared silver stain was added (10.5 ml NaOH at 0.36% (w/v), 700 µl NH4OH at 

14.8 M, and 0.4 g silver nitrate) and shaking continued for 15 minutes. The silver 

stain was removed and the gel washed for 1 hour in dH2O with frequent changes. 

The dH2O was removed and developing solution was added (120 µl 1 % citric 

acid, 250 µl 38 % formaldehyde, 500 ml dH2O). The gel was observed for the 

development of colour, then the reaction was quenched with 1 % acetic acid. 
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2.7 Illumina Next-Generation Sequencing (Transcript 

Profiling) 

Total RNA was prepared from mature plant leaves (see sections 2.6.1.3 - 

2.6.1.5) and supplied to the operators of the Sir Henry Wellcome Functional 

Genomics Facility (SHWFGC, University of Glasgow). Further mRNA quality 

assessment and quantification was carried out by the technicians of this facility, 

as well as preparation of cDNA and subsequent preparatory treatments. These 

included the fragmentation of cDNA, ligation of linkers containing restriction 

enzyme recognition sites which recruit enzymes that cut 35 bp from the site, 

and ligation of a second linker to the resulting sticky ends. 

These linker-modified cDNAs were attached to the surface of a glass channel and 

subjected to several rounds of bridge-amplification facilitated by the addition of 

primers complementary to the linker sequences. This resulted in clusters of 

identical molecules spread throughout the channel, each representing a 

fragment of an RNA molecule. The chip was processed in an Illumina Genome 

Analyzer (Illumina, UK) which floods the channels with successive washes of dye-

labelled nucleotide triphosphates in a process of reversible chain-termination. 

After each round, a computerised laser scans the channel and builds a picture of 

fluorescence at each randomly-positioned cluster and, by comparing the images 

from one round to the next, records the sequence of each original molecule. 

The output of this process was a list of between 5 million and 10 million 

individual 35 bp-long reads from which the linker sequences were removed by 

the technicians at the SHWFGC. This output list was then aligned to an 

Arabidopsis reference genome in order to calculate expression values for each 
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gene to allow comparison of global expression between the wild type and the 

35Spro:MYB64 sample. For a fuller account, see section 4.2. 

2.7.1 Alignment of NGS Output Data to Reference Genome 

The latest edition of the Arabidopsis genome sequence at the time of operation 

was the TAIR9 Genome Release available online at The Arabidopsis Information 

Resource (TAIR) website (available at www.arabidopsis.org). Alignment of the 

Next Generation Sequencing (NGS) output dataset to the reference genome was 

carried out using CLC Genomics Workbench v3. The reference genome was 

provided with annotations of known transcripts from which CLC Genomics 

Workbench was able to interpret those NGS reads which aligned partially to the 

end of one exon and partially to the start of another. The number of reads 

aligned with each gene model was used to calculate an expression score for that 

gene, expressed as Reads Per Kilobase per Million mapped reads (RPKM). The 

first calculation, ‘reads per kilobase’, compensates for differences in transcript 

level attributable purely to differences in gene length (i.e. mRNA representing 

longer genes would be expected to produce a greater number of cDNA 

fragments); the second calculation, ‘per million’ mapped reads, compensates for 

differences in input RNA abundance (i.e. more concentrated RNA preparations 

would lead to higher expression values in that sample). Reads that aligned to 

more than 3 different loci were treated as too ambiguous to interpret and were 

discarded. Those that aligned to 3 or fewer loci, which represented < 0.5 % of 

the total remaining viable reads, were included in the calculation of expression 

of all three genes. 
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3 Function of Three Small Heat Shock Proteins 

Regulated by MYB64 Under Salt Conditions 

3.1 Introduction 

The microarray results obtained by Price (2005) and discussed in section 1.4 

revealed that when halotolerant activation-tagged line HT5, overexpressing 

MYB64, was exposed to long-term moderate salt stress, 15 % of the 45 

transcripts with the greatest increase in abundance relative to wild type had a 

functional annotation related to thermotolerance. Indeed, the first four in the 

list were members of the heat shock protein (HSP) families (Table 1.1). Two of 

the four, HSP70 (At3g12580) and HSP101/ClpB1 (At1g74310), are well-studied 

and are responsible for the ATP-dependent refolding of denatured proteins 

(Mogk et al., 2003, Tonsor et al., 2008). HSP17.6a (At5g12030) and HSP17.6b 

(At1g53540) are less well-studied and belong to a subgroup known as small HSPSs 

(smHSPs) characterised by high sequence similarity to each other and a 

molecular weight of approximately 17 – 20 kDa (Waters, 2013). HSP17.6a has a 

chromosomal neighbour, HSP17.6 (At5g12020), and while this was not among the 

most highly upregulated transcripts it was considered worth investigated as it 

was likely to have arisen as a gene duplication and might be a functional 

homolog.  

Presented with the choice of investigating the roles of either HSP70 / HSP101 or 

the smHSPs, the latter offered the potential for a more original contribution to 

the field. This choice was made even more appealing by virtue of the fact that 
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in addition to these two smHSPs at the top of the rankings, the top 45 

transcripts also included a further 3 members of the smHSP family. 

3.2 Predicted Structures of smHSPs of Interest 

In order to make predictions about their 3D structure, the protein sequences of 

Arabidopsis HSP17.6, HSP17.6a, HSP17.6b were aligned with that of the resolved 

wheat homolog TaHSP17.6 using the Protein Alignment tool in CLC Genomics 

Workbench v.3 using default parameters (Figure 3.1). Annotations above the 

wheat sequence represent β-strands (red arrows) that have been resolved by X-

ray crystallography. Equivalent annotations above the Arabidopsis sequences also 

represent predicted β-strands.  

The predicted and observed β-strands occupy almost identical regions of each 

protein indicating that this secondary structure is highly conserved both within 

species and between these species. The α-crystallin domain of HSP17.6b and the 

β-strands therein are noticeably shifted several residues to the right relative to 

the other three sequences. This may represent a small N-terminal 

insertion/duplication event during the evolutionary history of this family 

member. 

Another measure of sequence similarity and of predicted structure and function 

is the degree of hydrophobicity of the residues at each point along a 

polypeptide. The hydrophobicity of the same four smHSPs were compared using 

the Kyte-Doolittle Hydropathy Plot tool in CLC Genomics Workbench v.3. In this 

particular analysis each residue is assigned a hydrophobicity score of between 

4.6 (most hydrophobic) and -4.6 (least hydrophobic; Kyte and Doolittle, 1982).   
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Figure 3.1 Protein Sequence Comparison of Arabidopsis HSP17.6, 
HSP17.6a, HSP17.6b, and Wheat TaSHP16.9 
The crystal structure of wheat (Triticum aestivum) TaHSP16.9 has been 
resolved previously (van Montfort et al., 2001), so protein sequences of the 
three Arabidopsis smHSPs of interest were aligned to this for comparison. 
A Simple sequence alignment of all four protein sequences without 
annotations for ease of comparison. B The same sequence alignment 
showing β-strands represented by red arrows (predicted for Arabidopsis 
sequences, resolved from crystal structure for the wheat sequence, and 
numbered according to established nomenclature (Waters et al., 1996). 
The disordered N-terminal region and the α-crystallin domain of the 
resolved wheat structure are represented by purple and green arrows, 
respectively. 
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Scores for the polypeptide are averaged over windows of 11 residues and 

plotted.  

The hydrophobicity plot in Figure 3.2 shows three features. The first is that the 

sequence similarity noted in the Figure 3.1 across the conserved α-crystallin 

domain is reflected in overlapping hydrophobicity plots, including the C-terminal 

shift in HSP17.6b, and that the disordered N-terminal regions are more variable. 

The second is that the HSP17.6 and HSP17.6a, which are encoded at adjacent 

loci on chromosome 5 and thus would appear to have arisen as a result of a gene 

duplication event, share an almost identical hydrophobicity signature in their 

disordered N-terminal regions, further supporting this duplication hypothesis. 

The third is that a large majority of each protein sequence is hydrophilic (i.e. 

below 0 on the y-axis), suggesting a high propensity for contact with the 

surrounding solvent. At the time of performing this analysis the literature 

suggested that these smHSPs were cytosolic due to the fact that there were no 

known localisation signals and there had been no experimental evidence to 

suggest that they were located in any particular sub-cellular compartment; this 

hydrophobicity plot does not contradict the conclusion that they belong to a 

cytosolic subgroup.  
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Figure 3.2	  Kyte-Doolittle Hydrophobicity Plot of Arabidopsis HSP17.6, HSP17.6a, 
HSP17.6b, and Wheat TaHSP16.9  

Hydrophobicity of each of the Arabidopsis smHSPs of interest and the 16.9kDa 
homolog from wheat (Triticum aestivum) was calculated and plotted on the same axis. 
All four proteins are predicted by their families to be cytosolic: HSP17.6 and HSP17.6a 
belong to Class II; HSP17.6b and HSP17.6b belong to Class I. Positive values 
indicate hydrophobic regions; negative values indicate hydrophilic regions. Windows 
of 11 residues were used to calculate the hydrophobicity of each region. (All in silico 
operations were carried out using the Kyte-Doolittle  Hydropathy Plot tool in CLC 
Genomics Workbench v.3 using default parameters (moving average of 11 residues). 
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3.3 Expression of smHSPs of Interest 

3.3.1 Promoter Analysis 

The simplest explanation for the high upregulation of HSP17.6a and HSP17.6b in 

the microarray results would be that MYB64, being a transcription factor, 

directly activates their expression. To investigate this theory the promoter 

sequences of these two smHSP genes were interrogated for the presence of 

transcription factor binding sites. There was no experimental evidence in the 

literature to suggest a target sequence bound by MYB64, so the promoter 

sequences of these smHSPs were investigated for commonalities that might 

serve such a purpose. First, a de novo analysis was carried out using the Athena 

promoter analysis tool (O'Connor et al., 2005) to look for any other known 

regulatory elements. The 1kb upstream of the transcription start site (TSS) of 

each gene was notionally defined as the promoter for the purposes of this 

analysis. Had HSP17.6 and HSP17.6a arisen from a duplication event intact, it is 

possible that the duplicated region might also have included upstream 

regulatory sequences. 

Athena is a web-based tool that holds information on the Arabidopsis genome 

sequence and allows the upstream region of each annotated gene to be checked 

for the presence of any known promoter binding sites. If several genes are 

examined simultaneously, the degree of enrichment (or otherwise) in the gene 

set of each binding site is calculated relative to the detection level across all of 

the promoter regions in the entire genome. The output also displays a 

probability value of finding such a result for each binding site identified. 
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Figure 3.3, panel A, shows such an output displaying the locations of known 

promoter motifs (coloured vertical bars) relative to the TSS of each gene (grey 

horizontal boxes at the extreme right of each row). CpG islands are also 

indicated (pale blue horizontal boxes). The TATA-box motif is found in the 

notional promoter region of both HSP17.6a and HSP17.6b and these two genes 

also have CpG islands just upstream of their TSSs, but there are no other 

common motifs across the three sequences. 

Figure 3.3, panel B, shows the statistical significance of finding each motif in 

the given promoter set. The motif closest to being identified as significantly 

enriched is DREB1A/CBF3 (found in one of these three notional promoter 

regions; found in 5 % of promoter regions in the genome; p value 0.166) but with 

only three promoters to analyse it is perhaps difficult to draw conclusions from 

this. The MYB1AT motif was originally identified in the promoter of the 

dehydration- and salt-responsive gene RD22. The MYB2AT motif is bound by 

MYB2 which responds to water stress. The fact that these motifs are present but 

not significantly enriched does not preclude the possibility that they are 

nevertheless functional. Regions up to 3kb from each TSS were also investigated 

(not shown) but no enriched motifs were found.  

After finding no enriched promoter motifs from a database of those already 

known, the existence of novel binding sites was investigated. The three notional 

promoter regions were aligned using the Sequence Alignment tool in CLC 

Genomics Workbench v3 using default parameters. Working on the hypothesis 

that a binding site for the MYB64 protein would be found at equivalent distances 

from each TSS, no such sequences were evident from the alignment (not shown). 

Taken together, these results indicate that regulation of these genes is either   
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Figure 3.3	  Promoter-motif Analysis of smHSP Genes of Interest 

A The notional promoter regions - i.e. the 1kb regions upstream of the transcription start site (TSS) 
- of each of At1g53540, At5g12020 and At5g12030 (numerical order by gene number, encoding 
HSP17.6b, HSP17.6 and HSP17.6a, respectively) were interrogated for statistical enrichment of 
any known promoter motifs using the online Athena tool (O'Connor et al., 2005). Motifs are 
represented by vertical coloured bars on the horizontal genomic DNA diagram. Several known 
motifs were identified, though none are present in all three of the notional promoter regions. B 
Statistical interpretation of the data on each individual motif: column 2 shows the number of 
promoters in the dataset containing that particular motif (n = 3); column 3 shows the number of 
promoters containing that motif across the complete Arabidopsis genome; column 4 shows the 
significance of the enrichment of each promoter within this dataset. No known motifs were present 
in all 3 genes of interest.  
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not directly mediated by binding of MYB64 to a cis-acting element, or that such 

binding occurs at cryptic sites more distal to the TSS of each gene. 

3.3.2 Data Mining of Open-Access Heat Acclimation Transcript 

Profiles 

Transcript profiles from plants under a variety of experimental conditions are 

held at several online repositories, most commonly in the form of microarray 

results, in order that researchers can interrogate these databases for expression 

data without repeating the experiment themselves. The Arabidopsis “electronic 

Fluorescent Pictograph” (eFP) Browser (Winter et al., 2007) is an online tool 

which allows visualisation of, among others, the dataset produced by Kilian et 

al. (2007) as  part of the AtGenExpress project. This project involved exposing 

seedlings to a variety of abiotic factors including heat, cold, light, UV, 

wounding, and chemicals. Briefly, seedlings given the heat treatment were 

grown in a long-day cycle at normal temperatures (24 °C) for 11 days then 

exposed to a high temperature (38 °C) for three hours, then returned to the 

growth room at 24 °C. RNA was isolated at various timepoints and hybridised to 

the GeneChip® Arabidopsis ATH1 Genome Array (Affymetrix, High Wycombe, UK) 

and expression levels were measured in duplicate. The high temperature used by 

Kilian et al. was very close to the temperature used in thermal acclimation 

experiments elsewhere in this thesis (37 °C), so it will be referred to as an 

acclimation treatment. 

Figure 3.4, panel A, shows a heat-map representation of expression of the three 

smHSPs of interest and of MYB64. Figure 3.4, panel B, shows the fold-change in 

expression measured at each timepoint and in each tissue (shoots or roots)  
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Figure 3.4 Analysis of Open-Access Transcript Profiles of the Three 
smHSPs and of MYB64 Upon Thermal Acclimation 

Data deposited online at the eFP browser (Winter et al., 2007) showed the 
temporal expression pattern of these four genes of interest before, during, 
and after an acclimation period. A False-colour representation of 
expression in shoots and roots. B Fold-change relative to non-acclimated 
seedlings. Seedlings were heated to the acclimation temperature (38 °C) 
for 3 hours then returned to normal conditions (22 °C) for a further 21 
hours. Control seedlings were kept under normal conditions. RNA was 
extracted at the given timepoints and expression was analysed by 
microarray. Blue trend lines: shoots. Red trend lines: roots. Dashed grey 
vertical line: transition from acclimation at 38 °C back to the growth room at 
25 °C. 
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relative to the initial measurement of each transcript. HSP17.6b, the gene most 

highly upregulated in the salt-stressed activation-tagged line, HT5, underwent a 

439-fold increase in shoots by the first hour and slightly increased to reach 474-

fold after three hours. Three hours into the acclimation period HSP17.6a 

reached a peak of approximately 1000-fold upregulation in shoots and 200-fold 

in roots. HSP17.6, its close homolog adjacent on chromosome 5 (which was not 

identified in the HT5 microarray results), reached almost identical peaks. 

Expression of all three smHSP genes in shoots declined to approximately 200-fold 

or less following an hour of recovery at the control temperature of 24 °C. 

HSP17.6a and HSP17.6b both underwent a further transient increase in 

expression 12 hours after the initial exposure to the acclimation temperature 

(i.e. 9 hours after removal to the control temperature) which declined to basal 

levels by 24 hours.  

MYB64 was investigated because of its connection with the upregulation of the 

smHSPs in line HT5. Expression did not change here by more than 1.4-fold and 

the fluctuations follow no pattern, so it can be concluded that there was no 

effect of heating on the level of MYB64 transcription in this experiment. 

Expression of these three smHSPs is clearly induced by the application of high 

temperature, and these data disagree with the hypothesis that this induction is 

mediated by a cascade that begins with transcription of MYB64. 
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3.3.3 Experimental Investigation of smHSP Levels in Wild Type 

upon Thermal Acclimation 

3.3.3.1 Transcript Levels 

The expression patterns described above were carried out by microarray analysis 

in a slightly different experimental system than the one to be used in the 

experiments carried out and reported in this thesis (seedlings floating on rafts 

rather than sown on solid agar medium; different age at sampling; different 

acclimation temperature) so it was of interest to confirm that these patterns 

would also be observed in transcript profiles performed in-house. Seedlings were 

grown on agar plates for two weeks (section 2.3.2) before being transferred to 

the incubator at 37 ± 0.5 °C for 3 hours. RNA was sampled at the intervals shown 

in Figure 3.5 and semi-quantitative RT-PCR was performed (sections 2.6.1 and 

2.6.3) using primers to HSP17.6 and HSP17.6a, and Actin 2 as a ‘housekeeping’ 

reference. 

As shown in Figure 3.5 HSP17.6 and HSP17.6a were both undetectable before 

acclimation and were both massively induced by 3 hours at 37 ± 0.5 °C. HSP17.6 

attained a higher maximum expression level. The general trend was a decline in 

the abundance of both transcripts over the following 24 hours though, notably, 

HSP17.6 increased slightly again at 12 hours, which was not mirrored in HSP17.6a 

levels. This is consistent with the microarray data discussed above. 

3.3.3.2 Protein Levels 

Up to this point, all discussion of smHSP expression has pertained to 

transcriptional changes. It was of interest to discern whether the acclimation   



Chapter 3: Function of Three smHSPs Regulated by MYB64 93 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5	  Acclimation-induced Accumulation of HSP17.6 and HSP17.6a in Wild 
Type Seedlings  

Wild type (Col-0) plate-grown 2-week-old seedlings were given a 3-hour incubation at 
the acclimation temperature, 37 ± 0.5 °C, and RNA was sampled before (Pre), 
immediately after (0), and at 3, 6, 12 and 24 hours later. RT-PCR was carried out to 
measure transcript levels of two of the smHSP genes of interest. Expression of both 
HSP17.6 and HSP17.6a was highest immediately upon removal from the incubator 
and declined steadily over the subsequent 24 hours, thus confirming the open-access 
microarray measurements presented in Figure 3.4. 
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treatment described above also resulted in an increase in detectable smHSP 

proteins.  

To monitor general smHSP protein levels upon thermal acclimation, wild type 

(Col 0) seedlings were sown on agar plates (section 2.3.2) for 2 weeks then 

transferred to the incubator at 37 ± 0.5 °C for 3 hours. This is widely used in the 

literature as an acclimation temperature and smHSPs are reported to reach as 

much as 5% of total cellular protein (Vierling, 1991), so it was reasonable to 

expect to be able to see a band appear at approximately 17 kDa when the 

smHSPs were expressed. Whole seedlings were harvested before (Pre) and 

immediately after acclimation (0 h), then at 3, 6, 12 and 24 h following return 

to the growth room at 22 °C. Samples were then applied to an SDS-PAGE gel 

(Figure 3.6). At 0 h following heat acclimation, i.e. at the timepoint when the 

transcript levels reached their maximum levels (see Figure 3.4 and Figure 3.5), a 

band was evident at around 17 kDa. This faint band persisted at a slightly lower 

level through the 3 and 6 hour timepoints. At 12 hours post-acclimation this 

band exhibited a marked increase in intensity which was also observable at 24 

hours. This coincides with the transient re-elevation of transcript levels 

discussed above. 

3.3.4 Generation of Chimeric smHSPs 

In order to more accurately track expression of these smHSPs at the protein 

level, particularly in the absence of specific antibodies, constructs were 

designed to add N-terminal and C-terminal epitope and fluorescent tags. Adding 

epitopes would also facilitate immunoprecipitation of smHSP:substrate 

complexes in any future experiments that might be carried out to characterise  



Chapter 3: Function of Three smHSPs Regulated by MYB64 95 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.6	  smHSP Protein Levels After Thermal Acclimation  

Wild type (Col-0) plants were grown on basal agar plates in a growth 
room at Normal Conditions for 14 days then incubated at acclimation 
temperature (37 ± 0.5°C) for 3 hours before being returned to the 
growth room. Protein was harvested before acclimation (-3h), 
immediately after (0h), and 3, 6, 12 and 24 hours after the return to the 
growth room at 22 °C. Samples were separated by SDS-PAGE and 
silver stained. The large RuBisCo subunit  (~ 56 kDa) is annotated as a 
loading control. 
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the differences between the range of targets of specific members of the smHSP 

family. 

The first decision to be made was whether to add tags to either the N- or C-

terminus of the proteins. Indications from the literature suggested that the N-

terminus is involved in client binding and in oligomer formation (Kim et al., 

1998, van Montfort et al., 2001), so it was reasoned that it was perhaps more 

important for function than the C-terminus. In order to increase the likelihood of 

preserving biological function it was decided that the fusions should therefore 

be made at the 3’ ends of the genes. 

The second decision concerned which tags to select. For experiments relating to 

spatial and temporal patterns of expression, it was decided that fluorescent 

polypeptides would provide the simplest measure of gene activation. Vectors 

containing GFP, RFP and YFP sequences were obtained. For potential 

experiments designed to elucidate client specificity, epitope tags for which 

there are commercially-available antibodies would allow smHSP:substrate 

complexes to be immunoprecipitated. Vectors encoding haemagglutinin (HA), 

FLAG and MYC tags were also obtained. 

The final decision regarded selection of appropriate promoters. The 1kb region 

upstream of each gene had already been investigated and no common activation 

sequences were found to be shared by all three smHSPs (see section 3.3.1), but 

this did not preclude the possibility that some cryptic cis-acting elements within 

these regions were still responsible for driving expression of the genes in 

response to acclimation temperatures. Constructs under the control of these 1kb 

‘own-promoter’ regions might be useful in assessments of endogenous temporal 

patterns of expression. The constitutive 35S promoter, on the other hand, would 



Chapter 3: Function of Three smHSPs Regulated by MYB64 97 

be useful in sub-cellular localisation experiments where it was not important to 

find physiologically representative conditions to stimulate expression, but simply 

to determine which compartment each smHSP would occupy when expressed. 

Both own-promoter and 35S promoter constructs were therefore planned. 

Thus, each smHSP was cloned into a variety of plasmid vectors to create fusion 

constructs (NB: ‘x’ in the following nomenclature is variable and represents 

slightly different vectors and gene combinations, each with slightly different 

properties. For a full list see Table 2.2): pGWBxx :: HSPxx : xFP constructs to 

constitutively express fluorescently-tagged smHSPs under the control of the 35S 

promoter; pGWBxx :: HSPxxpro : HSPxx : xFP constructs to express the same 

chimeric proteins under the control of ‘own-promoters’; and px7xWG2 :: HSPxx : 

epitope constructs to constitutively express various epitope-tagged versions of 

the smHSPs (Figure 3.7 panels A, B, and C, respectively). Experiments 

performed with the fluorescently tagged proteins are described below. The 

epitope-tagged constructs were generated but immunoprecipitation and 

substrate identification experiments were not completed due to time 

constraints. 

With so many combinations of vectors and genes it seemed unreasonably time-

consuming to transform wild type Arabidopsis, select, screen, genotype, and 

finally perform the relevant experiments, especially without first knowing how 

the biological function of such a relatively small protein might be affected by a 

comparatively large tag. Rather than creating transgenic Arabidopsis lines, these 

constructs were used in transient expression experiments in N. benthamiana 

leaves. 
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Figure 3.7 Generic Plasmid Maps of Chimeric smHSP Constructs  

smHSPs were cloned into a series of binary vectors with a combination of promoters and C-
terminal tags. The pGWBxx series of vectors add a variety of epitope tags for use in immunological 
assays. A suite of 35Spro (A) and putative smHSP-promoter region (B) constructs were made. The 
px7xWG2 series of vectors already carry the 35S promoter and allow the addition a variety of 
fluorescent tags for use in imaging assays (C). For a full description of the vectors used, see Table 
2.2. 
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3.3.5 Temporal Expression of smHSP Proteins 

N. benthamiana leaves were infiltrated with Agrobacterium carrying each of the 

fluorescently tagged ‘own-promoter’ constructs: HSP17.6pro:HSP17.6:XFP; 

HSP17.6apro:HSP17.6a:XFP; and HSP17.6bpro:HSP17.6b:XFP; where ‘XFP’ 

represents either RFP, YFP, or GFP. All three combinations of fluorescent tag 

were tested with all three genes. Infiltrations were performed separately. Plants 

were allowed 36 hours at Normal Conditions for transient transfection to take 

place. Leaves were then held at the acclimation temperature of 37 ± 0.5 °C for 3 

hours controlled by a thermal PCR block. A block of metal (approximately 0.5 cm 

thick) was laid over the heat block normally used to incubate PCR tubes, leaves 

were wrapped in cling film to prevent transpirational cooling and laid on top of 

this metal block, then a piece of thermally insulating rubber foam was placed on 

top to hold the leaf in contact with the metal. A thermocouple probe was 

inserted between the metal and the foam to accurately measure leaf 

temperature (TLEAF). During this acclimation treatment 0.5 cm x 1 cm sections 

were removed with a scalpel at 30 minute intervals, as well as at 1 hour, 3 

hours, 6 hours and 12 hours post-acclimation. These sections were immediately 

prepared and examined by confocal microscopy but, despite exhaustive 

attempts, no fluorescence signal was detected from any of the transfections (not 

shown).  

3.3.6 Sub-Cellular Localisation of Constitutively Expressed 

smHSPs  

N. benthamiana leaves were again infiltrated with Agrobacterium, this time 

carrying constitutive 35S promoter constructs: 35Spro:HSP17.6:GFP; 
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35Spro:HSP17.6a:YFP; and 35Spro:HSP17.b:RFP. Plants were left for 36 hours at 

Normal Conditions for transient transfection to take place. Sections 0.5 cm x 1 

cm were removed with a scalpel, prepared, and immediately examined under a 

confocal microscope. 

3.3.6.1 Localisation of HSP17.6 

Of all the fluorescent HSP17.6 constructs, the version tagged with RFP exhibited 

the clearest fluorescent signal (35Spro:HSP176.6:RFP) (Figure 3.8). 

Morphologically, the fluorescence signal did not appear to coincide with any 

obvious sub-cellular compartments. A diffuse cytosolic signal can be seen in the 

lobes of these epidermal cells (arrow A); cytoplasmic strands across vacuolar 

areas are visible (arrow B); some areas are mixtures of diffuse cytosolic signal 

and sharper punctate patches (arrow C); a perinuclear pattern is obvious (arrow 

D); and uniform globular patches are evident near the periphery of some cells 

(arrows E). For a video reconstruction, see Video Files 1 and 2 (for legends, see 

page 105). 

3.3.6.2 Localisation of HSP17.6a  

None of the fluorescently tagged versions of HSP17.6a gave rise to any 

detectable signal under confocal microscopy (not shown). 

3.3.6.3 Localisation of HSP17.6b 

As with HSP17.6, the clearest signal from HSP17.6b was obtained from the RFP 

construct (35Spro:HSP17.6b:RFP - Figure 3.9). Similar patterns of sub-cellular 

localisation were also observed, though the cytosolic network pattern was much   
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Figure 3.8 Sub-cellular Localisation of HSP17.6  

Nicotiana benthamiana leaves were imaged by confocal microscope 36 hours post-
transfection with 35Spro:HSP17.6:RFP. (A) diffuse cytosolic signal; (B) cytoplasmic strand; 
(C) complex mixture of smooth and punctate signal; (D) perinuclear localization; (E) punctate 
pattern at cell periphery. RFP fluorescence is in red; chloroplast autofluorescence is in blue. 
For 3D reconstructions from a Z-stack series of images, see Video File 1. Dashed line 
represents the area imaged in the timecourse in Video File 2. 
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Figure 3.9	  Sub-cellular Localisation of HSP17.6b  

Nicotiana benthamiana leaves were imaged by confocal microscope 36 hours post-transfection 
with 35Spro:HSP17.6b:RFP. RFP fluorescence is in red; chloroplast autofluorescence is in blue. 

  

A Overview of localisation patterns across a large area of lower leaf epidermis.  

B Enlargement of panel A. Arrows A: diffuse cytosolic signal with negative signal representing 
membrane-bound organelles. Arrows B: cytoplasmic strand. Arrows C: perinuclear localization. 
Arrows D: punctate pattern exhibited in some cells and not in others. Arrows E: network pattern 
exhibited in some cells and not in others.  

C Enlargement of panel B. Arrows as above. 
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more pronounced (arrows B and E). For a video reconstruction, see Video Files 3 

and 4 (for legends, see page 105). 

3.3.6.4 Co-localisation of HSP17.6 and HSP17.6b 

Both HSP17.6 and HSP17.6b appeared to be localised in the cytoplasm. To 

confirm that they were in the same compartment as each other N. benthamiana 

leaves were co-infiltrated with two Agrobacterium cultures, one transformed 

with 35Spro:HSP17.6:GFP and the other transformed with 35Spro:HSP17.6b:RFP. 

36 hours after infiltration a 0.5 x 1 cm tissue section was examined under a 

confocal microscope. While the transfection efficiency was reduced in this 

double-transfection, it was possible to find cells expressing both constructs 

(Figure 3.10). One such cell was imaged and analysed with the Intensity 

Correlation Analysis plugin for ImageJ (Schneider et al., 2012) to determine the 

extent of co-localisation. Two separate cross-sections were used (lines 1 and 2). 

The RFP and GFP signals were found to be strongly correlated, indicating that 

both of these chimeric proteins were located in the same compartment(s), 

which appear to be parts of the cytoplasm. 
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Figure 3.10	  Co-localisation of HSP17.6:GFP and HSP17.6b:RFP  

N. benthamiana leaves (bright field; A) were co-transfected with 35Spro:HSP17.6b:RFP (B) and 
35Spro:HSP17.6:GFP (C) and imaged by confocal microscopy 36 hours later. Signal intensity from 
each colour channel was compared across two linear sections (D, lines 1 and 2) using the Image 
Correlation Analysis plugin in ImageJ (Schneider et al., 2012). The two fluorescent signals were 
strongly correlated. Green plots: HSP17.6:GFP intensity. Red plots: HSP17.6b:RFP intensity. Grey 
plots: bright field image intensity.  
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3.3.6.5 Figure Legends for Accompanying Video Files 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Video File 2 Sub-cellular Dynamics of HSP17.6 

(This video file complements Figure 3.8) N. benthamiana leaves were imaged by confocal 
microscopy 36 hours post-transfection with 35Spro:HSP17.6:RFP. A timeseries of images 
was captured over a period of 4 minutes 15 seconds with a capture framerate of 
approximately 1 image every 6 seconds. This video loops 3 times. Arrows as above. 

 

 

Video File 1 Sub-cellular Localisation of HSP17.6 

(This video file complements Figure 3.8) N. benthamiana leaves were imaged by confocal 
microscopy 36 hours post-transfection with 35Spro:HSP17.6:RFP. A Z-stack of images 
was captured through the lower epidermal layer of these leaves. Clip A: Images from the 
Z-stack are played in series from the surface of the tissue to the deepest point, then in 
reverse. 9 loops, 26 seconds total. Clip B: The Z-stack was used to produce a 3D 
reconstruction of the tissue which rotates around the Y axis. 8 loops, 50 seconds total. 
Arrow A: diffuse cytosolic signal; Arrows B: cytoplasmic strand; Arrows C: complex 
mixture of smooth and punctate RFP signal; Arrows D perinuclear localisation; Arrows E: 
punctate pattern at cell periphery. RFP fluorescence is in red; chloroplast 
autofluorescence is in blue. 

 

Video File 3 Sub-cellular Localisation of HSP17.6b 

(This video file complements Figure 3.9) N. benthamiana leaves were imaged by confocal 
microscope 36 hours post-transfection with 35Spro:HSP17.6b:RFP. A Z-stack of images 
was captured through the lower epidermal layer of these leaves. RFP fluorescence is in 
red; chloroplast autofluorescence is in blue. 

 

 

Video File 4 Sub-cellular Dynamics of HSP17.6b 

(This video file complements Figure 3.9) N. benthamiana leaves were imaged by confocal 
microscope 36 hours post-transfection with 35Spro:HSP17.6b:RFP. Clip A: A timeseries 
of images was captured over a period of 5 minutes with a capture framerate of 
approximately 1 image every minute. Clip B: A timeseries of images was captured over a 
period of 4 minutes with a capture framerate of approximately 6 images per minute. RFP 
fluorescence is in red; chloroplast autofluorescence is in blue. 
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3.3.6.6 Heat-induced Alteration in Localisation of smHSPs 

After establishing that these smHSPs were cytosolic, it was decided to 

investigate whether their localisation altered upon activation at the thermal 

acclimation temperature (37 °C). The same procedures described above were 

used to transfect leaves with 35Spro:HSP17.6:RFP and 35Spro:HSP17.6b:RFP, and 

leaf sections were heated while on the microscope stage by constantly flushing 

with a stream of warmed water in a specially designed chamber. Temperature 

was monitored using a thermocouple held inside the same chamber. RFP was 

chosen as it provided the strongest fluorescence signal. 

The temperature was steadily increased from room temperature (22 °C) to the 

target temperature (37 °C) over a period of ten minutes. The subcellular 

dynamics of the tagged proteins did not alter during the initial stages of this 

treatment, but the fluorescence was gradually quenched as the temperature 

exceeded 30 - 32 °C. This meant that it was not possible to obtain images at the 

temperature necessary to induce thermal acclimation (images not shown). As 

the temperature was gradually lowered to room temperature, the fluorescence 

signal returned. 

This finding demonstrates the unsuitability of RFP for use in heat-stress 

investigations in planta in real-time. 
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3.4 smHSP Knockout Lines 

As part of an effort to characterise the function of HSP17.6 and its chromosomal 

neighbour HSP17.6a, knockout lines were obtained and investigated.  

3.4.1 Selection and Acquisition of Knockout Lines 

The Nottingham Arabidopsis Stock Centre (NASC, Scholl et al., 2000) carries seed 

stock generated from various large-scale mutagenesis events. Their database 

was interrogated for any lines annotated as carrying mutations within or around 

the coding regions of HSP17.6 and HSP17.6a (Figure 3.11). An insertional mutant 

(stock #N507510) was available for HSP17.6 carrying a T-DNA insertion of 

approximately 10 kb within the last 200 bp of the gene’s single exon. For 

HSP17.6a there were no insertional mutants in the coding region, though there 

was a line available with an insertion within the 200 bp upstream of its TSS 

(stock #N672448), which was generated by the same large-scale insertional 

mutagenesis and thus carried a copy of same approximately 10 kb T-DNA. This 

was within the notional promoter region, so while it was not as likely to result in 

a complete loss of function, it was obtained on the basis that this upstream 

lesion might still attenuate expression of HSP17.6a. 

Each of these putative knockout lines, notionally designated hsp17.6 and 

hsp17.6a, were supplied labelled as homozygous seed stock. To confirm the 

genotypes, PCR primers were designed to the sequences just 5’ and just 3’ of 

each insertion site (Figure 3.11, red flags; see Table 2.12 for primer sequences). 

Seeds were sown on soil, leaves were sampled from 3 separate seedlings of each 

line, genomic DNA was isolated, and PCR was carried out using these primers  
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Figure 3.11 Locations of T-DNA Insertions 
and Associated Genotyping Primers  

Two independent lines carrying T-DNA 
insertions were identified as potential loss-of-
function mutants and seed was acquired from 
the Nottingham Arabidopsis Stock Centre 
(NASC, Scholl et al., 2000). Line N507510 
was annotated in the catalogue as carrying T-
DNA in the 3’ UTR of HSP17.6 and therefore 
the insertion might disrupt proper transcription 
and mRNA processing. Line N572448 was 
annotated as carrying T-DNA within the 200 
bp 5’ of the transcriptional start site of 
HSP17.6a and was therefore considered to be 
a candidate promoter-knock-down line.  

 

Genotyping primers (blue flags) were 
designed to anneal to the genomic regions 5’ 
and 3’ of the insertion sites (pink flags). If a T-
DNA insertion was present, its size (~10 kb) 
would prevent a PCR product from being 
made within the extension time any typical 
PCR cycle, thus confirming the presence of a 
potentially mutant allele. If a T-DNA insertion 
was not present, a product of ~400 bp would 
be created from the wild type allele.  
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to detect the presence of any wild type alleles (Figure 3.12). Since the expected 

result indicating a knockout would in this case take the form of a negative PCR 

result, positive control PCRs were performed comprising the reciprocal primer & 

sample pairs.  

These primers to the wild type HSP17.6 allele failed to produce a product from 

all three hsp17.6 gDNA samples (left part of Figure 3.12) indicating that all three 

of those plants were homozygous for the insertion allele, while the same primers 

all successfully produced a wild type product from all three gDNA samples from 

the other mutant, hsp17.6a, thus proving that the primer pair would have 

worked had a wild type allele template been present. The same was also found 

for primers to the wild type HSP17.6a allele (right part of Figure 3.12) in the 

reciprocal combination. Thus, it was confirmed that each plant was indeed 

homozygous for its respective T-DNA insertion. These seedlings were grown to 

maturity, seed was harvested, and their progeny were used for knockout 

investigations. 
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Figure 3.12	  PCR Confirmation that Putative Knockout Lines hsp17.6 and hsp17.6a are 
Homozygous  

Genotyping primers (Table 2.12) were used on gDNA extracted from 3 individual seedlings 
of each putative knockout line. Primers were designed to detect the presence of a wild type 
allele; absence of a band therefore represents a line homozygous for the ~10 kb T-DNA 
insert between the primer binding sites. Reciprocal PCR reactions were performed as 
controls: presence of a band when hsp17.6 genotyping primers were used on hsp17.6a 
gDNA, for example, provided evidence that the template was intact. 
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3.5 Thermotolerance of smHSP Knockout Lines 

These knockout lines were then investigated for thermosensitivity phenotypes at 

various stages of development. 

3.5.1 Thermotolerance of Wild Type Arabidopsis  

Thermotolerance can be classified as one of two types: basal or acquired. Basal 

thermotolerance involves protection that does not require a lag time in order to 

be effective. The precise nature of these basal mechanisms is poorly defined in 

the literature, and is mentioned mainly in relation to innate differences in heat 

stress responses between species, ecotypes and genotypes (Barnabas et al., 

2008, Clarke et al., 2004). Acquired thermotolerance, on the other hand, is the 

phenomenon by which an organism can survive a lethal temperature if it is 

allowed to reach that temperature gradually (Song et al., 2012). In plants, this 

type of response can involve signalling mediated by plant hormones such as ABA, 

with these signals leading to transcriptional cascades, and ultimately to the 

expression and/or post-translational activation of individual effector proteins 

(Nakashima et al., 2009, Pieterse et al., 2012), the most notable of which are 

members of the HSP families. The lag time necessary to achieve a state of 

acquired thermotolerance can be attributed to these stepwise processes. 

Two parameters had to be defined before any thermotolerance experiments 

could be carried out on the smHSP knockout  lines: the temperature above which 

non-acclimated wild type Arabidopsis is unable to survive (the ‘killing 

temperature’ - TK), and the optimum duration of the lag phase required to allow 
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wild type plants to reach a state of acquired thermotolerance (the ‘acclimation 

period’). 

3.5.1.1 Killing Temperature (TK) 

Wild type seedlings are widely reported in the literature to be able to survive at 

temperatures up to approximately 43 or 44 °C. A typical killing protocol used for 

screening involves an exposure of 3 to 4 hours (Nurcahyanti, 2009). A preliminary 

experiment was carried out to confirm that these temperatures used for these 

durations would be sufficient for seedlings sown using our protocols and heat-

treated using our incubators.  

Wild type seedlings were sown on agar plates (section 2.3.2) and germinated 

horizontally and allowed to grow for 2 weeks before being transferred to the 

incubator for 3 hours or 4 hours, and this was repeated at temperatures of either 

42, 44 or 46 °C. Experimental measurements made with a thermocouple probe 

held at various positions around the interior of the incubator showed that the 

actual air temperature varied from the thermostatically set temperature by ± 

0.5 °C. It was determined that 44 ± 0.5°C for 3 hours was sufficient to kill these 

2-week old wild type seedlings (data not shown, and Nurcahyanti, 2009)). 

3.5.1.2 Acclimation Period 

There were two components of the acclimation period to be defined: the length 

of time required to initially induce the process of thermotolerance and the 

length of time required to express or activate the necessary components. It was 

reasoned that it would be best to first give a conservatively long induction 

period and determine the length of time required to activate the protective 
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mechanisms, than to experiment with reducing the induction period to find its 

lower limit. For both these trials 37 °C was selected as the acclimation 

temperature as this (± 1 °C) has consistently been reported in the literature to 

be sufficient (e.g. Vierling et al., 1986, Chen et al., 1990, Vierling, 1991, 

Larkindale and Vierling, 2008, Pavlova et al., 2009, Zupanska et al., 2013). 

To investigate the optimal length of the activation period, plants were given a 

long induction at 37 ± 0.5 °C for 3 hours followed by an expression/activation 

period at 22 °C of either 0, 3, 6, or 12 hours, then a stress at the previously 

determined TK (see section 3.5.1.1) of 44 ± 0.5 °C for 3 hours (Figure 3.13, 

panel A). Plants were qualitatively assessed for viability 36 hours after the 

stress, and again 5 days later. Representative images are presented in (Figure 

3.13, panel B). 
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Figure 3.13 Empirical Determination of the Most Protective Time Interval Between 
Acclimation and High Temperature Stress  

While it was not possibly to gradually increase the temperature of the incubation chamber 
from 37 °C to 44 °C in a smooth and reproducible manner, it was known that an acclimation 
period at 37 °C followed by a ‘rest’ period improved survival of seedlings subsequently 
exposed to the killing temperature, 44 °C (Larkindale and Vierling, 2008). A Plants were 
acclimated at 37 ± 0.5 °C for 3 hours, returned to Normal Conditions at 22 °C for 3, 6, or 12 
hours, then exposed to the killing conditions of 44 ± 0.5 °C for 3 hours. B Seedlings were 
photographed before, 36 hours after, and 5 days after exposure to the killing temperature. 
Magnifications or representative plants are presented to the right.  
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It was observed that a direct transfer from acclimation temperature to the TK 

did not induce acquired thermotolerance – all plants were completely white / 

brown by day 5. Plants given a 3 hour activation period exhibited the greatest 

survival – more than half of the leaves on each seedling remained green 

(particularly the younger leaves, perhaps indicating that those which are 

actively growing and are therefore more metabolically active are most capable 

of mounting the appropriate defence response). Among the seedlings given a 6 

hour activation period a small number of leaves remained green but the vast 

majority of the aerial tissue appeared to have died by day 5, and plates given 12 

hours responded similarly to those directly transferred to the TK. 

To investigate the minimum length of time required at the acclimation 

temperature in order to induce acquired thermotolerance, seedlings were 

induced at 37 °C for either 1, 2, or 3 hours, then given an expression period at 

22 °C for 3 hours as recommended above, and then a stress at 44 ± 0.5 °C for 3 

hours (Figure 3.14, panel A). Seedlings were qualitatively assessed for survival 

at 36 hours and 5 days post-treatment (Figure 3.14, panel B). In all seedlings a 

number of older leaves died but the majority remained green and there was no 

observable difference between survival after an induction of 1, 2, or 3 hours.  

Based on these observations future thermotolerance experiments incorporated 

an acclimation protocol consisting of 1 hour at 37 ± 0.5 °C to induce acquired 

thermotolerance followed by 3 hours at 22 °C to allow activation of the 

appropriate defence mechanisms, then exposure to the TK of (unless otherwise 

specified) 44 ± 0.5 °C. 
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Figure 3.14 Empirical Determination of the Most Effective Thermal Acclimation Period 

After demonstrating that an acclimation prior to exposure to the killing temperature provided 
protection to seedlings (Figure 3.13), the optimum duration of acclimation period was 
investigated. A Plants were be acclimated at 37 ± 0.5 °C for either 1, 2, or 3 hours, returned to 
Normal Conditions at 22 ± 0.5 °C for 3 hours, then exposed to the killing conditions of 44 ± 0.5 
°C for 3 hours. B Seedlings were photographed before, 36 hours after, and 5 days after 
exposure to the killing temperature. Magnifications of representative plants are presented to 
the right.  
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3.5.2 Thermotolerance of smHSP Knockouts: Overall Morphology 

Seedlings were assessed at 2 weeks after germination to determine whether the 

knockout lines were more sensitive to high temperatures than wild type. 

Approximately 30 seeds of wild type Col 0 were sown on bipartite agar plates 

(section 2.3.2) alongside 30 seeds of either line hsp17.6 or hsp17.6a and grown 

under Normal Conditions. Two weeks after germination, seedlings were 

acclimated for 1 hour at 37 °C (see section 2.5) and then heat stressed for 3 

hours at either 42 or 44 ± 0.5 °C. After a recovery period of 3 days at Normal 

Conditions plates were assessed visually for survival (Figure 3.15). 

Plants exposed to the wild type killing temperature (44 ± 0.5 °C; right-hand-side 

of figure) all suffered a degree of bleaching and death. There was some 

between-plate variation which can be seen from the way that all plants on the 

plate containing line hsp17.6 (panel A) turned completely white and all plants 

on the plate containing hsp17.6a (panel B) had some remaining green leaves, 

but within plates there were no clear differences between knockout and wild 

type lines. Plants exposed to a temperature slightly below the killing 

temperature (42 ± 0.5 °C; left-hand-side of figure) all retained their green 

pigmentation, indicating that the knockouts are not thermosensitive by this 

particular measure of survival.  
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Figure 3.15 Survival of Heat-stressed 2 Week Old Seedlings of hsp17.6 
and hsp17.6a  

Seedlings of Col 0 and either line hsp17.6 (A) or line hsp17.6a (B) were 
sown on split plates, grown until 2 weeks old, then given a moderate heat 
acclimation at 37 ± 0.5 °C for 1 hour to induce smHSP expression. Following 
a 3 hour rest under Normal Conditions, the seedlings were incubated either 
at the wild type killing temperature (44 ± 0.5 °C) or a sub-lethal temperature 
to test for hypersensitivity (42 ± 0.5 °C) for 3 hours, then returned to the 
growth room at 22 °C and visually assessed 3 days later. At the wild-type 
killing temperature, all plants died and there was no difference between 
knockouts and Col 0. At 42 ± 0.5 °C the knockout lines showed no sign of 
being compromised – there was no sign of bleaching and none of the leaves 
had become flattened onto the medium. 
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3.5.3 Thermotolerance of smHSP Knockouts: Germination 

As discussed previously, members of the smHSP family are known to be 

expressed during seed maturation / germination (section 1.2.1). If HSP17.6 and 

HSP17.6a were important for thermotolerance at this stage then it is reasonable 

to hypothesise that applying a heat stress during the early stages of germination 

would reveal a sensitive phenotype. This hypothesis was tested. 

Seeds of all three genotypes (Col 0, hsp17.6 and hsp17.6a) were sown on 

tripartite agar plates (section 2.3.2) so that each line under each condition was 

exposed to an identical microclimate within the incubator. Twenty seeds of each 

line were used and plates were set up in duplicate. Immediately following 

stratification at 4 °C, plates were incubated at 22, 42, 44, or 46 ± 0.5 °C for 3 

hours. Plates were then moved to the growth room at Normal Conditions to 

recover. Germination was scored 1 week later (Figure 3.16).  

Wild type line Col 0 was able to survive the 42 ± 0.5 °C stress with a germination 

rate of 100 % which dropped slightly to 87 % when stressed at 44 ± 0.5 °C. 

Knockout line hsp17.6 achieved 93 % germination at 42 and 44 ± 0.5 °C. Line 

hsp17.6a germinated less well than either of the other two lines under control 

conditions (70 %) and this was not further reduced at either 42 or 44 ± 0.5 °C. All 

lines completely failed to germinate after an exposure to 46 ± 0.5 °C. 

Analysis of variance tests on these data indicated no significant differences 

(p>0.05; see Appendix ii-a) in the main effects of line and temperature, or their 

interaction. This indicated that knocking out either of these two smHSP genes 

did not cause a thermosensitive phenotype at germination.  
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Figure 3.16	  Germination of hsp17.6, hsp17.6a, and Wild Type Seeds Following Heat Stress  

Seeds of lines Col 0, hsp17.6, and hsp17.6a were sown on split tripartite plates, in duplicate, and 
stratified at 4 °C in the dark for 3 nights. Seedlings were incubated immediately afterwards at 22, 
42, 44 or 46 ± 0.5°C for 3 hours, then returned to the growth room at 22 °C. Germination was 
scored one week later. Each line’s measurements are normalised against that line’s germination 
rate at 22 °C. Error bars represent means ± SE; n = 2 replicates of 15 plants each. 
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3.5.4 Thermotolerance of smHSP Knockouts: Root Development 

While smHSPs were shown to be expressed at a lower level in the roots than in 

shoots (Figure 3.4), they were still upregulated 200-fold in response to a thermal 

acclimation. To test the hypothesis that these smHSPs play a role in 

thermotolerance in roots, root lengths were measured before and after a heat 

stress.  

8 seeds each of Col 0 and either of the two knockout lines were sown on 

bipartite agar plates (section 2.3.2), in duplicate, and germinated vertically. 

Plates were incubated at stress temperatures 5 days later (see section 2.5). The 

extent of root growth in the 3 days following the stress was recorded and 

plotted in Figure 3.17 (panel A: hsp17.6, panel B: hsp17.6a).  

When transferred directly from 22 °C to either 42 or 44 ± 0.5 °C (non-

acclimated; left side), all root growth in all lines was effectively stopped. When 

given an acclimation at 37 ± 0.5 °C (right side) root growth continued after a 

stress at 42 ± 0.5 °C and it did so slightly more in wild type (approx. 90 % of non-

stressed control, panels A and B) than in hsp17.6 (approx. 70 % of non-stressed 

control, panel A) or in hsp17.6a (approx. 50 % of non-stressed control, panel B) 

though neither of these reductions in knockout lines were statistically significant 

(p>0.05). Root growth was effectively stopped in all lines when acclimated and 

then transferred to the wild type killing temperature (44 ± 0.5 °C). 
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Figure 3.17 Effect of Heat Stress on Root Extension in Knockout Lines hsp17.6 and 
hsp17.6a and in Wild Type   

Seeds of wild type (Col 0), hsp17.6 and hsp17.6a were sown on split bipartite agar plates 
and germinated vertically. Heat stress was applied 5 days later. Root extension was 
measured a further 3 days later. Data from two individual replicate plates are presented for 
each treatment as there may be some variation attributable to plates / position of plates 
within the incubator. A Post-stress root growth exhibited by Col 0 and hsp17.6. B Post-
stress root growth exhibited by Col 0 and hsp17.6a. Non-acclimated samples are 
normalised against 22 °C; acclimated samples are normalised against 37 ± 0.5°C. Error 
bars represent means ±SE; n = 15. 
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3.5.5 Thermotolerance of smHSP Knockouts: Hypocotyl 

Extension 

Seeking to discern whether thermotolerance was conferred upon the aerial 

tissues shortly after germination, an equivalent experiment was performed to 

measure the length of dark-grown hypocotyls before and after a heat stress. 

Germinating seeds in the dark causes an etiolated phenotype characterised by 

exaggerated height and thin hypocotyls. Evolutionary adaptations drive the 

seedlings to gain height until they break through the soil layer into the light 

where photosynthesis can proceed, rather than expending energy on developing 

laterally-oriented leaves in the dark. This exaggerated extension in only one 

direction provides a convenient method for measuring growth rate. 

Fifteen seeds each of wild type Col 0 and of the two knockout lines were sown 

on tripartite agar plates (section 2.3.2). Plates were wrapped in aluminium foil 

immediately after sowing seeds so that the plants were entirely dark-grown and 

placed in the growth room. After 3 days the plates were briefly unwrapped in 

low light so that the height of the hypocotyls could be marked on the walls of 

the plate, then were re-wrapped and exposed to a heat regime as follows: 22 °C 

(non-acclimated control); 22 °C  -> 44 or 46 ± 0.5 °C (non-acclimated heat-

stressed); 37 ± 0.5 °C (acclimation control); and 37 ± 0.5 °C -> 44 or 46 ± 0.5 °C 

(acclimated heat-stressed). Hypocotyls were measured before and 2 days after 

heat stress, and the difference represented post-stress growth. 

Figure 3.18 shows hypocotyl extension measurements expressed as a percentage 

of the appropriate control (either 22 °C for non-acclimated samples or 37 ± 0.5 

°C for acclimated samples). Lines hsp17.6 and hsp17.6a were significantly more   
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Figure 3.18	  Effect of Heat Stress on Hypocotyl Extension in Knockout Lines hsp17.6 
and hsp17.6a and in Wild Type  

Seeds of wild type (Col 0), hsp17.6 and hsp17.6a were sown on split tripartite agar plates, 
wrapped in tinfoil to maintain a dark environment and germinated vertically. Heat stress 
was applied 5 days later. Hypocotyl extension was measured a further 3 days later. Non-
acclimated samples are normalised against 22 °C; acclimated samples are normalised 
against 37 ± 0.5°C. Error bars represent means ±SE; n = 15. Means that do not share a 
letter are significantly different (see Appendix ii-b). 
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susceptible than wild type (p<0.05; see Appendix ii-b) to a non-acclimated stress 

at 42 ± 0.5 °C (they achieved hypocotyl extensions of 51 % and 56 % of those 

exhibited by non-stressed controls while wild type achieved 84 %), but all three 

lines were inhibited roughly equivalently when the non-acclimated stress 

temperature was 44 ± 0.5 °C (wild type: 64 %, hsp17.6: 66 %, hsp17.6a: 72 % of 

control extension). With an acclimation before stress, line hsp17.6a performed 

significantly better than without (p<0.05; see Appendix ii-b), and again the two 

knockout lines exhibited less hypocotyl extension than wild type when stressed 

at the lower temperature of 42 ± 0.5 °C though this was only significant for line 

hsp17.6 (p<0.01; see Appendix ii-b) (wild type: 97 %, hsp17.6: 87 %, hsp17.6a: 67 

%) but there was no significant difference between lines after stress at 44 ± 0.5 

°C (wild type: 91 %, hsp17.6: 80 %, hsp17.6a: 82 %). 

This suggests that there is a very mild thermosensitivity phenotype among these 

knockouts shortly after the germination stage if plants are exposed to a stress 

temperature slightly below that of the normal wild type killing temperature (in 

this case 42 °C rather than 44 °C). 

3.7  Halotolerance of smHSP Knockout Lines 

There are two reasons for investigating the halotolerance of knockout lines for 

these two genes. The first is that the genes were originally identified as being 

upregulated in an experiment assessing survival at a high concentration of salt. 

The second is based on an extrapolation of what was already known and 

hypothesised about their function. If they operate as molecular chaperones to 

prevent denaturation, then perhaps they have a role in other stress conditions 

that would also lead to a change in protein conformation. Increased salt 
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concentration causes a change in the ionic strength of a solution, thus altering 

the balance of the electrostatic forces between a folded polypeptide and its 

environment that contribute to determining which parts of the protein are 

folded internally and which are exposed on the surface. Perturbations in salt 

concentration therefore have the potential to denature proteins and it would be 

of evolutionary benefit to an organism to upregulate the expression of 

chaperones such as the smHSPs. Conversely, it is hypothesised that loss of these 

proteins might confer a halosensitive phenotype. 

Eight seeds of each knockout line were sown alongside wild type on bipartite 

agar plates, in triplicate, and supplemented with a final concentration of 0, 40, 

or 60 mM NaCl. Seedlings were grown vertically for 2 weeks. Root length was 

taken as the measure of growth since this was the most obvious difference 

between lines (Figure 3.19).  

A salt concentration of 40 mM was sufficient to cause a reduction to 36 % of 

control root length in wild type, while roots of hsp17.6 were only reduced to 82 

% and those of hsp17.6a to 53 %. Root extension of both these knockouts was 

significantly different from each other, and from that of wild type (for a full 

statistical analysis see Appendix ii-c). At 60 mM NaCl the wild type was reduced 

to 32 % of control and hsp17.6a was reduced to 38 % - these values were not 

significantly different from each other – while hsp17.6 was only reduced to 59 % 

of control. Therefore it was concluded that the two knockout lines are less 

sensitive to 40 mM salt than the wild type line, though only the hsp17.6 

knockout was more tolerant at 60 mM. 

  



Chapter 3: Function of Three smHSPs Regulated by MYB64 128 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Halotolerance of hsp17.6 and hsp17.6a Knockout Lines 

Col 0 and smHSP knockouts were germinated together on split plates containing basal 
medium supplemented with 0, 40, or 60 mM NaCl and grown vertically. Roots were 
measured 14 days later. Error bars represent averages ± SE; n = 3 replicates of 15 plants 
each. Means that share a letter are not significantly different (see Appendix ii-c). 
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3.8 Discussion 

The smHSPs discussed here have high similarity in their primary sequence and 

therefore in their hydrophobicity profile and predicted secondary structures, 

which strongly implies that they share a common function. If this is the case, it 

raises the question of why there are so many similar members in the Arabidopsis 

superfamily, and more generally in plants when compared with the other 

kingdoms. The simplest hypothesis would be that these chaperones are each 

responsible for the protection of a different subset of clients, whether those 

subsets be defined by groups of related proteins, proteins localised in different 

subcellular compartments, or simply different structural features or binding sites 

at different points on the surface of any given client. The initial plan was to 

attempt to answer this question regarding specificity by performing protein 

isolations on extracts sampled at appropriate points during heat stress. It is for 

this reason that the epitope-tagged smHSP constructs were created. In the 

intervening time, however, developments in the literature began to suggest that 

smHSP thermal activation and client-interaction relied more on quaternary 

protein dynamics (whereby smHSP multimers dissociate into dimers, revealing 

surfaces that are able to interact promiscuously with polypeptides at risk of 

aggregation) than on sequence specificity (Baldwin et al., 2011a, Benesch et al., 

2010, Stengel et al., 2010), so this line of investigation was not actively pursued. 

Recent publications have reiterated that the N-terminal region has proven 

difficult to resolve crystallographically (for more detail see Section 1.5.1 - 

smHSPs in Plants and Chapter 6 (“General Discussion”). The implication would 

be that these N-terminal arms are free to move in solution and this would 

provide a degree of flexibility in client-binding. When multimerised, some of 
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these arms appear to be located centrally to the oligomer and others externally, 

providing for a variety of three-dimensional orientations in which protein-protein 

interactions might take place. The hydrophobic tract in the N-terminal arms of 

HSP17.6 and HSP17.6a would add diversity to the arsenal of potential 

chaperone:client interactions possible in one of the activated heteromultimers. 

The attempts to identify promoter binding sequences in the regions upstream of 

the smHSPs described here did not lead to any novel discoveries. The failure to 

express from own-promoter constructs in N. benthamiana leaves could be either 

because the regulatory sequences are more distal than 1kb upstream, or because 

the N. benthamiana transcription machinery is sufficiently different that it does 

not bind to those sequences. 

The knockout lines produce some evidence of mild thermosensitivity by the 

measures employed here. At 2 weeks old, and at germination, the delivery of a 

heat stress did not hamper growth of the knockouts significantly more than wild 

type (Figure 3.15 and Figure 3.16). Root growth measurements include between-

plate discrepancies which are yet to be satisfactorily resolved but are probably 

due to localised heating differences: on some plates the wild type and the 

knockout were suppressed equally; on other plates the knockout performed 

significantly worse (Figure 3.17). Dark-grown hypocotyl extension measurements 

incorporating an acclimation demonstrated a reduction in knockout growth only 

in line hsp17.6 relative to wild type, and only when the stress temperature was 

42 ± 0.5 °C but not at the standard TK 44 ± 0.5 °C (Figure 3.18). Without an 

acclimation, however, hypocotyl extension of both knockouts at this lower stress 

temperature was significantly less than wild type.  
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Measurements of seedlings grown on high NaCl, however, revealed a striking 

difference in the response of hsp17.6 from that of wild type and the same is true 

of hsp17.6a, though to a lesser extent.  

The increase in halotolerance of the knockouts was unexpected and perhaps 

suggests that without so much of these proteins there is a lack of input into a 

negative feedback loop that acts to moderate the expression of the smHSP 

family, such as has been observed by Rhoads with HSP26 (2005) and by Montero-

Barrientos with HSP70 (2010). This would result in the overcompensation 

observed here (Figure 3.19) and warrants further investigation. 

These smHSPs, upregulated in line HT5 which overexpressed MYB64, represented 

an interesting line of research, and exhaustive investigations showed that they 

may act redundantly and so more work must be done to tease apart the 

contributions that each member of the large smHSP family provides. The weak 

phenotypes described by the smHSP knockout lines and the dimer-based 

polydispersity paradigm developing in the literature were all motivating factors 

to shift focus back to MYB64 and the genes it might be responsible for activating 

under stress. 

3.8.1 Technical Considerations 

3.8.1.1 Historical Microarray Identification of smHSPs in Line HT5 

The HT5 transcriptome profile was revealed using microarray technology 

(specifically, the GeneChip® Arabidopsis ATH1 Genome Array from Affymetrix 

(High Wycombe, UK)) and this raises a concern. These smHSPs are highly 

conserved. HSP17.6 and HSP17.6a are 86% identical at a nucleotide level and the 
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other members of the smHSP family all share the conserved α-crystallin domain, 

so it is possible that there was cross-hybridisation of the cDNA to the probes. 

This would have implications for the expression levels reported in Table 1.1.  If 

further work were to be carried out on these smHSPs, it would be desirable to 

confirm by qPCR that they are indeed upregulated under salt stress conditions in 

line HT5 and perhaps investigate the levels of the other cytosolic members of 

the family. Unfortunately this was not possible as the phenotype of the HT5 line 

had been lost by the start of the investigations documented in this thesis. 

3.8.1.2 Use of Segregated Wild Type Lines 

Several early experiments were carried out using Col 0, the wild type supplied 

by the Nottingham Arabidopsis Stock Centre (NASC), as a control. This was done 

for historical reasons and because Col 0 was the background in which the 

mutants had been made. It became apparent, however, that Col 0 from 

different stocks did not all behave as one. Pools of seed which could be traced 

back to the same original stock were no more reliable than pools obtained from 

other researchers who received their Col 0 stock at different times. This could 

have been due to a number of reasons (epigenetic effects, novel mutations, 

cross-pollination, historical mislabelling of stocks) so it was reasoned that the 

most appropriate wild type control to use for any experiment on a mutant or 

transgenic line was one which had segregated from the original mutagenesis 

event. These lines were confirmed as such first by screening on the appropriate 

selective agent to confirm sensitivity, then by PCR to confirm the absence of the 

relevant insertion (data not shown).  

These early findings strongly support the recommendation that the wild type 

used in any experiment should be as closely related as possible, by segregation 
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and in terms of the number of intervening generations, to the experimental 

line(s) in question. 
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4 35Spro:MYB64 Transcript Profiling 

4.1 Introduction 

As explained in detail in section 1.4, the microarray results from previous 

research by Price (2005) were obtained from an activation-tagged line carrying 

an enhancer element inserted 1370 bp upstream of the transcription start site of 

MYB64. A moderate, long-term (3-4 week) salt stress was used in this screen to 

drive expression of salt-responsive genes, so that the inserted tag simply 

enhanced endogenous salt-responsive MYB64 transcription levels. After a 

35Spro:MYB64 construct was made and stably transformed Arabidopsis lines were 

generated, it was of interest to find out whether the transcript profile of this 

new, constitutively overexpressing line was comparable with that of the 

activation-tagged one, particularly in the absence of the moderate long-term 

salt stress. By this time new techniques were available which provided more 

sensitivity and a higher resolution of expression differences than microarrays. 

Next generation sequencing (NGS), for example, involves the parallel sequencing 

of thousands of template DNA molecules from a biological sample and the real-

time integration of that data into a list of sequenced reads. This method was 

chosen for analysis of the 35S:MYB64 transcriptome and the results gave fresh 

insights that led to investigation of other potential downstream effectors of 

MYB64. 

4.2 Next-Generation Sequencing (NGS) 

Modern nucleic acid sequencing has developed from the original process of DNA 

replication with chain termination, known as ‘Sanger sequencing’ (Sanger et al., 
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1977). It is helpful to first understand the basis of this technique. Briefly, a 

template DNA molecule is replicated many times using a pool of free nucleotides 

spiked with one of four analogs carrying a hydrogen at the 3’ position instead of 

an OH group, leading to a loss of the ability to further extend the chain. This 

chain-terminating analog is radiolabelled to facilitate detection of DNA strands 

into which they are incorporated. By saturating the reaction so that the chain is 

replicated enough times that it will be terminated at each possible position, and 

by comparing the lengths of each molecule from all four reactions at single-base 

resolution in tandem, it is possible to establish the sequence of a complete 

stretch of DNA. This technique was superseded by the use of fluorescently-

labelled terminators such that all four analogs could be incorporated in one 

single reaction, and the identity of the base at each position could be simply 

determined by the colour at each position in the sequence (Smith et al., 1986).  

Illumina sequencing technology (Illumina United Kingdom, Essex, UK) uses a 

variation on this process known as ‘sequencing by synthesis’. Briefly, the chain-

terminating analogs are labelled with a fluorescent moiety which is removable, 

and sequencing is performed on each template molecule progressively from one 

end to the other. 

This technique was chosen to compare the transcript profiles of 35Spro:MYB64 

line 141 and the segregated wild type, Col 0. Sixty-four siblings of each line 

were grown to maturity on soil in the greenhouse for approximately four weeks. 

Trays were randomly relocated in the greenhouse every few days to minimise 

the impact of environmental fluctuations on plant development. Leaves were 

harvested from each of the 64 individuals and grouped into pools of 8, then total 

RNA was extracted, yielding a total of 8 pools of RNA per line. These samples 
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were then pooled again, yielding one sample per line containing RNA 

representing all 64 siblings. This reduced any potential noise in the data that 

would have arisen from variation in growth or RNA extraction, and meant that a 

reasonably sized population could be sequenced economically. RNA was then 

passed to the technical staff at the Sir Henry Wellcome Functional Genomics 

Facility (College of Medical, Veterinary & Life Sciences, University of Glasgow) 

for preparation for sequencing on the Illumina platform. 

Illumina sequencing takes place inside a flow cell to which the DNA (in this case 

cDNA) molecules are physically attached (Illumina, 2010).  In the preparation 

stage of the process, total RNA was extracted from a tissue sample and 

messenger RNA (mRNA) was isolated by hybridisation to oligodT magnetic beads. 

This mRNA was washed, eluted and randomly fragmented into short sequences 

by incubation with divalent cations at high temperature, and then reverse 

transcription was carried out to create cDNA. Molecules were size-selected (in 

this case to ~35 bp) and short adapters ligated to each end (Figure 4.1, panel 

A). The products were then denatured into single strands and attached to the 

surface of a flow cell channel pre-coated with a dense lawn of primers 

complementary to the adapter sequences (panel B). Free ends of the cDNAs 

were allowed to anneal to unbound primers and bridge-amplification followed 

(panel C), creating double-stranded copies of the original sequences (panel D) 

which were once again denatured into surface-bound single strands (panel E). 

This process was repeated multiple times to exponentially increase the number 

of copies into a ‘spot’ at the location of each template molecule’s original 

position (panel F). The samples were then ready for sequencing by synthesis.  
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Figure 4.1 Schematic Diagram of the Illumina Preparation Process  

A DNA is fragmented and adapters are ligated to each end B These modified 
sequences are denatured into single strands and bound to the surface of a flow cell, 
pre-coated with primers complementary to the adapters C Free adapter ends anneal 
to surface-bound primers and bridge amplification begins D A new surface-bound 
copy of the original molecule is produced E Products are denatured to single strands 
F The process is repeated until dense clusters, representing the original sequences, 
are created across the surface of the flow cell. This preparation increases the copy 
number of template molecules, and sequencing-by-synthesis using a reversible dye-
labelled chain-termination technique follows. 

 (Figure adapted from Illumina, 2010) 
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The first base in each ~35 bp sequence was identified by adding a primer 

complementary to the adapter and each of the four fluorescently labelled 

deoxyribonucleotide triphosphates (dNTPs) along with the appropriate enzymes 

and buffers, and then scanning the flow cell with a laser to build a record of the 

colour at each spot. The process is known as reversible chain termination as the 

fluorescent labels were then cleaved from the nascent DNA strands, allowing 

another labelled dNTP to bind at the next position during the next round of 

synthesis. This process of single-base extension, laser scanning, and label 

cleavage was repeated to the end of the template and the order of the colours 

at each spot was used to reconstruct the order of the bases at each position. 

The output is a data file containing a list of the sequences (‘reads’) of each 

original cDNA fragment. Typically up to 5 million reads per channel and with an 

8-channel flow cell up to 40 million molecules can be sequenced (> 1 gigabase). 

The output file of sequenced reads was obtained from the Functional Genomics 

Facility and analysed using the RNA-Seq Analysis tool within CLC Genomics 

Workbench v3 using default parameters. This tool aligned each read to the 

annotated Arabidopsis reference genome (downloadable from The Arabdiopsis 

Information Resource (TAIR); available at www.arabidopsis.org (Swarbreck et 

al., 2008)) and the number of reads that aligned with each individual gene 

model was counted to build a global expression profile. The alignment output 

included a visual representation of each gene model together with each short 

cDNA read aligned to it (Figure 4.2). This method of expression analysis had an 

advantage over microarray data in that it allowed inferences to be made about 

splice variants. Where individual exons were matched with fewer reads it is 

likely that an exon had been spliced out in a proportional fraction of transcripts, 

and conversely where reads were matched to introns it is possible that in some   
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Figure 4.2 Example of Next-Generation 
Sequencing Output  

Alignments were made between the mRNA sequence 
data from each of the experimental samples and the 
Arabidopsis reference genome (available online at 
www.arabidopsis.org) using CLC Genomics Workbench 
v3 using default parameters. In this example of an 
alignment output, the genomic DNA is represented by a 
narrow, solid, black, horizontal line near the top with 
block arrows above representing known gene features. 
Aligned sequencing reads (~35bp each) are represented 
as green, red, and yellow bars at the bottom. Green bars 
indicate fragments sequenced in the forward orientation, 
red bars in the reverse orientation. Yellow bars represent 
ambiguous reads (i.e. those that match >1 locus in the 
genome) which had been assigned proportionally to one 
of the matching loci. Sequencing coverage of the 
genomic region is indicated by the pink graph across the 
middle. Levels of coverage can be used to make 
inference about splicing; exons with only 50% of the 
coverage of the rest of the transcript are likely to be 
spliced out in 50% of mRNA molecules; sequencing 
coverage across introns may indicate retention in 
alternative splice variants, or alternatively that some pre-
mRNA was captured in the extraction process before 
mRNA processing was completed. 

Gene shown: At3g23300 (a methyltransferase of 
unknown function; for illustrative purposes only). 
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cases that intron had been retained. The technique did not rely on hybridisation, 

so false positives that can arise in microarrays from the annealing of cDNAs to 

close (but not perfect) matches were eliminated.  

Since the exact sequence of each read was known, it also had the advantage of 

being completely unambiguous. Some reads matched more than one genomic 

locus, however. The software could be configured to handle these in one of two 

ways; either to take the ambiguous reads and assign them to one of the possible 

matching genes in a manner proportional to the number of flanking unambiguous 

reads at each of those genes, or to disregard them. In this instance the former 

setup was used. 

The total number of reads aligned with each gene needed to be corrected for 

two factors before a between-samples comparison could be made: the length of 

each gene (since longer genes would of course be expected to be matched with 

a greater number of reads) and the total number of reads per sample (since 

variation in input concentration would lead to an artificially high level of 

expression reported for every gene in that sample). Thus, transcript abundance 

for each gene was adjusted and expressed as the number of Reads Per Kilobase, 

per Million mapped reads (RPKM). The RPKM values of each gene in each sample 

were then used to calculate a ratio of expression in the 35Spro:MYB64 line vs. 

Col 0. This ratio was used as the final measure of increased or decreased 

abundance of each transcript. 

4.3 Transcript Profiling of 35Spro:MYB64 Line 141 

The aim of this profiling experiment was to identify those transcripts that were 

most differentially abundant in the non-stressed line overexpressing MYB64. This 



Chapter 4: Transcript Profiling of 35Spro:MYB64 Plants 141 

includes sequences that were more, as well as those that were less, abundant 

than in the wild type. For the sake of brevity, and since the changes ultimately 

stem from altered levels of a transcription factor, these sets of genes will herein 

be referred to as ‘upregulated’ or ‘downregulated’ (though it is not to be 

assumed that MYB64 is modulating the transcription of all of these genes 

directly, nor that changes in abundance can be purely assigned to changes in 

transcriptional activity). For a list of the top 50 most highly ‘upregulated’ 

transcripts (plus one particularly interesting gene from the top 100) see Table 

4.1 and a complete list, with a lower cutoff of 8-fold ‘upregulation’, is 

presented in Table A1.1 (in Appendix i). No attempt was made to filter the lists 

on the basis of low detection in the wild type sample. While this would remove 

those genes detected in wild type by only one or two reads and thus improve the 

validity of the ratio calculations, this would artificially exclude those genes 

which were nevertheless hugely  ‘upregulated’ in the transgenic line. It was 

more important at this stage to determine which functional groupings were 

enriched than to precisely measure the extent of that enrichment. Another set 

of ‘upregulated’ transcripts were completely undetectable in the wild type 

sample at the depth of sequencing used (5 million reads) making it impossible to 

calculate a ratio at all. These were classified by the analysis software as 

‘infinitely upregulated’ and include MYB64. A list of these can be found in 

Supplementary File 1a (see List of Accompanying Material, page xiii). 

The list of the top 50 ‘upregulated’ transcripts in Table 4.1 represents a 

multitude of abiotic stress responses, particularly those that one might expect 

to function relatively high up in a stress-response signalling cascade (e.g. MAP 

kinases and transcription factors). The 100 most highly ‘upregulated’ genes were 

grouped by common function, which is traditionally done with analogous   
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Table 4.1 Names and Functions of the Top 50 ‘Upregulated’ Transcripts 
in 35Spro:MYB64 Transgenic Line (Plus One Extra Gene of Interest)  

Transcript levels (as measured by Illumina Sequencing) were expressed as 
reads per kilobase per million mapped reads (RPKM) for each gene, then an 
RPKM ratio of transgenic : WT was calculated in order to show the most 
highly ‘upregulated’ transcripts. From left, this table shows: gene numbers, 
symbols, and functions as annotated in the database at TAIR; absolute 
expression differences (expressed in RPKM) and ratios between 
transgenic:wild type lines; and RPKM values along with the raw data used in 
their calculation. The top 50 genes in the list are presented here, plus one 
extra gene from within the top 100 (DREB2A) notable for its prevalence in the 
literature regarding abiotic stress responses including water balance and heat. 
Entries are colour coded based on functional annotations at TAIR. A subset of 
genes (gold) were selected for further study (see section 4.4 “Identification of 
Genes of Interest”). 
1 RPKM is calculated using the number of unique exon reads. The number of 
unique gene reads is presented for information only. 
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microarray data, using the Gene Ontology tool available online at the DAVID 

Bioinformatics Resources (Huang et al., 2008). This tool has a database with 

entries for all of the genes in the Arabidopsis genome and a list of functional 

description terms associated with those genes and their gene products (e.g. 

‘transcriptional activator’ or ‘calcium-binding EF hand’). The tool takes a user-

defined input list of genes, fetches the functional terms from the database 

associated with each of them, and clusters the genes based on common 

functions. Terms that relate to similar functions are grouped into clusters, the 

clusters are given an ‘enrichment score’, and it is those clusters of functional 

terms that form the basis of a gene ontology readout. 

The results for the most highly enriched clusters of annotations are presented in 

Table 4.2 (a full list of GO clusters can be found in Supplementary File 2 - see 

List of Accompanying Material, page xiii). The cluster with the highest 

enrichment score (‘Annotation Cluster 1’) contains annotations related to 

transcriptional modulation and responses to hormone signalling. The next three 

clusters are associated with abiotic stress responses (particularly those related 

to water balance and temperature regulation). Annotations are ranked within 

each cluster in descending order of fold-enrichment. One drawback of such gene 

ontology analysis is that the same transcript can be associated with more than 

one functional annotation within a cluster as well as across clusters, so the 

number of terms listed in a cluster does not directly correspond to number of 

unique genes, however, the large fraction associated with gene expression in 

cluster 1 shows qualitatively that altering MYB64 levels causes many other 

downstream transcriptional pathways to be differentially regulated. Also of note 

is the fact that the most highly enriched annotations relate to ethylene stimulus 

(approx. 12-fold), cold stimulus (approx. 8-fold), abscissic acid stimulus (approx.   
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Table 4.2 Gene Ontology Term Enrichment Among Genes Measurably ‘Upregulated’ in 
the 35Spro:MYB64 Line  

The 100 most highly ‘upregulated’ transcripts in the MYB64 overexpressing line are significantly 
enriched for functions associated with gene expression and DNA binding, hormone response 
(especially ethylene and ABA), and abiotic stimulus response (especially related to water and 
temperature stress). For a full list see Supplementary File 2. 
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8-fold), water stimulus (approx. 7-fold), Ca2+ signalling (approx. 4 to 7-fold), and 

temperature stimulus (approx. 6-fold). This represents a greater diversity of 

functional relationships than had been expected for a single transcription factor 

originally identified from a salt tolerance screen . 

4.4 Identification of Genes of Interest 

This gene ontology analysis revealed that MYB64 upregulation leads to changes 

in a variety of distinct stress response pathways. If we were to investigate 

exactly how MYB64 is involved, arguably the simplest and most logical way to 

begin would be to look for connections to the ‘master regulators’ of such 

networks. The list of the 50 + 1 most highly ‘upregulated’ transcripts in 

35Spro:MYB64 line 141 (Table 4.1) was used as a shortlist, then the Arabidopsis 

gene annotation database (TAIR) was interrogated manually one at a time to find 

those with specific functional annotations that suggested they might be such 

master regulators, and finally the literature was consulted in more detail in 

order to finalise shortlist of those genes that warranted further study based on 

their importance in stress responses. Below are the results of this investigation 

with a brief summary of the reasons each gene was selected (also marked in 

yellow in Table 4.1). 

CBF1 (C-repeat Binding Factor 1; At4g25490) encodes a classic and well-

characterised cold-responsive transcription factor (Seki et al., 2001, Fowler and 

Thomashow, 2002, Maruyama et al., 2004, Canella et al., 2010). Transcription 

factors in this family  bind the C-repeat (CRT) / Drought Responsive Element 

(DRE) in promoters of genes that typically enable plants to tolerate chilling, 

freezing, and other abiotic stresses. 
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CZF2 (Cold-induced Zinc Finger 2; At5g04340), also known as ZAT6 (Zinc finger 

of Arabidopsis Thaliana 6), is a member of a family known to respond to drought, 

low temperature, and salinity (Sakamoto et al., 2004, Mittler et al., 2006). It is 

not inconceivable that some of the stress responses exhibited by plants to 

seemingly quite different stresses may, in fact, be designed to implement 

similar changes to cellular architecture. It has been shown to affect root 

development (Devaiah et al., 2007). Members of the CZF/ZAT family have 

recently been shown to inhibit expression of sequences associated with auxin-

mediated growth and also to inhibit negative regulators of ABA-directed growth 

suppression (Kodaira et al., 2011), and also to positively regulate the 

germination of seeds at high salinity as a result of MAP Kinase phosphorylation 

(Liu et al., 2013). It was decided that CZF2, therefore, represented a further 

interesting extension to the salt / heat interaction first uncovered by the HT5 / 

MYB64 experiment. 

PP2C (Protein Phosphatase 2C; At5g59220) belongs to a large family of protein 

phosphatases, of which there are at least 76 of subtype 2C in Arabidopsis, and 

this one clusters on the same phylogenetic branch as ABI1 and ABI2 

(Schweighofer et al., 2004, Zhang et al., 2013). ABA is one of the best-known 

stress response phytohormones, so it is perhaps not surprising that a 

transcription factor identified from a stress tolerance screen has here been 

shown to go on to activate a component of this pathway. If this interaction is 

proven to be genuine – that is, that MYB64 activates PP2C transcription when not 

artificially overexpressed – it would imply that MYB64 is under the control of 

ABA. These three phosphatases comprise a branch of the phylogenetic tree that 

is distinct from the rest of the PP2Cs, so although there is no direct evidence 
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that this PP2C is responsible for the transduction of ABA signals it is possible that 

it acts redundantly with one of the other two ABI proteins in sensing ABA levels. 

ERF11 (Ethylene Response Factor 11; At1g28370) encodes a transcriptional 

repressor from a family involved in the transduction of stress signals in 

Arabidopsis. Ethylene is another phytohormone produced when plants become 

stressed (Kendrick and Chang, 2008), and it has a well-established link to biotic 

stresses (Adie et al., 2007, Zhao and Qi, 2008). This raises the suggestion that 

MYB64 might act as a node between abiotic and biotic stress responses. This 

hypothesis has been supported recently by the discovery that ERF11 has been 

shown to play a key role in the suppression of ethylene signalling by binding to 

the promoter regions of two genes in the ethylene biosynthesis pathway (ACS2 

and ACS5) (Li et al., 2011) 

MPK11 (MAP Kinase 11) encodes an uncharacterised kinase related to the better-

studied MPK4 which has been shown to play a role in various abiotic stress 

responses, including the ABA-induced closure of stomata (Hettenhausen et al., 

2012) as well as biotic stresses such as challenge with elicitor peptides (Bethke 

et al., 2012). In its capacity as a kinase, MPK11 may be responsible for activating 

a suite of proteins that go on to prime the plant to become stress tolerant. As 

another potential ‘high-level’ component in the signalling pathway, MPK11 was 

chosen for further study for its likelihood of representing a more appealing 

biotechnology target than effectors such as heat shock proteins. 
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4.5 qPCR Validation of NGS Transcript Profiles of Wild 

Type vs. 35Spro:MYB64 

While the next-generation sequencing experiment was designed to be robust in 

that it was performed on a large pool of 64 individual plants to reduce noise, 

and that it also provided large amounts of high-resolution quantitative data, it 

was important to confirm the most significant findings by quantitative RT-PCR 

(qPCR). Primers were designed to the set of transcripts discussed in section 4.4, 

which encode well-characterised stress response genes (for primer sequences, 

see Table 2.13). Before carrying out any measurements it was important to 

consider which reference gene(s) to use to normalise between samples. 

4.5.1 Reference Gene Selection 

Actin 2 (At3g18780) was initially selected as an internal reference gene 

candidate because of its widely assumed stable expression pattern which has led 

to its use as a suitable reference in the field of plant molecular biology, but this 

was proven not to be the case when MYB64 was constitutively overexpressed 

(NGS results revealed that levels of Actin 2 transcript in transgenic 

35Spro:MYB64 line 141 were 8 % lower than in wild type, after normalisation for 

RPKM, and the work of Nurcahyanti (2009) proved that its expression was 

affected by heat stress. An effort was made, therefore, to identify a gene (or 

genes) that would vary less in expression between lines or with application of 

abiotic stresses. 

The Biomarker Selection tool available online at Genevestigator (available at 

www.genevestigator.net, Hruz et al., 2008) provided a list of transcripts with 
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low variability based on 4728 individual microarray experiments (performed on 

the ATH1 22k Affymetrix Genome Array chip using seedlings subjected to a 

variety of abiotic stresses). Selection criteria were that a) absolute expression 

levels should be similar to that of transcripts being measured, and b) the 

coefficient of variation (i.e. standard deviation / mean expression level) should 

be as low as possible. The list of suggested genes were ranked from lowest to 

highest coefficient of variation, and then those at the low end of the list were 

cross-checked for minimal fold changes in the 35Spro:MYB64 NGS data. The top 8 

candidate genes were found to differ from wild type by up to a third (from 0.68x 

to 1.43x, Table 4.3, panel A), i.e. more than Actin 2.  

A literature search was also undertaken to find out whether theoretical results 

like these had already been validated experimentally. Czechowski et al. (2005) 

provide a set of reference gene candidates whose expression was found by 

microarray to be stable across the full range of developmental stages and, to 

some extent, abiotic stresses (Table 4.3, panel B). Cross-referencing these data 

with the somewhat larger abiotic stress microarray dataset generated by the 

community and available at Genevestigator, as well as with our NGS data, 

allowed some of those candidates to be discounted and the list was narrowed to 

two on the basis of being more stably expressed than others: a protein 

phosphatase subunit (PP2A-A3; At1g13320) involved in hypocotyl and root 

development (Blakeslee et al., 2008), and polyubiquitin 10 (UBQ10; At4g05320), 

one of five genes in the Arabidopsis genome encoding ubiquitin, a protein which 

is added to substrates targeted for degradation (Bachmair et al., 2001) (Table 

4.3, panel B, cells highlighted in orange). As primers had already been designed, 

tested and published (Czechowski et al., 2005), it was concluded that these two  
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Table 4.3 Selection of Candidate Reference 
Genes for qPCR 

Actin 2 had historically been used as a reference 
gene for semi-quantitative RT-PCR earlier in this 
body of work, but it was decided that for highly-
sensitive quantitative RT-PCR experiments a 
reference gene should be empirically chosen for 
its stability of expression levels throughout the 
course of a heat treatment. A shortlist of 
candidate reference genes was compiled based 
on the suggestions of the Biomarker Selection 
Tool at Genevestigator (Hruz et al., 2008) (panel 
A, yellow) and also based on the experimental 
observations of Czechowski et al. (2005) (panel 
B, blue). Median signal intensity, standard 
deviation, and coefficient of variation values 
presented in these tables were gathered from 
publically-available expression datasets 
deposited at Genevestigator. The final in silico 
selection step was to compare the data from our 
Next-Generation Sequencing data on the 
35Spro:MYB64 transgenic and wild-type lines; 
the final row in each panel shows which of the 
candidate genes varied least.  

Genes PP2A-A3 (protein phosphatase 2A, 
subunit A3) and UBQ10 (ubiquitin 10) were 
chosen for experimental validation as reference 
genes by qPCR (see Figure 4.3) and primers 
were designed and ordered (for sequences, see 
Table 2.13). 
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might be the best candidate reference genes against which to normalise during 

further qPCR investigations.  

Stability of their expression levels following thermal acclimation was tested 

experimentally. Segregated wild type seeds were sown on agar plates (section 

2.3.2) and grown under Normal Conditions for 2 weeks. Plates were then 

incubated at the acclimation temperature of 37 ± 0.5 °C for 3 hours. Seedlings 

were harvested before, immediately after, 25 hours after, and 48 hours after 

this acclimation step. RNA was extracted and cDNA prepared (sections 2.6.1 and 

2.6.3) and qPCR was carried out using primers to Actin 2, UBQ10, and PP2A-A3 

(Figure 4.3). UBQ10 level varied most: immediately after acclimation the 

transcript abundance had almost tripled (2.77-fold) then, following a dip to 

1.97-fold at 25 hours, the level once again increased to 10.1-fold higher than it 

had been initially. Actin 2 levels were the next most variable: a small elevation 

of 1.57-fold directly followed the acclimation period, rising to 4.70-fold at 25 

hours and 4.51-fold at 48 hours. PP2A-A3 varied least, exhibiting 0.87-fold, 1.90-

fold and 3.05-fold changes at each of the three timepoints. Based on these data, 

PP2A-A3 was chosen as the reference gene for further qPCR studies. 

4.5.2 qPCR Comparison of Non-Stressed Lines 

In order to validate the NGS results regarding the genes downstream of MYB64, 

qPCR was performed on mature, non-stressed, wild type and 35Spro:MYB64 

plants. Two independent transformant lines were sampled to find out whether 

the use of different vectors led to any difference in molecular phenotype. Seeds 

were sown on soil (section 2.3.1) and grown under Normal Conditions until 4 

weeks old. Rosette leaves were harvested (~15 plants per sample) and RNA   
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Figure 4.3 qPCR Validation of Reference Gene Candidates  

The two candidate reference genes identified in silico, PP2A-A3 and UBQ10 (section 4.5.1, 
“Reference Gene Selection”), were experimentally compared with Actin 2, the control used 
previously in semi-quantitative RT-PCR experiments, to validate their use as reference genes in 
subsequent qPCR experiments involving heat treatments. Expression levels of the 3 transcripts 
in segregated wild type were followed for 48 hours after a heat acclimation at 37 °C (± 0.5 °C) 
for 3 hours. Error bars represent means ± SE; n=3 

 

  



Chapter 4: Transcript Profiling of 35Spro:MYB64 Plants 154 

extracted to prepare cDNA (sections 2.6.1 and 2.6.3). The results of this no-

stress qPCR experiment are presented in Figure 4.4. In line 35Spro:MYB64-141, 

the two MPK11 splice variants – MPK11.1 and MPK11.2 – were upregulated 12 and 

23-fold, CZF2 45-fold, ERF11 145-fold, and MYB64 198-fold. This is in strong 

agreement, at least qualitatively, with the NGS transcript profiling results (Table 

4.1). The expression levels from line 35Spro:MYB64-127 are somewhat different 

from these data; the downstream transcripts are still more abundant than in the 

segregated wild type but to a lesser extent. This does not directly contradict the 

NGS results as the data came from two different lines. The variation in MYB64 

upregulation between the two lines (252-fold in line 127 vs. 198-fold in line 141) 

suggests the possibility of a dose-dependent interaction of MYB64 on 

downstream genes, or a more complex mode of action for MYB64 than simply 

activating transcription; perhaps post-transcriptional or post-translational 

modification, which is carried out differently in each of the two lines. 

4.5.3 qPCR Comparison of Heat-Acclimated Wild Type vs. 

35Spro:MYB64 Line 127 

If MYB64 was not consistently driving the activation transcription of these 

‘downstream’ genes, it might be that its role is instead in the potentiation of 

stress-related gene expression. If this were the case, the hypothesis follows that 

expression levels detected in the 35Spro:MYB64 lines should be further 

enhanced upon delivery of an appropriate abiotic stress. Since parallel 

experiments were under way to characterise the heat stress response of these 

plants (see Chapter 4) and to establish whether there was a connection between 

MYB64 and the small heat shock proteins (see Chapter 3), high temperature was 

chosen as the abiotic stress to use here also.  
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Figure 4.4 qPCR Analysis of Selected Over-abundant Transcripts Relative to Segregated 
Wild Type  

Several genes of interest identified from the NGS results (see Table 4.1) were examined 
(MPK11 has two splice variants) to confirm the degree of ‘upregulation’ in two independent 
35Spro:MYB64 transformants generated with different vectors. Biological replicates: n = 15. 
Technical replicates: n = 1. 
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Seeds of 35Spro:MYB64 line 127 and segregated wild type were sown on agar 

plates (section 2.3.2) and grown under Normal Conditions for 10 days. Plates 

were acclimated at 37 ± 0.5 °C for 3 hours and samples were harvested for RNA 

extraction and cDNA preparation (sections 2.6.1 and 2.6.3) either before or 24 

hours after this treatment. qPCR was performed using primers to HSP17.6, 

HSP17.6a, ERF11, CZF2, and both MPK11 splice variants. The expression level of 

each transcript in the 35Spro:MYB64 line was normalised to its expression in the 

segregated wild type given the same treatment and sampled at the same time, 

and values were plotted on a log2 scale (Figure 4.5).  

Before acclimation, each transcript (with the obvious exception of MYB64) was 

expressed at roughly equivalent levels in each of the two lines (panel A). This 

was roughly in agreement with the qPCR results for this line (127) presented in 

Figure 4.4. Twenty-four hours after acclimation, however, there were 

substantial differences (panel B). Expression of the two smHSPs was lower in the 

transgenic line than in the segregated wild type, in contrast to the findings of 

the HT5 microarray (though that microarray represented a response to salt 

stress). The ERF11 level in the transgenic line was higher by just over two logs. 

CZF2 expression in the transgenic line was just slightly more than one log higher 

than that measured in the wild type. Both splice variants of MPK11 were more 

highly increased: approx. 3.5 and 4 logs for MPK11.1 and MPK11.2, respectively. 

These findings are consistent with the qPCR results presented in Figure 4.4 in 

that line 127 overexpresses MYB64 transcript several hundred-fold under Normal 

Conditions. The expression of the downstream genes is not significantly altered 

until an external stimulus is applied – in this case, heat acclimation. 
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Figure 4.5 Effects of Heat Acclimation on Transcript Levels of Genes of Interest in 
35Spro:MYB64 Line 127 Relative to Segregated Wild Type 

A selection of upregulated genes of interest were investigated to determine whether their 
expression would increase even further upon heat acclimation. Seedlings of 35Spro:MYB64 line 
127 and segregated wild type were grown on plates for 10 days. A Plates designated as controls 
were sacrificed before acclimation and the seedlings harvested for RNA extraction. B Seedlings 
were acclimated at 37 ± 0.5 °C for 3 hours then returned to the growth room. RNA samples were 
harvested 24 hours later for qPCR. Values represent expression in the transgenic line normalised 
against expression in segregated wild type. Error bars represent the mean ± SE of n = 2 plates, 
each with 15 seedlings. 
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4.6 qPCR Timecourse of Heat-Acclimated Transcript 

Profile of Segregated Wild Type  

There was clearly a connection between these ‘downstream’ effectors and 

MYB64 overexpression, but it was not clear whether MYB64 directly initiated 

their expression in wild type plants or whether it acted as a potentiator, 

maintaining a high level of expression after transcription of those genes had 

already begun in response to some uncharacterised cue. It was important to 

determine whether levels of MYB64 began to rise sufficiently far enough in 

advance of levels of the ‘downstream’ genes in order to be able to place them in 

sequence with each other.  

Seeds of segregated wild type were sown on basal agar plates and grown under 

normal conditions for 10 days, then acclimated for 90 minutes. Samples were 

taken for qPCR throughout, and up to 15 hours following, acclimation (Figure 

4.6). 

MYB64 levels increased to approximately 17-fold higher than initial levels during 

the acclimation period, then returned to baseline levels after 1 hour at 22 °C. 

They gradually rose to approximately 3-fold higher again 15 hours later. CZF2 

and PP2C (panel B) both underwent a relatively large increase in expression 

level before that of MYB64. ERF11, MPK11.1 and MPK11.2 (panel C) all 

underwent minor changes in expression, both positive and negative, during the 

acclimation period, and gradually rose to between 4 and 6-fold higher 15 hours 

after the return to 22 °C. These data suggest that MYB64 is probably not directly 

activating the expression of CZF2 or PP2C in segregated wild type, but may play 

a role in activation of ERF11 and MPK11.  
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Figure 4.6 qPCR Timecourse of Segregated Wild Type MYB64 and ‘Downstream’ Gene 
Expression Upon Thermal Acclimation  

To investigate whether MYB64 expression preceded that of the suspected downstream targets, 
segregated wild type seedlings were given an acclimation at 37 ± 0.5 °C for 90 mins (A) and 
expression was measured by qPCR throughout, and for the following 15 hours. B MYB64, CZF1 
and PP2C levels plotted on a 0 – 140 fold scale. C MYB64, ERF11, MPK11.1 and MPK11.2 
plotted on a 0 – 20 fold scale.   
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4.7 MYB64 Transcription Response to ABA 

Since overexpression of MYB64 led to the ‘upregulation’ of transcripts associated 

with an ABA response (Table 4.1), and since 35Spro:MYB64 seedlings had an ABA-

tolerant phenotype (see Chapter 4), it was hypothesised that MYB64 might act as 

one of the transducers of this hormone signal. The transcript levels of MYB64 in 

the wild type line were measured before and after a treatment with exogenous 

ABA. 

Segregated wild type plants were grown on soil until four weeks old then 

sprayed either with 0 or 25 µM ABA dissolved in methanol. RNA samples were 

harvested before and 3 hours after treatment. cDNA was prepared and qPCR 

carried out using primers to MYB64 (Table 2.13). Figure 4.7 shows a significant 

upregulation of MYB64 in response to exogenous ABA at a concentration of 25 

µM, supporting the hypothesis that it lies upstream of the genes of interest in 

the Arabidopsis response to ABA. 
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Figure 4.7 ABA Responsiveness of MYB64 Levels in Segregated Wild Type  

Segregated wild type seeds were sown on soil and allowed to grow under normal 
conditions for 4 weeks. Initial RNA samples were harvested from rosette leaves, then 
plants were either sprayed with 25 µM ABA (orange bars) or mock treated with a spray of 
the ABA solvent (methanol; blue bars) and a second RNA sample was harvested 3 hours 
later. cDNA was prepared and qPCR performed using primers to Actin or to MYB64. Fold 
changes were calculated relative to the initial sample. Error bars represent means ± SE; 
n = 2 
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4.9 Similar Transcript Profiles Identified in Independent 

Activation-Tagged Thermotolerant Lines 

Following the reverse-genetics approach of the research that led to the 

identification of the halotolerant line HT5 (Price, 2005), a screen was devised to 

identify novel mutants with increased thermotolerance. The same pool of 

approximately 22,000 activation-tagged seed was once again acquired from the 

Nottingham Arabidopsis Stock Centre (NASC, available at www.arabidopsis.info, 

Scholl et al., 2000). These seeds (T1) were sown on agar plates supplemented 

with BASTA, the selective agent for the insertion, grown under normal conditions 

until 7 days old, then incubated at the TK for wild type Arabidopsis (44 ± 0.5 °C) 

for 3 hours. Plates were observed for the following 5 days and seedlings that 

survived were rescued and placed in soil and allowed to set seed. This T2 

generation was given a secondary screen to confirm the phenotype, identical to 

the primary screen except that there was no BASTA in the medium. Wild type 

(Col 0) seeds were included as an internal control. Plants that survived 5 days 

later were deemed to be authentic positives and named ‘Ac-Tag A’, ‘Ac-Tag B’ 

etc. To date, five such lines have been identified. For an example of the primary 

screen phenotypes see Figure 4.8. 

The locus and the genetic nature of each of these novel insertions have not yet 

been characterised, but following the hypothesis that the surprisingly wide-

ranging network of responsive genes triggered by MYB64 overexpression is a 

result of extensive stress response cross-talk, it might also be the case that 

these novel insertions triggered the same transcript profile changes in these 

independent thermotolerant lines. If such similar transcript profiles were found  
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Figure 4.8 Example of Activation-Tagged Mutants Rescued from Thermotolerance Screen 

The Weigel set of Arabidopsis seed carrying randomly positioned T-DNA insertions was obtained 
and screened for thermotolerance by incubating at the killing temperature (44 ± 0.5 °C) for 3 hours. 
Seedlings that were still alive several days later were rescued for further analysis and numbered 
according to the pool from which they came. 
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it would validate the theory that stress response networks are more complex 

than initially thought. Expression of some of the same set of genes of interest 

discussed above was therefore investigated in lines Ac-Tag A and Ac-Tag B under 

non-stress conditions (Figure 4.9). 

All 5 genes tested (including two transcripts for MPK11) were significantly more 

abundant in the Ac-Tag lines than in the Col 0 wild type supplied by NASC, i.e. 

the background in which the Ac-Tag mutants were made. (Measurements are not 

available for HSP17.6 in 35Spro:MYB64 line 127 due to technical failure; this 

should be rectified in future work.) 
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Figure 4.9 Expression of Genes of Interest in Two Independent Ac-Tag Thermotolerant Lines 

qPCR was performed to measure the expression levels of the putative ‘downstream’ genes of 
interest in two independent, uncharacterised lines carrying activation-tags which were isolated from 
a thermotolerance screen for novel mutants. The plants sampled here were grown under normal 
conditions. The locations of the activation-tag inserts in these lines are not known. 

*HSP17.6 qPCR results are not yet available for 35Spro:MYB64 line 127 – this should be repeated 
in further work. 
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4.10 Discussion 

The NGS transcript profile of the 35Spro:MYB64 line showed that the list of the 

most highly upregulated transcripts were significantly enriched for sequences 

associated with stress response pathways. These sequences are known to be 

involved in both biotic and abiotic stresses, and the possibility that the plants 

had been infected was quickly discounted. There was no sign of pathogen 

attack; the soil had been pre-treated with insecticide to decrease the likelihood 

of fly larvae hatching and feeding on the roots; and PR1 (pathogenesis-related 1; 

At2g14610), a classical marker of infection (Volko et al., 1998), was not 

upregulated. Furthermore, that the qPCR confirmation was performed on 

seedlings raised in the sterile environment of sealed agar plates provides 

perhaps the strongest evidence that infection is not responsible for the members 

of biotic stress response pathways noted in the NGS transcript profile. 

The genes chosen for further investigation (CZF2, CBF1, MPK11, ERF11, PP2C) 

were selected on the basis that they were either well-characterised master 

regulators of response networks at a transcriptional level, or because they have 

the capability to alter protein activity by modulation of phosphorylation state. 

The expression levels of these downstream transcripts were elevated in line 141 

which produced the NGS profile, and these transcripts were not elevated in line 

127 under normal conditions but were highly upregulated when a heat stress was 

applied. 

Application of ABA induced MYB64 expression to a level 20 – 30-fold higher than 

was observed after a mock application, placing this MYB transcription factor in 

the ABA-dependent branch of the superfamily.  
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Overall, these results show that overexpression of MYB64 leads to a clear change 

in the expression profile induced by thermal acclimation. The independent 

finding that these transcripts are upregulated in other activation-tagged 

thermotolerant mutants supports the conclusion that they make a contribution 

to the survival of the plant under conditions of abiotic stress. There is a wide 

range of response roles already ascribed to these genes, so future work should 

characterise the phenotype of the 35Spro:MYB64 lines under a variety of such 

stresses. 

4.10.1 MYB64 as a Potentiator of Stress Responses? 

The transcript profiles of lines 127 and 141 as confirmed by qPCR reveal a 

difference in the way that MYB64 affects transcription of downstream genes in 

each line (Figure 4.4 and Figure 4.5). One explanation is that there are different 

positional effects in each of these independent transformants; differences 

attributable to disruption of a gene in one or both of the lines caused by the T-

DNA insertion. If the average Arabidopsis gene is assumed to be 1-2 kb long and 

the total Arabidopsis genome is approximately 135 Mb encoding approximately 

26,000 genes, then coding regions account for 19 – 39 % of the genome, and the 

rest is a mixture of regulatory regions and intergenic DNA (pseudogenes etc.). 

The likelihood, therefore, that one or two random T-DNA insertion events 

interrupted a region that contributes to the control of the MYB64 regulon is 

small. This could be confirmed by generating and investigating other 

independent transformants, but the evidence available suggests that there has 

been a disruption to MYB64 itself in one of the lines.  
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Some MYB TFs, such as MYBR2 and MYB44, are regulated by phosphorylation as 

part of an ABA-dependent signalling cascade (Pitzschke et al., 2009, Persak and 

Pitzschke, 2013). If such a regulatory domain were entirely missing or inactive 

because of a mutation (even as small as a single base substitution at a crucial 

position) the result would be abnormal transcription of the downstream 

sequences. This would account for the difference between lines 127 and 141. If 

it is assumed that line 127 produced the wild type version of MYB64, the failure 

of this overexpressing line to evoke a full stress response in the absence of a 

stress factor implies this TF requires modification at an activation domain by 

some other signalling mechanism. This conclusion is supported by the 

observation that when line 127 was exposed to heat stress the response was 

similar to, but significantly greater than in, wild type lines (Figure 4.5). In 

contrast, unacclimated plants of line 141 demonstrated a superior stress 

response than stressed wild type plants, suggesting the hypothetical regulatory 

domain on MYB64 was no longer functional / present, the protein was not 

dependent on its activation, and the additional signalling mechanism was, 

therefore, no longer required. 

This model requires that the presence of MYB64 protein alone is not enough for 

expression of the regulon; there must also be an additional signal. The time-

dependent qPCR investigation of the regulon in wild type (Figure 4.6) showed 

that while MYB64 itself was induced to a much greater extent (approximately 

18-fold) than some members of the regulon (with the exception of CZF2) many 

of them were expressed concomitantly, meaning MYB64 protein was unlikely to 

have had sufficient time to accumulate and activate their transcription. Levels 

of MYB64 began to rise again 900 minutes later, however, as did those of PP2C, 

ERF11, and both splice variants of MPK11.  
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The evidence discussed here supports the conclusion that the role of MYB64 is 

perhaps to potentiate the expression of those genes designated here as the 

‘MYB64 regulon’: the delay in activation of the regulon in wild type lines; the 

requirement for heat acclimation to activate the regulon in line 127; and the 

apparent requirement for a salt stimulus to cause upregulation of the smHSPs in 

activation-tagged line HT5. 
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5 MYB64 Overexpression and Stress Tolerance 

5.1 Introduction 

As discussed in section 1.4.3, in order to recapitulate the phenotype of 

activation-tagged halotolerant line HT5, a genetic construct was made consisting 

of the same tetramerised 35S enhancer elements fused directly to the TSS of the 

MYB64 gene cloned from genomic DNA (gDNA). Transgenic Arabidopsis lines were 

created in a Col 0 background and these were experimentally shown to 

dramatically overexpress MYB64 at the transcript level as measured by semi-

quantitative RT-PCR (Price and Ramsay, unpublished). This line will be referred 

to as 35Spro:MYB64. Microarray analysis of the HT5 line grown under a long-term 

salt-stress had revealed that 15% of the 45 most upregulated genes belonged to 

the HSP families (Price, 2005). Preliminary experiments carried out by Price, and 

also by Nurcahyanti (2009), showed that there was a thermotolerant phenotype 

and that the smHSPs discussed in Chapter 3 were indeed upregulated. It was 

therefore of interest to investigate the thermotolerance profile of the new 

35Spro:MYB64 lines. 

5.2 Thermotolerance of 35Spro:MYB64 Lines 

5.2.1 Thermotolerance of 35Spro:MYB64: Overall Morphology 

Two independent 35Spro:MYB64 transformant lines (line 127 and 141, both 

homozygous) were tested for enhanced thermotolerance as compared with a 

wild type derived from the heterozygous, segregating progeny of the original 

transformation. In addition, a second, external wild type control was also used 
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to verify that the segregated wild type behaved similarly to that used in previous 

experiments where the growth of Col 0 acquired from an independent source 

had formed the baseline (e.g. section 3.5.1). Seeds were sown on agar plates 

and germinated horizontally under Normal Conditions. Plates were divided into 4 

areas for different genotypes in order to remove as many sources of technical 

variation as possible and seeds were sown at a low enough density that leaves 

from neighbouring plants would not touch each other. Seedlings were allowed to 

grow for 2 weeks and were then subjected to the heat stress regime described 

above. Plates were qualitatively assessed at 2.5 days, 6 days, and 9 days post-

stress. Plates were set up in triplicate and representative images are presented 

in Figure 5.1. 

Col 0 and the segregated wild type seedlings (white coded quadrants) suffered 

an observable loss of green colouration in most of their leaves and did not 

develop any new growth in any of the 9 days following heat stress. The two 

homozygous 35Spro:MYB64 lines (green coded quadrants) suffered an equivalent 

loss of colouration and also did not develop any new growth. Any variation 

between these representative plates and the replicate plates that are not shown 

was between-plate variation; where a greater number of wild type seedlings in a 

quadrant had completely lost all colouration, an equivalent proportion of 

35Spro:MYB64 seedlings on that plate also lost all colouration. The plates in 

Figure 5.1 were selected as they appear to represent the phenotype of plants 

subjected to a temperature just on the border of complete killing, and as such 

would theoretically have shown the most pronounced difference between a wild 

type and a thermotolerant line. 
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Figure 5.1 35Spro:MYB64 Lines Show Weak Thermotolerance at 2 
Week Stage 

Two independent homozygous transformants of 35Spro:MYB64 (line 127 
and line 141 - green quadrants in top panel) were sown alongside 
segregated wild type (right-hand white quadrants) on duplicate plates. One 
of the duplicate plates also carried an independent wild type for 
comparison (Col 0 from a different source – upper left white quadrant). A 
third independent homozygous transformant was also included on the 
other duplicate plate (upper left green quadrant), but this seed stock failed 
to germinate. Seedlings were grown for 2 weeks under Normal Conditions. 
Plates were then exposed to thermal conditions previously determined to 
be sufficient to kill the segregated wild type: 1 hour acclimation at 37 ± 0.5 
°C; 3 hour interval period at Normal Conditions; 3 hours at 44 ± 0.5 °C. 
Seedlings were photographed at the timepoints indicated until it was 
evident that no further change in viability, as measured by green leaf area, 
was taking place.  
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From these results it was concluded that although increased MYB64 expression 

had led to an increased abundance of HSP transcripts in the salt-stressed 

activation-tagged HT5 line, overexpression of a 35Spro:MYB64 transgene confers 

only a weak thermotolerant phenotype upon these 2-week old seedlings. Further 

investigations were carried out to look for thermotolerance at other stages of 

development. 

5.2.2 Thermotolerance of 35Spro:MYB64: Germination 

It is known that members of the small HSP gene family (smHSPs) are upregulated 

in siliques thereby implicating a functional role in seed maturation, possibly 

through dormancy to germination (Kotak et al., 2007b). Although it had not been 

proven experimentally, it is logical to assume that the near-constitutive (Weigel 

et al., 2000) 35Spro:MYB64 transgene would lead to overexpression of MYB64 at 

this stage too. To investigate whether this overexpression might therefore 

confer a thermoprotective effect during germination, seeds were subjected to a 

heat stress immediately after sowing. Seeds of the two independent 

35Spro:MYB64 transformant lines and of a segregated wild type were sown on 

agar plates (2.3.2) and incubated at 22, 44, 46 or 48 ± 0.5 °C for 3 hours 

immediately after the vernalisation step and immediately before transfer to 

the growth room under Normal Conditions. Germination, measured as 

cotyledon expansion, was recorded 1 week later (Figure 5.2).  



Chapter 5: 35Spro:MYB64 Line Phenotyping 175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Germination of 35Spro:MYB64 Seeds Following Heat Stress 

To investigate whether overexpression of MYB64 might confer a thermoprotective effect 
at the germination stage, seeds of two independent transformant lines were sown on 
tripartite agar plates, in duplicate, and incubated at 22, 44, 46, or 48 ± 0.5 °C for 3 hours 
immediately after the vernalisation step and immediately before transfer to the growth 
room under Normal Conditions. Germination, as scored by cotyledon expansion, was 
measured for each line one week later. Error bars represent means ± SE; n = 2 replicates 
with 15 plants each.  
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Each of the two 35Spro:MYB64 lines and the segregated wild type 

germinated normally at 22 °C and suffered a slight decline at 44 and 46 

°C, but germination rates for all three lines was still greater than 80% and 

there were no significant differences (see Appendix ii-d). The ability of 

wild type seeds to germinate after a stress at 46 °C without the usual 

acclimation period provides evidence that the seeds have a higher basal 

thermotolerance than vegetative tissues in an established plant. All lines 

completely failed to germinate after a stress at 48 °C (with the exception 

of line 127: one outlying seed out of 30 was able to germinate). 

5.2.3 Thermotolerance of 35Spro:MYB64: Root Development 

Although publically-available transcript profiles do not strongly imply a role for 

MYB64 in heat-stressed roots (section 3.3.2 - Data Mining of Open-Access Heat 

Acclimation Transcript Profiles) it was hypothesised that by constitutively 

overexpressing the gene we might confer a tolerance phenotype regardless of 

tissue type. Root development of the transgenic lines was thus measured with 

and without various heat stresses. 

Fifteen seeds of segregated wild type were sown side-by-side with 15 seeds of 

35Spro:MYB64 lines on bipartite agar plates (section 2.3.2) and germinated 

vertically under Normal Conditions. Roots grew down the surface of the agar and 

were measured after 5 days. Replicate plates were then subjected to one of six 

conditions: 22 °C (non-acclimated control); 22 °C  -> 44 or 46 ± 0.5 °C (non-

acclimated heat-stressed); 37 °C ± 0.5 °C (acclimation control); and 37 ± 0.5 °C 

-> 44 or 46 ± 0.5 °C (acclimated heat-stressed). Seedlings were also tested at a 

TK of 46 ± 0.5 °C in this experiment for two reasons: basal thermotolerance of 
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wild type at this developmental stage had not yet been empirically determined; 

and a thermotolerant phenotype might not only lead to improved performance 

at damaging, yet sub-lethal, temperatures but might also lead to survival above 

the usual TK. Plates were then returned to the growth room at Normal 

Conditions and allowed to recover and grow for 3 days before primary roots 

lengths were measured again. Differences between measurements made before 

and after heat stress for two independently transformed lines are presented in 

Figure 5.3. 

Growth measured after incubation at 22 °C did not differ significantly from that 

measured after incubation at 37 ± 0.5 °C, demonstrating that acclimation itself 

has no deleterious effect on root extension, at least at this developmental 

stage. Measurements in Figure 5.3 are all normalised as appropriate against 

either of these controls. Non-acclimated, heat-stressed seedlings of all lines 

ceased all primary root growth immediately following the stress. Acclimated, 

heat-stressed seedlings of transgenic line 127 and the segregated wild type 

controls (Figure 5.3, panel A) also showed no further root growth. Acclimated, 

heat-stressed seedlings of both transgenic line 141 and the associated 

segregated wild type control (Figure 5.3, panel B) performed better on one of 

the replicate plates (approximately 60% of control root extension) and line 141 

was not significantly different from segregated wild type. In replicate plate two, 

segregated wild type showed no root growth while line 127 showed a small 

degree of root extension (approximately 10% of control). This suggests the 

replicate plates reached slightly different temperatures within the oven and 

demonstrates the steepness of the response curve, and also suggests that 

replicate plate 2 perhaps represents the true differential phenotype revealed 

when the TK is reached precisely.  
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Figure 5.3 Effect of Heat Stress on Root Extension in 35Spro:MYB64 Lines 

To investigate whether overexpression of MYB64 might confer a thermoprotective effect 
shortly after the germination stage, wild type and transgenic lines were sown side-by-side on 
bipartite agar plates and grown vertically under Normal Conditions for 5 days. Root lengths 
were measured on day 5, then seedlings were subjected to a heat stress at 44 or 46 ± 0.5 
°C either directly (left halves of graphs) or with an acclimation and recovery period prior to 
the stress (right halves of graphs). In all cases, root lengths were measured again 3 days 
later. The amount of root growth recorded after heat treatments is expressed here as a 
percentage of the growth recorded in the roots of the corresponding controls (i.e. non-
acclimated (left halves of graphs) or acclimated (right halves of graphs)). A 35Spro:MYB64 
Line 127 B 35Spro:MYB64 Line 141. Error bars represent means ± SE; n = 15. 
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These results indicate that overexpression of MYB64 confers only a weak 

thermotolerant phenotype on the roots of Arabidopsis seedlings. 

5.2.4 Thermotolerance of 35Spro:MYB64:Hypocotyl Extension 

The next developmental stage investigated was the period shortly after 

germination. An experiment was performed to measure the length of dark-grown 

hypocotyls before and after a heat stress (the rationale behind employing 

commonly-used measurement is explained in 3.5.5). 

Fifteen seeds each of segregated wild type and of the independent transformant 

lines 141 and 127 were sown on tripartite agar plates (section 2.3.2) and 

germinated vertically. Plates were incubated in the dark and exposed to stress 

temperatures at the appropriate times as also described previously in section 

3.5.5.  A further 2 days after stress the plates were unwrapped again and the 

post-stress hypocotyl extension was measured (Figure 5.4). 

Again, an acclimation step alone had very little impact on growth; each line 

exhibited different hypocotyl extension rates but these were not significantly 

different between 22 °C controls and 37 ± 0.5 °C controls. As expected, 

acclimation conferred acquired thermotolerance upon segregated wild type and 

line 141 at 44 °C, but this acclimation was not evident in seedlings of line 127 

which performed differently from the other two (statistically significant at 

p<0.05; see Appendix ii-e). 

Neither line showed extension rates greater than segregated wild type. At 46 °C, 

non-acclimated wild type outperformed lines 127 and 141. These results indicate 

that overexpression of MYB64 reduces growth rate of heat-stressed seedlings.  
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Figure 5.4 Effect of Heat Stress on Hypocotyl Extension in 35Spro:MYB64 
Lines 

Seeds of segregated wild type and of both transgenic lines were sown on tripartite 
agar plates and grown vertically at 22°C in the dark. Hypocotyl lengths were 
measured on day 3, then seedlings were subjected to a heat stress at 44 or 46 ± 0.5 
°C either directly (left side) or after an acclimation and recovery period (right side). In 
all cases hypocotyl lengths were measured again 3 days later. Hypocotyl growth 
extension is expressed as a percentage of the corresponding controls (i.e. non-
acclimated or acclimated). Error bars represent means ± SE; n = 15. Means that do 
not share a letter are significantly different; see Appendix ii-e. 
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5.3 Halotolerance of 35Spro:MYB64 Lines 

The transcript profile of the original halotolerant mutant, HT5, suggested it 

might also be thermotolerant, but having thoroughly examined two independent 

overexpressing lines for a thermotolerance phenotype and having observed 

unconvincing results, a decision was made to return to the halotolerance 

phenotype. Experiments were designed to confirm MYB64’s role in the HT5 

phenotype when constitutively overexpressed. 

Fifteen seeds each of segregated wild type and of either line 127 or line 141 

were sown on bipartite agar plates (section 2.3.2) and germinated vertically in 

the growth room under Normal Conditions. Plates contained normal growth 

medium with or without NaCl at a final concentration of 80 mM (the toxic 

concentration used to identify the original HT5 mutant from the pool of 

activation tagged seed (Price, 2005)). Plants were allowed to grow vertically for 

2 weeks then seedlings were harvested and fresh weight measurements were 

recorded. The values presented in Figure 5.5 show the average fresh weight of 

each transgenic line expressed as a percentage of segregated wild type at the 

same salinity 

Seedlings of both line 127 and line 141 achieved a higher average fresh weight 

on normal medium than those of segregated wild type (114 % and 119 %, 

respectively). They also achieved much higher fresh weights when grown on the 

saline medium (141 % and 176 % of segregated wild type). Tukey’s Minimum 

Significant Difference test was performed; any line exhibiting a mean fresh 

weight greater than 159% of wild type when grown on 80 mM NaCl was  

  



Chapter 5: 35Spro:MYB64 Line Phenotyping 182 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Effect of Salt Stress on Fresh Weight of 35Spro:MYB64 
Lines 

Seeds of 35Spro:MYB64 lines 127 and 141 were sown on bipartite plates 
alongside segregated wild type. Plates contained basal agar supplemented 
with 0mM NaCl (blue bars) or 80mM 80 NaCl (red bars) and were placed in 
the growth room vertically. Fresh weights were measured 2 weeks after 
germination. Ranked values were normalised on the ranked fresh weight of 
the segregated wild type seedlings at each NaCl concentration (i.e. wild 
type = 100%). Error bars represent the SE of n = 30. An Analysis of 
Variance test was performed and Tukey’s Minimum Significant Difference 
(p<0.05) was calculated (broken line); treatment means above this line are 
significantly different from controls at p<0.05 (see Appendix ii-f). 
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significantly different (see Appendix ii-f). Thus, line 141 performed significantly 

better on salt, but line 127 did not. 

Leaf number and shape were equivalent but leaves of segregated wild type were 

smaller (Figure 5.6). Roots of the wild type were longer with very little 

branching; primary roots of overexpressing lines were by comparison stunted in 

length, but had many more lateral roots. The salinity caused downward curling 

of the leaves of all lines as well as a twisted-root phenotype manifesting as a 

45° tilt to the right as viewed in Figure 5.6. 

5.4 ABA Response of 35Spro:MYB64 lines 

Since many of the HT5 transcripts with the greatest increase in abundance had a 

functional annotation related to ABA responses, it was of interest to determine 

whether the expression of MYB64 and of its ‘downstream effectors’ were 

influenced by the application of exogenous ABA. The hypothesis tested was that 

the lines overexpressing MYB64 would be less sensitive than wild type as they 

would have had the chance to become acclimated to the already-high MYB64 

levels.  

Thirty seedlings each of segregated wild type and of the two transgenic lines 

were sown on tripartite agar plates (section 2.3.2) supplemented with ABA to a 

final concentration of either 0, 0.5, or 1 µM. Except for the ABA, plants were 

grown under Normal Conditions for 14 days during which time seedlings were 

assessed as described below. 
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Figure 5.6	  Effect of Salt Stress on Morphology of 35Spro:MYB64 Plants  

Seeds of 35Spro:MYB64 line 141 were sown on bipartite plates alongside segregated 
wild type. Plates contained basal agar supplemented with either A 0mM NaCl or B 
80mM NaCl. Plates were imaged 2 weeks after germination. 
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5.4.1 ABA Response of 35Spro:MYB64: Overall Morphology 

These plants were assessed qualitatively at day 4 and day 14 post germination 

and images are presented in Figure 5.7. At day 4 in the absence of ABA all three 

lines were performing equally well. In the presence of 0.5 µM ABA it was 

apparent that the segregated wild type developed more slowly and with smaller 

cotyledons than either of the two overexpressing lines. In the presence of 1 µM 

ABA there were almost no cotyledons apparent among the segregated wild type, 

while they had emerged from almost all seeds of lines 127 and 141. At day 14, in 

the presence of 0.5 µM ABA the root systems of line 127 and, to a lesser extent, 

line 141 appear denser than that of segregated wild type. In the presence of 1 

µM ABA the two transgenic lines developed true leaves while the segregated wild 

type seedlings had either cotyledons only, or very small true leaves. 

5.4.2 ABA Response of 35Spro:MYB64: Cotyledon Emergence 

Cotyledon appearance among these plants was recorded daily from day 2 until 

day 14 (Figure 5.8). Appearance was defined as emergence from the seed coat 

and separation of the paired cotyledons as determined by viewing under a 

microscope, and scored as the percentage of seedlings that had reached this 

stage. In the absence of ABA both transgenic lines achieved 100 % cotyledon 

expansion within the first 3 days, while segregated wild type was not observed 

at this stage until day 5. This is consistent with the small growth advantage 

noted previously (Figure 5.5). In the presence of 0.5 and 1 µM ABA all three lines 

were slightly delayed in reaching maximum cotyledon expansion, though this 

was significantly slower in the segregated wild type (p<0.001; see Appendix ii-g). 

Under all conditions each line achieved a score of 80 % or greater within 5 days.  
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Figure 5.7	  Effect of ABA on Development of 35Spro:MYB64 Lines  

A Seeds of 35Spro:MYB64 lines 127 and 141 were sown alongside 
segregated wild type on tripartite plates containing basal agar 
supplemented with 0 µM, 0.5 µM, or 1 µM ABA and grown horizontally 
under Normal Conditions. B Photographs were taken at 4 and 14 days 
after germination. 

 

 

 

 

  



Chapter 5: 35Spro:MYB64 Line Phenotyping 187 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 5: 35Spro:MYB64 Line Phenotyping 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8	  Effect of ABA on Cotyledon Expansion of 35Spro:MYB64 Lines  

Seeds of 35Spro:MYB64 lines 127 and 141 were sown alongside segregated wild type on tripartite 
plates containing basal agar supplemented with either A 0 µM, B 0.5 µM, or C 1 µM ABA and 
grown horizontally under Normal Conditions. Seeds were counted every day for expansion of the 
cotyledons. At 0.5 µM ABA, segregated wild type cotyledon expansion was significantly slower 
than either of the transgenic lines (p<0.001; see Error! Reference source not found.) (pseudo-
replicates generated by grouping data from days 3-7 and from days 6-10). Other time points were 
not significantly different. n = 30.  
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5.4.3 ABA Response of 35Spro:MYB64: Chlorophyll Production 

The next observable stage of development was the production of green pigments 

in the cotyledons. This was measured over the same time period as above, 

determined by examination under a microscope and scored as the percentage of 

seedlings that had reached that stage (Figure 5.9). This simple method was 

chosen after consideration of more precise measurements, but the reliability of 

such assays has been disputed. Regardless of the technical limitations of 

methods of chlorophyll extraction and quantification, the aim here was simply to 

take a measure of the stage of development of each seedling and also to do this 

over a timecourse without destroying the plants.  

In the absence of ABA, 100% of seedlings turned green within 5 days of 

germination in all three lines, though the segregated wild type did so with the 

slight delay already noted. In the presence of 0.5 µM ABA the two transgenic 

lines achieved their maximum within 5 days but segregated wild type did not 

reach its until day 10, though this was not significantly different (see Appendix 

ii-h). At 1 µM ABA the effect was such that segregated wild type still had not 

achieved a maximum score by the end of the two-week experiment. At every 

day of the experiment the two overexpressing lines had a significantly higher 

percentage of green seedlings than segregated wild type (also Appendix ii-h). 
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Figure 5.9	  Effect of ABA on Visual Leaf Greening in 35Spro:MYB64 Lines  

Seeds of 35Spro:MYB64 lines 127 and 141 were sown alongside segregated wild type on tripartite 
plates containing basal agar supplemented with either A 0 µM, B 0.5 µM, or C 1 µM ABA and 
grown horizontally under normal conditions. Seeds were counted every day for the appearance of 
greening (chlorophyll) in the cotyledons. At 1 µM ABA, chlorophyll production in segregated wild 
type was significantly slower than either of the transgenic lines (p<0.001; see Error! Reference 
source not found.) (pseudo-replicates generated by grouping data from days 6-10). Lines were 
not significantly different at other time points. n = 30.  
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5.4.4 ABA Response of 35Spro:MYB64: Fresh Weight 

By day 14 there were no observable changes taking place on any sector of any 

plate (with the exception of seedling greening in wild type at 1 µM ABA) so it 

was assumed that the plants had reached maximum growth capacity on agar 

plates, and they were sacrificed in order to take fresh weight measurements 

(Figure 5.10). 

As already noted in Figure 5.5 (Effect of Salt Stress on Fresh Weight of 

35Spro:MYB64 Lines), under control conditions line 127 grew to a slightly higher 

fresh weight than segregated wild type (significant at p<0.01). In the presence 

of 0.5 µM ABA, fresh weight of segregated wild type was equivalent to that of its 

0 µM control, but at 1 µM ABA it dropped significantly to 49 % of control (p<0.01; 

see Appendix ii-i). Transgenic line 127 suffered a slight inhibition of growth at 

0.5 µM (81 % of control) and a further inhibition at 1 µM (73 %), but this was not 

as strong as the inhibition imposed on segregated wild type and was not a 

statistically significant reduction. Line 141 did not suffer any growth inhibition 

at any ABA concentration; in fact it achieved slightly (non-significant) higher 

fresh weights at both 0.5 µM (124 %) and 1 µM (119 %). 

These results clearly demonstrate that overexpression of MYB64 confers a 

resistance to ABA-mediated growth inhibition.  
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Figure 5.10	  Effect of ABA on Fresh Weight of 35Spro:MYB64 Lines  

Seeds of 35Spro:MYB64 lines 127 and 141 were sown alongside segregated wild type 
on tripartite plates containing basal agar supplemented with 0 µM, 0.5 µM, or 1 µM ABA 
and grown under Normal Conditions. Fresh weights were measured 2 weeks after 
germination. Means that do not share a letter are significantly different (p<0.01; see 
Appendix ii-i). Error bars represent the SE of n = 30. 
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5.5 Discussion 

The aim of the experiments presented in this chapter was to establish whether 

the 35Spro:MYB64 lines were more thermotolerant than wild type and, 

following, that, how the lines responded to a variety of other abiotic stresses. 

The overwhelming answer to the first question is that there is only a weak 

thermotolerant phenotype observed under the temperature regimes described 

above. 

Seedlings grown on agar plates and stressed at 2 weeks old showed no 

differences between lines. It may be that by this age the seedlings have reached 

a plateau in their growth rate and that they would not continue to grow any 

longer even in the absence of heat simply because of the constraints of growing 

in a plate. Were this experiment to be repeated, another suitable control would 

be a series of replicates kept in the growth room at Normal Conditions. When 

one observes the leaves that were able to retain their green pigmentation it 

becomes obvious that, across all lines, the greenest and therefore least 

damaged leaves are those in the centre of each rosette; the youngest. Leaf age 

thus appears to be negatively correlated with adaptability to a heat stress. 

Another reasonable alteration would therefore be to deliver the heat stress 

several days earlier so that all of the leaves were more metabolically active. 

Perhaps with this age-related greater capacity to regenerate, there might be a 

difference in the way the transgenics and the wild type recover.  

Transgenic seeds given a heat stress at germination were also no more or less 

able than wild type to grow. This may appear to be an unusual experiment in the 

context of gene expression as the seeds are generally dormant, but since MYB64 
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was driven from a near-constitutively active promoter it would have been 

produced at all stages of development, including seed-setting. MYB64 had been 

implicated in the expression, directly or indirectly, of smHSPs, which themselves 

are known to accumulate to high levels during seed dehydration (Kotak et al., 

2007b). The hypothesis was that a higher level of both of these products might 

increase growth rate through a heat stress. This was shown not to be the case. 

Remarkably, both transgenic lines showed a lower ability to extend hypocotyls 

after a stress than did wild type (Figure 5.4). The simplest explanation for this, 

is that the transgenic lines are suppressing growth in order to invest resources in 

adapting to the stress. 

Thus, the hypothesis regarding the 35Spro:MYB64 line’s enhanced 

thermotolerance was thoroughly investigated at various stages of development. 

The preliminary experiments carried out by Price (unpublished) and Nurcahyanti 

(2009) showed a stronger thermotolerance phenotype than demonstrated here, 

but despite exhaustive efforts they were not reproduced. This highlights the 

importance and difficulty of establishing and maintaining a reliable temperature 

regime suitable for investigation of such a steep biological response curve.  

The next investigation concerned the responses of the two transgenic lines to 

other abiotic stresses. It was of interest to confirm whether the halotolerant 

phenotype observed in the activation-tagged mutant HT5, which expressed 

MYB64 in a fundamentally different way (see sections 1.4.1 and 1.4.3), was 

reproducible in our engineered 35Spro:MYB64 lines. It was also hypothesised that 

since members of the MYB gene family has generally been characterised as ABA-

dependent (Nakashima et al., 2009, Pieterse et al., 2009) there might be a 



Chapter 5: 35Spro:MYB64 Line Phenotyping 195 

reduced response to the application of exogenous ABA as MYB64 was already 

elevated. 

Salt (NaCl) elicited a resistance phenotype in both transgenic lines, statistically 

significant in the case of line 141 (Figure 5.5 and Figure 5.6). This will be 

discussed in more detail in Chapter 6 (“General Discussion”) after gene 

expression changes have been detailed in Chapter 4  (name here). ABA exposure 

also led to a clear and robust growth phenotype as measured by seedling size 

(Figure 5.7), developmental rate (Figure 5.8 and Figure 5.9) and by fresh weight 

(Figure 5.10). 

5.5.1 Technical Considerations 

5.5.1.1 Control of Temperature 

Thermal gradients were the most difficult factor to control for in any of the 

experiments presented in this thesis. In order to investigate the heat-stress 

response of the plant, it was crucial to ensure that control was exerted over the 

temperature of the leaves (TLEAF) rather than simply the temperature of the air 

(TAIR).  

TLEAF is determined by the balance of thermal inputs and thermal losses. Heat is 

gained directly from the molecules in the atmosphere (TAIR) and from incident 

light (Q). Heat is lost to moisture by transpiration, to the atmosphere by 

convection, and by infrared radiation. Each of these parameters had to be 

controlled in order to precisely control TLEAF. 
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Incident light is perhaps less of a consideration in laboratory experiments than in 

the field as growth chamber illumination is often only a fraction of full sunlight. 

However, even at 1/3 sunlight strength, individual barley leaves have been 

shown to differ in temperature by as much as 8 °C from one end to the other as 

a result of partial shading from other leaves (Almalki, 2011, PhD thesis in 

preparation). While any such effect will not be as pronounced on the small 

leaves of very young Arabidopsis seedlings, it highlights the importance of 

precisely measuring TLEAF as opposed to TAIR in heat stress experiments generally. 

Incident light was eliminated as a confounding factor by incubating the plants in 

the dark.  

Inputs to TLEAF were therefore limited solely to the contribution made by TAIR. 

This parameter was controlled by heating the plants in circulated-air cabinets. 

The cabinet controls allowed TAIR to be specified to within 0.1 °C. After pilot 

experiments to determine the killing temperature produced inconsistent results, 

the accuracy of the thermal incubator was empirically determined by placing 

thermocouple probes at various positions around the interior. Even with a fan 

circulating the air, the upper and lower shelves were found to differ by up to 1 

°C, so all heat treatments documented in this thesis are reported to be accurate 

to ± 0.5 °C.  

While not normally in direct contact with the leaves, the growth substrate can 

also act as a thermal insulator. Parallel experiments carried out with thermal 

imaging cameras have shown that soil-grown plants placed in a circulated-air 

freezer cabinet can take up to 18 hours to reach the target temperature due to 

the specific heat capacity of the soil substrate (Wynne, 2012). (This has obvious 

implications for cold stress experiments that incorporate an overnight freezing 
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treatment.) It follows that the converse is also true: soil-grown plants placed in 

a high-temperature incubator will be subject to a heat-sink effect in the roots 

until the soil temperature has equilibrated with that of the cabinet. This was 

one factor contributing to the decision to focus on seedlings grown on plates. 

Convective heat loss from these leaves was prevented by placing the leaves in a 

small, sealed environment; no air movement from the fans penetrated the 

plates to carry heat away, and the plants had no thermal input other than the 

exterior air temperature so there was no possibility of a convection current 

developing to cool the leaves. 

Radiative losses were not preventable, but the thermostatically controlled 

incubator ensured that the air circulating around the plates replaced any heat 

lost in this way. 

Transpiration is the major process by which plants are able to cool. This must be 

prevented in order to precisely control TLEAF as opposed to TAIR, and this is most 

easily done by ensuring there is no water vapour pressure deficit between the 

leaf and the atmosphere, i.e. achieving 100% relative humidity (RH). Pilot 

experiments were carried out on well-watered, soil-grown plants placed in 

containers constructed from sealed plastic bags. This meant that water could 

evaporate into the local atmosphere without being lost, thus reaching 100% RH. 

Efforts were made to ensure that the plastic did not come into contact with the 

leaves so as not to confound the results by prematurely allowing direct heat 

transfer from the air outside, but this had to be balanced against the need to 

have as little air inside the bag as possible so that 100% RH could be achieved in 

a period that was both short and relatively standardised across experiments. At 

20 °C, a drop in RH from 100% to 99% corresponds to a water potential 
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difference of -1.36 megapascals (MPa) (Nobel, 1999, Table 2-1) which has a 

desiccating effect on leaves, and this impediment to stopping transpiration is 

compounded by the fact that RH drops dramatically as temperature increases 

(Nobel, 1999, Figure 2-13). This proved too difficult to control in a satisfactory 

and reproducible way, and this was the other major factor in the decision to 

avoid using soil-grown plants. 

Seedlings on agar plates were therefore chosen as the primary tool with which to 

investigate thermotolerance. The temperature of the thin layer of atmosphere 

and the thin layer of agar substrate within a plate is able to equilibrate much 

more quickly than soil (within minutes). This means that a RH of 100% was 

achievable much more rapidly, thus bringing transpiration, the major 

determinant of leaf temperature in this experimental setup, to a halt within the 

first few minutes of incubation.  

Even using plates, it became evident that seed density and plate position had a 

large effect on the reproducibility of results. When seeds were sown closely 

together the developing seedlings appeared to gain a measure of protection 

from incubation at TK. For this reason protocols were adapted so that seedlings 

were spaced apart, ideally such that their leaves would not grow to touch each 

other. It also appeared that some areas of some plates were protected from the 

highest temperatures. These were deemed ‘edge effects’ and the cause has yet 

to be completely resolved, though it may be that proximity to the baffled fan 

combined with turbulence created by the other plates on the incubator shelves 

contributed to localised temperature gradients. Efforts were made to investigate 

this using a thermal imaging camera, but the glass interior door of the incubator 

was opaque to infrared light so this was not possible without opening the door 
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and allowing the warm air inside to mix with the cooler atmospheric air outside. 

The temperature of the plates inside dropped almost instantaneously with the 

fall in TAIR, and the plastic of the plates was also opaque to infrared so the 

temperature of the plants (which would have remained stable for slightly longer) 

could not be directly measured this way either. 

These temperature gradient observations may explain between-plate 

discrepancies revealed in some thermotolerance measurements presented in this 

thesis, demonstrating that it is absolutely crucial for the reliability of heat-stress 

results that the wild type control is sown on the same plate as the experimental 

line. This ensures the removal of as much variation in heat treatment as 

possible. The fact that all the seedlings in one plate on an incubator shelf can be 

killed at 44 °C while some of the seedlings in a replicate plate on the same shelf 

in the same incubator can survive also demonstrates the steepness of the curve 

of Arabidopsis survival to increasing temperatures. Nurcahyanti (2009) 

independently found that a temperature of 40 °C was not enough to kill wild 

type lines while 44 °C killed 93% of plants. These findings again reinforce the 

conclusion that control of TLEAF rather than of TAIR is crucial in heat stress 

experiments, particularly when the response curve is as steep as shown here. 

Measurements of hypocotyl and root extension post-stress both revealed one 

surprising observation – that young seedlings of wild type or of either transgenic 

line were able to survive a stress at 44 °C, and to a much lesser extent 46 °C 

(Figure 5.3 and Figure 5.4). This leads to the conclusion that the TK of wild type 

Arabidopsis should not be taken as an absolute value representative of all tissues 

at every stage of development. 
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6 General Discussion 

6.1 Heat and Salt: Challenges to Growth, or to Survival? 

Heat, drought and salinity are interrelated stresses that plants are unlikely to 

encounter in isolation outwith the controlled conditions of a laboratory. The 

typical consequence of each of them is that growth is arrested, and thus any 

experimental treatment that sustains growth through the stress period is 

typically regarded as a success. It is known, however, that many stress responses 

result in a state of relative metabolic stasis in order that resources can be 

invested in adaptive responses (Skirycz and Inze, 2010, Volaire et al., 2014). 

Such responses do not always require that the intensity of the response precisely 

matches the intensity of the stress in order to be effective; indeed it may be 

normal for certain stress responses to be over-activated at relatively low trigger 

levels (hypersensitivity), particularly if that stress would typically rise in 

intensity and persist for a long time. This early preparation would pre-empt 

chronic stresses such as an influx of salt into the local environment, which would 

not be removed on a timescale of hours in the same way as an acute stress 

induced by the diurnal heat cycle. One example of such a mechanism is seen in a 

knockout mutant carrying a T-DNA insertion in APG7 (At5g45900, a positive 

regulator of senescence) identified by Price (unpublished). This mutant does not 

activate growth arrest following mild salt stress, whereas the wild type control 

is stunted. In perhaps a more realistic situation in the environment outside the 

lab, where levels of salt might eventually rise above a toxic threshold, this early 

growth-arrest response would clearly be advantageous for the plant, allowing 
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metabolism to focus on adaptation strategies rather than continued rapid 

growth. 

Before interpreting and discussing the findings of this thesis it is therefore worth 

considering which strategy we are interested in investigating. If we are to 

bioengineer stress-tolerant crops to suit the changing climate models discussed 

in the introduction, we must first define what we mean by a ‘successful’ 

phenotype. The instinctive conclusion would be to regard larger plants as more 

successful, however it is important to briefly examine alternative stress 

responses exhibited by wild type plants and the mechanisms that underpin them. 

One of three archetypal examples of altered growth rate in response to stress is 

that of the DELLA proteins, named for the protein domain that characterises the 

family. These have an inhibitory effect on growth in higher plants caused by an 

interaction between DELLAs and basic Helix-Loop-Helix (bHLH) transcription 

factors (Feng et al., 2008) and this inhibition is released when the plant 

produces the phytohormone gibberellic acid (GA). The GID1 (GA-Insensitive 

Dwarf 1) protein binds GA (Iuchi et al., 2007) and then targets DELLA proteins 

for polyubiquitination and subsequent degradation by the 26S proteasome (Dill 

et al., 2004). The DELLA-mediated inhibition of transcription is therefore lifted 

and the plant resumes growth.  

The crucial part of this paradigm is the regulation of the production of GA. Only 

when conditions are favourable is GA synthesised; under stress conditions GA 

production decreases and growth is suppressed. As demonstrated by Zentella et 

al. (2007), failure to accumulate GA can be triggered by ABA, leading to a 

corresponding build-up of DELLA proteins. This has been shown to produce an 

observable root growth-restriction phenotype (Achard et al., 2006). Such growth 
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restrictions, whether caused either by exogenously applied ABA or by knockout 

mutation of the GA biosynthesis genes, have been correlated with improved 

tolerance of salt (Achard et al., 2006, Achard et al., 2008b, Magome et al., 

2004), thus very clearly setting growth restriction in the context of a positive 

outcome for survival and adaptation. 

Another example of a systematic shut-down of normal metabolic processes is the 

GCN (General Control Non-repressible) family of transcriptional / translational 

regulators, which also involves upregulation of stress-responsive pathways. GCN2 

(At3g59410) encodes a stress-activated kinase which phosphorylates eIF2α (Li et 

al., 2013), a component of the 40S translation initiation complex, altering the 

way the translation proceeds on a subset of the Arabidopsis transcriptome. 

Approximately two-thirds of all transcripts encode one main open reading frame 

(mORF) and the remaining third include one or more short upstream ORFS 

(uORFs) (Webb, 2008).  Under normal conditions the 40S ribosome binds to the 

7-methyl-cytosine cap of a mature messenger RNA molecule, scans along the 

sequence to the AUG codon, then the 60S ribosomal subunit is recruited and 

translation begins. At the end of the short uORF the ribosome disassociates and 

the short peptide produced may or may not go on to perform a functional role. 

Under stressed conditions, however, the 40S subunit, containing phosphorylated 

eIF2α, skips the uORF and translocates to the AUG of the mORF before the 60S 

subunit is recruited (Abwao, 2011). In this way the uORF transcripts are not 

expressed except in times of an appropriate stress. This uORF-skipping 

mechanism is not yet fully understood, but the effect is to halt translation of the 

normal transcriptome (mORF sequences) in preference of those sequences that 

encode stress-responsive proteins (uORF sequences).  
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A more physiological example of a mechanism for controlling growth is the 

expansin-mediated control of cell expansion. Plant growth is driven largely by 

cellular expansion in the zone just behind the meristems so the relatively 

inelastic cell wall must be able to adapt to this size increase. The expansins are 

a group of extracellular proteins located in the cell wall and their function is to 

disrupt the structural integrity of the cellulose microfibrils along the longitudinal 

axis (McQueenmason et al., 1992, Cosgrove, 2000). This allows the vacuole, and 

thus the entire cell, to expand under turgor pressure while constraining 

expansion along the axis of growth, rather than in all directions simultaneously. 

The cell wall is then reformed around the mature cell. The function of the 

expansins is regulated by acidity, which itself is determined by the action of 

ATPases in the plasma membrane, so this system is an example of a finely-tuned 

system of growth activation and suppression. While it has not been proven, it is 

possible that the function of the expansins could be halted upon sensing a stress 

that would negatively affect the water status of a plant, meaning that each cell 

would be constrained by its cell wall and thus the potential for further growth is 

effectively removed by an internally regulated system of adaptation. 

Such a state would allow an organism to persist through a period of 

environmental stress that would be damaging to an actively growing cell. 

Perhaps, then, each phenotyping experiment carried out as part of this thesis 

should be characterised in the context of either a short-term response to an 

acute threat to survival, or a longer-term response to a chronic threat to 

continued growth.  
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6.1.1 Thermotolerance 

Experiments on the thermal sensitivity of knockout lines of HSP17.6 and 

HSP17.6a (AGI numbers At5g12020 and At5g12030, respectively) included post-

heat-stress measurements of germination rate, root extension, hypocotyl 

extension, and seedling survival at 2 weeks old. Root and hypocotyl 

measurements relate to continual growth; a process which takes place over a 

period of days or weeks. Alternatively, germination and survival at two weeks 

were designed as acute interventions where the plants would either be killed or 

remain alive. The knockouts both showed weak or unconvincing 

thermosensitivity phenotypes under the two acute treatments scored by the 

binary dead-or-alive scheme (Figure 3.15 and Figure 3.16), although RT-PCR 

measurements of wild type lines showed that the transcription of these two 

genes was massively induced during thermal acclimation (Figure 3.5) suggesting 

that these sequences are indeed important in the response to high temperature. 

In the two experiments where tolerance was assessed by longer-term measures 

(hypocotyl and root extension over 3 days) the knockouts performed equivalent 

to, or slightly worse than, wild type. There was no significant difference in post-

heat-stress root growth between either of the knockout lines and wild type  

(Figure 3.17), and the only significant difference in post-heat-stress hypocotyl 

extension was observed between wild type and hsp17.6, where wild type 

achieved 97 % of controls and the knockout achieved only 65 % (Figure 3.18).  

These results suggest either that these two sequences are involved in medium- 

or long-term adaptation to high temperature as the effects of their loss took a 

few days to manifest, or, as the phenotypes were weak, they might be partially 

redundant (either with each other or with other members of the smHSP family). 
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At the moment this is difficult to assess as the two knockout lines studied here, 

hsp17.6 and hsp17.6a (NASC stock numbers N507510 and N572448, respectively), 

each have a lesion in only one of the genes. The next stage in the investigation 

of these lines should incorporate a double-knockout, although the size of the 

smHSP family in Arabidopsis (21 members) and the mounting body of published 

evidence implies that the chance of finding a phenotype is relatively small 

(Dafny-Yelin et al., 2008, Sun and MacRae, 2005). Indeed, leading smHSP 

research groups have recently carried out similar experiments to those described 

here and also found weak phenotypes and thus pursued other lines of 

investigation (Elizabeth Vierling, University of Massachusetts Amherst, USA, 

personal communication). 

Equivalent heat phenotyping experiments carried out on the 35Spro:MYB64 lines 

revealed a similarly weak thermotolerant phenotype when the plants were 

scored after exposure to two relatively acute stresses. Post-heat-stress survival 

after exposure to the killing temperature at two weeks old, scored by eye, 

revealed no clear survival advantage to overexpressing MYB64 (Figure 5.1). Post-

heat-stress germination rates across all three lines were 90 – 100 % of control 

germination rates after heating to 44 °C, and 85 – 90% of control after heating to 

46 °C, and there were no significant differences in either condition between wild 

type and overexpressing lines (Figure 5.2). When examined by the continuous 

assays of root growth and hypocotyl extension over the 3 days following a heat 

stress (Figure 5.3 and Figure 5.4) the wild type line grew equally well or better, 

but if MYB64 overexpression leads to growth arrest as discussed previously, then 

this observed phenotype is exactly what would be expected as a beneficial 

response to stress. The next step in this line of investigation would be to 

examine if each line recovers from this period of notional stasis, and to 
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determine whether MYB64 overexpression alters the duration of the stasis 

period, and the plant’s vegetative and reproductive performance afterwards.  

The NGS transcript profile data showed the elevation of some classic 

temperature-stress response regulators such as all three of the the DREB1/CBF 

family members (CBF1 (17-fold), CBF2 (5-fold), CBF3 (7-fold)), and DREB2A (10-

fold). It is known that overexpression of CBF1 and CBF3 confers freezing 

tolerance, and also that those plants perform much worse than wild type under 

normal growth conditions (Gilmour et al., 2000, Jaglo-Ottosen et al., 1998, 

Kasuga et al., 1999). Thus, it can be seen that constitutive expression of growth 

suppression effectors can be detrimental under permissive conditions but can 

actually improve survival in times of stress. It would be interesting, therefore, 

to compare the performance of the lines overexpressing MYB64 with wild type 

over a protracted period of high (but not lethal) temperature stress. 

It is noteworthy that the CBF genes are classically considered to be ABA-

independent (Mizoi et al., 2012), yet this work reports evidence of an ABA-

inducible transcription factor (MYB64) which, when overexpressed, induces 

transcription of all three CBF genes. The growth-suppression action of CBF1 is 

mediated by suppression of GA biosynthesis (Achard et al., 2008a), and thus 

MYB64 is potentially integrating the ABA and the GA / DELLA signalling 

pathways.   

The Arabidopsis heat-stress literature to date has focussed on exploring survival 

at or above the killing temperature and efforts to improve thermotolerance have 

been geared towards increasing this threshold. Surprisingly little in the smHSP 

literature has been done to explore chronic responses or to devise a heat-stress 

regime to investigate the long-term detrimental effects on Arabidopsis. Here we 
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have shown two examples of sequences (smHSPs and MYB64) with no significant 

effect on immediate survival (even when given a pre-stress acclimation) but 

which may be contributing to the longer-term growth capacity of plants. Further 

work on these smHSP knockout lines and MYB64 overexpressing lines should 

include investigations over a period of sustained sub-lethal high temperatures to 

determine the effects of sustained high temperatures across the duration of an 

entire growing season.  

6.1.2 Halotolerance 

Salt is an abiotic stress factor which presents a longer-term rather than an 

immediate survival problem, and the experiments on halotolerance reported in 

this thesis were designed to determine responses over a stress period of days 

and weeks. High levels of salt in the growth medium will lead to high levels of 

accumulated salt in the plant tissues. Various mechanisms operate to counteract 

this influx, such as sequestration (Zhu, 2001), efflux via antiporters such as SOS1 

(Yang et al., 2009), apoptosis (Price, 2005), and exclusion at the exterior surface 

of the root (for more, see section 1.2.3) but the inevitable consequence of a 

sufficiently high concentration is that some salt will end up in the cytosol and 

subcellular compartments (Han et al., 2015). The effect of this is to increase the 

ionic strength of the cytosol, leading to altered secondary and tertiary protein 

structure. Proteins affected by this will be subject to the same threat as 

proteins in a heat-stressed cell; denaturation. The role of smHSPs and other 

chaperones in a salt-stress response thus becomes clearer. 

It follows that reduced levels of smHSPs should negatively impact a cell’s ability 

to cope with a saline environment. As argued above, however, continued growth 
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does not necessarily represent a more successful long-term survival strategy, 

suggesting one explanation for the improved growth observed in the knockout 

lines. HSP17.6 may be involved in suppressing growth, an adaptation that 

confers tolerance in the longer term. In the knockout lines, therefore, growth is 

sustained under stress conditions, at least in the short term. Since refolding of 

denatured proteins is an ATP-dependent process it would give an organism an 

evolutionary advantage to be able to reduce this energy cost by not producing 

new protein at a time when it was likely that it would be degraded. This would 

explain the large root-length reduction observed in the salt-stressed wild type, 

and the loss of smHSPs that are involved in such a signalling pathway would 

explain the much milder reduction seen in the knockouts (Figure 3.19). An 

alternative explanation, with a precedent discussed in the introduction to this 

thesis (Rhoads et al., 2005), is that expression of an HSP can lead to 

downregulation of other smHSPs in a negative feedback loop. The loss of a 

component of such a loop might lead to higher than normal levels of other 

members of the smHSP family, thus alleviating overall stress and accounting for 

the growth advantage observed in the knockout lines. 

The phenotype exhibited by the salt-stressed 35Spro:MYB64 line, on the other 

hand, is a clear example of reduction in one measure of growth being 

complemented by a significant increase in another. The overexpressing line 141 

exhibited stunted primary roots (Figure 5.5) while at the same time achieving a 

higher overall fresh weight (Figure 5.6). It would be interesting to repeat these 

experiments on the smHSP knockouts in order to supplement the root 

measurements, described in the paragraph above, with knockout fresh weight 

measurements and images of rosette sizes. The salt-stressed 35Spro:MYB64 line 

also had a greater number of lateral roots than segregated wild type. As 
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mentioned in the introduction to this thesis, salt sequestration in the vacuole is 

one mechanism for maintaining turgor pressure during times of salinity and 

dehydration stress. It is also known that lateral root production is stimulated on 

exposure to salt (Zolla et al., 2010) and that high Na+ or low K+ causes roots to 

‘corkscrew’ and bend in what is perhaps a morphological adaptation that allows 

the plant to find patches of soil with a more favourable nutrient composition 

(Kellermeier et al., 2014). Root caps, being non-suberised and therefore more 

permeable to water, are the main root components where apoplastic nutrient 

uptake can occur (Sattelmach and Horst, 2007). These numerous short lateral 

roots effectively increase the amount of root cap area exposed to the salt-

supplemented medium, and this would allow for greater ratio of 

apoplastic:symplastic transport of salt directly into the xylem from where it 

could reach the aerial tissues and be shuttled to the vacuole with a lower risk of 

causing intracellular toxicity. 

With so many stress-response regulators upregulated in the transcript profile of 

this transgenic line it appears that the plants have become rather more 

comprehensively adapted to salt stress than if one simple end-effector protein 

had been overproduced, manifesting here as an enhanced rearrangement of root 

architecture. It would be of interest to examine in more detail the NGS 

transcript profile of this line when grown on high levels of salt in order to find 

out what other molecular changes might be contributing to the shortened root / 

higher fresh weight phenotype. Clearly, though, this line is able to adapt to the 

type of long-term stress that will become more prevalent with an increased 

demand for water in the field.  
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6.2 MYB64 Overexpression 

6.2.1 Interaction of MYB64 and smHSPs 

The relationship between MYB64 and smHSP expression was investigated by 

looking for promoter motifs in the 1 kb upstream of each TSS. No known motifs 

were enriched among these notional promoters of these three genes. If the 

MYB64 protein was binding directly to these regions it should be possible to find 

a common binding sequence; instead it is more likely that MYB64 binds to the 

promoters of other genes and activates these, which then directly or indirectly 

leads to upregulation of the smHSPs. This complexity was further discussed in 

section 4.3 (Transcript Profiling of 35Spro:MYB64 Line 141) where it is shown 

that a large and varied suite of stress-response transcripts was upregulated in 

the non-stressed 35Spro:MYB64 line, yet these smHSPs identified in the HT5 

microarray were notably absent. It seems logical that downstream effector 

proteins, such as chaperones like the smHSPs, should be controlled by different 

promoter motifs from master regulators like kinases or transcription factors such 

as CBF1 and DREB2A to eliminate the potential for inappropriate simultaneous 

regulation at these two different organisational levels of transcriptional 

cascades. A common MYB64 binding site might be found among the promoters of 

these high- or middle-level genes in the cascade instead. Perhaps, then, it is 

even possible that expression of each of these three smHSPs is activated by a 

different transcription factor. 

Another explanation for the absence of any common promoter motifs is that the 

region assessed upstream of each TSS was too small. To expand the search would 

involve investigating sequences contained within, or distal to, other coding 
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regions. While distances of > 1kb between promoter binding site and TSS are not 

unknown, the increased distance would make concrete deductions difficult for 

two related reasons. First, the protein:protein interactions between a 

transcription factor bound at a distal motif and other transcription initiation 

factors bound at the TSS would depend on  higher order DNA structures (loops, 

histones, etc.), theoretically allowing great latitude in the precise distance 

between the TSS and the MYB64 binding motif, and thus reducing the power of 

alignment algorithms. Second, conventional wisdom tells us that any putative 

motifs are less likely to be linked to the transcription of distant genes than to 

those in the local vicinity of the chromosome. Should any candidate motifs be 

found in a wider search they would need to be tested by functional in vivo 

studies (such as promoter mutagenesis for loss of function, transgenic 

promoter/reporter lines, chromatin immunoprecipitation), or in vitro studies 

(such as DNase footprinting) to establish any connection to expression of these 

smHSPs. 

The observation that there are no promoter motifs evident in the 1 kb upstream 

of the TSS of each gene appears to be confirmed by the failure of the own-

promoter-driven fluorescently-tagged constructs to express in N. benthamiana. 

Had there been any functional promoter motifs we might reasonably expect 

that, since the gene family is so highly conserved across species, N. 

benthamiana would have suitable factors to recognise and transcribe from them. 

The post-transcriptional modification and translation of these mRNAs evidently 

take place, as we can see expression of the fluorescently-tagged smHSPs driven 

by the constitutive 35S promoter (Figure 3.9, Figure 3.10, and Figure 3.11). 
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The discrepancy between the statistically significant halotolerant and phenotype 

and the weak or absent thermotolerant phenotypes exhibited by 35Spro:MYB64 

line 141 also suggests that simply overexpressing MYB64 may not be enough to 

upregulate smHSP transcripts, and that an appropriate environmental stimulus 

(i.e. other than heat) might also be required. In the only case where both MYB64 

and the smHSPs were shown to be upregulated (the HT5 microarray) the plants 

had been grown for 2 weeks on 80 mM NaCl. This evidence supports the 

hypothesis that a salt stimulus activates a signal which interacts cumulatively 

with the signals controlled by MYB64, resulting in the coordinated upregulation 

of the smHSPs. 

6.2.2 Transcript Profiles of 35Spro:MYB64 Lines 

Next-generation sequencing is still a relatively new method of interrogating the 

transcriptome activity and the insights it provides are significantly richer than 

anything available before, and thus the conclusions derived from the Illumina 

NGS experiment were judged to be more robust than those derived from the HT5 

microarray. That microarray data, on which the MYB64 investigation has been 

founded, reported fold-changes of less than one order of magnitude and only 

two transcripts were elevated by more than 4-fold (Table 1.1), whereas the 

greatest increase reported on the Illumina platform was 466-fold. While this is 

qualitatively true it should be noted that this is based on a ratio against a very 

low detection level in wild type and the margin of error for this calculation is 

therefore high. However, even when only considering sequences with ratios 

based on more robust detection values, e.g. >3 reads in the wild type sample 

and an RPKM of >1.0, the first transcripts that meet these criteria are still 

upregulated approximately 20-fold. For example, At3g53980 (encoding a lipid 
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transport protein with an uncharacterised role) is upregulated 27-fold, and the 

next (At1g28370 – encoding ERF11) is upregulated 20-fold. This may reflect a 

fundamental difference between technologies that measure analog signals (such 

as microarrays) and those that rely on digital signals, such as this NGS list of 

reads. Analog systems are subject to the limitations of signal saturation, 

minimum detection thresholds, and the nature of the dynamic range of values, 

and with microarrays there is also the possibility of inappropriate hybridisation. 

The only one of these limitations that affects a NGS transcriptome profiling is 

the minimum detection threshold. If it were necessary this could be avoided by 

increasing the input concentration of mRNA up to the limit of physical saturation 

for space on the surface of the flow cell and in addition more than one flow cell 

could be used to increase overall sequencing depth. The fact that Illumina 

sequencing is not subject to many of these limitations suggests it provides a 

more reliable estimate of these transcripts than the HT5 microarray and we 

propose that differences between results of the two types of experiment are to 

be expected. 

It should be noted, however, that the HT5 microarray was performed on 

seedlings that had been germinated and grown on medium supplemented with 

NaCl while these NGS data came from transgenic tissues that were exposed to no 

stress. There is evidence that long-term exposure to a stress can cause a pattern 

of initial high-amplitude gene expression changes followed by a long decline as 

the organism adjusts (Young et al., 2013), so the relatively low level of gene 

expression changes in that long-term stress (3-4 week) experiment is perhaps not 

surprising. What is remarkable, though, is that the plants used to generate the 

Illumina transcript profile were grown for the same length of time on standard 

soil under normal environmental conditions and subject to no observable stress, 
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yet they still exhibited fold-increases in stress-response transcripts of one or two 

orders of magnitude. It can be speculated that the high level of MYB64 

expression simply drives consistently high levels of downstream gene expression, 

or it can be speculated that something about the analysis platform itself, which 

gives a fundamentally different measure of gene expression, exposes these 

larger changes in transcript levels. Since both the treatment and the 

measurement tool are different in these two experiments it is impossible to say 

definitively which is the cause, but it would be interesting to perform a 

microarray experiment in parallel with a next-generation sequencing analysis on 

the same tissue to see how closely the results matched.  

One explanation for the variation between the HT5 microarray results and the 

NGS profile of the 35Spro:MYB64 line is perhaps the difference in the nature of 

the two lines. The HT5 insertional mutant carried the 35S enhancer elements 

more than 1kb upstream of the TSS of MYB64. The homozygous transgenic lines 

carried two copies of the wild type allele plus two extra copies of a construct 

with the 35S enhancers fused directly to the 5’ end of the gene. Dosage effects 

therefore probably contribute to a large degree of the variability between the 

two transcript profiles. Nevertheless, similar qPCR findings regarding the 

stressed transcript profiles of independent transformant lines 127 and line 141, 

given appropriate stress conditions (Figure 4.4 and Figure 4.5), shows that these 

downstream genes are indeed modulated by MYB64. 

Aside from their magnitude, the range of the stress responses represented in 

Table 4.1 was the most striking result. The annotation attached to At4g23680, 

the most highly ‘upregulated’ transcript, indicates that it encodes an 

uncharacterised, unnamed protein that is upregulated by biotic stimuli and 
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defence responses. This crossover between an initial abiotic stress phenotype 

and biotic response transcripts could be regarded as the major finding of these 

transcript profiling results. Of course, it is not unusual for a sequence to have a 

role in more than one process, but much has been made in the literature of 

categorising stimuli as biotic or abiotic and classifying the responsive genes 

accordingly (see section 1.2, “Crop Responses to Climate Change-Related 

Stresses: Prospects for Adaptation”). The systematic gene ontology analysis 

presented in Table 4.2 underscores the message that perhaps this paradigm 

should be reconsidered.  

In reviews of abiotic stress-responsive plant hormone signalling networks, 

Nakashima et al. (2009) and Todaka et al. (2012) describe networks of ABA-

dependent and ABA-independent abiotic stress responses in Arabidopsis and 

homologs in rice (Oryza sativa). The ABA-dependent pathway is dominated by 

transcription factors that bind and activate gene expression at ABA-Reponsive 

Elements (ABREs), and these TFS are collectively known as the AREB/ABF (ABA-

Reponsive Element Binding / ABRE Binding Factor) family. These are proposed to 

be mainly activated by ABA in response to dehydration stress. The authors then 

describe an ABA-independent family, the Dehydration Responsive Element 

Binding (DREB) transcription factors, inducible by dehydration and cold stress. In 

two other recent reviews Pieterse et al. (2009, 2012) describe the current 

understanding of the networks of plant responses to a range of biotic stresses 

which have historically been centred around the jasmonic acid (JA), ethylene 

(ET) and salicylic acid (SA) biosynthesis pathways. Members of the R2R3 

subfamily of MYB transcription factors have very recently been found to play an 

antagonistic role in SA responses while enhancing JA responses (Ambawat et al., 

2013). Interestingly, expression of MYB96, another ABA-responsive R2R3 MYB 
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transcription factor, contributed to pathogen resistance by increasing the levels 

of salicylic acid (SA) biosynthesis (Seo and Park, 2010). This represents another 

example of a MYB transcription factor serving as a node between what are 

typically thought of as independent response pathways mediated by discrete 

signals. 

These developments, published concurrently with the research described in this 

thesis, are beginning to provide a new understanding of the role of MYBs in 

connecting abiotic and biotic stress responses as well as ABA- 

dependent/independent pathways (Figure 6.1). Some MYBs have been shown to 

be ABA-inducible (e.g. MYB2, Abe et al., 2003) which is consistent with the 

findings regarding MYB64 (presented in Figure 4.7). Perhaps controversially, 

however, the list of the 50+1 most upregulated transcripts in the 35Spro:MYB64 

line (Table 4.1) include DREB2A, a classic member of the ABA-independent 

response pathway. The HT5 mutant was isolated from an abiotic stress tolerance 

screen, though the transcript profiling again shows that 10% of the sequences 

listed in Table 4.1 are ethylene response factors. In total the list contains eight 

transcripts known to be biotic stress-responsive, five known to be abiotic stress- 

responsive, and four known to respond to both. When the genes of unknown 

function are removed these numbers equate to 25 % biotic stress, 15 % abiotic 

stress, and 12 % both. The other 48 % may nevertheless be involved in stress 

responses too. The gene ontology analysis performed on the 100 most highly 

upregulated transcripts Table 4.2 shows there is a statistically significant 

enrichment for genes encoding calcium-binding proteins. For example, 

At3g01830 (calmodulin-related protein; unknown role; ranked 3rd; 47-fold 

upregulated) and At4g29000 (EF-hand family protein; unknown role; ranked 29th; 

16-fold upregulation) might play a role in calcium signalling, perhaps connected   
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Figure 6.1 MYB64 as a Cross-Talk Node Between ABA Dependent / Independent Pathways 
and Abiotic / Biotic Stress Pathways 

Historical literature has characterised pathways on the basis of the signals which activate them, 
leading to responses defined by high-level messengers such as ABA and other hormones. MYB64 
overexpression leads to upregulation (red arrows) of various components of a surprisingly diverse 
range of pathways. See main text for discussion. 
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to SOS3 activation. At3g21780 (ABA glycosyl-transferase; unknown role; ranked 

joint 34th; 15-fold upregulated) is likely to be involved in ABA metabolism in 

response to stress. At2g43030 (acetyl transferase, GCN5-related; unknown role; 

ranked 43rd; 13-fold upregulated) may be involved in suppression of growth by 

modulation of transcription. GCN5, a component of the GCN pathway mentioned 

previously (section 6.1.1), is a histone acetyl transferase that physically 

interacts with CBF1 and other transcriptional activator proteins (Mao et al., 

2006), so it can be seen that At2g43030 is likely to act to change transcription 

patterns by the modification of chromatin. 

Taken together, all of these results suggest that overexpression of MYB64 is 

contributing in a considerable way to the stress-readiness of the plant and there 

is considerable latitude for further investigation.  

6.3 Independent Ac-Tag Mutants 

The activation-tagged mutants identified from the thermotolerance screen on 

the Weigel lines (Alonso et al., 2003) were shown to have a very similar 

transcript profile to the 35Spro:MYB64 lines. This provides further evidence that 

the MYB64 regulon is important in the thermotolerance response of Arabidopsis. 

6.4 ABA and MYB64 

Growth of both 35Spro:MYB64 lines was less inhibited than segregated wild type 

by exogenous ABA (Figure 5.7 to Figure 5.10). It has been shown that ABA 

inhibits growth by the activation of appropriate transcription factors (Golldack 

et al., 2013, Sreenivasulu et al., 2012). It was unexpected that overexpression of 

one such downstream transcription factor resulted in the opposite effect. One 
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explanation might be that these transgenic lines are constitutively mimicking 

exposure to ABA-related stress and may be acclimated or habituated, leading to 

a dampened detection when it is delivered exogenously. Such a mechanism 

might involve MYB64-directed breakdown of ABA as part of a normal negative 

feedback loop, which is enhanced in the transgenic lines leading to insensitivity. 

Another explanation is that the upregulation of PP2C (At5g59220) might lead to 

the suppression of ABA-dependent responses in this situation. Recent 

developments in understanding of ABA detection and signal transduction show a 

family of proteins known as the PYR/PYL/RCAR (Pyrabactin Resitance/PYR1-

Like/ Regulatory Components of ABA Receptors) group to play a role in 

modulating the activity of SnRK2s (Sucrose non-fermenting 1-Related protein 

Kinases); a group of kinases which phosphorylate and thus activate stress 

response TFs (Fujita et al., 2009). Under normal conditions PYR/PYL/RCAR 

proteins dimerise in an inactive form (Figure 6.2). The SnRK2s are held in an 

inactive, dephosphorylated state by PP2Cs. In the presence of ABA the 

PYR/PYL/RCAR proteins interact with ABA and adopt a conformation that 

enables them to bind into the pocket of the PP2Cs previously occupied by the 

SnRK2s . The SnRK2s are then free to autophosphorylate and then phosphorylate 

target TFs, which include AREBs (ABA-Responsive Element Binding proteins), 

WRKYs, and MYBs (Kim, 2014). This theory was recently supported by the results 

of Antoni et al. (2011) who showed that this PP2C is a negative regulator of ABA 

signalling. This further represents an example of cross-talk between biotic and 

abiotic stress responses. 
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Figure 6.2 ABA Sensing in Response to Drought-related Stresses 

The current model of ABA sensing includes a family of proteins known as the PYR/PYL/RCAR 
group, which bind ABA and inactivate the PP2C family. This leaves the snRK2 group of protein 
kinases free to auto-phosphorylate and activate other transcription factors responsible for stress 
responses, typically leading to ABA-directed growth suppression. In the 35Spro:MYB64 lines it 
appears that excess levels of a PP2C may be outcompeting exogenously applied ABA such that 
the PP2C is still able to bind and dephosphorylate SnRK2 (inset), thus maintaining an inhibitory 
effect on this pathway. 

(Figure adapted from Kim, 2014) 
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As presented in this thesis, 35Spro:MYB64 lines are mildly insensitive to ABA-

mediated growth suppression, indicating that the MYB64-mediated upregulation 

of PP2C noted in the NGS data results in its expression at levels in excess of the 

ABA concentrations used in the experiments presented here (section 5.4, “ABA 

Response of 35Spro:MYB64 lines”). PP2C therefore appears to be maintaining an 

inhibitory effect on the SnRK2s and suppressing the normal ABA growth arrest 

response in these transgenic lines.   

6.5 Localisation and Function of the smHSPs 

The finding that the tagged smHSPs (HSP17.6, HPS17.6a and HSP17.6b) localise 

in the cytosol confirms their compartmentalisation predicted in the literature 

(Scharf et al., 2001, Waters, 2013) and the punctate patterns deserve future 

investigation. Except where stated, leaves imaged by confocal microscopy were 

not subjected to any thermal acclimation or stress regimes, but they were 

illuminated by laser light for considerable periods of time, in some cases for an 

hour or more. It is feasible that this will have caused a localised heating effect 

in the leaf and this may actually have induced the smHSPs in some cells to 

undergo the same sort of multimerisation described in the literature (Baldwin et 

al., 2011b, Painter et al., 2008, Sobott et al., 2002, Stengel et al., 2010). These 

higher-order multimers are known to form within the first hour at 34 °C and 

within the first 15 minutes at 45 °C (Benesch et al., 2010). Since those studies 

were performed in vitro we know nothing about the localisation of the activated 

multimers in the cell; they may be disperse and homogenous or they may 

sequester semi-native proteins in clusters throughout the cytosol, held together 

in a manner analogous to inclusion bodies (though with a much smaller diameter 
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and in greater numbers throughout the cell). This clustering theory would 

explain the punctate pattern of fluorescence (see Figure 3.9 and Figure 3.10). 

The timecourse video files complement the static images and show cytoplasmic 

streaming across the vacuole and around organelles, and demonstrate that the 

areas of complex smooth/punctate signal are highly dynamic and do not appear 

to move in a consistent direction, which would have indicated trafficking. This 

further confirms that these smHSPs are not bound to any particular membrane or 

organelle and are likely to be cytosolic. 

The similar subcellular dynamics illustrations of HSP17.6 and HSP17.6b, the co-

localisation analysis, and the weak thermosensitivity phenotype of the smHSP 

knockout lines reported in this thesis and by others all suggest that the smHSPs 

are highly redundant. The hydrophobicity profiles of HSP17.6, HSP17.6a, 

HSP17.6b and TaHSP16.9 (Figure 3.2) show that with the exception of HSP17.6 

and HSP17.6a, which appear to be genetic duplicates and are thus very similar, 

the N-terminal is the only part with notable variation. Recent publications have 

supplied further evidence that this is the most important region for substrate 

binding and chaperone activity (Basha et al., 2012, 2013). The emerging model 

for smHSP function is that dimers, or perhaps the dodecamer, provide biological 

activity. Studies on dimerisation of smHSPs in vitro suggest all combinations of 

monomers are possible (Benesch et al., 2010, Stengel et al., 2010). It is feasible 

that specific heterodimers recognise and target particular domains of denatured 

proteins. An aggregation of smHSP dimers and possibly higher-order structures 

thus forms around the denatured target protein and HSP70 is then recruited to 

load the target protein onto HSP90 for refolding or tagging for degradation 

(Daugaard et al., 2007). Each of the 66 possible heterodimer combinations of the 
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11 cytosolic Arabidopsis smHSPs probably demonstrate different but overlapping 

affinities for denatured protein and this explains the partial functional 

redundancy observed in the smHSP knockout lines and their corresponding weak 

thermotolerance phenotype. In addition, one very recent study further 

complicated the heat shock protein expression paradigm by demonstrating that 

HSP17.6a and HSP101 were transcriptionally expressed upon exposure to the 

microgravity of spaceflight (Zupanska et al., 2013), possibly suggesting a role for 

these chaperones in mechanical cell support. 

6.6 Final Conclusion 

This thesis has presented the results of investigations of two Arabidopsis smHSPs 

regulated by MYB64, the contribution of MYB64 to abiotic stress tolerance, and 

the range of downstream effectors that might mediate those tolerant 

phenotypes.  

Loss of the two smHSPs conferred a sensitivity phenotype upon seedlings given 

an acclimation and a stress when observed over several days, so these proteins 

may contribute to the plant’s ability to maintain continued longer-term growth 

after heating. The knockout lines were less sensitive to moderate salt stress of 

40 mM, however, suggesting that a homeostatic feedback mechanism might 

compensate by upregulating other smHSPs or other halotolerance responses. 

Further work on this topic should include assessments of adaptability to long-

term high (sub-lethal) temperatures rather than relatively short periods at 

critical temperatures. It would also be interesting to create stably transformed 

lines expressing epitope-tagged versions of these proteins so that 

immunoprecipitation experiments could be carried out to investigate differences 
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in chaperone client specificity. These lines could also be used to look for in vivo 

interactions between smHSP family members both before and after heat stress; 

something that has not yet been published in the literature. It would also be of 

interest to repeat the knockout screens with double, rather than single, 

knockouts. 

Lines overexpressing MYB64 demonstrated suppression of growth when given a 

heat stress and observed over the following 3 days, again suggesting that this 

gene might contribute to the longer-term survival of the plant, in this case by 

over-activating innate growth suppression mechanisms. These lines exhibited a 

strong halotolerance phenotype when salt-stressed, achieving a higher fresh 

weight while at the same time reducing the length of the root system and 

increasing lateral root formation to a greater extent than the wild type line. The 

application of exogenous ABA (which activates MYB64 expression) without any 

environmental stress factor did not induce the normal growth arrest response 

demonstrated by wild type, indicating that these overexpressing lines are either 

already acclimated to high levels of MYB64 or that something in the upregulated 

regulon is causing insensitivity; PP2C, for example. Further work on these lines 

could include transcript profiling of salt-stressed plants as these lines have such 

a stronger tolerant phenotype to salt than to high temperature. 

In summary, a significant physiological phenotype was observed in one 

35Spro:MYB64 line (141) on salt and ABA, and differences between the 

phenotype of this and transgenic line and another (127) were reflected in qPCR 

transcript profiles. While an initial transcript profile indicated a role for MYB64 

in thermotolerance, any such profile has yet to be conclusively identified.  
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The range of transcripts affected by MYB64 overexpression, however, integrate 

several pathways that have classically been thought of as discrete (Mittler and 

Blumwald, 2010), but which more recent literature suggests act synergistically in 

more complex ways that once thought (AbuQamar et al., 2009, Narsai et al., 

2013, Suzuki et al., 2005) and which it is sensible to expect would actually 

behave differently again upon challenge by multiple simultaneous stresses 

(Ramegowda and Senthil-Kumar, 2015). In keeping with the paradigm shift to a 

view of stress responses as largely interrelated, it should be noted that the 

MYB64-responsive transcript profile examined here: includes components of ABA-

dependent (e.g. PP2C / SnRK2) and ABA-independent (e.g. MPK11) pathways; 

suggests a role in the regulation of GA / DELLA metabolism (e.g. CBF1); and 

even support the theory that biotic stress responses may be involved (e.g. 

ERF11). The action and regulation of the transcription factor MYB64 are 

therefore rich in opportunities for future phenotypic research. 
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Appendix i List of Transcripts Upregulated >6-fold 
in 35Spro:MYB64 Line 141  

Gene	  Symbol	   AGI	  
Number	  

Fold	  
Change	  

WT	   p35S::AtMYB64-‐141	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  

MPK11	   AT4G23680	   171.55	   1.03	   3	   2	   0	   177.24	   928	   83	   3	   177.24	  
MSN2.3	   AT5G66650	   25.73	   1.01	   5	   1	   0	   25.88	   232	   12	   2	   25.88	  
T1F9.17	   AT1G61340	   22.63	   1.34	   5	   0	   1	   30.23	   204	   26	   7	   30.23	  
F5K20.280	   AT3G53980	   21.91	   1.75	   4	   1	   0	   38.28	   158	   14	   0	   38.28	  
ERF11	   AT1G28370	   20.41	   2.66	   10	   0	   0	   54.3	   368	   0	   0	   54.3	  
F9F8.25	   AT3G10930	   18.22	   2.58	   7	   0	   0	   46.93	   230	   0	   0	   46.93	  
BAP1	   AT3G61190	   18.19	   1.4	   5	   0	   0	   25.49	   164	   0	   0	   25.49	  
BG3	   AT3G57240	   17.75	   0.63	   3	   1	   0	   11.19	   96	   2	   0	   11.19	  
CZF2	   AT5G04340	   17.49	   6.36	   24	   0	   0	   111.25	   757	   0	   0	   111.25	  
T13D8.8	   AT1G60190	   17.44	   1.02	   9	   0	   0	   17.83	   283	   0	   0	   17.83	  
CBF1	   AT4G25490	   17.13	   2.46	   8	   0	   0	   42.15	   273	   0	   0	   42.15	  
PBP1	   AT5G54490	   16.54	   2.94	   6	   0	   0	   48.63	   179	   0	   0	   48.63	  
PP2C	   AT3G29000	   15.97	   2.03	   5	   0	   0	   32.48	   144	   0	   0	   32.48	  
NF-‐YA10	   AT5G06510	   15.67	   1.12	   8	   2	   0	   17.6	   226	   43	   1	   17.6	  
F13E17.22	   AT3G02840	   15.61	   1.42	   7	   0	   0	   22.11	   197	   0	   0	   22.11	  
MYB51	   AT1G18570	   15.49	   2.03	   13	   1	   0	   31.48	   363	   34	   0	   31.48	  
ERF5	   AT5G47230	   15.19	   3.91	   18	   0	   0	   59.37	   493	   0	   0	   59.37	  
(None	  given)	   AT4G27652	   14.23	   2.96	   6	   0	   0	   42.15	   154	   0	   0	   42.15	  
ERF-‐6-‐6	   AT4G17490	   14.16	   10.65	   43	   0	   0	   150.85	   1098	   0	   0	   150.85	  
DIC1	   AT2G22500	   13.48	   8.63	   51	   0	   0	   116.4	   1240	   0	   0	   116.4	  
CML38	   AT1G76650	   12.70	   7.41	   22	   0	   0	   94.13	   504	   0	   0	   94.13	  
ERF	  MWD22	   AT5G51190	   12.64	   7.76	   25	   0	   0	   98.15	   570	   0	   0	   98.15	  
RRTF1	   AT4G34410	   12.25	   2.05	   10	   0	   0	   25.17	   225	   0	   0	   25.17	  
T16O11.2	   AT3G09020	   12.20	   0.59	   3	   0	   0	   7.2	   66	   0	   0	   7.2	  
F37B13.20	   AT4G29780	   12.02	   15.41	   119	   0	   0	   185.24	   2579	   0	   0	   185.24	  
K7B16.1	   AT5G50800	   11.96	   1.45	   7	   1	   0	   17.3	   151	   32	   0	   17.3	  
WAKL2	   AT1G16130	   11.46	   0.3	   3	   0	   0	   3.48	   62	   1	   0	   3.48	  
COBL8	   AT3G16860	   11.40	   0.99	   9	   0	   0	   11.24	   185	   6	   0	   11.24	  
SHINE2	   AT5G25390	   11.28	   0.79	   3	   0	   0	   8.91	   61	   4	   1	   8.91	  
MXK3.10	   AT5G64870	   11.23	   0.59	   4	   0	   0	   6.62	   81	   1	   0	   6.62	  
MUF8.3	   AT5G41750	   11.12	   2.42	   34	   0	   1	   26.9	   727	   10	   10	   26.9	  
T32G9.25	   AT1G35210	   11.02	   2.76	   8	   0	   0	   30.37	   159	   0	   0	   30.37	  
(None	  given)	   AT1G07135	   10.92	   35.33	   100	   0	   0	   385.82	   1969	   0	   0	   385.82	  
CNI1	   AT5G27420	   10.81	   4.17	   24	   0	   0	   45.05	   468	   0	   0	   45.05	  
SZF2	   AT2G40140	   10.79	   11.87	   106	   1	   0	   128.1	   2063	   41	   2	   128.1	  
WRKY46	   AT2G46400	   10.60	   4.02	   19	   3	   0	   42.61	   363	   33	   2	   42.61	  
T6G21.2	   AT5G22250	   10.59	   4.15	   20	   0	   0	   43.94	   382	   0	   0	   43.94	  
DREB2A	   AT5G05410	   10.54	   0.53	   3	   0	   0	   5.58	   57	   3	   0	   5.58	  
F2H17.17	   AT2G36220	   10.29	   7.21	   34	   0	   0	   74.25	   631	   0	   0	   74.25	  
F15E12.17	   AT1G66090	   10.19	   5.32	   32	   1	   0	   54.24	   588	   29	   6	   54.24	  
F6N7.24	   AT5G52750	   10.04	   8.49	   21	   2	   1	   85.16	   380	   60	   5	   85.16	  
T19K4.140	   AT4G24570	   9.96	   34.28	   158	   0	   0	   341.38	   2837	   0	   0	   341.38	  
(None	  given)	   AT4G36010	   9.92	   1.72	   9	   0	   0	   17.02	   161	   8	   0	   17.02	  
T10D17.50	   AT3G44260	   9.81	   38.3	   154	   0	   0	   375.69	   2724	   0	   0	   375.69	  
STZ	   AT1G27730	   9.81	   35.48	   128	   0	   0	   348.06	   2264	   0	   0	   348.06	  
F18B13.21	   AT1G80130	   9.68	   2.45	   13	   1	   0	   23.68	   227	   31	   2	   23.68	  
T22D6.1	   AT5G08030	   9.61	   0.62	   3	   1	   0	   5.96	   52	   12	   1	   5.96	  
F14D16.17	   AT1G19020	   9.59	   8.38	   17	   0	   0	   80.32	   294	   0	   0	   80.32	  
GATL10	   AT3G28340	   9.43	   1.61	   10	   0	   0	   15.18	   170	   0	   0	   15.18	  
F7O18.12	   AT3G04640	   9.27	   15.96	   48	   0	   0	   147.86	   802	   7	   0	   147.86	  
(None	  given)	   AT1G76955	   9.24	   1.28	   3	   1	   0	   11.8	   50	   20	   0	   11.8	  
WRKY40	   AT1G80840	   9.20	   12.77	   55	   6	   0	   117.51	   939	   103	   11	   117.51	  
F8L21.110	   AT4G11320	   9.12	   1.63	   9	   2	   0	   14.84	   148	   16	   0	   14.84	  
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Gene	  Symbol	   AGI	  
Number	  

Fold	  
Change	  

WT	   p35S::AtMYB64-‐141	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  

(continued	  from	  previous	  page)	  

F25P17.10	   AT2G24600	   9.10	   7.89	   68	   0	   0	   71.78	   1116	   40	   13	   71.78	  
(None	  given)	   AT4G27654	   9.06	   1.61	   3	   0	   0	   14.58	   49	   0	   0	   14.58	  
WRKY33	   AT2G38470	   9.04	   18.63	   137	   14	   2	   168.32	   2232	   280	   44	   168.32	  
DGAT	   AT2G19450	   9.01	   0.5	   4	   2	   0	   4.5	   65	   25	   0	   4.5	  
	  	   AT1G24145	   8.87	   1.98	   4	   0	   0	   17.55	   64	   6	   2	   17.55	  
	  	   AT1G34060	   8.87	   0.65	   4	   0	   0	   5.73	   59	   8	   0	   5.73	  
RABH1C	   AT4G39890	   8.69	   0.84	   3	   1	   0	   7.31	   47	   14	   0	   7.31	  
PP2C	   AT2G30020	   8.63	   11.07	   58	   3	   0	   95.55	   902	   27	   1	   95.55	  
F3I6.6	   AT1G24140	   8.60	   3.08	   16	   0	   0	   26.49	   248	   0	   0	   26.49	  
PP2-‐A5	   AT1G65390	   8.60	   1.49	   8	   1	   0	   12.8	   124	   8	   4	   12.8	  
F3N23.12	   AT1G72920	   8.59	   7.49	   28	   2	   0	   64.34	   406	   32	   5	   64.34	  
K5F14.7	   AT5G54720	   8.56	   2.4	   7	   0	   0	   20.52	   107	   0	   0	   20.52	  
RHL41	   AT5G59820	   8.53	   6.66	   21	   0	   0	   56.78	   323	   0	   0	   56.78	  
PK19	   AT3G08720	   8.52	   1.37	   11	   3	   0	   11.67	   169	   17	   3	   11.67	  
(None	  given)	   AT5G35735	   8.48	   20.13	   112	   2	   2	   170.75	   1713	   65	   3	   170.75	  
	  	   AT2G02100	   8.47	   42.59	   83	   8	   0	   360.86	   1268	   256	   17	   360.86	  
F13F21.11	   AT1G49450	   8.46	   0.51	   4	   0	   0	   4.34	   61	   0	   0	   4.34	  
	  	   AT5G26920	   8.45	   6.47	   52	   2	   0	   54.67	   792	   70	   7	   54.67	  
F13I13.2	   AT2G38790	   8.42	   6.49	   27	   0	   0	   54.65	   410	   0	   0	   54.65	  
AOC3	   AT3G25780	   8.39	   2.05	   8	   1	   0	   17.23	   118	   5	   1	   17.23	  
BCS1	   AT3G50930	   8.35	   4.14	   37	   0	   0	   34.53	   557	   0	   0	   34.53	  
NF-‐YA2	   AT3G05690	   8.32	   5.12	   29	   7	   0	   42.62	   435	   79	   0	   42.62	  
PRR5	   AT5G24470	   8.32	   0.57	   5	   1	   0	   4.77	   75	   12	   1	   4.77	  
	  	   AT5G45340	   8.32	   6.12	   45	   4	   0	   50.9	   675	   88	   1	   50.9	  
NUDT21	   AT1G73540	   8.30	   25.15	   92	   9	   2	   208.78	   1377	   113	   13	   208.78	  
	  	   AT1G72520	   8.12	   2.64	   31	   0	   0	   21.41	   454	   31	   2	   21.41	  
ATNAS3	   AT1G09240	   8.10	   1.03	   5	   0	   0	   8.38	   72	   0	   0	   8.38	  
ICS2	   AT1G18870	   8.07	   1.47	   11	   5	   0	   11.89	   160	   76	   2	   11.89	  
F7J8.80	   AT5G01100	   7.92	   0.77	   7	   2	   0	   6.07	   100	   20	   0	   6.07	  
	  	   AT2G41640	   7.90	   2.29	   16	   1	   0	   18.07	   228	   11	   0	   18.07	  
	  	   AT4G13395	   7.82	   11.51	   19	   0	   0	   90.02	   268	   0	   0	   90.02	  
	  	   AT1G35830	   7.76	   1.71	   6	   0	   0	   13.25	   84	   0	   0	   13.25	  
	  	   AT3G57450	   7.75	   16.14	   43	   0	   0	   125.11	   601	   0	   0	   125.11	  
	  	   AT3G52400	   7.72	   16.26	   84	   5	   0	   125.51	   1169	   46	   3	   125.51	  
	  	   AT5G56840	   7.65	   1.31	   5	   1	   0	   10.02	   69	   8	   1	   10.02	  
	  	   AT1G64360	   7.49	   17	   37	   4	   0	   127.38	   500	   62	   0	   127.38	  
	  	   AT5G64660	   7.48	   4.2	   25	   0	   0	   31.39	   337	   0	   0	   31.39	  
	  	   AT5G57220	   7.42	   1.2	   8	   0	   0	   8.91	   107	   7	   0	   8.91	  
	  	   AT4G25480	   7.41	   3.13	   11	   0	   0	   23.22	   147	   0	   0	   23.22	  
	  	   AT4G29610	   7.41	   4.99	   17	   0	   0	   36.92	   227	   0	   0	   36.92	  
	  	   AT3G46620	   7.40	   18.3	   97	   0	   0	   135.48	   1295	   0	   0	   135.48	  
	  	   AT1G17380	   7.39	   1.37	   6	   3	   0	   10.13	   80	   14	   1	   10.13	  
	  	   AT3G57540	   7.39	   0.62	   3	   0	   0	   4.58	   40	   2	   2	   4.58	  
	  	   AT1G14870	   7.35	   1.4	   4	   0	   0	   10.27	   53	   19	   2	   10.27	  
	  	   AT2G15390	   7.33	   1.93	   14	   0	   0	   14.17	   181	   9	   0	   14.17	  
	  	   AT5G06860	   7.32	   1.11	   0	   0	   0	   8.1	   4	   4	   0	   8.1	  
	  	   AT1G74450	   7.29	   8.61	   59	   0	   0	   62.81	   776	   0	   0	   62.81	  
	  	   AT5G49280	   7.29	   2.12	   7	   0	   0	   15.42	   92	   0	   0	   15.42	  
	  	   AT1G23710	   7.26	   11.88	   54	   0	   0	   86.23	   707	   0	   0	   86.23	  
	  	   AT2G01180	   7.26	   6.11	   45	   1	   0	   44.37	   589	   27	   0	   44.37	  
	  	   AT3G44300	   7.21	   1.09	   6	   1	   0	   7.86	   71	   10	   0	   7.86	  
	  	   AT1G61800	   7.13	   1.15	   7	   2	   0	   8.23	   90	   12	   0	   8.23	  
	  	   AT1G72910	   7.12	   23.68	   95	   0	   0	   168.69	   1291	   0	   3	   168.69	  
	  	   AT1G56660	   7.11	   3.83	   27	   1	   0	   27.25	   346	   5	   2	   27.25	  
	  	   AT3G16510	   7.07	   3.97	   20	   0	   0	   28.07	   255	   0	   0	   28.07	  
	  	   AT2G20142	   7.07	   1	   4	   1	   0	   7.09	   51	   1	   5	   7.09	  
	  	   AT4G14365	   7.06	   6.62	   36	   14	   1	   46.69	   458	   155	   12	   46.69	  
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Gene	  Symbol	   AGI	  
Number	  

Fold	  
Change	  

WT	   p35S::AtMYB64-‐141	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  
Unique	  
exon	  
reads	  

Unique	  
exon-‐
exon	  
reads	  

Unique	  
intron-‐
exon	  
reads	  

RPKM	  
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	  	   AT3G55980	   7.04	   39.28	   327	   1	   0	   276.68	   4153	   69	   4	   276.68	  
	  	   AT1G63720	   7.02	   1.02	   6	   0	   0	   7.15	   76	   1	   0	   7.15	  
	  	   AT5G47850	   7.02	   0.33	   3	   0	   0	   2.29	   38	   0	   0	   2.29	  
	  	   AT1G15010	   7.01	   5.31	   11	   0	   0	   37.2	   139	   0	   0	   37.2	  
	  	   AT3G49530	   7.00	   6.6	   46	   7	   0	   46.25	   581	   84	   6	   46.25	  
	  	   AT5G46710	   6.95	   4.88	   21	   3	   0	   33.92	   263	   33	   5	   33.92	  
	  	   AT4G17670	   6.93	   1.24	   4	   0	   0	   8.63	   50	   3	   0	   8.63	  
	  	   AT3G46090	   6.93	   2.44	   6	   0	   0	   16.94	   75	   0	   0	   16.94	  
	  	   AT1G14520	   6.93	   1.45	   8	   4	   0	   10.05	   100	   30	   8	   10.05	  
	  	   AT1G55760	   6.93	   0.59	   4	   1	   0	   4.11	   50	   5	   0	   4.11	  
	  	   AT4G33040	   6.93	   1.34	   4	   0	   0	   9.31	   50	   0	   0	   9.31	  
	  	   AT2G42530	   6.91	   16.24	   41	   8	   0	   112.24	   511	   69	   2	   112.24	  
	  	   AT1G18300	   6.83	   14.57	   60	   0	   0	   99.53	   739	   14	   4	   99.53	  
	  	   AT5G19240	   6.80	   54.72	   161	   5	   0	   372.06	   1974	   59	   88	   372.06	  
	  	   AT1G67970	   6.73	   2.55	   14	   1	   0	   17.18	   170	   3	   0	   17.18	  
	  	   AT3G02610	   6.65	   0.55	   3	   0	   0	   3.68	   31	   1	   0	   3.68	  
	  	   AT5G17350	   6.65	   2.78	   9	   0	   0	   18.51	   108	   0	   0	   18.51	  
	  	   AT4G02380	   6.65	   12.97	   35	   2	   0	   86.31	   420	   23	   7	   86.31	  
	  	   AT5G47220	   6.62	   8.87	   33	   0	   0	   58.75	   394	   0	   0	   58.75	  
	  	   AT5G41740	   6.56	   5.22	   68	   2	   6	   34.28	   765	   28	   70	   34.28	  

 

Table A1.1 Genes Upregulated >6.5-fold in 35Spro:MYB64 Line 141 and Detectable in Col-0  

List of genes upregulated in the p35S::AtMYB64-141 lines compared with Col-0. Results have 
been filtered to show only genes upregulated >6.5-fold, and to exclude those represented by <3 
sequencing hits in the Col-0 sample. Gene symbols are correct as of the TAIR9 genome release 
(www.arabiopsis.org). Gold symbols = chosen for further study; red symbols = abiotic associations; 
blue symbols = biotic associations; white symbols = no obvious relation to stress responses; grey 
symbols = uncharacterised gene. 
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Appendix ii Statistical Analyses 

Appendix ii-a : Germination of Knockout Lines hsp17.6, 
hsp17.6a, and Wild Type Seedlings Following Heat Stress 
(Accompanies Figure 3.16) 

General Linear Model: Data versus Temp, Line  
 
Factor  Type   Levels  Values 
Temp    fixed       3  22, 42, 44 
Line    fixed       3  0, 448, 510 
 
 
Analysis of Variance for Data, using Adjusted SS for Tests 
 
Source     DF    Seq SS    Adj SS    Adj MS     F      P 
Temp        2  0.013300  0.013300  0.006650  0.94  0.427 
Line        2  0.019600  0.019600  0.009800  1.38  0.300 
Temp*Line   4  0.020200  0.020200  0.005050  0.71  0.605 
Error       9  0.063950  0.063950  0.007106 
Total      17  0.117050 
 
 
S = 0.0842945   R-Sq = 45.37%   R-Sq(adj) = 0.00% 
 
 
Unusual Observations for Data 
 
Obs     Data      Fit   SE Fit  Residual  St Resid 
 11  1.20000  1.05500  0.05961   0.14500      2.43 R 
 12  0.91000  1.05500  0.05961  -0.14500     -2.43 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp  Line  N  Mean  Grouping 
42    448   2   1.1  A 
44    448   2   1.0  A 
42      0   2   1.0  A 
22    510   2   1.0  A 
22    448   2   1.0  A 
22      0   2   1.0  A 
44    510   2   0.9  A 
42    510   2   0.9  A 
44      0   2   0.9  A 
 
Means that do not share a letter are significantly different. 
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Appendix ii-b : Analysis of Hypocotyl Extension in 
Knockout Lines hsp17.6 and hsp17.6a After Heat Stress 
(Accompanies Figure 3.18) 

General Linear Model: %Data versus StressT, Acclim, Line  
 
Factor   Type   Levels  Values 
StressT  fixed       3  22, 42, 44 
Acclim   fixed       2  0, 1 
Line     fixed       3  0, 176, 1761 
 
 
Analysis of Variance for %Data, using Adjusted SS for Tests 
 
Source                DF    Seq SS   Adj SS   Adj MS      F      P 
StressT                2   3.45114  3.51660  1.75830  99.44  0.000 
Acclim                 1   0.93385  0.93424  0.93424  52.84  0.000 
Line                   2   0.62254  0.63966  0.31983  18.09  0.000 
StressT*Acclim         2   0.47258  0.47557  0.23778  13.45  0.000 
StressT*Line           4   0.84343  0.85032  0.21258  12.02  0.000 
Acclim*Line            2   0.01783  0.01705  0.00853   0.48  0.618 
StressT*Acclim*Line    4   0.22975  0.22975  0.05744   3.25  0.013 
Error                233   4.11996  4.11996  0.01768 
Total                250  10.69107 
 
 
S = 0.132974   R-Sq = 61.46%   R-Sq(adj) = 58.65% 
 
 
Unusual Observations for %Data 
 
Obs    %Data      Fit   SE Fit  Residual  St Resid 
 31  0.92857  0.64294  0.03433   0.28563      2.22 R 
 62  1.25000  0.96507  0.03433   0.28493      2.22 R 
 74  0.58333  0.96507  0.03433  -0.38174     -2.97 R 
 75  0.50000  0.91257  0.03433  -0.41257     -3.21 R 
 77  1.25000  0.91257  0.03433   0.33743      2.63 R 
 79  1.18182  0.91257  0.03433   0.26925      2.10 R 
 80  1.33333  0.91257  0.03433   0.42076      3.28 R 
 81  0.41667  0.91257  0.03433  -0.49591     -3.86 R 
 89  0.58333  0.91257  0.03433  -0.32924     -2.56 R 
106  0.14286  0.51050  0.03554  -0.36764     -2.87 R 
111  0.86667  0.51050  0.03554   0.35616      2.78 R 
151  0.92857  0.66805  0.03433   0.26052      2.03 R 
156  0.17647  0.66805  0.03433  -0.49158     -3.83 R 
175  1.07692  0.80057  0.03554   0.27636      2.16 R 
192  0.93333  0.56026  0.04009   0.37307      2.94 R 
201  0.22222  0.56026  0.04009  -0.33804     -2.67 R 
203  1.06250  0.72008  0.03554   0.34242      2.67 R 
211  0.41176  0.72008  0.03554  -0.30832     -2.41 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Line   N  Mean  Grouping 
   0  89   0.9  A 
1761  75   0.8    B 
 176  87   0.8      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Acclim    N  Mean  Grouping 
1       125   0.9  A 
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0       126   0.8    B 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressT   N  Mean  Grouping 
22       84   1.0  A 
44       83   0.8    B 
42       84   0.7    B 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Acclim  Line   N  Mean  Grouping 
1          0  45   1.0  A 
1       1761  36   0.9  A B 
0          0  44   0.8    B C 
1        176  44   0.8    B C 
0       1761  39   0.8      C D 
0        176  43   0.7        D 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressT  Line   N  Mean  Grouping 
22          0  30   1.0  A 
22        176  30   1.0  A 
22       1761  24   1.0  A 
42          0  29   0.9  A 
44          0  30   0.8    B 
44       1761  25   0.8    B 
44        176  28   0.7    B 
42       1761  26   0.7    B 
42        176  29   0.6      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressT  Acclim   N  Mean  Grouping 
22       1       40   1.0  A 
22       0       44   1.0  A 
44       1       40   0.8    B 
42       1       45   0.8    B 
44       0       43   0.7      C 
42       0       39   0.6      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressT  Acclim  Line   N  Mean  Grouping 
22       1          0  15   1.0  A 
22       1        176  15   1.0  A 
22       0       1761  14   1.0  A 
22       0          0  15   1.0  A 
22       1       1761  10   1.0  A 
22       0        176  15   1.0  A 
42       1          0  15   1.0  A B 
44       1          0  15   0.9  A B 
42       1       1761  15   0.9  A B C 
42       0          0  14   0.8  A B C D 
44       1       1761  11   0.8  A B C D E 
44       1        176  14   0.8    B C D E 
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44       0       1761  14   0.7      C D E F 
42       1        176  15   0.7        D E F G 
44       0        176  14   0.7          E F G 
44       0          0  15   0.6          E F G 
42       0       1761  11   0.6            F G 
42       0        176  14   0.5              G 
 
Means that do not share a letter are significantly different. 
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Appendix ii-c : Analysis of Fresh Weight of Knockout 
Lines hsp17.6 and hsp17.6a Grown in the Presence of 0, 
40 or 60 mM NaCl (Accompanies Figure 3.19) 

 

General Linear Model: Data versus Salt, Line  
 
Factor  Type   Levels  Values 
Salt    fixed       3  0, 40, 60 
Line    fixed       3  0.00, 17.60, 17.62 
 
Analysis of Variance for Data, using Adjusted SS for Tests 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Salt  Line    N  Mean  Grouping 
 0     0.00  16   1.0  A 
 0    17.62   8   1.0  A 
 0    17.60   8   1.0  A 
40    17.60  24   0.7    B 
60    17.60  24   0.5      C 
40    17.62  17   0.5      C 
60    17.62  19   0.4        D 
40     0.00  48   0.4        D 
60     0.00  43   0.3        D 
 
Means that do not share a letter are significantly different. 
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Appendix ii-d : Germination of 35Spro:MYB64 Seeds 
Following Heat Stress (Accompanies Figure 5.2) 

General Linear Model: OX Data versus Temp2, Line2  
 
Factor  Type   Levels  Values 
Temp2   fixed       4  22, 44, 46, 48 
Line2   fixed       3  0, 127, 141 
 
 
Analysis of Variance for OX Data, using Adjusted SS for Tests 
 
Source       DF   Seq SS   Adj SS   Adj MS       F      P 
Temp2         3  3.85363  3.85363  1.28454  606.87  0.000 
Line2         2  0.00773  0.00773  0.00386    1.82  0.203 
Temp2*Line2   6  0.00844  0.00844  0.00141    0.66  0.680 
Error        12  0.02540  0.02540  0.00212 
Total        23  3.89520 
 
 
S = 0.0460072   R-Sq = 99.35%   R-Sq(adj) = 98.75% 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Temp2  Line2  N  Mean  Grouping 
44     127    2   1.0  A 
22     127    2   1.0  A 
22     141    2   1.0  A 
22       0    2   1.0  A 
44     141    2   0.9  A 
44       0    2   0.9  A 
46       0    2   0.9  A 
46     127    2   0.9  A 
46     141    2   0.8  A 
48     127    2   0.0    B 
48       0    2   0.0    B 
48     141    2  -0.0    B 
 
Means that do not share a letter are significantly different. 
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Appendix ii-e : Effect of Heat Stress on Hypocotyl 
Extension in 35Spro:MYB64 Lines (Accompanies Figure 
5.4) 

General Linear Model: %OX versus StressTOX, LineOX, AcclimOX  
 
Factor     Type   Levels  Values 
StressTOX  fixed       3  22, 44, 46 
LineOX     fixed       3  0, 127, 141 
AcclimOX   fixed       2  0, 1 
 
 
Analysis of Variance for %OX, using Adjusted SS for Tests 
 
Source                      DF   Seq SS   Adj SS   Adj MS        F      P 
StressTOX                    2  27.3865  25.0764  12.5382  1332.38  0.000 
LineOX                       2   1.6910   1.7238   0.8619    91.59  0.000 
AcclimOX                     1   0.2275   0.2339   0.2339    24.85  0.000 
StressTOX*LineOX             4   1.0275   1.0322   0.2581    27.42  0.000 
StressTOX*AcclimOX           2   0.2156   0.2647   0.1324    14.07  0.000 
LineOX*AcclimOX              2   0.0895   0.0879   0.0439     4.67  0.010 
StressTOX*LineOX*AcclimOX    4   0.4319   0.4319   0.1080    11.48  0.000 
Error                      203   1.9103   1.9103   0.0094 
Total                      220  32.9799 
 
 
S = 0.0970071   R-Sq = 94.21%   R-Sq(adj) = 93.72% 
 
Unusual Observations for %OX 
 
Obs      %OX      Fit   SE Fit  Residual  St Resid 
 13  1.18182  0.83228  0.03068   0.34953      3.80 R 
 18  0.61538  0.83228  0.03068  -0.21690     -2.36 R 
 21  0.66667  0.44044  0.03068   0.22622      2.46 R 
 40  0.66667  1.06421  0.03234  -0.39755     -4.35 R 
 41  0.69231  1.06421  0.03234  -0.37190     -4.07 R 
 42  0.75000  1.06421  0.03234  -0.31421     -3.44 R 
 43  0.72727  1.06421  0.03234  -0.33694     -3.68 R 
 45  1.37500  1.06421  0.03234   0.31079      3.40 R 
 46  1.50000  1.06421  0.03234   0.43579      4.76 R 
 47  1.33333  1.06421  0.03234   0.26912      2.94 R 
 48  1.33333  1.06421  0.03234   0.26912      2.94 R 
 56  0.22222  0.42639  0.03234  -0.20417     -2.23 R 
208  0.73333  0.94386  0.02690  -0.21053     -2.26 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressTOX   N  Mean  Grouping 
22         74   1.0  A 
44         74   0.8    B 
46         73   0.2      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
LineOX   N  Mean  Grouping 
  0     57   0.8  A 
141     77   0.6    B 
127     87   0.6      C 
 
Means that do not share a letter are significantly different. 
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Grouping Information Using Tukey Method and 95.0% Confidence 
 
AcclimOX    N  Mean  Grouping 
1         110   0.7  A 
0         111   0.6    B 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressTOX  LineOX   N  Mean  Grouping 
22           0     19   1.0  A 
22         141     26   1.0  A 
22         127     29   1.0  A 
44           0     19   0.9  A 
44         141     26   0.8    B 
44         127     29   0.7      C 
46           0     19   0.4        D 
46         141     25   0.1          E 
46         127     29   0.0          E 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressTOX  AcclimOX   N  Mean  Grouping 
22         1         37   1.0  A 
22         0         37   1.0  A 
44         1         37   0.9    B 
44         0         37   0.7      C 
46         1         36   0.2        D 
46         0         37   0.2        D 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
LineOX  AcclimOX   N  Mean  Grouping 
  0     1         27   0.8  A 
  0     0         30   0.8  A 
141     1         38   0.7    B 
127     1         45   0.6      C 
141     0         39   0.6      C 
127     0         42   0.6      C 
 
Means that do not share a letter are significantly different. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
StressTOX  LineOX  AcclimOX   N  Mean  Grouping 
44           0     1          9   1.1  A 
22         141     1         13   1.0  A 
22           0     0         10   1.0  A 
22           0     1          9   1.0  A 
22         141     0         13   1.0  A 
22         127     1         15   1.0  A 
22         127     0         14   1.0  A 
44         141     1         13   0.9  A B 
44           0     0         10   0.8    B C 
44         127     0         14   0.7      C D 
44         127     1         15   0.6        D 
44         141     0         13   0.6        D 
46           0     0         10   0.4          E 
46           0     1          9   0.4          E 
46         141     1         12   0.1            F 
46         127     1         15   0.1            F 
46         141     0         13   0.1            F 
46         127     0         14  -0.0            F 
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Means that do not share a letter are significantly different. 
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Appendix ii-f : Analysis of Fresh Weight of 
35Spro:MYB64 Lines Grown in the Presence of 0 or 80 
mM NaCl (Accompanies Figure 5.5) 

General Linear Model: Data versus Line, Salt  
 
Factor  Type   Levels  Values 
Line    fixed       2  127, 141 
Salt    fixed       2  0, 80 
 
 
Analysis of Variance for Data, using Adjusted SS for Tests 
 
Source     DF  Seq SS  Adj SS  Adj MS     F      P 
Line        1    5138    3576    3576  1.83  0.184 
Salt        1   19555   16837   16837  8.60  0.006 
Line*Salt   1    2287    2287    2287  1.17  0.287 
Error      38   74383   74383    1957 
Total      41  101364 
 
 
S = 44.2430   R-Sq = 26.62%   R-Sq(adj) = 20.82% 
 
 
Unusual Observations for Data 
 
Obs     Data      Fit  SE Fit  Residual  St Resid 
 31  300.000  140.704  12.772   159.296      3.76 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Line   N   Mean  Grouping 
141   24  146.9  A 
127   18  127.3  A 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Data 
All Pairwise Comparisons among Levels of Line 
Line = 127  subtracted from: 
 
      Difference       SE of           Adjusted 
Line    of Means  Difference  T-Value   P-Value 
141        19.56       14.47    1.352    0.1845 
 
 
Grouping Information Using Tukey Method and 95.0% Confidence 
 
Salt   N   Mean  Grouping 
80    27  158.3  A 
 0    15  115.9    B 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Data 
All Pairwise Comparisons among Levels of Salt 
Salt =  0  subtracted from: 
 
      Difference       SE of           Adjusted 
Salt    of Means  Difference  T-Value   P-Value 
80         42.43       14.47    2.933    0.0057 
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Grouping Information Using Tukey Method and 95.0% Confidence 
 
Line  Salt   N   Mean  Grouping 
141   80    15  175.9  A 
127   80    12  140.7  A B 
141    0     9  117.8    B 
127    0     6  113.9    B 
 
Means that do not share a letter are significantly different. 
 
 

Tukey’s MSD = 58.06 
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Appendix ii-g : Cotyledon Expansion in 35Spro:MYB64 
Lines and Wild Type at 0.5µM ABA (Days 6-10) 
(Accompanies Figure 5.8) 
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General Linear Model: Cot_0.5 versus Line_0.5  
 
Factor    Type   Levels  Values 
Line_0.5  fixed       3  0, 127, 141 
 
 
Analysis of Variance for Cot_0.5, using Adjusted SS for Tests 
 
Source    DF  Seq SS  Adj SS  Adj MS      F      P 
Line_0.5   2  21.977  21.977  10.989  31.97  0.000 
Error      8   2.750   2.750   0.344 
Total     10  24.727 
 
 
S = 0.586302   R-Sq = 88.88%   R-Sq(adj) = 86.10% 
 
 
Unusual Observations for Cot_0.5 
 
Obs  Cot_0.5      Fit  SE Fit  Residual  St Resid 
  4  29.0000  27.7500  0.2932    1.2500      2.46 R 
 
R denotes an observation with a large standardized residual. 
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Appendix ii-h : Analysis of Chlorophyll Production in 
35Spro:MYB64 Lines and Wild Type in the Presence of 
0.5 or 1µM ABA  (Accompanies Figure 5.9) 

10-1-2

99

90

50

10

1

Residual

P
er

ce
nt

30292827

1

0

-1

-2

Fitted Value

R
es

id
ua

l

1.51.00.50.0-0.5-1.0-1.5

10.0

7.5

5.0

2.5

0.0

Residual

Fr
eq

ue
nc

y

151413121110987654321

1

0

-1

-2

Observation Order

R
es

id
ua

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Data_0.5

  
 
General Linear Model: Data_0.5 versus Line_0.5  
 
Factor    Type   Levels  Values 
Line_0.5  fixed       3  0, 127, 141 
 
 
Analysis of Variance for Data_0.5, using Adjusted SS for Tests 
 
Source    DF  Seq SS  Adj SS  Adj MS      F      P 
Line_0.5   2  38.533  38.533  19.267  44.46  0.000 
Error     12   5.200   5.200   0.433 
Total     14  43.733 
 
 
S = 0.658281   R-Sq = 88.11%   R-Sq(adj) = 86.13% 
 
 
Unusual Observations for Data_0.5 
 
Obs  Data_0.5      Fit  SE Fit  Residual  St Resid 
  1   25.0000  26.6000  0.2944   -1.6000     -2.72 R 
  5   28.0000  26.6000  0.2944    1.4000      2.38 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 99.9% Confidence 
 
Line_0.5  N  Mean  Grouping 
141       5  30.0  A 
127       5  30.0  A 
  0       5  26.6    B 
 
Means that do not share a letter are significantly different. 
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General Linear Model: Data_1 versus Line_1  
 
Factor  Type   Levels  Values 
Line_1  fixed       3  0, 127, 141 
 
 
Analysis of Variance for Data_1, using Adjusted SS for Tests 
 
Source  DF  Seq SS  Adj SS  Adj MS      F      P 
Line_1   2  565.17  565.17  282.58  49.38  0.000 
Error    9   51.50   51.50    5.72 
Total   11  616.67 
 
 
S = 2.39212   R-Sq = 91.65%   R-Sq(adj) = 89.79% 
 
 
Grouping Information Using Tukey Method and 99.9% Confidence 
 
Line_1  N  Mean  Grouping 
127     4  25.2  A 
141     4  23.7  A 
  0     4  10.0    B 
 
Means that do not share a letter are significantly different. 
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Appendix ii-i : Analysis of Fresh Weight of 
35Spro:MYB64 Lines and Wild Type Germinated in the 
Presence of 0, 0.5, or 1µM ABA (Accompanies Figure 
5.10) 

General Linear Model: FWt versus CodeABA, CodeLine  
 
Factor    Type   Levels  Values 
CodeABA   fixed       3  0.0, 0.5, 1.0 
CodeLine  fixed       3  0, 127, 141 
 
 
Analysis of Variance for FWt, using Adjusted SS for Tests 
 
Source             DF   Seq SS   Adj SS  Adj MS      F      P 
CodeABA             2   10.876   14.368   7.184   2.99  0.052 
CodeLine            2   99.434  103.430  51.715  21.54  0.000 
CodeABA*CodeLine    4   41.313   41.313  10.328   4.30  0.002 
Error             230  552.177  552.177   2.401 
Total             238  703.800 
 
 
S = 1.54944   R-Sq = 21.54%   R-Sq(adj) = 18.81% 
 
 
Unusual Observations for FWt 
 
Obs      FWt     Fit  SE Fit  Residual  St Resid 
 51   6.6000  3.5600  0.3099    3.0400      2.00 R 
 52   7.0000  3.5600  0.3099    3.4400      2.27 R 
 98   8.1000  4.9222  0.2982    3.1778      2.09 R 
 99   8.7000  4.9222  0.2982    3.7778      2.48 R 
100   9.3000  4.9222  0.2982    4.3778      2.88 R 
101  12.0000  4.9222  0.2982    7.0778      4.65 R 
102   1.2100  4.3004  0.2928   -3.0904     -2.03 R 
129   8.0000  4.3004  0.2928    3.6996      2.43 R 
130   1.1000  4.1538  0.3039   -3.0538     -2.01 R 
239   7.7000  3.9571  0.2928    3.7429      2.46 R 
 
R denotes an observation with a large standardized residual. 
 
Grouping Information Using Tukey Method and 99.9% Confidence 
 
CodeABA  CodeLine   N  Mean  Grouping 
0.0      127       27   4.9  A 
0.5      127       28   4.3  A B 
1.0      127       26   4.2  A B 
0.5      141       28   4.0  A B 
1.0      141       28   4.0  A B 
0.5        0       25   3.6  A B C 
0.0      141       28   3.2  A B C 
0.0        0       27   3.0    B C 
1.0        0       22   1.9      C 
 
Means that do not share a letter are significantly different. 
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