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Abstract 
Rift Valley fever is a mosquito-borne viral disease of ruminants, camels and 

humans. In Tanzania, outbreaks have occurred at intervals of 10 - 20 years with 

major epidemics reported in 1977, 1997/98 and 2006/2007.  Our ability to prevent 

future epidemics is limited by poor understanding of how the virus circulates 

between major epidemics. This study aimed to investigate the epidemiology of 

inter-epidemic RVFV infections in northern Tanzania.  

This study involved (a) collection and characterisation of mosquitoes; (b) RVFV 

serological analysis of serum samples from cattle (n=3582), sheep (n=2586), goats 

(n=3303) and human populations (n=565) collected through cross-sectional 

household surveys; (c) analysis of risk factors for livestock and human 

seropositivity; (d) molecular detection of RVFV in mosquitoes and diagnostic 

materials collected during investigation of 190 livestock abortion events.  

Generalised Linear Mixed-Effects Models (GLMMs) were used to examine predictors 

of vector mosquito abundance, and risk factors for RVFV exposure in livestock and 

humans. Maximum Entropy (MaxEnt) algorithm was used to model vector mosquito 

habitat suitability and spatial distribution.  

A total of 2224 mosquitoes were collected including Culex spp (n = 1123), 

Anopheles spp (n=1006), Mansonia spp  (n=56), Aedes spp (n=34), and 

Coquillettidia spp  (n=5) with significant variation in abundance with percentage 

difference in normalised difference vegetation index (NDVI). No RVFV infections 

were detected in any of the mosquitoes collected.  RVFV seroprevalence was  

higher in cattle 4.4% (95% CI:3.7-5.1), than in sheep 2.6%, (95% CI: 2.0-3.3) and 

goats 1.4% (95%CI: 1.0-1.8), with seropositivity in young animals providing evidence 

of recent virus circulation.  Seropositivity  in livestock increased with age (OR=1.3, 

CI: 1.2 - 1.4, p<0.001) consistent with endemic circulation and was associated with 

a history of abortion in goats (OR=2.5, 95%CI: 1.1 - 5.4, P=0.023) and sheep 

(OR=2.7, 95%CI: 1.1 - 6.3, P=0.025).  Human seroprevalence was 8.5% (95% CI: 6.4 - 

11.2) and varied between villages and between households  within villages.  

Handling of aborted material (OR=4.3, 95% CI: 1.7-10.8) and consumption of  raw 

milk (OR=4.1, 95%CI: 1.8 - 9.3, P=0.001) were significant risk factors for human 

seropositivity. RVFV was detected in a cluster of 14 (7.4%) abortion cases including 

the milk of three aborting dams. This provides strong evidence for continuous RVFV 

circulation in livestock between major epidemics in Tanzania and that unboiled 

milk is an important potential source of infection for people.  



3 

Table of contents 

Abstract ....................................................................................... 2 

Table of contents.......................................................................... 3 

List for tables ............................................................................... 7 

List for figures .............................................................................. 8 

Acknowledgements ...................................................................... 11 

Author’s declaration .................................................................... 12 

Abbreviations .............................................................................. 13 

Chapter One ................................................................................ 15 

1 Introduction and Literature review ................................................. 15 

1.1 Background .......................................................................... 15 

1.2 Rift Valley fever virus ............................................................. 17 

1.3 Rift Valley Fever virus transmission ............................................ 19 

1.4 Potential Rift valley fever virus (RVFV) vectors in northern Tanzania .. 21 

1.5 Ecology and feeding preference of potential RVFV Vectors ............... 22 

1.6 Serological survey for RVFV infection in Tanzania .......................... 24 

1.7 Risk factors for RVFV inter-epidemic infections in livestock and humans

 25 

1.8 Detection of Rift Valley Fever virus infections ............................... 27 

1.8.1 Serological detection of RVFV infections ................................... 27 

1.8.1.1 Virus Neutralization Test ................................................... 28 

1.8.1.2 Enzyme-linked immunosorbent assay (ELISA) ........................... 29 

1.8.2 Molecular detection of RVFV infections .................................... 31 

1.9 Rationale for the study ........................................................... 32 

1.9.1 Problem Statement ............................................................ 32 

1.9.2 Study Justification ............................................................. 32 

1.10 Objectives ......................................................................... 32 

1.10.1 General Objective ............................................................. 32 

1.10.2 Specific Objectives ............................................................ 32 

Chapter Two ............................................................................... 34 

2 Core Methods ............................................................................ 34 

2.1 Study Area ........................................................................... 35 

2.2 Village and household selection ................................................. 36 

2.3 Ethical Clearance .................................................................. 37 

2.4 Sample collection and preparation ............................................. 38 

2.4.1 Animal Sampling ............................................................... 38 



4 

2.4.2 Human sampling ................................................................ 39 

2.4.3 Mosquito Sampling ............................................................. 39 

2.4.3.1 Selection of mosquito sampling sites ..................................... 39 

2.4.3.2 Mosquito collection methods .............................................. 40 

2.4.3.3 Mosquito trap setting ....................................................... 41 

2.4.3.4 Mosquito sorting ............................................................. 42 

2.4.3.5 Environmental data ......................................................... 43 

2.5 Laboratory analyses ............................................................... 44 

2.5.1 Serological detection of RVFV antibodies in livestock and human sera 44 

2.5.1.1 In-house ELISA ................................................................ 45 

2.5.1.2 ID Screen® Rift Valley Fever Competition Multi-species ELISA ....... 46 

2.5.1.3 ID Screen® Rift Valley Fever IgM Capture ............................... 48 

2.5.1.4 Virus Neutralization Test ................................................... 50 

2.5.2 Molecular detection of Rift Valley fever virus in  Mosquitoes, aborted 

materials and milk ....................................................................... 52 

2.5.2.1 RNA Purification from mosquito samples ................................ 52 

2.5.2.2 RNA preparation from swabs, placenta tissue  and milk using 

RNeasy® Mini Kit ...................................................................... 53 

2.5.2.3 Positive and negative control RNA ........................................ 54 

2.5.2.4 PCR Mastermix preparation ................................................ 54 

2.5.2.5 Real time Quantitative Reverse Transcription Polymerase Chain 

Reaction (RT-qPCR) ................................................................... 55 

2.6 Statistical Analysis ................................................................. 56 

Chapter Three ............................................................................. 58 

3 The ecology of RVFV mosquito vectors in northern Tanzania ................. 58 

3.1 Introduction ......................................................................... 58 

3.2 Methods .............................................................................. 59 

3.2.1 Study Area ...................................................................... 59 

3.2.2 Mosquito Sampling ............................................................. 60 

3.2.2.1 Selection of sampling sites ................................................. 60 

3.2.2.2 Mosquito collection ......................................................... 60 

3.2.2.3 Environmental data ......................................................... 60 

3.2.3 Data analysis .................................................................... 61 

3.2.3.1 Determinants of mosquito vectors abundance .......................... 61 

3.2.3.2 Mosquito vectors distribution .............................................. 62 

3.2.3.3 Modelling procedure ........................................................ 64 

3.3 Results ............................................................................... 65 

3.3.1 RVFV vector species abundance and composition ......................... 65 

3.3.2 Predictors of mosquito abundance .......................................... 66 

3.3.3 RVF vector genera distribution modelling .................................. 67 

3.3.4 Jackknife test of regularized training gain for RVF vectors species 

habitat suitability ........................................................................ 70 

3.3.5 Evaluation of Model performance ........................................... 71 

3.3.6 Habitat suitability maps for RVFV vector species ......................... 73 



5 

3.4 Discussion ........................................................................... 75 

3.5 Conclusions .......................................................................... 77 

Chapter Four ............................................................................... 78 

4 Evaluation of the diagnostic accuracy of an indirect in-house ELISA for 

detection of Rift Valley fever virus-specific antibodies in small ruminants ...... 78 

4.1 Introduction ......................................................................... 78 

4.2 Methods .............................................................................. 79 

4.2.1 Selection of sera samples ..................................................... 79 

4.2.2 Comparing the diagnostic accuracy between the in-house ELISA and the 

commercial IDVet cELISA ............................................................... 80 

4.2.1 Accuracy, sensitivity and specificity of the test .......................... 81 

4.2.2 Determining the cut-off points for the in-house ELISA ................... 81 

4.3 Results ............................................................................... 82 

4.3.1 Confirmation of diagnostic accuracy of the commercial cELISA using 

VNT as the gold standard ............................................................... 82 

4.3.2 Selection of cut -off point for the in-house ELISA ......................... 83 

4.4 Discussion ........................................................................... 85 

4.5 Conclusion ........................................................................... 86 

Chapter Five ............................................................................... 87 

5 Inter-epidemic seroprevalence and risk factors for Rift Valley fever virus 

seropositivity in domestic ruminants and human populations in northern 

Tanzania ....................................................................................... 87 

5.1 Introduction ......................................................................... 87 

5.2 Methods .............................................................................. 88 

5.2.1 Study Area ...................................................................... 88 

5.2.2 Sample collection .............................................................. 89 

5.2.3 Laboratory analyses ........................................................... 89 

5.2.4 Statistical Analysis ............................................................. 90 

5.3 Results ............................................................................... 91 

5.3.1 Seroprevalence in livestock .................................................. 91 

5.3.2 Risk factors for RVFV Seropositivity in livestock .......................... 98 

5.3.2.1 Univariable logistic regression analysis of risk factors for RVFV 

seropositivity in livestock ............................................................ 98 

5.3.2.2 Multivariable logistic regression analysis of risk factors for 

seropositivity in livestock .......................................................... 104 

5.3.3 Seroprevalence in humans .................................................. 105 

5.3.4 Risk factors for seropositivity in humans ................................. 107 

5.3.4.1 Univariable logistic regression analysis of risk factors for RVFV 

seropositivity in humans ............................................................ 107 

5.3.4.2 Multivariable logistic regression analysis of risk factors for 

seropositivity in humans ............................................................ 109 

5.4 Discussion ......................................................................... 109 



6 

5.5 Conclusion ......................................................................... 112 

Chapter Six ............................................................................... 114 

6 Molecular survey of Rift Valley fever virus in mosquitoes and diagnostic 

samples and milk from aborting livestock in northern Tanzania ................. 114 

6.1 Introduction ....................................................................... 114 

6.2 Methods ............................................................................ 116 

6.2.1 Study area ..................................................................... 116 

6.2.2 Sample collections ........................................................... 117 

6.2.3 RNA preparation .............................................................. 118 

6.2.4 Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

 118 

6.2.5 Data management ........................................................... 119 

6.3 Results ............................................................................. 119 

6.3.1 RVFV detection in mosquito vector species .............................. 119 

6.3.2 RVFV detection in vaginal and foetal swabs, placenta tissue and milk

 120 

6.3.3 Distribution of the RVFV positive cases ................................... 123 

6.4 Discussion ......................................................................... 124 

6.5 Conclusion ......................................................................... 128 

Chapter Seven ........................................................................... 129 

7 Discussion .............................................................................. 129 

7.1 Ecology of RVF virus vectors in northern Tanzania ....................... 129 

7.2 RVFV infection in livestock in northern Tanzania ......................... 130 

7.3 Detection of Rift Valley fever virus RNA in milk ........................... 131 

7.4 RVF as an emerging disease threat in urban communities ............... 132 

7.5 RVFV infection among humans in northern Tanzania ..................... 133 

7.6 Serological and molecular detection of RVFV infection .................. 133 

7.7 Future prospects for RVF research, surveillance and control in Tanzania

 134 

List of references .......................................................................... 135 

Appendices .................................................................................. 148 

Appendix I: Mosquito survey consent form (English version) ................... 148 

Appendix II: Mosquito survey consent form (Swahili version) .................. 151 

Appendix III: Mosquito field data record sheet .................................... 154 

 



7 

List for tables 
Table 2.1 Activities that relates to completion of my PhD along with the roles of 

people who participated in various activities. ........................................... 34 

Table 2.2 PCR Master Mix components, concentrations, and volumes used in the 

test .............................................................................................. 54 

Table 2.3 Sequences of Primers and Probe used in the PCR reaction ................. 55 

Table 3.1 Mosquito species collected across study villages in northern Tanzania .. 66 

Table 3.2 Summary of the Generalized Mixed-effect Model showing factors 

associated with Anopheles and Culex abundance in northern Tanzania .............. 67 

Table 3.3 Environmental variables used in modeling species distribution and their 

percent predictive contribution of each variable as generated by MaxEnt. ......... 69 

Table 4.1 A two by two contingency table for results of the index test and the 

reference standard tests. .................................................................... 80 

Table 4.2 Summary results of the test outcomes of the virus neutralization test 

(standard) and the commercial competition ELISA ...................................... 82 

Table 4.3 Test outcomes of the commercial competition ELISA (reference) and the 

in-house ELISA, where percent positivity, PP >30  is taken as diagnostic of RVFV 

exposure using the in-house ELISA. ........................................................ 83 

Table 4.4 Different cut-off points of the in-house ELISA and their corresponding 

sensitivity, specificity, positive likelihood ratio and negative likelihood ratio. ..... 83 

Table 5.1 RVFV seroprevalence in livestock (cattle, goats and sheep) by sampled 

village in northern Tanzania ................................................................ 94 

Table 5.2 Univariable analysis of risk factors RVFV seropositivity in cattle in 

northern Tanzania ............................................................................ 98 

Table 5.3 Univariable analysis of risk factors for RVFV seropositivity in goats .... 100 

Table 5.4 Univariable analysis of risk factors for RVFV seropositivity in sheep ... 102 

Table 5.5 Multivariable analysis of risk factors for RVFV seropositivity in all species 

combined, cattle, goats and sheep in northern Tanzania ............................ 104 

Table 5.6 Univariable analysis of risk factors for RVFV seropositivity in human .. 107 

Table 5.7 Multivariable analysis of risk factors for RVFV seropositivity in humans 109 

Table 6.1 RT-qPCR results of samples collected from abortion cases clustered by 

species and sample type showing number of each sample type tested and those 

tested positive for RVFV ................................................................... 120 

Table 6.2 RT-qPCR results of samples collected from abortion cases clustered by 

site abortion case and sample type showing RVFV status as positive (+) or negative 

(-) and unavailable sample (na) .......................................................... 121 



8 

List for figures 

Figure 1.1 Map of Africa showing countries with history of RVF outbreaks  and those 

with reported evidence of RVFV circulation .............................................. 17 

Figure 1.2 Schematic illustration of RVFV genome containing  small (S), medium 

(M), and large (L) RNA segments and surface glycoproteins (Gn and Gc) 

incorporated into the lipid bilayer ......................................................... 18 

Figure 1.3 Schematic diagram showing potential RVFV transmission routes involving 

vectors and host species ..................................................................... 21 

Figure 1.4 Schematic representation of time course viraemia and antibody response 

against RVFV in experimentally infected animals ........................................ 28 

Figure 1.5 Schematic representation of the ELISA test and procedure involved in 

detecting specific antibodies in a given sample. ........................................ 30 

Figure 2.1 Map of northern Tanzania showing districts in the study area including 

those with record of previous RVF outbreaks and location of villages where the 

study was carried out ........................................................................ 36 

Figure 2.2 Pictures of different potential mosquito breeding habitat that were 

considered for trapping in the study area ................................................. 40 

Figure 2.3 Different types of mosquito traps that were used for mosquito 

collections ..................................................................................... 41 

Figure 2.4 Plate showing mosquitoes sorted from other insects using magnifying 

hand lens and forceps, morphologically identified and stored in labeled cryovials 43 

Figure 2.5 In-house plate layout showing the arrangement of control and test 

samples in plate wells. C+ = positive control, C- = negative control, S1-S46 = test 

samples. ........................................................................................ 46 

Figure 2.6 ELISA plates showing comparison of two assays, In-house ELISA (blue) and 

ID Screen Multi-species Competitive ELISA (yellow) ..................................... 48 

Figure 2.7 Plate layout showing how controls, test samples and RVFV-nucleoprotein 

were added to plate wells ................................................................... 50 

Figure 3.1 Map of northern Tanzania showing districts and locations of study 

villages (orange circles) where mosquitoes were collected ............................ 59 

Figure 3.2 Map of northern Tanzania showing mosquito occurrence locations used in 

species distribution modeling ............................................................... 62 

Figure 3.3 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Aedes spp occurrence data ........................... 68 

Figure 3.4 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Culex spp occurrence data ........................... 68 



9 

Figure 3.5 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Anopheles spp occurrence data ...................... 69 

Figure 3.6 Jackknife test of variable importance for Aedes spp distribution 

prediction ...................................................................................... 70 

Figure 3.7 Jackknife test of variable importance for Culex spp distribution 

prediction ...................................................................................... 71 

Figure 3.8 Jackknife test of variable importance for Anopheles spp distribution 

prediction ...................................................................................... 71 

Figure 3.9 The Receiver Operating Characteristic (ROC) Curve or AUC for Aedes spp 

showing the mean (red) and standard deviation (blue) averaged from the 10 

replicate runs .................................................................................. 72 

Figure 3.10 The Receiver Operating Characteristics (ROC) Curve or AUC for Culex 

spp showing the mean (red) and standard deviation (blue) averaged from 10 

replicate runs .................................................................................. 72 

Figure 3.11 The Receiver Operating Characteristic (ROC) Curve of AUC for 

Anopheles spp showing the mean (red) and standard deviation (blue) averaged from 

10 replicate runs .............................................................................. 73 

Figure 3.12 Predicted habitat suitability for Aedes spp in Northern Tanzania. Blue 

color indicates low suitability and red indicates high suitability. ..................... 74 

Figure 3.13 Predicted habitat suitability for Culex spp in Northern Tanzania. Blue 

color indicates low suitability and red indicates high suitability. ..................... 74 

Figure 3.14 Predicted habitat suitability for Anopheles spp in Northern Tanzania. 

Blue color indicates low suitability and red indicates high suitability. ............... 75 

Figure 4.1 The ROC curve and distribution graphs of test results showing the cut-off 

points, corresponding sensitivity and specificity and distribution of positive and 

negative samples .............................................................................. 85 

Figure 5.1 Map of northern Tanzania showing regions, districts and location of the 

35 sero-survey study villages in the study area. ......................................... 88 

Figure 5.2 A plot of RVFV seroprevalence in different age groups of cattle in 

northern Tanzania ............................................................................ 92 

Figure 5.3 A plot of seroprevalence in different age groups of small ruminants 

(sheep and goats) in northern Tanzania ................................................... 92 

Figure 5.4. Map of northern Tanzania showing study regions, districts and the 

village-level seroprevalence in livestock .................................................. 93 

Figure 5.5. Map of northern Tanzania showing study regions, districts and the 

village-level seroprevalence in humans. ................................................ 106 



10 

Figure 6.1 Map of northern Tanzania  showing districts and location of mosquitoes 

and abortions study villages. .............................................................. 117 

Figure 6.2 Amplification curves for RT-qPCR of RVFV, showing normalized 

fluorescence intensity over time (PCR cycles) for mosquito samples, positive 

controls and negative controls ............................................................ 120 

Figure 6.3 Outbreak curve showing all abortion cases (blue bars) included in the 

study and the number which were RVFV positive (orange bars). .................... 123 

Figure 6.4 Map of northern Tanzania showing regions, districts, study sites and 

locations of the RVFV positive abortion cases .......................................... 124 



11 

Acknowledgements 

Firstly, I would like to thank my supervisors Professors Sarah Cleaveland, Brian 

Willett, and Heather Ferguson for all their guidance and support throughout my 

PhD studies. I would also like to sincerely thank Will de Glanville and Paul Johnson 

for their helpful guidance in statistical analyses, comments and suggestions when 

writing this thesis. I must acknowledge and thank Will for all his tireless patience 

when helping me with R, and also for all the encouragement throughout the PhD 

learning process. 

With gratitude, I particularly acknowledge the Biotechnology and Biological 

Sciences Research Council (BBSRC) for funding and supporting my PhD studies 

through 'Zoonoses and Emerging Livestock Systems - Associated Studentships (ZELS-

AS)' programme.  

I would also like to acknowledge the contribution of the field teams for SEEDZ, 

BacZoo, and SEBI-TZ study projects, for their immeasurable hard work in field 

sample collections.  

Finally, I  thank my family for their love, continuous support and encouragement. 

 



12 

Author’s declaration  
 

I declare that, except where explicit reference is made to the contribution of 

others, that this thesis is the result of my own work and has not been submitted for 

any other degree at the University of Glasgow or any other institution. 



13 

Abbreviations 
AIC  Akaike`s information criterion  
AUC  Area under the curve  
BIC  Bayesian information criterion  
BBSRC Biotechnology and Biological Sciences Research 

Council 
CDC  United States Centres for Disease Control and 

Prevention  
CI  Confidence interval  
ELISA  Enzyme-Linked-ImmunoSorbent Assay  
ENM  Ecological niche models  
ENSO  El Nino-Southern Oscillation  
ESRI  Environmental Systems Research Institute  
EVI Enhanced Vegetation Index 
FAO  Food and Agriculture Organization  
GIS  Geographical Information System  
GPS  Geographical Positioning System  
HRPO  Horseradish peroxidase  
IEP  Inter-epidemic period  
IgG  Immunoglobulin G  
IgM  Immunoglobulin M  
KCMC Kilimanjaro Christian Medical Centre 
KCRI Kilimanjaro Clinical Research Institute 
MaxEnt  Maximum entropy-based niche modelling 

algorithm  
NDVI  Normalized Difference Vegetation Index  
NIMR  National Institute for Medical Research  
OD  Net optic density  
OIE  World Organisation for Animal Health  
p  Probability value  
PBS  Phosphate-buffered saline  
PCR  Polymerase chain reaction  
PP  Percentage positivity  
RNA Ribonucleic acid  
ROC  Receiver operating characteristic curves  
RT-PCR  Real Time-polymerase chain reaction  
RVF  Rift Valley fever  
RVFV  Rift Valley fever virus  
SEBI-TZ Supporting Evidence Based Interventions to 

Achieve Agricultural Development Goals in 
Tanzania 

SEEDZ Social, Economic and Environmental drivers of 
Zoonoses 

Spp  Species  
TAWIRI  Tanzania Wildlife Research Institute  
TCID Tissue Culture Infective Dose  
UK  United Kingdom  
VNT Virus Neutralization Test 
WHO  World Health Organization  
0C  Celsius or Degree centigrade  
%  Percent  
<  Less than sign  
>  Greater than sign  



14 

≤  Less than or equal to sign  
≥  Greater than or equal to sign  
 

 



15 

Chapter One 

1 Introduction and Literature review 

1.1 Background 

Rift Valley fever (RVF) is an arthropod-borne viral disease of ruminants, camels and 

humans (Gerdes, 2004). The Rift Valley Fever virus (RVFV) can be transmitted 

through mosquito bites or by exposure to infectious blood and bodily fluids (Balkhy 

and Memish, 2003). Unprotected handling of the afterbirth, aborted material 

(Fontenille et al., 1998), and drinking raw, unpasteurized milk from infected 

animals have been suggested as potential routes of transmission  (Balkhy and 

Memish, 2003). The disease in humans is often asymptomatic, but clinical signs in 

severe cases can manifest as flu-like illness (Davies et al., 1985), haemorrhagic 

disease with liver involvement (Gerdes, 2004) and ocular or neurological lesions 

(Gerdes, 2004; Pepin et al., 2010). In ruminants, RVF may be inapparent in non-

pregnant adults (Davies et al., 1985) but outbreaks are characterised by the onset 

of abortions and high neonatal mortality (Swanepoel and Paweska, 2011b).  

Rift Valley Fever was first identified in 1931 on a farm in the Rift Valley of Kenya 

(Daubney et al., 1931).  Since then, outbreaks have been reported largely in sub-

Saharan Africa, West Africa, North Africa (Seufi and Galal, 2010) and in 2000 in the 

Arabian peninsula (Bird et al., 2007) (Figure 1.1). The disease is considered to be 

endemic in sub-Saharan African countries, with periodic major outbreaks, 

associated with episodes of heavy rainfall and flooding (Davies et al., 1985, Nderitu 

et al., 2010). Outside sub-Saharan Africa, RVF epidemics have been confirmed in 

Egypt in 1977 (El-Akkad, 1978), Mauritania and Senegal in West Africa  (Fontenille 

et al., 1998, Diallo et al., 2005), Saudi Arabia and Yemen in the Arabian Peninsula 

(Jupp et al., 2002), and Madagascar and the Comoros islands in the Indian Ocean 

(Morvan et al., 1991, Sissoko et al., 2009). The spread of RVFV outside its endemic 

region raises concerns about threat of RVFV introductions to new geographical 

areas (Pepin et al., 2010).  

Since the 1970s, periodic epidemics of RVF have been reported in an increasing 

number of countries in Eastern and Southern Africa including Kenya, Somalia, 

Sudan, Tanzania, Zimbabwe, and South Africa (Nderitu et al., 2010). The RVF 

epidemic of 1997–1998 that affected Kenya, Somalia, and Tanzania was 

characterized by outbreaks that started in the North Eastern Province of Kenya in 

November 1997 and ended with cases reported from the north-central region of 
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Tanzania in June 1998 (WHO, 2007, CDC, 2007). Another RVF epidemic occurred in 

2006–2007 in these three countries, with cases first reported in the North Eastern 

Province of Kenya and later in Tanzania, where the last livestock and human cases 

were reported in June 2007 (Mohamed et al., 2010, Munyua et al., 2010). Recent 

outbreaks in East Africa were reported in 2018 in Kenya, Rwanda and Uganda 

involving livestock and humans (Anyamba et al., 2018) and in South Sudan (WHO, 

2018). 

In Tanzania, epidemics over the past five decades have occurred at 10-20 years 

interval with major epidemics reported in 1977, 1997/98 and 2006/2007 (Mohamed 

et al., 2010, Karimuribo et al., 2012, Fyumagwa et al., 2012).  The RVF epidemics 

(outbreaks) of 1977 and 1997/98 were largely confined to northern Tanzania but 

that of 2006/2007 extended to central and southern parts of the country with 

animal and human cases reported (Mohamed et al., 2010, Fyumagwa et al., 2012). 

Despite recent reports of RVF in Kenya, Rwanda and Uganda until early September 

2018, no human or animal cases were officially documented in Tanzania since 2007. 

Due to RVF reports in the region, in June 2018 an RVF alert was issued by the 

Ministry of Livestock and Fisheries (http://www.xinhuanet.com/english/2018-

06/19/c_137263241.htm). 
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Figure 1.1 Map of Africa showing countries with history of RVF outbreaks  and those 

with reported evidence of RVFV circulation. Map recreated in QGIS 2.14.0 -Essen, 

2016 using data from (Mansfield et al., 2015, Kenawy et al., 2018) and shape files 

for country administrative boundaries available at www.arcgis.com 

 

1.2 Rift Valley fever virus 

Rift Valley fever virus (RVFV) is an enveloped spherical (80 - 110 nm) particle with 

tri-segmented negative-sense single-stranded RNA virus belonging to the order 

Bunyavirales, genus Phlebovirus within the Phenuiviridae family (Adams et al., 

2017, Bird et al., 2009). Several members of the  Phenuiviridae family are 

responsible for fatal hemorrhagic fevers: Rift Valley fever virus (Phlebovirus), 

Crimean-Congo hemorrhagic fever virus (Nairovirus), Hantaan, Sin Nombre and 

related viruses (Hantavirus), and recently Garissa, now identified as Ngari virus 

(Orthobunyavirus) (Flick and Bouloy, 2005). The  RVFV viral genome (approx 11.9 

kilobases) consists of three segments designated large (L), medium (M) and small 

(S), which encode the viral RNA-dependent RNA polymerase, the viral glycoproteins 

Gn and Gc and non-structural protein NSm, and the viral nucleocapsid protein N 
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and the non-structural virulence protein, NSs, respectively (Havranek et al., 2019, 

Bird et al., 2009, Bouloy and Weber, 2010) (Figure 1.2). These viral proteins, in 

conjunction with host proteins, ensure that the virus can replicate its genome 

during a productive infection (Havranek et al., 2019, Bouloy and Weber, 2010). All 

the replication steps occur in the cytoplasm of infected cells and virions mature by 

budding in the Golgi compartment (King et al., 2012). During the replication cycle, 

each segment is transcribed into mRNA and is replicated through a process 

involving synthesis of the exact copy of the genome, called complementary RNA 

(cRNA) or antigenome. The cRNA representing the copy of the S ambisense segment 

serves as a template for the synthesis of the NSs mRNA. Since the S cRNA is present 

in the input virus, the protein is expressed early, a good indication that it has an 

important role during infection (Pepin et al., 2010, Ikegami et al., 2005). During 

the viral cycle, the glycoproteins play an essential role for the penetration of the 

virus and their proper processing is crucial for the maturation and budding of the 

virion (Liu et al., 2008, King et al., 2012). The glycoproteins, being the most 

exposed components of the virus during infection, are recognized by the immune 

system and induce the production of neutralizing antibodies, which play a 

predominant role in protection (Filone et al., 2006, Pepin et al., 2010).  

 

Figure 1.2 Schematic illustration of RVFV genome containing  small (S), medium 
(M), and large (L) RNA segments and surface glycoproteins (Gn and Gc) 
incorporated into the lipid bilayer. Schematic representation of RNA segments and 
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respective proteins encoded by each segment, L = L protein; NSm = non-structural 
protein M; glycoproteins Gn, Gc; N = nucleoprotein; NSs = non-structural protein S. 
 

1.3 Rift Valley Fever virus transmission 

Rift Valley Fever virus transmission usually occurs in epizootics/epidemics 

associated with periods of heavy rainfall (Davies et al., 1985). It is now known that 

the development of epidemic-associated transmission is dependent on large-scale 

weather events such as the warm El Niño Southern Oscillation (ENSO), which can 

lead to heavy precipitation over eastern and southern Africa (Bird et al., 2009). 

Such heavy rainfall  triggers the emergence of large numbers of mosquito vectors 

through creation of aquatic larval habitats (Fontenille et al., 1998). Mosquitoes are 

thought to be the only biological vectors of RVFV (Linthicum et al., 1985, Bird et 

al., 2009).  

Rift Valley fever virus (RVFV) has been isolated from at least 40 species of 

mosquitoes (Meegan, 1979, Fontenille et al., 1998, Turell et al., 2008) belonging to 

six taxa: Aedes, Culex, Anopheles, Eretmapodites, Mansonia, and Coquillettidia 

(Bird et al., 2009). It has been widely suggested  that RVFV is maintained through 

transovarial transmission in the floodwater mosquitoes of the Aedes genus (Davies 

et al., 1985, Lancelot et al., 1990, Gerdes, 2004). Aedes mosquitoes are regarded 

as primary vectors due to their ability of transovarial transmission of RVFV which 

provides the virus with a potential mechanism of persistence of infected eggs in dry 

conditions for several years during inter-epidemic periods (Logan et al., 1991, 

Gerdes, 2004). During periods with normal (non-excessive) amounts of rainfall, 

RVFV is likely maintained by low-level enzootic/endemic (locally present 

infections) activity within the mosquito vector population involving transovarial 

transmission with occasional infection and amplification of virus in wild animals 

such as African buffaloes (Syncerus caffer) or susceptible livestock including cattle, 

sheep and goats (Bird et al., 2009). Then excessive flooding following heavy rains 

allows for massive mosquito emergence and an increase in the number of both 

primary (Aedes) and secondary (Culex) vectors (Sang et al., 2010, Davies et al., 

1985). Transovarially-infected primary mosquito vectors include Ae. mcintoshi,  Ae. 

(Neomelaniconion) circumluteolus (Theobald, 1908), Ae. albopictus, (Sang et al., 

2010, Pepin et al., 2010, Tesh and Shroyer, 1980) and Ae. aegypti (Cruz et al., 

2015) that feed on susceptible ruminants (Coetzer, 1977). In turn, infected 

ruminants can infect secondary bridge mosquito vectors such as Culex spp, 

Mansonia spp or Anopheline spp (Coetzer, 1977, Bird et al., 2009, Sang et al., 
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2010) which pick up the virus, and amplify transmission to generate an outbreak 

(Davies et al., 1985, Sang et al., 2010). The transmission cycle is summarised in 

schematic diagram in Figure 1.3.  

RVFV was isolated from Culex spp following the 1998-1999 outbreak in Mauritania 

and Senegal (Diallo et al., 2005) and  from Aedes spp and Culex spp following the 

outbreak of year 2000 in Saudi Arabia (Jupp et al., 2002). Aedes spp, Culex spp, 

Mansonia spp and Anopheles spp were implicated with the RVF outbreak 2006/2007 

in Kenya (Sang et al., 2010, LaBeaud, 2011), whereas  Anopheles spp, Culex spp 

and Mansonia spp were found naturally infected in Madagascar (Ratovonjato et al., 

2011). So far, RVFV in mosquitoes has mostly been detected following  outbreak 

periods and unusual heavy rainfall and floods. The role of vectors or other 

transmission routes (infected bodily fluids) in maintaining  RVFV circulation 

between epidemics is not fully understood largely because detection and/or 

isolation of the virus during the inter-epidemic period (IEP) has not been achieved 

(Lichoti et al., 2014a). In addition, epidemics in the region have been generally 

irregular which could be attributed to climate variability (Martin et al., 2008), 

emphasising the need for continuous surveillance and exploration of all possible 

factors contributing to disease epidemics.  
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Figure 1.3 Schematic diagram showing potential RVFV transmission routes involving 

vectors and host species. Dotted lines indicate uncommon but potential horizontal 

transmission between wild and domestic ruminants. 

1.4 Potential Rift valley fever virus (RVFV) vectors in northern 

Tanzania 

Although a number of RVF epidemics have been reported in Tanzania, the relative 

importance of different vector species implicated in epidemic and inter-epidemic 

transmission is still uncertain, and no surveys have yet detected RVFV in 

mosquitoes in Tanzania.  An entomological  study by Mweya et al. (2015) in 
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Ngorongoro district in northern Tanzania reported the occurrence of potential 

vectors Aedes aegyti and Culex pipiens complex (Mweya et al., 2015). Other 

species recorded in area include Culex antennatus, Culex tigripes, Culex 

annulioris, Culex cinereus, Anopheles arabiensis, Anopheles squamosus, Anopheles 

pharoensis and Mansonia uniformis (Mhina et al., 2015). These studies suggests 

associations of previous RVF epidemics with abundance and distribution of Aedes 

spp and Culex spp in Ngorongoro district (Mweya et al., 2015, Mweya et al., 2013).   

Both of these  studies (Mweya et al., 2015, Mhina et al., 2015) were carried out in 

the same (Ngorongoro) district, and were unable to detect presence of RVFV  in 

mosquitoes. Surveillance of mosquito vectors from other areas including those 

which experienced repeated RVF outbreaks will expand understanding of the 

ecology and distribution of potential vector species, and guide identification of 

which groups may be primarily responsible for RVFV circulation in the area.    

1.5 Ecology and feeding preference of potential RVFV Vectors 

The distribution of RVFV vectors in endemic regions were previously found to be 

associated with the ecology and habitats of the regions (Tantely et al., 2015, Sang 

et al., 2017). In the Arabian Peninsula outbreaks have been linked to Aedes spp and 

Culex spp  found in areas suitable for vector larval development including 

temporarily flooded agricultural fields or pasture land, and permanent or 

semi-permanent aquatic habitats (Jupp et al., 2002, Elfadil et al., 2006). In West 

Africa, Aedes spp and Culex spp linked to the outbreaks in Senegal and Mauritania 

in the Sahelian and Sudano-Sahelian region are found in temporary ponds where 

livestock concentrate during the rainy season (Diallo et al., 2005, Biteye et al., 

2018). The abundance and composition of vectors varied with rainfall, season, land 

use, proximity to water bodies, and drainage and/or soil properties (Jupp et al., 

2002, Gerdes, 2004, Diallo et al., 2005, Sang et al., 2010, Glancey et al., 2015, 

Biteye et al., 2018). Mosquitoes (Aedes, Culex Mansonia and Anopheles) implicated 

in RVF outbreaks in  Kenya, East Africa (Logan et al., 1991, Sang et al., 2010) were 

associated  with semi-arid areas (Sang et al., 2010, Sang et al., 2017), which 

experience sporadic rainfall with occasional torrential storms that cause extensive 

flooding in the lowlands (Sang et al., 2010, Sang et al., 2017). In South Africa, the 

outbreaks between 2008 and 2011 were associated with above average rainfall, in 

shrubland, low fynboes, grassland, and agricultural areas in close  proximity to 

water bodies, including rivers and drainage areas (Glancey et al., 2015). These 
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studies suggest a range of ecological characteristics where RVF and vectors have 

been recorded previously in other endemic countries.  

The distribution and abundance of mosquito vectors is also influenced by feeding 

ecology. The role of livestock in the feeding ecology of mosquitoes has been the 

subject of extensive study in relation to mosquito vectors (Diatta et al., 1998, 

Deichmeister and Telang, 2011, Lutomiah et al., 2014).  However, little is known 

about how the presence, abundance or density of livestock might affect RVF 

transmission risk. The presence of livestock could influence mosquito vector 

species abundance and distribution as previously  demonstrated  (Mayagaya et al., 

2015a, White, 1971, Besansky et al., 2004, Costantini et al., 1998, Diatta et al., 

1998). It has also been suggested that zooprophylaxis, the diversion of disease 

carrying insects from humans to animals, may reduce transmission of mosquito-

borne diseases (MacDonald, 1957, WHO, 1982, Service, 1976) and has therefore 

been recommended as a potential environmental strategy to reduce transmission of 

mosquito borne diseases (Saul, 2003). Studies involving Anopheles spp (Mahande et 

al., 2007, Muriu et al., 2008) and similar studies involving Aedes and Culex spp 

(Hess and Hayes, 1970) suggest that domestic animals would have the highest 

potential values for zooprophylaxis against RVFV vectors. Conversely,  other studies 

have shown that, in situations where livestock are kept close to humans, animals 

may actually increase the risk of individual humans being bitten (zoopotentiation) 

by attracting mosquitoes to the household environment (Bouma and Rowland, 1995, 

Schultz, 1989, Hasyim et al., 2018), suggesting that keeping livestock in the 

household contributes more to risk than prophylaxis (Mayagaya et al., 2015b, 

Hasyim et al., 2018). Investigating the influence of livestock on local abundance 

and distribution of potential RVF vectors at household level will broaden our 

understanding of risk factors for RVFV transmission in livestock and human 

populations in different agro-ecological settings.   

Host odours play a major role in the orientation of nocturnal mosquitoes towards 

their hosts (Takken and Kline, 1989). The animal breath and skin odour influences 

mosquito host-seeking behaviour. Adult female mosquitoes use host-emitted odour 

to locate hosts to obtain blood meals (Takken and Kline, 1989, Takken and 

Verhulst, 2013). When searching for hosts for blood meals, some mosquitoes 

express preferential feeding behaviour (Takken and Verhulst, 2013).  Most known  

RVFV vector species have zoophagic behaviour, feeding mostly on animals (cattle, 

sheep, and goat), and some of them are described as opportunistic anthropophagic 
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feeders, feeding mostly on humans (White, 1971, Tantely et al., 2013). A study in 

Madagascar suggests cattle were the main domestic host for five species (An. 

squamosus, An. coustani, Cx. antennatus, Cx. univittatus and Cx. pipiens), and 

that vectors preferred these to other domestic animals (Tantely et al., 2013). 

Similar observations were reported in Kenya where Aedes spp, Culex spp, and 

Mansonia spp prefered cattle to other livestock species (Tchouassi et al., 2016). 

Another similar study in Senegal observed that Culex spp. fed most often on 

humans, Aedes spp fed almost equally on all animal species tested (cattle, goats, 

sheep and chickens), while Anopheles spp preferred cattle over humans, goats and 

sheep. In Mauritania An. funestus and An. pharoensis were observed to feed on 

human and ovine hosts respectively (Dia et al., 2009). These studies demonstrate 

different feeding behaviour and host preference of the vector species suggesting 

potential different exposure risks of different host species. To better understand 

the risk of RVFV transmission associated with having livestock at a household, it is 

important to examine the occurrence, abundance and distribution of the RVFV 

vector species at households with and without livestock.  

1.6 Serological survey for RVFV infection in Tanzania 

Rift Valley fever cases in livestock and humans are usually reported during large 

outbreaks. However, the maintenance and transmission of the virus to livestock 

and humans during the inter-epidemic period (IEP) when there is low or no disease 

activity is not well understood (Lancelot et al., 1990, Gerdes, 2004, Martin et al., 

2008, Sang et al., 2010, Mroz et al., 2017). It is possible that RVF cases are passing 

undetected due to inadequate surveillance in livestock and human populations 

during inter-epidemic periods. This may occur due to an assumption that cases can 

only occur during periods of extreme rainfall (Beechler et al., 2015, Sindato et al., 

2015). Wild ruminants are suggested as potential  reservoirs  of the virus, playing a 

role in inter-epidemic maintenance of the virus (Beechler et al., 2015, Evans et al., 

2008).  This is supported by detection of neutralizing antibodies in buffaloes from 

the Kruger National Park and Hluhluwe-iMfolozi Park in South Africa (Beechler et 

al., 2015, Fagbo et al., 2014), buffaloes  in Botswana (Jori et al., 2015) and seven 

wildlife species in Kenya, including African buffalo, black rhino, lesser kudu, 

impala, African elephant, kongoni, and waterbuck including animals born during 

the 1999–2006 IEP (Evans et al., 2008). In Egypt, RVFV antibodies were detected in  

buffaloes born after the last Egyptian RVF epidemic in 2003 (Mroz et al., 2017). 
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These studies suggest that wildlife could be playing an important role in the inter-

epidemic circulation of RVFV. 

There is some evidence of inter-epidemic RVFV infections on the basis of 

serological surveys in the region including in sheep and goats in Mozambique 

(Blomström et al., 2016), cattle, sheep, and goats in Kenya (Lwande et al., 2015, 

Mbotha et al., 2018, Lichoti et al., 2014a) and Madagascar (Jeanmaire et al., 

2011). Inter-epidemic seroprevalence in humans has been reported in Gabon 

(Pourrut et al., 2010), Saudi Arabia (Mohamed et al., 2014), Kenya (Cook et al., 

2017), and Central African Republic (Nakouné et al., 2016). In Tanzania,  

antibodies against RVFV have been detected in cattle, and small ruminants 

(Sumaye et al., 2013, Wensman et al., 2015, Sindato et al., 2015).  Serological 

evidence for human exposure to RVFV infections in the inter-epidemic period has 

been reported in Morogoro and the Mbeya regions of south-western Tanzania 

(Heinrich et al., 2012a, Sumaye et al., 2015) and the  in the Serengeti ecosystem, 

northern Tanzania (Ahmed et al., 2018).   Although all these studies show some 

level of (inter-epidemic) RVFV circulation in livestock and humans in Tanzania, 

little is still known about spatial patterns, risk factors and outcomes of inter-

epidemic infection in northern Tanzania.  These infections could be driven by 

either host factors (i.e. species, sex, age, susceptibility) as well as vector ecology 

and feeding behaviour and further knowledge of these factors will be important for 

understanding the dynamics of inter-epidemic infection.  

1.7 Risk factors for RVFV inter-epidemic infections in livestock and 

humans  

Rift valley fever outbreaks in livestock and humans have been well documented to 

be  associated with unusual heavy rainfall periods coupled with floods and massive 

breeding of mosquitoes (Davies et al., 1985, Gerdes, 2004). Human infections have 

been linked with contacting infected animals and/or animal materials (Gerdes, 

2004, Evans et al., 2008). The means by which infections are maintained in 

livestock or human populations in the inter-epidemic periods is not fully 

understood. To further explore this question it is essential to identify what factors 

are associated with RVFV infections between epidemics. Identification of risk 

factors will provide insight into the transmission routes and will advance our 

understanding of maintenance of RVFV infections which will inform surveillance, 

prevention and control strategies and programmes.  



26 

A wide range of factors have been associated with RVFV infections in livestock in 

different settings. Animal species, sex and age (young and old) were associated 

with RVFV seropositivity in Egypt (Mroz et al., 2017), Kenya (Lichoti et al., 2014b), 

Mauritania (Rissmann et al., 2017) and Tanzania  (Sumaye et al., 2013). Older age 

and heavy rainfall were considered as potential risk factors for RVFV seropositivity 

among the Sudanese one-humped camel (Camelus dromedaries) in Khartoum State, 

Sudan (Abdallah et al., 2015). In Madagascar, cattle seropositivity was associated  

with older age, humid environments and high cattle density (Olive et al., 2016). In 

addition, animal introductions and history of abortions have also been reported as  

risk factors in a previous study in Tanzania (Sindato et al., 2015). These findings 

suggest that seropositivity in different livestock species can be influenced by 

different factors or similar factors in different ways.  

Risk factors for seropositivity in humans have been reported in a number of studies 

and mostly related to behaviours, occupation, household responsibilities and 

traditions. Studies in different endemic countries have identified factors that are 

consistent across the region or apply only to local settings. In Madagascar, human 

exposures to RVFV were found to be associated with the presence of temporary and 

artificial water points and frequent handling/consumption of raw milk (Olive et al., 

2016). In Kenya, human seropositivity was found to be associated with being male 

and a herdsperson, handling aborted animal foetus,  consuming or handling 

products from sick animals (Anyangu et al., 2010), consuming raw milk (Nicholas et 

al., 2014) and birthing an animal (Woods et al., 2002, Anyangu et al., 2010). 

Whereas in Uganda RVFV seropositivity were greater in participants who were 

butchers  and those who reported handling raw meat (Nyakarahuka et al., 2018).  

Understanding factors that drive RVFV infection in local settings will help inform 

appropriate intervention strategies. 

Livestock abortions have been associated with RVF outbreaks following periods of 

unusual rainfall and floods, but unreported abortions in the inter-epidemic periods 

and their association with RVFV infections in livestock and humans have not been 

well studied. It is also worth investigating other potential factors for RVFV 

infections in the inter-epidemic period. Factors related to management of livestock 

in different agro-ecological settings which have not been well studied in relation 

RVF, including farming systems (small-holder, agro-pastoral and pastoral), seasonal 

movement following pasture and water in dry seasons, and animal introductions. It 

is important therefore, to examine and identify potential risk factors associated 
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with RVFV infections in livestock and humans in small-holder, agro-pastoral, 

pastoral communities in Tanzanian in order to inform appropriate control 

strategies. 

1.8 Detection of Rift Valley Fever virus infections 

Rift Valley fever virus infections or exposure status can be detected using various 

techniques, including virus isolation, viral nucleic acid detection, antigen detection 

and detection of specific antibodies (Pepin et al., 2010, Swanepoel et al., 1986). 

RVFV infection is generally associated with a high and early humoral response. The 

immune response developed  following infection, involves the production of 

detectable neutralizing antibodies from the 4th–8th day after infection (Hubbard et 

al., 1991, Morrill et al., 1987, Pepin et al., 2010). These antibodies, which are 

primarily directed against the viral glycoproteins, Gn and Gc, are also accompanied 

by the production of IgM and IgG antibodies raised against the nucleoprotein, N, 

and the non-structural protein, NSs (McElroy et al., 2009). The detection of IgM and 

IgG antibodies coupled with the results of molecular (RT-PCR) assays is critical to 

accurately stage the time since infection (Pepin et al., 2010).  

1.8.1 Serological detection of RVFV infections 

The presence of  immunoglobulin M (IgM) is usually interpreted as an indicator of 

recent infection (Morvan et al., 1992). Immunoglobulin M antibodies are associated 

with a primary immune response which provide first line defence and are frequently 

used to detect acute exposure to an immunogen or pathogen in 5-8 days of being 

infected (Schroeder and Cavacini, 2010). In most cases IgM antibodies do not persist 

beyond the 50th day after infection (Paweska et al., 2003b) (Figure 1.4). On the 

other hand, immunoglobulin G (IgG) are the predominant antibodies found in the 

body picking up after IgM as secondary antibodies and have the longest serum half-

life of all immunoglobulins (Schroeder and Cavacini, 2010). They may provide 

protection against specific pathogens for several years. Immunoglobulin G are the 

only antibodies that can pass from mother to foetus via the placenta and are also 

secreted into the mother's milk and is taken up from the gut of the neonate into the 

blood, providing protection for the newborn against infection (Alberts et al., 2002). 

Anti-RVFV IgM antibodies do not persist beyond the 50th day after infection and 

confirms recent infections (Paweska et al., 2003b, Morvan et al., 1992). This is 

supported by a study involving 195 naturally infected cattle in Madagascar including 

37 aborted females and 158 other infected animals (Morvan et al., 1992). Only 27% 
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of animals had detectable IgM two months post infection, and no animals had 

detectable IgM after 6 months. 

 

 

Figure 1.4 Schematic representation of time course viraemia and antibody response 
against RVFV in experimentally infected animals. Diagram adapted from Pepin et 
al., 2010. 
 

1.8.1.1 Virus Neutralization Test 

The virus neutralization test (VNT) regarded as the gold standard serological assay 

for RVF (Schreur et al., 2017), is a specialized type of immunoassay because it does 

not detect all antigen–antibody reactions. It only detects antibodies that can block 

(neutralize) virus replication, which is important because closely related groups of 

viruses may share common antigens, but only a fraction of these antigens are 

targets of neutralizing antibody. The VNT is the only assay available to measure the 

presence of virus neutralizing antibodies (VNAb) (Monath and Vasconcelos, 2015). 

The test protocol involves mixing dilutions of test sera with a fixed amount of virus 

and incubating to allow VNAb to neutralise the virus. The serum/virus mix is then 

added to a monolayer of permissive cells and incubated for a period sufficient for 

the virus to infect cells and produce a cytopathic effect (CPE). Cells are then 

viewed under the microscope, the presence of VNAb is determined by the absence 

of CPE, as VNAb in the serum have successfully neutralised the virus. For viruses 

which do not produce CPE, labelled antibodies directed against the virus can be 
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used to detect virus in the cell culture. Although the VNT is considered the gold 

standard for detection of antibody against RVFV, its use in most of the endemic 

countries is limited by being expensive, requires high-containment facilities for 

working with live virus, requires the use of cell culture, and involves incubation for 

5-7 days for completion (Pepin et al., 2010, Paweska et al., 2003b). Additionally, 

the test is laborious and few samples can be investigated simultaneously (Mather et 

al., 2013). This can limit serosurveillance efforts for such viruses as RVFV in regions 

where such facilities are not available.  

1.8.1.2 Enzyme-linked immunosorbent assay (ELISA) 

Antibody detection by enzyme-linked immunosorbent assay (ELISA) can be used to 

confirm presence of specific IgG and IgM antibodies. These assays are useful for 

epidemiological surveillance and control programmes, import/export veterinary 

certification, early detection of infection, and for monitoring of immune response 

in vaccinated animals (Paweska et al., 2003b). An ELISA can be used to detect 

either the presence of antigens  or antibodies  in a sample, depending on how the 

test is designed (Ma and Shieh, 2006, Gaastra, 1984). To detect antibodies using the 

ELISA test (Figure 1.5), antigen is coated onto a 96-well plate and test sera are 

added. Secondary antibody coupled to an enzyme, specific to the host species being 

tested, is then added to the plate wells. Enzyme substrate is then added allowing a 

colour change to be determined by measuring the optical density measured in a 

spectrophotometer. Depending on the ELISA platform used, either the presence or 

absence of colour indicates the presence of antibodies (Ma and Shieh, 2006). IgM or 

IgG antibodies can be detected using isotype-specific secondary antibodies. The 

antibodies detected may be either neutralising or non-neutralising and the tests 

cannot differentiate between the two.  
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Figure 1.5 Schematic representation of the ELISA test and procedure involved in 
detecting specific antibodies in a given sample. 
 

When testing for anti RVFV antibodies, non-specific background has been observed 

using ELISAs (Faburay et al., 2013) suggesting  antibody cross-reactivity, as 

antibodies raised against other members of the family Phenuiviridae and  genus 

Phlebovirus have shown to cross-react (Szymczak et al., 2015, Xu et al., 2007), 

which make results interpretation difficult. In addition, most of the available ELISAs 

have raised concerns with their performance, sensitivity and specificity (Paweska et 

al., 2003a). However, ELISAs remain the most commonly and widely utilised method 

for sero-epidemiology of RVFV (Mansfield et al., 2015) in endemic areas. 

Commercial RVFV ELISAs based on the viral nucleoprotein are available and detect 

IgM and/or IgG. These ELISAs allow for large scale sero-surveillance outside of high 

containment facilities and are much more convenient for ‘in field’ testing (Van 

Vuren and Paweska, 2010). ELISAs based on recombinant N-protein, which can 

perform as well as VN and HI tests (Fafetine et al., 2007), have the potential to 

complement the traditional assays for serological detection of RVFV infections. 

Advantages of the N-protein are its safety, stability and cost-effectiveness in use 

and production (Fafetine et al., 2007) and the RVFV-N-based ELISAs can be useful in 

large-scale epidemiological investigations. It is imperative therefore, to develop a 

cheap, safe, thermal stable, and easy to use ELISA that can be used in endemic 

countries. In this study, the performance an inhouse RVFV-N based ELISA developed 

by the University of Glasgow was evaluated using commercially available ELISA as a 

reference. 
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1.8.2  Molecular detection of RVFV infections 

Rift Valley fever virus (RVFV) is a member of the family Phenuiviridae and as such is 

an enveloped virus that has a negative stranded RNA genome consisting of three 

segments. The M (medium) and L (large) segments are of negative orientation, 

whereas the S (small) segment has an ambisense polarity.  The M segment encodes 

the two glycoproteins Gn and Gc and the non-structural protein NSm, while the L 

segment encodes the RNA-dependent RNA-polymerase. The small segment encodes 

the nucleocapsid (N) protein and a non-structural protein NSs using an ambisense 

coding strategy (Paweska, 2014, Pepin et al., 2010). The N protein is highly 

conserved and it is one of the most immunodominant viral proteins among members 

of the Phenuiviridae family (Pepin et al., 2010) 

 

Detection of nucleic acids of RVFV has been shown to be useful in field diagnostics 

(Drosten et al., 2002). Molecular methods are increasingly used for a rapid and 

accurate detection of viral nucleic acid in blood, tissue and mosquito samples 

(Drosten et al., 2002). Molecular techniques such as reverse-transcriptase 

polymerase chain reaction (RT-PCR)  and other newly developed techniques allow 

for a rapid and accurate detection of RVFV (Escadafal et al., 2013).  The RT-PCR is 

often used as a method of detection for a great number of arboviruses, which 

facilitates phylogenetic studies (Garcia et al., 2001).  Other molecular methods 

that have been developed recently include: single-tube RT-PCR,  quantitative RT-

PCR (qRT-PCR) and more recently real-time reverse-transcription loop-mediated 

isothermal amplification (RT-LAMP) (Le Roux et al., 2009) and recombinase 

polymerase amplification assays (RPA) (Euler et al., 2012). Despite some limitations 

in terms of costs and the level of expertise required of technicians, RT-PCR is a 

rapid, sensitive, specific, and reliable assay for detection of RVFV infection (Sall et 

al., 2002). RT-PCR has shown to detect viral infections in the very early phase of 

the disease, before the appearance of IgM antibodies and the decline of viremia 

(Burt et al., 1998). The RT-PCR is therefore recommended as an efficient diagnostic 

tool for the investigation of enzootic circulation of the RVFV. It allows the 

detection of low viral RNA loads adapted for the investigations of reservoirs or 

specific epidemiological situations such as during inter-epidemic periods (Maquart 

et al., 2014).  
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1.9 Rationale for the study 

1.9.1  Problem Statement 

Available serological evidence suggests that, across many countries and settings in 

Africa, RVFV continues to circulate in livestock and humans in the periods between 

large epidemics.  However, little is still known about patterns and risk factors of 

inter-epidemic infection in northern Tanzania where repeated large outbreaks have 

occurred previously.  While no cases have ever been reported in Tanzania between 

the large RVF epidemics,  it is possible that RVF cases are going undetected or are 

not being reported during inter-epidemic periods, either because of limited 

surveillance and awareness of the possibility of cases during this periods and/or 

because inter-epidemic infections present differently, for example with only low-

level clinical or subclinical signs.  

1.9.2  Study Justification 

Understanding of how the virus circulates in livestock and humans between 

epidemics, as well as the risk factors and outcomes of these infections in different 

agro-ecological settings will help and inform intervention strategies to control and 

prevent future epidemics.  

1.10 Objectives 

1.10.1 General Objective 

This study sought to investigate patterns of RVFV infection in livestock and humans 

in the inter-epidemic period in northern Tanzania, in order to inform surveillance, 

preparedness, and control strategies and/or programmes. 

1.10.2  Specific Objectives 

This study specifically sought to:  

a) Determine the occurrence, abundance, distribution and infection status of 

potential RVFV mosquito vectors in northern Tanzania;  

b) Investigate inter-epidemic seroprevalence and risk factors for RVFV 

infections in livestock and human populations in northern Tanzania; and 
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c) Investigate RVFV as a possible cause of livestock abortions during inter-

epidemic periods in northern Tanzania.  
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Chapter Two 

2 Core Methods 

The  methods described here are the general methodology for the study including 

field sample collection, laboratory work and statistical analyses. Detailed 

statistical analyses  for specific study components are described under specific 

chapters of this thesis. Samples and data described here were collected as part of 

three study projects, namely Social, Economic and Environmental Drivers of 

Zoonoses (SEEDZ), Supporting evidence based interventions to achieve agricultural 

development goals in Tanzania (SEBI-TZ) and an earlier study on bacterial zoonoses 

(BacZoo). Therefore, a number of people have contributed in different study 

activities as summarised in Table 2.1.  

 

Table 2.1 Activities that relates to completion of my PhD along with the roles of 

people who participated in various activities. 

Activities 
 
 

Concept  
Development 
 

Field 
implementation 
 

Laboratory and  
data  analyses 
 

Mosquito surveys  
 
 
 
 

M.J. Nyarobi 
H. Ferguson  
W. de Glanville 
 
 

M.J. Nyarobi 
 
 
 
 

M.J. Nyarobi   
W. de Glanville  
H. Ferguson  
P. Johnson 
 

Livestock sero-
epidemiological 
studies 
 
 

W. de Glanville  
S. Cleaveland  
M.J. Nyarobi 
 
 

W. de Glanville  
SEEDZ & BZ field 
teams 
M.J. Nyarobi 
 

M.J. Nyarobi  
W. de Glanville   
P. Johnson 
 
 

Human sero-
epidemiological 
studies 
 
 
 

W. de Glanville  
S. Cleaveland 
M.J. Nyarobi 
 
 
 

W. de Glanville 
SEEDZ & BZ field 
teams  
M.J. Nyarobi 
 
 

M.J. Nyarobi  
W. de Glanville 
P. Johnson 
 
 
 

ELISA assay studies 
 

B. Willet  
M.J. Nyarobi 

 

M.J. Nyarobi 
 

VNT assay 
 

B. Willet 
M.J. Nyarobi 

 

A. Szemiel 
 

Mosquito PCR assay 
 
 

M.J. Nyarobi  
H. Ferguson 
 

 

M.J. Nyarobi  
R. Carter  
K. Allan 

Livestock PCR assays 
 
 

S. Cleaveland 
W. de Glanville 
 

T. Kibona  
SEBI field teams 
 

M.J. Nyarobi 
R. Carter  
K. Allan 
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Activities 
 
 

Concept  
Development 
 

Field 
implementation 
 

Laboratory and  
data  analyses 
 

  
 

 
 

K. Thomas 
 

Mosquito habitat 
suitability analyses 
 
 

W. de Glanville 
S. Cleaveland 
M.J. Nyarobi 
 

 

M.J. Nyarobi  
W. de Glanville 
 
 

 

2.1 Study Area 

The study involved samples and data collected as part of the three epidemiological 

studies in three regions of northern Tanzania namely Arusha, Kilimanjaro and 

Manyara. The study area covered six districts in Arusha region (Arusha, Ngorongoro, 

Longido, Monduli, Karatu, Meru), four districts in Kilimanjaro region (Hai, Moshi 

Municipality, Moshi rural and Rhombo) and three districts in Manyara region 

(Simanjiro, Mbulu, and Babati), (Figure 2.1). These districts were selected as part 

of the project on Social, Economic and Environmental Drivers of Zoonoses (SEEDZ), 

between February and November 2016. The SEEDZ project aimed at examining and 

assessing the drivers, risks and impacts of a wider range of zoonotic diseases, 

including brucellosis, Q fever and Rift Valley Fever, that affect livestock and 

human health, livelihoods and poverty in pastoral, agro-pastoral and peri-urban 

communities in Tanzania. In addition to SEEDZ study districts, other samples 

included in the current study were collected in 2013 as part of other studies on 

bacterial zoonoses (BacZoo) and 'Supporting evidence based interventions to 

achieve agricultural development goals in Tanzania (SEBI-TZ)'. The SEBI study 

sought to extend and broaden the range of diseases investigated under the SEEDZ 

project with a particular focus on investigating the causes of abortions in livestock. 

The aim of the SEBI project was to develop effective and sustainable intervention 

strategies that will result in a reduction in abortion losses in cattle, sheep and 

goats. The study area has a high level of interaction between livestock, wildlife 

and humans (Prins, 1992, Newmark et al., 1994); and cases of RVF were reported 

during outbreaks in1977, 1998 and 2006/2007 (Mohamed et al., 2010, Fyumagwa et 

al., 2011, Chengula et al., 2013). The study included pastoral, agro-pastoral and 

small-holder communities. In pastoral communities such as Maasai and Barbaig, 

livestock (cattle, goats and sheep) are kept in animal enclosures (bomas) made of 

thorny acacia tree logs and branches within household compounds. Young animals 

(e.g. kids and lambs) often sleep in the same house as people. In agro-pastoral or 
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peri-urban areas, livestock are kept in sheds made of tree branches and mud or 

cow dung, thatched with grass or iron sheets within household compounds. In some 

cases, animals have a partition in the same house as people.  

 

  

Figure 2.1 Map of northern Tanzania showing districts in the study area including 

those with record of previous RVF outbreaks and location of villages where the 

study was carried out. Map created in QGIS 2.14.0 -Essen, 2016 using RVF outbreaks 

data from (Sindato et al., 2014) and shape files for country administrative 

boundaries available at www.diva-gis.org 

 

2.2 Village and household selection 

For administrative, governance and provision of social services in Tanzania, there 

are different levels of regional and local government authorities apart from the 

national government. In the order of highest to lowest local government 

administrative unit, they include region, district, ward, village, sub-village (in rural 

settings) or mtaa/street (in urban settings). The SEEDZ study involved 20 villages 

and BacZoo involved 15 villages which were randomly selected. Villages were 
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selected using a Generalised Random Tessellation Stratified (GRTS) sampling 

approach (McDonald, 2004, Stevens Jr and Olsen, 2004)  in order to achieve a 

spatially representative sample. Villages in the study area contained four or more 

sub-villages. Two sub-villages per village were randomly selected for inclusion in 

the SEEDZ study. Within sub-villages, households were randomly selected.  Here 

livestock keepers were invited to a central point (e.g. dip tank, crush) where 

livestock sampling was conducted. The sub-village chairperson was notified at least 

three days in advance of the sampling event, and a meeting arranged with the 

chair person and cell (10 households) leaders at least a day before the event. The 

“Supporting Evidence Based Interventions in Tanzania” (SEBI-TZ) study established 

a real-time surveillance platform covering 16 randomly selected sentinel wards in 

Arusha, Manyara and Kilimanjaro Regions of Tanzania. Livestock (cattle, sheep and 

goats) samples were collected in response to reported abortion events from the 

SEBI study villages.  

2.3 Ethical Clearance 

The SEEDZ protocols, questionnaire tools and consent and assent procedures were 

approved by the ethical review committees of the Kilimanjaro Christian Medical 

Centre (KCMC/832), National Institute of Medical Research (NIMR/2028), and 

Commission for Science and Technology (2015-244-ER-2005-141) in Tanzania, and in 

the UK by the ethics review committee of the College of Medical, Veterinary and 

Life Sciences, University of Glasgow (Ref: 200140152). Approval for the animal 

elements of the study was provided by the Clinical Research Ethics Committee at 

the University of Glasgow School of Veterinary Medicine (39a/15). The BacZoo 

protocols were approved by NIMR, protocol number: NIMR/HQ/R.8a/Vol.IX/1499) 

and the Tanzanian Wildlife Research Institute (TAWIRI). Ethical approval for human 

sampling and testing was granted from the Kilimanjaro Christian Medical Centre 

(KCMC) Research Ethics Committee, NIMR and the Institutional Review Boards of 

Duke University Medical Center and the United States for the Centers for Disease 

Control. In the UK, the University of Glasgow College of Medicine, Veterinary 

Medicine and Life Sciences Ethics Committee (protocol number: 200140152).  
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2.4 Sample collection and preparation 

2.4.1 Animal Sampling 

Animal sampling was performed by the respective project field teams led by a 

registered veterinarians. Livestock keepers from different bomas (households) were 

encouraged to bring cattle, goats and sheep of different ages and sex at the 

central point (identified sampling point) for sampling.  Animals from different 

households (bomas) were brought to the central point for sampling.  At the central 

sampling point, the aim, purpose and benefits of the study were explained to 

livestock keepers, and written consent was obtained before sampling animals from 

a selected boma. Animals were sampled in relative proportion to the size of the 

herd. The target sample size for livestock sampling was 10 bomas from a sub-

village, and 10 each of cattle, sheep and goats selected per boma. In cases where a 

boma had less than 10 animals in a herd or flock, all animals would be sampled. 

From all animals, a 10ml blood sample was collected by jugular venepuncture 

following appropriate restraint in an existing or temporarily constructed livestock 

crush. About 2-5 mls of sera was obtained from each blood sample through 

centrifugation, and transferred into screw capped cryovials and stored at -80 °C for 

further serological analysis. For the BacZoo study, a list of all livestock keeping 

households in each village was generated and up to six households randomly 

selected. Households were visited and, where numbers allowed, 12 of each of 

cattle, sheep and goats sampled.   

Under the SEBI study samples were collected following the report of an abortion or 

peri-natal mortality event, by recruited Livestock Field Officers (LFOs) or members 

of the study field team who visited the dam/ewe/doe(s)  to collect samples within 

72 hours of the abortion/still birth event. In addition to basic farm level data, the 

following samples were collected: (i) Blood samples from the cow/ewe/doe; (ii) 

Milk samples; (iii) Vaginal swabs from the cow/ewe/doe; (iv) Tissue from the 

placental inter-cotyledonary space; (v) Placental cotyledon; (vi) Foetal organs 

(liver, lung and kidney, thymus); and (vii) Foetal stomach contents. Only four 

sample types were used in the current study, namely vaginal swabs from the 

aborted dam, swabs from aborted foetus, placenta cotyledon tissue samples and 

milk samples. Samples were double packed according to UN3373 protocols and 

transported to the project laboratory at the Kilimanjaro Clinical Research Institute 

(KCRI) in the town of Moshi via a project vehicle or by courier.  
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2.4.2  Human sampling 

Human diagnostic samples were collected from selected livestock-owning 

households from which animals were sampled. Questionnaire surveys were 

conducted to gather data on residents (e.g. demographics, livestock interaction 

practices, and clinical history) and household characteristics. An adult head of 

household from each household was asked to provide informed written consent for 

questionnaire data gathered. In addition, human blood sampling was carried out if 

there were consenting participants in a household. Participants for blood sampling 

were approached on an individual basis for consent for individual specific data 

collection.  The individual themselves or head of household (in the case of minors 

aged <18 years) provided informed written consent. Blood sampling was performed 

by a Practitioner Nurse from Kilimanjaro Christian Medical Centre (KCMC) using 

vacuum extraction method as per World Health Organization guidelines (WHO, 

2010). 

2.4.3 Mosquito Sampling 

2.4.3.1 Selection of mosquito sampling sites 

Mosquito sampling was carried out in 12 villages randomly selected from the 20 

SEEDZ study villages. The target was sampling two sub-villages from a village, and 

four households from each sub-village. However, there were logistical challenges 

coupled with size of some villages (some with larger geographical coverage) with 

large distance between household locations,  and limited number of non-livestock 

keeping households in some villages hence uneven number of sampled sub-villages 

and households respectively. Mosquitoes were sampled  from  households with and 

without livestock in both agro-pastoral and pastoral settings. Livestock households 

were randomly selected from a list of animal sampled households. Non livestock 

keeping households were randomly selected from the list provided by the village 

and sub-village authorities. Numbers based on the list of households, were written 

in bottle tops, placed in a plastic container, shuffled each time a household 

number was selected.  

In addition to households, potential mosquito breeding habitats (Figure 2.2) such as 

dambos (flooded depressions), rivers, open wells, swamps, ponds, rice field and 

animal water points (Fontenille et al., 1998, Gerdes, 2004, Davies et al., 1985, 

Diallo et al., 2005, Jupp et al., 2002)  were purposefully identified for mosquito 
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trapping. This was carried out to identify mosquito species emerging from the 

breeding sites and that could be tested for RVFV infection status as obtained from 

trans-ovarial infection and were also compared with those sampled in and around 

households to determine which species were most likely to feed on infected 

livestock and humans. 

Permission of community leaders and informed consent were sought from each 

head of household where trapping were carried out.  Aims of the study, methods 

and potential benefits of participation were explained to the head of the household 

in Swahili or translated into the local language. Geographic co-ordinates of each 

selected household or mosquito trapping site were captured using a Garmin eTrex® 

10 Handheld GPS. 

 

Figure 2.2 Pictures of different potential mosquito breeding habitat that were 

considered for trapping in the study area. (a) annual river near a village, (b) pond 

flooded by rain water, (c) stagnant water on ground, and (d) old tyre near animal 

enclosure 

2.4.3.2 Mosquito collection methods 

For mosquito collection, four trapping methods were tested to assess the risk of 

biasing collection data when using one trap over another. The following mosquito 

trapping methods (Figure 2.3) were used at each household: (1) BG Sentinel trap 

(BG) (Biogents AG, Regensburg, Germany) to target outdoor host seeking 
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mosquitoes. BG-Sentinel traps  were used in combination with the BG-Lure, a 

dispenser which releases emanations such as those found on human skin (lactic 

acid, ammonia, and caproic acid) to attract host seeking species (Maciel-de-Freitas 

et al., 2006).  This trap has been shown to be effective for collecting Aedes spp 

(Bhalala and Arias, 2009); (2) Mosquito Magnet traps (MM) (Woodstream 

Corporation,  Pennsylvania, USA) to target outdoor host seeking mosquitoes 

particularly Aedes spp, Ochlerotatus spp, Culex spp, Mansonia spp, and Anopheles 

spp (Bell et al., 2005). The trap uses propane gas and produce CO2, warmth and 

moisture to attract mosquitoes; (3) CDC Light traps (LT) (John W. Hock Company, 

Florida, USA) to target night time indoor host seeking species such as Anopheles 

spp and Culex spp (Mboera et al., 1998, Davis et al., 1995); and (4) Resting Bucket 

(RB) locally made from (20l) plastic buckets bought from the local shops, and lined 

with black cloth on the inside to target outdoor resting mosquitoes as previously 

described (Kreppel et al., 2015). This method has been previously evaluated for 

malaria vectors in Tanzania, and was shown to be effective for sampling Anopheles  

and Culicinae (Aedes, Culex and Mansonia) mosquitoes (Kreppel et al., 2015).  

 

Figure 2.3 Different types of mosquito traps that were used for mosquito 

collections. (a) BG Sentinel trap, (b) Mosquito Magnet trap, (c) CDC Light trap (d) 

Resting Bucket trap. 

2.4.3.3 Mosquito trap setting 

In each sub-village one day and one night of sampling was carried out near the 

identified mosquito breeding habitat sites, and one day (8 am - 6 pm) and night 
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(7pm - 6am) at each of the four selected households (2 households per day and 

night trapping). Except for the light traps that were set to collect mosquitoes 

during night time, all other traps were set for day and night catches including one 

Mosquito Magnet trap, one BG Sentinel trap and 10 Resting Buckets were placed in 

the outdoor environment of each household.  

Light traps were suspended at approximately 1.5 m above the floor on the foot side 

of the bed where a person is protected by mosquito net (Bhalala and Arias, 2009, 

Davis et al., 1995), or well above the reach of the animals in an animal room.  No 

light trap was used outside, instead other outdoor traps were used. The Mosquito 

Magnet traps were placed outside in a shaded place within the household 

compound but about 5m away from the houses or livestock shelter/enclosure. BG-

Sentinel traps were placed in shaded or partially shaded locations (where 

applicable) under vegetation outside (Cilek and Hallmon, 2005, Hiwat et al., 2011) 

in the household compound or the selected breeding site. In order to avoid 

interference among the traps (BG Sentinel and Mosquito Magnets) they were placed 

in different locations (15 m distance apart) of the household compound as 

suggested  by (Brown et al., 2014)  depending on the size and orientation of the 

household compound. 

When setting the Resting Bucket traps, the inside of traps was sprinkled with water 

to make the lining cloth wet and increase humidity. Traps were placed haphazardly 

within a 5 m  range of the  house or animal enclosure/shelter in relatively shady 

areas, ideally next to or under vegetation (Bidlingmayer, 1971, Burkett-Cadena et 

al., 2008). Bucket traps were placed on their sides with the opening facing the 

nearest structure, a house or livestock enclosure/shelter. Mosquitoes resting inside 

the resting buckets were collected using a CDC backpack aspirator by aspirating for 

10–20 seconds at the open end of the bucket. Mosquito catches from all traps were 

collected between 6:00 am and 7:00 am in the morning, and between 6:00 pm and 

7:00 pm in the evening. 

2.4.3.4 Mosquito sorting  

Mosquitoes from all trapping methods were anesthetized by asphyxiation with 

chloroform before sorting and identification. All mosquitoes caught were 

morphologically identified to genera or species level using morphological 

identification keys (Gillies and Coetzee, 1987, Huang, 2001, Jupp, 1996). Using a 

magnifying hand lens (X5) and forceps, mosquitoes from each trap  were sorted 

according to genera, sex, trap type, site and date of collection, in pools of 1-25 
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mosquitoes and preserved in labelled 2 ml cryo vials containing Trizol reagent 

(Figure 2.4). Pools of mosquitoes were kept in a car fridge initially for 4-5 days and 

then transported to the laboratory at Kilimanjaro Clinical Research Institute (KCRI) 

for storage in the -800C freezer for further RNA extraction at a later stage.  

 

 

Figure 2.4 Plate showing mosquito sorted from other insects using magnifying hand 

lens and forceps, morphologically identified and stored in labeled cryovials. 

2.4.3.5 Environmental data 

In addition to mosquito collections, data on vegetation cover of the area was 

essential as a potential determinant of mosquito abundance and distribution. Data 

on normalized difference vegetation index (NDVI) which quantifies vegetation by 

measuring the difference between near-infrared (which vegetation strongly 

reflects) and red light (which vegetation absorbs) was obtained from 

https://earthexplorer.usgs.gov/. NDVI was MOD12A3 data for each month with  a 

spatial resolution of 0.05 decimal degrees by 0.05 decimal degrees. NDVI ranges 

from -1 to +1. Negative values indicates that it’s highly likely that it’s water  and 

NDVI value close to +1 indicates that there’s a high possibility that it’s dense green 

vegetation. To provide control for potential differences in rainfall between 

sampling days, the percentage difference in NDVI at the household between the 

month of the visit to the household and NDVI for that household over the whole 

study period (i.e. between 2015 and 2017) was calculated. A positive percentage 

difference could be expected to reflect a “greener” than average time of year and 
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to therefore broadly represent of a wet period. A negative percentage difference 

would reflect a “browner” than average time of year, and therefore broadly 

represent a dry period. It could be expected that more mosquitoes would be 

trapped during a wetter (greener) time of year than during a dryer (browner) time 

of year.  

2.5 Laboratory analyses 

2.5.1  Serological detection of RVFV antibodies in livestock and 

human sera 

Considerable challenges remain in the reliable detection of RVFV antibodies, 

particularly in relation to the ability of tests to distinguish exposure to RVFV from 

other closely related phleboviruses that may be circulating in the East African 

region. In this study, livestock sera were analysed for presence of  anti-RVFV 

antibodies (IgG/IgM) using two enzyme linked immuno-sorbent assays (ELISAs), with 

results from a subset of samples compared using the virus neutralization test 

(VNT). A recombinant nucleocapsid-based in-house ELISA developed at the 

University of Glasgow was first used as screening test, with further tests carried 

out using a commercial  ID Screen® Rift Valley fever multi-species competitive 

ELISA (ID.Vet Innovative Diagnostics, Grabels, France), and an in-house VNT. Due to 

limited number of commercial ELISA kits, all in-house ELISA positive (goat and 

sheep) sera and 10% of randomly selected negative sera samples were repeated by 

commercial ID Screen® Rift Valley fever multi-species competitive ELISA. All cattle 

sera samples were tested by the commercial cELISA.  

To test for any recent infections in livestock based on anti-RVFV immunoglobulin M 

(IgM), a sub-set (14% dictated by the number of test kits available) of positive and 

negative (goat and sheep) sera samples were randomly selected and tested by 

commercial ID Screen® IgM capture ELISA as described by the manufacturer (ID.Vet 

Innovative Diagnostics, Grabels, France)  as IgM antibodies to RVFV are produced 

first before IgG and can only be detected up to two months after infection (Morvan 

et al., 1991, Paweska et al., 2003a).  All human sera samples were tested by 

commercial ID Screen® Rift Valley fever multi-species competitive ELISA. ELISA 

results were validated by virus neutralization test (VNT) of a subset of  livestock 

and  human randomly selected positive and negative samples.  
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2.5.1.1 In-house ELISA 

The assay used a recombinant nucleocapsid-based in-house ELISA developed at the 

University of Glasgow. Briefly, 6His-tagged recombinant N protein was expressed in 

E. coli and purified using nickel-affinity chromatography.  The RVFV recN protein 

was used as an antigen coated on the plates to detect presence of anti-RVFV 

antibodies in sera samples. The protein (RVFV recN) was genorously prepared by 

Dr. Ping Li, University of Glasgow. 

2.5.1.1.1 Preparation of reagents and working dilutions 

PBS (Phosphate Buffered Saline) 0.001M, pH 7.4 was prepared by dissolving 1 

sachet of PBS powder in 1L of distilled water. Wash buffer (PBS Tween 0.1%) was 

prepared by dissolving 1 ml of Tween 20  in 1 L PBS. Marvel powdered skimmed 

milk (Premier Foods, Thame, UK) was used for preparation of diluent and blocking 

buffers. Diluent buffer was prepared by adding 2% of skimmed milk in PBS (2 g milk 

in 100 ml PBS), where as blocking buffer was prepared by adding 10% of skimmed 

milk in PBS (10 g milk in 100 ml PBS). Carbonate bicarbonate buffer (for protein 

dilutions) was prepared by adding 8.4 g sodium bicarbonate (NaHCO3) and 3.56 g 

anhydrous sodium carbonate (Na₂CO₃)  in 1L distilled water. Proteins were diluted 

in carbonate bicarbonate buffer to 500ng/ml. RVF-N protein (12.5µl) was diluted in 

10 ml carbonate bicarbonate buffer. 

2.5.1.1.2 Assay Procedure 

Plates were coated by adding 100 ml (50mg) diluted RVFV-N protein  to each well of 

the ELISA plates, covered by plate sealers and incubated at 40C overnight. The next 

day protein was removed and the plate washed 3 times with wash buffer. Two 

hundred microliters of blocking buffer (10% skimmed milk in PBS) was added to 

each well, covered and incubated for 1 hour at room temperature. During the 

blocking stage, control and test sera were diluted to 1:400 in diluent buffer. After 

incubation, blocking buffer was removed and plates washed 3 times with wash 

buffer. Then 100ml diluted positive control sera was added to wells A1-2 (in 

duplicate), negative control sera to wells B1-2 of the plate, followed by 100ml of 

each of the test sera added to the remaining wells in duplicate, covered and 

incubated at room temperature for 2 hours. After washing plates 3 times with wash 

buffer, 100ml of horseradish peroxidase (HRP)-conjugated anti-species (cattle, goat 

or sheep) antibody (Thermo Fisher Scientific,  Massachusetts, USA)  diluted to 
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1:1000, was added to each well, covered and incubated at room temperature for 1 

hour. After incubation plates were washed 5 times with wash buffer and then 100ml 

of TMB (3,3',5,5'-Tetramethylbenzidine) was added to each well and the plates kept 

in the dark for 15 minutes to allow colour change. Plates were read on a Multiskan 

Ascent ELISA plate reader (MTX Lab Systems, Florida, USA) at 650nm. Arrangement 

of controls and test sera on a plate is shown in Figure 2.5. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A C+ C+ S7 S7 S15 S15 S23 S23 S31 S31 S39 S39 

B C- C- S8 S8 S16 S16 S24 S24 S32 S32 S40 S40 

C S1 S1 S9 S9 S17 S17 S25 S25 S33 S33 S41 S41 

D S2 S2 S10 S10 S18 S18 S26 S26 S34 S34 S42 S42 

E S3 S3 S11 S11 S19 S19 S27 S27 S35 S35 S43 S43 

F S4 S4 S12 S12 S20 S20 S28 S28 S36 S36 S44 S44 

G S5 S5 S13 S13 S21 S21 S29 S29 S37 S37 S45 S45 

H S6 S6 S14 S14 S22 S22 S30 S30 S38 S38 S46 S46 

Figure 2.5 In-house plate layout showing the arrangement of control and test 

samples in plate wells. C+ = positive control, C- = negative control, S1-S46 = test 

samples. 

2.5.1.1.3 Interpretation 

A specific activity of each test serum was calculated by subtracting the background 

activity in the wells with the negative control from the specific activity in wells 

with positive control. The raw absorbance (OD) values were expressed as a 

percentage positive (PP) of the positive control, using the following formula: (Mean 

OD of test samples/Mean OD of positive control - mean OD of negative control) x 

100. A percent positive (PP) value of  ≥30% was considered to be positive. 

2.5.1.2 ID Screen® Rift Valley Fever Competition Multi-species 

ELISA 

A commercial, indirect competition ELISA (cELISA) kit (ID Screen Rift Valley fever 

multi-species ELISA; ID.Vet Innovative Diagnostics, Grabels, France) was used 

according to the manufacturer’s instructions for detecting RVFV specific 
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antibodies. Given that it is reported to have a validated high diagnostic sensitivity 

and specificity (Comtet et al., 2010, Kortekaas et al., 2013), the assay was used as 

reference for evaluating the In-house ELISA.  

2.5.1.2.1 Preparation of reagents and working dilutions 

The ID.Vet kits contained ready to use reagents which were diluted to the 

recommended concentration.  Wash Buffer (1X) was prepared by adding 50 ml of 

Wash Concentrate (20X) to 950 ml distilled water. Anti-nucleoprotein-horseradish 

peroxidase (Anti-RVF-NP-HRP Conjugate 1X) was prepared by adding 1 ml of Anti-

RVF-NP-Po conjugate (10X) to 9 ml Dilution Buffer 19. Other reagents that were 

ready to use without dilution include Dilution Buffer 19, Substrate Solution, Stop 

Solution and Control sera (Positive and Negative Control sera). 

2.5.1.2.2 Assay procedure 

Sera samples were diluted in dilution plates, where 50 µl of dilution buffer was 

added to each well of the dilution plates, followed by 50 µl of either the control 

sera or the test sera. All samples were analysed in duplicate. Next, 100µl per well 

of the diluted samples were transferred to pre-coated test plates using a 

multichannel pipette. The plates were incubated for 1 hour at 370C and then 

washed three times with 300 µl per well of washing buffer. The anti-RVF-NP-HRP 

conjugate was diluted in dilution buffer and 100 µl added per well. The plates were 

then incubated for 30 min at room temperature and washed as before, after which 

100 µl of ready-to-use TMB substrate (ID.Vet Innovative Diagnostics) was added to 

each well and incubated in the dark for 15 min. Then, 100 µl of stop solution was 

added per well and the absorbance (OD) was read at 450 nm.  

2.5.1.2.3 Interpretation 

The results were calculated as percentage inhibition (competition), using the 

following formula: Suspect or negative (S/N) = (OD Sample/OD Negative control) x 

100. A suspect or negative (S/N) value of ≤ 40% was considered to be positive, 

otherwise negative.  

Comparing the two ELISA assays (Figure 2.6), a sample was confirmed positive if it 

was tested positive by both tests (In-house and cELISA) or tested positive by the 

commercial cELISA only.  
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Figure 2.6 ELISA plates showing comparison of two assays, In-house ELISA (blue) and 

ID Screen Multi-species Competitive ELISA (yellow). Deep blue color on the top 

plate indicates specific antibody activity and no color or faint color indicates 

background activity. On the bottom plate no color or faint color indicates specific 

antibody activity whereas yellow color indicates background activity. 

2.5.1.3 ID Screen® Rift Valley Fever IgM Capture 

Immunoglobulin M (IgM) appears early in infection (5-7 days), rises rapidly in the 

disease course and can be detected within 6-8 weeks after infection (Morvan et al., 

1991), and is usually less virus cross-reactive than IgG (Martin et al., 2000). IgM 

Capture ELISA is an important assay for detection of recent viral infections. A 

commercial IgM Antibody Capture ELISA (MAC-ELISA) designed specifically to detect 

IgM antibody was used in this study to detect IgM antibodies directed against the 

Rift Valley Fever (RVF) nucleoprotein (N) in bovine, ovine and caprine serum or 

plasma. Antibody capture ELISAs use two types of antibody specific for different 

epitopes of the antigen molecule. The primary antibody (known as capture 
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antibody) is coated to the wells followed by adding the sample solution. Then a 

secondary enzyme linked antibody (known as detection antibody) added to detect 

the presence of the captured antigens in the sample.  

2.5.1.3.1 Preparation of reagents and working dilutions 

Wash Solution(1X) was prepared the by diluting the Wash Concentrate(20X) in 

distilled water (50 µl Wash Concentrate 20X added to 950 µl distilled water). RVF 

Nucleoprotein 10X  was prepared by adding 1ml of Reconstitution Buffer to the 

Freeze-dried RVF Nucleoprotein vial and mixed well to homogenize the solution. 

The reconstituted RVF Nucleoprotein (10X)  was then diluted to 1X concentration 

by adding 1 ml RVF Nucleoprotein to 9 ml Dilution Buffer 13. Anti-nucleoprotein-

horseradish peroxidase (Anti-RVF-NP-HRP Conjugate 1X) was prepared by adding 1 

ml of Anti-RVF-NP-Po conjugate (10X) to 9 ml Dilution Buffer 11. Other ready  to 

use reagents that were supplied in the kit include Reconstitution Buffer, Dilution 

Buffer 11, Dilution Buffer 13, Dilution Buffer 18, Substrate Solution (TMB), Stop 

Solution (0.5 M)  and Control sera (Positive and Negative Controls). 

2.5.1.3.2 Assay Procedure  

All reagents were mixed by inversion or vortexing. Plates were already pre-coated 

with anti-bovine-ovine-caprine IgM polyclonal antibodies. Samples were deposited 

in duplicate in adjacent even and odd-numbered wells (Figure 2.7). Forty 

microlitres of Dilution Buffer 18 was added to each well. Thereafter, 10 µl of the 

Negative Control was added to wells A1, B1 and A2, B2. Next, 10 µl of the Positive 

Control was added to wells C1, D1 and C2, D2. After that 10 µl of each sample to 

be tested in duplicate was added to the remaining wells (each sample was 

deposited twice in adjacent even and odd numbered wells). The plate was then 

incubated for 1 hour at 37°C. After incubation, plates were washed three times 

with approximately 300 µl per well of the Wash Solution. Then 50 µl of the RVFV 

nucleoprotein 1X was added to the even-numbered plate columns only and 50 µl of 

Dilution Buffer 13 to the odd numbered columns and incubated for 1hour at 37°C. 

Next, each well was washed three times with approximately 300 µl of the Wash 

Solution. Then 50 µl of the Conjugate 1X was added to each well, incubated for one 

hour at 37°C, after which each well was washed three times with approximately 

300 µl of the Wash Solution. Then 100 µl of the Substrate Solution was added to 

each well, incubated for 15 min at room temperature (21°C ± 5°C) in the dark to 

allow coloration, after which 100 µl of the Stop Solution was added to each well in 
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order to stop the reaction. The absorbance was read by a plate reader and 

recorded the OD at 450 nm.  

 

 D13 RVFV-
NP 

D13 RVFV-
NP 

D13 RVFV-
NP 

D13 RVFV-
NP 

D13 RVFV-
NP 

D13 RVFV-
NP 

A C- C- S5 S5 S13 S13 S21 S21 S29 S29 S37 S37 

B C- C- S6 S6 S14 S14 S22 S22 S30 S30 S38 S38 

C C+ C+ S7 S7 S15 S15 S23 S23 S31 S31 S39 S39 

D C+ C+ S8 S8 S16 S16 S24 S24 S32 S32 S40 S40 

E S1 S1 S9 S9 S17 S17 S25 S25 S33 S33 S41 S41 

F S2 S2 S10 S10 S18 S18 S26 S26 S34 S34 S42 S42 

G S3 S3 S11 S11 S19 S19 S27 S27 S35 S35 S43 S43 

H S4 S4 S12 S12 S20 S20 S28 S28 S36 S36 S44 S44 

Figure 2.7 Plate layout showing how controls, test samples and RVFV-nucleoprotein 

were added to plate wells. C+ = positive control, C- = negative control and S1-S44 = 

test samples 

  

2.5.1.3.3 Interpretation 

Results were determined by the net OD using the following formula:  

Net OD = OD even well – OD odd well.   

The test was validated if: the mean value of the net Positive Control OD (net OD 

PC) > 0.350 or the ratio of the mean values of the net Positive and Negative Control 

ODs (net ODPC and net OD NC) > 3. Results were interpreted by the S/P percentage 

(S/P %): S/P % = net OD sample/net OD PC x 100. Samples presenting a S/P 

percentage (S/P %) less than or equal to 40% were considered negative, between 

40% and 50% were considered as intermediate and greater than or equal to 50% 

were considered positive.  

2.5.1.4 Virus Neutralization Test 

Although ELISAs are convenient diagnostic tools, the virus neutralization test (VNT) 

is regarded as superior and is therefore considered the gold standard serological 
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assay due to its high specificity (Schreur et al., 2017).  It is a specialized type of 

immunoassay because it does not detect all antigen–antibody reactions. It only 

detects antibodies that can block (neutralize) virus replication, which is important 

because closely related groups of viruses may share common antigens, but only a 

fraction of these antigens are targets of neutralizing antibody. In this assay 

a recombinant live attenuated MP-12 strain of RVFV (rMP-12) was used. The MP-12 

attenuated vaccine strain is the only RVFV strain used outside high containment 

laboratories and can be handled at BSL-2 in USA facilities (Lokugamage et al., 

2012) and CL-3 in the UK. Strain MP-12 is different from its parental pathogenic 

RVFV strain, strain ZH548, because of the presence of 23 mutations (Ikegami et al., 

2015). The neutralisation assay presented here was performed by Dr. Agnieszka 

Szemiel (Centre for Virus Research, University of Glasgow, Glasgow, UK) 

2.5.1.4.1 Preparation of reagents and dilutions 

The overlay was prepared by mixing 1.2% Avicel solution with 2XMEM (minimum 

essential medium, Gibco) containing 4% FCS (foetal calf serum) v/v) in 1:1 ratio. 2X 

MEM was made by combining 20% (v/v) 10X Modified Eagle’s Medium (MEM) (Gibco), 

2% (v/v) L-glutamine, 0.435% (v/v) NaHCO3, diluted in distilled water. Crystal 

Violet stain was prepared by mixing 10 ml Methanol and 200 ml Ethanol absolute 

and 1 g Methyl Violet (Crystal Violet), mixed well by shaking to dissolve the methyl 

violet. Then added 100 ml Formaldehyde solution (41%) and added distilled water 

up to 1L. 

2.5.1.4.2 Assay procedure 

The Virus Neutralisation Test (VNT) was performed using Vero E6 cells,seeded a day 

prior to infection in 12 well plates at a cell density of 1.5 x 105 cells per well. The 

next day, 4-fold dilutions (from 1/32 to 1/32768) of the sera samples were 

prepared in a 96 well plate in DMEM (Dulbecco's modified eagle medium, Gibco) 

supplemented with 2% FCS (150ul per well). Then 150ul of DMEM containing 100 pfu 

of rMP-12 virus was added to diluted sera into each well and plates were incubated 

at 370C for 1h. Next the media was removed from the cells. Thereafter, 200ul of 

each mixture of serum and rMP-12 virus was added to infect confluent monolayers 

of Vero E6 cells in 12-well plates. After 1h incubation at 370C  the supernatant was 

removed, then 1ml overlay (0.6% Avicel, 2x MEM, 2% FCS) was added per well, 

incubated at 370C for 4 days, after which the cells were fixed with 1ml of 8% 

formaldehyde in PBS (v/v) per well and incubated for at least 1h at room 
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temperature. Formaldehyde and avicel overlays were removed and plates washed 

in water, then stained with crystal violet stain followed by washing the plates with 

water and left to dry. Then the plaques were counted.  

2.5.1.4.3 Interpretation  

Counts from replicate wells were averaged, and the average was multiplied by the 

dilution factor of the inoculum, which produced that number, and the volume of 

inoculum plated to calculate the plaque forming units (PFU) per mL of the original 

stock virus preparation. Results were calculated using this formula: the average 

number of plaques in replicate wells × dilution factor ÷ virus inoculum volume (in 

mL) = titer in PFU/mL.  

2.5.2  Molecular detection of Rift Valley fever virus in  Mosquitoes, 

aborted materials and milk  

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used  

as previously described (Drosten et al., 2002) when the starting material is RNA. In 

this method, RNA is first transcribed into complementary DNA (cDNA) by reverse 

transcriptase. The cDNA is then used as the template for the qPCR reaction. 

2.5.2.1 RNA Purification from mosquito samples  

Mosquito samples collected in the field were preserved in Trizol in pools (each pool 

containing 1-25 mosquitoes). Samples stored in cryovials were transferred into 

Lysing Matrix, impact-resistant tubes containing 1.4 mm ceramic beads (MP 

Biomedicals, CA, USA) .The samples were disrupted by bead beating at 10,000 x g 

for 1min and homogenised by centrifugation. Transferred the supernatant into 

labelled RNase-free tubes. Then 300 µl of ethanol (100%) was added to each sample 

lysed in a previous step and mixed thoroughly. Next, the mixture was transferred 

into a Zymo-Spin™ IIICG Column2 in a Collection Tube (provided in the kit) and 

centrifuged at 12000 x g  for 30 seconds. The column was then transferred to a new 

collection tube and the flow-through discarded. 400 µl of RNA Wash Buffer was 

added to the column and centrifuged for 30 seconds, followed by adding 80 µl 

DNase I, incubated at room temperature (20-30°C) for 15 minutes.  The column 

was washed two times by adding 400 µl Direct-zol™ RNA PreWash to the column and 

centrifuged for 30 seconds and the flow-through discarded.  Then 700 µl RNA Wash 

Buffer was added to the column and centrifuged for 2 minutes to ensure complete 
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removal of the wash buffer and the column carefully transferred into RNase-free 

tube. RNA was eluted by adding 100 µl of DNase/RNase-Free Water directly to the 

column matrix and centrifuged for 30 seconds. RNA quantity (concentration) was 

measured by NanoDrop™ 2000  Spectrophotometer (Thermo Scientific) and RNA was 

stored frozen at -80°C. 

2.5.2.2 RNA preparation from swabs, placenta tissue  and milk 

using RNeasy® Mini Kit 

The RNA preparation process described here is based on the Qiagen RNeasy Mini kit 

with slight modification. Four volumes of 100% ethanol were added to Buffer RPE 

for a working solution, then RNA shield stabilized tissue/swabs were removed from 

the reagent using forceps. Next, 30mg of each tissue sample was added to sterile 

2ml micro centrifuge tubes with glass beads and 600µl RLT buffer (OR 200µl of milk 

sample into 600µl RLT buffer). The tissue samples were disrupted using a bead-

beater at 10000 x g for 1 minute. Milk samples were homogenised directly without 

bead beating. Next, the supernatant was pipetted to new micro centrifuge tubes, 

then 590 µl RNase free water and 10 µl Proteinase K were added and incubated at 

550 C for 10 minutes. After cooling to room temperature, the samples were 

centrifuged at 10000 x g for 3 minutes then supernatant transferred to new 

Eppendorf tubes,  0.5 volumes of 96-100% ethanol to the lysate (if 700 µl were 

transferred, then 350 µl ethanol were added and mix well by pipetting. The 700µl 

of lysate and ethanol mixture were then transferred to spin column, centrifuged 

for 3 min at maximum speed and then the supernatant was removed by pipetting.  

One volume of 70% ethanol was added to the lysate, and mixed well by pipetting, 

then 700 µl of the sample, including any precipitate were transferred to an RNeasy 

Mini spin column 16 placed in a 2 ml collection tube, lid closed and centrifuged for 

15 s at ≥8000 x g and discarded the flow-through. Next, 700 µl Buffer RW1 was 

added to the RNeasy spin column and centrifuged for 15 s at ≥8000 x g, the flow-

through discarded followed by adding 500 µl Buffer RPE to the RNeasy spin column 

and centrifuged for 15 s at ≥8000 x g discarded the flow through and added 500 µl 

of Buffer RPE to the RNeasy spin column, and centrifuged for 2 min at ≥8000 x g.  

Then the RNeasy spin column was placed in a new 1.5 ml collection tube and 50 µl 

RNase-free water was added directly to the spin column membrane, the lid was 

then closed and the tube centrifuged for 1 min at ≥8000 x g to elute the RNA. 



54 

2.5.2.3 Positive and negative control RNA 

Positive and negative control RNA were generously offered by Dr. Agnieszka 

Szemiel (Centre for Virus Research, University of Glasgow, Glasgow, UK). The MP-

12 viral RNA and mosquito total RNA from clean uninfected Aedes mosquitoes from 

the Centre for Virus Research, University of Glasgow, were used as positive and 

negative controls respectively. These RNA samples were extracted by the Trizol 

method as described previously (Rio et al., 2010).  Briefly, RVFV (MP-12) virus-

infected cell cultures were centrifuged at 3000 x g for 15 min and RNA was 

extracted from 100 µl aliquots of the supernatant by the Trizol method  (Gibco 

BRL, Gaithersburg, MD). Mosquitoes were homogenized in 1 ml of Trizol reagent, 

and 100 µl of the homogenates were processed for RNA extraction by the Trizol 

method. 

2.5.2.4 PCR Mastermix preparation 

The PCR mastermix was prepared in a designated RNA/DNA-free room. Reagents 

were homogenised before preparing mastermix by brief pulse-vortexing and 

centrifuging.   Master mix was prepared as indicated in Table 2.2. 

Table 2.2 PCR Master Mix components, concentrations, and volumes used in the 

test 

Component Concentration μl per 
reaction 

Final 
concentration 

Mix for 72 
rxns (36 
duplicate 
rxn) (μl) 

QuantiNovaTM 
Probe RT-PCR 
Master Mix  

2 x 10 μl 1x 720 μl 

QN Probe RT-Mix   0.2 μl 1x 14.4 μl 

20x primer–probe 
mix 1  

 

 1 μl 0.8 μM 
forward 
primer 1 

0.8 μM reverse 
primer 1 

0.2 μM TaqMan 
probe 1 

72 μl 

 

72 μl 

 

72 μl 

RNase-free water   Variable -  

RNA template   5 μl   
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Component Concentration μl per 
reaction 

Final 
concentration 

Mix for 72 
rxns (36 
duplicate 
rxn) (μl) 

Total reaction 
volume 

 20 μl -  

 

To minimise risk of contaminating stock reagents, aliquots of appropriate volumes 

were made and working aliquots stored at ~3°C. Stock reagents were stored at -

20°C until when further aliquots were required.   

2.5.2.5 Real time Quantitative Reverse Transcription Polymerase 

Chain Reaction (RT-qPCR)  

Detection of RVFV by  one-step quantitative reverse-transcription real-time PCR 

(RT-qPCR) using RNA samples was carried out as previously described by Drosten et 

al., 2002. One-step assays combine reverse transcription and PCR in a single tube, 

using a reverse transcriptase along with a DNA polymerase and utilizing sequence-

specific primers. The procedure detailed here is for the Qiagen Rotor-Gene Q/6000 

qPCR platform and associated Rotor-Gene Q Series Software for analysis. Primers 

and dual-labelled probe for RVFV Gc gene  were used for this study. Sequences are 

detailed in Table 2.3. 

Table 2.3 Sequences of Primers and Probe used in the PCR reaction 

Virus (GenBank 
accession no.) 
 

Sense primer, antisense primer, probe 
(sequence [position]) 
 

Genomic 
target 
region 

Amplicon 
length (bp) 
 

RVFV 
(AF134508)  

RVS (AAAGGAACAATGGACTCTGGTCA  
[349-371]) 

Gc gene 94 RVAs (CACTTCTTACTACCATGTCCTCCAAT 
[443-417]) 

RVP (FAM-
AAAGCTTTGATATCTCTCAGTGCCCCAA-
BHQ1 [388-416]) 

 

The reaction was set by adding 15μl of the master mix into each of the strip-tube 

wells using sterile filter pipette tips, while inside the laminar flow hood followed 
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by adding 5μl of sample RNA (template) in duplicate to each well to obtain a final 

reaction volume of 20μl.  The negative extraction control (NTC) well, and then 

positive control (RVFV- MP-12 supernatant RNA) well were added last and all caps 

secured. A 72 well rotor disc  was used for the runs in the Rotor-Gene machine and 

the cycling conditions involved reverse transcription at 45°C for 10 min, initial 

denaturation at 95°C for 5 min, and 40 cycles with 95°C for 5 s and 60°C for 30 s. 

Fluorescence was read at the combined annealing-extension step at 60°C. Curves 

produced were read in ‘linear scale’ and Ct values < 40 was considered positive. 

2.6 Statistical Analysis 

Details of specific statistical analyses for different study components are described 

in Chapters 3,4,5 and 6. Regression analysis was performed to explore 

determinants of mosquito abundance in each household, focusing on exploring 

differences between livestock and non-livestock keeping households. The response 

variable was the count (abundance) of mosquitoes in each genera collected per 

household. Type of household (livestock keeping or non-livestock keeping) and NDVI 

(relative green-ness) were included as fixed effects. Random effects were included 

at the household and village level in all models. Regression analysis was performed 

in R version 3.5.3 (R Core Team, 2018) using the glmmTMB package, and negative 

binomial regression models were used for these count data. A likelihood ratio test 

was used to assess the contribution of each fixed effect to model fit. Mosquito 

species distribution modelling was performed by Maximum Entropy (MaxEnt) 

algorithm (Phillips et. al., 2008)  and QGIS (QGIS 2.14.0 -Essen, 2016) using 

mosquito occurrence data and environmental variables to predict habitat suitability 

and the spatial distribution of potential RVFV vectors as described previously (Elith 

et. al., 2011). All Maps were produced using QGIS (QGIS 2.14.0 -Essen, 2016).  

In assessing the determinants of  RVFV seropositivity in livestock and humans the 

binomial Generalised Linear Mixed Models (GLMMs) was used to allow modelling of 

random and fixed effects of the explanatory variables  (Bolker et al., 2009). Village 

and households were considered as random effects, RVFV seropositivity was the 

response variable. In livestock (cattle, goats or sheep) fixed effects included sex, 

age, farming classification (small holder, agro-pastoral or pastoral), herd/flock 

size, animal introductions, seasonal movements/camps, history of abortions, 

presence/history of standing water/flood, history of animal deaths related to 

disease, animal management (confining cattle with small ruminants) and vector 
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habitat suitability derived from species distribution modelling detailed in Chapter 

three. Variables considered as fixed effects on seropositivity in human populations 

included occupation, sleeping in the same house as domestic ruminants, engaging 

in milking animals, birthing animals, handling placenta, handling aborted materials, 

handling animal carcasses, slaughtering animals, consuming raw meat or milk and 

seropositivity in livestock. Purposeful selection was used in variable and model 

selection as previously described (Hosmer Jr et al., 2013).   
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Chapter Three 

3 The ecology of RVFV mosquito vectors in northern 

Tanzania 

3.1 Introduction 

Rift Valley fever virus was first discovered and characterised in the Rift Valley of 

Kenya in 1931 (Daubney et al., 1931), but outbreaks probably occurred before this 

time (Gerdes, 2004). The virus is transmitted through mosquito bites or by 

exposure to infectious blood and bodily fluids (Balkhy and Memish, 2003). This 

arthropod-borne infection affects a wide range of vertebrates, but clinical disease 

is limited to domestic ruminants and humans (Gerdes, 2004).  

The virus can be transmitted by mosquitoes of at least six genera, including Aedes, 

Culex, Anopheles, Eretmapodites, Mansonia, and Coquillettidia (Bird et al., 2009) 

with over 30 different species shown to be competent vectors (Turell et al., 2008). 

Earlier studies suggest  that RVFV is transmitted  transovarially from females to 

eggs in some mosquito species of the Aedes genera (Logan et al., 1991, Gerdes, 

2004). Aedes spp emerge in huge numbers from flooded depressions in soil and 

other habitats where oviposition has occurred. These eggs can survive desiccation 

for many years between flooding periods and re-emerge as infected adult 

mosquitoes to cause major epidemics during periods of extreme rainfall (Sang et 

al., 2010, Davies et al., 1985). 

While the emergence of Aedes has been widely reported to initiate RVF outbreaks, 

virus amplification typically also involves secondary vectors such as Culex.  So far, 

all evidence implicating mosquito vectors in RVFV transmission comes from periods 

of epidemics following heavy rainfall and flooding. The role of vectors in 

maintenance of RVFV between epidemics is not well understood largely due to lack 

of evidence of detection and/or isolation of the virus from mosquitoes during the 

inter-epidemic period (IEP) (Lichoti et al., 2014a). Examining the ecology and role 

of vectors in inter-epidemic transmission is crucial for understanding RVFV 

epidemiology and control.   

In order to further understand the role of mosquitoes in inter-epidemic RVFV 

circulation, the study sought to: (1) assess the abundance, and diversity of 

mosquito vectors during an inter-epidemic period in northern Tanzania, (2) assess 

the role of household livestock ownership on the abundance of potential RVF 
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vectors, and (3) use environmental characteristics to predict mosquito vector 

distribution. 

3.2 Methods 

This section briefly describes the methods used for purposes of this chapter. 

Further details are provided in the core methods chapter (Chapter Two).  

3.2.1  Study Area 

The study was carried out in Arusha and Manyara Regions of northern Tanzania 

(Figure 3.1) where mosquitoes were sampled in November 2015, between March 

and September 2016, and between July and October 2017. Sampling included 12 of 

the 20 SEEDZ villages selected in districts across northern Tanzania, as described in 

Chapter Two. 

 

 

Figure 3.1 Map of northern Tanzania showing districts and locations of study 

villages (orange circles) where mosquitoes were collected. Map created in QGIS 

2.14.0 -Essen, 2016 using shape files for country administrative boundaries 



60 

available at www.diva-gis.org and geo coordinates for study sites recorded during 

the study.  

3.2.2  Mosquito Sampling 

3.2.2.1  Selection of sampling sites 

Mosquitoes were sampled from households with and without livestock in both agro-

pastoral and pastoral settings in the study area. Livestock households were 

randomly selected from a list of households selected for animal sampling by the 

SEEDZ study within a particular sub-village. Non-livestock keeping households were 

randomly selected from a list of all non-livestock keeping households in the sub-

village generated by the village and sub-village authorities. In addition to 

households, potential mosquito breeding habitats were also purposefully identified 

for mosquito trapping. Permission from community leaders and informed consent 

were sought from each head of household where mosquito trapping was carried 

out.  Geographic co-ordinates of each selected household or mosquito trapping site 

were captured using a Garmin eTrex® 10 Handheld GPS. 

3.2.2.2  Mosquito collection 

In each sub-village, one day (8 am - 6 pm) and one night (7pm - 6am) of sampling 

was carried out at each of the selected households or near the identified mosquito 

breeding habitat sites. Four mosquito trapping methods were used for mosquito 

collection: (1) BG Sentinel trap (BG) (Biogents AG, Regensburg, Germany) to target 

outdoor host seeking mosquitoes; (2) Mosquito Magnet traps (MM) (Woodstream 

Corporation,  Pennsylvania, USA) to target outdoor host seeking mosquitoes; (3) 

CDC Light traps  (LT) (John W. Hock Company, Florida, USA) to trap indoor host 

seeking mosquitoes; and (4) locally made Resting Bucket traps (RB) to sample 

outdoor resting mosquitoes as previously described (Kreppel et al., 2015). All 

mosquitoes collected were morphologically identified to genera level using 

morphological identification keys (Gillies and Coetzee, 1987, Huang, 2001, Jupp, 

1996). 

3.2.2.3  Environmental data 

Household co-ordinates were used to extract data on the normalized difference 

vegetation index (NDVI) from satellite imagery of the area surrounding the 

household at the time of the sampling visit. The NDVI quantifies the amount of 
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vegetation cover by measuring the difference between near-infrared (which 

vegetation strongly reflects) and red light (which vegetation absorbs). NDVI data 

(MOD12A3) were obtained from https://earthexplorer.usgs.gov/ for each month 

between 2015 and 2017. These data have a spatial resolution of 0.05 decimal 

degrees by 0.05 decimal degrees (around 900 x 900 metres in the study area). 

Household-level NDVI values were extracted from rasters covering the study area in 

R statistical software version 3.5.3 (R Core Team, 2018) using the raster package. 

3.2.3  Data analysis 

3.2.3.1   Determinants of mosquito vectors abundance  

Regression analysis was performed to explore determinants of mosquito abundance 

in each household, with a particular focus on exploring differences between 

livestock and non-livestock keeping households. Here the response variable was the 

count (abundance) of mosquitoes in each genera collected. Mosquitoes of a 

particular genus collected from different trapping methods were pooled per 

household. Type of household (livestock keeping or non-livestock keeping) were 

included as fixed effects. Percentage difference in NDVI was also included as a 

fixed effect to control for the relative “green-ness” of the household environment, 

and therefore the expected levels of rainfall preceding the study visit. For this, the 

percentage difference in NDVI at the household was estimated by comparing the 

NDVI for the month of the visit with the average NDVI value at that household over 

all study years (i.e. between January 2015 and December 2017). A positive 

percentage difference could be expected to reflect a “greener” than average time 

of year and therefore represent a sampling visit during a relatively wet period. A 

negative percentage difference would reflect a “browner” than average time of 

year, and therefore represent a sampling visit during a relatively dry period.  

Regression analysis was performed in R using the glmmTMB package (Brooks et al., 

2017). Poisson and negative binomial regression models were used for these count 

data. Performance of the latter compared to the former was assessed using a 

likelihood ratio test. Random effects were included at the household and village 

level in all models. A likelihood ratio test was used to assess the contribution of 

each fixed effect to model fit and the output from the full model (i.e. with all 

fixed effects) is presented.  
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3.2.3.2  Mosquito vectors distribution    

Prediction of mosquito vector distribution using environmental characteristics was 

performed on the basis the Maximum Entropy (MaxEnt) algorithm (Phillips et. al., 

2008) in QGIS (QGIS 2.14.0 -Essen, 2016).  There are a range of potential species 

distribution modelling methods (Elith et. al., 2011), with MaxEnt found to perform 

particularly well (Elith et al., 2011, Peterson, 2006, Huerta and Peterson, 2008). 

MaxEnt is a maximum entropy-based machine learning programme that estimates 

the probability distribution for a species’ occurrence based on environmental 

constraints (Phillips et al., 2006). It requires only species presence data and 

environmental variable layers for the study area and generates an estimate of the 

suitability of a particular location for the occurrence of a species that varies from 0 

to 1, with 0 being the lowest and 1 the highest suitability.  

In this study, adult mosquito occurrence data were used to model the vector 

distribution. Occurrence records and/or locations (Figure 3.2) of potential RVFV 

vectors were obtained from the study described above and unpublished data from 

an additional study that was performed in the Serengeti ecosystem between 2012 

and 2013 (Nyarobi et al.). 

 

Figure 3.2 Map of northern Tanzania showing mosquito occurrence locations used in 

species distribution modeling. Map created in QGIS 2.14.0 -Essen, 2016 using shape 
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files for country administrative boundaries available at www.diva-gis.org and geo 

coordinates of the mosquito occurrence records. 

Twenty-four environmental variables were considered as potential predictors of the 

RVFV vector species habitat distribution. These variables were chosen based on 

their biological relevance to mosquito species distributions (Phillips et al., 2006, 

Pearson et al., 2007). Nineteen bioclimatic variables related to temperature and 

rainfall generated from an interpolation of average monthly climate data from 

stations around the world (Hijmans et al., 2005) were obtained from WorldClim 

dataset (http://www.worldclim.org/bioclim.htm).  Elevation (Digital Elevation 

Model (DEM)) data were also obtained from the WorldClim website (at 1 km spatial 

resolution), and soil layers (sand, clay and silt) obtained from the World Soil 

Information (https://www.isric.org/projects/soil-and-terrain-soter-database-

programme). The variables included in the MaxEnt procedure were: 

1) Bio1 = Annual Mean Temperature  

2) Bio2 = Mean Diurnal Range (Mean of monthly (max temp – min temp))  

3) Bio3 = Isothermality (P2/P7)*(100)  

4) Bio4 =Temperature Seasonality (standard deviation*100)  

5) Bio5 = Max Temperature of Warmest Month  

6) Bio6 =Min Temperature of Coldest Month  

7) Bio7 =Temperature Annual Range (P5-P6)  

8) Bio8 =Mean Temperature of Wettest Quarter  

9) Bio9 =Mean Temperature of Driest Quarter  

10) Bio10 =Mean Temperature of Warmest Quarter  

11) Bio11 =Mean Temperature of Coldest Quarter  

12) Bio12 =Annual Precipitation  

13) Bio13 =Precipitation of Wettest Month  

14) Bio14 =Precipitation of Driest Month  
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15) Bio15 =Precipitation of Seasonality (Coefficient of Variation)  

16) Bio16 =Precipitation of Wettest Quarter  

17) Bio17 =Precipitation of Driest Quarter  

18) Bio18 =Precipitation of Warmest Quarter  

19) Bio19 =Precipitation of Coldest Quarter  

20) Elevation 

21)  EVI - Enhanced vegetation index 

22)  Clay soil 

23)  Sand soil 

24)  Silt soil 

All the 24 predictor variables were processed using QGIS (QGIS 2.14.0 -Essen, 

2016). The processing steps included clipping raster data to the extent of the study 

area and re-sampling all the predictors layers to the same spatial resolution (1 km) 

and file types (TIF/ACS). All the variables were tested for multicollinearity by 

examining cross-correlations (Pearson correlation coefficient, r) based on individual 

mosquito genera occurrence records and the randomly generated background. 

Initially 11 temperature related variables were examined, followed by eight rainfall 

related variables. Collinearity between each pair of the eight precipitation 

predictor variable layers and pairs of eleven temperature layers (Figures 3:6 - 3:8) 

was assessed using Pearson correlation analyses in R. Selection of variables from a 

set of highly cross-correlated variables (r > 0.75) was based on the potential 

biological relevance of each of a correlated pair to the occurrence and distribution 

of the genera, and the ease of interpretation (Merow et al., 2013).  

3.2.3.3  Modelling procedure 

MaxEnt software (Version 3.4.1) was used (Phillips et al., 2017) 

http://biodiversityinformatics.amnh.org/open_source/maxent/. Distribution 

modelling focused on Aedes and Culex as important primary and secondary vectors 

of RVFV in the study area. The distribution of these mosquitoes was compared with 

the distribution of Anopheles spp. Each model was run with the selected 
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temperature and rainfall variables in addition to soil, elevation and vegetation 

variables. Since the sample size was moderately low for the vector genera,  only 

linear and quadratic features were used and other settings were maintained as 

default (Phillips et al., 2004). The regularization multiplier was set to default 1 and 

number of replications set to 10 and a maximum of 5000 iterations at a 

convergence threshold of 0.00001, with cross validation replicate type in order to 

limit model over fitting. The output was set to a logistic format, so that the 

predictions of habitat suitability would assume probability scores between 0 and 1 

(Elith et al., 2006, Huerta and Peterson, 2008, Phillips et al., 2006). 

Due to the limited number of the vector occurrence localities, default settings 

were maintained without data partitioning to allow MaxEnt to employ data used to 

develop the model (also called training data) and to also test the model. The 

performance of the predictor represented by the average training gain over the 10 

replicate runs was normalized to percentages. The higher the percentage 

contribution of the predictor, the greater the importance of that particular 

variable in predicting habitat suitability for RVFV vector genera occurrence (Warren 

et al., 2010). The jacknife approach was also used to assess the contribution of 

individual variables on the basis of regularised training gain (Phillips et al., 2017). 

For this, variables were removed one at a time, and a habitat suitability model 

created using all remaining variables. Each variable was also used on its own to 

create a habitat suitability model. The training gain reflects how well the resulting 

models fit the data. MaxEnt also generates the receiver operating curve (ROC) 

curve of the full model predicting suitability of a particular vector genera. The 

area under the curve (AUC) values allow comparison of performance of one MaxEnt 

model with another. An AUC value of 0.5 indicates that the performance of the 

model is no better than random, while values closer to 1.0 indicate an excellent 

model performance. 

3.3 Results 

3.3.1  RVFV vector species abundance and composition  

A total of 2224 mosquitoes were sampled from 132 households in 12 villages 

(summarized in Table 3.1) representing five different genera including Aedes, 

Anopheles, Culex, Coquillettidia and Mansonia. The mosquitoes collected were 

morphologically identified as Aedes spp, Culex spp, Mansonia spp, Anopheles spp 

and Coquillettidia spp. Of the total mosquitoes collected, the majority were Culex 
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spp (50.5%), followed by Anopheles spp (45.0%), Mansonia spp (2.5%), Aedes spp 

(1.5%), and Coquillettidia spp (0.2%).  

Table 3.1 Mosquito species collected across study villages in northern Tanzania 

Village 

Aedes 

spp 

Anopheles 

spp 

Culex 

spp 

Coquilletidia 

spp 

Mansonia 

spp Total 

Endanyawish 0 539 43 0 0 582 

Engikareti 0 3 7 0 0 10 

Ilkerin 3 7 82 0 0 92 

Kansay 6 26 39 0 2 73 

Long 0 66 44 0 0 110 

Lositete 0 1 1 0 0 2 

Maheri 2 5 6 0 0 13 

Malambo 2 10 15 1 0 28 

Naiti 4 17 34 4 33 92 

Nambala 10 136 806 0 2 954 

Ruvu-remiti 7 194 33 0 19 253 

Sarame 0 2 13 0 0 15 

Total 34 1006 1123 5 56 2224 

 

Culex and Anopheles mosquitoes were recorded in all sampled villages and were 

the most abundant mosquitoes. The abundance of these mosquitoes was   

particularly high in three villages: Endanyawish, Nambala and Ruvu remiti. Aedes 

spp were relatively rarer and recorded in 7 out of 12 sampled villages. Mansonia 

spp were recorded in 4 villages, and Coquillettidia spp recorded in 2 villages only.    

3.3.2  Predictors of mosquito abundance 

Due to missing data, two villages (Engikareti and Lositete) were excluded from the 

regression analysis. Water points were also excluded. The number of households 

included in the regression was therefore 132. Regression analysis was also confined 

to Culex spp and Anopheles spp due to relatively low numbers of other genera 

(Aedes, Coquillettidia and Mansonia) collected. The data for both genera were 

over-dispersed and a negative binomial rather than Poisson regression was 

therefore used for analysis.  
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Although Anopheles spp abundance was higher (n=730) in livestock keeping 

households than in non-livestock households (n=233), the difference was not 

statically significant (p=0.142) in the negative binomial regression model (Table 

3.2). The difference in Culex abundance between livestock households (n=438) and 

non-livestock households (n=644) was also not statistically significant (p=0.221). 

While regression analysis was not performed for Aedes, it is notable that of the 28 

Aedes collected at households, most were from livestock keeping households (20 

versus 8 at non-livestock households).  The abundance of both Culex and Anopheles 

spp was positively and significantly associated with visiting households during a 

greener than average period (i.e. on the basis of % difference in NDVI) (p<0.001). 

 

Table 3.2 Summary of the Generalized Mixed-effect Model showing factors 

associated with Anopheles and Culex abundance in northern Tanzania 

Predictors Anopheles     Culex     

 

Estimates 95% CI P-value1 Estimates 95%CI P-value1 

Type of household 

        Livestock Ref. 

  

Ref. 

  
  Non-livestock 

0.65 0.31 - 1.41 0.275 0.71 0.38 - 1.31 0.268 

% difference in 

NDVI 
2.32 1.41 - 3.88 0.001 2.15 1.45 - 3.20 <0.001 

1 Estimated from likelihood ratio test.   

3.3.3 RVF vector genera distribution modelling 

Assessment of co linearity between each pair of the eight precipitation predictor 

variables (BI012-BIO19) and pairs of eleven temperature variables (BIO1-BIO11) 

(Figure 3.3, Figure 3.4 and Figure 3.5) demonstrated high levels of cross-

correlation. 
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Figure 3.3 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Aedes spp occurrence data. Circle size vary with 

correlation between variables ranging from 0 to 1 or 0 to -1 indicated by blue-red 

colour scale. 

 

Figure 3.4 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Culex spp occurrence data. Circle size vary with 

correlation between variables ranging from 0 to 1 or 0 to -1 indicated by blue-red 

colour scale. 
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Figure 3.5 Correlation matrices of (I) temperature- and (II) precipitation-related 

bioclimatic variables related to Anopheles spp occurrence data. Circle size vary 

with correlation between variables ranging from 0 to 1 or 0 to -1 indicated by blue-

red colour scale. 

In modelling mosquito distribution, the included environmental variables had 

variable influence on the prediction of suitability of all the three vector species 

(Table 3.3).  Precipitation of wettest month made the greatest contribution in 

predicting Aedes spp distribution, while elevation was most important in predicting 

Culex spp distribution. Enhanced vegetation index (EVI) had the greatest 

contribution to predicting the distribution of Anopheles spp.  

Table 3.3 Environmental variables used in modeling species distribution and their 

percent predictive contribution of each variable as generated by MaxEnt. 

Variable Percent contribution 

Aedes spp 
 

BIO13 = Precipitation of Wettest 
Month 28.8 

BIO3 = Isothermality 23.1 

Elevation 21.1 

EVI = Enhanced Vegetation Index 17.6 

Clay soils 9.5 
 
Culex spp 

 Elevation 26.1 

BIO4 = Temperature seasonality 23 

Clay soils 19.9 
BIO18 = Precipitation of Warmest 
Quarter 18.7 
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Variable Percent contribution 

EVI = Enhanced Vegetation Index 12.4 
 
Anopheles spp 

 EVI = Enhanced Vegetation Index 53.8 

Clay soils 25.7 

BIO4 = Temperature seasonality 9.7 

Elevation 6 
BIO18 = Precipitation of Warmest 
Quarter 4.8 

 

3.3.4  Jackknife test of regularized training gain for RVF vectors 

species habitat suitability 

The results of the jackknife regularized training gain for Aedes spp indicated that 

the environmental variable with highest gain when used in isolation was 

precipitation of the wettest month (BIO13). Removal of isothermality (BIO3) 

resulted in the largest decrease in gain, suggesting this variable had the most 

information that wasn't present in the other variables (Figure 3.6).  

 

 

Figure 3.6 Jackknife test of variable importance for Aedes spp distribution 

prediction 

 

For Culex spp, elevation had the highest gain when used in isolation and therefore 

appeared to have the most useful information by itself, while temperature 

seasonality (BIO4) decreased the gain the most when omitted (Figure 3.7). 
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Figure 3.7 Jackknife test of variable importance for Culex spp distribution 

prediction 

 

For Anopheles spp, the environmental variable that showed highest gain when used 

in isolation was enhanced vegetation index (EVI), which had the most useful 

information by itself and the same variable decreased the gain the most when  

omitted (Figure 3.8). 

 

Figure 3.8 Jackknife test of variable importance for Anopheles spp distribution 

prediction 

3.3.5  Evaluation of Model performance 

The predictive performance of the three models based on AUC values was 

considered good (Figure 3.9, Figure 3.10 and Figure 3.11). The mean test AUC and 

standard deviation for 10 replicate runs of the three vector species were 0.681 ± 

0.155 for Aedes spp, 0.765 ± 0.071 for Culex spp, and 0.675 ± 0.120 for Anopheles.  
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Figure 3.9 The Receiver Operating Characteristic (ROC) Curve or AUC for Aedes spp 

showing the mean (red) and standard deviation (blue) averaged from the 10 

replicate runs 

 

 

Figure 3.10 The Receiver Operating Characteristics (ROC) Curve or AUC for Culex 

spp showing the mean (red) and standard deviation (blue) averaged from 10 

replicate runs 
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Figure 3.11 The Receiver Operating Characteristic (ROC) Curve of AUC for 

Anopheles spp showing the mean (red) and standard deviation (blue) averaged from 

10 replicate runs 

 

3.3.6  Habitat suitability maps for RVFV vector species 

Habitat suitability maps (Figure 3.12, Figure 3.13 and Figure 3.14) show 

heterogeneous distribution of habitat suitability for the three vector species. While 

there are overlaps in many parts, the distribution of Aedes spp and Culex spp 

appears to be fragmented, whereas the distribution of Anopheles spp is more 

spread out across the study area. It is also noted that the predicted distribution of 

Aedes spp covers most parts of the Serengeti National Park and districts in western 

Serengeti, Northern and Southern parts of the Ngorongoro Conservation Area, and 

most parts of Arusha Region. Other suitable areas include Southern and Eastern 

parts of Kilimanjaro Region.  

 



74 

 

Figure 3.12 Predicted habitat suitability for Aedes spp in Northern Tanzania. Blue 

color indicates low suitability and red indicates high suitability. 

 

Figure 3.13 Predicted habitat suitability for Culex spp in Northern Tanzania. Blue 

color indicates low suitability and red indicates high suitability. 
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Figure 3.14 Predicted habitat suitability for Anopheles spp in Northern Tanzania. 

Blue color indicates low suitability and red indicates high suitability. 

 

3.4 Discussion 

Overall small numbers of mosquitoes were collected in this study which were 

morphologically identified as belonging to five genera, Aedes, Anopheles, Culex, 

Mansonia and Coquillettidia. The identified mosquitoes include those known as 

primary and secondary vectors for RVFV and which have been implicated in RVF 

outbreaks in Kenya (Sang et al., 2010, LaBeaud, 2011), Madagascar (Ratovonjato et 

al., 2011), Mauritania and Senegal (Diallo et al., 2005) and Saudi Arabia (Jupp et 

al., 2002). The low abundance recorded in this study is likely to reflect the period 

of sampling that mainly included dry season periods, which is known limit mosquito 

abundance and distribution (Van Peenen et al., 1972, Minakawa et al., 2002, 

Deichmeister and Telang, 2011). However, vectors can be detected in many areas 

of northern Tanzania, including during the dry season.  

In the current study, the abundance of mosquitoes collected varied across villages. 

Although the difference was not statistically significant, more Anopheles were 

collected in livestock keeping households than the non-livestock keeping 

counterparts. Similar observations were reported previously in studies involving 
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Anopheles spp carried out in Moshi, Tanzania (Mahande et al., 2007), suggesting 

that the presence of livestock at a household can attract more host seeking 

mosquitoes and therefore influence local abundance. This would also pose 

potential risk for mosquito-borne disease transmission.  

The difference in the distribution of vectors across the study villages can be 

attributed to variation in the environmental characteristics of the study area 

(Sattler et al., 2005, Minakawa et al., 1999, Sang et al., 2017). In particular, 

ecologically wetter conditions are likely to increase the number of breeding sites 

for mosquitoes resulting in an increase in the number of vectors. The most 

influential environmental predictor variable for Aedes spp, Culex spp and 

Anopheles spp were precipitation of the wettest month, temperature seasonality, 

and enhanced vegetation index (EVI), respectively. Other predictors that 

contributed to prediction of habitat suitability of the three species were clay soils, 

precipitation of the warmest quarter and elevation. Other studies have reported 

temperature, rainfall, soil types and vegetation cover (NDVI or EVI) as important 

predictors for RVFV vector distribution (Anyamba et al., 2009, Sang et al., 2010, 

Sang et al., 2017, Njenga and Bett, 2019, Minakawa et al., 2002).  

Maps developed in this study indicate heterogeneities in the distribution of suitable 

habitat for Aedes, Culex and Anopheles mosquitoes. However, there was some 

important areas of overlap in the areas of high suitability for Aedes and Culex. 

These may represent areas at particularly high risk of RVFV outbreaks. It appears 

that different genera of mosquitoes have varied ecological requirements even if 

they share similar or overlapping habitat. The identified suitable areas include 

areas within and around the Serengeti ecosystem and districts in northern 

Tanzania, in which the distribution of RVFV vector species was not known. Some of 

the highly suitable parts of the study area include those which reported repeated 

RVF outbreaks hence supporting studies that identify this region as high-risk area 

for RVF outbreaks (Anyamba et al., 2009, Mweya et al., 2015, Sindato et al., 2015, 

Sindato et al., 2016, Njenga and Bett, 2019).  

This study provides a valuable contribution to our understanding of the distribution 

of RVFV mosquito vectors in northern Tanzania, with a  previous entomological 

study on RVF vectors limited to one district (Mweya et al., 2015). The current study 

collected vector samples from 12 districts including areas that have not been 

sampled before. Although MaxEnt was used for mapping the potential distribution 

of the mosquito genera using bioclimatic variables, the suitable habitat for RVFV 
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vectors may be overpredicted in some areas (Pearson et al., 2007).  However, the 

information produced from this analysis has value for example identifying high-risk 

areas for prioritizing surveillance and disease control interventions. Since the 

mosquito genera collected include potential vectors of RVFV, other arboviruses, 

and malaria, the predicted habitat suitability maps can inform further studies, 

surveillance, and control for these pathogens.  

3.5 Conclusions 

This study describes the inter-epidemic  abundance and composition of potential 

RVFV vectors in northern Tanzania, including areas that have not been sampled 

previously. The reported occurrence and predicted distribution identifies areas of 

potential risk for RVF during inter-epidemic periods. These findings can be used by 

researchers, policy makers, government agencies to inform surveillance and 

disease control interventions.  
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Chapter Four 

4 Evaluation of the diagnostic accuracy of an indirect in-

house ELISA for detection of Rift Valley fever virus-

specific antibodies in small ruminants  

4.1 Introduction 

A number of serological methods have been used for RVF diagnosis during outbreaks 

as well as during subsequent surveillance. Commonly used serological diagnosis 

methods include the virus neutralization test (VNT), the hemagglutination 

inhibition test (HAI), the complement fixation test (CF), the indirect 

immunofluorescence assay (IFA), and the enzyme-linked immunosorbent assay 

(ELISA) (Scott et al., 1986, OIE, 2016, Gerdes, 2004, Schreur et al., 2017).  ELISA 

and VNT are used to assess the serological response to infection and are considered 

appropriate surveillance tools (Pepin et al., 2010, OIE, 2016) and can detect RVFV 

IgM and IgG antibodies as early as four to eight days after infection (Morvan et al., 

1991, Pepin et al., 2010).  The virus neutralization test is highly accurate with little 

or no cross-neutralization with other phleboviruses (Tesh et al., 1982, Pepin et al., 

2010), and is regarded by OIE as the gold standard RVF serological assay. As such it 

is generally used for vaccine potency determination and is the OIE prescribed test 

for international trade (Pepin et al., 2010, OIE, 2016). The virus neutralization test 

is highly specific and, unlike some ELISA based assays in which species-specific 

detection reagents are used, can be applied to serum from a wide range of host 

species (Mansfield et al., 2015, Schreur et al., 2017). However, VNT is laborious, 

expensive, requires five to seven days for completion, and can be performed only 

when standardized stocks of live virus and tissue cultures are available (Pepin et 

al., 2010). It can therefore only be performed in suitable biocontainment facilities  

(Pepin et al., 2010, Van Vuren and Paweska, 2009), which can be found only in 

highly specialized reference laboratories which are limited in most RVFV-endemic 

countries. Therefore, there is an increasing demand for high quality and 

procedurally safe diagnostic tests which do not involve the handling of the virus 

(Pepin et al., 2010). 

Alternatives to the RVFV VNT are being developed and validated. Several RVFV 

ELISAs have been developed and the performance of some of these compared (Van 

Vuren and Paweska, 2010, Williams et al., 2011, Kim et al., 2012, Kortekaas et al., 
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2013). ELISAs have been developed and widely applied by OIE Reference 

Laboratories (Kortekaas et al., 2013, Pepin et al., 2010). Several have been 

developed using either whole cell lysate derived from infected cells or purified 

nucleocapsid protein as antigen (Fukushi et al., 2012, Paweska et al., 2003a, 

Paweska et al., 2005). However, some of the available RVFV ELISAs are limited by 

cross-reactivity between RVFV and other closely related phleboviruses (Pepin et 

al., 2010) and are commercial assays can be expensive. In an attempt to develop a 

cheap and simplified assay procedure, the University of Glasgow developed an in-

house indirect ELISA based on the recombinant nucleocapsid protein of RVFV for 

the detection of specific antibodies in ruminant sera. In this chapter, the 

performance of the University of Glasgow's in-house ELISA was evaluated with 

reference to the widely used commercial indirect competition ELISA (cELISA) kit (ID 

Screen Rift Valley fever multi-species ELISA; IDVet Innovative Diagnostics, Grabels, 

France). Given that it has a validated diagnostic sensitivity and specificity of 100% 

(Comtet et al., 2010, Ellis et al., 2014), the kit was used as the standard reference 

for evaluating the in-house ELISA. The virus neutralization test was used as a 

confirmation test for the ELISA results. The aim of the evaluation was to assess 

whether or not the in-house ELISA method is good enough to be used for screening 

RVFV exposure in ruminants.  

4.2 Methods 

4.2.1  Selection of sera samples 

In this study, livestock sera collected in the cross-sectional study (described in 

Chapter Two) were analysed for anti-RVFV antibodies using two enzyme linked 

immuno-sorbent assays (ELISAs). These were: (1) a recombinant nucleocapsid-based 

in-house ELISA developed at the University of Glasgow; and (2) a commercial 

competition ELISA (IDvet Innovative Diagnostics, Grabels, France) as the reference 

standard for the purpose of this evaluation. Results from a subset of samples were 

also confirmed using the OIE gold standard virus neutralization test (VNT) to 

confirm the reliability of the selected reference ELISA kit. A subset of randomly 

selected sera samples were screened first using the in-house ELISA beginning with a 

set of cattle (n=44), goat (n=44) and sheep (n=44) samples. This step was carried 

out to examine the ability of the in-house assay to test RVFV antibodies in sera 

samples from three different animal species (cattle, goats and sheep). The assay 

showed clear distinct (positives and negatives as compared to control sera) results 
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for goat and sheep sera but more false positives were observed with cattle sera. 

Therefore, goat and sheep sera were screened by in-house ELISA and  retested by 

commercial cELISA, where as all cattle sera were tested by commercial cELISA. A 

subset (n=30) of randomly selected ELISA positive and negative sheep and goat sera 

were further retested with VNT as a confirmation test. Details of the three assays 

(in-house ELISA, commercial cELISA, and VNT) are described in Chapter Two. 

4.2.2  Comparing the diagnostic accuracy between the in-house 

ELISA and the commercial IDVet cELISA  

The aim of this analysis was to assess the performance of the in-house ELISA which 

is not yet validated. Although gold standard data or knowledge of past exposure of 

the samples tested was not known, cELISA was considered to be sufficiently 

reliable to constitute a gold standard or reference test. However, the use of VNT as 

gold standard was hampered by the expense of testing ~2000 samples. The 

remaining option was to use VNT first to validate cELISA using 30 samples (13 VNT+ 

and 17 VNT-), then to use the cELISA to assess the performance of the in-house 

ELISA with 1861 samples. The confirmation of results of the 30 samples with the 

VNT was blindly carried out. Results of the tests were presented in a two-by-two 

contingency table of frequencies with the rows and columns indicating the 

categories of response as dichotomous outcomes (positive/negative results) for 

each method. Table 4.1 shows true exposure/infection status as determined by a 

standard/reference method (cELISA) and rows represent the test outcome as 

determined by a new index test (in-house ELISA). Test results of sera samples were 

classified as true positive (TP) or true negative (TN) if they were in agreement with 

the reference test results; alternatively, they were considered either false positive 

(FP) or false negative (FN) if they differed from the reference test results. The test 

accuracy was calculated as the proportion of samples correctly classified by the 

test using the formula [(TP+TN)/(TP+TN+FP+FN)].  

Table 4.1 A two by two contingency table for results of the index test and the 

reference standard tests.  

 

Infection status as determined by standard test 

index test Infection positive Infection negative Total 

Test positive True positive (TP) False positive (FP) TP + FP 

Test negative False negative (FN) True negative (TN) FN + TN 
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Total TP + FN FP + FN n  

 

4.2.1 Accuracy, sensitivity and specificity of the test 

Evaluation of the performance or accuracy of a diagnostic test involves calculating 

four objective measures of test performance, namely, sensitivity, specificity, 

positive predictive value (PPV) and negative predictive value (NPV). The sensitivity 

of a test refers to the ability of the test to correctly identify those subjects with 

the disease (Wong and Lim, 2011). Specificity refers to the ability of the test to 

correctly identify those subjects without the disease (Wong and Lim, 2011). Positive 

predictive value (PPV) is a measure of how likely is it that the subject has the 

disease given that the test result is positive, whereas negative predictive value 

(NPV) shows how likely is it that the subject does not have the disease given that 

the test result is negative. 

The sensitivity and specificity of a quantitative test are dependent on the cut-off 

value above or below which the test is positive. In general, the higher the 

sensitivity, the lower the specificity, and vice versa (Lalkhen and McCluskey, 2008). 

It is therefore recommended to subject samples that are initially positive to a 

screening test with high sensitivity/low specificity, to a second test with low 

sensitivity/high specificity or a reference test with high specificity and sensitivity. 

The selection of a cut-off value allowed test results to be divided into positive or 

negative categories. The test accuracy, sensitivity, specificity, positive predictive 

value, and negative predictive value, were calculated using the following formulas. 

Accuracy = (True positive + True negative)/Total population 

True positive fraction (TPF, sensitivity) = True positives/disease positives 

True negative fraction (TNF, specificity) = True negatives/Condition negatives 

Positive predictive value (PPV) = True positives/Test outcome positives 

Negative predictive value (NPV) = True negatives/Test outcome negatives 

4.2.2  Determining the cut-off points for the in-house ELISA 

The cut-off points for the in-house ELISA was determined by the receiver operator 

characteristic (ROC) curve. The ROC curve is a plot of (1−specificity) of a test on 
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the x-axis against its sensitivity on the y-axis for all possible cut-off points (Lalkhen 

and McCluskey, 2008, Hajian-Tilaki, 2013). ROC analysis is used in epidemiology to 

quantify how accurately diagnostic tests can discriminate between two disease 

exposure status, typically referred to as "disease positive" and "disease negative" 

(Green and Swets, 1966, Hajian-Tilaki, 2013). ROC analysis avoids distortion of the 

accuracy indices by fluctuations caused by the use of arbitrarily chosen decision 

criteria or cut-offs (Hajian-Tilaki, 2013). The area under the curve (AUC) 

represents the overall accuracy of a test, with values ranging from 0.5 (purely 

random discrimination) to 1.0 (perfect discrimination) indicating 100% sensitivity 

and specificity (Hanley and McNeil, 1982, Hajian-Tilaki, 2013). ROC curve analysis 

was used to determine diagnostic sensitivity and specificity for a range of cut-off 

values of the in-house ELISA test. easyROC, a web-tool constructed with the R 

package shiny for ROC curve analysis (version 1.3.1), was used as described by 

(Goksuluk et al., 2016). This tool is freely available through 

www.biosoft.hacettepe.edu.tr/easyROC. 

4.3 Results 

4.3.1  Confirmation of diagnostic accuracy of the commercial cELISA 

using VNT as the gold standard 

In validating the cELISA against the VNT, results summarised in Table 4.2, the 

accuracy was 97% (95% CI: 83-100%; one false negative out of 30 samples) 

indicating high performance of the cELISA at replicating the VNT results. 

Therefore, cELISA was used as reference test for evaluating the in-house ELISA. 

Results are summarised in Table 4.3. 

 

Table 4.2 Summary results of the test outcomes of the virus neutralization test 

(standard) and the commercial competition ELISA 

 

Virus neutralization test (VNT) 

 
cELISA RVFV positive RVFV negative Total 

Test positive 12 0 12 

Test negative 1 17 18 

Total 13 17 30 
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Table 4.3 Test outcomes of the commercial competition ELISA (reference) and the 

in-house ELISA, where percent positivity, PP >30  is taken as diagnostic of RVFV 

exposure using the in-house ELISA. 

 

cELISA 

 Inhouse ELISA RVFV positive RVFV negative Total 

Test positive 71 1100 1171 

Test negative 5 685 690 

Total 76 1785 1861 

 

4.3.2  Selection of cut -off point for the in-house ELISA 

The cut-off value for an ELISA can be adjusted for different target populations as 

well as for different diagnostic purposes (Jacobson, 1998).  The ROC curve analysis 

covers the whole range of possible PP values, giving corresponding sensitivity and 

specificity estimates. The distribution graphs in Figure 4.1 shows the pattern of 

distribution of the RVFV exposed and not exposed populations as identified by the 

in-house ELISA with suggested optimum cut-off. Table 4.4 shows the criterion 

values and coordinates of the ROC curve with PP cut-off values of the in-house 

ELISA ranging between 20 and 80. Applying the optimum cut-off of 43, the in-house 

ELISA  had a sensitivity of 0.73, 95% CI (0.61 - 0.82), specificity 0.68, 95% CI (0.66 - 

0.71), positive predictive value 0.09, 95% CI ( 0.08 - 0.15), and negative predictive 

value 0.98, 95% CI (0.97 - 0.99). At the cut-off point of 30 which was initially used 

for sample screening the sensitivity and specificity of the test was 0.95 and 0.33 

respectively. 

Table 4.4 Different cut-off points of the in-house ELISA and their corresponding 

sensitivity, specificity, positive likelihood ratio and negative likelihood ratio. 

Cut-off 

(PP) 

Sensitivity 

(95%CI) 

Specificity 

(95%CI) PLR (95%CI) NLR (95%CI) 

≥20 1.00 (0.95, 1.00) 0.22 (0.20, 0.24) 1.28 (1.25, 1.31) 0.00 (0.00, 0.00) 

≥25 0.97 (0.91, 1.00) 0.29 (0.27, 0.31) 1.36 (1.30, 1.43) 0.09 (0.02, 0.36) 

≥30 0.93 (0.85, 0.98) 0.38 (0.36, 0.41) 1.52 (1.41, 1.63) 0.17 (0.07, 0.40) 

≥35 0.83 (0.73, 0.91) 0.54 (0.51, 0.56) 1.79 (1.60, 2.00) 0.32 (0.19, 0.52) 

≥40 0.74 (0.62, 0.83) 0.65 (0.63, 0.67) 2.09 (1.81, 2.43) 0.41 (0.28, 0.59) 
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Cut-off 

(PP) 

Sensitivity 

(95%CI) 

Specificity 

(95%CI) PLR (95%CI) NLR (95%CI) 

≥45 0.67 (0.55, 0.77) 0.73 (0.71, 0.75) 2.48 (2.08, 2.95) 0.45 (0.33, 0.62) 

≥50 0.61 (0.49, 0.72) 0.80 (0.78, 0.82) 3.05 (2.49, 3.74) 0.49 (0.37, 0.65) 

≥55 0.54 (0.42, 0.65) 0.85 (0.83, 0.87) 3.59 (2.84, 4.55) 0.54 (0.42, 0.69) 

≥60 0.45 (0.33, 0.57) 0.89 (0.87, 0.90) 3.97 (3.00, 5.27) 0.62 (0.51, 0.76) 

≥65 0.42 (0.31, 0.54) 0.91 (0.89, 0.92) 4.58 (3.39, 6.19) 0.64 (0.53, 0.77) 

≥70 0.36 (0.25, 0.47) 0.93 (0.91, 0.94) 4.80 (3.40, 6.78) 0.70 (0.59, 0.82) 

≥75 0.30 (0.20, 0.42) 0.94 (0.93, 0.95) 4.91 (3.34, 7.23) 0.74 (0.64, 0.86) 

≥80 0.25 (0.16, 0.36) 0.95 (0.93, 0.96) 4.55 (2.95, 7.03) 0.79 (0.70, 0.90) 

                                              

The ROC curve analysis shows the area under a ROC curve, AUC = 0.77, 95% CI (0.72 

- 0.82) which is greater than 0.5 suggesting that the assay performs better than 

random chance (dotted line in the ROC curve, Figure 4.1). In Figure 4.1 the 

sensitivity and specificity of the in-house ELISA have been plotted against the 

whole range of possible PP values. The cross-over point of the two lines, indicate 

optimal sensitivity and specificity suggesting that a PP value at that point is the 

best possible cut-off value for minimizing both false positive and false negative 

results.  
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Figure 4.1 The ROC curve and distribution graphs of test results showing the cut-off 

points, corresponding sensitivity and specificity and distribution of positive and 

negative samples 

 

4.4 Discussion 

Enzyme linked immunosorbent assays (ELISAs) are widely used for RVF serological 

surveys. However, most of the commercially available ELISA kits are expensive 

hence the pressing need for a cheap, safe and simplified assay. The University of 

Glasgow's in-house ELISA the performance of which was assessed in this study in 

comparison with the commercial ELISA sought to bridge this gap. However, the 

evaluation results showed the assay to have lower accuracy as compared to that of 

the commercial cELISA. The low level of agreement between the two assays 

suggest that the in-house ELISA ability to correctly detect RVFV antibodies in 

infected subjects does not match up that of the cELISA.  
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In this study, ROC curve analysis determined a PP cut-off value of 43 for the assay 

to attain an equilibrium between sensitivity and specificity. The associated area 

under a ROC curve, AUC of 0.77, which is greater than 0.5 suggests that the assay 

performs better than random chance but it is not a high-perfoming test. An 

uninformative test (one no better at identifying true positives or negatives than 

flipping a coin) would have an AUC of 0.5 (Hajian-Tilaki, 2013).  

In addition, the poor specificity of the in-house ELISA, and its inability to 

distinguish results on cattle samples, suggest that the assay could be detecting 

cross-reactivity from other possible viral infections in the field collected samples. 

Livestock in endemic countries including Tanzania could be exposed to many other 

closely related viral infections. However, the sensitivity of 93% at a cut-off of 

PP>30 suggest that in cases where large numbers of samples need to be tested, the 

assay can still be useful as screening test prior to performing a confirmatory test 

for detecting RVFV specific antibodies to save some cost during high throughput 

testing. 

In comparing the cELISA with VNT, the accuracy of cELISA was 97%, but only a small 

number of samples (n=30) were used. The high accuracy of the cELISA in relation to 

the VNT supports the use of the cELISA as a standard reference for assessing the in-

house ELISA and its use for epidemiological surveys in Tanzania. 

4.5 Conclusion 

Although the recombinant RVFV nucleoprotein based in-house ELISA evaluated in 

this study performs poorly in comparison to the cELISA, particularly in relation to 

test specificity, the test could have application for high throughput screening of 

samples from RVF endemic regions.  
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Chapter Five 

5 Inter-epidemic seroprevalence and risk factors for Rift 

Valley fever virus seropositivity in domestic ruminants 

and human populations in northern Tanzania 

5.1 Introduction 

Rift Valley fever epidemics in Tanzania over the past 50 years have occurred at 

intervals of 10 - 20 years with major outbreaks reported in 1977, 1997/98 and 

2006/2007. Although there are some evidence of inter-epidemic RVFV infection in 

livestock and humans in endemic countries as reported by studies in Tanzania 

(Sumaye et al., 2015, Sumaye et al., 2013, Ahmed et al., 2018), Rwanda (Umuhoza 

et al., 2017), Kenya (LaBeaud et al., 2008, Lichoti et al., 2014a), Uganda (Magona 

et al., 2013, Nyakarahuka et al., 2018), Mauritania (Rissmann et al., 2017) and 

Egypt (Mroz et al., 2017), it is not fully understood how the virus persist during the 

inter-epidemic period. There are also questions on the dominant mode of animal-

to-animal and animal-to-human transmission between the epidemics. During 

epidemics, animal infections are attributed mostly to floodwater mosquitoes, 

which feed on viraemic animals and subsequently transmit RVFV to other animals 

and potentially to humans. Human infections are also linked to exposure to 

infectious animal tissues or bodily fluids such as the abortus, birthing fluids, milk, 

or blood. However, key elements of transmission during the inter-epidemic period 

are not well understood. Understanding which forms of exposure in both people 

and animals provide the greatest RVFV transmission risk between the epidemics 

may be useful for targeting interventions and public health education which can 

prevent future outbreaks or further spread of the virus to other areas. The aims of 

this study therefore were to: (1) determine whether inter-epidemic livestock and 

human RVFV transmission occurs in northern Tanzania, an area that has 

experienced repeated RVF outbreaks; (2) assess the risk factors associated with 

inter-epidemic RVFV infection in livestock and humans in northern Tanzania; and 

(3) evaluate whether seropositivity and risks differ amongst agro-ecological settings 

in northern Tanzania. 
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5.2 Methods 

5.2.1  Study Area 

The study was carried out in three regions of northern Tanzania, namely Arusha 

Kilimanjaro and Manyara Regions, with samples collected between 2013 and 2016 

as part of the Social, Economic and Environmental Drivers of Zoonoses project 

(SEEDZ) and an earlier study on bacterial zoonoses (“The Impact and Social Ecology 

of Bacterial Zoonoses in Northern Tanzania” project (BacZoo)). Sampled villages  

included pastoral, agro-pastoral and small-holder communities. Details of these 

studies are described in Chapter two.  Briefly, the SEEDZ study involved 20 villages 

randomly selected in Arusha and Manyara Regions using a Generalised Random 

Tessellation Stratified (GRTS) sampling approach (McDonald, 2004, Stevens Jr and 

Olsen, 2004). The BacZoo samples and data used in this study were collected from 

15 villages randomly selected from villages in the Kilimanjaro and Arusha Regions  

(BacZoo). Selected villages from both studies are shown in Figure 5.1. 

 

Figure 5.1 Map of northern Tanzania showing regions (Arusha, Kilimanjaro and 

Manyara), districts and location of the 35 study villages in the study area. 
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5.2.2  Sample collection  

The sampling procedure for the SEEDZ study is described in the methods chapter. 

Briefly, livestock keepers in each sub-village were encouraged to bring their 

animals to a central point in the subvillage. Ten households from those who 

attended were randomly selected for recruitment into the study and a target of 10 

cattle, sheep and goats selected in each household for sampling. In cases where a 

household had less than 10 animals in a herd or flock, all animals would be 

sampled. A 10ml blood sample was collected by jugular venepuncture and about 2-

5 ml of sera was obtained from each blood sample. For the BacZoo study, a list of 

all livestock keeping households in each village was generated and up to six 

households randomly selected. Households were visited and, where numbers 

allowed, 12 of each of cattle, sheep and goats were sampled. Animal blood 

collection was carried out as described in the SEEDZ study.  

A household questionnaire survey was carried out in households in which livestock 

sampling took place to collect data on household characteristics, demographics, 

and livestock management practices. In a random selection of SEEDZ study 

households, 10 ml of whole blood was collected from all assenting and/or 

consenting household members who had been occupant for the past 12 months and 

who were 5 years or older. An individual-level questionnaire focusing on risk factors 

for zoonotic disease was also conducted. Human blood samples and individual level 

questionnaire data were collected from all BacZoo households. Human blood 

sampling was performed by a medically qualified practitioner from Kilimanjaro 

Christian Medical Centre (KCMC) using vacuum extraction method as per World 

Health Organization guidelines (WHO, 2010). Serum samples obtained from 

livestock and human subjects were used for serological testing of RVFV exposure. 

5.2.3 Laboratory analyses 

In this study, livestock sera were analysed for anti-RVFV antibodies using two 

enzyme linked immuno-sorbent assays (ELISAs). A recombinant nucleocapsid-based 

in-house ELISA developed at the University of Glasgow was first used as screening 

test, then results confirmed using a commercial ELISA (ID Screen® Rift Valley fever 

multi-species ELISA; IDvet Innovative Diagnostics, Grabels, France).  
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All human sera samples were tested by commercial ID Screen® Rift Valley fever 

multi-species competitive ELISA. ELISA results were validated by virus 

neutralization test (VNT) of a subset of randomly selected (30 livestock and 30 

human) positive and negative samples. Since the commercial ELISA showed close 

agreement with results of the VNT, it was used as a method of choice for all 

livestock and human samples and results presented here are based on the 

commercial ELISA assay. Details of the assays and how the choices were made are 

described in Chapters two and four of the thesis, respectively. 

5.2.4  Statistical Analysis 

Statistical analyses were performed using R version 3.5.3 (R Core Team, 2018). The 

associations between the response variable and explanatory variables were 

assessed using binomial generalised linear mixed models (GLMMs), also known as 

mixed-effects logistic regression. Considering the hierarchical nature of the data, 

containing clusters of non-independent observational units such as village and 

households, GLMMs were the method of choice for modelling of random and fixed 

effects of the explanatory variables  (Bolker et al., 2009). GLMMs allows 

assessment of how the response variable is impacted by variation among individuals 

and variation among clusters/levels. Random effects allow estimation of variance 

in the response variable between  groups (clusters), and reduces the probability of 

false positives (Type I errors) and false negatives (Type II errors) (Harrison et al., 

2018). In this study, village and households were considered as random effects, 

RVFV seropositivity in livestock (cattle, goats or sheep) was the response variable, 

and other variables were considered as fixed effects. These fixed effects included 

sex, age, farming classification (small holder, agro-pastoral or pastoral), herd/flock 

size, animal introductions, use of seasonal movements/camps, history of abortions, 

presence/history of standing water/flooding in the household, history of animal 

deaths related to disease, animal management (confining cattle with small 

ruminants) and vector habitat suitability derived from species distribution 

modelling detailed in chapter three. Variables considered as fixed effects for 

seropositivity in people included occupation, sleeping in the same house as 

domestic ruminants, engaging in milking animals, birthing animals, handling 

placenta, handling aborted materials, handling animal carcasses, slaughtering 

animals, consuming raw meat or milk and seropositivity in livestock. Model 

selection was  based on purposeful selection as proposed by Hosmer and Lemeshow 

(Hosmer Jr et al., 2013). The purposeful selection process began with a univariable 
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analysis of each variable. Any variable that had a Wald test p-value < 0.25 from the 

mixed-effects logistic regression was selected as a candidate for the multivariable 

analysis (Bursac et al., 2008). A backward selection procedure was then used to 

remove variables from the model that were non-significant and which did not act 

as important confounders of other effects in the model. Significance was evaluated 

at the 0.05 alpha level and confounding as a change in any remaining parameter 

estimate greater than 20% when comparing the full model with the model without 

the confounder (Bursac et al., 2008, Hosmer Jr et al., 2013). At the end of this 

iterative process of deleting, refitting, and verifying, the model contained all 

significant covariates and potential confounders.  

5.3 Results 

5.3.1  Seroprevalence in livestock 

This study tested 3582 cattle, 3303 goats and 2586 sheep samples collected from 

537 households in northern Tanzania. The overall RVFV seroprevalence based on 

anti RVFV antibodies in livestock in northern Tanzania was 2.8% (n=9471, 95% 

CI:2.5-3.2), with higher seroprevalence in cattle 4.4% (n=3582, 95% CI:3.7-5.1),  

than in sheep 2.6%, (n=2586, 95% CI: 2.0-3.3) and goats 1.4% (n=3303; 95%CI: 1.0-

1.8). The odds of seropositivity in goats was about 70% less as compared to cattle 

(OR = 0.3, CI: 0.2-0.4, p<0.01) and the odds of seropositivity in sheep was 50% less 

as compared to cattle (OR=0.5, CI: 0.4-0.7, p<0.001)  In addition, anti RVFV IgM  

was detected in 7.5% (n=255, 95% CI: 4.7-11.6) of goats and 12.8% (n=180, 95% CI: 

8.4-18.7) sheep samples tested.  

Overall seropositivity varied across age groups. The odds of seropositivity increased 

1.3 times with increase in age by one year (OR=1.3, CI: 1.2-1.4, p<0.001). In this 

study seropositivity was detected in young animals (1-2 years) and increased with 

age in all three species (Figure 5.2 and Figure 5.3).   
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Figure 5.2 A plot of RVFV seroprevalence in different age groups of cattle in 

northern Tanzania 

 

 

Figure 5.3 A plot of seroprevalence in different age groups of small ruminants 

(sheep and goats) in northern Tanzania 
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Seroprevalence varied between villages (Table 5.1), ranging from 0% to 13%. In 

cattle seroprevalence varied by about 2 times (MOR = 2.12) between villages and 

almost 3 times (MOR=2.6) between households. In sheep, seroprevalence was 

notably higher in Ruvu remiti (23%) and generally low in other villages (Table 5.1) 

varying by around 3 times (MOR=3.2) between villages and 5 times (MOR=5.5) 

between households. Whereas in goats seroprevalence varied by almost 4 times 

(MOR=3.6) between villages and about 4 times (MOR=3.6) between households. The 

distribution of village-level seroprevalence in livestock  across northern Tanzania is 

shown in Figure 5.4. 

 

Figure 5.4. Map of northern Tanzania showing study regions, districts and the 

village-level seroprevalence in livestock  
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5.3.2  Risk factors for RVFV Seropositivity in livestock 

5.3.2.1 Univariable logistic regression analysis of risk factors for RVFV 

seropositivity in livestock 

Univariable analysis identified potential risk factors considered for inclusion in the 

multivariable analysis. Some of the variables were statistically significant (p<0.05) in the 

univariable analyses. These included species, sex, age, history of livestock abortions, use of 

seasonal camps, confining cattle with small ruminants, and mosquito vector suitability. Table 

5.2, Table 5.3 and Table 5.4 summarizes the potential risk factors for cattle, goats and sheep 

that were examined to be considered for inclusion in the multivariable logistic regression 

analysis.  

 

Table 5.2 Univariable analysis of risk factors RVFV seropositivity in cattle in northern Tanzania 

Variable 

 

 Tested 

(n) 

Positive  

(n (%)) OR 95% CI P- value 

Cattle 

     Sex 

     Female 2409 128 (5.3) Ref. Ref. Ref. 

Male 1169 28 (2.4) 0.4 0.3 - 0.7 <0.001 

Age 

     Age (years) 3582 156 (4.4) 1.2 1.1 - 1.2 <0.001 

      Farming classification 

Small-holder 146 7 (4.8) Ref. Ref. Ref. 

Agro-pastoral 973 35 (3.6) 0.7 0.3 - 1.7 0.479 

Pastoral 2463 114 (4.6) 0.9 0.4 - 2.1 0.926 

Herd size 

     Number of cattle  1.1 1.0 - 1.3 0.0389 
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Variable 

 

 Tested 

(n) 

Positive  

(n (%)) OR 95% CI P- value 

Number of cross breed cattle 0.7 0.4 - 1.3 0.272 

Number of exotic breed cattle 0.9 0.8 - 1.2 0.677 

Cattle introduced into compound 

No 2433 114 (4.7) Ref. Ref. Ref. 

Yes 973 37 (3.8) 0.8 0.6 - 1.2 0.259 

Cattle free range 

No 3250 144 (4.4) Ref. Ref. Ref. 

Yes 153 7 (4.6) 1.0 0.5 - 2.3 0.932 

Cattle herding 

No 298 12 (4.0) Ref. Ref. Ref. 

Yes 3109 139 (4.5) 1.1 0.6 - 2.0 0.757 

Cattle zero grazing 

No 3137 144 (4.6) Ref. Ref. Ref. 

Yes 266 7 (2.6) 0.5 0.3 - 1.2 0.142 

Cattle ronjo (seasonal camps) 
No 1553 52 (3.4) Ref. Ref. Ref. 

Yes 1164 57 (4.9) 1.5 1.0 - 2.2 0.043 

Graze cattle with small ruminants 

No 2605 118 (4.5) Ref. Ref. Ref. 

Yes 801 33 (4.1) 0.9 0.6 - 1.3 0.622 

Confine cattle with small ruminants 

No 3178 148 (4.7) Ref. Ref. Ref. 

Yes 228 3 (1.3) 0.3 0.1 - 0.8 0.0269 

See buffalo in village 
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Variable 

 

 Tested 

(n) 

Positive  

(n (%)) OR 95% CI P- value 

No 2365 90 (3.8) Ref. Ref. Ref. 

Yes 486 23 (4.7) 1.3 0.8 - 2.0 0.341 

Standing water in the compound 

No 3116 140 (4.5) Ref. Ref. Ref. 

Yes 285 11 (3.8) 0.8 0.5 - 1.6 0.62 

Cattle abortion 

No 2468 95 (4.0) Ref. Ref. Ref. 

Yes 936 56 (6.0 1.6 1.1 - 2.2 0.0074 

Cattle death by disease 

No 1963 65 (3.3) Ref. Ref. Ref. 

Yes 888 48 (5.4) 1.7 1.1 - 2.4 0.00857 

Aedes spp suitability  2.6 1.4 - 4.6 0.0018 

Culex spp suitability  2.1 1.1 - 3.8 0.0182 

 

Table 5.3 Univariable analysis of risk factors for RVFV seropositivity in goats 

Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Sex 

     Female 2533 40 (1.6) Ref. Ref. Ref. 

Male 770 5 (0.7) 0.4 0.2 - 1.0 0.0592 

Age 

  

1.6 1.4 - 1.8 <0.001 

Farming Classification 

Small holder 424 2 (0.5) Ref. Ref. Ref. 

Agro-pastoral 683 7 (1.0) 2.2 0.5 - 10.6 0.3311 
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Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Pastoral 2196 36 (1.6) 3.5 0.8 - 14.7 0.0843 

Flock size 

    Number of goats  

 

1.1 0.8 - 1.4 0.676 

Number of exotic breed goats 1.3 1.1 - 1.5 0.00204 

Goats intro into compound 

No 2440 35 (1.4) Ref. Ref. Ref. 

Yes 716 9 (1.3) 0.9 0.4 - 1.8 0.722 

Goats free range 

No 2964 34 (1.2) Ref. Ref. Ref. 

Yes 192 10 (5.2) 4.7 2.3 - 9.7 <0.001 

Goats herding 

No 475 12 (2.5) Ref. Ref. Ref. 

Yes 2681 32 (1.2) 0.5 0.2 - 0.9 0.0257 

Goats ronjo (seasonal camps) 

No 1472 17 (1.2) Ref. Ref. Ref. 

Yes 710 10 (1.4) 1.2 0.6 - 2.7 0.616 

Graze cattle with small ruminants 

No 2421 30 (1.2) Ref. Ref. Ref. 

Yes 721 14 (2.0) 1.6 0.8 - 2.9 0.181 

Confine cattle with small ruminants 

No 2945 42 (1.4) Ref. Ref. Ref. 

Yes 211 2 (1.0) 0.7 0.2 - 2.8 0.57 

See buffalo in village 

No 1932 22 (1.1) Ref. Ref. Ref. 
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Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Yes 373 5 (1.3) 1.2 0.4 - 3.1 0.74 

Standing water in the compound 

No 2849 39 (1.4) Ref. Ref. Ref. 

Yes 294 5 (1.7) 1.3 0.5 - 3.2 0.645 

Goats abortion 

No 1722 15 (1.0) Ref. Ref. Ref. 

Yes 1434 29 (2.0) 2.4 1.3 - 4.4 0.00763 

Goats death by disease 

No 1095 11 (1.0) Ref. Ref. Ref. 

Yes 1210 16 (1.3) 1.3 0.6 - 2.8 0.48 

Aedes spp suitability  1.8 1.5 - 2.3 <0.001 

Culex spp suitability  2.0 1.3 - 2.6 <0.001 

 

Table 5.4 Univariable analysis of risk factors for RVFV seropositivity in sheep 

Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Sex 

     Female 1971 62 (3.2) Ref. Ref. Ref. 

Male 615 5 (1.0) 0.3 0.1 - 0.6 0.00319 

Age (years) 1.5 1.3 - 1.7 <0.001 

Farming classification 

Small-holder 89 1 (1.1) Ref. Ref. Ref. 

Agro-pastoral 458 1 (0.2) 0.2 0.0 - 3.1 0.246 

Pastoral 2039 65 (3.2) 2.9 0.4 - 21.1 0.294 
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Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Flock size (continuous) 1.1 0.9 - 1.3 0.0976 

Sheep intro into compound 

No 1984 42 (2.1) Ref. Ref. Ref. 

Yes 492 19 (4.0) 1.8 1.1 - 3.2 0.0277 

Sheep herding 

No 316 5 (1.6) Ref. Ref. Ref. 

Yes 2160 56 (2.6) 1.7 0.7 - 4.2 0.284 

Sheep ronjo (seasonal camps) 

No 1222 19 (1.6) Ref. Ref. Ref. 

Yes 625 32 (5.1) 3.4 1.9 - 6.1 <0.001 

Graze cattle with small ruminants 

No 1857 55 (3.0) Ref. Ref. Ref. 

Yes 619 6 (1.0) 0.3 0.1 - 0.7 0.00855 

Confine cattle with small ruminants 

No 2340 59 (2.5) Ref. Ref. Ref. 

Yes 136 2 (1.5) 0.6 0.1 - 2.4 0.448 

See buffalo in village 

No 1582 45 (3.0) Ref. Ref. Ref. 

Yes 380 7 (2.0) 0.6 0.3 - 1.4 0.278 

Standing water in the compound 

No 2219 53 (2.4) Ref. Ref. Ref. 

Yes 255 8 (3.1) 1.3 0.6 - 2.8 0.467 

Sheep abortion 

No 1449 23 (1.6) Ref. Ref. Ref. 
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Variable 

Tested 

(n) 

Positive 

(n (%)) OR 95% CI P- value 

Yes 1027 38 (3.7) 2.38 1.4 - 4.0 0.00117 

Sheep death by disease 

No 1065 21 (2.0) Ref. Ref. Ref. 

Yes 887 31 (3.5) 1.82 1.0 - 3.2 0.0369 

Aedes spp suitability (continuous) 1.01 0.8 - 1.3 0.949 

Culex spp suitability (continuous) 0.80 0.6 - 1.0 0.0818 

 

5.3.2.2 Multivariable logistic regression analysis of risk factors for 

seropositivity in livestock 

Factors included in the multivariable model for all livestock species combined include age of 

livestock, species, age, occurrence of abortions, and confining cattle with small ruminants. 

Two factors (age and abortions) were observed as significant for all three livestock species 

combined as well as for sheep and goats when species were treated separately. Table 5.5 

summarises risk factors as identified by the multivariable models for all species, cattle, goats 

and sheep respectively. 

Table 5.5 Multivariable analysis of risk factors for RVFV seropositivity in all species combined, 

cattle, goats and sheep in northern Tanzania 

Variable OR 95% CI P-value 

All species combined 

  Species 

   Cattle ref. ref. ref. 

Goats 0.4 0.3 - 0.6 <0.001 

Sheep 0.8 0.5 - 1.1 0.100 
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Variable OR 95% CI P-value 

Age (years) 1.3 1.2 - 1.3 <0.001 

Abortions in past 12 months 1.5 1.1 - 2.1 0.017 

Cattle 

   Age (years) 1.2 1.1 - 1.3 <0.001 

Confine cattle with small 
ruminants 0.2 0.1 - 0.9 0.035 

Goats 

   Age (years) 1.6 1.4 - 1.8 <0.001 

Abortions in past 12 months 2.5 1.1 - 5.4 0.023 

Sheep 

   Age (years) 1.7 1.4 - 2.1 <0.001 

Abortions in past 12 months 2.7 1.1 - 6.3 0.025 

 

Cattle had higher odds of seropositivity than sheep and goats. The odds of seropositivity 

increased with age of animals of all species. Seropositivity in cattle increased 1.2 times with 

each increase in age by one year and herds that confined cattle with small ruminants were 

about 0. 2 times more likely to be seropositive. In goats and sheep, seropositivity increased 

about 2 times with increase in age by one year. On the other hand, the odds of seropositivity 

in goats and sheep from flocks that had abortions were about three times higher than those 

with no record of abortions.   

5.3.3  Seroprevalence in humans 

In humans, the overall RVFV seroprevalence was 8.5% (n=565, 95% CI: 6.4 - 11.2). Although the 

difference in exposure between males and females was not statistically significant, 

seroprevalence was relatively higher in males (10.4%, n=270, 95% CI: 7.1 - 14.8) than females 

(6.8%, n=295, 95% CI: 4.3 - 10.4). Seropositivity was also recorded in young people <13 years 

old. Seropositivity was recorded in 15 out of 37 villages sampled with notably higher 
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seroprevalence (>20%) recorded in 5 villages across the study area (Figure 5.5). 

Seroprevalence in humans varied between villages and between households within villages. 

Seroprevalence varied by around four times (MOR=4.4) between villages and by almost five 

times (MOR = 4.6) between households.  

 

Figure 5.5. Map of northern Tanzania showing study regions, districts and the village-level 

seroprevalence in humans.  
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5.3.4  Risk factors for seropositivity in humans 

5.3.4.1 Univariable logistic regression analysis of risk factors for RVFV 

seropositivity in humans 

Table 5.6 summarizes the potential risk factors that were considered for inclusion in a 

multivariable logistic regression analysis.  

Table 5.6 Univariable analysis of risk factors for RVFV seropositivity in human 

Variable Tested Prevalence (% (n)) OR 95% CI P-value 

Sex 

     Female 295 6.8 (20) ref ref ref 

Male 270 10.4 (28) 1.8 0.8 - 3.7 0.12 

Age (years) 

  

1.0 0.9 - 1.0 0.52 

Farming classification 

     Small holder 143 1.4 (2) ref ref 

 Agro-pastoral 231 2.6 (6) 3.2 0.5 - 21.8 0.229 

Pastoral 235 14 (33) 11.5 2.1 - 64.3 0.005 

Education 

     No formal education 208 12 (25) ref ref ref 

Primary education 342 4.1 (14) 0.6 0.3 - 1.4 0.257 

Secondary/High school 44 16.7 (2) 1.5 0.2 - 9.7 0.696 

University education 11 10 (1) 1.6 0.1 - 22.9 0.746 

Occupation 

     Agric/crop production 128 2.3 (3) ref ref ref 

Livestock/rancher 358 10.1 (36) 5.1 1.1 - 23.6 0.04 

Other 121 2.5 (3) 1.3 0.2 - 8.1 0.76 

Milked animals  

     No 375 6.9 (26) ref ref ref 
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Variable Tested Prevalence (% (n)) OR 95% CI P-value 

Yes 234 6.8 (16) 0.7 0.3 - 1.5 0.392 

Sleep in the same house as 
animals 

    No 512 6.8 (35) ref ref ref 

Yes 96 7.2 (7) 1.3 0.5 - 3.8 0.618 

Handled animal waste  

     No 328 8.5 (28) ref ref ref 

Yes 281 5 (14) 0.4 0.2 - 0.9 0.0428 

Birthing animals 

     No 385 3.4 (13) ref ref ref 

Yes 222 13.1 (29) 2.7 1.2 - 6.1 0.0137 

Handled placenta  

     No 431 6 (26) ref ref ref 

Yes 178 9 (16) 0.97 0.4 - 2.2 0.933 

Handled aborted 
product  

     No 548 5.7 (31) ref ref ref 

Yes 61 18 (11) 3.5 1.4 - 9.0 0.008 

Slaughtered animals  

     No 351 3.7 (13) ref ref ref 

Yes 258 11.2 (29) 2.4 1.1 - 5.3 0.024 

Handled carcass  

     No 453 5.3 (24) ref ref ref 

Yes 156 11.5 (18) 1.8 0.8 - 4.2 0.129 

Consumed raw milk 

     No 512 4.1 (21) ref ref ref 
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Variable Tested Prevalence (% (n)) OR 95% CI P-value 

Yes 94 22.3 (21) 3.6 1.5 - 9.1 0.005 

Consumed raw yoghurt 

     No 379 4.7 (18) ref ref ref 

Yes 229 10.5 (24) 1.4 0.6 - 3.1 0.397 

Seropositive livestock 

     No 334 5.1 (17) ref ref ref 

Yes 175 14.3 (25) 3 0.9  - 3.7 0.065 

 

5.3.4.2 Multivariable logistic regression analysis of risk factors for 

seropositivity in humans 

Factors that were significant in the multivariable model included handling of aborted 

material, and consumption of raw milk (Table 5.7). People who had handled aborted material 

and those who consumed raw milk were four times more likely to be RVFV seropositive than 

those who did not.  

 

Table 5.7 Multivariable analysis of risk factors for RVFV seropositivity in humans 

Variable OR 95% CI P-value 

Handled aborted material 

 

4.3 1.7 -10.8 0.002 

Consumed raw milk 4.1 1.8 - 9.3 0.001 

 

5.4 Discussion 

The sero-epidemiological study presented here reports detection of RVFV antibodies (IgG and 

IgM) in apparently healthy domestic ruminants and also evaluates the risk of exposure to the 

virus in livestock and human populations of northern Tanzania. Although recent outbreaks 
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have been reported in neighbouring countries, Uganda , Kenya and Rwanda (Anyamba et al., 

2018), no RVF outbreak has been reported in Tanzania since the last epidemic of 2006–2007.  

This study reports evidence for RVFV exposure in domestic ruminants and humans in northern 

Tanzania ten years after the last outbreak. Inter-epidemic seropositivity  in livestock has been 

reported by similar studies in the region including 10% (n=654) seroprevalence in small 

ruminants in central Mozambique (Fafetine et al., 2013), 16.8% (n=595) in cattle in Rwanda 

(Umuhoza et al., 2017) and 9.8% (n=1470) in small ruminants in Uganda (Magona et al., 2013). 

Inter-epidemic seropositivity in humans has also been reported (LaBeaud et al., 2008, Lichoti 

et al., 2014a, Mbotha et al., 2018) including 13% (n=248) in north-eastern Kenya (LaBeaud et 

al., 2008) and 12% (n=655) in Kabale district, Uganda (Nyakarahuka et al., 2018).   

In the current study, seroprevalence was significantly higher in cattle than sheep or goats.  

Difference in seroprevalence between ruminant species has been reported in other parts of 

Tanzania (Sumaye et al., 2013, Sindato et al., 2015), Kenya (Lichoti et al., 2014a) and Uganda 

(Nyakarahuka et al., 2018) suggesting different levels of exposure between host species. The 

effect of species remained significant even when controlling for age, indicating that the 

species effect cannot be explained  only by the greater longevity of cattle in comparison with 

sheep and goats.  The difference in seroprevalence could  also be due to mosquito feeding 

behaviour, as mosquitoes tend to select large (Takken and Verhulst, 2013) and coloured host 

species. In periods of drought, pastoralists would prefer to take cattle than small ruminants 

for seasonal camps (ronjo) searching for pasture and water in areas which stay wet most of 

the year, usually lowlands experiencing floods or with permanent water bodies. This would 

also expose cattle to potential mosquito bites and infection as many herds gather together at 

these camps.  

In this study, RVFV seropositivity was detected across all age groups of ruminant species 

tested, with an increase with age consistent with endemic circulation of the virus. Similar 

observations were reported in serosurveys in Kenya (Anyamba et al., 2009, LaBeaud et al., 

2008) and Mozambique (Fafetine et al., 2007) which were conducted one and two years from 

the 2006-2007 outbreak in East Africa. In this study we report seropositivity in animals as 

young as 1-2 years and the detection of IgM antibodies may suggest recent infections of the 
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virus in the study area about ten years from the previous outbreak. These findings suggest 

undetected circulation of the virus in the area outside of an epidemic period. The detection of 

IgM antibodies illustrates recent infection preceding the serosurvey as IgM antibodies to RVFV 

can only be detected up to two months after infection (Morvan et al., 1991, Paweska et al., 

2003a). The circulation of RVFV during the inter-epidemic period suggests that clinical RVF 

cases may have occurred but have been mistaken for other diseases or not reported in the 

absence of public awareness. 

In addition to age of an animal, occurrence of abortions in the herd/flock was associated with 

inter-epidemic seropositivity. Although abortions can be linked to a number of other 

infections, the association of RVFV seroposivity with abortions may be attributed to missed or 

unreported RVF cases in the study area.  This could be due to a lack of adequate surveillance.  

Abortions could also represent an RVFV transmission route within herds/flocks through contact 

with aborted materials. This also poses a risk for RVFV transmission to humans which is 

supported by findings from the current study and other studies (LaBeaud et al., 2008, Magona 

et al., 2013) which have found a strong association between seropositivity in humans and 

handling aborted materials. 

Since the last RVF outbreak in Tanzania, seropositivity in human populations has been 

reported in other parts of the country (Heinrich et al., 2012b, Sumaye et al., 2015, Ahmed et 

al., 2018). In the current study 8.5% seroprevalence is reported in northern Tanzania, 

including in young people less than 13 years old. Although a higher seroprevalence in humans 

was observed in pastoral than agro-pastoral and smallholder settings, the difference was not 

statistically significant.  RVF is typically reported as outbreaks in pastoral areas of Tanzania, 

but the finding of human seropositivity across settings suggests that RVF cases may be 

occurring in other agro-ecological systems and surveillance efforts should not be directed 

exclusively to pastoral settings.  This conclusion is further supported by results from Chapter 

Six. 

The current study reports a significant association between RVFV seropositivity in people and 

consumption of raw milk. The consumption of raw milk  has been considered an important risk 

factor for human exposure during epidemics (Woods et al., 2002, LaBeaud et al., 2008, 
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LaBeaud et al., 2011) and other studies have reported similar observations (Anyangu et al., 

2010, Nicholas et al., 2014). Small amounts of RVFV have been found in the milk of 

experimentally infected cattle, (Alexander, 1951), and saliva and nasal discharges of infected 

sheep and cattle (Swanepoel and Paweska, 2011a), suggesting that consuming infected raw 

milk could represent another pathway for the virus to be introduced into the body (Nicholas et 

al., 2014). This question needs to be further explored as there is not enough evidence 

supporting RVFV transmission through milk. However, unpasteurised milk is known to be 

associated with a number of other diseases including tuberculosis and brucellosis. It is 

important therefore, to ensure people are aware of the risks of raw milk consumption 

especially in communities where this is a traditional and widespread practice.  

People who handled aborted materials were more likely to be seropositive than those who did 

not. Similar observations have been reported in other studies in Tanzania (Sumaye et al., 

2015), Kenya (Anyangu et al., 2010), and Uganda (Nyakarahuka et al., 2018). This could be 

possible because RVFV is highly infectious via the aerosol route, which is evident by the 

number of laboratory workers who have become infected (Alexander, 1951) and the potential 

for infection of  veterinarians and abattoir workers who handle infected animals (Hoogstraal 

et al., 1979, Ross et al., 2012). Infection might also be possible through broken skin if handled 

infected material without appropriate protective equipment.  

5.5 Conclusion  

Results reported here shows RVFV seropositivity in cattle, goats and sheep of all age groups 

and human populations during an inter-epidemic period in northern Tanzania and identifies 

risk factors for exposure.  The association of seropositivity with abortions may suggest missed 

or unreported cases due to lack of active surveillance. Therefore, enhanced surveillance of 

RVF and other abortigenic pathogens is recommended. This should involve specific training to 

livestock field officers and community healthcare workers to be able to quickly identify the 

initial RVF cases for immediate response and reporting which would improve preparedness, 

response and control strategies. In addition, continuous farmer education and awareness or 

sensitization on zoonoses such as RVF and risks for exposure, is essential. The education of 
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farmers should be in a simple language and translated to local languages for specific 

communities. The education materials should include messages that emphasize animal disease 

signs and symptoms, reporting of suspect RVF cases to livestock field officers or veterinarians, 

general hygiene such as washing hands after handling aborted materials or other animal 

materials of suspect case, cooking meat and boiling milk thoroughly. 
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Chapter Six 

6 Molecular survey of Rift Valley fever virus in mosquitoes and 

diagnostic samples and milk from aborting livestock in northern 

Tanzania 

6.1 Introduction 

Rift Valley fever virus (RVFV) is a zoonotic Phlebovirus that can be transmitted to ruminants 

and humans by mosquitoes or through direct contact with contaminated bodily fluids and 

tissues (Davies et al., 1985, Gerdes, 2004). In East Africa, major Rift Valley fever (RVF) 

outbreaks have occurred in intervals of 5 to 15 years (Mohamed et al., 2010, Nderitu et al., 

2010) usually associated with unusually heavy rains. The most recent outbreak in East Africa 

was reported in Kenya, Uganda and Rwanda between June and August 2018, but, despite an 

RVF alert being issued by the Ministry of Livestock and Fisheries in Tanzania, no outbreak was 

reported at the time. Although RVFV has been studied for about eight decades since it was 

first reported in East Africa, many aspects of its maintenance and ecology in periods between 

the epidemics (“inter-epidemic periods”) are not fully understood. Evidence for RVFV 

circulation in the region has been supported by studies that are based primarily on serological 

evidence and limited molecular epidemiological studies, mostly following outbreaks. 

Epidemiological studies following the 2007 outbreak in Kenya detected RVFV using molecular 

techniques performed on samples from cattle, sheep and goats (Munyua et al., 2010) and 

mosquitoes (Lutomiah et al., 2014, Sang et al., 2010). In Tanzania, similar studies involving 

humans (Mohamed et al., 2010) and livestock (Chengula et al., 2014) were conducted using 

molecular tests using samples collected following the outbreak of 2006/2007. However, there 

is still limited molecular evidence for the inter-epidemic circulation of RVFV in Tanzania and  

the region.  Molecular diagnostic tools provide confirmation of the presence of RVFV RNA for 

improved confidence in clinical diagnostic results and confirmation of RVF cases (Njenga et 

al., 2009). Molecular techniques such as reverse-transcriptase polymerase chain reaction (RT-

PCR)  allow for a rapid and accurate detection of RVFV (Escadafal et al., 2013, Njenga et al., 
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2009) and is recommended as an efficient diagnostic tool for the investigation of endemic 

circulation of the RVFV. It allows the detection of low viral RNA loads adapted for the 

investigations of reservoirs or specific epidemiological situations such as inter-epidemic 

periods (Maquart et al., 2014). 

Human exposures to RVFV have been attributed to a number of infection routes as observed in 

previous outbreaks. These routes include direct contact with infected animal tissues, blood, 

or other body fluids by handling aborted materials, helping with parturition, and slaughter, 

inhalation of aerosolized infected fluids, and transmission through bites of infected mosquito 

vectors (Gerdes, 2004, Pepin et al., 2010, Anyangu et al., 2010). Ingestion of raw and 

unpasteurized milk has also been epidemiologically associated with RVF exposure in humans in 

previous outbreaks (LaBeaud et al., 2011, Mohamed et al., 2010, Woods et al., 2002). 

However, the link between consumption of milk from infected animals and human exposure 

has not been demonstrated conclusively, and there is only limited evidence from 

experimentally infected animals (Alexander, 1951) and no reports of RVFV detection in milk 

from naturally infected animals. Findings from our serological study (see Chapter four) and as 

analysed previously (Grossi-Soyster et al., 2019) suggests an association of consumption of raw 

milk with human exposure to RVFV.  

The main aim of this study was to detect RVFV genomic RNA in mosquitoes, aborted materials 

and milk samples collected during the inter-epidemic period in study areas of northern 

Tanzania during a time period (2017-2019) when there were no outbreaks reported in study 

areas of northern Tanzania. This study used RT-PCR to investigate RVFV circulation during the 

inter-epidemic period through testing of (a) mosquito vectors and (b)  diagnostic material 

collected from abortion cases reported in cattle, sheep and goats. Data generated in this 

study will lead to a better understanding of RVFV maintenance in the inter-epidemic periods 

and risk factors for human exposure. This will also inform surveillance strategies and national 

and regional emergency preparedness and response plans, and identify avenues for future 

research.  
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6.2 Methods 

6.2.1  Study area 

The study involved analysis of mosquitoes, aborted materials and milk samples collected from 

Arusha, Kilimanjaro and Manyara Regions of northern Tanzania (Figure 6.1) between March 

2016 and August 2019. The area include districts where RVF cases were reported in previous 

outbreaks in 1977, 1998 and 2006/2007 (Mohamed et al., 2010, Fyumagwa et al., 2011, 

Chengula et al., 2013). Samples used in this study were collected as part of the two 

epidemiological studies carried out in the area, namely 'Social, Economic and Environmental 

drivers of Zoonoses' (SEEDZ) and 'Supporting Evidence Based Interventions to Achieve 

Agricultural Development Goals in Tanzania' (SEBI-TZ) described in Chapter Two.    
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Figure 6.1 Map of northern Tanzania (Arusha, Kilimanjaro and Manyara regions) showing 

districts and location of SEEDZ villages where mosquito sampling was carried out and villages 

where abortion events were reported and from which samples were collected through the 

SEBI-TZ study project. 

 

6.2.2  Sample collections 

Details of sample collection and processing are described in Chapter two. Briefly, mosquitoes 

were collected in 12 villages randomly selected from the 20 SEEDZ study villages between 
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2015 and 2017. Collected mosquitoes were identified to genera or species level using 

morphological identification keys (Gillies and Coetzee, 1987, Huang, 2001, Jupp, 1996), 

separated according to genera, sex, trap type, site and date of collection, into pools of 1-25 

mosquitoes and preserved in labelled 2-ml cryovials containing TRIzol reagent (Thermo Fisher 

Scientific, Loughborough, UK) and stored in -80 0C freezer until further RNA extraction and 

PCR.  

Livestock abortion samples and milk, were collected in response to reported abortion events 

from the SEBI study villages. Following the report of an abortion or peri-natal mortality event, 

recruited Livestock Field Officers (LFOs) or members of the study field team attended the 

cases to collect samples within 72 hours of the abortion/still birth event. In addition to basic 

farm level data, the following samples were collected: (i) blood, milk and vaginal swab 

samples from the aborting cow/ewe/doe; (ii) tissue from the placental inter-cotyledonary 

space; (iii) placental cotyledon; (iv) foetal organs (liver, lung and kidney, thymus); and (iv) 

foetal stomach contents. Only four sample types were used in the current study, namely 

vaginal swabs and milk samples from the aborted dam, swabs from aborted foetus, placenta 

cotyledon tissue samples. The abortion cases reported here are those which were recorded, 

followed by sample collection as part of the SEBI-TZ study, between October, 2017 when the 

study began and July, 2019.  

6.2.3 RNA preparation  

The RNA extraction process is described in detail in Chapter two.  RNA extraction from 

mosquito samples  was based on Direct-zolTM (Zymo Research, CA, U.S.A) RNA preparation 

protocol  as per manufacturers' instructions. Whereas RNA preparation from swabs, milk and 

placental tissue was based on the Qiagen RNeasy Mini kit (QIAGEN, Manchester, UK) according 

to manufacturer's instructions with slight modification.  

6.2.4  Quantitative reverse transcription polymerase chain reaction (RT-qPCR) 

Detection of RVFV by one-step quantitative reverse-transcription real-time PCR (RT-qPCR) 

using RNA samples was carried out as previously described (Drosten et al., 2002). One-step 
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assay combine reverse transcription and PCR in a single tube, using a reverse transcriptase 

along with a DNA polymerase and utilizing sequence-specific for RVFV Gc gene primers RVS 

(AAAGGAACAATGGACTCTGGTCA[349-371]), RVAs (CACTTCTTACTACCATGTCCTCCAAT [443-

417]), and dual-labelled probe RVP (FAM-AAAGCTTTGATATCTCTCAGTGCCCCAA-BHQ1 [388-

416]).   

6.2.5  Data management 

Data from sample collection records and laboratory results were managed in Excel 2007. Data 

were cleaned and analysed in R version 3.5.3 (R Core Team, 2019). In this study, samples 

(mosquitoes and/or abortion materials) with complete information (ID, date, village, species, 

sample type) and RT-PCR results for RVFV were considered for analyses. Maps were produced 

in QGIS v 2.14.0-Essen. Sample collection villages were geocoded using GPS coordinates 

recorded during sample collections. 

6.3 Results  

Three hundred and twelve pools of mosquitoes, 190 vaginal swabs from dams, 61 foetal swabs, 

42 aborted placenta cotyledon tissue samples, and 159 milk samples from abortion events 

involving cattle, goats and sheep were tested for RVFV by real time RT-qPCR. About 190 

abortion events were investigated.   

6.3.1  RVFV detection in mosquito vector species 

A total of 312 mosquito pools, including 17 Aedes spp, 137 Culex spp, 20 Mansonia spp, 133 

Anopheles spp, and 5 Coquillettidia spp, were screened for Rift Valley fever virus by RT-qPCR. 

None of the mosquito pools tested positive for RVFV infection (Figure 6.2). 
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Figure 6.2 Amplification curves for RT-qPCR of RVFV, showing normalized fluorescence 

intensity over time (PCR cycles) for mosquito samples, positive controls and negative controls. 

The black and red curves above the amplification threshhold  in duplicates are positive 

controls (two different dilutions) and the lines below the threshold line are negative controls 

and test samples which did not amplify above the threshold. 

6.3.2  RVFV detection in vaginal and foetal swabs, placenta tissue and milk  

RVFV was detected in 14 (7.4%) out of 190 abortion cases tested by RT-qPCR. RVFV was 

detected in 11 (5.8%) of the 190 dam vaginal swabs, 9 (14.8%) of the 61 foetal swabs, 6 

(14.3%) of the 42 aborted placenta cotyledon tissue samples, and 3 (1.9%) of the 159 milk 

samples tested. All positive swabs, placenta tissue and milk samples were from cattle, no 

RVFV was detected in samples from goats and sheep. The prevalence of RVFV based on RT-

qPCR by species and sample type is shown in Table 6.1.  

 

Table 6.1 RT-qPCR results of samples collected from abortion cases clustered by species and 

sample type showing number of each sample type tested and those tested positive for RVFV 

Species Sample type Tested (n) Positive (n) Prevalence (%) 

Cattle Dam-swab 64 11 17.2 

 

Foetus-swab 35 9 25.7 
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Species Sample type Tested (n) Positive (n) Prevalence (%) 

 

Milk 63 3 4.8 

 

Placenta 34 6 17.7 

Goats Dam-swab 85 0 0 

 

Foetus-swab 21 0 0 

 

Milk 76 0 0 

 

Placenta 7 0 0 

Sheep Dam-swab 41 0 0 

 

Foetus-swab 5 0 0 

 

Milk 20 0 0 

 

Placenta 1 0 0 

Total 

 

452 29 6.42 

 

In this study four sample types (dam swab, foetus swab, milk, and placenta tissue) collected 

from abortion cases were used. Serological (ELISA) testing was also carried out for each case 

and results for the same are included in Table 6.2. It is worth noting that of the 14 abortion 

cases which were  RVFV positive, 11 tested positive for more than one sample type. Two of 

the three positive milk samples corresponded with the positive swabs from the dam and 

foetus, whereas one corresponded with the positive placenta tissue. Table 6.2 shows RT-qPCR 

results of different sample types per abortion case clustered by study village. 

 

Table 6.2 RT-qPCR results of samples collected from abortion cases clustered by site abortion 

case and sample type showing RVFV status as positive (+) or negative (-) and unavailable 

sample (na) 

Village Sample/ 

case ID 

Serum 

serology 

Dam 

swab 

Foetus 

swab Milk Placenta 

Arusha chini  SEBI-051 + + + - na 

 SEBI-058 + + + + na 

 SEBI-064 + + + + na 

 SEBI-075 + + + - na 

 SEBI-076 + + + - + 
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Village Sample/ 

case ID 

Serum 

serology 

Dam 

swab 

Foetus 

swab Milk Placenta 

 SEBI-079 + - - + + 

 SEBI-084 + - + - + 

 SEBI-089 + + na - na 

 SEBI-095 + + na - na 

 SEBI-106 + + + - na 

Rau SEBI-094 + + + - na 

Machame mashariki SEBI-099 + - na - + 

 SEBI-110 + + + - + 

Kindi SEBI-115 + + na - + 

 

 

RVFV was detected in samples from abortion events that occurred between May and August, 

2018 (Figure 6.3). Other abortion cases were either found negative for all pathogens under 

study or were associated with other abortigenic pathogens the results of which  are not 

described in this thesis. 
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Figure 6.3 Outbreak curve showing all abortion cases (blue bars) included in the study and the 

number which were RVFV positive (orange bars). 

6.3.3  Distribution of the RVFV positive cases 

All of the RVFV positive samples were collected from abortion events from four villages in 

Kilimanjaro Region (Table 6.2) with the majority from Arusha chini. Figure 6.4 shows the 

location of the four villages. 
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Figure 6.4 Map of northern Tanzania - Arusha, Kilimanjaro and Manyara regions, showing 

districts and mosquitoes and abortions study sites and locations of the RVFV positive abortion 

cases based on RT-qPCR 

6.4 Discussion 

This study reports detection of RVFV RNA in aborted materials and milk from cattle but not 

goats or sheep in northern Tanzania outside a reported outbreak period. In addition, this study 

reports no RVFV was detected in potential mosquito vectors collected from the study area. 

The inability to detect RVFV in mosquitoes can be explained by low numbers of mosquitoes 

collected and timing of collection (mostly the dry season) outside the outbreak period. The 

detection of RVFV in aborted materials and milk provides strong evidence for a previously 
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unreported outbreak of RVF occurring in Moshi and Hai Districts below the detection threshold 

of current surveillance systems in northern Tanzania, despite the existence of an RVF alert 

that had been issued by the Ministry of Livestock and Fisheries. 

Although a number of other pathogens can cause abortions in livestock in the study area, some 

of these abortions are linked to RVFV infection as evidenced by data from the current study 

where 14 out of 190 abortion cases tested were RVFV-positive. To our knowledge, this is the 

first report of the detection of RVFV in milk samples from naturally infected livestock using 

RT-PCR. A number of epidemiologic studies have suggested that consumption of unpasteurized 

milk is associated with RVFV infection in humans (Woods et al., 2002, Anyangu et al., 2010, 

LaBeaud et al., 2011). This is supported by results of the serological study detailed in Chapter 

five suggesting a strong association between RVFV exposure in humans and consumption of 

raw milk. Other recent studies following the 2006/2007 RVF outbreak in Kenya suggested that 

individuals who milked and also consumed raw milk had greater odds of RVFV exposure than 

individuals whose only contact to raw milk was through milking (Grossi-Soyster et al., 2019). 

However, there has been little direct evidence that raw milk may be a high-risk driver of 

human RVFV transmission. There is limited data on studies that have attempted to examine 

the potential infectivity and risk of raw milk and milk products obtained from infected 

animals. The study that confirmed shedding of live infectious virus in the milk of 

experimentally infected lactating cows was conducted in 1951 (Alexander, 1951), suggesting 

that virus could be found in milk from  acutely infected cattle for 3-5 days (Alexander, 1951). 

Although the current study reports detection of RVFV in cattle milk, it is clear that there is 

still a requirement for additional data to address this question. Further studies are required to 

explore and accurately communicate the potential food-borne risk of RVFV in raw milk.  

However, it is essential to emphasise the importance of pasteurising or boiling milk in 

preventing human exposure to RVFV and other potential pathogens in raw milk.  

The detection of RVFV in aborted materials (foetus and placenta) from livestock poses risks of 

animal-to-animal and animal-to-human infection risks especially in farming communities 

where unprotected handling and disposal of aborted materials is a common practice. In 

approximately 70-90% of affected livestock animals, RVFV virus easily crosses placental 
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barriers and can cause a variety of foetal malformations or death (Bird et al., 2009, Bird and 

McElroy, 2016, Ali et al., 2012). Typically, aborted foetuses and fluids contain exceptionally 

high viral titres, often exceeding 1.0 x 107 plaque forming units (PFU)/g and pose a great risk 

for human infection (Swanepoel and Coetzer, 2004, Ali et al., 2012). Therefore, it is of the 

utmost importance that emphasis is given to safe handling of animals during helping with 

birthing and handling of aborted materials. It is also essential to determine other causes of 

abortion in livestock as this study demonstrates that not all the abortion cases recorded were 

associated with RVFV. This suggest that the identification of all possible causes of abortions 

and implementation of integrated control measures will reduce devastating socio-economic 

losses owing to abortions.   

In the current study, RVFV was detected in samples collected between May and August 2018 

which was towards the end of the long rainy season in Kilimanjaro Region. This is the season 

when there is high potential vector (Aedes spp) activity in the region (Hertz et al., 2016), 

which could play a role in virus circulation in the area. All of the RVFV-positive samples were 

from smallholder farms in the lower lands around Moshi, suggesting a rather small, localized 

outbreak that was not detected by standard surveillance. This coincided with events of heavy 

rains in parts of East Africa which led to floods and RVF outbreak in Kenya, Uganda and 

Rwanda in mid-2018. Despite the fact that there were unusual rains, floods and increased 

mosquito activity, including reported outbreaks of dengue fever in different parts of Tanzania, 

there were no reports of RVF cases.  

Enhanced surveillance that integrate RVF and other emerging zoonotic diseases would help 

generate real time, and accurate data enabling better preparedness and response plans and 

inform the development of control strategies. This is demonstrated by RVF enhanced 

surveillance applied in a pilot study in Kenya (Oyas et al., 2018) which enabled collection of 

useful data on RVF-associated syndromes, particularly abortions and hemorrhagic disease 

(Oyas et al., 2018). In Uganda, RVF enhanced surveillance under the Viral Haemorrhagic Fever 

(VHF) surveillance program,  enabled detection and recording of 10 RVF sporadic outbreaks 

between 2016-2018 (Maurice, 2016, Nyakarahuka et al., 2019).  
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Although cattle are said to be less susceptible to RVFV infection than sheep (Gerdes, 2004, 

Swanepoel and Coetzer, 2004, Magona et al., 2013), in the current study all of the RVFV-

positive samples were from the 14 cattle abortion cases and none from sheep and goats. 

Swanepoel and Coetzer (2004) suggest that cattle are less susceptible to lethal RVFV 

infections than sheep, with estimates of mortality ratios range from 10% to 70% in calves 

(Swanepoel and Coetzer, 2004) and around 40–100% of pregnant cows reportedly abort at any 

gestational stage, particularly imported breeds (Gerdes, 2002, Coetzer, 1982). Sheep are 

highly susceptible to RVFV infection (Bird et al., 2009, Gerdes, 2002, Gerdes, 2004), with 

mortality rates typically reaching approximately 90% to 100% of lambs and approximately 10% 

to 30% among affected adults (Bird et al., 2009). Abortion rates can be high (90% to 100%), 

which gives rise to the characteristic abortion storms (Bird et al., 2009, Easterday et al., 

1962). Although goats are also susceptible to infection, they appear to be more refractory to 

severe or lethal disease than sheep (Easterday et al., 1962). The absence of RVFV detection in 

sheep and goats in the current study could be explained by the small number of sheep and 

goats kept by smallholder farmers in villages where cattle abortion cases were positive for 

RVFV. Farmers from around Moshi, for example, keep mostly dairy breeds or cross breeds of 

cattle for milk. Sheep and goat abortion cases from other villages particularly agro-pastoral or 

pastoral communities could be associated with other abortogenic pathogens that are not the 

reported in the current study. 

Results from the current study suggest that prompt reporting of suspect cases by mobile 

phones, timely sample collection and transportation, and existence of a laboratory facility 

with RVF diagnostic capacity can make a big difference on the amount and quality of data on 

the status of circulation of RVFV and other zoonotic pathogens. In order to enhance RVF and 

other emerging diseases surveillance in both animal and human populations, it is important to 

strengthen laboratory facilities in terms of trained personnel, equipment and reagents in the 

country and the East African region. Although the available vaccines have limitations (Dungu 

et al., 2010, Botros et al., 2006), vaccination would not only protect animals and reduce 

socio-economic losses, potentially, it would also prevent human RVF cases. Additionally, 

public awareness creation involving mass media such as radio and television programmes 

among others has also demonstrated success in getting the message to the public, for instance 
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the use of mosquito nets as part of malaria control programmes (Bowen, 2013, Ankomah et 

al., 2014). Making use of the available media platforms to send would be useful in creating 

public awareness on RVF and risks for exposure. 

6.5 Conclusion 

Strong surveillance in both animal and human populations is critical for early detection of RVF 

and timely response. This will minimize the extent and impact of potential outbreaks and 

widespread transmission of the virus. It is also critical that the mass media be engaged for the 

dissemination of factual information regarding the health risks of RVFV infection and to 

highlight measures the public can take to reduce potential exposures through unsafe handling 

of abortions and consumption of raw milk consumption. 
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Chapter Seven 

7 Discussion 

7.1 Ecology of RVF virus vectors in northern Tanzania  

Rift Valley fever virus (RVFV) infects a wide range of host species including livestock, wild 

animals and humans, and a number of mosquito species are also known to be involved in the 

transmission of the virus. However, many gaps still exist in our understanding of the complex 

ecology and maintenance of RVFV, particularly in the inter-epidemic period. Although the 

current study did not find evidence of RVFV in mosquitoes collected, the entomological study 

described in chapter three reports varied abundance and distribution of the potential RVFV 

vectors in the study area. Culex spp and Anopheles spp were the most abundant in all 12 

sampled villages, Aedes spp recorded in seven villages, Mansonia spp recorded in four villages, 

and Coquillettidia spp recorded in two villages only. All these mosquito genera are known to 

be able to transmit RVFV to livestock and wild ruminants (Swanepoel, 1976, McIntosh et al., 

1980, Logan et al., 1991) hence the occurrence of these vectors suggest their potential role in 

RVFV circulation in the area. The relatively high abundance of Anopheles and their potential 

to act as vectors may warrant further investigation as to the role of this mosquito genus in 

RVF epidemiology. 

Species distribution modelling by MaxEnt, indicate wide and different extents of overlapping 

distribution of suitable habitat for Aedes, Culex and Anopheles mosquitoes including areas 

within and around the Serengeti ecosystem. Suitable habitats identified in the current study 

include districts in northern Tanzania which were not sampled before and the distribution of 

RVF vector species was previously not known. This suggests that potential RVFV vectors could 

be widely distributed across the country in areas with similar environments that are conducive 

to vector survival. Although the association of mosquito habitat suitability with seropositivity 

in livestock or humans was not statistically significant, it was noted that some of the highly 

suitable parts of the study area include areas that have reported repeated RVF outbreaks in 

the past (Sindato et al., 2014), and include districts within which high RVFV seroprevalence 
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(chapter five) was recorded as well as where RVFV was detected in aborted materials (chapter 

six). This suggest that the potential role of local occurrence and abundance of vectors in local 

RVFV circulation. However, further entomological surveillance is needed to detect and/or 

isolate the virus in mosquitoes in the inter-epidemic period to confirm this role.   

While some risk maps for RVF in the region have identified parts of northern as risk areas 

(Anyamba et al., 2010, Anyamba, 2015, Mweya et al., 2013, Njenga and Bett, 2019), the 

current study validates previous predictions and provides evidence and details of local 

occurrence of the potential vectors in the area. This is based on collection of potential vector 

mosquitoes across 12 districts in northern Tanzania.   

Results of the species distribution modelling shows that the distribution of Aedes, Anopheles 

and Culex genera of mosquitoes was influenced by varied ecological requirements and 

overlapping habitats related to soil characteristics, amount of rainfall and vegetation, 

confirming findings of other studies  (Minakawa et al., 1999, Mahande et al., 2007, Sattler et 

al., 2005, Arum et al., 2016). The distribution of Aedes spp and Culex spp was positively 

correlated with precipitation of the wettest month, temperature seasonality, and enhanced 

vegetation index (EVI) respectively and negatively correlated with elevation. Similar to 

findings of other studies in East Africa (Anyamba et al., 2009, Sang et al., 2010, Sang et al., 

2017), the distribution of Anopheles spp was predicted by temperature and rainfall. 

Integrating climate and other environmental factors, vector distribution and records of inter-

epidemic RVF cases would help to more precisely identify risk areas.  The need for greater 

spatial resolution is reinforced by findings from the serological analyses, which demonstrate 

high variability in RVF exposure patterns across villages in northern Tanzania (chapter five). 

7.2 RVFV infection in livestock in northern Tanzania 

Since RVF outbreaks are periodic in nature, a number of questions remain regarding the 

maintenance of the RVFV during inter-epidemic periods (IEP). In line with other studies from 

East Africa (Njenga and Bett, 2019), this thesis provides evidence of RVFV exposure in people 

and domestic ruminant species, as well as evidence of variable, but widespread infection in 

villages of Northern Tanzania. Serology results demonstrate increase in seropositivity with 
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animal age, consistent with a pattern of endemic circulation of RVFV. The detection of 

seropositivity in animals as young as 1-2 years also provides evidence of inter-epidemic 

transmission of RVFV, given the previous large outbreak was reported in 2006/7.  

Data on risk factors for seropositivity in livestock (Chapter five) demonstrate that age of an 

animal and occurrence of abortion cases in the herd/flock were associated with inter-

epidemic seropositivity. Although abortions can be linked to a number of other infections, the 

association of RVFV seropositivity with abortions suggests that abortions caused by RVF are 

being missed or mis-diagnosed during inter-epidemic periods, and/or that RVF abortions may 

be a source of infection for other livestock in the herd/flock.   

The finding of RVFV as a cause of livestock abortions during a previously unreported outbreak 

(chapter six) is consistent with the hypothesis that cases of RVF are being missed and are 

occurring below current surveillance detection and reporting thresholds. Enhanced 

surveillance of livestock abortion events would clearly be valuable for detection of RVF cases 

and would improve capability for early detection and response to cases that could potentially 

prevent large outbreaks.   

7.3 Detection of Rift Valley fever virus RNA in milk 

This study provides valuable evidence in relation to RVFV infection in milk which has 

important public health implications. Very little has previously been reported on shedding of 

RVFV in milk with evidence of RVFV in milk limited to one experimental study (Alexander, 

1951), reported about six decades ago. The current study presents two key findings that 

provide evidence of the potential risks of RVFV transmission from consumption of milk.  First, 

consistent with previous studies (Woods et al., 2002, LaBeaud et al., 2008, LaBeaud et al., 

2011, Anyangu et al., 2010, Nicholas et al., 2014), analysis of human serological data showed 

that consumption of unboiled milk was a highly significant risk factor for seropositivity 

(chapter five).  Second, the detection of viral RNA in milk from aborting cattle confirmed that 

the virus can be shed in milk (chapter six). These findings indicate that public health 

information given during RVF outbreaks needs to include advice as to the risks of consuming 

unboiled milk, particularly from aborting animals.  
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Strains of RVFV has been shown to be inactivated by heat treatment of 56°C for 80 minutes  

(Daouam et al., 2014, Szemiel and Willett, 2019) and Szemiel and Willett personal 

communication,  but some viral activity can be detected following heat treatment (at 56°C) 

for up to 70 minutes (Daouam et al., 2014), raising concerns about the thermal stability of the 

virus.  OIE regulations stipulate the need for pasteurization of imported milk and milk 

products from infected areas in order to prevent introduction and spread of infection into 

countries that are not free of RVF (OIE, 2017).  However, little, if any, published data exist on 

the effectiveness of pasteurization, heat-treatment and fermentation in inactivating RVFV in 

milk and milk products, and further work is clearly needed.  

7.4 RVF as an emerging disease threat in urban communities 

The RVF cases detected in this study affected improved breed dairy cattle in smallholder 

farms and raises questions about the potential for RVF to emerge as a disease threat to peri-

urban and urban communities. A particular concern in relation to the detection of RVF in milk 

from peri-urban dairy cattle is that most of the dairy products consumed within the 

municipality of Moshi (predominantly milk and fermented milk, mtindi) originate from milk 

produced by smallholder farmers in areas surrounding the town (Ladbury, 2018). While the 

peri-urban dairy cattle sector in Tanzania is targeted for rapid expansion (Katjiuongua and 

Nelgen, 2014).  Awareness is also needed about potential risks during RVF outbreaks, with the 

possibility of infected milk products being consumed by a very large urban population.  

Particular attention needs to be given to risks that may arise from the common practice of 

bulking milk that has been sourced from multiple different farms, and the widespread 

consumption of mtindi, which is often made from unboiled leftover milk and may be highly 

contaminated (Ladbury, 2018).  

While this study provides a significant contribution to our understanding of the public health 

risks of unboiled milk consumption, it also raises questions as to the potential role of milk as a 

source of infection to suckling livestock.  However, the finding of a very low seroprevalence in 

young animals suggests that transmission in milk is unlikely to be an important element of 

transmission dynamics in livestock and RVFV transmission via vectors or through direct contact 
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with aborted materials or infected carcasses remains a more likely explanation for livestock-

to-livestock transmission both within and between large outbreaks.    

7.5 RVFV infection among humans in northern Tanzania 

While there is no documentation of human-to-human transmission of RVF, human cases and 

exposure have been widely reported and attributed to handling infected animals or animal 

material coupled with behaviours related to occupational tasks, homestead responsibilities, or 

consumption of animal products such as meat and milk. In the current study (chapter five) 

8.5% of RVFV seroprevalence was reported in northern Tanzania including in young people less 

than 13 years old (i.e. people born since the previous large outbreaks in 2006/7). As for 

livestock a higher seroprevalence was recorded in pastoral than agro-pastoral and small-holder 

settings, but with evidence of widespread infection and high variability between villages.  In 

addition to the findings on consumption of raw milk, the risk factor analysis demonstrated a 

significant association between RVFV seropositivity in people with handling of aborted 

materials.  This finding further suggests that livestock abortion cases caused by RVF are being 

missed during inter-epidemic periods. Public health recommendations should also continue to 

highlight the risks associated with handling of aborted materials, including periods outside the 

large reported outbreaks.   

7.6 Serological and molecular detection of RVFV infection  

This study demonstrated the value of serological and molecular data for RVFV epidemiological 

studies, but also identified several challenges that had to be overcome in generating reliable 

data for analyses.  The in-house serological test which was initially trialled as a more cost-

effective approach to screening large numbers of serum samples was shown to be highly non-

specific.  The commercial assay performed well, but the relatively high costs are likely to 

preclude widespread application for large-scale studies in low-resource settings.   

The real-time PCR assay (Drosten et al., 2002) performed well in detecting RVFV cases in 

aborted tissues as well as in vaginal swabs.  However, challenges were encountered in 

extracting sufficient quantities of RNA during the initial stages of the study. This study also 
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demonstrates that vaginal swabs as low-cost, safe, and practical samples for surveillance 

which can be collected up to 72 hours after abortion, hence should be considered for RVF 

surveillance  

7.7 Future prospects for RVF research, surveillance and control in Tanzania 

To further understand the inter-epidemic RVFV circulation in livestock and human 

populations, we should consider the following: 

1) Further entomological surveillance is needed to detect and/or isolate the virus in 

mosquitoes in the inter-epidemic period and typing of RVFV strains circulating in the 

area.  

2) The use of rapid field diagnostic capabilities for infections in livestock and humans, 

vector identification, virus isolation.  

3) Enhanced surveillance of livestock abortion events to detection of RVF cases. 

These will help improve our capability for early detection, preparedness and response to cases 

that could potentially prevent large outbreaks.   
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Appendices 
 

Appendix I: Mosquito survey consent form (English version) 

 

“Zoonoses and Emerging Livestock Systems (ZELS) Research Project 

 

RVF Mosquito Vector study 

Household Participant Consent (English) 

 

Introduction 

You are being asked to take part in a research study to find out if mosquitoes in this area are carrying 

diseases that can also cause illness in people. We hope that the results from this research will lead to 

recommendations for control of these diseases in animals, and particularly ways to stop people 

catching these diseases. This research is being conducted by experts from the Kilimanjaro Christian 

Medical Centre, Kilimanjaro Clinical Research Institute and Nelson Mandela African Institution of 

Science and Technology in Tanzania, and the University of Glasgow in the UK. The work is funded by 

research councils and the Department of International Development in the UK. Please read or have 

read to you the information in this sheet which explains what is involved and any benefits or dangers 

for your household. We encourage you to ask the study representative to explain parts of the study 

that are not clear or if you have further questions. Take as much time as you need to make a decision 

about whether you would like to be involved.  

Why has my household been chosen?  

Your village and household were chosen at random. Your household is one of several in this village that 

have also been randomly selected to be involved. 

What is involved in the study? 

We will do mosquito trapping in your compound and ask you some questions about the structure of 

your household, the belongings that you own, animal ownership, the way that you look after your 

animals, and illnesses of people and animals. Some basic information about you, such as your 

education, will also be collected.  

Are there dangers of being involved? 
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The equipment used for mosquito trapping are not harmful to humans. However, the discussion of 

illness or personal details could cause feelings of discomfort, sadness or anxiety. You do not have to 

answer any questions that make you uncomfortable, and you can stop the discussion at any time. 

What are the costs and compensation? 

There will be no additional costs to you other than your time and the information you provide as a 

result of being in this study.  No compensation will be provided for your participation.  

What will happen to my information? 

We will keep personal identifiers (such as your name) in locked storage in Tanzania and, unless 

required by law, we will not give this information to anyone outside the study. The mosquitoes trapped 

and the answers you give during the questionnaire will be sent to the University of Glasgow, where 

scientists will look for reasons why disease in people and animals is more likely to occur in some 

households than others. Again, your name and other personal identifiers will not be included in this 

information. 

What are the benefits of being involved? 

You may not receive any direct benefit from participating.  We hope that in the future the information 

learned from this study will benefit people in this area and help to prevent human and animal disease. 

What do I do if I decide I no longer want to be involved?  

You can withdraw from the study at any time and you do not need to give a reason. Withdrawal will 

not incur any sort of penalty. If you make this decision whilst project staff are still in your household, 

please talk to the study coordinator. If you decide to withdraw, no new information will be collected, 

and you can also ask us to not use any information we have already collected about your household and 

animals. If you would like to withdraw after we have left your household, please call Mr. James 

Nyarobi on +25578459998. Alternatively, you can write to: Prof. Sarah Cleaveland, c/o Prof. Blandina 

Mmbaga, KCRI-KCMC, PO Box 2236, Moshi, Tanzania.  

Whom do I call if I have questions or problems? 

For questions about the study or if you have complaints, concerns or suggestions about the research, 

please contact Mr. James Nyarobi on +255784459998. For questions about your rights as a research 

participant, or to discuss problems, concerns or suggestions related to the research, or to obtain 

information or offer input about the research, contact Prof. Blandina Mmbaga on +255-27-275-4201 or 

the National Health Research Ethics committee (NatHREC) on +255-22-2121400. 

On behalf of the whole project team, thank you for your time. 

………………………………………………………………………………………………… 

Statement of consent 
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"The purpose of this study, and the study procedures, risks and benefits have been explained to me. I 

have been allowed to ask questions, and my questions have been answered to my satisfaction. I have 

been told that I may contact the National Health Research Ethics committee (NatHREC) on +255-22-

2121400 if I have questions about my rights as a research subject, to discuss problems, concerns, or 

suggestions related to the research, or to obtain information or offer input about the research. I 

confirm that I have had time to read the information in this document, or that it has been read to me. 

I understand that my participation is voluntary and that I am free to withdraw at any time, without 

giving any reason and without my legal rights being affected. I agree to take part in this study.” 

           

Name of subject    Date   Signature 

    

Name of Person taking consent   Date   Signature 

   

Witness (if applicable)   Date   Signature 
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Appendix II: Mosquito survey consent form (Swahili version) 

 

“Zoonoses and Livestock Systems Research” (ZELS) Project 

Utafiti wa Mbu waenezao ugonjwa wa Homa ya Bonde la Ufa 

Fomu ya maelezo kwa mshiriki na ridhaa ya kushiriki katika utafiti 

 

Unakaribishwa kushiriki kwenye utafiti kuangalia kama mbu katika eneo hili wanabeba magonjwa yanayoweza 

kusababisha maradhi kwa wanyama na binadamu. Tunatumaini kuwa matokeo ya utafiti yatatuwezesha 

kupendekeza kuzuia magonjwa haya kwa wanyama, na njia za kuzuia watu wasipate haya magonjwa. Utafiti huu 

unaendeshwa na wataalam kutoka Hospitali ya rufaa ya KCMC, Tasisi ya Utafiti wa Kitabibu KCRI na Chuo kikuu cha 

sayansi na Teknolojia cha Mandela cha Tanzania, na Chuo Kikuu cha Glasgow cha Uingereza. Kazi imefadhiliwa na 

wahisani na kitengo cha maendeleo ya kimataifa cha Uingereza. Tafadhali soma au utasomewa taarifa kwenye 

fomu hii ambayo inaelezea nini kinachohusika na faida yeyote au madhara kwa kaya yako. Tunakuhamasisha 

umuulize mwakilishi wa utafiti akueleze vipengele vya utafiti ambavyo hujaelewa vizuri au kama una maswali ya 

ziada. Chukua muda wa kutosha kufanya maamuzi kama utataka kushiriki. 

 

NI KWANINI KAYA YAKO IMECHAGULIWA 

Kijiji chako na kaya yako vimechaguliwa kwa bahati nasibu. Kaya yako ni miongoni mwa kaya  katika kijiji iliyo 

chaguliwa kwa bahati nasibu kushiriki. 

 

UTAFITI HUU UNAHUSU NINI?  

Tutatega mbu katika boma/kaya yako kwa kutumia aina tofauti za mitego ya mbu, ndani ya nyumba na nje ya 

nyumba. Pia tutakuuliza baadhi ya maswali kuhusu muundo wa kaya yako vitu unavyomiliki, umiliki wa mifugo, 

jinsi unayotunza wanyama wako, na magonjwa ya wanyama na binadamu. Taarifa muhimu kuhusu wewe, kama 

vile elimu yako pia vitakusanywa.  

 

 

KUNA MADHARA YEYOTE KAMA NITASHIRIKI? 

Vifaa tunavyotumia kutegea mbu havina madhara yoyote kwa binadamu.  
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KUTAKUWA NA MALIPO AU GHARAMA? 

Hakutakuwepo na gharama ziada ya muda wako na taarifa utakazotupatia kama sehemu ya kushiriki utafiti. 

Hakuna malipo yeyote kwa ushiriki wako 

 

NINI KITATOKEA KWA TAARIFA ZANGU? 

Tutaweka taarifa za mtu binafsi (kama jina lako) sehemu iliyofungwa hapa Tanzania na labda kama zitahitajika 

kisheria, hatutatoa taarifa hizi kwa mtu yeyote nje ya mradi. Matokeo ya utafiti wa mbu pamoja na majibu 

utakayotoa wakati wa dodoso yatatumwa Chuo kikuu cha Glasgow, ambapo wanasayansi wataangalia kwanini 

magonjwa ya binadamu na wanyama yanatokea sana kwa baadhi ya kaya kuliko nyingine na uhusiano wa 

magonjwa hayo na kuwepo kwa mbu. Kwa mara nyingine jina na taarifa zako na utambulisho binafsi 

havitajumuishwa kwenye taarifa hii. Sampuli za mbu na taarifa nyingine zilizokusanywa katika utafiti, 

vitahifadhiwa kwa miaka 10 au zaidi. 

 

MATOKEO YA UTAFITI YATATUMIKAJE? 

Matokeo ya utafiti huu yanachangia sehemu ya  Shahada ya Uzamivu ya James Nyarobi katika Chuo Kikuu cha 

Glasgow cha Uingereza. Taarifa za matokeo ya utafiti huu pia zitakabidhiwa katika Hospitali ya rufaa ya KCMC, 

Taasis ya Utafiti wa Kitabibu KCRI, Taasis ya Taifa ya Utafiti wa Kitabibu NIMR, Tume ya Sayansi na Teknolojia 

COSTECH na Wizara ya Kilimo, Mifugo and Uvuvi. Jina lako na vitu vingine vinavyokutambulisha wewe havitakuwa 

kwenye taarifa hizi. 

 

 

NINI FAIDA YA KUSHIRIKI? 

Unaweza usipate faida ya moja kwa moja kwa kushiriki. Tunaamini kuwa kwa baadae taarifa tuliojifunza katika 

utafiti huu itawafaidisha watu katika eneo hili na kusaidia kuzuia magonjwa ya binadamu na wanyama 

  

NITAFANYA NINI KAMA NITAAMUA KUTOKUENDELEA KUSHIRIKI? 

Unaweza kujitoa ushiri wako wakati wowote na huhitaji kutoa sababu. Kujitoa kwako hakutasababisha adhabu 

yeyote. Kama utaamuwa kujitoa wakati mwakilishi wa utafiti bado yuko kwenye kaya yako  tafadhali ongea na 

mratibu wa utafiti. Kama utaamuwa kujitoa hakuna taarifa mpya itakayochukuliwa juu yako, na unaweza pia 

kutuambia tusitumie taarifa  ambayo tumeshakusanya kuhusu kaya na wanyama wako. Kama unataka kujitoa 

wakati tumeshaondoka kwenye kaya yako  tafadhali mpigie Bwana James Nyarobi kwa +255784459998. Badala 



153 

 

yake  unaweza kumwandikia Prof. Sarah Cleaveland, kupitia kwa Prof. Blandina Mmbaga, KCRI-KCMC, PO Box 

2236, Moshi, Tanzania.  

 

NITA WASILIANA NA NANI KAMA NINA MASWALI  AU MATATIZO? 

Kwa maswali kuhusiana na utafiti au kama unamalalamiko, wazo au ushauri kuhusu utafiti , tafadhali wasiliana na 

Bwana James Nyarobi kwa +255784459998. Kwa maswali kuhusina na haki zako kama mshiriki wa utafiti au 

kujadili matatizo, mawazo au ushauri kuhusiana na utafiti au kupata taarifa au kutoa mapendekezo kuhusiana na 

utafiti wasiliana na Prof. Blandina Mmbaga kwa +255-27-275-4201 au kamati ya maadili ya NIMR (National Health 

Research Ethics committee (NatHREC)) kwa +255-22-2121400. 

 

Kwa niaba ya wawakilishi wote wa utafiti, asante kwa muda wako 

……………………………………………………………………………………………………………. 

NENO LA IDHINI YA RIDHAA 

“Lengo la utafiti huu na taratibu za utafiti, madhara na faida imeelezwa kwangu. Nimeruhusiwa kuuliza maswali na 

maswali yangu yamejibiwa nikaridhika. Nimeelezwa kwamba naweza kuwasiliana na kamati ya maadili ya NIMR 

(National Health Research Ethics committee (NatHREC)) kwa +255-22-2121400, kama nina maswali kuhusiana na 

haki zangu kama mshiriki wa utafiti  na kujadili matatizo, mawazo, au ushauri kuhusiana na utafiti au kupata 

taarifa au kutoa mapendekezo kuhusu utafiti. Nathibitisha kwamba nilipata muda kusoma taarifa katika nakala hii 

au nilisomwewa. Naelewa kwamba ushiriki wangu ni wa hiari na niko huru kijitoa wakati wowote bila kutoa 

sababu na bila kunyimwa haki zangu za msingi. Nakubali kushiriki kwenye utafiti huu.” 

 

           

Jina la mshiriki     Tarehe    Saini 

 

    

Jina la mtu anaepewa idhini   Tarehe    Saini 

 

   

Shahidi (kama anahitajika)    Tarehe    Saini  
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