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Abstract

Increasing interest in renewable energy sources for electricity production complying
with stricter environmental policies has greatly contributed to further optimisation of
existing devices and the development of novel renewable energy generation systems.
The research and development of these advanced systems is tightly bound to the use of
reliable design methods, which enable accurate and efficient design. Reynolds–averaged
Navier–Stokes Computational Fluid Dynamics is one of the design methods that may
be used to accurately analyse complex flows past current and forthcoming renewable
energy fluid machinery such as wind turbines and oscillating wings for marine power
generation. The use of this simulation technology offers a deeper insight into the com-
plex flow physics of renewable energy machines than the lower–fidelity methods widely
used in industry. The complex flows past these devices, which are characterised by
highly unsteady and, often, predominantly periodic behaviour, can significantly affect
power production and structural loads. Therefore, such flows need to be accurately
predicted.

The research work presented in this thesis deals with the development of a novel,
accurate, scalable, massively parallel CFD research code COSA for general fluid–based
renewable energy applications. The research work also demonstrates the capabilities of
newly developed solvers of COSA by investigating complex three–dimensional unsteady
periodic flows past oscillating wings and horizontal–axis wind turbines.

Oscillating wings for the extraction of energy from an oncoming water or air stream,
feature highly unsteady hydrodynamics. The flow past oscillating wings may feature
dynamic stall and leading edge vortex shedding, and is significantly three–dimensional
due to finite–wing effects. Detailed understanding of these phenomena is essential for
maximising the power generation efficiency. Most of the knowledge on oscillating wing
hydrodynamics is based on two–dimensional low–Reynolds number computational fluid
dynamics studies and experimental testing. However, real installations are expected
to feature Reynolds numbers of the order of 1 million and strong finite–wing–induced
losses. This research investigates the impact of finite wing effects on the hydrody-
namics of a realistic aspect ratio 10 oscillating wing device in a stream with Reynolds
number of 1.5 million, for two high–energy extraction operating regimes. The bene-
fits of using endplates in order to reduce finite–wing–induced losses are also analyzed.
Three–dimensional time–accurate Reynolds–averaged Navier–Stokes simulations using
Menter’s shear stress transport turbulence model and a 30–million–cell grid are per-
formed. Detailed comparative hydrodynamic analyses of the finite and infinite wings
highlight that the power generation efficiency of the finite wing with sharp tips for
the considered high energy–extraction regimes decreases by up to 20 %, whereas the
maximum power drop is 15 % at most when using the endplates.

Horizontal–axis wind turbines may experience strong unsteady periodic flow regimes,
such as those associated with the yawed wind condition. Reynolds–averaged Navier–
Stokes CFD has been demonstrated to predict horizontal–axis wind turbine unsteady
flows with accuracy suitable for reliable turbine design. The major drawback of con-
ventional Reynolds–averaged Navier–Stokes CFD is its high computational cost. A
time–step–independent time–domain simulation of horizontal–axis wind turbine peri-
odic flows requires long runtimes, as several rotor revolutions have to be simulated
before the periodic state is achieved. Runtimes can be significantly reduced by using



the frequency–domain harmonic balance method for solving the unsteady Reynolds–
averaged Navier–Stokes equations. This research has demonstrated that this promis-
ing technology can be efficiently used for the analyses of complex three–dimensional
horizontal–axis wind turbine periodic flows, and has a vast potential for rapid wind
turbine design. The three–dimensional simulations of the periodic flow past the blade
of the NREL 5–MW baseline horizontal–axis wind turbine in yawed wind have been
selected for the demonstration of the effectiveness of the developed technology. The
comparative assessment is based on thorough parametric time–domain and harmonic
balance analyses. Presented results highlight that horizontal–axis wind turbine peri-
odic flows can be computed by the harmonic balance solver about fifty times more
rapidly than by the conventional time–domain analysis, with accuracy comparable to
that of the time–domain solver.
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Chapter 1

Introduction

1.1 Renewable energy
Renewable energy can generally be regarded as energy that comes from any source that
is not depleted when used. In the distant past mankind has only been able to convert
few of the natural resources, such as the power of wind and water mostly into mechan-
ical work, and biofuels to produce thermal energy. The advancement of technology
and scientific discoveries during the industrial revolution in 18th century, driven by the
desire for improved standard of living, enabled mankind to utilise energy from many
more natural resources. During the industrial revolution we have become dependent
on large amount of energy, and therefore, renewable energy sources no longer sufficed
our needs. Since then, the mankind has become increasingly dependent on fossil fuels.
Eventhough the formation of fossil fuels is a natural process, they are not considered to
be renewable energy source, due to the extremely long accumulation process. Increased
usage of the fossil fuels since the beginning of the industrial revolution has resulted in
the production of significant amounts of carbon dioxide into the atmosphere, which in-
terferes with the natural carbon cycle, which has been in near equilibrium for thousands
of years [10]. The main concern with large amounts of carbon dioxide in Earth’s atmo-
sphere is that carbon dioxide acts as one of the greenhouse gases. Usually, short–wave
solar radiation entering Earth’s atmosphere is absorbed by the Earth’s surface, and
is radiated back into the space as infrared energy, featuring much longer wavelength.
In the atmosphere, greenhouse gases redirect part of the long–wave infrared radiation,
which would without their presence escape into space, back towards the Earth’s sur-
face. Thereby, higher concentration of carbon dioxide in the atmosphere contributes to
global warming. The usage of renewable energy sources has, therefore, a vast potential
of reducing global greenhouse gas emissions and to limit global warming.

According to the World Energy Outlook (WEO) 2015 New Policies Scenario, world’s
electricity generation will increase from about 23.3 TWh produced in 2013 to about
39.4 TWh in 2040. To cover world’s electricity demands in the near future, renewable
energy sources are expected to increase significantly. Wind energy generation capacity
is expected to increase by nearly 300 % in 2040 with respect to 2013, and is expected
to cover 9 % of electricity generation. An important increase in marine energy sources
is also anticipated, however, the share of these technologies is still expected to be rel-
atively small. In the light of current predictions, there is a need to further increase
energy efficiency of currently available renewable energy technologies, and to develop
novel engineering technologies to harvest more renewable energy sources cheaply and
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efficiently. This project aims to develop novel, efficient and accurate Computational
Fluid Dynamics (CFD) tools for the design and optimisation of efficient renewable
energy technology, and examines in great detail the aerodynamics of the rotor of the
oscillating wing device, typically used in marine energy sector, and the conventional
horizontal–axis wind turbine (HAWT). To design efficient state–of–the–art renewable
energy devices, the aerodynamic design can no longer rely only on the usage of low
fidelity tools and/or semi–empirical models, such as the blade element momentum the-
ory (BEMT) and dynamic stall models, in the case of wind turbines [11, 12, 13]. These
techniques feature extremely high computational speed, however, their reliance on the
existence and availability of high–quality airfoil data hinders their applicability to the
design of radically new configurations of renewable energy devices. A promising high–
fidelity method, which may to a limited extent reduce uncertainty associated with the
flow predictions of low–fidelity models, is the Navier–Stokes (NS) CFD. This method
has recently gained a wide interest by the wind energy community, since it enables
the detailed flow analysis of the renewable energy devices, which cannot be predicted
by the simpler methods. The NS CFD simulation may also simulate the flowfield of
the wind/marine farms, complex terrains and atmospheric/wind conditions. Generally,
the NS CFD simulation data are in reasonable agreement with the experimental data,
and on many occasions in much better agreement than the results obtained by the
low–fidelity models. Nonetheless, the method still has its limitations and faces several
difficulties, that are currently still under the investigation to be fully understood.

1.2 Computational fluid dynamics for oscillating wing

devices
Oscillating wing device is a promising new technology for renewable energy production
in the fields of wind and marine energy systems. It relies on the use of oscillating
wings simultaneously heaving and pitching to extract energy from an oncoming water
or air stream. The device was pioneered by McKinney and DeLaurier [1] in 1981 with
their 90 W prototype called "wingmill". The pitching and heaving motions of the wing
were translated to a rotating shaft through a mechanism called "scotch–yoke". The
experimental model of the wingmill is depicted in Fig. 1.1.

Oscillating wing device was further investigated by Jones et al. [14, 15], by con-
ducting several numerical investigations on oscillating wings for propulsion and power
extraction applications. For the unsteady analyses of the flow around an airfoil they
have used an unsteady panel code with a non–linear wake model. Authors have shown
that the power was extracted for heaving and pitching motions when the geometric
pitch amplitude exceeded the maximum induced angle–of–attack due to the heaving
motion for phase angles about 90 degrees. Later Jones et al. [2] analysed this problem
using panel and NS codes, as well as with the experiment in a water tunnel using the
two oscillating foils in a tandem configuration. Comparison the experimental data of
the two oscillating foils with the 2D NS simulation of one oscillating foil, revealed a
large discrepancy between the two data sets. Their experimental model employing two
tandem wings is depicted in Fig. 1.2.

Several other numerical, experimental and prototype–based studies of the oscillating
wing device for power generation followed these pioneering studies. The exact design
for the commercial use is still under ongoing development by many industrial and
scientific communities.
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Figure 1.1: Wingmill experimental setup. Taken from [1].

One of the prototypes of the oscillating wing device called "Stingray", depicted in
Fig. 1.3, was built by the Engineering Business Ltd. in England. A 150 kW proto-
type includes a single oscillating hydrofoil deployed in the Shetland Islands, Scotland.
After several years of testing, the Stingray has unfortunately been tagged as a non–
economically viable device, due to its poor performance. Reference [16] also mentions
authors have performed a numerical analysis, which confirmed that the Stingray con-
figuration was not optimal, inferring a higher pitch amplitude in addition to a higher

Figure 1.2: Side view of the oscillating–wing hydropower generator. Taken from [2].
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Figure 1.3: Stingray Assembly. Taken from [3].

frequency could lead to better performances.

Figure 1.4: The 100 kW Pulse tidal oscillating wing device. Taken from [4].

The Pulse Tidal Ltd., England has developed two prototypes of oscillating wing
turbine which feature two hydrofoils in a tandem configuration. The first prototype,
depicted in Fig. 1.4, featured 100 kW of power and was deployed in the Humber estuary
in 2009. The oscillating wing device has 12 m–long hydrofoils mounted on a marine
platform. The second prototype, which is the largest known prototype so far, was
installed in the Bristol Channel in 2014 and features rated power of 1.2 MW [17].
Figure 1.5 depicts the artistic impression of the Pulse Tidal oscillating wing device.

Another experimental prototype of the oscillating wing for power generation was
designed, built and tested by Laval University in water at Lac–Beauport near Quebec
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Figure 1.5: An artistic impression of the 1.2 MW Pulse Tidal oscillating wing device.

Taken from [5].

City, Canada [6]. A 2 kW prototype included two aspect ratio (AR) 7 rectangular
hydrofoils in a tandem configuration. Their tips featured endplates and the Reynolds
number was 0.5 million. The coupling of the pitching and heaving motion of each
hydrofoil is coupled through four–link mechanism. The turbine has been mounted on
a pontoon boat and dragged on a lake, in order to be easily tested at various oper-
ating conditions. Measured data reported fairly high values of the energy conversion
efficiency. The experimental setup is depicted in Fig. 1.6.

Figure 1.6: Side and rear views of the experimental setup. Taken from [6].
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Most recently Young et al. [17] published a comprehensive review of the analytical,
numerical and experimental research work carried out in this field. The review also
focuses on the influence of flapping kinematics and foil geometry parameter choice on
the characteristics of the LEVS observed in certain operating conditions. This feature
has been initially thought to have a beneficial effect on the efficiency of the energy
generation of oscillating wings, and its analysis in realistic installations is one of the
underlying threads of the present study. The authors of [17] also highlight outstanding
questions on the fluid mechanics of the oscillating wing in real installations, charac-
terised by relatively high values of the Reynolds number based on the foil chord and
the freestream velocity, and complex 3D flow features. The kinematic set–ups of os-
cillating wings for power generation can be subdivided in three classes [17, 18]: fully
active, semi–passive and fully passive. In the fully active set–up all parameters of
the heaving and pitching motions are prescribed; in the semi–passive set–up only the
pitching motion is prescribed and the heaving motion parameters are determined by
the hydrodynamic forces acting on the wing; in the fully passive arrangement, both the
pitching and heaving motion parameters are determined by the forces acting on the
wing. To date, it is still unclear which of the three set–ups provides the best perfor-
mance [17], but progress made on improving the understanding of the hydrodynamic
characteristics of any one of the three set–ups is likely to contribute to progress in the
study and application of the other two [18]. The wing oscillation considered in most
analyses is harmonic, but it has been shown that performance benefits can also be
achieved by considering non–harmonic wing trajectories [19, 20]. The remainder of the
literature survey in this subsection and the analyses in this work focus on the baseline
configuration of the oscillating wing, namely that using a fully active kinematic set–up
and harmonic wing motion.

Kinsey and Dumas [21] performed a thorough parametric computational fluid dy-
namics (CFD) investigation into the dependence of the energy conversion efficiency of a
foil oscillating in a laminar Reynolds 1, 100–stream on the choice of motion parameters
(heaving and pitching amplitude and motion frequency) and foil characteristic param-
eters (foil thickness and location of pitching axis). Their study used the commercial
CFD code FLUENT and concluded that, by suitably choosing motion frequency and
pitching amplitude, efficiencies as high as 34 % could be obtained. They also reported
that the main factor enabling this efficiency level is the achievement of an optimal
synchronisation (or phase) of wing motion and unsteady LEVS associated with the
dynamic stall observed for certain choices of foil trajectory parameters. The study also
considers the detailed aerodynamic analysis of this device to better understand the
inside of the complex unsteady aerodynamics mechanism, which controls the energy
extraction process. The detailed flow analyses highlight the importance of the use of
NS CFD for this application. Similar findings were also reported in a later independent
study using the NS research code COSA [22].

Thereafter, the hydrodynamics of the devices tested at Lac–Beauport [6] was in-
vestigated numerically by Kinsey and Dumas [23]. Both two–dimensional (2D) and
three–dimensional (3D) turbulent FLUENT simulations using the Spalart–Allmaras
turbulence model [24] were performed. The study highlighted that the loss of power
generation efficiency of a single AR 7 wing with endplates in a water stream with
Re = 0.5 × 106 is about 15 % of the efficiency of the infinite wing. In a follow–up
study, the same authors extended their numerical analyses to wings of AR 5, 7 and 10
with and without endplates to assess the dependence of the losses induced by finite–
wing effects on aspect ratio and wing tip type setting again using Re = 0.5 × 106.
Making use of FLUENT simulations based on 3D grids with up to 3.5 million cells
and using the Spalart–Allmaras model for the turbulence closure, their investigations
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concluded that, for a finite wing of AR ≥ 10 with endplates such a loss could be limited
to about 10 % of the efficiency of the infinite wing [25]. For the AR 10 case, however,
no simulation of the wing without endplates was performed, and therefore, it was not
possible to assess separately the efficiency improvement due to the use of endplates
and that due to the use of a fairly large and more realistic AR 10.

The dependence of the oscillating wing hydrodynamics on the Reynolds number is
another crucial factor essential to maximising the energy extraction efficiency of future
real installations. Cross–comparison of laminar low–Reynolds number and turbulent
high–Reynolds number CFD simulations using the same wing motion parameters re-
veals that such efficiency is significantly higher in the latter regime [21, 23, 26]. This
was reported in [22], where COSA has been used to carry out a 2D fully laminar
Reynolds 1, 100–simulation and later on a 2D fully turbulent Reynolds 1.5 million–
simulation [26] of the oscillating wing using the same wing motion parameters for both
regimes. The comparative analysis reported in [26] used a wing trajectory that had
been previously optimised for maximum energy extraction efficiency in the considered
laminar regime, and provided two important observations. Firstly, the wing power
generation efficiency increased at the turbulent high Reynolds number regime due pri-
marily to thinner boundary layers, resulting in thinner effective foil and thus larger lift
forces. Secondly, LEVS was delayed in the turbulent high Reynolds number regime
with respect to the laminar low Reynolds number regime due to higher stability of
the turbulent boundary layers. Thus the optimal synchronisation of wing motion and
LEVS of the laminar regime was reduced in the high–Reynolds number case. However,
the beneficial effect of thinner turbulent boundary layers outweighed the detrimental
effect of abovesaid reduction of optimal synchronisation, resulting in higher efficiency
of the foil in the turbulent stream. It was assumed that, for high Reynolds number
regimes, resetting an optimal synchronisation of wing motion and LEVS by suitably
varying the trajectory parameters could lead to an efficiency level even higher than that
of 40 % obtained for the considered turbulent regime. However, Kinsey and Dumas
later showed that high power generation efficiency at high Reynolds numbers does not
necessarily rely on the occurrence of LEVS [27]. The detailed flow analyses of the 3D
flow effects at realistic Reynolds numbers are still missing for this promising device,
and will be addressed in this thesis.

1.3 Computational fluid dynamics for horizontal–

axis wind turbines
Wind turbine is defined as a device which harnesses the kinetic energy of the wind and
converts it into mechanical work, which can then be used for electricity production.
HAWT represent the most common design of the wind turbines. The production of
the HAWT power mainly depends on the interaction between the wind turbine rotor
and the wind. The aerodynamic blade forces, generated by the wind, determine the
main characteristics of the wind turbine performance, such as the power output and
loads [28].

In this work the aerodynamics of two HAWT rotors have been considered. Firstly,
NREL Phase VI rotor is used for the validation of newly developed 3D predictive
capabilities of CFD Optimised Structured multi–block Algorithm (COSA), in straight
and yawed wind conditions, and also to explore how well the physics of this flow
problem can be captured with a NS technology. NREL Phase VI experiment [9] features
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many accurate and reliable measurements, and therefore represents a very suitable test
case for CFD code validation. Secondly, the NREL 5–MW baseline turbine is herein
used for the aerodynamic analyses in straight and yawed wind conditions. NREL
5–MW baseline fluid flow problem also serves the purpose of highlighting the high
computational efficiency of the newly developed 3D HB solver in this research work.

Several other valuable experiments of the HAWT rotor aerodynamics have been
conducted. One of the well known configurations is the MEXICO (Model Experi-
ments in Controlled Conditions) experiment [29], which was designed to compliment
the NREL Phase VI experiment [9]. However, for the purpose of this thesis only one
validation test campaign was selected, which was the NREL Phase VI experiment.

1.3.1 NREL Phase VI wind turbine
NREL Phase VI wind turbine [9] has been developed in order to quantify the aero-
dynamic behaviour and the flow three–dimensionality of the full scale HAWTs. The
turbine was designed using low–fidelity design codes, which rely on aerodynamic forces
based on the steady 2D wind tunnel airfoil test results. The experiment has highlighted
that very strong 3D effects exist in the wind turbine field operation. The experiment
has been conducted by the National Renewable Energy Laboratory (NREL) at the
National Wind Technology Center (NWTC) near Golden, Colorado, USA. The wind
tunnel used was that located at the NASA Ames Research Center at Moffett Field, Cal-
ifornia, and has the size of 24.4m×36.6m. The experiments included both upwind and
downwind configurations, as well as rigid and teetered. The test matrix also included
various cone, blade tip pitch and yaw angles. The turbine was studied at rotating and
parked conditions and for the different blade tip configurations. Many accurate and
reliable quantitative aerodynamic and structural measurements on a Phase VI wind
turbine have been acquired, therefore, these data are excellent for validation of CFD
models for novel designs and analyses of advanced wind energy devices. For this thesis
several measurements where the turbine was yawed to various angles are of particular
importance.

The set of Phase VI experimental data has been used by many CFD studies, partic-
ularly for the validation purposes. The test cases with the rotating blade at 72 RPM
are usually considered at various wind velocities. One of the first numerical studies
on Phase VI HAWT was a blind code study organised by the NREL [30], which in-
cluded BEM models, prescribed wake models, free wake models and NS codes. The
study has highlighted that the majority of the predicted data deviated quite a lot from
the experimental data. The results suggested that a lack of high–fidelity models for
accurately predicting the aerodynamic behaviour of the flow on the HAWT blades ex-
ists. According to the NREL blind code comparison, Sørensen et al.have obtained one
of the best overall agreement with the experimental data [31]. They have considered
five operating conditions in straight wind, with the tip pitch angle 3◦, where only the
rotor has been modelled. For their work, they have used EllipSys3D CFD code, which
is a multiblock finite volume discretization of the incompressible Reynolds–Averaged
Navier–Stokes (RANS) equations and the k−ω shear stress transport (SST) turbulence
model. The agreement between the computed results and experimental data is quite
good for most of the operating conditions, except for the operating point at the 10m/s,
where the flow behaviour was very sensitive to the employed turbulence model.

Later on, Duque et al. [32] obtained a good agreement between the numerical and
experimental data for the straight wind flow. They used compressible overset RANS
code OVERFLOW–D2, and the 1–equation Baldwin–Barth turbulence model. They
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also compared RANS CFD calculations with a vortex lattice code CAMRAD II, and
came to the conclusion that overall, the CFD calculations show much better agreement
with the experimental data. The OVERFLOW–D2 is capable of predicting the stalled
flow conditions, whereas the CAMRAD II code fails to accurately predict the stalled
flow conditions.

Le Pape et al. [33] have conducted their work on Phase VI, as a continuation of
previous numerical studies of Sørensen et al. and Duque et al. [31, 32]. They have
used the compressible RANS solver ELSA with the k− ω SST turbulence model. The
detailed flow analysis of the 3D and unsteady flow effects have been conducted for the
zero–yaw configuration, for various numbers of operating conditions. The obtained
results were in a reasonable agreement with the experimental data, however, it was
suggested that the usage of the low speed preconditioning will most likely improve
the results for a compressible NS solver. Later on Le Pape et al. [33] conducted the
calculations for both the straight and 10◦ yawed wind flow, with the usage of the low
speed preconditioning [34]. This study has shown that a low speed preconditioner
indeed improves the accuracy of the results at low wind speeds and allows better
prediction of the stall point.

Due to the popularity of this test case for code validation, and further aerodynamic
analyses, more recent studies have followed. Gómez–Iradi et al. [35] performed analyses
using the compressible NS solver with the k − ω SST turbulence model. Overall good
agreement between the numerical and experimental data has been obtained. This
study has also taken into the account the effect of the wind–tunnel wall effects on
the blade aerodynamics, and investigated the blade/tower interaction. Yu et al. [36]
conducted a study on the overpredicted lift and stall delay of straight wind calculation,
using the incompressible RANS solver with the k − ω SST turbulence model with
transition correction. Stall delay is a condition, where the AoA at which stall occurs
is greater for a rotating blade compared to static airfoil. The study has confirmed
there is a stall delay phenomenon in the inboard part of the turbine blade. The NS
results were compared with the experimental data and the lifting surface method with
and without Du–Selig stall delay model. The NS results for low–speeds are in good
agreement with the experimental data, however, at relatively high wind speed (10m/s),
when the massive flow separation occurs, some discrepancy between the numerical and
experimental data exists. Lifting surface method with Du–Selig stall delay model
agrees well with the experimental data, whereas, without Du–Selig model it fails to
accurately predict wind turbine performance. Another study, performed by Moshfeghi
et al. [37], investigated the effects of near–wall grid spacing and aerodynamic behaviour
of Phase VI blade using Ansys–CFX11 and the k−ω SST turbulence model. The study
reports that in order to obtain grid–independent solution, presently used 5 million
cell grids, would require more refinement in both chordwise and spanwise directions.
Furthermore, the authors show there is a significant dependence of computed forces on
near–wall spacing. Moreover, the results indicate that the k−ω SST turbulence model
mispredicts separation point, and over predicts separation. Yu et al. [38] examined
the rotor under the yawed flow conditions for two yaw angles of 30◦ and 60◦ for three
wind speeds of 7, 10 and 15m/s. The unstructured incompressible RANS solver with
the k − ω SST and correlation–based transition turbulence model has been used. The
study reports that the blade aerodynamic loading is significantly reduced under the
yawed wind flow. An overall good agreement between the numerical and experimental
data for all wind speeds has been observed.
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1.3.2 NREL 5–MW baseline wind turbine
NREL offshore 5–MW baseline wind turbine, is a virtual model of a modern commercial
three–bladed upwind variable–speed variable blade–pitch–to–feather–controlled tur-
bine, developed at NREL [39]. The initial purpose of the turbine has been to establish
the reference specifications for a number of research projects supported by the U.S.
DOE’s Wind & Hydropower Technologies Program [39]. However, since the NREL
offshore 5–MW baseline wind turbine has been adopted as a reference model by Union
UpWind research program and the IEA Wind Annex XXIII Subtask 2 Offshore Code
Comparison Collaboration (OC3), the model has been used as a reference by many
research teams worldwide, for various different purposes. The aim of this model is to
standardise onshore and offshore multimegawatt turbine specifications, and to quantify
the benefits of advanced onshore and offshore wind energy technologies.

Sørensen and Johansen [40] have performed the NREL 5–MW baseline rotor calcu-
lations in zero yaw wind for the uniform inflow and atmospheric boundary layer cases.
The purpose of the study was to investigate the unsteady effects due to the severe
vertical shear, and to compare the agreement with the BEM code. The calculations
were performed using an incompressible NS CFD code EllipSys3D using the k−ω SST
turbulence model. Later on, Chow and van Dam [41] have investigated the aerody-
namic characteristics of the NREL 5–MW baseline rotor, using the compressible NS
code OVERFLOW2 featuring the k − ω SST turbulence model. The study reports
that the significant radial flow and inboard blade separation exist, and can be limited
using various passive geometric modifications, resulting in improved power prediction.
Additionally, it was concluded that the increasing inboard blade twist does not have
a beneficial effect on power production. This study also compared the CFD results
obtained by the incompressible CFD code EllipSys3D, reported by Sørensen and Jo-
hansen in [40], and BEM predictions. The two CFD results at low wind velocities
are in excellent agreement. However, once the rated power is reached, OVERFLOW2
predicts slightly higher power with respect to the EllipSys3D solutions. Before the
rated speed, BEM predictions match well with both CFD codes. However, after the
rated speed is achieved, the BEM analyses significantly overpredict the result of both
CFD codes. Chow and van Dam’s study was further extended in [42], where a com-
prehensive near–body grid independence study has been performed. It was found that
the solution strongly depends on the near–body wake grid refinement, as the rapid
diffusion of the wake in case of insufficient refinement contributes to the overpredicted
torque and thrust. Chow and van Dam have performed another study on the NREL
5–MW baseline rotor [43], where they investigated the impact of the blade twist and
blunt trailing–edge in the inboard region of the blade on the aerodynamic performance.
They concluded that decreasing the sectional twist angle, which increases the sectional
AoA, causes deeper stall of the inboard region of the blade, keeps the rotor torque
constant and increases the thrust. Whereas, when increasing the sectional twist angle,
the rotor thrust drops at faster pace than the torque, which could potentially lead to a
more optimal designs in terms of the torque versus thrust ratio. Furthermore, it is also
reported that the twist distribution of the NREL 5–MW baseline rotor is already nearly
optimal. Moreover, the study pointed out that the blunt trailing edge modifications in
the inboard part of the blade have a positive effect on the turbine performance, and
completely change the flow behaviour. Chow and van Dam also pointed out that only
high–fidelity 3D simulations are able to accurately predict the flow field of the modern
rotor designs, due to their geometric complexity.

Troldborg et al. [44] investigated the wake of the NREL 5–MW baseline rotor, using
the incompressible EllipSys3D NS code, either using the k−ω SST or the DES version
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of k − ω SST turbulence model by Strelets. The analyses included fully resolved rotor
simulations, the actuator disc model and the actuator line model, and featured uni-
form or turbulent inflow. RANS simulations in uniform inflow found good resemblance
between the actuator disc and line methods, whereas, fully resolved simulation pre-
dicted stronger vorticity generated by the tip vortices. Switching from RANS to DES
in uniform inflow strongly affected the wake dynamics predicted by the fully resolved
simulation, but had limited effect on the actuator disc and line methods. The dif-
ferences between the actuator line model and fully resolved simulation became much
smaller when using turbulent inflow, therefore, an actuator disc or line representa-
tion of the rotor may be sufficient when simulating wind turbines in the atmospheric
boundary layer. Imiela et al. [45] also investigated the NREL 5–MW baseline HAWT
within the multidisciplinary design and analysis framework for wind turbines (MER-
Wind) project. They performed various steady and unsteady aerodynamic analyses
of the NREL 5–MW baseline turbine at rated wind speed for both rotor calculations
and the complete turbine calculations. For all aerodynamic analyses the compressible
NS code TAU has been used, which uses the k − ω SST turbulence model. The study
reports that for rotor only configuration, the average torque of logarithmic boundary
layer profile inflow was about 15% lower than in uniform inflow conditions. It was also
found that the mean torque is only slightly lower in the complete wind turbine sim-
ulation with respect to the rotor only configuration, for both inflow conditions. This
project involved also the fluid–structure interaction simulations using the multi–body
simulation software SIMPACK and TAU CFD code.

As per above it may be concluded that none of the studies on the NREL 5–MW
baseline HAWT are based on yawed aerodynamics. Hence, this will be addressed
herein.

1.4 Harmonic balance method in computational fluid

dynamics
The harmonic balance (HB) NS technology for the solution of unsteady periodic flows [46]
is one of the most promising technologies of this type. This method has been success-
fully applied to the prediction of the periodic flow associated with the flutter and forced
response of turbomachinery blades [46, 47, 48], and various vibratory motion modes of
aircraft configurations [49, 50, 51]. For this type of application, the use of the HB NS
approach for the calculation of periodic flows can lead to runtime reductions varying
between one and two orders of magnitude with respect to conventional time–domain
(TD) NS analyses.

The 2D investigations into the use of the HB NS technology [46] for reducing the
analysis runtime of the periodic flow field past HAWT rotor blade sections have already
reported significant improvements in terms of computational speedup. The aerody-
namic analysis study on HAWT airfoils, reported in [52], was based on the compress-
ible laminar NS equations and used low–speed preconditioning to handle the numerical
difficulties resulting from the typically low speeds of wind turbine flows. More realis-
tic turbulent flow demonstrations of this method for HAWT turbulent aerodynamics
have followed, including the study on the unsteady aerodynamics of a pitching S809
airfoil [53], making use of the one–equation Spalart–Allmaras turbulence model, that
in [54], which is also studying the unsteady aerodynamics of a pitching S809 airfoil
and using a zonal transition model with the Spalart–Allmaras model. The studies [55]
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and [56] are both using airfoils which construct NREL 5–MW wind turbine and mak-
ing use of Menter’s two–equation SST turbulence model. These studies indicate a
growth in the use of this high–fidelity approach for the analysis of HAWT periodic
aerodynamics.

The author of the following studies [53] and [54] has also investigated the flutter
phenomena for the 1.5 MW WindPACT rotor blade [57]. The aeroelastic model used
includes the HB method and a fully turbulent aerodynamic model. The study con-
cluded that HB method can be successfully used for the prediction of wind turbine
blade flutter.

In addition to the HB method for the solution of unsteady periodic flows [46],
several other frequency–domain methods exist, which exhibit resemblance to the HB
approach of [46]. One of the recent studies on the unsteady aerodynamics of HAWT
has been performed on the rotor–tower interactions of the DTU 10 MW reference
wind turbine [58], making use of the Non–Linear Harmonic (NLH) method [59]. The
important difference between the HB [46] and NLH [59] methods is that the calculation
of the zeroth harmonic (mean flow) is decoupled from the first harmonic (unsteady
flow component) in NLH case. To date it is still unclear whether the HB and NLH
have the same predictive capabilities. The authors of [58] concluded that the NLH
method is capable of capturing the complex unsteady aerodynamics of the rotor–tower
interaction, and is about 10 times faster than the time–dependent RANS approach for
comparable accuracy. Several other examples of the application of the NLH and other
promising frequency–domain technologies to periodic flows of engineering interest exist.

As per above it may be concluded that most of the studies on HAWTs aerodynamics
using the HB approach of [46] so far were based mainly on 2D analyses, with the excep-
tion of [57] which investigated the flutter phenomena of the wind turbine rotor blade.
More studies on realistic 3D turbulent analyses of HAWTs unsteady aerodynamics are
still missing in the literature and will be addressed herein.

1.5 Motivation, aims and objectives
The aerodynamic design of renewable energy devices, such as oscillating wings and
HAWTs represents a very challenging, complex and multidisciplinary task. The con-
sideration of a large number of operating regimes due to the extreme variability of
the environmental conditions needs to be taken into the account. The oscillating wing
devices are presently installed either on the shallow river– or sea–beds and are used
as a hydro or as a tidal power generating machines. The environmental variability of
water flow or tides can vary on the time scales ranging from hours (e.g. tide changes),
months to years (e.g. seasonal tide or river flow variations) due to a number of factors.
The variability of the wind is even more complex, as it can range on the time scales
from seconds (e.g. wind gusts) to months (e.g. seasonal wind variations). Several oper-
ating unsteady regimes for both devices, however, are predominantly periodic. In the
case of utility–scale HAWTs, periodic fluid–induced excitations of the rotor blades and
drivetrain may result from the blades rotating a) through wind stratifications associ-
ated with the atmospheric boundary layer, b) through the variable pressure field due
to the presence of the tower (multimegawatt turbines typically feature upwind rotors),
c) through portions of the wake shed by an upstream turbine in the wind farm envi-
ronment, d) in yawed wind, a condition occurring when the freestream wind velocity is
not orthogonal to the turbine rotor [60], and e) in a region of nonuniform wind result-
ing from the combination of two or more of the kind of phenomena mentioned above.
With regard to yaw misalignments, utility–scale HAWTs typically feature yaw control
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systems that monitor the direction of the wind and rotate the entire nacelle towards
the wind [28]. However, yaw actuators adjust the nacelle position only after a yaw error
has been detected for a relatively long time–interval, usually 10 minutes. Therefore, at
sites with frequent variations of the wind direction, blade and drivetrain fatigue due to
yawed wind can be significant. HAWT rotors experience constant periodic excitations
when the turbines are placed at inclined sites, such as mountainous terrains. Here
wind speeds are often higher than on flat terrain due to the acceleration induced by
the surface geometry, however the entire wind stream is inclined on the ground, and
this yields periodic rotor flows similar to those induced by yaw errors [61]. In all these
cases, the fundamental frequency of the periodic excitation is a multiple of the rotor
speed.

The comments above highlight the necessity of accurately predicting periodic flows
when designing both oscillating wing devices and HAWTs. This is of crucial importance
for reliably predicting the actual amount of harvested energy and the fatigue–inducing
loads which may reduce machine life and/or increase its operation and maintenance
costs.

The concept of oscillating wing device is relatively new, and due to the extremely
complex flowfield of such device, most of the studies in this field are already carried out
using high–fidelity numerical methods such as NS CFD, or directly the experimental
studies. However, as previously stated in the subsection 1.2, most of the studies so
far are based solely on 2D fully laminar or fully turbulent analyses, and do not take
into the account the impact the flow three–dimensionality. The significant uncertainty
on the impact of 3D flow features on the power generation efficiency of future real
installations still exists, particularly at the expectedly high Reynolds numbers. The
detailed study of the hydrodynamics of AR 10 oscillating wings with and without
endplates at a realistic Reynolds number of 1.5 million, is a challenge that has not been
previously addressed. The investigation considers two operating regimes both close–to–
optimal wing motion parameters, based on reported 2D CFD analyses [27]. The study
aims at assessing the level and mechanisms of the power generation efficiency loss,
estimating the efficiency improvements due to the use of endplates for the considered
aspect ratio, and highlighting a new route to further efficiency improvement of a wing
with endplates. The investigation is based on 3D time–dependent RANS simulations
based on a 30.7 million cell–grid and using the Menter’s SST turbulence model. To
the best of the authors’ knowledge, a detailed study of the comparative analyses of the
infinite and the two AR 10 finite span oscillating wings for high–extraction efficiency
regimes, has not yet been published. This work presents important observations and
guidelines for further design and development of such devices. It uses much finer grids
than other state–of–the–art computational works and it also includes careful analysis
of grid–refinement–induced uncertainty.

HAWT design methods still rely on low–fidelity and/or semi–empirical models,
such as the BEMT and dynamic stall models [11, 12, 13]. The main advantage of these
techniques is their extremely high computational speed, whereas, the main drawback
is their reliance on the existence and availability of high–quality airfoil data, hindering
their applicability to the design of radically new turbine configurations. Moreover,
these low–fidelity methods model strongly unsteady 3D flow features, such as HAWT
yawed flows and the radial pumping effect, occurring in the presence of stalled flow [62]
with a high degree of uncertainty, even when detailed airfoil data are available. A wider
discussion on the predictive reliability of low–fidelity tools for the wind turbine design
can be found in [55]. The use of high–fidelity computational aerodynamics tools such
as NS CFD codes has the potential of greatly reducing the uncertainty associated with
the flow predictions of low–fidelity models. Several remarkable examples of the predic-
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tive capabilities of NS CFD for HAWT yawed flows have been published, including the
articles [34, 63, 64, 65]. The article [63] also includes comparisons of CFD NS results, ex-
perimental data and results obtained with low–fidelity codes, including a BEMT code.
The report shows that the agreement between NS CFD analysis and measured data is
substantially better than that between low–fidelity analyses and measured data, as ex-
pected. The prediction of the yawed wind–induced periodic loads acting on the NREL
5–MW baseline turbine blade has previously not been addressed. The investigation,
which is based on comparative TD and HB RANS simulations based on a 2.7 million
cell–grid per blade sector and using the Menter’s SST turbulence model, provides and
insight into the flow patterns caused by the yaw misalignment, and more importantly,
it highlights the potential of the HB method for the solution of the HAWT periodic
flows [46]. One of the main drawbacks of TD NS simulations is their high computa-
tional cost. A fully time–resolved TD NS simulation of HAWT periodic flows requires
a long runtime as several rotor revolutions have to be simulated before the periodic
state of interest is achieved. This runtime could be significantly reduced by using a
frequency–domain HB formulation and solution of the governing unsteady equations.
This work assesses quantitative measures of the actual benefits of using realistic tur-
bulent 3D HB NS solvers for HAWT design. More precisely, the reduction in analysis
runtime for HAWT periodic flows using a 3D turbulent HB NS code, while still main-
taining a prediction accuracy comparable to that of the corresponding TD code, were
assessed. To the best of the author’s knowledge, this work is the first reported compu-
tational study of the 3D yawed flow unsteady HAWT aerodynamics, by means of the
HB method [46].

Starting point of the numerical tools to achieve the aims of presented thesis, was the
2D version of COSA, and corresponding 2D pre– and post–processing tools, developed
at School of Engineering of Glasgow University and Engineering Department of Lan-
caster University. As a necessary step for this PhD research, the following algorithmic
developments had to be performed:

• Optimisation and further validation of the existing 2D COSA solvers.

• Extension from 2D to 3D of all existing serial and parallel COSA solvers.

• Extension from 2D to 3D of all existing pre– and post–processing tools.

• Implementation RANS and SST equations in non–inertial frame for the external
aerodynamics rotational applications.

• Implementation of steady and multi–frequency periodicity boundary conditions.

• Parallelization of newly developed 3D capabilities.

• Standardisation of the I/O of COSA by the means of standard portable CFD
formats such as CGNS based on HDF5 and Tecplot 360’s binary file format and
the newer subzone load format, which was crucial for the compatibility reasons
with the state–of–the–art commercial grid generators and post–processing tools.

The aims of this research work are summarised below:

• Detailed numerical investigations into the impact of flow three–dimensionality
on the power generation efficiency for the two realistic oscillating wing configu-
rations.

• Investigation of the yawed wind–induced periodic loads acting on the NREL 5–
MW baseline turbine blade.
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• Application of the HBmethod to complex 3D yawed flow aerodynamics of HAWTs.

• Thorough assessment of the computational efficiency of the 3D turbulent RANS
SST HB solver, by comparing the runtimes of TD and HB turbulent analyses of
a NREL 5–MW baseline turbine yawed wind flows.

• Maintenance of the highly efficient parallel environment of extended and newly
developed parts of the 3D solvers.

1.6 Thesis outline
The thesis has the following structure:

Chapter 1 summarises past studies on CFD analyses of wind turbines and oscillating
wing devices, as well as harmonic balance method for Navier Stokes CFD. The aims
and objectives of the thesis are outlined.

Chapter 2 presents the governing equations in inertial and non–inertial frame of
reference. It explains the turbulence closure problem, the Reynolds–Favre averaging
approach of the turbulence time–scales, and the Boussinesq approximation. Boundary
conditions used in this work are also presented.

Chapter 3 describes the spatial and temporal discretization, as well as the inte-
gration approach of the steady, time–domain and harmonic balance solvers. A broad
description of a multi–block approach and the steady and multi–frequency periodicity
cut boundary conditions is given. Various convergence acceleration techniques used in
this work are also explained.

Chapter 4 details massive parallelism, based on MPI standard, used in this work.
The definitions of parallelism, high performance computing (HPC), a brief descrip-
tion of different types of HPC machines, and parallel programming approaches are all
reported.

Chapter 5 presents numerical validation of newly developed 3D solvers. Firstly, pre-
liminary validation cases, delta wing, ONERA M6 wing, and S809 airfoil are reported.
Secondly, the main validation test cases, the H–Darrieus vertical–axis wind turbine,
oscillating wing, and the upwind configuration of the NREL Phase VI wind turbine
are provided. Numerical results, have either been compared with the experimental
data, if those existed, or several other state–of–the–art CFD codes.

Chapter 6 presents main results of the numerical analyses undertaken in this re-
search work. It is organised into two separate sections, one is focusing on the analyses
of the oscillating wing devices, and the other reports the analyses of the NREL 5–MW
baseline HAWT. In both sections the fundamentals of each device are first explained.

The analyses of oscillating wing devices are based on two considered operating
regimes: case A, which is characterised by a high efficiency of energy extraction due
to the occurrence of LEVS; and case B, characterised by high efficiency of the energy
extraction in absence of LEVS. First the 2D grid–independency study was performed
for both regimes. Second, a detailed numerical flow investigation, based on the com-
parative performance assessment of an infinite wing and two aspect ratio 10 wings
featuring different wing end geometry, either sharp tips or endplates was conducted.
Comparative analysis between the two considered operating regimes are also reported.

The section on HAWTs, contains the yawed flow analysis of the 3D turbulent pe-
riodic flow past the rotating blade of the NREL 5–MW baseline HAWT. A detailed
aerodynamic discussion of this flow problem is provided. Furthermore, the time refine-
ment analyses with the TD solver and spectral refinement analyses with the HB solver
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were performed to determine the speed–up of the HB simulation, yielding a solution
accuracy comparable to that of the fully resolved TD simulation.

Chapter 7 summarises the main conclusions and observations of the presented re-
search, alongside some perspectives for the future work.



Chapter 2

Governing equations

This chapter outlines the derivation of the Arbitrary Lagrangian–Eulerian (ALE) form
of the steady, TD and frequency–domain HB RANS equations and the k − ω SST
turbulence model, in a Cartesian coordinate system, for both inertial and non–inertial
frames of reference. The presented equations are the basis of the finite volume algorithm
of the newly developed solvers of COSA. The derivation is a multi–stage process, in
which the first step is the derivation of the NS equations from general conservation
laws of fluid dynamics. Furthermore, the turbulence closure problem, Reynolds–Favre
averaging approach are explained. Boussinesq approximation is also introduced, which
is required to define the Reynolds stress tensor in the context of the adopted linear
eddy viscosity approach. To complete the set of RANS equations, Menter’s k−ω SST
turbulence model is described. Once all approximations used to define the complete set
of governing equations have been introduced, the unsteady RANS and SST equations
are expressed in the differential conservative form. The following sections introduce
the derivation of the ALE form of steady and TD RANS and SST equations for inertial
frame. The same derivation is also provided for a non–inertial frame of reference. Next,
the HB formulation of the RANS and SST equations for both frames of reference is
introduced. The chapter is concluded by the description of the boundary conditions,
which are the fundamental part of any numerical simulation.

2.1 Conservation laws
A conservation law of a particular quantity of an isolated physical system states that
its variation within an arbitrary volume can be expressed as a balance between the
various processes tending to increase of decrease it.

The derivation of the equations governing the fluid motion is based on the fact that
the dynamic behaviour of a fluid is defined by the conservation of the following three
fundamental physical quantities [66]:

• the conservation of mass (continuity equation),

• the conservation of momentum (Newton’s 2nd Law),

• the conservation of energy (1st Law of Thermodynamics).

Collecting all equations obtained by enforcing these conservational laws yields a coupled
system of equations, the so–called NS equations. Strictly speaking, the expression NS

17
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equations refers only to the momentum conservation law equations; however, in the
recent years, the expression has been frequently used to indicate the complete system
of conservational laws, including continuity and energy equation. As a result, the
expression "NS equations" is now used to denote all three conservation laws in most
cases.

In fluid flows the most convenient and frequently used method is to consider the
flow within an arbitrary spatial region, called the control volume C . This model
enables one to focus solely on the fluid in the finite region enclosed by the volume
itself [66, 67]. By applying the fundamental physical principles to a finite control
volume, the integral form of the NS equations is directly obtained. This formulation can
then be manipulated and transformed into differential form. As sketched in Fig. 2.1,

Figure 2.1: Finite control volume.

a non–deforming control volume C may be fixed in space and time with the fluid
moving trough it, called flux, bounded by the closed surface boundary called control
surface S . We also introduce dC which is a control volume element, dS representing
a control surface element and its associated outward pointing unit normal vector n .
The streamlines in Fig. 2.1 represent the general flow field.

The flux can generally be decomposed into convective and diffusive part. The first
part is due to the convective transport of the fluid, while the second part is due to
the molecular motion, which can be present even when the fluid is at rest. The second
contribution is of a diffusive nature, due to differences in the intensity of molecular
motion fluid tends toward equilibrium and uniformity. This part of contribution to the
total flux is proportional to the gradient of the considered quantity as it has to vanish
as equilibrium is established [66, 68].

Conservation of mass is one of the fundamental concepts of classical physics and it
states that mass can be neither created nor destroyed but can only be moved in space.
For the finite control volume which is fixed in space and time C, as sketched in Fig. 2.1,
conservation of mass states that the time rate of change of the total mass in the control
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volume equals the net mass flux through the control surface S of the control volume:

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0. (2.1)

The symbol ρ denotes the fluid density and ui, i = 1, 3 denotes the i− th component of
the flow velocity vector u and xi i = 1, 3 denotes the i− th component of the position
vector x . The position vector x is a standard Cartesian vector and its components
are the coordinates x, y and z. In Eqn. (2.1) and throughout the thesis the Einstein
summation convention is used, which implies that when the same index in a term
appears twice, the summation with respect to that index over its range is performed.

Another fundamental principle of classical physics is Newton’s second law. The law
states that the time rate change of momentum of a fluid particle equals the sum of the
forces acting on that particle. In Cartesian coordinates it can be written as:

∂

∂t
(ρui) + ∂

∂xj
(ρujui) = − ∂p

∂xi
+ ∂τji
∂xj

, (2.2)

where p represents the pressure, and τ is the viscous stress tensor, which is defined as:

τ =

 τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 . (2.3)

Normal stresses are defined by the components τxx, τyy and τzz, whereas the rest of
the components represent shear stresses. Laminar flows only include molecular viscous
stress tensor τ = τM , whereas, turbulent flows also include Reynolds stress tensor,
which will be defined later on. The components of the molecular viscous stress tensor
for a Newtonian fluid are defined by the relation:

τMij = 2µ
[
Sij −

1
3
∂uk
∂xk

δij

]
, (2.4)

Sij = 1
2

[
∂ui
∂xj

+ ∂uj
∂xi

]
, (2.5)

where µ is the dynamic viscosity, Sij stands for the strain rate tensor, and δij is the
Kronecker delta function.

The dynamic viscosity µ is a function of the absolute temperature T of an ideal gas
and is strongly influenced by the temperature. For gases, it is frequently computed by
the Sutherland’s Law:

µ = µref

(
T

Tref

)3/2
Tref + TS
T + TS

, (2.6)

where Tref and µref represent the reference temperature and the reference dynamic
viscosity, respectively and TS is the Sutherland temperature. Sutherland’s Law coeffi-
cients for air in SI units are the following:

µref = 1.716× 10−5 kgm−1s−1, Tref = 273.15 K, TS = 110.4 K.

Conservation of energy is another fundamental concept of classical physics and it
states that energy can be neither created nor destroyed, it can only be transformed
from one form to another. The energy conservation equation in Cartesian coordinates
reads:

∂

∂t
ρE + ∂

∂xj
(ρHuj) = − ∂qj

∂xj
+ ∂

∂xj
(τijui). (2.7)
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The total energy E per unit mass is defined as:

E = e+ uiui
2 , (2.8)

where e denotes the internal energy per unit mass, and the term uiui
2 is the kinetic

energy per unit mass. The thermal heat flux q , can be expressed by the generalised
Fick’s gradient law, q = −kT∇T , where kT represents the thermal conductivity.
Generally, in CFD most flows can be considered as an isentropic perfect gas, therefore,
the equation of state can be written in the following form:

p = ρRT, (2.9)

where R denotes the specific gas constant. A calorically perfect gas, has the internal
energy e and the static enthalpy h that can be related to the temperature by:

e = cvT ;h = cpT. (2.10)

cv and cp represent specific heat under constant volume and at constant pressure,
respectively. Introducing Mayer’s relation for the calorically perfect gas:

R = cp − cv, (2.11)

and combining perfect gas relations, the expression for the static enthalpy becomes:

h = cpT = e+ P

ρ
. (2.12)

Hence, the total energy E can be expressed as the function of total enthalpy H :

H = h+ u2

2 = E + p

ρ
. (2.13)

2.2 Turbulence closure
Turbulence is the state of fluid motion characterised by random three dimensional and
time dependent fluctuations of the various flow properties around their mean values.
It is a fundamental property of fluid mechanics, and still represents one of the most
challenging problems in this field. Majority of flows occurring in nature do not exhibit
laminar behaviour, but are rather transitional or turbulent. This is also true for the
majority of engineering applications.

To fully describe the nature of the turbulent flow, an enormous amount of infor-
mation is needed. To reduce the complexity of the system of governing equations,
different approximations are available. This work uses RANS approximation, where
only the largest eddies are directly resolved, and the rest of the eddies are modelled.
In RANS modelling approach the time–dependent NS equations are averaged on the
time– and length–scales of turbulence. The approach differs from NS equations mostly
because of the presence of the Reynolds stresses, accounting in an averaged manner for
the effects of turbulence. The RANS equations are open, because additional equations
are needed to determine Reynolds stresses. To close the RANS equations, a variety
of turbulence models of various complexities have been developed, and the research in
this area is still ongoing. In this work, the Menter’s k − ω SST model is used [69, 70],
which features two additional transport equations, one for the turbulent kinetic energy
k , and one for the specific dissipation rate ω.
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2.2.1 Reynolds–Favre averaging
An important concept to separate turbulent fluctuations from the mean flow solution
was presented by Reynolds in 1895 [71] and is called Reynolds averaging [66, 72]. The
main idea of this approach is to solve governing equations only for the mean values of
the turbulent flow field, and to avoid the costly temporal– and space–solution of its
fluctuating components.

In compressible flows, where the density is not constant, it is advisable to use
an alternative time averaging procedure called Reynolds–Favre–averaging. Reynolds–
Favre averaging approach, which has been used in this work, uses Reynolds averaging
for density and pressure, and Favre averaging for all other variables. Favre–averaging
is a mass weighted time averaging procedure, by which the additional correlations
involving density fluctuations can be avoided.

2.2.2 Boussinesq approximation
Bossinesq introduced an important approximation to turbulence modelling [66, 72],
which is based on the assumption that the momentum transfer in turbulent flow caused
by turbulent eddies, can be modelled making use of an eddy viscosity. His approxi-
mation assumes that, as in the laminar flow, also the turbulent shear stress depends
linearly on the mean strain rate. According to Bossinesq approximation the Reynolds
stress tensor τR can be written as:

τRij = 2µT (S̃ij −
1
3
∂ũk
∂xk

δij)−
2
3ρk̃δij, (2.14)

S̃ij = 1
2[∂ũi
∂xj

+ ∂ũj
∂xi

], (2.15)

where S̃ij denotes the Reynolds strain rate tensor, µT is the turbulent or eddy viscosity
and the symbols − and˜ refer to the Reynolds and Favre averaging operators respec-
tively. This tensor depends primarily on the product of the strain rate tensor and the
eddy viscosity.

The viscous stress tensor τ is thus given by the sum of the molecular stress tensor
defined by Eqn. (2.4) and the Reynolds stress tensor. This can be expressed as:

τ = τM + τR. (2.16)

2.2.3 k − ω SST turbulence closure
Menter’s k − ω SST turbulence model [69, 70] is a combination of the standard k − ε
model [73] and Wilcox’s k − ω model [72, 74]. More specifically, the k − ω model is
employed to accurately resolve the laminar sublayer of the turbulent boundary layer,
as it does not involve damping functions, and for similar accuracy leads to significantly
higher numerical stability in comparison with k − ε model. The k − ω is also used
in the logarithmic part of the boundary layer as it performs significantly better under
adverse pressure–gradient conditions than the k− ε model. The k− ε model is instead
employed in the wake and farfield regions, as the results of this model do not have
a strong sensitivity to the freestream value of the second turbulent variable (ε or ω,
when the k − ε model is rewritten in terms of ω to obtain the SST formulation). This
is a remarkable advantage of the k − ε model over the k − ω model, the solution of
which instead depends significantly on the value of ω outside the shear layer. Given
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the difficulty of properly choosing freestream values of ω, a fairly low sensitivity of the
turbulent characteristics on such freestream value is a desirable feature of two–equation
models. Furthermore, k − ε is also used in free shear layers, as it performs well when
pressure gradients are small [75].

The transport equations for the turbulent kinetic energy k and the specific dissipa-
tion rate ω are respectively:

∂

∂t
(ρk) + ∂

∂xj
(ρujk) = τRij

∂ui
∂xj
− β∗ρωk + ∂

∂xj

[
(µ+ σkµT ) ∂k

∂xj

]
, (2.17)

∂

∂t
(ρω) + ∂

∂xj
(ρujω) =γρ

µT
τRij
∂ui
∂xj
− βρω2 + ∂

∂xj

[
(µ+ σωµT ) ∂ω

∂xj

]

+ 2ρ(1− F1)σω2

1
ω

∂k

∂xj

∂ω

∂xj
.

(2.18)

The terms τRij ∂ui∂xj
in Eqn. (2.17) and γρ

µT
τRij

∂ui
∂xj

in Eqn. (2.18) lead to the eddy viscosity
production. The terms β∗ρωk in Eqn. (2.17) and βρω2 in Eqn. (2.18) represent the
dissipation of the same variable. The transport equation of ω contains also the term
2ρ(1 − F1)σω2

1
ω
∂k
∂xj

∂ω
∂xj

that describes the conservative diffusion. These terms are so
called turbulent source terms. The turbulent source terms can be rewritten based on
their representation. Production terms of k and ω can be written as:

Pk = τRij
∂ui
∂xj

, Pω = γρ

µT
τRij
∂ui
∂xj

, (2.19)

or in the alternative form:

Pk = µTPd −
2
3
∂ui
∂xj

ρk, Pω = γρPd −
γρ

µT

2
3
∂ui
∂xj

ρk, Pd = 2(Sij −
1
3
∂ui
∂xj

)∂ui
∂xj

. (2.20)

Destruction terms of k and ω read:

Dk = β∗ρωk, Dω = βρω2. (2.21)

The cross–diffusion term CDω of the transport equation of ω reads:

CDω = 2ρ(1− F1)σω2

1
ω

∂k

∂xj

∂ω

∂xj
. (2.22)

It can be shown that the Pd term is always positive. Thus the k transport equation
has a term which is always positive (production term Pk proportional to Pd), a term
which is always negative (destruction term Dk) and a term which is either positive or
negative depending on the sign of ∂ui

∂xj
. Similarly to the case of the k transport equation,

also the ω transport equation has a term which is always positive (production term
Pω proportional to Pd), a term which is always negative (destruction term Dω), and a
term which is either positive or negative depending on the sign of ∂ui

∂xj
. The ω transport

equation, however, features the additional cross–diffusion term CDω which can be
positive or negative.

The terms ∂
∂xj

[
(µ+ σkµT ) ∂k

∂xj

]
in Eqn. (2.17) and ∂

∂xj

[
(µ+ σωµT ) ∂ω

∂xj

]
in Eqn. (2.18)

leads to the conservative diffusion.
The turbulent eddy viscosity µT at any position in the computational domain and

each simulation time of the time–dependent simulations is determined using the ex-
pression:

µT = a1ρk

max(a1ω, |Ω|F2) , (2.23)
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where |Ω| is the flow vorticity. F1 and F2 are blending functions of the k− ε and k−ω
turbulence models and are respectively given by:

F1 = tanh(arg4
1), (2.24)

F2 = tanh(arg2
2), (2.25)

where arg1 and arg2 are defined as:

arg1 = min[max(
√
k

β∗ωd
,
500µ
ρωd2 ), 4ρσω2k

CDkωd2 ], (2.26)

arg2 = max( 2
√
k

β∗ωd
,
500µ
ρωd2 ), (2.27)

The term CDkω equals the cross–diffusion term CDω when this term is positive, and
is set to a small positive constant when CDω is negative. The expression of CDkω is:

CDkω = max(2ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
, 10−20). (2.28)

The terms arg1 and arg2 are both functions of distance from the closest wall d. The
SST model definition of the turbulent eddy viscosity assures that in part of the bound-
ary layer where production of k is bigger than its dissipation ω, Bradshaw’s assumption,
which states that the shear stress is proportional to turbulent kinetic energy, is satisfied.
The coefficients defining the k−ω SST turbulence model (β,Cω,σk,σω) are obtained by
blending the coefficients of k − ω model (φ1), and the coefficients of k − ε model (φ2).
The blended function φ reads:

φ = F1φ1 + (1− F1)φ2. (2.29)

The coefficients of k − ω model are:

β1 = 0.075, σk1 = 0.85, σomega1 = 0.5,

Cω1 = β1

β∗
− σω1κ

2
√
β∗

= 0.533.
(2.30)

The coefficients of k − ε model are instead:

β2 = 0.0828, σk2 = 1.0, σomega2 = 0.856,

Cω1 = β2

β∗
− σω2κ

2
√
β∗

= 0.440.
(2.31)

Other coefficients used by the SST model are the following:

β∗ = 0.09, κ = 0.41, α1 = 0.31. (2.32)

2.3 Time–domain RANS and SST
In previous sections, all approximations used to simplify NS equations have been in-
troduced, and Menter’s k − ω SST turbulence closure has been described. Therefore,
we can now write the RANS and SST turbulence model equations as a closed set of
equations for compressible flows. By doing so, we obtain a system of NPDE nonlinear
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partial differential equations (PDEs). For 3D turbulent flows NPDE = 7, five RANS
PDEs, and two turbulent PDEs.

Time–dependent problems can be solved due to the inclusion of time–derivatives
in the RANS and k−ω SST equations. Such time–derivatives refer to time–variations
taking place on the characteristic time–scales associated with the engineering problem
at end. One of the advantages of differential turbulence models over simpler alge-
braic models, is that the former methods allow inertial (time–dependent) and global
(through the spatial derivatives of the turbulence model) effects to be taken into ac-
count when modelling the effects of turbulence. The divergence form of the 3D unsteady
Reynolds–Favre averaged Navier Stokes equations (URANS), coupled to the two trans-
port equations of the k − ω SST turbulence model in dimensional form are:
mass conservation:

∂ρ

∂t
+ ∂

∂xi
(ρũi) = 0, (2.33)

momentum conservation:

∂

∂t
(ρũi) + ∂

∂xj
(ρũjũi) = − ∂p

∂xi
+ ∂τ̃ji
∂xj

, (2.34)

energy conservation:

∂

∂t
(ρẼ) + ∂

∂xj
(ρH̃ũj) = ∂

∂xj

[
ũiτ̃ij + (µ+ σkµT ) ∂k̃

∂xj
− q̃j

]
, (2.35)

turbulent kinetic energy:

∂

∂t
(ρk̃) + ∂

∂xj
(ρũj k̃) = τ̃Rij

∂ũi
∂xj
− β∗ρω̃k̃ + ∂

∂xj

[
(µ+ σkµT ) ∂k̃

∂xj

]
, (2.36)

specific dissipation rate:

∂

∂t
(ρω̃) + ∂

∂xj
(ρũjω̃) =γρ

µT
τ̃Rij
∂ũi
∂xj
− βρω̃2 + ∂

∂xj

[
(µ+ σωµT ) ∂ω̃

∂xj

]

+ 2ρ(1− F1)σω2

1
ω̃

∂k̃

∂xj

∂ω̃

∂xj
.

(2.37)

The system of equations (2.33), (2.34), (2.35) is formally identical to the system of
equations (2.1), (2.2), (2.7), however, there are additional features that needs to be
introduced.

The variables appearing in the URANS equations denoted by the symbol − represent
Reynolds time–averaged variables over the turbulence time–scales and the variables
denoted by the symbol˜represent Favre averaged variables. The two symbols will be
omitted in any further representation of URANS or RANS equations from here on.
There is an additional diffusive term in the energy equation (2.35) depending on the
eddy viscosity µT and the components of the gradient of the turbulent kinetic energy
k. As previously discussed when commenting Eqn. (2.16), the stress tensor τij is the
sum of the molecular stress tensor τMij defined by Eqn. (2.4) and the Reynolds stress
tensor τRij defined by Eqn. (2.14). The thermal heat flux vector qj results from the sum
of a laminar and turbulent contribution, where molecular viscosity, constant pressure,
specific heat and thermal diffusivity are linked by the Prandtl number Pr :

Pr = µcp
kT

. (2.38)
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The thermal heat flux vector can be written as:

qj = −
[
µ

Pr
+ µT
PrT

]
∂h

∂xj
, (2.39)

where PrT , is the turbulent Prandtl number, which relates the turbulent eddy viscosity
and the turbulent counterpart of the molecular thermal diffusivity.

It should also be noted that coupling of the URANS and SST equations is due to
two factors. Firstly, the turbulent kinetic energy k is included in the definition of the
total energy, defined by Eqn. (2.8), as well as the total enthalpy, defined by Eqn. (2.13).
When using the k − ω SST model, the definition of these two variables are re–written
respectively as:

E = e+ (uiui)
2 + k, H = h+ (uiui)

2 + k. (2.40)

Based on the perfect gas relations, the definition of the total energy E implies that the
static pressure p is defined as:

p = (γ − 1)
[
ρE − 1

2ρ(uiui)− ρk
]
, (2.41)

where γ defines the specific heat ratio, which is the ratio between cp and cv (at standard
conditions γ = 1.4 for air):

γ = cp
cv
. (2.42)

Secondly, coupling of the URANS and k − ω SST equations is also caused by the fact
that the eddy viscosity µT defined by Eqn. (2.23) depends on k and ω, and thus on
the SST equations, and it also appears in the momentum and energy equations of the
RANS system.

2.4 Arbitrary Lagrangian–Eulerian formulation of

URANS and SST equations in inertial frame
Generally, in fluid dynamics there are two basic approaches to describe the motion of
fluid and derive the governing equations. The first is called Lagrangian approach, where
the computational mesh is embedded in the fluid and moves with it. The second ap-
proach is called Eulerian, which treats the computational mesh as a fixed frame trough
which the fluid moves. In time–dependent problems characterised by the presence
of moving bodies and deforming grids (e.g. rotating and/or deforming wind turbine
blades, oscillating wings, vibrating turbomachinery blades), it is necessary to solve the
governing equations using moving grids and in some cases also deforming grids. For
such problems, it is convenient to use the Arbitrary Lagrangian–Eulerian technique
(ALE), that is both Lagrangian and Eulerian. The method is very flexible, as the
mesh may move with the fluid, be held fixed or be moved in any other prescribed way
with respect to the fluid [76, 77].

Given a moving control volume C with time–dependent boundary S(t), the ALE
integral form of the system of the URANS and SST equations in an inertial frame of
reference can be written as:

∂

∂t

(∫
C(t)

U dC

)
+
∮
S(t)

(Φc −Φd) · dS −
∫
C(t)

S dC = 0, (2.43)
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where

U =


ρ
ρu′
ρE
ρk
ρω

 , (2.44)

represents the array of conservative variables and the symbol ′ denotes the transpose
operator. The generalised convective flux vector Φc is expressed as:

Φc =


ρ(u− ub)

ρ(u− ub)u′ + pIPD
ρE(u− ub) + pu
ρk(u− ub)
ρω(u− ub)

 , (2.45)

where ub is the velocity of the boundary S. IPD is the identity matrix of dimension
PD, for 3D case PD = 3. The generalised diffusive flux vector Φd reads:

Φd =


0
τ

τ · u + (µ+ σkµT )∇k − q
(µ+ σkµT )∇k
(µ+ σωµT )∇ω

 . (2.46)

The definition of the source term S in Eqn. (2.43) is given by:

S =


0
0′
0
Sk
Sω

 . (2.47)

Tke symbols Sk and Sω in Eqn. (2.47) represent source terms of the k and ω equations
respectively, and can be written as:

Sk = µTPd −
2
3(∇ · u)ρk −Dk, (2.48)

Sω = γρPd −
2
3(∇ · u)γρk

νT
−Dω + CDω. (2.49)

The term Pd, the k destruction term Dk, the ω destruction term Dω, and the cross–
diffusion term CDω have already been defined by equations (2.20), (2.21) and (2.22),
and are rewritten here in divergence form:

Pd = 2
[
u− 1

3∇ · u
]
∇u, (2.50)

Dk = β∗ρkω Dω = βρω2, (2.51)
CDω = 2(1− F1)ρσω2

1
ω
∇k · ∇ω. (2.52)

The steady state or RANS equations are obtained by setting to zero the time deriva-
tive appearing in Eqn. (2.43), i.e. ∂U

∂t
= 0, and by considering a fixed control volume.

Velocity of boundary appearing in the generalised convective flux vector Φc (2.45) is
set to zero, ub = 0. The definition of generalised diffusive flux vector Φd (2.46) and the
source term S (2.47) remains the same. By doing so, one obtains the steady equations
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for a fixed control volume in an inertial frame of reference, which can be symbolically
written as: ∮

S
(Φc −Φd) · dS −

∫
C

SdC = 0, (2.53)

Steady equations in stationary frame are most commonly used for numerical simulation
of flows past fixed–objects, such as wings, aircraft, vehicles.

2.5 Arbitrary Lagrangian–Eulerian formulation of

URANS and SST equations in non–inertial frame
The governing equations of fluid flow, can also be written in a non–inertial frame of
reference. In many applications involving rotating motion, such as turbomachinery
problems, propellers, and flows around horizontal–axis wind turbine blades, it is ad-
vantageous to describe the governing equations in a rotating (non–inertial) frame of
reference. Expressing the governing equations in a rotating frame often enables to
solve a problem that is unsteady in the stationary (inertial) frame as a steady–state
problem in the rotating (non–inertial) frame. When using this approach, the grid mo-
tion viewed in rotating frame is frozen and the body is at rest. Many flow problems
in engineering practise can be viewed as steady in rotating frame, therefore, such ap-
proach offers much lower computational cost in comparison to an unsteady simulation
in stationary frame of reference. It should also be noted that for certain unsteady flow
problems an unsteady simulation in a rotating frame can also be performed, solving
these flow problems in inertial or non–inertial frame does not change computational
cost excessively. When the governing equations are written in a rotating frame, there
are two choices of how to express the relative velocity vector components. They can
be expressed either in the relative or absolute frame. The relative velocity components
can be expressed in absolute frame by considering a velocity transformation. At a
particular time, when the rotating frame matches the fixed frame, one can choose the
same Cartesian coordinates to specify the unit vectors of both frames. In this case the
velocity vector is exactly the same as one would see with respect to the fixed frame.
This is the reason why the relative velocity components can be thought as the absolute
velocity components, even though they are viewed from the rotating frame. For inter-
nal turbomachinery problems the relative velocity components are usually expressed in
the relative frame [78, 79], whereas for external flow problems, such as propellers and
flows around horizontal–axis wind turbine blades, they are expressed in the absolute
frame of reference [80, 81, 82, 83]. The two formulations for the velocity vector com-
ponents should lead to the same flow solution. However, many studies report that for
the open rotor aerodynamics applications, the use of the absolute velocity components
in the relative frame allows more accurate calculation of the fluxes. The relative veloc-
ity components can become extremely large in the farfield, due to large entrainment
velocities due to grid motion, and this may result in large numerical errors (e.g. large
round–off of flux differences).

The formulation of the governing equations in a stationary Cartesian coordinate
system, which was introduced in section (2.4) will now be extended to include rotating
frame effects with the component of the relative velocity vector being expressed in an
absolute frame. Such rotating frame formulation was chosen, as it allows to impose
steady farfield boundary conditions for steady rotor flows, ensures more precise cal-
culation of fluxes, and requires only a few modifications to the existing expression of
governing equations.
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Figure 2.2: Cartesian rotating coordinate system.

The ALE URANS and SST equations are written in a Cartesian rotating coordinate
system, where the x and y axes rotate around the z axis with constant angular velocity
Ω. The rotating Cartesian frame is depicted in Fig. 2.2. Since the z axis was selected
to be the rotational axis, Ω has the following components:

Ω =

 0
0

Ωz

 . (2.54)

Given a control volume Cr with boundary Sr rotating in the considered system, the
ALE integral form of the system of URANS and SST equations in rotating frame can
be written as:

∂

∂t

(∫
Cr

UrdCr

)
+
∮
Sr

(Φcr −Φdr) · dSr −
∫
Cr

SrdCr = 0. (2.55)

Subscript r denotes rotating frame, Ur is the array of conservative variables:

Ur =


ρ
ρu′r
ρEr
ρkr
ρωr

 , (2.56)

where ur represent the absolute velocity vector in the rotating frame, and is thus:

ur =

 ur
vr
wr

 =

 cosΩzt −sinΩzt 0
sinΩzt cosΩzt 0

0 0 1


 u
v
w

 . (2.57)

The generalised convective flux vector Φcr is expressed as:

Φcr =


ρ(ur − ub)

ρ(u′r − ub)u′r + pIPD
ρE(ur − ub) + pur

ρk(ur − ub)
ρω(ur − ub)

 , (2.58)
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where ub represents the velocity of the cell faces, which is due to the rotation of the
coordinate system, and can be expressed as:

ub = Ω× ra. (2.59)

ra denotes coordinate vector and is given by:

ra =

 xr
yr
zr

 . (2.60)

The generalised diffusive flux vector is expressed:

Φdr =


0
τ

τ · ur + (µ+ σkµT )∇k − q
(µ+ σkµT )∇k
(µ+ σωµT )∇ω

 . (2.61)

The definition of the source term Sr is the following:

Sr =



0
−ρΩzvr
ρΩzur

0
0
Skr
Sωr


. (2.62)

The definitions of Skr and Sωr are the same as by equations 2.48 and 2.49 in inertial
frame, except for the fact that the absolute velocity vector in the stationary frame u
is now replaced by absolute velocity vector in the rotating frame ur, thus u = ur.

Setting to zero the time derivative appearing in Eqn. (2.55), ∂U
∂t

= 0, the RANS
and SST equations in rotating frame are obtained:∮

Sr
(Φcr −Φdr) · dSr −

∫
Cr

SrdCr = 0. (2.63)

As previously mentioned, the steady equations in the relative frame are used to solve
rotor problems that are unsteady in the stationary frame, and can instead be viewed
as steady–state problems in the rotating frame. These applications include all internal
turbomachinery problems, propellers, fans, helicopter rotors, HAWT rotors, etc.

The source terms that appear in Eqns. (2.55) and (2.63) due to relative frame,
make the URANS and RANS equations non conservative. For transonic problems
and coarse grids, this may introduce some numerical errors [84]. In order to avoid
such errors, the velocity of cell faces ub are evaluated as in [85], which assures the
conservation of URANS and RANS equations. This will be explained in more detail
in the next chapter.

2.6 Harmonic balance formulation of Navier–Stokes

Equations
Harmonic balance is a frequency–domain analysis technique which can be used for
modelling unsteady nonlinear periodic flows. Many flows, such as turbomachinery and
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wind turbine flows, feature temporal periodicity. Therefore, unsteady flow equations
may be written as a Fourier series in time with spatially varying coefficients. Due to
the inclusion of a pseudo–time term, they can be solved as a system of steady problem
using conventional time–marching techniques. The only addition to the update step
of the HB method is the inclusion of a volumometric source term, which couples all
snapshots of sought periodic solution. This modern computational approach offers at
least an order of magnitude reduction in computational cost and represents compu-
tationally efficient alternative method to time marching methods. When using the
HB method, periodic steady state can be obtained more quickly as the resolution of
long initial transients that needs to be resolved by URANS can be avoided. For rotor
flows the solution of HB equations may be obtained even more rapidly, making use of
multifrequency periodicity boundary conditions [46, 52, 86].

The HB formulation of the RANS equations assumes that the fundamental fre-
quency ω of the sought periodic flow field is known. Using the truncated Fourier series,
a series of sine and cosine functions, one can approximate the ALE integral form of
the system of the URANS and SST equations defined by Eqn. (2.43). Generally, two
types of HB formulation exist in the literature, classical and so called high–dimensional
HB (HDHB) formulation [46, 52, 86]. The detailed comparison of both methods is de-
scribed in [86]. As pointed out by the authors of [46] and [86], it is very difficult or
nearly impossible to use the classical harmonic balance method for high dimensional
nonlinear dynamical systems such as RANS equations, as the expression of the non-
linear terms can become massively complex. To overcome such problem the HDHB
method can be used. Main aspect of the HDHB method is that rather than working
in terms of Fourier coefficient variables as in the classical HB approach, the dependent
variables are instead cast in the time–domain and stored at 2NH + 1 equally spaced
sub–time levels over the period of one cycle of motion, so called pseudo–time approach.
For this work, HDHB formulation of the RANS and SST equations was used.

It should be mentioned that also other frequency–domain analysis techniques ex-
ist. One alternative to HDHB is called non–linear frequency–domain (NLFD) method,
introduced in [87]. The main difference between HDHB and NLFD arises in the repre-
sentation of the non–linear residuals. HDHB approach utilises a pseudo–time approach
to represent the non–linear residual in the time–domain, whereas NLFD represents a
form of the residual in the frequency–domain. Due to such reason, the HDHB method
is easier to implement in an existing TD CFD codes. The detailed comparison of HDHB
and NLFD methods is reported in [87]. Another alternative which is following the same
direction as HDHB is called the time spectral method [47]. Similarly to HDHB, the
Fourier transformation is used for temporal discretization, leading to spectral accuracy.
After the transformation back to the physical domain, the time derivative appears as
a high–order central difference formula coupling all the time snapshots in the period
together. Authors of [47] also pointed out that such method can be implemented rel-
atively easily in an existing CFD code, as the equations are solved in time–domain,
whereas one must develop brand new code if the equations are solved in frequency–
domain. Additionally, the transformation back and forth from time–domain to the
frequency–domain is avoided, which also benefits the computational cost. The HBHD,
NLFD and time spectral methods have all successfully demonstrated the ability to
represent challenging non–linear flow solutions using a minimum number of complex
harmonics. An alternative, which exhibit resemblance to the HDHB approach, is also
the Non–Linear Harmonic (NLH) method [59]. However, in NLH method the zeroth
harmonic (mean flow) and the first harmonic (unsteady flow component) are decoupled,
which represents an important difference.

Denoting u as the HB solution volume integral and h as the HB solution surface
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integral, both variables can be expressed in terms of truncated Fourier series:

u(t) ≈ û0 +
NH∑
n=1

(û2n−1cos(nωt) + û2nsin(nωt)) , (2.64)

h(t) ≈ ĥ0 +
NH∑
n=1

(
ĥ2n−1cos(nωt) + ĥ2nsin(nωt)

)
. (2.65)

NH represents the retained number of harmonics and is a user–given parameter. The
terms û and ĥ , where (n = 0, 1, . . . , NH) are HB solution Fourier coefficient variables.
More precisely, the variables û0 and ĥ0 represent the mean value of the sought periodic
solution, whereas the terms û2n−1 and ĥ2n−1 represent the real part of the NH complex
harmonics, and the terms û2n and ĥ2n their imaginary counterparts. The arrays ûn
and ĥn have length NPDE = 7 for 3D case, where NPDE is the number of considered
conservation laws.

For deriving the HB approximation to Eqn. (2.43) it is also necessary to write the
time–derivative of u as a truncated Fourier series:

∂u(t)
∂t
≈

NH∑
n=1

nω (−û2n−1sin(nωt) + û2ncos(nωt).) (2.66)

Inserting the expressions of Eqns. (2.64), (2.65) and (2.66) into the the ALE integral
form of the system of the URANS and SST equations given by Eqn. (2.43), and match-
ing harmonics of the same order, results in a system of [NPDE × (2NH + 1)] PDE’s,
which can be expressed in matrix–vector form as:

ωAû + ĥ = 0. (2.67)

The definitions of û and ĥ are respectively:

û =



û′0
û′1
·
·
·

û′2NH


, ĥ =



ĥ′0
ĥ′1
·
·
·

ĥ′2NH .


(2.68)

and matrix A can be expressed as:

A =



0 0 0 . . . 0
0 J1 0 . . . 0
0 0 J2 . . . 0
... ... ... . . . ...
0 0 0 . . . JNH

 , (2.69)

where
Jn = INPDE ⊗ n

[
0 1
−1 0

]
, n = 1, 2, . . . , NH . (2.70)

The symbol ⊗ denotes the Kronecker tensor product, INPDE is the identity matrix of
the size (NPDE)2, and therefore the size of Jn blocks is (2NPDE)2. Matrix A has a
block diagonal structure, meaning that only diagonal blocks contain non–zero entries.
Each Jn block of matrix A has a block–diagonal structure as well. It is also important
to stress that the first block of matrix A is 0. Due to described structure, one finds
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that when writing the equations of the system defined by Eqn. (2.67) explicitly, the
unknown harmonic components û are coupled by the harmonic residuals ĥ, whereas no
coupling occurs through the first term of the equation. As previously mentioned, the
analytical derivation of such equations can become extremely complex when dealing
with the RANS equations and turbulence models, therefore, reconstructing the 2NH+1
harmonic balance Fourier coefficient solution variables û and ĥ to become 2NH + 1
equally spaced points over one period, enormously simplifies the derivation of the HB
equations. Equally spaced points over one period can be defined as:

tn = n

2NH + 1
2π
ω
, n = 0, 1, . . . , 2NH . (2.71)

They are related by the Kronecker product of a constant Fourier transformation matrix
EH and identity matrix INPDE :

FH = EH ⊗ INPDE . (2.72)

The expression of the Fourier matrix EH is given by:

EH = 2
2NH + 1



1/2 1/2 . . . 1/2
cos(ωt0) cos(ωt1) . . . cos(ωt2NH )
sin(ωt0) sin(ωt1) . . . sin(ωt2NH )
cos(2ωt0) cos(2ωt1) . . . cos(2ωt2NH )
sin(2ωt0) sin(2ωt1) . . . sin(2ωt2NH )

... ... . . . ...
cos(NHωt0) cos(NHωt1) . . . cos(NHωt2NH )
sin(NHωt0) sin(NHωt1) . . . sin(NHωt2NH )


. (2.73)

The time–domain solutions at the 2NH + 1 equally spaced sub–time levels expressed
in terms of the HB Fourier coefficients ũ and h̃ , are given respectively:

ũ = F−1
H û, (2.74)

h̃ = F−1
H ĥ. (2.75)

The inverse of the matrix FH is a Kronecker product of an inverse of a constant Fourier
transformation matrix EH and identity matrix INPDE :

F−1
H = E−1

H ⊗ INPDE . (2.76)

The inverse of the Fourier matrix EH is given by:

E−1
H =


1 cos(ωt0) sin(ωt0) . . . cos(NHωt0) sin(NHωt0)
1 cos(ωt1) sin(ωt1) . . . cos(NHωt1) sin(NHωt1)
... ... ... . . . ... ...
1 cos(ωt2NH ) sin(ωt2NH ) . . . cos(NHωt2NH ) sin(NHωt2NH )

 , (2.77)

Inserting the relationships from Eqns. (2.74) and (2.75) into Eqn. (2.67), yields the
system:

ωDũ + h̃ = 0, (2.78)

where D is the (NPDE ×NPDE) matrix, given by:

D = F−1
H AFH . (2.79)
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The expression of matrix D may be written as follows:

D = 2
2NH + 1


0 a12 . . . a1n
a21 0 . . . a2n
... ... . . . ...
am1 am2 . . . 0

⊗ INPDE , (2.80)

where the entries of the matrix are defined as:

amn =
NH∑
k=1

k sin

(
2πk(n−m)

2NH + 1

)
.

Once matrix D is constructed, it structure becomes block antisymmetric, thus amn =
−anm. When writing the equations of the system defined by Eqn. (2.78) explicitly, the
unknown TD harmonic components ũ are all coupled by the TD harmonic residuals h̃.
The problem of the decoupled first term no longer exist.

Inserting the integral definitions of u and h into Eqn. (2.78) leads to the ALE
integral form of HDHB RANS and SST equations in inertial frame of reference:

ωD
(∫

CH
UH dCH

)
+
∮
SH

(ΦcH −ΦdH) · dSH −
∫
CH

SH dCH = 0, (2.81)

where the unknown array of conservative variables UH is made up of 2NH + 1 flow
field snapshots, referring to the equally spaced points of one period:

UH =



U(t0)′
U(t1)′
·
·
·

U(tNH )′


. (2.82)

The subarray structure of the following variables in HB representation, all denoted by
subscript H, ΦcH , ΦdH , SH , dCH and dSH is similar to that of UH .

Eqn. (2.81) can also be rewritten for relative frame, hence the ALE integral form
of HDHB RANS and SST equations in non–inertial frame of reference reads:

ωD
(∫

CHr
UHr dCHr

)
+
∮
SHr

(ΦcHr −ΦdHr) · dSHr −
∫
CHr

SHrdCHr = 0, (2.83)

where the unknown array of conservative variables in relative frame UHr is made up
of 2NH + 1 flow field snapshots, referring to the equally spaced points of one period:

UHr =



Ur(t0)′
Ur(t1)′
·
·
·

Ur(tNH )′


. (2.84)

In a similar way as the subarray UHr is constructed, the following subarrays, ΦcHr,
ΦdHr, SHr, dCHr and dSr given in relative frame, can be obtained.

The HDHB method solves the frequency–domain governing equations in the time–
domain. The representation of the frequency–domain equations in the time–domain
yields a set of coupled steady problems or snapshots. As previously pointed out, the
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number of PDEs increases from NPDE in TD approach to [NPDE× (2NH +1)]. Despite
this, the HB approach allows turbulent periodic flows to be computed at a significantly
lower computational cost than with the TD approach in many problems of engineering
interest. In essence, if all snapshots of the solution converge as quickly as a similar
steady–state calculation, then the cost of the HDHB calculation is the product of
steady–state calculation cost, the number of used harmonics, and the computational
overhead due to the calculation of the volumometric source term D, which couples all
the snapshots.

2.7 Boundary conditions
Any numerical simulation of the governing equations require specification of boundary
conditions. A set of governing equations has an infinite number of solutions, therefore,
appropriate boundary conditions must be imposed on the boundaries, as the solution
of the governing equations is strongly dependent on such boundary conditions. It
is crucially important, that boundary conditions are compatible with both numerical
and physical properties of the problem to be solved. The results of turbulent flow
simulations are strongly dependent on the models used to define the boundary flow
state. The stability of numerical simulation also depends on the specification of initial
boundary flow state [66, 88, 89].

2.7.1 Farfield
Farfield boundary conditions play an essential role in the case of external flow problems.
They must be located sufficiently far from the body, so as to minimise the negative
effects of spurious reflections from such boundaries. It is extremely important that out-
going waves are not reflected back into the flow from the outer boundaries, as in such
case the convergence rate of the numerical simulation could also be impaired, and the
reflections could spoil the solution accuracy. There are several ways of imposing bound-
ary conditions on the external boundaries. In this research work, they are either based
on the one–dimensional Riemann invariants [90, 91] or the multi–dimensional com-
patibility equations and differential form of the characteristic variables. The former
formulation is well established and widely used in the CFD practice and was also used
for the majority of the work done in this research. However, when using low–speed
preconditioning to enhance accuracy and performance of compressible CFD solvers,
characteristic–based far field boundary conditions need to be also preconditioned. Such
preconditioning can not be accomplished using one–dimensional Riemann invariants.
Since the CFD system developed within this research also features low–speed precon-
ditioning, far field boundary conditions based on the multi–dimensional compatibility
equations and differential form of the characteristic variables have also been imple-
mented, as a part of different research project, and used for the simulations reported
in the thesis. The formulation of these boundary conditions is described in [92].

Based on the characteristic theory of one–dimensional Euler equations, the idea is
to enforce flow data associated with the incoming Riemann invariants and extrapolate
flow data associated with the outgoing Riemann invariants from the interior of the
domain. The velocity component normal to the outer boundary (n pointing outward
from the flow domain), and the speed of sound are obtained from one–dimensional
Riemann invariants. Assuming that the flow at the outer boundary is subsonic, the
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prescribed (R∞) and extrapolated (Rext) Riemann invariants are given respectively by:

R∞ = u∞ · n + 2c∞
γ − 1 , (2.85)

Rext = uext · n + 2cext
γ − 1 , (2.86)

where u∞ and c∞ represent the freestream velocity and the freestream speed of sound,
respectively. The subscript ext refers to the extrapolated values from the interior of
the computational domain with zero order extrapolation. The normal velocity ubnd · n
and the local speed of sound cbnd on the boundary can now be obtained by adding and
subtracting both Riemann variables:

ubnd · n = 1
2(Rext +R∞), (2.87)

cbnd = γ − 1
4 (Rext −R∞). (2.88)

Corresponding equations hold for the inflow and outflow cases, and the sign of the
computed value of normal velocity can be used to determine if an inflow or outflow
condition occurs. A negative characteristic speed corresponds to an inflow boundary,
and positive speed to an outflow boundary. At an inflow boundary the tangential
velocity component is specified from the freestream flow conditions, whereas at an
outflow boundary this variable is extrapolated from the interior. To complete the set
of equations required to completely define the flow state on far field boundaries, also
the entropy s is introduced:

s = p

ργ
. (2.89)

At inflow boundaries, the entropy on the boundary is set to its free stream value
sbnd = s∞, whereas at outflow boundaries it is extrapolated from inside the domain:
sbnd = sext. The density, energy and pressure at the boundary can then be calculated
from cbnd and sbnd:

ρbnd = ( c
2
bnd

γsbnd
)1/(γ−1), (2.90)

pbnd = ρbnd(
c2
bnd

γ
). (2.91)

This Riemann invariant–based procedure is used to implement the far field boundary
conditions for the RANS equations.

For the two equations of the k−ω SST model, far field boundary values of turbulent
kinetic energy and specific dissipation rate must also be prescribed. At inflow bound-
aries, the former variable is set equal to a freestream value k∞ determined using the
user–given free stream velocity u∞ and the turbulence intensity I, whereas the latter
variable is set equal to a freestream value ω∞ depending on k∞ and the user–given
value of the turbulent freestream viscosity µT∞ . The expressions of k∞ and ω∞ are
respectively:

k∞ = (u∞I)2, (2.92)

ω∞ = γ∗
ρ∞k∞
µT∞

, (2.93)

where γ∗ is a turbulence model constant which has been set to γ∗ = 1 in this work.
At outflow boundaries, both turbulence kinetic energy and specific dissipation rate are
extrapolated from the interior.
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For unsteady problems solved in the relative frame using an absolute–frame rep-
resentation of the components of the relative velocity, the freestream velocity u∞ and
boundary velocity ubnd must be transformed to the absolute velocity in relative frame,
given by Eqn. (2.57).

It is also important to stress that the HB solver uses exactly the same implemen-
tation of the farfield boundary condition as the steady and TD solvers. The only
difference with respect to steady and TD solvers is that farfield boundary condition
needs to be applied to each complex harmonics.

2.7.2 Solid wall
Generally, for all solid wall boundaries, the assumption that the fluid can not pass
through a wall is made. For viscous flows governed by the NS equations, the no–slip
condition must be satisfied at the surface, therefore, all components of the velocity at
a wall are set equal to the wall velocity. In case of stationary wall u = v = w = 0,
whereas for moving grid problems, the flow velocity at the wall is set equal to the solid
surface velocity. We also make the assumption that the wall is adiabatic, so there is
no heat flux trough the wall. Static pressure on the wall pw is extrapolated from the
interior solution using first order extrapolation. The fluid density at the wall ρw is
calculated using the following equation:

ρw =
(
pw
pext

)1/γ

· ρext, (2.94)

where the subscript ext denotes the extrapolated value from the interior solution using
zero order extrapolation.

For the k−ω SST turbulence model two additional wall boundary conditions must
be prescribed. Turbulent kinetic energy at the wall is set to zero (kw = 0). For the
assignment of the specific dissipation rate at the wall ωw, two different models have
been used. One is that proposed by Wilcox [72, 74] and the other is that proposed by
Menter [69, 70].

Wilcox wall boundary condition has the advantage that the expression for ωw can
account for the effects of surface roughness. The value of ωw is given by:

ωw = u2
τ

νw
SR, (2.95)

where uτ represents the friction velocity, νw is the kinematic viscosity at the wall and
SR is a dimensionless surface–roughness function. The friction velocity is a function of
the wall shear stress τw and the fluid density at the wall:

uτ =
√
τw
ρw
. (2.96)

The parameter SR can vary in the interval 0 ≤ SR ≤ ∞, where SR −→ ∞ indicates
that the wall is smooth. SR is a function of a nondimensional average sand grain height
k+
S , and was determined based on the correlation. Various definitions of SR exist in

the literature, herein one of the recent definitions has been used [93]:

SR =



(
50
k+
S

)2

, k+
S < 25

100
k+
S

, k+
S ≥ 25

. (2.97)
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The nondimensional sand grain height is defined as:

k+
S = u2

τkS
νw

. (2.98)

where kS denotes the dimensional average sand grain height. For a smooth surface,
the value of kS must be small, to insure the condition k+

S < 5. On the other hand,
for numerical reasons, the minimum value to be assigned to k+

S must be limited. The
limitation proposed in [93] is adopted:

k+
S = max(1; u2

τkS
νw

). (2.99)

Menter wall boundary condition is valid only for smooth surfaces, and is given by
the following expression:

ωw = νw
β1(dw)2 , (2.100)

where dw represents the distance to the next point away from the wall, and β1 is one
of the coefficients of k − ω model, defined by Eqn. (2.30).

It was observed that both wall boundary conditions give accurate results, but
some differences were observed in the results when solving complex physical prob-
lems. Menter wall was also numerically slightly more stable than Wilcox wall for some
problems. For both wall boundary conditions, it must be assured that y+ < 3, where
y+ is the dimensionless wall distance and is defined as:

y+ = uτdw
νw

. (2.101)

More detail of the implementation and the comparative analyses of these two wall
boundary conditions for the specific dissipation rate can be found in references [26, 94],
which compare the two models for both steady and moving grid problems.

In HB solver the implementation of the wall boundary condition is done in the same
way as for the steady and TD solvers, with the difference that wall boundary condition
needs to be applied to each complex harmonics.



Chapter 3

Numerical method

In the previous chapter the complete system of the RANS and k − ω SST PDEs has
been obtained for the steady, TD and HB formulations. As the analytical solution of
PDEs may be applicable only to few simplified flow problems, these equations need
to be solved numerically in most cases. Numerous numerical methods exist, and they
all require to represent the continuous nature of PDEs in a discrete form, leading to
large system of algebraic equations. This nonlinear algebraic system is then solved
using an iterative method. This chapter outlines the detailed description of the spatial
and temporal discretization approaches, used to solve various forms of PDEs derived
for this research. It also focuses on the description of the interface between blocks
in multi–block approach. Furthermore, the description of the steady periodicity cut
boundary condition and the multi–frequency periodicity boundary conditions is pro-
vided. The chapter is concluded with the integration approach of steady, TD and HB
RANS equations.

As it has been mentioned in the introduction, the starting point of the numerical
implementation were the 2D solvers of COSA. In this work, all existing 2D solvers
have been extended to 3D and new routines have been implemented in both serial and
parallel environments. Parallel implementation of the 2D version of COSA has been
primarily done in EPCC at the University of Edinburgh, therefore, some support was
provided by them. However, all parallel routines have been extended and added by the
author.

3.1 Space discretization
Spatial discretization comprises of the numerical approximation of the convective and
diffusive fluxes, as well as of source terms. Roe’s approximate Riemann solver is one of
the flux–difference splitting schemes, which allows very precise calculation of boundary
layers. It is used in the discretization of convective fluxes of the developed flow solvers
for this work, and will be explained in next section.

3.1.1 Convective fluxes
The discretization of the convective fluxes is based on Roe’s approximate Riemann
solver [95] and Van Leer’s Monotonic Upstream–Centered Scheme for Conservation
Laws (MUSCL) extrapolations [96].

38
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Roe’s approximate Riemann solver is based on a characteristic decomposition of
flux differences over a cell face, ensuring the conservation of governing equations. The
convective flux vector is written as the sum of a left and right state, and a flux difference
across the cell face. It is a Godunov type method [97], and was developed in order to
reduce the computational expense of Godunov’s scheme for the exact solution of the
Riemann problem. Several other approximate Riemann solvers for the Euler equations
exist (e.g. Osher’s approximate Riemann solver [98, 99]), however, the approach of
Roe is most widely used.

Let us first express the generalised convective flux vector Φc given by Eqn. (2.45),
in terms of Cartesian components:

Φc = Eci+ Fcj + Gck, (3.1)

where Ec, Fc and Gc represent the x, y and z components of the generalised convec-
tive flux vector, and i, j and k are the unit vectors. The continuous convective flux
component through the face can therefore be represented by the expression:

Φc,f = (Φc · n)dS = (Ecnx + Fcny + Gcnz) dS, (3.2)

where nx, ny and nz are the x, y and z components of the outward normal n. The
symbol dS represents the cell–face area, across which the flux is being computed, and
subscript f indicates a face value. The interface flux is calculated in all three coordinate
directions x, y and z, as the solution of a locally one–dimensional Riemann problem
normal to the cell interface.

Figure 3.1: One–sided extrapolation of flux interface.

In order to calculate the convective fluxes Φc,f , the conservative variables of the
flow state U, given by Eqn. (2.44), must be extrapolated from the flowfield. In this
work, this is done with the MUSCL approach using a fully one–sided interpolation
of the flow variables, which results in second–order accurate upwind approximation
on uniformly spaced grid. Figure 3.1 depicts a one–dimensional representation of the
computational grid in the x–direction, where each point represents the cell–centered
value of U. The flow state at the interface can be approximated as:

UL
i+ 1

2
= Ui + 1

2(Ui −Ui−1), (3.3)

UR
i+ 1

2
= Ui+1 −

1
2(Ui+2 −Ui+1), (3.4)

where UL and UR represent left and right flow state. The turbulent convective flux
components can be computed using either a first order or a second order upwind scheme.
However, it was observed that for some cases the choice of either approach yields non–
negligible differences between the two solutions [26]. For this reason, all the results
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reported in this work have been obtained using the second order discretization for
turbulent convective flux components. To avoid any unwanted oscillations around
shocks, and other discontinuities or strong gradients in the flow field, non–linear limiter
function must also be employed when using second–order upwind schemes. This is done
in order to construct a monotonicity preserving discretization when necessary. For this
work, Van Albada limiter [100] was used. Using such a limiter, the left and right flow
states at the interface given by Eqns. (3.3) and (3.4) may be rewritten respectively as:

UL
i+ 1

2
= Ui + 1

2δl, (3.5)

UR
i+ 1

2
= Ui+1 −

1
2δl, (3.6)

where δl denotes Van Albada limiter function. If a and b are the subsequent finite
differences of a smooth solution (e.g. Ui+2 and Ui+1), then δl tends to 1

2(a+ b). If the
solution is not smooth, δl tends to the smallest value. The limiter function δl may be
written as:

δl = (b2 + ε2)a+ (a2 + ε2)b
a2 + b2 + 2ε2 , (3.7)

where ε2 represents a small non–vanishing bias. For the calculations made in this work,
selected ε value has usually been of the same order as a non–dimensional minimum
distance from the wall. It was also noted that the results are not very sensitive to the
selected value of ε2. The usage of the small non–vanishing bias prevents clipping of a
smooth extrema, but does not have any negative influence on the smooth solution.

Having defined the left and right states UL and UR, let us write the expression for
the numerical approximation of the convective fluxes Φ∗c,f :

Φ∗c,f = 1
2 [Φc,f (UL) + Φc,f (UR)− δΦ] , (3.8)

where the superscript ∗ denotes numerical approximation, and subscripts L and R stand
for a value extrapolated from the left and from the right, respectively. The last term of
Eqn. (3.8), δΦ, denotes the numerical dissipation which can be written in the following
way:

δΦ = |KU |δU, (3.9)

where KU represents the generalised flux Jacobian or so called Roe’s matrix, defined
as:

KU = ∂Φc,f

∂U
= ∂Ec

∂U
nx + ∂Fc

∂U
ny + ∂Gc

∂U
nz = Anx +Bny + Cnz. (3.10)

The symbols A, B and C denote the flux Jacobians of the convective fluxes KU in the
following three directions, x, y and z. The second term of Eqn. (3.9), describes the
flow state discontinuity across the cell face:

δU = (UR −UL). (3.11)

The numerical dissipation expressed by Eqn. (3.9) can be rewritten in an alternative
and computationally more efficient way as:

δΦ = |KU | δU = P |Λ|P−1δU = P |Λ|δW. (3.12)

The matrix KU in Eqn. (3.12) is not symmetric, and therefore it has a different set of
left and right eigenvectors. Let us denote by P the matrix of the right eigenvectors, and
by Λ the diagonal matrix containing the corresponding eigenvalues. The eigenvalues



3.1. Space discretization 41

are the associated wave speeds of the solution of approximate Riemann problem, and
the right eigenvectors are associated with the waves. The symbol P−1 denotes the
matrix of left eigenvectors of KU , which is the inverse of the matrix P of the right
eigenvectors. The symbol δW denotes instead the characteristic variables, which are
defined by the following expression:

δW = P−1δU. (3.13)

In order to calculate the numerical dissipation, it is much easier to work with the
governing equations written in non–conservative form as a function of the primitive
variables. The relations between the conservative and the non–conservative Jacobians
can be expressed through a similarity transformation matrix. The whole process of
derivation of the numerical dissipation is described in Appendix A.

The formulation of the convective flux component through the face represented by
Eqn. (3.2) will produce an unphysical solution due to the addition of the dissipation
term for improved nonlinear instability. When there is a presence of expansion shocks
and contact discontinuities in the solutions, the scheme might converge to a nonphysical
solution. The difficulty is that the original scheme does not recognise the sonic point.
To overcome such difficulty, Harten’s entropy correction [101] is introduced to assure
physically relevant solutions. The correction is used to modify the modulus of all
eigenvalues Λ, and can be written as:

|λ| =


|λ|, if |λ| > δ

λ2 + δ2

2δ , if |λ| ≤ δ
, (3.14)

where δ represents a tuning parameter. When δ is zero, the entropy correction is
not used. The larger the value of δ, the stronger is the effect of the entropy fix in
the numerical scheme. Many published studies suggest which value of δ to use. In
instances when the entropy correction was used in this work, either a small constant
value δ < 1 was selected or the following definition proposed in [102, 103] was used to
calculate the δ for each cell of the computational domain:

δ = δ̃(|u|+ |v|+ |w|+ c), (3.15)

where 0.05 ≤ δ̃ ≤ 0.25.

Moving grid problems

In many application areas we encounter moving–grid problems. If such problems are
solved in absolute frame, the grid has to move to accommodate changing boundary. The
velocity at which the grid boundary S moves is denoted by ub. Governing equations for
moving problems are easily derived by replacing the velocity vector u in the convective
fluxes with the relative velocity u − ub. The generalised convective flux vector Φc for
moving grid problems in terms of Cartesian components, may then be written:

Φc = Eci+ Fcj + Gck − ubU, (3.16)

where Ec, Fc and Gc represent the x, y and z components of generalised convective
flux vector, and i, j and k are the unit vectors. The term −ubU represents the contri-
bution of the cell boundary velocity to the overall flux balance. The expression of the
convective fluxes at the boundary of each cell reads:

Φc,f = (Φc · n)dS = (Ecnx + Fcny + Gcnz −Uubn) dS, (3.17)
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where
ubn = ub · n.

nx, ny and nz are the x, y and z components of the outward normal n. The numerical
representation of the convective fluxes at each cell boundary remains the same as in
Eqn. (3.8). However, in the expression of fluxes Φc,f (UL) and Φc,f (UR) there is now
also the flux contribution associated with the boundary velocity. Furthermore, the
expression of the numerical dissipation term δΦ given by Eqn. (3.12), includes the
generalised flux Jacobian KU , which becomes:

(K ′U)f = ∂Φc,f

∂U
=
(
∂Ec

∂U
nx + ∂Fc

∂U
ny + ∂Gc

∂U
nz

)
f

− Iubn = (KU)f − Iubn. (3.18)

The Jacobians (KU)f and (K ′U)f differ only by a diagonal term; thus, the eigenvec-
tors of both matrices are the same. The eigenvalues of (KU)f which are provided in
Appendix A by Eqn. (A.16) and (K ′U)f differ only by the constant offset due to ubn.
Therefore the eigenvalues of (K ′U)f are the following:

λ1 = λ2 = λ3 = λ6 = λ7 = Un − ubn,
λ4 = Un − ubn + c,

λ5 = Un − ubn − c.
(3.19)

Hence, the expression of the numerical dissipation δΦ for problems with moving grids
is then formally identical to the expression (A.24). The only difference with respect to
problems with motionless grid is the appearance of the boundary velocity term in the
eigenvalues of matrix (K ′U)f .

3.1.2 Diffusive fluxes
The discretization of the diffusive fluxes of governing equations has been done using
second order finite–differencing. More precisely, the components of the velocity vector
u, the dynamic viscosity µ, the eddy viscosity µT , which are required for the compu-
tation of the viscous fluxes (2.46), are averaged at cell face. The values at the face (i
+ 1/2) of the control volume are evaluated using simple expression:

ai+1/2 = 1
2(ai−1 + ai), (3.20)

where a can represent any of the mentioned variables.
The first derivatives of the velocity (∇u), temperature (∇T ), turbulent kinetic en-

ergy (∇k), specific dissipation rate (∇ω) are computed by considering the local trans-
formation from Cartesian coordinates (x,y,z) to the generalised curvilinear coordinates
(ξ, η, ζ) associated with the grid lines. The use of generalised curvilinear coordinates
implies that the arbitrary geometry is transformed into a rectangular region in the gen-
eralised coordinate space, as depicted in Fig. 3.2 [104]. In order to relate the Cartesian
derivatives of the velocity components to their derivatives in the (ξ, η, ζ) system and
the grid metrics, the chain rule is used. To approximate all required derivatives, second
order finite–differences are used. Using the chain rule, the Cartesian derivatives of the
velocity vector u can be expressed as follows:

du

dx
= du

dξ

dξ

dz
+ du

dη

dη

dz
+ du

dζ

dζ

dz
, (3.21)
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Figure 3.2: Cartesian to generalised curvilinear coordinate transformation.

du

dy
= du

dξ

dξ

dz
+ du

dη

dη

dz
+ du

dζ

dζ

dz
, (3.22)

du

dz
= du

dξ

dξ

dz
+ du

dη

dη

dz
+ du

dζ

dζ

dz
, (3.23)

dv

dx
= dv

dξ

dξ

dz
+ dv

dη

dη

dz
+ dv

dζ

dζ

dz
, (3.24)

dv

dy
= dv

dξ

dξ

dz
+ dv

dη

dη

dz
+ dv

dζ

dζ

dz
, (3.25)

dv

dz
= dv

dξ

dξ

dz
+ dv

dη

dη

dz
+ dv

dζ

dζ

dz
, (3.26)

dw

dx
= dw

dξ

dξ

dz
+ dw

dη

dη

dz
+ dw

dζ

dζ

dz
, (3.27)

dw

dy
= dw

dξ

dξ

dz
+ dw

dη

dη

dz
+ dw

dζ

dζ

dz
, (3.28)

dw

dz
= dw

dξ

dξ

dz
+ dw

dη

dη

dz
+ dw

dζ

dζ

dz
. (3.29)

u, v and w are the components of the velocity vector u. The ξ− η− and ζ− derivatives
of u, v and w are computed using second order centered finite–differences. The ξ− η−
and ζ− derivatives of u on face (i+ 1/2, j, k) are as follows:

du

dξ
= u(i+ 1, j, k)− u(i, j, k)

2δξ/2 = u(i+ 1, j, k)− u(i, j, k), (3.30)

du

dη
= uB − uA

2δη/2 = uB − uA, (3.31)

du

dζ
= uD − uC

2δζ/2 = uD − uC . (3.32)

The variables uA, uB, uC and uD are not values at cell centres, therefore, they need to
be evaluated using the following expressions:

uA = u(i, j − 1, k) + u(i+ 1, j − 1, k) + u(i+ 1, j, k) + u(i, j, k)
4 , (3.33)

uB = u(i, j, k) + u(i+ 1, j, k) + u(i+ 1, j + 1, k) + u(i, j + 1, k)
4 , (3.34)
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uC = u(i, j, k − 1) + u(i+ 1, j, k − 1) + u(i+ 1, j, k) + u(i, j, k)
4 , (3.35)

uD = u(i, j, k) + u(i+ 1, j, k) + u(i+ 1, j, k + 1) + u(i, j, k + 1)
4 . (3.36)

When calculating the ξ− η− and ζ− derivatives of u along the j family of grid lines
(e.g. on face (i, j + 1/2, k)), the u derivatives in the η direction are easily computed
using cell centre data, however, the ξ and ζ derivatives must be determined as seen
above, expressing the values as function of values at surrounding cell centres. The
same holds for estimation of the ξ− η− and ζ− derivatives of u along the k family of
grid lines (e.g. on face (i, j, k + 1/2)), where the u derivatives in the ζ direction are
computed using directly cell centre data, and the ξ and η derivatives are determined
expressing the values as function of values at surrounding cell centres.

The ξ− η− and ζ− derivatives of v and w velocity components along the i, j and
k family of grid lines can be estimated using the same approach as shown above.

The metrics dξ/dx, dξ/dy, dξ/dz, dη/dx, dη/dy, dη/dz, dζ/dx, dζ/dy and dζ/dz
at the face centers are written as functions of the derivatives of the inverse coordinate
transformation, and then discretized using second order finite–differences. Interested
reader may refer to [104], where the detailed derivation is provided.

Similarly as for the first derivatives of the velocity vector (∇u), the first derivatives
of the temperature (∇T ), turbulent kinetic energy (∇k), and specific dissipation rate
(∇ω) can be written as:

dT

dx
= dT

dξ

dξ

dx
+ dT

dη

dη

dx
+ dT

dζ

dζ

dx
, (3.37)

dT

dy
= dT

dξ

dξ

dy
+ dT

dη

dη

dy
+ dT

dζ

dζ

dy
, (3.38)

dT

dz
= dT

dξ

dξ

dz
+ dT

dη

dη

dz
+ dT

dζ

dζ

dz
, (3.39)

dk

dx
= dk

dξ

dξ

dx
+ dk

dη

dη

dx
+ dk

dζ

dζ

dx
, (3.40)

dk

dy
= dk

dξ

dξ

dy
+ dk

dη

dη

dy
+ dk

dζ

dζ

dy
, (3.41)

dk

dz
= dk

dξ

dξ

dz
+ dk

dη

dη

dz
+ dk

dζ

dζ

dz
, (3.42)

dω

dx
= dω

dξ

dξ

dx
+ dω

dη

dη

dx
+ dω

dζ

dζ

dx
, (3.43)

dω

dy
= dω

dξ

dξ

dy
+ dω

dη

dη

dy
+ dω

dζ

dζ

dy
, (3.44)

dω

dz
= dω

dξ

dξ

dz
+ dω

dη

dη

dz
+ dω

dζ

dζ

dz
. (3.45)

Let us now consider the discretization of the viscous stresses which appear in mo-
mentum equation given by Eqn. (2.2). Viscous stresses need to be discretized on cell
faces of each control volume. The net flux of the viscous fluxes on the cell i,j,k in the
x–direction is the following:

[(τxxnx + τxyny + τxznz)∆S]i+1/2,j,k + [(τxxnx + τxyny + τxznz)∆S]i−1/2,j,k+
[(τxxnx + τxyny + τxznz)∆S]i,j+1/2,k + [(τxxnx + τxyny + τxznz)∆S]i,j−1/2,k+
[(τxxnx + τxyny + τxznz)∆S]i,j,k+1/2 + [(τxxnx + τxyny + τxznz)∆S]i,j,k−1/2.

(3.46)
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In y–direction we need to compute:

[(τxynx + τyyny + τyznz)∆S]i+1/2,j,k + [(τxynx + τyyny + τyznz)∆S]i−1/2,j,k+
[(τxynx + τyyny + τyznz)∆S]i,j+1/2,k + [(τxynx + τyyny + τyznz)∆S]i,j−1/2,k+
[(τxynx + τyyny + τyznz)∆S]i,j,k+1/2 + [(τxynx + τyyny + τyznz)∆S]i,j,k−1/2.

(3.47)

And finally the expression for z–direction is the following:

[(τxznx + τyzny + τzznz)∆S]i+1/2,j,k + [(τxznx + τyzny + τzznz)∆S]i−1/2,j,k+
[(τxznx + τyzny + τzznz)∆S]i,j+1/2,k + [(τxznx + τyzny + τzznz)∆S]i,j−1/2,k+
[(τxznx + τyzny + τzznz)∆S]i,j,k+1/2 + [(τxznx + τyzny + τzznz)∆S]i,j,k−1/2.

(3.48)

The same discretization procedure applies to other entries of viscous flux vector, given
by Eqn. (2.46).

Discretization of the turbulent source terms has been done following the same proce-
dure as for the diffusive fluxes. However, there is an important difference, flow variables
required to evaluate the source terms of k and ω are averaged at cell face, whereas the
Cartesian derivatives of the flow velocity are determined at the cell centers, using the
same approach as for the diffusive fluxes.

3.2 Calculation of cell face velocities
The velocity of the cell faces ub can be calculated in many different ways. Various
formulations based on the grid motion types are presented in [105]. If the location
of the grid in inertial frame is known as a function of time, the usual approach is to
calculate ub explicitly at the cell–face center. However, while using this approach, the
governing equations in non–inertial frame may no longer maintain global conservation.
The ub, which appears in the source terms of governing equations in non–inertial frame
(2.55), makes the URANS and RANS equations non–conservative if the geometric
terms as not evaluated properly [84].

The continuity equation means that for the steady flow the following condition
needs to be satisfied: ∮

S
ρu · ndS = 0. (3.49)

By considering a uniform flow and to avoid introducing numerical errors, the following
condition must be satisfied for every cell:

6∑
k=1

(nA)k = 0′, (3.50)

where the symbol k represents the six cell faces of the control volume. The condition
is satisfied by evaluating the cell face normals and their area with the cross product of
the two diagonal vectors, where each diagonal is perpendicular to the surface normal.
Due to the rotation of the coordinate system, the following condition must be satisfied:∮

Sr
ρ(ur − Ω× ra) · nrdSr = 0. (3.51)

By considering a rotating grid through a uniform flow and to avoid introducing nu-
merical errors due to the rotation of the grid, the following equation must be valid for
every cell in the computational domain:

6∑
k=1

((Ω× ra) · nA)k = 0′. (3.52)
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If this condition is not satisfied, the governing equations are no longer conservative,
and this may introduce numerical errors into all equations. To satisfy Eqn. (3.52) we
may define the moment of the area vector for each cell–face as in [105]:

M =
∮
Sr

ra × ndSr. (3.53)

Once the area moment vector is normalized by the cell face area:

M′ = M
A
, (3.54)

it can be used for the calculation of the cell faces ub:

ub = Ω ·M′. (3.55)

The conservation of governing equations is now assured.

Figure 3.3: Sketch of a hexahedral cell.

For evaluation of M the approach as in [85, 105] has been adopted. Figure 3.3 depicts
a hexahedron defined by eight vertices with edges denoting ξ, η and ζ directions. The
ξ–face surface vectors are S1562 and S4873. Surface area can be calculated as the vector
product of the two diagonals, let us write the expression for the former surface vector:

S1562 = 1
2(r6 − r1)× (r5 − r2), (3.56)

where ri, i = 1, 8 is the position vector of a point in space. Inserting the expression
above into Eqn. (3.53) we obtain:

M1562 =
∫

1562
r1562 × S1562, (3.57)

where:
r1652 = 1/4(r1 + r6 + r5 + r2). (3.58)

Such expression of area moment results in non–zero sum over a cell and is therefore
not well defined for computing area moment. For the sum over a cell to be zero, the
area moment must be obtained by dividing the cell–face along one of the diagonals. In
this case Eqn. (3.57) is modified in such way:

M1562 =
∫

1562
r165 × S165 + r126 × S126, (3.59)
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where,
S165 = 1

2(r6 − r1)× (r5 − r1),

S126 = 1
2(r2 − r1)× (r6 − r1),

(3.60)

and
r165 = 1/3(r1 + r6 + r5),
r126 = 1/3(r1 + r2 + r6).

(3.61)

The expression given by Eqn. (3.59) is well suited for the computation of the area
moment and it satisfies the discretized geometric identity of Eqn. (3.52).

3.3 Cut boundary condition

Figure 3.4: Block, surrounded by the two rows of halo cells representing boundary

conditions.

COSA is using structured grids with multi–block topology. The computational
domain is decomposed into smaller structured subdomains called blocks. Generally, the
physical solution inside each block will depend on one or multiple neighbouring blocks,
therefore, data structure which allows an efficient exchange of information between
blocks is provided. Such exchange is done through the interface between the blocks,
called grid cut [66, 106].

The structure of cut boundary condition is quite complex, as the different blocks
require all relevant information at their boundaries at all times. In order to exchange
these information efficiently, two rows of halo cells are added to the computational
domain, as depicted in Fig. 3.4. Two rows are needed to assure second order spatial
accuracy. As the grid points of the structured grids are uniquely identified by the indices
(i, j, k), the boundary of each block face can be divided into various non–overlapping
patches, as depicted in Fig. 3.5. This approach is very flexible, as it enables declaration
of multiple different boundary conditions per block face. It also simplifies balancing
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Figure 3.5: Representation of three different boundary patches on boundary face.

the grid blocks in the computational domain, which is a very important aspect for
parallel computing.

Figure 3.6: Sectional slice of j–k plane through the interior domain and halo cells of

patch 1.
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The treatment of the cut condition involves data exchange between two neighbour-
ing blocks. The boundary between two blocks must be transparent to the flow, and
all variables across the boundary should be continuous. The data exchange, which is
done across the patches, is a two step operation, involving two neighbouring blocks
(e.g. block1 and block2). As depicted in Fig. 3.6, halo cells of block1 are located in
such way that they overlap the corresponding cells in the interior domain of block2.

Interested reader is referred to [66], where various types of computational grids and
halo cells in CFD are described.

3.4 Steady and multi–frequency periodicity bound-

ary condition
For some particular applications when the flowfield is periodic, it is sufficient to simu-
late the flow only within one repeating region of the whole computational domain [66].
The interaction of repeating region with the remaining physical domain is provided
through the periodic boundary conditions. Herein we focus on rotational periodicity,
where one periodic boundary is transformed into the other periodic boundary by the
coordinate rotation. Figure 3.7 represents one repeating region or sector, which de-
picts two rotationally periodic boundaries, (boundary 1 and boundary 2 ), where θ is
the rotation angle between these two periodic boundaries, and Ω is constant angular
velocity given by Eqn. (2.54). For this work, we have assumed that the rotational

Figure 3.7: Sketch of a sector, with two periodic boundaries.
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axis coincides with the z–axis, and all grid nodes are matching. The data exchange
between two periodic blocks is done across the patches on the block surfaces, and it
follows exactly the same principle that involves cut boundary condition.

Steady periodicity boundary condition depends only on the rotation of the coordi-
nate system. This means that all scalar quantities (density, pressure, turbulent kinetic
energy, and specific dissipation rate) are invariant with respect to the coordinate rota-
tion. When such variables are copied from the interior domain of first block to halo cells
of second block and vice versa, they remain unchanged. Moreover, all vector quantities
(velocity or gradients of scalars) need to be transformed when data exchange between
two periodic blocks takes place. The rotation matrix of transformation is the following:

R̃ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (3.62)

The angle between the two periodic boundaries is positive in the counter–clockwise
direction. The assumption is made based on the usage of right–handed coordinate sys-
tem. The velocity vector transformation from periodic boundary 1 (uPB1) to periodic
boundary 2 (uPB2) would therefore be the following:

uPB2 = uPB1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (3.63)

The multi–frequency periodicity boundary condition allows to simulate single blade
sector even for the unsteady flows in frequency–domain [107]. Hence, computational
saving grows linearly with number of blades. This allows one to significantly reduce
the size and cost of the computation. Periodic flows in turbomachinery applications
satisfy a certain spatial periodicity in addition to temporal periodicity, meaning that
the flow about one blade is the same as the flow about neighbouring blade with a time
shift. Let us consider the rotor with 3 blades (Nb = 3) at time t and time t + ∆t,
depicted in Fig. 3.8, where:

∆t = T

Nb

. (3.64)

T represents total time required for one revolution. Rotor sees one revolution periodic
perturbation. Blade 2 experiences same flow conditions of blade 3 every ∆t time units,
therefore, one can write the following condition:

u(θ + θ0, t) = u(θ, t+ ∆t), (3.65)
where

θ0 = 2π
Nb

. (3.66)

Assume that u(θ, t) is expressed as a truncated Fourier series, same as Eqn. (2.64):

u(θ, t) = û0(θ) +
NH∑
n=1

(û2n−1(θ)cos(nωt) + û2n(θ)sin(nωt)) . (3.67)

These boundary conditions must be applied in the frequency–domain. Once applied,
HB solution Fourier coefficient variable û is then transformed along the periodic bound-
aries, using Eqn. (2.74), to find the time–domain representation of HB Fourier coeffi-
cient ũ. The boundary condition that needs to be applied in frequency–domain is the
following:

û0(θ + θ0) = û0(θ),
û2n−1(θ + θ0) = û2n−1(θ) cos(nθ0) + û2n(θ) sin(nθ0),

û2n(θ + θ0) = −û2n−1(θ) sin(nθ0) + û2n(θ) cos(nθ0).
(3.68)



3.5. Fully coupled integration of steady equations 51

Figure 3.8: Rotor with 3 blades at time t and ∆t.

3.5 Fully coupled integration of steady equations
After all spatial discretization has been done, a numerical solution algorithm converts
the system of PDEs to a much larger coupled system of nonlinear algebraic equations.
This system needs to be solved. For the steady problems it may be written in the form:

RΦ(Q) = 0, (3.69)

where the array RΦ represents the residual, and the array Q unknown flow variables.
The array Q is defined at the Ncell cell centers. It can be viewed as Ncell subarrays,
where each subarray stores the NPDE flow unknowns at a given cell center, resulting in
its length (NPDE ×Ncell). The array RΦ which stores the cell residuals, has the same
structure as Q. The NPDE residuals for each cell are obtained by adding the convective
fluxes Φ∗c,f , the diffusive fluxes Φ∗d,f and the associated source terms.

The system of nonlinear algebraic equations above can be solved by time–stepping
numerical method. In general, when solving the steady governing equations, the time–
derivative terms are omitted, as represented by Eqn. (3.69). However, when solving
the steady equations, the time–derivatives of the unknown flow variables may be re–
introduced in order to use the time–stepping method as an effective iterative method.

One of the popular multistage time–stepping methods to solve RANS equations is
an explicit Runge–Kutta method [108], where several stages are used to advance the
solution and the residual is evaluated at intermediate stages. Runge–Kutta coefficients
are used to weigh the residual at each stage. Such time–stepping scheme may be em-
ployed together with any spatial discretization scheme. Even though Runge–Kutta
method is explicit, it features large stability bound at the expense of increased cost
per time step. It may therefore be considered to have some characteristics of implicit
schemes. Implicit character is further obtained by the convergence acceleration tech-
niques such as local time stepping, implicit residual smoothing and multigrid, which
are explained in Appendix B. Most commonly, this behaviour is associated with in-
creased transfer of information across the numerical grid during a pseudo–time step,
which is a characteristic of implicit methods.
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For this work, the RANS and the turbulence closure equations are solved with
a time–marching algorithm using the so–called strongly coupled approach [109, 110,
111], where the two sets of equations are time–marched simultaneously. The unknown
flow vector Q is solved iteratively by computing Eqn. (3.69). Re–introduced time–
derivative, which may be called a fictitious time–derivative, is added to the system of
equations, given by Eqn. (3.69), and is premultiplied by the cell volumes:

V
∂Q
∂τ

+ RΦ(Q) = 0, (3.70)

where τ denotes fictitious time and V are the grid cells volumes. V is the diagonal
matrix, which may be viewed as a block–diagonal matrix of size (Ncell × Ncell) with
each block being the identity matrix of size (NPDE ×NPDE) multiplied by the volume
of the cell the block refers to. Fictitious time–derivative is discretized with a four–stage
Runge–Kutta scheme, where the numerical solution is marched in pseudo–time until
the steady–state solution is achieved. The acceleration methods may greatly enhance
the convergence rate and improve the stability of Runge–Kutta scheme. Therefore,
local time–stepping, variable–coefficient central implicit residual smoothing and a full–
approximation scheme multigrid algorithm were all used for this work.

Steady Runge–Kutta smoother reads:

W0 = Ql

Wm = W0 − αm∆τV −1LIRS[RΦ(Wm−1) + fMG]
Ql+1 = WNS,

(3.71)

where ∆τ denotes the local pseudo–time–step, l is the Runge–Kutta cycle counter, and
m the Runge–Kutta stage index. αm represents the mth Runge–Kutta coefficient. The
symbol LIRS denotes the implicit residual smoothing operator, and fMG denotes the
multigrid forcing function, which is non–zero when the smoother (3.71) is used on a
coarse level after a restriction step.

When solving the RANS and k − ω SST equations with the smoother defined by
Eqn. (3.71) the convergence rate of the solution process is very poor. This is due to
the stiffness of the iterative operator caused by the large negative source terms of the
turbulence model, particularly −DK and −Dω, given by Eqn. (2.51). To overcome
this problem, a semi-implicit integration strategy may be used. This is done by eval-
uating the negative source terms of the turbulence equations at stage m rather than
at stage m − 1. This approach was adopted in [109] in order to develop an efficient
strongly coupled MG iteration for the compressible RANS equations coupled with the
standard k − ω model. Authors of [109] also treat implicitly the negative source term
proportional to −∇ · v when the velocity divergence is positive. The turbulent multi-
grid integration implemented for this work, uses a similar approach but also presents
important differences with the adopted approach of [109]. The differences are primar-
ily due to the modelling differences of the standard k − ω and the k − ω SST models.
The negative source terms of the k and ω equations which are treated implicitly in
the Runge–Kutta smoother, lead to the following two iterations to update ρk and ρω,
respectively:

(1 + αm∆τ∆+)(ρk)m = (ρk)0 + αm∆τ{∆+(ρk)m−1 − β∗[(ρkω)m − (ρkω)m−1]
− V −1Rk(Wm−1)},

(3.72)

(ρω)m = (ρω)0 − αm∆τ{γ∆+

νT
[(ρk)m − (ρk)m−1] + β[(ρω2)m − (ρω2)m−1]

+ V −1Rω(Wm−1)}.
(3.73)
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Please note, the implicit residual smoothing operator and the multigrid forcing term
have been temporarily omitted in these two equations for simplicity. The symbols
Rk and Rω denote the complete cell residual arrays of ρk and ρω respectively, and
∆+ = max(0, 2

3∇ · v). Equations (3.72) and (3.73) form a system of two quadratic
equations in the unknowns (ρk)m and (ρω)m. Linearising the quadratic terms, a system
of two linear equations in the unknowns (ρk)m and (ρω)m is obtained. The Runge–
Kutta smoother for updating both the RANS and the k − ωSST variables can be
written as:

W0 = Ql

(I + αm∆τA)Wm = W0 + αm∆τAWm−1

−αm∆τV −1LIRS[RΦ(Wm−1) + fMG]
Ql+1 = WNS.

(3.74)

The matrix A has size (Ncell×Ncell) and is block–diagonal. The only non–zero entry of
each (NPDE ×NPDE) block on the diagonal of A are those of the bottom right (2× 2)
partition. The expression of matrix A is as follows:

A(6 : 7, 6 : 7, i, j, k) =
[

(∆+ + β∗ω) β∗k
0 γ∆+ + 2βω

]
. (3.75)

Matrix A is upper triangular, and as a consequence ρω equation can avoid costly matrix
inversions by updating ρω and ρk equations in succession. Further detail on this aspect
is described in [26].

During the update process of Runge–Kutta smoother, ω is limited with a minimum
threshold value. This value is based on the production term Pd of Eqn. (2.50), as
in [109]. In this case unphysically low values of ω can be avoided. Furthermore,
when using multigrid (section B.0.3), the residuals of the ω equation are limited before
being restricted to a coarser grid as proposed in [109]. The turbulent eddy viscosity is
computed on each grid level, whereas the production terms Pd and ∆+ are computed
only on the finest grid level and are restricted on the coarser levels by the restriction
operator. In multigrid, flow solution is also updated by the prolongation operator,
therefore the prolongations of k and ω corrections are limited as proposed in [111].

3.6 Fully coupled integration of time–domain equa-

tions
Typical technique to solve large coupled system of nonlinear algebraic equations for
unsteady flows is called dual time–stepping, introduced in [112]. Using this method,
the physical time–derivative term which appears in URANS equations, regardless the
frame of reference (2.43) or (2.55), is discretized using a second order backward finite–
difference. Moreover, at each new physical time–level n+ 1, the whole set of nonlinear
algebraic equations is solved using an explicit approach, with the same integration
technique as used for steady problems, where a fictitious time–derivative has been
introduced. The second order backward finite difference discretization of the physical
time–derivative of the unknown flow state, and the introduction of the fictitious time
derivative (dQ/dτ), yield the following expression:

V
dQ
dτ

n+1
+ V

3Qn+1 − 4Qn + Qn−1

2∆t + RΦ(Qn+1) = 0. (3.76)
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The array Q which stores the unknown flow variables, can be viewed as made up
of Ncell subarrays, each of which stores the NPDE flow unknowns at each particular
physical time. Its overall length is (NPDE × Ncell). The array of the cell residuals
RΦ has the same structure as Q. The diagonal matrix V , which stores the volumes
of the grid cells, may be viewed as a block–diagonal matrix of size (Ncell × Ncell),
with each block being the identity matrix of size (NPDE × NPDE) multiplied by the
volume of the cell the block refers to. Please note that the matrix V is independent
of the physical time–level denoted by the superscripts n+1,n and n−1, as for this work
only rigid–body grid motion has been considered. The symbol ∆t denotes the user–
given physical time–step. Equation (3.76) can therefore be viewed as a system of
(NPDE ×Ncell) ordinary differential equations in which the unknown is Qn+1, the flow
state at time–level n+ 1. The calculation of Qn+1 is performed in the same manner as
for the steady problems, iteratively by discretizing the fictitious time–derivative with
a four–stage Runge–Kutta scheme, and marching the equations in pseudo–time until
a steady state is achieved. Such steady–state is the flow solution for each particular
physical time step. Also, for this case the convergence rate is greatly enhanced by
using local time–stepping, variable–coefficient central implicit residual smoothing and
a full–approximation scheme multigrid algorithm.

When the physical time–step ∆t becomes significantly smaller than the pseudo
time–step ∆τ , the solution procedure may become unstable. This was reported in [113],
and thoroughly investigated in [114]. In [114] it was demonstrated that the instability
is caused by the Qn+1 term. The study [114] elegantly solves the stability problem by
treating the Qn+1 term of the physical time–derivative within the Runge–Kutta integra-
tion process implicitly. This strategy has also been adopted for this work. Multi–stage
Runge–Kutta scheme, which discretizes the fictitious time–derivative of Eqn. (3.76) and
considers the Qn+1 term at stage m rather than at stage (m − 1) yields the following
unsteady Runge–Kutta smoother:

W0 = Ql

[I + αm∆τ(1.5/∆tI + A)] Wm = W0 − αm∆τV −1[RΦ(Wm−1)
+V (−2Qn + 0.5Qn−1)/∆t]

Ql+1 = WNS.

(3.77)

As for steady Runge–Kutta smoother, m is the Runge–Kutta stage index, αm is the
mth Runge–Kutta coefficient and l is the Runge–Kutta cycle counter. The symbol Ql

is the shorthand for Qn+1
l . As shown by [114], the stability of algorithm (3.77) is no

longer dependent on the ratio ∆τ/∆t. However, the formulation above is still unsuit-
able when also implicit residual smoothing and multigrid acceleration techniques are
employed. Both techniques would have to be applied to a residual term that vanishes
at convergence, which is presently not the case. This can be solved by modifying the
algorithm in the following way:

W0 = Ql

[I + αm∆τ(1.5/∆tI + A)] Wm = W0 + αm∆τ(1.5/∆tI + A)Wm−1

−αm∆τV −1LIRS[RΦ(Wm−1) + V (1.5Wm−1 − 2Qn + 0.5Qn−1)/∆t+ fMG]
Ql+1 = WNS.

(3.78)

where LIRS denotes the implicit residual smoothing operator, and fMG is the multi-
grid forcing function. The algorithm given by Eqn. (3.78) is based on a point–implicit
Runge–Kutta (PIRK) integration of the time–dependent NS equations. By setting ∆τ/∆t =
0, the standard fully explicit Runge–Kutta (FERK) integration method is retrieved.
The turbulent PIRK integration significantly improves the stability of the fully cou-
pled integration approach. Therefore, much larger CFL numbers may be selected than
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with the standard FERK integration. Consequently, this yields significant reductions
of runtimes.

3.7 Fully coupled integration of harmonic balance

equations
The major difference of HB RANS equations with respect to the TD RANS equations,
is that the physical time–derivative of the TD equations is replaced by a volumometric
source term, which is proportional to ω. Such set of nonlinear algebraic equations,
resulting from the space–discretization of the system of equations 2.81, may be solved
with the same technique as used for steady and time dependent problems.

The general pattern of series of computations may be written as:

do ih = 0, nharms
do k = 1, ncellk

do j = 1, ncellj
do i = 1, ncelli

Perform computations.
end do

end do
end do

end do

ncelli, ncellj and ncellk respectively represent the number of cells in the i, j and
k directions and nharms is the number of complex harmonics. When steady and TD
solvers are used the nharms is zero, whereas, when HB solver is used, the nharms is
larger than zero. Therefore, ih represents the flow field snapshot index which adds an
extra loop layer to routines of the HB solver, increasing the number of dimensions of
most arrays by one. For some arrays an extra dimension can be avoided in order to
spare some memory. Four additional arrays need to be allocated to calculate and store
matrix D defined by Eqn. (2.80), which is done only at the beginning of the calculation.
Moreover, an array is also allocated to store the HB source term defined below. This
source term represents the so–called HB overhead. The memory footprint of the HB
solver is thus about 2NH + 1 times that of the steady solver. Each flow field snapshot
uses about the same amount of memory as the steady solver.

Steady Runge–Kutta smoother, used for computing the sought HB flow solution QH ,
solves the system of algebraic equations:

RgH(QH) = ωVHDHQH + RΦH(QH) = 0. (3.79)

The array QH , which stores the unknown flow variables, is constructed of Ncell sets of
(2NH + 1) flow states. Each flow state refers to the physical times, defined as equally
spaced points over one period, given by Eqn. (2.71). Therefore, the array QH can be
written in the following manner:

QH = [Q′1 Q′2 . . .Q′Ncell ]
′, (3.80)

where the array Qi, with i = 1, Ncell, has the length [NPDE× (2NH +1)]. The elements
of Qi array contain the flow state at various positions of the equally spaced points over
one period. Therefore, the first NPDE corresponds to the beginning of period t = t0,
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and the last NPDE elements contain the flow state at t = t2nH+1, all the other NPDE

elements are in between these two points. The structure of the arrays RgH and RΦH
is the same as that of QH . A subarray (RΦ)i is made up of a (2NH + 1) states of
the cell residuals associated with the convective and diffusive fluxes, and the turbulent
source terms, at the equally spaced physical times given by Eqn. (2.71). The residual
subarray (Rg)i includes also the source term ωViDQi, where Vi is the product of the
volume of the ith grid cell and INeqs , the identity matrix of size (Neqs × Neqs) with
Neqs = [NPDE × (2NH + 1)]. The diagonal matrix VH is a block–diagonal matrix with
blocks given by the matrices Vi defined above, and the block–diagonal matrix DH is
defined as DH = INcell ⊗D.

The HB–counterpart of the turbulent steady smoother 3.74 is as follows:

W0
H = (QH)l

[I + αm∆τHAH ] Wm
H = W0

H + αm∆τHAHWm−1
H −

αm∆τHV −1
H LIRS,H [RgH (Wm−1

H ) + fMG,H ] , m = 1,M
(QH)l+1 = WM

H .

(3.81)

There is one major difference with respect to steady smoother, the Ncell subarrays of
pseudo time ∆τH have now the length (2NH + 1) and they all contain the local time–
steps for the (2NH + 1) flow states. The structure of the HB multigrid forcing term
fMG,H is the same as that of QH . The matrix AH may be viewed as a block–diagonal
matrix of the dimensions (Ncell ×Ncell), where each block AH,i holds the same block–
diagonal structure. The size of AH,i is (Neqs×Neqs) where Neqs = [NPDE× (2NH + 1)].
(2NH + 1) non–zero (NPDE × NPDE)–entries of matrix AH constructs the matrices
AH,i for each particular flow state, referring to the specific time of the period, given
by Eqn. (2.71). The structure of each block AH,i is the same as that of the matrix A
in the turbulent steady smoother defined by Eqn. (3.74). Implicit residual smoothing
HB operator LIRS,H features the same block structure as that of AH .

When using the expression of Eqn. (3.75) for the update of ρk and ρω equations,
the matrix premultiplying the term Wm

H at the second line of algorithm defined by
Eqn. (3.81) has such structure, that for each grid cell, the update of the [NPDE×(2NH+
1)] unknowns does not require any matrix inversion. It is also noted that algorithm
defined by Eqn. (3.81) uses a FERK treatment of the HB source term ΩVHDHQH .
Based on the observations of the PIRK over the FERK integration for turbulent TD
flow problems solved with the RANS and SST equations [26], it is anticipated that
larger CFL numbers may be selected, when a point–implicit treatment of the HB source
term [55] is used, thus further increasing the convergence rate of the HB equations. The
HB PIRK integration, however, significantly increases the computational cost of each
Runge–Kutta stage, because, for each grid cell, the update of the [NPDE × (2NH + 1)]
unknowns requires the inversion of a matrix of size [(2NH + 1) × (2NH + 1)]. The
benefit of this approach depends on whether higher CFL numbers would mean faster
convergence, and if this outweights the additional burden of the matrix inversion. It
depends on case to case basis, whether the use of the HB FERK or PIRK integration
is more beneficial. For all simulations reported in this thesis, the HB PIRK integration
did not enable the use of CFL numbers higher than those used by the HB FERK
approach of algorithm defined by Eqn. (3.81), therefore, only HB FERK approach has
been used.

It should also be highlighted that the ratio of the computational cost of one HB
FERK multigrid cycle and that of one steady multigrid cycle grows in a slightly su-
perlinear fashion with NH , due to construction of the HB source term VHDHQH . This
overhead, however, remains relatively small for low values of NH , as highlighted in the
numerical tests provided in subsection 6.2.5.



Chapter 4

Code parallelization

This chapter explains the details of the parallelism used by the COSA CFD code. The
chapter begins with an outline of the general definition of High–Performance Comput-
ing and its role in CFD. The definition of parallelism, a brief description of different
types of HPC machines, and parallel programming approaches are also provided. It
continues with a general description of the MPI standard, and explains its usage in
COSA. Furthermore, it also presents the general pattern of serial computations of
COSA, and the most straightforward way to parallelize such pattern when using MPI.
The assignment strategy of decomposed domain to MPI processes is explained, and
the advantages and disadvantages of present approach are addressed. Point to point
and collective communications are then described, as well as blocking or non–blocking
communication protocols. It is precisely explained which MPI library routines are used
for communications in COSA implementation. The chapter continues with the descrip-
tion of parallel MPI input/output capabilities and its role in COSA. Herein, different
formats used for the input and output files of COSA are also described. The chapter
is concluded with an outline of the two approaches for measuring parallel scalability
(weak and strong scaling). Following the description of the strong parallel scalability
approach, the results of such analysis, performed on the newly developed HB solver of
COSA, are reported.

The parallel implementation of the 2D version of COSA has been primarily done at
EPCC at the University of Edinburgh, therefore, the structure of the newly developed
3D solvers, by the author of this work, resembles the 2D version. All approaches that
have been described in the following sections apply also for the 2D version of COSA.
Parallel MPI input/output has also been restructured in this work, and is a shared
contribution between EPCC and the author.

4.1 High Performance Computing
High–performance computing (HPC) generally refers to the development and use of
supercomputers, parallel processing algorithms, and related software. It plays an im-
portant role in many aspects of modern society, and is without doubt key in enabling
fast technological growth of already technologically advanced countries. HPC appli-
cations are widely used in numerous areas of academic, industrial and government
sectors. In very simple terms, HPC is required to perform computations faster than
using a single processor, by simultaneously solving a problem on multiple processors.
It is driven by the need to obtain faster solutions, and therefore to tackle larger and
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more complex scientific and engineering problems, which can not be solved without
parallelism. CFD represents one of the areas, where massive parallelism is a must in
order to simulate and explore complex fluid dynamics problems. The rise in perfor-
mance and capability of HPC machines in the past two decades has gone hand in hand
with a rapid development of CFD technology. Figure 4.1 depicts exponential growth of
supercomputing power of the most powerful commercially available computer system
in the world (#1), the 500th most powerful commercially available computer system
(#500) and the sum of supercomputing power for 500 most powerful commercially
available computer systems [7]. The symbols represent the actual growth of the com-
puting power, whereas the solid lines represent the future projections. The present
most powerful HPC machines are delivering performance in the petaflop range, and
according to the projections, the exascale range may be reached even before 2020, as
shown in Fig. 4.1. The fast growth of computing power has enabled RANS CFD to
be used as an accurate and fast high–fidelity design tool for various engineering appli-
cations, in order expensive experimental testing could be minimised. If the growth of
computational power will continue with the same pace as in the past two decades, it
will enable to deal with many complex fluid dynamics problems, which are currently
thought to be impossible to solve with CFD on current HPC machines [115].

Figure 4.1: Growth of supercomputing power. Taken from [7].
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Parallelism can be divided into two different types. The first is called instruction
level parallelism, which is outside explicit user control. It is based on the compiler
and the central processing unit (CPU) decisions, which instructions may be processed
simultaneously. The second is the sort of parallelism, where multiple instructions
are handled by multiple processors and usually explicitly scheduled by the user. In
CFD we are particularly interested in the latter type of parallelism, the hardware
that can be used with it and the programming instructions that enables it. There
are two major reasons why to use parallelism. Using single core calculations for CFD
applications is usually too slow to perform the required tasks in a reasonable amount of
time, parallelism is used to obtain higher execution speeds, and thus reduce runtimes.
Furthermore, usually when handling complex, computationally large problems, the
available memory of a single system may be insufficient, therefore, parallelism enables
access to more memory [116].

HPC machines, sometimes called supercomputers, can be referred to parallel com-
puters, which are machines with more than one CPU that can be set to work on the
same problem. Michael Flynn taxonomy [117] describes the amount of simultaneous
control and data streams present in a parallel architecture. There are two dominat-
ing concepts in HPC today, the single instruction multiple data (SIMD) and multiple
instruction multiple data (MIMD). In SIMD concept, multiple processing units work
on the same instruction (same operation), but each operates on its own data item.
Conceptually, the data to be operated on must be distributed over multiple processing
units. All the processing units must be instructed to perform the same operations on
their piece of the data. The performance improvements are obtained by operating sin-
gle instruction on multiple pieces of data at once by multiple processing units. In SIMD
concept, each processor is controlled by a single central control unit. Typical exam-
ples of SIMD concept are vector processors and graphics processing units (GPUs). In
MIMD concept, multiple processors function asynchronously and independently. Dif-
ferent processors can simultaneously operate independent application programs. This
enables one to have more freedom in the undertaken parallelisations, distributing the
data as in the SIMD approach, or distributing separate work tasks, as required by the
problem being tackled. Typical examples for MIMD paradigm are the shared mem-
ory and distributed memory parallel computers. Shared memory parallel computer
consists of shared physical address space, which may be simultaneously accessed by
all CPUs of that computer. There are two types of shared memory systems, uniform
memory access (UMA) machines, where all physical memory locations are shared uni-
formly between all processors. Second type is called on cache–coherent nonuniform
memory access (NUMA), where memory is physically distributed but logically shared.
The memory access in this case is time dependent on the memory location relative
to the processor. Its own local memory may be accessed much faster than non–local
memory. Distributed memory parallel computers consist of a number of parallel com-
puters, which are all interconnected with a network system. HPC machines often use
an advanced network such as Gigabit Ethernet or InfiniBand. It is currently a com-
mon practice to build large distributed memory parallel computers, using small shared
memory parallel computers. In this case, the individual nodes of the distributed mem-
ory system are featuring a hybrid parallel system, were each node is a shared memory
computer, but the whole system is a distributed parallel machine [115, 118].

Parallel programming, with respect to serial programming, introduces additional
sources of complexity. It is largely dependent on software tools and environments.
Furthermore, additional problems such as communication, data partitioning and dis-
tribution, load–balancing, deadlocks, etc. are introduced. There are two main par-
allelisation approaches. The first approach is based on implicit parallelism, adopted
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by parallel languages (e.g. SISAL [119], PCN [120]) and parallelizing compilers. In
this approach user does not specify compiler instructions and control the calculations
and data distribution. Second approach is based on explicit parallelism, where the
programmer is responsible for most of the parallelization such as task decomposition,
mapping tasks to processors, and communication structure. Much better efficiency of
parallel programming is obtained when using explicit parallelism, but it can be quite
a challenging task. Fairly simple and commonly used approach of explicit parallelism
is to write a set of compiler directives inside a sequential program, which indicate the
places where the program can be parallelized, and how the data should be distributed.
This is done in OpenMP [121], which is an extension to the programming languages
C/C++ and Fortran. Its main objective is the parallel execution of loops. OpenMP
works best with shared memory approach. Much more complex to program, but with
the ability to create programs that will run efficient on both shared memory and dis-
tributed memory parallel computers, are the approaches used in distributed memory
programming. One of the most important is Message Passing Interface (MPI) [122],
which is a standardised and portable message–passing system for C/C++ and Fortran.
As the vast majority of CFD programs require massive parallelism, MPI has been the
primary method for parallelising CFD codes. As new HPC machine architectures also
feature multi–cores and more levels of memory hierarchy, also hybrid parallelization
approach which uses MPI and OpenMP is quite commonly used [116, 123, 124, 125].

4.2 Parallel computing with Message Passing In-

terface
MPI is a parallel programming paradigm, in which data is moved from the address
space of one process to the address space of another process using communication
among processes. MPI is not a programming language or an implementation, it is a
specification for a library interface, for C/C++ and Fortran programming languages.
All operations are expressed as functions, subroutines, or methods, according to the
appropriate language bindings. The major goal of MPI is a degree of portability across a
variety of HPC machines, and to achieve high performance on any of the platforms. One
of the challenges of MPI was also to design an application programming interface (API),
which allows an efficient communication without excessive memory to memory copying,
and overlap of communication and computation. Furthermore, MPI offers reliable
communication interface, where communication failures are resolved by the underlying
communication subsystem. The semantics of the interface is language independent,
offering convenient C/C++ and Fortran bindings for the interface. MPI applications
can run on both distributed memory systems and the shared memory systems using
exactly the same implementation [122, 126].

Any MPI program starts with the call to the MPI library routine MPI_INIT, which
initialises the MPI execution environment, and completes with MPI_FINALIZE, which
terminates MPI execution environment. All library routines from MPI must be exe-
cuted between these two calls. Following the call to MPI_INIT, there is usually call to
MPI_COMM_SIZE, the operation which queries the number of MPI processes currently
running the program, and to MPI_COMM_RANK, which gives a unique identifier (or rank)
of the particular MPI process. The processes executed in the MPI model have sepa-
rate address spaces. Communication between two different processes works in such way
that a portion of first process’s address space is copied into second process’s address
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space. More precisely, first process execute a send operation and the second process
executes a receive operation. For this communication to be successful the minimum
amount of information that needs to be specified by the sending process, is the data
to be communicated and the destination (receiver rank) to send this data to. In very
simple terms, the data can be described by a starting address and length in the mem-
ory of the sending process. The minimum required information on the receiver’s side
is the address, space in local memory where the received data is to be placed, and the
identifier (rank) of the sender, so the receiving process can identify the process which
sent the message. The minimum specified information might be adequate for some
simple implementations, however, usually additional features also need to be specified.
One important additional parameter is the tag (a number identifying the message) of
the message, which allows a process to control which message it receives, thus, the
receive operation specifying a tag will complete successfully only when a sent message
with a matching tag arrives. Furthermore, the source or destination rank may also be
specified on a receive operation as an additional screening parameter, and the actual
length of the message received [127].

Let us examine the required information for send and receive operations more pre-
cisely. Firstly, as previously said, message buffers can be in very simple terms specified
by the address and length, however, additional constraints must be taken into account.
The message to be sent is usually not contiguous (stored linearly in memory), and
the information content of a message needs to be independent of how these values are
represented in various computers as collections of bits. MPI handles these constraints
in such way, that the message buffer is defined by a triple information, address, count
and datatype. Count describes number of elements of particular datatype (single pre-
cision real, double precision real, etc.) in buffer starting at particular address. This
offers great flexibility in the values of datatype. Secondly, families of massages may
be separated by the tag information for both send and receive operations. This gives
the program the possibility to match messages in an ordered way. All the messages
which do not have the desired tag are queued, until the program is ready to accept
them. Finally, processes which belong to groups (called communicators in MPI) must
be named. The processes within each group are identified by ranks. In an MPI im-
plementation all processes belong to an initial group. If a group contains n processes,
then the ranks are contiguous integers starting from 0 to n− 1. The notions of context
and group are combined in a communicator. Thus the source specified in a send or
receive operation always refers to the rank of the process in the group identified with
the given communicator. Let us now introduce basic send operation:

MPI_SEND(address, count, datatype, destination, tag, comm)

where the entries (address, count, datatype) describe count occurrences of items
of the form datatype starting at the data address. destination denotes the rank of
the process to send the data to, whereas tag is an integer used for message sorting, and
comm identifies a group of processes and a communication context. The basic receive
operation reads:

MPI_RECV(address, count, datatype, source, tag, comm, status)

where the additional argument status contains information about the actual message
size, source and tag (filled in when the message is received by the MPI routine). source
is the rank of the source of the message. Basic send and receive operations described
above are most fundamental feature of MPI standard. However, the MPI standard
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introduces many additional advanced features. One of them is collective communica-
tions, which are performed by all the processes in a communicator. They are used
either for the data movement operations, which rearrange the data among various pro-
cesses, or for collective computation operations, such as maximum, minimum, sum,
etc. Next, the MPI standard also features virtual topologies for convenience in pro-
gramming, debugging and profiling mechanisms, multiple communication modes which
include blocking and non blocking communications, support for parallel libraries which
are completely independent of serial code and are inter–operable with other libraries.
MPI can also run on heterogeneous networks, where the HPC machines may use dif-
ferent lengths and formats for various fundamental datatypes. Lastly, it is important
to stress that not every aspect of a MPI program is specified by the MPI standard.
There are many aspects which are left to the specific implementation, including process
startup, which gives flexibility in how a MPI program is executed, and specifies the
portability of the MPI program. Furthermore, the implementation may return many
more number of error codes than specified by the MPI standard. Also, the amount of
system buffering for messages and further issues, which may impact the performance,
are implementation dependant [127].

4.3 Data decomposition
In the multi–block approach, the computational domain is decomposed into several
smaller structured subdomains called blocks. Such grid topology represents a geometric
domain decomposition and it enables a natural way for MPI parallelisation. The general
pattern of serial computations of COSA within the code is the following:

do ib = 1, nblock
do ih = 0, nharms

do k = 1, ncellk
do j = 1, ncellj

do i = 1, ncelli
Perform computations.

end do
end do

end do
end do

end do

where nblock represents the number of blocks of the computational domain. ncelli,
ncellj and ncellk are respectively the number of cells in the i, j and k directions of
the particular block. nharms is the number of complex harmonics of HB simulations
defined in section 2.6. The parameter nharms is bigger than zero only when HB solver
is used, and is zero in all other simulation types. The most straightforward way to
parallelize the code with the structure represented above, is to assign each block (ib)
to individual MPI process. Or in case where more blocks than available MPI processes
exist, multiple blocks can be assigned to each MPI process. In order to map the
decomposition of blocks, the algorithm to match the blocks to MPI processes for any
number of blocks and MPI processes must be created. Such algorithm must also
combine any global information that is required on the simulation state.

The parallelisation of the HB solver is essentially the same as that of the steady
solver. There are two main differences with respect to the steady solver. The first
difference is that nharms is bigger than zero when the HB solver is used, which means
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there is an extra dimension in nearly all subroutines. The second difference is that
in the HB solver there is an additional HB source term, which does not exist in the
steady solver. The HB source term adds two extra dimensions with respect to standard
routine of the steady solver, because it consists of two nested loops of the flow field
snapshots. As mentioned above, each block (ib) is assigned to one or multiple MPI
processes, therefore, the structure of the parallel code with respect to the steady solver
does not change. However, the memory of the HB solver is about 2NH + 1 times that
of the steady solver, and about 2NH + 1 times the steady solver operations at one MPI
process are performed.

Figure 4.2: Simple representation of block assignment to MPI processes of a 2D com-

putational grid around cylindrical body.

It should be pointed out that the parallelisation using MPI library is closely linked
to the number of blocks in the computational domain, their size, and whether they
are balanced. If using a small number of large–sized blocks, the parallelization cannot
provide much benefit to computation. On the other hand, if using many small–sized
blocks, the communication between blocks may become higher than computational
load of each individual block. Therefore, the performance trade–off between block size
and number of blocks must always be found. In reality, the situation in which the
computational load of each individual block is lower than the communication between
blocks is very unlikely to arise, as extremely large number of exceptionally small–
sized blocks would be required. Presently, the assignment of blocks is done assuming
individual blocks are of equal size. The existing algorithm assigns equal or as equal
as possible number of blocks to each MPI process in a simple rank order, to ensure
that all processes handle exactly the same or a similar number of blocks. Figure 4.2
depicts a simple 2D representation of block ordering of a grid with 16 blocks. The
computational domain represents the flow past a cylindrical body, where all blocks
feature equal number of cells in both directions. The innermost circle represents a body
surface and the outermost circle depicts farfield boundary. If using 4 MPI processes,
based on the simple rank ordering of blocks, blocks B1 to B4 are assigned to process 0,
B5 to B8 to process 1, B9 to B12 to process 2, and finally B13 to B16 to process 3. If
all blocks in the computational domain are of equal size, this strategy yields excellent
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load balance of the MPI simulation. The only drawback of this approach is that the
grid generation around the complex geometries may be quite challenging, because the
blocks must be balanced. For all calculations presented in this thesis, great effort has
been made to perfectly balance all computational grids. If block balancing is not done,
the scalability of the MPI code is restricted by the size of the biggest block of the
grid. To simplify and accelerate the grid generation phase, the dynamic parallel load–
balancing capability is now being developed in COSA, as a part of a different project.
Load–balancing capability will assign the number of grid blocks to each MPI process
according to the block size. This enables the MPI processes to use different numbers
of blocks to ensure a comparable amount of work for each process.

4.4 Message Passing Interface communications
The MPI standard includes two types of communication, point to point and collective.
Both types are used in the parallelisation of COSA. Regardless of its nature (point to
point or collective), the communication can involve blocking or non–blocking protocols.
Blocking protocol halts the program execution until the data exchange is completed,
and thus the message buffer (slots in computer memory where the copy of the data is
kept until it is received) is again safe for reuse. For sends, the data must be successfully
sent or safely copied into the system buffer space. Whereas, for receives, the data must
be safely stored in the receive buffer. In other words, the call to the send and receive
functions does not return until the data transfer is finished. Non–blocking protocol,
on the other hand, does not suspend the program execution, it rather initiates the
send or receive operation but it does not wait for completion (e.g. message copying
or the actual arrival of message). When using the non–blocking communication the
programmer must ensure the buffer is free for reuse. The main purpose of the non–
blocking protocols is to overlap calculation with communication in order to increase
the performance of the application.

Various different message passing protocols of MPI exist, however, they are not
defined by the MPI standard, instead they are defined by each individual program-
mer. The majority of MPI implementations use two different message protocols: a)
the eager protocol, which is an asynchronous buffered approach allowing to accomplish
send operation without confirmation from the receiving process. Usually it is used
for small messages, as system buffer space must be preallocated. It has the advan-
tage of synchronisation overhead being small; b) the rendezvous protocol, which is a
synchronous, non–buffered approach, and requires a confirmation from the receiving
process that the send operation has been successfully completed. It is usually used
for large messages, as buffering the data does not make much sense due to the large
amount of preallocated buffer space. In this case message envelope (message with any
supplementary information, e.g. length, sender, tag, etc.) is immediately stored at
the receiving process, but the actual message transfer waits until the receiving process
buffer is available. Extra data copies to the message buffer are avoided, but the sender
and receiver must synchronise for the data exchange to be completed [115, 118].

In point to point communication, the data is exchanged between two processes
where one is sending and the other is receiving. The point to point communication
operations involve a set of send and receive functions, that allow the communication of
data with an associated tag. In COSA, we use point to point communications for the
halo data exchange of the flow variables during each Runge–Kutta stage, and if using
multigrid acceleration technique, also during each multigrid cycle. Furthermore, they
are also used for the halo exchange of grid coordinates and volumes at the beginning of
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calculation or at the beginning of each physical time step when using dual time step-
ping approach. The halo data exchange of the flow variables during each Runge–Kutta
stage and multigrid cycle may become computationally extremely expensive, as many
messages must be sent and received. The overall computational cost of the communi-
cations can be reduced if the number of communications is reduced by increasing the
size of each message. In COSA, the send and receive functionality is such that for each
internal block boundary a single pair of arrays (one for each block of the pair) with
all halo data is constructed. Once such pair is constructed, the non–blocking point
to point communication occurs. Non–blocking communication is used to prevent the
program from being slowed, as it allows to start sending and receiving several messages
and to proceed with other operations. It also solves the problem of message buffering,
as it waits that the receiving process provides a space for a message to be received
into. For the non–blocking send operation MPI_ISEND routine is used, whereas for
non–blocking receive operation MPI_IRECV is used. Let us now explain in more detail
how the point to point non–blocking data exchange process in COSA routines works.
Nonblocking send syntax is the following:

MPI_ISEND(address, count, datatype, destination, tag, comm, request).

The entries (address, count, datatype) describe count occurrences of items of the
form datatype starting at the data address. The rank of the process is denoted by
destination and tag is an integer used for message sorting. comm identifies a group of
processes and a communication context. The argument request is the communication
request, also known as a handle. The structure of MPI_ISEND is the same as for the
blocking MPI_SEND operation, with the addition of a handle. The routine MPI_ISEND
begins the non–blocking send operation, and it immediately returns. The handle de-
termines whether the operation has been completed. The handle may be determined
by the MPI_WAIT routine, which waits for a specified send to complete (identifying the
specific operation to wait on using a provided handle). Once a send operation is com-
plete, the request handle is set to MPI_REQUEST_NULL, which indicates a null handle.
Another routine, MPI_WAITANY, can be used to wait on a set of handles. MPI_WAITANY
will complete when a single communication operation associated with the group of
handles has been passed. Also a MPI_WAITALL routine exist, which also waits on a set
of pending communications using a set of handles, but this routine will only be com-
pleted, once all the operations associated with the group of handles passed to it have
finished. The receiving process calls the MPI_IRECV routine to begin the non–blocking
receive operation and, as with the send operation, it returns immediately. The syntax
of non–blocking receive is the following:

MPI_IRECV(address, count, datatype, destination, tag, comm, request).

As one may notice MPI_IRECV routine has the same arguments as the routine MPI_ISEND.
In collective communication, the data is exchanged among all processes involved

in a particular communicator. Collective operations may complete as soon as the call
to the routine has finished, which is the case for blocking operation. Conversely a
nonblocking call requires a separate completion call. Collective communication calls
may use the same communicators as point to point communication. A message tag
argument is not required here. In COSA, only blocking collective communication is
used. It is required for calculation of distance from the closest wall for the k − ω SST
turbulence closure, calculation of forces and residuals. Two MPI routines are used for
all listed operations. First one is called MPI_BCAST, which broadcasts a message from
the broadcasting process to all processes of the group. And the second required routine
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is called MPI_ALLREDUCE, which is in principle the same routine as MPI_REDUCE, except
that the receiving data appears in the receive buffer of all the receiving processes.
MPI_REDUCE combines the data passed to the function from all the MPI processes to
one process. Additionally, also the routine MPI_BARRIER is used, which is one of the
special collective operations. Its purpose is to ensure that every process has completed
the computation. MPI_BARRIER routine is executed only at the end of calculation, just
before MPI is finalised using MPI_FINALIZE routine.

4.5 Parallel input/output
The parallel input/output (I/O) capabilities of MPI represent an important aspect of
the MPI standard. Historically, the I/O of almost every parallel application was using
the following two approaches: a) multiple files multiple clients approach, where each
process had to write into a separate file, or b) single file single client approach, where
the data from all processes were gathered on a single master process, which then wrote
the data into a single file. The reading of the files was done in the same manner. These
two approaches were used as in most HPC machines the parallel I/O capabilities from
multiple processes to a single file were not supported, or the I/O performance was
poor. Furthermore, at the time when MPI standard was defined, the size of the CFD
simulations was relatively small. The computational grids featured only up to hundreds
of blocks, and simulations were typically run on tens of MPI processes. Therefore, if
either of the two aforementioned approaches was used, this did not significantly affect
the I/O performance. However, due to the sudden growth of CFD simulation size in
the past two decades, the two approaches described above could significantly affect
I/O performance. Multiple files multiple clients approach can cause issues when the
simulation size is scaled up to a large number of MPI processes, as the data storage
system may no longer be able to handle reading or writing efficiently. Moreover, when
using single file single client approach, little benefit from the parallel file system is
gained, as only a single process is doing all the I/O means. In the near–future, the size
of the computational grids for 3D flow simulations may become extremely large, up to
billions of grid cells and thousands of blocks. Therefore, it is crucially important to
achieve high performance I/O. With the recent development of modern HPC systems,
aforementioned limitations no longer exist. With properly configured I/O hardware and
modern HPC file systems (e.g. Lustre, PVFS, GPFS), it is possible to achieve both
high performance and having a single file which can be accessed by each MPI process
directly (e.g. single file multiple clients or single file collective clients approaches). The
I/O interface in MPI is designed to deliver high performance for various approaches of
parallel I/O such as contiguous and noncontiguous accesses, collective I/O, etc. [128,
129].

All presently developed solvers of COSA read in simulation input file, a grid file
and, when the simulation starts from the solution of a previous simulation, also a
restart file. The solvers write a restart file and a set of solution files for flow visual-
isation and quantitative postprocessing. Input file is an ascii file and it contains all
parameters which are required to perform the flow simulation. It also provides all in-
formation regarding computational grid, such as grid dimensions, boundary conditions
and connectivity information. This file needs to be read by all MPI processes, and
therefore does not use any special features of parallel I/O capabilities. Next, the grid,
restart, and the solution file may be either in CGNS or plain data file binary format.
The CFD General Notation System (CGNS) [130] provides a general, portable, and
extensible standard for the storage and retrieval of CFD analysis data, therefore, it is
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an important part of every CFD computational code. However, as it was observed that
pure MPI I/O parallelisation performs much better than parallel CGNS I/O for both
reading and writing the files, we have decided to use pure MPI I/O parallelisation as
a default of COSA, and to rather make conversion to the other file formats in a pre–
or post–processing step. Due to this reason, a number of utility interface codes were
developed during this project, to convert all mentioned binary files to CGNS standard
and vice versa. An important utility interface code is the one which converts the CGNS
file containing grid coordinates, inter–block grid connectivity and boundary definition
of the grids generated by the commercial grid generators (e.g. NUMECA IGG, ANSYS
ICEM, etc.), to a COSA format binary grid file and an ascii part of input file on grid
information. Another important utility interface code converts COSA binary solution
files to CGNS or TECPLOT (plt/szplt) format.

Figure 4.3: Sketch of a common data file, where each MPI process reads a chunk of

the data.

All mentioned plain binary I/O data files contain data in contiguous format. There-
fore, this structure is very appropriate for most straightforward MPI I/O parallelisa-
tion. The reading of the files is done with a standard MPI I/O functions, an open, a
seek, a read, and a close. Simple example in Fig. 4.3 depicts n MPI processes, where
each process needs to read (1/n) part of the file. The collective MPI function for open-
ing the files is called MPI_FILE_OPEN. After opening the file, each MPI process moves
its local file pointer to the position where the data in the file needs to be read by that
particular process. For this operation the function MPI_FILE_SEEK is used. In next
operation each MPI process reads the data using the function MPI_FILE_READ, which
reads the data from the position which was determined by the function MPI_FILE_SEEK.
Finally, the file needs to be closed using the function MPI_FILE_CLOSE. The proce-
dure for writing the files using MPI I/O is exactly the same as the one described
above. The only difference is that instead of the function MPI_FILE_READ the function
MPI_FILE_WRITE must be used. Using this function, each MPI process writes the data
into the location, which was determined using the function MPI_FILE_SEEK.

The aforementioned MPI I/O capabilities were developed during this work. Previ-
ously, the MPI I/O was only used for writing files and was not optimal, as the individual
data elements were written to the file one at a time. Writing of the data was optimised
is such way that the data to be written were aggregated into arrays and then written
all at once as explained above. The reading capabilities were previously using serial
I/O, where each MPI process opened the file to be read, calculated the position of the
file pointer and read the data. Previously, the grid file was in ascii format, this was
replaced with a binary file. The size of a binary file is about three times smaller than
the previously used ascii file, which is a great benefit in terms of saving disk space.

Table 4.1 shows the difference between the old and the optimised I/O capabilities.
The analysis was performed on ARCHER HPC system [131], which is the latest UK
national HPC service started in November 2013. The ARCHER hardware consists of
the Cray XC30 MPP supercomputer, external login nodes, postprocessing nodes, and
the associated filesystems. ARCHER phase 2 features 4920 compute nodes and each
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node has two 12–core Intel Ivy Bridge series processors giving a total number of 118, 080
processing cores. Each node has a total of 64 GB of memory, there are also fat memory
nodes featuring 128 GB of memory. The system also features high–performance Lustre
storage system. The analysis refers to a yawed wind HAWT test case solved with the
HB solver using four complex harmonics NH = 4. A 3.2 million cell–grid features 800
perfectly balanced blocks of the size 16× 16× 16 cells.

Table 4.1: Comparison of the old and optimised MPI I/O.

# cores old I/O (s) optimised I/O (s) speed–up

20 85.2 29.7 2.9

50 65.4 25.4 2.6

100 58.6 23.5 2.5

200 57.0 24.9 2.3

400 64.4 25.4 2.5

First and second columns of Table 4.1, corresponding respectively to the old and
optimised I/O, represent the time spent for reading and writing of all I/O files, without
performing any computational work. The third column represents the speed–up defined
as the ratio between the time taken to run a program with the old I/O and the time
taken to run a program with the optimised I/O. From Table 4.1 it may be concluded
that newly restructured I/O is performing more than 2.3–times better than the old
I/O.

4.6 Parallel scalability
Scalability of a parallel algorithm is an important aspect of performance analyses.
It is used to analyse how effectively parallel algorithms use an increased number of
CPU cores. Generally, there are two types of scalability: so–called weak scalability
and strong scalability [116]. The definition of weak scalability states that the problem
size and number of cores grow in such a way that the amount of data per core remains
constant. Linear scaling is achieved if the runtime remains constant while the workload
is increased in proportion to the number of cores. The definition of strong scalability
states that the problem size remains fixed and the number of cores are increased.
The linear scaling is achieved if the speedup is equal to the number of cores used.
Strong scalability assesses the efficiency of communications. Linear scaling with strong
scalability at larger core counts is more difficult to achieve than linear scaling with
weak scalability, since the number of communications in former analysis increases in
proportion to the number of cores used. Speedup SP is defined as the ratio between
the time taken to run a program on a single core T1 and the time taken on n number
of cores Tn. Speedup may be written using the expression:

SP = T1

Tn
. (4.1)
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In the ideal case the time Tn = Tni, where Tni represents the ideal time taken on n
number of cores, and is given as:

Tni = T1

n
. (4.2)

We may also introduce the parallel efficiency EP , which is the measure how far we are
from the ideal speedup, hence:

EP = SP
n
. (4.3)

It must be pointed out that the definitions of Eqns. (4.1), (4.2) and (4.3) may cause
problems in practice. One of the issues is that the size of the problem that is solved
on a HPC machine may be quite large. Thus, it may therefore be too large to fit on
a single core due to the memory constraints of a single node. Due to this reason, the
definition of the T1 must be slightly modified. Let us redefine T1 to become the time
taken to run a program on a minimum number of cores required, so the memory of the
problem we are tying to solve can fit.

Figure 4.4: Parallel scalability analysis of algorithmic part of COSA HB MPI solver

on ARCHER HPC system, using plunging wing test case.

Figure 4.4 depicts strong parallel scalability analysis of algorithmic part of COSA
HB solver, performed on ARCHER HPC system [131]. The analysis refers to a plunging
3D wing test case solved with the HB solver using four complex harmonics NH = 4. A
38 million cell–grid features 16, 384 perfectly balanced blocks of the size 16 × 16 × 16
cells. For this test, we have turned off all I/O except for reading the input and mesh
files. Figure 4.4 confirms that our newly developed HB solver achieves linear scaling
at least up to 16, 000 cores. Further inspection of Fig. 4.4 reveals that in some parts of
the curve COSA speedup is superlinear, which means that the speedup is larger than
the number of cores used. In theory this occurrence is impossible, however, in practice
superlinear speedup is not that uncommon. One possible reason for this occurrence is
that when using lower number of cores, the program must access more memory of each
node, and this could slightly slow down the program execution at lower core counts.

The strong parallel scalability test was also performed using a smaller HAWT test
case. The analysis of algorithmic part of COSA HB solver was performed on ARCHER
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Figure 4.5: Parallel scalability analysis of algorithmic part of COSA HB MPI solver

on ARCHER HPC system, using HAWT test case.

HPC system [131], and is depicted in Fig. 4.5. Please note that minimum required I/O
capabilities were used for the scaling test. The test case is a HAWT in yawed flow,
the one used to obtain data in Table 4.1. The HB solver and four complex harmonics
NH = 4 has been used. A 3.2 million cell–grid features 800 perfectly balanced blocks
of the size 16 × 16 × 16 cells. Figure 4.1 confirms the linear scaling of the HB solver
up to 400 cores. Similar behaviour as in Fig. 4.4 has been observed also herein. The
superlinear speedup at lower core counts is most likely associated with higher amount
of memory used per node at lower core counts.



Chapter 5

Validation

This chapter presents numerical results used for the validation of newly developed
3D capabilities of COSA. At first a short summary of the previously published test
cases used for the validation and verification of predicting capabilities of the 2D COSA
solvers is described. Furthermore, the laminar delta wing, ONERA M6 wing, and
S809 airfoil test cases are presented. These test cases served as a first step towards
validation of the newly developed 3D capabilities. The laminar delta wing test case has
been used to validate the calculation of the forces, moments and the solution accuracy
of the newly developed laminar solver against the CFL3D CFD code. The ONERA
M6 wing, a well establish reference case to validate external flow CFD methods, has
been used to validate the accuracy of the k − ω SST turbulence model at transonic
flow conditions. The computed solution has been compared against the experimental
data and two well established CFD codes, CFL3D and NUMECA fine, using the SA
and k−ω SST turbulence models, respectively. The S809 test case was selected as the
S809 airfoil constructs the NREL Phase VI wind turbine, which has been used for the
extensive validation of newly developed capabilities of COSA in this section. Using
the S809 airfoil, the predictive capabilities of the k − ω SST turbulence model and its
accuracy have both been tested. It has been assessed whether the k−ω SST model has
the ability to predict the stall point and fully separated flows. The computed data have
been compared with the experimental data and against the CFD code OVERTURNS,
which uses the fully turbulent SA model, and the γ−Reθt−SA transition model. The
comparison with the transition model has been done in order to investigate whether
the agreement between the CFD and the experimental data could be improved for the
post–stall prediction.

The main validation consists of the H–Darrieus vertical–axis wind turbine, oscil-
lating wing and several operating regimes of the upwind configuration of the NREL
Phase VI test cases. The H–Darrieus vertical–axis wind turbine and oscillating wing
test cases are both used to validate highly separated unsteady flows of moving airfoils,
and are both compared against FLUENT. Additionally, the H–Darrieus vertical–axis
wind turbine power curve has been compared with the experimental data. The up-
wind configuration cases of the NREL Phase VI wind turbine have been considered to
extensively validate the newly developed prediction capabilities of the COSA CFD sys-
tem for the analyses of HAWT flows. Several operating regimes in straight wind have
been considered, as well as conditions in yawed wind flow. All calculations have been
compared with the extensive experimental data set from the NREL Phase VI cam-
paign, straight wind calculations have also been compared against commercial CFD
code NUMECA.
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5.1 Summary of previously published validation cases
The predicting capabilities of the steady 2D Euler solver and the second order accuracy
of the convective flux discretization are described in [132]. A sequence of numerical
solutions of an inviscid steady 2D internal flow problem computed with progressively
more refined grids and the associated analytical solution, have been compared. The
predicting capabilities of the 2D time–domain Euler solver and the second order ac-
curacy of the time– and space–discretization have been demonstrated by considering
a time–dependent problem resulting from the superposition of a uniform freestream
and a steady vortex. The verification has been performed by comparing a sequence
of numerical solutions of this problem computed with progressively more time– and
space–refined grids and the associated analytical solution [22]. The assessment of the
predicting capabilities and the second order accuracy of the 2D time–dependent lam-
inar solver has been based on the analysis of the vortex shedding behind a circular
cylinder and the use of Richardson’s extrapolations. The viscous laminar predicting
capabilities have also been verified by comparing a computed 2D laminar flat plate
boundary layer and the analytical solution of Blasius [22]. The predicting capability
of the code for 2D inviscid problems with moving grids is verified in [52], which com-
pared the time–dependent pressure difference across a pitching flat plate in a uniform
freestream to Theodorsen’s analytical solution. In [26], the predicting capabilities of
the turbulent solver have been assessed by considering two test cases. One was the flat
plate turbulent boundary layer with freestream Mach numberMfs of 0.2 and Reynolds
number Re of 6·106. The computed velocity profile normal to the flat plate is compared
to Spalding’s velocity profile, and the computed skin friction coefficient is compared to
a typical analytical estimate. The other test case was the turbulent separated flow past
the NACA4412 airfoil withMfs = 0.2, Re based on the airfoil chord and the freestream
velocity of 1.52·106, and angle of attack (AoA) of 13.87o. The computed velocity profiles
normal to the airfoil at several chordwise positions are compared with measured data.
In both cases, an excellent agreement between computed and semi–empirical/measured
data has been observed. The second order accuracy of the 2D TD solver for moving
grid problems has been assessed by considering the inviscid time–dependent flow past
a pitching NACA0012 airfoil [55].

For the verification of newly developed 3D capabilities, majority of these 2D valida-
tion and verification test cases have been repeated and compared with the 2D solutions.
The 2D computational grids were extruded into the 3D grids, by lining up the same
2D grid along the airfoil span. The periodic boundary conditions were enforced in the
spanwise direction, in order to simulate an infinite object.

5.2 Preliminary validation

5.2.1 Delta wing
The delta wing test case, is one of the test cases which are available on NASA CFL3D
validation website [133]. The test case was created in order to demonstrate the CGNS
capability implemented in CFL3D, which is a structured multiblock Navier–Stokes
CFD code developed at NASA Langley Research Center for solving 2D and 3D fluid
flow problems. This test case is considered here for validating the newly developed
steady 3D laminar solver of COSA. The test case was selected, as it features laminar
flow, therefore, while comparing forces, moments and flow solution, any uncertainty of
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the turbulence model can be removed. This is an excellent test case to verify whether
the calculation of forces and moments is done properly, as it uses high angle of attack.
The purpose of present test case is a) to validate the calculation of the forces and
moments, b) to demonstrate solution accuracy of newly developed laminar solver.

The considered test case simulates a subsonic laminar flow past a 75◦ swept delta
wing at 20.5◦ degrees angle of attack. The flow features free–stream Mach number of
0.3. The Reynolds number based on the root chord c, and the free–stream velocity
is 0.5 million. The flow passes the leading edge then it rolls up and creates a vortex,
which remains behind the wing for a long time. The reference area of the half wing is
0.13398c2. Complete description of the test case, input files and solution files are all
provided on NASA CFL3D validation website [133]. The COSA simulation has been
performed using the MG solver with 3 grid levels. CFL number was set to 4. Other
numerical parameters were set as similar as possible to those of the CFL3D analysis.

Figure 5.1: Representation of computational domain of the delta wing test case. Only

every second line in all three directions is plotted.

Figure 5.1 depicts the computational grid, which was obtained from [133]. For
visual clarity, only every second line of all three grid line sets is plotted. It is a single–
block grid and has the size of 36× 64× 64 cells. Only half of the problem is simulated,
using symmetry boundary condition at midspan. The delta wing has zero thickness
and features 16 cells in chord–wise direction and 32 cells in spanwise direction. The
distance dw of the first grid points off the wing surface from the surface itself is about
2 · 10−4c.
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Three force coefficients and a moment coefficient have been compared in the calcu-
lations performed by the steady laminar solver of CFL3D and COSA. Table 5.1 reports
the lift Cl and drag Cd coefficients, as well as the force coefficient in y–direction Cy,
and the moment coefficient in y–direction Cmy. Table 5.1 shows an excellent agreement
between COSA and CFL3D for all forces and moment coefficients.

Table 5.1: Comparison of forces and moment coefficients of CFL3D and COSA.

Cl Cd Cy Cmy

CFL3D 0.7960 0.3066 0.0056 −0.2884

COSA 0.7956 0.3062 0.0057 −0.2876

Figure 5.2 shows the contour slices of the vorticity magnitude at four chordwise
positions (30 %, 50 %, 70 % and 90 % of the root chord). The left semi–span represents
the solution of CLF3D, whereas the right one represents the COSA solution. Inspection
of the vorticity contours of the two different CFD codes reveals that for the positions
30 %, 50 % there are no visual differences between the CFL3D and COSA vorticity
contours. For the positions 70 % and 90 %, the vortex computed with COSA appears
to be slightly more dissipated than the one computed with CFL3D. Apart from that,
the two codes show an excellent agreement.

Figure 5.2: Slices of the vorticity magnitude at four chordwise positions, 30 %, 50 %,

70 % and 90 % of the root chord. The left semi–span represents the CFL3D solution,

whereas the right semi–span represents the COSA solution.

The mean residual convergence histories of the two steady laminar analyses over
the 600 MG cycles are reported in Fig. 5.3. One referring to the CFL3D computation
and second to the COSA computation. The variable on the x–axis is the number



5.2. Preliminary validation 75

of MG cycles, and the variable ∆lr on the y–axis is the logarithm in base 10 of the
normalized RMS of all cell–residuals of the five RANS equations. For both simulations,
each residual history curve is normalized by the RMS value at the first MG cycle. The

Figure 5.3: Residual convergence histories of the CFL3D and COSA calculations.

convergence histories of both analyses are fairly close to each other, which confirms
that the implementation of laminar solver has been done properly.

5.2.2 ONERA M6 wing
The ONERA M6 wing case has been established as a reference case to validate the
external flow CFD methods. Some of the latest works using this test case for valida-
tion include [134, 135, 136]. The combination of simple geometry and complexities of
transonic flow such as the local supersonic flow, shocks, and turbulent boundary layers
separation, make the test case very attractive for CFD validation. The experiments
have been carried out in a wind tunnel at various transonic Mach numbers and various
angles of attack. The wind tunnel experiments are documented in [137]. Figure 5.4,
obtained from [8] and available in [137], depicts the experimental setup of the ONERA
M6 wing inside the wind tunnel. The CFD simulations at one flow field condition
and the complete description of the test case is available at NPARC Alliance Valida-
tion Archive [8] and NASA CFL3D validation [133] websites. Herein the ONERA M6

Figure 5.4: Experimental setup of the ONERA M6 wing. Taken from [8].
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Figure 5.5: Geometry of the ONERA M6 wing. Taken from [8].

wing case has been used to confirm the accuracy of the newly implemented 3D steady
turbulent RANS solver, which uses the k − ω SST turbulence model.

The ONERA M6 wing is a swept, semi–span wing with no twist, which uses a
symmetric ONERA D airfoil. The geometry of the ONERA M6 wing is depicted in
Fig. 5.5, which is available in [137] and is obtained from [8]. Most important geometric
properties are summarised in the Table 5.2.

The computational grid adopted for the flow simulations reported below is that
available on the validation web site of the NASA CFD code CFL3D [133]. It is depicted
in Fig. 5.6, and it consist of one zone wrapped as a C–grid about the wing leading

Table 5.2: Geometric properties of the ONERA M6 wing.

Semi–span (b) 1.1963m

Mean aerodynamic chord (c) 0.64607m

Leading–edge sweep 30.0◦

Trailing–edge sweep 15.8◦

Aspect ratio (AR) 3.8
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Figure 5.6: Representation of the computational domain and the wing surface grid of

the ONERA M6 wing. Only every second line in all three directions is plotted.

edge. Only every second line of all three grid line sets is plotted, for visual clarity.
Single–block grid features the dimensions of 289× 65× 49 cells. Symmetry boundary
condition at midspan is used, in order to simulate only semi–span wing. The semi–span
wing features 256 cells in chord–wise direction and 48 cells in spanwise direction. The
distance dw of the first grid points off the wing surface from the surface itself is about
2.5 · 10−6c at the leading edge and about 5 · 10−6c at the trailing edge. The grid is
nondimensionalized by the semi–span, therefore, the mean aerodynamic chord has the
size c = 0.54b.

In this work, the turbulent flow field past the ONERA M6 wing corresponding to
the condition of a transonic free stream of Mach 0.84 at the angle of attack of 3.06◦
is considered. The Reynolds number based on the mean aerodynamic chord length
is 11.72 million. These operating conditions match one of the the wind tunnel tests
reported in [8]. The COSA simulation has been performed using the MG solver with
2 grid levels and the CFL ramping, where the final CFL number has been set to 2.

Firstly, the values of the lift coefficient Cl, the drag coefficient Cd, the force coeffi-
cient in spanwise direction Cz, and the pitching moment coefficient Cmz, obtained with
three different CFD simulations, are compared in Table 5.3. The results correspond-
ing to CFL3D code are available on the NASA CFL3D validation website [133], and
were produced using the SA turbulence model. While the COSA and NUMECA code
both use the k − ω SST turbulence model. In order to remove any uncertainty on the
flow solution between COSA and NUMECA, we have used in both codes as similar
numerical parameters as possible. NUMECA is a commercial CFD and multiphysics
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Table 5.3: Comparison of the forces and moment coefficients of CFL3D, COSA and

NUMECA.

Cl Cd Cz Cmz

CFL3D (SA) 0.266 0.0172 0.014 0.1013

COSA (SST) 0.267 0.0154 −0.105 0.1020

NUMECA (SST) 0.265 0.0170 −0.105 0.1011

analysis and optimisation system. The calculations were run using FINE Turbo Flow
Integrated Environment for rotating and non–rotating flow analysis in external and
internal turbomachinery applications [138]. Overall, the comparison of the results be-
tween all three codes is in excellent agreement. One may only notice that the value
of Cz significantly varies between CFL3D and the other two codes. This appears to
be due to the fact that the CFL3D code is using the SA turbulence model, whereas
the other two codes are both using the k − ω SST turbulence model. Furthermore,
comparing the value of Cd of COSA and NUMECA, it is evident that there is some
deviation of the Cd, even when using the same turbulence model. These differences
probably appear due to the different settings of the k − ω SST model. It is difficult
to match all turbulence model parameters, as all details of NUMECA implementation
are not publically available.

Figure 5.7: Contours of the pressure coefficient cp along the wing span. Left plot: The

COSA result. Right plot: The NUMECA result.

Figure 5.7 provides the contour plot of the pressure coefficient cp over the ONERA
M6 wing upper surface for the COSA and NUMECA solutions. The definition of cp is:

cp = p− p∞
1
2ρ∞u

2
∞
, (5.1)

where p and p∞ denote local and freestream static pressure respectively. The blue
colour on the upper surface of both wings corresponds to the low–pressure region
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associated with the formation of the two shock waves which coalesced into one. Visual
comparison of the COSA (left) and NUMECA (right) solutions reveals there are no
differences among the static pressure field between the two CFD codes.

Figure 5.8 represents the comparison of the wing static pressure coefficient for
COSA, NUMECA and the experimental data. Seven spanwise positions are compared,
20 %, 44 %, 65 %, 80 %, 90 %, 95 % and 99 % of the semi–span. Inspection of the COSA

Figure 5.8: Comparison of the pressure coefficient cp distributions along the chord at

seven spanwise positions for two CFD results and experimental results.
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and NUMECA results reveals that the two CFD results are in excellent agreement at
all spanwise positions. In general, there is also a good agreement between the two
CFD results and the experimental data. Inspecting the results more precisely, one
may notice that at position 20 % of semi–span the shock computed with COSA and
NUMECA is stronger than in the experiment. It is also evident, that at position 80% of
semi–span, the two numerical solutions are unable to predict double shock formation.
The discrepancy between numerical and experimental results could occur due to many
reasons. One of the possible reasons is certainly the usage of turbulence modelling.
Furthermore, the grid used in the computation is quite coarse, therefore, using finer
grid may improve prediction of the shock formation at the positions 20 % and 80 %
of the semi–span. Another reason for overpredicted shock computed by the two CFD
codes at position 20% of semi–span, could also be the usage of the symmetry boundary
condition at midspan. Based on Fig. 5.4, which depicts the experimental set–up of the
ONERA M6 wing, the wing root was not mounted directly on the wind tunnel wall,
but rather on a short root planform, with an endplate between the planform and the
wing. Therefore, the symmetry condition can not exactly reproduce the flow physics
of the semi–span wing mounted in the wind tunnel during the experiment.

5.2.3 S809 airfoil
The S809 airfoil is a 21 % thick, laminar–flow airfoil, specially designed for the HAWT
applications. It is employed by the NREL Phase VI wind turbine [9]. The airfoil
was deliberately designed to feature a short region of adverse pressure gradient along
the upper surface or so called "transition–ramp", which enables smooth transition from
laminar to turbulent flow [139]. When the airfoil was designed, the two main objectives
were: a) to achieve a restrained, relatively low, maximum lift coefficient and b) to
achieve low drag coefficients for the Reynolds number of 2.0× 106, over a range of lift
coefficients varying from 0.2 to 0.8. Herein, the S809 airfoil is used to explore, how well
may the k − ω SST turbulence model predict the stall point and the separated flow.
As pointed out in [69], the common problem of the two–equation turbulence models is
their failure to correctly predict the onset and amount of separation in adverse pressure
gradient flows.

Figure 5.9: Grid for the S809 airfoil analysis. Left plot: complete domain. Right plot:

near–airfoil area.
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The 49, 152–cell C–grid adopted for the simulations of this section has 512 mesh
intervals along the airfoil, 64 intervals in the grid cut, and 96 intervals in the normal–like
direction. The farfield boundary is placed at about 50 chords from the airfoil, and the
distance dw of the first grid points off the airfoil surface from the surface itself is about
10−6c. Figure 5.9 provides the complete view of the adopted grid, and an enlarged
view in the airfoil region. Simulations were run at the Reynolds number based on the
airfoil chord and the freestream velocity 2× 106, and the Mach number of 0.1, in order
to avoid compressibility effects. The range of the AoAs has been simulated, varying
from −3◦ to 21◦. The CFL number of all simulations has been set to 4, the number of
MG levels has been set to 3, and the CFL ramping has been used.

Figure 5.10: The lift and drag coefficients vs. angle of attack of the S809 airfoil.

Figure 5.10 represents the predicted lift and drag coefficients for various values of
AoA. Plotted results are those obtained with COSA using the k − ω SST turbulence
model and the experimental data reported in [139]. Additionally, the results obtained
using the structured mesh solver OVERTURNS [140] were also added to the lift and
the drag coefficient plots. These results were obtained using similar computational grid
as the one used with COSA. The calculations performed with OVERTURNS, available
in [141], were run both with the fully turbulent SA model, and the γ − Reθt − SA
transition model. Experimental data reveals that the airfoil starts stalling at about
AoA = 9◦. In the pre–stall region, the results of the fully turbulent calculations
of COSA and OVERTURNS are fairly close to the experimental data for both the
Cl and Cd. The transition model calculation of OVERTURNS slightly improves the
prediction of both quantities in that region. However, close to the stalling point,
the transition model seems to overpredict the Cl. In the post–stall region, the fully
turbulent calculations of COSA and OVERTURNS both overpredict the Cl and delay
the stalling point, regardless of the turbulence model used. Conversely, the transition
calculation of OVERTURNS greatly improves the prediction of the Cl in that region.
Furthermore, with the transition model the stalling point occurs at the AoA much
closer to that in the experiment.

To further examine the agreement between COSA and the experimental data, the
pressure coefficient profiles have been compared. The three subplots of Fig. 5.11 repre-
sent the cp profiles of COSA and the experimental data, for the three different values of
AoA. Overall, these plots highlight there is a very reasonable agreement between COSA
and the experimental data in the pre–stall region of the airfoil. Examining each AoA
more precisely, one may notice there is an excellent agreement for AoA = 1◦, except
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Figure 5.11: Pressure coefficient cp of the S809 airfoil for the three different values of

AoA.

in the small area of the upper surface around the position x/c = 0.55. At AoA = 5◦,
COSA slightly overpredicts the pressure coefficient in the transitional region, which is
indicated with the prominent dip in pressure on the upper surface. Furthermore, at
AoA = 9◦, which corresponds to the experimental maximum lift coefficient, there is
again an excellent agreement between COSA and the experimental data.

From the results presented above, it can be concluded that the fully turbulent
calculations performed with either the k − ω SST or SA turbulence models, give very
satisfactory results in the pre–stall region. This is first confirmed by the inspection
of the lift and drag coefficients, which were compared with the experimental data.
Furthermore, also the pressure coefficient profiles confirm there is a good agreement
for all the examined AoAs, even the AoA = 9◦, where a trailing–edge separation on the
upper surface of the airfoil occurs. However, the prediction of the stall point is delayed
in both COSA and OVERTURNS fully turbulent CFD calculations, and the post–stall
characteristics are not in the best agreement with the experimental data. As shown
in [141], it should be possible to improve predictions of the stall onset and post–stall
characteristics when using transition models. However, as the transition models are
beyond the scope of this thesis, all the calculations performed with COSA have been
done using the fully turbulent k − ω SST turbulence model.
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5.3 H–Darrieus vertical–axis wind turbine
A 2D model of an H–Darrieus wind turbine, sketched in Fig. 5.12, was considered
herein. The rotor of the considered wind turbine has the radius R of 515 mm, and
the blades are constructed using the NACA0021 airfoil with a chord of 85.8 mm. The
blade is attached at 25 % chord from the airfoil leading edge. The operating condition
considered for this study is characterised by the freestream velocity u∞ of 9 m/s, and
the rotational speed Ω of 550 RPM. The Reynolds number based on the airfoil chord
is 1.7 × 105 and the Mach number associated with the circumferential speed of the
rotor is 0.087. TSR = ΩR/u∞ is the tip–speed ratio and for the considered operating
conditions equals 3.3. This value corresponds to near maximum power operation, and
unless otherwise stated, all results presented below refer to this value of TSR. This
case study has been first reported and analyzed in studies [142] and [143], and later in
several other studies, including [144].

Figure 5.12: H–Darrieus rotor sketch.

Left and right subplots of Fig. 5.13 respectively report enlarged views of the grid
around the rotor and the airfoil. The grid has 729, 600 cells and features 448 cells
around each airfoil. The distance dw of the first grid points off the airfoil surface from
the airfoil itself was 10−5c. The grid is made up of two subdomains: the circular
region of radius 7R containing the three blades and consisting of 522, 240 cells, and
the annular region with inner radius of 7R and outer radius of 240R consisting of
207, 360 cells. The identification of two distinct subdomains has been introduced to
enable the CFD simulation of this rotor flow with the commercial ANSYS FLUENT
CFD code. FLUENT uses a rotating and a stationary domain and requires a circular
sliding interface. The FLUENT results presented below are obtained with the cou-
pled pressure–based solver [145]. For COSA analyses the distinction between the two
subdomains is irrelevant, since the entire grid moves with the rotor.

All COSA simulations have been performed using the MG solver with 3 grid levels,
and CFL number has been set to 4.

Mesh refinement analysis, which has been performed by COSA, included the grid
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Figure 5.13: H–Darrieus rotor grid representation. Left: grid view in rotor region.

Right: grid view in airfoil region.

under consideration and a finer one with twice as many grid lines in both direc-
tions. The analyses revealed that the present grid with 729, 600 cells gives a mesh–
independent solution. In order to determine a time–step independent solution, four
different TD simulations have been performed using a number of physical time–steps
per period NT of 1440, 720, 360, and 180. The study has revealed that 720 physical
time–steps are required to obtain the independent solution of the time step.

The torque coefficient CT per unit blade length has been used to monitor the
convergence of the TD simulations to a periodic state, and is defined as:

CT = TD
1
2ρ∞W

2
∞2R2

D

(5.2)

where TD is the torque acting on the reference blade. The three TD simulations
have been run until the maximum difference between CT over the last two consecutive

Figure 5.14: H–Darrieus rotor periodic profiles of torque coefficient of reference blade

against azimuthal position θ computed with COSA and FLUENT simulations.
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revolutions became about 0.1 % of their mean value over the latter period of the cycle
pair.

Figure 5.14 reports the CT profile comparison of the reference blade over one rotor
revolution computed by the TD COSA and FLUENT analyses. The starting point of
the reference blade of each revolution (θ = 0◦) is the position where the velocity of
the reference blade and the absolute velocity of the wind are parallel and opposite.
The CT profile computed by the COSA refers to 720 intervals per period, and the one
computed by the FLUENT to 900 intervals per period. An excellent agreement between
the prediction of the two codes is observed. Some relatively small differences between
the COSA and FLUENT predictions exist around the positions θ = 90o and θ = 220o.
The potential causes of these small differences could be due to the slight differences
in the implementation of the turbulence model. The COSA and FLUENT solutions,
however, are fairly close, which is also underlined by the fact that the mean torque
predicted by the two codes differs by less than 0.15 %.

Figure 5.15: H–Darrieus rotor Mach contours and streamlines in the reference blade

trailing edge region at azimuthal position θ = 99o computed with COSA simulation

(left) and FLUENT simulation (right).

Figure 5.15 depicts the comparison of the streamlines and Mach contours between
the COSA simulation (left) and the FLUENT simulation (right), in the trailing edge
region at azimuthal position θ = 99◦. One may notice that at this azimuthal position
there is high level of stall associated with the highlighted flow separation. Despite this
fact, an excellent agreement between the two CFD codes is observed.

Several additional TSRs have been computed with COSA simulations and compared
with the experimental data in terms of power coefficient CP , defined by the expression:

CP = T · Ω
1
2ρAu

3
∞
, (5.3)
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Figure 5.16: Comparison of the nondimensionalized power curves of the H–Darrieus

rotor between COSA, FLUENT and experimental data.

where A is the frontal area of the rotor, given by the product of its diameter and
height, and ρ is the standard density. The experimental data have been extracted
from [143]. Please note, that in the experimental data, the correction due to wind
tunnel blockage was not considered. Figure 5.16 shows the comparison of the rotor
power curve predicted by the COSA simulations and experimental data. Operating
point at TSR = 3.3 computed by the FLUENT simulation has also been added. The
results indicate there is a reasonable agreement between the COSA simulations and
experimental data. COSA is able to replicate the shape of the experimental power
curve, however, the maximum CP is predicted at slightly higher TSR as in the experi-
ment. Furthermore, at most times, CP of the experiment is slightly higher than in the
CFD simulation. One of the reasons for these differences could probably be the wind
tunnel blockage effects. Further analyses, which are not included in this work, also
showed that the agreement between the power curve and COSA could be significantly
improved by using low–speed preconditioner. Low–speed preconditioning is particu-
larly important at the lower TSRs, where the level of dynamic stall is substantially
higher than at higher TSRs. Nevertheless, the overall good agreement between the
COSA solution and experimental data suggests the suitability of the COSA code for
highly separated flows.

5.4 Oscillating wing
Oscillating wing device considered herein has been defined in section 6.1. Herein the
operating condition characterised by a high efficiency of energy extraction in the tur-
bulent flow regime is considered and compared to the FLUENT solution computed by
the Kinsey and Dumas [23], for further verification of the COSA code.

Reynolds number based on the freestream velocity and the airfoil chord is Re =
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0.5× 106. The pitching center is at xp = 1/3 of the chord from the LE, and the phase
angle φ between heaving and pitching motions is 90.0o. The heaving amplitude h0
equals one chord and the pitching amplitude θ0 is 75.0o. This choice of parameters yields
a value of the overall height h swept by the foil of 2.56 chords. The nondimensionalized
frequency f ∗ = fc/u∞ for case A is 0.14, where f is the frequency in Hertz.

Figure 5.17: Grid for the NACA0015 airfoil.

The time–dependent 2D turbulent flow field past the oscillating wing was computed
using structured multi–block non–deforming moving grid. The O–grid adopted for the
simulations below is the one used in section 6.1.2 (coarse), and is depicted in Fig. 5.17.
The grid features 256× 256 cells with 256 intervals on the airfoil and 256 intervals in
the normal–like direction. The farfield boundary in the airfoil plane was at about 50
chords from the foil, and the distance dw of the first grid points off the foil surface from
the foil itself was about 6×10−6c. In all simulations the entire grid moved rigidly with
the airfoil.

The required level of spatial and temporal refinement of the considered grid has been
assessed in section 6.1.2, where the Reynolds number has been three times higher than
the one considered for this simulation. It was concluded that 1024 × 1024 cells (fine)
grid gives the grid–independent solution, and 512 intervals per period are sufficient to
achieve a time–step independent solution. Relatively small differences between various
space and time refinements were primarily due to small variations of the timing of
the LEVS. Kinsey and Dumas [25] also performed mesh sensitivity analyses, however,
they were only done using the SA turbulence model. They concluded that the medium
grid with 42, 200 nodes gives the grid–independent solution, and 2000 intervals per
period are required to achieve a time–step independent solution. Based on COSA grid
independence analyses, it is very unlikely that the Kinsey and Dumas’s medium grid
would give the grid–independent solution also for the SST turbulence model. In order
to make a fair comparison between COSA and FLUENT, 512 intervals per period were
used in COSA and 2000 were used in FLUENT as these are sufficient to achieve a time–
step independent solution in both cases. COSA also used similar spatial refinement
than FLUENT.

At first, the periodic profiles of the overall power coefficient CP , the heaving power
coefficient CPy and the pitching power coefficient CPθ are reported respectively in the
top, middle and bottom subplot of Fig. 5.18. The comparison is made between Kinsey
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Figure 5.18: Comparison of the K and D–SA, K and D–SST and COSA solutions:

overall power coefficient (top), heaving power coefficient (middle), and pitching power

coefficient (bottom).

and Dumas’s result using SA turbulence model (K and D–SA), Kinsey and Dumas’s re-
sult using SST turbulence model (K and D–SST), and COSA solution, which uses SST
turbulence model. Please note, all results of Kinsey and Dumas have been extracted
and digitalized from [23]. The agreement of all power coefficient profiles between K
and D–SST and COSA is fairly good. For all periodic profiles the differences between
K and D–SST and K and D–SA are much higher than those observed between K and
D–SST and COSA. Between the first 10 % and last 20 % of both semi–periods (region
1), the two CP profiles computed by the SST are superimposed and are significantly
lower than that of the SA solution. In the remainder of the cycle (region 2), there are
some discrepancies between the two CP profiles computed by the SST. However, the
two periodic profiles are still relatively close, and are both significantly higher than
that computed with SA solution. Looking at the CPy plot, it is evident that the agree-
ment between K and D–SST and COSA is fairly good during the whole oscillating
cycle. Therefore, the component that is mostly responsible for the differences of the
CP profiles between the two SST solutions in region 2 is the CPθ. It is also observed
that in region 1 all three CPθ profiles are superimposed. The discrepancies in region
2 could be caused by various different reasons. As noted in grid refinement analyses
in section 6.1.2, the sharp peak of CPθ is dependent on the level of spatial refinement,
and these variations usually decrease as the grid is refined. Grid used by the COSA,
and most likely, grid used by the FLUENT do not give the grid–independent solution.
Different spatial refinement of the two grids, may therefore, be responsible for observed
differences. Moreover, slightly different implementation of the COSA and FLUENT
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k − ω SST turbulence model could also lead to small differences between the two so-
lutions. Additionally, different setting of turbulent production limiters could also have
an effect on the solution.

Figure 5.19: Comparison of vorticity time sequences at t/T=0, 0.125, 0.25, for K and

D–SA, K and D–SST and COSA solutions (red: counter–clockwise vorticity, blue:

clockwise vorticity).

Figure 5.19 represents the comparisons of K and D–SA, K and D–SST, and COSA
vorticity field, when the airfoil is at positions 0 %, 12.5 % and 25 % of the oscillating
cycle. Please note, all results of Kinsey and Dumas have been taken from [23]. At
0 % of the oscillating cycle the two SST solutions are in excellent agreement, the
LEVS has travelled to the trailing edge in both cases. Only relatively small qualitative
differences in the shape of the low–pressure bubble can be observed. When comparing
the two SST solutions against the SA, it becomes apparent that the timing of the LEVS
is completely different, LEVS in SA case has arrived only at mid–chord, whereas it is
already at the trailing edge in the two SST cases. At 12.5 % and 25 % of the oscillating
cycle, the three solutions are fairly similar, as also observed in Fig. 5.18.

Even though some discrepancies have been observed between the two SST solutions,
the overall good agreement between the COSA and K and D–SST solution has been
found. It has been observed that the discrepancies between the SA and SST turbulence
models have been much higher, than those observed between the two SST models. This
confirms the suitability of the COSA code for highly separated flows.
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5.5 NREL Phase VI horizontal–axis wind turbine
Several upwind rotor configurations of the unsteady aerodynamics experiment of the
NREL Phase VI wind turbine [9] have been considered herein for thorough validation
of newly developed capabilities of the compressible NS solver COSA. The experiment
has been conducted by the National Renewable Energy Laboratory (NREL) located at
the National Wind Technology Center (NWTC) near Golden, Colorado, USA.

5.5.1 Physical and numerical set–up
The Phase VI rotor features two twisted and tapered blades, with the radius R =
5.029 m. Their geometry is based on the S809 airfoil, and also features a non–linear
twist distribution and a linear taper. More details about the blades can be found
in [9]. The turbine is stall regulated and has the rated power of 19.8 kW . The cut–in
wind velocity equals v∞ = 6 m/s, therefore, most of the experimental data exist for
the velocities higher than the cut–in. Only the rotor is modelled in CFD calculations,
both the tower and nacelle have been excluded.

Table 5.4: Operating conditions for the NREL Phase VI calculations.

v∞ (m/s) Ω (RPM) ρ (kg/m3) µ (kg/ms)

7 71.9 1.246 1.769× 10−5

10 72.1 1.246 1.769× 10−5

13 72.1 1.227 1.781× 10−5

15 72.1 1.224 1.784× 10−5

20 72.0 1.221 1.786× 10−5

25 72.1 1.220 1.785× 10−5

Three different yaw angles have been considered: 0◦, 10◦ and 30◦. In all considered
cases the rotor cone angle was set to 0◦, and zero vertical shear has been assumed.
For the yaw angle 0◦, both blades experience the same inflow conditions regardless of
the azimuthal position of the rotor. Therefore, only one blade can be modelled using
steady periodicity boundary condition, thus, halving the computational cost. As the
yaw 10◦ and 30◦ calculations have been performed with HB solver, only a single blade
using multi–frequency periodicity boundary condition was modelled. As described in
section 3.4, multi–frequency periodicity boundary condition allows to simulate a single
blade for unsteady flows in frequency–domain. The computational cost with such
boundary conditions is significantly reduced. The blade tip pitch angle was set to 3◦
towards feather. In this case the leading edge is pointing into the oncoming airflow.
The rest of the operating conditions for all computed cases are summarised in Table 5.4.
For the yaw angle 0◦, all cases summarised in Table 5.4 have been computed, whereas
for the yaw angles 10◦ and 30◦, only operating condition at 7m/s has been considered.
The Reynolds number based on the tip chord c, and the relative tip velocity varies
between 0.96 × 106 and 1.10 × 106 for the lowest and the highest wind speed. The
spanwise variation of the Reynolds number is not significant, as the length of the chord
c is decreasing while the relative velocity vr is increasing.
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Figure 5.20: NREL Phase VI sector grid representation. Top Left: Blade view, only

every fourth line in all directions is represented. Top right: near–airfoil area at 50 %

of blade length. Bottom: complete domain.

Figure 5.20 depicts the three views of the sector grid used in the 0◦ yaw calculations.
The 16–blocks grid has been generated using the NUMECA Autogrid5 grid generator
and was split into 990 equal blocks of the size 32 × 32 × 16 cells, resulting in the
overall number of 16, 220, 160 cells (medium). The grid topology around the airfoil
consists of five blocks: the O–grid block, which is positioned around the airfoil and
four H–grid blocks. First two H–grid blocks are positioned between the O–grid block
and the inflow and outflow farfield boundaries. Whereas the other two are positioned
between the O–grid block and the two periodic boundaries. The O–grid along the
airfoil, depicted in the top right figure, consists of 256–cells on the airfoil and 96–cells
in the normal–like direction. The distance dw of the first grid points off the airfoil from
the airfoil itself is about 1 ·10−5c. This distance is constant along the whole blade span.
The O–grid in the normal–like direction further expands for another 96–cells through
the H–grid block, positioned between the O–grid block and the inflow. Similarly, the
O–grid in the normal–like direction continues for 112–cells through the H–grid block,
positioned between the O–grid block and the outflow. And lastly, the O–grid in the
normal–like direction further continues for 48–cells, through the two H–grid blocks,
positioned between the O–grid block and the two periodic boundaries. To ensure
sufficient resolution in the tip region of the blade, the grid of the size 160× 96–cells is
placed at the tip. In spanwise direction, the grid has 128–cells on the blade surface and
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96–cells from the tip to the lateral farfield. The grid on the blade surface was clustered
towards the root and towards the tip. The maximum spacing in the spanwise direction
on the blade surface was about ∆z = 1 ·10−1c. The minimum spacing achieved towards
the tip was about ∆z = 1·10−5c, equal to the minimum distance from the airfoil surface
in the plane of the airfoil itself. The grid in the lateral farfield was clustered towards
the tip, with the minimum spacing of approximately ∆z = 1 · 10−5c. The blade tip
was modelled using sharp–tip topology. The grid coordinates are dimensional, and
are expressed in m. The farfield boundaries have been positioned at 10R from the
rotor centre at the inflow and in the lateral farfield boundary, and at 20R from the
rotor centre at the outflow. Coarse grid has also been obtained from medium grid, by
removing every second line in all three directions.

In all calculations characteristic boundary conditions are used for the inflow, outflow
and farfield faces of the cylinder. A no–slip condition is applied on the blade in the
rotating frame. In the 0◦ yaw case periodic boundary conditions are applied at the
180◦ cyclic boundaries, as depicted in the bottom plot of Fig. 5.20, and extrapolation
boundary condition is applied at the infinite hub near the rotational axis. For the yaw
angles 10◦ and 30◦, the multi–frequency periodic boundary conditions are applied at
the 180◦ cyclic boundaries. Instead of the infinite hub, a short hub considered as a zero–
thickness cylindrical surface, has been created in the same fashion as the one depicted
in the top left subplot of Fig. 6.33. The hub was surrounded by the computational grid
from both sides, and inviscid wall boundary condition has been prescribed from both
sides.

In all simulations, the minimum nondimensional wall distance y+ was found to be
smaller than 1 for the medium grid and about 1 for the coarse grid. To account for
low–speed velocities of all considered cases, the low–speed preconditioning [92] has been
used. All 0◦ yaw calculations have been performed using the steady k − ω SST solver
of COSA, whereas the 10◦ and 30◦ yaw calculations have been performed using the HB
k − ω SST solver of COSA. The CFL number of all cases has been set to 3, and the
CFL ramping has been used. Due to numerical instabilities encountered with the MG
solver, either with steady or HB solvers, all simulations were run using a single grid
level and 30, 000 iterations were performed to compute the steady and HB solution.
With this setup, the residuals of the NS and k − ω SST equations decreased by about
6 orders of magnitude, and all force and moment components converged within 25, 000
iterations.

5.5.2 Aerodynamic analyses of 0◦ yaw case

Table 5.5: Domain size study of the Phase VI wind turbine for the three different grids:

reference, halved, doubled.

domain inflow (R) far–field (R) outflow (R) ∆Fz(%) ∆Mz(%)

reference 10 10 20 – –

halved 5 5 10 0.55 0.99

doubled 20 20 40 −0.08 −0.16

The sensitivity of the solution to the size of the computational domain has been
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examined by varying the distance of the farfield boundaries from the rotor centre. The
medium grid described above has been used as a reference grid. Inflow, outflow and
far–field faces of the cylinder have all been varied simultaneously. In the first case these
dimensions were halved, and in the second case they were doubled. The near–field grid
was held constant, so to increase or decrease the domain size, the clustering of points
was varied only in the far–field region. Table 5.5 presents the domain dimensions
in terms of rotor radius R and the % variation of the thrust (∆Fz) and the torque
(∆Mz). The results reveal that the variation between the reference and halved domain
was about 0.6 % for ∆Fz and nearly 1 % for ∆Mz. Whereas, it was less than 0.1 %
for ∆Fz and less than 0.2 % for ∆Mz for the doubled domain. We may conclude, that
the differences between the reference and doubled domain are very small. Whereas
the differences between the reference and halved domain are non negligible. Therefore,
the domain dimension of the reference grid is sufficient to minimise the effects of the
imposed boundary conditions on the solution.

In all aerodynamic analyses for the yaw angle 0◦, the experimental data for the
integrated loads were averaged in such way that the azimuthal positions between 120◦
and 240◦ were excluded, as suggested in [35]. This was done in order to make a fair
comparison between the experimental data and CFD calculations, thereby to remove
any influence of the tower on the solution.

Figure 5.21: Power curve of the NREL Phase VI turbine. For the experimental data,

sample minimum and maximum are also plotted.

Here, the aerodynamic torque has been assessed and compared with the experimen-
tal data and the commercial CFD code NUMECA FINE. Figure 5.21 depicts the two
COSA solutions (medium and coarse), the experimental data which include error bars
of the maxima and minima, and the NUMECA solution of the coarse grid. NUMECA
FINE has also used the k−ω SST turbulence model and the low–speed preconditioning.
The vast majority of numerical parameters between COSA and NUMECA have been
matched, with the exception of numerical scheme. In COSA, the 2nd order upwind
scheme in conjunction with van Albada limiter has been used. In the attempt to per-
form the NUMECA calculations with the same scheme, the numerical instabilities were
encountered, therefore, all the NUMECA calculations have been run using the central
scheme. The CFL number has been set to 2, and all simulations were run using a single
grid level, due to numerical instabilities when using the MG solver. With this set–up,
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the NUMECA calculations have performed 30, 000 iterations, in order to compute the
steady solution. The residuals of the NS and k− ω SST equations decreased by about
5 orders of magnitude, and all force and moment components converged within 20, 000
iterations. As observed, the calculations performed with NUMECA converge slightly
faster than those of COSA, eventhough the CFL number of the COSA simulations
has been higher in all cases. This is probably due to the different numerical schemes
used in both codes. It is generally known that in comparison to the upwind schemes,
the central schemes are more robust, and thus, their convergence is faster. Looking

Figure 5.22: Spanwise distribution of the normal force coefficients (left) and the tan-

gential force coefficients (right) for the six operating regimes of the NREL Phase VI

blade: 7m/s, 10m/s, 13m/s, 15m/s, 20m/s and 25m/s. For the experimental data,

sample minimum and maximum are also plotted.
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at Fig. 5.21, all three CFD simulations predict well the overall shape of the measured
torque curve. For the lowest speed, the agreement between all thee numerical simula-
tions and the experimental data is excellent. This is the condition, where the flow is
completely attached. At 10 m/s, and 13 m/s, when stall appears, all three numerical
simulations are still in good agreement, but they overpredict the aerodynamic torque,
and thus the stall point. When the speed is greater than 15m/s, the COSA solutions
start to deviate. The COSA coarse grid solution predicts much higher torque than
the COSA medium solution, this indicates that up to 13m/s the COSA coarse grid is
fairly grid–independent, but coarse grid–refinement becomes insufficient for velocities
higher that 15 m/s. When looking at the NUMECA coarse grid solution for wind ve-
locities higher than 15m/s, it is also evident that the COSA and NUMECA solutions
are no longer in good agreement. One reason could be the usage of different numeri-
cal schemes in the two codes. Furthermore, the low–speed preconditioners in the two
codes are also different. COSA has used Merkle’s type of low–speed preconditioner,
whereas in NUMECA, Hakimi’s preconditioner has been used. It is also important
to mention that at higher wind speeds, the flow is heavily stalled, and therefore, the
differences between COSA and NUMECA could also be due to the small differences
in the implementation of the k − ω SST model. Some constants in NUMECA are also
not publically available, and could therefore not be matched. One may notice that at
higher wind speeds, the COSA medium grid is much closer to the experimental data
than the COSA coarse grid. Even though the NUMECA coarse grid appears to be
much closer to the experimental data than the COSA coarse grid, it is impossible to
draw any conclusions, as the coarse grid–refinement appears to be very insufficient for
higher wind speeds.

To provide the insight into the blade forces, the spanwise distribution of the normal
(CN) and tangential force (CT ) coefficients have been examined. The CN and CT
were obtained integrating the pressure distributions around the airfoil, and represent
the forces acting perpendicular and parallel to the airfoil chord, respectively. The
integration procedure involved projection of the average pressure between two solution
points onto the chord line, in order to obtain the CN values, and projection of the
average pressure onto an axis orthogonal to the chord to compute the CT values. The
definitions of CN and CT are provided respectively:

CN =
ns∑
i=1

(
cpi + cpi+1

2

)
(xi+1 − xi), (5.4)

CT =
ns∑
i=1

(
cpi + cpi+1

2

)
(yi+1 − yi), (5.5)

where the symbol ns indicates the number of solution points along the airfoil. The
first solution point was taken at the trailing edge (x = 1c), continuing in the direction
over the upper surface of the blade, and then along the bottom surface, ending at the
starting point at the trailing edge. The definition of cp is provided below:

cp = p− p∞
1
2ρ∞(u2

∞ + (rΩ)2) , (5.6)

where p and p∞ denote the local and freestream static pressure respectively. Such
definition of the pressure coefficient is based on the relative wind velocity and is a
non–dimensional measure of the difference between the local and freestream pressure.
At stagnation point cp reaches its maximum value of 1. When plotting the pressure
coefficient on the entire surface of the HAWT blade, it may be too complicated to use
the above definition, therefore, in the denominator of Eqn. 5.6 the freestream wind
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velocity is usually used instead. In this case maximum value at the stagnation point
is not known, and will vary along the span.

Using a similar integral procedure, one may determine also blade pitching moment
coefficient (CM). CM represents the total moment about the 0.25 chord due to the CN
and CT at each solution point with the vertical or horizontal distance from the pitch
axis called the moment arm. The definition of the CM is the following:

CM =−
ns∑
i=1

(
cpi + cpi+1

2

)
[
(xi+1 − xi)

(
(xi+1 − xi)

2 + xi − 0.25
)

+ (yi+1 − yi)
(

(yi+1 − yi)
2 + yi

)] (5.7)

In general, good agreement between all three simulations and the experimental data
has been found for both the CN and CT , except for the CT at 10 m/s. For 10 m/s,
large deviations of the CT have been observed at the inboard part of the blade. Some
deviations of the CT close to the root, have been also seen for the velocities 13m/s and
15m/s, but are still within the error bars of the experimental measurements. Looking
at the behaviour of the CT for the increasing wind speed, the data suggests that at
10m/s, the numerical simulations fail to predict flow separation close to the root, and
therefore overpredict CT . For 13 m/s and 15 m/s, the CT is still overpredicted close
to the root, however, the data suggest that the numerical simulation is already able to
predict some amount of stall, as the CT is becoming closer to the experimental data.
When the wind velocity further increases, the stalled area spreads, and the numerical
simulations agree quite well with the experimental data.

Following figures represent the pressure coefficient cp distributions of the three CFD
simulations, alongside with the experimental data, at five spanwise positions, at r/R =
0.3, 0.47, 0.63, 0.8 and 0.95. cp is defined with Eqn. (5.6), and its definition is based
on the relative wind velocity.

Figure 5.23: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case.

Figure 5.23 refers to the lowest considered wind speed, 7m/s. Excellent agreement
is found between all the three CFD simulations and the experimental data. No ev-
ident differences are observed between the three CFD solutions, indicating that the
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coarse grid is fairly grid–independent for this operating condition. Furthermore, the
COSA and NUMECA agreement is excellent for this operating condition, despite of
the different numerical schemes being used in the two codes.

Figure 5.24 refers to the operating condition corresponding to the wind speed
10 m/s. The COSA coarse, COSA medium and NUMECA coarse grid simulations
are still in good agreement. However, as previously noted in Fig 5.22, the agreement
between the experimental data and the three CFD simulations was poor in the inboard
part of the blade. Looking at the cp profiles in r/R = 0.47 subplot of Fig. 5.24, the
experimental data clearly demonstrates there is a leading edge separation at position
r/R = 0.47. The separation also affects the flowfield at position r/R = 0.3. It may
also be noted that all CFD solutions fail to predict leading edge separation at position
r/R = 0.47, but rather predict high suction peak.

Figure 5.25 refers to the operating condition corresponding to the wind speed
13 m/s. The experimental data suggests that the stalled area on the suction side
of the blade is spreading, it now expands from the root of the blade until r/R = 0.63.
Some differences within this area are observed between all the three CFD simulations.
All three CFD solutions at positions r/R = 0.8 and 0.95 are still in good agreement
with the experimental data. Although Fig. 5.21 shows that for higher wind speeds the
torque computed with the NUMECA coarse grid simulation appears to be closer to the
torque computed with COSA medium rather than COSA coarse, Fig. 5.25 indicates
that this may be only a coincidence. Taking the area between the suction side and
pressure side portion of cp as a measure of the aerodynamic loading, one notice that the
aerodynamic loading of the NUMECA coarse at the positions r/R = 0.3, 0.47 and 0.8
is bigger than for the COSA medium, whereas it is smaller for the other two positions.

Figure 5.26 refers to the operating condition corresponding to the wind speed
15 m/s. The experimental data suggests, that the stalled area on the suction side
of the blade has now spread over most part of the blade. Only position at r/R = 0.95
is still unaffected. The CFD solutions predict stall well, except at position r/R = 0.3.
It is also observed, that at position r/R = 0.3, all three simulations predict cp differ-
ently. This suggests that for this operating condition, the flow conditions at this blade

Figure 5.24: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

10m/s case.
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Figure 5.25: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

13m/s case.

length are very unstable.
Figure 5.27 refers to the operating condition corresponding to the wind speed

20m/s. The data in all subplots suggest that the flow on the suction side of the blade,
at this operating condition, is now fully stalled. Small differences can be observed be-
tween the three CFD simulations. However, the agreement between the experimental
data and CFD simulations is now very good. For the positions r/R = 0.3 and 0.47,
the COSA medium simulation is in better agreement with the experimental data than
the other two CFD simulations.

Figure 5.28 refers to the operating condition corresponding to the wind speed

Figure 5.26: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

15m/s case.
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Figure 5.27: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

20m/s case.

25m/s. Also for this operating point, the flow on the suction side of the blade is under
the fully stalled conditions. The three CFD simulations all show very good agreement
with the experimental data. Very little visual differences are observed among the three
CFD simulations, eventhough the torque prediction plot in Fig. 5.21 suggests otherwise.

Looking at Figs. 5.23–5.28, one may notice that at the tailing edge the discontinu-
ities in pressure profiles may be observed. At 7 m/s and 10 m/s these discontinuities
are still relatively small and may be observed only for the COSA and NUMECA coarse
grid solutions. For the wind velocities 13 m/s–25 m/s, these discontinuities become
much larger for both the COSA and NUMECA coarse grid solutions, and are now

Figure 5.28: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

25m/s case.
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visible also for the COSA medium grid solution. In all plots the biggest discontinuities
are seen for the COSA coarse grid solution, following by the NUMECA coarse grid
solution, and COSA medium grid solution. Cross comparison of the COSA coarse
and NUMECA coarse grid solutions suggest, that either the wall boundary condition
used in COSA causes higher discontinuities than the wall boundary condition used in
NUMECA, or the numerical scheme of the NUMECA solver is less sensitive to these
discontinuities. Furthermore, comparison of the COSA coarse and medium grid solu-
tion proposes the higher the grid refinement in rounded trailing edge area, the smaller
the discontinuities.

Figure 5.29: Skin friction lines on the suction side of the NREL Phase VI blade,

computed with the COSA medium grid, for the six operating regimes: 7m/s, 10m/s,

13m/s, 15m/s, 20m/s and 25m/s.

Figure 5.29 represents the comparison of the skin friction lines on the suction side
of the NREL Phase VI blade for six operating conditions, all obtained with the COSA
medium simulations. Looking at the 7 m/s plot, the stream is well guided and kept
aligned with the blade chord for the majority of the blade span, except for the blade
sections close to the root and close to the tip. Close to the root, the skin friction
lines turn towards the tip rather than being aligned with the chord, which indicates
there is a small region of stalled flow conditions. Similarly, in the tip region, the skin
friction lines turn towards the root, rather than being aligned with the blade chord.
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This behaviour indicates the formation of the tip vortex, where the flow rolls over the
tip from the pressure side to the suction side. The inclined skin friction lines are due
to the flow acceleration, which is driven by the pressure difference between the suction
and pressure sides of the blade. Passing from 7 m/s to 10 m/s, the small area of the
stalled flow conditions near the root has now spread towards the tip, more than half
blade is already affected. Furthermore, at 10 m/s, the radial pumping effect becomes
apparent. At 13 m/s the region of stalled flow has nearly reached the tip region of
the blade, whereas at 15m/s the whole blade is affected. For 20m/s and 25m/s, the
flowfield looks quite similar, the flow is separated everywhere. Skin friction lines close
to the tip, as expected, are more inclined for 10 m/s, than in the 7 m/s case. This
indicates that the tip vortex is becoming stronger. For higher velocities, the behaviour
of the tip vortex seems to be heavily influenced by the stalled flow conditions. The
comparison of the skin friction lines on the suction side of the NREL Phase VI blade
between the three CFD codes, for all considered operating conditions, is provided in
the appendix C.

In general, the obtained results in this subsection show good agreement between the
numerical and experimental data, with the exception of the inboard part of the blade
for the operating condition 10m/s. Some discrepancies were also found close to the root
sections, for the operating conditions at 13m/s and 15m/s. All these differences could
be connected to very unstable flow conditions in this particular areas. Many reasons
exist, why the flow behaviour here is not precisely captured with the CFD simulations.
One of the possible reasons could be the lack of the laminar–to–turbulent transition.
Furthermore, also the lack of accuracy in turbulence models for highly separated flows,
which is a common problem for most linear eddy viscosity models, could be the reason
for the observed differences.

5.5.3 Aerodynamic analyses of 10◦ and 30◦ yaw cases

Figure 5.30: Top view of the boom and instrumentation enclosure wake interference.

Taken from [9].

The periodic flow of the considered NREL Phase VI wind turbine has been com-
puted herein, using the COSA HB solver, and validated against experimental data. The
two yaw angles of δ = 10◦ and δ = 30◦ have been investigated, at the operating con-
dition at 7 m/s, described in Table 5.4. The coarse grid described in subsection 5.5.1
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has been used. All HB calculations have used the sector grid, and multi–frequency
boundary conditions have been applied to the periodic boundaries.

In the yawed wind conditions, the experimental measurements were highly affected
by the wake of the instrumentation boom and enclosures [9], as depicted in Fig. 5.30.
The approximate area, which has been affected by the wake of the boom and instru-
mentation boxes or the tunnel flow with respect to the probe, is depicted in Fig. 5.31.
Additionally, the experimental data have also been affected by the tower, and this re-
gion extends from about 120◦ and 240◦ azimuth for the 0◦ yaw case at wind velocity
of 7 m/s [146]. In order to minimise uncertainties due to the affected measurements,
the azimuthal positions at θ = 210◦, θ = 270◦ and θ = 330◦ have been considered.
At θ = 210◦, some influence of the tower might still be visible, whereas the positions
θ = 270◦ and θ = 330◦ are unaffected. Please note that all experimental data in this
subsection were extracted and digitalized from [146], and are those conducted by the
NREL in Phase VI wind turbine campaign [9].

At fist the COSA analyses for both yaw angles have been compared against the
experimental data in terms of the normal (CN) and tangential force (CT ) coefficients.
The CN and CT were obtained by integration of the pressure distributions around the
airfoil, using the Eqns. 5.4 and 5.5.

Figure 5.32 depicts spanwise distribution of the CN and CT for the yaw angle
δ = 10◦. Only two HB calculations have been computed, as the solution between
HB–1 and HB–2 does not change. HB simulations are denoted by the acronym HB,
followed by the value of the retained number of harmonics NH = 1, 2. To resolve the
periodic flowfield for this operating condition, only one complex harmonic is required,
as visible from all six subplots in Fig. 5.32. When comparing the HB–1 solution with
the experimental data, an excellent agreement is found for both the CN and CT , for all
three azimuthal positions. At all times the HB–1 data are within sample minimum and

Figure 5.31: Front view of the Phase VI HAWT. Shaded area is significantly affected

by the boom and instrumentation enclosure wake. Taken from [9].
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Figure 5.32: Spanwise distribution of the normal force coefficients (left) and the tan-

gential force coefficients (right) at 7 m/s and the yaw angle δ = 10◦, for the three

azimuthal positions of the NREL Phase VI blade: θ = 210◦, θ = 270◦, and θ = 330◦.

For the experimental data, sample minimum and maximum are also plotted.

Figure 5.33: Spanwise distribution of the normal force coefficients (left) and the tan-

gential force coefficients (right) at 7 m/s and the yaw angle δ = 30◦, for the three

azimuthal positions of the NREL Phase VI blade: θ = 210◦, θ = 270◦, and θ = 330◦.

For the experimental data, sample minimum and maximum are also plotted.
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maximum region of the experimental data. The largest deviation of the CN has been
observed close to the root, at the azimuthal position θ = 330◦, whereas the largest
deviation of the CT has been observed close to the root, at the azimuthal position
θ = 210◦.

Figure 5.33 depicts spanwise distribution of the CN and CT for the yaw angle δ =
30◦. Four HB calculations have been computed, in order to assess the minimum number
of complex harmonics required. At this operating condition one complex harmonic is
clearly insufficient, and to completely resolve the periodic flowfield for this operating
condition, three complex harmonics are required. This is visible from the six subplots
in Fig. 5.33. The HB–3 solution compares well with the experimental data. The
comparison for the δ = 30◦ case is not worse than for the δ = 10◦ case. In some cases
the data for the δ = 30◦ case seems to compare even better than for the δ = 10◦ case.
The largest deviation of the CN has been observed close to the root, at the azimuthal
position θ = 330◦. For the CT all spanwise positions agree well with the mean value of
the experimental data.

Following figures represent the pressure coefficient cp distributions of the HB–1
calculation, alongside with the experimental data, for the yaw angle of δ = 10◦, and
azimuthal positions θ = 210◦, θ = 270◦ and θ = 330◦, at five spanwise positions, at
r/R = 0.3, 0.47, 0.63, 0.8 and 0.95. cp is defined with Eqn. (5.6), and its definition is
based on the relative wind velocity.

Figure 5.34 refers to the cp distributions of the yaw angle δ = 10◦, and the azimuthal
position θ = 210◦. Excellent agreement is found between HB–1 simulations and the
experimental data, for all five spanwise locations.

Figure 5.35 refers to the cp distributions of the yaw angle δ = 10◦, and the az-
imuthal position θ = 270◦. The results for this azimuthal position are still in excellent
agreement, especially for the spanwise locations r/R = 0.47-r/R = 0.95. cp profile of
the r/R = 0.3 seems to be slightly over predicted by the CFD simulation, however it
still agrees well with the experimental data.

Figure 5.36 refers to the cp distributions of the yaw angle δ = 10◦, and the azimuthal
position θ = 330◦. Also for this azimuthal position, the agreement between HB–1 and

Figure 5.34: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 10◦, and the azimuthal position θ = 210◦.
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Figure 5.35: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 10◦, and the azimuthal position θ = 270◦.

the experimental data is excellent, for all five spanwise locations.
Following figures represent the pressure coefficient cp distributions of the HB–3

calculation, alongside with the experimental data, for the yaw angle of δ = 30◦, and
azimuthal positions θ = 210◦, θ = 270◦ and θ = 330◦, at five spanwise positions, at
r/R = 0.3, 0.47, 0.63, 0.8 and 0.95. cp is defined with Eqn. (5.6), and its definition is
based on the relative wind velocity.

Figure 5.37 refers to the cp distributions of the yaw angle δ = 30◦, and the azimuthal
position θ = 210◦. For all five spanwise locations there is an excellent agreement
between HB–3 simulation and the experimental data.

Figure 5.36: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 10◦, and the azimuthal position θ = 330◦.
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Figure 5.37: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 30◦, and the azimuthal position θ = 210◦.

Figure 5.38 refers to the cp distributions of the yaw angle δ = 30◦, and the azimuthal
position θ = 270◦. Other than slightly overpredicted cp profile of the HB–3 simulation
at the r/R = 0.3, the HB–3 results for this azimuthal position are still in excellent
agreement with the experimental data, for the rest of the spanwise locations.

Figure 5.39 refers to the cp distributions of the yaw angle δ = 30◦, and the azimuthal
position θ = 330◦. Also for this azimuthal position, the agreement between the HB–3
solution and the experimental data is excellent, for all five spanwise locations. The
only small discrepancy between the HB–3 and experimental data is observed at the

Figure 5.38: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 30◦, and the azimuthal position θ = 270◦.
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Figure 5.39: Pressure coefficient cp distributions of the NREL Phase VI blade, for the

7m/s case, the yaw angle δ = 30◦, and the azimuthal position θ = 330◦.

suction side of the position r/R = 0.3. At this spanwise location the cp is slightly
overpredicted at the suction side of the airfoil.

The results obtained in this subsection show an excellent agreement between the
numerical and experimental data for the operating condition in yawed wind flow at
wind velocity 7 m/s. Two yaw angles of δ = 10◦ and δ = 30◦ at the azimuthal
positions θ = 210◦, θ = 270◦ and θ = 330◦ have been analysed. These results have
confirmed that the newly developed HB solver may capture well the unsteady HAWT
flow effects, and it is well suited for yawed wind analyses.



Chapter 6

Results

This chapter focuses on numerical analyses of oscillating wing devices and horizontal–
axis wind turbines. Both devices play a significant role in the development of efficient,
clean, renewable energy generation systems. The chapter begins with the oscillating
wing device basics and continues with the numerical set–up of oscillating wing device
simulations. Two operating regimes are considered: one characterised by a high effi-
ciency of energy extraction due to the occurrence of the leading edge vortex shedding
(case A), and the other characterised by high efficiency of energy extraction in absence
of the leading edge vortex shedding (case B). For both cases, 2D grid–independency
study is first carried out, followed by a detailed numerical investigation into the impact
of the flow three–dimensionality on the power generation efficiency. The numerical in-
vestigation is based on the comparative performance assessment of an infinite wing and
two aspect ratio 10 wings, one featuring endplates, and the other featuring sharp tips.
Under turbulent flow conditions the differences of unsteady hydrodynamic characteris-
tics of the considered wing configurations are examined, discussed and quantified. The
chapter continues with the definition of NREL 5–MW reference wind turbine, basic
definitions of HAWTs and numerical set–up of the simulations of the 3D turbulent
periodic flow past the rotating blade of NREL 5–MW reference wind turbine in yawed
wind. This is a condition occurring when the freestream wind velocity is not orthogo-
nal to the turbine rotor. The focus is first on a detailed aerodynamic discussion of this
flow problem, followed by a detailed assessment of the actual benefits achievable by
using the HB technology for the analysis of the wind turbine periodic aerodynamics.
Time refinement analyses with the TD solver and spectral refinement analyses with
the HB solver are performed to determine the speed–up of the HB simulation yielding
a solution accuracy comparable to that of the fully resolved TD simulation.

6.1 Oscillating wing devices

6.1.1 Oscillating wing fundamentals

Motion description

An oscillating wing is defined as a foil experiencing simultaneous pitching θ(t) and
heaving h(t) motions. The following mathematical representation of the imposed mo-
tion is that adopted in [21]. Taking a pitching axis located on the chord line at position

108
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xp from the leading edge (LE), the foil motion is expressed as:

θ(t) = θ0 sin(ωt)→ Ω(t) = θ0ω cos(ωt) (6.1)
h(t) = h0 sin(ωt+ φ)→ vy(t) = h0ω cos(ωt+ φ) (6.2)

where θ0 and h0 are respectively the pitching and heaving amplitudes, Ω is the pitching
velocity, vy is the heaving velocity, ω is the angular frequency and φ is the arbitrary
phase angle between heaving and pitching. The freestream velocity is denoted by u∞
and the angular frequency ω is linked to the vibration frequency f by the relationship
ω = 2πf . The prescribed oscillating motion is depicted in Fig. 6.1.

Figure 6.1: Prescribed motion of the oscillating wing for power generation.

Operating regimes

An oscillating symmetric foil can operate in two different regimes: propulsive or power–
extracting mode. This distinction originates from the sign of the forces that the flow
generates on the oscillating foil. Based on the imposed motion and the upstream flow
conditions, the foil experiences an effective angle of attack (AoA) α and an effective
velocity ve given respectively by:

α(t) = arctan (−vy(t)/u∞)− θ(t) (6.3)
ve(t) =

√
u2
∞ + vy(t)2 (6.4)

The maximum values of α and ve have a major impact on the amplitude of the
peak forces in the cycle, and also on the occurrence of dynamic stall. The maximum
effective AoA reached in the cycle is approximated by the modulus of its quarter–period
value, that is αmax ≈ |α(T/4)|. As explained in [21], the power–extracting regime
(in a mean sense, over one cycle) occurs when α(T/4) < 0, whereas the condition
α(T/4) > 0 corresponds to propulsive regime. The former and the latter conditions
are represented respectively in the top and bottom sketch of Fig. 6.2, which provides
a time–sequence viewed in a reference frame moving with the farfield flow at u∞, so
that the effective AoA α(t) is made visible from the apparent trajectory of the foil.
The top sketch, also represents the resultant force R, which is constructed from typical
lift and drag forces (right–hand side) and then decomposed into X and Y components
(left–hand side). One sees that the vertical force component Y is in phase with the
vertical velocity component vy of the foil over the entire cycle. This implies that
the wing extracts energy from the fluid as long as no energy transfer associated with
the component X of the hydrodynamic force takes place. This is the case since the
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foil does not move horizontally. The hydrodynamic phenomena occurring during the
wing oscillation are substantially more complex than the quasi–steady model discussed
above. In some cases, for example, the efficiency of the energy extraction was shown
to be heavily influenced by the occurrence of unsteady leading edge vortex shedding
(LEVS) associated with dynamic stall and the phase between LEVS and foil kinematics.

Figure 6.2: Foil motion in reference system moving with freestream velocity. Top

sketch: power–extraction regime. Bottom sketch: propulsion regime.

Power and efficiency

The instantaneous power extracted from the flow is the sum of a heaving contribution
Py(t) = Y (t)vy(t) and a pitching contribution Pθ(t) = M(t)Ω(t), where M denotes the
hydrodynamic torque acting on the wing computed about the wing axis through the
pitching center xp. Denoting by c the foil chord, and z the coordinate along the wing
span with origin at midspan, the power coefficient per unit wing length at position z
is defined as:

CPz(t) ≡ Pz/(
1
2ρ∞u

3
∞c) (6.5)

where Pz is the sum of the instantaneous pitching and heaving power per unit wing
length. The overall power coefficient, i.e. the nondimensional expression of the overall
power extracted by the entire wing at time t is instead:

CP (t) = 1
2l

∫ l

−l
CPzdz (6.6)

where l denotes the wing semispan. Introducing the time–dependent heaving force co-
efficient CY (t) and pitching moment coefficient CM(t), defined respectively as CY (t) =
Y (t)/[1

2ρ∞u
2
∞c(2l)] and CM(t) = M(t)/[1

2ρ∞u
2
∞c

2(2l)], the nondimensional mean power
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produced over one cycle can be written as:

CP = CPy + CPθ = 1
T

∫ T

0

[
CY (t)vy(t)

u∞
+ CM(t)Ω(t)c

u∞

]
dt (6.7)

In the analyses reported in section 6.1, use is also made of the heaving power co-
efficient per unit wing length CPzy and the pitching power coefficient per unit wing
length CPzθ , obtained respectively by replacing Pz in Eqn. (6.5) with the instantaneous
pitching and heaving power per unit wing length. Similarly, the time–dependent heav-
ing power coefficient CPy and pitching power coefficient CPθ are obtained respectively
by replacing CPz in Eqn. (6.6) with CPzy and CPzθ . For 2D problems, the expression
of the time–dependent overall power coefficient CP is provided by Eqn. (6.5), and the
heaving and pitching power coefficients are computed using the same equation but
considering separately the heaving and pitching power components.

The efficiency η of the power generation process is defined as the ratio of the ex-
tracted mean power P = 1

2CPρ∞u
3
∞c(2l) and the total available power Pa = 1

2ρ∞u
3
∞d(2l)

in the oncoming flow passing through the swept area (the flow window):

η ≡ P

Pa
= CP

c

d
(6.8)

where d is the overall vertical extent of the foil motion. This distance depends on the
heaving and pitching motion parameters h0, θ0 and φ. The power extraction efficiency η
defined by Eqn. (6.8) corresponds to the classical power coefficient obtained by means
of Betz’s analysis [147], which shows that the upper limit of η is 16/27×100 ≈ 59.3 %.
Therefore, Eqn. (6.8) provides the relationship between the mean power coefficient CP

defined by Eqn. (6.7) and Betz’s theory power coefficient (η).

6.1.2 Physical and numerical set–up
The selected wing profile is the NACA0015 foil. The wing trajectory features a heav-
ing and pitching motion component defined by Eqns. (6.1) and (6.2) respectively. Two
operating conditions characterised by a high efficiency of energy extraction in the tur-
bulent flow regime are considered. First high energy extraction efficiency operating
condition (case A) is characterised by the occurrence of LEVS associated with the
dynamic stall, described in [26]. Second high energy extraction efficiency operating
condition (case B) does not experience the occurrence of LEVS and is described in [27].

Reynolds number based on the freestream velocity and the foil chord is Re =
1.5× 106, and is the same for both cases. The pitching center, which is at xp = 1/3 of
the chord from the LE, and the phase angle φ between heaving and pitching motions,
which is 90.0o, are also the same for both case A and case B. All other parameters
are different for the two cases. The heaving amplitude h0 of case A equals one chord
and the pitching amplitude θ0 is 76.3o. This parameter choice for case A yields a
value of the overall height h swept by the foil of 2.56 chords. The nondimensionalized
frequency f ∗ = fc/u∞ for case A is 0.14, where f is the frequency in Hertz. The
heaving amplitude h0 of case B instead equals one and a half chord and the pitching
amplitude θ0 is 85o. This choice of parameters for case B yields a value of the overall
height h swept by the foil of 3.5 chords. The nondimensionalized frequency f ∗ for case
B equals 0.16.

The time–dependent 3D turbulent flow fields past the oscillating wing were com-
puted using structured multi–block non–deforming moving grids. In all simulations
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the entire grid moved rigidly with the wing. The 3D grid was obtained by extruding
the 2D grid past the foil in the spanwise direction. The node coordinates of 2D and
3D grids were nondimensionalized by the foil chord.

The COSA code adopted for the analysis of this study is compressible, and there-
fore it requires prescribing the free stream Mach number on all far field boundaries.
The free stream Mach number was set to 0.1, and this choice resulted in the maxi-
mum relative Mach number in the flow field never exceeding 0.3, the threshold above
which compressibility effects may appear. Hence, the presented analyses do not include
compressibility effects.

The required level of spatial refinement of the 3D grid in the foil plane was assessed
by means of 2D simulations for case A and case B, using 256 time–intervals per oscilla-
tion cycle. More specifically, the periodic 2D flow field associated with the motion and
flow parameters reported above was computed using four O–grids: one of dimension
256 × 256 (coarse) with 256 intervals on the foil and 256 intervals in the normal–like
direction, and the other three of dimensions 512 × 512 (medium), 1024 × 1024 (fine),
and 2048 × 2048 (extrafine). In all cases, the farfield boundary in the foil plane was
at about 50 chords from the foil. On the extrafine grid level, the distance dw of the

Figure 6.3: Mesh refinement analysis of case A: overall power coefficient (top), heaving

power coefficient (middle), and pitching power coefficient (bottom) obtained using O–

grid with coarse, medium, fine and extrafine refinement O–grids.
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first grid points off the foil surface from the foil itself was about 8 × 10−7c. The fine
grid was obtained from the extrafine by removing every second line in both directions,
and this approach was used recursively to also obtain the medium and coarse level
grids. The periodicity error of the 2D simulations using these four grids and all other
simulations of this study was assessed by monitoring the evolution of the heaving force
coefficient CY . The simulations were run until the maximum difference between CY
over the last two oscillation cycles became about 0.1 % of the maximum value of CY
over the last cycle. It was chosen to monitor the periodicity error of CY because the
vertical force component gives the highest contribution to the extracted power. The
periodic profiles of the overall power coefficient CP , the heaving power coefficient CPy
and the pitching power coefficient CPθ resulting from the mesh refinement assessment
for case A are reported respectively in the top, middle and bottom subplot of Fig. 6.3.
Whereas the same plot for case B is reported by Fig. 6.4. The number 256 follow-
ing the acronym TD indicates the number of time steps per period. It is noted that
for case A some relatively small differences among the four CP profiles exist in the
first 10 % of the semi–period, and that such differences become progressively smaller
as the grid refinement is increased. The same observation also holds for the four CPy

Figure 6.4: Mesh refinement analysis of case B: overall power coefficient (top), heaving

power coefficient (middle), and pitching power coefficient (bottom) obtained using O–

grid with coarse, medium and fine O–grids.
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profiles. These discrepancies are caused by small variations of the phase of the LEVS
associated with the considered regime [26] with respect to the foil oscillation. This
occurrence is highlighted by the notable dependence of the position of the sharp peak
of CPθ on the level of spatial refinement. As expected, these variations decrease as
the grid is refined, and become very small when passing from the fine to the extrafine
grid refinement, indicating that the 1024×1024 grid provides a fairly grid–independent
solution. On the contrary, for case B no visual differences among coarse, medium and
fine grid CP profiles exist. Due to this reason, the extrafine grid computation was not
performed. The same observation also holds for the three CPy and CPθ profiles.

Table 6.1: Mesh refinement analysis of case A and case B: mean overall, heaving and

pitching power coefficients, and energy extraction efficiency η obtained using O–grid

with coarse, medium, fine and extrafine refinement O–grids.

case A case B

refinement CP CPy CPθ η(%) CP CPy CPθ η(%)

coarse 1.004 1.176 -0.172 39.19 1.577 2.100 -0.524 44.99

medium 1.015 1.176 -0.161 39.63 1.559 2.074 -0.516 44.48

fine 1.011 1.184 -0.173 39.45 1.546 2.058 -0.512 44.11

extra fine 0.998 1.188 -0.190 38.95 - - - -

The mean values of the power coefficient profiles for case A and case B, depicted
in Figs. 6.3 and 6.4 respectively, are reported in Table 6.1. The table also provides the
efficiency η defined by Eqn. (6.8). One sees that for case A, the output featuring the
highest sensitivity to the spatial refinement is the mean pitching power. However, due
to significantly higher levels of heaving power, the variability of the overall mean power
and the efficiency is significantly smaller. Some differences between the different spatial
refinement also exist for case B. These differences are not visible in Fig. 6.4. Looking
at the mean heaving and pitching power for case B, these relatively small differences
are of the same order for both quantities. The differences are slightly higher between
coarse and medium refinement, and they become smaller between medium and fine
refinement. The same applies for the overall mean power and efficiency.

To assess the solution sensitivity to the level of temporal refinement the selected
regime was simulated with the coarse–refinement grid using a number of time–intervals
per period NT of 128, 256, 512 and 1024. The periodic profiles of CP , CPy and CPθ
obtained with these four simulations are reported respectively in the top, middle and
bottom subplot of Fig. 6.5 for case A, and in Fig. 6.6 for case B. For case A, similarly
to the trend of spatial refinement, some relatively small differences among the four CP
profiles and among the four CPy profiles exist in the first 10 % of the semi–period.
Such differences become progressively smaller as the time step decreases, and become
practically negligible when passing from the TD–512 to TD–1024 analysis, indicating
that 512 intervals per period are sufficient to achieve a solution independent of the time
step. Similarly to what was highlighted in the assessment of the effect of the spatial
resolution on the computed solution, the differences among the solutions obtained using
128, 256 and 512 steps per cycle are also due to small variations of the timing of the
LEVS. These variations rapidly decrease as the grid is refined. Looking at Fig. 6.6,
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Figure 6.5: Time step refinement analysis of case A: overall power coefficient (top),

heaving power coefficient (middle), and pitching power coefficient (bottom) obtained

using 128, 256, 512 and 1024 steps per oscillation cycle.

no visual differences for different levels of temporal refinement for case B exist for all
three periodic profiles, CP , CPy and CPθ .

The mean values of the power coefficient profiles depicted in Figs. 6.5 and 6.6 are
reported in Table 6.2, along with the efficiency η. Similarly as in the spatial refinement
analyses, the output featuring the highest sensitivity to the refinement, for case A, is
the mean pitching power. For case B, the differences, which are again not visible from
the periodic profiles in Fig. 6.6, exist only between NT of 128 and 256 and they become
negligible when NT is increased to 512.

The spatial and temporal mesh refinement analyses for case A highlight that the
differences in case A, which are primarily due to small variations of the timing of
the LEVS, are much bigger than in case B. The analyses suggest that a fully mesh–
independent solution for case A is obtained using the 2D fine grid and 512 time intervals
per cycle. Whereas for case B the 2D medium grid and 256 time intervals per cycle
are sufficient to give a fully mesh–independent solution. However, to keep the com-
putational cost of the 3D analyses within the size of the available resources, the 2D
coarse grid was chosen as the foil planar mesh of the 3D grid, and 256 time intervals
per cycle were used in the 3D simulations reported below. In the light of the findings
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Figure 6.6: Time step refinement analysis of case B: overall power coefficient (top),

heaving power coefficient (middle), and pitching power coefficient (bottom) obtained

using 128, 256, 512 and 1024 steps per oscillation cycle.

Table 6.2: Time step refinement analysis of case A and case B: mean overall, heaving

and pitching power coefficients, and energy extraction efficiency η obtained using 128,

256, 512 and 1024 steps per oscillation cycle.

case A case B

NT CP CPy CPθ η(%) CP CPy CPθ η(%)

128 0.984 1.149 -0.164 38.41 1.594 2.120 -0.527 45.49

256 1.004 1.176 -0.172 39.19 1.577 2.100 -0.524 44.99

512 1.015 1.203 -0.187 39.63 1.572 2.094 -0.523 44.85

1024 1.016 1.209 -0.191 39.66 1.573 2.095 -0.522 44.88
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presented below, however, it is the author’s view that the use of relatively coarse spatial
and temporal grids for case A does not significantly affect the main conclusions of the
investigations. For case B, the suggested spatial refinement is nearly grid–independent,
and the temporal refinement is fully time–independent.

All 2D time–dependent simulations were performed using the MG solver with 3 grid
levels. CFL ramping was used for all time steps, and the final CFL number reached
equalled 4. 900 MG iterations were typically performed to compute the solution of each
physical time. With this set–up, the residuals of the NS equations decreased by about
6 orders of magnitude at all physical times, and all force and moment components fully
converged within 700 MG iterations.

Figure 6.7: Surface mesh of wing and symmetry boundary (only every fourth grid line

in all directions is reported). Top: wing with endplate. Bottom: wing with sharp tip.

The 3D simulations used a symmetry boundary condition at midspan to halve
computational costs, and the 3D grid was built by stacking the 2D 256 × 256 O–grid
in the spanwise direction from the midspan symmetry plane to the lateral farfield
boundary, which was at 50 chords from the symmetry boundary. The AR of the wing
was 10. Constant spanwise spacing ∆z = 0.02c was used from midspan to 90 %
semispan, and from here the grid was clustered towards the tip achieving a minimum
spacing ∆z = 6.4× 10−6c, equal to the minimum distance from the foil surface in the
plane of the foil itself. The cell size increased again moving from the tip to the lateral
farfield boundary. The grid featured 244 cells between the symmetry plane and the
wing tip, and 144 cells between the wing tip and the lateral farfield boundary. The
complete grid had 30, 670, 848 cells.

Two wing tip topologies were considered, one with sharp tips, the other with end-
plates. The geometry of the endplate is depicted in Fig. 6.8. Careful grid design
enabled the use of the same grid for both configurations, removing all uncertainty in
the comparative analysis of these two configurations arising from using different grid
topologies. A view of the surface mesh of the two 3D grids is provided in Fig. 6.7. In
all simulations presented in this study, the minimum nondimensional wall distance y+

was found to be smaller than one at all times of the periodic flow field.
The CFL number of all 3D simulations was set to 3. Due to numerical instabilities

encountered with the MG solver, all simulations were run using a single grid level.
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Figure 6.8: Endplate geometry.

The CFL ramping was used for all time steps, and 2, 800 iterations were performed to
compute the solution of each physical time. With this set–up, the residuals of the NS
equations decreased by about 4 orders of magnitude at all physical times, and all force
and moment components fully converged within 2, 500 iterations. For both 2D and
3D analyses, the number of oscillation cycles typically required to achieve the 0.1 %
periodicity error threshold on CY varied between four and ten, depending on the spatial
and temporal refinement, and also on whether the simulation had been started from
a freestream condition or from the solution of a simulation using the same grid but
different temporal refinement.

As stated above, the number of MG iterations typically required in the 2D flow
analyses for all force and moment components to converge was 700. The MG V–
cycle consisted of 3 iterations on the fine grid, 3 iterations on the medium grid and 2
iterations on the coarse grid. Such number of MG iterations is comparable of about
2, 400 single–grid iterations. Given the fact that in the 3D calculation 2, 500 single–grid
iterations were required for all force and moment components to fully converge, the
runtime of the 3D calculations was not significantly penalised by not using MG in 3D
analysis. It appears that MG method does not allow significant acceleration for high–
Reynolds number flows. The difficulties encountered in solving such problems most
likely occur due to the sophisticated 2–equation turbulence model employed for these
calculations, and the very high aspect ratios of the computational grids required to
resolve thin boundary layers at high Reynolds numbers. The stability and convergence
rate of the explicit solver decreases as the grid aspect ratio increases. Such stability
issues, when using sophisticated 2–equation turbulence models, could be limited by
employing numerical stabilisation methods such as those reported in [148] and [149].
It was also observed that the convergence of the MG varies with the selected physical
time step, the smaller the physical time step becomes, the faster the convergence.

6.1.3 Hydrodynamic analysis of case A
The infinite– and finite–span oscillating wing configurations analyzed herein share the
same trajectory, which corresponds to that defined for case A in the previous subsection.
The evolution of the main kinematic parameters of all wings over one oscillation cycle is
depicted in Fig. 6.9. The plot shows the time–dependent values of the vertical position h
of the wing, its angular position θ, the nondimensionalized heaving velocity vy/u∞,
and the nondimensionalized pitching velocity Ω/Ωmax, with Ωmax being the maximum
pitching velocity of the cycle. The figure also reports the effective AoA α computed
with Eqn. (6.3). One notes that the maximum AoA is about 35o. The four positions
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Figure 6.9: Kinematic parameters of the trajectory of the infinite– and finite–span

wings of case A.

labelled 1 to 4 correspond to 5%,15%, 25% and 35% of the period respectively, and are
those at which the flow field is examined in greater detail in the following analyses.

Table 6.3: Integral performance metrics of infinite wing and two AR 10 wings of case

A. Columns 2 to 4: mean overall, heaving and pitching power coefficients; column 5:

energy extraction efficiency η; columns 6 to 8: percentage variations of overall, heaving

and pitching power coefficients of two AR 10 wings with respect to infinite wing values.
AR CP CPy CPθ η(%) ∆CP (%) ∆CPy(%) ∆CPθ(%)

∞ 1.004 1.176 -0.172 39.19 – – –

10 EP 0.879 1.118 -0.239 34.32 -12.4 -4.9 -38.9

10 ST 0.835 1.074 -0.239 32.58 -16.8 -8.7 -38.9

The main integral performance metrics of the infinite wing, the AR 10 wing with
endplates (EPs) and the AR 10 wing with sharp tips (STs) are reported and com-
pared in Table 6.3. Columns 2 to 4 provide respectively the mean values of the overall
power coefficient CP , the heaving power coefficient CPy , and the pitching power coeffi-
cient CPθ ; column 5 provides the overall efficiency η, whereas the percentage variations
(∆s) of the three mean power coefficients of the AR 10 wings with respect to the ref-
erence values of the infinite wing are reported in columns 6 to 8. The infinite wing
analysis is based on the 2D coarse grid TD–256 case A simulation, whereas the two
AR 10 analyses are based on fully 3D TD–256 simulations using the 30, 670, 848–cell
grid described in subsection 6.1.2. One notes that CP of the AR 10 wing with EPs is
12.4 % lower than that of the infinite wing, whereas CP of the AR 10 wing with STs
is nearly 17 % lower than that of the ideal infinite wing. The breakdown of the overall
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mean power into heaving and pitching power components for the three cases highlights
that: a) the mean negative pitching power (a loss term) of both AR 10 wings increases
by the same amount with respect to the ideal infinite wing case (about 39 %), b) the
heaving power coefficient of both AR 10 wings decreases with respect to that of the
infinite span wing: by about 4.9% for the wing with EPs, and by about 8.7% for the
wing with STs. These observations highlight that 3D flow effects hit the overall energy
extraction efficiency of this device in a complex manner, that appears not to depend
only on the geometry of the wing tips.

Figure 6.10: Overall power coefficient (top), heaving power coefficient (middle), and

pitching power coefficient (bottom) of infinite wing and two AR 10 wings of case A.

The top subplot of Fig. 6.10 reports the CP profiles of the three wings over one
period, whereas the bottom subplot reports their CPy and CPθ profiles. In the first 10 %
and last 15 % of both semi–periods (region 1), the AR 10 CP profiles are superimposed
and are significantly lower than that of the infinite wing. The CP profiles of the AR
10 wings are lower than that of the infinite wing also in the remainder of the cycle
(region 2), but the profile of the wing with EPs is higher than that of the wing with
STs. The profiles of the pitching and heaving power coefficients in the bottom subplot
of Fig. 6.10 show that in region 1 an increment of the heaving power of the two AR
10 wings with respect to the infinite wing is outweighed by a larger reduction of their
pitching power. This explains why the profiles of the overall power coefficient of the
finite span wings in region 1 are lower than that of the infinite wing. In region 2 the
pitching power of all three wings is comparable, and the lower overall power of the two
AR 10 is caused primarily by a reduction of the heaving power component, which is
greater for the wing with STs.

To further investigate the dependence of the energy extraction efficiency of the finite
span wing on the tip geometry highlighted by Table 6.3 and Fig. 6.10, the periodic
profiles of the heaving power coefficient per unit wing length CPzy and the pitching
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Figure 6.11: Overall power coefficient per unit wing length (top), heaving power co-

efficient per unit wing length (middle), and pitching power coefficient per unit wing

length (bottom) of infinite wing and two AR 10 wings at five spanwise positions of case

A.

power coefficient per unit length CPzθ of the AR 10 wings are cross compared at five
spanwise positions in Fig. 6.11, which also reports the infinite wing profiles for reference.
Between about 18 % and 50 % of both semi–periods, the heaving power coefficient of
both finite wings from midspan to about 60 % semispan is only negligibly smaller than
the corresponding infinite wing profile. It is observed, however, that throughout the
period this power component decreases much more rapidly with respect to the ideal
case from 60 % semispan to the tip region (95 % semispan) when the finite wing has
STs. This performance difference is due mainly to the existence of stronger tip vortices
featured by the finite wing without EPs. Consequently, the downwash lowering the
effective AoA with a strength decreasing from tip to midspan is higher for the ST–
wing. Note also that the largest differences between the heaving power of the finite
span wings occur in the period range with maximum nominal AoA. The comparison of
the CPzθ profiles of the three wings reported in Fig. 6.11 highlights several important
phenomena. Firstly, the wing tip geometry does not appear to have a significant effect
on the pitching power component of the two finite span wings, since the CPzθ profiles of
the two AR 10 wings are extremely close at all reported spanwise positions. Secondly,
although the pitching power profiles of both wings between about 18 % and 35 %
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of both semi–periods coincide with the infinite wing profile at all reported spanwise
positions, substantial qualitative and quantitative differences between the two finite
wing and the infinite wing profiles exist over the remainder of the cycle at all spanwise
locations. The infinite wing pitching power profile features a marked positive peak at
about 6 % of both semi–periods, whereas at midspan of both AR 10 wings such peak
has moved to about 14 % of the semi–period with greatly reduced strength. As one
moves towards the wing tip, the peak disappears completely. As shown below, these
important performance differences between the infinite and the finite wings are caused
by a loss of favourable synchronisation between pitching motion and LEVS affecting
the latter wings. It is also noted that the complete disappearance of the pitching power
peak at the outboard sections of both finite wings in the first 20 % of the semi–periods
occurs because LEVS rapidly decreases from about 60 % semispan to the wing tip.

a)

b)

Figure 6.12: Isosurface of vortex indicator λ2 = −0.1 at 25 % of cycle of case A

(position 3 in Fig. 6.9) for a) wing with endplates, and b) wing with sharp tips.

The vortex indicator λ2 defined in [150] is used herein to visualise the flow patterns
at the tips of the two finite wings. The isosurface λ2 = −0.1 in the tip region of
the wing with endplates and that in the tip region of the wing with sharp tips at
25 % of the oscillation cycle are shown in Fig. 6.12-a and Fig. 6.12-b respectively.
The pattern of the λ2 isosurface at the sharp tips, indicates that vorticity from the
pressure side rolls down to the suction side to form a trailing vortex, which causes the
downwash effect. The downwash leads to the aforementioned reduction of the effective
AoA at the sections close to the tip, reducing CPy , as observed in the bottom plot of
Fig. 6.11. The top plot of Fig. 6.12 shows that a tip vortex also exists for the wing
with endplates. This vortex, however, originates at the edge of the endplate and is
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further away from the wing than the vortex of the wing with sharp tips, resulting in
less pronounced downwash. Moreover, the vortex originating at the endplate is weaker
than that originating at the sharp tip, because the driving pressure difference is smaller
in the former case.

Figure 6.13: Skin friction lines on pressure side (PS) and suction side (SS) of wing with

sharp tips and endplates of case A at 25% of cycle (position 3 in Fig. 6.9).

The comparison of the skin friction lines of the two finite span wings at 25 % of the
vertical stroke from 50 % semispan to tip is reported in Fig. 6.13. The skin friction lines
on the pressure side (PS) and suction side (SS) of the wing with EPs are depicted in
the top left and bottom left subplots respectively, whereas those of the wing featuring
STs are reported in the right subplots. One sees that the use of endplates results in
the stream being much better guided and kept aligned with the wing chord. This is
highlighted by the fact that the skin friction lines on the outboard portion of the wing
have a more rectilinear path when using endplates. In the same region, conversely, the
skin friction lines on the pressure side of the wing with STs deviate towards the tip
rather than progressing towards the trailing edge (TE). This pattern denotes the local
flow motion towards the tip where a strong tip vortex is formed. The comparison of
the PS flow patterns (top subplots) of the two wings also shows that the stagnation
line at the corner between the LE and the wing tip is closer to the LE in the case of
the ST–wing. This is due to stronger downwash hitting the ST–wing, which reduces
the lift force and thus the amount of work the near–tip sections can extract from the
fluid stream. The bottom left subplot also shows a small 3D recirculation region on
the wing SS at the corner between the wing endplate and the wing trailing edge. This
denotes the existence of a corner stall region similar to that encountered in shrouded
turbomachinery rotors and stators [151].

Contour slices of the z component of the flow vorticity at thirteen spanwise positions
of the EP–enhanced wing, the ST–wing and the infinite wing at 5 % of the oscillation
cycle (position 1) are reported respectively in the left, middle and right images of
Fig. 6.14. Inspection of the vorticity contours of the two AR 10 wings reveals that
the only significant difference between these two configurations is the presence of the
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Figure 6.14: Contours of z component of flow vorticity along wing span of case A at 5

% of cycle (position 1 in Fig. 6.9). Left: wing with EPs; middle: wing with STs; right:

infinite wing.

footprint of the tip vortex behind the trailing edge of the tip section of the wing with
sharp tips. Moreover, for both wings the vortex associated with LEVS (blue vorticity
region on the wing PS) is absent in the near–tip region, indicating a strong loss of
coherent vortical structure due to finite wing effects. The comparison of the vorticity
contours of the two AR 10 wings and the infinite wing highlights that the vortex
associated with finite wings LEVS lags behind that of the infinite wing. This phase
difference has an important effect on the variations of the generated power of the finite
wings relative to the infinite wing, due to different static pressure fields on the wing
surface.

Figure 6.15: Contours of pressure coefficient along wing span of case A at 5 % of cycle

(position 1 in Fig. 6.9). Left: wing with EPs; middle: wing with STs; right: infinite

wing.

Figure 6.15 provides the contour slices of the pressure coefficient cp, at the same
spanwise positions of the three wings and the same point of the cycle used in Fig. 6.14.
cp is defined with Eqn. (5.6), and its definition is based on the relative wind velocity.

The blue colour in all three images corresponds to the low–pressure region associated
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with the passage of the high–kinetic energy vortex. It is observed that the low–pressure
region on the top side of the infinite wing is wider than in the other two configurations,
and, more importantly, it is farther away from the pitching center (i.e. closer to the
TE). This results in a larger upward force acting on the rear of the infinite wing, and,
in turn, in a higher positive (counter–clockwise) pitching moment. At this time of the
period, the angular velocity of all wings is also positive and close to its maximum,
as visible in Fig. 6.9. As a result, the pitching power of the infinite wing is higher
than that of the two finite span wings in their midspan region. This is the reason why
Fig. 6.11 shows that the peak of the pitching power of the infinite wing in the first
20 % of the semi–periods is significantly higher than that of the midspan sections of the
AR 10 wings in the same region of the cycle. On the other hand, the wider extent of the
low–pressure area on the top side of the infinite wing, due to a stronger vortex intensity,
results in a reduction of the downward heaving force and, in turn, a reduction of the
heaving power at this point of the cycle. For the opposite reason, the AR 10 wings
have higher heaving power in this region of the cycle. As observed before, however,
such higher heaving power is outweighed by the loss of pitching power. In the light
of these phenomena, it can be concluded that the loss of favourable synchronisation
between LEVS and pitching motion with respect to the infinite wing case results in a
significant total power loss that is largely independent of the wing tip geometry.

Figure 6.16: Contours of pressure coefficient along wing span of case A at 25 % of cycle

(position 3 in Fig. 6.9). Left: wing with EPs; middle: wing with STs; right: infinite

wing.

Contour slices of cp at thirteen spanwise positions of the three wings at 25 % of
the oscillation cycle (position 3) are reported respectively in the left, middle and right
images of Fig. 6.16. No differences among the static pressure field of the three wings
are observed from midspan to more than 60 % of the semispan. In the tip region of
both AR 10 wings, however, the static pressure on the top side is lower than for the
infinite wing. This is due to the tip load reductions associated with the formation of
the tip vortex, resulting in a smaller downward force and heaving power. As expected,
this loss depends on the tip geometry, as highlighted by the fact that the pressure
acting on the top side of the EP–enhanced wing in the tip region is higher than that
of the ST–wing.

The effects of the flow mechanisms discussed above are examined in a more quan-
titative fashion in Figures 6.18 and 6.17. The former provides the foil static pressure
coefficient at midspan for the three wings at the positions labelled 1 to 4 in Fig. 6.9;
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Figure 6.17: Pressure coefficient cp of infinite wing, and at 95 % semispan section of

AR 10 wings of case A at positions labelled 1 to 4 in Fig. 6.9.

the latter has the same structure but refers to the wing section at 95 % semispan.
Inspection of the results of Fig. 6.18 confirms that neither qualitative nor quantita-
tive differences exist between the flow pattern of the two AR 10 wings at midspan,

Figure 6.18: Pressure coefficient cp of infinite wing, and at midspan of AR 10 wings of

case A at positions labelled 1 to 4 in Fig. 6.9.
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indicating that for this value of AR the performance of the midspan region is fairly
independent of the wing tip geometry. At position 3, where the effects of LEVS are
absent, the flow of the two finite wings is virtually two–dimensional, as indicated by
the fact that all three profiles are superimposed. At positions 1 and 4, conversely,
the infinite and finite wing cp profiles differ substantially due to different patterns of
the LEVS. This, as discussed, results in lower overall power generation of the AR 10
wings. At position 2 the relatively small differences between the infinite and the fi-
nite wings are due to effects of the delayed vortex being still perceived by the finite
wings. The four subplots of Fig. 6.17 highlight the significant effect of tip design on
the hydrodynamic performance of the oscillating wing. It is observed that the loading
of the near–tip section, here taken as the area between the SS and PS of the wing,
is higher when using EPs, due to the lower downwash caused by a weaker tip vortex
pattern. The performance difference associated with the use of either tip geometry is
particularly strong between positions 1 and 3, which define the interval in which the
effective AoA ramps up towards its maximum.

6.1.4 Hydrodynamic analysis of case B
The trajectory of the infinite– and finite–span oscillating wing set–ups analyzed for
case B, is defined in subsection 6.1.2 (case B). All configurations analyzed herein share
exactly the same trajectory. Figure 6.19 represents the evolution of the main kinematic
parameters of all wings over one oscillation cycle for case B. The time–dependent values
of the vertical position h of the wing, its angular position θ, the nondimensionalized
heaving velocity vy/u∞, and the nondimensionalized pitching velocity Ω/Ωmax, with
Ωmax being the maximum pitching velocity of the cycle are all depicted herein. The
effective AoA α computed with Eqn. (6.3) is also reported, and its maxima is about 29o.
Likewise in case A, the four positions labelled 1 to 4 correspond to 5%,15%, 25% and
35% of the period respectively, and are those at which the flow field is examined in

Figure 6.19: Kinematic parameters of the trajectory of the infinite– and finite–span

wings of case B.
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greater detail in the analyses below. The same positions as in case A were selected in
order to precisely examine the differences between the two regimes. Main findings and
conclusions are stated in the subsection 6.1.5.

Table 6.4: Integral performance metrics of infinite wing and two AR 10 wings of case

B. Columns 2 to 4: mean overall, heaving and pitching power coefficients; column 5:

energy extraction efficiency η; columns 6 to 8: percentage variations of overall, heaving

and pitching power coefficients of two AR 10 wings with respect to infinite wing values.
AR CP CPy CPθ η(%) ∆CP (%) ∆CPy(%) ∆CPθ(%)

∞ 1.577 2.100 -0.524 44.99 – – –

10 EP 1.335 1.848 -0.513 38.08 -15.3 -12.0 +2.1

10 ST 1.260 1.769 -0.510 35.95 -20.1 -15.8 +2.7

Table 6.4 reports and compares the main integral performance metrics of the infinite
wing, the AR 10 wing with EPs and the AR 10 wing with STs. Columns 2 to 4
provide respectively the mean values of the overall power coefficient CP , the heaving
power coefficient CPy , and the pitching power coefficient CPθ . Column 5 provides the
overall efficiency η, whereas the percentage variations (∆s) of the three mean power
coefficients of the AR 10 wings with respect to the reference values of the infinite wing
are reported in columns 6 to 8. The infinite wing analysis refers to the 2D coarse grid
TD–256, whereas the two AR 10 analyses are referring to fully 3D TD–256 simulations

Figure 6.20: Overall power coefficient (top), heaving power coefficient (middle), and

pitching power coefficient (bottom) of infinite wing and two AR 10 wings of case B.
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using the 30, 670, 848–cell grid, described in subsection 6.1.2. The CP of the AR 10
wing with EPs is 15.3 % lower than that of the infinite wing, whereas CP of the AR
10 wing with STs is 21.1 % lower than that of the ideal infinite wing. The breakdown
of the overall mean power into heaving and pitching power components for the three
cases highlights that: a) the mean negative pitching power (a loss term) of both AR 10
wings slightly decreases by the comparable amount with respect to the ideal infinite
wing case: 2.1 % for the wing with EPs and 2.7 % for the wing with STs, b) the heaving
power coefficient of both AR 10 wings decreases with respect to that of the infinite
span wing: by 12 % for the wing with EPs, and by about 16% for the wing with STs.
These observations highlight that 3D flow effects that hit the overall energy extraction
efficiency of this device, are mostly influenced by the heaving power and depend mostly
on the geometry of the wing tips.

The CP profiles of the three wings over one period, are depicted in the top subplot
of Fig. 6.20, whereas the bottom subplot depicts their CPy and CPθ profiles. In the first
10 % and last 5 % of both semi–periods, both AR 10 and infinite wing CP profiles are
superimposed (region 1). In the remainder of the cycle (region 2), both AR 10 CP
profiles are significantly lower than that of the infinite wing. However, in the first half

Figure 6.21: Overall power coefficient per unit wing length (top), heaving power co-

efficient per unit wing length (middle), and pitching power coefficient per unit wing

length (bottom) of infinite wing and two AR 10 wings at five spanwise positions of case

B.
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of region 2 the profile of the wing with EPs is higher than that of the wing with STs.
The profiles of the pitching and heaving power coefficients, depicted in the bottom
subplot of Fig. 6.20, show that in region 1 there are no losses associated with the
heaving power and the pitching power of the two AR 10 wings with respect to infinite
wing. In region 2 the pitching power of all three wings is also comparable, and the
lower overall power of the two AR 10 is caused primarily by a reduction of the heaving
power component, which is greater for the wing with STs in the first half of region 2.

The dependence of the energy extraction efficiency of the finite span wing on the
tip geometry for the AR 10 wings, highlighted by Table 6.4 and Fig. 6.20, has been
further examined by the cross comparison of the periodic profiles of the heaving power
coefficient per unit wing length CPzy and the pitching power coefficient per unit wing
length CPzθ , at five spanwise positions. This is depicted in Fig. 6.21, where the infinite
wing profiles are also added for reference. The periodic profile of the heaving power
coefficient of both finite wings from midspan to about 60 % semispan is about the
same than the corresponding infinite wing profile in region 1 and is slightly smaller
than the infinite wing profile in region 2. Comparing the top and bottom subplot, it
can be concluded that throughout the period this power component decreases much
more rapidly with respect to the ideal case from 60 % semispan to the tip region (95 %
semispan) in the STs case. Similarly as in case A, the difference between EPs and
STs case occurs due to the existence of powerfull tip vortices in the STs case. Con-
sequently, the ST–wing experiences more pronounced downwash, which is responsible
for lowering the effective AoA with a strength decreasing from tip to midspan. Also in

a)

b)

Figure 6.22: Isosurface of vortex indicator λ2 = −0.1 at 25 % of cycle of case B (position

3 in Fig. 6.19) for a) wing with endplates, and b) wing with sharp tips.
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case B, the largest differences between the heaving power of the finite span wings oc-
cur in the period range with maximum nominal AoA and the highest heaving velocity.
Furthermore, as depicted in Fig. 6.21, the wing end geometry does not appear to have
a significant effect on the pitching power component of the two finite span wings, as
the CPzθ profiles of the two AR 10 wings are extremely close at all reported spanwise
positions.

Figures 6.22–a and 6.22–b respectively depict the isosurface of the vortex indica-
tor λ2 = −0.1 in the tip region of the wing with endplates and the wing with the sharp
tips at 25 % of the oscillation cycle. In the bottom plot of Fig. 6.22 the λ2 isosurface
at the sharp tips visualises strong trailing vortex, which is formed when the vortic-
ity from the pressure side rolls down to the suction side. This strong vortex causes
the pronounced downwash effect, leading to the reduction of the effective AoA at the
sections close to the tip, reducing CPy , as observed in the bottom plot of Fig. 6.21.
The top plot of Fig. 6.22 highlights that a tip vortex is also present for the wing with
endplates but is much weaker than in the STs case, as the driving pressure difference
is much smaller here. This vortex originates at the edge of the endplate, further away
from the wing than the vortex of the wing with sharp tips, resulting in less pronounced
downwash.

Figure 6.23: Skin friction lines on pressure side (PS) and suction side (SS) of wing with

sharp tips and endplates of case B at 25% of cycle (position 3 in Fig. 6.19).

Figure 6.23 represents the comparison of the skin friction lines of the two finite span
wings at 25 % of the vertical stroke (position 3) from 50 % semispan to tip. The skin
friction lines on the pressure side (PS) and suction side (SS) of the wing with EPs are
depicted in the top left and bottom left subplots respectively. Whereas those of the
wing featuring STs are reported in the subplots on the right hand side. For the wing
with EPs, the stream is much better guided and kept aligned with the wing chord.
This is visible on the outboard portion of the wing, where the skin friction lines feature
a more straight path when using endplates. Conversely, in the same region in the STs
case, the skin friction lines on the pressure side of the wing turn towards the tip rather
than being aligned with the chord. This behaviour indicates the formation of a strong
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tip vortex. Further confirmation of the strong tip vortex occurrence in STs case is
also evident in the cross–comparison of the PS flow patterns (top subplots) of the two
wings, which reveals that the stagnation line deviation towards the LE is much stronger
in the case of the ST–wing. This is due to stronger downwash hitting the ST–wing,
which reduces the lift force and thus the amount of work the near–tip sections can
extract from the fluid stream. The bottom left subplot shows a small 3D recirculation
region on the wing SS at the corner between the wing endplate and trailing edge. This
denotes the existence of a corner stall region similar to that encountered in shrouded
turbomachinery rotors and stators [151].

Figure 6.24: Contours of z component of flow vorticity along wing span of case B at

5 % of cycle (position 1 in Fig. 6.19). Left: wing with EPs; middle: wing with STs;

right: infinite wing.

The three subplots of Fig. 6.24 report the z component contour slices of the flow
vorticity at 5 % of the oscillation cycle (position 1), at thirteen spanwise positions for
the three wing configurations. The left, middle and right images correspond respec-
tively to the EP–enhanced wing, the ST–wing and the infinite wing. Cross–comparison
of the vorticity contours of the two AR 10 and infinite wings reveals that no quanti-
tative differences among the three wings exist. The only small differences between the
two finite wings and infinite wing configurations are in the the near–tip region, where
the boundary layer in the two finite wing cases is thinner than for the infinite wing
case.

Figures 6.25 and 6.26 depict the pressure coefficient cp contour slices, at the same
thirteen spanwise positions of the three wings used in Fig. 6.24. cp is defined with
Eqn. (5.6), and its definition is based on the relative wind velocity. Figure 6.25 cor-
responds to 5 % of the oscillation cycle (position 1), whereas Fig. 6.26 represents the
position at 25 % of the oscillation cycle (position 3). It is observed that for both
positions, no differences exist among the static pressure field of the three wings from
midspan to more than 60 % of the semispan. Furthermore, for both positions, the
static pressure in the tip region, on the top side, of both finite wings is lower than for
the infinite wing. As expected, this loss is dependent on the wing end geometry, as
highlighted by the fact that the pressure acting on the top side of the EP–enhanced
wing in the tip region is higher than that of the ST–wing. For position at 5 % of the
oscillation cycle (position 1), the loss is relatively small for the EP–enhanced wing, and
is slightly higher for the ST–wing. Relatively small losses for this position are due to
the fact that both the effective AoA α and heaving velocity are close to its minimum.
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Figure 6.25: Contours of pressure coefficient along wing span of case B at 5 % of cycle

(position 1 in Fig. 6.19). Left: wing with EPs; middle: wing with STs; right: infinite

wing.

On the contrary, for position at 25 % of the oscillation cycle (position 3), both the
EP–enhanced and ST–wing experience much bigger losses. Here, the differences in
load reduction between EP–enhanced and ST–wing are clearly visible. As previously
explained, these differences arise due to the occurrence of the strong tip vortex in the
STs case, which is much weaker in the EPs case. The strong tip vortex in the STs case
results in much smaller downward force and heaving power compared to the EPs case,
leading to much bigger load reductions than in the EPs case.

Figure 6.26: Contours of pressure coefficient along wing span of case B at 25 % of cycle

(position 3 in Fig. 6.19). Left: wing with EPs; middle: wing with STs; right: infinite

wing.

The differences in the flow behaviour between the three wing configurations dis-
cussed above, are examined in a more quantitative fashion in Figures 6.27 and 6.28.
Both figures examine the foil static pressure coefficient for the three wings at the po-
sitions labelled 1 to 4 in Fig. 6.19. The former figure refers to the wing section at
midspan, whereas the latter refers to the wing section at 95 % semispan. The results
of Fig. 6.27 confirm that neither qualitative nor quantitative differences exist in the
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Figure 6.27: Pressure coefficient cp of infinite wing, and at midspan of AR 10 wings of

case B at positions labelled 1 to 4 in Fig. 6.19.

flowfield between the two AR 10 wings at midspan, meaning that the performance of
the midspan region is fairly independent of the wing tip geometry. At position 25 % of
the oscillation cycle (position 3), all three profiles are superimposed, which indicates

Figure 6.28: Pressure coefficient cp of infinite wing, and at 95 % semispan section of

AR 10 wings of case B at positions labelled 1 to 4 in Fig. 6.19.
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that the flow of the two finite wings becomes two–dimensional. At positions 1, 2 and
4, the infinite and finite wing cp profiles slightly differ, however, due to very small
differences it is safe to say that the flow is fairly two–dimensional also for these three
positions. Conversely, the four subplots of Fig. 6.28 highlight the significant effect of
tip design on the hydrodynamic performance of the oscillating wing. The loading of
the near–tip section, here taken as the area between the SS and PS of the wing, is
much bigger when using EPs for all four positions. This is due to the lower downwash
associated by a weaker tip vortex pattern. The performance difference between the two
wing end geometries is particularly strong between positions 1 and 3, in the interval
where the effective AoA ramps up towards its maximum.

6.1.5 Discussion
A detailed numerical investigation into the impact of flow three–dimensionality on the
power generation efficiency of realistic oscillating wing configurations for renewable
energy production has been presented for two different high energy extraction operating
regimes. First operating regime (case A) was characterised by the occurrence of LEVS
associated with the dynamic stall, whereas the second operating condition (case B) does
not yield LEVS. The study for the two different cases was based on the comparative
performance assessment of an infinite wing and two aspect ratio 10 wings, one featuring
endplates, the other featuring sharp tips. The study has been performed using TD
turbulent flow fields past the oscillating wing. HB method has not been used, as for
the aerodynamic problems characterised by the occurrence of LEVS associated with
the high levels of dynamic stall, such as high energy extraction operating regime A,
the HB method does not seem to be gaining significant speedup with respect to the
TD method [56]. In order to properly capture the physics of such highly non–linear
problem, the number of complex harmonics becomes extremely large. Large number of
complex harmonics in such highly non–linear problem, causes the numerical instabilities
of the HB solver, and therefore, spoils its convergence. Poorly converged solution then
prevents HB analysis to achieve a solution accuracy comparable to that of the TD
solution. Unfortunately the HB method has its limitations, and it has been proved
less suitable for the cases with higher amount of dynamic stall [56]. For case B, the
HB method would most likely perform well, as this operating regime does not feature
LEVS associated with the dynamic stall.

For case A, the mean overall power coefficient of the AR 10 wing with endplates
and sharp tips are found to decrease respectively by about 12 % and 17 % with respect
to that of the infinite wing. Whereas for case B, the drop of mean overall power
coefficient of the AR 10 wing with endplates and sharp tips was about 15 % and 20 %
with respect to that of the infinite wing. The finite wing losses in case A are caused
both by the reduction of the effective AoA at the near–tip sections induced by the
downwash associated with the tip vortices, and the loss of optimal synchronisation of
LEVS and pitching motion of the wing. The latter phenomenon results in a lower
efficiency of the finite span wing due to a significant loss of pitching power with respect
to the ideal infinite wing. In case B the finite wing losses depend only on the reduction
of the effective AoA at the near–tip sections caused by the downwash. Even though
case B is not affected with the LEVS, and its losses purely depend on the strength of the
tip vortex, reduction of the overall mean power coefficient of both endplate–enhanced
wing and ST–wing with respect to the infinite wing are both slightly bigger than for
case A. On the other hand, the efficiency of case A wing with endplates and sharp tips
is respectively 34.4 % and 32.6 %, whereas in case B they are 38.08 % and 35.95 %,
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respectively. In the light of the efficiency, case B is still more efficient, eventhough the
finite wing losses are slightly bigger. Higher losses for case B are associated with much
higher peak heaving velocity as in case A. Peak heaving velocity for case B is nearly
twice as that for case A. Furthermore, based on the analyses of case A, where the power
reduction is also associated with the loss of favourable synchronisation between pitching
motion and LEVS when considering finite wing effects, it appears advisable to design
these devices avoiding regimes characterised by 2D LEVS, as to minimise losses due to
finite wing effects. Alternatively one would have to perform the design optimisation
of the wing kinematic parameters making use of costly 3D flow simulations, since the
results of 2D optimisation appear to be unsuitable to yielding optimal efficiency of the
3D oscillating wing.

The loss due to tip vortex–induced downwash depends, for both cases, on the wing
tip geometry, and is smaller for the wing with endplates. The pitching power loss,
which is present only in case A, however, does not depend on the wing tip geometry,
and hits in a qualitatively and quantitatively similar fashion both AR 10 wings.

The 12.4 % reduction of the overall mean power coefficient of the case A AR 10
endplate–enhanced wing with respect to the infinite wing (Tab. 6.3) is comparable to
the 11 % reduction of the same wing reported by Kinsey and Dumas [25]. It should
be noted, however, that significant differences between the analyses yielding the two
efficiency loss estimates exist. The present simulation used a 30.7 million structured
multi–block grid, the SST turbulence model, a Reynolds number of 1.5 million and a
pitching amplitude of 76.3o; the analysis of [25] used a 3.4 million unstructured grid, the
Spalart–Allmaras turbulence model, a Reynolds number of 0.5 million and a pitching
amplitude of 75.0o. The closeness of the two results makes one wonder if the outcome
of the comparative analysis of this paper would vary fairly little for Reynolds number
between 0.5 and 1.5 million. Answering this question with confidence is presently
difficult due to the lack of the analysis of the AR 10 wing with sharp tips in the study
of [25] and also the aforementioned differences of the computational approach. It is
also noted that the article [25] provides the comparative analysis of the finite wings
with sharp tips and endplates for AR 5 and 7. Although the overall loss levels for these
configurations are higher than for AR 10 (as expected), the qualitative differences of
flow patterns of the two wing types for given aspect ratio appear to be similar to
those observed in the present study. This may point to independence of the qualitative
aspects of the present analysis on the Reynolds number for 0.5×106 < Re < 1.5×106.

Arguably, the use of relatively coarse spatial and temporal discretizations of case A
(coarse base 2D grid and 256 time–intervals per period) made herein might have intro-
duced some uncertainty in the quantitative estimates of the case A results discussed
in section 6.1.3. More precise quantification of the variations of the power coefficients
with the wing AR and tip design may require larger grids and computational resources.
Nevertheless, the author’s view is that a higher resolution is unlikely to alter signif-
icantly the general findings of the analyses above, particularly the key ones on the
loss of optimal synchronisation between LEVS and wing motion, and the consequent
efficiency loss of both finite–span wings with respect to the infinite wing. Considering
the case of the pitching power profile, this is because its variation with the spatial and
temporal refinement in the 2D analysis (Figures 6.3 and 6.5) consists mainly of rela-
tively small shifts of its peak values due to small variations of the phase between LEVS
and foil motion, and does not correspond to any significant variation of LEVS vortical
structures (these analyses have not been included for brevity). Conversely, the pitch-
ing power profile of the 3D wings on one hand and the infinite–wing on the other have
substantially different patterns. (Figures 6.10 and 6.11). Such pattern alterations are
due to variations of the phase between LEVS and wing motion which are much larger
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than those due to varying spatial and temporal refinement. Moreover, the efficiency
loss of the two finite–span wings appears to be fairly independent of the tip geometry
(column 8 of Table 6.3), which makes one assume that a higher refinement of the tip
region flows is unlikely to change the important physical finding on the loss of optimal
synchronisation between LEVS and wing motion due to finite–wing effects. Such a
higher refinement may instead be advisable for further verification of the quantitative
dependence of the efficiency loss on the tip geometry for case A.

6.2 Horizontal–axis wind turbines
All reported analyses in this section refer to the yawed flow past the blades of the NREL
offshore 5–MW baseline rotor and are based on 3D NS CFD. NREL 5–MW baseline
horizontal–axis wind turbine is a virtual model of the conventional three–bladed up-
wind variable–speed variable blade–pitch–to–feather–controlled turbine, developed at
National Renewable Energy Laboratory (NREL) [39]. The model was created using
best available and most representative data of various published documents of wind
turbine manufacturers, and publicly available data from previously developed concep-
tual models in the WindPACT, RECOFF, and DOWEC projects. The model of NREL
5–MW baseline wind turbine has been widely used as a reference by many research
teams worldwide. Its purpose is to standardise the detailed specifications of a large
representative utility–scale onshore and offshore multimegawatt turbines, and to quan-
tify the benefits of such wind energy technologies. The NREL 5–MW baseline wind
turbine rotor features three twisted blades, with the radius R = 63 m. The blades
are constructed using two types of airfoils, the inner part consists of DU airfoils and
the outer part uses the NACA64 family of airfoils. The actual rotor design is based
on the Energy Research Centre of Netherlands 6 MW offshore turbine design project
DOWEC [152, 153, 154]. The cut–in, rated and cut–out wind velocities of the NREL
5–MW baseline turbine are respectively 3m/s, 11.4m/s and 25m/s. The cut–in and
rated rotor speeds equal 6.9RMP and 12.1RPM , respectively.

6.2.1 Aerodynamics of horizontal–axis wind turbines

Aerodynamic loads

Figure 6.29 depicts the typical HAWT’s airfoil twisted by the local twist angle γ and
the blade sectional forces. The force in the x–direction per unit blade length Fxy is
the tangential force component that is used for the calculation of useful torque. The
force in the z–direction per unit blade length Fzy is the axial force component that
results in rotor thrust. The overall tangential and axial forces on the blade are defined
respectively:

Fx =
∫ R

0
Fxydy, (6.9)

Fz =
∫ R

0
Fzydy. (6.10)

The exerted torque per unit blade length on the blade section Mzy is computed as:

Mzy = −
∮
S

(pndS)× ra +
∮
S

(
τ · ndS

)
× ra, (6.11)
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Figure 6.29: Representation of computed HAWT’s airfoil forces.

where ra represents the position vector, which originates from the origin of the co-
ordinate system and is defined to the point where the force is applied, and dS is an
infinitesimal segment of the curve defining the airfoil. The overall torque on the blade
is computed as follows:

Mz =
∫ R

0
Mzydy. (6.12)

The overall aerodynamic forces and moments acting on a HAWT blade are depicted
in Fig. 6.30. Overall tangential, radial and axial forces are denoted by Fx, Fy and Fz,
respectively. Overall aerodynamic moments are as follows, the moment around x–axis
Mx represents out–of–plane bending moment, the moment around y–axis My is the
torsional moment, and the moment around z–axis Mz, which results in exerted torque,
represents in–plane bending moment.

In the analyses below, the moment Mx is applied in the point (0,10,0) which corre-
sponds to the blade length of the first aerodynamic profile, whereas the moments My

and Mz are applied in the origin of the coordinate system (0,0,0).
In the sections below, use is also made of the 2D airfoil forces and torque. Fxy is

the tangential force component per unit blade length that is used for the calculation of
useful 2D torque. Fzy is the axial force component per unit blade length that results in
2D thrust. Mzy denotes the exerted torque per unit blade length on the blade section.

Tip–speed ratio

The tip–speed ratio (TSR) is an important rotor design parameter, and is defined as
the ratio between the linear velocity at the tip of the blade, and the freestream wind
velocity:

TSR = Ω ·R
u∞

, (6.13)

where Ω represents the angular velocity of a rotor and R is the rotor radius.
The turbine rotor design typically starts with the TSR corresponding to the max-

imum power coefficient [28], however, this TSR is not the optimal for the HAWT
operation. The optimal TSR depends on many factors, such as the number of blades,
torque, mechanical stress, aerodynamics and noise. Turbines with lower number of
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Figure 6.30: Representation of computed HAWT’s forces and moments.

blades feature higher optimal TSR. Furthermore, when using higher TSR, the desired
power is generated using lower torque, leading to a reduced weight of the rotor and
drive train. Moreover, increasing TSR decreases rotor solidity, meaning that less ma-
terial is required for the production of rotor blades. On the other hand, higher TSR
produces greater aerodynamic noise emission, which can be a significantly disturbing
factor in urban environment. Higher TSR also causes an increase in the centrifugal
and aerodynamic forces, which may lead to difficulties in maintaining the structural
integrity and preventing blade failure [155]. Nowadays, common design TSR for two–
bladed rotor is typically in between 9 and 10, whereas for the three–bladed rotor is
usually from about 6 to 8 [156].

Power and efficiency

The blade power is defined as the product of the rotor angular speed and the exerted
torque on the blade:

Pn = Ω ·Mz. (6.14)

The rotor power is the sum of the power of all blades:

P =
nblades∑
n=1

Pn, (6.15)
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where the symbol nblades denotes total number of blades.
The efficiency η of the HAWT rotor is defined as the ratio of the extracted power P

and the total available power Pa = 1
2ρ∞u

3
∞Arot in the oncoming flow passing through

the rotor swept area Arot:

η ≡ P

Pa
. (6.16)

The power extraction efficiency η defined by Eqn. (6.16) corresponds to the classical
power coefficient obtained by means of Betz’s analysis [147], which shows that the
upper limit of aerodynamic efficiency is 16/27 (about 0.59).

The state–of–the–art commercial HAWTs have already reached very high values of
aerodynamic efficiency. The performance coefficient in 80s was about 0.44, whereas
it already reached the value of about 0.50 by the mid 2000s. This value is already
quite close to the theoretical Betz’s limit. It is now crucially important to replace
the reliance on the low–fidelity optimisation tools with the high–fidelity numerical
tools. Low–fidelity optimisation tools fail to predict flow unsteadiness, which is one
of the crucial factors when designing the HAWT rotors. The high–fidelity numerical
tools will enable new era of the aerodynamic design of novel HAWT rotors, and will
improve aerodynamic efficiency of the existing rotor models, which are currently being
manufactured for the large–scale production.

6.2.2 Horizontal–axis wind turbines in yawed wind condition

Figure 6.31: Schematic views of the HAWT in yawed wind. Left plot: top view; Right

plot: front view.

The periodic flow condition in yawed wind affected by the airfoils of the NREL 5–
MW blade depends on the following parameters: the freestream wind speed u∞, turbine
rotational speed Ω, yaw angle δ, which is the angle between u∞ and the normal to the
rotor plane, chord c of the airfoil and its distance r from the rotational axis. Figure 6.31
depicts the top and front schematic views of a typical HAWT rotor in yawed wind, and
the aforementioned parameters. The azimuthal position of a blade is described by the
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angle θ = ωt. θ is considered to be zero when the blade is vertical and descending
(position A).

Figure 6.32: Velocity triangles of the HAWT’s blade airfoil section for positions A to

D, labelled in Fig. 6.31.

Figure 6.32 depicts the velocity triangles for blade airfoil sections at arbitrary dis-
tance r from the rotational axis, for the four labelled positions (A to D) in the front
view plot of Fig. 6.31. Positions A,B,C,D, correspond to azimuthal angles θ = 0◦,
θ = 90◦, θ = 180◦ and θ = 270◦ respectively. The modulus of the axial velocity
component, |u∞ cos(δ)|, and that of the entrainment velocity, |Ω× r|, remain constant
during the revolution, therefore, they are the same in all four triangles. The symbols wi

and αi, where i = A,B,C,D, denote respectively the relative wind velocity and the
AoA, defined as the angle between the relative wind and the chord line. The AoA can
be used to control the aerodynamic force of the blade. Both parameters vary with the
azimuthal position θ. The velocity triangles are all contained in the plane tangent to
the cylinder of distance r centered on the rotational axis. The radial velocity com-
ponent (i.e. along the blade axis) is, therefore, neglected. However, the magnitude of
the radial component varies with azimuthal position and is such that no component
is discarded when the blade is at the two vertical positions (A and C), and the entire
radial component u∞ sin(δ) is neglected when the blade is at the two horizontal po-
sitions (B and D). When the blade is at positions A and C, the entire vector u∞ is
contained in the tangent plane, whereas, when the blade is at the positions B and D,
the radial component of u∞ is orthogonal to the tangent plane. In this 2D kinematic
environment, the axial and circumferential components of the farfield wind velocity
perceived by a blade airfoil section can be written respectively:

wz = u∞ cos(δ) , (6.17)
wθ = ΩR− u∞ sin(δ) cos(Ωt). (6.18)

wz and wθ are the components of a time–dependent velocity vector w. The angle of
the relative wind φ, formed by w and the rotor plane may be written:

φ = arctan(wz/wθ). (6.19)
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HAWT’s blades are twisted by the local twist angle γ, therefore, the airfoil AoA α can
be calculated by subtracting the twist angle from the angle of relative wind:

α = φ− γ. (6.20)

The positions B and D are those, at which the flow field is examined in greater
detail in the following analyses.

6.2.3 Physical and numerical set–up
The selected operating condition of the upwind rotor for all CFD simulations below
was that corresponding to the rated operating conditions of the NREL 5–MW baseline
wind turbine. The considered rotor speed Ω is 12.1RPM , the freestream wind velocity
v∞ equals 11.4 m/s, and the TSR equals 7.0. Only the rotor is modelled, while the
tower and nacelle have both been excluded. In all considered cases, the rotor cone
angle was set to 0◦ and zero vertical shear has been assumed. The blade tip pitch
angle was set to 0◦ towards feather. The Reynolds number based on the standard
density of 1.225kg/m3, the tip chord, and the relative tip velocity is 6.5 × 106. The
spanwise variation of the Reynolds number is not negligible, as it varies between about
6 × 106 and 12 × 106. Two different cases are considered herein, zero–yaw and yawed
wind case. Zero–yaw case was computed using the steady solver. Due to the fact
that all three blades in zero–yaw case experience the same inflow conditions regard-
less of the azimuthal position of the rotor, only one blade was modelled using steady
periodicity boundary condition. In yawed wind case, the considered yaw angle δ is
20◦. Yawed wind simulations were performed using the TD and HB solvers. In time–
dependent calculations the whole rotor had to be modelled, whereas in HB calculations
only single blade was modelled using multi–frequency periodicity boundary condition.
As explained in section 3.4 multi–frequency periodicity boundary condition allows to
simulate a single blade for unsteady flows in frequency–domain, which significantly
reduces computational size and cost of the simulation.

The computational grid used in the analyses below, depicted in Fig. 6.33, was
generated in ICEM CFD and consists of 5270 equal blocks per one sector of the size
16× 16× 16 cells, resulting in the overall number of 21, 585, 920 cells (medium). The
grid topology consists of the O–grid, positioned around the airfoil and four H–grids
positioned between the O–grid and the inflow and outflow farfield boundaries and
between the O–grid and the two periodic boundaries. The O–grid along the airfoil,
depicted in the top right subplot of Fig. 6.33, consists of 256–cells on the airfoil and
112–cells in the normal–like direction. The distance dw of the first grid points off each
particular airfoil from the airfoil itself is about 2 ·10−6c and is constant along the whole
blade span. The O-grid in the normal–like direction further expands for another 64–
cells through the H–grid block, positioned between the O–grid block and the inflow,
whereas, the H–grid positioned between the O–grid block and the outflow, expands for
another 192–cells. Moreover, the O–grid in the normal–like direction further expands
for 48–cells, through the two H–grid blocks, positioned between the O–grid block and
the two periodic boundaries. The grid of the size 128 × 128–cells is placed at the tip
to ensure the sufficient resolution in the tip region of the blade. In spanwise direction,
the grid features 128–cells on the blade surface and 128–cells from the tip to the lateral
farfield. The grid on the blade surface in the spanwise direction was clustered towards
the root and towards the tip, reaching the maximum spacing of about ∆z = 2 · 10−1c.
The minimum spacing achieved towards the tip was about ∆z = 2 · 10−6c, equal to
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Figure 6.33: NREL 5–MW baseline wind turbine sector grid representation. Top Left:

Blade view. Top right: near–airfoil area at 50% of blade length. Bottom: complete

domain.

the minimum distance from the airfoil surface in the plane of the airfoil itself. The
grid in the lateral farfield was clustered towards the tip, with minimum spacing of
approximately ∆z = 2 · 10−6c. The blade tip was modelled using sharp–tip topology.
The grid coordinates are dimensional, and are expressed in m. The farfield boundaries
have been positioned at 20R from the rotor centre at the inflow and in the lateral
farfield boundary, and at 40R from the rotor centre at the outflow, as suggested in [42],
where extensive grid independence study for the NREL 5–MW baseline wind turbine
has been performed using compressible structured solver OVERFLOW2. By removing
every second line of the medium grid in all three directions, the coarse grid has also
been obtained.

For steady and HB calculations, periodic boundary conditions are applied at the
120◦ cyclic boundaries, as represented in the bottom plot in Fig. 6.33. For time–
dependent calculations, the sector grid was rotated and copied for 120◦ and 240◦, so
the whole rotor grid has been obtained. In the farfield, the characteristic boundary
conditions are used for the inflow, outflow and farfield faces of the cylinder. A no–
slip condition was applied on the blade in the rotating frame, whereas, inviscid wall
condition was applied at the hub near the rotational axis. The hub was considered as
a zero–thickness cylindrical surface, as depicted in top left subplot of Fig. 6.33, and
was surrounded by the computational grid from both sides.
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The minimum nondimensional wall distance y+ was kept smaller than one for the
medium grid and about one for the coarse grid. All calculations have been performed
using the k−ω SST turbulence model. The low–speed preconditioning was not required
for considered operating condition. The CFL number has been set to 3, and CFL
ramping has been used. All simulations have been performed using a single grid level,
as numerical instabilities were encountered in the attempt of using the MG solver.

Figure 6.34: Pressure coefficient cp distributions of the 5–MW baseline wind turbine

blade for the steady case.

Mesh refinement analyses with the medium and coarse grid have been carried out,
using the steady solver of COSA. The thrust (Fz) and torque (Mz) for single blade
have been compared among the medium and coarse grid–refinement, and are reported
in Table 6.5, along with the computed power of all three blades P . Table 6.5 shows
reasonable agreement of medium and coarse grid–refinement. The output featuring
the highest sensitivity is the thrust Fz, which is overpredicted by about 6 % with the
coarse grid–refinement. On the other hand, the Mz is only approximately 2 % bigger
when using the coarse grid. The pressure coefficient cp distributions have also been
compared, as the pressure force component has the biggest contribution to the overall
forces, and are depicted in Fig. 6.34. cp is defined with Eqn. (5.6), and its definition is
based on the relative wind velocity. Looking at Fig. 6.34, one may notice there are slight

Table 6.5: NREL 5–MW baseline turbine: Comparison of thrust (Fz) and torque (Mz)

for the single blade and sum of the three blades power (P ) for COSA medium and

coarse refinement.

Fz (kN) Mz (kNm) P (MW )

medium 215.6 1215.3 4.62

coarse 229.9 1241.4 4.72
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differences between the medium and coarse grid–refinement for the position at 30 % of
the blade length. However, for all other positions the two solutions are fairly close. The
analyses suggest that the solution computed with the coarse grid–refinement presents
a fairly independent spatial grid–refinement. Based on the analyses above, only slight
differences were observed when comparing the solution computed by the coarse and
medium grid–refinements. The coarse grid was selected for the following analyses.

Figure 6.35: Isosurface of the vortex indicator λ2 for the coarse grid of the steady 5–

MW baseline wind turbine rotor simulation coloured with contours of distance normal

to the rotor plane.

Figure 6.35 depicts the vortex indicator λ2 defined in [150]. The isosurface λ2 =
−4 × 10−5 clearly shows the tip and root vortices. Due to the relatively coarse grid
in the wake region, the expansion of the blade wake, associated with the extraction of
the kinetic energy of the wind, is not well resolved for such grid refinement.

The coarse refinement simulation has also been performed with the NUMECA FINE
CFD code. The comparison of the computed thrust and torque for the single blade
between the COSA and NUMECA coarse grid–refinement is reported in Table 6.6,
along with the computed power of all three blades P . The thrust Fz computed with
NUMECA is approximately 2 % lower than the thrust Fz computed with COSA, while
the torque Mz is about 1% lower when computed with COSA compared to NUMECA.
This results in slightly bigger power output of the NUMECA simulation. The compar-
ison of the cp distributions is also depicted in Fig. 6.36. The cp profiles of COSA and
NUMECA are in excellent agreement for all five considered spanwise positions.
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Table 6.6: NREL 5–MW baseline turbine: Comparison of thrust (Fz) and torque (Mz)

for the single blade and sum of the three blades power (P ) for COSA and NUMECA

coarse refinement.

Fz (kN) Mz (kNm) P (MW )

COSA, coarse 229.9 1241.4 4.72

NUMECA, coarse 226.0 1253.3 4.76

Figure 6.36: Pressure coefficient cp distributions of the 5–MW baseline wind turbine

blade for the steady case, performed with COSA and NUMECA.

6.2.4 Aerodynamic analyses
The coarse grid described in subsection 6.2.3 is used to determine the periodic flow
of the considered NREL 5–MW baseline wind turbine. The HB calculations were
performed using the sector grid and multi–frequency periodic boundary conditions,
whereas the TD calculations simulated the whole rotor. The reference blade is referred
as the one positioned at the beginning of the revolution (θ = 0◦).

The minimal time–resolution of the COSA TD analysis, required to obtain a solu-
tion independent physical time–step, was assessed by means of the selected yawed wind
case, described in subsection 6.2.3. Three different simulations have been performed,
using a number of time–intervals per period NT of 180, 360 and 720. The aerodynamic
loads of Fx, Fz, Mx, My andMz were used to monitor the convergence of the TD simu-
lations to a periodic state. All three TD simulations have been run until the maximum
difference between Fx, Fz, Mx, My andMz differences over two consecutive revolutions
became less than 0.1% of their maxima over the latter revolution of the cycle pair. The
number of revolutions typically required to achieve the 0.1 % periodicity error thresh-
old on all monitored variables varied between four and twelve revolutions, depending
on whether the simulation had been started from a freestream condition or from the
solution of a simulation using the same grid but different temporal refinement. The
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Figure 6.37: Time step refinement analysis of the 5–MW baseline wind turbine in

yawed wind, obtained using 180, 360 and 720 steps per oscillation cycle. Top left:

tangential force (Fx); top right: axial force (Fz); middle left: out–of–plane bending

moment (Mx); middle right: torsional moment (My); bottom left: in–plane bending

moment (Mz).

top left, top right, middle left, middle right and bottom left subplots in Fig. 6.37 report
respectively the periodic profiles of the tangential force component Fx, the axial force
component Fz, the out–of–plane bending moment Mx, the torsional moment My, and
the in–plane bending moment Mz for the reference blade, obtained with these three
simulations. These periodic profiles of the reference blade over one rotor revolution
computed by the three TD analyses are plotted against the azimuthal position θ of the
same blade. Some differences for all Fx, Fz, Mx, My and Mz periodic profiles among
NT 180 and NT 360 exist. Such differences become practically negligible when passing
from NT 360 to NT 720, indicating that 360 intervals per period are sufficient to achieve
a temporally independent solution. The TD simulation using NT 360 is therefore taken
as the reference result of the TD simulation.
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Five subplots in Fig. 6.37 also report the estimate of the time–dependent AoA α,
defined by Eqn. (6.20), at 50 % of the blade length. It can be noted that α reaches
its maxima at the beginning of the period (θ = 0◦), when the reference blade is at
the vertical position, and the blade velocity and the yawed wind velocity component
have opposite directions. Moreover, the α reaches its minima at the period midpoint
(θ = 180◦), where the blade is at the vertical position, and the blade velocity and
the yawed wind velocity components have the same direction. The inspection of the
flow solution shows that the dynamic stall is not present anywhere on the blade, but
nevertheless all force cycles except My are significantly hysteretic, as depicted on the
five subplots of Fig. 6.37. To emphasise the significant hysteresis curves variations
in the four subplots, the two labelled positions B and D are considered. These two
positions denote the θ = 90◦ and θ = 270◦, respectively, and feature the same AoA
α. The symbols ∆Fx, ∆Fz, ∆Mx and ∆Mz denote respectively the Fx, Fz, Mx and
Mz difference between positions B and D. Such differences occur due to the yaw
misalignment to the wind flow. Yawed flow produces a velocity component parallel
to the plane of rotation u∞sin(δ), which induces an inflow gradient across the rotor
blade, which strength depends on the azimuthal position of the blade. As shown later
on, the inflow gradient is particularly strong when the blade is at position B, because
u∞sin(δ) points in the same direction as radial velocity component, which is induced
due to rotation and always acts radially outward. Furthermore, u∞sin(δ) and radial
velocity component due to rotation have the opposite directions when the blade is at
position D, meaning that the inflow gradient is weaker than in position B, and this
results in higher AoA. Moreover, higher loading at position D in four subplots also
indicates that the 2D relative velocity component at position D is more aligned with
the airfoil plane than at position B.

To assess the minimum number of required harmonics in order to resolve the TD
problem with the HB solver, and attaining a time–resolution comparable to that of the
TD–360 calculation, four HB simulations have been performed. These simulations are
denoted by the acronym HB, followed by the value of the retained number of harmonics
NH = 1, 2, 3, 4. The hysteretic cycles of the Fx, Fz, Mx, My and Mz computed by the
four HB analyses and TD–360 are plotted against the estimated time–dependent AoA
α at 50 % of the blade length in the five subplots in Fig. 6.38. Inspection of the five
subplots in Fig. 6.38 reveals that three complex harmonics are sufficient to achieve
the same time–resolution of forces and moments as the TD–360 simulation. This is
highlighted by the fact that the TD–360 and the HB–3 solutions are superimposed.
The noticeable size of the hysteresis loops in Fig. 6.38 also highlights that the yawed
wind condition is responsible for the relatively high level of nonlinearity in the periodic
flow field, and therefore, requires the use of nonlinear CFD. The use of the linear CFD
is likely to yield insufficiently accurate estimates of the time–dependent loads required
for reliable fatigue and aeroelastic analysis and design of HAWT blades. The Fx and
Fz loops highlight a periodic variation of about ±5% and ±6%, respectively, whereas
the variation of the Mx, My and Mz with respect to its mean value is about ±7%,
±13% and ±11%, respectively. In view of structural mechanics, these numbers point
to significant variations of the blade loads caused by the yawed wind regime. Cyclically
increasing and decreasing aerodynamic loads on the blade contributes considerably to
material fatigue, particularly close to the root, where the combined effect of the three
most significant components of the stress (normal stress due to Mx, normal stress due
to Mz, and shear stress due to torsion My) is the highest. The AoA α achieves its
maxima when the blade is vertical and the blade velocity and the yawed wind velocity
components have the opposite direction, whereas it takes its minima when the blade
is vertical and the blade velocity and the yawed wind velocity components have the
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Figure 6.38: Hysteretic loops of yawed wind periodic flow and steady point of zero

yaw condition of Fx, Fz, Mx, My and Mz, computed with steady simulation, four

HB simulations and TD–360 simulation, for the 5–MW baseline wind turbine blade

analyses. Top left: tangential force (Fx); top right: axial force (Fz); middle left: out–

of–plane bending moment (Mx); middle right: torsional moment (My); bottom left:

in–plane bending moment (Mz).

same direction. Therefore, Fig. 6.38 highlights that the maximum of Fx andMz occurs
when the blade moves against the direction of the yawed wind component, whereas the
minimum occurs when the blade moves in the direction of the yawed wind component.
On the contrary, the Fz, Mx and My components experience their maximum, when
the blade moves in the direction of the yawed wind component, whereas the minimum
occurs when the blade moves against the yawed wind component. Five subplots in
Fig. 6.38 also depict the steady values of the Fx, Fz Mx, My and Mz, computed by the
zero–yaw simulation. For all components except forMy it is evident there is a reduction
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of their mean values when the turbine experiences the yawed wind condition. The mean
value of the periodic flow for Mz, which results in blade torque, decreases by about
3.6% with respect to the zero–yaw simulation.

To further investigate the variation of the hysteresis loops, and to assess the span-
wise dependence of the blade loads, four spanwise positions have been examined and
compared with the overall values per unit blade length. Four blade lengths, one close
to the root section at r/R = 0.3, one at the midspan section at r/R = 0.5, one at the
r/R = 0.7 section and one close to the blade tip at position r/R = 0.95, were selected

Figure 6.39: Hysteretic loops of the force in x–direction per unit blade length for yawed

wind periodic flow at the four spanwise positions and the overall value, computed with

four HB simulations and TD–360 simulation, for the 5–MW baseline wind turbine blade

analyses. Top left: blade section at r/R = 0.3; top right: blade section at r/R = 0.5;

middle left: blade section at r/R = 0.7; middle right: blade section at r/R = 0.95;

bottom left: overall force per unit blade length.
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for the analyses.
Figure 6.39 depicts the tangential force per unit blade length (Fxy) for the four

spanwise positions and the overall tangential force per unit blade length on the blade
(Fx/R). The hysteresis loops highlight the variation of the Fxy component with respect
to its mean value of about ±4% for the blade section at r/R = 0.3, ±6% for r/R = 0.5
±10% for r/R = 0.7 and ±15% for r/R = 0.95. Comparing the Fxy with Fx/R, one
can notice that the mean value of Fxy at r/R = 0.3 is almost two–fold larger than
Fx/R. While the mean values of Fxy at r/R = 0.5, r/R = 0.7 and r/R = 0.95 are

Figure 6.40: Hysteretic loops of the force in z–direction per unit blade length for yawed

wind periodic flow at the four spanwise positions and the overall value, computed with

four HB simulations and TD–360 simulation, for the 5–MW baseline wind turbine blade

analyses. Top left: blade section at r/R = 0.3; top right: blade section at r/R = 0.5;

middle left: blade section at r/R = 0.7; middle right: blade section at r/R = 0.95;

bottom left: overall force per unit blade length.
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lower by 10 %, 30 % and more than 50 %, respectively, than Fx/R. One notes that
the smallest variations of the hysteresis curves occur in the inboard part of the blade,
and they progressively become larger when moving towards the tip.

Figure 6.40 depicts the axial airfoil force per unit blade length (Fzy) for the four
spanwise positions and the overall axial force per unit blade length on the blade (Fz/R).
The variation of the Fzy component with respect to its mean value is about ±6% for
the blade section at r/R = 0.3, ±5% for r/R = 0.5 ±6% for r/R = 0.7 and ±8% for
r/R = 0.95. The mean value of Fzy at r/R = 0.3 is nearly 40 % lower as of Fz/R.

Figure 6.41: Hysteretic loops of the torque per unit blade length for yawed wind

periodic flow at the three spanwise positions and the overall value, computed with four

HB simulations and TD–360 simulation, for the 5–MW baseline wind turbine blade

analyses. Top left: blade section at r/R = 0.3; top right: blade section at r/R = 0.5;

middle left: blade section at r/R = 0.7; middle right: blade section at r/R = 0.95;

bottom right: overall force per unit blade length.
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Whereas the mean values of Fzy at r/R = 0.5, r/R = 0.7 and at r/R = 0.95 are about
10 %, 50 % and nearly 60 % higher, respectively, than Fz/R. Similarly as for the Fxy
component, the smallest variations of the hysteresis curves occur in the inboard part
of the blade, and they become progressively larger in the outboard part of the blade.

Figure 6.41 depicts the torque per unit blade length (Mzy) for the three spanwise
positions and the overall torque per unit blade length on the blade (Mz/R). The
variation of the Mzy with respect to its mean value is about ±6% for the blade section
at r/R = 0.3, about ±7.5% for r/R = 0.5, about ±11% for r/R = 0.7, and about
±17% for r/R = 0.95. The mean value of Mzy is in comparison with Mz/R about
38 % lower at r/R = 0.3, about 31 % higher at r/R = 0.5, more than 56 % higher at
r/R = 0.7, and nearly 50 % higher at r/R = 0.95. This indicates that the section at
r/R = 0.7 contributes the most to the power output, whereas the section at r/R = 0.3
contributes the least. The contribution of the section at r/R = 0.95 to the power
production is smaller than at r/R = 0.7 due to various reasons. One of the reasons
is that the airfoil chord, which is decreasing from midspan towards the tip, decreases

Figure 6.42: Spanwise distribution of the normal force coefficients (left) and the tan-

gential force coefficients (right) at 11.4 m/s and the yaw angle δ = 20◦, for the three

azimuthal positions of the NREL–5MW blade: θ = 0◦, θ = 90◦, θ = 180◦ and θ = 270◦.
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more rapidly near the tip. At r/R = 0.95 the airfoil chord is nearly 60 % smaller
than that at r/R = 0.7. Moreover, in the tip region the wing is strongly affected by
the strong tip vortex, which causes the downwash effect. The downwash leads to the
reduction of the AoA at the airfoil sections close to the tip, reducing the Mzy .

Figure 6.42 depicts spanwise distribution of the normal (CN) and tangential force
(CT ) coefficients. The CN and CT were obtained by the integration of the pressure
distributions around the airfoil, using the Eqns. 5.4 and 5.5. The top subplots of
Fig. 6.42 refer to steady simulation in straight wind, bottom eight plots refer to yawed
flow operating condition for the four azimuthal positions at θ = 0◦ (position A), θ = 90◦
(positionB), θ = 180◦ (position C) and θ = 270◦ (positionD), denoted in Fig. 6.37, and
are computed with four HB calculations and the TD–360 calculation. From bottom
eight subplots in Fig. 6.42 it may be observed that only one complex harmonic is
required to resolve the radial distribution of the CN and CT at four azimuthal positions.
This result suggests that the plot of radial distribution of the CN and CT is less sensitive

Figure 6.43: Spanwise distribution of the blade pitching moment coefficient CM at

11.4 m/s and the yaw angle δ = 20◦, for the four azimuthal positions of the NREL–

5MW blade: θ = 0◦, θ = 90◦, θ = 180◦, and θ = 270◦.
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than hysteresis loop plots at four spanwise positions above, where at least three complex
harmonics were required to achieve the same time–resolution of forces and moments
as in the TD–360 simulation. From Fig. 6.42 it may also be observed that the highest
variation of the unsteady CN and CT w.r.t. to the steady ones is in the inboard part
of the blade.

Figure 6.43 depicts spanwise distribution of the blade pitching moment coefficient
(CM). The CM was obtained by the integration of the pressure distributions around the
airfoil, using the Eqn. (5.7). The top subplot of Fig. 6.43 refers to steady simulation
in straight wind, bottom four plots refer to yawed flow operating condition for the
positions A, B, C and D, denoted in Fig. 6.37, and are computed with four HB
calculations and the TD–360 calculation. To resolve the radial distribution of CM ,
at least two complex harmonics are required, as visible from bottom four subplots in
Fig. 6.43. An excellent agreement between HB–2 and TD–360 is found for the CM at
all four azimuthal positions. From Fig. 6.43 it may also be concluded that the variation
of the unsteady CM is not significant with respect to the steady one.

Figure 6.44: Pressure coefficient cp distributions of the 5–MW baseline wind turbine

blade for the azimuthal positions at θ = 90◦ (B) and θ = 270◦ (D), of the yawed wind

periodic simulation.

Figure 6.44 examines the static pressure coefficient cp profiles, for the three span-
wise locations, r/R = 0.3, r/R = 0.63 and r/R = 0.95, at two selected azimuthal
positions, θ = 90◦ (position B) and θ = 270◦ (position D), denoted in Fig. 6.37. cp
is defined with Eqn. (5.6), and its definition is based on the relative wind velocity.
Figure 6.44 provides further insight into the main characteristics of the previously dis-
cussed hysteretic phenomena. At spanwise location r/R = 0.3, the two cp profiles are
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nearly superimposed, small differences can be observed in the pressure side (PS) of the
cp profile. If the area between the suction side (SS) and PS portion of cp is taken as a
measure of the aerodynamic loading, then the aerodynamic loading slightly increases
at position D. Looking at the spanwise location r/R = 0.63, it is evident that the
aerodynamic loading at position D is now significantly higher than at position B, and
the difference between position B and position D further increases at the spanwise
location r/R = 0.95. The difference in the aerodynamic loading between the two posi-
tions is caused by the inflow gradient across the rotor blade, which is different at the
two positions due to the yawed wind condition.

Figure 6.45: Skin friction lines and radial velocity component (Ur) on the pressure side

(PS) and the suction side (SS) of the 5–MW baseline wind turbine blade for the steady

simulation and the positions at θ = 90◦ (B) and θ = 270◦ (D) of the TD–360 yawed

wind periodic simulation.
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Figure 6.45 depicts the comparison of the skin friction lines and the radial velocity
component on the first grid surface of the blade U∗r of the steady simulation and the
two azimuthal positions of TD–360 simulation, θ = 90◦ (position B) and θ = 270◦
(position D), denoted in Fig. 6.37. The skin friction lines are computed using the first
grid surface off the blade, and are depicted on the pressure side (PS) and suction side
(SS) of the blade. The top three subplots report the skin friction lines and U∗r on
the PS for steady simulation and the two TD–360 simulations at positions B and D,
whereas the bottom three subplots represent the skin friction lines and U∗r on the SS.
Looking at the PS and SS subplots, one may notice that the skin friction lines of the
steady simulation are well guided and kept aligned at all spanwise positions. However,
for the TD simulation, the skin friction lines are deflected towards the tip at position B
and towards the root at position D. This happens due to the impact of the U∗r , which
is different at positions B and D due to yawed wind regime. In zero–yaw wind case U∗r
is constant at all azimuthal positions, and it is always pointing radially outwards, as it
can be noticed from the PS and SS steady simulation subplots. Whereas, at positions
B and D, U∗r is pointing radially outwards and radially inwards, respectively. It is also
observed that in all TD subplots the skin friction lines deflections are more visible in
the inboard part of the blade. The reason for this is the variation of the circumferential
velocity along the blade span. Circumferential velocity is very small at the sections
close to the root due to small angular velocity, and it significantly increases with the
rotor radius, and therefore becomes dominant. Due to this reason these deflections on
PS and SS are more visible close to the root. Moreover, as previously pointed out, the
skin friction lines confirm that the dynamic stall on the SS of the blade is absent for
this operating regime.

Looking at subplots of Fig. 6.45 one would expect that the U∗r would be increasing
and decreasing continuously. However, this does not happen in present case. One
plausible reason for this anomaly is that the blade surface, which was generated with
the loft tool inside grid generator, is not perfectly smooth. As the U∗r is visualised on
the first grid surface off the blade, any small anomalies in grid surface geometry can
cause non–continuous behaviour of the U∗r . Further away from the blade surface these
anomalies disappear, as it may be seen in Fig. 6.46.

Figure 6.46 depicts the comparison of the two–dimensional streamlines and the
radial velocity component Ur in the meridional plane of the steady simulation and the
two azimuthal positions of TD–360 simulation, θ = 90◦ (position B) and θ = 270◦
(position D), denoted in Fig. 6.37. Streamlines of the three subplots in Fig. 6.46
highlight the effect of the velocity component parallel to the plane of rotation u∞sin(δ),
which occurs due to the yawed flow operating regime. In the steady simulation, the
streamlines are slightly inclined in the direction towards the tip, mainly due to the
expansion of the streamtube, which occurs across the rotor. However, the inclination
angle of the streamlines of the TD simulation is significantly higher than that of the
steady simulation. At position B, when the radial velocity component due to rotation
and u∞sin(δ) both point radially outwards, the streamlines are inclined towards the
tip. At position D, when the radial velocity component due to rotation points radially
outwards and u∞sin(δ) points radially inwards, the streamlines are inclined towards
the root. Furthermore, close to the tip the air flowing over the pressure side acquires
an additional outward velocity component due to the formation of the tip vortex, as
the pressure on both sides of the blade will try to equalise. Due to the reasons above,
the flow at position B is more three dimensional, and leads to a stronger induced
downwash. Conversely, the flow at position D is more two–dimensional and features
higher local AoAs. Combined effect of the tip vortex and the inflow gradient across the
rotor blade due to the u∞sin(δ) causes larger hysteresis loops when moving towards
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Figure 6.46: Contours of radial velocity in the meridional plane of the 5–MW baseline

wind turbine blade for the steady and two TD simulations corresponding to azimuthal

positions θ = 90◦ (B) and θ = 270◦ (D) of the yawed wind periodic simulation.

the tip.
Figure 6.47 depicts the comparison of the streamlines and the x–component of

flow vorticity in the meridional plane of the steady simulation and the two azimuthal
positions of TD–360 simulation, θ = 90◦ (position B) and θ = 270◦ (position D),
denoted in Fig. 6.37. Three different slices are plotted for the steady and two TD
simulations, at three different θ∗ positions, where θ∗ denotes the position of a slice in
meridional plane of the blade. θ∗ is negative, when the slice is rotated towards the
trailing edge. At θ∗ = 0◦, the inclination of the streamlines on the suction side of the
blade is significantly different between steady simulation and positions B and D, due
to the variation of Ur, as previously explained. The same observation holds also for
other two θ∗ positions. At θ∗ = 0◦ and θ∗ = −0.5◦ the formation of the tip vortex is
nicely visible for all cases, whereas at θ∗ = −1◦, the tip vortex is already fully formed.

The contours of the x–component of flow vorticity in the meridional plane in
Fig. 6.47 are heavily distorted. The reason for this anomaly is that the mesh in the
tip region is too coarse, and the stretching is too large. Unfortunately, due to limited
computational resources it was impossible to use better refinement in the tip region of
the mesh.

Figure 6.48 depicts the comparison of the static pressure coefficient cp contours, in
the meridional plane of the steady simulation and the two azimuthal positions of TD–
360 simulation, θ = 90◦ (position B) and θ = 270◦ (position D), denoted in Fig. 6.37.
The definition of cp is provided below:

cp = p− p∞
1
2ρ∞(u2

∞) , (6.21)

where p and p∞ denote the local and freestream static pressure respectively. Such
definition of the pressure coefficient is based on the freestream wind velocity u∞, and
thus, maximum value at the stagnation point will vary along the span. This definition
is typically used when plotting the pressure coefficient on the entire surface of the
HAWT blade, as it becomes too complicated to use the definition based on the relative
wind velocity, defined by Eqn. (5.6).
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Figure 6.47: Contours of x–component of flow vorticity and 2D streamlines in the

meridional plane of the 5–MW baseline wind turbine blade for the steady and two TD

simulations corresponding to azimuthal positions θ = 90◦ (B) and θ = 270◦ (D) of the

yawed wind periodic simulation.

The red colour in all nine images corresponds to the high–pressure region, and the
blue colour corresponds to the low–pressure region. Looking at the three pictures at
θ∗ = 0◦, it is observed that the red colour at position D is much more intense close
to the blade than for the steady simulation and position B. This means that the flow
at position D is more two–dimensional, and the three–dimensional effects appear to
be much larger at position B. At θ∗ = −0.5◦ it is clearly visible that the pressure
difference across PS and SS is the largest at position D, which suggests that the tip
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Figure 6.48: Contours of x–component of pressure coefficient cp in the meridional

plane of the 5–MW baseline wind turbine blade for the steady and two TD simulations

corresponding to azimuthal positions θ = 90◦ (B) and θ = 270◦ (D) of the yawed wind

periodic simulation.

vortex at position D is the strongest. Even though the tip vortex is stronger at position
D than at position B, the aerodynamic loads close to the tip are higher at position
D, as previously shown. This suggests, that the magnitude of the tip vortex does not
significantly affect aerodynamic loads close to the tip.

Similarly than in Fig. 6.47, the contours of the cp in the meridional plane in Fig. 6.48
are distorted due to insufficient grid refinement and too large stretching in the tip
region.
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Figure 6.49: Torque and power profiles at 0◦ (steady) and 20◦ (HB 1–4 and TD–360)

yaw angles, of the 5–MW baseline wind turbine blade.

Figure 6.49 reports the periodic variations of the rotor torque Mz and the rotor
power P for the sum of all three blades. The rotor torque and power profiles over one
rotor revolution are computed by the steady solver for the straight wind simulation
and by the TD and HB solvers for the yaw angle 20◦ simulations, and are plotted
against the azimuthal position θ of the reference blade. Looking at both subplots of
Fig 6.49 one may notice there is a noticeable reduction of both Mz and P due to the
yawed wind operating regime, leading to an apparent power reduction. Furthermore,
although there is a significant variation of Mz on a single blade, the fluctuations of
the main shaft are much smaller. Even though the power fluctuations on the main
shaft are relatively small, it is important to accurately predict them, as they result in
electrical power flickering. From both subplots of Fig 6.49 it is evident that HB–1 and
HB–2 simulations are not able to predict any variations of theMz and P . This happens
due to the definition of the HDHB. When using one or two complex harmonics for the
problem of the three–bladed turbine, an insufficient number of temporal points within
the period is defined. Therefore, when the sum of the periodic profiles of Mz or P
of all three blades is done, these variations cancel out. Furthermore, the contribution
of the higher–frequency harmonics of the HB–3 and HB–4 analyses provide sufficient
number of temporal points within the period, and are both able to predict variations
of Mz and P well.

6.2.5 Computational performance of the HB solver
All four HB analyses have required 25, 000 iterations for the convergence of all har-
monics of all the force components of these four HB analyses. Each physical time–step
of the TD–360 analysis has instead required 700 iterations for the convergence of all
force components. Twelve revolutions starting from a freestream initial condition had
to be simulated, in order to reach the periodicity error threshold, defined in subsec-
tion 6.2.4, below 0.1 %. It has been noticed that the number of iterations required
for the convergence of all harmonics of all the force components is fairly independent
of NH .

Figure 6.50 reports the residual convergence histories of the steady and four HB
analyses over the first 5, 000 iterations, and the mean residual convergence history of
the first period of the TD–360 simulation. The variable on the x–axis is the number
of single–grid iterations. For the steady and HB analyses, the variable ∆lr on the
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Figure 6.50: Residual convergence histories of steady, TD and HB solvers of the 5–MW

baseline wind turbine blade.

y–axis is the logarithm in base 10 of the normalized RMS of all cell–residuals of the
RANS and SST k − ω equations of the 2NH + 1 snapshots. For the TD–360 analysis,
the variable ∆lr on the y–axis is instead the logarithm in base 10 of the RMS of all
cell–residuals of the the RANS and SST k − ω equations of the 360 physical times of
the first period. For all steady, HB, and TD simulations, each residual history curve is
normalized by the RMS value at the first MG cycle. Looking at four HB curves, one
may notice an interesting feature, that the convergence histories of all HB analyses are
fairly close to each other. This occurrence indicates that the periodic flow nonlinearity
is dominated only by the first two harmonics. Furthermore, the contribution of the
progressively smaller higher–frequency harmonics of the HB 3 and HB 4 analyses does
not affect significantly the spectrum of the linearized operator associated with the
integration of these HB set–ups with respect to that associated with the HB 2 set–up.
The HB hysteretic force loops of the subplots in Fig. 6.38, also point to the fact that
the first two harmonics are dominant in the Fourier reconstruction of this periodic
flow. Inspecting the curves in Fig. 6.38 confirms that the largest differences among the
HB results are those between the HB 1 simulation on one hand and the other three
HB simulations on the other. This occurrence highlights a significant contribution
of the second harmonic to the periodic flow, and rapidly decreasing contributions of
the higher order harmonics. Figure 6.50 also reports the convergence history of the
steady simulation of the zero–yaw wind flow. It is observed that the curve of the
steady residual history is superimposed with HB curves for the first 1, 000 iterations.
After this point the steady curve has more oscillatory behaviour and slightly better
convergence.

When using the HB smoother provided by Eqn. (3.81) to solve the HB RANS and
SST equations, the CPU–time of one HB iteration increases in a moderately superlinear
fashion with NH . This suggest that, for a given number of computer cores used for the
simulation, the runtime of a HB NH simulation with a given number of iterations is
higher than (2NH+1) times the runtime of the steady simulation using the same number
of iterations. This overhead is due to the calculation of the HB source term ΩVHDQH

appearing in Eqn. (3.79), and is proportional to (2NH + 1)2. Such an overhead can
be quantified by taking the ratio of the measured CPU–time of one iteration of the
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HB NH analysis and that of one iteration of the steady analysis, and dividing such a
ratio by (2NH + 1). The variable CIT thus obtained is reported in the second row of
Table 6.7. It is seen that the overhead for the calculation of the HB source term with
the HB 4 analysis makes the average CPU–time of one HB iteration about 9 percent
higher than that of one steady iteration.

Table 6.7: Overhead parameter CIT of HB iteration with respect to steady iteration,

and speed–up of HB analyses with respect to TD–360 analysis of the 5–MW baseline

wind turbine blade.

HB 1 HB 2 HB 3 HB 4 TD-360 steady

Cit 1.049 1.080 1.085 1.089 — 1.000

speed-up 115.3 67.2 47.8 37.0 1.0 —

The HB speed–up parameter, defined as the ratio of the runtime of the TD–360
simulation and the HB analysis for the four values of NH , is reported in the third row
of Table 6.7. It is seen that the HB 3 simulation, which yields an excellent estimate
of the time–dependent loads, reduces the analysis runtime by a factor 48 with respect
to the fully time–resolved TD–360 analysis, which is a remarkable benefit for practical
applications.



Chapter 7

Conclusions

7.1 Summary and concluding remarks
A novel 3D steady, TD and HB compressible solvers of the RANS equations coupled to
Menter’s k − ω SST turbulence model have been developed, validated, demonstrated
and assessed. For validation, several test cases have been used: the laminar delta wing,
ONERA M6 wing, S809 airfoil, H–Darrieus vertical–axis wind turbine, oscillating wing
and the upwind configuration of the NREL Phase VI rotor in straight and yawed flow
conditions. The numerical results have been compared with the experimental data,
and/or other widely used NS commercial and research codes. The capabilities of the
newly developed solvers have been demonstrated using complex unsteady engineering
problems. The work focused on the periodic unsteady flows of the oscillating wing
devices and the wind turbine periodic flows in yawed wind. A detailed assessment
of the actual benefits achievable by a HB RANS CFD code with the SST turbulence
model for the analysis of wind turbine periodic aerodynamics has also been presented.

7.1.1 Oscillating wings
A detailed numerical investigation into the impact of flow three–dimensionality on the
power generation efficiency of realistic oscillating wing configurations for marine renew-
able energy production has been presented. The study was based on the comparative
performance assessment of an infinite wing and two aspect ratio 10 wings, one featur-
ing endplates, the other featuring sharp tips. Two high efficiency extraction operating
regimes were considered. In both cases, the oncoming stream had Re = 1.5× 106; the
wing motion of case A was characterised by a fairly high power generation efficiency
of the infinite wing at this Reynolds number and the occurrence of LEVS, whereas
the the wing motion of case B was characterised by a high power generation efficiency
of the infinite wing, without LEVS. The newly developed TD RANS solver featuring
Menter’s k − ω SST turbulence model was used to assess the differences of hydrody-
namic performance of the three wing configurations (infinite wing and two aspect ratio
10 wings) and analyse the underlying flow patterns accounting for such differences.
Computational grids with 30.7 million–cells were used for the 3D time–dependent sim-
ulations.

The mean overall power coefficient of the AR 10 wing with sharp tips and endplates
is found to decrease respectively by about 17 % and 12 % with respect to that of the
infinite wing for case A and by about 20 % and 15 % with respect to that of the infinite
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wing for case B. For case A, the finite wing losses are caused both by the reduction of
the effective AoA at the near–tip sections induced by the downwash associated with
the tip vortices, and the loss of synchronisation of LEVS and pitching motion of the
wing. The latter phenomenon results in a lower efficiency of the finite span wing due
to a significant loss of pitching power with respect to the ideal infinite wing. For case
B, the finite wing losses are caused only by the reduction of the effective AoA at the
near–tip sections induced by the downwash associated with the tip vortices.

The loss due to tip vortex–induced downwash depends on the wing tip geometry,
and is smaller for the wing with endplates. The pitching power loss, however, does not
depend on the wing tip geometry, and affects both AR 10 wings in a qualitatively and
quantitatively similar fashion.

In the light of the efficiency reduction associated with the loss of favourable synchro-
nisation between pitching motion and LEVS, when considering finite wing effects, it
appears advisable to design these devices avoiding regimes characterised by 2D LEVS,
as to minimise losses due to finite wing effects. Alternatively one would have to per-
form the design optimisation of the wing kinematic parameters making use of costly
3D flow simulations, since the results of 2D optimisation appear to be unsuitable to
yield optimal efficiency of the 3D oscillating wing. The loses in case B are bigger than
those of case A, however, the efficiency of case A wing with endplates and sharp tips is
respectively 34.4 % and 32.6 %, whereas in case B is respectively 38.1 % and 36.0 %.
Case B, therefore, yields much higher efficiency than case A. The higher losses for case
B are associated with significantly higher peak heaving velocity compared to case A,
which is nearly twice as big.

7.1.2 Horizontal–axis wind turbines
Detailed aerodynamic analyses and assessments of the benefits of using a HB RANS
CFD code with the k − ω SST turbulence model for the analysis of the NREL 5–MW
baseline wind turbine periodic aerodynamics have been presented. The assessments
were based on the analysis of the periodic flow field past the NREL 5–MW blade
section in a 20o 11.4 m/s yawed wind.

Significant hysteresis cycles of the overall forces and moments acting on the 5–MW
baseline horizontal–axis with turbine blade were observed, with variations of the tan-
gential and axial force components of about ±5 % and ±6 %, respectively, of their
mean values, and variations of the out–of–plane bending moment, the torsional mo-
ment and the in–plane bending moment of about ±7 %, ±13 %, and 11 %, respectively,
of their mean value. Inspection of the flow solution showed there is no dynamic stall
present on the blade, and that the velocity component parallel to the plane of rota-
tion associated with yawed wind flow is responsible for such hysteretic behaviour of
aerodynamic loads. This velocity component induces an inflow gradient across the
rotor blade, which strength depends on the azimuthal position of the blade, resulting
in the variation of the local AoA. Significant variations of the blade loads caused by
the yawed flow contributes considerably to material fatigue, and must be accurately
predicted. The hysteresis loops have been closely examined at four spanwise positions,
r/R = 0.3, r/R = 0.5, r/R = 0.7 and r/R = 0.95, to investigate the variation of the
hysteresis loops along the blade span. It was observed that the size of the hysteresis
curves variations is progressively increasing from the blade root towards the tip. This
is caused by the combined effect of the tip vortex and the inflow gradient across the
rotor blade.

The HB analysis using 3 complex harmonics reproduced the solution of the fully
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time–resolved TD–360 analysis nearly 50 times more rapidly than the TD analysis.
This points to the fact that HB RANS method has a strong potential of improving
utility–scale HAWT design since it reduces the computational burden associated with
computing periodic solutions using the conventional time–domain form of the RANS
and k − ω SST equations. These equations are able to predict fatigue–inducing and
power–reducing loads with increased reliability with respect to the low–fidelity analysis
methods. Recent advances in computer technology, the high computational efficiency
of the HB technology, and the fact that HB RANS is able to accurately account for
complex unsteady flow features, offers the possibility of using the HB technology for
the design optimisation of HAWT rotors, possibly with the initial support of reliable
reduced order modelling.

7.2 Future work
On the algorithmic side, more work is needed to improve the stability and the conver-
gence rate of the explicit MG algorithm of the developed CFD framework in the case of
realistic high Reynolds number flows, since for the flow problems of this type reported
in the thesis the MG solver either had a convergence rate similar to that of the SG iter-
ation, or could not be used without lowering excessively CFD numbers. The difficulties
encountered in solving high–Reynolds number flows are caused both by the very high
aspect ratios (often between 1,000 and 10,000) of the grids required to resolve very
thin boundary layers at high Reynolds number (the performance of MG decreases with
growing levels of grid anisotropy), and the numerical stiffness of the SST equations.
These stability issues may be reduced by adopting numerical stabilisation procedures
such as those reported in [148] and [149]. Additional possibilities for improving the
MG stability and convergence rate include using turbulence models with lower numer-
ical stiffness and using different smoothers for the RANS equations and the turbulence
model equations. It should also be noted, that the explicit MG stability issues at
high Reynolds number affect to the same extent the steady, TD and HB solvers, and
therefore, improvements of the explicit MG integration technology is unlikely to alter
significantly the conclusions of this work regarding the computational benefits (lower
runtimes) of using the HB rather than the TD formulation for the solution of wind
turbine periodic flows. Further extensions of this work include the implementation
of the transitional turbulence model, the development of an incompressible solver for
hydrodynamic and low–speed aerodynamic applications, the implementation of LES
and DES modelling capabilities, sliding mesh algorithm, and the implementation of
the overset grid approach. The implementation of the dynamic load balancer is al-
ready in progress in order to simplify and accelerate the grid generation phase, which
is presently constrained by the requirement of all blocks having the equal size.

Further work on the validation side includes the comparison of the numerical re-
sults of high–amplitude heaving wings and various pitching wings against the available
experimental data. This data will further confirm whether the RANS CFD could be
used with a confidence as a high–fidelity design tool for oscillating wing devices. Fur-
ther validation on yawed HAWT flows is also required, as only one operating regime at
two different yaw angles has been considered herein. More operating points of NREL
PHASE VI experiment [9] in yawed wind flows should be considered, as well as the
MEXICO experiment [29] should be addressed for further thorough validation.

Further work on the application side includes improved HAWT flow predictions
making use of a laminar–to–turbulent transition model, and also the use of the newly
developed HB solver for other HAWT unsteady flows such as sheared wind regimes
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and rotor aeroelasticity. It is also believed that the developed technology may be used
for general open rotor design optimisation incorporating aerodynamic and aeroacoustic
functionals.
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Appendix A

Numerical dissipation

In this section the derivation of numerical dissipation has been described first. Fur-
thermore, the expression of numerical dissipation has been written in such form that
maximal computational efficiency of the numerical implementation is assured.

Let us rewrite the expression of numerical dissipation given by Eqn. (3.12) for
convenience:

δΦ = |KU | δU = P |Λ|P−1δU = P |Λ|δW. (A.1)

P is the matrix of right eigenvectors of KU and the inverse matrix P−1 is the matrix
of left eigenvectors of KU . Λ is the diagonal matrix of eigenvalues of KU , and δW
represent the characteristic variables, defined by δW = P−1δU. Equation (A.1) em-
phasises that the construction of the numerical dissipation requires the calculation of
the eigenvalues and the eigenvectors of KU . The Jacobian matrix KU can be written
as the sum of the three flux Jacobians of the convective fluxes A, B and C, defined by
Eqn. (A.2):

KU = Anx +Bny + Cnz. (A.2)

Its expression is the following:

KU =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 nx ny nz 0 0 0
(γ−1)

2 q2nx − uUn Un − nx(γ − 2)u nyu − nx(γ − 1)v nzu − nx(γ − 1)w nx(γ − 1) −nx(γ − 1) 0
(γ−1)

2 q2ny − vUn nxv − ny(γ − 1)u Un − ny(γ − 2)v nzv − ny(γ − 1)w ny(γ − 1) −ny(γ − 1) 0
(γ−1)

2 q2nz − wUn nxw − nz(γ − 1)u nyw − nz(γ − 1)v Un − nz(γ − 2)w nz(γ − 1) −nz(γ − 1) 0

Un
(γ−1)

2 q2 − UnH nxH − (γ − 1)uUn nyH − (γ − 1)vUn nzH − (γ − 1)wUn γUn −(γ − 1)Un 0

−UnK nxK nyK nzK 0 Un 0

−Unω nxω nyω nzω 0 0 Un

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,(A.3)

where q2 = u2 + v2 +w2 and, Un is the flow velocity component along the outward face
normal n, expressed as:

Un = unx + vny + wnz. (A.4)

The calculation of the eigenvalues of KU is a complex process when these are written
in conservative form, due to the dense structure of KU . It is easier to work when the
system of governing equations are written in non–conservative form, as a function of
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the primitive variables. Primitive variables V are defined as:

V =



ρ
u
v
w
p
k
ω


. (A.5)

Once the governing equations are transformed in nonconservative form, nonconserva-
tive Jacobian KV is expressed with respect to the variables V:

KV = Ã
∂V
∂x

+ B̃
∂V
∂y

+ C̃
∂V
∂z

= Ãnx + B̃ny + C̃nz, (A.6)

where Ã, B̃ and C̃ denote the components of the flux Jacobians of the convective fluxes
in nonconservative form KV . Their expressions are the following:

Ã =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ρ 0 0 0 0 0

0 u 0 0 1
ρ

0 0

0 0 u 0 0 0 0

0 0 0 u 0 0 0

0 ρc2 0 0 u 0 0

0 0 0 0 0 u 0

0 0 0 0 0 0 u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, B̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v 0 ρ 0 0 0 0

0 v 0 0 0 0 0

0 0 v 0 1
ρ

0 0

0 0 0 v 0 0 0

0 0 ρc2 0 v 0 0

0 0 0 0 0 v 0

0 0 0 0 0 0 v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, C̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w 0 0 ρ 0 0 0

0 w 0 0 0 0 0

0 0 w 0 0 0 0

0 0 0 w 1
ρ

0 0

0 0 0 ρc2 w 0 0

0 0 0 0 0 w 0

0 0 0 0 0 0 w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.7)

The symbol c denotes the speed of the sound, and is related to the static temperature
through the relation:

c =
√
γRT , (A.8)

where γ represents the ratio of specific heats, R is the gas constant and T is the absolute
velocity. The expression for flux Jacobian of the convective fluxes in nonconservative
form reads:

KV =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Un ρnx ρny ρnz 0 0 0
0 Un 0 0 nx

ρ
0 0

0 0 Un 0 ny
ρ

0 0
0 0 0 Un

nz
ρ

0 0
0 ρc2nx ρc2ny ρc2nz Un 0 0
0 0 0 0 0 Un 0
0 0 0 0 0 0 Un

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.9)

The relations between the conservative and the non–conservative jacobians KU and
KV can be expressed through a similarity transformation with matrixM . The relation
is given by:

KU = MKVM
−1 orKV = M−1KUM. (A.10)

M−1 is inverse matrix of M . Their expressions are respectively:

M = ∂U
∂V

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0
u ρ 0 0 0 0 0
v 0 ρ 0 0 0 0
w 0 0 ρ 0 0 0

q2/2 +K ρu ρv ρw 1
γ−1 ρ 0

K 0 0 0 0 ρ 0
ω 0 0 0 0 0 ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A.11)
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M−1 = ∂V
∂U

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0

−u/ρ 1/ρ 0 0 0 0 0

−v/ρ 0 1/ρ 0 0 0 0

−w/ρ 0 0 1/ρ 0 0 0

(γ − 1)q2/2 −u(γ − 1) −v(γ − 1) −w(γ − 1) γ − 1 −(γ − 1) 0

−K/ρ 0 0 0 0 1/ρ 0

−ω/ρ 0 0 0 0 0 1/ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.12)

Equation. (A.10) defines a similarity transformation from the conservative to noncon-
servative variables (KU to KV ) and vice versa. Both Jacobians KU and KV feature the
same eigenvalues due to their similarity, and their eigenvectors are related through the
Jacobian matrix of the transformation from the conservative to the non–conservative
variablesM as shown in the following expression. Inserting Eqn. (A.10) into Eqn. (A.1),
following relations are established:

δΦ = |KU | δU = M |KV |M−1δU = ML|Λ|L−1M−1δU = ML|Λ|L−1δV. (A.13)

The symbol L denotes the matrix of right eigenvectors of KV , and its inverse L−1 are
the left eigenvectors of KV . Comparing the two expressions of numerical dissipation,
Eqn. (A.1) and Eqn. (A.13), the following relations can be established:

P = ML (A.14)

and
δW = L−1δV. (A.15)

As the calculation of eigenvalues of nonconservative Jacobian KV is much simpler
than that of conservative Jacobian KU , the matrix of right eigenvectors P and the
variation δW of the characteristic variables appearing in Eqn. (A.1), are determined
by the expressions above. Both expressions require the calculation of the matrix of left
eigenvalues L−1 and right eigenvectors L of KV .

The Jacobian matrices KV and KU have seven eigenvalues:

λ1 = λ2 = λ3 = λ6 = λ7 = Un,

λ4 = Un + c,

λ5 = Un − c,
(A.16)

where:

Un =
[
k1 (k2 + k3) − k2nx/ny − k3nx/nz − k1/c

2 k4 k5
]
. (A.17)

The constants ki, i = 1, 5 may be selected arbitrarily. Using a typical choice for these
constants, the following 5 left eigenvectors is obtained:

λ1 =
[
1 0 0 0 − 1/c2 0 0

]
,

λ2 = [0 ρny − ρnx 0 0 0 0] ,
λ3 = [0 − ρnz 0 ρnx 0 0 0] ,
λ6 = [0 0 0 0 0 ρ 0] ,
λ7 = [0 0 0 0 0 0 ρ] .

(A.18)

The eigenvalues Un + c and Un − c yield respectively the eigenvectors:

λ4 =
[
0 ρnx

2c
ρny
2c

ρnz
2c

1
2c2 0 0

]
,

λ5 =
[
0 − ρnx

2c − ρny
2c − ρnz

2c
1

2c2 0 0
]
.

(A.19)
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This leads to the expression of matrix of left eigenvectors:

L−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 − 1
c2 0 0

0 ρny −ρnx 0 0 0 0
0 −ρnz 0 ρnx 0 0 0
0 ρnx

2c
ρny
2c

ρnz
2c

1
2c2 0 0

0 −ρnx
2c −ρny

2c −ρnz
2c

1
2c2 0 0

0 0 0 0 0 ρ 0
0 0 0 0 0 0 ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A.20)

and the expression for its inverse:

L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 1 0 0
0 ny

ρ
−nz

ρ
nxc
ρ
−nxc

ρ
0 0

0 −nx2+nz2

ρnx
−nynz

ρnx

nyc
ρ
−nyc

ρ
0 0

0 nynz
ρnx

nx2+ny2

ρnx
nzc
ρ
−nzc

ρ
0 0

0 0 0 c2 c2 0 0
0 0 0 0 0 1

ρ
0

0 0 0 0 0 0 1
ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.21)

Using the expression provided by Eqn. (A.14), the matrix P can be obtained:

P = ML =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 1 0 0
u ny −nz u+ cnx u− cnx 0 0
v −n2

x+n2
z

nx
−nynz

nx
v + cny v − cny 0 0

w nynz
nx

n2
x+n2

y

nx
w + cnz w − cnz 0 0

q2/2 +K Ut Vt H + Unc H − Unc 1 0
K 0 0 K K 1 0
ω 0 0 ω ω 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.22)

where:
Ut = uny − v

n2
x + n2

z

nx
+ w

nynz
nx

,

Vt = −unz − v
nynz
nx

+ w
n2
x + n2

y

nx
.

The expressions of characteristic variables δW, which can be computed by means
of Eqn. (A.15) are the following:

δW1 = δρ− 1
c2 δp,

δW2 = ρnyδu− ρnxδv =ρ(nyδu− nxδv),
δW3 = −ρnzδu+ ρnxδw =ρ(−nzδu+ nxδw),

δW4 = ρnx
2c δu+ ρny

2c δv + ρnz
2c δw + 1

2c2 δp = δp

2c2 + ρδUn
2c ,

δW5 = −ρnx2c δu−
ρny
2c δv −

ρnz
2c δw + 1

2c2 δp = δp

2c2 −
ρδUn

2c ,

δW6 = ρδK,

δW7 = ρδω.

(A.23)

The expression of numerical dissipation given by Eqn. (A.1) may also be rewritten in
the following form:

δΦ = P |Λ|δW =
7∑

k=1
|λk|δWkrk, (A.24)
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where δWk denotes the kth component of characteristic variable δW, and rk represents
the kth right eigenvector of KU . Therefore, the sought flux differences are the following:

δΦ = |λ1|δW1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u
v
w

q2

2 +K
K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ |λ2|δW2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
ny

−n2
x+n2

z

nx
nynz
nx

Ut
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ |λ3|δW3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
−nz
−nynz

nx
n2
x+n2

y

nx

Vt
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+|λ4|δW4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u+ cnx
v + cny
w + cnz
H + Unc

K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ |λ5|δW5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u− cnx
v − cny
w − cnz
H − Unc

K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ |λ6|δW6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
1
1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ |λ7|δW7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
0
0
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(A.25)

and hence:

δΦ = Un


δρ− δp

c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u
v
w

q2

2 +K
K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
du− nxδUn
dv − nyδUn
dw − nzδUn

uδu+ vδv + wδw − UnδUn + δK
δK
δω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



+(Un + c)( δp2c2 + ρδUn
2c )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u+ cnx
v + cny
w + cnz
H + Unc

K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (Un − c)(

δp

2c2 −
ρδUn

2c )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
u− cnx
v − cny
w − cnz
H − Unc

K
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A.26)

Numerical implementation of numerical dissipation provided by Eqn. (A.24), can be
written in more compact way. This can be done in such way, that a set of intermediate
variables are first introduced:

α1 = |λ1|
(
δρ− δp

c2

)
,

α2 = |λ2|ρ = |λ3|ρ = |λ6|ρ = |λ7|ρ,

α3 = |λ4|
(
δp

c2 + ρδUn
c

)
/2,

α4 = |λ5|
(
δp

c2 −
ρδUn
c

)
/2.

(A.27)

Furthermore, using such intermediate variables, as provided by Eqn. (A.27), the com-
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ponents of δΦ may then be computed in the following compact way:

δΦ1 =α1 + α3 + α4,

δΦ2 =α1u+ α2(δu− nxδUn) + α3(u+ cnx) + α4(u− cnx),
δΦ3 =α1v + α2(δv − nyδUn) + α3(v + cny) + α4(v − cny),
δΦ4 =α1w + α2(δw − nzδUn) + α3(w + cnz) + α4(w − cnz),

δΦ5 =α1(q
2

2 +K) + α2(uδu+ vδv + wδw − UnδUn + δK)

+ α3(H + cUn) + α4(H − cUn),
δΦ6 =α1K + α3K + α4K + α2δK,

δΦ7 =α1ω + α3ω + α4ω + α2δω.

(A.28)



Appendix B

Convergence acceleration

techniques

The convergence of the iterative solution process of the governing equations may be
greatly enhanced by using various methodologies to accelerate the solution to steady–
state. The acceleration techniques are applicable to the solution of the steady equations
as well as to the solution of the TD and HB equations. This is because the calculation
of the flow solution at each step of the TD problem is obtained by using the same
approach adopted for the solution of the steady equations. Similarly, the discrete form
of the HB equations can be viewed as a system of 2NH + 1 steady problems, and
the overall system is solved with the same numerical method used to solve a single
steady problem. One of the acceleration methods used in this work, is the local time
stepping. It is based purely on the modification of the system of ordinary differential
equations. The other two acceleration methods used herein, multigrid and implicit
residual smoothing, are improvements of the solution process [66, 68, 89].

B.0.1 Local time stepping
Local time stepping is a technique, where the maximum allowable pseudo time step τ for
each control volume is calculated. This time step is then used in the integration process
of the discretized governing equations, described in previous sections. In comparison
to global time stepping, where the time step is the same for all control volumes, local
time stepping approach greatly accelerates the convergence to steady state.

Maximum time step needs to be determined in such way that the numerical scheme
remains stable. For the numerical scheme to be stable, it must fulfil the Courant–
Friedrichs–Lewy (CFL) condition [157], which states that the numerical domain of
dependence of any point in space and time must also include the domain of dependence
of the partial differential equation. For the basic one dimensional explicit scheme it
means that the time step should be equal or smaller than the time required to transport
the information across the stencil of the spatial discretization scheme.

The maximum time step for non–linear governing equations in multiple dimensions
can be estimated only approximately. There are more ways to calculate the time step τ .
Herein we adopt the approach presented in [66, 113, 158]. The expression to determine
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the maximum allowable pseudo time step is the following:

∆τ = CFL
V

Λc
i + Λc

j + Λc
k + C(Λd

i + Λd
j + Λd

k)
, (B.1)

where matrix V represents the cell volumes, Λc
i , Λc

j and Λc
k are the spectral radii of the

convective flux Jacobians, their expressions are the following:

Λc
i =(|u · ni|+ c)∆Si,

Λc
j =(|u · nj|+ c)∆Sj,

Λc
k =(|u · nk|+ c)∆Sk.

(B.2)

The normal vectors ni, nj and nk and face areas ∆Si, ∆Sj and ∆Sk are obtained by
averaging the values from the two opposite sides of the control volume for each direction.
Furthermore, Λd

i , Λd
j and Λd

k are the spectral radii of the diffusive flux Jacobians, and
may be written as:

Λd
i =γ

ρ

(
µ

Pr
+ µT

PrT

) ∆S2
i

V
,

Λd
j =γ

ρ

(
µ

Pr
+ µT

PrT

) ∆S2
j

V
,

Λd
k =γ

ρ

(
µ

Pr
+ µT

PrT

) ∆S2
k

V
.

(B.3)

µ and µT denote the laminar and the turbulent dynamic viscosity, respectively. More-
over, Pr and PrT are the laminar and the turbulent Prandtl numbers. The constant
C, which multiplies the viscous spectral radii was set in between 1 ≤ C ≤ 4, depending
on the test case.

B.0.2 Implicit residual smoothing
Another very useful convergence acceleration technique is called implicit residual smooth-
ing, where the local stability range and robustness of time–stepping scheme may be
significantly extended. The main purpose of this technique is to give an explicit scheme
the implicit character. General idea is to replace the residual at a certain point in the
flow field by a weighted average of the residuals at the neighbouring points. This
enables a substantial increase in the maximum allowable CFL number. Its further pur-
pose is also a better damping of the residual high–frequency error components, which
has a particular importance when it is used alongside multigrid. Implicit residual
smoothing was first implemented on Runge–Kutta stepping scheme in [159], using the
constant–coefficient approach. The approach was further investigated by many stud-
ies [158, 160, 161, 113] mostly using variable coefficients for implicit residual smoothing.
For this work, we have used the variable coefficient approach proposed by [160].

The expression for the residual smoothing in factorised form is the following:

(1− βiδi)(1− βjδj)(1− βkδk)R̃φ = Rφ, (B.4)

where the symbol δ represents a second order central difference operators in the three
computational directions i, j and k. Rφ is the original residual, and R̃φ is the resid-
ual after a sequence of smoothing in the three directions. The symbols βi, βj and
βk are locally varying smoothing coefficients, and can be calculated by the following
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expressions:

βi =MAX

0, 1
4

( CFL Λc
i

CFL∗ (Λc
i + Λc

j + Λc
k)

Φi

)2

− 1
 ,

βj =MAX

0, 1
4

( CFL Λc
j

CFL∗ (Λc
i + Λc

j + Λc
k)

Φj

)2

− 1
 ,

βk =MAX

0, 1
4

( CFL Λc
k

CFL∗ (Λc
i + Λc

j + Λc
k)

Φk

)2

− 1
 .

(B.5)

CFL and CFL∗ are the Courant–Friedrichs–Lewy numbers of smoothed and un-
smoothed scheme respectively. The maximum value of the ratio of smoothed and
unsmoothed CFL numbers depends on the type of spatial discretization scheme and
value of the smoothing coefficient. In practice, the value CFL/CFL∗ ≈ 2 is used. Λc

i ,
Λc
j and Λc

k are convective spectral radii defined by Eqn. (B.3). And the coefficients Φi,
Φj and Φk have the following definition:

Φi =1 +
(

Λc
j

Λc
i

)σ
+
(

Λc
k

Λc
i

)σ
,

Φj =1 +
(

Λc
i

Λc
j

)σ
+
(

Λc
k

Λc
j

)σ
,

Φk =1 +
(

Λc
i

Λc
k

)σ
+
(

Λc
j

Λc
k

)σ
.

(B.6)

The exponent σ is usually defined in the region 0 < σ ≤ 1, for this work the value
σ = 0.4 was used. The expression, given by Eqn. (B.4), is a convenient extension
from one dimensional to three dimensional case, since only the inversion of tridiagonal
matrix is required for the solution of smoothed residuals R̃φ. The system of equations
is solved using the efficient Thomas algorithm for the inversion of tridiagonal matrices,
a simplified form of Gaussian elimination.

B.0.3 Multigrid
The multigrid method is another acceleration method, which has been used in this
work. Generally speaking, the multigrid method systematically uses a sequence of
computational grids, as shown in Fig B.1, to accelerate the convergence of the iterative
schemes. More precisely, a faster convergence rate to steady–state on a fine grid is
achieved by approximating the fine grid problem on successively coarser grids in the
sequence. Coarser grids permit larger time steps, which is a consequence of having
larger control volume, together with a reduced numerical effort. Moreover, multigrid
also helps to dampen the low frequency components of the solution error, which slows
down the convergence of single–grid schemes. As the low–frequency components on
the finest grid become high–frequency components on the coarser grids, the error may
be much more rapidly reduced when using multigrid, making the multigrid method
a successful convergence acceleration method. The multigrid technique was initially
developed for elliptic partial differential equations [162, 163, 164], and was further
applied to an Euler equations [90, 159], and later to a NS equations [158, 165, 166].

When the generation of coarser grid levels takes place on geometric level, as depicted
in Fig B.1, the method is called geometric multigrid or full approximation storage (FAS)
scheme. An alternative to this method is algebraic multigrid (AMG) [167], where the
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Figure B.1: Two dimensional representation of three grid levels, fine, medium and

coarse.

grid topology on coarser grid levels is not required. AMG method was developed
specifically for implicit numerical schemes, and it uses coarsening matrix in order to
reduce the dimension of the implicit operator. Such reduced system then represents
a coarse multigrid level, where a new solution is obtained, and then it is used for the
correction of the fine grid level. The advantage of such technique is that it does not
require the construction and storage of coarse grid topology.

Figure B.2: FAS multigrid V–cycle.

Before applying the FAS scheme, the coarse grids have to be generated. For struc-
tured grids, the coarse grids are easily obtained by deleting every second grid line in the
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respective coordinate direction. Two typical FAS multigrid cycles exist, first is called
V–cycle, and second is called W–cycle. For this work, we have used V–cycle, depicted
in Fig. B.2. Figure B.2 represents V–cycle with the three multigrid levels, fine, medium
and coarse. The FAS V–cycle described below, refers to that figure. Note, there are no
other than geometrical restrictions (e.g. number of cells must be even) for the number
of multigrid levels one may use in multigrid cycle. However, in practice not more than
three multigrid levels are usually used. Let us first rewrite Eqn. (3.70) in the form,
where we denote fine multigrid level with the symbol h:

∂Qh

∂τ
= − 1

Vh
Rh(Qh). (B.7)

The FAS V–cycle starts by applying one or more sweeps of Runge–Kutta integration,
given by Eqn. (3.74). This is done at a finest grid level, starting from a known solution
Ql
h, to obtain a new fine grid level solution Ql+1

h . The new residual Rl+1
h is also

evaluated using the solution Ql+1
h . The new solution and residual are then transferred

to medium grid level using the restriction operator. The restricted solution for medium
grid may be written as:

Q(0)
2h = I2h

h Ql+1
h , (B.8)

where the symbol 2h denotes the medium grid level, and I2h
h is the restriction operator

when passing from fine to medium grid. To transfer the residual Rl+1
h to medium

grid level, we must instead use the conservative restriction operator. For this reason
a source term called multigrid forcing function must be introduced. Multigrid forcing
function represents the difference between the transferred fine grid residual Rl+1

h and
the residual computed on the medium grid using the initial solution R(0)

2h , and may be
written as:

(fMG)2h = I2h
h Rl+1

h −R(0)
2h . (B.9)

The solution on medium grid level is smoothed in the same way as on the fine grid level,
therefore, the new medium grid level solution Ql+1

2h is obtained. For the evaluation of
the residual on medium grid, the multigrid forcing function is added to the residual of
medium grid:

Rl+1
2hf = Rl+1

2h + (fMG)2h. (B.10)
After one or more iterations on medium grid level are done, exactly the same procedure
to restrict the solution on coarse grid level as previously is used. Let us denote the
coarse grid level with the symbol 4h. Hence, the restricted solution for coarse grid
reads:

Q(0)
4h = I4h

2hQl+1
2h , (B.11)

where the symbol I4h
2h denotes the restriction operator when passing from medium to

coarse grid level. The multigrid forcing function on the coarse grid is instead formed
from the restricted residual of medium grid Rl+1

2hf , and may be written as:

(fMG)4h = I4h
2h [Rl+1

2h + (fMG)2h]−R(0)
4h . (B.12)

In this way the accuracy of the solution on coarse grid is controlled by the fine grid
residual. It is also important to point out that the multigrid forcing function is com-
puted only after the restriction operator is applied, and only for the first iteration of
the first Runge–Kutta stage. Furthermore, as the spatial discretization of numerical
scheme on coarse grids does not influence the accuracy of the fine grid level, first or-
der scheme may be selected for coarser grid level. This leads to increased robustness
of the numerical scheme, better damping properties, and lower computational cost in
comparison to higher order schemes.
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After one or several iterations are carried out on the coarse grid level, the coarse
grid correction with respect to initial solution must be computed:

∆Q4h = Ql+1
4h −Q0

4h. (B.13)

Moreover, the coarse–grid correction is interpolated to the medium grid level, to im-
prove the solution on that level. The following expression may be written:

Q+
2h = Ql+1

2h + I2h
4h∆Q4h, (B.14)

where the term I2h
4h denotes the prolongation operator from coarse to medium grid

level. After the solution on medium grid has been obtained, one or several iterations
are performed on the medium grid level, and the medium grid correction with respect
to initial solution is computed:

∆Q2h = Ql+1
2h −Q0

2h. (B.15)

Finally, the medium–grid correction is interpolated to the fine grid level, and the new
solution on the fine grid reads:

Q+
h = Ql+1

h + Ih2h∆Q2h, (B.16)

where Ih2h represents the prolongation operator from medium to fine grid level. The
optimum number of iterations before the restriction and after the prolongation depends
on the time–stepping scheme type and the physics of the problem we are trying to solve.

Restriction operator

The solution from fine to coarser grid level is restricted by a volume weighted inter-
polation, which enhances the robustness of the strongly coupled multigrid iteration.
Equation (B.8) may be rewritten as:

(Q(0)
2h )i,j,k = 1

(V2h)i,j,k

[
(Ql+1

h )i,j,k(Vh)i,j,k

+ (Ql+1
h )i+1,j,k(Vh)i+1,j,k

+ (Ql+1
h )i,j+1,k(Vh)i,j+1,k

+ (Ql+1
h )i+1,j+1,k(Vh)i+1,j+1,k

+ (Ql+1
h )i,j,k+1(Vh)i,j,k+1

+ (Ql+1
h )i+1,j,k+1(Vh)i+1,j,k+1

+ (Ql+1
h )i,j+1,k+1(Vh)i,j+1,k+1

+(Ql+1
h )i+1,j+1,k+1(Vh)i+1,j+1,k+1

]
.

(B.17)

To restrict the residuals, the restriction operator is usually defined as a sum of the
residuals from all cells which form one coarse–grid level control volume. However, we
have used high order restriction operator based on weights, to increase the stability of
multigrid scheme. The restriction of the residual term of Eqn. (B.9) may be rewritten
as:

(I2h
h Rl+1

h )i,j,k = 1
64
[
27(Rl+1

h )i,j,k + 9(Rl+1
h )i+1,j,k

+ 9(Rl+1
h )i,j+1,k + 9(Rl+1

h )i,j,k+1

+ 3(Rl+1
h )i+1,j+1,k + 3(Rl+1

h )i+1,j,k+1

+3(Rl+1
h )i,j+1,k+1 + (Rl+1

h )i+1,j+1,k+1
]
.

(B.18)
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Prolongation operator

The prolongation of the medium–grid correction in Eqn. (B.16) is solved in two steps.
First ∆Q2h is interpolated to the grid nodes, and therefore, the nodal values are aver-
aged to obtain the value in the center of the fine–grid cell. The following relationship
may be defined:

(Ih2h∆Q2h)i,j,k = 1
64 [27(∆Q2h)i,j,k + 9(∆Q2h)i+1,j,k

+ 9(∆Q2h)i,j+1,k + 9(∆Q2h)i,j,k+1

+ 3(∆Q2h)i+1,j+1,k + 3(∆Q2h)i+1,j,k+1

+3(∆Q2h)i,j+1,k+1 + (∆Q2h)i+1,j+1,k+1] .

(B.19)



Appendix C

NREL Phase VI

Figures in this section compare the skin friction lines on the suction side of the NREL
Phase VI blade for thee different CFD simulations, the medium and coarse grid COSA
simulations and the coarse grid NUMECA simulation. Six wind velocities, correspond-
ing to the analyses of section 5.5, have been considered: 7m/s, 10m/s, 13m/s, 15m/s,
20 m/s and 25 m/s. Detailed description of these operating conditions is provided in
Table 5.4. Looking at Figs. C.1- C.6, it can be noticed that the highest differences in
the pattern of the skin friction lines among the three simulations occur at the lowest
considered wind velocities. At 7 m/s (Fig. C.1), the separation region of the COSA
coarse grid is much larger than for the COSA medium. Also the NUMECA coarse grid
predicts slightly more separation than the COSA medium, but less than the COSA
coarse. The same trend is also observed for the velocities 10m/s (Fig. C.2) and 13m/s
(Fig. C.3). For the rest of the operating conditions, some visual differences may still
be observed looking at the three CFD simulations, however, these differences appears
to be smaller.

The observed differences in the pattern of the skin friction lines among the COSA
coarse and NUMECA coarse grid simulations, depicted in Figs. C.1- C.6 could be due to
the usage of different numerical schemes in the two codes. Another reason could be the
usage of different low–speed preconditioners in the two codes. COSA has used Merkle’s
low–speed preconditioner, whereas NUMECA has used Hakimi’s preconditioner. For
cases, where the flow is heavily stalled, the differences between COSA and NUMECA
could also be due to the small differences in the implementation of the k − ω SST
model.
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Figure C.1: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 7m/s.

Figure C.2: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 10m/s.
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Figure C.3: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 13m/s.

Figure C.4: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 15m/s.
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Figure C.5: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 20m/s.

Figure C.6: Skin friction lines on the suction side of the NREL Phase VI blade, com-

puted with the COSA medium grid, COSA coarse grid and NUMECA coarse grid for

the wind velocity 25m/s.
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