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Abstract

Current information retrieval models only offer simplistic and specific representations of informa-
tion. Therefore, there is a need for the development of a new formalism able to model information
retrieval systems in a more generic manner. In 1986, Van Rijsbergen suggested that such formalisms
can be both appropriately and powerfully defined within a logic. The resulting formalism should
capture information as it appears in an information retrieval system, and also in any of its inherent
forms. The aim of this thesis is to understand the nature of information in information retrieval,
and to propose a logic-based model of an information retrieval system that reflects this nature.

The first objective of this thesis is to identify essential features of information in an information
retrieval system. These are:

0 flow,

0 intensionality,

0 partiality,

0 structure,

0 significance, and

o uncertainty.

It is shown that the first four features are qualitative, whereas the last two are quantitative, and that
their modelling requires different frameworks: a theory of information, and a theory of uncertainty,
respectively.

The second objective of this thesis is to determine the appropriate framework for each type of
feature, and to develop a method to combine them in a consistent fashion. The combination is
based on the Transformation Principle.

Many specific attempts have been made to derive an adequate definition of information. The one
adopted in this thesis is based on that of Dretske, Barwise, and Devlin who claimed that there
is a primitive notion of information in terms of which a logic can be defined, and subsequently
developed a theory of information, namely Situation Theory. Their approach was in accordance
with Van Rijsbergen' s suggestion of a logic-based formalism for modelling an information retrieval
system. This thesis shows that Situation Theory is best at representing all the qualitative features.

Regarding the modelling of the quantitative features of information, this thesis shows that the
framework that models them best is the Dempster-Shafer Theory of Evidence, together with the
notion of refinement, later introduced by Shafer.

The third objective of this thesis is to develop a model of an information retrieval system based on
Situation Theory and the Dempster-Shafer Theory of Evidence. This is done in two steps. First,
the unstructured model is defined in which the structure and the significance of information are
not accounted for. Second, the unstructured model is extended into the structured model, which



incorporates the structure and the significance of information. This strategy is adopted because it
enables the careful representation of the flow of information to be performed first.

The final objective of the thesis is to implement the model and to perform empirical evaluation
to assess its validity. The unstructured and the structured models are implemented based on an
existing on-line thesaurus, known as WordNet. The experiments performed to evaluate the two
models use the National Physical Laboratory standard test collection.

The experimental performance obtained was poor, because it was difficult to extract the flow of
information from the document set. This was mainly due to the data used in the experimentation
which was inappropriate for the test collection. However, this thesis shows that if more appropriate
data, for example, indexing tools and thesauri, were available, better performances would be
obtained.

The conclusion of this work was that Situation Theory, combined with the Dempster-Shafer Theory
of Evidence, allows the appropriate and powerful representation of several essential features
of information in an information retrieval system. Although its implementation presents some
difficulties, the model is the first of its kind to capture, in a general manner, these features within
a uniform framework. As a result, it can be easily generalized to many types of information
retrieval systems (e.g., interactive, multimedia systems), or many aspects of the retrieval process
(e.g., user modelling).



Contents

Declaration of Originality ..... . . . . . . . . . . . . . . . . . . . . . ii

Permission to Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . ,. . . . . . . .. iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. iv

List of Figures . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 What is an Information Retrieval System? . . . . . . . . . . . . . . . . . .. 17
1.2 Models for Information Retrieval . . . . . . . . . . . . . . . . . . . . . . .. 18
1.3 What is Logic? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
1.4 What is Classical Logic? . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21

1.4.1 Syntax................................. 21
1.4.2 Semantics 21
1.4.3 Axiomatic System . . . . . . . . . . . . . . . . . . . . . . . . . .. 22
1.4.4 Soundness and Completeness . . . . . . . . . . . . . . . . . . " 23

1.5 Modelling Information Retrieval with Classical Logic: does it work? . .. 23
1.6 The problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25

1.6.1 Truth.................................. 25
1.6.2 Significance.............................. 25
1.6.3 Implication............................... 25
1.6.4 Informative relationship 26
1.6.5 Provider of information. . . . . . . . . . . . . . . . . . . . . . ., 26
1.6.6 Intensionality 26
1.6.7 Partiality................................ 27
1.6.8 Flow of information. . . . . . . . . . . . . . . . . . . . . . . . .. 27
1.6.9 Uncertainty............................... 28

VI



1.6.10 Structure .
1.6.11 Summary......

28
28

1.7 The Transformation Principle 29
1.7.1 Examples of transformation . . . . . . . . . . . . . . . . . . .. 31

1.7.1.1 Documents and queries represented as set of terms 31
1.7.1.2 Systems with linked documents . . . . . . . . . .. 31
1.7.1.3
1.7.1.4

Natural language information retrieval . . . . . .. 32
Conclusion . . . . . . . . . . . . . . . . . . . . . .. 33

1.8 The thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

1.9 Remainder of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

Chapter 2 Qualitative Theories for a Logic-based Model of an
Information Retrieval System . . . . . . . . . . . . . . 36

2.1 Introduction. . . . . . . . . . . . . . . . . . . . 36

2.2 The characteristics of the qualitative components
2.2.1 The representation of a document . . . . . . . . .
2.2.2 The representation of a query . . . . . . . . . . . . . . . . . .
2.2.3 The representation of the transformation process . .
2.2.4 Conclusion.............................

37
37
38
38
40

2.3 Truth-based frameworks 41
2.3.1 Three-valued Logic. . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Belief Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3.1 Default Reasoning . . . . . . . . . . . . . . . . . . . 44
2.3.3.2 Belief Revision. . . . . . . . . . . . . . . . . . . . . 45
2.3.3.3 Epistemic Logic . . . . . . . . . . . . . . . . . . .. 46

2.3.4 Cumulative Logic . . . . . . . . . . . . . . . . . . . . . . . . . .. 47
2.3.5 Conclusion . . . . . . . . . . . . 49

2.4 Semantic-based Frameworks . . . . . . . . . . . . . . . . 50
2.4.1 Intensional Logic . . . . . . . . . . . . . . . . . . . . . . . . . .. 50
2.4.2 Montague Semantics . . . . . . . . . . . . . . . . . . . . . . . .. 52
2.4.3 Data Semantics . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.4 Conclusion . . . . . . 57

57
57

2.5 Information-based frameworks . . . . . . . .
2.5.1 Situation Theory .
2.5.2 Channel Theory .
2.5.3 Scott Domains .

. . . . . . . . . .. 60

2.5.4 Conclusion . . . . . . . . . . . . . . . . . . . .
61
62

622.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 3 Quantitative Theories for a Logic-Based Model of an
Information Retrieval System . . . . . . . . . . . . . . . . 64

3.1
3.2

3.3

3.4

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
The quantitative components . . . . . . . . . . . . . . . . . . . . . . . . . .. 64

3.2.1 Quantitative components of the unstructured model
3.2.1.1 Uncertainty of the transformation ...
3.2.1.2 Propagation of the uncertainty .
3.2.1.3 Aggregation of the uncertainty ....
3.2.1.4 Relevance degree ... . . . . . . . .

3.2.2 Quantitative components of the structured model .
3.2.3 Remainder of the chapter .

3.2.3.1 Test cases .

65
66
67
68
68
70
73

Probabilistic-based frameworks .
3.3.1 Probability Theory ..
3.3.2 Bayesian methods .
3.3.3 Imaging .

74
75

Fuzzy Logic . . . . . . . . . . . .

76
78
81
84

Dempster-Shafer's Theory of Evidence . . . . . . . . . . . . . . 86
3.5.1 The initial Theory of Evidence .... . . . . . . . . 86
3.5.2 Shafer's refinement function. . . . . . . . . . . . . . . . . . . .. 89

3.5.2.1 The qualitative aspects of the refinement function. 89
3.5.2.2 The quantitative aspects of the refinement function 91

3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94

3.5

Chapter 4 Description of the Model for an Unstructured
Representation of Information . 96. . .

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Situation Theory for Information Retrieval . . . . 97

4.2.1 Infons, situations and types 97
4.2.2 Digital vs. analog . . . . . . . . . . . . 98
4.2.3 Perception...................... 98
4.2.4 Cognition............................. 99
4.2.5 Information vs. meaning . . . . . . . . . . . . . . . . . . . . . .. 99
4.2.6 Constraints and the flow of information . . . . . . . . . . . . . . 100
4.2.7 Conditional and unconditional constraints 100
4.2.8 The general idea of a model based on Situation Theory .. .. 101

4.3
4.4

The knowledge set. . . . . . . . . . . . . . . . . . . . . .
The model for unstructured information .

4.4.1 Single type query . . . . . . . . . . . . .
4.4.1.1 Transformation . . . . . . . . . .
4.4.1.2 Extension.............

.. 101
.104
.104
.105
.105

4.4.1.3 Sequential extension or branch. . 106
4.4.1.4 Uncertainty of a branch . . . . . . . . . . . . 107

VIII



4.4.1.5 Parallel extensions . . . . . . . . . . . . . . . . . . . 108
4.4.1.6 Pertinent situation . . . . . . . . . . . . . . . . . . . 109
4.4.1.7 Minimal branch 109
4.4.1.8 Relevance degree 109
4.4.1.9 Normalization................... . 110
4.4.1.10 Properties of the formulation of the relevance

degree . . . . . . . . . . . . . . . . . . . . . . . .. 111
4.4.1.11 Summary 112

4.4.2 Complex query 112
4.4.2.1 Representation of complex queries 112
4.4.2.2 Pertinent situations and minimal branches 112
4.4.2.3 Relevance degree . . . . . . . . . . . . . . . . . . . 113
4.4.2.4 Properties of the formulation of the relevance

degree . . . . . . . . . . . . . . . . . . . . . . . .. 113
4.5 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6 Discussion 115

4.6.1 Background Conditions. . . . . . . . . . . . . . . . . . . . . . . . 115
4.6.2 Modelling of the uncertainty. . . . . . . . . . . . . . 116
4.6.3 From addition to transformation. . . . . . . . . . . 116

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 5 Description of the Model for a Structured Representation
of Information . . . . . . . . . . . . . . . . . . . . . . .. 118

5.1 Introduction 118
5.2 Semantic-based structures 118
5.3 The components of the structured model 120
5.4
5.5

Basic situations .
Scott Domains for Information Retrieval . . . . . . . . . . . . . . . .

.. 122

.. 124
5.6 The qualitative components of the structured model 126

5.6.1 Information domain 126
5.6.2 Refinement of an information domain . . . . . . . . . . . . 127
5.6.3 Conclusion 129

5.7 Dempster-Shafer's Theory of Evidence for Information Retrieval 129
5.8 The quantitative components of the structured model 130

5.8.1 Basic probability assignment 130
5.8.2 Belief function 130
5.8.3 Weighted information domain 131
5.8.4 Refinement of a weighted information domain 131
5.8.5 Computation of the basic probability assignment of the refined

domain 132
5.8.6 Formulation of the relevance degree 134
5.8.7 Example 136
5.8.8 Conclusion 137

ix



5.9 Specificity and exhaustivity .
5.9.1 Specificity .
5.9.2 Exhaustivity .
5.9.3 Combination of specificity and exhaustivity

5.10 Possible extensions of the structured model .
5.11 Conclusion .

Chapter 6 The Implementation of the Models . . .
6.1
6.2
6.3

6.4

6.4.2 Implementation of a root situation ... . 154
6.4.2.1 Types extracted from the text document . 154
6.4.2.2 Types coming from unconditional constraints . 155
6.4.2.3 Types coming from conditional and certain

constraints. . . . . . . . . . . . . . . . . . . . . .. 155
6.4.3 Implementation of a situation that results from an extension . 156

6.4.3.1 Use of a single constraint. . . . 156
6.4.3.2 Use of a group of constraints . 156
6.4.3.3 Uncertainty of extension . 157

· 157
· 158
· 158
· 159
· 159
· 159
· 159
.160
.160
.160
.160
.162

. . . . . . .
Introduction. . . . . . . . . . . . .
Implementation of types .....
Implementation of the constraints

6.3.1 Thesauri .
6.3.2 The WordNet thesaurus .
6.3.3 Construction of constraints .

6.3.3.1 Synonym-based constraints.
6.3.3.2 Hypernym-based constraints
6.3.3.3 Hyponym-based constraints
6.3.3.4 Holonym-based constraints
6.3.3.5 Meronym-based constraints.
6.3.3.6 Combined constraints

6.3.4 Conclusion .
Implementation of the unstructured model . .

6.4.1 Selection of terms . . . . . . . . . . .

6.5

Examples .
Implementation of queries . . . . . . .
Remaining components of the unstructured model

6.4.6.1 Sequential extension of situations
6.4.6.1.1 Pertinent situation .
6.4.6.1.2 Non-extendible situation. . . .

6.4.6.2 Propagation and aggregation of uncertainty
6.4.6.3 Computation of the relevance degree . . .

The implementation of the structured model . . . . . . . . . . . . .
6.5.1 Implementation of the weighted information domain ..

6.5.1.1 Basic situations .
6.5.1.2 Basic probability assignment .

6.4.4
6.4.5
6.4.6

x

.138
· 138
.140
· 141
.142
.143

144
.144
.145
.146
.147
.148
.149
.149
· 151
· 151
· 152
· 152
· 152
· 153
· 153
· 153



6.5.2
6.5.3

6.6

6.5.1.3 Belief function 163
Refinement . . . . . . . . . . . . . . . . . . . . . . . .
The remaining component of the structured model .

· . 163
· . 163
· . 163Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter 7 Experiments and Evaluation . . . . . . . . . . . . . . .. 164
7.1
7.2

The Structured model . . . . . . . . . . .
The Exhaustive Model . . . . . . . . . . . .
The Combined Model. . . . . . . . . . . . . .
Benchmarks . . . . . . . . . . . . . . . . . . . .
Evaluation . . . . . . . . . . . . . . . . . . . .
Summary .

· .. 164
· .. 164
· .. 165
· . 165
· .166
· .166
.166
.167
. 168
.169
.169
. 170

· .172
. 177
. 177

Introduction. . . . . . . . . . . . . . .
Set up of the experiments. . . . . . .

7.2.1 The Unstructured Model . . . . .
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

Results and analysis . . . . . . . . . . . . . . . . .
7.3.1 The benchmarks .
7.3.2 The Unstructured Model .
7.3.3 The Structured Model .
7.3.4 The Exhaustive Model . . . . . . . . . . . . . . .
7.3.5 The Combined Model .

7.3

7.4 Additional experiments, their set up, results and analysis 178
7.4.1 Use of synonyms and holonyms (Syn1) 179
7.4.2 Limited number of term senses (Syn2) 180
7.4.3 A different weightingmechanism for the basic situations (Syn3) . 181
7.4.4 New measure of exhaustivity (Syn4) . . . . . . . . . . . . . 183
7.4.5 The Combined Model (Syn5 and Syn6) . . . . . . . . . 185
7.4.6 Query terms weights (Syn7) . . . . . . . . . . 186

7.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . 187
7.6 Appendix . · .190

Chapter 8 Conclusions and Future Work. . . . . . . . . . . . . .. 192
8.1 Introduction 192
8.2 Summary of research carried out 192

8.2.1 Logic-based Information Retrieval models 192
8.2.2 Features of information in Information Retrieval . . . . . . . . . 192
8.2.3 The Transformation Principle . . . . . . . . . . . . . . . . . . . . 193
8.2.4 Which Theory of Information? 193
8.2.5 Situation Theory. . . . . . . . . . . . . . . . . . . . . . . .. .. 194
8.2.6 Which Theory of Uncertainty? .. 194
8.2.7 Dempster-Shafer's Theory of Evidence. . . . . . . . . . .. .. 194
8.2.8 The Unstructured Model . . . . . . . . . . . . . . . . . . . . . . . 195

xi



8.2.9 The Structured Model. . . . ..... ... 195
8.2.10 Specificity and Exhaustivity ..... ... 196
8.2.11 Implementation ....... . .... .... 196
8.2.12 Experiments and Evaluation ...... .... 197

8.3 Limitations of this research. . . . . . . . . . . . . . . . . . . . . . . .. .. 197
8.3.1 The model is difficult to implement 197
8.3.2 The model does not capture dependence in information . . . . . 198
8.3.3 The transformation is implemented as an addition of

information . . . . . . . . . . . . . . . . . . . . . 198
8.3.4 The model applies to textual information . 199

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.4.1 Improvements of the model . . . . . . . . . . . . . . . . . . 199

8.4.1.1 Improving the model performance when
implemented 199

8.4.1.2 Using better indexing and semantics 199
8.4.1.3 Applying the model to various media of

information . . . . . . . . . . . . . . . . . . . . .. 200
8.4.1.4 Generalization of the transformation process. .. 200

8.4.2 Applications of the model . . . . . . . . . . . . . . . . . .. . 201
8.4.2.1 Application to pragmatic-based structures .. .. 201
8.4.2.2 Application to linked documents. . . . . . . . . . . 202

8.4.3 Theoretical study of Information Retrieval systems. . . . . 203
8.5 Conclusions and contributions of this thesis . . . . . . . . . . . . . . . . . . 203

Chapter 9 References and Bibliography 205



List of Figures

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14

Figure 3.15

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4

Figure 7.5
Figure 7.6

The different components of an IR system . . . . . . . . . . . . . . . . .. 19
Example of the transformation of a document in the unstructured model 65
Example of a non-minimal transformation . . . . . . . 69
Example of a minimal transformation. . . . . . . . . . . . . . . . 70
Example of a structured representation of a document . . . . . . 70
Example of the transformation of a document in the structured
representation 71
The entities involved in test cases (i) and (ii) . . . . . . . 74
The components involved in test cases (iii), (iv) and (v) . . . . . . . . .. 75
An example of an inference network in IR. . . . . . . . . . . . . . . . .. 79
A Bayesian inference network for a logic-based model of an IR system . 79
Representation of the transformation by Imaging: first attempt . . 82
Representation of the transformation by Imaging: second attempt 83
Representation of the transformation by Imaging: third attempt. . 83
Outer reduction of a refinement . . . . . . . . . . . . . . . . . . . . 91
Example of a refinement that leads to the representation of the
transformation of structures 92
Example of a refinement function that would lead to the representation of
parallel transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94
Example of the alternative extensions of a situation . 107
Case of extension that brings additional information . . . . . . . . . . . . . 114
Example of an extension that does not bring additional information . . . . 114
Example of the computation of the relevance in the unstructured model .. 115
Example of a structured representation of a document . . . 119
Transformation of a document in the unstructured model . 120
Transformation of a document in the structured model .
Representation of an information domain. . . . . . . . . .
Example of the refinement process .. . . . . . . . . . . .
Specificity in the unstructured model and the structured model
Example of synonyms in WordNet .. . . . . . . . .
Example of hypernyms and hyponyms in WordNet .
Example of meronyms and holonyms in WordNet

· 121
· 127
· 137
.140
.148
.149
.149

Hyponyms of "car" . . . . . . . . 152
WordNet synonyms of "dog" . . . . . . . . . . . . . . 157
WordNet synonyms of "horse" . . . . . . . . . . . . . 157
Precision and recall values obtained with the unstructured model . . 172
Example of a NPL document . 173
Structured representation of a NPL document using hypernyms . . . . 173
Structured representation of a NPL document using synonyms, holonyms or
meronyms 174
Example of a NPL document . 174
WordNet entries of the term "system" 174

xiii



Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13

Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21

WordNet entries of the term "amplifier" . . . . . . . . . . . . .
Precision and recall values obtained with the structured model
Query 13 and document numbers 4079, 4354 and 4626 .
Document number 2458 .

.174
· 175
· 176
· 176

Comparison of the benchmarks for 12 and 40 queries . . . . . . . . . 179
Precision and recall values obtained with the experiment Synl . . . . 180
Synonyms of the term "horse" in WordNet displayed in decreasing order of
their use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
The precision and recall values obtained with the experiment Syn2 . 181
WordNet synonym entries of the term "pass" . . . . . . . . . . . 181
Precision and recall values obtained with the experiment Syn3 . 182
Precision and recall values obtained with the experiment Syn4 . 184
The NPL documents 8136, 2458, 5873 and 7908 . . . . . . . . . 185
Precision and recall values obtained with the experiments Syn5 and Syn6 . 186
Precision and recall values obtained with the experiment Syn7 187
The precision and recall values obtained with the experiments Syn, Syn2,
Syn3, Syn4, Syn5, Syn6 and Syn7 ..... . . . . . . . . . . . . . . . . . . 189

XIV



List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 3.1

Table 3.2
Table 3.3

Table 3.4

Table 3.5

Table 3.6
Table 3.7
Table 3.8

Table 3.9
Table 3.10
Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 6.3
Table 7.1
Table 7.2
Table 7.3
Table 7.4

Table 7.5

Semantics of negation, conjunction, disjunction, implication and equivalence 22
Model System and Axiomatic System . . . . . . . . . . 23
The models of the document d in the Classical Logic . . . . . . . . . . . .. 24
Evaluation of different queries in Classical Logic ... . . . . . . . . . . .. 24
Example of the representation of the specificity of a document in Classical
Logic 25
The qualitative components . . . . . . . . . . . . . . . . . . . . . . . . . . 36
The qualitative components and their characteristics . . . . . . . . . . . . 40
The modelling of the quantitative components with Three-Valued Logic 42
The modelling of the quantitative components with Modal Logic . . 43
The modelling of the quantitative components with Default Theory . 45
The modelling of the quantitative components with Data Semantics . 56
The modelling of the quantitative components with Situation Theory 60
The modelling of the quantitative components with Channel Theory 61
The quantitative components of a logic-based model of an IR system based on
the Transformation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
The five test cases 75
The representation of the propagation of uncertainty in Probability Theory:
first attempt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
The representation of the propagation of uncertainty in Probability Theory:
second attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Representation of the propagation of the uncertainty in a Bayesian inference
network 80
The aggregation of the uncertainty in Fuzzy Logic. . . . . . . . . . . . 85
Representation of the propagation of uncertainty in Fuzzy Logic 85
The representation of the significance of information in the Theory of
Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Representation of the propagation of the uncertainty in the Theory of Evidence 93
The representation of the relevance degree in the Theory of Evidence 93
The quantitative and the qualitative components . . . . . . . . . . . .
Scott Domains Theory vs. Situation Theory .
The Dempster-Shafer's Theory of Evidence vs. information domain
The different steps of the refinement process

96
. 125
. 130
.137

The qualitative components . . . . . . . . . . . . . . . . . . . . . . . . . 144
The quantitative components . . . . . . . . . . . . . . . . 145
Examples of the results of the application of the implemented constraints . 158
Summary of the different experiments . . . . . . . . . . . . . 168
Precision and recall values for the two benchmark models . . . . . . . 169
Some statistics about the benchmark B 1 . . . . . . . . . . . . . . . . . . 170
Comparison of the number of additional documents retrieved by the
unstructured model 171
Irrelevant documents retrieved by the unstructured model. . . . . . . . . . . . 171

xv



Table 7.6

Table 7.7
Table 7.8

Table 7.9
Table 7.10
Table 7.11
Table 7.12

Results of structuring documents using the different WordNet types
relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173
The four most relevant documents as established by SI for query 13 . . . . . 176
The four top most ranked documents as established by the new exhaustive
model for query 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 184
Precision and recall values for the unstructured model . 190
Precision and recall values for the structured model . . . . . . . . . . . . . . . 190
Comparison of the benchmarks with 12 vs. 40 queries 191
Precision and recall values for the experiments Syn 1, Syn2, Syn3, Syn4, Syn5,
Syn6 and Syn7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 191

xvi



Chapter 1

Introd uction

1.1 What is an Information Retrieval System?

An information retrieval (IR) system [vR79, Bla90, Doy75] is a tool used to store information for
the later retrieval and use of interested parties. Information can be stored and relayed in different
forms including texts, images, audio and video tapes. This thesis deals principally with textual
information (e.g., articles, books, news, diagnoses, etc.) stored under the form of documents, the
set of which constitutes a corpus or collection. However, the work carried out in this thesis is
pertinent to all forms of information. In addition, this work is concerned with computer-based
automatic IR systems. Manual systems are excluded because they are inadequate in dealing with
large amounts of information. They have become too prohibitive and time consuming. In this
thesis, when referral is made to an IR system, the system will consist of a collection of documents,
the textual content of which contains information a user may consult to satisfy an information need.

In most cases, an IR system does not, or cannot, incorporate the entire information content of a
document due to factors of length (e.g., books) and complexity. Furthermore, a limited storage
capacity is often the case and a fast access is essential. Hence, an IR system handles a manipulable
representation of the document information content. This internal representation aims to model as
faithfully as possible the document's information content. The creation of the internal representation
of a document from its textual information content is a prominent function of an IR system. The
output of the internal representation can influence considerably the effectiveness of the IR system.
In conventional IR systems, the creation of internal representation is often referred to as indexing.
The outcome of indexing is a set of indexing items that supposedly summarize the information
Content of a document. The indexing items can be keywords, phrases, parse trees, semantic
structures, and, in extreme cases, full texts.

A user in need of information submits a query to the IR system that expresses the information
need. The query is then evaluated by the system and transformed into an internal representation
that is manageable by the system. The transformation of a query involves a process often similar
to that used to represent a document's information content. The system compares the query
representation with all the document representations and determines by some matched-based
computational techniques the document representations which may satisfy the user request. These
then become the retrieved documents. The comparison process depends primarily on the type of
IR system being used (more about this in the next section).

Depending on how efficient and adequate the system is, the retrieved documents correspond variably
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to the relevant documents that satisfy the original information need. The positive correspondence
between retrieved and relevant documents is the main objective of an IR system: a good IR system
should retrieve as many relevant documents as possible, but only the relevant documents.

In some IR systems, the comparison of a document and a query representation results in a numerical
value that expresses to what extent the information content of that document satisfies the information
need as specified in the query. The resultant numerical value is often referred to as a degree of
relevance. Consequently, in those systems, the retrieved documents are ordered according to a
degree of relevance. The ordering displays to the user which documents, according to the system,
satisfy his or her query, the best.

In this thesis, the term "relevance" is used in both contexts, with respect to the user (which is the
correct use in the IR world) and with respect to the system (indicating good satisfaction).

Both the comparison and the representation processes of documents and queries sometimes use
additional semantic knowledge generally stored in a thesaurus. An example is that of synonymous
relationships; a document indexed by an item is also indexed, eventually implicitly, by all the
synonyms of that item that are stored in the thesaurus.

In some IR systems, upon delivery of the documents, the user can specify which, among the
retrieved documents, are particularly relevant. This information can be taken into account by the
IR system in a manner that depends on the type of IR system, which then, sometimes together
with the user, constructs a second query which is submitted to the system. This process is called
relevance feedback. This thesis is not concerned with this feature.

When building an IR system, an evaluation method is required to test the system performance.
The most commonly adopted is the precision - recall method:

number of retrieved and relevant documents
Precision = .number of retrieved documents

II number of retrieved and relevant documents
Reca = --------~----~~----~-------------number of relevant documents

A general schema for the overall functionality of an IR system is in Figure 1.1. The manner in
which documents and queries are represented and the comparison process utilized depends on the
model of the IR system.

1.2 Models for Information Retrieval

There are various models of IR systems. The most publicized are the Boolean, Vector Space [SaI71,
SMSO], Probabilistic [vR79, Rob77, CGD92, Fuh92, vR92], and more recently, the Logical [vRS6a,
Nie90, vRL96, CC92] models (for a survey, see [LaI96b]). The logical models were advanced
because it has been observed (the details can be found in [Nie90, LvR93, vRL96]) that the other
models appear to have reached their maximum potential. Although many extensions of the Boolean
Model, Vector Space Model or Probabilistic Model are claimed to be more advanced, the extended
models tend to differ from previous models because
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Collection of
Documents

Indexing ')Evaluation

Retrieved
Documents

I----------_._------------
Relevance Feedback

Figure 1.1: The different components of an 1R system

(i) of their implementation of new techniques or algorithms based on more advanced technolo-
gies, or

(ii) the setting of parameters which provide different variants of the same model, some variants
being more effective than others.

Regardless, very significant improvements have not really been observed.

Most IR systems to date have proposed a very simplistic representation of textual information. For
example, in the Vector Space model [SM80, Sa171] the information contained in a document is
represented by independent index terms, called stems [Por80]. An initial selection of words that
appear in the document removes common words (like "is", "the", "every", etc.). The remaining
words are stemmed. This stemming ensures that words such as "connections", "connection" and
"connected" are represented by the unique stem "connect". A weight is assigned to each stem,
which very often corresponds to its occurrence frequency within the document. A document is
then represented by a vector, in which the components are the weights associated with the stems.
In most cases, the original semantic relationships between words are ignored. It is obvious that
such a representation does not capture the complexity of textual information very well.

In 1986, Van Rijsbergen [vR86a] suggested a model of an IR system based on logic because the
use of an adequate logic can provide all the necessary tools to model the different functions of
an IR system, and in addition seem to be a more accurate model of information. Indeed, most
logics consist of sentences which can be joined by connectors to construct complex sentences. A
particular connector is the implication --+ which is used to model inference. Given two sentences, 4>
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and 'ljJ, the truth of </> -+ 'ljJ (more about this notion of truth later) means that the sentence </> implies
the sentence 'ljJ whenever </> is true. In other words, 'ljJ can be inferred from cp. Suppose there is a
way to represent the information content of a document by a sentence d and the information need
as phrased in the query by a sentence q. The truth of d -+ q would mean that the query sentence
can be inferred from the document sentence. To put it another way, the information captured by
d is sufficient to infer the information represented by q. In the IR world, this could be viewed as
the document satisfying (or to be relevant to) the query.

1.3 What is Logic?

The nature of information in IR is complex. For example, if the information concerned is textual
then natural language is involved; the study of such is delicate, complicated and enigmatic. The
Science American Journal states:

"The grammar of languages includes rules of phonology, which describe how to put sounds
together to form words; rules of syntax, which describe how to put words together to form
sentences; rules of semantics, which describe how to interpret the meaning of words and
sentences; and rules of pragmatics, which describe how to participate in a conversation,
how to sequence and how to anticipate the information needed by an interlocutor."

However difficult the essence of information is to seize, a model of an IR system should be
principally concerned with the incorporation of information, and this is possible with logic. Indeed,
in the Oxford English Dictionary, logic is defined as:

"The branch of philosophy that treats of the form of thinking in general, and more
especially of inference and scientific method."

That is, logic is a formalization of the way we use information in our everyday life to think,
infer, conclude, acquire knowledge, make decisions and so forth. In this sense, logic undertakes
to model information and its flow.

The use of logic for modelling IR is not a particularly new idea. It was first suggested by
Van Rijsbergen [vR86a] and later followed by authors such as Nie [Nie90, Nie88, Nie89],
Bruza [BvdW91, BvdW92, Bru93] and Sebastiani & al [MSST93, Seb94] all of whom proposed
interesting frameworks. My main objection is that these authors have all adopted a truth-based
logic, which corresponds to the second view of logic in the Oxford English Dictionary:

"Also since the work of Frege (1848-1925), [logic is] a formal system using symbolic
techniques and mathematical methods to establish truth-values in the physical sciences,
in language, and in philosophical argument."

In many domains that relate to information, such as artificial intelligence, databases, linguistics
and even philosophy, information is represented by some structure or calculus that is built on the
concept of truth. I object to this representation following the line of Drestke [Dre81], Landman
[Lan86], Barwise & al [Bar89, Bar91, Bar92, BE87, BE90, BP83] and Devlin [Dev91], and so
forth, and advances a logic-based model of IR using a logic of information. This thesis adopts the
first above definition of logic and puts forward a logic-based model of IR systems in which the
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appropriate representation of information is a crucial factor.

In order for the reader to understand a logic of information, and to see the difference between
this version and the truth-based logics, he or she must understand the components of truth-based
logics. For that purpose, one framework that belongs to this category, namely Classical Logic
[Ram88, Tur84, GaI87], is described next.

1.4 What is Classical Logic?

A description of Classical Logic is necessary for two reasons. First, the desired attributes for a logic
to model an IR system can be identified. Second, Chapter 2 and Chapter 3, which contain surveys
of possible frameworks for modelling an IR system, use many concepts from Classical Logic,
which are important to define correctly. Although Classical Logic is mentioned, only a subclass
of Classical Logic, namely Propositional Calculus, is described. Variables, quantifications, and
assignment functions of the Predicate Calculus are irrelevant in the arguments made in this chapter.

Let L be a logic. A vocabulary is defined, composed of a set of propositions {p, q, r, S, ••• }, as
well as logical connectors 1\, V, ..." - and -. The logic L defines a formal language by syntax
and semantics.

1.4.1 Syntax

The syntax of Classical Logic specifies formally the set of well-formed formulae (wff) or sentences
as follows:

(i) if p is a proposition, then pEL,
(H) if ¢ ELand 'Ij; E L, then ¢ 1\ 'Ij; E L, ¢ V 'Ij; E L, ...,¢E L, ¢ - 'Ij; ELand ¢ - 'Ij; E L.

Examples of wffs are p V q and ...,p - q 1\ r.

1.4.2 Semantics

Any non-logical symbol in L has an intended meaning called a semantic value. The set of these
constitutes the semantics of L. In Propositional Calculus, semantic values are the set {O, 1} of
truth values false and true, respectively. The semantics of a well-formed formula (formula from
now on) are defined by the semantics of the formulae that constitute it and the semantics attached
to the different logical connectors. This is known as the Principle of Compositionality,

In Classical Logic, the semantic value attached to conjunction 1\, disjunction V, negation ..."
implication - and equivalence - are described in the following truth table:
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p q -'p pl\q pVq p-+q p ..... q

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

Table 1.1: Semantics of negation, conjunction, disjunction, implication and equivalence

The semantic value of a sentence <P E L is denoted 1I<p11,whose value depends on the propositions
and the connectors that appear in <p. For example, if <P = -,pV-,q and Ilpll = Ilqll = 1 then 11<p11= o.
If the set of non-logical symbols in L is {p, q}, four interpretations are obtained, one for each line
of the above truth table. For example, in the second interpretation, lip 1\ qll = 0 and lip V qll = 1.
More formally, an interpretation is a structure I = ({0, I}, F) where F is a function that assigns
semantic values to the propositions. It then becomes necessary to say that a formula <P is true
with respect to a particular interpretation I, not just that <P is true. This is denoted as 11<p1(
Moreover, 11<pIII = 1 is written I 1= <P and 11<pIII = 0 is written I li <p. The relation 1= is read
'satisfies'. Semantics are therefore re-expressed as follows (p is a proposition of L, and r.p and
't/Jare formulae of L):

(i) I 1= p if and only if (iff) F(p) = 1
(ii) I 1= <P 1\ 't/J iff I 1= <P and I 1= 't/J
(iii) I 1= <P V 't/J iff I 1= <P or I 1= 't/J
(iv) I 1= -'<P iff I li <P
(v) I 1= <P -+ 't/J iff I li <P or I 1= 't/J
(vi) I 1= <P <-+ 't/Jiff either I li <P and I li 't/J,or I 1= <P and I 1= 't/J

The fact that the formula <P is true in any interpretation is denoted 1= <P; the formula <P is said to
be valid. It is also called a tautology or is said to be logically true.

Often, only a few interpretations of the above four are of interest. Suppose that one wants to
represent only the cases in which p and q are true; one is then only interested in those interpretations
that make these two propositions true. These interpretations are called models with respect to p
and q. So a model for a formula <p, or a set of formulae CP,is any interpretation that satisfies <p or
CP.The relation 1=, when used as follows <PI, •.. ,<Pn 1= 't/J,expresses that any model of <PI, ... , <Pn
is also a model of't/J. In such a case, it is said that 't/Jis a logical consequence of <PI, ... , <Pn.

1.4.3 Axiomatic System

There is another way to characterize validity for formal languages. Syntactic rules can be defined
rather than trying to establish whether <PI, ... ,<Pn 1= 't/Jby enumerating all interpretations. These
are axioms which are formulae that are assumed true, and inference rules. Indeed, Classical Logic
has been syntactically defined with several axioms and one inference rule called the Modus Ponens.
The Modus Ponens states that if both <P and <P -+ 't/Jare true, then 't/Jcan be inferred or is true.

A proof is defined as any sequence of formulae of L such that each formula is either an axiom or
follows from one or more of the preceding sentences of the sequences by the application of the
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Modus Ponens. A theorem of the language is any sentence 4> for which there is a proof ending in 4>.

A derivability relationship f-- is defined between a set of formulae and a formula 4>1, ..• ,4>n f-- 7/J
iff there exists a finite sequence of the inference rule that leads 4>1, ... ,4>n to 7/J. The fact that
a formula 4> is a theorem is written f-- 4>. A set of axioms together with all the theorems that
can be derived from it is called a theory. To finish, the Deduction Theorem says that 4> f-- 7/J is
equivalent to f-- 4> -+ 7/J.

1.4.4 Soundness and Completeness

Soundness means that only true statements can be proven. That is, if 4> f-- 7/J then 4> 1= 7/J.
Completeness means that all true statements can be proven. That is, if 4> 1= 7/J then 4> f-- 7/J.
Classical Logic, or more correctly, Propositional Calculus, is both sound and complete. As a
result, there are two ways to prove the truth of a formula, one using 1=, and the other f--. The first
method is referred to as a model system approach and the second as an axiomatic system approach.
The different notations are summarized in the table below:

Model System Axiomatic System

Valid sentence I=IjI Theorem I-IjI

Logical consequence fl=ljI Deduction fl-ljI

Table 1.2: Model System and Axiomatic System

In some of the logical frameworks described in Chapter 2, the correspondence between the
axiomatic system and the model system does not exist. These frameworks are expressed in a
model-type system unless otherwise stated. For the remainder of this chapter, the arguments are
made in the model-theoretical system approach, although Classical Logic would allow the use of
both.

Next, Classical Logic is used to express the relevance of a document to a query. This allows
the reader to become more familiar with the notations used in this thesis, and to understand the
requirements of a logic for IR. The precise list of requirements is given in section 1.6.

1.5 Modelling Information Retrieval with
Classical Logic: does it work?

Given a logic, let d and q be the sentences, in that logic, representing the information content
of the document and the information need phrased in the query, respectively. The relevance of
the document to the query can be expressed by the implication d -+ q. That is, determining the
relevance consists of deciding whether d -+ q is valid, meaning that the implication holds for all
interpretations of the logic. As explained in the previous section, evaluating the validity of d -+ q
in Propositional Logic is equivalent to asserting d 1= q, 1= d -+ q, d f-- q or f-- d -+ q. Here, d 1= q
is used, which consists of establishing whether any model of d is a model of q.

A working example is used. Suppose that the vocabulary consists of the propositions {tI, t2, t3}.
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Let the document be d = t1 1\ t2. There are two models of d:

d

o

Table 1.3: The models of the document d in the Classical Logic

Five queries are defined:

(i) q1 t1,
(ii) q2 t3,
(iii) q3 t1 1\ t3,
(iv) q4 t1 V te. and
(v) q5 i, 1\ t2.

Their evaluations, with respect to the models of d, are given in the table below:

o o

Table 1.4: Evaluation of different queries in Classical Logic

From the fourth column, it can be seen that d 1= q1; the document is relevant to the query. From
the fifth column, it can be seen that d It= q2; the document is not relevant to the query. From
the sixth column, d It= q3. However, one would have considered the document represented by the
formula d to be more relevant to q3 than it is to q2 because the document, though not exhaustively
relevant, is nonetheless partially relevant to the query q3. The problem is that 1= is too rigid a
relation and cannot express partial relevance. From the seventh and the eighth columns, d 1= q4
and d 1= q5. One would have expected the document represented by d to be more relevant to q5
than to q4. This counter-intuitive result is due to the semantics attached to disjunction. If </> is
valid, then any sentence of the form </> V 7/J is also valid even if </> and 7/J are the representations
of information items that are not related. To finish, with the queries qi and q5 (fourth and eight
columns), the outcomes are d 1= qi and d 1= q5. One would have considered the document to
be more relevant to q5 than to qb for all the information items in d concern q5, whereas fewer
are related to qi- That is to say, the document is more specific to q5 than it is to Q1. Classical
Logic cannot express specificity.

This last problem was also observed by Nie [Nie90] who then proposed a formulation of the
specificity by evaluating the inverse implications, respectively Q1 - d and q5 - d. This is shown
in Table 1.5. The outcome is q1 It= d and q5 1= d. This formulation can reveal the specificity of
the document. My objection to this formulation is that, in most cases, a document is composed
of many conjuncts whereas a query contains very few conjuncts. Very few implications are valid,
thus specificity cannot be expressed. Besides, a document is a provider of information (more about
this in the next section), implying that the evaluation of the inverse implication is counter-intuitive.
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h t2 ql ..... d qs ..... d

0 0 1 1

0 1 1 1

1 0 0 1

1 1 1 1

Table 1.5: Example of the representationof the specificity of a document in Classical Logic

This simple example already demonstrates the weakness of Classical Logic as the basis for a model
of an IR system. Next, the issues raised here are summarized, and many others are highlighted.

1.6 The problems

Different problems arise with the use of Classical Logic for IR mainly because truth is considered
as the fundamental notion. These problems are presented in tum, although they often overlap. At
the same time, the fundamental features of a logic for IR are identified.

1.6.1 Truth

There are two views of semantics: the formal interpretation of a logic and the portrayal of the
meaning of natural language. An IR system is concerned with the second view, whereas Classical
Logic concentrates on the first view. This is because, in Classical Logic, the definition of semantics
is truth-based instead of information-based. For example, we usually affirm the disjunction of two
sentences only if we believe that one member of the disjunction is true, but we do not know which
one. Nonetheless, the sentence "the lawn is green or blue" is valid in Classical Logic, which is
nonsense since we all know that "the lawn is never blue" (in normal circumstances). The validity
is due to the semantics of disjunction (if ¢ is true, so is ¢ V i.p). The assertion of a disjunction
should be taken as an admission that we do not know which member of the disjunction is true.
That is, it should convey imprecision [Mor90, KC93] (see also [Lan86] for an extended discussion
of disjunctive information).

1.6.2 Significance

In Classical Logic, due to the truth-based interpretation of the conjunction, ¢/\¢ <--t ¢ is a tautology.
With respect to IR, ¢/\¢ can mean the information represented by the formula ¢ is significant
since it appears more than once. Indeed, the fact that an item of information appears many times
may indicate that the item is a significant part of the document information content. A weighting
mechanism which captures the significance of information is often necessary. Classical Logic does
not provide such a mechanism.

1.6.3 Implication

In Classical Logic, ¢ ---t 't/J is equivalent to '¢ V 't/J, implying that ¢ ---t 't/J is true whenever '¢
is true. For example, "2 + 1 = 5 ---t M ounia likes to swim" is a valid sentence because
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"2 + 1 = 5" is always false. This rule is rather inadequate in representing everyday reasoning.
For most people, asserting an implication means that antecedent of the implication is true while
its consequent is false does not occur. Furthermore, if both </> and 1/J are valid then </> ~ 1/J is
valid as well. Yet, one might hesitate to say that </> ~ 1/J is valid since one would expect some
information-based connections between 4> and 'l/J before one could determine the actual validity
of 4> ~ 'l/J. For example, the sentence "2 + 2 = 4 ~ Apple is a fruit" is valid in Classical
Logic because both the antecedent and the consequent are valid; however, there is no connection
between "2 + 2 = 4" and "Apple is a fruit".

These two examples show that implications as defined in Classical Logic do not necessarily capture
information containment. In ordinary language, one tends to join two sentences with an implication
only if there is some connection between them in their form and content. Therefore, the implication
d ~ q as defined in Classical Logic is not best at modelling the relevance of a document to a query,
since it does not necessarily mean that the document contains information pertinent to the query.

1.6.4 Informative relationship

The evaluation of d ~ q should take into account the meaning of information. For example, a
document about "Italy" could be relevant to a query about "Mediterranean country" because Italy
is a Mediterranean country. The latter constitutes an informative relationship, and can be modelled
by a formula of Classical Logic such as "Italy ~ Mediterranean country".

Let I' be the set of formulae representing informative relationships such as that above. One
way to incorporate these informative relationships in the evaluation of d ~ q is to evaluate
the implication only in those models of d that are also models of I', which means evaluating
r 1= d ~ q. However, the formulae in r can be contradictory (information is often contradictory),
so it may be impossible to obtain a model of r. Also, this evaluation does not eliminate the problem
encountered with non-informative implications such as "2 + 1= 5 ~ M ounia likes to swim"
or "2 + 2 = 4 ~ Apple is a fruit", and the other problems encountered with the use of Classical
Logic remain.

1.6.5 Provider of information

Basing relevance on the validity of d ~ q is counter-intuitive because speaking of a true document
formula, or a model of the document formula, is meaningless, for a document is the provider of
information. A more appropriate use of Classical Logic would be to represent a document by a
model in which the formulae representing the information contained in that document are true.
This approach endorses the more correct view that relevance is determined on the basis that the
document contains information pertinent to the query. In reality, a set of models may be involved
since the truth values of some propositions may be unspecified. This matter is further discussed
in section 1.6.7.

1.6.6 Intensionality

In Classical Logic, synonymy is symbolized by tautologies. For example, the fact that two terms are
synonymous is symbolized by the validity of </> f-+ 'l/J, where 4> and 'l/J are the formulae representing
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the two terms. It follows that every instance of cP in a formula can be replaced by 1f;. Such a
substitution is not always correct because the meaning attached to cp can be context-dependant
(e.g., cp represents a polysemic term). The phenomenon where the meaning of information is
context-dependent is referred to as intensionality [PtMW90, DWP81, Mon74], and the concerned
information is qualified as intensional. Classical Logic cannot handle intensionality in any adequate
manner.

1.6.7 Partiality

Many items of information are not originally identified as part of a document's information content,
though they are implicit in the document information content. The representation of a document
is only partial; it can grow when the implicit information becomes available due to the flow of
information (this is explained in the next section). This characteristic is referred to as the partiality
of information [Lan86, Bar89] I.

The representation of partiality needs to express that the truth value of a formula is not always
known at some point, but can become known at some later stage. In Classical Logic, the
representation of the unknown truth of a proposition p necessitates at least two models, one in
which p is true and one in which p is false. If models symbolize a document, a set of models
may be involved in modeling the document. Nonetheless, the notion of growth of information is
foreign to Classical Logic, for models are distinct and non-related entities. Classical Logic cannot
capture partiality.

1.6.8 Flow of information

A text document consists of sentences expressed in natural language, and which possess an
information content. Part of the information content corresponds to the meaning of these sentences,
whereas another part goes beyond this meaning. This is because the content of a document conveys
information in two forms: explicitly, one can read it; or implicitly, one can deduce or infer it. For
example, a document about "cross country skiing" may be relevant to a query about "Scandinavian
sports", even if the latter is not explicit in the document. The reason is that the information item
"Scandinavian sports" is often implicitly contained in any references of "cross country skiing".
The phenomenon of information containment constitutes the flow of information [Dre81, BP83,
Bar89, BE90].

The flow of information is a leading component in the modelling of an IR system. There are
different types of flows with respect to textual IR systems: there is the flow that allows us to read,
that is, the recognition of letters, words, and sentences; there is the flow that allows us to understand
what we are reading, that is, the semantics; and there is the flow that allows us, with respect to
our knowledge of the subject, to derive additional information from what we have read, that is,
the pragmatics. The flow of information, whether related to semantics or pragmatics, is based on
information-based relationships between information items. Examples of which are "whisky" to
"Scotland", and "Chocolate" to "Belgium". Classical Logic cannot model a flow properly because
related information items are symbolized by formulae, which unfortunately are truth-based instead

1 The terminology is not to be confused with partial relevance, mentioned in section 1.5.
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of information-based. Therefore, many relationships are erroneous.

Explicit and implicit information, and the flow of information, are greatly accounted for in this
thesis. A complete definition will be given in due course. What should be remembered is that the
explicit information, together with the flow of information, derive the implicit information.

1.6.9 Uncertainty

An exact information content cannot be identified appropriately. Indeed, the representation of
the meaning of natural language is not an easy task because natural language is ambiguous. For
example, intensionality is not always well captured, and as a result, the flow of information that
arises from this information is uncertain [KC93, DP85, Saf87]. Since the relevance of a document
to a query often depends on the existence of a flow that leads the explicit information content of
the document to the information being requested by the query, the more uncertain is a flow, the
less relevant the document. One approach to express this correspondence is to have a numerical
evaluation of relevance that is based on a numerical expression of the uncertainty of the overall
flow. Therefore, the logic used to model the IR system must be non-binary. This is not a
characteristic of Classical Logic.

1.6.10 Structure

A document has an underlying structure. For example, a document may have a title, several
authors, an abstract, the text itself, and some figures. A multimedia document may consist of a
mixture of text, image, and video. The structure of a document can also be implicit. For example,
a structure may consist of the information (e.g., terms) contained in the document, which defines
a document topic. Such types of structures are based on semantics because they take into account
the fact that information can be semantically related. For reasons of simplicity, only these types
of structures are considered in this thesis.

An example of semantically related information is equivalent items of information. A document
should not be more relevant to a query that uses many terms to express an information need
than to a query using fewer terms to express the same information need. This equivalence of
information can be taken into account by grouping equivalent terms into structures and treating
the groups of equivalent terms as entities. The representation of such structures cannot be handled
by Classical Logic.

1.6.11 Summary

The inadequacy of the use of Classical Logic for modelling an IR system has been shown.
Simultaneously, some points were made about the components and their characteristics that are
necessary for modelling an IR system. These components are summarized in the following list:

(i) the representation of information on another basis than truth.

(ii) the representation of a document information content that accounts for intensionality,
partiality, explicit and implicit information, significance and structure of information. The
document should also be represented as a provider of information.
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(iii) the representation of the flow of information.

(iv) the representation of the uncertainty engendered by the flow of information. A quantitative
representation of the uncertainty can be used as a basis for a numerical expression of
relevance.

This thesis proposes a logic-based IR model that captures the above components. The model is
based on the so-called Transformation Principle.

1.7 The Transformation Principle

I believe that an IR model should be expressed in an information-based framework. More precisely,
a logic of information or theory of information should be used to build the IR model. In further
references, the terminology theory of information is used, since this terminology covers more
ground than the usual logic framework.

The choice of the appropriate theory is one purpose of this thesis. A non-binary logic is required
because basing the computation of relevance on the validity of d -+ q leads either to too few or too
many documents being retrieved. A non-binary logic would permit the documents that are only
partially relevant to the query to be retrieved as well as those directly relevant, and the uncertain
nature of the flow of information can be captured.

Two directions are possible: the first is to make the evaluation of d -+ q numerical; the second is
to keep the evaluation somewhat binary- and to use concurrently a theory of uncertainty [KC93,
Saf87, Par94] to embody partial relevance. Such an approach is not uncommon as Saffioti [Saf87]
mentioned:

"Many of these solutions [of representing uncertainty] share the attitude of viewing the
knowledge and the uncertainty about it as two different entities, and so treating them by
means of two distinct loosely-coupled processes: the reasoning process handles knowledge
as if it were exact, while a "parallel uncertainty inference" process accompanies it,
computing the uncertainty affecting each newly arrived fact. This uncertainty is in tum
usually based on the uncertainty affecting the facts used to derive the new fact."

This second approach is adopted because the components of a logic-based IR model identified in
section 1.6.11 can be classified as qualitative or quantitative. The qualitative components are the
representation of information and its flow, partiality, explicit and implicit information, structure,
and intensionality, whereas the quantitative components are the significance of information, and
the uncertainty inherent to information and its flow.

The modelling of the qualitative and quantitative components requires different frameworks.
Therefore, the objective is to determine the appropriate framework for each, and to develop a
method to combine them in a consistent fashion. A first step towards this is Van Rijsbergen's
Logical Uncertainty Principle [vR86b]:

"Given any two sentences x and y; a measure of the uncertainty of y -+ x relative to a

2 Binary here should be understood as qualitative as opposed to quantitative.
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given data set, is determined by the minimal extent to which we have to add information
to the data set, to establish the truth of y - x."

A modified version of this principle is used, which I call the Transformation Principle:

"Given a document representation d, a query representation q, and a knowledge set K;
the measure of relevance, denoted d - q, relative to K, is determined by the minimal
transformation applied to d to obtain some d' such that d' contains q, denoted d' :::} q."

The Transformation Principle enables a formal expression of the different components that con-
stitute a model of an IR system based on the flow of information. The symbol d represents the
document. This representation should view the document as a provider of information and should
cater to the modelling of intensionality, partiality and structures. The symbol q represents the
query. The symbol K represents the knowledge set which contains the informative relationships
upon which the transformation is based. The transformation of a document d to some document
d' is due to the flow of information that arises from the document's explicit information content
symbolized by d. The result of the flow of information, that is, the document's implicit information
content, is symbolized by d'. The notation d :::}q means that the information represented by q is
explicit in the document representation. For example, if d is a set of terms, d :::} q could mean that
the term represented by q belongs to this set. The notation d - q signifies that the information
represented by q is implicit in the document. In the above example, d - q could mean that the
term represented by q is synonymous with a term that belongs to the set of terms d. The evaluation
of d _ q depends on the minimal transformation that leads d to some d' such that d' :::} q. d is
referred to as the original document whereas d' is referred to as the transformed document. All
these components d, q, K, d', d:::} q and d - q are extensively discussed in Chapter 2.

Minimality ensures that the transformation process ceases as soon as the information being sought
is reached. This portrays the obvious fact that a document that requires less transformations than
another is usually more relevant to the query than the other document.

A correct application of the Transformation Principle is essential. That is, the transformation of
a document must be pertinent in the sense that it should capture the flow of information. For
example, semantic relationships upon which a flow of information may be based must be accurate,
otherwise there is little benefit in applying transformations on documents.

For the sake of clarity, the Transformation Principle does not specifically mention the quantitative
components concerned with the representation of uncertainty and significance. In practice, two
additional functions are used in tandem with d :::} q and d - q; these are wand r respectively.
The two quantities w( d :::} q) and r( d - q) are evaluated. The former assesses the significance of
q in d, and the latter assesses the extent to which q is implicit in d. The evaluation of r( d - q)
includes the value w( d' :::}q) and the uncertainty attached to the transformation of d to d'. The
value r( d - q) estimates the degree of relevance of the document represented by d to the query
represented by q. So the evaluation of:::} and - remains qualitative, while wand r express the
uncertainty inherent in this evaluation. Both functions wand r are described in details in Chapter 3.

The Transformation Principle is used in this thesis instead of the Logical Uncertainty Principle
for several reasons. First, the transformation process is applied to the document instead of the
data set because it is unclear how to transform knowledge, yet it is more intuitive to transform
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documents based on the existing knowledge. Furthermore, it is easier to avoid inconsistency by
keeping a fixed knowledge, and by varying (enriching) the information content of the document
using the knowledge available (but see [NLB96, Nie90, CvR95a, CvR95b] for other uses of the
Logical Uncertainty Principle).

A second reason for using the Transformation Principle is that transformation ensures a more general
principle which allows any type of information processing, and not just addition of information.
Transformation can be addition, deletion or modification of information. A modification can be
that a term in the document is replaced by a synonymous or more specific term. A deletion is to
indicate what has been achieved so far is incorrect; for example, the system has used the wrong
sense of a polysemic term. This indication needs external intervention, for example, a user. The
system then has to go back to an earlier state the user recognizes as correct. The model developed
in this thesis is not concerned with the intervention of a user, but with information and its flow.
Therefore, deletion is not considered, but methods for incorporating deletion in the transformation
process are discussed in Chapter 8.

In this thesis, a transformation is either an addition or a modification process, although in many
cases, a modification can be viewed as an addition, for no information is discarded.

1.7.1 Examples of transformation

The transformation of documents depends on how documents and queries are indexed. Its
appropriate application is essential in modelling the flow of information. Three examples of
transformation are discussed in this section, each based on different indexing methods.

1.7.1.1 Documents and queries represented as set of terms

The representations of documents and queries as sets of terms is common to many IR systems.
In this case, the transformation of a document can be defined in terms of semantic relationships
(e.g., synonymy, related terms) extracted, for example, from a thesaurus. A transformed document
contains terms that are semantically related to those used in the original document. The uncertainty
of the transformation can be defined from the uncertainty (numerical values) attached to the
semantic relationships, where the higher the value, the stronger the relationship.

An appropriate transformation can be ensured in different manners. First, only relationships
adequate to a document or a set of documents must be used. This could be achieved by pre-
selecting those relationships relevant to a particular document (or a set of them, or the collection
itself). For example, if several documents contain the term "bank", and these documents deal with
finance, then only the relationships relevant to the finance sense of "bank" must be used. Second,
a threshold can be imposed on the uncertainty of the transformation. That is, when this uncertainty
is lower than a given value, the transformation is not pursued further.

1.7.1.2 Systems with linked documents

Such systems consist of documents that contain citations, or hypertext documents. In the former,
documents explicitly cite other documents; in the latter, documents contain hypertext links to other
documents.
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With linked documents systems, a transformed document is one that is referred to by another
document (via a citation or a link). The uncertainty of a transformation can be defined on the extent
to which the original and the transformed documents are similar (the link between documents varies
in strength). Similarity measures or statistical-based measures can be used [vR79] for this purpose.

An adequate transformation process may be ascertained by allowing only a certain number of
transformations, A better technique would be to compute the similarity (a value) between
documents and stop the transformation process when this similarity value is below a given threshold.

1.7.1.3 Natural language information retrieval

Natural language IR systems make use of natural language process to analysis document's infor-
mation content and information need, and to evaluate the relevance of a document to a query.
Examples of such systems can be found in [Sme92, Nie90], a specific example being RIME
developed by Berrut [Ber88] and Nie [Nie90]. Here, documents or queries were indexed by
semantic-based trees. For example, the tree

type

/ \
tumor cancer

represents the information that the type of tumor is cancer. A transformation consists of deriving
trees from original ones. The derivations were based on semantic rules, such as

tumor := localization

/ \
lung left

meaning that the concept of tumor can be refined into one describing its precise location. On the
basis of this rule, a document indexed by the above tree can be transformed into a document that
contains the following tree (see [Nie90] for details of the transformation process):

type

/ \
localization cancer

/ \
lung left

Uncertainties were attached to semantic rules expressing their probabilities. The accuracy of
transfonnation could be ensured by allowing a maximal number of transforrnations, ensuring that
only relevant rules were used, or using some threshold values of the uncertainty.
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1.7.1.4 Conclusion

Three interpretations of the Transformation Principle were discussed. In the remainder of this
thesis, the Transformation Principle is discussed with respect to the first type of systems (section
1.7.1.1), that is, the Transformation Principle is defined in terms of the flow of information based
on semantics relationships. However, the work carried is relevant to any type of systems. It is
also assumed that the transformation process captures adequately information flows; that is, correct
semantic relationships are provided.

1.8 The thesis statement

Van Rijsbergen [vR86a, vR86b, vR89] and Nie [Nie90, Nie88, Nie89, Nie92], explained that current
IR models only offer simplistic and specific representations of information, and there is therefore a
need for the development of a new formalism able to model IR systems in a more generic manner.
I agree with both of them that such formalisms can both be appropriately and powerfully defined
within a logic. The resulting formalism should be able to capture information as it appears in an
IR system, and also in any of its inherent forms. Therefore, I believe that the time has come to
look at some of the most important aspects of an IR system, that is, information and its flow.

Information is, and always has been, an elusive concept; nevertheless many philosophers, mathe-
maticians, logicians and computer scientists have felt that it is fundamental. Many attempts have
been made to derive some sensible and intuitively acceptable definition of information; until now,
none of these have succeeded. Author such as Dretske, Barwise, and Devlin claimed that the
notion of information starts from the position that given an ontology of objects individuated by
a cognitive agent, it makes sense to speak of the information an object (e.g., a text, an image, a
video) contains about another object (e.g., the query). This phenomenon is captured by the flow
of information between objects. Its exploitation is the task of an Information Retrieval system.

These authors proposed a theory of information that provides an analysis of the concept of
information and the manner in which intelligent organisms (referred to as cognitive agents) handle
and respond to the information picked up from their environment. They defined the nature of
information flow and the mechanisms that give rise to such a flow.

This theory is the so-called Situation Theory [BP83, Bar89, Dev91], whose aim is the development
of a science of information. It is widely recognized that the development of any new scientific tool
is better carried out in the abstract. Thus, a science of information should follow a mathematical
approach even though the definition of information is itself problematic (which is the case in
IR). In the past, this has not stopped scientists from speculating on the nature of objects such
as electrons or numbers. Situation Theory can be compared to Quantum Mechanics or Number
Theory. In Quantum Mechanics, an ideal representation of an electron is adopted, even if it is
not well understood what an electron is. It then becomes possible to model the behavior and the
interaction of electrons. In Number Theory, the definition of the number 3 is not clear. Some
say it is that set containing three objects. Regardless of the semantics of the numbers 3 and 5
mean, we all know that 3 + 5 = 8, though there are still arguments about the definition of the
numbers 3, 5 and 8.
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In this thesis, I show the appropriateness of Situation Theory to model the qualitative components
of a logic-based IR model, in particular, the flow of information.

As discussed in the previous section, the quantitative components (the uncertainty and the signif-
icance of information) of the model can be represented by a theory of uncertainty. This thesis
shows that the Dempster-Shafer Theory of Evidence provides most of the necessary formalisms
for the modelling of these quantitative components and in one framework. The use of the overall
framework gave the advantage that it could be easily mapped to the qualitative representation of a
document, and its transformation. Additionally, it could be suitably mapped onto Situation Theory.

This thesis proposes to use Situation Theory, in tandem with the Dempster-Shafer Theory of
Evidence, for constructing a model of an IR system, where Situation Theory largely models the
qualitative components of the model, and the Dempster-Shafer Theory of Evidence models its
quantitative components. These two theories are combined on the basis of the Transformation
Principle.

Two models are proposed, one that caters to an unstructured representation of a document, and
one that caters to a structured representation of a document. This was done in two steps. First, the
unstructured model was defined in which the structure and the significance of information were
not accounted for. Second, that model was extended into the structured model, which incorporated
structures and the significance of information. This strategy was adopted because it enabled the
careful representation of the flow of information to be performed initially.

In the first part of this thesis (Chapters 2 to 5), it is assumed that appropriate indexing tools are
available, as well as the semantic relationships determining the nature of the flow of information.
In Chapter 6 and Chapter 7, the indexing tool and the semantic relationships used to implement
the model proposed in this thesis are described. Many problems arise when implementing the
models, mainly in extracting the flow of information from documents. This was due to a poor
indexing of documents, and inappropriate semantic relationships. These problems are discussed
in detail in these two chapters. However, it is shown that if these problems are solved, better
performance will be obtained.

The conclusion of this work is that Situation Theory, combined with the Dempster-Shafer's Theory
of Evidence, allows the appropriate and powerful representation of several essential features
of information in an information retrieval system. Although its implementation presents some
difficulties, the model is the first of its kind to capture, in a general manner, these features within a
uniform framework. As a result, it can easily be generalized to many types of information retrieval
systems (e.g., interactive, multimedia systems), or many aspects of the retrieval process (e.g., user
modelling). These applications of the model and others are discussed in Chapter 8.

1.9 Remainder of the thesis

This thesis includes eight chapters, the first being the introduction. Chapter 2 contains a survey
of possible qualitative frameworks to capture information and its flows. Chapter 3 is a survey
of quantitative frameworks to model uncertainty. Chapter 4 is the description of the model for
the unstructured representation of a document. Chapter 5 describes the model for a structured
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representation of a document. Chapter 6 describes the implementation of the two models. Chapter
7 relates the experiments and the evaluation of the implemented systems. And finally, Chapter 8
concludes with recommendations for further directions.
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Chapter 2

Qualitative Theories for a
Logic-based Model of an
Information Retrieval System

2.1 Introduction

This chapter examines different theories that can be used to model the qualitative components of
an IR system based on the Transformation Principle. Five qualitative entities are defined by this
principle:

Document d

Query q

Knowledge Set K

Explict Information d=*q

Implict Information d--q

Table 2.1: The qualitative components

The symbol d is the representation of the document. The symbol q is the representation of the
query. The symbol J( is the representation of the knowledge set. The notation d => q indicates
that the information represented by q is explicitly contained in the document represented by d.
The notation d --+ q denotes that the information represented by q is implicitly contained in the
document represented by d. This means that d can be transformed to a document represented by
d' such that d' => q. Although d and d' are referred to as documents (this is done for clarity of
expression), in practice, they correspond to two different representations of the same document,
the latter being more "exhaustive" than the former. The transformation is either an addition or a
modification process and is dependent upon the knowledge set J(. The characteristics of these five
qualitative components must be identified to determine the best framework to model them. These
characteristics are discussed in section 2.2.

There are three main types of qualitative frameworks that can be used to model the qualitative
components of an IR system: ones based on truth, ones based on meaning and ones based on
information. The first are extensions of Classical Logic and deal with specific needs such as
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modals, partiality or non-monotonic reasoning. They consider the notion of truth as primordial.
They are referred to as truth-based frameworks, and are described in section 2.3. The second
are somewhat concerned with a trade-off between truth and information. They aim to represent
the meaning of information, and can be looked upon as semantics-based frameworks, and are
described in section 2.4. The third are frameworks oriented towards a formalism of information,
and treat truth as a secondary concept and are principally concerned with the representation of
information content on the basis of information itself. These can be regarded as information-based
frameworks, and are described in section 2.5.

This chapter describes frameworks for each type and highlights their advantages and disadvantages
in modelling some or all of the qualitative components listed above. This survey is not exhaustive,
but does cover a wide range of frameworks. The purpose of this chapter is to show that an
information-based framework is the most appropriate one.

2.2 The characteristics of the qualitative components

An IR model based on the Transformation Principle defines five qualitative components. The first
two components are the representation of the document and the representation of the query. The
characteristics of these components are discussed in sections 2.2.1 and 2.2.2, respectively. The
other three components are the representation of the knowledge set, the representation of the explicit
information content of a document, and the representation of the implicit information content of a
document. These three components are the basis of the transformation of a document, and their
characteristics are discussed in section 2.2.3.

2.2.1 The representation of a document

One task of an IR system is the representation of a document. The representation should reflect
the fact that a document is a provider of information. Indeed, an IR system determines relevance
by checking whether an information item is contained in a document. This implies that a document
should not be represented by a proposition, as suggested by the discussion of Classical Logic in
Chapter 1.

The representation of the document should capture the partiality of information because an
exhaustive representation of the information content of any document is rarely achieved. This
means that the information content of the document is partially captured, but can grow as the
representation of that document is transformed into successive less partial representations. This
issue is discussed further in section 2.2.3.

In a document, the expressions used to convey information (e.g. words, sentences, etc.) can be
intensional; that is, the expressions may have multiple meanings. For example, polysemic words
such as "bank" are intensional expressions because "bank" has, at least, two meanings, the "money
bank" and the "river bank". Another example is the person referred to by the title "Prime Minister";
in Canada this person is J. Chretien, whereas in Great Britain it is J. Major. The embodiment of
intensionality necessitates the understanding of the meaning of an expression in a given context.
This is a semantic process, the result of which affects the flow of information arising from this
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expression. For example, if the term bank is used in the money context, then only flow that is
in according to this context arises, and not the flow related to the river context. Therefore, the
representation of intensionality in the IR model is important',

A document has an underlying structure. For example, a document may consists of a title, a
list of authors, an abstract, some keywords, the text itself, several chapters or sections, and some
figures. A multimedia document may contain a mixture of text, image, and video. The structure
of a document can also be implicit. For example, a structure may consist of the information (e.g.,
terms) contained in the document, which defines a document topic. Such types of structures are
based on semantics because they take into account the fact that information can be semantically
related. For reasons of simplicity, only semantic-based structures are considered in this thesis.
However, this work is relevant to any type of structure. This issue is discussed in Chapter 8.

An example of information that is semantically related is that of equivalent items of information.
Take for example the representation of a document's information content as a set of terms. For
instance, the "Canadian Prime Minister" and "J. Chretien" are two equivalent terms. A document
should not be more relevant to a query that uses the two terms "Canadian Prime Minister" and
"1. Chretien" in its expression, than to a query that uses only one of these terms, because the
information need is the same. Indeed, the first query uses two different terms to refer to the same
item of information (here a person), whereas the second query uses only one term. This equivalence
of the information need can be taken into account by grouping equivalent terms into structures,
and treating the groups of equivalent terms as entities. This approach leads to a semantic-based
structured representation of the document's information content and subsequently necessitates the
representation of a structure.

2.2.2 The representation of a query

An information need is communicated to the IR system by a query. In this thesis, the query is not
weighted; that is, its expression does not indicate that one item of information is more essential
than another. Therefore, a query is modelled by whatever symbolizes information items.

2.2.3 The representation of the transformation process

The Transformation Principle states that the information expressed in the query q is implicit in
the original document d if that document d can be transformed to a document d' that explicitly
contains the information expressed in the query. This principle is based on the observation that the
representation of the information content of a document, as determined by the indexing process, is
often partial and depicts usually the explicit information content of the document. Additional
information can be identified as part of the document information content. This additional
information constitutes the implicit information content of the document. The recognition of this
information comes from the flow of information that arises from some of the explicit information
content of the document, and yields some of that implicit information content. The flow of
information is a fundamental component of an IR system, and must be adequately represented.

3 The adequate capturing of the intensionality is a well known problem in philosophical logic [PtMW90j. This is briefly discussed
when Intensional Logic is presented in section 2.4.1.
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The approach adopted in this thesis is to define the transformation of a document in terms of the
flow of information; the explicit information constitutes the original document and the implicit
information constitutes the transformed document.

The flow of information characterizes information containment and can generally be defined as
the information an object contains or carries about itself or another object. The information
containment is described by informative relationships between items of information and the object
affected by this information containment. Let it be a relationship between the two information
items p and pf (e.g., synonymity). The flow of information based on this relationship indicates
that an object which contains the information item p contains or carries the information that
itself or a second object contains the information item pf. For example, in a hypertext system
[Con87], a flow of information often arises between two linked documents (the two objects). The
relationships determine the nature of the flow.

The representation of the flow of information requires the representation of the relationships upon
which the flow is based, and the objects affected by the flow. The knowledge set J( consists of
the identified relationships between the information items. The objects are the documents, one
being the transformation of the other.

The relationships stored in J( can be used in sequence, leading to a sequential transformation,
or in parallel, leading to a parallel transformation. Both types of transformation are caused by
a flow of information, or combination of flows of information either in sequence or in parallel;
this combination constitutes a flow of information. In the first case, a flow which emanates from
the explicit information content of the document yields implicit information from which a second
flow can emanate, and so forth. For example, suppose that a document about "wine" contains
information about a second document on "Chardonnay" which itself contains information about
a third document on "Australian wine"; in that case, the first document being about "wine" may
contain information about that third document on "Australian wine".

In the second case, the explicit information content of a document can originate simultaneous
flows of information, all leading to the same item of information. This can be interpreted as an
accumulation of evidence about that item of information. For example, a document about "wine"
can contain information about "Chili" because of an explicit reference in that document that many
good wines come now from Chili, or that one knows that the United Kingdom is importing many
Chilean wines.

The flow of information can be either certain or uncertain. For example, consider the synonymous
relationship as the basis of a flow. If the two terms t and tf have the same meaning in every
context, the corresponding flow is certain. Often, two synonymous terms have different meanings
in certain contexts. If it is not known which sense the term t refers to in a given context, then
the flow that relates this term to tf is uncertain. The relationship between t and tf might not be
appropriate with respect to that context. Thus, since a transformation is based on the flow of
information, the uncertainty of a transformation is characterized by the uncertainty of the flow of
information causing that transformation. The uncertainty engendered by the transformation can
be the basis of a numerical formulation of relevance. In this chapter, only the qualitative nature
of a transformation is considered; in the next chapter, methods to quantify the uncertainty of a
transformation are described. However, the uncertain nature of the flow of information should be
bome in mind while examining the different frameworks.
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Note that an uncertain transformation, not only represents the flow of information, but it also
performs a reduction of ambiguity. An uncertain transformation arises because of uncertain
information (e.g., the sense referred by a term is unknown in the document), and represents one
way, among possibly several others, to interpret this uncertain information.

2.2.4 Conclusion

The qualitative components of an IR model, together with their characteristics, are summarized
in the following table:

Qualitative components Characteristics

Representation of the document (d) - Provider of information

- Partiality of information

- Intensionality (contexts)

- Structure (Semantic-based)

Representation of the information expressed - Information items

in the query (q) - Non weighted

Representation of the relationships of the Informative relationships

knowledge set (K)

Representation of the explicit containment of The information is part of the document information content

an information item in a document (d => q)

Representation of the implicit containment of - The document can be transformed (in sequence and/or in parallel)

an information item in a document (d -> q) to a document that contains the information item.

- The transformation is defined in terms of the flow of information.

Table 2.2: The qualitative components and their characteristics

The modelling of the flow of information necessitates the following representations:

(i) the relationships upon which the flow is based,
(ii) the documents affected by the flow of information,
(iii) sequencing and parallelism of the flow, and
(iv) uncertainty of the flow (qualitative).

In the remainder of this chapter, different frameworks are examined to determine which one best
models the above listed qualitative components.

It was stated in Chapter 1 that two models are proposed in this thesis; one that accounts for an
unstructured representation of a document and one that accounts for a structured representation of
a document. The study of the different frameworks, except for Scott Domains [Sc082, Lan71], is
performed with respect to the unstructured representation, unless otherwise specified. The reasons
are twofold. First, the structured representation of a document is a generalization of the unstructured
representation of that document. Second, it enables to concentrate on an appropriate representation
of the flow of information. The structured representation of a document is discussed in section
2.5.3, where the theory of Scott Domains is described.
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2.3 Truth-based frameworks

The weakness of Classical Logic for modelling an IR system comes from the representation of
information and informative relationships (used to reason) by truth formulae" and the semantics
attached to different connectors. To capture the informative relationships, thus constituting the
knowledge set, only the interpretations that make their corresponding formulae true are considered
in the evaluation of d -+ q. The tautologies are also part of the knowledge set. The problem with
such a representation of the knowledge set is that the informative relationships or the tautologies
cannot be used as the basis of a transformation. Indeed, if a document is represented by a model
D (as discussed in Chapter 1) and that p -+ q is an informative relationship, then D 1= p -+ q.
If D 1= p, then D 1= q. This means that the transformation of a document represented by the
model D into a document represented by another model cannot be expressed. It is not possible
to capture that information may subsequently become available in a document (model), where it
was not initially available.

Truth-based frameworks are extensions of Classical Logic. A number of them are examined in
this section to decide whether they offer an appropriate modelling of an IR system as described in
section 2.2. Four frameworks are considered: Three-valued Logic [Kle67], Modal Logic [HC68,
Che80], Belief Systems [Gar88, Moo80, Rei80, Mor92], and Cumulative Logic [KLM90]. For
simplicity, in the remaining of this thesis, informative relationships will also be referred to as
tautologies''.

2.3.1 Three-valued Logic

Three-valued Logic [Kle67] is a model-theoretical framework which introduces a third truth value
denoted u to indicate a state of ignorance'', Three-valued Logic is defined by a set of models and
a set of propositions. In a model M, u is assigned to a proposition p if it is unknown whether p
is true or false in M. A model in which the truth value of at least one proposition is u is called
partial; otherwise, it is called total.

A partial model M can be extended into a model 1\1' where a proposition p with truth value u in
M is resolved. That is, either M' 1= p or M' 1= -p. The extension of M into M' is denoted
M ::5 M'. Some of the partiality is resolved but never revised; something which was known to be
either true or false in M remains either true or false in M'.

Three-valued Logic is often used to model systems that are in state of partial ignorance, and which
never discard or revise information, and that acquire new information. Therefore a monotonic
function G is regularly used in tandem with Three-valued Logic", This function, which can be
viewed as a line of reasoning, relates partial models to other partial models.

A model M such that M ::5 G(M) admits a minimal fixed point with respect to G. The fixed
point is a model M* such that M ::5 M* = G(M*); it represents all the information that can be

4 In the remainder of this thesis, the terms proposition and formula are used equivaler.tly unless otherwise stated.
5 As explained in Chapter 1, to capture informative relationships, only some interpretations must be considered. However this did
not resolve the problems encountered by the use of Classical Logic to model an IR system.

6 There are different interpretations of this value leading to different semantics [Tur84]. Kleene's value is mentioned here.
7 Monotonicity means that if M~M' then G(M) ~ G(M').
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generated from M by means of G.

If a document is represented by a model D and information items are represented by propositions,
the partiality of information content is captured with the truth value u. The transformation of the
document can be modelled as a monotonic function G. The fixed point D* can be viewed as the
'maximal' representation of the document, which contains the explicit and the implicit information
in the document that can be obtained from G. If q is the proposition representing the query, the
evaluation of the relevance consists of determining whether D* 1= q. The use of Three-value Logic
for modelling an IR system is summarized below:

d Partial model D

q Formula q

K Tautologies I=P
d=*q Document satisfies the query D 1= q

d---+q The fixed point D' = G(D') satisfies the query D' 1= q

Table 2.3: The modelling of the quantitative components with Three- Valued Logic

In Three-valued Logic, the extension of a model does not depend on specific relationships between
information items; the knowledge set is simply the set of tautologies which cannot be used to
transform a document. As a result, the extension as defined in Three-valued Logic cannot model
the flow of information. Indeed, a proposition p, whose truth value is u in D, does not become true
or false in some extension D' of D because a proposition q true in D contains p. The monotonic
function G is not defined explicitly in terms of informative relationships.

There are other problems with the use of Three-valued Logic to construct the model as aimed in
this thesis. First, intensionality is not represented. Indeed, nothing suggests a function G being
used instead of another function G', meaning that there is no notion of one line of reasoning being
selected against another one. Second, different lines of reasoning might exist; several GiS, each
of them may lead to a fixed point D'[, Three-valued Logic does not combine the GiS, and thus
cannot model parallel transformations. The combination has to be defined outside the logic.

Three-valued Logic cannot be used appropriately to model the flow of information. Therefore, it
is not adopted to model the qualitative components of an IR system. Three-valued Logic is better
at modelling monotonic systems that acquire information from their environment, not from the
information they already contain.

2.3.2 Modal Logic

A Modal Logic [HC6S, CheSO] is a model-theoretical extension of Classical Logic. It attempts
to deal with modal operators [vBS5] such as "possibly" and "necessary". Let P be the set of
propositions, and let the logical connectors defined in the first chapter be part of the alphabet.
Two modal operators D and \) are added to the alphabet. They mean "it is necessary that ..."
and "it is possible that ...',s, respectively. A set W of possible worlds [Kri63], upon which the

8 There are other modals that represent past, future, beliefs, etc [vBS3j. They are necessary for robust linguistic processes, such as
those used in question-answering systems.
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semantics are defined, is added to Classical Logic ontology. Possible worlds are related by the
so-called accessibility relation R. This binary relation captures the intuition that from a possible
world w, some other worlds might be deemed possible, which would not be the case from a world
different to w.

A model for a Modal Logic is a structure M = (P, W, R). In that model, the fact that p is true
(false) with respect to a world w is written M 1= p[w] (M 1= -,p[w]). A formula Op is true in a
possible world w if p is true in every possible world accessible from w. A formula Op is true in a
possible world w if p is true in at least one possible world accessible from w9• There are different
types of Modal Logic; their differences result from interpretations or constraints attached to the
accessibility relationship'!'. A detailed expose of Modal Logic can be found in [HC68] and [Che80].

An IR model based on a Modal Logic was developed by Nie [Nie90, Nie88, Nie89, Nie92]. A
document is a world w, a query is a proposition q, and the IR model is the structure M = (P, W, R).
The document is relevant to the query whenever M 1= Oq[w]; that is, there exists a world
w' accessible from w (wRw') such that M 1= q[w']. In Nie's model, the accessibility relation
represents the transformation of the document. The accessibility relation is transitive; hence, it
enables the modelling of sequential transformation. The modal 0 somewhat captures the partiality
of the information in a document because a proposition can be true in some accessible world,
though the proposition is not true in the world representing the document (i.e., M 1= q[ w'] and
wRw'). This indicates the relevance of the document w to the query q. The relation R may be
used to capture the flow of information; the world w contains information about the world w' if
wRw'. A model based on a Modal Logic is summarized in the table below:

d Possible world w

q Formula q

K Tautologies (with respect to M) MFP

d=?q Model of a formula in a document world M F q[w]

d ..... q There exists w' such that wRw' and M F q[w'] M F Oq[w]

Table 2.4: The modelling of the quantitative components with Modal Logic

However, the information containment cannot be expressed explicitly because there is no mention
of the relationships causing the flow of information. The knowledge set consists of tautologies 11

with respect to M. That is, only deduction about the world itself is explicitly represented. This
drawback was also observed with Three-valued Logic. The advantage of Modal Logic over Three-
valued Logic is that the representation of parallel transformation is formally embedded in the
transitivity of the accessibility relation. In addition, modification can be represented easily because
a world accessible from another one does not necessarily contain all the information of the second
world. This was not possible with Three-valued Logic where only the addition of information
could be considered.

The use of Modal Logic, however, presents a problem resulting from the interpretation attached to

9 A formula whose truth value in a world depends on the truth values of its parts in other worlds is also referred to as intensional.
10 For example. R can be reflexive. symmetric or transitive.
II More correctly. a tautology is a sentence that is true at each world in each model. For the precise definition. see [HC68. Che80j.
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the accessibility relation. Although the transformation of w into w' (i.e., WRW') may render the
fact that the information content of w' is at least partly determined by the information content of
w (i.e., there is a flow of information between wand w'), as previously mentioned, the explicit
nature of the flow is unknown. This is because the use of the accessibility relationship to model
transformation cannot distinguish between transformation (the existence of a flow) and what makes
the transformation (the nature of that flow). The informative relationships are therefore not explicit
in the model, and their embodiment requires outside concepts. As it is shown later in this chapter,
frameworks that enable both the representation of a transformation and its nature exist. Therefore,
Modal Logic is not used in this thesis to represent the qualitative components of the IR model.

Another weakness of Modal Logic is that partiality is not represented consistently since all the
propositions are evaluated with respect to every world. Indeed, the fact that an item of information
represented by that proposition is implicit in a world implies that the proposition is false in that
world but true in an accessible world. This is not a correct representation of the partiality, although
some extensions of Modal Logic deal with partiality [PS86].

2.3.3 Belief Systems

Belief systems consist of a set of beliefs and a set of implicit or explicit procedures for acquiring
new beliefs. The motivation behind belief systems is to model systems that are forced to make
decisions in the light of incomplete information such that the possibility of failure may lead to the
revision of some assumptions and the subsequent rejection of some conclusions. Belief systems are
forms of non-monotonic logic, that is, frameworks in which the introduction of new information can
invalidate old information. Three types of belief systems are described: Default Reasoning [ReiSO],
Belief Revision [GarSS] and Epistemic Logic [MooSO]. The descriptions of these frameworks are
axiomatic-based (see Chapter 1).

2.3.3.1 Default Reasoning

Default Reasoning is concerned with the modelling of assumptions of the form "birds usually fly"
which are assumptions that sometimes tum out to be ill-founded (e.g., birds such as penguin or
ostrich). One instance of Default Reasoning is Default Theory, which was proposed by Reiter
[ReiSO]. This framework is composed of two parts, a set of axioms and a set of default rules:

A:B
C

This rule indicates that if A is true, and if B is not known to be false, then infer C. The truth or
falsity of B is based on the closed-world assumption [Rei7S]; that is, if B cannot be proven false,
then B is considered true. The set of axioms constitutes the basic theory. The application of the
default rules to the basic theory constitutes an extension, which consists of a deductive-closed and
consistent set of propositions. From a basic theory, several extensions can be obtained since default
rules can lead to different conclusions, thus capturing the non-monotonicity of the reasoning'? .

A document can be modelled by a basic theory D, which is the set of axioms that represent the
explicit information content of the document. The tautologies and the default rules can constitute

12 That is, if one knows A is true, e.g., "I put sugar in my coffee", one can infer C is true, e.g., "my coffee tastes sweet". However,
if one now knows that B is false, e.g., "I put olive oil in my coffee", one may not infer that C is true anymore. Classical Logic
is monotonic because if p I- q, then p 1\ r I- q.
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the knowledge set J(. The transformation of a document comes from the application of default
rules to the basic theory that models the document. An extension of the basic theory constitutes a
transformed document. The nature of the transformation of the document is explicitly represented
by the default rule used to perform that transformation. The transformation is physically represented
by the extension built from the application of the default rule. These two features present an
advantage over the frameworks so far described, since both the transformation and its nature are
represented. A model based on Default Theory is summarized in the following table:

d Basic Theory D

q Formula q

Default Rules A:B
K --C

Tautologies t=p
d=?q The basic theory contains the query formula qED

d->q There is an extension D' that contains the query formula qED'

Table 2.5: The modelling of the quantitative components with Default Theory

The extension of the basic theory is based on the fact that B cannot be proved false, not on the
fact that B is effectively proven true. Such an assumption conflicts with the partiality feature of
information. That is, although it is not possible to know whether any information item is contained
in the document, this item should not be considered false with respect to the document until it
has been proven (or defined) as such. Default Theory cannot capture this phenomena because it
is based on the closed-world assumption. A second problem is that default rules do not embed
correctly intensionality. This is more evident with normal default rules13 of the form:

A:C
C

This rule signifies that if A is true, and if it is correct to assume C, then infer C. The acquisition
of implicit information (C) is based on the fact that its existence cannot be denied. Therefore,
intensionality is captured in the fact that no inconsistencies are introduced, and not on its explicit
characterization.

Default Theory is not the best framework for modelling the flow of information, since it is based
on the closed-world assumption. Therefore, it is not used for qualitatively modelling the IR system.
Default Theory is more useful for modelling non-monotonic reasoning, where it is understood that
any information can be inferred as long it does not conflict with information already available,
which is not what information flow is about.

2.3.3.2 Belief Revision

Belief Revision provides a formalism for revising a belief state (a set of beliefs) in light of new,
possibly conflicting, information, The revision results in a belief state which contains the new
infonnation and as much of the original belief state as possible, whilst staying consistent. The
standard theory of Belief Revision is known as the AGM Theory [Gar88]. Belief states are
deductively closed sets of sentences. If s is a belief state and sp a proposition, then s * ip is

13 Normal default rules are most used in Default Theory.
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the revised belief state. * is called the belief revision function. In s * ip, the new belief c.p should
be true and the old beliefs should persist through revision if they can. s * c.p should not contain
extraneous information which was present in neither the old state nor the new belief. The belief
revision function is generally defined as follows:

{
Closed(s U {c.p}) if -,c.p ~ s

s * c.p = Consistent( s U { c.p} ) otherwise

-,c.p ~ s means that no conflict arises. C losed( s U {c.p}) is the deductive closure of s U {c.p}.
Consistent (s U {c.p}) is the set of (consistent) beliefs after revision, which can be constructed by
different methods. In one, the maximal sets of consistent propositions in s U {c.p} are computed,
all of which contain ip; their intersection constitutes C onsistent( s U {c.p} ).

A model based on Belief Revision represents a document by a belief state, a query by a proposition,
and the transformation of a document by the application of the belief revision function. However,
Belief Revision is inadequate for the representation of information containment because the
proposition c.p is a new belief; it is external to the information contained in the belief state, and
is not inferred from the information that is explicit in the document. Moreover, the acquisition of
this new information might refute the information that constitutes the original belief state, that is,
the explicit information content of the document. In this thesis, the representation of the explicit
information content of the document is assumed correct, although it may not be an exhaustive
representation of the information content. A transformation is either an addition or a modification
of information. The fact that a document is modified into a second document does not mean that
some of the original information is discredited in the second document; the information is only
different. A belief revision and a transformation are different processes, so the former cannot be
used to model the latter. As a consequence, Belief Revision is not selected for modelling the
qualitative components of an IR system.

Belief revision is more appropriate in the modelling of a user in the IR system. There, the beliefs
of the user can be included in an IR session, and can contradict past beliefs, so a belief revision is
therefore necessary. Research on this area of study can be found in [LRJ94, CRJ92].

2.3.3.3 Epistemic Logic

Epistemic Logic [Mo080] is a variant of Modal Logic. The necessary modal D is replaced by a
family of operators J(a, where J(aP means that a knows p14. Based on a possible-world semantics
approach (see section 2.3.2), J( aP is true in a possible world w iff P is true in every possible
world w' that is an epistemic alternative of w. Epistemic Logic aims to model the reasoning of an
ideally rational agent, reflecting his or her own knowledge. It takes a set of sentences as a theory,
which represents the total knowledge of that agent. An accessibility relation is used, which can
be viewed as an alternative epistemic state of the agent. The axioms that define Epistemic Logic
are similar to those defined in Modal logic. The main difference is the presence of an argument
which relativizes each axiom to a particular owner.

A possible application of Epistemic Logic in IR is to consider an agent either as a type of IR system
(for example, Boolean, Probabilistic or Logical), a component of the IR system (for example, the
system, the indexer, or the user) or as a type of an IR session (for example, user modelling).

14 Or operators Ba where BaP means Ua believes p".
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Different types of reasoning could be consistently modelled, compared or combined. Such IR agents
have been proposed in [HvL96]. Another approach can be found in [Seb94], where Autoepistemic
Logic (an Epistemic Logic that concerns one agent) is used to model subjective-based beliefs to
distinguish this type of belief from frequency-based beliefs. The model is, however, irrelevant to
the notion of the flow of information in an IR system.

Epistemic Logic is concerned more with modelling knowledge and action, and could be used at
the meta-level modelling of an IR system, where different agents are considered. On its own,
Epistemic Logic does not help to model the flow of information.

2.3.4 Cumulative Logic

The axiom-based system of Classical Logic uses the derivability relation f-. For two propositions
p and q, p f- q means that q is derivable or inferred from p (see section 1.4 of Chapter 1). The
derivation consists of a finite sequence of axioms or applications of inference rules. As stated
in Chapter 1, the derivability relation is much too rigid for representing the flow of information.
Also, it allows, among others, the following two inferences:

(i) if p f- q then p /\ r f- q
(ii) if p f- q then p f- q V r

The irrationality of (i) can be illustrated by the following example: "if it does not rain, I will not
get wet" implies "if it does not rain and I jump in the water, I will not get wet". (i) holds because
the derivability relation is a monotonic inference reasoning (see footnote in section 2.3.3.1). An
example of (ii) is as follows: "if I work hard, I will finish this report today" implies "if I work
hard, either I will finish this report today or frogs are green creatures". (ii) comes both from the
transitive property of the derivability relation and the semantics attached to disjunction which do
not capture the intensional nature of information.

Weaker derivability relations have been proposed, and one of the weakest is defined in Cumulative
Logic [KLM90] as the consequence relation, denoted r. Given two formulae p and q, p r q
means that p normally implies q. pr q is called a conditional assertion or simply an assertion.
An advantage of Cumulative Logic is that the assertion p r q is evaluated only if p is true. This is
not the case in Classical Logic because the evaluation of p f- q includes the cases where pis falsel5.

Cumulative Logic addresses three types of knowledge. The first type is unconditional constraints
such as "roses are flowers" or definitions such as "tall is equivalent to not short". They are
represented by tautologies, for example, 1= p -+ q or 1= p f-+ q. The second type is facts that
describe a situation, and are represented by formulae. The last type is conditional assertions which
constitute a database.

The reasoning process of Cumulative Logic is as follows: given two formulae p and q, to answer
q from a situation described by p is to infer p r q from the database. The reasoning process in
Cumulative Logic is different to that in Classical Logic. In the latter, given two propositions, to

15 This is because p f- q is equivalent to f- p -t q. In contrast, Cumulative Logic does not allow the expression of r p -t q.
Moreover, Cumulative Logic differentiates between T /\ P r q and T r p -t q, where T is a proposition. If r is true, the first
assertion says that if it is the case that p is true, then normally q, whereas, the second assertion is automatically verified if p is
false.
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answer q from p is to prove that p f- q, and not to infer p f- q from a database'".

The deduction process is based on five inference rules. They are listed below (in the following
discussion, p, q and r are formulae). The first rule is Reflexivity:

Reflexivity is satisfied by most derivability relations. The second rule is Left Logical Equivalence:

1= p f-+ q,p f--- r
qf---r

This rules expresses the requirement that logically equivalent formulae have exactly the same
consequences. The third rule is Right Weakening:

I=p-+q,rf---p
rf---q

This rule states that any logical consequence of a formula p is normally implied by a formula that
normally implies p. The fourth rule is Cut:

P 1\ q f--- r,p f--- q
pf---r

Cut expresses that a hypothesis proven plausible from a set of facts can be added to this set of facts
without altering anything this set of facts normally implies. The last rule is Cautious Monotonicity:

p f--- q,p f--- r
pl\qf---r

This rule indicates that adding a new fact into a set of hypotheses, the truth of which could have
been concluded by this set, should not invalidate previous conclusions.

A model of an IR system based on Cumulative Logic represents a knowledge set by the set of
assertions and the set of tautologies. If the document is a formula d and the query a formula q,
asserting relevance consists of formally deriving d f--- q with the use of the above five inference
rules. Although it is preferable that a document should not be modelled by a proposition, this
approach is still studied, since a weaker derivability relation may lead to an appropriate model
of an IR system.

First, Reflexivity expresses that a document is relevant to itself. Second, Left Logical Equivalence
and Right Weakening incorporate tautology-based relationships, but these rules cannot embody

16 In Classical Logic, the reasoning process involved in proving that p I- q has the following general form:

q

In Cumulative Logic, the reasoning process involved in proving p r q has the following general form:

database
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intensional expressions. Finally, both Cut and Cautious Monotonicity capture intensionality on the
basis that no inconsistent derivation is allowed. Cut rejects the transitivity of f---- (this is done by
mentioning q in the assertion p 1\ q f---- r), which ensures that a context is somewhat preserved
with respect to the first assertion p r q. Although the contexts are not explicitly represented, their
effects are embedded in the fact that no inconsistency arises. Cautious Monotonicity is a weaker
version of monotonicity, and captures contexts by restricting the q in p 1\ q r r 17.

A model based on Cumulative Logic presents many weaknesses. First, intensionality is not
explicitly represented; its effect is just ensured. Second, the transformation of a document is not
physically represented because the document and the result of the transformation of that document
are not distinguishable. A better use of the consequence relation would be to find the closest formula
to d, for example d', such that d' f---- q. However, this is beyond the scope of Cumulative Logic.
The disadvantage in not distinguishing between a document and its transformation is that alternative
transformations cannot be represented. Moreover, the partiality of information seems difficult to
embody because the consecutive representations of a document's information content cannot be
modelled. Third, there is no distinction between an assertion that is initially given and one that is
inferred. Assertions are part of the knowledge set; they constitute informative relationships, and
determining relevance consists of deriving an assertion. Hence, the representation of a relationship
of the knowledge and the implicit containment are modelled in the same manner. Finally, the
evaluation of the relevance of a document as the proof of d f---- q means that the existence of an
informative relationship between d and q is sought. This approach does not view the document as
the provider of information. It would be more correct to establish relevance if some informative
relationships exist between the information contained in the document and the query.

In conclusion, although r is a weaker derivability relation and it captures contexts better than 1-,
it is inadequate to build an IR model that caters to the representation of the flow of information.

Other types of consequence relations have been used in IR. For example, Bruza [Bru93] defines a
consequence relation at the level of information (referred to index representation) to model plausible
inference, and not at the level of document versus query. An example of such an inference is as
follows:

pollution in Australia r water pollution
The model is developed at a linguistic level and does not cater to higher-level relationships such
as those based on the flow of information.

2.3.5 Conclusion

None of the truth-based frameworks were successful in modelling the flow of information as defined
in this thesis. Three-valued Logic and Modal Logic frameworks model the flow of information by
a monotonic function and an accessibility relation, respectively. In both frameworks, the nature
of the flow is not explicitly captured, and is simply modelled by the fact that two representations
of a document are linked together. Default Theory bases its reasoning on the premise that some

17 Cut can be problematic if the evaluation of p f.-- q is done in parallel with an uncertain mechanism. That is, if p f.-- q means that
q can be derived from p with certainty greater than 0, p II q f.-- r signifies that r can be obtained from p II q with certainty greater
than O. There is no evidence to conclude that r can be obtained from p with certainty greater than O. As for Cut, an interpretation
of Cautious monotonicity that uses an uncertainty measure invalidates this rule. For example, p f.-- q and p f.-- r cannot capture
the fact that sometimes q is inferred from p, and other times r is inferred from p. It is incorrect to infer p II q f.-- r since q and r
are alternative inferences from p.
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information cannot be proven false, which is not in accordance with the flow of information.
Belief Revision suffers the drawback that it refutes the information that initially constitutes the
document. Also, new beliefs are acquired without necessarily knowing how they were obtained;
they do not come from the information containment. Epistemic Logic cannot be used to model
the flow of information because it has another philosophy that is not concerned with the flow
of information. Cumulative Logic offers a weaker inference mechanism, and is better than the
derivability relationship in Classical Logic, but still presents many deficiencies with respect to the
modelling of information flow.

2.4 Semantic-based Frameworks

The purpose of a semantics-based framework is to model the meaning of information expressed in a
natural language. Semantics-based frameworks are based on truth, but they are more appropriately
used for the representation of the meaning of information. Three frameworks are presented:
Intensional Logic [PtMW90], Montague Semantics [DWP81, Mon74] and Data Semantics [Lan86].

2.4.1 Intensional Logic

The embodiment of contexts is an important goal of IR. Indeed, natural language is ambiguous
so an expression may have different meanings in different contexts. Such an expression was
qualified as intensional. The meaning of an expression sometimes depends on the meaning of its
sub-expressions in other contextsl''. This type of expression is also qualified as intensional.

The reason for developing Intensional Logic is usually illustrated with the use of referential noun
phrases, that is, noun phrases that refer to objects or individuals. In the sentences "Hesperus is
Phosphorus" and "Hesperus is Hesperus"!", "Hesperus" and "Phosphorus", both proper names, are
referential noun phrases. The two sentences express true statements because both noun phrases
refer to the same object, the planet Venus. The noun phrases have the same semantic value'".
If the semantic value of a statement is a truth value, two referential expressions with the same
semantic value may be substituted for each other without changing the truth value assigned to the
statement21. However, the first statement is informative while the second is not. Indisputably,
truth value alone is an insufficient semantic value for a statement. As Frege explains [Fre60], the
semantic value of an expression involves two entities: the reference and the sense. Proper names
or other referential noun phrases may refer to the same objects or individuals, but they differ in
sense. Consequently, identity statements+ are informative when they are constituted of expressions
with different senses; they are true when they refer to the same objects. Similarly, tautologies,
which are always true statements, may contain different information.

Intensional Logic symbolizes reference and sense by relativizing semantic values to indexes, which
can be viewed as a generalization of worlds. The reference of an expression is defined for each

18 An example is the semantics of Op in Modal Logic where a world acts as a context.
~9 This example is taken from [PtMW90j.
o In addition to a truth value. an object, an individual, a set of objects, a set of individuals or a function can constitute a semantic
value [PtMW90j.

21 Substitution of semantic equivalent expressions is an important rule of inference in most truth-based systems (an example is Left
2 Logical Equivalence in Cumulative Logic).
2 Statements of the form "A is S".
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index. It is known as the extension of the expression at that index. The sense of an expression,
referred to as its intension, is a function from indexes to extensions. An expression is intensional
if its evaluation involves several indexes; otherwise, it is exiensionai+.

If an index is viewed as a model of a context, then the text of a document is composed of many
intensional expressions. For example, a document that mentions the "100m world record holder"
may refer to different individuals; "Carl Lewis" in 1991, then, a month later, to "Leroy Burell".
Polysemic words are another example of intensional expressions since their sense varies with the
context in which they are used. There are many other examples of intensional expressions in
natural language (a detailed expose can be found in [PtMW90]).

An intensional model is a structure M = (P, I, R, F) where P is the set of propositions, I is the
set of indexes, R is the relation between indexes and F is the function that assigns functions, from
indexes to extensions, to basic expressions/". The semantics of non-basic extensional expressions
(for example pV q, ,p, or p -+ q) are defined in the standard way, but with respect to indexes. The
evaluation of non-basic intensional expressions takes into account the connection between indexes,
where substitution is index-dependent. The equivalence of expressions is defined at different levels,
for example, with respect to one index, all indexes, or at the intensional level. A detailed account
of Intensional Logic can be found in [DWP81] and [vB85].

A document can be regarded as a set of intensional expressions. With Modal Logic, a document
was represented by one possible world. In Intensional Logic, the representation of a document
may involve several indexes. One approach+' is to represent the document by an intensional model
D = (PD, ID, RD, FD). Each identified context of the document constitutes an index of ID.
This set may include indexes related to those that are explicitly determined from the document.
For example, the model of a document about past wars could include contexts about actual wars.
The intensional model captures the document information content by relativizing information with
respect to indexes. These are related to each other to express possible links with each other. For
example, the index related to actual wars is connected by RD to the indexes concerned with past
wars. The connection can be viewed to some extent as the expression of the flow of information.

A query is represented by an intensional formula. Determining the relevance of the document to
the query consists of evaluating the formula q in the model D.

A model of an IR system based on Intensional Logic presents several problems. The first is
related to the evaluation of the query, because the indexes related to the query formulae have to be
identified. That is, the semantic value of the query formula has to be determined first. This is not a
straightforward task, particularly in automatic-based IR systems. A more substantial problem with
this approach is that the transformation of a document into another is not symbolized because the
document information content, either explicit or implicit, is embedded in the intensional model.

23 A basic expression can be explicitly indicated as extensional or intensional with the use of two operators v and II [PtMW90].
The understanding of these operators is both complex and unnecessary in the purpose of this discussion. Therefore, these operators
are not mentioned.

24 This is a very simplified description of Intensional Logic.
25 A second approach would be to define a general intensional model, and to model the document by a set of indexes. If the indexes

related to the document are considered only, this approach reduces to the previous one. A third approach would be, again, to
consider a general intensional model, and to evaluate in this model d -+ q; d is the document formula and q the query formula.
Implications are extensional formulae, for their evaluation is with respect to a given index; although the formulae d and q can be
intensional. This approach is not considered because of the semantics attached to -+. Indeed, in an index, the evaluation of d -+ q
is true if d is false.
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The transformed document's representation is already included in the intensional model, which
formalizes the document's information content. It then becomes impossible to ensure minimal
transformation since the evaluation of the query consists of traversing relevant indexes, and finding
those that satisfy the query. There is no notion of transforming a document until the information
being sought is obtained. This somewhat diverges from the idea of the flow of information as
identifying implicit information. Also, the connection between indexes is not necessary defined
in terms of information containment.

An additional weakness of Intensional Logic is that partiality cannot be represented because the
semantics of -+, /\ and V still hold, though relativized to indexes. For example, the sentences "it
is snowing" and "it is snowing and 2 + 2 = 4" are equivalent because the sentence "2 + 2 = 4"
is an item of information that is always a true statement. The two sentences "Keith did or did
not drink the wine" and "Mounia did or did not drink the wine" are always true statements. This
should not be the case because "Keith" and "Mounia" are not relevant to every context. If the
references of "Keith" and "Mounia" were not determined at all indexes, then these two statements
would not always be true.

Intensional Logic is a theory of meaning, not a theory of information. It is successful in capturing
contexts (or more precisely, intensionality), although the implementation of the indexes is not
obvious. Indeed, the identification of indexes, together with the way they are linked to each other is
very complex, more so for general-purpose IR systems. Intensional Logic is better at representing
the relevance of a document to a query because some expressions used in the document are
equivalent to those used in the query, not because the flow of information leads to the expressions
used in the query. Therefore, Intensional Logic is not used to model the qualitative components
of an IR system.

2.4.2 Montague Semantics

The framework of Intensional Logic has been developed independently from natural language,
although it is concerned with the intensional nature of natural language. Intensional Logic has
also been used to develop a formal semantics of natural language, namely Montague Semantics
[DWP81], whose enhancement towards Intensional Logic is that the basic expressions are words
of the English language. Also, the syntactic and semantic rules attached to the construction of
complex expressions, or groups of words, are specified in parallel.

The basic parts of speech such as noun, verb, determinant, or preposition constitute the basic syn-
tactic categories. An intensional-based semantic value is assigned to each basic syntactic category,
which can be as complex as second order lambda expressions [DWP81, Chu41]. For example,
the determinant "every" relates two entities, like "every student works" or "every dog barks". The
Montague semantics of "every" is a second-order lambda expression )"P )..Q Vx[P(x) -+ Q(x)].
It can be used with any two entities whose semantics are defined by P and Q. In Montague
Semantics, every basic expression is formally defined with respect to syntax and semantics, thus
leading to a uniform and rigorous natural language process.

The basic expressions are combined according to the syntactic rules of English grammar into
sUccessively larger expressions. These constitute the complex syntactic categories, such as noun
phrase (a preposition, an adjective and a noun), modified verb (a modifier and a verb) or the
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outmost category, a sentence. The semantics of a complex expression depends on the semantics
assigned to the basic expressions that compose it. This is called the Principle of Compositionality,
which is represented in the lambda calculus. Recursive rules, both at the syntactic and semantic
levels, are used for this purpose. The general idea is as follows:

If R is a syntactic rule taking input CK, /3, ... ,7] and gives <p, the semantic rule R' takes
as input the semantics of CK, /3, ... ,7] and yields something which is the semantics of <p.

Using the phrase "every dog barks", assume that the semantics of both "dog" and "barks" are two
functions dog and bark. The semantics attached to the whole sentence is then

()"P >..Q"Ix [P(x) -t Q(x)]) bark dog
(>..Q"Ix [dog(x) -t Q(x)]) bark

"Ix [dog(x) -t bark(x)]

The sentence is translated into a Montague-style formula, and can then be evaluated according to
the rules of Intensional Logic.

Montague Semantics considers a fragment of the English language and cannot portray all cases
of meaning. For example, it cannot analyze "bachelor" and "never-married adult human man" as
synonymous expressions, the determination of which is important in IR. Also, Montague Semantics
is not good at representing expressions that are not always related upon their meaning, as in
information containment. The fact that the semantic values of two expressions are common at
some indexes (or the fact that two expressions are relevant to related indexes) is not a good
indication of whether the information carried by one expression is contained in the information
Carried by the other expression.

A Montague Semantics-based model of an IR system is similar to that developed with Intensional
logic; the main difference is that all the English expressions that constitute the text are translated to
an intensional formulae, thus achieving a better uniformity. Montague Semantics should be used
if the task is to construct a model of the meaning of information, not if the flow of information is
a crucial qualitative component of the IR model.

Sembok [Sem89] has developed a linguistic model of an IR system using a Prolog-based simplified
implementation of Montague Semantics [Jow90, Jan80a, Jan80b]. Intensionality is dropped and all
the words in the text are assigned a syntactic category and a predicate-like semantic interpretation.
Logical and linguistic connectors (like "and", "or", and "to", "of') are explicitly represented by
predicates. An example of the translation of an expression in Sembok's model is

automatic analysis of information text
1

automatic(w), analysis(x), information(y), text(z)
a(w,x), r(y,z), of(x,z)

where "a" is the adjective-noun relationship, "r" is the noun-noun relationship and "of' is self-
explanatory. The evaluation of the relevance of the document to a query is based on a Prolog-style
unification rule. Sembok's model was not developed to represent the flow of information, but to
deal specifically with linguistics.

53



Chapter 2 Qualitative Theories for a Logic-based Model of an Information Retrieval System

2.4.3 Data Semantics

Data Semantics, as developed by Landman [Lan86], is a truth-based framework aimed at developing
a theory of information. For example, Data Semantics acknowledges the difference between the
information expressed in the sentence "the grass is green or the grass is not green" and a tautology.
The sentence contains no information on the color of the grass, whereas the tautology is an item
of information that is always true. Data Semantics also recognizes the subtleties in the information
expressed in the sentences "the grass is green and the grass is not green" and "the grass is green
and the grass is blue". The first sentence has no meaning and reveals no information because it is
a construction of no fact. The second sentence conveys incompatible information. Classical Logic
does not separate these two cases of true and false statements because its semantics is truth-based
instead of information-based. Therefore, the meaning of a sentence cannot be computed exclusively
on truth. Indeed, the absolute notion of truth and falsity of a sentence makes little sense for its
meaning. As Landman [Lan86] explains:

"You do not ask when a proposition is true or false, but rather what makes it true or false".

Data Semantics recognizes a sentence and the information conveyed by the utterance of that
sentence as two separate notions. Bearing this in mind, it proposes a representation of partiality,
modality, and conditionality, as practiced in natural language.

The ontology begins with facts as simple propositions. Complex propositions are constructions
derived from facts, and are defined with the connectors /\, V and '. The propositions carry
information about situations and classify situations by their informational aspect. The propositions
are partially ordered by a relation of information containment denoted ~, where p ~ q represents
that the information which p carries about a situation already contains the information that q carries
about that same situation. The impossible proposition, denoted .1, is the smallest proposition of
which the information it carries contains the information of all other propositions (which is too
much information). ..L portrays the incompatible information.

Situations are represented by information states. More precisely, an information state 8 is a set
of propositions such that

(i) 8 does not contain incompatible information (.1~ 8),
(ii) if p and q carry information about 8, so does p /\ q,
(iii) if p E 8 and p ~ q, then q E 8.

Often, not all the propositions that carry information about a situation are identified, and are
therefore partially identified. However, the information can grow to a certain limit and can be
eventually made total. The growth of information is symbolized by the notion of extension of an
information state to another. The fact that the information state 81 is extended into the information
state 82 is denoted 81 ~ 82. This indicates that 82 contains all the information which 81 contains,
and possibly more.

An information state is a partial representation of a situation. Thus, it can properly model a
document. Extended information states model the results of subsequent transformations.

Based on the definition of facts, propositions, information states, and extensions, Data Semantics
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puts forward a theory of information focussed on a proper formalism of conditionals (p -+ q) and
modals (must p and may p). The truth or falsity of a proposition is relativized to information
states. The fact that a proposition p is true on the basis of the information state s (i.e., pEs) is
written s 1= p. The fact that a proposition p is false on the basis of the information state s (i.e.,
for some q E s, P /\ q = .L) is written s ~ p. Note that the negation is explicit.

Data Semantics acknowledges two types of propositions: stable and unstable. A proposition is
stable in a state if is not denied in some extended states. Example of stable propositions are p V q,
P /\ q or =p, providing that both p and q are stable. Examples of unstable propositions are p -+ q
or may p. The reason for their instability is explained later in this section.

Here are some basic concepts defined by Data Semantics:

(i) The set E( s) = {s' : s ~ s'} is the set of extensions from the information state s.

(ii) C is a chain of E( s) iff for all s', s" E C, either s' ~ s" or s" ~ s',

(iii) A chain C is maximal if it cannot be extended further. A maximal chain is called a branch,
which can be viewed as a complete way to follow the extension of information starting
from s.

(iv) B( s) is the set of branches from s.
(v) An information state s' is called a minimally p-verifying information state of a branch of

B( s) if s' is the first information state in that branch in which p is true (i.e., s' 1= p and no
other situation s" is such that both s C s", s" C s,26 and s" 1= p).

The last notion is necessary for the representation of unstable propositions. For example, may p
is an unstable proposition. Its (simplified) semantic is

s 1= may p iff there is some b E B( s) such that s' E b and s' 1= p.

This means that, in case of limited evidence, may p is considered true as long as s can be extended
to an information state s' such that s' 1= p. If no such information state exists, may p becomes
false. As soon as an information state that contains a proposition that contradicts p is reached,
the truth value of may p changes. It is therefore necessary to identify the information states in
which a new item of evidence is acquired because its arrival might change the truth value of
unstable propositions.

Although the notion of unstable propositions is not foreign to the notion of the flow of information,
these two notions are nevertheless dissimilar. Unstable propositions model the lack of information
at one state. Let p be the proposition representing the information whose obtainment is examined
at a given state. The proposition may p is true as long as p can be obtained in some extended
states, whereas the flow of information is more concerned with the fact that the state is extended to
another state that contains the information p. These are two distinct phenomena. The expression of
unstable propositions is irrelevant to a model of the flow of information. Therefore, Data Semantics
ontology is not further'? described because its purpose is the modelling of unstable propositions,
which do not concern this thesis.

26 s C s' is the same as s C s'. with the restriction that s cannot equate s' .
27 Data Semantics ontology-is more expressive than has been demonstrated so far.
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Data Semantics can offer a basis for a model of an IR system, although the expressiveness of
its ontology is under-used. If a document is represented by an information state d, and q is the
proposition representing the query, then d 1= q would mean that the document is relevant to the
query. If it is not the case that d [;i: q, then the document may still be relevant to the query. In this
case, the evaluation of the relevance consists of finding a branch that leads to an extension that is
characterized by the query proposition. The minimally q-verifying state of that branch explicitly
represents the first state that makes q true. Transformations are represented by the extensions of
information states and the minimality of a transformation can be explicitly ensured. A possible
model of an IR system based on Data Semantics is summarized in the following table28:

d Information State d

q Proposition q

K Information containment ~
d~q The proposition belongs to the information state qEd

d-+q The minimally q- veryfying extension d' from d exists d' 1= q

Table 2.6: The modelling of the quantitative components with Data Semantics

The knowledge set is represented by the set of relationships of the form p ~ q (and tautologies).
Its nature is more elaborate than if it were based (as in many frameworks) only on tautologies.
However, information containment is represented with respect to the same information state, not
as the basis of an extension. That is, an information state does not become extended on the basis
of the information carried by that information state. The extension of an information state occurs
from the acquirement of new information, and not from explicit informative relationships.

Although many concepts of Data Semantics seem appropriate to model minimal transformation,
Data Semantics is not used in this thesis to model the qualitative components of the IR systems,
mainly because the informative relationships leading to the transformation of a document cannot
be represented. However, as it will be shown in Chapter 4, some of its terminology is kept; for
example branch and minimal extension. Their definition is modified to be compatible with the
ontology of the framework used for modelling the qualitative IR components.

Data Semantics has been used in the area of IR modelling, though in a different perspective. Bruza
and Huibers [BH94] use Data Semantics to develop a framework in which different models of IR
systems can be expressed. Axioms are defined which represent properties of IR systems. Bruza
and Huibers aim to develop a uniform framework in which IR systems are compared on some
theoretical background, and not on experimental results. Their work is not concerned with the

28 An interesting point concerns conditional sentences. A simplified version of the semantics of the conditional s F P --+ q is as
follows:

Jar all s' :2 s, iJ s' FP then there is some s" :2 s' such that s" F q

It seems that this definition could be used to model the Logical Uncertainty Principle [vR86a], upon which the Transformation
Principle is derived. The Logical Uncertainty Principle considers the addition of information to the knowledge set. s could
represent the knowledge set, and the propositions P and q could be representations of the document and the query, respectively.
The knowledge set is extended to some state where P is true. The document is relevant if this state can be further extended to
a state that makes q true. This process is, however, different from one that results from the behavior of the flow of information.
Also, the problem in considering the truth of the document proposition document was discussed in Chapter I. And, nevertheless,
the transformation is applied to the document, not to the knowledge set. This issue is not investigated further, because this thesis
considers the document as the provider of information.
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representation of the model of an IR system based on the flow of information, which is the main
concern of this thesis.

2.4.4 Conclusion

Semantics-based frameworks can be used to develop a model ofIR systems, but only ifthe objective
is to model the meaning of information. Intensional Logic allows the incorporation of contexts
(intensional expressions); however, it does not capture the flow of information as being the basis of
a transformation. Montague Semantics, based on Intensional Logic, is an appropriate framework
if a robust natural language process of the document is desired. It is concerned with the meaning
of the sentences in the text document, not on the information content of the document. Finally,
Data Semantics, which so far is the closest framework for developing a model based on a theory
of information, has a different purpose; the representation of unstable propositions. This is not the
same as the information that comes from the flow of information. In conclusion, a model based
on the flow of information requires other frameworks than those proposed so far.

2.5 Information-based frameworks

This section concerns information-based frameworks. Three information-based frameworks,
namely Situation Theory [Bar89, BE87, BE90, Dev91], Channel Theory [Bar91, Bar92, SeI90],
and Scott Domains [Sc082] are presented. Situation Theory is the theory adopted in this thesis, so
its description is detailed. Channel Theory is an extension of Situation Theory and has been used
to develop a theoretical model of the flow of information for IR [Dre81]. Scott Domains enables
the representation of structured information, an issue which has not yet been discussed.

2.5.1 Situation Theory

Situation Theory considers that, in a science of information, the most important entity should be
information. Therefore, it proposes a mathematics of information and its flow.

The development of Situation Theory is based on the work of Drestke [Dre81] on information and
flow. Situation Theory is described in detail because it is adopted as the basis for the modelling
of an IR system. As Devlin [Dev91] says, the Situation Theory point of departure is

H••• the assumption that there is such a thing in the world as information".

An entity that is able to extract information from the world is called a cognitive agent. The
acquisition of information is a process analogous to going from the infinite and continuous to
the finite and discrete; Dretske refers to this process as the analog to digital representation of
information. The extraction of information is done in two stages: first, the perception and, second,
the cognition. The perception provides the information to the cognitive agent in analog form and
the cognition corresponds to the conversion of analog to digital by that cognitive agent. Drestke
calls this conversion a digitalization. The fundamental forms of information relevant to a cognitive
agent are



Chapter 2 Qualitative Theories for a Logic-based Model of an Information Retrieval System

The objects al, ... ,an have the property P
The objects al, ... ,an do not have the property P

These forms are modelled in Situation Theory by infons [Dev91]:

The objects '1' and '0' are called the polarity of the infons. The first infon is said to be positive
and the second is said to be negative. The two infons are the dual of each other.

Suppose the information a cognitive agent obtains is that Mounia (myself) is work-
ing in her office. Situation Theory models this item of information by the infon
~ Working, M ounia, 0Ilice; 1 ~. If a cognitive agent does not observe the fact that I
am working in my office (for example, she sees explicitly that I am drinking coffee), the infon is
~ Working, M ounia, 0Ilice; 0 ~. Nothing is said so far about the truth or falsity of these
two infons; an infon is just the representation of an item of information. What makes an infon
true is the situation from which the information represented by that infon is extracted. In addition,
there might be several situations that make an infon true. Situation Theory models the notion of
"make true' by the support relation, denoted 1=. If (J'is an infon and s a situation, then

sl=(J'

This should be read as s supports (J',which means that s makes (J'true. Situations refer to some part
of the world, and are the place where the information resides. In Situation Theory, the denotation
of a sentence is not its truth value, but a statement that the sentence (the information it expresses)
holds in a particular situation. Situation Theory is explicit about the ontology of situations. It treats
them as genuine entities in their own right, not merely as formal devices as in semantic-model
approaches.

A situation provides information in analog form which is digitalized by a cognitive agent. Often, the
amount of information provided is unlimited, but not all of it may be digitalized. The information
that is extracted from a situation depends on the agent's perception capability, focus of attention,
and knowledge of the environment. Consequently, a situation supports information modelled by
way of positive and negative infons, but ignores many other non-related information items. This
implies that situations are partial objects; they are partial representations of some parts of the world.

A situation seems like a perfect analogy to a document. This interpretation, as it is shown in
this thesis, enables the explicit representation of the flow of information. To show this, further
concepts need to be introduced.

Situation Theory introduces a level of abstraction among infons. For example, the three following
infons:

~Working,Mounia,Ollice,3pm; 1~
~ Working, M ounia, Library, gam; 1~
~ Working, M ounia, Home, llpm; 1~

have the common information that Mounia is working. The differences are the place and time of
the action. This commonality is represented in the theory by types of situations, or simply types.
Here the corresponding type would be

<P = [sis l=4M'orking,Mounia,p,i;~]
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This type classifies all the situations where a person referred to as Mounia is working at a given time
and place. Here s, p and i are parameters representing a situation, a place and a time, respectively.
Any situation that supports the information that Mounia is working at a given time and place is
of type cp. This is written as s 1= cp (in [Bar89], this is written s : cp)29. The instantiation of
parameters, called anchoring, has to be concluded before affirming that s 1= cp. For example, a
situation where Mounia is working at the library at 6pm is of type cp since p can be anchored to
"library" and i to "6pm". Parameters and anchoring are not essential to the understanding of the
model, and are therefore not mentioned.

Now that types are defined, the flow of information can be modelled. Consider the two types:

ip = [sis I=~ Presence,smoke,p,i;l~]
1/J = [sis I=~ Presence,jire,p',i';l~]

These types are not information-independent. The information they represent is related because
the presence of smoke in a place means that there was, or is, a fire nearby. A flow of information
indicates that a situation which supports cp (smoke) additionally carries the information that some
other situation supports 1/J (fire). The nature of the flow is formally represented by a constraint,
with respect to the above types, denoted cp --. 1/J30. Constraints, when applied to a situation, bring
additional information about the same or other situations. Let the constraint cp --. 1/J be applied to
a situation s. This is possible only if s 1= ip, and it implies that there is a situation s' such that
s' 1= 1/J. The situation s carries or contains information about s', which can be either the same as
s or different because a situation can carry information about itself as well as another situation.

The constraint and the two situations affected by this constraint model the transformation of a
document. That is, if a document is modelled by a situation d that supports ip, and cp --. 1/J is a
constraint, then d is transformed into a situation d' that supports 1/J. The transformation is explicitly
determined by the constraint that makes the transformation. Unlike other frameworks, Situation
Theory explicitly represents the flow of information that enables the transformation. The nature
of the flow is determined by the constraints. Often, this was not represented in other frameworks,
and when it was, it was not a correct representation of information containment (see Default Rules
in section 2.3.3.1).

Constraints provide an accurate tool to represent thesaural or any semantic and pragmatic relation-
ships. A document viewed as a situation supports the explicit information, and carries the implicit
information which depends on the available constraints. This is a superior aspect of Situation The-
ory. The knowledge set J( is therefore the set of constraints which are informative relationships.

Flows of information do not always materialize due to the unpredictable nature of situations, thus
indicating that flows are often uncertain. In Situation Theory, an uncertain flow is modelled by

29 A type can be constituted of several infons as the example below shows:

[ {

<:: Working, M ounia; 1 ::> }]

sis F <:: Wri~ing, ~ounia, Thesis; 1 ::>

<:: TopIC, Wme; 0::>

The comma between the infons can be read as conjunction. The choice between comma and conjunction depends on the ontology
adopted in the theory.

30 Note that the interpretation of --+ in a constraint is different from that in Classical Logic.
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a conditional constraint of the form t.p -+ '1f11B. This constraint highlights the fact that t.p -+ '1f1
holds if some background conditions captured within B are met. A constraint that does not
involve background conditions is unconditional. If the background conditions are satisfied, the
corresponding flow arises. The flow of information depends on the satisfaction of these background
conditions. The advantages of the background conditions in an IR system are that intensionality
can be represented and uncertainty is already qualitatively captured. This was not the case with
other frameworks.

In summary, Situation Theory represents a document by a situation, the information in the document
by types, the modelling of the explicit information by the support relation, and the implicit
information by the application of constraints. Both sequential and parallel transformations can be
represented (to be demonstrated in Chapter 4). Situation Theory provides the necessary ontology
to model the qualitative components of an IR system. Therefore, it is used in this thesis to model
the qualitative aspects of an IR system. The model is summarized in the table below:

d Situation S

q Type 'P

K The set of constraints {O' -+ .BIB}

d~q The situation supports the type sF'P

d-+q The situation carries the type s F~' ~-+'PIB

Table 2.7: The modelling of the quantitative components with Situation Theory

The use of Situation Theory provides an additional benefit because it has been used to develop a
framework for natural language processing. This framework is called Situation Semantics [BP83,
Coo]. It models the utterance of a sentence with three entities: the type that represents the
information content of the sentence, the situation that the sentence describes, and the situation in
which the sentence is uttered. All the components of a sentence are defined in terms of these three
types of entities, which are combined to form the three entities of the sentence. A model based on
Situation Theory can use Situation Semantics as the natural language process to identify the types
that are supported by the situation modelling the document.

2.5.2 Channel Theory

A situation can contain information about another situation, thus there is a flow of information
between the two situations. The nature of the flow is determined by constraints which are passive
objects; they become active and give rise to a flow of information whenever they are related to pairs
of situations. It is often the case that two situations are systematically related to each other. For
example, a situation where smoke is perceived is related to a situation where a fire has occurred.
A situation where a person hears the door bell ringing is related to a situation where a second
person is at the door pressing the bell. Two kinds of relationships are involved: one that links
types, and one that links situations. The concept of a channel is introduced by Barwise [Bar92]
to express relationships of the second kind.

Let c be the channel that connects two situations 81 and 82. This is written 81 ~ 82 and expresses
the realization of the situation 81 gives rise to a flow of information, which delivers some of the
infonnation supported by 82 with respect to that channel c. A link between two situations can be
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expressed by a channel, although it is not always possible to specify the nature of the flow that
circulates in the channel. If the nature of the flow is known, it is characterized by constraints. Let
<PI -+ <P2 be one of these constraints. In that case, the channel is said to support the constraint.
This is written c 1= <PI -+ <P2, which means that if SI 1= <PI. SI ~ S2, and <PI -+ <P2, then S2 1= <P2·

Channel Theory defines the device that supports the flow of information. This device is formally
described and its mathematical properties are specified (see [Bar92]). A special channel, the unity
channel, is defined to represent the fact that flow of information gives information about the same
situation. Two operations are defined on channels: ";", the sequential combination of channels and
"II", the parallel combination of channels.

In a Channel Theory-based model of an IR system, a document is represented by a situation and
a query by a type. Therefore, two types of knowledge exist: constraints and channels. The
knowledge set is composed of constraints (as it is in the model based on Situation Theory) and
of channels. A channel can be, for example, the link between synonymous information. If a
transformation is modelled by achannel, the two operators ";" and "II" can model, respectively, the
sequential transformation and the parallel transformation of documents. Determining the relevance
of a document is to find the channel, together with its nature, that leads the situation modelling the
document to one or several situations that contain the information being sought. A model based
on Channel Theory is summarized in the following table:

d Situation S

q Type cP

K
The set of constraints {a --+ .BIB}
The set of channels {cl

d=?q The situation supports the type sFCP

d--+q A channel leads to a situation that supports the type s ~S', s' F cP

Table 2.8: The modelling of the quantitative components with Channel Theory

The advantage of Channel Theory is that a transformation is ontologically defined; that is, it is
physically represented. This allows theoretical studies at two levels: the transformation and its
nature. These two levels can be studied separately, eventually leading to a better understanding
of the flow of information in IR.

A Channel Theory based theoretical model is proposed by Van Rijsbergen and Lalmas [vRL96].
However, in this thesis, Situation Theory is adopted for modelling the qualitative components of
the IR system because an implementation of a model based on Situation Theory is sufficiently
complex enough; the implementation of channels is not obvious.

2.5.3 Scott Domains

In section 2.2.1, it was mentioned that information can be organized into structures, thus leading to
a structured representation of a document. In this thesis, the information that constitutes a structure
is semantically related. For example, a structure can be viewed as the representation of a topic of
a document. That is, the information which concerns the same topic are grouped together in the
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same structure. This structured representation of the document can be used to define the specificity
of a document (the concept of structures is formally defined in Chapter 5).

The representation of structures by the frameworks has not been discussed so far. The reason
being that the concept used for modelling a document in these frameworks can be used to model a
structure. The document is then modelled by a set of these concepts. For example, with Situation
Theory, a set of situations can be used to model a document instead of one individual situation.
Therefore, a model developed for the unstructured representation of a document can be used to
develop a model for a structured representation of a document. This approach is followed in
this thesis. Situation Theory is used to develop the model for an unstructured representation of
a document, and the model is then generalized to account for a structured representation of the
document.

The expression of the generalized model involves concepts that are not part of Situation Theory
ontology, although they can be defined with this ontology (this is explained in Chapter 5). The
missing concepts are taken from Scott Domains ontology [Sc082].

A Scott Domain is a set of elements which are described by properties. If a document is modelled by
a domain, an element constitutes a structure. The benefit of this is that a model based on Situation
Theory can be extended to include structured information because situations are comparable to
elements. In Chapter 5 the analogy between an element and a situation is described in detail. A
formal comparison can also be found in [Bar92].

Domains can be linked or related to each other by an approximate mapping, a function j, the
properties of which are given in Chapter 5. If elements are thought of as situations, the function j
can formally be defined based on the constraints in Situation Theory. If a document is represented
by a domain, then the transformation of a document is formally represented by the function
f. Moreover, approximate mappings can be combined to form the composition of approximate
mappings; this models sequential flow of information.

The description of Scott Domains is given in Chapter 5 because the understanding of the use of
Scott Domains requires the understanding of the approach adopted for modelling an unstructured
representation of a document.

2.5.4 Conclusion

Three frameworks were discussed in this section. Situation Theory can represent all the qualitative
components that define the IR model, and is adopted in this thesis for the qualitative modelling of
an IR system. Channel Theory is an extension of Situation Theory, and has not been selected since
its implementation is complex. A theoretical model based on Channel Theory was developed in
[vRL96]. Scott Domains provides the terminology for the model which accounts for a structured
representation of a document.

2.6 Conclusion

Three types of frameworks that can be used for the qualitative modelling of an IR system have been



Chapter 2 Qualitative Theories for a Logic-based Model of an Information Retrieval System

described. They are truth-based frameworks, semantics-based frameworks and information-based
frameworks. The weakness of truth-based frameworks lies mainly in two areas:

(i) the information contained in a document is represented by true propositions;

(ii) the flow of information is inappropriately represented because in most cases it is not possible
to represent a transformation (the existence of a flow of information) and the nature of that
transformation (the flow of information itself).

The disadvantage of semantic-based frameworks is that their aim is to represent the meaning of
the information, not to model information content. Though determining the meaning of words,
phrases, sentences, etc., that appear in a document is important, meaning on its own is still not
sufficient to capture the information content of a document, for the latter often exceeds its meaning.

The use of Channel Theory for the modelling of the flow of information has been discussed in
[vRL96]. The problem with an IR model based on Channel Theory is that the implementation of
the model will be complex.

In conclusion, Situation Theory, an information-based theory, is used to model the qualitative
features of an IR system because it can provide all the qualitative components of an IR model.
That is, it satisfies all the requirements of a model based on the flow of information, which are:
the document is a provider of information; its partial representation is modelled; intensionality
is captured; the knowledge set is explicitly expressed; the uncertainty is captured (although
qualitatively).

The majority of truth or semantics based frameworks use a syntax that has nothing to do with
information content. The semantics are then attached to the syntax to model the information
content. In Situation Theory, the semantics and the pragmatics are explicitly incorporated as
first-class citizens, and a syntax is used so the semantics of information can be expressed.

Two models are proposed in this thesis, one that account for an unstructured representation of
a document and one that accounts for a structured representation of a document. Although the
expression of both models is based on Situation Theory, some terminology from Data Semantics
and Scott Domains are borrowed, leading to a clear description of each model.

In the next chapter, frameworks that can provide the quantitative components of the model of an
IR system are studied.



Chapter 3

Quantitative Theories for a
Logic-Based Model of an
Information Retrieval System

3.1 Introduction

A logic-based model of an IR system that follows the Transformation Principle involves both
qualitative and quantitative components. The qualitative components and their modelling were
discussed in Chapter 2. The present chapter is concerned with the quantitative components and
their modelling. It is shown in this chapter that the frameworks that can be used to model these
components are those used to model uncertain inference [KC93, Fr086]. Three of the most used
frameworks representing uncertain inference for IR purpose are examined: the probabilistic-based
framework [00050], fuzzy logic [Zad65], and Dempster-Shafer's Theory of Evidence [Dem68,
Sha76]. This chapter demonstrates that the last framework models the quantitative components
best.

3.2 The quantitative components

In the Transformation Principle, the relevance of a document d to a query q? represented as d -+ q,
given a knowledge set, depends on the minimal transformation of that document to a document d'
which contains the information solicited in the query. In the previous chapter, only a qualitative
evaluation of the relevance was considered; the document d is relevant to a query q if such a
document d' exists. However, some documents are often more relevant to a query than other
documents, so retrieved documents should be ranked according to their relevance to the query.
Therefore, a quantitative evaluation of the relevance is necessary to express the extent to which a
document is relevant to a query in addition to the fact that the document is relevant to the query.

This quantitative evaluation of the relevance can be represented by a numerical value r( d -+ q)
such that the higher the value, the higher the relevance. r( d -+ q) is referred to as the degree
of relevance of the document d to the query q. Its value ranges in the interval [0,1] because, as
explained later in this section, its computation is based on the uncertainty of the transformation,
and uncertainty is usually represented by values of the interval [0,1].
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The evaluation of r( d -+ q) requires the definition of other numerical entities. These, together with
r( d -+ q), constitute the quantitative components of an IR system based on the Transformation
Principle. This section identifies and studies these components and their characteristics. As
discussed previously, two models of an IR system based on the Transformation Principle are
proposed in this thesis: one that accounts for an unstructured representation of a document,
referred to as the unstructured model, and one that accounts for a structured representation of
a document, referred to as the structured model. The identification of the quantitative components
is discussed for each model.

3.2.1 Quantitative components of the unstructured model

The following example of a transformation of a document is used to understand the functionality
of the quantitative components of the unstructured model:

Original document

• Final non-relevant document
® Final relevant document
O Intermediary document ... Transformation

Figure 3. J: Example of the transformation of a document in the unstructured model

d12

1
0d13

--------

The original document d represents the information explicit in the document. The original document
can be transformed into a document, which can itself be transformed to another document. These
transformed documents contain the information implicit in the document'". The transformation is
caused by the flow of information, which, in this thesis, is defined by relationships expressing the

31 Note that the original and the transformed documents refer to one document, but different representations of it. For simplicity, an
original document represents a document's explicit information content whereas a transformed document represents (some of) the
document's implicit information content.
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semantics between informations items (e.g., synonyms, generic terms, broader terms, etc.). These
relationships are stored in the knowledge set. In this chapter, a relationship is denoted p ---+ p',
where p and p' are information items. If the document d (explicitly) contains the information
item p, a flow of information based on the relationship p ---+ p' transforms d into, for instance,
the document d1 which (explicitly) contains the information item p'. Then, d implicitly contains
p'; that is, d -+ p'.

A sequence of transformations may be necessary to obtain a document that contains the information
requested by the query (e.g., d to dn). There may be alternative ways to transform a document.
The transformation of documents ceases when all the final documents (e.g., d2, ds, dlO, dn and
d13) either cannot be further transformed (e.g., d2, ds and dn) or contain the information being
sought by the query (e.g., dlO and d13). Also, alternative transformations may lead the document
d to the same transformed document (e.g., d12). These transformations are referred to as parallel
transformations.

As it will be explained in the next sections, the transformation of a document may involve
uncertainty, which is propagated and aggregated along the sequential and parallel transformations
of documents. These sections show that a numerical expression of this uncertainty, its propagation,
and its aggregation can act as an indication of the degree of relevance of the document to the
query. Moreover, the uncertainty of a transformation, the propagation and the aggregation of this
uncertainty, and the degree of relevance constitute the quantitative components of the unstructured
model.

In the next sections, Doc represents a set of documents, either original or transformed, Inf
represents a set of information items, and K represents the knowledge set, defined as K ~
In f x In f. The methods in which the documents and queries are represented, or the relationships
of the knowledge set are determined, are left aside.

3.2.1.1 Uncertainty of the transformation

Consider the relationship= j unciion -» purpose E K. The term "function" has several meanings
in English, and the relationship function "-"+ purpose holds only for one of these meanings.
Suppose that the transformation of d into d1 is based on this relationship. If it is not known which
meaning of "function" is referred to in d, then the relationship is uncertain with respect to d. As
a result, the information contained in d1 (e.g., "purpose") is uncertain with respect to d. In other
words, "purpose" is implicit and uncertain in d.

This example shows that a flow based on uncertain relationships leads to an uncertain transfor-
mation. The more uncertain the relationships, the more uncertain the transformation, and the more
uncertain the information contained in the transformed document (with respect to the original docu-
ment). In the unstructured model, the relevance of a document to a query depends on the existence
of a transformation that leads to the information sought by the query. An uncertain transforma-
tion will then affect this relevance. Therefore, the uncertainty of a transformation constitutes a
quantitative component of the unstructured model. Let

C : Doc x Doc -+ [0,1]

32 This relationship is taken from WordNet™ [Mil901. in which "function" and "purpose" are defined as synonyms (they have the
same meaning) in some contexts. For sake of clarity. in the examples used in this chapter. information items correspond to terms.
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be the numerical function representing the uncertainty of a transformation. If d is transformed into
the document d1, then C(d, d1) defines the uncertainty of the transformation. The lower the value
of C(d, d1), the more uncertain the transformation.

The function C should reflect two facts. First, for a document d; being transformed into a document
dj, the value of C( di, dj) depends on the uncertainty of the relationships used in the transformation.
The properties of the relationships and their uncertainty are discussed in Chapter 4. In the present
chapter, the function C is considered given; that is, the value of C(di,dj) is determined. Second,
for any document di, C(dj, dj) = 1, because no uncertainty is involved in transforming a document
onto itself.

3.2.1.2 Propagation of the uncertainty

A document that is transformed to another document can itself be the result of a transformation. In
Figure 3.1, d is transformed into d1 which is then transformed into d3. Suppose that the relationship
purpose r+ goal E J( is uncertain with respect to d1 and that the document d1 is transformed
into the document d3 based on this relationship. The information contained in d3 (e.g., "goal") is
uncertain with respect to the information contained in d1, which is itself uncertain with respect to
the information contained in d. Therefore, the information becomes increasingly more uncertain
with each transformed document. The uncertainty is said to be propagated along the sequence of
transformations of the documents d, d1 and d3.

Consequently, the more transformations are necessary to obtain the information being sought by a
query, the more uncertainty is propagated along these transformations, and the more uncertain is this
information. A numerical formulation of this propagated uncertainty can be used to quantitatively
express the relevance of the document to the query. Therefore, the propagation of the uncertainty
constitutes a quantitative component of the unstructured model. Let

w : Doc -+ [0,1]

be the numerical function expressing the propagation of uncertainty. For a document di, w( di) is
the uncertainty associated with di, and represents the uncertainty of the information contained in d;
with respect to d. In other words, W(di) is the uncertainty thus far propagated from the sequence
of transformations that lead d to di. The higher the uncertainty, the lower the value of w( di).

The computation of the value of w( di) depends on whether d; is an original or a transformed
document. No uncertainty is attached to the original document, because the information contained
in that document is certain. For example, in Figure 3.1,

w(d) = 1

If dj is a transformed document, then let di be the document that is transformed into dj. In
that case, w( dj) depends on w( di) (i.e., the uncertainty thus far propagated from the sequence
of transformations that lead d to dj), and C( dj, dj) (i.e., the uncertainty associated with the
transformation of d; into dj). Since information becomes more uncertain with each additional
transformation, the values of W(di) and w(dj) should be such that
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3.2.1.3 Aggregation of the uncertainty

There may be parallel ways to transform a document into another document. In Figure 3.1, two
transformations lead the original document d to the document dl2, where the transformations
are, for example, based on different relationships of the knowledge set. This can be viewed
as an accumulation of evidence towards the information contained in the document dl2; that
is, the information contained in dl2 should be less uncertain than if it was obtained by one
transformation alone. Therefore, if wl(dl2) and w2(dl2) are the uncertainty+' values attached
to dl2 with, respectively, the first transformation (via dB) and the second transformation (via d9),
then the overall uncertainty attached to obtaining dl2 from d should be a combination of the values
of wl(d12) and w2(dl2) such that its value is at least as high as wl(dl2) and w2(dl2). This
combination corresponds to an aggregation of the uncertainty, and will affect the relevance of the
document to the query. Therefore, the aggregation of the uncertainty is a quantitative component
of the unstructured model.

In general, a document d can be transformed in n > 0 parallel ways into some document di, and
that the uncertainty associated with each transformation is

for j = 1, n. These values are defined by the propagation of the uncertainty. If n = 1, then
wl (di) = w( di). Otherwise, the overall uncertainty attached to the document d, with respect to d
is defined as the aggregation of the uncertainty value of each of the parallel transformations. That
is, the values wj ( di) are aggregated into w( di) such that

meaning that the uncertainty decreases with the number of aggregations, thus reflecting the
accumulation of evidence towards the information contained in di.

3.2.1.4 Relevance degree

The relevance degree of a document to a query, manifestly, constitutes a quantitative component
of the unstructured model. It is modelled by the numerical function

r : Doc x In! ~ [0,1]

The degree of relevance is expressed with respect to the original document. In Figure 3.1, r( d ~ q)
denotes the extent to which the document d is relevant to a query q. The value of r(d ~ q) should
capture two important facts. First, the relevance of the document should increase with the number
of transformations of d that lead to the information requested by the query. Indeed, a high number
of such transformations means that there exists many alternative transformations of the document
resulting into documents containing information that concerns the query. This should indicate a
higher relevance of the document to the query. For example, in Figure 3.1, the relevance of the
document should be higher than if only dlO or dl3 was obtained alone, where obtaining the two
transformed documents dlO and dl3 could be due to the use of different semantic relationships.

33 The subscripts are used to differentiate the two transformations. If a is the uncertainty associated with the first transformation and
b is the uncertainty associated with the second transformation. then w1(d12l = a and w2(d12l = b.
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Second, the more uncertain a transformation, the less relevant the document is with respect to that
transformation. In Figure 3.1, the relevance of the document should increase if the uncertainty
attached to the transformation of d into, for instance, dlO was decreasing.

These two facts can be captured by defining the value of r( d - q) as the aggregation of the
uncertainty of those transformed documents which contain the query q. That is, the value of
r( d - q) is defined as the aggregation of the values of w( d') such that d' is a transformation of
d and d' contains q. If there is only one such document d', then

r(d - q) = w(d')

Otherwise, r( d - q) is such that

r(d - q) ~ w(d')

for all those concerned d'. In Figure 3.1, dlO and dI3 are the two transformed documents that
contain the information sought by the query. Then, r( d - q) is the aggregation of w( dlO) and
w( dI3). The special case is when d already contains the information being sought by the query.
In that case,

r(d- q) = w(d) = 1

An aspect which has not been discussed so far is the minimality of the transformation. A minimal
transformation is a sequence of transformations in which all the transformations are necessary; that
is, the transformations are based on relationships that are essential to obtain the information being
sought by the query. An example of a non-minimal transformation is given below:

------ ------------------~--

o Document

_.. Relationship upon which
the transformation is based

d2

Figure 3.2: Example of a non-minimal transformation

The transformation is non-minimal with respect to q because the transformation of d into dl is
not necessary. The reason being that the relationship P2 ""t P4 is non-essential-" to obtain the
information item q. An example of a minimal transformation is given in Figure 3.3. There, the
transformation is minimal with respect to q because both relationships PI ""t P3 and P3 ""t q are
required to obtain the document d2 which contains q.

34 In this example, the use of the relationship Pl .._.. q to transform d2 is assumed independent to the fact that d2 contains P4.
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The minimality of the transformation of a document is a qualitative aspect as opposed to a
quantitative aspect. In this chapter, the determination of a minimal transformation is not an
issue; that is, only transformations involving necessary relationships are considered. In the model
developed by Nie [Nie90], which also involves the idea of transformation, minimality was captured
by keeping the most certain transformation, and hence was a quantitative aspect. Transformations
which involve unnecessary relationships were more uncertain, and so were always ignored.

3.2.2

o Document

___. Relationship upon which
the transformation is based

Figure 3.3: Example of a minimal transformation

Quantitative components of the structured model

As discussed in Chapter 1, a document's information content should be represented as a set of
structures. In this thesis, a structure contains semantically related information items and can be
viewed as denoting a topic (other types of structures are discussed in Chapter 8). Consider the
following document (for simplicity, the document is represented as a set of terms)35:

d = {rose, Sun, giraffe, tulip, table, dog, Macintosh, elephant}

Four structures can be identified in this document denoting the topics "flower", "animal", "com-
puter", and "furniture". An illustration of a structured representation of this document is given
in the following schema:

~------.---- -~------.---

• Information item

C) Structure

~Topic

Figure 3.4: Example of a structured representation of a document

Some structures may be more significant in a document than others because they constitute a
more prominent part of the document information content than other structures. For example, the
structure denoted by the topic "animal" in Figure 3.4 can be considered more significant that the
structure denoted by the topic "furniture" because the former structure contains more information

35 Here, Sun refers to a computer brand.
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than the latter. In that case, the document is more relevant (being more specific) to a query about
"animal" than to a query about "furniture".

It is necessary to represent that some structures are more significant than others. The most
intuitive approach is that a weight (a numerical value) is assigned to each structure to represent its
significance. The higher the weight, the more significant the structure. The representation of these
weights constitutes a quantitative component which is only relevant to the structured model. The
formal expression of this component is discussed later in this section since it requires discussion
on the transformation of a document defined as a set of structures.

The transformation of a document in the structured model is also due to the flow of information,
which is determined by relationships of the knowledge set. However, the transformation of a
document must take into account the structures that constitute that document. In this thesis, the
transformation of a document is defined in terms of the transformations of these structures. This
is illustrated in the following figure:

structure

Original structured
document

Transfonncd structured
document

document

o Intermediary structure

• Relevant (final) structure
1l____!~_!.!2.... _ ___.l!!c'--~"'--.2.!2....--".!.<...--'. Non-relevant final structure

_.. Transfonnation of

Figure 3.5: Example of the transformation of a document in the structured representation

The transformation process is identical to that in the unstructured model, except that it applies to
structures and it starts from a set of structures, as opposed to one entity (the original document).
It will be formally shown in Chapter 5 that this approach allows a better representation of a
document's information content. Let us assume for the moment that this approach is intuitive, but
a fuller description of the underlying features will be given in Chapter 5.

Both structures and documents contain information, with the difference that the information
contained in a structure is semantically related. The transformation of a structure is the same
as that of a document; it is based on relationships which may' be uncertain, and the uncertainty
is propagated along the sequential transformations of structures (instead of documents). The
uncertainty is also aggregated along the parallel transformations. In the unstructured model,
parallel transformations mean alternative ways to obtain a document from the original document.
In the structured model, the transformation process starts from a set of structures, so parallel
transformations include two cases:

(i) alternative ways to obtain a structure from a given structure, or

(ii) a structure resulting from several transformations which originate from distinct structures.
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However both cases mean that there are different ways to obtain a structure. Therefore, the
aggregation of the uncertainty is the same in both cases. The uncertainty values associated to the
different transformation are computed and then aggregated as described in section 3.2.1.3.

Therefore, the uncertainty of a transformation, the propagation of uncertainty and the aggregation
of the uncertainty also constitute quantitative components of the structured model. They can be
captured by the same functions C and w used in the unstructured model. These functions are
however redefined with respect to structures:

C : Struet X Struet -t [0,1]
w : Struet -t [0,1]

where Struet is a set of structures. The function C models the uncertainty attached to the
transformations of structures. If a structure 8 is transformed into a structure 8', then C(8, 8')
expresses the uncertainty associated to the transformation. The function C has the same properties
as discussed in section 3.2.1.1, and is also assumed given.

Given a structure 8, the evaluation of w( 8) depends on whether 8 belongs to the original document
or a transformed document. If 8 is a structure of the original document, then w( 8) represents
the significance of the information contained in the structure 8 (the weight of the structure) with
respect to the document's overall explicit information content. The value of w( 8) increases with
the prominence of the topic denoting that structure 8. Many methods can be used to compute
W(8), such as those based on term frequency information [Sal71]. The one adopted in this thesis
is described in Chapter 6. The value of w( 8) is assumed given in this chapter. The function w
when applied to the structures forming the original document represents the weights previously
mentioned, one of the quantitative components of the structured model.

If 8 is in a transformed document, w( 8) also represents the weight of the structure 8 in that
transformed document, but its value depends on the uncertainty of the structures that are transformed
into 8 and the uncertainty of these transformations. That is, when applied to structures of the
transformed document, the function w represents the propagation and the aggregation of uncertainty
in the structured model. The value of w( 8) satisfies the same properties described in sections 3.2.1.2
and 3.2.1.3; that is, uncertainty increases when propagated, and decreases when aggregated.

Finally, the relevance of a document to a query is defined as the aggregation of the uncertainty
of those transformed structures (instead of documents) that contain the information sought. The
relevance is also expressed by the function r

r : Doe X In! -t [0,1]

where Doe = 2Struct (the power of Struet) because a document is represented as a set of structures.
In Figure 3.5, the structures representing the original document are 81,82,83. The structures that
contain the information being sought by the query are 8S, 810, 811, 813, 814, 817 and 81S. The
relevance of the document to the query will be the aggregation of W(8S), W(81O), W(811), W(813),
w( 814), W( 817) and w( 81S). The computation of these values is as discussed in sections 3.2.1.2
and 3.2.1.3, but applied to structures.

In summary, the same functions can be used to express the quantitative components used in the
structured and the unstructured models. Moreover, the unstructured model is a special case of
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the structured model; one in which a single structure (i.e., d) is involved to represent the original
document and the weight reflecting its significance is equal to 1 (i.e., w( d) = 1). Therefore, in the
remainder of this chapter, only the representation of the quantitative components of the structured
model is discussed. The structured model will be referred to as the model unless otherwise specified.
Its quantitative components are summarized in the following table:

Uncertainty of a transformation C : Struct x Struct _,. [0,1]

Significance of information

Propagation of uncertainty w: Struct _,. [0,1]

Aggregation of uncertainty

Relevance degree r : 28truct X In! _,.[0,1]

Table 3.1: The quantitative components of a logic-based model of an IR system based on the Transformation Principle

3.2.3 Remainder of the chapter

A logic-based model of an IR system based on the Transformation Principle involves quantitative
components, which are

(i) the significance of the information,
(ii) the uncertainty of a transformation,
(iii) the propagation of the uncertainty,
(iv) the aggregation of the uncertainty, and
(v) the numerical expression of the relevance degree.

The process defined by these quantitative components can be compared to an uncertain inference
process [KC93, Saf87] of the following form:

Uncertain fact: p is true with uncertainty a
Uncertain rule: if p then q is true with uncertainty b

Uncertain fact: q is true with uncertainty c

The uncertainty of the inferred fact q (the value c) is defined in terms of the uncertainty of the fact p
(the value a) and the uncertainty of the rule if p then q (the value b). By analogy, the uncertainty
of a structure is defined in terms of the uncertainty of the structure of which it is a transformation
and the uncertainty of the transformation. A second feature of an uncertain inference process is
that the fact q can be used to infer other uncertain facts if there exist rules of the form if q then r.
The uncertainty is propagated along this inference; that is, the inference takes into account that
the uncertainty of the fact q is now c. Likewise, uncertainty is propagated along a sequential
transformations of structures. A third feature is that several inferences may yield the same fact
q. The uncertainty values that result from each these inferences must be aggregated into one
value that expresses the overall uncertainty attached to the inferred fact q. Similarly, uncertainty
is aggregated when a structure is the result of several transformations.

The representation of the uncertainty in an uncertain inference process depends on the frameworks
used to model this uncertainty. The use of one framework instead of another usually depends on
the properties attached to the inference process [Saf87]. These frameworks are often referred to as
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a Theory of Uncertainty. Three Theories of Uncertainty are examined in this chapter to determine
the one that represents best the quantitative components of a logic-based model of an IR system.

These theories are probabilistic-based ones [00050], Fuzzy Logic [Zad65] and Dempster-Shafer's
Theory of Evidence [Dem68, Sha76]. These theories have already been used to develop models
of IR systems (see for example [BS75, Rob77, CGD92, Fuh92, Mar92, vR92]), but most of these
models are not logic-based, and hence not mentioned. The discussion in this chapter centers
around the fact that the quantitative components are defined for a logic-based model of an IR
system based on the Transformation Principle.

3.2.3.1 Test cases

To understand whether the different Theories of Uncertainty examined in this chapter can or cannot
model the quantitative components, test cases are used. There are five test cases, one for each of
the quantitative components. The first two test cases concern the expression of the significance
of information and the uncertainty of a transformation. The entities involved in these test cases
are illustrated in the following figure:

C(s,s')

s'

Test case (i): The significance of
information (the weight of a
structure)

Test case (ii): The uncertainty of a
transformation

Figure 3.6: The entities involved in test cases (i) and (ii)

The weights of the structures of the original documents are supposed determined. That is, for a
given structure s of the original document, w( s) must be represented, but its value is computed
elsewhere. The same applies for the representation of the uncertainty of a transformation.

The three other test cases concern the propagation and the aggregation of the uncertainty, and the
expression of the relevance. The entities involved in these test cases are shown in Figure 3.7. To
satisfy the test case (iii), a Theory of Uncertainty must provide an appropriate representation of
w(s) and C( s, s'), and then compute w(s') in terms of w(s) and C( s, s') such that w( s) ~ w(s'),
meaning that uncertainty increases when propagated. To satisfy the test case (iv), the Theory of
Uncertainty must provide an appropriate representation of w( s') in terms of WI (s') and w2( s'),
where s' has been obtained via two different transformations, and should reflect an accumulation
of evidence towards the information contained in s', To satisfy the test case (v), the Theory of
Uncertainty must provide an appropriate representation of r(d - q) in terms of w(sJ) and W(S2),

where both SI and S2 contain q, and obtaining two transformed documents containing information
that concerns the query instead of one should indicate an increase of the relevance of the document
d to the query q.
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w(s)

C(s,s')

w(s')

Test c~e (iii): Propagation of the I Test c~e (iv): Aggregation of the
uncertamty :J1_~~J!~._n-,--ty _

--------_._---------,

Sl~
w(sl) \_!__) S~

\_!__) w(s2)

r(d->q)

The five test cases are summarized in table 3.2 below.

Figure 3.7: The components involved in test cases (iii), (iv) and (v)

Test case (v): Relevance degree of the document to the query

Cases To represent

(i) w(s) for s in the original document

(ii) C(s, s') for s being transformed into s'

Cases Given To compute

(iii) C(s, s') = a w(s) = b w(s') in terms of a and b such that W(S/) ~ b

(iv) W1(S/) = a W2(S/) = b w( s') in terms of a and b such that w( s') 2': a, b

(v) W(Sl) = a W(S2) = b r(d -+ q) in terms of a and b such that r(d -+ q) 2': a, b

Table 3.2: The five test cases

The discussion will usually concentrate on the satisfaction of test cases (iii), (iv) and (v) because
they often constrain the representation of the entities involved in the test cases (i) and (ii). Also,
only parts of the table may be used at times since one of the quantitative components may not
be represented. In that case, the representation of the other components is not examined (e.g., the
study of the representation of the aggregation of the uncertainty is pointless if the propagation of
the uncertainty cannot be represented correctly).

3.3 Probabilistic-based frameworks

Probabilistic-based frameworks are based on Probability Theory [Go050]. Three probabilistic-based
frameworks are examined in this section: Probability Theory itself [Go050], Bayesian Inference
[Pea88, Nea90] and Imaging [Lew73]. In these frameworks, the probability of the implication is
used to model the uncertainty of the inference. In the first two frameworks, the uncertainty of
the implication is based on conditional probability [Go050], whereas in the third framework, it is
based on conditional logic [Sta84, Nut80].
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3.3.1 Probability Theory

A probability function P : U - [0,1] formalizes the phenomena that some propositions of a
universe of discourse U are more probable than other propositions. For a proposition p, P(p) is
the probability that p is true. The properties of a probability function are

(i) P(p V q) = P(p) + P(q) - P(p /\ q)

(ii) P(p) + P( -,p) = 1

(ii) is often referred to as the coherence rule [Saf87]. Probability Theory also defines a conditional
probability, denoted P( qlp), which states the probability that a proposition q is true given that a
proposition p is true. The conditional probability P( qlp) is defined as follows (for P(p) t= 0):

P(qlp) = P(p /\ q)
P(p)

An obvious use of a conditional probability is to model the propagation of the uncertainty [Pea88,
Nea90]. However, as it will be demonstrated in this section, no interpretation of the conditional
probability leads to an appropriate representation of this quantitative component.

Wong and Yao [WY91] use conditional probabilities to define a probabilistic logic-based model
of an IR system. The relevance '" of a document d to a query q, r(d - q), is evaluated as a
conditional probability, that is

(d- )=P( Id)= P(d/\q)r q q P(d)

The probabilities are defined in an universe of discourse U which is defined as a set of terms (or
eventually structures, although Wong and Yao do not mention this case). d and q are defined as
sets of terms, P( d) is interpreted as the degree to which U is covered by the terms contained in d
and P( d /\ q) is interpreted as the degree to which U is covered by terms common to both d and
q. The values of P( d) and P( d /\ q) are based on weights associated to the terms in d and q which
are estimated based on term frequency information. Wong and Yao discuss different formulations
of P( d /\ q), which depend on the properties assumed between terms, and which lead to different
IR models'". However, all of these formulations take only into account the information that is
explicit in the document. That is, although it may be possible to define P( d) and P( d /\ q) based
on structures, none of these formulations account for a representation of a transformation yielding
the implicit information of a document. Therefore, the probabilistic model defined by Wong and
Yao is inadequate to model the quantitative components since the transformation of a document
cannot be represented.

A more productive use of a conditional probability to represent the propagation of uncertainty is
to define the universe of discourse as a set of structures. Let the structure s be transformed into
the structure s', The propagation of the uncertainty may be expressed as follows:

p( 'I ) = P(s /\ s')
s s P(s)

36 Other formulations of the relevance were also defined by Wong and Yao such as r (q ..... d). r (d ..... q) is a recall-oriented measure
of the relevance whereas r (q ..... d) is a precision-oriented one. .

37 For example. Wong and Yao show that their probabilistic model covers the Boolean Model. the Vector Space Model [SM80. Sal71].
and the Fuzzy Model [Bo085]. Other formulations were also discussed in [CCLvR96]. which lead to different types of probabilistic
IR models (see also [Fuh92]).
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P( s'[s) and P( s) represent the uncertainty attached to s' and s, respectively. As a result, P( s 1\ s')
is the uncertainty attached to the transformation. This different probabilities match the test case
(iii) as follows:

C(s, S') w(s) W(S')

P(s 1\ S') = a P(s) = b P(s/ls) = %

Table 3.3: The representation of the propagation of uncertainty in Probability Theory: first attempt

However, this representation is both counter-intuitive and incorrect. It is counter-intuitive because
P( s 1\ s') reflects the uncertainty attached to the information common to the two structures s and
s', and not the uncertainty of the transformation of the structure s into the structure s', Indeed,

P (s 1\ s') = P (s' 1\ s)

meaning that the uncertainty attached to the transformation of s into s' is the same as that of the
transformation of s' into s, which is, often, not a valid assumption. Moreover, this representation
of the uncertainty of a transformation is incorrect because it does not capture the fact that the
uncertainty associated to a transformation of a structure s onto itself is equal to 1. Indeed, this
uncertainty would be represented as

P(s 1\ s) = P(s)

which is not necessarily equal to 1.

A more appropriate use of a conditional probability to model the propagation of uncertainty is
due to the following rule which derives from the definition of a conditional probability (the proof
can be found in [Par94]):

if P(qlp) = a and P(p) = b then a * b :s; P(q) :s; 1 - b + a * b

Applied to structures, this different probabilities match the test case (iii) as follows:

C(s, S') w(s) W(S/)

P(s/ls) = a P(s) = b a* b::; P(S') ::; 1 - b + a * b

Table 3.4: The representation of the propagation of uncertainty in Probability Theory: second attempt

Here, P( s'ls) represents the uncertainty of the transformation of s into s', which is more intuitive
than the above P( s 1\ s'). P( s) and P( s') are the uncertainty values attached to s and s',
respectively. One problem with this representation of the propagation of uncertainty is that the
values of the uncertainty become increasingly more imprecise along the transformations because
only intervals are provided. Indeed, if the structure s' is itself transformed into a structure s",
P( s") becomes expressed in terms of an interval. A second problem is that the uncertainty values
attached to the transformations are intervals. As a result, the aggregation of uncertainty becomes
defined as the aggregation of intervals, which, if not correctly formulized, may lead to incorrect
results. Also, the relevance of a document to a query becomes defined as the aggregation of
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intervals and will be itself an interval. The comparison of intervals to rank documents according
to their relevance degree is not obvious to express.

In conclusion, Probability Theory cannot adequately model the quantitative components of the
model because either no appropriate interpretation or representation of the different probabilities
can be found to model the propagation of the uncertainty, or the uncertainty (hence, the relevance)
is expressed as an interval.

3.3.2 Bayesian methods

Bayesian methods are used to model inference within a probabilistic-based framework. They
are based on Bayes' Theorem [Pea88, KC93], which has many formulations. One of the most
commonly used formulation is the following:

P(hle) = P(h) * P(elh)
P(e)

h is the hypothesis, and e is the piece of evidence that is observed. P(hle) is the probability
that h is true given the evidence e. Although the same function P is used, different functions are
involved. P(hle) is the posterior probability of h and could be noted Pe(h), whereas P(h) is its
prior probability. The prior probabilities are assigned to events and can be revised in light of new
evidence, thus leading to the posterior probabilities. One advantage with the use of a Bayesian
method with respect to Probability Theory is that precise values of uncertainty are delivered.

In IR, a Bayesian method is often used in tandem with an inference network, which is a directed
acyclic graph [Fau78] constituted of nodes linked by arcs. Nodes represent IR entities such as
documents, concepts, information items, query, etc. Arcs represent probabilities dependencies
between nodes. Prior probabilities are assigned to all the nodes and conditional probabilities
are assigned to all the arcs. The posterior probabilities of the different nodes are based on the
probabilities of their active parent nodes, and are computed according to Bayes' theorem. Figure
3.8 shows an example of a Bayesian inference network for IR.

The root nodes represent the document collection. The leaf node represents the information need
expressed by a query. The ti nodes represent the information items (or whatever is used to index a
document) in the document, and the Cj nodes are the information items expressing the information
need. The evaluation of the relevance of a document, for instance dl, to the query is defined as
P(qldl). dl is the piece of observed evidence, which activates the nodes tl and t2 (dl is the
active parent of tl and h) which then activate Cl, which then activates q. The probabilities along
the activated nodes are calculated according to Bayes' theorem. Different IR models based on
Bayesian inference networks have been implemented [Tur90, Sav92], but none of them is relevant
to the notion of transformation",

38 An interesting implementation was proposed by Croft and Turtle [Tur90, Cr092], in which multiple representations of document
and query were used, which allowed the computation of the relevance based on different strategies.
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Figure 3.8: An example of an inference network in IR

The use of a Bayesian inference network to model the quantitative components of the model
proposed in this thesis is discussed in the remainder of this section. To represent the propagation
and the aggregation of the uncertainty, the network must encompass structures. A more intuitive
approach is illustrated in the following figure:

Figure 3.9: A Bayesian inference network for a logic-based model of an IR system

+
I Document nodes
t

Structure nodes

+I Query node,

A document node is linked to a structure node if that structure exists :0 that document. A structure
node is linked to another structure node if the former is transformed into the later. Two structures
are linked to the same structure if they can be both transformed into that same structure. The query
node portrays the information need (the information items that constitute the query). A structure
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node is linked to the query node if that structure can be transformed to a structure that contains
information concerning the query.

An obvious representation of the propagation of the uncertainty which match the test case (iii) is
given in the following table:

C(s, s') w(s) w(s')

P(sls') = a P(s) = b P(s'ls) = P(s') * alb

Table 3.5: Representation of the propagation of the uncertainty in a Bayesian inference network

P(sls') represents the uncertainty attached to the transformation of the structure s to the structure
s', P( s) is the uncertainty attached to the structure s, which is also computed according to Bayes'
theorem. The uncertainty attached to s' is P( s'[s}, the computation of which requires an extra
value, P(s'). This value is the prior probability of s', Following most of IR models based on
Bayes' theorem'", P( s') can be interpreted as the distribution of the structure s' in the document
collection, which can be estimated, for example, by the inverse document frequency [SaI71] or
the term discrimination value [SWY76].

The propagation of the uncertainty in a Bayesian inference network and the one in the model
developed in this thesis are different phenomena. In the model developed in this thesis, the
probability of a structure consists of the uncertainty attached to the obtaining of that structure via
a transformation. No prior uncertainty is attached to this structure. In the Bayesian framework,
a structure has an initial probability (the distribution), which may be altered in light of new
evidence. The new evidence is a particular document, and the uncertainty is propagated along the
network with respect to that new evidence. As a result, the representation of the propagation of
uncertainty by Bayes' theorem does not necessarily satisfy the property that uncertainty increases
when propagated (i.e., P(s'ls) :s; P(s). Take the case of propositions. Given two propositions p
and q, the analogous inequality is P( qlp) :s; P(p). Let the probability P be an uniform distribution
on the numbers {1,2,3,4,5,6,7,8,9,10} (i.e., each occurs exactly one tenth of the time). Let
p = greater than 5 and q = greater than 3. Then P( qlp) = 1 and P(p) = 0.5, which contradicts
the previous inequality.

There are other problems with the use of a Bayesian network to model the propagation of the
uncertainty. First, the interpretations of the different probability functions are not always evident.
For example, in the formulation of the propagation of the uncertainty, P(sls') is the uncertainty
attached to the transformation of the structure s into the structure s'. A more intuitive probability
would be P( s']s), which is already used to represent the uncertainty associated to s'. Second, the
different prior probabilities must be estimated (e.g., P( s'). The estimation of these probabilities is
not easy since a Bayesian framework is probability-based, meaning that the coherence rule applies.
The satisfaction of this rule by the different estimations must be ensured.

In summary, a Bayesian method is not used to model the quantitative components in the model
developed in this thesis because it cannot capture the propagation of the uncertainty as defined in
the model proposed in this thesis.

39 Distributions are often used in probabilistic IR models [vR79, Fuh92],
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3.3.3 Imaging

In Imaging [Lew73, Lew76, HSP81], the formulation of the probability of an implication is based
on Conditional Logic [Nut80, HSP81], and not on conditional probability. In Conditional Logic,
the evaluation of an implication is based on the possible-worlds semantics [Kri63]. Given a set
of possible worlds W, the truth value of the implication p --t q in a world w of W depends on
two cases. If p is true in w, then p --t q is true (false) in that world if q is true (false) in that
world. If p is not true in w, then the implication is evaluated in the world, for instance, w' that
differs minimally from wand in which p is true. p --t q is true (false) in w just in case q is
true (false) in W'40.

Formally, the truth value of a proposition p in a world w is represented as

w(p) = {I if P is ~rue in w
o otherwise

The truth value of the implication p --t q in that world w is defined as

w(p --t q) = wp(q)

where wp is the world that is reached by the least drastic revision of the facts (true propositions)
of w that makes p true. The world wp is called the closest p-world of w.

Imaging defines the probability on an implication based on this notion of closest world. A
probability function P is first defined as a distribution on the set of worlds W such that

L P(w) = 1
wEW

This distribution is extended to propositions as follows:

P(p) = L P(w) * w(p)
wEW

The probability P(p) is an overall distribution of the proposition p in W. The p-image of P,
denoted Pp, is defined as the following probability function

Pp (w') = L P( w) * {I if wp ~ w'
WO otherwise

wE

The original probability of each world w is shifted to wp, the closest p - world to w. Pp( w')
is the summation of the probability of any world w, the p-closest world of which is w'. The
probability Pp is extended to propositions, as was the original probability function P, and it can
be proven that (see [Lew73] for proof)

P(p - q) = Pp(q)

40 Conditional Logic is particularly appropriate for the modelling of counterfactuals [Lew73]. These are sentences, the antecedents
of which are false in the world in which the sentences are evaluated. An example is the utterance of the sentence "If it were less
cold, I could have gone for a walk" in a situation (actual world) where it is cold.
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The imaging process seems compatible with the notion of minimal transformation defined in this
thesis. If d represents the document and q models the query, then

thus leading to a numerical expression of the relevance of the document to the query. However, as
shown in the remainder in this section, no adequate interpretation of the different concepts defined
in Imaging caters to an appropriate representation of a transformation.

Suppose that both the document and the query are propositions; consequently, worlds model
different stages of the knowledge set. This approach was followed by Nie & al [NLB96], who
claims that the relevance of a document to a query does not only depend on whether the document
satisfies the information need expressed by that query, but also on other aspects such as users'
knowledge, background, intention, etc. The knowledge set then models users' knowledge and the
worlds represent possible states of knowledge that can be held by users. The document d is true
in a world W if the document is compatible with the state of the knowledge associated with this
world. Wd is the closest world to W such that d is true in this world. The imaging process is
illustrated in the following figure:

• World in which the document d is trueo World in which the document d is not true

~ The closest d-world

(::) Worlds in which q is true

Figure 3.10: Representation of the transformation by Imaging: first attempt

The relevance of the document to the query is

Pd(q) = Pd(W2) + Pd(WS)
= P(Wd + P(W2) + P(WS)

This interpretation is not appropriate for a logic-based model based on the Transformation Principle
because it should be the document that is transformed until the information requested by the query
is found, and not that the knowledge set is transformed until d becomes true.

Another use of Imaging for a logic-based model of an IR system was proposed by Crestani and
Van Rijsbergen [CvR94, CvR95a, CvR95b]. There, worlds model terms, and propositions model
documents and queries. A term t "makes a document true" if that term belongs to that document.
The function t« (instead of Wt) gives the closest term of t that is contained in d. It is t if the
latter is contained in the document. Imaging consists then of shifting the probabilities to the terms
contained in d (i.e., the terms that make d true). This is illustrated in the following figure:

?
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•
o

Term in which the document is true
(the tenn is contained in the document)

Term in which the document is not true
(the term is not contained in the document)

""'-..JI The closest d-world (clostest term
contained in the document)

( - -) terms in which q is true
'- - (the terms are contained in the query)

Ii Tenn

Figure 3.11: Representation of the transformation by Imaging: second attempt

The relevance degree is

Pd(q) = Pd(t2) + Pd(t4)
= P(tt) + P(t2) + P(t4)

Obviously, this approach is not appropriate to model the quantitative components of the model
proposed in this thesis because it is not based on the notion of the transformation of a document.
It also presents other drawbacks. Although the evaluation of the relevance takes into account the
semantics between terms by shifting to those closer (semantically) terms contained in the document,
this approach disregards the less closer terms, which may be contained in the query. For example,
in Figure 3.11, suppose that t4, which is contained in the query, is a second closest term of t3.
This relationship between t3 and t4 is not captured in the above expression of the relevance. Also,
this approach cannot represent that two terms are closer to each other in some contexts, and are
not in other contexts. Consequently, uncertain relationships cannot be encompassed.

The last possible interpretation is that a world W represents the document. Imaging consists then
in finding all the worlds closest to W in which the query, represented by q, is true (the Wq world).
Although it was not mentioned, there can be several closest worlds to a world. This is illustrated
in the following figure:

Figure 3.12: Representation of the transformation by Imaging: third attempt

The q-closest worlds to ware WI and W2. The second q-closest worlds to ware W3 and W4. The
imaging process will then shift the probability of P( w) to the worlds WI and W241. This use of the
closest world cannot model the transformation of the document, because the imaging process is

41 The formulation is slightly different than in case of a single closest world (see the work of Nute [Nut80J). The formulation is not
given since it requires the definition of other concepts which are not necessary for the above discussion.
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only applied once. That is, it is not possible to represent that the document is initially represented
by that particular world w, and then transformed into worlds, which may be then transformed into
other worlds, until a world that makes q true is obtained.

In summary, Imaging cannot be used to model the quantitative components of the model since no
appropriate representation of a transformation as defined in the Transformation Principle is possible.

3.4 Fuzzy Logic

Fuzzy Logic42 [Zad65, Zim91, Zad87] extends Classical Logic by allowing multi-valued propo-
sitions. A numerical function u : U -- [0,1] represents the truth of the propositions of a set U.
The higher the truth of a proposition p of U, the higher the value u(p). The truth values of the
conjunction, disjunction and implication are defined as follows (p and q are two propositions):

(i) u(p /\ q)

(ii) u(p V q)

min (u(p ), u( q ) )

max (u(p), u(q))

(iii) u(p -- q) = min (1,1 - u(q) + u(p))43

A logic-based model of an IR system based on Fuzzy Logic was proposed by Nie [Nie90]. There,
the relevance of a document to a query was also based on the transformation of the document into
a document that contains the information expressed in the query. Nie's model does not consider
the structured representation of documents, but it will still be described with respect to structures.
The same components that were identified in this chapter were also identified in Nie's model:
the uncertainty of a transformation, the propagation and the aggregation of uncertainty along the
transformations of the structures, and the numerical expression of the relevance of a document
to a query'".

Nie defines the propagation of the uncertainty by a general function with some given properties.
This function is not explicitly expressed but its behavior is similar to that representing the
propagation of uncertainty in the model described in this thesis. One of these properties is that the
uncertainty increases with the number of transformations.

The aggregation of the uncertainty is represented by the max function. If a structure is transformed
in several ways to the same structure, then the uncertainty of the overall transformation is defined
as that of the transformation that is less uncertain. This representation of the aggregation satisfies
the property that uncertainty decreases when aggregated, and matches the test case (iv) as follows:

42 There is some confusion on what Fuzzy Logic is about. In some cases, Fuzzy Logic is the framework concerned with the
representation of metalinguistic predicates and natural language quantifiers (such as most and of tell). The vagueness of these
concepts is modelled by fuzzy sets [Zad65, Zad87J.

43 The implication __ is not to be confused with the representation of the implicit information content of a document as in d __ q.
44 In Nie's model, given an item of information (a proposition), whether or not that item was in the document was evaluated as a

fuzzy value. The value did not depend on how the item became contained in that document. This aspect is not discussed since in
the model developed in this thesis, either an information item is contained in a document, or it is not.
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WI (s) W2(S) W(S')

UI(S') = a u2(s')=b u(s') = max (a, b)

Table 3.6: The aggregation of the uncertainty in Fuzzy Logic

The problem with this representation of the aggregation of the uncertainty is that it does not agree
with the view of the existence of several transformations as an accumulation of evidence. Suppose
that there are n parallel transformations. The overall uncertainty will be the one associated to the
less uncertain transformation. If only that transformation was obtained, the resulting uncertainty
will be exactly the same as if all the transformations were obtained. Moreover, the use of max
does not distinguish between the two cases:

(i) reaching n times a structure with high uncertainty values, and

(ii) reaching n - 1 times that structure with low uncertainty values and once with a high
uncertainty value.

The uncertainty of a structure that is derived in different ways should be higher and not just the
highest.

Another drawback with Nie's model is that the function which models the propagation of the
uncertainty is left undefined. Nie states that his model covers other IR models by instantiating this
unspecified function. However, in most cases, these instantiations are not based on Fuzzy Logic.
That is, Nie uses a non-uniform framework to model the uncertainty, which is not rigorous.

The representation of the propagation of the uncertainty in Fuzzy Logic can be derived from the
formula defining the truth value of the implication. Applied to structures, this formula is

u(s -+ SI} = min (1,1 - U(Sl) + u(s)}

In this formula, only u( s -+ s') expresses a connection between the two structures s and s', so it
must represent the uncertainty of the transformation of s into s', The uncertainty of the structures s
and s' is then represented by u( s') and u( s), respectively. Therefore, to represent the propagation
of the uncertainty, u( SI) must be expressed in terms of u( s -+ SI) and u( s) so that to match the
test case (iii). The expression is shown in the following table (the proof can be found in [Par94]):

O(s, s') w(s) w(s')

Has a solution if a + b - 1 ;:: 0
u(s --+ s') = a u(s) = b (i) if a = 1 then b ~ u(s') ~ 1

(ii) if a < 1 then u(s') = a + b - 1

Table 3.7: Representation of the propagation of uncertainty in Fuzzy Logic

There are obvious problems which such a representation of the propagation of the uncertainty.
First, the propagation of the uncertainty cannot be always represented since there is a restriction
on the values of u( s -+ s') and u( s ). Second, in some cases, the propagation of uncertainty is
expressed as an interval, thus, leading to the same problem as with Probability Theory described
in section 3.3.1. In addition, the intervals are larger than that obtained in Probability Theory
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(a * b ~ pes') ~ 1- b + a * b), so the representation of the propagation of the uncertainty is even
more imprecise. Third, some of the results are counter-intuitive. Suppose that

u(s) = 0.5 and u(s -+ s') = 0.5

According to the formula in Table 3.7,

u(s') = 0.5 + 0.5 - 1 = 0

meaning that the structure s' is completely uncertain. This result is rather contradictory, since the
uncertainty of u( s) and u( s -+ s') are not particularly low.

To conclude, Fuzzy Logic is not used to model the quantitative components of the model developed
in this thesis since it cannot model properly the propagation and the aggregation of the uncertainty.

3.5 Dempster-Shafer's Theory of Evidence

The Theory of Evidence was first developed by Dempster [Dem68], then finalized by Shafer
[Sha76]. The theory is presented in two steps. First, the initial theory is described, and is shown
to represent some of the quantitative components of the model. Second, the refinement function
later defined by Shafer is described, and is shown to represent the other quantitative components
of the model.

3.5.1 The initial Theory of Evidence

The purpose of the Theory of Evidence is to represent beliefs in a set of propositions referred to as
aframe of discernment. A belieffunction Bel: 2u -+ [0,1] is defined on a frame of discernment
U. The beliefs are usually computed based on a density function m called a basic probability
assignment (BPA) which has the following properties:

m(0) = 0 and L m(P) = 1
p~u

m(P) represents the degree of belief that is exactly committed to the set P. Ifm(P) > 0 then P is
called a focal element. The set of focal elements and its associated BPA define a body of evidence
on U. The belief associated with a set Q ~ U, denoted as Bel (Q), is defined on m as follows:

Bel(Q) = L m(P)
P~Q

Bel (Q) is the total belief committed to Q, that is, the belief that the truth is in Q.

A commonly used rule is Dempster's combination rule. This rule aggregates two bodies of evidence
defined within the same frame of discernment into one body of evidence. Let mi and m2 be two
bodies of evidence defined in the frame of discernment U. The new body of evidence is defined
by a BPA m as follows:

L: mI(B) * m2(C)
m( A) = _B--::nc==_A"-- _

L: mI(B) * m2(C)
BnC=F0
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A logic-based model of an IR system has been developed by de Silva and Milidiu [dSM93].
Their model is described with some details since some of its features pertain to the quantitative
components as studied in this thesis. The model starts with the definition of a set of terms and
their associated semantics. Given a term t, S(t) and N(t) are the sets of synonyms and narrower
terms of t, respectively. N(t) ~ S(t), where ~ is viewed as semantically included. Examples of
the narrower terms and the synonyms of the term "flower" are, respectively

N(Jlower) = {rose,tulip}

S(Jlower) = {blossom, bud, flower, pompon, rose, tulip}

For each set of synonyms S(t), one term in this set is used as a descriptor. For example, the term
"flower" is the descriptor of the above set of synonyms. A descriptor a is atomic if it does not
have a narrower term; that is, N(a) = 0.

The set of atomic descriptors constitutes a frame of discernment, denoted e. Both the document
and the query are defined as a body of evidence in this frame of discernment. a is a descriptor
of the document if at least one term in S (a) appears in the document. Each descriptor of the
document defines a focal element. The focal element associated to a non-atomic descriptor a of
the document is defined as the union of the atomic descriptors in N(a). For example, suppose
that "flower" is a descriptor of the document. If "rose" and "tulip" are atomic descriptors (i.e.,
N(rose) = 0 and N(tulip) = 0), then the focal set associated to the descriptor "flower" is

{rose, tulip}

The BPA of a focal element representing the descriptor a is defined as follows:

L f(t, d)
tESt o )

md(a)= L f(t,d)
tET(d)

where T( d) is the set of terms in the document and f( t, d) is the frequency of the term t in the
documentf'.

A similar approach is adopted in this thesis to represent the structures forming the original document
and their weights. This document is represented by a frame of discernment, and the propositions
in this frame represent information items. Structures are represented by focal elements. The use
of the relationships between information items to define the focal elements is analogous to that
above described, although it depends on how semantically related information items are defined.
The weights associated with these structures are represented by the BPA, which is computed
similarly to that above described; that is, the computation takes into account frequency information.
The detailed obtaining of the focal elements and their BPA is discussed in Chapters 5 and 6.
Furthermore, this approach can also model the document in the unstructured model. One focal

45 The belief associated to this frame of discernment is defined for each sce as

Beld(S) = L md(t)
tCS

Bel(S) is the belief that the descriptors in S are the best semantic representation of the document. As mentioned by de Silva
and Milidiu, the representation of the document requires only the definition of the focal elements and the BPA. since the belief
function is computed from them.
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element is defined and corresponds to the frame of discernment itself. The BPA associated to this
focal element is equal to 1.

To conclude, the representation of the significance of information (the weight of the structures) can
be well captured with Dempster-Shafer's framework. If md is the BPA associated to the original
document, the matching of the test case (i) is as follows:

w( s) for s a structure of the original document

Table 3.8: The representation of the significance of information in the Theory of Evidence

In de Silvia and Milidiu's model, the query is also represented as a body of evidence associated with
the frame of discernment 0. Let T( q) be the set of terms used in the query q, which all correspond
to descriptors. Let w( a) be the weight that expresses a user's belief in a being a descriptor that
represents the semantic content of the document to be retrieved. The BPA associated to this frame
is defined in terms of this weight as follows":

w(a)mq(a) = -=~~2:: w(t)
tET(q)

The relevance of the document to the query is computed as the agreement, denoted A( d, q),
between the document and the query. Several formulations of A( d, q) are possible, depending
on the properties attached to the terms. In one of them, the descriptors in the document and the
query are independently determined, which leads to the following formulation of A( d, q) (refer
to [dSM93] for the proof):

A(d,q) = L md(A) * mq(B)
AnB-:j:.0

The intuition behind the expression of the relevance degree in de Silvia and Milidiu's model is
different from that in a logic-based model based on the Transformation Principle. In the former,
the relevance consists of a comparison between the information contained in the document and the
information requested by the query (although it did take into account semantics of information). In
the model proposed in this thesis, the relevance is based on obtaining a transformed document that
contains the information requested by the query. Therefore, except from the representation of the
significance of information, de Silvia and Milidiu's model cannot represent the other quantitative
components of a logic-based model proposed in this thesis, since it does not account for the
representation of transformed documents.

None of the other concepts of the Theory of Evidence thus far described can appropriately represent
the other quantitative components of the model because they cannot capture the transformation of
a document. The belief function associated to the frame of discernment is computed based on
the BPA of the focal elements of that frame. If that frame represents the original document, the

46 Be/(O/) is the user's belief in 0/ being the best representative content of the document that he or she would like to retrieve. It is
computed as for the document. Its value is also defined in terms of the focal elements and the SPA.
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propositions in that frame represent information items that are explicit in the document. Therefore,
the belief function does not take into account the information that is implicit and uncertain, which
needs to be represented elsewhere (the transformed document).

As well, Dempster's combination rule cannot embody the transformed documents. Indeed,
Dempster's combination rule aggregates two independent bodies of evidence into one body of
evidence. Only the bodies of evidence change, not the propositions of the frame of discernment.
To embody the transformation of a document, both the original document and the transformed
document must be represented by the same frame of discernment. Moreover, the first body of
evidence would represent the original document, and the second body of evidence would model
the transformed document. However, the second body of evidence is not computed from the
first body of evidence. In fact, Dempster's rule defines a third body of evidence in terms of the
two previous ones. Therefore, it is not possible to represent that the transformed document is
constructed in terms of the original document.

In conclusion, the initial Theory of Evidence can model the significance of information, but not
the other quantitative components. The reason is that a single frame of discernment is used, so
transformed documents cannot be represented. Shafer's refinement function [Sha76] overcomes
this problem.

3.5.2 Shafer's refinement function

There are two aspects to the refinement function, a qualitative and a quantitative one. These are
discussed in tum.

3.5.2.1 The qualitative aspects of the refinement function

The refinement of a frame of discernment U into a frame of discernment V is defined by splitting
the propositions of U into the propositions of V. Splitting a proposition into a set of propositions
can be viewed as the latter representing more precise items of information that the former. For
example, "animal" can be split into "dog", "cat" and "horse", since "dog", "cat" and "horse",
are, each of them, more precise than "animal". The refinement is formally defined by a function
w : 2u -+ 2v as follows:

(i) w( {p}) -::J 0 for all p E U

(ii) w( {p }) n w( {pI}) = 0 if p -::J p' for all p, p' E U

(iii) U w( {p}) = V
pEU

(i) means that every proposition of U is split into propositions of V. (ii) means that two propositions
cannot be split into the same proposition. Finally, (iii) means that the result of a refinement is a
frame of discernment. U and V are called the coarse and the refined frame, respectively. In the
above example, suppose that "animal" is in the coarse frame of discernment U, then

w({animal}) = {dog, cat, horse}

and "dog", "cat" and horse" are in the refined frame of discernment V. The refinement function



Chapter 3 Quantitative Theories for a Logic-Based Model of an Information Retrieval System

is extended to sets of propositions as follows:

for all A ~ U, w(A) = UW({p})
pEA

w( A) consists of all the propositions in V that are obtained by splitting all the propositions in A.
For example, if "flower" is split into "rose" and "tulip", then

w( {animal, flower}) = {dog, cat, horse, rose, tulip}

The refinement function links two frames of discernment, such that one is defined in terms of the
other. If the original document is modelled by the coarse frame, then the refinement function can
represent the transformation of that document; the refined frame models the transformed document.
The splitting process must then be defined in terms of relationships of the knowledge set J(. That
is, the fact that a proposition p is split into a proposition pi can be viewed as that p ~ pi (to be
more correct, the information items these propositions represent) is a relationship of the knowledge
set. For example, the splitting of the term "animal" into "dog", "cat" and "horse" means that

animal ~ dog

animal ~ cat

animal ~ horse

are relationships. Note that the relationships can be uncertain, since when mentioning "animal", it
is not sure whether one means "dog", "cat" or "horse".

Shafer demonstrates that the composition of two refinement functions is also a refinement function.
That is, given the two refinement functions

WI : 2u -+ 2v

W2 : 2v -+ 2w

where W is a frame of discernment, into which V is refined, this means that (0 is the composition
operator)

is also a refinement function. If a refinement function is used to model the transformation of a
document, the composition of refinement functions can model a sequence of transformations.

In the model proposed in this thesis, the structures of the transformed document are defined in terms
of the structures original document. If the refined frame is to model the transformed document, the
focal elements of the refined frame must be defined in terms of the focal elements of the coarse
frame of discernment, since the focal elements model structures. However, in Dempster-Shafer's
framework, the focal elements of the refined frame are not explicitly defined in terms of the focal
elements of the original frame, because the refinement function is defined at the proposition levels
and then generalized to set levels. There are, however, properties relating the two sets of focal
elements. These properties concerns the BPA associated to the focal elements of the two frames.
These are discussed next since they constitute a quantitative aspect of the refinement function.
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3.5.2.2 The quantitative aspects of the refinement function

Let Beln and Belv be the belief functions defined on the coarse frame U and the refined frame
V, respectively. Let mu and mv be their respective BPAs. In Shafer's definition, mv is not
explicitly defined in terms of mu. However, the belief functions Belu and Belv must satisfy the
criteria that the coarse and the refinement frames are compatible. This means that the two frames
must agree on the information defined in them. Shafer explains [Sha76] that for a given set A of
the frame of discernment U, and for a given refinement function w : 2u _ 2v, the sets A and
w( A) represent the same information. That is, although refining a set means that more precise
items of information are obtained, the union of these items carries the same information as the
original set. For example, if the set

is refined into the set
A = {animal}

w(A) = {dog, cat, horse, elephant, ... }

(where ... refers to any living animal), then the same information is carried out by the two sets.
Shafer explains in details this notion of compatible frames and formulizes it. The details and the
formalism are not given here since they involve notions that are not necessary to the understanding
of the concepts used in this chapter. What should be known is that the belief functions Belir and
Belv are compatible if, for a given set A of the frame U, the following property holds:

Belu(A) = Belv(w(A))

Shafer [Sha76] proved that this is ensured if the following equality holds:

mu(A) = L mv(B)
B~V,A=B(B)

where
O(B) = {x E Ulw({x}) n B i- 0}

This set O(B) is called the outer reduction of the refinement of the set B. This link between
the BPAs mu and mv is illustrated in the following example of a refinement of the frame U to
the frame V:

---------

u

Figure 3.13: Outer reduction of a refinement

v

- Refinement



Chapter 3 Quantitative Theories for a Logic-Based Model of an Information Retrieval System

Both O(Bt} = A and O(B2) = A; that is BI and B2 have the same outer reduction. Therefore,
the following equality must hold:

mu(A) = mv(BI) + mv(B2)

If A represents a focal element of U, and BI and B2 constitute focal elements of the refined frame
V, then this link between the set A and the sets BI and B2 and their respective BPAs can be used
to model the transformation of structures, and the propagation of the uncertainty associated with
the transformation. This is illustrated in the following example of a refinement which involves
more sets:

B2 .: B4
I

B3 \
'---

u

/

v

Figure 3.14: Example of a refinement that leads to the representation of the transformation of structures

Both B(BI) = B(B2) = Al and B(B3) = B(B4) = A2. Suppose that these sets correspond to focal
elements. For the two frames U and V to be compatible, the following equalities must hold:

mu(AI) = mv(BI) + mv(B2)

mu(A2) = mv(B3) + mv(B4)

which implies the following inequalities:

mu(AI) 2: mv(BI) mu(A2) 2: mv(B3)
mu(At) 2: mv(B2) mu(A2) 2: mv(B4)

The BPA associated to a focal element in the refined frame is lower than that of the focal element
of the original frame which corresponds to its outer reduction. Consequently, if the focal elements
represent structures, and if the BPAs mu and mv represent the uncertainty attached to the structures
in the original document and the transformed document, respectively, then the BPA associated to V
can be used to embed the propagation of the uncertainty since it captures the fact that uncertainty
increases when propagated. For a structure s represented by a focal element of the original frame U
that is transformed into a structure s', the focal element representing that transformed structure (s')
in the refined frame V must be such that its outer reduction is that exact focal element representing
the structure s. This special case of the refinement can then be used to model the transformation
of the structures.
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What is left is to explicitly define the BPA mv in terms of the BPA mu so that it matches the test
case (iii). That is, if mv(BI) and mu(At) represent the focal elements associated to the structures
8 and 8', it is first necessary to define an entity representing the uncertainty of the transformation of
8 into s', and second, to define mv (B I) in terms of mu (Ad and this uncertainty. The latter means
that an entity representing the uncertainty of Al being refined into BI must be defined. This could
be viewed as defining a quantification of the refinement function. Shafer's refinement function
does not compute the BPA mv in terms of the BPA mu, nor does it quantify the refinement
function. However, the quantification of the refinement function and the explicit definition of mv
in terms of mu do not contradict the ontology of Shafer's refinement function; they only express
a specific use of the refinement function, for a BPA is defined in each frame.

To conclude, the use of the BPAs of the coarse frame and refined frame to model the propagation
of the uncertainty matches the test case (iii) as follows:

C(s, s') w(s) w(s')

To define mu(s) = b mv(s') s b

Table 3.9: Representation of the propagation of the uncertainty in the Theory of Evidence

Documents can be modelled by frames of discernment, and the transformation process can be
modelled by a refinement function. The composition of refinement functions can model sequential
transformations. The last refined frame is constituted of all the information items, either explicitly
or implicitly, contained in the document. The belief function associated with that frame can act as
a measure of relevance. If m f is the BPA associated to that final frame, then the belief function
is defined as the summation of the BPA of those focal elements that contain information relevant
to the query represented by q. This matches case (v) as follows:

w(st) W(S2) r(d -+ q)

mj(sd = a mj(s2) = b Bel(q)=a+b

Table 3.10: The representation of the relevance degree in the Theory of Evidence

The above formulation then captures the fact that the more such transformed structures are obtained,
the higher the belief, and the higher the relevance.

There is however one problem which the use of a refinement function to model the transformation
of a document; parallel transformations cannot be captured. An example of a refinement that would
capture parallel transformations is given in the Figure 3.15.

Suppose that Al and A2 are the only two focal elements of the coarse frame, and Bb B2, B3
and B4 are those of the refined frame.
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u

v

BI
1--
f

B3 ,,

Figure 3.15: Example of a refinement function that would lead to the representation of parallel transformations

To symbolize that the structures represented by the focal elements Al and A2 can be both
transformed into the structure represented by the focal element B2, first, the outer reduction of B2
must be defined as the union of Al and A2, and, second, mv(B2), mu(AI) and mu(A2) must be
somewhat related. However, the outer reductions of the sets Bl. B2, B3 and B4 are

8(Bl) = Al
8(B3) = A2

8(B2) = A
8(B4) = A2

For the two frames of discernment to be compatible, the following equalities must hold:

mu(AI) = mv(BI)

mu(A2) = mv(B3) + mv(B4)

mu(A) = mv(B2)

That is, A must be a focal element of the original frame, if B2 is to be a focal element. Moreover,
mv(B2) does not relate to mu(AI), nor mu(A2)' Therefore, it is not possible to captures that a
structure is the result of several transformations based on the notion of outer reduction.

In conclusion, the Theory of Evidence is the most appropriate framework to represent the quanti-
tative components of a logic-based model of an IR system based on the Transformation Principle.
Expect for the problem occurring with the representation of parallel transformations, which means
that the aggregation of uncertainty, as studied in this thesis, is not captured, all the other compo-
nents can be adequately represented, or at least captured (i.e., the uncertainty of a transformation)
by such a framework. Therefore, the framework is used in this thesis to model these components.
A slightly modified definition of the refinement function that encompass the problem related to the
representation of parallel transformations will be used.

3.6 Conclusion

This chapter was concerned with the representation of the quantitative components of a logic-based
model of an IR system which follows the Transformation Principle. These quantitative components
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are the significance of the information, the uncertainty of the transformation, the propagation and
the aggregation of the uncertainty, and the numerical expression of the relevance.

The process defined by these quantitative components is similar to that of an uncertain inference
process, which is usually modelled by a Theory of Uncertainty. Several Theories of Uncertainty
are examined in this chapter to represent these quantitative components. These theories are
Probabilistic-based frameworks, Fuzzy Logic and Dempster-Shafer's Theory of Evidence.

Three probabilistic-based frameworks were examined: Probability Theory itself, Bayesian Inference
and Imaging. Probability Theory could not be used for modelling the quantitative components
because no adequate interpretation or representation of the components was possible. The Bayesian
Methods were rejected because they assumed many estimations, which were not obvious to
compute. Imaging could not be used because no appropriate interpretation of the concepts was
adequate to model the transformations of documents.

Fuzzy Logic proved to be counter-intuitive. For example, the use of the max as the aggregation
of the uncertainty could not capture an accumulation of evidence. Also, the use of Fuzzy Logic
resulted in very imprecise values of uncertainty.

The framework that models best the quantitative components is Dempster-Shafer's Theory of
Evidence, together with the notion of refinement later introduced by Shafer. Dempster-Shafer's
initial framework allows the representation of the significance of information. The later framework
allows the representation of the other quantitative components. The use of the overall framework
presents the advantage that it can be easily mapped to the quantitative structured representation
of a document, and its transformation.

A Theory of Information and a Theory of Uncertainty have been selected to model the qualitative
and the quantitative components of a model of an IR system based on the Transformation Principle.
These two theories are Situation Theory and Dempster-Shafer's Theory of Evidence, respectively.
In the next two chapters the unstructured and the structured models are proposed based on these
theories.



Chapter 4

Description of the Model
for an Unstructured
Representation of Information

4.1 Introduction

This thesis proposes a model for an IR system with both a theory of information and a theory
of uncertainty. The theory of information is used to represent the qualitative components of the
system, whereas the theory of uncertainty is used to model its quantitative components. One
method of achieving this goal is to base the model on the Transformation Principle. This enables
the identification of the qualitative and quantitative components listed in the following table:

Qualitative components

Document

Query

Knowledge set (Semantic relationships)

Transformation (Flow of information)

Quantitative components

Significance of information (Weight)

Propagation of uncertainty

Aggregation of uncertainty

Relevance degree (Uncertainty value)

Table 4.1: The quantitative and the qualitative components

The survey of qualitative frameworks in Chapter 2 indicated that Situation Theory forms a relevant
theory of information for IR. The survey of quantitative methods in Chapter 3 showed that
Dempster-Shafer's Theory of Evidence embodies all the quantitative components described above.
This chapter and the next chapter demonstrate that both theories achieve their goal of modelling
their respective components of the IR system. Moreover, they show that the theories can be
combined to form a model of the IR system that follows the Transformation Principle.

The model is developed in two stages. The first stage is to represent information and its flow,
without taking into account the significance of information or its structure. The uncertainty is
represented by a general inference mechanism. The second stage takes into account the structured
representation of the document. Dempster-Shafer's Theory of Evidence is used to capture the
uncertainty. The description of the second stage of the model is the topic of the next chapter.
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The present chapter is concerned with the first stage, which is the development of a model of
an IR system for an unstructured representation of information. This model is referred to as the
unstructured model. First, the merits of the use of Situation Theory as a basis for a model of an
IR system are discussed.

4.2 Situation Theory for Information Retrieval

There are many reasons for using Situation Theory as the qualitative framework for modelling an
IR system. The foremost is that a suitable model should manipulate information and its flow as
they appear and are handled in the real world. In this thesis, the information comes from text
documents. A brief description of the main components of Situation Theory is given first.

4.2.1 Infons, situations and types

Situation Theory represents information without specifically indicating what information is. It
considers information as a fundamental entity; from this, a model of the flow of information is
derived. Situation Theory is concerned with information of the form

A property P holds / does not hold for the set of objects aI, ... , an.

These two items of information are modelled by the two infons, one being the dual of the other,
respectively

Situations are parts of the world from which information is extracted. Let (7 be an infon representing
an item of information. If a situation s makes this information true, this is denoted s 1= (7 (read
"support").

Types represent the uniformities that cut across infons. For example, the three following infons

~ Weather, Glasgow, sunny; 1~
~ Weather, Windsor, sunny; 1~

~ Weather, Algiers, sunny; 1~

have the common information that it is sunny. What differs in these infons is the city. The type
abstracting among these infons can be defined as

cp = [sis I=~ Weather,c, sunny; 1~l
which is the type of any situation about a city (represented in the type by the parameter c) where the
sun is shining. If s is one of them, this is written s 1= cp. In [Dev91], a detailed description of infons
and situations, together with a set of rules that ensure proper instantiating (called anchoring) of
parameters, is given.

Dretske [Dre81] provides a comprehensive read about the role of information and its flow. Indeed,
the philosophy behind the development of Situation Theory conforms to many of the points
expressed by Dretske. Those relevant to IR are discussed next, and their representations within
Situation Theory ontology are emphasized.
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4.2.2 Digital vs. analog

Oretske [Ore8!] explains that information is knowledge about a source, which is communicated by
a signal to a receiver. Here, the source is the document and the receiver is anybody observing the
document (reading a text, listening to an audiotape or observing an image). Signals are whatever
means by which the information about a source is delivered to the receiver. For example, if the
document is a text, the signal is a mixture of the reader's vision capability, his/her understanding
of the information read, and his/her general knowledge about its subject. A signal can also be the
indexing process which delivers a representation of the information content of the document.

Oretske [Ore8!] defines a source as any structure with an information content; situation is of
primary concern here. Let d be a situation and sp be an information item. If the signal carries the
information that d contains rp (or, as expressed by Orestke, "d is rp"), this is written in Situation
Theory d 1= ip,

A signal which carries d F ip often carries additional information about the situation d or other
situations owing to the exact fact that d supports ip, This information is said to be nested into
the fact that d supports rp. This notion is important to Chapter 5 where information structures
are defined.

Oretske notes that information can be encoded in two forms: a signal carries the information d F rp
in digital form if, and only if, the signal carries no additional information that is not nested in d
supporting rp; otherwise, the signal carries this information in analog form.

4.2.3 Perception

According to Oretske [Ore8!], perception is the process by which information is delivered to
a cognitive agent for its selective use. It is identified with a signal that carries information
about a source which is coded in analog form. Until information has been extracted from this
signal, nothing corresponding to recognition, classification or identification has occurred. It is the
successful conversion of information into the appropriate digital form that constitutes the essence
of a cognitive activity. In Situation Theory, situations are the objects of perception. They provide
the information that signals carry in analog form.

A perception process often embodies information about a variety of details that, if carried over in
total to the cognitive agent, would require immense storage and retrieval capabilities. Moreover,
there is more information than can be extracted and/or exploited by the cognitive agent. Only
some of the information the perception process carries in analog form is retained. The same holds
true with most (if not all) IR systems. The indexing of a document does not give an exhaustive
description of the information content of that document. There would be too much information to
store, and sometimes it is not even possible to exhaustively determine the information content.

A perception process is determined not by what information is carried, but by the way it is carried.
Seeing, hearing or reading are not different processes because of the information they carry (the
information might be the same), but because of the vehicle by which this information is delivered.
Two different concepts are involved here:
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(i) how the information is delivered, and
(ii) what the information represents.

Situation Theory is concerned with the latter, for a situation can be a text, an image or a speech.
Therefore, a model based on Situation Theory could eventually incorporate multimedia IR systems.

4.2.4 Cognition

Dretske [Ore81] describes cognition as the conversion of the information a cognitive agent receives
in analog form into digital form. The result is often qualified as a knowledge with respect to
the cognitive agent. The conversion, referred to by Dretske as digitalization, involves a loss of
information because it turns a structure of greater information content to one of lesser information
content.

The indexing process in IR can be compared to a digitalization process. The document is a situation
that contains information in analog form. The information which is (successfully) digitalized
constitutes the document representation. The goal is to minimize the loss of information involved
in the conversion while at the same time obtaining a small enough document representation for
both storage capacity and retrieval speed.

Some researchers [Lan86, Bar89] refer to a situation as a partial object, which can contain a vast
amount of information, though only part of it is digitalized. For example, ask different people to
describe the same event and you will often obtain different descriptions of that event. Whether an
item of information is to be digitalized or not depends on two properties attached to the cognitive
agent:

(i) its capability of perception. For example, a human being and a robot do not perceive
information at the same level. A robot can identify entities that a human being cannot,
and vice versa.

(ii) its focus of attention, because cognitive agents are often constructed to fulfill a task. For
example, the color of a wall may be of no interest to a moving device whose purpose is
to avoid the wall.

The essence of Situation Theory is to capture these facts, which is often not the case with most
truth-based frameworks. In these, every representation of an information item is assessed to either
belong or not to belong to the document (the assessment is often a truth value). This is unreasonable
because many information items have no connection whatsoever with the information content of the
document, so the assessment should only be made if necessary. This could be either negative (e.g.,
"the document is not about the political situation in Quebec,,)47 or positive (e.g., "the document is
about the religious problems in Algeria"). Situation Theory captures this phenomena, which was
referred to as partiality in Chapter 1.

4.2.5 Information vs. meaning

Dretske [Ore81] claims that information and meaning are two different concepts. Indeed, there is

47 Negativity here does not mean the non-existence of the item of information.
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no reason to assume that the information a signal carries is identical to its meaning. Often, the
information contained in a signal exceeds its meaning. For example, the statement "Keith is at
home" means that Keith is indeed at home. It does not mean that "Keith is at home and not at
work", though Keith being at home implies that Keith is at home and not at work. A signal that
carries "Keith is at home" also carries "Keith is at home and not at work". This difference is
highlighted by Dretske [Dre8!]:

" ... information is that commodity of yielding knowledge, and what information a signal
carries is what we can learn from it".

In IR, understanding the meaning attached to the sentences of a document is important, but is
insufficient for determining the information content of the document. This is why frameworks
such as Montague Semantics [DWP81, Mon74] are not appropriate, since they are theories of
meaning, whereas Situation Theory is a theory of information.

4.2.6 Constraints and the flow of information

Constraints model relationships between types to represent, for example, relationships such as "if
I keep practicing my free style I will become a good swimmer" or "Scandinavian countries have
very cold winters". Let </> and cp be two types that constitute the constraint </> -+ cp. The application
of this constraint to a situation 81 is possible if first 81 1= </> and then informs on the existence of
a situation 82 such that 82 1= cp. The fact 81 1= </> carries the information that 82 1= cp. A flow of
information circulates between the situations 81 and 82, and the nature of the flow is defined by
the constraint </> -+ cp. The result of the flow is that 82 1= cp.

A flow of information arises between two situations, meaning that the information about one
situation contains information about the other situation. If the two situations are the same, the
information about the situation carries information about itself. That is, if 81 = 82, the flow gives
additional information about the situation 81 itself.

In IR, constraints can model any thesaural, semantic or pragmatic relationships, or more complex
relationships like those handled by artificial intelligence. In further references, the term "semantics"
is used to refer to information-based relationships. These include relationships defined upon
meaning; an example is "airplane" and "aircraft", which can be considered as synonymous'".
They also include relationships defined upon background knowledge. An example is the systematic
relationship that most people attach to "wine" and "France".

4.2.7 Conditional and unconditional constraints

Constraints do not always hold. For example "Winters in Windsor are mild" is a generally true
assumption which can sometimes fail to hold, as it did on my arrival in January 1994 (it was
the coldest winter of the decade). The constraints that always hold are called unconditional and
those that do not are called conditional. The latter indicates that the realization of some constraints
may be uncertain. In Situation Theory, this uncertainty is captured by background conditions. A
conditional constraint is written </> -+ cpIB, which highlights the fact that the constraint </> -+ ip

48 In reality. airplane is a subset of aircraft.
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holds if the background conditions captured within B are met. The background conditions are
often represented as a set of types. So <p -t <pIB holds if a situation s such that s 1= <p is also
of type B, that is s 1= B.

The use of background conditions allows the rejection of the two following rules of Classical Logic:

(i) from <p -t <P and <p -t X infer <p -t X
(ii) from <p -t X infer <p 1\ <p -t X

The first rule holds if the background conditions associated with <p -t ip and <p -t X are compatible
(they present some commonality). The second is sustained if <p and <p are supported by the same
situation and <p is compatible with the background conditions associated with sp -t X. In IR,
background conditions can represent intensional expressions, examples of which are polysemic
words. Consider the word "bank" in a document dealing with finance. Inference with respect to
that word should relate to the "money bank" context, and not "river bank,,49.

The background conditions can be particularly complex to identify. In every day reasoning, people
often use background conditions, though they are not aware of them. People often, if asked, cannot
express them. This should not imply the non-existence of the background conditions. As Devlin
[Dev91] points out, background conditions become a concern only when a constraint fails.

4.2.8 The general idea of a model based on Situation Theory

From Dretske's account of the role of a theory of information [Dre81], Situation Theory seems
the right framework for the qualitative modelling of the IR system. Situations and types show
similarities with documents and their information content. Supported information corresponds to the
explicit information content (digitalized) of the document, whereas carried information corresponds
to its implicit information content. The Transformation Principle is re-expressed within Situation
Theory ontology:

"The extent to which d is relevant to ip, relative to a given knowledge set J(, is based on
the minimal extent to which it is necessary to transform d into d' such that d' 1= ip".

d is the situation modelling the document and <p is the type modelling the information need
expressed in the query. In the remainder of this chapter, the existence of a set of situations S
and a set of types T is assumed.

The knowledge set J( is an essential component of the model because the transformation of
documents depends on J(. The representation of the knowledge set within Situation Theory
ontology is the topic of the next section.

4.3 The knowledge set

The knowledge set symbolizes the semantics of information. In Situation Theory, semantics are
relationships between information items, where the relationships are modelled by constraints. When

49 Disambiguation is necessary, which unfortunately is not always successful or even possible [San94, Voo93, KC92].
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viewed as a situation, a document supports information and often carries implicit information that
depends on the available constraints. It is the application of a constraint to a situation that leads
to a flow of information, which then relates the same situation or two different situations. For
example, with the constraint (from [Bar89])

[sis I=~ Kiesinq,»; 1~l -+ [sis I=~ Touching, x; 1~l
the same situation is involved. With the constraint

[sis I=~ In, Windsor,Mouniaj 1~l -+ [iii I=~ Sad, Steve,Glasgowj 1~]

two situations are linked, one related to the city of Windsor, the other to the city of Glasgow. In
addition, constraints are either unconditional or conditional. Their applications lead to certain or
uncertain flows, respectively. For example, the constraint (from [Dev91])

[sis I=~ Presence, smoke; 1~l -+ [sis I=~ Presence, fire; 1~l
is certain because whenever there is fire, there is smoke. The constraint

[sis I=~ Ringing, doorbell; 1~l -+ [sis I=~ At, door, somebody; 1~l
is uncertain because it is not always the case that when the door bell rings, someone is standing
at the door. The latter constraint is defined in terms of a set of background conditions. Hence,
four types of flow occur:

(i) certain and relating the same situation,
(ii) certain and relating two different situations,
(iii) uncertain and relating the same situation, and
(iv) uncertain and relating two different situations.

As studied in this thesis, the flow of information that may originate from a document is not the
information that document has about another document, but what yields the implicit information of
a document. If the flow is certain, this information can be considered part of the information content
of the document. If the flow is uncertain, this information might not be part of the document's
information content. In that instance, a fictitious document (which is modelled by a situation) is
constructedl", This situation contains the information delivered by this flow. Consequently, only
flows of types (i) and (iv) are considered here.

The constraints that lead to flows of type (i) or (iv) are modelled by the two sets /(1 and /(2,

which are the set of unconditional constraints and the set of conditional constraints, respectively.
Let d be a situation such that d 1= <p. The application of an unconditional constraint <p -+ cp E /(1

on the situation d means that d 1= <p carries the information that d 1= cp. The application of
a conditional constraint <p -+ cplB E /(2 on the situation d depends on the satisfaction of the
background conditions B by d. Three cases occur:

(i) d 1= B, the flow is certain, therefore d 1= cp. The constraint behaves as if unconditional.
The constraint is said to be certain with respect to the situation d.

50 As explained in Chapter 2. this fictitious document (or the corresponding situation) is. in practice. a representation of the document
that includes implicit information.
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(ii) d ~ B, the flow is not realized.

(iii) nothing can be said as to whether or not d 1= B (this is often the case in IR). The resulting
uncertain flow leads to a situation d' such that d' 1= cp. The constraint is said to be uncertain
with respect to the situation d.

In the third case, the flow of information is uncertain. The relevance of the document is strongly
dependent on this uncertainty because the more uncertain is the flow, the less relevant the document
is to the query. One method to represent the effect of this uncertainty upon the relevance is to
quantify the uncertainty engendered by the flow. Since this uncertainty is engendered by the use of
uncertain conditional constraints, the quantification can be derived from the background conditions
associated to these constraints.

An uncertainty value is associated with the background conditions of each constraint, and measures
the uncertainty involved in using that constraint when it is not known if its background conditions
are satisfied by a situation. The function

cert: S x BC -- [0,1]

is introduced for that purpose, where BC ~ 2T is the set of background conditions. For the situation
s and the background conditions B, cert(s, B) measures the extent to which the background
conditions in B are satisfied by the situation s51. The value cert( s, B) is used only if the satisfaction
of the background conditions is undetermined in the situation.

The quantification of the uncertainty involved is one method of providing a numerical expression
of relevance. With Situation Theory, the uncertainty is already represented in the background con-
ditions, though qualitatively. However, the construction of the function cert from the background
conditions is not easy. Indeed, what should be the values of cert(s,Bl) and cert(s,B2) in the
following cases:

(i) Bl and B2 are the same or disjoint set of types,
(ii) B, and B2 have common types, or
(iii) Bl is included in B2?

Some of these questions are considered throughout this chapter.

Attaching uncertainty to relationships (here, through their background conditions) is not a new
concept in IR. For example, among synonyms, (in some contexts) two terms can be "more
synonymous" than two others. In IR, the computation of the strength of a relationship is often based
on statistical/linguistic analysis of text documents or thesauri (see for example [Den64, Rug92]).
The result is often viewed as an uncertainty value.

In conclusion, the set of unconditional constraints ](1 and the set of conditional constraints ](2,

together with the function cert : S x BC -- [0,1], constitute the representation of the knowledge
set referred to as K in the Transformation Principle. They constitute the semantic relationships,
together with the uncertainty pertaining to them. Note that a constraint in ](2 behaves like
a constraint of K1 if the situation to which the constraint is applied satisfies the background

51 The correspondence between the qualitative and quantitative representations of the uncertainty of the background conditions has
been discussed in [Lal95bj.



Chapter 4 Description of the Model for an Unstructured Representation of Information

conditions. The constraint is certain, and delivers implicit and certain information. Otherwise,
the constraint is uncertain, delivering uncertain and implicit information, and the value of its
uncertainty is given by the function cert. In further references, the sets ](1 and ](2, together with
cert are assumed defined.

Next, the model of an IR system that accounts for the unstructured representation of documents is
presented. The model uses the information stored in ](1 and ](2, and the uncertainty function cert.

4.4 The model for unstructured information

A document is an object with an information content; it can be modelled by a situation dES. A
query is an information need; it is then modelled by a type cp E T. The role of the IR system (the
cognitive agent, if one can say so) is to determine to what extent it can be said that d supports
'P. If d 1= 'P then 'P is part of the information content of the document; the document is relevant
with certainty. Otherwise, constraints from the knowledge set are used to find a flow that leads to
that information 'P. The uncertainty attached to this flow (if it exists) is used in the computation
of the degree of relevance.

The translation of the textual information into types concerns natural language processing, of
which there is extensive literature [Win83, Sme92]; the one which is most relevant to this context
is Situation Semantics [BP83, FLV87, BJa92]. In this and the next chapters, it is assumed that
appropriate tools are available to index documents and queries. That is, it is assumed that the
indexing process is done and that the explicit information content of the document and the
information need has been determined. A discussion on that matter is given in Chapter 6.

Although the model is described with respect to information items as defined by Situation Theory, it
also applies to more complex information structures, such as semantic trees, frames, discourse, etc.

For clarity, the unstructured model is presented in two stages: first, single type queries are
considered in the model; second, the model is generalized to queries containing several types.

4.4.1 Single type query

The qualitative components of the unstructured model are based principally on Situation Theory.
However, some of the terminology identified in Data Semantics [Lan86] is borrowed because it
leads to simpler definitions. The uncertainty is represented by a general uncertainty mechanism.

Let R : S X T -+ [0,1] be the function measuring the relevance degree of a document with respect
to a query. For the document modelled by d and the query represented by 'P, R(d, 'P) expresses to
what extent d is relevant to 'P. The computation of R(d, 'P) involves the following cases:

(a) d 1= 'P then the document is relevant, thus R(d, 'P) = 1.

(b) d 1= </> and </> -+ 'P E ](1. The flow is certain so it relates the same situation; d 1=
'P and R( d, 'P) = 1. The information 'P is implicit but certain with respect to the
document's information content. This case also includes conditional constraints that have
their background conditions satisfied by d; that is </> -+ 'PIB E ]("}.and d 1= B
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(c) d 1= </> and </> ~ cplB E 1(2. The flow is uncertain. It relates two situations; d is
transformed into d' such that d' 1= cp. If no other constraints are used to construct d',
R(d, cp) = cert( d, B), indicating that the degree of uncertainty matches the uncertainty
attached to the use of the constraint. The formulation captures the fact that the more uncertain
is the satisfaction of the background conditions by d, the less relevant the document is to
the query.

(d) Several constraints in sequence might be required to arrive at ip, To compute R(d, cp), the
uncertainty has to be propagated. The propagation should reflect the fact that the more
transformations are required to obtain ip, the more uncertain is cp. Point (c) above is a
special instance of this case.

(e) Several constraints in parallel might lead to sp, To compute R(d, <p), the uncertainty has to
be aggregated, and should reflect that the more transformations lead to <p, the less uncertain
is <po

(f) Any combination of (d) and (e).

(g) Otherwise R(d, cp) = 0, the document is irrelevant to the query.

d is the situation that models the document's initial information content. That is, d supports the
information that is explicit, and implicit and certain in the document. Implicit and certain infor-
mation comes from the application of unconditional constraints and conditional certain constraints
to the situation d. The representation of the implicit and uncertain information content of the
document must be defined. This representation requires the formal expression of cases (c) to (f)
above. All the concepts that are necessary to express (c), (d), (e) and (f) are formally defined in
the next sections. The concepts used for expressing (a) and (b) are situations, types, support, and
unconditional constraints. These concepts have already be defined. For clarity, in the remainder
of this section, the above cases will be referred to by their numbering.

4.4.1.1 Transformation

The transformation of a document (situation) captures the flow of information, and is either an
addition or a modification of information. In the first case, the transformed situation also supports
the information supported by the initial situation, whereas in the second it does not necessarily.
The flow of information links two situations, such the former contains information about the
latter. In this thesis, the flow of information is restricted to the phenomenon that leads to the
implicit information of the document from its explicit information content, meaning that, with a
transformation, additional information is identified as part of the information content (although with
uncertainty). Therefore, a transformation, in practice, corresponds to an addition of information,
which from now on, will only be considered. The transformation process is referred to as an
extension process, as the transformed situation supports the information of the latter situation, and
more. This decision also leads to a less complex implementation (see Chapter 6). Transformation
in general is discussed at the end of this chapter and in Chapter 8.

4.4.1.2 Extension

The concept of extension is defined by both Landman [Lan86] and Barwise [Bar89]. A slightly
more restrictive definition is used in this thesis in order to base the extension exclusively on the
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application of the conditional constraints.

Suppose that a situation d 1= </> and </> -+ IPIB E ](2. If it is not known whether d satisfies B,
d is extended to a situation d' such that

(i) d' 1= ip,

(ii) d' 1= B (i.e., the background conditions are supported by the extended situation)

(iii) if d 1= 't/J then d' 1= 't/J (i.e., every type that d supports is supported by d'),

(iv) if d' 1= X and X -+ 't/J E ](1 then d' 1= 't/J (i.e., all implicit certain information that comes
from the fact that d' 1= X is supported by d'),

(v) if d' 1= x, X -+ 't/JIB' E ](2 and the background conditions B' are satisfied by d', then
d' 1= 't/J (i.e., the conditional constraint leads to a certain flow).

The situation d' is an extension of the situation d. This is denoted d t> d'. The extension operator t>

is a partially ordered relation on the set of extensions of the situation d. This set is defined as E( d).

An extension models the application of conditional constraints of which the satisfaction of the
background conditions is undetermined. The extended situation supports the information which
was supported by the initial situation and the information that results from the application of the
conditional constraints. It also supports the information that results from the application to itself
of unconditional constraints and conditional certain constrains. Extensions only partly model case
(c), for no uncertainty is yet embodied.

The relationships used in extending documents are assumed appropriate. Obviously, they depend
of the domain covered by the documents and the way these are indexed.

A more general type of extension, denoted d ~ d', is also defined. ~ coincides with Barwise
[Bar89] and Landman's [Lan86] definition of extension. This operator satisfies only property
(ii) above. ~ is used, for example, when new information about a situation can be completely
independent to the rest of the information already gained about that situation. This information
becomes available not necessarily because of the information that is already supported by the
situation, but also because the cognitive agent digitalizes it. Extensions that come exclusively
from constraints are modelled by t> which is a special case of ~. t> is referred to as the extension
operator, whereas ~ is referred to as the inclusion operator+'.

4.4.1.3 Sequential extension or branch

A branch b is a subset of S with a special situation d, called the root, such that

(i) dEb,

(ii) for all d' E b, d e- d', and

(iii) for all d', d" E b, either d' t> d", d" e- d' or d = d' (i.e., the situations are the same).

The set {d1, ..• ,dn} is a branch if there exists an order with respect to e- between the situations in

52 Barwise also differentiates the two types of relations between situations: a situation is extended to another one (as defined with
~) and a situation contains information about another situation (as defined here with 1». The latter relation is modelled by the
so-called channels discussed in Chapter 2. A model based on these was developed in [vRL96].
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that set. For simplicity, if the ordering is dil>di+l for i = 1,n -1, the branch is denoted d11>... I>dn.

A leaf 1 of a branch b is the end point situation of that branch; that is, for all d' E b, d' I> 1.

B( d) is the set of all branches with root d. This set constitutes all the alternative extensions of
the root situation.

A branch models a sequential transformation of a document; that is part of case (d). The uncertain
constraints are responsible for the extensions, thus indicating that branches are themselves uncertain.

4.4.1.4 Uncertainty of a branch

The following function is introduced to measure the uncertainty of the branches of B( d):

8: B(d) - [0,1]

Suppose that d 1= 'I/J, and {'I/J - 'l/JiIBih=l,n ~ 1(2 are the only uncertain conditional constraints
that can be applied to d. Suppose that all the background conditions are incompatible; that is, none
of the constraints can be applied together (this is explained in section 4.6.1). Therefore, d can be
extended into n alternative situations dj, each from the application of the constraint 'I/J - 'l/JjIBi.
The uncertainty of each branch d I> d, is set as

for i = 1,n. The value cert( d, Bi) represents the uncertainty of di being the appropriate extension
of d.

Suppose that {<p - <PiIBi}i=1,2 ~ 1(2, {<p - <pj I Bi} j=1,3 ~ 1(2 and that d 1= <P and d 1=
<po Further, suppose that the satisfaction of the background conditions of these constraints is
undetermined. Suppose that all the background conditions BiS are incompatible with each other,
and the same applies for the background conditions Bis. Finally, suppose that each of the BiS can
be applied with each of the Bis. In that case, d can be extended into 2 * 3 = 6 situations dij due
to <P- <pilBi and <P - <pjlBi for i = 1,2 and j = 1,3. This is illustrated in the following figure:

d

\

\
"e/ 8 ~

" e8 8
dll dl2 dl3 d21 d22 d23

The uncertainty attached to the extension dij is defined as

Figure 4.1: Example of the alternative extensions of a situation

8(d I> dij) = cert( d, Bi) * cert (d, Bi)
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This expresses the case of a single extension; that is case (c). Multiplication reflects the fact that
the more uncertain constraints that are used, the more uncertain the extended situation. It also
indicates that constraints are applied independently. This issue is discussed later in this chapter.

If one of the BiS is the same as one of the Bjs, then the application of the constraints <P---+ <pilBi
and i.p ---+ i.pjlBj depends on one set of background conditions B, (= Bj). In that case, the
uncertainty of the branch extension dij is defined as

Finally, if one of the BiS is incompatible with one of the Bjs, then the application of the constraints
<P---+ <PiIB i and 'P ---+ 'Pj IBj is not possible, and the situation dij is not constructed.

A branch represents the consecutive addition of uncertain information, which is based on conditional
constraints. The more information that is added (i.e., the more extensions are required), the more
uncertain the resulting information is with respect to the document's initial information content.
Consider the branch b = d1 I> ••• I> dn where d = d1. Let the uncertainty of the extension of d;
into di+1 be 8(d, I> di+l). This value depends on the uncertainty of the constraints upon which
the extension is based. The uncertainty of the branch b, 8(b), which can be interpreted as the
uncertainty of obtaining the situation dn from d1, is defined as

8(b) = II 8(di I> di+l)
i=l,n-l

This models case (d), that is, the sequential transformation of a document. Many inference
processes model the propagation of uncertainty in this manner (see [KC93] for a survey). This
formulation and the one used previously are just one way to treat uncertainty. They both satisfy
the requirement that uncertainty increases with the number of transformations (extensions) and the
number of constraints used in an extension. Both formulations also make computation less complex.

4.4.1.5 Parallel extensions

Suppose that there are m branches bjs that extend the situation d into the same situation d'. These
branches constitute parallel extensions of the situation d into the situation d', The occurrence of
parallel extensions indicates that the information supported by d' is less uncertain than if one branch
alone was leading to it. It could be said that there are more evidences leading to that situation.
Consequently, the uncertainty attached to the obtainment of d' should be higher. Let 8(bj) be the
uncertainty associated to bj. The values 8(bj)s are aggregated into 8(dl>d') as follows:

8(d I> d') = L 8(bj)
j=l,m

Summation models the accumulation of evidence. A property attached to constraints which is
given later ensures that the value of 8(d I> d') lies in the interval [0,1].

The representation of parallel transformations of a document and the aggregation of uncertainty
pertaining to them constitute case (e) of the evaluation of relevance. Since a branch can be either
a single extension or a sequence of extensions, the above formulation captures case (f) of the
evaluation of relevance, that is, the combination of sequential and parallel transformations. What
remains to be expressed is the relevance degree of the document to a query. This requires the
introduction of two additional concepts, which are given in the next two sections.
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4.4.1.6 Pertinent situation

For simplicity of expression, it is necessary to distinguish between a document being relevant to
a query and the situations involved in modelling that document containing information relevant to
the query. The notion of pertinence is introduced for that purpose.

A situation d such that d F cp is said to be pertinent to the information cp. Pertinence refers to
situations whereas relevance refers to document. A document is (somewhat) relevant to a query ip

if the situation modelling that document or at least one of its extension is pertinent to cp.

4.4.1.7 Minimal branch

The Transformation Principle refers to the notion of minimality. Indeed, a document is transformed
until the information being sought is found. This characteristic is taken into account in the
expression of the model with the introduction of minimal branches.

Transformations are modelled by branches. The process of extending a branch ceases in two cases:

(i) when the branch leads to a pertinent situation. It is shown later that extending that branch
does not modify the degree of relevance with respect to that branch.

(ii) when the branch cannot be extended anymore because either no constraint can be applied
to its situation leaf or all the appropriate constraints have already been applied.

Minimal branches are branches of type (i). A branch b E B( d) is a minimal branch with respect
to cp, called a cp-minimal branch, if its leaf is the only situation in that branch that supports cp.
B(d, cp) is the set of cp-minimal branches with root d.

In practice, the transformation process does not only cease when information pertinent to the query
is found; otherwise, this may be a lengthily process. Techniques that control the transformation
process are necessary to allow the system to deliver results in an acceptable amount of time.
For example, a maximal number of transformation could be imposed (this techniques is adopted
in this thesis - see Chapter 6). Another method would be to ensure that the quality of the
information contained in the transformed documents is always above a given threshold. The
uncertainty propagated along the transformed documents may be used as an indication of this
quality; when the uncertainty is below the threshold, the quality of information supported by the
transformed situations become non-acceptable, and the transformation process ceases.

4.4.1.8 Relevance degree

The computation of the relevance degree of a document to a query involves several cases as listed
in the beginning of section 4.4.1. All the concepts necessary to express those cases have been
defined: a transformation and its uncertainty, sequential transformations and the propagation of the
uncertainty, parallel transformations and the aggregation of the uncertainty, and minimal branches.
The latter model the minimal transformations of the document into fictitious documents (situations)
that contain the information being sought (which was phrased in a query). The aggregation of these
minimal branches can express the relevance degree. That is, given the situation d which represents
the document's initial information content and the type cp which represents the information need,
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the value of iR( d, cp) depends on the uncertainty of the cp-minimal branches in B( d, cp). I pose

R(d,cp) = L &(b)
bEB(d,c.p)

This formulation captures the fact that the bigger the set B( d, cp) (i.e., the more minimal extensions
lead to pertinent situations), the higher the degree of relevance. The use of summation embodies
the case of parallel extensions and it makes the generalization into the structured model possible.
Some would argue that this combination behaves as if independence was assumed; this aspect is
discussed at the end of this chapter+'.

The formulation of R(d, cp) does not always yield a value between 0 and 1. One way to obtain
this is to normalize the constraints.

4.4.1.9 Normalization

To ensure that iR( d, cp) ~ 1, a normalization process is performed on the background conditions
that mayor may not be satisfied by a situation d. Suppose that d 1= 'ljJ. Given a set of constraints
{'ljJ -+ 'ljJiIBdi=l,n ~ /(2, the normalization is expressed as follows:

n

L cert( d, Bi) = 1
i=l

if the background conditions of these constraints are all incompatible with each other. Otherwise,
the normalization process is done with respect to the set of mutually incompatible background
conditions.

The set {'ljJ -+ 'ljJiIBi}i=l,n can be viewed as the set of exhaustive constraints with respect to
'ljJ54. Since those constraints are uncertain, the set {'ljJl,' .. ,'ljJn} can be interpreted as forming a
set of exclusive choices with respect to 'ljJ, thus somewhat modelling imprecision. Therefore, the
normalization process is not counter-intuitive, though the normalization process does not taken into
account the eventual relationships between sets of background conditions. This issue is discussed
at the end of this chapter.

To avoid normalizing the constraints, an alternative formulation could be

2: &(b)
R(d ) = bEB(d,c.p)

,cp 2: &(b)
bEB(d)

This formulation consists of normalizing the overall result. In the structured model described in the
next chapter, the extension process is performed layer by layer (the reasons are explained in that

53 An entropy-like formulation could have been used. The branches would be the possible extensions of a document and 8(b) their
probability of occurrence. In such case, the amount of information generated by the document with respect to the type c.p is

L -8(b) * log (8(b))
bEB(d,<p)

This formulation is not used; first, 8 is not a probability function; and second, the model is later expanded to incorporate the
significance of information, in which this formulation cannot be merged.

54 Barwise, Devlin or Huibers would object to this since it is not possible to be aware of a set of exhaustive constraints. However, in
IR all identified relationships are stored. Although they are not exhaustive with respect to the outside world, they are exhaustive
with respect to the IR system.
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chapter). In that instance, if the situation d is extended into n situations d1, .•• , dn, it is required
that the summation of the uncertainty attached to the extended situations d1, ••• ,dn equates the
uncertainty associated with d. The above formulation cannot satisfy this requirement because the
normalization is done in the overall result.

Another formulation could be to normalize the uncertainty of the newly extended situations, layer
by layer. In that case, the uncertainty of a situation decreases/increases if the number of situations in
that layer is high/low. It is shown in the next chapter that, in the structured model, the extension of a
situation in a layer does not depend on the extensions of the other situations of that same layer. The
same applies for the uncertainty attached to these extensions. In particular, a situation that cannot
be extended is put as such at the next layer, and retains its uncertainty, which would be changed if
normalized. Therefore, the second formulation is also inappropriate. Furthermore, it is known that
normalizing should be performed once and not repeatedly. Since an overall normalization is not
adequate, the best approach is to normalize the background conditions involved in the extension
of a situation.

In the remainder of this chapter, the background conditions used in the extension of a situation are
assumed normalized. The corresponding constraints are referred to as normalized.

4.4.1.10 Properties of the formulation of the relevance degree

A formulation of the relevance degree has been defined. Questions may be raised regarding the
properties that derive from this formulation:

(i) Does the formulation capture minimality?
(ii) Does it satisfy the basic case where a document is relevant to the query?
(iii) Can it express exhaustivity and specificity?

These questions are examined in tum in this section.

The evaluation of ~(d, <p) includes all the minimal branches in B( d) that lead to pertinent situations;
that is, B (d, <p). Assume that this set was not defined. Let d' be a pertinent situation such that
dt>d' E B(d). Suppose that d' can be extended into precisely two situations, d~ and d~. These are
also pertinent, so both 8(d e- d' e- d~) and 8(d t> d' t> d~) are included in ~(d, <p). The normalization
of the constraints makes 8(d e- d' t d~) + 8(d t> d' t> d~) = 8(d e- d'), implying that extending a
pertinent situation does not affect the value of the relevance degree. This explains why minimal
branches capture minimality.

Consider the simple case where the query is <p and that d 1= <po In that case, ~(d, <p) = 1. This
can be captured with the reflexive property of extension (e- being a partial order); that is, d t> d. If
I pose 8(d e- d) = 1, then the formulation of ~ satisfies the case of a document that is modelled
by a situation pertinent to the query.

Two situations can both be pertinent to a query, but one of them can support more irrelevant
information to the query than does the other. The latter situation is more specific to the query
than the former. This cannot be reflected in the formulation of ~(d, <p). In the structured model,
where semantics are attached to situations and their extensions, this is shown to be different. This
is discussed in the next chapter. Since this section considers the single-type query, the question
of the exhaustivity of the document to the query is irrelevant.

III
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4.4.1.11 Summary

Transformation corresponds to an extension process. A document's initial information content is
modelled by a situation d. The flow of information is modelled by sequential and/or parallel exten-
sions of that situation, which constitute branches. Uncertainty is propagated along the sequential
extensions and aggregated along the parallel extensions. Branches then become quantified with
uncertainty values. A branch is minimal to a query if its leaf is the only situation in that branch
that supports the information being sought in that query. The uncertainty values of the minimal
branches whose leafs are pertinent to the query are aggregated to compute the degree of relevance.
This constitutes the model for unstructured information and single type query.

4.4.2 Complex query

Often, the information need is complex, leading to queries composed of more than one item of
information. These queries are called complex queries. The model described in the previous section
is expanded to accommodate complex queries. The extension process is the same as previously
defined. Those items that need redefining are the representation of queries, and the pertinence
of situations since a set of types may be involved. The formulation of the relevance degree is
re-expressed based on these new definitions.

4.4.2.1 Representation of complex queries

Depending on the ontology adopted, a complex query can be modelled by a set of types or a single
type. Assume that the conversion of the information need into infons has been done and that the
query is translated into n infons CTi, for i = 1, n. The representation of the query can be the
type <P = [sis 1= {CTI, ••• ,CTn}] or the set of types {<pi = [sis 1= CTi]}i=l,n' for i = 1,n. However,
extensions often do not lead to situations of type <po Instead, they more often lead to situations
that support some of the <PiS, thus showing a partial relevance to the query. Therefore, the second
representation is best; that is, a complex query is modelled as the set cl? = {<PI, ••• , <Pn}. The
single type query <P could have been used if an additional operator was introduced to represent
that a situation is partly of a given type. However, there are already enough operators.

Barwise [Bar89] accommodates the support relation to include a set of types. In this case, a
situation d supports cl? ~ T, written d 1= cl?, if and only if, s 1= <P for all <P E cl?

4.4.2.2 Pertinent situations and minimal branches

The extension of the situation d does not always generate situations that support all the types in
cl? To represent partial relevance, any situation that supports at least one type in cl? is considered
pertinent to cl>.

The cl>-minimal branches are defined as the set of the branches in B(d) whose leaf situations and
no other situation in those branches are pertinent to cl? That is, b is a cl? - minimal branch if the
leaf of that branch b, and no other situation in b, supports at least one type in the set cl? This
set is denoted B( d, cl?).
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4.4.2.3 Relevance degree

The formulation of the relevance degree is redefined on the set of types ~ : S X 2T -+ [0,1]
as follows:

~(d,cp) = L 8(b)
bEB(d,<f/)

This formulation is the same as that used for single-type queries, but it applies to complex queries.
Partial relevance is captured because any situation that supports part of the query is considered
pertinent.

4.4.2.4 Properties of the formulation of the relevance degree

As for the formulation of the relevance degree for single-type query, the expression of the relevance
for a complex query cannot express the extent to which a document is specific to a query because
a pertinent situation can support information that does not concern the query. As it will be
shown in the next chapter, if the information is organized into semantic entities (for example,
a group of synonymous terms), specificity can be captured in the evaluation of ~(d, cp). What
can be concluded thus far is that if there are branches whose leaf situation does not contain any
information relevant to the query, the document is not specific to the query.

The exhaustivity of the document cannot be expressed with the formulation of the relevance
degree proposed in 4.4.2.3. Indeed, if all extensions of the situation that models a document leads
to pertinent situations, the relevance degree of the document to the query will be of value 1.
However, this does not imply that all the information requested is indeed part of the document,
either explicitly or implicitly; that is, the document may still not be exhaustive in relation to
the information being sought. In the next chapter, it is shown that by allowing extensions to be
maximally extended (until they cannot be further extended), the exhaustivity of the document is
represented.

It may be that the consequent of a constraint which can be applied to a situation is a type already
supported by that situation. Let s be a situation which supports two types </> and X (i.e., s 1= {</>, X}).
Several cases occur:

(i) </> -+ X E ](1; the application of the unconditional constraint has no effect

(ii) </> -+ xlB E ](2 and s satisfies the background conditions of the constraint (s 1= B); the
application of the constraint has no effect.

(iii) </> -+ XIB E ](2 and s does not satisfy the background conditions of the constraint (s ~ B);
the constraint cannot be applied to the situation s.

(iv) </> -+ XIB E ](2 and it is not known whether s satisfies the background conditions of the
constraint; the constraint is not applied, for it does not bring any additional information.
However, the uncertainty associated to the constraint is not divided between the uncertainty
associated to other uncertain condition constraints with antecedent </>. This is explained
below.

(v) </> and X are not related: all constraints with antecedents </> or X can be used. The only
restriction depends on the satisfaction of their background conditions.
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In case (iv), suppose that the following two constraints ¢ ---+ XtlBt and ¢ ---+ x21B2 are uncertain
with respect to the situation s and that B, Bt and B2 are mutually incompatible. If s did not
support X, the situation s would have been extended as follows55:

s2

Figure 4.2: Case of extension that brings additional information

In the above case, normalization means that cert(s, B) + cert(s, Bt) + cert(s, B2) = 1.

The fact that s 1= X implies that s' = s. The situation s is extended into two situations, as shown
in the following schema:

s2

Figure 4.3: Example of an extension that does not bring additional information

As discussed in section 4.4.1.9, the constraints that lead to alternative extensions of a situation must
be normalized. In the above example, this means that cert(s, Bt) + cert(s, B2) = 1. However,
although s is extended to two situations, there are indeed three possible ways to extend s, one being
to itself. To represent this fact, the uncertainty values attached to ¢ ---+ XtlBt and ¢ ---+ x21B2
remains the same and cert( s, B) + cert( s, Bt) + cert( s, B2) = 1 still holds.

4.5 Example

Let a set of types be defined by T = {tt,t2,t3,t4,t5,t6,t7,ts,t9,tlO,tll,tt2}' Let the set of
unconditional constraints and the set of conditional constraints be given, respectively, by

](t = {t5 ---+ tlO,t6 ---+ ts,ts ---+ tg}
1(2 = {tt ---+ t2,tt ---+ t3,t2 ---+ t4,t2 ---+ t5,t2 ---+ t6,t4 ---+ ttt,t4 ---+ tt2}

For simplicity, the background conditions of the conditional constraints is not shown, but the
uncertainty values associated to their satisfaction are shown in the figure below. Let d be the
situation that models the document's initial information content. Suppose that the types tt and t6
represent explicit information in the document. Let the query be represented by the set of types
{ t5}. The extensions of d, together with the propagation and the aggregation of the uncertainty,
are shown in the following figure:

55 In this example, it is assumed that no other constraint is used to extend the situation s.
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d

dl

Figure 4.4: Example of the computation of the relevance in the unstructured model

Two minimal branches are obtained; one leading to the leaf situation d4, and the other leading
to the leaf situation d6• These minimal branches are d I> dl I> d4 and d I> d2 I> d6• The branches
leading to d7, dg, dg and dlO cannot be further extended. The uncertainty values attached to the
minimal branches are both equal to 1 * 1/2 * 1/3 = 1/6. The relevance degree of the document
to the query is 1/6 + 1/6 = 1/3.

4.6 Discussion

Three issues raised in this chapter are discussed in this section: the relationships between the
background conditions (section 4.6.1), the assumption of independent information (section 4.6.2)
and the generalization of the unstructured model to one that deals with transformation in general
(section 4.6.3).

4.6.1 Background Conditions

The relationship between the background conditions of constraints have not been considered in the
extension of a situation: Indeed, let <P - <PI 1Bland <P - <p21B 2 be two constraints that can be
applied with uncertainty to a situation s. The backgrounds conditions of these two constraints may
be related. Indeed, there are four possible relationships between B, and B2:

(i) B, = B2; the two sets of background conditions are identical.

(ii) Blj_B2; the two sets of background conditions are incompatible.

(iii) The two sets of background conditions Bl and B2 are independent of each other. That is,
the fact that a situation satisfies the background conditions B, has no effect on whether the
situation satisfies the background conditions B2

(iv) The two set of background conditions B; and B2 are dependent.
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Case (i) is already considered in the model. The application of the two constraints leads to one
situation s' and the uncertainty associated with this extension is

8(s t> S') = cert(s,Bl)

In case (ii), the application of the two constraints definitely leads to alternative situations, since the
background conditions of these constraints are incompatible. In the last two cases, (iii) and (iv),
the application of the two constraints leads to one situation s', because the background conditions
are compatible. The uncertainty associated to the extension is

8(s t> SI) = cert(s, Bd * cert(s, B2)

This expression does not differentiate the two cases. In the context of probability theory, it
assumes independence of knowledge, which is not always the case. The representation of dependent
background conditions is not captured by the model. The same problem arises with respect to the
relationships between background conditions of the two constraints </>1 -> <PllBl and </>2 -> <P2IB2.
The model ignores the fact that the two set of background conditions may be dependent.

The unstructured model must be enhanced to resolve the problem mentioned above. These are
known problems in the world of uncertainty theory [KC93]. The determination of a more accurate
manipulation of the uncertainty of the background conditions will be the object of further research.
In the implementation of the unstructured model (Chapter 6), the independent manipulation of the
background conditions is, however, appropriate.

4.6.2 Modelling of the uncertainty

Besides the independent manipulation of the background conditions, independence is also assumed
at other levels. For example, the formulation of the propagation of the uncertainty is

8(s e- SI) = cert( s, Bl) * cert( s, B2)

where </> -> </>llBl and <P -> <Pl1B2 are two conditional constraints that can be applied with
uncertainty to a situation s, and s' is the extended situation. Such a formulation does not take into
account the fact that </> and <P may be related (for example, they define a constraint).

In the formulation of the aggregation of the uncertainty, it is not expressed that two situations
extended into one situation may share common information. The two situations are treated
independently, as are their uncertainty values. More adequate formulations of both the propagation
and the aggregation of uncertainty should be investigated to capture dependent knowledge.

4.6.3 From addition to transformation

The unstructured model may be extended to deal with other types of transformation than addition;
that is, modification and deletion of information. Some indications towards this direction are
briefly discussed in this section.

To represent the modification of information, it is necessary to model the transformation of a
document on a basis other than the extension of that document. An approach was suggested in
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[vRL96] with the use of channels instead of extensions. The concept of channels was introduced in
[Bar92] to model the systematic link between situations. A channel carries the flow of information
between two situations. The two situations support information which is determined by the flow
of information carried in the channel. One of the situations can be viewed as the transformation of
the other situation. The use of channels to model that transformation of a document was discussed
in Chapter 2.

As discussed in Chapter 1, the deletion of information needs outside intervention, for example, from
a user. A situation may represent a state of the IR system (obtained by the flow of information).
The deletion of information could reflect a change in a user's beliefs. In that case, the IR system
must go back to a state (a situation) that is compatible with that user's beliefs. As discussed in
Chapter 2, a belief system seems the appropriate framework to model this type of system. There
is some current work on the expression of a default logic (which is one example of a belief
system) within Situation theory [Cav93], thus indicating that the deletion of information may be
represented within Situation Theory.

4.7 Conclusion

A model based on the Transformation Principle has been presented. This model, called the
unstructured model, accounts for an unstructured representation of a document. The qualitative
components of the model are represented with Situation Theory [Bar89, Dev91, BE87, BE90, Fer90,
Mos91] and the quantitative components are represented with a general uncertainty mechanism.
Although transformation was restricted to an addition of information (an extension process), the
model can be easily extended to include modification of information.

The use of Situation Theory provides an appropriate representation of information and its flow,
explicit and implicit information, the partiality of information, intensionality, and so forth. Another
important advantage in using Situation Theory is that the natural language processing can be
performed, or at least formally modelled, with Situation Semantics [BP83]; thus leading to an
uniform framework that deals with situations, types and constraints.

The uncertainty mechanism adopted allows the generalization of the unstructured model to a
formalism that accounts for a structured representation of a document. This model is described
in the next chapter.
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Chapter 5

Description of the Model for a
Structured Representation
of Information

5.1 Introduction

The information contained in a document is often structured. For example, a document may consist
of a title, a set of authors, an abstract, a text, figures and tables. A multimedia document may
contain a mixture of text, image, and video. The structure of a document can also be implicit.
For example, a structure may consist of the information (e.g., terms) contained in the document,
which defines a document topic. Such types of structures are based on semantics because they
take into account the fact that information can be semantically related. For reasons of simplicity,
only semantic-based structures are considered in this thesis. A model that takes into account this
type of structures is proposed in this chapter. The model is a generalization of the unstructured
model developed in the previous chapter.

5.2 Semantic-based structures

Information that is part of a document's information content can be semantically related. An
example of semantically related information is equivalent pieces of information. For example, the
representation of a document's information content could be a set of terms. In a document, many
terms can be used to refer to the same person or object. For instance, "the Canadian Prime Minister"
and "J. Chretien" are two equivalent terms56• A document should not be more relevant to a query
that uses "the Canadian Prime Minister" and "J. Chretien", than to a query that uses only one of
these terms, because the information need is the same. Indeed, the first query uses two different
terms to refer to the same piece of information (here a person), whereas the second query uses
one term only. This equivalence of information can be taken into account by grouping equivalent
terms together, and treating the groups of equivalent terms as entities. The comparison between the
information sought by the query and the information contained in the document will then consist of
matching the terms used in the query to the groups of equivalent terms that compose the document.

S6 As described in Chapter 2, these two terms are intensional because they do not refer to the same person in every context. This
issue is ignored in that example.
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Another example of semantically related information is that which is nested within other items of
information. This can be demonstrated by the following documents (for simplicity, the explicit
information content of a document is represented by a set of terms):

d1 = {dog,animal}

d2 = {dog,animal,cat}

Let q = animal be a query. The meaning of the term "animal" is nested within the meaning
of both "dog" and "cat" because dogs and cats are animals. The document d2 is more relevant
to the query q that is the document d1• Indeed, d2 is concerned with both dogs and cats, which
are animals, whereas d1 is only concerned with dogs. This observation can be reflected if the
following representations of d1 and d2 are adopted:

~
~

Documentdl Document d2

Figure 5.1: Example of a structured representation of a document

Here, two groups of terms are defined, one related to "dog" and the other related to "cat". The
term "animal" is part of each group because "animal" is nested in both "dog" and "cat". If the
two groups of terms are treated as entities, it is possible to assert that the document d2 is more
relevant to the query q than is d1. The reason is that d2 contains two entities that concern the
query, whereas d1 contains only one.

The preceding examples show that the representation of the information content of a document
should take into account the fact that information can be semantically related. Such a representation
is possible by structuring the information content of the document into a set of situations, as defined
in Situation Theory, each of them supporting semantically related information. This approach leads
to a semantic-based structured representation of the information content of a document.

Two advantages result from this representation. First, the fact that the information content of a
document may be inconsistent can be represented clearly. For example, a document may report
opposing views of a topic which, when translated into types, lead to contradictory types. If the
document is initially modelled by a single situation, then this situation can be inconsistent-". If
several situations model that document, this problem can be avoided. Second, the specificity of
the document to the query can be captured. For example, if terms are grouped into situations
according to their equivalent meaning, a situation can be viewed as delimiting one of the subjects
covered by the document. The more situations that are formed, the less specific the document is
to the subject defined by each situation. Similarly, the less situations that are formed, the more
specific the document is to each subject defined by each situation.

57 A situation is inconsistent if it supports contradictory information, for example, "the hat is red" and "the hat is not red", or "the
hat is red" and "the hat is blue".
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In this chapter, a model of an IR system is advanced, based on the Transformation Principle,
and which accounts for a semantic-based structured representation of a document's information
content. The model is called the structured model.

5.3 The components of the structured model

An IR model based on the Transformation Principle possesses both qualitative and quantitative
components. In the unstructured model, the qualitative components were expressed according to
Situation Theory. A situation, for instance d, models the document's initial information content,
that is, the explicit, and the implicit and certain information content of the document. The flow
of information transforms this situation into fictitious situations which capture the implicit and
uncertain information content. The transformation is defined as an extension process, and the nature
of the flow is determined by the constraints used to perform the extension. This is illustrated in
the figure below:

---------

Original document

I
I
I
I

\
\
\
\

d6\
o Document

Transformation

Figure 5.2: Transformation of a document in the unstructured model

The concepts defined to model the qualitative components in the unstructured model can be
expanded to provide for a semantic-based structured representation of the document. This is
illustrated in Figure 5.3.

In the structured model, the information content of the document is modelled as a set of situations,
for instance D. Let s be a situation in D, and suppose that the information supported by s is
semantically related. The flow of information may extend the situation s into a set of fictitious
situations which support both the information supported by s and the information that is derived
from the flow. The information supported by any of these fictitious situations is also semantically
related. The reason is that the situation s originally supports semantically related information,
and that situations are extended from the application of constraints, which symbolize semantic
relationships. The same observation applies for all the situations in D with respect to their
extended situations. Therefore, if the information in each situation of D is semantically related,
then the information supported by any of the fictitious situations that result from the extension of
that situation is also semantically related. If the situations in D initially form a semantic-based
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structured representation of a document's initial information content, then the extensions of these
situations also form a semantic-based structured representation of the fictitious document, that is,
the document's implicit information content.

The expressions of the qualitative components in the structured model require the definitions of
the following concepts:

Original document

Transformed document

Transformed document

(i) a situation that supports semantically related information. Such a situation is called a basic
situation.

\ I
It
~
"

\
\
\,

(ii) a semantic-based representation of the document's information content as a set of basic
situations.

I
I
I,

1\
1\
I \, ,

(iii) the transformation (extension) process applied to a set of basic situations and yielding a set
of basic situations.

I iH\,i!J!\ ...J#!\

The expression of these qualitative components uses the concepts defined in the unstructured
model. Two qualitative components not mentioned previously are representations of the query and
the knowledge set. In the structured model, only the document's information content is structured.
Therefore, the representation of queries is the same as for the unstructured model; a query is
represented as a set of types. The knowledge captures semantic relationships which are the same
for the structured and the unstructured model. Thus, the knowledge set is the same as for the
unstructured model; it is modelled as a set of unconditional and conditional constraints.

Final transformed document

An IR model based on the Transformation Principle also possesses quantitative components.
The representation of the quantitative components in the unstructured model is based on a
general uncertainty mechanism. The representation of these components must be re-defined to
accommodate a semantic-based structured representation of documents. These components are

o Structure
Transformation of a structure

[:=:::J Document

Figure 5.3: Transformation of a document in the structured model

(iv) propagation and aggregation of the uncertainty.

(v) expression of the degree of relevance of the document to the query.
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As explained in section 1, one advantage in formalizing a semantic-based structured representation
of a document's information content is to capture specificity. This is possible by assigning weights
to groups of semantically related information items. This means that a weight is associated to each
basic situation, thus reflecting its significance with respect to the document's overall information
content. Therefore, the definition of the following concept is also required:

(vi) the significance of a basic situation.

The expression of the structured model requires the definitions of the items (i) to (vi) listed above.
The items (i) to (iii) correspond to the qualitative components of the model, whereas items (iv)
to (vi) correspond to its quantitative components. Unless otherwise stated, the concepts defined in
the unstructured model remain the same in the present chapter. First, basic situations are formally
defined within Situation Theory ontology.

5.4 Basic situations

A basic situation is a situation that supports semantically related information. The definition of
basic situation is based on Situation Semantics [BP83, Coo] and some of the notions defined by
Drestke [Dre81]. Note that the former framework is based on Situation Theory and is used for
natural language processing, and that the latter framework presents many of the foundations of
Situation Theory.

According to Situation Semantics, the representation of a sentence58 involves two entities:

(i) a situation s that is described by the sentence, and
(ii) a type rp that represents its information content.

The representation of this sentence is denoted s 1= rp and is referred to as the propositional content
of the sentence.

According to Drestke [Dre81], the cognitive activity that leads to the knowledge of an agent results
in intentional mental states [Cum89, ZaI88]59. Indeed, the propositional content of an agent's
knowledge exhibits intentional characteristics because this knowledge must be distinguished even
when it involves a number of inter-dependent propositional contents. Moreover, the agent can
know that s 1= <p but not that s 1= <p' (or s' 1= <p') although s 1= rp could imply s 1= rp' (or
s' 1= rp/). Meaning also exhibits intentionality; a sentence has a specific meaning, although it
might carry information that goes beyond that meaning.

Propositional contents that exhibit intentionality are called semantic contents'", According to
Drestke, a document's sentence is not intentional with respect to its propositional content. Although
a sentence has, for instance, the propositional content s 1= ip, the knowledge has this as its exclusive
content (which then constitutes a semantic content). This not the case for the sentence. Indeed, a
sentence has a meaning which usually corresponds to its propositional content, but it also carries

58 Although sentence is mentioned. the discussion applies to any other type of syntactic structure. or a set of them.
59 In [Dev91] and [BP83]. the adequacy of Situation Theory to model intentional states. such as knowledge. meaning or belief is

thoroughly demonstrated.
60 In reality Drestke defines three levels of intentionality. These are ignored for simplicity sake. Here it is assumed that a propositional

content either exhibits intentionality or does not.
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additional information which generates further propositional contents. As a result, Dretske proposes
a refined definition of semantic content for sentences. A sentence has the propositional content
s 1= <p as its semantic content if this information is carried in digital form by the expression of
that sentence. If s 1= <p' (or s' 1= <p') is nested''! within s 1= sp, then both constitute propositional
contents of the sentence, but only s 1= <p corresponds to its semantic content.

The expression of a sentence may carry several propositional contents in digital form, but not
all of them constitute a semantic content. For example, if the expression of a sentence carries
the information "the object is square" (i.e., s 1= [8 I=~ Shape, x, square; 1 ~]) and the
information "the object is rectangular" (i.e., s 1= [8 I=~ Shape, x, rectangular; 1 ~]), only the
former propositional content leads to a semantic content, because "being square" implies "being
rectangular" (the latter is nested within the former). Therefore, defining the semantic content as
a propositional content carried in digital form is still inappropriate. Consequently, Dretske states
that the propositional content s 1= <p constitutes a semantic content of a sentence if and only if

(i) indeed s 1= ip, and

(ii) the sentence has no other propositional content s 1= <p' (or s' 1= <p') such that s 1= <p is
nested into it.

Semantic contents are used as the basis of the definition of basic situations. The analysis of
document's sentences results in a collection of propositional contents. Those not nested in other
propositional contents (whether or not they are carried in digital form), constitute the semantic
content of the document. For example, let s be a situation such that s 1= cat, s 1= dog and
s 1= animal62• The propositional contents s 1= cat and s 1= dog constitute semantic contents
because "dog" is not nested within "cat" and vice versa. The propositional content s 1= animal
does not determine a semantic content because s 1= animal is nested within both s 1= cat and
s 1= dog.

The analysis of the document's sentences may lead to a number of propositional contents which
involve a number of situations. For example, let a document be about the flooding which occurred in
the United States in 1994 and in Europe in 1995. Two situations are described by this document, one
referring to the United States and the other referring to Europe. If these two situations correspond
to the real situations related to flooding, then the information supported by these situations extends
beyond the information content of the document. This information may not be identifiable from
the document's information content, and is thus difficult, if not impossible, to capture. These kinds
of situations are not considered in this thesis. Only situations that result from a semantic-based
analysis of document's sentences are considered. These are referred to as semantic-based situations,
and support types that represent information explicitly or implicitly contained in the document's
information content (the latter comes from the application of certain constraints).

To enable the expression of the specificity of a document to a query, semantic contents are restricted
as follows:

If s 1= <p constitutes a semantic content of the document, then no other type constitutes
a semantic content with respect to s.

61 That is. the proposition content 8 1= <p' (or s' 1= <p') comes from the fact that s 1= <p.
62 For simplicity. types are directly represented as terms.
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That is, if s 1= <p' constitutes a propositional content of a document, then the information represented
by the type <p' is explicitly or implicitly contained in the document's information content, and it
is semantically related to the information represented by the type <po The latter means that there
exists a constraint <p - <p' or a set of constraints that lead <p to <p' that can be applied to s (i.e.,
the constraints are either unconditional, or certain and conditional with respect to s). Otherwise,
two different situations are defined, leading to two propositional contents s 1= <p and s' 1= <p'.

To recap: the semantic-based analysis of document's sentences yields a set of semantic contents,
which involve a set of situations such that each of these situations has a unique semantic content
and supports semantically related information. These situations constitute the basic situations of
the document.

In the previous example of dogs and cats, two basic situations are defined, one related to "dog'
and the other related to "cat". Let s' and s" be these situations, the semantic contents of which are
s' 1= dog and s" 1= cat. Since dogs and cats are both animals, s' 1= animal and s" 1= animal.
Both s' and s" constitute basic situations because they both have a unique semantic content,
s' 1= dog and s" 1= cat, and because each of them supports semantically related information.

The basic situations are the basis of a model of an IR system that accounts for a semantic-based
structured representation of documents. Situation Theory does not provide a concept for a set of
situations, although such a concept can be defined within the theory. However, recent work shows
the analogy between Situation Theory and the framework of Scott Domains [Sc082] from which
the concept of a set of situations can be derived.

5.5 Scott Domains for Information Retrieval

Many concepts defined in Scott Domains present an overall similar behavior to those necessary to
construct the structured model. Indeed, [Bar91] and [SeI90] have demonstrated the analogy between
Scott Domains and Situation Theory63. They also show the superiority of Situation Theory to Scott
Domains for an information theory perspective. Neither the proofs nor the arguments are given
here since they are complex and unnecessary in understanding the model. Only the terminology
related to the development of the structured model is listed. Scott [Scott82] states:

"Intuitively, an information system is a set of propositions that can be made about possible
elements of the desired domain [...]; as a consequence, an element can be constructed
abstractly as the set of all propositions that are true of it. Partial elements have small
sets; while total elements have large sets ..."

The concept of element can be compared to the notion of situation. This is shown with the
(incomplete and simplified) definitions of information system and domain given below.

An information system is a tuple A = (D A, f- A) where DAis a set of propositions and f- A
is an entailment relation defined on 2DA - 2DA • There are properties between DA and f- A

which represent typical properties of an entailment relation. An element of an information system

63 The comparison is between Scott Domains and Channel Theory. an extension of Situation Theory. However. for the purpose of
the discussion. the reference to Situation Theory is sufficient.

124



Chapter 5 Description of the Model for a Structured Representation of Information

A = (D A, f- A) is any set of propositions x such that

(i) all subsets of x are consistent, and
(ii) x is closed under entailment.

Given an element x and a proposition X, X E x indicates that the property described by X is true
of x. An element is an intentional object that is described by some propositions. Situations can
be compared to elements. Indeed, X E x can be rewritten in Situation Theory as x 1= X, where
x and X can be viewed as a situation and a type, respectively, such that the former supports the
latter. The closure under entailment in (ii) means that whatever can be entailed from the initial
properties of an element also constitute a property of the element. A property true of x entails
other propositions which describe properties that are also true of x. This can be compared to the
application of the certain constraints in Situation Theory. That is, x 1= X, and X f- AY (X entails
Y) which can be rewritten in Situation Theory ontology as the constraint X --t Y implies x 1= Y.
This property is intrinsic to the nature of situations and certain constraints.

The set of elements in an information system A = (D A, f- A) constitutes a domain, denoted IA I. In
the next section, a domain is re-defined as a set of situations instead of elements. These situations
correspond to the basic situations that are identified from the semantic-based analysis of the text
document. This new definition of a domain is used to model a structured representation of a
document. Only the explicit and the implicit and certain information of the document is embodied
in the domain.

The encapsulation of the implicit information, which results from the flow of information, is
possible with the notion of approximate mapping. Two information systems A = (D A, f- A) and
B = (DB, f- B ) can be mapped together by an approximate mapping, which is a binary relation
f :A --t B between consistent propositions of D A and DB. Some properties of f are too restrictive
for an information theory perspective, but f is still comparable to extensions which model the flow
of information in this thesis. Indeed, the approximate mapping f can be defined so that the image
of the elements that constitute the domain IAI yields the elements of the domain IBI. That is, if
domains are re-defined in terms of situations, the set of situations of the first domain are mapped
(extended) to the set of situations of the second domain. This is formally defined in the next
section. Furthermore, it was proven in [Sc082] that the composition of approximate mappings is
also an approximate mapping, thus allowing the modelling of sequential extensions.

Thus, concepts of Scott Domains and Situation Theory are comparable. A detailed and formal
comparison can be found in [Bar91], but a brief summary appears in the following table:

Scott Domain Theory Situation Theory

Proposition Type

Entailment Unconditional Constraints

Element (Basic) Situation

Approximate Mapping Conditional Constraints (Extension)

Table 5.1: Scott Domains Theory vs. Situation Theory
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5.6 The qualitative components of the structured model

The structured representation of a document involves a set of basic situations, which were formally
defined in section 5.3. As explained in section 5.4, the concept of a domain is re-defined within
Situation Theory to refer to sets of basic situations.

5.6.1 Information domain

Let TD be a set of types. Let BD be the set of basic situations that are identified from the semantic-
based analysis of a document's information content. The situations in BD support the types in TD.
TD and BD form an information domain denoted D = (TD, BD)' The information domain is a
structured representation of the explicit, and the implicit and certain information content of the
document. The latter comes from the application of the certain constraints (i.e., unconditional
constraints, and certain and conditional constraints).

The notion of information domain is illustrated with the following example. Suppose that types
are represented by terms and situations are represented by group of terms that are semantically
related. Let

be the set of types that are explicitly extracted from the text document. Let

{tl - XI, t3 - X3; t9 - x9, tll - Xll}

{tl - t2, t3 - t4, ts - t4, ts - t6, t7 - ts, t7 - t9, tll - te- tll - t9,tll - tlO}

be two sets of certain constraints. In the first set, the application of the constraints leads to
information that is not explicit in the document, whereas in the second set, it leads to information
that is explicit in the document''". Assume that the analysis of the text document leads to the
following semantic contents: 81 1= tl, 82 1= t3, 83 1= t«. 84 1= t7 and 8S 1= tll' The terms
tb t3, ts, t7 and tll are not semantically related because none of the above constraints links any
of these terms together. Therefore, the document can be modelled by the information domain
D = (TD, BD), where

TD = {tl, t2, t3, t4, ts, t6, t7, ts, t9, tlO, tu, Xl, X3, X9, Xll}
BD = {8b82,83,84,8S}

This is shown in the figure below:

64 For simplicity, the background conditions of the conditional constraints are not represented.
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ti term that explicitly appears in the text document
tI term that leads to a semantic content in the text document
xi term that is implict and certain in the text document

Figure 5.4: Representation of an information domain

In the domain D, 81 F tl because it is the semantic content associated with 81, and 81 F t2
because tl -+ t2 is a certain constraint. Also, 81 F Xl because tl -+ Xl is a certain constraint.
In the basic situation 81, there is one type, ii, in which all the others types are nested. The
correct terminology is that the propositional contents related to the other types supported by 81 are
nested within 81 F tl. The same terminology is used to refer to types when the same situation
is involved (Le. 81).

Types can be shared by two or more basic situations, but such types do not constitute semantic
content. Otherwise, only a basic situation that includes all the others would be involved, because
all the other types will be nested within that type.

Information domains are based on Scott Domains, but are not identical to them. First, the certain
constraints which concur with Scott's entailment relation are not defined for each information
domain. The certain constraints are common to all information domains. Second, the basic
situations which correspond to Scott's elements are primarily considered. Scott defines first an
information system, upon which the set of elements that constitute the domain is constructed.

In the unstructured model, a document is modelled by a single situation. The information contained
in the document can sometimes be contradictory. In that case, the situation modelling the document
may support contradictory information; that is the situation may be inconsistent. If a document
is modelled by an information domain, the situations that compose that information domain are
consistent because they support semantically related information.

The construction of information domains from the analysis of documents is discussed in the
next chapter. In the remainder of this chapter, it is assumed that documents are represented
by information domains. In further references, the terms domain and information domain are both
used to refer to the same concept.

5.6.2 Refinement of an information domain

As explained in Chapter 4, the transformation of a document into a fictitious one is an extension
process. In the unstructured model, the extension process results from the application of uncertain
conditional constraints'P. This also applies to the structured model. However, the extension process

65 These refer to the conditional constraints where the satisfaction of the background conditions is unknown.
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starts from the set of basic situations that define the information domain modelling the document's
initial information content. If the extensions of the set of the basic situations lead to a set of basic
situations, these situations can define the information domain that models the fictitious document.
This connection between information domains models the transformation process.

In [Sc082], Scott Domains are connected by an approximate mapping. In the structured model,
the connection between two information domains is modelled by a refinement function which
is analogous to the approximate mapping. The term refinement is used instead of approximate
mapping because it is more appropriate to the ontology of extensions as defined in this thesis.
Also, it is used in the Dempster-Shafer's framework to represent the connection between two
bodies of evidence (this is explained when the quantitative components of the structured model
are described in section 5.7).

Let Dl = (Tl' SI) and D2 = (T2' S2) be two information domains. A refinement is a function
w : Dl ---+ D2 defined on the two domains D2 and Dl as follows:

for all situations S E SI, w( s) = { fsd{ S) if Ed(S)=l0
if Ed(S) = 0

Ed( s) is the set of direct extensions from S (i.e., for all Sf E Ed( s), there is no s" E E( s) such
that S I> s" I> Sf, where E( s) is the set of extensions of s). The construction of D2 ensures that
w( s) =I 0 because a situation that is not extended is maintained in D2. The refinement function
models the simultaneous extensions of the situations that constitute Dl, the coarse domain, into
the situations that compose D2, the refined domain. The refinement of the basic situations of Dl
constitutes the basic situations of D2:

The information supported by a basic situation of D2 is also semantically related because it is
the extension of a basic situation of D}, and the extension is based on constraints which model
semantic relationships. A basic situation S2 of D2 has a semantic content. If S2 is the extension of
one situation SI of Dl with semantic content SI 1= ¢, then the semantic content of S2 is S2 1= ¢,
because the types supported by that basic situation are semantically related, directly or indirectly,
to ¢. The relationships are certain within S2. Indeed, it is the refinement of SI into S2 that is
uncertain, not the information supported by S2; this information is uncertain with respect to SI.
If two situations of Dl are refined into S2, this means that the semantic content of one of these
situations becomes nested into the other one. Therefore, S2 is also a basic situation since it has
a unique semantic content.

The definition of the refinement function shows that a situation S in SI can be extended to a
situation Sf that supports types in Tl that are not caused by the fact that Sf is an extension of s.
This means that an item of information can be both explicit (occurring in Dl) and implicit (found
in D2) in a document's information content.

The refinement function is extended to any subset of A ~ SI as follows:

W({SLEA) = U w(s)
sEA
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5.6.3 Conclusion

A document's initial information content is modelled as an initial information domain. The basic
situations of the domain are determined by the semantic contents that are identified from a semantic
analysis of the document's information content. The application of the uncertain constraints delivers
the implicit and uncertain information. This information is represented in the refined domain, which
is constructed from the initial domain. This process is defined as a refinement. It continues until
no more unused uncertain constraint can be applied.

Thus far, there has been no mention of any quantitative component. The representation of the
significance of information, the propagation and the aggregation of uncertainty, and the computation
of the relevance degree have not been discussed. The representation of quantitative components in
the structured model is achieved with the use of Dempster-Shafer's Theory of Evidence [Dem68,
Sha76].

5.7 Dempster-Shafer's Theory of Evidence
for Information Retrieval

Dempster-Shafer's Theory of Evidence defines the concepts frame of discernment, focal element,
basic probability assignment, belief function and refinement function. The relevance of these
concepts to the structured model is briefly discussed.

A frame of discernment is a set of propositions organized into subsets, each constituting a focal
element. The focal elements can be compared to basic situations of an information domain. The
propositions can be matched to the types in that domain.

A body of evidence is attached to a frame of discernment under the form of a basic probability
assignment. This ascribes beliefs that are exactly committed to the focal elements. Similarly, the
use of a basic probability assignment in an information domain can measure the significance of the
information content of each basic situation with respect to the overall information content. The
definition of the basic probability is altered to conform to the definition of the information domain.

A belief function computed on the basic probability assignment measures the amount of belief
allocated to any set of propositions. Similarly, a belief function can be used to measure the extent
to which the information need, as phrased in a query, is contained in an information domain. If
a query is represented by a set of types, a belief function can express the degree to which these
types are supported by the basic situations of the domain. The definition of the belief function is
also modified to comply to the definition of an information domain.

A refinement function is defined between frames of discernment. Given two frames of discernment,
a refinement consists of splitting the propositions of the coarse frame to obtain the refined frame.
This function captures the propagation and aggregation of uncertainty from the coarse frame to
the refined frame. These are reflected in the properties between the basic probability assignments
of the two frames. This refinement function is similar to the refinement function defined in the
previous section. A comparison of the two refinement functions is given in section 5.7.4.
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The analogies between information domain and Dempster-Shafer's framework are summarized in
the following table:

Dempster-Shafer's theory Information Domain

Proposition Type

Focal Element Basic Situation

Basic Probability Assignment Missing

Belief Function Missing

Refinement Refinement

Table 5.2: The Dempster-Shafer's Theory of Evidence vs. information domain

5.8 The quantitative components of the structured model

The definition of an information domain is augmented with concepts from Dempster-Shafer's
Theory of Evidence to obtain a framework where information is structured and its quantitative
features are represented. The additional notions are basic probability assignments and belief
functions. They are redefined to accommodate the formalization of information domains.

5.8.1 Basic probability assignment

A basic probability assignment (BPA) defined on the information domain is a function mo :D ---+

[0,1] such that

L mD(s) = 1
SESD

The value of mD ( s) represents the significance of the situation s with respect to the overall
information content of the document. In a basic situation constructed with a set of synonymous
terms, the frequency of the terms that constitute this basic situation can be used to compute its
BPA. mD(s) is also referred to as the weight of the situation s in the domain D. The value of
this weight grows with the significance attached to the information supported by s.

An information domain coupled with a BPA constitutes a structured and weighted representation of
the information that is explicit and implicit with certainty in a document. In the remainder of this
chapter, it is assumed that the weight (the BPA) of the basic situations of an information domain
has been determined. The computation of mu is discussed in the next chapter.

5.8.2 Belief function

Given an information domain D = (TD' SD), a belief function Belj, : D ---+ [0,1] is used to
measure the amount of relevant information contained in that domain to a query. For a query
represented by a set of types <J>, this measure depends on the existence of the basic situations of
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that domain that are pertinent to ~66:

BelD(~) = mD(S)
SF'P and 'PEel?

In Dempster-Shafer's framework, the belief of a set is based on the focal elements included in that
set. Here, the belief of a set (of types) is based on the basic situations pertinent to that set. Some
of the types supported by a pertinent basic situation may not belong to the set of types representing
the query. However, the types supported by a basic situation are semantically related. A basic
situation that is pertinent to a given set of types can be viewed as being included in that set of
types. Suppose that a basic situation is a group of synonyms; for example, it supports the two
terms "dog" and "barking animals'f", This basic situation is pertinent to a query, for example
"information about dogs", if a term that is part of the query belongs to (is supported by) that
situation. In that case, the other terms supported by that situation, for example "barking animals",
are relevant to the query since they are synonymous to that term.

The formulation of Bel D(~) uses the BPA of the situations that are pertinent to the query
represented by ~. Even if a situation supports several types of the query, its BPA is only included
once in the summation. The reason for this is that a basic situation supports types which are
semantically related. Suppose that a basic situation represents synonymous terms. In that case, if
two terms used in the query are supported by the same situation, then the two terms are semantically
related. The document should not be more relevant to a query that uses two synonymous terms
in its expression than to a query that uses only one of these terms, since the information need is
the same in both circumstances. Furthermore, if two terms are used to refer to the same piece
of information in a document, then this piece of information is more significant in the document
if only one term is used. This should already be captured in the weight associated to the basic
situation that supports these two terms (for they are semantically related).

5.8.3 Weighted information domain

A weighting mechanism can be mapped onto an information domain by using a basic probability
assignment and a belief function. The former measures the significance of the basic situations
of the domain and the latter expresses the relevance of the information represented in that
domain to a query. This mapping generates a weighted information domain which is denoted
as D = (TD' BD, mo. BelD).

5.8.4 Refinement of a weighted information domain

The refinement of an information domain models the transformation of the document symbolized
by that information domain. Shafer also defines a refinement function, which is expressed from the
propositions'f of a (coarse) frame of discernment. The refinement of the propositions of the coarse
frame constitutes the propositions of the refined frame. All the propositions of the coarse frame of
discernment are refined. In the structured model, the refinement of a (coarse) information domain

66 A situation S is pertinent to a set of type el? if there exists at least one 'P E el?such that S F 'P.
67 For simplicity, types are represented directly by terms.
68 In reality, the refinement function is defined on singletons (sets constituted of one proposition) to allow a generalization to sets of

propositions.
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applies to the set of basic situations that constitute that information domain. The refinement of
the basic situations of the coarse domain leads to the basic situations of the refined domain. All
the situations of the coarse domain are refined.

Although the refinement of a frame of discernment and the refinement of an information domain
present an overall similar behavior, several characteristics of the refinement of a frame discernment
are not followed by the refinement of an information domain. First, the refinement of a domain
is defined in terms of situations, although it depends on the types supported by these situations.
Shafer's refinement function is applied to propositions and then generalized into sets. Second,
the structure of the refined domain depends on the structure of the coarse domain. In Shafer's
framework, the set of focal elements of the refined frame is not constructed from the set of
focal elements of the coarse frame69. Third, the refined domain contains the types of the coarse
domain, plus those obtained by refinement. These types are grouped into situations. With Shafer's
refinement, only the propositions which result from the refinement are kept in the refined frame.
Fourth, it is possible that two or more situations are refined in the same situation because the
refinement of a situation is caused by the application of one or several conditional constraints
which may converge to the same piece of information. In Shafer's refinement function, two
propositions cannot be refined into the same proposition 70.

Let D = (Tv,Sv,mv,Belv) and D' = (Tv"Sv"mv"Belv') be two weighted information
domains, the former being refined into the latter. The qualitative characteristics of the refinement
of an information domain, that is, the construction of Th and Sb from Tv and So. were defined
in section 5.5.2. The quantitative characteristics of the refinement of an information domain,
which have not been discussed, model the propagation and the aggregation of the uncertainty. The
quantitative characteristics of Shafer's refinement function are given by the properties between the
basic probability assignments of the coarse frame and the refined frame. The same holds true for
the quantitative characteristics of the refinement function defined for information domains. The
BPA of the two weighted information domains must be defined to model the propagation and
aggregation of the uncertainty.

5.8.5 Computation of the basic probability
assignment of the refined domain

Let D, = (Ti,Si,mi,Be1i) and Di+! = (Ti+!,Si+bmi+l,Be1i+1) be two weighted information
domains related by the refinement function Wi : D, -7 Di+1. Both properties below are required
for mi and mi+1 to be BPAs:

2: mi(s) = 1 and
sES;

2: mi+l(s) = 1
SES;+l

Suppose that the BPA mi is already known, then the BPA mi+1 must be determined. Let s E Si and
let s I> s' be a branch such that s' E Wi(s) (s is refined into s'), The value of mi+1 (s') is given by

mi+l (s') = 8(s I> s') * mi(s)
69 However, there are properties imposed on the BPAs of the coarse and the refined frames which, when used in a certain way,

can lead to the construction of the focal elements of the refined frame based on the focal elements of the coarse frame (this was
discussed in Chapter 3).

70 It would be interesting to see what the characteristics of the refinement of an information domain engenders in Shafer's framework.
This theoretical work is perhaps the subject of further research, for its result is not relevant to this particular thesis.
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This is analogous to the formulation used in the unstructured model. At S the uncertainty propagated
so far is mi( s). If So 1> SI 1> ••• 1> S is the only branch that leads to s, then

mi(S) = 8(so 1> ••• s) * mo(so)

which is the uncertainty of the branch 8(So 1> ••• 1> s) multiplied by a factor. This is defined as
the weight mo (so). In the unstructured model, this factor equated to a value of 1 because the
information was not weighted.

Several basic situations of the information domain D, can be refined into one situation s', The
formula above is generalized as follows:

L 8(s 1> s') * mi(s) = mi+1 (s')
sEwi'(s')

wi1 (s') is the set of the situations in Si of which s' is an extension. This formulation captures the
fact that the more situations are refined into one situation, the more significant is that situation. It
is easy to verify that mi+1 is a BPA. This is due to the normalization of the constraints.

In the refinement process some situations may be refined into themselves (they cannot be further
extended). Let s' be such a situation. In such case, mi+l (s') = mi( s') thus indicating that the
weight attached to the situation s remains the same. If another situation in D, is extended to s',
then mi+1 (s') must take into account that situation (as defined in the generalized formula).

The formulation used to evaluate mi+1 (s') is compatible with many models of the propagation and
aggregation of uncertainty; mi( s) corresponds to an uncertain fact and 8(s I> s') can be viewed as
an uncertain rule. The choice of the product and summation is debatable; other combinations may
be more accurate. This issue was discussed in the previous chapter in section 4.6.

In Shafer's framework, some properties relate the coarse and refined frames. One property states
that the BPA of a set A is always greater or equal to the BPA associated to its refined set wi(A).
That is,

This implies two facts. First, if A is not a focal element (i.e., mi( A) = 0), the refinement of A
cannot be a focal element. Second, if A is a focal element (i.e., mi(A) > 0) and wi(A) is a focal
element (i.e., mi+l(wi(A)) > 0), the BPA of this focal element cannot be greater than the BPA of
A. In Shafer's framework, refinement increases uncertainty. Applied to an information domain,
the analogous inequality would be

where s is a situation. The interpretation of mi+l(wi(S)) is different because Wi(S) is a set
of situations. This inequality could mean that the BPA of the sum of all mi+1 (s') such that
s' E Wi(s) should not be greater than mi( s), thus

L mi+l (s') :::;mi(s)
s'Ew,(s)
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Situations can be refined into the same situation, so this property is not satisfied. On the contrary,
it can be proven that (the proof is left as an exercise)

L mi+l (s') ~ mi(S)
s'Ew,(s)

The corresponding inequality is then

Equality is obtained whenever the situation S shares no extensions with other situations of the
domain Di. The difference between the inequalities in Dempster-Shafer's refinement function and
the one proposed in this chapter occurs because an information item may be implicit in several
information items 71.

In summary, the document is initially modelled by a weighted information domain Do =
(To, So, mo, Bela). The extensions of the situations in So lead to the construction of successive
refined domains D, = (Ti' Si, mi, Beli), for i > O.

There is a difference in the interpretation of mo and mi. For S E Si, the BPA mi(s) represents
the uncertainty that s is obtained from the initial domain Do after i successive refinements. For
s E So, the quantity mo( s) measures the significance of the situation s in the initial domain. The
quantities mi ( .) are computed from mo and the uncertainty of the constraints used in the refinement
process. mo is established when processing the document.

5.8.6 Formulation of the relevance degree

A document's initial information content is modelled by a weighted information domain Do
(To, So, mo, Bela), which captures the information that is explicit, and implicit and certain in
the document. The implicit and uncertain information is represented in the different weighted
information domains that result from the successive refinements of Do. The refinement process
continues until a weighted information domain is obtained in which all the basic situations cannot
be further extended. The last information domain corresponds to a structured and weighted
representation of the explicit, implicit and certain, and implicit and uncertain information of the
document. The belief function associated with that domain can express the relevance of the
document to the query, because it evaluates the extent to which the information supported by the
basic situations of that domain, which is all that can be obtained from the document, concerns the
query. If Dn = (Tn' Sn, mn, Beln) is the last domain and <I> is the set of types representing the
query then Beln( <I» represents the relevance degree of the document to the query represented by <I>.

This computation is inefficient because obtaining the final information domain is often unnecessary.
Indeed, many situations can be kept as such in the refinement process without affecting the final
value of the relevance degree. A more efficient formula that leads to the same result is proposed.

During the extension process of the unstructured model, a situation pertinent to the query was not
further extended because it did not affect the value of the relevance degree of the document. This
also applies to the structured model. Indeed, let s a basic situation of a domain D, be refined into

71 See [Eva82j for a philosophical discussion on that matter.
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the situations 81, ... , 8k of the domain D i+1. If no other situation of the domain D i is refined to
any of the situations of 81, ... ,8k, the following equality holds 72:

mi(8) = L mi+1(8j)
j=l,k

Assume that 8 is a pertinent situation with respect to the query, and that Di+1 is the final domain
(i.e., no situation in Di+1 can be further extended). The fact that S is pertinent implies that all the
situations 81, ... ,8k are also pertinent. Therefore, the value

L mi+1(8j)
j=l,k

is included in the summation that formulates the belief function associated with the domain Di+1.
This value is exactly mi( 8). This shows there is no point in extending 8, for the extension of a
pertinent situation does not change the value of the relevance degree with respect to that situation.
Moreover, if there is a situation s' in D, that is refined to one of the situations SI, ••• ,8k, this
latter situation is represented in Di+1 and the associated weight comes from the situation s', The
weight that comes from the situation 8 is already included in mi( 8).

This shows that the pertinent basic situations of an information domain do not need to be extended.
However, in order to preserve the initial structured representation of the document, the refinement
of a pertinent situation of a domain is set to itself. Therefore, a situation 8 from a domain D; is
refined into the following situation(s) in the domain Di+1:

(i) S if it cannot be extended (i.e., Ed( 8) = 0) or if all constraints that could have been applied
have already been used,

(ii) 8 if it is a pertinent situation with respect to the query, or

(iii) Ed( 8) if (i) and (ii) do not apply.

In the definition of the refinement function, case (ii) was not mentioned because the refinement
was performed without regard to the query.

The weight of a pertinent situation in the refined domain remains the same, unless it is also the
extension of another situation of Di. In that case, the weight that comes from the extension is
added to the weight of the pertinent situation.

The new definition of refinement leads to a more efficient computation of the relevance degree. Let
the initial representation of the document be the domain Do = (To, So, mo, Belo). This domain is
refined into successive domains. During the refinement process, the pertinent and non-extendible
situations in a domain are kept as such in its refined domain. The refinement process ceases when
a domain, for instance Dn = (Tn' Sn, mn, Beln), in which the situations are either pertinent or
non-extendible is reached.

Let ~ be the representation of the query. For all D, = (Ti' Si, mi, Be1i), i ~0, Be1i( ~) is the
degree of relevance of the document after i refinements. This value is the summation of the BPA
of the pertinent basic situations of Di. If the summation was restricted to those pertinent basic

72 This equality arises from the fact that, first, constraints that lead to extensions are normalized, and second, the summation of the
BPA of the basic situation of an information domain is, by definition, equal to 1.
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situations that become pertinent in Di, the formulation of the relevance can take into account
that the refinement of a pertinent situation does not affect the value of the relevance degree. To
restrict the summation, it is therefore necessary to distinguish between pertinent, extendible and
non-extendible situations. For this purpose, the two following sets are defined:

P(A,<p) = {s E Althere exists <p E <P,s 1= <p}

NE(A) = {s E AIEd(S) = 0}

P( A, <p) is the set of pertinent situations with respect to <P in A. N E( A) is the set of non-
extendible situations in A. No type supported by these situations appears as the antecedent of
an uncertain conditional constraint. If it does, the corresponding constraint has already been used
to arrive at these situations. The definition of a belief function is also modified so that only the
basic pertinent situations that become so in a domain are considered. Therefore, a belief function
Bel, : 2Si X D, -+ [0,1] is defined for each domain D, with respect to a given set of situations in Si:

sEA

L
81=4' and 4'E~

Belit A, <p) represents the belief that <P is supported only by the situations in A in the domain Di.
Based on the new definition of belief functions, and the definitions of two sets, it is possible to
formulate the relevance degree.

Let ~ : S X 2T -+ [0,1] be the function that measures the relevance degree. Although the
representation of a document involves a number of situations, ~ is defined in terms of the situation
which models the document's initial information content. Let d be this situation (each basic
situation of the domain Do is included in the sense of ~ in d). The formulation of the relevance
degree of the document to the query represented by the set of types <P is defined as

n

~(d,<p) = LBeli(ri,<p)
i=O

where if i = °
otherwise

I', is the set of situations that are extensions of situations in ri-l (with respect to Wi) in which
all pertinent situations with respect to <P (i.e., p(ri-l, <p) and all non-extendible situations (i.e.,
NE(ri-d) have been removed. This formulation expresses the relevance degree of a document
to a query with respect to its explicit and implicit information content. It can be easily proven
that R(d, <p) is the same as Beln(<P). The difference is that the determination of the former is
more efficient.

5.8.7 Example

Consider the domain Do = (To, So, mo, Belo) which can be extended into DI = (Tb Sb mb Bell)
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which can then be extended to D2 = (T2, S2, m2, Bel2) as follows:

D2

DO

- Pertinent situation

Dl 0 Non extendible situation

tIP Extendible situation

Figure 5.5: Example of the refinement process

In this figure, for example wo(st) = {Sn,S12} and Wl(S12) = {S121,S122}. The different values
of the set of basic situations Si, the set of extended situations fi, the set of pertinent situations
P(f i, <p) and the set of non-extendible situations N E(f i) are given in the table below:

Si r, p(ri, <1» N E(r.)-
i=O {SI,S2,S3} {SI, S2, S3} {S2} 0

i = 1 {SII,SI2,S2,S31,S32} {Sl1, S12, S31, S32} {Sl1, S3!} {S32}

i=2 {Sl1, S121 , S122, S2, S31, 832} {SI21, SIn} {S122 } {S121 }

From the domain D2, the set f3 is computed as follows:

Table 5.3: The different steps of the refinement process

f3 = w2(f2 - P(f2, <p) - N E(f2))
= W2({S121,SI22} - {SI22} - {SI2I})
= w2(0)
=0

Therefore, no more refinement is possible, so

5.8.8

R(d, <p) = Belo(fo, <p) + Beh(f1, <p) + Bel2(f2, <p)
= mO(s2) + mI(Sn) + mI(s3t) + m2(s122)

Conclusion

The model presented in this chapter caters for a structured representation of documents. Situation
Theory is used to model the qualitative components. Information is symbolized by types. The flow
of information is represented by constraints and the situations affected by the application of these
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constraints. Information is organized into basic situations which constitute an information domain.
The latter models a structured representation of the explicit, and implicit and certain information
content of the document. The representation of the transformation of a document into a fictitious
one is modelled by the refinement function. This function constructs the basic situations of the
refined domain, which models the fictitious document. A refined domain models some stage in
the application of the information flow on the set of basic situations that originally constitute the
document's information content. Each stage leads to a structured representation of the explicit,
implicit and certain, and part of the implicit and uncertain information content of the document.
The significance of information, the propagation and the aggregation of the uncertainty inherent to
the flow of information, and the numerical expression of the relevance degree are modelled with
Dempster-Shafer's Theory of Evidence. A modified version of this theory is used to conform with
the different concepts used to model the qualitative components of the model.

One outcome of a semantic-based structured representation of a document is that the specificity of
the document is captured. This is discussed in the next section. The representation of exhaustivity
is also discussed in that section.

5.9 Specificity and exhaustivity

The specificity of a document to a query is the extent to which the information in the document
relates to the query. The exhaustivity of a document to a query is the extent to which all the
information sought by the query is contained in the document. For example, a document represented
by the set {dog, cat} 73 is specific to a query requiring information about "dog and cat", but no to a
query looking for information about "dog" because the document contains information that is not
related to "dog". The document is exhaustive with respect to a query seeking information about
"dog", but not to a query requiring information about "dog and horse" because the document does
not contain information about "horse".

It was shown in Chapter 4 that both the specificity and the exhaustivity of a document to a query
were not captured in the unstructured model. The specificity of a document could not be captured
because a situation pertinent to a query could support information that is not related to the query. It
was not possible to express how much information supported by a pertinent situation was relevant
to the query. The exhaustivity of a document could not be represented because a situation is
pertinent to a query if it supports at least one of the information items contained in the query. It
was not possible to verify whether all the information sought by the query was contained, either
explicitly or implicitly, in the document. In this section, an expression of each measure is proposed,
followed by a method of combining both measures.

5.9.1 Specificity

In the structured model, a document's initial information content is modelled by a weighted
information domain D = (TD,SD,mD,BelD). The information is structured into basic situations
(the situations in SD)' The basic situations support semantically related information (the types in

73 For simplicity, a document is represented by a set of terms.
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TD). Let cl>be the set of types modelling the query. Two concepts defined in the unstructured
model used in tandem with the structured model are used to express a measure of the specificity
of the document. These concepts are B( d, cl», the set of minimal branches with root d, and whose
leaves are situations that are pertinent to cl>,and 8( .) the uncertainty attached to branches. The value

L 8(b)
bEB(d,~)

is the summation of the uncertainty of all cl>-minimal branches with root d. This value measures
the extent to which a situation d contains, explicitly and implicitly, information that concerns the
query. If the situation d is a basic situation of the information domain D (i.e., d E SD), a weight
mD( d) is assigned to that basic situation reflecting its significance. Therefore, the value

mD(d) * L 8(b)
bEB(d,~)

reflects the uncertainty associated with obtaining cl>- minimal branches that originate from a
weighted situation d. This value is calculated for each basic situation of the domain D. The
values obtained for all the basic situations of the domain can be combined to express a measure
of specificity as follows:

Sp(D, cl» = L (mD(d) * L 8(b))
dE8D bEB(d,~)

Sp( D, cl» reflects the specificity of the document modelled by the information domain D to the
query symbolized by the set of types cl>for the following reasons:

(i) if all the basic situations of the domain D are pertinent, then Sp( D, cl» = 1. Since the
information supported by these situations is semantically related, the entire information
content of the document concerns the query, thus indicating that the document is specific
to the query.

(ii) if all the extensions of the basic situations of the domain D lead to pertinent situations,
then Sp( D, cl» = 1. This means that the flow of information originating from the document
always leads to situations pertinent to the query. The document is specific to the query
because information remains structured during the extension process.

(iii) if Sp( D, cl» < 1\ some of the basic situations of the domain D or one of the refined domains
do not concern the query. The document contains information that is not relevant to the
query. The higher the value of Sp(D, cl», the more specific the document is to the query.

(iv) if Sp( D, cl» = 0, the document is irrelevant to the query.

The value of Sp( D, cl» coincides with the degree of relevance that is computed in the structured
model (this can easily be proven). Therefore, the relevance degree of a document to a query, as
computed by the structured model, constitutes a measure of specificity of the document to the query.

An example illustrating the difference between the values of the relevance degree of a document
in the unstructured model and the structured model is given. Let a query be modelled by the set
of types {a22' '22}. Suppose that the two types a and , are explicitly identified in a document
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information content. It is assumed that the constraints in (for simplicity, the background conditions
are not represented)

lead to extensions, and that they can be consistently applied together. The values of the relevance
degree are calculated for both an unstructured and a structured representations of the document. The
figure below illustrates both representations, together with the extension process involved in each
representation. Only the extensions that lead to situations pertinent to the query are represented.
The values of the uncertainty that propagates along these extensions (for the example, the values
are arbitrarily defined, but they still satisfy the normalization criteria discussed in section 4.4.1.9)
are indicated in the figure.

,

Structured model Unstructured model

Figure 5.6: Specificity in the unstructured model and the structured model

In the structured model, the value of the relevance degree is 1/16 + 1/12 = 0.145 whereas in the
unstructured model the value is 1/16 + 1/16 + 1/16 + 1/16 + 1/16 = 0.312. The value is lower in
the first case because information is structured according to its semantics. Consequently, there are
less extensions that lead to situations that support Q22 or /22. The information supported by these
situations is also semantically related, if not equal to Q22 or /22. These situations are specific to
Q22 or /22. This is not the case in the unstructured model because a situation that supports Q22 or
/22 may support information that is unrelated to Q22 or /22.

5.9.2 Exbaustivity

The relevance degree expressed by the structured model corresponds to a measure of specificity.
The exhaustivity is to some extent captured in the structured model by the fact that the situations
are extended until some relevant information is found. However, it is not possible to tell with this
approach whether all the information being sought is found.

Exhaustivity was not captured in the unstructured model because the computation of the relevance
degree is based on minimal branches. In order to capture the exhaustivity of a document, it is
necessary to identify all the information that is contained explicitly or implicitly in the document.
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This is possible if the extension process is carried out as far as possible (i.e., it does not cease
when a pertinent situation to the query is obtained).

Let a document be modelled by a single situation d. Let Bt( d) be the set of branches that originate
from the situation d and whose leaves are situations that cannot be further extended. This set
is referred to as the set of maximal branches. The leaf of each of these maximal branches is
a situation that supports all the information contained or derived from a document, with respect
to a particular application of uncertain constraints. Therefore, the set Bt( d) represents all the
alternative maximal extensions of the situation d.

Let <I> be the set of types representing the query. Let Bt( d, <I» be the set of all maximal branches
that originate from the situation d and whose leaves support all the types in <I>. This set can be
used to reflect the exhaustivity of the document to a query. The size of Bt( d, <I» is a first indication
of the exhaustivity of the document. Indeed, if the document is exhaustive to the query then there
should be at least one maximal branch whose leaf supports all the information being sought by
the query. If there are many such branches, the document can be considered as highly exhaustive
with respect to the query. If there are no such branches, then the document is not exhaustive
to the query because there is no extension of the original situation that leads to a situation that
supports all of <I>. Even if the information items that constitute the query may be contained, one by
one, in different leaves of the maximal branches, the document is not exhaustive because maximal
branches model alternative extensions of the initial situation.

The uncertainty value associated to each of the branches in Bt( d, <I» is a second indication of the
exhaustivity of the document. Indeed, the more uncertain is a maximal branch, the more uncertain
is the information supported by the leaf situation of that branch; that is, the document is less
exhaustive with respect to that branch. One method that combines both the size of the set of
maximal branches and the uncertainty associated to these branches is as follows:

L 8(b)
bEB,{d,iP)

Ex( d, <I» measures the exhaustivity of the document represented by the situation d with respect
to the query symbolized by a set of types <I>. If Ex( d, <I» = 0, the document is not exhaustive
because no branch leads to a situation that supports all of <I>. If Ex( d, <I» > 0 then the document
is exhaustive because at least one of the maximal branches satisfies all the information need. The
uncertainty of these branches reflects the degree of exhaustivity. The more maximal branches that
lead to situations that support all of <I>, the more exhaustive is the document to the query. If
Ex( d, <I» = 1, either <thesituation that is used to model the document (i.e., d) supports all the
types of the query, or all the maximal extensions of that situation lead to situations that supports
all the types of the query. In that case, the document is exhaustive to the query.

5.9.3 Combination of specificity and exhaustivity

The initial information content of a document is represented by a situation in the unstructured model
and by a weighted information domain in the structured model. Let d be that situation and D be
that domain. Let <I> be the set of types that represent the query. Ex(d,<I» and Sp(D,<I» measure
the exhaustivity and the specificity of the document to the query, respectively. The following
formula can be used to account for both exhaustivity and specificity in the expression of relevance
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degree of the document to the query:

a * Ex(d, cp) + b * Sp(D, cp)
a+b

a and b represent the importance attached to exhaustivity and specificity, respectively. a and bare
real numbers in the interval [0,1]. The higher a, the more importance is attached to exhaustivity.
The same applies with respect to b and specificity.

The interpretation of Ex (d, cp) and S p( D, cp) are speculative so far and experiments are necessary
to ascertain empirically how well, if at all, they reflect the exhaustivity and specificity of the
document. The validity of these measures is investigated in Chapter 7.

5.10 Possible extensions of the structured model

The structured model accounts for a semantic-based structured representation of document. The
model can be expanded to incorporate additional, better or different features. An example of each
type of features are discussed in this section.

An additional feature is the representation of a transformation in general (i.e., addition, modification
or deletion of information). As for the unstructured model, the use of channels [Bar92] instead
of extensions can lead to a model that captures transformation in general. The refinement of a
domain will then be defined as a set of channels which link the basic situations of an information
domain to the basic situations of its refined domain. The flow of information determines the nature
of these channels.

A better handling of the uncertainty should be incorporated in the structured model. As for the
unstructured model, the formulations of propagation and the aggregation of uncertainty in the
structured model assume the independence of information an the background conditions (this issue
was discussed in the previous chapter in section 4.6). However, formulations of the propagation
and the aggregation of uncertainty that do not assume this independence can be incorporated in
the structured model. Indeed, the propagation and the aggregation of uncertainty are expressed
by the relationships between the BPA associated to a weighted information domain and the BPA
associated to its refined weighted information domain. To capture the dependence of information,
it is then only necessary to reformulate the relationships between the two BPAs. The rest of the
model should remain the same.

Different features can be incorporated in the structured model. For example, the structured model
can take into account types of structures other than those that are semantic-based. Structures can be
pragmatic-based. Examples of pragmatic-based structures are found in a document collection built
by [Lid91]. The collection consists of abstracts organized into pragmatic-based structures. These
structures are referred to as discourses. Examples of discourses are "purpose" "methodology",
"result", etc. The structured model will represent each discourse by a basic situation. The definition
of a basic situation will have to be modified, for it will not be semantically based. The weight
attached to the basic situations will take into account the importance attached to each type of
discourses, as well as the importance of the information in the discourses.
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5.11 Conclusion

This chapter proposed a model of an IR system for a structured and weighted representation
of the document. The model follows the Transformation Principle, and models transformation
as an extension process. The qualitative components of the model are represented by Situation
Theory. In the model, information is structured in a set of basic situations, where a basic situation
is a situation that supports semantically related information. The quantitative components are
represented by a modified version of Dempster-Shafer's Theory of Evidence. Some simplifications
were made about the propagation and the aggregation of the uncertainty. Finally, it was possible
to express a measure of specificity and exhaustivity. A combination of these measures may be
used to express the relevance degree.

In summary, Chapter 4 and 5 presented a model of an IR system for each of the following cases:

(i) an unstructured representation of a document's information content
(ii) a structured representation of a document's information content

The two models together with their properties have been formally introduced. The next stage of
the work is to study the empirical behavior of these models. An implementation of each model
is carried out in order to determine its performance. These implementations are described in the
next chapter.
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Chapter 6

The Implementation
of the Models

6.1 Introduction

In this thesis, two new models of an IR system are proposed, which are based on the Transformation
Principle. The first model, outlined in Chapter 4, caters for an unstructured representation of a
document's information content. It is referred to as the unstructured modeL. The second model,
outlined in Chapter 5, caters for a structured representation of a document's information content.
It is referred to as the structured model. The implementation of these models is described in this
chapter.

The components of an IR model based on the Transformation Principle are classified as qualitative
or quantitative. The representations of the qualitative components of the unstructured and the
structured models are based on Situation Theory [Bar89, Dev91]. The qualitative components and
their representations in both models are shown in the following table:

Qualitative components Unstructured model Structured model

Information item Type

Knowledge set (Semantic re- Unconditional constraints

lationship) Conditional constraints with their uncertainty degree

Query Set of types

Document Situation Weighted information domain

Transformation (Flow of
Branch (Extension) Refinement

information)

Structure (Semantic) N/A Basic situation

Table 6.1: The qualitative components

The representations of the quantitative components of the two models are based on two different
theories. The quantitative components of the unstructured model are represented by a general
uncertainty mechanism, and the quantitative components of the structured model are represented
by Dempster-Shafer's Theory of Evidence [Dem68, Sha76]. The quantitative components and their
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representations in both models are shown in the following table:

Quantitative components Unstructured model Structured model

Significance of information
N/A Basic probability assignment

(Weight)

Propagation of uncertainty *
Refinement

Aggregation of uncertainty +

Relevance degree + Belief functions

Table 6.2: The quantitative components

The discussion of the implementation of both the unstructured and the structured models highlights
those components common to both models, and those components differentiating each model. The
common components are types (section 6.2) and constraints (section 6.3). The implementation of
the unstructured model (section 6.4) requires the implementation of situations and extensions. The
implementation of the structured model (section 6.5) requires the implementation of weighted
information domains, refinements, basic situations, basic probability assignments, and belief
functions. The representation of a query is common to both models, but the implementation
of queries is discussed in section 6.4 because it requires an understanding of some of the concepts
introduced in that particular section.

6.2 Implementation of types

Types model information items. The translation of the information items into types is a complex
process. For example, the sentence "the dog runs" should be transformed into the following type:

[did I=~ Run,dogj 1~]
In [FLVS7], an intermediary representation of the sentence, referred to as schemata 74, is first used to
represent the sentence. The schemata is then transformed into the type. The schemata associated
with the sentence "the dog runs" is

REL "run"

IND "indl"

[

REL "dog" 1
CON D ARCl "indl"

POL 1

ARCl

SPEC "the"

POL 1

74 In [FLVS7]. schematas are used as a trade-off between Situation Semantics [BPS3] and Discourse Representation Theory [Kam91]
(the latter being used to model intentional states). The use of Discourse Representation Theory as an alternative to Situation
Semantics is discussed in [Co091a. Coo].
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This example shows that the translation of more complex sentences into schematas, and the
translation of schematas into types can be very difficult. The translation of information items into
types can also be difficult due to the problem of capturing the full meaning of natural language.
As a result, often only a restricted area of natural language can be covered by the translation
process (see [Bla92]). Even then a correct translation cannot be ensured ". Another issue is that
such a rich representation of an information item may not be useful in the context of information
retrieval, unless it is carefully determined.

Aside from the complexity involved in converting a document's information content into types, the
determination of the semantic relationships between information items is itself problematic. The
transformation of a document depends on these relationships. Therefore, the appropriate capturing
of these relationships is crucial to the implementation of the models proposed in this thesis.

There are available systems from which appropriate semantic relationships can be extracted, namely
thesauri. However, the semantic relationships stored in most of these thesauri are only related
to terms (i.e., single words or groupings of words). Although the use of thesauri limits the
full capturing of natural language, the use of existing thesauri is preferable to the onerous task
of determining each semantic relationship. Therefore, in this implementation, information items
correspond to terms. If w is a term, then its corresponding type is denoted 'w', where

'w' = [did I=~ present, w; 1~]
Similar simplifications were followed in [HB94]. In future references, unless otherwise
stated, a type is represented by the term to which it corresponds. For example, the type
'mathematics' represents the term "mathematics", where 'mathematics' represents [did I=~
present, mathematics; 1 ~ ]16.

An advantage which results from the representation of information items as terms is that the perfor-
mance of an IR system will not be compromised because of the complexity of the implementation
of the information items or the inappropriateness of the semantic relationships. Indeed, with a
more complex representation of information items, poor results would not necessarily be due to
the models, but rather to the complexity of the models' implementation. Other implementations
of the models are discussed in Chapter 8.

In the remainder of this chapter, when types are implemented, they represent information items
that correspond to terms. The implementation of the constraints is discussed next. The outcome
of this discussion is applicable to both models because constraints are common to the unstructured
and the structured models.

6.3 Implementation of the constraints

The knowledge set is modelled by a set of unconditional constraints ](1 and a set of conditional
constraints J( 2, respectively:

75 These problems are not new and enter the area of natural language processing [WinS3, DlCZSS,FroS6].
76 Types based on negative infons are not considered. Indeed, the interpretation of [did 1=«: present, mathematics; 0 >1 in

IR has been and is still a problem because it is not known wether it means that the term "mathematics" is explicitly not in the
document, or is that there is another term that contradicts it.
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In !.p -+ !.p', ip and !.p' are known as the antecedent and the consequent of the constraint, respectively.
An uncertainty function cert : S x BC -+ [0,1] measures the uncertainty attached to the use of
conditional constraints. The purpose of this section is to describe the implementation of the sets
](1 and ](2, and the uncertainty function cert.

As explained in the previous section, types model information items which correspond to terms;
consequently, constraints are semantic relationships between terms. These unconditional and
conditional constraints, together with the background conditions and the uncertainty function
associated to the conditional constraints, are extracted from thesauri. The type of thesaurus required
is described in 6.3.1. The actual thesaurus used in this implementation is described in 6.3.2. The
construction of the constraints from that thesaurus is explained in 6.3.3.

6.3.1 Thesauri

In the English Oxford encyclopedia, thesauri are defined as "a 'treasury' or 'storehouse' of
knowledge, as a dictionary, encyclopedia, or the like" or as "a collection of concepts or words
arranged according to sense". Therefore, in general, thesauri aim to store semantic relationships
that associate terms with one another.

There are two kinds of associations between terms: first order and second order. First order
associations are defined as terms that often co-exist within some predefined boundaries (e.g., text,
paragraph, or sentence). Second order associations are defined as terms that are semantically related
(e.g., synonyms, broader terms, narrower terms or related terms).

The use of first order associations to capture semantic relationships has been proven unsatisfactory
in IR (see [Cr090, Rug92, MMN83, Kra91]). Indeed, first order associations are usually derived
from statistical methods or statistical methods coupled with syntactic analysis performed on
the document collection itself. Although the outcomes allow the determination of quantified
relationships, poor results are often obtained because terms are judged to be related when they
are not. Therefore, in this thesis, the implementation of the semantic relationships is carried out
using second order associations.

The determination of second order associations is usually carried out manually. Indeed, with
statistics-based methods, the relationships are identified on the basis of frequent co-occurrence
of terms (examples of methods are discussed in [Kuh64, SB64]). However, it is rare that two
synonyms are used in the same documents, so the relationship between these synonyms cannot be
identified based on their frequency of co-occurrence. The benefit that comes from a manually-built
thesaurus is that very few false relationships are produced since the process is done by human
experts (a discussion on thesaurus construction and some examples can be found in [Sri91, Bla90,
Pac91, Bru89, BGLY86, Den64]).

In this thesis, an on-line thesaurus that stores manually-built second order associations is used to
derive the constraints which constitute the knowledge set. The thesaurus is known as WordNet™
(Version 1.5) [Mil90]. In this way, correct relationships are provided; the remaining tasks are to
select those which form constraints, to determine their background conditions, and to quantify the
uncertainty of their use.
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6.3.2 The WordNet thesaurus

WordNet is a general thesaurus that covers conventional English and a wide range of technical
terms. WordNet only stores the base form of terms. For example the base form of "augmenting"
is "augment". The WordNet library contains functions for searching the WordNet database and for
applying a morphological process to the search of strings. The purpose of these functions is to
find a base form that is present in WordNet only if that word does not exist as such. There are
exception lists which contain the morphological transformations for words that are not regular and
therefore cannot be found. For example, the base form of "children" is "child".

An entry in WordNet can be either a word or a collation. A collation is a string of two or more
words connected by spaces or hyphens. In further references, a "term" refers to a "word" or a
"collation", unless otherwise specified.

WordNet stores four parts of speech: nouns, verbs, adjectives and adverbs. As with many IR
systems, only nouns are used in the implementation because they usually contain most of the
information expressed in a sentence.

WordNet encapsulates different categories of semantic relationships. Five of them are considered
in this implementation: synonymy, hypernymy, hyponymy, hoLonymy and meronymy. The terms
defined by these categories are respectively:

(i) synonym;

(ii) hypernym, which is a generic term used for a whole class of specific instances;

(iii) hyponym, which is a specific term used to designate a member of a class;

(iv) meronym, which is a name of a constituent part of, the substance of, or a member of
something;

(v) hoLonym, which is a name of a whole of which the meronym is a part.

WordNet takes into account the poLysemic nature of terms by organizing them into logical groupings
of terms called synsets. For example, the WordNet synonym entry of the term "horse" is

Synonym
Sense 1 : sawhorse, horse, sawbuck, buck
Sense 2 : knight, horse
Sense 3 : horse
Sense 4 : horse, Equus caballus

Figure 6.1: Example of synonyms in WordNer

In WordNet, "horse" has four senses (meanings). The synonym entry of "horse" has four synsets,
one for each of the four senses. Below, an example of a relationship for each of the other
categories is given with respect to the term "horse".
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Hypernym

Sense 1 :
Sense 2 :
Sense 3 :
Sense 4 :

framework, frame
chessman, chess piece
gymnatsic apparatus, exerciser
equine, equid

The Implementation of the Models

Hyponym

Sense 1 : trestle
Sense 3 : pommel horse, side horse

vaulting horse, long horse, buck
Sense 4 : foal

stallion, entire
gelding
saddle horse, riding horse, mount

Figure 6.2: Example of hypernyms and hyponyms in WordNet

Meronym

Sense 4 : (MEMBER OF) Euquus, genus
Equus

Holonym

Sense 4: (HAS PART) mane
(HAS PART) withers

Figure 6.3: Example of meronyms and holonyms in WordNet

For example, the hypemyms of the term "horse" is given as a synset for each of the four senses
of that term.

Aside from the various senses the entry term may possess, each term in a synset possess a sense 77.

Although this sense is not displayed, it can be determined from WordNet.

6.3.3 Construction of constraints

Relationships of each of the five categories (i.e., synonymy, hypemymy, hyponymy, holonymy
and meronymy) are used to implement the constraints and the uncertainty function attached to
the conditional constraints. Relationships of all categories can be amalgamated to model the
constraints and the uncertainty function.

6.3.3.1 Synonym-based constraints

The synonyms in WordNet are organized into synsets. Let t be a term of WordNet. Let {tl' ... , td
be a synset of the synonym entry of the term t. For any term t' in that synset, t -+ t' constitutes
a constraint. Whether that constraint is unconditional or conditional depends on the number of
senses the term t has in WordNet. Several cases occur:

(i) t has a single sense; that is, it is not polysemic. In that case, the constraint t -+ t' always
holds; thus, it is unconditional.

(ii) Otherwise, the constraint is conditional, for its application depends on the sense of t. Let
St be the sense of t in the constraint t -+ t', In that case, the constraint holds with respect
to a document if the sense of t in the document is St.

Therefore, constraints are conditional if their application depends on the senses attached to their

77 To my knowledge, this sense is unique.
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term antecedents. These senses act as the background conditions of the constraints. Therefore, in
(ii), the complete representation of the constraint t ---+ t' is

t ---+ t'l {St}

{St} constitutes the background conditions of the constraint t ---+ t', meaning that the constraint
can be applied with certainty to a situation only if that situation supports t such that the sense
of t in that situation is St.

The sense of t' in the constraint t ---+ t' must be represented because a constraint with antecedent
t' may be applied later. Let St' be the sense of the term t' in the constraint t ---+ t', To represent
the sense of t ---+ t'; the constraint is written as

t ---+ [tf,{Sd]I{St}

For simplicity, the above constraint is written (bearing in mind that {Sd constitutes the background
conditions of the constraint)

[t, {SdJ---+ [t', {Sd]

Also, for the sake of uniformity, an unconditional constraint is written

[t, m- [t', {Sd]

The empty set is used because t is not polysemic. In the above two constraints, the sense associated
to t' is also n if this term is non-polysemic in WordNet.

[t,{Sd]---+ [t',{St'}] and [t,{}]---+ [t',{St'}] implement a conditional constraint and an uncon-
ditional constraint, respectively. Therefore, It, {Sd]' It, {} J and [t', St'] must correspond to types.
The initial implementation of types given in section 6.2 is modified to reflect this fact. Indeed,
section 6.2 defines an information item as representing a term, for instance t, and the type corre-
sponding to the term t is denoted It' where

't' = [did I=<{: present, t; 1 ;:}>]

With the above implementation of constraints, an item of information does not represent only a
term only, but instead represents a term and its associated senses". Let t be a term and let lSt
be the set of senses associated to t, either in a situation (this is explained in section 6.4.2) or in
a constraint (in that case, lS, is a singleton). The type representing this item of information is
then implemented as

[t,lSt] = [did 1= {<{: present, t; 1 ;:}>, -e; Sense, t, 1St; I;:}>})

If the term is not polysemic, then its corresponding type is implemented as

It, {} J = [did I=~ present, t; 1 ;:}>]

Uncertainty arises when it is not known whether the background conditions of a conditional
constraint are satisfied by a situation. Since background conditions reflect senses, this uncertainty

78 This captures, to a limited extent, intensionality.
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represents the probability of a sense being the one referred to by the use of a term. Indeed, not
all possible senses of a polysemic term are equally likely. If some information on the relative
probability of the various senses could be obtained, the uncertainty could be divided to reflect this.
Methods based on statistics [Hoe66, Klu74] or numerical taxonomy [CS57, SS73] could be used
for that effect. Unfortunately, WordNet does not provide information to determine which sense
of a term is used most frequently?". Other factors could be taken into account in the uncertainty
(e.g., the number of common hyponyms). Since there is no obvious solution to this problem other
than empirical, the following approach is adopted.

Let ~t be the number of senses of the term t in a situation s. If ~t > 1, and Bt is among the set of
senses of the term t in the situation s, then the uncertainty associated with the use of the constraint
[t,{Bt}]---+ [t',{Bd] with respect to the situation s is set to

cert(s, {Sd) = 1/~t

1/~t is used because it reflects the fact that the situation s may be extended to ~t alternative
situations (if no additional information is available). With this formulation of the function cert,
the constraints (more precisely, their background conditions) with antecedent t that are used to
extend the situation s are already normalized.

The determination of constraints and the uncertainty function based on the other types of relation-
ships is discussed in the following sections. The method adopted for their determination is similar
to that described for the determination of synonym-based constraints.

6.3.3.2 Hypernym-based constraints

Each relationship between a term and its hypernym in WordNet constitutes a hypernym-based
constraint. Let t ---+ t' be one of them. If the term t is not polysemic, then t ---+ t' constitutes an
unconditional constraint. It is then denoted as [t, {}] ---+ [t', {Bd]. Otherwise, t ---+ t' constitutes
a conditional constraint, and is then written [t, {Bt}] ---+ [t', {Bd]. {Bt} are the background
conditions of the constraint.

The method which determines the uncertainty of hypernym-based conditional constraints is the
same as the one used for synonym-based constraints. It is also based on the number of senses
a term has in a situationf'',

6.3.3.3 Hyponym-based constraints

A hyponym is a specific term which designates an instance of a class. For example, some of the
hyponyms of sense 1 of "car" in WordNet are:

79 In WordNet (Version 1.5), the synsets of a term are displayed in increasing order of the frequency of their senses. However, there
is no information telling how more often a sense of a term is used instead of another. The quantification of this ordering is not an
obvious task. Also, the ordering may not be appropriate for all document collections. For this reason, this implementation ignores
this feature of WordNet.

80 In WordNet, the number of senses of a term is the same for each category of relationships, although a term may not have, for
example, a hypemym for each of its possible senses.

151



Chapter 6 The Implementation of the Models

Sense 1 : cab, hack, taxi, taxicab
jeep, landrover
limousine, limo

Figure 6.4: Hyponyms of "car"

Each relationship between a term and its hyponym constitutes a constraint. However, from a
document which contains the term "car", it cannot be automatically inferred that the hyponym
referred to by "car" is, for example, "cab" and not "limousine". This indetermination is not due
to the polysemic nature of "car", but it may be solved from the document itself; for example,
if the latter mentions "cab". However, it is erroneous to assume that if "cab" appears in the
document then no other hyponym can be referred to by "car". Therefore, the existence of a
hyponym in a document does not preclude the existence of other hyponyms in that document. For
this reason, in a document which mentions "car", both the hyponyms (with respect to sense 1)
"cab" and "limousine" are implicit. Therefore, the use of hyponyms to construct constraints and
their uncertainty is the same as for synonyms.

6.3.3.4 Holonym-based constraints

A holonym is the name of a whole to which a term is a part, a member, or a substance. The
uncertainty in a holonym relationship is due only to the polysemic nature of terms. The types
of holonyms (members of, parts of, substance of) in this implementation are not distinguished
because this is beneficial only if a rigorous linguistic process is performed. The determination of
holonym-based constraints and their uncertainty is the same process as described for synonym-
based constraints.

6.3.3.5 Meronym-based constraints

A meronym is a part of something. It follows that mentioning a term implies that its meronyms are
implicitly mentioned. Uncertainty arises when the term is polysemic. The treatment of meronyms
is the same as for synonyms. As for holonyms, the types of meronyms are not distinguished.

6.3.3.6 Combined constraints

Different categories of relationships of WordNet have been used independently to define the
knowledge set. Relationships of the different categories can be used jointly to define the knowledge
set. A constraint that was originally unconditional or conditional stays unconditional or conditional,
respectively. It may be that some relationships are only defined for some senses of a term. For
example, the meronym entry of "horse" is only defined for sense 4 (see section 6.3.2). Although
one meronym synset is involved, the resulting constraint is conditioned with the sense 4 of "horse".

An approach in which no distinction is made between the different categories of relationships is
proposed in [RSM94]. There, the uncertainty associated between any two terms is based on the
number of hypernyms the two terms have in common, and the depth between these hypernyms and
the two terms. This approach, however, does not provide an implementation of the background
conditions, so it is not followed in this thesis.
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6.3.4 Conclusion

The implementation of the constraints is based on an existing on-line thesaurus, known as WordNet.
The appropriateness of the constraints is ensured because WordNet stores (hopefully) correct
relationships. The polysemic nature of WordNet terms is used to define whether a constraint is
unconditional or conditional. An unconditional constraint has the general form [t, {}] -+ [tf, {Stl }]

and a conditional constraint has the general form [t,{St}] -+ [t',{Sd]. {Sd corresponds to
the sense of tf in the two constraints. {St} constitutes the background conditions of the latter
constraint. The uncertainty attached to the conditional constraint in a situation is based on the
possible senses of the term t in that situation.

In the next section, the implementation of the unstructured model is described. The knowledge
set of the unstructured model can be implemented by any of the processes described in the six
previous sections. In the remainder of this chapter, the knowledge set is referred to simply as the
set of unconditional constraints J( 1 and the set of conditional constraints J( 2. That is, it is assumed
any category of relationships can be used, or indeed a mixture of them.

6.4 Implementation of the unstructured model

The unstructured model involves types, constraints and situations. Types model the information
items, which correspond to terms. Not all possible terms are considered in this implementation.
The selection of terms is described in 6.4.1. The implementation of the constraints was discussed
in section 6.3. The unstructured model defines a root situation and extended situations. The root
situation models the document's initial information content and the extended situations model the
document's extended information content. The latter situations result from the extension of the root
situation, where extension models the flow of information. The implementation of a root situation
and the implementation of an extended situation are depicted in 6.4.2 and 6.4.3, respectively. The
section 6.4.3 also describes the extension process. Examples illustrating the implementation of
situations are given in section 6.4.4. Queries are modelled as sets of types. The handling of
queries is dealt with in section 6.4.5. The implementation of the remaining components of the
unstructured model is discussed in 6.4.6.

6.4.1 Selection of terms

In WordNet, a noun, or more correctly noun-phrases, is a word or a collation (i.e., a set of words),
for example, "information" and "abdominal nerve plexus", respectively. Although it may have been
advantageous to use the fact that WordNet stores collations, it is not obvious that doing so would
enhance the IR system performance. Indeed, the use of noun-phrases in a document's representation
has not yet been proven very successful in IR (see [LL93, Fag87, Sme88]). Furthermore, the
determination of appropriate noun-phrases would require a robust syntactic and semantic analysis
because WordNet does not store all the different forms of a noun-phrase. For example, "art
exhibition" is stored in WordNet whereas "exhibition of art" is not (the problem in obtaining
the canonical form of a noun-phrase is comprehensively discussed in [Sme92]). Finally, even if
the determination of the appropriate noun-phrases was possible, it is not known what maximum
length a noun-phrase should be. Indeed, a WordNet collation can contain as many as 4 words,
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so finding the appropriate collation is not an easy task. Suppose that the noun-phrase "amygdalus
communis amara" was extracted from a text document. It is not known whether "amygdalus
communis amara" leads to an improved document's representation then "amygdalus communis",
because both "amygdalus communis" and "amygdalus communis amara" are WordNet entries (this
issue was extensively discussed in [Fag87]). For this reason, only words are considered in this
implementation. In the above example, this means that the three words forming the noun-phrase
"amygdalus communis amara" are used individually as the document's representation. In further
references, words are simply referred to as terms.

6.4.2 Implementation of a root situation

In the unstructured model, the representation of a document's initial information content is a
situation that supports the types which model the information items that are

(i) explicitly extracted from the document's information content,
(ii) derived from the application of unconditional constraints, or
(iii) derived from the application of conditional and certain constraints.

The implementations of these three processes are described in the following sections.

6.4.2.1 Types extracted from the text document

Single (noun) terms are extracted from the text document, and are submitted to a process that
removes stop words (e.g., "about", "in", "best", etc). The removal of stop words uses the stop
list given in [vR79].

After the removal of stop words, the remaining terms are submitted to a stemming process based
on WordNet. The stemming process used in most IR systems is the Porter algorithm [Por80]. This
algorithm cannot be used in this implementation because it may output stems that are not WordNet
terms. For example, with the Porter algorithm, "connection", "connect" and "connections" are all
stemmed into "connect", which is not a noun in WordNet. With the WordNet stemming process,
a term is transformed into its base form only if it does not appear in WordNet. For example,
"accounts" is transformed into "account" in WordNet, but "accounting" is not. Exceptions are also
captured by the WordNet stemming. For example, "children" is stemmed into "child"Sl.

A term extracted in the document may not exist in WordNet. That is, the term is neither a noun,
a verb, an adjective nor an adverb. The term is kept because WordNet does not cover all possible
nouns. Such terms will be referred to as proper nouns.

A term which results from the stemming process may be ambiguous; that is, the term is polysemic
(it has several senses) and the sense of that term in the document is unknown. Knowing the sense
of a polysemic term is important because the conditional constraints which hold with respect to that
term can then be identified. However, disambiguating a term is not always possible, and it has not
yet been proven beneficial in IR (see [KC92, Vo093, San94]). For this reason, no disambiguation

81 There is, however, a disadvantage with the use of the WordNet stemming. In WordNet, many variations of the same term can
appear. For example, the terms "account", "accounting" and "accountant" all appear in WordNet, so the latter two are not stemmed
into "account" as they would have been with the Porter algorithm. It is not certain whether the distinction between the three
terms is always necessary. This problem is more obvious in the following example. Both "follower" and "followers" are stored in
WordNet. It is not sure whether the occurrence of "followers" in a document is as the plural of "follower", or as "followers" itself.
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is attempted in this implementation; a term is assigned all the different senses that it possesses in
WordNet. Let t be a term that results from the WordNet stemming process. Let 1St be the senses
of the term t in WordNet. The type which models this term is implemented as

[t,lSt]
If the term t is not polysemic (the term t has a unique sense), or it is not a WordNet term, then
the corresponding type is implemented as

It,m
The types as above implemented are supported by the root situation. Let S be that situation. Then

S 1= [t,lSt] or S 1= [t,n]
A situation is implemented as the union of types, which are implemented as terms with their
associated senses in that situation82. For simplicity, in future references, the implementation of
the types and the types themselves are not distinguished. The same applies for a situation and
its implementation. In addition, any term t such that S 1= [t,lSt] is said to be contained in the
situation s, where 1St can be the empty set.

6.4.2.2 Types coming from unconditional constraints

Unconditional constraints are concerned with non-polysemic terms contained in a situation. Let S

be a situation. Let t be a non-polysemic term such that S 1= [t,n]. If [t,n]-t [t',{St'}] is an
unconditional constraint of the knowledge set, then the constraint can be applied to s and therefore

s 1= [t', {Sd]
If the term t' is contained in the situation s, then there exists a set of senses St' associated
with t' such that S 1= [t', St'], If the sense of t' in the constraint is among the senses of t' in the
situation, then the application of the constraint It, n] -t [t', {St'}] to the situation S has no effect83.
Otherwise, the application of the constraint to the situation S brings an additional sense to t' in
s; S 1= [t', St' U {Sd]. The same reasoning applies for the application of conditional constraints
that lead to terms already contained in a situation.

6.4.2.3 Types coming from conditional and certain constraints

Conditional and certain constraints are concerned with unambiguous polysemic terms contained in
a situation. Let S 1= [t, {St}] where t is a term and St is the sense of the term t in the situation
S (an unambiguous term has a single sense). Let It, {Sd]-t [t', {Sd] be a conditional constraint
of the knowledge set. The application of this constraint to the situation S is certain if S, = St; that
is, the sense of t in the constraint and in the situation is the same. The effect of the application
of the constraint is that S 1= [t', {Sd].

The union of the types which

(i) model information items extracted from the text document,
(ii) are derived from unconditional constraints, or
(iii) are derived from conditional and certain constraints,

82 The representation of a situation by a set was discussed in [8ar89. Dev911. in which this set was referred to as an abstract situation.
As often done in mathematics. abstraction was necessary to study situations in general.

83 This conforms to the discussion carried out in Chapter 4. section 4.4.2.4. The application of an unconditional constraint
</> -+ X E Kl or a conditional constraint </> -+ xlB E K2 to a situation s has no effect when s F= {</>,x}.
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is used to implement the root situation.

6.4.3 Implementation of a situation that results from an extension

A situation can be extended into another situation from the application of conditional and uncertain
constraints. The extension of a situation results from the application of one or several conditional
and uncertain constraints. The use of a single constraint is discussed in section 6.4.3.1. The use of
a group of constraints is discussed in 6.4.3.2. The uncertainty attached to the extended situation
is discussed in section 6.4.3.3.

6.4.3.1 Use of a single constraint

A situation can be extended to another situation if a conditional and uncertain constraint can be
applied to that situation. Conditional and uncertain constraints are concerned with ambiguous
terms. Let t be an ambiguous term that is contained in a situation s, and let St be the set of senses
associated to the term t in the situation S (i.e., S 1= It, StD. t is ambiguous in s, so the set St is not a
singleton nor the empty set. Let It, {St}] ~ [t', {St'}] be a conditional constraint of the knowledge
set. The application of this constraint to the situation S is uncertain if the sense of the term t in the
constraint is among the possible senses of the term t in the situation S (i.e., St ESt); that is, the
background conditions of the constraint (i.e., {Stl) mayor may not be satisfied by the situation s.
The application of the constraint to the situation S leads to the extension of that situation.

Let s' be the situation that results from the application of the constraint [t,{Stl] ~ [t',lSt']' This
situation supports

(i) the type [t', {St' } ]84.
(ii) the types that were originally supported by s,

(iii) the fact that the sense of t in s' is St,
(iv) the types derived from the application of unconditional constraints and the application of

conditional and certain constraints in s' (as described in sections 6.4.2).

Case (iii) means that the extension process as implemented in this thesis is also viewed as a
reduction of ambiguity; during the extension, a term become unambiguous.

6.4.3.2 Use of a group of constraints

The application of two or more constraints to a situation S can result into one situation or several
alternative situations, depending on whether or not their background conditions are compatible.
Let [tb {Sd] ~ [t~, {Std] and [t2, {S2}] ~ [t~, {Std] be two conditional constraints. In this
implementation'S, the fact that the two terms tl and t2 may be semantically related is not taken into
account. As a result, the sense of the term tl is independent to the sense of t2' The applications
of the two constraints to the situation s, and their background conditions, are independent from
each other. Consequently, only the following two cases occur regarding the applications of the
constraints:

84 If the term t' is already contained in the situation 8, the application of[t, {Sd] - [t', {St'}] to s will add the sense St' to the
senses of t' in 8.

8S This issue was discussed in Chapter 4, section 4.6.
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(i) If the antecedents of these constraints refer to the same term (i.e., tl = t2), then the
background conditions of these constraints is incompatible if SI f:. S2. In that case, the
application of the constraint leads to alternative situations.

(ii) Otherwise, the background conditions of these constraints are compatible, and the constraints
are used conjointly to extend the situation s into one situation.

The effect of the application of the these constraints is the same as described in the previous section.

6.4.3.3 Uncertainty of extension

Let a situation s be extended into a situation s', The uncertainty attached to the extended situation
s' is computed from the uncertainty of the constraints leading to that situation and the uncertainty
that is attached to the situation s. The formula was given in Chapter 4. The computation of the
uncertainty attached to the extended situation is a direct outcome of its formulation. Therefore,
it does not need further discussion. What remains to be discussed is the normalization of the
constraints. As described in section 6.3.3.1, the normalization is already captured in the expression
of cert in this implementation.

6.4.4 Examples

Suppose that the WordNet synonym entries of the terms "dog" and "horse" are respectively'f

Sense 1 : pawl (1), bounder (1)
Sense 2 : firedog (1)

Figure 6.5: WordNer synonyms of "dog"

Sense 1 : sawbuck (1)
Sense 2 : knight (2)

Figure 6.6: WordNer synonyms of "horse"

The senses of the different synonyms are displayed between brackets. The following five synonym-
based constraints are extracted from these entries:

(1) ['dog', {I}l -+ ['pawl', {I}l
(2) ['dog', {I}l -+ ['bounder', {I}l
(3) ['dog',{2}l-+ ['firedog', {I}l
(4) ['horse', {I}l -+ ['sawbuck', {I}l
(5) ['horse', {2}l -+ ['knight', {2}l

The result of the application of some of these constraints to a situation s are shown in the following
table (the uncertainty associated with each extended situation is shown between brackets);

86 These entries are not complete, but are sufficient for the purpose of these examples.
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II

The types supported by s Constraints The results

['horse', {2}] (5) s F= ['knight', {2}]

['dog', {I}] (3) Cannot be applied

['dog',{I,2}] (I) (2) s' F= {['pawl', {I}],['bounder', {I}]} (0.5)

['dog', {I,2}] (I) (3) s' F= ['pawl', {I}] (0.5)
s" F= [' firedog', {I}] (0.5)

['dog', {I}] (I) (2) s F= {['pawl', {I}],['bounder', {I}]}

['horse', {2}], ['knight', {2}] (5) No effect

['dog', {I, 2}], ['horse', {I, 2}] (3) (5) s' F= {['firedog', {I}], ['knight',{2}]} (0.25)

['dog', {l}],['pawl', {2}] (I) s F= ['pawl', {1,2}]

III

IV

V

VI

VII

VIII

Table 6.3: Examples of the results of the application of the implemented constraints

In row I, the constraint (5) is conditional and certain with respect to the situation s because the
background conditions of the constraint are satisfied by the situation s. The application of the
constraint leads to additional information about s. In row II, the constraint (3) cannot be applied
because its background conditions are not satisfied by the situation s. In row III, the application of
the constraints (1) and (2) lead to one situation s' because (i) the antecedents of these constraints
are supported by s, (ii) the background conditions of these constraints mayor may not be satisfied
("dog" is ambiguous in the situation s), and (iii) these background conditions are compatible. In
row IV, the constraints (1) and (3) are uncertain with respect to s. The background conditions of
these constraints are incompatible, so two situations result from the application of these constraints,
one situation for each constraint. In row V, the constraints (1) and (2) are both certain with respect
to the situation s. Their application delivers additional information about s. In row VI, the term
"knight" with sense 2 is already supported by the situation s, so the application of the constraint
(5) has no effect. In row VII, the two constraints are uncertain with respect to the situation s. Their
application leads to one situation because their background conditions are compatible. Finally, in
row VIII, the application of the constraint (1) adds an additional sense to "pawl".

6.4.5 Implementation of queries

In the unstructured model, a query is modelled by a set of types. Hence, it is implemented as a set
of terms and their associated senses. The determination of these terms is the same process as that
performed on documents. The terms used in a query can also be ambiguous. No disambiguation
is performed, so a term is associated with all its WordNet senses. The empty set is associated with
terms that are either not in WordNet, or not polysemic. With an interactive IR system, a user when
entering his or her query, may be ask to specify the senses of some of the terms used in his or her
query. In both cases, the analysis of a query results in a list of types of the form [t,lSt].

6.4.6 Remaining components of the unstructured model

The implementation of the remaining components of the unstructured model are discussed in this
section. These are the sequential extension of situations, the propagation and aggregation of
uncertainty, and the computation of the relevance degree.
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6.4.6.1 Sequential extension of situations

The flow of information extends the root situation into other situations, which are then extended
into other situations, and so forth. A sequential extension of situations is called a branch. The
sequential extension of situations ceases when a situation (known as a leaf) is obtained such that

(i) it supports the information being sought, or
(ii) no more unused constraints can be employed to extend that situation.

In the first case, a minimal branch is defined; its leaf situation is pertinent to the query. In the second
case, a maximal branch is constructed; its leaf situation is non-extendible. The implementation of
minimal and maximal branches requires the implementation of the extension of a situation (this
was discussed is section 6.4.3), a pertinent situation and a non-extendible situation.

6.4.6.1.1 Pertinent situation

A situation S is pertinent to a set of types <P if the situation supports at least one type in the set.
In this implementation, a situation S is pertinent to a set of types <P if

(i) there exists a type It, St] such that S 1= It, St], and

(ii) there exists It, qt] in <P such that at least one of the senses of t in the situation S is compatible
with one of the senses of t in the query (i.e., St n qt 1= 0).

The reason for this is because a type [t,St] can be viewed as USt types of the form [t,{St}] for
each sense St in St, where USt is the number of senses of t in s. The same applies for the types
representing the query. Therefore, the fact that St n qt 1= 0 means that one of the types supported
by the situation S is among one of the types modelling the query.

6.4.6.1.2 Non-extendible situation

A situation S is non-extendible if for all types [t, St] supported by S and for all conditional constraints
It, {St}] - [t', {Stl }], any of the following occur:

(i) the constraint has already been applied, or the application of the constraint has no more
effect (this means in both cases that there is some St' such that S 1= [t', sd and Stl E St')'

(ii) the background conditions of the constraint are not satisfied by the situation (i.e., St rt. St).
6.4.6.2 Propagation and aggregation of uncertainty

The implementation of the propagation and the aggregation of uncertainty is a direct result of
their formulations. The uncertainty of an extended situation is defined as the multiplication of the
uncertainty of the situation that is extended to that situation with the uncertainty of the normalized
constraints used in the extension. If several situations are extended to one situation, the uncertainty
that results from each extension is aggregated. The uncertainty of the extended situation is defined
as the summation of the uncertainty attached to the obtainment of that situation from each of the
other situations.
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6.4.6.3 Computation of the relevance degree

The relevance degree of a document to a query is the summation of the uncertainty attached to the
obtainment of minimal branches from the root situation. The implementation of the root situation,
the minimal branches and their uncertainty was discussed in sections 6.4.2, section 6.4.6.1 and
section 6.4.6.2, respectively. Therefore, the implementation of the computation of the relevance
degree of a document to a query does not need further discussion.

6.5 The implementation of the structured model

The structured model caters to a semantic-based structured representation of a document. The
implementation of the structured model requires the implementation of the weighted information
domain which models the representation of a document's information content (section 6.5.1), and
the implementation of the refinement function which models the transformation of a document
(section 6.5.2). The implementation of the remaining components of the structured model is
discussed in section 6.5.3.

The structured model uses many concepts defined in the unstructured model, such as types,
situations, the extension of a situation, the representation of queries and the representation of
constraints. The implementation of these concepts was discussed in sections 6.4 and 6.3.

6.5.1 Implementation of the weighted information domain

A weighted information domain is defined as D = (TD' BD,mti, BelD). The implementation of
the weighted information domain requires the implementation of TD, the set of types; BD, the set
of basic situations; mo, the basic probability assignment (BPA); and Beliy, the belief function.
The implementation of the set of basic situations is discussed in section 6.5.1.1. TD is the set
of types that are supported by the basic situations. The implementation of the set of types is
derived from the implementation of the basic situations, and is also discussed in section 6.5.1.1.
The BPA attaches a weight to each basic situation, and reflects the significance of the information
supported by that basic situation with respect to the document's overall information content. The
implementation of the BPA is discussed in section 6.5.1.2. The belief function Belr, is a measure of
the relevance of the information supported by the basic situations to a query, the implementation
of which is discussed in section 6.5.1.3.

6.5.1.1 Basic situations

In the unstructured model, the representation of a document's initial information content is modelled
by a root situation, for instance d. The types supported by this situation represent the explicit,
and the implicit and certain information content of a document. In the structured model, the
representation of a document's initial information content is modelled by a set of basic situations.
A basic situation s is a semantic structure with a single semantic content, for instance, s 1= <po That
is, for all types 't/J supported by s, there is a constraint <p -+ 't/J either unconditional, or certain and
conditional. The determination of the basic situations requires the determination of the semantic
contents of the document.
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The determination of the semantic contents of a document necessitates the identification of those
types supported by d that cannot be obtained from the certain application of a constraint to d.
Such types are those that do not appear as a consequent of a constraint that can be applied with
certainty to the situation d. Therefore, only types that model terms explicitly extracted from the
document may lead to semantic content.

Let t be a term extracted from the document and let dt be its associated senses in d (i.e., d 1= It, dtD.
Let [t', {Stl }] -;. [t, {St}] be a constraint which can be applied to d. Whether [t, dt] can be obtained
from the application of the constraint [t', {Stl }] -;. [t, {St}] depends on the following conditions:

(i) the sense of t in the situation is St (i.e., dt = {Sd). In that case, [t, dt] can be obtained
from the application of [t', {Sd] -;. It, {Sd] to d.

(ii) St is not among the possible senses of t in d (i.e., St f/. dt). In that case, the type It, dtl
cannot be obtained from the application of [t', {Sd] -;. It, {St}] to d.

(iii) St is among the possible senses of t in d but t has other senses in d. Let the set St = dt \ {St}
be these senses. The type It, St] cannot be obtained from the application of the constraint
[t', {St/}] -;. It, {Sd] to d, whereas the type It, {Sd] can be obtained from this application.

In case (iii), to determine the types that cannot be obtained from the application of a constraint,
it may be necessary to decompose a type into two sub-types. These two sub-types include one
that can be obtained from the application of a constraint, and one that cannot be obtained from
the application of a constraint. The decomposition is done with respect to the senses attached to
the term in that type.

Let C(d) be the set of the types in the situation d that cannot be obtained from the application of
a constraint to d. This set contains the types which lead to semantic contents. Let NC(d) be the
set of types that are supported by d but that are not in the set C(d). This set contains the types
which can be obtained from the application of a constraint to d87• The sets C(d) and NC(d) are
used to construct the basic situations. The following algorithm is used:

Step 1- Let It, dt] be a term of C(d) (remove it from C(d).

Step 2- If dt contains several senses, a basic situation S is created such that S 1= It, dd.
S 1= It, dt] constitutes a semantic content and S does not support other types (since
none can be derived with certainty). Goto Step 7.

Step 3- If dt is the empty set, then a basic situation S is created such that S 1= [t, {}]. S 1= [t, {}]
constitutes a semantic content. Goto Step 5.

Step 4- If dt contains one sense Dt, a basic situation S is created such that S 1= It, {Dt}].
S 1= It, {Dt}] constitutes a semantic content.

Step 5- Let [t',dtl] be a term of NC(d).

5.1-No constraint with consequent of the form [t', {St/}] can be applied to s. In that case,
[t', dt/] is not included in the basic situation s.

87 If the type [t,IStl is in C(d) and the type [t,IS~l is in NC(d) then lsI n IS; = 0 and lsI u 1St = dt• where dt is the set
of senses of t in d.



Chapter 6 The Implementation of the Models

5.2-A constraint with consequent of the form [t', {St' }] can be applied to s. Whether [t', dt,]
is included in the basic situation s depends on the relationships between dt, and St"
Two relationships exist:

5.2.1- St' is not among the senses of t' in dt,. In that case, [t', dt,] is not supported
by s.

5.2.2- The sense of t' in the constraint is among the senses of t' in dt,. If the term
t' is not already contained in s, then s 1= [t', {Sd]. Otherwise, the sense St'
is added to the senses t' already contains in s.

Step 6- Repeat Step 5 for all types in NC(d).

Step 7- If C(d) is not empty, Goto Step 1. Otherwise, exit.

The set of types TD is the union of all the types supported by the basic situations.

6.5.1.2 Basic probability assignment

In the weighted information domain D, the BPA mo is associated with the set of basic situations
SD to reflect the significance of information. Let s be a basic situation. mD(s) measures the
significance of the information supported by the situation s with respect to the document's overall
information content. The information supported by a situation is modelled as types, implemented
as terms with their associated senses. Therefore, the degree of significance mD( s) is dependent
on the significance of the terms contained in the situation s.

The significance of a term can be computed from the frequency of that term in the document. Let
F(t) be the frequency of a term t in the document. Only the terms that are explicit in the document
are considered. Otherwise, F( t) would have to take into account the frequency of the terms in
which t is implicit. Suppose that t is implicit in t' (i.e., the two terms constitute a constraint).
If the term t' appears n times in the document, then the term t appears at least n times in the
document, although eventually implicitly. Such an approach leads to higher frequency of a term
that is implicit in many terms. It is not sure that this approach reflects correctly the significance
of a term in the document. Therefore, it is not adopted.

The significance of a term contained in a situation should also take into account the number of
senses associated to that term in that situation. Indeed, two situations can contain the same term,
but the senses associated with the term are different in the two situations. If the term has more
senses in one situation than it has in the other, then the term can be viewed as more significant
in the first situation than in the second.

Let T( s) be the set of terms explicitly extracted from the text document and contained in the
situation s. A formulation of mD(s) which takes into account both the frequency of terms contained
in the situation s and the senses associated with these terms is

2:: F(t) * [s,
tET(s)mo'; s) = --,.--'--'--------;,.-

2:: ( 2:: F(t) * USt)
SESD tET(s)

USt is the number of senses of a term t in the situation s. This formula is similar to that given in
[dSM93], where a Dempster-Shafer based IR model is described. The denominator ensures that

1 2
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mD is a BPA, that is

L mD(s) = 1
sESv

6.5.1.3 Belief function

Given a set of types <T> modelling the query, BelD(<T» is defined as the summation of the BPA
associated to the basic situations in SD pertinent to the set <T>. The implementation of the belief
function BelD requires the implementation of the basic situations, the BPA associated with these
basic situations, pertinent situations and queries. The implementation of the basic situations and
the BPA was discussed in the previous two sections, and the implementation of pertinent situations
and queries was discussed in section 6.4.

6.5.2 Refinement

The transformation of a document is modelled as the refinement of the weighted information
domain that constitutes a semantic-based structured representation of that document. Let DI =
(TI' Sb mb Bell) and D2 = (T2' S2, m2, Bel2) be two weighted information domains such that
the latter is the refinement of the former. The refinement corresponds to the simultaneous extensions
of the basic situations of DI into the basic situations of D2• The extension of a basic situation
is the same process as for the extension of a situation. This implementation of this process was
described in section 6.4.3.

The BPA of a basic situation of the refined domain D2 is defined in terms of both the BPA of the
basic situations in Dl that are extended into that situation, and the uncertainty of the conditional
constraints leading to that situation. The computation of the BPA of a refined situation is the same
process as for the computation of the uncertainty of an extended situation, which was described
in 6.4.3.

6.5.3 The remaining component of the structured model

The last component of the structured model that has not yet been discussed is the computation of
the relevance degree. The implementation of the relevance degree of a document to a query is
based on the weighted information domains that result from the refinement process. The relevance
degree is defined as the summation of the BPA of the pertinent situations in each information
domain such that the situations become pertinent in that domain. The implementations of weighted
information domains, refinement, and the BPA associated to information domains were discussed
in the previous sections.

6.6 Conclusion

The implementations of two IR system models were described in this chapter. More specifically,
both the unstructured and the structured models were provided with methods for implementing
their related components. Critical to this chapter was the discussion of the implementation of
the constraints. The different experiments and the evaluation of the models are discussed in the
next chapter.
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Experiments and Evaluation

7.1 Introduction

This chapter describes the experiments and the evaluation of the unstructured and the structured
models, which cater to an unstructured and a structured representation of information, respectively.
The implementation of these two models was described in Chapter 6. The present chapter also
investigates the appropriateness of the measure of exhaustivity and the measure of specificity
defined in Chapter 5. It also examines whether the measure combining specificity and exhaustivity,
also defined in Chapter 5, is an adequate measure of relevance.

The chapter contains 4 sections. The set up of the experiments is described in section 7.2. The
results of the experiments and their analysis are discussed in section 7.3. Due to the results
obtained, further experiments were carried out. Their set up, results and analysis are elaborated in
section 7.4. The chapter finishes with a discussion in section 7.5.

7.2 Set up of the experiments

To perform experiments on the two models proposed in this thesis, the standard test collection
originally gathered by Waswani and Cameron in 1970 at the National Physical Laboratory (NPL)
is used. This collection contains 11429 documents, which are titles, and 93 queries, and comes
with a relevance assessment (see [vRRP80] for a description of the collection and its construction).
For computational factors, only the first 40 queries are used in the experiments.

The NPL collection was chosen to perform the experiments for two reasons. First, its documents
are short; the maximal, minimal and average lengths of the documents are 105, 1 and 19.96 terms,
respectively. This is essential because, in the models proposed in this thesis, a large amount of
knowledge (i.e., the constraints are implemented as WordNet relationships) is used to determine a
document's implicit information content, the computation of which increases with the size of the
document. Second, the English language used in the NPL documents is not too technical. This is
important because the WordNet thesaurus, used to implement the thesaurus, does not provide the
kind of relationships imperative for technical collections.

Four sets of experiments were initially performed:

(i) one to evaluate the unstructured model.
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(ii) one to evaluate the structured model, which as demonstrated in Chapter 5, indicates a
measure of specificity.

(iii) one to evaluate the exhaustivity measure, described in section 5.8.2, Chapter 5. This measure
will be said to be formulated by the Exhaustive Model.

(iv) one to evaluate the combination of the exhaustivity measure and the specificity measure,
described in section 5.8.3, Chapter 5. This measure will be said to be given by the Combined
Model.

The result of each experiment consists of a ranked set of documents for each of the 40 queries.
An effective model should place the relevant documents at the top of the ranking and those less
relevant lower in the ranking.

The set up of the four experiments is described in sections 7.2.1 through 7.2.4, respectively. The
benchmarks used to compare the results are described in section 7.2.5. Finally, the evaluation
method used to analyze the results of the experiments is explained in section 7.2.6.

7.2.1 The Unstructured Model

The aim of this first set of experiments was to determine whether more relevant documents were
retrieved with the unstructured model than with conventional IR models. Most IR models only take
into account the information explicitly extracted from documents. As a result, if a document and a
query have no common terms, the document is not retrieved for that query. The unstructured model
tries to remedy this problem by also taking into account the information implicit in documents.

The results of this set of experiments depend on the knowledge base used, here WordNet, to
implement the constraints. That is, they depend on whether the WordNet thesaurus provides
appropriate relationships to compute the NPL documents' implicit information content. An
additional goal of this set of experiments was to determine which type of relationships (e.g.,
synonymy or hypernymy) determines best the documents' information content.

Five experiments were carried out, one for each type of WordNet relationships, which were
synonymy, hypernymy, hyponymy, meronymy and holonymy (see Chapter 6). As explained in
Chapter 6, the relationships were used to extend a document's initial representation, implemented
as a set of terms with their associated senses, until information relevant to (terms in) a query
was (were) found. Each term was used separately as the basis of an extension. Hence, the more
terms a document had in its initial representation, the bigger its number of alternative extensions
(see section 4.4.1.4 in Chapter 4 for an example of the extensions of a document). The terms
in an extended representation of the document could also be the basis of further extensions, and
so forth. This indicates that the number of alternative extensions with respect to the document's
initial representation could be very large. This problem is known as the combinatorial explosion
in the Artificial Intelligence world [RN95, Wat85]. To overcome it, a maximal depth was imposed
on the number of extensions. This depth was arbitrarily set to 5.

7.2.2 The Structured model

The experiments to evaluate the structured model were performed in two phases: first, the
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documents were structured and, second, the relevance degrees of these documents were computed
for the 40 queries. The two phases were performed with each type of WordNet relationships
(except for hyponyms for reasons given in section 7.3.2). For the same reasons explained in the
previous section, a maximum depth of 5 extensions was imposed.

7.2.3 The Exhaustive Model

In Chapter 5, section 5.8, two measures were proposed, one that represents the degree of specificity
ofthe document, referred to as Spe( d, q), and one that represents its degree of exhaustivity, referred
to as Exh(d, q), where d is the situation representing the document and q is the set of types
representing the query. The measure S pe( d, q) is that calculated by the structured model. The aim
of this set of experiments was to investigate the measure of exhaustivity Exh( d, q). As for the
previous two sets of experiments, each type of WordNet relationships were used, and a maximal
depth of 5 extensions was imposed.

7.2.4 The Combined Model

The measures representing the degree of specificity of the document (i.e., Spe( d, q) and the degree
of exhaustivity of the document (i.e., Exh( d, q) are combined together to express the degree of
relevance of a document, the situation d, to a query, the set of types q, taking into account both
specificity and exhaustivity. The formula is (see section 5.8.3, Chapter 5)

a * Spe(d, q) + b * Exh(d, q)
a+b

where a and b are factors reflecting the importance attached to specificity and exhaustivity,
respectively. The higher a and b, the more importance is attached to specificity and exhaustivity,
respectively. In this set of experiments, a = 1 and b = 1; both the specificity and the exhaustivity
were equally important. The combination was made with respect to each type of WordNet
relationships.

7.2.5 Benchmarks

To compare the results obtained with the different sets of experiments described in the four previous
sections, two benchmarks were used:

(i) Benchmark B1: to compare with the unstructured model.

(ii) Benchmark B2: to compare with the structured model, and more importantly, the combined
model.

With the benchmark B 1, a document was established relevant to a query if the former contained a
term that appeared in the query. That is, relevance was affirmed on the basis of the information
explicit in the document. The comparison of the unstructured model to the benchmark B 1
established whether relevant documents to a query that have no common terms with that query
could also be retrieved. Note that a document with at least one common term with a query was
also retrieved by the unstructured model (see section 4.4.1, Chapter 4). With the benchmark
B 1, a document and a query were represented by the set of terms appearing in them, d and q,
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respectively. The relevance degree was given by

B I(d, q) = {1 if d n ~ =J 0
o otherwise

The benchmark B2 was the standard vector space model [Sal71, SM80]. There, all documents and
queries were N -dimensions vectors, where N was the number of terms in the document collection.
The ith component of a vector was the weight of a term ti in the document (or the query) modelled
by that vector. For example, a document was represented by the vector d = (WI,d,"" WN,d) where

freq(ti' d) was the occurrence frequency of term i, in the document, and idf(ti), referred to as
the inverse document frequency of the term ti in the document collection, was computed by

freq(ti) was the number of documents in which the term ti occurred and D was the number
of documents in the collection. The same representation was adopted for a query, but a term
occurrence frequency was within the query. The relevance of the document to the query was
given by

N
l:Wi,d * Wi,q

B2( d, q) = --;==l='==l =----r===
N
l:(Wi,d)2 *
i=l

The benchmark B2 was used because it captured both specificity, via each of the Wi,dS, and
exhaustivity, via each of the Wi,qS, of the document to the query.

In the two benchmarks B 1 and B2, as for the unstructured and the structured models, singles
terms were extracted from documents, stop words were removed (the same stop list mentioned in
section 6.4.2.1, Chapter 6, was used), and only nouns and proper nouns (terms that were neither
nouns, verbs, adverbs or adjectives in WordNet) were taken into account. The stemming process
was also based on WordNet (as described in section 6.4.2.1, Chapter 6). The reason being that a
benchmark based on another stemming process (e.g., the Porter algorithm [Por80]) may have led
to better/worse results due to the fact that the stemming process was different in the two methods.
Here, it was the methods of retrieval that were compared.

7.2.6 Evaluation

The result of an experiment or a benchmark was a set of ranked documents for each query. A
result was good if the documents relevant to a query were highly ranked and those less relevant
were lower in the ranking. This was evaluated by computing the so-called recall and precision
values88 [vR79]. Different computations of these values have been defined (see [vR79]). In this

88 The recall expresses the proportion of retrieved relevant documents with respect to all relevant documents. The precision expresses
the proportion of retrieved relevant documents with respect to all retrieved documents (the formulations were given in Chapter I,
in section 1.1)
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thesis, average precision values were calculated at standard recall values 10, ... , 100 of percentage
of relevant documents that were retrieved.

More precisely, for each query, pairs of precision-recall values were computed. The first pair of
values was computed when the first relevant document was retrieved. Suppose that this document
appeared at rank nl, and that for the query, Q documents were assessed relevant (this information
came from the relevance assessment provided by the test collection). In that case, the recall and
the precision values were, respectively, RI = 1/Q and PI = 1/nI. For the second retrieved
document, at position n2 > n}, the recall and the precision values were, respectively, R2 = 2/Q
and P2 = 2/ n2. A set of such pairs was obtained for each query, and was denoted {( Rf , Pik) }

for query number k.

To obtain the average precision values given a set of queries, the precision values must be given
for the same values of recall. For this purpose, the above set was interpolated to standard recall
values 10, ... ,100 (%). For any point (r,p) of the set, the closest standard point value on the right
of r was assigned the precision value p. If several of these points had the same closest standard
recall value, the highest of the precision values was assigned to that closest recall value. The
result of the interpolation was a set of precision values {pta, P;o,···, Ptoo}. The same process
was applied for each query, and the overall precision values of the whole experiment at standard
recall value i = 10, ... ,100 became

K
L Pi

k

k=I
J(

where J( is the number of queries in the test collection.

7.2.7 Summary

The experiments carried out in this thesis are summarized in the table 7.1. For purpose of clarity,
the experiments are named by a letter followed by a number. The letters U, S, E, C refer to the
unstructured, the structured, the exhaustive and the combined models, respectively. The numbers
refer to the type of WordNet relationships or the combination of types used in the experiment. For
example E4 is the experiment done on the exhaustive model using holonym type relationships.
The number 6 is used for the case of mixed use of types.

Unstructured model Structured Model Exhaustive Model Combined Model

Synonym UI SI El Cl
Hypernym U2 S2 E2 C2
Hyponym U3 S3 E3 C3
Holonym U4 S4 E4 C4
Meronym US SS ES CS
Combined Relationships U6 S6 E6 C6

Table 7.1: Summary of the different experiments

Not all these experiments were carried out for reasons stated later. The experiments were performed
on a Sun Spare running Solaris 2.4 with the programming language Tel 7.4 [Ous94] and C [HJ91]
(via an interface to Tel) to access the information in the WordNet thesaurus.
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7.3 Results and analysis

The results of the different experiments are displayed and analyzed in this section. The results
consist of precision and recall values displayed in tables or graphs. Unless otherwise specified,
the values are shown in percentages. The tables from where the graphs are based are listed in
the appendix of this chapter.

7.3.1 The benchmarks

The results of the benchmarks B 1 (to be compared with the unstructured model) and the benchmark
B2 (to be compared with the combined model) are shown in the following table:

BI B2

10 2.23 46.33
20 1.57 35.92

R 30 1.42 26.72
E 40 1.37 21.73
C 50 1.26 19.47
A 60 1.22 15.58
L 70 1.19 12.47
L 80 1.20 9.28

90 1.13 7.12
lOO 0.54 4.20

Average Precision 1.32 19.89

Table 7.2: Precision and recall values for the two benchmark models

The precision values obtained with the benchmark B2, i.e., the Vector Space Model, were as
expected (see [vRRP80] for a comparison). The precision values obtained with the benchmark Bl
were very low, which is not surprising since a document was relevant to a query if the document
and the query had at least one common term. As explained in section 7.2.5, the benchmark Bl
was used to identify for a query the documents that have at least one common term to that query.
Statistics on the documents retrieved by the benchmark BI are given in Table 7.3.

The table shows that the average number of non-retrieved relevant documents was much lower
than that of the retrieved relevant documents. However, the average number of irrelevant retrieved
documents was very high. These two observations imply that the overall recall is high, whereas the
overall precision is very low89. One conclusion is that the use of WordNet relationships to extend
a document's initial representation seems questionable since the overall recall obtained with the
benchmark B 1 is already high. That is, the information explicit in the documents usually allows
retrieval of most relevant documents. However, the use of WordNet relationships, that is, the
capturing of the information implicit in the documents, may help placing the relevant documents
higher in the ranking. This is investigated in later sections.

89 Here, the recall and the precision values are with respect to all the documents retrieved, i.e., with relevance greater than 0.0. The
ranking is not taken into account.
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Number of Number of Number of Number of Number of Number of
Query relevant relevant retrieved Query number relevant relevant retrieved
number documents documents documents documents

documents not retrieved not relevant documents not retrieved not relevant

I 19 0 2637 21 50 I 2465
2 15 I 2835 22 65 3 2301
3 33 0 3994 23 20 0 2623
4 5 0 1564 24 39 I 2529
5 4 3 1071 25 73 4 1769
6 IO 1 566 26 53 3 1427
7 75 1 1944 27 28 0 974
8 I 0 3917 28 8 0 1687
9 2 0 2347 29 11 0 2525
IO II 0 3279 30 7 0 3003
II 4 0 2494 31 11 0 4479
12 39 0 4417 32 13 0 1147
13 59 3 2398 33 8 0 4855
14 56 I 3173 34 9 1 4413
15 32 6 2214 35 30 1 1571
16 26 0 4454 36 8 2 2644
17 23 0 3684 37 25 0 2452
18 13 0 2611 38 12 0 3195
19 26 I 2753 39 5 I 975
20 23 3 961 40 29 1 920

Average number of relevant documents per query: 24.5
Average number of relevant documents retrieved per query: 23.55

Average number of relevant documents not retrieved per query: 0.95
Average number of irrelevant documents retrieved per query: 2531.67

Table 7.3: Some statistics about the benchmark BI

7.3.2 The Unstructured Model

Five experiments were carried out, Ul to U5, using each type of WordNet relationships to compute
a document's implicit information content. The results of these experiments are shown in the Table
7.490. Only queries for which relevant documents were not retrieved with the benchmark Bl are
shown.

The table shows that the unstructured model retrieves more relevant documents that the benchmark
B 1. Hence, the use of WordNet relationships allow retrieval of additional relevant documents,
which could not be retrieved when only the explicit information of these documents was taken
into account.

The table shows that hyponyms (U3) retrieve the highest number of relevant documents. The
number of retrieved relevant documents decreases then with, respectively, synonyms (UI), hyper-
nyms (U2), holonyms (U4) and meronyms (U5). However, as the last column shows, the relevant
documents retrieved by the different types of relationships were often the same. This was due
to several reasons. First, in WordNet, a term can be associated to the same term by different
types of WordNet relationships. For example, the term "process" in WordNet has the term "act"
as both a synonym, in sense 1, and a hypemym, although indirectly, in sense 2. Second, the
WordNet relationships led to many general terms frequently used in queries. Examples of such
terms include "method", "determination", and "expression". Finally, there was not all that many
more relevant documents to be retrieved, so any difference that may rise with using various types

90 The experiment U6 which uses several types of relationships was not performed since, at this stage, the aim was to ascertain the
appropriateness of WordNet relationships.
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of relationships was already limited.

Additional number of relevant Number of additional documents
Query number documents retrieved retrieved for each query by all

VI V2 V3 V4 V5 the relationships

2 - - I - - 1
5 1 2 2 I - 2
6 - I I - - I
7 - - I I - I
13 3 - 2 2 - 3
14 - I I - - I
15 - I 2 - - 2
19 - - - I - 1
20 1 - 3 1 2 3
21 - - - - - 0
22 1 - 2 - - 2
24 - - - - - 0
25 - I - - - 1
26 - - - - - 0
34 - - - - - 0
35 - - - - I 0
36 2 2 - - - 2
39 - - I - - 0
40 I - - - - I

Number of additional documents re-
9 8 16 5 3 21

trieved for all queries

Average number of additional relevant 0.47 0.42 0.84 0.26 0.16 1.11
documents retrieved per query

Average number of relevant documents 1.53 1.58 1.16 1.74 1.84
not retrieved (this number was 2 for B 1)

Table 7.4: Comparison of the number of additional documents retrieved by the unstructured model

Statistics on the irrelevant documents retrieved by the unstructured model is given in the following
table:

Ul V2 V3 V4 V5

Average of irrelevant docu- 3312.6 4867.3 4169.32 2981 2784.92
ments retrieved per query

Increase with respect to B I +780.92 +2335.62 +1637.65 +449.32 +253.25

Table 7.5: Irrelevant documents retrieved by the unstructured model

The highest number of retrieved irrelevant documents comes with the use of hypernyms (U2). This
was because the use of hypernyms to extend a document's initial representation leads to much less
specific representations. In these, terms such as "entity" or "class" were obtained, which can be
used in the queries, although they do not best describe the information need expressed in a query.

Something not previously mentioned is that the use of hyponyms (U3), which retrieve the second
highest number of irrelevant documents, presented computation problems because WordNet terms
often possess a large number of hyponyms. For example, the term "human", for only one of its
senses, had more than 100 hyponyms (synsets). As a result, the time required to compute the
documents implicit information content using hyponyms was lengthy. To overcome this problem,
the maximal depth initially fixed to 5 extensions was reduced to 2.
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Figure 7.1: Precision and recall values obtained with the unstructured model

Obviously, with a depth of 5, many more irrelevant documents would have been retrieved.
However, even with a depth of 2, the computation time took longer than when the other types
of relationships were used.

The precision and recall values obtained with the unstructured model are shown in the Figure
7.1 (the benchmark Bl is also shown). The graph shows that the use of synonyms (Ul ) always
improves precision, whereas the use of the other types of relationships often decreases precision
with respect to the benchmark B 1. In particular, the graph shows that the precision values obtained
with hyponyms (U3) were much lower than those obtained with synonyms. Therefore, since the
computation length required by the use of hyponyms was very high, hyponyms were not used
subsequently to extend documents representations.

Further experiments could be performed on the unstructured model, for example to find out the
maximal depth to impose on the number of extensions to obtain a better result (i.e., a trade-off
between the number of relevant documents and non-relevant documents retrieved). This, however,
goes beyond the scope of this thesis. Here, the aims of the experiments were to observe the
behavior of the models proposed in this thesis.

To conclude, the experiments performed on the unstructured model led to positive results, since
more relevant documents were retrieved by taking into account the implicit information in the
documents. However, except for synonyms, the precision of the output deteriorated.

7.3.3 The Structured Model

The different types of WordNet relationships, except for hyponyms (see previous section), were used
separately to structure (e.g., to build the basic situations of) the NPL documents. Some statistics
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on the output of the process are shown in the following table (recall that the NPL collection has
11429 documents). In the table, a basic situation is said to be non-singleton if it contains more
than one term.

SI S2 S4 S5

Number of documents with non-singleton basic situations 368 2190 548 240

Percentage of documents with non-singleton basic situations 3.2 19.16 4.79 2.09

Average length of the basic situations in those documents 1.04 1.33 1.025 1.186

Table 7.6: Results of structuring documents using the different WordNet types relationships

Except for hypemyms (S2), the number of structured documents with non-singleton basic situations
was very low. One reason was that NPL documents were short (an average of 19.96 terms per
document), so the chance that two terms in a document were semantically related by a WordNet
relationship was low. The use of hypemyms to structure documents gave the highest number of
documents with non-singleton basic situations because in WordNet, terms like "entity" or "place",
which appear in a number of documents, are (directly or indirectly) hypemyms of a large number
of terms.

Next, an example of a NPL document, and its structured representations using the different types
of WordNet relationships is given. The original document was

apparent observation of solar corpuscular clouds by direct continuous wave reflexion a report of observations in ohio
of doppler signals centred on mcs which were first recorded at ut on april the observations are discussed in relation
to a solar flare of importance which reached a maximum at about ut on april

Figure 7.2: Example of a NPL document

Structuring this document with hypemyms led to the representation below. The basic situations are
delimited with "{" and "}", The weight ofthe basic situation is first given, then the terms, their tags
("n" for noun and "p" for proper nouns'") and associated senses (between "(" and ")") are shown:

{0.095 april n (I) } {0.046 centred n (I) } {0.061 me n (I) , relation n (I)} { 0.061 signal n (I), relation n (I) }
{0.107 ut n (I), relation n (I) } {0.138 observation n (I 2 345) } {0.046 cloud n (I 2) } {0.046 wave n (I 23
4 5 6 7) } {0.046 ref lexion n (I 2 3 4 5 6) } {0.046 report n (I 2 3 4 5) } {0.046 ohio n (I 2) } {0.03 relation
n (2 3) } {0.046 flare n (I 2 3) } {0.046 importance n (I 2) } {0.046 maximum n (I 2 3) } 0.046 co rpuscular
r o r {0.046 doppler p O}

Figure 7.3: Structured representation of a NPL document using hypernyms

The basic situation { 0.061 signal n (1), relation n (1) } was built because in WordNet, "relation" is
a hypemym, although indirectly, of "signal". The structured representation of the document using
the other types of WordNet relationships had no singleton basic situations:

91 Proper nouns usually refer to name of country, people, city, river. Here, a proper noun is any term that is unknown from WordNet
(see Chapter 6). Tags are used to differentiate between nouns and proper nouns, since proper nouns will never be part of a
relationship between terms.

7
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10.095 april n (I) } 10.047 centred n (I) } 10.047 me n (1) } 10.047 signal n (I) } 10.095 ut n (1) } 10.142 observation
n (1 2 345) } {O.047 cloud n (1 2) } {O.047 wave n (1 2 345 67) } {0.047 reflexion n (1 2 345 6) } {O.047 report
n (1 2 345) J (0.047 ohio n (I 2) J (0.047 relation n (I 2 3) J (0.047 flare n (I 2 3) J (0.047 importance n (I 2) J
(0.047 maximum n (I 23) } (0.047 corpuscular pO) (0.047 doppler p OJ

Figure 7.4: Structured representation of a NPL document using synonyms, holonyms or meronyms

The few occurrences of non-singleton basic situations was also due to the fact that the WordNet
relationships were not specific to the NPL collection. Many documents terms had no WordNet
entry (these terms are tagged with "p" in the above examples). For terms with WordNet entries,
often none of the senses in those entries were appurtenant. Consider the following NPL document:

the coaxial system amplifiers

Figure 7.5: Example of a NPL document

The synonyms and hypernyms of the terms "system" and "amplifier" are given Figures 7.6 and 7.7.

Sense 1
synonym: system. unit
hypemym: instrumentality, instrumentation
Sense 2
synonym: system
hypemym: substance, matter
Sense 3
synonym: system
hypemym: group, grouping
Sense 4
synonym: arrangement, organization, system
hypemym: structure

Sense 5
synonym: system, system of rule
hypemym: method
Sence 6
synonym: system
hypemym: body part
Sense 7
synonym: system
hypemym: plan of action
Sense 8
synonym: system
hypernym: live body

Figure 7.6: WordNet entries of the term "system"

The most appropriate senses of "system" for the above document are 4 and 5. In many of its
senses, the term "system" has no synonym.

Sense 1
synonym: amplifier
hypernym: electronic equipment

Figure 7.7: WordNet entries of the term "amplifier"

The term 'amplifier" has no synonym. The above two entries illustrate that WordNet relationships
was ineffective in structuring documents (and hence, in computing the implicit information content
of the documents) in the NPL collection because many terms that could be viewed as related were
not assessed so by WordNet. Therefore, it was not possible to construct the basic situations as
being semantic structures. This was a problem because the computation of the relevance of a
document to a query, as defined by the structured model, depended strongly on that semantically
related information items were grouped into basic situations (semantic structures).
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Figure 7.8: Precision and recall values obtained with the structured model

Relationships extracted from a thesaurus or a knowledge base specific to the NPL documents would
have certainly led to more accurate structured representations ofthe NPL documents. Unfortunately,
such a thesaurus or knowledge base was not available. This is a main drawback and will certainly
lead to impoverished performance of the structured model. This should be taken into account when
further investigating the results obtained with the structured model.

The relevance of documents to queries as defined by the structured model were then computed.
The precision and recall values obtained are shown in Figure 7.8 (the benchmark B2 is also shown
in the graph). The graph shows that the structured model performed best with synonyms (S 1),
then with meronyms (S5), holonyms (S4), and finally hypernyms (S2). However, the difference in
the overall precision was very small, and could mainly be explained by the fact that no significant
difference in the relevant documents retrieved by the various types of relationships was observed
(see Table 7.4).

The fact that the best results (although not significantly better) were obtained with synonyms
is not surprising because extending a document's representation to one containing synonymous
terms seems an intuitive approach. The worst results were obtained with hypernyms because
they often yield document descriptions that contain general terms frequently used in queries. The
results obtained with holonyms and meronyms can be explained by the fact that less relevant
documents were retrieved than with synonyms, but less irrelevant documents were retrieved than
with hypernyms.

The precision and recall values obtained with the experiments performed with the structured model
were much lower than that obtained with the vector space model (the benchmark B2). However,
it should be stated that the structured model captured only the specificity of documents to queries,
whereas the Vector Space Model captured both specificity and exhaustivity. It is then difficult
(yet) to speculate on the results because the relevance assessment provided by the NPL collection
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takes into account both exhaustivity and specificity of document to queries. That is, no assessment
on either the documents exhaustive or specific to queries is available. To impetrate on the extent
to which the structured model indicates a specificity measure, the four most relevant documents
established by SI (synonyms) for query 13 are examined:

Document Relevance Degree

4079 0.75
4354 0.666666
4626 0.666666
2085 0.500001

Table 7.7: The four most relevant documents as established by SI for query 13

The query 13 and some of the above documents are shown below:

Query 13
mathematical expressions and graphs for the design of transistorised tuned pass band amplifiers

Document 4079
design of unsymmetrical band pass filters

Document 4354
etched wiring simplifies magnetic amplifier design

Document 4626
magnetic amplifier design a practical approach

Figure 7.9: Query 13 and document numbers 4079, 4354 and 4626

Document 4079 was identified as most specific to the query. Looking closely at this document,
although the terms "mathematical expressions" or "graph" were not mentioned in the document,
the document can be viewed as specific to the query, although it is not exhaustive to the query.

Documents 4626 and 4354 were also determined as highly specific to the query, although this
is less evident. For example, the document 4626 mentions "practical approach" whereas query
13 seems to refer to "theoretical approach". This happened because in both the design and the
implementation of the models, terms were treated independently. This obviously should be refined
as discussed in Chapters 4, 5 and 6. For example, if the representation of a document is extended
to one that contains a term that "contradicts" one of the terms used in the query, the relevance
of the document should be reduced.

Document 4354 has been qualified as specific to the query because the document is short and
contains two terms that appear in the query. This was more obvious by looking at the following
document which was assessed relevant to the query 13:

band pass amplifiers their synthesis and gain bandwidth factor seven types of band pass amplifier
are investigated and compared and their design formulae are given

Figure 7.10: Document number 2458
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The rank of document 2458 is 19 which shows it was determined as specific to the query. The
document was, however, lower in the ranking than for all the documents listed in Table 7.7
mainly because it was a longer document, and as earlier explained, the semantic-based structured
representation of documents, as obtained in this experiment, is poorly captured; in many cases,
a basic situation was constituted of a single term. Moreover, some of these terms were not
as informative as others in expressing a document's information content. This should then be
reflected in the weight assigned to their corresponding basic situations so that, not only the weight
expresses the significance of a basic situation in a document, but also its "informativeness". The
weighting mechanism adopted here did not incorporate this feature.

Another reason for obtaining low precision values was that irrelevant documents were incorrectly
retrieved due to the WordNet relationships. One reason for this was that no disambiguation was
done on both queries and documents terms, and many terms were erroneously obtained in the
extended representations of documents.

To conclude, the structured model offers a measure of the specificity of a document to a query. It,
however, presented some problems. First, the basic situations constructed did not constitute ade-
quate semantic-based structured representations of documents. Second, the weighting mechanism
did not distinguish informative to non-informative terms, and third, too many irrelevant documents
were retrieved by the use of WordNet relationships. The first problem, unfortunately, cannot be
solved, unless other data are used, but solutions to the latter are investigated in section 7.4.

7.3.4 The Exhaustive Model

The experiments performed to evaluate the exhaustive model were not successful, because for nearly
all queries, no documents were retrieved. That is, no extension of a document's representation
led to a representation that contained all the terms in the query. This shows that the measure
of exhaustivity defined in Chapter 5 is too strict, at least for the queries provided by the NPL
collection. This measure may be more appropriate for shorter queries of 2 to 3 terms such as
"operating systems", where the retrieved documents should be about "operating systems" and
not "operating" or "systems" alone. In section 7.4.4, a less strict measure of exhaustivity of a
document to a query was proposed.

7.3.5 The Combined Model

Since no documents (or very few) were retrieved by the exhaustive model, the combined model
became

Spe(d, q)
2

where Spe(d, q) was computed by the structured model. This meant that the ranking of documents
was the same as for the structured model. As a result, the evaluation of the combined model yielded
the same precision and recall values obtained with the structured model. Compared to the vector
space model, the combined model performed poorly, the reason being that no information on the
extent to which a document was exhaustive to a query was rendered. Based on a new formulation
of the exhaustive model, the combined model was again experimented with in section 7.4.5.
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7.4 Additional experiments, their set up, results and analysis

New experiments were performed to address some of the issues raised in the previous sections.
These issues were:

(i) the differences between the precision values obtained with the various types of WordNet
relationships were insignificant. This may change if several types of WordNet relationships
are used together.

(ii) often terms that have nothing to do with the initial representation of a document were
obtained with the use of WordNet relationships. Disambiguating terms may remedy this
problem.

(iii) the initial weights of the basic situations did not allow the distinction between informative
and non-informative information. A better weighting mechanism is required.

(iv) the measure of exhaustivity proposed in Chapter 5 was too strict. A new measure must
be defined.

(v) due to (iv), the combined model collapsed into the structured model, which computes a
measure of specificity. With a less strict exhaustivity measure, the combined model may
lead to better precision values.

To investigate the above issues, new experiments were performed with 12 queries arbitrary selected
in each of the following groups:

Group A : where all documents were retrieved without using WordNet relationships: 1, 8, 10
and 30.

Group B : where additional documents were retrieved using WordNet relationships: 5, 13, 19
and 37.

Group C : where no additional documents were retrieved using WordNet relationships: 7, 15,
24 and 39.

These groups reflect the three possible scenarios that arise with the use of WordNet relationships to
compute a document's implicit information content. All the new experiments, with one exception,
used one type of WordNet relationship, namely synonyms, since their use provided the best results
(the highest precision values).

Before describing the new experiments, the precision and recall values were computed for the
above 12 selected queries for the benchmark B2 and the structured model using synonyms (the
experiment SI). These new values constituted the new benchmarks, and were referred to as B3
and Syn, respectively. These two new benchmarks were compared, respectively, to B2 and SI to
establish whether the structured model or/and the vector space model favor the selected 12 queries.
The two comparisons are shown in Figure 7.11.

In overall, both Syn and B3 performed better than SI and B2, respectively. However, the extent to
which B3 was better than B2 was higher to that of Syn with respect to SI, thus showing that the
selected 12 queries did not advantage the structured model with respect to the vector space model.
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Figure 7.11: Comparison of the benchmarks for 12 and 40 queries

7.4.1 Use of synonyms and holonyms (Synl)

The aim of the experiment, called Synl, was to determine whether using several types of
relationships in the structured model improved precision. Two types of WordNet relationships were
used: synonyms and holonyms. Synonyms were used because they led to the best precision values.
Holonyms were used because they allow retrieval of more relevant documents than meronyms, and
less irrelevant documents than hypernyms (see Tables 7.4 and 7.5). The precision and recall values
of the experiment Syn 1 are shown in the graph in Figure 7.12.

No improvement on the precision values was obtained with using synonyms and holonym rela-
tionships in the structured model. This result was not surprising, since, as explained in section
7.3.3, no significant difference was obtained with the various relationships (see the precision and
recall values in the Figure 7.8). Therefore, the decision to conduct all the new experiments only
with synonyms seemed right.

Other combinations may have led to higher precision values. A particular combination would be
with synonyms and hyponyms since as shown in section 7.3.2, the latter relationships retrieved
the highest number of relevant documents. However, due to the problem explained in 7.3.2, this
combination was not attempted.
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Figure 7.12: Precision and recall values obtained with the experiment Syn1

7.4.2 Limited number of term senses (Syn2)

As explained in section 7.3.3, the extended representation of a document could include terms, the
meaning of which was unrelated to the meaning of the terms contained in the initial representation
of that document. The main reason being that no disambiguation was performed on documents or
queries; many senses of a term were alien to those referred to in a document. This experiment,
referred to as Syn2, attempted to remedy this problem by restricting the senses of terms in a
document's representation. The restriction was based on the fact that, in WordNet, the senses of a
term are displayed in decreasing order of their use. This can be seen in the following example:

Sense 1
horse, Equus caballus
Sense 2
horse
Sense 3
cavalry, horse cavalry, horse

Sense 4
sawhorse, horse, sawbuck, buck
Sense 5
knight, horse

Figure 7.13: Synonyms of the term "horse" in WordNet displayed in decreasing order of their use

In the experiment Syn2, only the first two senses of a term were taken into account. That is, the
computation of the relevance degree was as for the structured model with the difference that if a
term had more that two senses, only the first two were used. This number was arbitrary chosen.
Obviously, the first two senses of a term may not be those referred to in a document. The precision
and recall values obtained with the experiment Syn2 are shown in the following graph:
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Figure 7.14: The precision and recall values obtained with the experiment Syn2

A decrease in the precision values was observed with Syn2. This was owed to the fact that the
two most used senses of a term according to WordNet were often not those referred to in the
documents of the NPL collection. For example, the term "pass" that appears in the document 4079
(see Figure 7.9) had the following WordNet synonyms (part of the entry is displayed):

Sense 1
base on balls, walk, pass
Sense 2
pass
Sense 3
pass, passing play, passing game, passing
Sense 4
pass, passport

Sense 5
pass, laissez passer
Sense 6
pass, strait, straits
Sense 7
pass, mountain pass, notch

Figure 7.15: WordNet synonym entries of the term "pass"

The order provided by WordNet was not suited to the NPL collection. To restrict the senses
associated to terms, proper disambiguating is necessary.

7.4.3 A different weighting mechanism for the basic situations (Syn3)

The basic situations were usually constituted of single terms, some of which were more informative
than others in describing the document's information content. The weighting mechanism, as
implemented in Chapter 6, did not permit distinction between informative and non-informative
terms in the basic situations.
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Figure 7.16: Precision and recall values obtained with the experiment Syn3

Non-informative terms are usually those that appear in many documents of a collection, and can
be differentiated from the informative ones by associating to the terms weights that include the
so-called inverse document frequency (this was used in the vector space model, the benchmark
B2, described in section 7.2.5).

The same strategy is adopted in this experiment, called Syn3, to distinguish informative terms to
those less informative in a basic situation. The weighting mechanism was redefined to include
inverse document frequency, so that higher weights were assigned to those basic situations that
contained more informative terms than others. For simplicity, since the basic situations were
mainly singletons (see Table 7.6), for each term t in the document, a basic situation s was created.
The weight (BPA) of the situation s was given by

( ) _ freq(t,D) * idf(t)
m s - 2: m(s)

sED

D was the weighted information domain modelling the document (see Chapter 5), that is, the set
of basic situations, one for each term explicitly extracted from the document. The denominator
was the summation of weights of all the basic situations (terms) in the document. freq(t, D) and
idf(t) were the term occurrence frequency in the document (as defined in Chapter 6) and the inverse
document frequency (as computed by the vector space model), respectively. The implementation
of the other components of the model is as described in Chapter 6.

The precision and recall values obtained with the experiment Syn3 are shown in Figure 7.16. The
graph shows a significant increase in the precision values with respect to Syn. This indicates that
including inverse document frequency in the weights attached to basic situations was effective. It
also happened that the document 2458 ranked 19th with Syn (see section 7.3.3) was now ranked
7th and that the document 4354 (see Figure 7.9) ended up much lower in the ranking.
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The main conclusion of the experiment Syn3 is that precision can be ameliorated with a more
accurate weighting mechanism. In some further work, additional experiments will be carried out
using various weighting mechanisms that were showed to capture well the informativeness of terms
in documents (for example, see [SM80] for various formulations of the terms weights in the vector
space model), although the improvement may be limited since the basic situations, as implemented
here, did not constitute proper semantic structures as defined in Chapter 5.

7.4.4 New measure of exhaustivity (Syn4)

The measure of exhaustivity, proposed in Chapter 5, showed to be too strict. To compute the
relevance of a document to a query that includes both exhaustivity and specificity, a new measure of
exhaustivity was defined in this experiment, called Syn4. A document and a query were represented
by a set of terms d and q, respectively. The number of terms common to the document and the
query was computed and assigned to a variable E. For all the other terms in the document that were
not contained in the query, and that had a WordNet entry, the following procedure was applied.
Let n be the number of senses of that term in the entry. For each sense, the following was done:

(i) if m terms in that sense appeared in the query, that were not matched before, the value
m / n was added to the value of E.

(ii) otherwise, the same process was applied for the terms in that entry92. The result was
assigned to a variable E' that was initially set to 0 (since no terms in that sense appeared
in the query). The value E' /n was then added to the value of E

The result of this procedure was a numerical value (E) that represented the number of common
terms between the query and the document, either explicit, or implicit (via the use of WordNet
relationships). The uncertainty of the relationships (see Chapter 6) was taken into account. For
example, suppose that the term "horse" appeared in the document, and that the term "cavalry"
appeared in the query. In WordNet, "cavalry" is a synonym of "horse" for one of its sense. Since
horse has 5 senses, then the uncertainty associated to the relationships was 1/5, which was added
to the variable E.

To capture the extent to which the query is covered by the document, the above value E is divided
by the number of terms in the query. With this formulation, the more terms in the query that are
explicitly or implicitly contained in the document, the higher will be the result of the division.
Hence, this formulation expressed a measure of exhaustivity. The precision and recall values
obtained with the experiment Syn4 are shown in Figure 7.17.

The exhaustive model gave better precision values than the structure model, and lower precision
values than the vector space model. However, it should be reminded that the three models base
their relevance on different criteria.

92 The terms appearing in the same sense of a term constitute a synset. In Word Net, ail the terms in a synset have the same synonyms.
So in practice, it was sufficient to deaI with only one term in the synset.
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Figure 7.17: Precision and recall values obtained with the experiment Syn4

As for the evaluation of the specificity measure, no relevance assessment on the exhaustivity of
documents to queries are known. Therefore, to have an idea on how well the exhaustive model
performed, the top most ranked documents retrieved for query 13 by the exhaustive model are
examined:

Documents Relevance

8136 0.714286
2458 0.6
5873 0.6
7908 0.6

Table 7.8: The four top most ranked documents as established by the new exhaustive model for query 13

These documents are showed in Figure 7.18. These documents seem highly exhaustive to the query
13 (shown in Figure 7.9), thus showing that the formulation in Syn4 indeed expressed exhaustivity.

Better formulations could be searched for. For example, with Syn4, longer documents seemed to
have higher chance to be established exhaustive to a query than shorter documents. This could be
remedy by having a document representation similar to that used in the structured model. That
is, the information in the document is organized into semantic structures (e.g., concepts). The
computation of the relevance will however be different. No other formulation was experimented
with because as shown in the structured model, to obtain positive results, better representations of
documents that what were obtained are mandatory. As it was already observed through this chapter,
this would be difficult, if at all possible, because the WordNet relationships are not specific to the
NPL collection.
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Document 2458
band pass amplifiers their synthesis and gain bandwidth factor seven types of band pass amplifier are investigated and
compared and their design formulae are given

Document 8136
design of hf and if amplifiers for multi channel fm links bandwidth required is determined from the side band
amplitudes for given modulation index and from the permissible distortion expressions for involve the derivatives of
the amplifier response curves and are tabulated for single stage circuits and two stage band pass filters the
computation for multistage circuits is shown to involve the same derivatives under ideal conditions second harmonic
distortion would be eliminated by exact tuning to the central frequency and third harmonic distortion sufficiently
reduced by using symmetrical filters with a coupling coefficient in practice tuning is not exact but second harmonic
distortion can be kept at a tolerable level by adjustment of the pass band response at the alignment stage valve
capacitance variations are allowed for in the shunt circuit capacitance neutralization can practically eliminate the
effects of feedback via grid anode capacitance criteria for the choice of if are explained

Document 5873
design of wide band tuned amplifiers amplifiers with schienemann butterworth and tchebycheff band pass
characteristics are considered in detail and formulae design curves and numerical examples are gi ven

Document 7908
amplifier stages with transitionally coupled two stage band pass filters particularly for large bandwidths the amplitude
and group delay characteristics of an amplifier stage consisting of two coupled circuits are analysed for the case when
the amplification is constant over a wide frequency band transitional coupling the case when the damping factors d
and d of the two circuits are equal is considered first and formulae are also given for the cases of either d or d
tending to zero formulae are also given for transforming a filter with indirect inductive coupling into one with direct
inductive coupling design curves are shown

Figure 7.18: The NPL documents 8136, 2458, 5873 and 7908

7.4.5 The Combined Model (Syn5 and Syn6)

Two experiments were performed to evaluate the combined model. They both used the measure
of exhaustivity defined in the previous section, but used two different measures of specificity: the
one initially defined (Syn) and the improved one (Syn3) experimented with in section 7.4.3. The
two experiments are referred to as Syn5 and Syn6, respectively. The precision and recall values
obtained with these two combinations are shown in the graph in Figure 7.19.

With both combinations, an increase in the precision values was observed with respect to the
specificity and the exhaustive models. Therefore, the combination of a measure of specificity and
a measure of exhaustivity, results into a measure of relevance taking into account both specificity
and exhaustivity.

A higher increase was obtained with the second combination (syn6). This is because the formulation
expressing the specificity of a document to a query used in Syn3 was better than that used in Syn.

However, the results are still lower than those obtained with the benchmark B3 (the vector space
model). This is due to that, as already discovered throughout this chapter, the WordNet thesaurus
was not the best knowledge base to use with the NPL collection. As a result, the structured
model behaved poorly, and hence the results obtained by the combined model were lower than
those obtained with the vector space model. To show the problem encountered with the WordNet
relationships, a final experiment was performed. It is described next.
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Figure 7.19: Precision and recall values obtained with the experiments Syn5 and Syn6

7.4.6 Query terms weights (Syn7)

This experiment, called Syn7, was carried out to establish precisely how appropriate were the
WordNet relationships to compute a document's implicit information content. The adopted ap-
proach used the vector space model but incorporated the WordNet relationships in the computation
of the relevance of a document to a query. A document and a query were represented as two
vectors (Wl,d, ... ,WN,d) and (Wl,q, ... ,WN,q) which were defined as described in section 7.2.5.
The relevance was computed as follows:

N

L Wi,q * Wi,d * 6( i)
R( d, q) = ---rt='==l==------;====

N 2L (Wi,d) *
i=l

~(i) is 1 if the term li is in the query. Otherwise, the WordNet entry of that term was looked
at. Suppose that the term t, had n senses. A variable A was set to O. For each sense, the
following was done:

(i) if one term or several terms in that sense appears in the query, the value lin was added to A.

(ii) otherwise, the same process was applied for that entry. The resulting value was assigned
to A'. Then the value A'l n was added to A
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Figure 7.20: Precision and recall values obtained with the experiment Syn7

The result of this procedure was b.( i) = A, the idea being that a term t, of a document may be
related via WordNet to some query terms, Since no disambiguation was done, the relationships
could be uncertain. The more uncertainty was introduced, the lower was the value of b.( i).

The precision and recall values obtained with such a formulation of relevance are shown in the
Figure 7.20. The results show an overall increase in the precision values. This increase is,
however, very small, and may indicate that it would have been difficult to obtain good results
with the combined model, in particular, because of the problems arising with the structured model.
This is due to the fact that the WordNet relationships could not adequately determine a document's
implicit information content. Moreover, the WordNet relationships are much too general. This was
already made obvious when the results obtained with the structured model, using different types
of relationships, happened to be very similar (see Figure 7.8).

If semantic relationships can only be extracted from WordNet (or any unspecific knowledge base),
the transformation process must be more carefully applied to documents. To achieve this, techniques
similar to those used in expert systems may be used, for example, using heuristics specific to the
document collection. This task requires appropriate expertise, and hence, will be the purpose of
future research.

7.5 Conclusion and Discussion

Different experiments were carried out to evaluate the unstructured, structured, exhaustive and
combined models. These were done in two phases. First, the experiments were based on the
implementations of these models as described in Chapter 6. The following summarizes the results
of the various experiments in the first phase:
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(i) The Unstructured Model The aim of this experiment was to determine whether more
relevant documents were retrieved with the use of the WordNet relationships than without
their use. The results showed that this was the case, although, there were not all that many
more relevant documents to be retrieved. The results also showed a high increase in the
number of irrelevant documents retrieved, and that the best results in terms of precision and
recall values were obtained with synonyms.

(ii) The Structured Model The results obtained were poor, but this was due to the fact
that the relevance degree, as computed by the structured model, expressed a measure of
specificity, which depended strongly on the fact that the information into the document was
organized into semantic structures (the basic situations). WordNet did not allow an adequate
semantic-based structured representations of the NPL documents.

(iii) The Exhaustive Model The measure of exhaustivity was too strict.

(iv) The Combined Model Due to the above, the combined model collapsed into the structured
model, thus giving poor result when compared to the vector space model.

The conclusion from the first phase is that taking into account the implicit information as well as
the explicit information contained in documents did allow retrieval of more relevant documents
than when only the explicit information was considered. However, it was essential to correctly
determine this implicit information. In particular, this was mandatory when the basic situations
constituting a document were constructed. The WordNet relationships with respect to the NPL
collections proved inappropriate for the task, hence poor results were obtained.

Some issues were raised during the first phase. From them, further experiments were performed
on a smaller number of queries, and using only synonyms. These additional experiments are
summarized below:

(i) Synl: Several types of relationships were used in the structured model.

(ii) Syn2: Only the first two senses of terms were taken into account in the structured model.

(iii) Syn3: A different mechanism was used in the structured model.

(iv) Syn4: A new formulation of the exhaustivity measure was proposed.

(v) SynS: The combined model was experiment with the measure of specificity obtained in
Syn and the new measure of exhaustivity.

(vi) Syn6: The same as above, but the measure of specificity was that obtained with Syn3.

(vii) Syn7: This experiment was essentially the vector space model with incorporation of
WordNet relationships.

The precision and recall values of the experiments carried in the second phase (except for Syn 1)
are all shown on the following graph:
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Figure 7.21: The precision and recall values obtained with the experiments Syn, Syn2, Syn3, Syn4, Syn5, Syn6 and Syn7

The results obtained with the different experiments were disappointing. However, after looking
more closely at the documents, the queries, and more importantly, the WordNet thesaurus, obtaining
positive results would have been difficult. For example, the experiment Syn7 showed that very
little improvement of the precision values was obtained with the use of the WordNet relationships
in the formulation of the vector space model.

The implementations of the models proposed in this thesis depended strongly on the availability
of a knowledge base or a thesaurus implementing the constraints and appropriate to the NPL
documents. Since such a knowledge base or thesaurus did not exist at the time of the experiments
carried out in this thesis, obviously low performances were somewhat expected. Nevertheless, the
experiment Syn6 showed that, even with a bad capturing of the flow of information (the constraints
defined the nature of the flow of information so important in an IR system), the results although
not as good as those obtained with the vector space model were still acceptable, in the sense that
they could indicate that if a better knowledge base or thesaurus was available, better performances
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will certainly obtain.

7.6 Appendix

This appendix contains the tables showing the precision values for standard recall values obtained
with the different experiments. The tables also show increase or decrease with respect to
benchmarks or other experiments. All values are shown in percentage.

Ul U2 U3 U4 U5

10 2.36 2.37 2.21 2.20 2.17
20 1.78 1.59 1.45 1.69 1.48

R 30 1.54 1.25 1.33 1.35 1.33
E 40 1.51 1.24 1.29 1.24 1.30
C 50 1.35 1.15 1.19 l.l9 1.23
A 60 1.24 l.l3 1.20 l.l5 l.l8
L 70 l.l9 1.10 l.l6 l.l3 l.l6
L 80 l.l9 l.l3 1.17 1.14 l.l7

80 l.l5 1.04 1.13 1.08 l.l4
100 0.57 0.52 0.58 0.52 0.53

Average 1.39 1.26 1.27 1.27 1.27
Increase B1 +0.08 -0.06 -0.04 -0.04 -0.04

Table 7.9: Precision and recall values for the unstructured model

SI S2 S4 S5

10 14.13 12.60 13.04 13.72

R 20 1l.l0 9.73 10.33 10.85

E 30 9.02 8.36 8.59 8.97

C
40 7.29 6.65 6.97 7.30

A 50 6.62 5.66 5.86 6.15

L
60 5.48 4.52 5.12 5.34

L
70 4.62 3.55 4.14 4.39
80 3.71 2.83 3.34 3.47
80 2.64 2.16 2.51 2.61
100 1.37 1.03 1.31 1.34

Average 6.60 5.71 6.13 6.42
Increase B2 -13.29 -14.17 -13.76 -13.47

Table 7.10: Precision and recall values for the structured model
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Syn B3

10 11.33 45.84
20 1l.36 34.20

R 30 8.83 25.68
E 40 8.55 23.11
C 50 8.27 2l.38
A 60 6.87 18.90
L 70 5.63 17.90
L 80 5.00 14.29

90 3.77 11.14
100 2.28 8.96

Average 7.19 22.14
Increase B2 +2.26
Increase SI +0.59

Table 7.11: Comparison of the benchmarks with 12 vs. 40 queries

Synl Syn2 Syn3 Syn4 Syn5 Syn6 Syn7

10 11.30 8.43 15.37 33.68 35.11 40.38 44.18
20 11.35 8.27 13.20 26.12 24.10 29.61 35.27

R 30 8.78 6.32 11.00 17.11 18.47 24.82 26.17
E 40 8.55 6.14 10.14 16.03 15.42 17.99 24.57
C 50 8.30 5.06 9.45 12.83 14.11 16.37 21.56
A 60 6.92 4.77 8.12 9.83 12.65 15.11 19.66
L 70 5.64 4.15 7.12 8.88 10.35 12.69 17.71
L 80 5.02 3.60 6.20 7.48 8.95 9.65 15.46

90 3.77 3.27 4.67 4.19 6.82 7.32 11.48
100 2.26 2.02 2.66 1.21 3.46 3.36 8.98

Average 7.19 5.21 8.80 13.74 14.95 17.74 22.51
Increase B3 -14.95 -16.93 -13.35 -8.40 -7.20 -4.41 +0.37
Increase Syn 0.00 -1.99 +1.60 +6.55 +7.75 +10.54 +15.31

Table 7.12: Precision and recall valuesfor the experiments Synl, Syn2. Syn3. Syn4. Syn5. Syn6 and Syn7
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Conclusions and Future Work

8.1 Introduction

This chapter summarizes the research performed in this thesis and the results achieved. It shows
the main contributions of this work, and it discusses some of its limitations, and how they might
be overcome. It also suggests future directions of research.

8.2 Summary of research carried out

Current IR models only offer simplistic and specific representations of information. There is
therefore a need for the development of a new formalism able to model IR systems in a more
generic manner. Van Rijsbergen [vR86a, vR86b, vR89] suggested that such formalisms can both
be appropriately and powerfully defined within a logic. The resulting formalism should be able to
capture information as it appears in an IR system, and also in any of its inherent forms.

8.2.1 Logic-based Information Retrieval models

In a logic-based model of an IR system, the information content of a document is represented by
a sentence d, and the information need, as phrased in the query, is represented by a sentence q.
The truth of d -- q in terms of a logic means that the information captured by d is sufficient to
infer the information represented by q; that is, the document is relevant to the query.

8.2.2 Features of information in Information Retrieval

Several essential features of information in an IR system were identified:

(i) Flow of information: What information an object (e.g., a text, an image, a video) contains
about another object (e.g., a query) is the main purpose of an IR system.

(ii) Intensionality: The meaning of an item of information is context-dependent.

(iii) Partiality: The representation of a document is only partial, but can grow when the implicit
information in the document becomes available.

(iv) Structure: An underlying structure often accompanies documents and must be represented
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appropriately to capture the semantics and pragmatics of information.

(v) Uncertainty: The flow of information that arises from a document's representation can be
uncertain, which affects the relevance of the document to a query.

(vi) Significance: An item of information that occurs frequently in a document can imply that
this item is a significant part of the document.

The first four features were qualitative whereas the last two were quantitative. Their modelling
required different frameworks: a theory of information, and a theory of uncertainty, respectively.

The first objective of this thesis was to determine the appropriate framework for each, and to develop
a method to combine them in a consistent manner.

8.2.3 The Transformation Principle

The combination was based on the Transformation Principle, which stated that a document had
an initial representation, and was transformed until information relevant to the query was found.
This transformation was based on the flow of information, the nature of which was determined by
semantic-based relationships which constituted a knowledge set. The uncertainty of the flow was
used to assess the relevance of the document to the query, whereby the more uncertainty involved
in the transformation, the less relevant the document was to the query.

8.2.4 Which Theory of Information?

An initial study was performed to ascertain the appropriate theory of information to capture the
qualitative features of information. It was shown that Classical Logic, the most commonly used
logic, was inappropriate in modelling many of these features, and in particular those derived from
the capturing of the flow of information. Others frameworks were then studied:

(i) Truth-based frameworks:
(a) Three-valued Logic [Kle67],
(b) Modal Logic [HC6S, CheSO],
(c) Default Theory [ReiSO],
(d) Belief Revision [GarSS],
(e) Epistemic Logic [MooSO], and
(f) Cumulative Logic [KLM90].

(ii) Semantics-based frameworks:
(a) Intensional Logic [PtMW90],
(b) Montague Semantics [DWPSl], and
(c) Data Semantics [LanS6].

(iii) Information-based frameworks:
(a) Situation Theory [BarS9, Dev91],
(b) Channel Theory [Bar91, Bar92], and
(c) Scott Domains [ScoS2].
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Situation Theory was shown to represent all the qualitative features.

8.2.5 Situation Theory

This theory proposes an analysis of both the concept of information, its flow, and the manner in
which intelligent organisms, referred to as cognitive agents, handle and respond to the information
derived or ascertained from their environment. An information item, represented as a type, is
obtained from a situation by means of constraints to which a cognitive agent is attuned. These
constraints model natural laws, conventions, analytic rules, linguistic rules, etc. Constraints also
allow the derivation of additional information by permitting one situation to provide information
about another, which corresponds to the flow of information. The theory can also model the
uncertain nature of the flow of information, albeit qualitatively. This was done by associating
background conditions to constraints, which were then qualified as conditional as opposed to
unconditional. A conditional constraint holds if its background conditions are satisfied.

8.2.6 Which Theory of Uncertainty?

A second study was performed to assess the appropriate theory of uncertainty to model the
quantitative features of information. Several theories of uncertainty were examined:

(i) Probabilistic-based frameworks:
(a) Probability Theory [00050],
(b) Bayesian Methods [Pea88], and
(c) Imaging [Lew73].

(ii) Fuzzy Logic [Zad87].

(iii) Dempster-Shafer's Theory of Evidence [Dem68, Sha76].

The framework that best modelled the quantitative features was Dempster-Shafer's Theory of
Evidence, together with the notion of refinement later introduced by Shafer [Sha76].

8.2.7 Dempster-Shafer's Theory of Evidence

The initial Dempster-Shafer Theory of Evidence [Dem68] models uncertainty by assigning belief
values, through a BPA, to sets of propositions, referred to as focal elements, with respect to some
gathered evidence. A belief function is used, based on that BPA, to compute the belief of the
propositions. The initial framework allowed the representation of the significance of information.
The refinement later defined by Shafer [Sha76] allowed the representations of the uncertainty, its
propagation and aggregation. The use of the overall framework gave the advantage that it could
be easily mapped to the qualitative structured representation of a document, and its transformation.
Additionally, it could be suitably mapped onto Situation Theory.

The second objective of this thesis was to develop a logic-based model based on Situation Theory
and the Dempster-Shafer Theory of Evidence.

This was done in two steps. First, the unstructured model was defined in which the structure
and the significance of information were not accounted for. Second, that model was extended
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into the structured model, which incorporated structures and the significance of information. This
strategy was adopted because it enabled the careful representation of the flow of information to be
performed initially. The expression of the two models borrowed some of the terminology identified
in Data Semantics [Lan86] and Scott Domains [Sc082] because it lead to simpler definitions.

8.2.8 The Unstructured Model

The document and the query were modelled by a situation d and a type <p, respectively. The
unconditional and conditional constraints together with a function cert constitute the representation
of the knowledge set. They constitute the semantic relationships, together with the uncertainty
pertaining to them. Any unconditional constraint, or any conditional constraint with satisfied
background conditions, was certain, and delivered implicit and certain information; the resulting
flow was certain. Otherwise, the constraint was uncertain, delivering uncertain and implicit
information, and the value of its uncertainty was given by the function cert; the resulting flow
was uncertain.

The extent to which d supported, explicitly or implicitly, <p was determined by R(d, <p). If d F sp
then the document was relevant to the query, and R(d, <p) = 1. The same arose if a certain flow
lead to the information item ip,

If an uncertain flow lead to the information item ip, then d, referred to as the original document,
was transformed into d', referred to as the transformed document, such that d' F ip, If no other
constraints were used to construct d', R(d, <p) equated the uncertainty attached to the use of the
constraint. This was given by the function cert.

In this thesis, the transformation of a document (situation) captured one instance of the flow of
information restricted to the phenomenon that leads to the implicit information of the document
from its explicit information content. That is, the transformation process was an addition of
information, and was referred to as an extension process.

Several constraints in sequence/parallel may arrive at ip, In these cases, the resulting flow
of information was modelled by sequential and/or parallel extensions of the situation d, which
constitute branches. Uncertainty was propagated along the sequential extensions and aggregated
along the parallel extensions. Branches then became quantified with uncertainty values. A branch
was minimal to a query if its leaf (its end situation) was the only situation in that branch that
supports the information being sought in that query, thus capturing minimal transformation. The
uncertainty values of the minimal branches whose leafs supported information relevant to the query
were aggregated to compute the degree of relevance. In the unstructured model, the uncertainty
was represented by a general uncertainty mechanism.

8.2.9 The Structured Model

The unstructured model was extended to include structures. In this thesis, a structure was defined
as that containing semantically related information items. The structures were modeled as basic
situations, which were situations obtained from a semantic-based analysis of the document's
sentences. These basic situations constituted an initial weighted information domain, which
modelled a structured representation of the explicit, and implicit and certain information content
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of the document. The Dempster-Shafer Theory of Evidence was used to model the significance
of information. The focal elements corresponded to the basic situations, and the BPA reflected
their significance.

The transformation process was identical to that in the unstructured model, except that it began
from a set of situations, as opposed to just one situation. On the basis of the flow of information, a
transformed document, referred to as a refined weighted information domain, which was itself a set
of basic situations, was constructed. This was formulated with the notion of refinement defined by
Shafer. A refined information domain modelled some stage in the application of the information
flow on the set of basic situations that originally constituted the initial document's information
content. Each stage lead to a structured representation of the explicit, implicit and certain, and
part of the implicit and uncertain information content of the document. The uncertainty generated
by the flow, (its propagation and aggregation) was measured by the BPA of the situations that
constituted the refined representations. A modified version of this theory was used to conform
with the different concepts used to represent the qualitative features of the model.

The refinement process was repeatedly performed until no more refinement was possible. The final
refined information domain contained a set of basic situations, and their associated BPA values.
A belief function defined in that refined representation was used to assess the relevance of the
document to the query.

8.2.10 Specificity and Exhaustivity

It was shown that the relevance degree as computed by the structured model constituted a measure
of specificity of the document to a query, which is the extent to which the information in the
document related to the query. A measure of exhaustivity, which is the extent to which all the
information sought by the query was contained in the document, was also defined. A measure
that combined both exhaustivity and specificity into one expression of relevance degree of the
document to the query was advanced.

The final objective of the thesis was to implement the unstructured and the structured models, as
well as the exhaustivity and the combined measures, and to experiment with them to determine their
validity.

8.2.11 Implementation

Types, which model information items, corresponded to terms. Constraints, which were semantic
relationships between terms, were extracted from an existing on-line thesaurus, known as WordNet
[Mil90]. The polysemic nature of WordNet terms was used to define whether a constraint
was unconditional or conditional. The background conditions and the uncertainty attached to
conditional constraints was based on the possible senses of terms in a situation. The basic situations
were constructed based on WordNet, and their significance was computed using conventional IR
weighting mechanisms [SM80].
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8.2.12 Experiments and Evaluation

The experiments used the NPL test collection [vRRP80]. The results obtained with the unstructured
model showed that more relevant documents were retrieved with the use of the WordNet relation-
ships than without their use. The results also showed a high increase in the number of irrelevant
documents retrieved with the use of WordNet relationships, and that the best performance in terms
of precision and recall values [vR79] was obtained with synonyms. The results obtained with the
structured model obtained were poor. This was because the relevance degree as evaluated by the
structured model expressed a measure of specificity, which depended strongly on the fact that the
information in the document was correctly organized into basic situations. WordNet did not allow
an adequate construction of the basic situations for the NPL documents. Finally, the measure of
exhaustivity was too strict and, as a result, the combined model collapsed into the structured model,
thus giving poor results when compared to standard IR models.

Various issues were raised when analyzing these experiments. From them, further experiments were
performed on a smaller number of queries, using only synonyms. The results obtained with these
experiments were disappointing, in the sense that they were not as good as those obtained with
standard IR models. However, after looking more closely at the documents, the queries, and more
importantly, the WordNet thesaurus, obtaining positive results would have been difficult, because
the constraints derived from the thesaurus provided semantic-based relationships were too general
for the NPL documents. Nevertheless, the experiments showed that even with a bad capturing of
the flow of information, the results, although not satisfactory, were still acceptable in the sense that
they indicated that a better implementation of the constraints would derive better performances.

8.3 Limitations of this research

The model developed in this thesis was the first of its kind to capture within an uniform framework
the different features of information as its appears in an IR system. However, the model had some
limitations. These are discussed next.

8.3.1 The model is difficult to implement

The implementation of the model was difficult, mainly because it required appropriate data. For
example, the background conditions which were primordial in representing the uncertain nature of
flow of information, or in fact any reasoning process, are difficult to identify. In this thesis, the
background conditions were implemented as terms senses. With other applications, implementing
the background conditions may be impractical. Another example is that the relationships modelling
the flow of information must be appropriately specified. In this thesis, the relationships captured
thesaural information, which was derived from an on-line thesaurus. This implementation was
inappropriate because the semantics provided by the thesaurus was too general for the NPL
collection.

The transformation process relies critically on the fact that an appropriate indexing of the doc-
uments and queries was performed, and that accurate semantics were available. The indexing,
as implemented in this thesis, was not refined. For example, single terms were independently
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extracted from documents, and no disambiguation was carried out. Also, as above explained, the
semantics used in the implementation were inappropriate. The transformation of a document could
be refined to encompass the above two deficiencies (for example, with the use of heuristic rules).
However, such a refinement may be constrained by resource factors (e.g., speed, memory space),
and, hence, may not be practical, in particular for interactive systems.

This first limitation arises with most logic-based IR models (for a survey, see [LaI96b]). In addition
to their complex implementation, often only small document collections can be handled. However,
implementations on larger document collections have been recently attempted. Positive results were
obtained in [CvR95a, CvR95b]93. Furthermore, as in many areas of artificial intelligence [RN95],
such as natural language processing, better technologies that can deal with complex formalisms,
such as those involved with logics, are becoming increasingly more available. Therefore, the
implementation of logic-based models, and hence, the one developed in this thesis, will become
less complex, resulting in the elimination of this first limitation.

8.3.2 The model does not capture dependence in information

The formulations of the propagation and the aggregation of uncertainty assumed the independence
of information and the background conditions. For example, the formulation of the aggregation did
not consider that two situations extended into one situation may share common information. The
information supported by the two situations was treated independently, as was its uncertainty.
Another example is that any dependency relationship between the background conditions of
conditional constraints was ignored in the extension of a situation. The only relationship considered
was that of incompatible background conditions.

More adequate formulations of both the propagation and the aggregation of uncertainty should be in-
vestigated to capture dependent knowledge (e.g., information, constraints, background conditions).
The capturing of dependency are known problems in the world of uncertainty theory [KC93].

However, formulations of the propagation and the aggregation of uncertainty that capture this
dependence can be easily incorporated in the structured model. Indeed, the propagation and the
aggregation of uncertainty are expressed by the relationships between the BPA associated to a
weighted information domain and the BPA associated to its refined weighted information domain.
To capture the dependence of information, it is then only necessary to reformulate the relationships
between the two BPAs. The rest of the model can remain the same.

8.3.3 The transformation is implemented as an addition of information

The model captured only one information process; the addition of information. The model must
be extended to incorporate modification and deletion of information. This will allow the capturing
of different type of reasoning; in particular, non-monotonic [RN95]. For example, a deletion may
indicate that what has been determined so far by the flow of information was incorrect; for example,
the system had used the wrong sense of a polysemic term. The system then has to backtrack to
an earlier state that is recognized as correct, by a user for example.

93 For a description of the implementation of a logical model on large document collections. such as TREC. see [CRSvR96j.
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8.3.4 The model applies to textual information

The model dealt with textual documents only, and must be generalized to include any type of
information. This is important due to the increasingly availability of multimedia documents in IR
systems [Dun91, GS92].

8.4 Future Work

Future research areas are suggested in this section. Three directions are discussed: one which
remedies the limitations listed in the previous section, one which shows the potential of the model
to other applications, and one which allows the theoretical study of IR systems.

8.4.1 Improvements of the model

The model developed in this thesis needs enhancement to be sufficiently expressive for use as the
basis for future generations of IR systems. For this purpose, the limitations listed in section 8.3
must be overcome. Three possible enhancements are discussed in this section.

8.4.1.1 Improving the model performance when implemented

Obtaining good performance is mandatory for the model to be used in real applications. One of the
reasons for poor results was that the expression of the relevance of a document in the structured
model to a query was a measure of specificity. The exhaustivity of the document to the query was
not captured, unless computed separately, and then combined into the structured model. The fact
that exhaustivity was not captured in the model may be because only the document's information
content had a structured representation. A more appropriate measure of the relevance may be
obtained if the information need of a query was also structured. This has the additional advantage
that a richer semantic expression of the information need will be available. Such a representation
is possible with the use of the Dempster-Shafer Theory of Evidence because the latter provides
the notion of common refinement which can be used to formalize the comparison of a structured
representation of the document's information content and to a structured representation of the
query's information need.

8.4.1.2 Using better indexing and semantics

Poor experimental results were obtained for two other reasons. First, as explained in section 8.3,
the implementation of the constraints was inappropriate. Better data should be used to implement
these constraints. For example, some document collections come with their own thesaurus (e.g.,
the INSPEC collection). Better experimental results should be obtained with these collections.

Second, the transformation process, as implemented in this thesis, was inefficient due to a simplistic
indexing of documents, and inadequate semantics. This deficiency can be overcome in two ways.
First, the indexing process could be improved (e.g., disambiguating document terms, using noun-
phrases, etc.), and/or proper semantics provided (see above). If this is not possible, then the
transformation process must be controlled. Techniques applied in artificial intelligence may be
used for this purpose. For example, in expert systems, heuristic rules are often used to constrain,
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for instance, an inference process. Similar techniques could be used to control the transformation
process, for example, by providing meta-information of the domain covered by the document
collection. Alternatively, user feedback might help to improve direct transformation (see section
8.4.1.4).

8.4.1.3 Applying the model to various media of information

The model must be generalized to incorporate any information media. This is possible because the
model is based on Situation Theory which is a framework concerned with the information carried
by a situation, not by the way the information is carried. That is, Situation Theory is not concerned
by how the information is delivered, but with what the information represents, since a situation
can be a text, an image or speech. For example, a system that contains texts and images provides
information; some of it comes from natural language, and some from the images. A model based
on Situation Theory can cater to any kind of information, and does so according to the way in
which information is handled in the real world. A flow can be associated with each medium.
Obviously, there is still a gap with respect to the implementation of these flows. For example,
how to represent, or index, the information contained in a picture? Future research is necessary
to implement efficiently such a model for any kind of information, but some of the background
theory is already presented here.

8.4.1.4 Generalization of the transformation process

The transformation of a document, to be generalized to capture any information process, must be
modelled on a basis other than the extension of that document. As discussed in Chapter 2, channels
[Bar92] can be used for this purpose. A channel is defined as the device that carries information (its
flow) between one situation to another. It is a link between situations. Therefore, with channels,
it becomes possible to represent a transformation as a modification or a deletion of information.

The modelling of a modification of information using channels was briefly discussed in Chapter
2. A channel carries the flow of information between two situations, and one of the situations can
be viewed as the transformation of the other situation. The information supported by the original
situation is not necessarily supported by the transformed situation. Some of it may be modified,
for example, on the basis of semantics.

A general model of an IR system based on channels was proposed by Van Rijsbergen and Lalmas
[vRL96]. They developed an information calculus to model an IR system, where channels were
shown to possess properties that reflected the way the flow of information appears in an IR system
(see [vRL96] for a description of the information calculus).

In the remainder of this section, the transformation defined as a deletion of information is discussed.
This use allows incorporation of user interaction into the retrieval process. Such IR systems are
referred to as interactive.

The model developed in this thesis can be generalized to capture user interaction. A situation can
represent a state of the IR system (obtained by the flow of information) that is in accord with a
user's belief. It can also represent a user's belief (or knowledge state). Often, users may change
their beliefs (for example, when acquiring a new piece of information). This change of beliefs can
be represented by a transformation process that corresponds to a deletion of information.
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In the first case, the JR system must go back to a state (a situation) that is compatible with the
user's beliefs. The situation is transformed to one previously obtained, and all the information
that was acquired after this situation is deleted. In the second case, the user may have acquired a
belief that contradicts those he or she already holds. For example, he or she realized that his or her
interpretation of a term was erroneous. In that case, the transformation process represents a passage
of beliefs; the transformed situation is built from the previous one, and the information supported
by that situation is such that any introduced inconsistency is removed; some information is deleted
(not necessarily that acquired last). Note that the transformation, here, applies to knowledge, and
not document.

The model developed in this thesis can incorporate both of the above transformations; by modelling
transformations by channels, instead of extensions. Consequently, flows other than semantics-
based can be represented, for example, those reflecting intentionality (e.g., beliefs, knowledge),
or pragmatics.

The way channels are determined depends on how a consistent state is obtained. For instance, the
phenomenon discussed in the second example is often referred to as a belief revision [Gar88] (see
Chapter 2). Techniques have been developed to capture this phenomena, and should be investigated
to determine whether they can be used to define (and implement) channels. Similar work, but not
related to JR, already exists with respect to Default Theory [Rei80] (both Default Theory and
Belief Revisions are examples of belief systems - See Chapter 2). The aim of this work was to
formalize a default logic within Situation Theory [Cav93].

To conclude, the model proposed in this thesis can be easily generalized to capture any type of
transformation (or flow): addition, modification or deletion of information. As discussed below, by
replacing the extension process by a channel, we have at our disposal a general concept which can
model any transformation process, hence any flow of information. The way a channel is defined
to fit a particular transformation depends on the application.

8.4.2 Applications of the model

The structured model can be applied to embody types of structures other than those based on
semantically related information. Two possible applications are discussed in this section.

8.4.2.1 Application to pragmatic-based structures

An example of a pragmatic-based structure is one based on discourse [Kam91]. A document
collection that consists of abstracts structured into discourses such as "purpose" "methodology",
"result", etc., was constructed by Liddy [Lid91]. The collection consisted of276 empirical abstracts
from the ERIC and PsycINFO databases. The structured model can be used with this collection.
Each discourse will be represented by a basic situation. The definition of a basic situation will have
to be modified, since it will not be semantically based. The BPA attached to the basic situations
will take into account the significance attached to each type of discourse, as well as the significance
of the information in the discourses. A study will be necessary to rank discourse types.

Applying the model to these types of structures is of particular interested because it allows a
more focussed retrieval process; specific parts of documents can be considered and retrieved.
Indeed, such systems allow the formulation of precise queries of the form: "I am interested in the
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methodologies used to study the effect of bat bites on humans". Such query is only concerned
with the methodology discourse of documents. Such types of retrieval is referred to as passage
retrieval (see [SAB93, CaI94]).

8.4.2.2 Application to linked documents

Two types of linked documents, HTML documents, and documents that cite other documents (e.g.,
articles) are discussed.

HTML [lnt96] documents have been designed to be read by Web browsers. A HTML document
is organized into structures delimited by tags. Examples of structures include title, paragraph,
different heading levels, and links to other HTML documents. The structured model can be
used for HTML documents retrieval. This is of particular importance because of the increasingly
emphasize of network-based IR.

The structures defined by a HTML document can constitute the basic situations. Such an application
is attractive for two reasons. First, it allows the incorporation of multimedia documents as well
as textual (thus referring to one of the possible enhancements of the model discussed in section
8.4.1). Second, it may offer a solution to the difficult task of implementing the flow of information.
Indeed, one limitation of the model, as explained in section 8.3, was that it required an adequate
knowledge base, from which semantics and pragmatics of information can be extracted.

An implementation of the flow of information is partly accomplished with HTML documents
because these types of documents can refer explicitly via anchors (or links) to other HTML
documents. The fact that a document refers to another document could be viewed as the first
document containing information about the second document; that is, there is a flow of information
between the first document to the latter document. Obviously this is not always the case, for some
anchors are randomly defined. However, these anchors still contain information, maybe pragmatic,
about a user's interest (the owner of the document). With this application, a document is relevant
to query if it contains information concerning the query, or if it refers to documents that contain
information relevant to the query.

Documents can cite other documents. The CACM test collection consists of such documents. A
transformed document is one that is referred to by another document. A flow of information arises
between the two documents because the transformed document contains information on aspects
discussed in the document citing it, or vice versa. The uncertainty of a transformation can be
defined on the extent to which the original and the transformed documents are similar (the link
between documents varies in strength). Similarity or statistical measures can be used for that
purpose [vR79]. Also, the fact that a document refers several times to the same document can be
viewed as a "stronger" flow of information than if only one reference was made.

The benefit of applying the model to these types of documents is that the evaluation of the relevance
of a document to a query can take into account related documents, since citations are usually
intentional. That is, the computation of the relevance of a document is not only with respect to
itself, but with respect to related documents; thus, documents are not considered independently
of each other any longer.
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8.4.3 Theoretical study of Information Retrieval systems

A transformation is the result of a flow of information and relates two documents represented by
situations. In this thesis, the flow of information captured thesaural relationships. For example, a
flow delivers all the synonyms of the terms that appear in the document. There is nothing new
here, for this process corresponds exactly to the way some IR systems function. The improvement
is that the process can be formally described and, as a result, formally studied. This leads back
to the remark that the use logic for IR modelling makes it possible to reason about IR systems
and their properties, and that it allows the inductive comparison of IR systems. These issues are
becoming increasingly important because an IR system's performance or behavior cannot always
be explained by empirical evaluations.

For example, this thesis considered only the flow related with semantics of information. Another
view could be that a flow models a retrieval method. Indeed, one can define several types of flows,
one for each type of IR methods (Boolean, probabilistic, vector space or logical). A method can
be used separately (i.e., one type of flow is involved) or can be combined with one or more other
methods (i.e., parallel flows are involved). The document that is retrieved by many methods can
be considered to be highly relevant to the information need. Obviously, it is necessary to define
what a Boolean or a vector space flow is. The advantage of this approach is that, as well as
being able to model different IR methods, the model can be used to compare them formally. The
properties of the corresponding flows might lead to interesting results. Huibers and Bruza [HB94,
BH94] are already researching this area.

8.5 Conclusions and contributions of this thesis

The work performed in this thesis was a first step towards the development of a general formalism
to model an IR system. This was achieved by using a theory of information and a theory of
uncertainty so that information as it appears in an IR system could be captured. Several essential
features of information in an IR system were identified:

D flow

D partiality

0 intensionality

D structure

D significance, and

0 uncertainty.

The theory of information was Situation Theory and the theory of uncertainty was the Dempster-
Shafer Theory of Evidence. The two theories were combined via the Transformation Principle.
These particular theories were chosen because they allowed the appropriate representation of the
above features.

The model developed in this thesis is the first of its kind to capture, in a general manner, the
above features of information within a uniform framework. With a better understanding of the
nature of information in IR, it became possible to first identify these features, and then to model
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them appropriately. As a result, the model developed in this thesis can be easily generalized to
be applicable to many types of IR systems (e.g., interactive and multimedia systems) or to capture
many aspects of the IR process (e.g., user's knowledge).
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