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Phenomenology for the Large Hadron Collider

Abstract:
The search for physics Beyond the Standard Model is the underlying motivation for

the physics programme of the Large Hadron Collider at CERN. In this thesis we

will present studies into the Large Hadron Collider phenomenology of dark matter

inspired extensions to the Standard Model, di-Higgs + 2 jet (hhjj) production, CP
violating effects in the Higgs sector, and the use of shape information from top

polarisation measurements in searches for new physics.

Full scans of the parameter space of Simplified Dark Matter models are demon-

strated to be viable and allow for intriguing comparisons to relic density constraints.

Strongly self-interacting dark sectors are shown to leave a potentially measurable

imprint on the energy scaling of mediator production. The weak boson fusion in-

duced production of hhjj turns out to be sensitive to a number of new physics

effects, including CP violation in the Higgs sector. The use of top polarisation mea-

surements to discover new physics which predicts polarised resonances is shown to

be an effective way to ameliorate the loss of shape information for kinematically

challenging regions of parameter space.

Keywords: particle physics phenomenology, collider phenomenology, Higgs physics,

dark matter physics, top quark physics
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Chapter 1

Introduction

The Large Hadron Collider is currently exploring the highest energies ever probed

systematically by a man-made experiment. After its seminal discovery of the Higgs

boson in 2012 [6,7] we are now at a crossroads: if further new physics exists within

its energy range, it should show up at any moment as the 13 TeV run quickly

approaches 100 fb−1 of integrated luminosity [8]. If such new physics is discovered

it will finally herald the end of the era of the Standard Model, which has lasted for

almost five decades and has established quantum field theory as arguably the most

successful theoretical paradigm for describing the world ever conceived. Whatever

shape the discovery would take, it would surely revolutionise our understanding of

the fundamental physical laws of nature and open up completely new frontiers to

explore.

If no new physics is discovered within the Large Hadron Collider energy range

we are instead left in the confusing situation where we know the Standard Model

is deeply flawed and new physics is required to explain both large and small-scale

observations, but we are unable to find any direct evidence for the nature of this

new physics. We would instead have to turn to precision measurements of Standard

Model predictions in order to search for indirect hints of the underlying structure

of the higher energy completion. The Higgs and top quarks sectors are excellent

candidates for such measurements, as they are the heaviest particles in the Standard

Model and the least explored experimentally.

Advances in precision cosmology and astronomy will also offer new experimental

results which will have an increasing impact on particle physics. In this regard the

search for dark matter is an early example of how such an interplay can manifest:

the firm establishment of the ΛCDM ’Standard Model’ of cosmology has led to a

large number of effectively particle physics experiments which search for hints of the

microscopic nature of dark matter. Colliders such as the Large Hadron Collider also

provide considerable information about these expected extensions of the Standard

Model, and connecting collider measurements to large scale observations such as the
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relic density is an interesting problem in itself.

In this thesis we will discuss the phenomenology of new physics searches at

the Large Hadron Collider, with a focus on the Higgs and top quark sectors of

the Standard Model, and extensions which are motivated by dark matter. Chap-

ter 2 introduces the Standard Model and the calculational tools which will be used

throughout the rest of the thesis. Chapter 3 discusses the arguments for the exis-

tence of physics Beyond the Standard Model, focusing on the nature of electroweak

symmetry breaking and dark matter.

The remainder of the thesis consists of novel studies into these topics. In Chap-

ter 4 we perform a full parameter scan of a so-called Simplified Dark Matter model,

and connect it to a calculation of the relic density. Chapter 5 considers the collider

phenomenological consequences of adding a mostly secluded dark sector with strong

self-interactions to the Standard Model, connected through a Higgs portal. In Chap-

ter 6 we present a thorough study of hhjj production at the LHC, both through

gluon fusion using a full leading order matrix element calculation, and through weak

boson fusion. We also investigate perturbative unitarity constraints on CP violating

effects in the Higgs sector, using the hhjj analysis to get a handle on a certain type

of effect. In Chapter 7 we investigate the use of top polarisation measurements in top

resonance searches, and demonstrate their utility by applying them to a benchmark

Randall-Sundrum model.

In Chapter 8 we finally present some concluding remarks.



Chapter 2

The Standard Model. . .

"You come in to me now as an interviewer and you’re asking me about the

latest discoveries of the day. Nobody ever asks about a simple ordinary phe-

nomenon in the street or ’what about those colors’ or something like that, ’what

about those colors on butterfly wings’ – whole big deal – don’t care about that.

You want the big, final result, and see then it’s going to be complicated because I

am at the end of 400 years of a very effective method of finding out about the world."

Richard Feynman in interview with the BBC, 1981

Contents
2.1 Representations of the Lorentz group . . . . . . . . . . . . . 4

2.2 Path Integral Formulation of Quantum Field Theory . . . . 7

2.3 Renormalisation and Scale Dependence . . . . . . . . . . . . 8

2.4 Introduction to the Standard Model . . . . . . . . . . . . . . 12

2.4.1 Gauge sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Higgs sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Fermion sector . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Yukawa sector . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.6 Renormalisation Group Equations . . . . . . . . . . . . . . . 38

2.4.7 θ̄ and the Strong CP problem . . . . . . . . . . . . . . . . . . 44

2.5 Parton distribution functions . . . . . . . . . . . . . . . . . . 45

2.6 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



4 Chapter 2. The Standard Model. . .

2.1 Representations of the Lorentz group

A particle is associated with a unique irreducible representation of the Poincaré

group ISO(1, 3), as required by the transformation properties we expect from par-

ticles under Poincaré transformations. All of the unitary representations we use in

quantum theories are infinite-dimensional and have been classified by Wigner using

the method of induced representations. The classification is given by a non-negative

massm and a spin representation given by a non-negative half-integer [9]. In general

it is impossible to build a consistent relativistic quantum theory without interpreting

particles as excitations of quantised fields rather than as quantised particles [10]. We

will therefore build our quantum theory lagrangians out of operator-valued fields, so

we are interested in representations of the proper orthochronous real Lorentz group

SO+(1, 3;R). Representations of this group are most easily found by making the

observation that we can define a complexified linear combination of the generators

which creates a pair of two commuting su(2) subalgebras, implying that:

C× so(1, 3) ' su(2)⊕ su(2). (2.1)

Thus we can find irreducible representations of the complexified Lorentz group

by using the well-known irreducible representations of su(2). We might worry that

complexifying the algebra in order to make the connection to SU(2) introduces

complex representations that act strangely when embedded in real space. This is in

fact what allows us to find spinor representations which are not real representations

of SO+(1, 3;R) since they don’t map rotations by 2π to the identity element. It

is as if these representations have some internal coordinates to perform a Möbius

rotation in. This can be understood physically as we are ultimately interested in

representations which on top of their normal properties additionally also allow group

elements to change the phase of a state since we can’t distinguish this in practice by

quantum mechanics. These projective representations of SO+(1, 3;R) correspond

exactly to those of its spin group SL(2,C), rendering spinors physical in a quantum

theory [11].

When interpreting the excitations of a field as particle states these must fall into

one of Wigner’s classes. The spin of a particle is determined by its transformation

properties under the Little Group, the subgroup of ISO(1, 3) under which its mo-

mentum is invariant. The Little Group is SO(3) for massive particles and ISO(2)
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Representation of su(2)⊕ su(2) (0,0) (1/2,0) (0,1/2) (1/2,1/2)

Representations of so(3) 0 1/2 1/2 1⊕ 0

Table 2.1: The Lorentz representations used in the Standard Model, and the possible

spin representations of so(3) which can be embedded in these. The half-integer

representations of so(3) are projective.

for massless particles∗, both of which are finite-dimensional, and in particular the

projective representations of SO(3) are given by the representations of SU(2), al-

lowing half-integer spins.† The irreducible Lorentz-representations of the fields do

not in general decompose into irreducible representations of the Little Group, and

in order to embed particles we need to make sure that only a single irreducible spin

representation propagates by projecting it out with the equations of motion.

The su(2) ⊕ su(2) representations used in the Standard Model are detailed in

Table 2.1, together with the projective so(3) representations that can be embedded

in these.

The first of these is the singlet representation (0, 0) which acts on scalars. It

carries no Lorentz indices and therefore transforms trivially under Lorentz transfor-

mations. In the Standard Model only the Higgs field transforms under this repre-

sentation.

The two following representations are the left-handed and right-handed Weyl

spinor representations (1/2, 0) and (0, 1/2). Since the two su(2) representations in

these cases are not equal we can imagine using fields which transform under these to

construct theories which are not invariant under (A,B) → (B,A) transformations:

such theories are called chiral and the Standard Model is an example of such a

theory. Weyl spinors have two degrees of freedom, usually denoted by dotted and

undotted indices for right- and left-handed Weyl spinors respectively:

ψL = ψα, ψR = ψ̃β̇, ψ̃β̇ =

(
0 1

−1 0

)
β̇α

(ψα)∗ , (2.2)

They can be used to write down a Lorentz invariant theory of massless fermions,

however if the fermion is charged a mass term ends up mixing left- and right-

handed spinors which necessitates the use of Dirac spinors. These combine pairs of

∗Giving all non-scalar massless particles two degrees of freedom corresponding to positive and

negative helicity.
†There is (as always) a very lucid physical discussion of this in Feynman Vol. 3, Lecture 6 [12].
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left- and right-handed spinors into a single object with four degrees of freedom for

describing massive fermions, which transform in the reducible Dirac representation

(1
2 , 0)⊕ (0, 1

2):

ψD =

(
ψα

ψ̃β̇

)
. (2.3)

When working with the Dirac representation it is helpful to introduce Dirac or

gamma matrices defined through the following anti-commutation relation:

{γµ, γν} = 2gµν . (2.4)

This is the Clifford algebra of Minkowski space. In the Weyl basis these gamma

matrices are given by:

γµ =

(
0 σµ

σ̄µ 0

)
,

σµ = (1, ~σ)

σ̄µ = (1,−~σ)
. (2.5)

Here σi are the Pauli matrices. While we will only use the Weyl representations

when writing down the Standard Model it turns out that the Dirac representation is

very useful when describing physics after electroweak symmetry breaking, in partic-

ular Quantum Electrodynamics is not a chiral theory and calculations can therefore

be simplified by considering Dirac spinors and gamma matrices rather than Weyl

spinors and Pauli matrices. When working with Weyl spinors embedded into Dirac

spinors it is very useful to be able to project out the Weyl spinors when needed.

This can be achieved with the following chirality operators:

PL,R =
1

2
(I± γ5) =

1

2
(I± iγ0γ1γ2γ3), (2.6)

The final representation used is the Lorentz vector (1/2, 1/2) which acts on real

4-vectors. As can be seen in Table 2.1 this representation can be used to describe

both spin-0 and spin-1 representations of so(3): when writing down the Standard

Model we will only be interested in using it for spin-1 particles, which can be achieved

by using the equations of motion to project out the spin-1 component only. This is

in general achieved by using the Proca lagrangian∗:

L = −1

4
F 2
µν +

1

2
m2
AA

2
µ . (2.7)

∗The terms used here will be defined later in Section 2.4.1.
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We will in general introduce vector fields as connections which ensure local gauge

invariance under the Standard Model gauge group. This will disallow the mass

term and indeed all of the vector fields in the standard model are massless before

symmetry breaking, however Equation 2.7 can arise in a gauge-invariant manner for

a non-compact U(1) gauge group through the Stückelberg mechanism [13].

For the purpose of constructing Lorentz-invariant operators it is also useful to

note the (covariant) derivative ∂µ (Dµ) is a Lorentz vector.

2.2 Path Integral Formulation of Quantum Field Theory

When working in Quantum Field Theory (QFT) it is often preferable to use path

integral quantization over the canonical approach of promoting classical fields to

continuous operator distributions acting on the Fock space. The central object in

path integral quantisation is the generating functional:

Z(J) = exp(iW (J)) =

∫
DφDψDψ̄DA exp

(
iS + iJ [φ, ψ, ψ̄, A]

)
, (2.8)

where S =
∫
d4xL is the classical action, the path integral measure Dφ denotes

integration over all configurations of φ, and J [φ, ψ, ψ̄, A] can be used to generate

a dynamic field at a point x by taking a functional derivative with respect to the

appropriate classical source J(x). When writing down a classical action of fermions

in order to define the path integral we have to introduce Grassmann-valued fields to

mimic the desired behaviour. The functional path integral is dominated by classical

trajectories which minimise the action, but also receives quantum corrections from

paths which are slightly deformed from these: in this sense the path integral formu-

lation can be considered a quantum generalisation of the principle of least action.

In this formulation the Lorentz and gauge symmetries are manifest, and it therefore

often gives additional insight into QFTs. For example quantum anomalies show up

when a classical symmetry deforms the path integral measure Dφ → |J |Dφ, and
the Jacobian itself is a functional of the fields.

Starting with the generating functional the Feynman rules for propagators can

be determined from the kinematic terms in the free action, and those for vertices are

dictated by the interaction terms. We can calculate time-ordered n-point correla-

tion functions by taking n functional derivatives with respect to the correct classical

sources. This allows for a convenient way of performing the perturbative expansion
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p

l

l − p

p

Figure 2.1: Simple one loop diagram.

in the interaction strength g to generate all Feynman diagrams up to a certain order,

and in this way we can interpretW (J) as the sum of all connected diagrams. As out-

lined by the Lehmann-Symanzik-Zimmermann reduction formula [14], the S-matrix

which governs physical scattering amplitudes between asymptotic free on-shell states

is given exactly by projecting out these states from the correlation functions.

2.3 Renormalisation and Scale Dependence

When performing calculations in QFT we will generically find ultraviolet (UV) di-

vergences. These are encountered when integrating loop momenta and signal that

we include effects from arbitrarily short length physics. For example the diagram in

Figure 2.1 will, after performing the spinor algebra and dropping the mass terms in

the denominator, give rise to the following divergent term (among others):

∫ |l|max d4l

(2π)4

1

l2(l − p)2
∝ log |l|max . (2.9)

When we naively interpret a bare parameter in a lagrangian in terms of a mea-

sured physical value we make the claim that our theory is valid up to arbitrary

scales and try to include contributions from all scales in the parameter value, which

is made explicit when integrating over the loop momentum l and taking the limit

|l|max →∞. Physically we could reason that quantum corrections have an ultimate

cutoff scale given by the Planck scale ΛPlanck. Following Wilson [15] we could there-

fore define our lagrangian at some scale Λ < ΛPlanck and not worry about |l| > Λ

which would give finite results. However we are interested in using measurements

to make predictions at scales p0 � Λ and would prefer if the physics at the Planck

scale didn’t affect these too much, so we will take a different approach and instead

redefine the terms in the lagrangian to reflect this hope:

Aµ0 =
√
ZA(p0)AµR(p0) = (1 + δA(p0))AµR(p0), (2.10)

g0 =Zg(p0)gR(p0) = (1 + δg(p0))gR(p0), . . . (2.11)
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We can then try to use the counterterm δs to subtract away terms associated

with physics at much higher scales than the measurement scale, and equate the

renormalised objects AµR(p0), gR(p0), and so on with the physical objects we are

actually dealing with at this measurement scale. If all UV divergences in the theory

can be removed by fixing the available counterterms the theory is called renormalis-

able, which signals that it does not have a cutoff scale. A non-renormalisable theory

will in general have a cutoff scale above which it can not be used to calculate pre-

dictions reliably. We have already indicated that we expect the δs and renormalised

parameters at p0 to now depend on the scale p0 since we will use the δs to subtract

a term that will be ∝ log Λ/p0, and the renormalised parameters must cancel this

to remove any dependence from the bare parameters.

In order to perform the necessary regularisation we could for example introduce

the new heavy mass scale Λ explicitly by hand to cancel contributions to loops for

|l| > Λ. An example of this is Pauli-Villars regularization which introduces new

unphysical particles at Λ which cancel the physical contributions to loop integrals

from momentum modes with |l| � Λ [16]. We can then renormalise the theory by

using the counterterms to set the values of the renormalised parameters to those

measured in experiment at some scale p0, which allows us to regularise calculations

in the theory at this scale even if the bare objects and counterterms diverge as we

take Λ→∞. In practice we would have to define a specific renormalisation scheme

which would tell us which of the finite terms from the loop calculation we keep in

the renormalised parameter and which we subtract away with the divergence. The

physics should of course not depend on this choice.

For most practical purposes Pauli-Villars regularisation is not very convenient

since it breaks non-Abelian gauge invariance, and Dimensional Regularisation (DR)

is used instead: loop integrals are calculated in d = 4 − 2ε dimensions and the

divergences show up as 1
ε poles when we take the physical limit ε→ 0. Taking the

diagram in Figure 2.1 as an example, in the numerator we have:

Tr
[
(/l − /p+M)(/l +M)

]
= 4(M2 + l2 − l.p) . (2.12)

We will focus on the M2 term which can be pulled out of the integral and which

we will ignore for now and drop the mass terms in the denominator, giving us the

integral we mentioned above. We will also explicitly insert the coupling g which we

keep dimensionless using an arbitrary parameter µ with mass dimension 1∗:
∗We will discuss the mass dimensions of fields later, but to be self-contained we here assume
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∫
ddl

(2π)d
µ4−dg2

l2(l − p)2
=
µ4−dg2

(2π)d

∫ 1

0
dx

∫
ddl

1

((l − xp)2 − x2p2 + xp2)2

=i
µ2εg2

(4π)2
(4π)εΓ(ε)

∫ 1

0
dx(x(x− 1)p2)−ε

=i
g2

(4π)2
(1 + ε log(µ2))(1 + ε log(4π))(

1

ε
− γE)

× (1 + 2ε− ε log(−p2))

=
ig2

16π2

[
2 +

1

ε
+ log

(−µ2

p2

)]
. (2.13)

Here we have only kept finite and divergent terms as ε → 0 and already pulled

factors of γE and log 4π into 1
ε on the last line. This can again be subtracted by a

counterterm, and only subtracting the divergent part corresponds to the so-called

MS renormalisation scheme.∗ In order to keep the the bare couplings dimensionless

we again had to introduce a new mass scale µ, which plays the same role as the

renormalisation scale p0 in Pauli-Villars. This appearance of an unphysical mass

scale is an unavoidable feature of any regularisation method. Using the Wilsonian

language, it is equivalent to the scale at which we define our effective lagrangian:

starting with the lagrangian at the actual cutoff we have integrated out momenta

down to µ, and the generic logarithms with ratios of scales which appear as in

Equation 2.13 have been resummed and incorporated into the definition of the pa-

rameters themselves as in Equations 2.10, 2.11. This result suggests we should try

to use a lagrangian defined at µ2 ≈ p2 to avoid large logarithms when calculating

predictions for a process with a typical scale p2, and post hoc rationalises why the

counterterm approach is the correct way to deal with UV divergences in a particle

physics context where the actual cutoff of the theory could be very far away.

The invariance of the bare lagrangian to variations in the unphysical scale µ can

be used to calculate how the renormalised parameters change with µ:

µ
d

dµ
g0 = 0→ µ

d

dµ
(µεZg(µ)gR(µ)) = 0 . (2.14)

Extending the same logic of invariance under the unphysical renormalisation

scale µ to bare n-point Aµ correlation functions Gn0 , where A
µ
0 has been renormalised

as in Equation 2.11, gives an example of a Callan-Symanzik equation [17]:

the particle in the loop is a fermion and the particle whose self-energy we are calculating is a scalar,

which gives [g] = d− d−2
2
− 2 d−1

2
= 4−d

2
.

∗The MS stands for Minimal Subtraction, and the standard MS only differs in that it does not

pull the γE and log 4π factors into 1
ε
.
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(
µ
∂

∂µ
+
n

2
γA + β(gR)

∂

∂gR

)
GnR = 0 . (2.15)

This allows us to define the so-called beta functions β and anomalous dimensions

γA:

β(gR) = µ
dgR(µ)

dµ
, γA =

µ

ZA

dZA
dµ

. (2.16)

The beta functions tell us exactly how dimensionless parameters change as we

integrate down from the bare lagrangian, or in a particle physics context, how they

change as we perform calculations at different scales. The anomalous dimensions

tell us how the scaling behaviour of dimensionful objects differs from the classical

scaling expected based on their mass dimension. The combination of all the beta

functions for a theory is called the renormalisation group equations (RGEs) and

therefore tells us how to convert a theory with parameters measured at one scale

into the equivalent theory at some other scale. While the bare lagrangian must be

invariant under the arbitrary scale µ and all orders calculations therefore can not

have a dependence on µ, the fixed order perturbation theory calculations we typi-

cally use in practice do have a dependence on µ so in this sense the beta functions

are approximations of physical corrections. The RGEs can therefore be used to gain

qualitative insights into the behaviour of the theory at energy ranges outside of

those experimentally probed, and as a shortcut to calculating the full quantum cor-

rections to an observable when they are expected to be dominated by the resummed

logarithms. A useful thing to notice is that the appearance of logarithms of the type

log
(
p2

µ2

)
which are resummed by the beta functions always is accompanied by the

divergent 1
ε pieces: this allows us to calculate the beta functions efficiently by only

focusing on the divergent parts of diagrams which contribute to them.

The condition that we can regularise all UV divergences in a theory with a finite

number of counterterms is called renormalisability. A renormalisable theory can

in theory be used to obtain predictions at any scale once we have performed the

necessary measurements to find the values of all of the parameters at one scale, and

renormalisability is therefore considered a desireable feature of a theory∗.

∗Theories with massless particles will in general also have infrared divergences which ultimately

cancel between loop and phase space integrals when dealing with inclusive observables, as shown

by Kinoshita, Lee, and Naunberg [18,19].
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2.4 Introduction to the Standard Model

The Standard Model is the crowning achievement of hundreds of years of investi-

gations into the fundamental nature of the physical world. It uses the language of

Quantum Field Theory introduced in the previous section and successfully describes

empirical results gathered from thousands of experiments covering many orders of

magnitude in energy. In theory it could be argued that it is obtainable in a fairly

elegant way by postulating a gauge group GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y and

writing down all of the invariant and renormalisable operators which can be formed

making the modest assumptions that there is some fermion matter content and a

complex scalar with a quartic potential. The lagrangian then takes the general form

(assuming the only dimensionful parameter is the µ̃2 term in the scalar potential):

LSM =− 1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν (Gauge sector) (2.17)

+ (DµH)†(DµH)− µ̃2H†H − λ(H†H)2 (Higgs sector) (2.18)

+ iψ†L,aσ̄
µ(Dµ)abψL,b + iψ†R,cσ

µ(Dµ)cdψR,d (Fermion sector) (2.19)

− (ψ̄aY
abψbH + ψ̄cY

cdψdH
† + h.c.) (Yukawa sector) (2.20)

Eventually we add the assumptions that the complex scalar tranforms non-

trivially under the SU(2)L ⊗ U(1)Y subgroup and breaks this down to U(1)QED

thanks to a non-zero vacuum expectation value, achieved by assigning µ̃2 < 0.∗

In practice this is a beautiful lie which looks good on t-shirts but ignores all of

the undeniable strangeness† in the details that are required to fill in this outline.

Taking a step back and looking at the space of possible QFTs‡ we can draw a parallel

to the Aarne-Thompson classification system for fairytales [20,21]: let’s assume the

Standard Model belongs to an archetype refered to as the Snow White QFTs. This

suggests we have a reasonable idea of the characteristics of the main character and

her companions, who the antagonist is, and how the fairytale plays out. However

while this is strictly speaking true, when reading the book of the Standard Model

we are immediately introduced to five sets of triplet dwarves, two of which are left-

handed and three of which are right-handed and all of which have customary evil

twins. Within each dwarf triplet there is a size hierarchy that goes from miniscule
∗Note that only a scalar can have a Lorentz-invariant non-zero vacuum expectation value.
†Used here strictly without its physics connotation although it of course is intimately connected.
‡Which is effectively infinite, but we could imagine requiring some reasonable measure of

simplicity and elegance to end up with a practical list.
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to huge (with one of the dwarfs in particular being a giant the size of a house). At

the end of the story we are not filled with the satisfaction of having read a classic

fairytale, rather we are left wondering what possibly could have compelled someone

to come up with such a contrived scenario just to tell a simple story. Upon closer

inspection we notice that there is structure and logic to the madness, but ultimately

we are still left with more questions than answers. The Standard Model appears to

be a fairytale à la Nostradamus, and the interesting details are often well-hidden in

nooks and crannies that have to be meticulously explored. In this way, even though

it appears far from a well-presented story at first, it has managed to remain the

central object of attention in the particle physics community for decades.

This innate strangeness, present even before we consider any of the number of

theoretical and experimental problems we know to be present in the Standard Model

as presented here, is often internalised through daily exposure among practitioners

in the field as we are wont to bleed the everyday of its peculiarities. It is however

of scientific interest as 13 of the 19 free parameters of the model originate from

this hierarchical ’three-generation’ structure of the fermion sector∗, see Table 2.2.

We will later investigate techniques for discvering a model which explains the mass

hierarchy of the fermion sector by introducing a warped extra dimension [22, 23] in

Chapter 7.

Before having a look at each section of the lagrangian in more detail we can

already determine the mass dimensions of all of the fields in the lagrangian: S =∫
d4xL suggests [L] = −[d4x] since we want the action to be dimensionless. We will

in general operate with [h] = [c] = 1 which implies [x] = [∂−1
µ ] = [E−1] = [M−1],

which leads us to conclude the mass dimension of every term in the lagrangian must

be 4, or 4− 2ε when using dimensional regularisation.

From the Higgs kinetic term we can see that [H] = 1. The mass dimensions of

the field strength tensors can also be determined to be 2, and we will later see that

this expands into gauge fields Aµ with mass dimension 1. The mass dimension of

the chiral fermions can be determined from their kinetic terms to be 3/2.

We can now see that all of the operators in the Standard Model carry four di-

mensions of mass in their field and derivative content alone, with a single exception:

the µ̃2H2 term. This term therefore breaks the classical conformal invariance that

∗Note that I don’t include the masses and mixing angles of the neutrino sector which addition-

ally complicate the simple picture presented here and would bring this number to at least 20 out

of 26.
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Parameter Measured value

me 0.511 MeV∗

mµ 105 MeV∗

mτ 1.78 GeV∗

mu 2.2+0.6
−0.4 MeV†

md 4.7+0.5
−0.4 MeV†

ms 96+8
−4 MeV†

mc 1.28± 0.03 GeV††

mb 4.18+0.04
−0.03 GeV††

mt 173.1± 0.6 GeV∗

θ12 13.02◦ ± 0.04◦ ∗∗

θ23 2.36◦ ± 0.08◦ ∗∗

θ23 0.20◦ ± 0.02◦ ∗∗

δ 69◦ ± 5◦ ∗∗

g1 0.356 †††

g2 0.649 †††

gs 1.218± 0.006 †††

θ̄ ≈ 0

mH 125.09± 0.24 GeV∗

v 246.2 GeV∗∗∗

Table 2.2: Free parameters of the Stan-

dard Model and their current experimen-

tal measurements. Values are taken from

the 2017 update of the PDG Review [24].

For details of the physical meaning of

the parameters see Sections 2.4.1 to 2.4.4.

Absence of error band indicates that ex-

perimental uncertainty is smaller than

the presented precision.
∗: Pole mass.
†: m(µ = 2 GeV) in MS.
††: m(µ = m) in MS.
∗∗: Measurement scale not defined but

CKM elements run very weakly [25] so

the effect is negligible.
†††: µ = mZ in MS.
∗∗∗: Defined as v = 1/(

√
2GF ) with GF

measured at µ = mµ.

is present in the rest of the theory by introducing a dimensionful coefficient µ̃. We

could equally imagine introducing operators which have a mass dimension > 4 in

their field and derivative content, which therefore would have coefficients of nega-

tive mass dimension. In general, operators O and their coefficients C are classified

according to the mass dimension of their field and derivative content as:

• Relevant: [O] = d < 4, [C] = 4− d

• Marginal: [O] = d = 4, [C] = 0

• Irrelevant: [O] = d > 4, [C] = 4− d

The naming convention is connected to the scale dependence we had to introduce

when renormalizing a theory discussed in Section 2.3. The name irrelevant origi-

nates from attempts to understand why physical solid state systems with widely

different microscopic descriptions fall into a small number of simpler classes in the
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infrared (IR) or low energy regime. The modern way to explain this is through

the observation [15] that only relevant and marginal operators contribute to the

macroscopic low-energy description of a system, and these can be systematically

studied in the same way we’ve been able to write down all of the allowed operators

under the Lorentz and gauge symmetries we impose. The microscopic differences

enter through irrelevant operators which only contribute at higher scales (smaller

lengths). In high-energy physics we are usually interested in the high-energy be-

haviour of our theory, so we might wonder why there are no higher mass dimension

operators in the Standard Model. In general this is a consequence of requiring

all of the operators to be renormalisable [26] which means it is, in theory, predic-

tive up to an arbitrary energy scale∗. A better way to motivate the absence of

non-renormalizable operators is through the Wilsonian picture of renormalisation

discussed in Section 2.3: assuming the cutoff scale of the more complete theory of

which the Standard Model is a low-energy description is much higher than the weak

scale, any irrelevant operators which do contribute to the theory at this higher scale

will be completely negligible at the weak scale.

However there is no reason to believe the Standard Model is the final theory of

nature up to a very high scale: as we will later discuss there are many unsolved

problems both in small- and large-scale physics which strongly suggest it must be

only an effective description of a more fundamental theory which is not necessarily

widely separated in scale. We can then write down higher-dimensional irrelevant

operators suppressed by powers of this scale, which make increasing contributions at

smaller length scales. While such theories are non-renormalisable, and hence come

up with a cutoff scale above which they can not be used to calculate predictions

(given by ∼ Λ), we can operate perfectly well within the range of validity and even

calculate quantum corrections by limiting our expansion in Λ to a certain order.

This is motivated by the fact that new effects will take the form (|p|/Λ)n where |p|
is the scale of the interaction we study. As long as |p| � Λ we are able to quickly

cut off the expansion in |p|/Λ since higher order terms will be suppressed. Note that

it is this suppression by |p|/Λ which renders these operators irrelevant in the IR and

increases their significance at higher scales. That the expansion starts breaking down

just as the size of the effect loses its mass-scale suppression is a fundamental feature

of these Effective Field Theories (EFT), and means they are best used to describe

small deformations from the Standard Model expectation.† Calculating quantum
∗The QED Landau pole notwithstanding.
†In other words, situations where Λ is well-separated from the weak scale but not large enough
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corrections requires that we include all of the necessary operators in order to be

able to cancel UV-divergences with new structures not present in the renormalisable

theory which will generically appear. This is guaranteed to be the case if we use all of

the Lorentz- and gauge-invariant operators that can be formed out of the fields of the

theory up to the inverse power of Λ we calculate to. A set of effective operators up

to a certain order in the expansion is called a basis; in general we can not construct

a complete and unique basis of operators for a given order of Λ due to redundancies

introduced by the classical equations of motion and integration-by-parts identities.

A complete basis of dimension-6 (∝ 1/Λ2) operators in the Standard Model is given

in [27].

Having discussed and motivated the general form of the Standard Model la-

grangian, we will have a more detailed look at the individual components:

2.4.1 Gauge sector

The gauge sector Equation 2.17 describes the dynamics associated with the local,

internal symmetries of the Standard Model given by GSM . It is built exclusively out

of field strength tensors, which for SU(N) gauge theories∗ are given by:

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.21)

Here Aaµ is a gauge vector field in the direction of the generator ta of the algebra

su(N). The generators satisfy: [
ta, tb

]
= ifabctc . (2.22)

To ensure the defining local invariance under gauge transformations, the deriva-

tive operator is elevated to a covariant derivative when operating on a field that

transforms non-trivially under GSM :

(Dµ)ij = ∂µ − ig(α)Aa,(α)
µ t

a,(α)
ij . (2.23)

The expansion over (α) is done in accordance with the representations of GSM the

target field transforms in, for example for the left-handed quark doublet which is

charged under all of the subgroups:

(DµqL)αj = (∂µ − igsTAαβGAµ − ig2τ
I
jkW

I
µ − ig1YqBµ)qβkL . (2.24)

for the effects to be completely unobservable.
∗For U(1) gauge theories the last piece disappears and we are left with a Maxwell tensor.



2.4. Introduction to the Standard Model 17

Here gs, g2, and g1 are the gauge coupling constants of SU(3)C , SU(2)L, and U(1)Y

respectively, which determine the strength of said gauge interactions. TA = 1
2λ

A

and τ I = 1
2σ

I are the generators of the fundamental representations of su(3) and

su(2) respectively, and the greek and latin indices on q denote the colour and isospin

degrees of freedom on which they act while the A and I denote the indices of the

adjoint representations to which G and W belong. The generator of the U(1)Y

algebra is just a single commuting real number Y . The covariant derivative of the

field strength is given by:

(DρFµν)a = ∂ρF
a
µν − igAbµ(tbadj)

acF cµν = ∂ρF
a
µν + gfabcAbµF

c
µν , (2.25)

where we used (taadj)
bc = −ifabc and swapped indices on the structure constant.

For an Abelian group the second term is of course absent, however for non-Abelian

groups like SU(2)L and SU(3)C this term generates self-interactions among the

gauge bosons themselves. As we will see later this simple result creates significant

physical differences between Yang-Mills (SU(N)) and Abelian (∼ Maxwell) gauge

theories, and is responsible for the confinement of SU(3)C at low energies which

swaps the degrees of freedom in the theory from coloured quarks to colour-neutral

hadrons and mesons.

When quantizing a gauge theory we run into a problem: the determinant of the

operator k2gµν − kµkν is 0, so we can’t invert it in order to find the propagator

using the standard Green’s function approach [28]. This is not surprising since the

freedom to perform gauge transformations means it is impossible to uniquely solve

for Aµ, which equally makes it impossible to construct the free theory in order to

use perturbation theory. In the path integral approach the situation is clarified:

integrating over the lagrangian as defined in Equation 2.17 means we sum over

gauge-equivalent field configurations, or gauge orbits, of the classical action, which

gives divergent results. The obvious solution is to fix the gauge before quantizing the

theory. This is elegantly done by using an auxiliary field ξ as a Lagrange multiplier to

force the integration to only pick up a single unique gauge orbit, following Faddeev-

Popov [29]:

Lg.f. = − 1

2ξ
(∂µAaµ)2 . (2.26)

When adding this term to the classical action we break the gauge invariance and end

up cancelling the integration over equivalent gauge orbits when calculating Green’s

functions, leaving the physical result (ξ is guaranteed to cancel in the end). There

is one additional subtlety to deal with: when using non-Abelian groups, the extra
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factor we use to define the integration over equivalent gauge orbits is a functional

of Aµ and not simply a number that automatically cancels. The customary way to

deal with this is to rewrite this term using two Grassmann-valued fields c and c̄ for

each gauge field. The lagrangian for these is given by:

Lghost = ∂µc̄aDac
µ c

c = ∂µc̄a(δac∂µ + gfabcAbµ)cc . (2.27)

The new fields are called ghosts due to being anti-commuting complex scalars. The

spin-statistics theorem means they can not be physical states, but they do appear

in the path integral.∗ From a practical perspective the ghosts can be understood

as a way to remove unphysical degrees of freedom from virtual gauge bosons: when

we take gauge bosons off-shell we are naively not guaranteed that the number of

degrees of freedom stays physical. In Abelian theories the Ward identity guarantees

that longitudinal polarisations cancel in the final result, but due to the gauge boson

self-interactions which are present in non-Abelian theories there is no simple similar

identity for non-Abelian theories. Heuristically the fermionic −1 which will accom-

pany ghost loops can then be considered to cancel the unphysical contribution from

longitudinal gauge boson polarisations.

2.4.2 Higgs sector

The Higgs sector Equation 2.18 describes how the electroweak group SU(2)L⊗U(1)Y

is broken down to U(1)QED [30,31] by a complex scalar H in the (2, 1
2) electroweak

gauge representation. Until recently it was the only part of the Standard Model

which had not been experimentally verified, but following the seminal discovery by

ATLAS and CMS in 2012 [6, 7] of a scalar consistent with the properties expected

of a Standard Model Higgs boson we are currently quickly moving towards an era

of precision Higgs physics.

The sign of the mass term of the H field in the Higgs potential Equation 2.18 is

of fundamental importance. This is because it is exactly when the mass term has

the opposite sign to the quartic interaction term (µ̃2 < 0) that the Higgs potential

develops a non-zero vacuum expectation value, 〈H0〉 6= 0. Without loss of generality

we can choose the resulting vacuum expectation value to be real and in the second

component of the Higgs doublet:

∗Another way to understand the absense of ghosts in Abelian gauge theories is through the for-

mal definition of an Abelian group which is exactly that fabc = 0, forcing the ghosts to completely

decouple from the rest of the theory.
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H = exp

(
2i
πaτa

v

)
1√
2

(
0

v + h

)
, v =

√
−µ̃2

λ
. (2.28)

Here we have written H in terms of the Goldstone bosons πa of the symmetry

breaking in a sigma form. The Goldstone bosons are perturbations along directions

on the vacuum manifold given by the broken generators, so τa = 1
2σ

a here. This is a

generic way to parameterize the Goldstones bosons which arise when the vacuum of

a theory is only invariant under a subgroup H of the full lagrangian symmetry group

G as in our situation. When working with spontaneously broken gauge theories the

gauge-fixing term in Equation 2.26 needs to be modified to include the Goldstone

bosons. A convenient choice is the Rξ gauge [32] which modifies the gauge-fixing

term thus:

Lg.f. = − 1

2ξ
(∂µAaµ − ξmAπ

a)2 . (2.29)

After performing the Faddeev-Popov procedure we pick up mass terms
√
ξmA

for the Goldstone bosons and the ghosts. Unitary gauge is then defined as taking

ξ → ∞, or equivalently πa = 0. This is the gauge we will use to study the effects

of breaking SU(2)L ⊗U(1)Y with a non-zero v. When expanding out the covariant

derivative we see that v generates mass terms for the W I
µ and Bµ bosons:

|DµH|2 ⊃ g2
2

v2

8

[
(W 1

µ)2 + (W 2
µ)2 +

(
g1

g2
Bµ −W 3

µ

)2
]
. (2.30)

Diagonalising we find:

W±µ =
1

2
(W 1

µ ∓W 2
µ), mW =

v

2
g2 (2.31)

Zµ =
1√

g2
1 + g2

2

(g2W
3
µ − g1Bµ), mZ =

v

2

√
g2

1 + g2
2 =

mW

cos θW
(2.32)

Aµ = γµ =
1√

g2
1 + g2

2

(g2W
3
µ + g1Bµ), mA = 0 . (2.33)

Here we have introduced the notation tan θW = g1/g2 for the angle we rotate Bµ
andW 3

µ by. It is typically referred to as the weak or Weinberg angle. The remaining

massless Aµ boson is associated with the unbroken Abelian generator Q = τ3 +

1/2 Y = diag(1, 0) and is identified as the photon γµ of U(1)QED. After rotating

all of the terms in the full lagrangian to these mass eigenstates we have found the
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Production mode Theory (8 TeV) η, 8 TeV Theory (13 TeV) η, 13 TeV

ggF 21.42+4.4%
−6.9% pb 1.03+0.16

−0.14 48.58+4.6%
−6.7% pb 0.99+0.14

−0.13

VBF 1601.3± 2.2% fb 1.18+0.25
−0.23 3782.0± 2.1% fb 1.7+1.17

−0.90

(W+ → lν)h 49.52± 2.0% fb 0.89+0.40
−0.38 94.26± 1.8% fb 3.2+3.7

−3.2

(W− → lν̄)h 28.62± 2.1% fb 0.89+0.40
−0.38 59.83± 2.0% fb 3.2+3.7

−3.2

(Z0 → ll)h 14.18± 1.7% fb 0.79+0.38
−0.36 29.82± 1.6% fb NA

tth 133.0± 9.2% fb 2.3+0.7
−0.6 507.1± 9.2% fb NA

Table 2.3: Theoretical predictions for cross sections of the most important Higgs

production modes assuming mh = 125 GeV, taken from the 4th Higgs Cross Section

Working Group Report [33], and ATLAS and CMS measurements of the signal

strength η = σobs/σtheory for the same production mode where available [34, 35].

The gluon fusion and vector boson fusion components are denoted ggF and VBF,

respectively. The gluon fusion cross section prediction relies on the N3LO calculation

in [36]. The fermions are detailed in Table 2.5 below, and the masses are given in

Table 2.2 above.

lagrangian after symmetry breaking. In non-unitary gauges the interactions of the

Goldstone bosons πa also have to be kept track of.

The U(1)QED interaction strength is set by e = g2 sin θW . Due to the large

masses of W±µ and Zµ their effects are highly suppressed at the scales of everyday

interactions. Looking at the remaining degrees of freedom of H we identify the

would-be Goldstone bosons of the symmetry breaking∗ πa = φ0, φ± with the new

longitudinal degrees of freedom of W±µ and Zµ, however they do show up explicitly

in calculations when not in unitary gauge. There is a remaining degree of freedom

which describes fluctuations around v, and so is described by a real singlet scalar

h.† Note that since it appears linearly with v, all of its couplings to other fields are

scaled by their mass after symmetry breaking. This real scalar is often referred to

as the Higgs boson and can be identified with the resonance found by ATLAS and

CMS [6,7] withmh ≈ 125 GeV. The production cross sections of the most important

production modes are given in Table 2.3 and the branching fractions of the most

important decay modes are given in Table 2.4.

While h does not couple directly to the massless photon field γ it still has a

∗Written here in terms of their U(1)QED charges.
†This field is responsible for the

√
2 in Equation 2.28 which corrects for the difference in

canonical normalisation between a real and complex scalar.
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Decay mode Br, Theory η, Experiment

h→ bb̄ 0.582 0.52± 0.40

h→ τ τ̄ 6.27× 10−2 1.43+0.43
−0.37

h→W+W− 2.14× 10−1 1.16+0.24
−0.21

∗

h→ Z0Z0 2.62× 10−2 1.44+0.40
−0.33

∗∗

h→ γγ 2.27× 10−3 1.17± 0.27

∗: Measured using only the W+W− → 2l2ν channel with

a theoretical branching ratio of 2.34× 10−2.
∗∗: Measured using only the Z0Z0 → 4l channel with

a theoretical branching ratio of 2.75× 10−4.
Table 2.4: Theoretical predictions for branching ratios of the most important Higgs

decay modes assuming mh = 125 GeV, taken from the 4th Higgs Cross Section

Working Group Report [33], and ATLAS measurements of the signal strength η =

σobs/σtheory for the same decay mode where available [37]. The fermions are detailed

in Table 2.5 below, and the masses are given in Table 2.2 above.

t/b

t/b

t/b

h

γ

γ

W

W

W

h

γ

γ

W

W

h

γ

γ

Figure 2.2: Example diagrams which contribute to h → γγ at one loop. The

fermionic and bosonic loop contributions enter with opposite sign and therefore

interfere destructively.

non-zero branching rate to γγ due to quantum effects. The dominating contribu-

tions come from W± and top loops as shown in Figure 2.2. This was in fact the

most important decay mode in the experimental discovery of the Higgs boson. The

di-photon invariant mass distribution from the CMS discovery paper is shown in

Figure 2.3.

2.4.2.1 Perturbative unitarity in longitudinal gauge boson scattering

In order to show the physical significance of the Higgs boson, we will consider

scattering of longitudinally polarised weak gauge bosons. As explained above these

polarisations correspond to three of the four degrees of freedom in H. Since they

are the physical manifestation of electroweak symmetry breaking in the sense that
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Figure 2.3: Di-photon mass distribution from the CMS Higgs discovery paper [7].

they allow the weak bosons to appear massive, they encode information about the

broken symmetries. Gauge symmetries will in general ensure unitary behaviour of

high energy vector boson scattering, so it is interesting to investigate what the high

energy behaviour of these states is. In order to do so we will make use of partial wave

analysis in order to determine whether these scattering processes are perturbatively

unitary: such analysis is also later used in Chapter 6, so we will introduce the

formalism here to remain self-contained, using Schwartz as our reference [28].

In general, the total cross section of scattering of two particles AB → AB at a

center-of-mass energy
√
s can be calculated as:

σ =
1

32πE2
CM

∫
d cos θ|M(s, θ)|2 . (2.34)

Here M(s, θ) is the matrix element of the process. This can be decomposed into

partial waves using Legendre polynomials Pj :

M(s, θ) = 16π

∞∑
j=0

aj(s)(2j + 1)Pj(cos θ) . (2.35)
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We can also write the aj(s) in terms ofM(s, θ)∗:

aj(s) =
1

32π

∫
d cos θPj(cos θ)M(s, θ) . (2.37)

The decomposition allows us to perform the integral in order to get an expression

for the total cross section as a function of the aj(s) coefficients:

σ =
16π

E2
CM

∞∑
j=0

(2j + 1)|aj(s)|2 . (2.38)

The optical theorem relates the imaginary part of the forward scattering ampli-

tude to the total cross section:

ImM(AB → AB, θ = 0) = 2ECM |~p|
∑
X

σ(AB → X)

≥ 2ECM |~p|σ(AB → AB) . (2.39)

Hence†:

∞∑
j=0

(2j + 1)Im aj(s) ≥
2|~p|
ECM

∞∑
j=0

(2j + 1)|aj(s)|2 . (2.40)

This places strict bounds on the unitarily allowed values of aj . In practice

the contributions from j > 1 are often small, and the sum over j can be dropped

by considering scattering of angular momentum eigenstates. Consider additionally

elastic scattering where this is an equality and the high energy limit where ECM =

2|~p|‡. We then simply have:

Im aj(s) = |aj(s)|2 . (2.41)

The solution to this is shown in Figure 2.4. We will calculate the aj(s) using

perturbation theory, so aj(s) = a0
j (s)g

2 + a1
j (s)g

4 + . . . . Modulo small CP violating

∗This uses the orthogonality of the Legendre polynomials:∫
Pi(x)Pj(x)dx =

2

2i+ 1
δij . (2.36)

†Note that Pj(1) = 1.
‡A similar bound follows more generally by taking inelastic scattering into account, but as-

suming elastic scattering yields conservative bounds since taking inelastic scattering into account

the unitary circle will become an ellipse which tends to larger imaginary values.
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effects, the tree level contribution (assuming the leading contribution is tree level)

a0
j (s) is real, and will hence in general not sit on the unitary circle: this is shown in

Figure 2.4 as the red dot. This is not a problem since we can expect that going to

all orders will restore unitarity by bringing the solution back to the circle, as shown

by the green dot. Requiring our theory to be perturbative means we should not

allow these higher order contributions to be of the same magnitude as the leading

term, however. This means we need to define a convention for when we consider

perturbative unitarity to be violated by the value of a0
j (s): we will take this to

be |Re a0
j (s)| > 1 here and in Chapter 6. An alternative choice is |Re a0

j (s)| > 1/2

which is motivated by the fact this already would require a 41% correction in exactly

the correct direction on the Argand diagram, and while higher order corrections of

the size 100% are not uncommon in QCD, there is no reason expect these to go in

exactly this direction.

Having thus introduced the machinery for performing partial wave analysis in

order to determine whether or not a scattering process violates perturbative uni-

tary, we return to the scattering of longitudinally polarised weak bosons. We will

consider the process W+
L (p1)ZL(p2) → W+

L (p3)ZL(p4). In order to calculate we

will need the Feynman rules for WWZ, WWZZ, and V V h vertices given below in

Equations 2.69, 2.70, and 2.71. The contributing diagrams at tree level are given

in Figure 2.5. To simplify the expressions we will use g1 = 0 (so mZ = mW ). The

longitudinal polarisation vectors we use are given by∗:

N × ε1
µ =

p1,µ

mW
+

2mW p3,µ

t− 2m2
W

, N × ε2
µ =

p2,µ

mW
+

2mW p4,µ

t− 2m2
W

,

N × ε3
µ =

p3,µ

mW
+

2mW p1,µ

t− 2m2
W

, N × ε4
µ =

p4,µ

mW
+

2mW p2,µ

t− 2m2
W

. (2.42)

We take all momenta to be incoming. The amplitudes are then given by:

∗The normalisation is N =

(√
3 +

4m4
W

(t−2m2
W

)2

)−1

.
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Figure 2.4: The Argand diagram for the solution of Equation 2.41. The red dot

shows a tree level value of a0
j (s) which will in general be unitarity-violating. The

green dot shows an all-order value of aj(s) which must be unitary. Corrections from

inelastic scattering will elongate the unitary circle into an ellipse with Im aj(s) >

|aj(s)|2 and arguments based on the assumption of elastic scattering are therefore

conservative.

iMs =(ig2)2 ε1
µε

2
νε
∗3
α ε
∗4
β

−i
s−m2

W

(
gλκ −

kλkκ

m2
W

)
×
(
gµν(p1 − p2)λ + gνλ(p2 + k)µ − gλµ(k + p1)ν

)
×
(
gαβ(p4 − p3)κ − gβκ(p4 − k)α − gκα(k − p3)β

)
, k = p1 + p2 (2.43)

iMu =(ig2)2 ε1
µε

2
νε
∗3
α ε
∗4
β

−i
u−m2

W

(
gλκ −

kλkκ

m2
W

)
×
(
gµβ(p1 − p4)κ + gβκ(p4 − k)µ + gκµ(k − p1)β

)
×
(
gαν(p3 − p2)λ + gνλ(p2 + k)α + gλα(−k − p3)ν

)
, k = p2 + p3 (2.44)

iM4 =ig2
2 ε

1
µε

2
νε
∗3
α ε
∗4
β

(
gµνgαβ + gµβgνα − 2gµαgνβ

)
(2.45)

iMh =(ig2)2 ε1
µε

2
νε
∗3
α ε
∗4
β gµαgνβ

m2
W

t−m2
h

(2.46)
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µ
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Figure 2.5: Tree-level contributions to W+
L (p1)ZL(p2)→W+

L (p3)ZL(p4) scattering.

We denote these, from the top to bottom and left to right,Ms,Mu,M4, andMh.

After calculating the diagrams we find that using only the first three diagrams

leaves a piece which grows with energy:

Ms +Mu +M4 ⊃
t

v2
. (2.47)

Such a contribution, left as it is, will ensure that our theory can not be pertur-

batively unitary above some energy scale at which this term forces |aj | > 1. The

Higgs diagram adds a piece which has the following behaviour:

Mh ⊃
−t2

v2(t−m2
h)
. (2.48)

This piece will exactly cancel off the problematic term for t � mh. When

combined with requiring our model to be perturbatively unitarity, this allows us to

calculate a maximum value for mh which allows the cancellation to occur before

the amplitude violates the |aj | > 1 bound. The behaviour for three different cases

in our toy model are presented in Figure 2.6: in the absence of a Higgs (or if it is

very heavy) the amplitude violates perturbative unitarity at
√
s ≈ 2.5 TeV. A light

Higgs, such as the one found at the LHC, completely unitarises the behaviour. A
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Figure 2.6: Values of |a0| as a function of center-of-mass energy forWLZL →WLZL

scattering in our toy model with g1 = 0. The red line shows where perturbative

unitarity is considered violated. While a light Higgs at mh = 125 GeV completely

unitarises the amplitude, a heavy Higgs with mh = 3000 GeV still causes the uni-

tarity bound to be violated at
√
s = 3.5 TeV.

heavy Higgs which could still be kinematically accessible at the LHC with mh = 3

TeV does not cancel the unitarity-violating behaviour fast enough, and perturbative

unitarity is still violated at
√
s ≈ 3.5 TeV.

We could in fact calculate the first three diagrams in an easier way by using a

Callan-Coleman-Wess-Zumino (CCWZ) expansion [38] since they only involve inter-

actions among the Goldstone bosons, which can be studied using only the pattern

of symmetry breaking. Let us return to the Goldstone matrix in Equation 2.28:

U(x) = exp

(
2i
πaτa

v

)
= exp

[
i

v

(
w0

√
2w−

√
2w+ −w0

)]
,

w0 = π3, w± =
1√
2

(π1 ± iπ2) . (2.49)

This field was introduced to describe the Goldstone dynamics when G =

SU(2)L ⊗ U(1)Y is broken to its subgroup H = U(1)QED by the vacuum, as small

perturbations along the broken generator directions which span the vacuum mani-
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fold. The CCWZ expansion gives the nonlinear sigma model obtained when decou-

pling h by generating all of the terms allowed by G involving U . To leading order

this is given by:

v2

4
Tr
[
(∂µU)(∂µU)†

]
⊃ 1

2
∂µw

0∂µw0 + ∂µw
−∂µw+

− 1

3v2

[
w0(∂µw

−)− w−(∂µw
0)
] [
w0(∂µw+)− w+(∂µw0)

]
. (2.50)

Here I have only included the terms which are relevant for WLZL →WLZL scatter-

ing. Since the Goldstone bosons are massless this corresponds to the ξ = 0 gauge.

In this gauge the w±, w0 fields are the longitudinal modes of W± and Z and we can

re-calculateMs +Mu +M4 in a single diagram:

p1

p4p2

p3

iMξ=0 =
−i
3v2

[
− p1.p3 + p1.p4 + p2.p3 − p2.p4

+(p2 ↔ p4)

]
=
−i
3v2

(
− t

2
+
u

2
+
u

2
− t

2
− t

2
+
s

2
+
s

2
− t

2

)
⇒Mξ=0 =

t

v2

(2.51)

This result follows from the Goldstone Equivalence Theorem [39] which states

that the high energy behaviour (s�MW ,MZ) of longitudinal gauge boson scatter-

ing is the same as for Goldstone boson scattering. That we get a result which violates

perturbative unitarity at high energies when using only the CCWZ expansion is not

surprising: it is an effective theory which does not know about the mechanism of

symmetry breaking and is not renormalisable. To mend these issues we need to use

a linear sigma model instead, where it is explicit that the symmetry is spontaneously

broken since we keep the field which describes radial excitations along the vacuum

direction in the theory. This field is exactly h in our setup.

The physical significance of the Higgs boson is therefore that it unitarises inter-

actions between the massive SU(2)L ⊗ U(1)Y gauge bosons at high energies where

the longitudinal components (Goldstone modes) dominate. A detailed analysis fol-

lowing the perturbative unitarity argument presented above in the full Standard

Model with all scatterings considered allows a theoretical upper bound to be set on
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mh [40]:

mh ≤
√

16π

3

1

v
≈ 1 TeV . (2.52)

This was a major motivation for the construction of the Large Hadron Collider as

it provided a no-lose theorem: either the Higgs would be discovered, or some other

new physics would have to occur at the TeV-scale to unitarise longitudinal gauge

boson scattering. In Chapter 6 we will make use of perturbative unitarity arguments

to constrain the allowed size of CP violating effects in the Higgs sector.

2.4.2.2 Measuring the Higgs potential

While we have assumed a specific form for the Higgs potential here, the experimental

discovery of the Higgs boson itself can not tell us if this is in fact the actual Higgs

potential realised in nature. Looking at the potential in Equation 2.18 in more

detail:

V (H†H) = µ̃2H†H + λ(H†H)2 ⊃ 1

2
m2
hh

2 +

√
λ

2
mhh

3 +
λ

4
h4 . (2.53)

Now m2
h = −2µ̃2 can be interpreted as the coefficient of the first term in an ex-

pansion in powers of h. We can infer the value of the trilinear coupling λ3
SM =

√
λ
2mh

in the Standard Model using the assumed relation given in Equation 2.28 but from

a model-independent perspective we can not determine its value with our current

experimental measurements. The measurement of h→ hh is however very challeng-

ing as it suffers from very low signal rates, partly due to destructive interference

between box and triangle diagrams in the leading gluon fusion production chan-

nel, see Figure 2.8. A measurement of the trilinear coefficient is hence one of the

ultimate challenges and goals of the LHC physics program [41]. In Chapter 6 we

will investigate the phenomenology of the di-Higgs + two jets (hhjj) production

channel, and assess the potential contributions it can make to the wider study of

the Higgs sector.

2.4.3 Fermion sector

The Fermion sector in Equation 2.19 describes the kinematic terms of the fermion

fields which make up the matter content of the Standard Model. Since all of the

fields are chiral and charged under at least one gauge group there can be no mass

terms; these are introduced through couplings to H which are described later in
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t/b
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t/b
g

g

h

h

Figure 2.7: Example diagrams which contribute to gg → hh at one loop. The

triangle and box contributions interfere destructively, as demonstrated in Figure 2.8

below.

Figure 2.8: Interference between box and triangle diagrams in the leading Higgs

pT distribution in gg → hh di-Higgs production. ΛSM here refers to the Standard

Model coefficient of the trilinear term in the Higgs potential, so ΛSM =
√

λ
2mh in

our notation. Taken from [41].

Section. 2.4.4. At this point we can summarise all of the fields of the Standard

Model and their gauge and Lorentz representations, given in Table 2.5. Since the

left- and right-handed fermions carry different charges the Standard Model is a chiral

theory which violates parity.

2.4.4 Yukawa sector

Using the fields we have written down so far we can construct some additional renor-

malisable operators. While we introduced the field H in order to break electroweak

symmetry, we can also form Lorentz- and gauge-invariant operators which couple

this field to various combinations of the fermions. Expanding out after electroweak
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L-state GSM m-state U(1)QED SL(2,C) [D] B L

GAµ (8,1, 0) GAµ /g 0

(1/2,1/2) 1 0 0W I
µ (1,3, 0) W±µ ±1

Bµ (1,1, 0) Z0
µ, Aµ/γµ 0

Hj (1,2, 1
2)

φ±

h, φ0

±1

0
(0,0) 1 0 0

qjLg (3,2, 1
6) (ug, dg)L (2

3 ,−1
3)

(1/2,0)

3
2

1
3 0

ljLg (1,2,−1
2) (νg, eg)L (0,−1) 0 1

uRg (3,1, 2
3) uRg

2
3

(0,1/2)
1
3 0

dRg (3,1,−1
3) dRg −1

3

eRg (1,1,−1) eRg −1 0 1

Table 2.5: The fields of the Standard Model in the interaction eigenstates and the

representations of the gauge group GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y they trans-

form under. The mass eigenstates and U(1)QED charge after electroweak symmetry

breaking are also presented. j denotes a SU(2)L index and g the generation index.

SL(2,C), [D], B, L denote spin group representation, mass dimension, baryon, and

lepton numbers respectively.

symmetry breaking we get the following mass terms:

Lmass = −q̄L,pY d
prHdR,r − q̄L,pY u

priσ2H
∗uR,r − ēL,pY e

prHeR,r + h.c.

→ − v√
2
d̄L,pY

d
prdR,r −

v√
2
ūL,pY

u
pruR,r −

v√
2
ēL,pY

e
preR,r + h.c. . (2.54)

Here Y u/d/e
pr are complex 3×3 matrices with p, r denoting generation. Using singular

value decomposition we can rewrite these as Y x = LxMx(Rx)† with Lx, Rx unitary

3 × 3 matrices and Mx a real non-negative diagonal 3 × 3 matrix. We can then

rotate the basis of the left- and right-handed quarks as uL → LddL, uL → LuuL,

eL → LeeL, uR → RuuR, dR → RddR, eR → ReeR to end up in the diagonal mass

basis:

Lmass = −md
j d̄
j
Ld

j
R −mu

j ū
j
Lu

j
R −me

j ē
j
Le

j
R . (2.55)

Here mx
j are the diagonal elements of v√

2
Mx. Since there is no right-handed neu-

trino field in the minimal Standard Model we consider here, we are free to cancel

the effect of the eL, eR rotation using νL so there is no physical effect from diago-
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nalising the lepton masses. However in the quark sector we can’t do this since we’ve

already defined rotations for all the fields in order to diagonalise both matrices, so

interactions which mix up- and down-type quarks end up being sensitive to a resid-

ual unitary mixing matrix V = (Lu)†Ld, known as the Cabbibo-Kobayashi-Maskawa

matrix [42,43]. In the mass basis:

Lmass ⊃
g2√

2

(
W+
µ ū

i
Lγ

µVijd
j
L +W−µ d̄

i
Lγ

µV †iju
j
L

)
, V =


Vud Vus Vub

Vcd Vcs Vct

Vtd Vts Vtb

 .

(2.56)

This is a unitary complex matrix so it has 9 degrees of freedom: 3 of these are

rotation angles∗ and hence 6 are complex phases. 5 of these phases can be removed

by using the remaining U(1)6 symmetry of the lagrangian†:

djL/R → eiαjdjL/R, ujL/R → eiβjujL/R . (2.57)

The most general parameterisation of V is then given by three real rotations in

generation space θ12, θ13, θ23 and a complex phase δ, which introduces tree-level CP
violation:

V =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
iδ

0 1 0

− sin θ13e
iδ 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 .

(2.58)

2.4.5 Feynman Rules

Having discussed the field content of the Standard Model it is straightforward to

extract the momentum-space propagators by inverting the kinetic terms. Using

Feynman gauge (ξ = 1) for QCD and unitary gauge (ξ → ∞) for the electroweak

sector, respectively, with momentum flow from left to right:

∗As can be seen from considering all components real.
†One phase remains since V is invariant under an overall U(1) rotation given by αj = βj = θ.
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gaµ(k) gbν(k) =
−igµνδab

k2
, (2.59)

uag(k) ubg(k) =
iδab

k2
, (2.60)

Vµ(k) Vν(k) =
−i

k2 −m2
V + imV ΓV

(
gµν −

kµkν
m2
V − imV ΓV

)
, (2.61)

fi(k) fj(k) =
iδijkµγ

µ

k2
=
iδij/k

k2
, (2.62)

h(k) h(k) =
i

k2 −m2
h

. (2.63)

The finite lifetime of the massive electroweak bosons has been taken into account

through a Breit-Wigner propagator in Equation 2.61, and the indices on the δ in

the fermion propagator should be read as running over all quantum numbers. The

vertex rules can be derived from the interaction terms in the lagrangian and are for

the QCD sector given by:
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gaµ(k)

q̄i

qj

= igst
a
ijγµ , (2.64)

gaµ(k1)

gbν(k2)

gcρ(k3)

=

gsf
abc

[
gµν(k1 − k2)ρ + gνρ(k2 − k3)µ

+gρµ(k3 − k1)ν

]
,

(2.65)

gaµ(k1)

gcρ(k3)

gbν(k2)

gdσ(k4)

=

−ig2
s

[
fabef cde(gµρgνσ − gµρgνσ)

+(b↔ c)(ν ↔ ρ)− (b↔ d)(ρ↔ σ)

]
,

(2.66)

gaµ(k1)

ubg(k2)

ucg(k3)

= −gsfabckµ3 . (2.67)

In Equations 2.65 - 2.67 all momenta are taken as incoming. The electroweak

sector has a much richer structure even in unitary gauge so only a subset of vertices

are presented:
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Vµ

q̄i

qj

= ieγµ(CLPL + CRPR) , (2.68)

W−µ (k1)

W+
ν (k2)

Vρ(k3)

=

ieCγ/Z

[
gµν(k1 − k2)ρ + gνρ(k2 − k3)µ

+gρµ(k3 − k1)ν

]
,

(2.69)

W−ν

W+
µ

Zα

Zβ

= ie2 cot2 θW [gαµgβν + gανgβµ − 2gαβgµν ] , (2.70)

h

Vν

Vµ

= i
e

sin θW

m2
V

mW
gµν . (2.71)

In Equation 2.69 Cγ = 1, CZ = − cot θW , and the values for CL and CR in

Equation 2.68 are given in Table 2.6 where we have introduced the following short-

hands:

g+
f = − tan θWQf , g−f =

T 3
f − sin2 θWQf

sin θW cos θW
. (2.72)

2.4.5.1 Higgs coupling to gluons

While the Higgs boson h does not couple to massless particles such as gluons directly,

loops with massive particles induce effective couplings to these particles. Since the
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γf̄ifj Zf̄ifj W+ūidj W−d̄iuj W+ν̄i`j W− ¯̀
iνj

CL −Qfδij g−f δij
1√
2sw

Vij
1√
2sw

(Vij)
† 1√

2sw
δij

1√
2sw

δij

CR −Qfδij g+
f δij 0 0 0 0

Table 2.6: Values of CL and CR in Equation 2.68. Qf denotes the electric charge

of fermion f and, i and j represent flavour indices, and g±f are explained in the text.

t

tth

g

g

⇒ h

g

g

Figure 2.9: Contraction of top loop which leads to an effective tree-level coupling of

the Higgs boson to gluons.

dominant production mode of the Higgs boson is through a top-quark loop in so-

called gluon fusion, it is useful to introduce an effective theory which incorporates

this effect in themt →∞ limit. Such approximations are called low-energy theorems

[44–46] since they are only valid for momentum transfers inside the loop which

are smaller than mt. In the limit where the Higgs has zero momentum and is

much lighter than some other particles i in the theory (in the Standard Model this

only applies to the top quark, but in general it is possible to calculate for example

corrections to the h → γγ branching fraction from new heavy fermions charged

under SU(2)L × U(1)Y using this framework), the physical effect of including it is

captured by the replacement

mi → mi

(
1 +

h

v

)
(2.73)

This is thanks to h appearing linearly with v, which generates all of the tree level

mass terms in the Standard Model. Another way of writing this, which extends to

higher order in perturbation theory, is

lim
ph→0

M(A→ B + h) =
∑
i

m0
i

v0

∂M(A→ B)

∂m0
i

(2.74)
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whereM(A → B) is the matrix element for A → B and the 0 superscript denotes

bare quantities. The effective coupling of two gluons to the Higgs due to infinitely

heavy fermions is therefore encoded in the gluon vacuum polarisation, g → g, which

at loop level receives corrections which depend on bare mass terms. At one loop level,

the gluon vacuum polarisation gets contributions from the diagrams in Figure 2.10.

We are interested in fermions which are heavier than h, so will only focus on the

top quark contribution toMµν
F which will have a dependence on mt, as required by

Equation 2.74. Since we assume the top is infinitely heavy we can drop any pieces

which disappear as pµ → 0. We will use a (b) as the adjoint index of the incoming

(outgoing) gluon, and i, j as the color indices of the quarks in the loop. We then

have∗:

iMµν
t =− (igs)

2 taijt
b
ji

∫
d4l

(2π)4

i2 Tr[γµ(/l − /p+mt)γ
ν(/l +mt)]

[(l − p)2 −m2
t ][l

2 −m2
t ]

=− g2
s tr[tatb]

∫
d4l

(2π)4

8lµlν − 4lµpν − 4lνpµ + 4gµν(m2
t + l.p− l2)

[(l − p)2 −m2
t ][l

2 −m2
t ]

=pµ→0 ig
2
s

(
T (F )δab

16π2

)
(gµνp2 − pµpν)

[
4

3
log

µ2

m2
t

]
, (2.75)

where we have only kept the factors of pµ and p2 which are required for the

propagator structure, and µ is the renormalisation scale. We have separated the

traces over spinor indices from traces over generators by using Tr and tr respec-

tively. We have also introduced a new notation for the index of the fundamental

representation T (F )δab ≡ tr[tatb]. This generalises to other representations, so

T (A)δab ≡ tr[taadjt
b
adj ] and so on. Setting a = b we can see that tr[taRt

a
R] = d(G)T (R)

where d(G) is the number of generators or dimension of the group. In the fol-

lowing diagrams we will also use the quadratic Casimirs of representations, which

are defined as C(R)Id(R) ≡ taRt
a
R (a is summed over and d(R) is the dimension of

the representation). This suggests tr[taRt
a
R] = d(R)C(R), so we have the relation

d(G)T (R) = d(R)C(R). In QCD we are only interested in the fundamental and

adjoint representations, which in our conventions have T (F ) = 1
2 , C(F ) = N2−1

2N ,

T (A) = N , C(A) = N . We have kept the dependence on N for a general SU(N)

gauge group explicit here since we will consider such gauge groups later in Chapter 5

and these are useful for reference.

Returning to the calculation at hand, we can now write down the term in the

one loop correction to the gluon propagator which has a dependence on mt in the
∗I will use PackageX [47] to perform all of the integrals in this section.
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mt →∞ limit:

Lgg = −1

4
GAµνGAµν [1 + Πt(0)] , Πt(0) =

g2
sT (F )

16π2

4

3
log

µ2

m2
t

. (2.76)

Differentiating with respect to mt and using T (F ) = 1
2 , αs = g2

s/4π, we get:

Lggh = −1

4
GAµνGAµν

(
αs
6π

mt ∂

∂mt
log

µ2

m2
t

)
h

v
. =

αs
12π

GAµνGAµν
h

v
(2.77)

We can further derive the low energy theorems for any number of Higgs bosons

coupling to two gluons by making the replacement 1/v → gt/mt, where gt is the

(scaled) Yukawa coupling. Then,

Lgghn =
αs

12π

hn

n!
GAµνGAµνg

n
t

∂n−1

∂mn−1
t

1

mt
= − αs

12π

1

n

(−h
v

)n
GAµνGAµν

⇒ Lgg(h) =
αs

12π
GAµνGAµν log

(
1 +

h

v

)
(2.78)

where we have resummed the logarithm to provide an expression for all n on the last

line. We will use this low energy theorem in Chapter 6 to generate multi-Higgs gluon

fusion events. Note our approximation that the momentum going through the top

loop should be smaller than mt is questionable already for the second term in the

series since 2mh > mt, and for cases where a single Higgs is produced in association

with for example jets since the new scales which can enter the loop quickly begin

to resolve the top threshold. Also note the destructive interference discussed in

Section 2.4.2.2 is reflected in the signs of the ggh and gghh terms.

2.4.6 Renormalisation Group Equations

With the Feynman rules determined, we will return to the discussion of scale de-

pendence in Section 2.3 and calculate the one loop beta function for gs. To begin

we focus on the gluon field counterterm δ3 since it will be necessary regardless of

if we try to calculate β(gs) using the three-gluon vertex or gluon-fermion-fermion

vertex. The relevant diagrams are given in Figure 2.10.

Taking them in order, we begin with the fermion bubble Mµν
F we calculated

above. As pointed out in Section 2.3, the logarithms we are looking to resum cor-

respond to UV divergences, so for the purpose of calculating RGEs we can set all

masses inside loops to 0. This makes the calculation slightly different to Equa-

tion 2.75 and gives:
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p

l

l − p

p p

l

l − p

p

p

l

p p

l

l − p

p

Figure 2.10: One-loop contributions to the QCD vacuum polarisation. We denote

these, from left to right,Mµν
F ,Mµν

3 ,Mµν
4 , andMµν

gh .

iMµν
F =− (igs)

2 taijt
b
ji

∫
d4l

(2π)4

i2 Tr[γµ(/l − /p)γν(/l)]

(l − p)2l2

=− g2
s tr[tatb]

∫
d4l

(2π)4

8lµlν − 4lµpν − 4lνpµ + 4gµν(l.p− l2)

(l − p)2l2

=− ig2
s

(
T (F )δab

16π2

)
(gµνp2 − pµpν)

[
20

9
+

4

3

(
1

ε
+ log

−µ2

p2

)]
. (2.79)

Moving on to the first gluon loop, we have∗:

iMµν
3 =

g2
s

2

∫
d4l

(2π)4

(−i)2 facdf bdc Nµν

(l − p)2l2

=− ig2
s

(
C(A)δab

16π2

)[
pµpν

(
67

18
+

11

6

(
1

ε
+ log

−µ2

p2

))
− p2gµν

(
58

18
+

19

12

(
1

ε
+ log

−µ2

p2

))]
. (2.81)

Note that Mµν
3 6∝ (gµνp2 − pµpν) so this diagram is not gauge invariant. The

∗Here Nµν can be read off from Equation 2.65 as:

Nµν = gαβ gρσ

[
gµα(p+ l)ρ+gαρ(p−2l)µ+gρµ(l−2p)α

][
gνβ(p+ l)σ−gβσ(2l−p)ν−gσν(2p− l)β

]
.

(2.80)
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next diagram Mµν
4 features a scaleless loop integral so will vanish in dimensional

regularisation and we do not have to calculate it.

The final diagram is the ghost loop, and we have:

iMµν
gh =− (−gs)2

∫
d4l

(2π)4

(i)2 facdf bdc (l − p)µlν
(l − p)2l2

=− ig2
s

(
C(A)δab

16π2

)[
pµpν

(
− 5

18
− 1

6

(
1

ε
+ log

−µ2

p2

))
− p2gµν

(
2

9
+

1

12

(
1

ε
+ log

−µ2

p2

))]
. (2.82)

Adding everything up and assuming there are nf fermions running in the loop

in 2.79, we get that:

Mµν
one loop = δab

(
g2
s

16π2

)
(gµνp2 − pµpν)

[(
C(A)

5

3
− nfT (F )

4

3

)(
1

ε
+ log

−µ2

p2

)
+

31

9
C(A)− 20

9
T (F )

]
.

(2.83)

As expected the final result is gauge invariant. We can read off the gluon field

counterterm:

δ3 =
1

ε

(
g2
s

16π2

)(
5

3
C(A)− nf

4

3
T (F )

)
. (2.84)

We will extract β(gs) from the gluon-fermion-fermion vertex, so we still need

to calculate the quark field counterterm δ2 and the gluon-fermion-fermion vertex

counterterm δ1. The relevant diagrams are given in Figure 2.11.

For the fermion self-energy we have, setting all masses to 0 again:

iΣF (/p) =(igs)
2

∫
d4l

(2π)4

−i2
(∑

a,b,k,l t
a
kit

b
jlδ

abδkl
)
γµ/lγµ

l2(p− l)2

=− ig2
s

C(F )δij

16π2 /p

(
−1− 1

ε
− log

−µ2

p2

)
. (2.85)

This allows us to extract the quark field counterterm:

δ2 = −1

ε

(
g2
s

16π2

)
C(F ) . (2.86)
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Figure 2.11: One-loop contributions to the fermion self-energy and the gluon-

fermion-fermion vertex. We denote these, from top to bottom and left to right,

ΣF , Γa,µ1G , and Γa,µ2G .

To simplify the vertex corrections we will set qµ = 0 (since we are only interested

in the divergent pieces). The first diagram is then given by:

igsΓ
a,µ
1G,div(p2) =(igs)

3(tctatb)ijδ
bc

∫
d4l

(2π)4

−i3γν(−/l)γµ(−/p− /l)γν
l2l2(l + p)2

=igs
g2
s

16π2

(
C(F )− C(A)

2

)
taij

[
γµ
(
−1 +

1

ε
+ log

−µ2

p2

)
+ pµ

2/p

p2

]
.

(2.87)

And the second diagram is:

igsΓ
a,µ
2G,div(p2) =gs(igs)

2fabc(tctb)ijδ
bc

∫
d4l

(2π)4

i3γρ(/l)γν
l2l2(l + p)2

× (gµν(2p+ l)ρ + gνρ(−p− 2l)µ + gρµ(l − p)ν)

=igs
g2
s

16π2

C(A)

2
taijγ

µ

(
4 +

3

ε
+ 3 log

−µ2

p2

)
. (2.88)

Adding both contributions up again:

Γa,µone loop, div(p2) =
g2
s

16π2
taij

[
(C(F ) + C(A)) γµ

(
1

ε
+ log

−µ2

p2

)
+ γµ

(
−C(F ) +

5C(A)

2

)
+ pµ

(
C(F )− C(A)

2

)
2/p

p2

]
. (2.89)
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This allows us to extract the vertex counterterm:

δ1 = −1

ε

(
g2
s

16π2

)
(C(F ) + C(A)) . (2.90)

We now have all the required counterterms to extract β(gs) at one loop from the

gluon-fermion-fermion interaction term in the lagrangian:

L ⊃ µ 4−d
2 gR

Z1

Z2

√
Z3
Ga(0)
µ ψ̄

(0)
i γµtaijψ

(0)
j . (2.91)

As explained in Section 2.3, we use the invariance of the bare parameter g0 under

changes in the renormalisation scale µ:

µ
d

dµ

[
gR

Z1

Z2

√
Z3
µ

4−d
2

]
=0

⇒ µ
dgR
dµ

=− gR
[
ε+ µ

d

dµ

(
δ1 − δ2 −

δ3

2

)]
⇒ µ

dgR
dµ

=− εgR + εg2
R

∂

∂gR

(
δ1 − δ2 −

δ3

2

)
=− εgR + εg2

R

(
−1

ε

gR
16π2

(
11

3
C(A)− nf

4

3
T (F )

))
.

(2.92)

So in the end we have:

β(gs) = − g3
s

16π2

[
11

3
C(A)− nf

4

3
T (F )

]
. (2.93)

While we had to go through a fair amount of work to obtain this one loop beta

function for QCD, the fact that beta functions only depend on the UV divergent

parts of the relevant diagrams makes it possible to derive general forms for the

RGEs for renormalisable, perturbative quantum field theories. In Chapter 5 we will

calculate beta functions for extensions of the Standard Model, and make use of such

general results which have been derived in [48–50] in order to avoid calculating them

all by hand.

The explicit renormalisation group equations of the dominant parameters of the
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Standard Model to one loop order are:

µ
dg1

dµ
=

41

6

g3
1

16π2
(2.94a)

µ
dg2

dµ
= −19

6

g3
2

16π2
(2.94b)

µ
dgs
dµ

= −7
g3
s

16π2
(2.94c)

µ
dyt
dµ

=

(
9yt
2
− 17g2

1

12
− 9g2

2

4
− 8g2

s

)
yt

16π2
(2.94d)

µ
dλ
dµ

=

(
3g4

1

8
+

3g2
1g

2
2

4
+

9g4
2

8
− 6y4

t − (3g2
1 + 9g2

2 − 12y2
t )λ+ 24λ2

)
/(16π2)

(2.94e)

Here yt is Mu
3,3 and hence has a value of ≈ 0.99 at the top pole, and λ =

m2
h

2v2
and

has a value of ≈ 0.13 at the Higgs pole. Note in particular that the β-function for gs
is negative: this means gs will become infinitely large in the IR and we can expect

a perturbative description of the physics at this scale to be impossible to find. We

can solve for αs(Q2) = g2s(Q2)
4π in terms of the value measured at some scale µ2:

αs(Q
2) =

4παs(µ
2)

4π + 7αs(µ2) log(Q
2

µ2
)
. (2.95)

When the denominator becomes 0 this will dynamically define a new scaleQcrit =

ΛQCD. Measurements of the effective coupling have been performed above the scale

where the perturbative description breaks down and confirm this general picture,

see Figure 2.12, and give ΛQCD ≈ 1 GeV. Looking at the form of Equation 2.93

we see that it is exactly the self-interactions among the gluons that give rise to

this behaviour. Note that this feature of SU(3)C has allowed us to generate a

new fundamental scale ΛQCD in our theory through quantum corrections, without

putting it in by hand. This is an example of dimensional transmutation [51] and can

be used to construct extensions to the Standard Model which attempt to explain

the appearance of other scales � ΛPlanck, in particular why the weak scale is so

small. In the UV the coupling instead tends to 0 indicating the theory becomes free

at very high scales, a phenomenon referred to as asymptotic freedom. In Chapter 5

we will investigate the hadron collider phenomenology of secluded dark sectors with

QCD-inspired self-interactions using similar RGE scaling behaviour to generate a

scale that can explain the dark matter relic abundance.
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Figure 2.12: The effective value of αs(µ) = g2s(µ)
4π as extracted at different values of

µ = Q using various observables and methods. Taken from the PDG Review [24].

2.4.7 θ̄ and the Strong CP problem

We can add some additional CP violating Lorentz- and gauge-invariant renormalis-

able operators to the gauge sector:

LCPV =
θ

32π2
εµναβGAµνG

A
αβ +

θ2

32π2
εµναβW I

µνW
I
αβ +

θ1

32π2
εµναβBµνBαβ . (2.96)

These terms arise as a modification of the path integral measure when we per-

form a chiral transformation of a left-handed quark since the chiral symmetry is

anomalous, and similarly for chiral rotations of the other fermion fields (however

since they aren’t charged under all of the GSM subgroups not all three terms are

generated). We can therefore attempt to remove these terms by performing chi-

ral rotations which leave observables invariant. Since the right-handed fields are

uncharged under SU(2)L we can rotate θ2 into the Yukawa couplings using the left-

handed fields and then remove it by rotating the right-handed fields. Similarly we

can use right-handed neutrinos introduced with for example a seesaw mechanism

to rotate θ1 away from the neutrino Yukawas after putting it in there,∗ however

since you can’t lasso a basketball† this term would ultimately not have any physical

effects anyway since all these terms can be rewritten as total derivatives:

∗While this depends on the specific mechanism we use to introduce neutrino masses and mixing,

it is a fairly generic statement that this is possible.
†Or, in a less colloquial manner, πk(U(1)) = 0 for k ≥ 2, where πk is the k-th homotopy group.
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εµναβGaµνG
a
αβ =εµναβ(∂µg

a
ν − ∂νgaµ + gsf

abcgbµg
c
ν)(∂αg

a
β − ∂βgaα + gsf

adegdαg
e
β)

=2εµναβ
[
2(∂µg

a
ν)(∂αg

a
β) + gs(∂µg

a
ν)fadegdαg

e
β + gs(∂αg

a
β)fabcgbµg

c
ν

]
=4εµναβ∂µ

[
gaν∂αg

a
β +

gs
3
fabcgaνg

b
αg

c
β

]
. (2.97)

When there are no non-trivial mappings of spatial infinity S3 unto the group

elements such terms will disappear when converted into a surface integral.

Since qL, uR, dR all transform under SU(3)C we can’t use the Yukawas to rotate

away θ and instead we pick up another contribution θF = − arg det(Y uY d) (where

these are defined as in Section 2.4.4), so we end up with a total coefficient θ̄ = θ−θF .
Since the QCD vacuum has a non-trivial structure thanks to π3(SU(N)) = Z for

N ≥ 2 this term will have physical effects, although they are difficult to calculate

directly in QCD. The so-called Strong CP problem is then why the Yukawa-induced

term seems to almost exactly cancel the bare θ: θ̄ < 10−10. This limit can be set

by calculating the contribution θ̄ would make to the electric dipole moment of the

neutron using chiral perturbation theory [52], which effectively amounts to using a

CCWZ expansion to describe the dynamics of the low-energy QCD bound states

after chiral symmetry breaking.

2.5 Parton distribution functions

When calculating the cross section for a process in proton-proton collisions we have

to take the composite nature of the protons into account. Since the composition

of the proton is determined by non-perturbative physics it is difficult to calculate

analytically, so we parameterise it in terms of so-called parton distribution functions

(PDFs) fi(x) which represent the probability number densities to find a parton i

carrying a momentum fraction x of the proton. These can be fit to experimental

results for well-understood processes, and then used for making predictions for other

processes. Alternatively PDFs can also be calculated using lattice QCD from first

principles [53]. The use of fitted functions to capture low energy non-perturbative

physics implicitly assumes that QCD factorises [54]: this is the statement that

σ = fi ⊗ H + O(ΛQCD/Q), where H is the process-dependent hard function and

Q the hard energy scale Q � ΛQCD. In order to remove infrared divergences from

summing over collinear radiation from the initial state at fixed x we absorb these

into the (now renormalised) PDFs. This introduces an unphysical factorisation scale
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µF which defines the scale at which we probe the proton. Just as parameters in the

lagrangian run with the renormalisation scale, the renormalised fi(x, µF ) run with

µF . From a Wilsonian perspective the situation is however reversed: the cutoff scale

of the theory here is ∼ ΛQCD � Q and we define the bare, finite PDFs at this scale,

and incorporate the effect of integrating up over collinear radiation into the definition

of the renormalised PDFs. Factorisation can then be thought of as an inverse of the

expectation that calculations at the weak scale should be insensitive to the UV

completion of the Standard Model which lead us to only consider renormalisable

operators in the lagrangian: here we instead expect calculations at scales much

higher than ΛQCD to be insensitive to the non-perturbative completion we know

exists, but is difficult to explicitly calculate with. The evolution is given by the

DGLAP equation [55–57]:

µF
d

dµF

(
fqi(x, µF )

fg(x, µF )

)
=
αs
2π

∑
j

∫ 1

x

dξ

ξ

(
Pqiqj (x/ξ) Pqig(x/ξ)

Pgqj (x/ξ) Pgg(x/ξ)

)(
fqj (ξ, µF )

fg(ξ, µF )

)
.

(2.98)

The splitting functions Pij(y) encode the probability that a parton of type j

emits a collinear parton of type i with a fraction y of the momentum of the parent,

and can be calculated from considering g → gg, g → qq̄, and q → qg. Just as with

the renormalisation scale µ, µF should be chosen to be close to the hard scale Q

in order to avoid the reappearance of large logarithms of the type αns logn(Q2/µ2
F )

which this procedure resums. Combining theoretical calculations and experimental

observations in order to create the best PDF fit possible is a crucial ingredient

for calculating any cross section at the LHC. An example PDF fit is shown in

Figure 2.13. The unified PDF interface LHAPDF [58] will be used to access PDF

values throughout this thesis.

2.6 Jets

The infrared divergences associated with collinear radiation discussed in Section 2.5

show up in any process with coloured particles in the final state. The splitting func-

tions Pij(y) are universal and can be used to define a semi-classical approximation

for resumming such collinear radiation down to ΛQCD called the parton shower.

Taking the radiation of a collinear gluon from a quark as an example, this will take

the general form:
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Figure 2.13: Example parton distributions for the proton at µ2
F = 10 and 104 GeV2,

fitted by the NNPDF Collaboration. Taken from [59].

dσ(X → Y q + g) = dσ(X → Y q)dtdz
1

t

[
αs
2π
Pqq(z) +O

(
t

Q2

)]
,

Pqq(z) = C(F )
1 + z2

1− z (2.99)

where z is the energy fraction of the original quark carried by the daughter quark,

and t is a virtuality scale of the splitting such as the resulting mass m2, momentum

transverse to the direction of travel of the original quark k2
T , or αQ

2 where α is the

opening angle and Q2 a hard scale of the process∗. Since we cut off the radiation

at a scale tc ∼ ΛQCD where confinement kicks in and we no longer can perform

perturbative calculations with quarks and gluons this leads to an ultimate upper

bound on z which will in general depend on the choice of t, so we do not have to

worry about the z → 1 pole in Pqq here. Using t = k2
T , the minimum and maximum

values of z are:

∗Different parton shower implementations use different choices of t: the important thing is that

t→ 0 in the collinear limit. Choices which respect angular ordering (k2T and αQ2) turn out to also

model coherent radiation due to the non-zero colour charge of the gluon correctly so are favoured

in practice.
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t1 t2 t3
t0 tc

Figure 2.14: Diagrammatic representation of a parton shower. Q2 ∼ t0 > t1 > t2 >

t3 > tc ∼ ΛQCD and the opening angle tends to become smaller for smaller t. The

radiated gluons also radiate further, so the full parton shower runs Markov Chain

Monte Carlo until all legs are evolved down to ∼ tc. Note that since ∆(ti, tj) ∼
exp(−αs), the resulting jet shape is sensitive to the running of αs.

zmax = 1−
√

t

Q2
, zmin =

√
t

Q2
. (2.100)

This allows us to perform the integral over z:

R(t) =
C(F )

t

αs
2π

∫ 1−
√
t/Q2

√
t/Q2

dz
1 + z2

1− z

=
C(F )

t

αs
2π

[
log

Q2

t
− 3

2
+O

(
t

Q2

)]
. (2.101)

R(t) can be interpreted as the probability of finding a gluon at the scale t. We can

then define the probability to not find any gluons between t and Q2, ∆(Q2, t):

d∆(Q2, t)

dt
= −R(t)∆(Q2, t)

⇒ ∆(Q2, t) = exp

(
−
∫ Q2

t
R(t′)dt′

)

≈ exp

[
−αs

4π
C(F )

(
log2 Q

2

t
− 3 log

Q2

t

)]
. (2.102)

This is called a Sudakov factor and encodes the leading logarithmic resumma-

tion of a gluon radiating from a final state quark in QCD. For example, the rate

for e+e− → qq̄ with no additional resolvable radiation off the quarks is given by the

fixed order cross section times the Sudakov factor for no additional radiation from

Q2 down to the resolvable resolution of the detector (to make this statement precise

we require a mathematically consistent definition of a ’jet’, which will be discussed

below). A diagrammatic representation is shown in Figure 2.14. Recursively radi-

ating partons using a Markov Chain Monte Carlo algorithm from all of the coloured



2.6. Jets 49

legs of a parton level event (generated by unweighting a fixed order calculation)

until all resulting colored legs reach a scale ∼ tc is referred to as parton showering,

since the final multiplicity of colored particles will be very large. After modelling

confinement (in practice done using phenomenological models tuned to data) this

effect means that colored partons in the final state of a fixed order calculation will

appear as collimated collections of colour-neutral hadrons in physical hadron level

events, with roughly the same total momentum as the original parton. These objects

are called jets. In order to define a jet we need to decide on a way to cluster these

particles together. Since we have just determined that the theoretical description of

jets relies on the resummation of collinear and soft radiation, we should use jet clus-

tering algorithms which are collinear and infrared-safe in order to be able to connect

experimental measurements of jets to theory calculations with final state coloured

partons unambiguously [60]. This can be done by using sequential recombination

algorithms, with the following central objects:

dij = min(k2p
t,i , k

2p
t,j)

∆R2
ij

R2
, diB = k2p

t,i (2.103)

where kt,i is the transverse momentum of pseudo-particle∗ i, ∆Rij is the distance

between pseudo-particles i and j in the y − φ plane, and R is an input parameter

called the jet radius. These algorithms proceed by recursively identifying the small-

est d, and:

• if min d = dij , combine i and j into a new object i′.

• if min d = diB, remove i from the event and call it a jet.

Once there are no pseudo-particles left in the event it is completely clustered and

a physics analysis can proceed. The parameter p determines the general behaviour

of the algorithm and there are three common choices:

• p = 1 is the kt algorithm [61], which corresponds to recursively ’un-doing’ the

parton shower algorithm we just described.

• p = 0 is the Cambridge-Aachen algorithm [62], which corresponds to recur-

sively ’un-doing’ an angular-ordered parton shower algorithm.

∗By pseudo we here mean that these also can refer to already clustered collections of particles.
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• p = −1 is the anti-kt algorithm [63], and does not correspond to any theoreti-

cally motivated model for jet formation. However it is infrared and collinear-

safe, and provides circular jets, which makes it very popular among the ex-

perimental collaborations.
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3.1 Known unknowns at short length scales

The Standard Model as presented in the last chapter is well-established as the correct

theory of nature at the short length scales we have managed to probe it at. However

there are several experimental and theoretical observations which suggest it can’t

be the final theory before Quantum Gravity kicks in at the Planck scale. The most

glaring one is the observation of neutrino oscillations [64] which suggests neutrinos

must have mass. This can be achieved by adding a right-handed neutrino field to the

theory, which allows a Dirac mass term to be generated through a Yukawa coupling

as for the other fermion fields. Since the right-handed neutrino would not carry any
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Standard Model charges there would be nothing to stop us from writing a Majorana

mass term which would naively sit at the cutoff scale of the Standard Model:

Lν,mass = −mψ̄LψR −
M

2
ψ̄RψR . (3.1)

Diagonalising the mass matrix we find the eigenvalues to be given by M
2 ±√

m2 + M2

4 ≈ −m2

M ,M . If m ∼ v and M ∼ ΛPlanck we find that the lighter mass

eigenstate has mlight ≈ 10−6 eV and is predominantly left-handed. This method of

generating very small neutrino masses from a large hierarchy is called the see-saw

mechanism [65]. In this sense the observation of very small neutrino masses can be

easily accommodated in the Standard Model, but the mechanism we use to to do

so intrinsically does not predict any further observables at low scales.

Another issue with the Standard Model is the strong CP problem which was

already introduced in Section 2.4.7 as the absence of an allowed total derivative

term which would generate physical effects through topologically non-trivial gauge

configurations. It was shown that the coefficient of this term is given by θ̄ = θ −
arg det(Y uY d) < 10−10, and there must therefore be an almost perfect cancellation

between the two contributing parameters. However θ is naively an O(1) parameter

of QCD, and arg det(Y uY d) is an O(1) parameter of the electroweak sector, so there

is no reason to believe they should cancel in this way. This is an example of fine-

tuning, where different parameters of a theory are forced to take very particular

values for no discernable reason. The strong CP problem is therefore another major

motivation for the existence of physics beyond the Standard Model (BSM). Solutions

to this problem usually introduce new light scalars called axions.

3.1.1 The Nature of Electroweak Symmetry Breaking

A third issue is the so-called hierarchy problem, which is the question of why the

weak scale is ∼ 100 GeV when quantum corrections naively bring it to the cutoff

scale ΛCO of the theory∗. Technically this shows up as large quantum corrections

to the physical mass term of the Higgs boson mh
P : when calculating generic mass

corrections at the cutoff scale, these will naively add terms ∝ ΛCO to the bare

masses in the theory. This turns out not to be true for the mass terms mi
B of the

gauge bosons and fermions of the Standard Model since these are protected by the

∗See for example [66] for a modern discussion on the merits of the hierarchy problem as pre-

sented here.
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custodial symmetries∗ which the mass terms have broken. Since these symmetries

are exact when mi
B → 0, quantum corrections must be ∝ mi

B, explaining why we

don’t necessarily expect mi
P ∼ ΛCO.

The Higgs boson, as a fundamental scalar, is not protected by any custodial

symmetry so we would therefore expect that the pole mass at the cutoff is given

by m2
P = m2

B + Σ(m2
B) ≈ m2

B + Λ2
CO where Σ(m2

B) are real corrections to the

self-energy. This can be shown explicitly by calculating the self-energy contribution

from a heavy fermion with mass M ≈ ΛCO, the diagram on the left in Figure 3.1.

This loop calculation is similar to that done in Section 2.3 but with an explicit mass

term M for the particles in the loop, and we keep all the numerator terms to make

sure we do not miss any cancellations†:

iΣh(p2) ⊃ µ4−dy2

∫
ddl

(2π)d
Tr
[
(/l − /p+M)(/l +M)

]
((l − p)2 −M2)(l2 −M2)

= µ4−dy2

∫
ddl

(2π)d
4(M2 + l2 − l.p)

((l − p)2 −M2)(l2 −M2)

=
iy2

16π2

(
20M2 − 4p2 + 2(6M2 − p2)(

1

ε
+ log

µ2

M2
) + f(p2,M2)

)
. (3.2)

Here f(p2,M2) is a function with a branch cut that starts at p2 = 4M2 and

extends to p2 = ∞. We will assume we are calculating at the cutoff of the theory

and assume it is the Planck scale, so p2 = µ2 = M2 = (1018 GeV)2, and similarly

assume y = 1 as a reasonable value for the coupling. Since we are at the cutoff we

ignore the ε term. This gives:

Σh(Λ2
Planck) ≈ 5

16π2
× 1036 GeV2 . (3.3)

To have a pole mass at mP = 125 GeV if the cutoff is at the Planck scale would

therefore require that m2
B = (− 5

16π2 + 10−32)Λ2
Planck at one loop, if this diagram

is the only contribution (diagrams with particles with masses ∼ v will of course

also contribute but only with terms ∼ v2, and do not change the overall argument).

This fine-tuning of the bare parameter value to an order of 10−32 is the hierarchy

problem, and shows up whenever we take the cutoff of the Standard Model to be

� v.
∗In the case of the gauge bosons, gauge invariance, and in the case of the fermions, chiral

symmetry.
†I will again use PackageX [47] to perform the integral.
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l − p

p

W/Z

Figure 3.1: Representative diagrams contributing to the Higgs boson self-energy.

Solutions to the hierarchy problem typically modify the Higgs sector of the Stan-

dard Model in order to for example introduce additional symmetries which ensure

cancellations in the self-energy calculation. In other words, the hierarchy problem

is deeply related to the question of what the underlying nature of electroweak sym-

metry breaking is in the Standard Model. Most extensions to the Standard Model

designed to solve the hierarchy problem predict that the higher order terms in the

Higgs potential such as λ3 discussed in Section 2.4.2.2 are modified from the Stan-

dard Model expectation, λ3 6= λ3
SM. This is for example a generic feature of Two

Higgs Doublet Models [67] and hence models of supersymmetry, and models where

the Higgs is a bound state of a new strongly interacting sector rather than an ele-

mentary particle [68]. Therefore measuring the coefficients of the higher order terms

is not just a precision test of the Standard Model itself: it also provides considerable

insight into the specific mechanism of electroweak symmetry breaking nature has

employed and hence potentially allows physics beyond the Standard Model to be

indirectly discovered, even if the LHC does not find any new resonant states within

its energy range. The study of hhjj production in Chapter 6 is in this sense a study

of Beyond the Standard Model physics, even if the main topic is a measurement of

the Higgs trilinear coupling.

Another avenue to study the hierarchy problem if no new resonant states are

produced is to measure the Standard Model parameters that go into the Higgs

self-energy calculation. In dimensional regularisation there is strictly speaking no

hierarchy problem in the Standard Model itself: it only shows up when we explicitly

introduce new, heavy states into our theory as above. In order to remain model-

independent in our treatment it could therefore be argued we should first calculate

and measure the dominant Standard Model contributions before worrying about

hypothetical new physics: the leading one is given by the top Yukawa coupling
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yt through a similar diagram as that calculated above with y = yt ≈ 0.93 and

M = mt ≈ 163 GeV in MS, which gives a difference between the pole and MS

masses

√
m2
P−m2

MS
mP

of order ≤ 1% if mP = 125 GeV using the result in Equation 3.2.

The absolute size of this correction is insensitive to the pole mass of the Higgs boson,

however: ifmP = 80 GeV the correction would be of the order 15%, and formP ≤ 40

GeV over 100%. The underlying cause is the large top mass and hence large size of

the top Yukawa coupling, yt ≈ 1. This suggests the top quark could play a special

role in electroweak symmetry breaking, and motivates the study of the top quark

sector as a proxy for its dynamics. In Chapter 7 we will present a study of the use of

top polarisation measurements for constraining a Randall-Sundrum model [22, 23]

designed to solve the hierarchy problem and explain the Yukawa structure of the

Standard Model, and show how such measurements allow the top sector to provide

additional sensitivity to the underlying dynamics.

The first subleading contribution to the Higgs self-energy comes from quartic

hhV †V couplings in diagrams of the type on the right in Figure 3.1. Much like

the Higgs trilinear and quartic self-couplings these are predicted by the Standard

Model through our assumptions about the Electroweak Symmetry Breaking mech-

anism employed by nature, but can be generically modified in extensions which

expand or change the Higgs sector. These quartic hhV †V couplings are difficult

to directly measure at the LHC. However they do contribute to the vector boson

fusion component of hhjj production: in Chapter 6 we will therefore also show how

a measurement of hhjj production can be used to constrain their values.

3.2 Known unknowns at long length scales

There is another group of known unknowns which tell us there must be some beyond

the Standard Model physics. Unlike the ones discussed so far they are all related to

astronomical and cosmological observations, and we connect them to short length

scale particle physics by considering the evolution of the universe as it cools down

after the big bang.

One such unexplained phenomenon is the baryon anti-baryon asymmetry of the

universe. While the complex phase of the CKM matrix and the θ̄ angle are sources

of CP violation, they are not sufficient to explain the observed baryon dominance

as outlined by the Sakharov conditions [69]. These state that in order to generate

a baryon anti-baryon asymmetry, the following must be true in the early universe:
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• Baryon number is violated.

• C and CP is violated.

• There are interactions out of thermal equilibrium.

Baryon number is violated in the Standard Model by non-perturbative effects,

but again not to a great enough extent to generate the observed asymmetry. Intro-

ducing sufficient sources for baryon number and CP violation, and a strong enough

phase transition to keep the universe sufficiently out of equilibrium as it cools, are

major motivations for introducing BSM physics. One avenue to introduce additional

CP violation and a stronger phase transition into the Standard Model is modifica-

tions to the Higgs sector. CP violating effects in the Higgs sector, parameterised in

terms of effective operators, will be studied in Chapter 6.

As alluded to above, the Standard Model does not include a quantum description

of gravity. It is possible to construct a general effective quantum theory of a massless

spin-2 boson which turns out to be equivalent to General Relativity at low energies

[70] when the cutoff is given by the Planck scale. This suggests that whatever the

quantum gravity UV completion is, it is expected to behave like General Relativity

all the way up to the Planck scale. The experimental discovery of an accelerated rate

of expansion of the universe [71] suggests a non-zero cosmological constant ρ. This

constant ρ faces a similar hierarchy problems as the Higgs mass in that quantum

corrections would be expected to bring it to the cutoff of the theory ρ ∼ (ΛCO)4

but it is measured to be ρ . (mEV)4. Searches for some types of solutions to this

cosmological constant problem can be performed at the LHC [72,73].

A final known unknown is the apparent presence of large quantities of non-

interacting matter throughout the universe that can be inferred from a range of

astronomical and cosmological observations over a large range of length and energy

scales. This matter is called dark matter and since searches for particle physics

descriptions of it will be the topic of Chapters 4 and 5 we will discuss it in more

detail in the next section.

3.2.1 Dark Matter

The existence of dark matter is heavily implied by a number of observations. In

chronological order these include for example Zwicky’s observations of the radial

velocity dispersion of galaxies in the Coma cluster [74], Babcock’s observation of
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Figure 3.2: Diagram of the setup for the rotational velocity calculation.

the rotational velocity curve of the Andromeda galaxy [75], and Ostriker’s and Pee-

bles’ numerical observation that the presence of a massive non-interacting spherical

component (halo) is required to stabilise the kinematics of galaxy disks [76]. More

recently the combination of X-ray spectroscopy of the visible matter and gravitional

lensing analysis of the total matter content of the Bullet cluster, created from the

collision of two other clusters, strongly indicates the presence of large amounts of

invisible, non-interacting matter distributed in halos around the two original clus-

ters. This has ruled out alternative explanations which modify gravitional inter-

actions rather than the matter content [77]. The current cosmological ’Standard

Model’ ΛCDM also requires a large dark matter component to overcome the ther-

mal and radiation pressure of baryonic matter in the early universe in order to allow

galaxy and star formation which matches observations [78] and to explain observed

anisotropies in the Cosmic Microwave Background [79].

Focusing on the rotational velocity of spiral galaxies we can calculate the ex-

pected result in Newtonian gravity with and without a dark matter halo. When

there is no dark matter present the gravitional potential Φ is dominated by a disk-

shaped core with a radius a and height b that we will assume has constant density.

A sketch of the setup is given in Figure 3.2. In cylindrical coordinates the potential

can then be approximated by a Miyamoto-Nagai form [80]:

Φdisk(r, z) = − GNMdisk(
r2 + (a+

√
b2 + z2)2

)1/2
. (3.4)

In a gravitional potential the rotational velocity of an orbiting object is found by

balancing the transverse acceleration against the potential, so vrot =
√
r dΦ
dr which

gives:
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vrot, no DM(r) =

√√√√ GNMdiskr2(
r2 + (a+

√
b2 + z2)2

)3/2
. (3.5)

Adding a sphere of radius R with uniform density and a total mass MDM which

envelops the disk (a dark matter halo) modifies the potential as follows:

Φdisk+sphere(r, z) = − GNMdisk(
r2 + (a+

√
b2 + z2)2

)1/2
− GNMDM(3R2 − r2)

2R3
. (3.6)

This gives the following rotational velocity:

vrot, sphere(r) =

√√√√ GNMdiskr2(
r2 + (a+

√
b2 + z2)2

)3/2
+
GNMDMr2

R3
. (3.7)

For more a more realistic description of the dark matter distribution we can use

the Navarro-Frenk-White (NFW) [81] density:

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 . (3.8)

Following through the same calculation gives the following rotational velocity:

vrot, NFW(r) =

[
GNMdiskr

2(
r2 + (a2 +

√
b2 + z22

)3/2

+4πGNρ0

(
R3
s log(1 + r/Rs)

r
− R2

s

1 + r/Rs

)]1/2

. (3.9)

The results along the z = 0 axis, with typical and comparable values used for

the free parameters∗, are shown in Figure 3.3. The rotation curve of the Milky

Way is presented in Figure 3.4 for comparison, and shows clearly that the observed

values are incompatible with only the visible disk contributing to the gravitational

potential, whereas a dark matter halo with a NFW density profile fits the data well.

∗In order to define the total mass in the NFW case we need to cut off the integral, which is

done at 5Rs which corresponds to a typical value for a spiral galaxy.
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Figure 3.3: Galaxy rotation curves without a dark matter halo, with a uniform

spherical dark matter halo, and with a NFW dark matter halo. MDM/Mdisk = 5,

a = 1, b = 1/2, R/a = Rs/a = 20.

3.2.1.1 Calculating the Relic Density

Building a short length quantum field theory description of dark matter requires

us to consider how such a model would generate the astronomical signals outlined

at the start of the last section. The first thing to make sure is that it can explain

the total dark matter abundance at the current time, Ωdh
2 ≈ 0.12 [83]. Here

Ωd = ρd
ρc

where ρc is the critical density which exactly defines a flat universe, and

h = H0

100 km s−1 Mpc−1 ≈ 0.7 is the dimensionless Hubble constant, where the Hubble

constant itself is defined as H0 = ṙ
r .

In the ΛCDM paradigm this is assumed to be a thermal relic of a stable particle

χ which was frozen out as the universe cooled down: in the early universe the dark

matter is in thermal equilibrium with the Standard Model particles f :

χχ̄↔ ff̄ . (3.10)

As the temperature falls below the mass of χ it stops being produced and its

yield Y = nχ/s (where nχ is the number density of χ and s is the total entropy of
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Figure 3.4: Rotation curve of the Milky Way. Taken from [82]. We have ignored

the dense core or bulge in our calculations, but for R > 3 kpc it is clear that a dark

matter halo is required to explain the observed values for the rotational velocity.

Note that the iso model here does not correspond to our uniform model.

the universe∗) starts falling exponentially as a result of one-sided 2→ 2 annihilation

processes into Standard Model states:

χχ̄→ ff̄ . (3.11)

However at some point nχ becomes low enough that the annihilation effectively

stops since the absolute density is too low for 2→ 2 annihilation processes to occur.

After this freeze-out Y is almost constant and taking t→∞ corresponds to the relic

density today. This kind of out-of-equilibrium behaviour is statistically described by

a Boltzmann equation which in terms of our definition of the yield Y and x = mχ/T

is given by†:

dY

dx
= − 1

x2

s(mχ)

H(mχ)
〈σv〉(Y 2 − Y 2

eq) . (3.12)

∗Introduced as a shorthand to normalise for the expansion of the universe.
†We will follow Flip Tanedo’s notes [84] in the treatment of the Boltzmann equation.
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The relevant cosmological quantities are:

s(T ) =
2π2

45
g∗sT 3 (3.13)

H(T )2 =
8π

3
GNρ(T ) (3.14)

ρR(T ) =
π2

30
g∗T 4 (3.15)

Yeq =g

(
mχT

2π

)3/2

e−mχ/T ×
(

2π2

45
g∗sT 3

)−1

= 0.145
g

g∗s
x3/2e−x . (3.16)

Here we used the non-relativistic expression for the number density nχ when cal-

culating the equilibrium yield Yeq. We will assume that for the purposes of the

freeze-out calculation the universe is radiation-dominated so ρ ≈ ρR. g is the inter-

nal number of degrees of freedom for the dark matter particle. g∗s and g∗ are the

effective relativistic degrees of freedom for the entropy and energy density respec-

tively, and are defined as:

g =
∑

bosons

gi

(
Ti
T

)n
+

7

8

∑
fermions

gi

(
Ti
T

)n
, (3.17)

where n = 3 for g∗s and n = 4 for g∗. Here T is the temperature of the background

plasma which is assumed to be in equilibrium. For T > 1 MeV∗ g∗s = g∗ holds to a

good approximation [85] so they are interchangeable for the temperatures we con-

sider, but we will keep them separate for clarity. They are approximately constant

with g∗(s) ≈ 100 above the electroweak scale, below which they start falling.

We can expand the thermally averaged cross section in powers of the velocity:

〈σv〉 = 〈σv〉0vp +O(vp+2) . (3.18)

We will assume s-wave annihilation dominates, so p = 0. Equation 3.12 is

difficult to solve numerically since there are many relevant scales that contribute

in the freeze-out region: Y 2 ≈ Y 2
eq � Y 2 − Y 2

eq � 〈σv〉0. We therefore multiply

through both sides of Equation 3.12 by s(mχ)
H(mχ)〈σv〉0 to get:

dy

dx
= − 1

x2

(
y2 − y2

eq

)
, yeq = 0.145

g

g∗s

s(mχ)

H(mχ)
〈σv〉0x3/2e−x . (3.19)

This equation should be easier to numerically solve since the relevant scales are

now reduced to y2 ≈ y2
eq � y2−y2

eq. We will choose representative parameter values

∗This is when neutrinos decouple and we no longer have Tν = T .
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Figure 3.5: The equilibrium scaled yield yeq and the actual scaled yield y as a

function of x = mχ/T .

which ensure freeze-out occurs at T ∼ v and approximate g∗(s) = 100∗, and take

g = 2 which corresponds to Majorana fermion dark matter. Expanding everything

out and plugging in values:

yeq = 0.192
g√
g∗

mχ√
8πGN

〈σv〉0x3/2e−x = 0.0384
mχ√
8πGN

〈σv〉0x3/2e−x . (3.20)

As a boundary condition we use that y = yeq at small x, for example at x = 1

(going to smaller x would not be justified since we used the non-relativistic expres-

sion for the number density of χ). The remaining free parameters are mχ which

is set to 1 TeV, and 〈σv〉0 which we set to 10−10 GeV−2 = 39 fb, corresponding

to typical weak scale values. With these we can numerically solve the Boltzmann

equation. The result is plotted in Figure 3.5.

To convert to the relic abundance we use:

ρd = mχY∞s0 = mχ
s0

s(mχ)

H(mχ)

〈σv〉0
y∞ . (3.21)

∗The solution could be improved by correctly taking the T dependence of g∗(s) into account,

but this ultimately has a small effect on the final result so we neglect it here.
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Here Y∞ is the yield at large x (or equivalently as t → ∞) and we have converted

this to a form where we can use our numerical answer y∞ ≈ 21.3. This requires the

entropy of the universe today, s0 = 2890 cm−3. Plugging in values again∗:

Ωd =
ρd
ρc

=

√
8πGN s0 y∞

1.32
√
g∗ 〈σv〉0

× 8πGN
3H2

0

=
1.84

h2
. (3.25)

So our parameter choices overproduce dark matter by about an order of mag-

nitude since we want Ωdh
2 = 0.12. In order to get the correct relic abundance we

therefore have to increase the thermally averaged interaction cross section 〈σv〉0 and

recalculate y∞. In general y∞ does not depend strongly on 〈σv〉0 so to a first order

we can approximate the required 〈σv〉∗0 by:

Ωd

Ω∗d
∝ 〈σv〉

∗
0

〈σv〉0
, (3.26)

which means we could reproduce the correct relic abundance if our model predicted

a ∼ 15 times higher annihilation cross section. Calculations of this type will be used

in Chapter 4 in order to estimate the sensitivity of the LHC to the full parameter

space of a realistic dark matter model.

Note that a thermal freeze-out is only one of many possible mechanisms pro-

posed for generating a dark matter relic density. It is the most popular one thanks

to the feature we’ve just demonstrated: it gives the correct abundance for roughly

weak-scale values for the mass of the dark matter particle mχ and the annihilation

cross section 〈σv〉0. This is referred to as the Weakly Interacting Massive Particle

(WIMP) miracle and has motivated searches for heavy, stable, and neutral particles

at both direct detection experiments [86] and colliders [87]. In Chapter 4 we will

present a study of a Simplified Dark Matter model, which is a minimalistic extension

of the Standard Model incorporating a WIMP dark matter candidate. Other mech-

anisms include the freeze-in of very weakly interacting massive particles [88], and

independent freeze-out in an almost entirely secluded dark sector through 3 → 2

interactions, where very weak interactions with the Standard Model are used to

transfer the extra heat from these annihilations into the Standard Model sector [89].
∗In GeV these are given by:

GN =6.707× 10−39 GeV−2 (3.22)

H0 =2.131× 10−42 GeV h (3.23)

s0 =2890× (1.98× 10−14 GeV)3 (3.24)
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3.2.1.2 Other Large Scale Constraints

Another strong constraint on the nature of dark matter comes from observations

of the the current cosmic structure. In particular it is well-known that a strictly

top-down model of structure formation is disfavored by experiment, see Figure 3.6.

This rules out hot dark matter models where the dark matter is relativistic and

forms large structures first, before eventually forming smaller scale structure. Nu-

merical simulations show that this top-down structure formation creates a cutoff in

the density fluctuations at shorter correlation lengths which is not observed. Cold

and warm dark matter models, where none or only a fraction of the dark matter is

relativistic, instead produce bottom-up structure formation, where small scale struc-

tures are created first and later cluster into larger scale structures. This leads to a

smoother curve of density fluctuations and no cutoff at smaller correlation lengths,

in agreement with observations [90].

The relic abundance and bottom-up structure formation are only two of many

large scale observations that a quantum field theory description of dark matter

should address. However from a practical perspective they are often the most useful

ones, since many of the other observations come with considerable caveats attached:

ΛCDM is for example known to have many apparent issues when comparing state-of-

the-art numerical simulations with modern experimental observations, including the

core vs cusp [92], too-big-to-fail [93], missing satellite [94] and Tully-Fisher Galaxy

Halo [95–97] problems. Whether these are caused by the limited resolution of current

numerical simulations, a local statistical fluctuation in the region of the universe we

are able to observe, or are genuine physical effects is difficult to ascertain. However

as constraints on WIMPs of the type we discussed in the last section have become

stronger, these failures of ΛCDM can be used to provide hints for new directions

to explore. In particular all of the afore-mentioned issues could be ameliorated

by self-interactions among the dark matter particles [98]. In self-interacting DM

scenarios an energy transfer from the outer hotter region of the halo to the central

colder region can produce a core structure in agreement with current observations.

In addition, the number of Milky Way satellite galaxies is significantly reduced. A

search strategy for specific signatures of such self-interacting dark matter at the

LHC and future hadron colliders is investigated in Chapter 5.
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Figure 3.6: Density fluctuations of the universe as a function of correlation length

as measured by different experiments [91]. The right side of the plot corresponds

to long-length, pre-galaxy formation fluctuations, whereas left side corresponds to

increasingly short-length fluctuations. The blue line is a ΛCDM fit which strongly

favours cold or warm dark matter with bottom-up structure formation, as hot dark

matter would result in a cutoff in the short-length correlations due to the top-down

structure formation it predicts.

3.3 Statistics in searches for Beyond Standard Model

physics

Since we will be interested in making statements about the (non-)existence of physics

beyond the Standard Model, we have to define a way to quantify agreement or

disagreement with a model hypothesis. We will in general employ the Modified

Frequentist confidence level CLs as outlined in [99], using a Poissonian likelihood

ratio as our test statistic. Using binned events:

X =

bins∏
i

Poisson(di|si + bi)

Poisson(di|bi)
=

bins∏
i

e−µsi
(

1 +
µsi
bi

)di
(3.27)
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where si, bi and di are the expected number of signal and background, and observed

number of events for each bin respectively. Using the likelihood ratio we can compute

the observed value of the test statistic Xobs by using the actual observed number

of events for di (when calculating projections we can use di = bi instead), and then

calculate the probabilities of observing a smaller test statistic X for the background

and background+signal models by Monte Carlo sampling the predicted distributions

of di:

CLs+b =Ps+b (X < Xobs) , (3.28)

CLb =Pb (X < Xobs) , (3.29)

CLs =CLs+b/CLb . (3.30)

A value of CLs < 0.05 is interpreted as excluding the corresponding value of

µ at 95% confidence level [100]. This setup is similar to those used by the LHC

experiments: the biggest differences will be introduced when considering systematic

uncertainties in distributions with more than one bin. Without detailed under-

standing of the experiments it is impossible to determine the correct correlation

matrix.

For discussions later in Chapter 7 it is useful to clarify the relation between this

simple statistical setup, the Fisher information of the full available phase space, and

machine learning algorithms often in use by the experiments∗. We will denote the

true parameter values of our model g, and measurements of these parameters ĝ.

Assuming our measurements are not perfect, ĝ will follow a probability distribution

f(ĝ|g). If our measurements are unbiased, the expectation value of a parameter

value ḡi is equal to its true value:

ḡi ≡ E[ĝi|g] = gi . (3.31)

The precision with which we can relate our measurements to the true parameters

is encoded in the covariance matrix:

Cij(g) ≡ E[(ĝi − ḡi)(ĝj − ḡj)|g] . (3.32)

In our case we will extract the f(ĝ|g) relation between true parameter values and

measured values using Monte Carlo simulations of both the theory model and the

∗This section is partly based on [101] where we borrow our notation from.
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detector response. If we can calculate it exactly, we can define the Fisher information

matrix:

Iij(g) ≡ −E
[
∂2 log f(ĝ|g)

∂gi∂gj

∣∣∣∣g] . (3.33)

The Cramér-Rao [102] bound states that the values of the covariance matrix in

Equation 3.32 are bounded from below by the inverse Fisher information:

Cij ≥ (I−1)ij . (3.34)

That is, if we can calculate the Fisher information, we are guaranteed to be

able to access all of the available information in the measurements made. The

Fisher information is invariant under reparameterisations of ĝ [101], so since the

LHC experiments typically make measurements of physical observables x and bin

these in phase space points xi, we rewrite f(ĝ|g):

f(ĝ|g)→ f(x|g) = Poisson(σ̂|σ(g))
∏
i

f (1)(xi|g) . (3.35)

Here we have factorised out the total normalisation σ(g) and the total ob-

served event rate σ̂ from the single event normalised phase space probability density

f (1)(xi|g). σ(g) is of course given by the total event rate from a Monte Carlo simula-

tion, and f (1)(xi|g) contains all of the shape information from the same simulation.

To a good approximation the Fisher information contained in a distribution can be

approximated with Poissonian likelihoods like we do in this thesis: it is only terms

in f (1)(xi|g) which are nonlinear in g which break the equivalence. To be explicit,

for a bin r with an expected number of events σr(g) and an observed number σ̂r,

the Poisson likelihood is:

Lr(g) = Poisson(σ̂r|σr(g)) = σr(g)σ̂re−σr(g) . (3.36)

The total likelihood for several bins is then given by:

Ltot(g) =
∏
r

Lr = Lnorm(g)Lshape(g),

Lnorm(g) = σ(g)σ̂e−σ(g), Lshape(g) =
∏
r

(
σr(g)

σ(g)

)σ̂r
(3.37)
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Figure 3.7: Fisher information in weak boson fusion Higgs production for a number

of effective operator extensions to the Standard Model with various selections applied

to the phase space and for various combinations of observables. Taken from [101].

where σ̂ is the total number of observed events. This shows that a Poissonian

likelihood factorises in the same way into a term which contains information about

the total normalisation and is identical to the term which we derived from the

general phase-space probability distribution, and another term which contains all

shape-related information [103].

If we only measure the total cross section in our experiment, the shape informa-

tion is trivial and the Fisher information is effectively given by differentiating the

cross section with respect to the theory parameters. In general, the act of binning

the continuous underlying distribution will always reduce or at best keep the Fisher

information constant. Similarly, the act of selecting only specific phase space regions

(applying cuts) will always reduce the amount of information in the distributions.

This is demonstrated in Figure 3.7.

Having established the statistical framework in which we consider LHC analyses,

we might wonder why the experiments (and phenomenologists, as will become clear

in this thesis) apply selections on their data before performing limit setting, if they

are guaranteed to lose information when doing so. Triggers are, of course, easy to

understand: it is simply impossible to store all collision data, so the phase space

needs to be cut down for practical purposes. However beyond this the situation is

more subtle. One, it would still be computationally prohibitive to calculate f(x|g)
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from first principles with only trigger-level data in most cases. Two, when using such

an inclusive phase space we have to rely on theoretical extrapolations to describe for

example the parts of phase space which are described by non-perturbative physics,

and experimental extrapolations to describe the detector response for far corners

of observables. It is arguably the second point which makes an inclusive approach

impossible: limits calculated in such a way would not be reliable unless we could be

certain the models used to generate the physics and detector response distributions

were completely valid (or at least provided reliable errors) for the entire, incredibly

high-dimensional phase space.

However the first point is also important. Techniques for extracting information

from very high-dimensional distributions in a computationally efficient manner have

been developed over the recent decades, with neural networks and boosted decision

trees having seen widespread use also by particle physics experiments. Since these

techniques operate on the continuous phase space they can in theory retain the

full Fisher information of the considered observables. The well-known Universal

Approximation Theorem for neural networks [104, 105] states that a single-hidden-

layer network can represent a general degree d polynomial in a compact Rn space

as long as it has O(nd) hidden neurons. This means that an infinite-sized network

with an infinite amount of training data (under otherwise reasonable assumptions

about activation functions) will always be able to represent the optimal mapping

of f (1)(x|g) → f (1)(o|g), where o is a (potentially one-dimensional) output which

encodes all of the shape information in the full, high-dimensional x distribution∗.

There are of course many practical problems which make this very difficult to achieve

in practice, such as local minima in the weight distribution which can ’trap’ the

training in a suboptimal position, overfitting on limited data sets, and questions

of if (and if so, how) a network is ever guaranteed to be able to find this optimal

configuration. It has recently been proven [106] that a one-hidden-layer network

with complex weights using standard gradient descent training will always be able

to find the optimal configuration, and that there are no robust local minima in this

setup. Such results are mainly of theoretical interest and have little relevance to

the practical application of neural networks and similar algorithms. However, even

without a complete understanding of the underlying mechanics of neural networks

their real-world performance has shown them to be very useful for the types of

problems discussed in this section. In practice these methods are already used by

∗In practice all distributions used in a particle physics context will be compact by design.
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the experiments to access much more of the full shape information f (1)(x|g) than

they could using simple cut-and-count experiments.

These techniques still run into the same issues as mentioned above if considering

observables which we are not confident are well-described by our theoretical and

experimental models, but do at least provide a computationally feasible way to make

use of shape information from a reasonable number of well-modelled observables.

3.4 Beyond the Standard Model physics at the LHC

Having thus introduced the Standard Model and some of its problems, the remainder

of this thesis will be devoted to specific studies into the phenomenology of extensions

which could solve some of these shortcomings. The following two chapters will be

concerned with searches for a microscopic model of dark matter at the LHC:

• In Chapter 4 we will study the phenomenology of a so-called Simplified Model

of dark matter, which can be viewed as a minimalistic extension of the Stan-

dard Model introduced only to explain dark matter.

• In Chapter 5 we will calculate the RGEs for a mostly secluded dark sector

extension, and investigate if quantum corrections can be used to study the

internal structure of such a dark sector at a hadron collider.

Having considered ways to introduce dark matter extensions to the Standard

Model, we will return to the hierarchy problem and the nature of electroweak sym-

metry breaking more generally in Chapters 6 and 7:

• In Chapter 6 we will study the phenomenology of di-Higgs + 2 jet production,

and show that a future measurement can be used to constrain the trilinear

Higgs self-coupling, quartic V †V hh interactions, and CP violating effects in

the Higgs sector.

• In Chapter 7 we will show how a measurement of the top polarisation in

resonant top pair production can be used to improve sensitivity to generic new

physics in the top sector, using a Randall-Sundrum model as a benchmark.



Chapter 4

Simplified Dark Matter Model

Phenomenology

4.1 Attribution Notice

This chapter is based on results first presented in [1] which I wrote together with

Dr. Thomas Jacques. I performed all of the calculations except for the relic density

scan and created all of the original figures.

Contents
4.1 Attribution Notice . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Motivating Simplified Dark Matter Models . . . . . . . . . . 72

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Reinterpreting Monojet Constraints . . . . . . . . . . . . . . 76

4.6 Including Relic Density Constraints . . . . . . . . . . . . . . 78

4.7 Validation of Procedure using EFT Limits . . . . . . . . . . 79

4.8 Validation of Cross Section Reweighting . . . . . . . . . . . 80

4.9 20.3 fb−1 8 TeV Limits . . . . . . . . . . . . . . . . . . . . . . 80

4.9.1 Discussion of constraints . . . . . . . . . . . . . . . . . . . . . 81

4.9.2 Limits from dijet resonance searches . . . . . . . . . . . . . . 82

4.10 14 TeV Predictions . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Comparison to ATLAS 13 TeV results . . . . . . . . . . . . . 86

4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Summary

Run II of the LHC has seen the experiments move towards the adoption of so-

called Simplified Dark Matter models in order to set stronger and more robust
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constraints on the dark sector [107,108]. In these models we introduce both a stable

dark matter particle χ and a mediating particle, which together can be used to

generate the observed relic abundance in the thermal freeze-out paradigm. However

the generality of these models necessarily introduces a large number of a priori

free parameters that need to be considered and makes general scans difficult to

perform. In this chapter we will make use of the monojet + missing energy channel

to constrain a representative simplified model with the dark matter coupling to an

axial-vector Z ′ over the full parameter space, and investigate the validity of a narrow

width approximation to greatly reduce the computational demands of doing so. We

validate our analysis and the approximation using an early ATLAS 8 TeV dataset,

provide limits using the full ATLAS 8 TeV dataset, and provide predictions for

limits that can be set with 20 fb−1 of 14 TeV data. Our technique provides a broad

benchmark for comparing constraints on simplified models, which we demonstrate

by comparing to actual limits on our model from the recently published ATLAS 13

TeV monojet search, which agree very well with our 14 TeV predictions and suggest

a move towards constraining the full parameter space is computationally feasible

using a narrow width approximation.

4.3 Motivating Simplified Dark Matter Models

Run I of the LHC saw EFTs become a popular framework with which to constrain the

dark sector [109]. In the simplest cases, the dark couplings and mediator masses can

be combined into a single effective energy scale, Λ, leaving this and the dark matter

mass, mχ, as the only free parameters for each effective operator. EFT constraints

have the advantage of being relatively model-independent, allowing constraints to

be placed across a broad range of models and parameters. In addition they facilitate

an easy comparison with direct detection experiments via the shared energy scale Λ.

However it is clear that EFTs must be used with extreme care at LHC energies, where

the typical momentum transfer is large enough that the momentum expansion used

in the construction of the EFT can not be assumed to be valid. At these energies

and luminosities the energy carried by the mediator can be larger than the mediator

mass, violating the expansion, except in the case of large mediator masses or for dark

sector couplings approaching the perturbativity limit [110]. Depending on the mass

and width of the mediator, this can lead to EFT constraints that are either stronger

or weaker than the constraints would be on a more complete model, reducing their
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utility and making their validity questionable.

One solution is to rescale EFT constraints by truncating the simulated signal

such that only events for which the EFT approximation are valid are used to derive

constraints [111–113]. This weakens constraints but at the same time makes them

substantially more robust, which is critical when considering bounds on Beyond

Standard Model parameters. Whilst this technique has the advantage of maintaining

some of the elegance of EFTs, it also has the serious disadvantage that it does not

make full use of all potential signal events available in a more complete model and

so does not address the region of parameter space where EFT constraints are too

weak. To constrain this region we need to consider models where the mediator can

be resolved. On the other hand, the parameter space of full, well-motivated models

such as supersymmetry [114] or extra dimensions [115] is broad, and by focusing

solely on such models we run the risk of missing more generic signatures of the dark

sector.

Hence, the usage of simplified models where the model is expanded to include an

explicit mediator has become the accepted practice [107, 108, 116–119]. Simplified

models have the advantage of a relatively small set of free parameters, and do

not encounter the same validity problems as EFTs. However the parameter space

is still larger than for EFTs, which often necessitates arbitrary choices for one or

more parameters in order to constrain the remaining free parameters. Here we will

instead leave the dark matter mass, mediator mass, and coupling strengths all as

free parameters which we scan over and constrain in contours. We will use publicly

available ATLAS constraints on the monojet + missing energy channel to constrain

a simplified model with dark matter coupling to the standard model via exchange of

an axial-vector Z ′ mediator, and show that the use of a narrow width approximation

makes a scan of the full parameter space feasible.

In Section 4.4, we outline the choice of simplified model that we will be constrain-

ing, and discuss modelling issues surrounding the width of the vector mediator. In

Section 4.5, we describe our technique for converting the model-independent con-

straints on the visible monojet cross section into constraints on this simplified model.

In Section 4.7 we validate the constraints we get from our analysis against published

ATLAS results for an EFT model and in Section 4.8 we validate the cross section

reweighting with a narrow width approximation. In 4.9 and 4.10 we present our

results. Our 14 TeV predictions are compared to recently published ATLAS 13 TeV

results in Section 4.11. We conclude in Section 4.12.
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4.4 Model

We consider a widely-used benchmark simplified model where Dirac DM interacts

with the SM via a Z ′-type mediator. This is described by the following Lagrangian

interaction term:

L = −
∑
f

Z ′µ[q̄γµ(gVq − gAq γ5)q]− Z ′µ [χ̄γµ(gVχ − gAχ γ5)χ], (4.1)

where gVi , g
A
i are respectively the vector and axial-vector coupling strengths between

the mediator and quarks (i = q) and DM (i = χ). The LHC is relatively insensitive

to the mixture of Vector/Axial-vector couplings [113], however this ratio has a large

effect on the sensitivity of direct detection experiments to this model. A vector

coupling induces a spin-independent (SI) WIMP-nucleon scattering rate, while an

axial-vector coupling induces a spin-dependent (SD) rate [120]. Current bounds

on SI interactions are much stronger than those on SD, to the point where direct

detection constraints are generally stronger than LHC constraints on models with

pure vector couplings, and vice-versa for pure axial-vector couplings, as seen in

e.g. [121]. For this reason we consider a pure axial-vector coupling, setting gVχ =

gVq = 0, and defining gχ ≡ gAχ , gq ≡ gAq .∗ For simplicity, as is common, we assume

that the quark-mediator coupling gq is the same for each species of quark. In order

to keep the model perturbative we restrict couplings such that ΓOS/M < 1 where

M is the Z ′ mass and ΓOS is the on-shell width of the Z ′.

∗This choice of couplings to the quarks will in general not respect the gauge invariance of

the Standard Model quark Yukawa couplings. This can be fixed by setting some vector couplings

non-zero and will lead to larger cross sections, so our choice can be considered conservative. More

crucially, gauge invariance of the lepton Yukawa coupling also requires that the Z′ couples to

leptons, which introduces strong constraints from di-lepton searches [122]. This can be fixed by

enlarging the Standard Model Higgs sector with for a example a second Higgs doublet, as in Two

Higgs Doublet Models [67]. Using purely vector couplings to quarks would avoid these issues

entirely while keeping the LHC phenomenology similar. Perturbative unitarity of the process

χ̄χ → Z′LZ
′
L also requires the introduction of a new Higgs state which is not too much heavier

than the Z′ [122] which we assume we can ignore in our analysis. In this sense the model should

not be viewed as UV-complete but rather as a well-defined limit of a number of possible UV-

completions, as customary in the Simplified Model paradigm.
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For the model we consider, ΓOS is at tree level given by:

Γ(k2) =
g2
χM(1− 4m2

χ/k
2)3/2

12π
Θ(k2 − 4m2

χ)

+
∑
q

g2
qM(1− 4m2

q/k
2)3/2

4π
Θ(k2 − 4m2

q) . (4.2)

The on-shell width ΓOS is then given by ΓOS = Γ(M2). With the assumption that

gq is equal for each flavor of quark this width can become very large, for example

rising above ΓOS ∼ M at gq = gχ ≈ 1.45 when gq = gχ. This width assumes

no additional decay channels aside from quarks and DM, however it is conceivable

that the mediator could decay to standard model leptons or additional dark sector

particles. Given that the the structure of a possible dark sector is unknown and that

couplings to leptons are more appropriately constrained by searches for dilepton

resonances [123, 124], we confine ourselves to the more ‘minimal’ model where the

mediator couples only to quarks and DM.

In the event generation we will use a Breit-Wigner form for the Z ′ propagator

with constant on-shell widths as introduced in Equation 2.61:

∆Z′(k
2,M,ΓOS) ∝ 1

k2 −M2 + iMΓOS
. (4.3)

This approximation will begin to break down when we no longer can rely on ΓOS �
M [125,126]: it amounts to a replacement of k2Γ(k2)/M → ΓOSM in the imaginary

part of the resummed self-energy, which clearly can only be motivated for small

widths for which the cross section is dominated by k2 ∼ M2. Additionally we

identify Γ(k2) as its on-shell value ΓOS; this is again only justified when ΓOS/M �
1. A consistent treatment of our model in the part of parameter space where we

can’t assume that ΓOS/M � 1 hence requires a more careful consideration of the

propagator than we employ in our simulation, and we therefore use cross section

reweighting for the parts of parameter space where we are not conservative to correct

for this. In Figure 4.1 we show a comparison of line shapes for various values of

ΓOS/M with fixedM,mχ using the naive Breit-Wigner shape we employ and a fully

kinetic propagator, which reflects that our simulation will become increasingly poor

as ΓOS/M increases.

We have estimated the ratio of final cross sections using a Breit-Wigner propa-

gator and a kinetic one by convolving them with PDFs and requiring that we can

produce a χχ̄ pair on-shell and found that within this approximation the choice of

propagator makes for modest differences for most of our parameter space, with large
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Figure 4.1: Line shapes for our Breit-Wigner propagator 4.3 (blue) and a kinetic

propagator with the replacement ΓOSM → k2Γ(k2)/M in the imaginary part of the

self-energy (red) for various values of ΓOS/M . The normalisation is arbitrary and

differs between the plots to allow for a straightforward shape comparison, and both

axes are linear. M = 500 GeV and mχ = 100 GeV which corresponds to a typical

parameter space point.

effects in specific regions: for mχ � M and ΓOS/M & 0.5 our propagator gives a

cross section that can be as much as 50% too low compared to a kinetic propagator.

In the other extreme end where mχ & M and ΓOS/M & 0.5 we see an opposite

effect where our cross section can be several times too large. Since our propagator

in this region is not conservative we will reweight the visible cross section we get

at the end of our simulation whenever σBreit−Wigner > σkinetic using the ratio of the

two (where these cross sections are estimated as described above) to allow our limits

to remain robust. In general we do not set strong limits in this region in the first

place, so the effect of this reweighting procedure is in the end limited.

4.5 Reinterpreting Monojet Constraints

Our signal prediction is obtained by implementing the model in the FeynRules

[127] and MadGraph5_aMC@NLO 2.1.2 [128] framework to generate leading
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order (LO) parton level events using the NNPDF2.3 LO PDFs [129]. These are

matched to Pythia 8.185 [130] using the MLM algorithm with a matching scale

of 80 GeV∗ for showering and hadronisation using tune 4C. We generate χχ̄ + 0,

1, and 2 jets in the matrix element before matching to the parton shower. We

use the default MadEvent factorization and renormalisation scales (µR,F ) which

in this case both are approximately the transverse mass of the χχ̄ system. Our

approach only makes leading order + parton shower (LOPS) predictions compared

to the next-to-leading order + parton shower (NLOPS) predictions used in a similar

study of CMS results [131] in [108], which means we suffer from larger theoretical

uncertainty due to scale dependencies which we can attempt to estimate by varying

our choice of µR,F by a factor of two. This shows a weak dependence on the choice

of scales of +10%
−5% for a few representative choices of M,mχ which is clearly not a

realistic estimate of the uncertainty: previous studies [132–134] with other choices

of scales have found fixed-order NLO corrections ranging from ∼ 20 − 40%. We

do however note that based on the results in [134], we expect NLO corrections to

ultimately be modest after matching to a parton shower and applying the ATLAS

monojet analysis cuts since the parton shower dilutes differences, helped by the

loose cuts on additional jets. As such they should have a limited impact on our

quantitative results and be negligible for qualitative results.

We analyze the generated events using the ATOM framework [135, 136] based

on Rivet [137]. We first divide the final state into topological clusters and find jets

with the anti-kt algorithm [63] using R = 0.4 in FastJet [138]. We then perform

a smearing of the pT of these jets based on typical values for the ATLAS detector,

leaving the Emiss
T unsmeared†. Our procedure has been validated by recreating the

limits set on an EFT operator by ATLAS and the results of this validation is given

in Section 4.7.

Some past constraints on simplified models have used a fixed benchmark width.

In this case, the cross section is only sensitive to the product gχ · gq and not to the

couplings individually; Further, this easily factorises out,

dσ(gχ, gq) = (gχ · gq)2dσ(gχ = gq = 1), (4.4)

∗Chosen to correspond to the matching scale used in the original ATLAS EFT interpretation

which we use to validate our method.
†We are not aware of any ATLAS Emiss

T smearing values which could be unambiguously applied

to our case, based on the results in [139] we expect the plateau to have been reached for all our

signal regions however.
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which simplifies the analysis since the coupling affects only the magnitude of the

signal, not the spectral shape. Including the physical width complicates things,

since now both the magnitude and signal spectrum have a dependence on both

gχ · gq and gq/gχ. This results in necessary complications if one wants to present

2D contour limits on gχ · gq when the width is known. However it is possible to

make an approximation for the cross section in the resonant region using the narrow

width approximation as σ ∝ g2
qg

2
χ/ΓOS (for fixed M,mχ) and σ ∝ g2

qg
2
χ for the

off-shell region, which allows us to set limits on gχ · gq while avoiding a scan in this

dimension, leaving only M −mχ as free parameters for any given choice of gq/gχ.

The approximation follows from integrating over the Breit-Wigner propagator and

making the substitution tan θ = m2
∗−M2

ΓOSM
, θmax ≈ π/2, θmin ≈ −π/2:

∫
dm2
∗

(m2∗ −M2)2 + Γ2
OSM

2
=

1

Γ2
OSM

2

∫
dm2
∗

(m2
∗−M2)2

Γ2
OSM

2 + 1

=
ΓOSM

Γ2
OSM

2

∫
d tan θ

tan2 θ + 1

=
1

ΓOSM

∫
dθ sec2 θ

tan2 θ + 1
=

π

ΓOSM
(4.5)

This approximation should work well for the part of parameter space where

ΓOS � M [140, 141], and we present a full study of this approximation (including

the effect of the mediator shape reweighting) in Section 4.8 which further motivates

restricting the parameter space to ΓOS/M < 0.5.

4.6 Including Relic Density Constraints

We also include relic density constraints by finding out which parts of our parameter

space would result in a larger relic abundance than observed experimentally. Rather

than using the approximations introduced in Section 3.2.1.1 we use the well-known

formalism described in, for example, Refs. [142, 143] to constrain 〈σv〉0 by simulta-

neously solving an expression for the freeze-out temperature as a function of 〈σv〉0,
and the relic abundance as a function of both 〈σv〉0 and the freeze-out temperature.

This technique ceases to be valid when the Breit-Wigner expression for the width

breaks down. We will allow for values up to ΓOS/M = 1 when performing the relic

density scan, so some care needs to be taken when interpreting relic density con-

tours for large couplings. We use the annihilation rate to quarks for our model as

calculated in [144].
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Signal Region SR1 SR2 SR3 SR4

pj1T & Emiss
T > [GeV] 120 220 350 500

ATLAS σ95% CL
vis [fb] 2800 160 50 20

Table 4.1: Signal region definitions in the 10.5 fb−1 8 TeV analysis and ATLAS 95

% CL exclusion limits on the visible cross section from BSM contributions.

When presenting later results in Figures 4.5 and 4.7 we use the relic density

calculation to define a contour, within which the LHC constraint on the coupling is

stronger than the coupling which would give thermal relic DM. For regions inside

this line the coupling strength is constrained to be less than the coupling which

gives the correct relic density. Hence, the annihilation rate is smaller than required,

and the relic density will naively be too large. For DM to lie in this region, either

the thermal relic scenario must break down, or the DM annihilates via additional

channels not considered here.

4.7 Validation of Procedure using EFT Limits

We use the ATLAS monojet analysis for 10.5 fb−1 of 8 TeV data [145] to validate our

procedure and approximations, so we apply the following cuts: We require at most

two jets with pT > 30 GeV and |η| < 4.5, with |ηj1| < 2 and ∆φ(j2, Emiss
T ) > 0.5

where j1 and j2 are the leading and subleading jet respectively. We define four

signal regions based on pj1T and Emiss
T as outlined in Table 4.1.

Our overall limit-setting procedure has been validated by recreating the ATLAS

limits set on Λ for the D8 EFT operator which corresponds to our simplified model

with the mediator integrated out. A comparison for SR3 is presented in Table 4.2.

We consistently overestimate the limit by a few percent which reflects the less ad-

vanced nature of our detector simulation, however the agreement is good enough

for our purposes as we have sub-2% differences for mχ values which are relevant for

us. Note that we only perform the comparison for SR3 as it usually is the most

discerning signal region and the only one for which ATLAS results are reported,

however we assume the results are similar for the other signal regions. Similarly we

assume this agreement carries over to our analyses of the full 8 TeV dataset and our

14 TeV predictions.
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mχ [GeV] ATLAS 95% CL on Λ [GeV] Our 95% CL on Λ [GeV] Difference [%]

≤80 687 700 +1.9

400 515 525 +1.9

1000 240 250 +4.2

Table 4.2: Comparison of limits set on the D8 EFT operator by ATLAS [145] and

us using only SR3.

Signal Region SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8 SR9

Emiss
T & 2 · pj1T > [GeV] 150 200 250 300 350 400 500 600 700

ATLAS σ90% CL
vis [fb] 599 158 74 38 17 10 6.0 3.2 2.9

Table 4.3: Signal region definitions in the full dataset 8 TeV analysis and 90 % CL

exclusion limits on the visible cross section from BSM contributions.

4.8 Validation of Cross Section Reweighting

Our limits set using results from [145] using interpolation in M −mχ − gχ · gq are

presented in Figure 4.2, limits set using the narrow width cross section approxima-

tion are presented in Figure 4.3, and the ratios of the limits set in the two cases

are presented in Figure 4.4. To visualise the breakdown of our approximations we

extend the limit of our parameter space to ΓOS/M < 1.

Values of gq/gχ > 1 are hardly probed at all by monojet searches as evident

from our results for gq/gχ = 2: such models are much better constrained by dijet

searches which motivates not including these in our main study.

4.9 20.3 fb−1 8 TeV Limits

We make use of 90% C.L. limits set using the full ATLAS 8 TeV dataset [113] for

our definite 8 TeV study as the ATLAS analysis uses selection criteria which are

better suited towards events with several jets than the full 8 TeV dataset analysis

by CMS [146]. The analysis defines signal regions based on Emiss
T and initially

only requires the leading jet pj1T > 120 GeV with the additional requirement that

2·pj1T > Emiss
T for the harder signal regions, and does not veto events due to additional

jets as long as ∆φ(jet, Emiss
T ) > 1.0. The signal regions are given in Table 4.3.
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Figure 4.2: Our results using interpolation in M −mχ − gχ · gq space. The dashed

white line shows where ΓOS/M = 0.05. The black dots are interpolation knots in

M −mχ space. See the text for further details. Note gDM = gχ, mDM = mχ in our

notation.

4.9.1 Discussion of constraints

The results of our full 8 TeV scan are shown in Figure 4.5. We see that we can

exclude mediator masses up to ∼ 1.3 TeV for gq = gχ = 1 and ∼ 0.9 TeV for

gq = gχ = 0.5 at 90% C.L. Lower gq/gχ values are relatively well-constrained by

monojet searches as expected due to resonant enhancement of the cross section.

Additionally because gq is small, dijet constraints are relatively weak for this part

of parameter space as we will discuss below.

The area inside the black line in Figure 4.5 indicates the region where the con-

straint on √gqgχ is stronger than the coupling strength which gives the correct relic

abundance. Naively, M − mχ values inside the region outlined by the black line

would therefore lead to a larger relic abundance than observed. However, if the DM

is not produced thermally or if the DM has other annihilation channels not consid-
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Figure 4.3: Our results using interpolation in M −mχ space and the cross section

approximations detailed in the text. The dashed white line shows where ΓOS/M =

0.05. The black dots are interpolation knots in M − mχ space. See the text for

further details. Note gDM = gχ, mDM = mχ in our notation.

ered here (e.g. to leptons), this constraint is relaxed. Therefore this contour does not

strictly rule out any region, but rather indicates that the ‘simplest’ implementation

of DM using this model is expected to lie outside this contour. Limitations aside,

this is a useful way to compare collider measurements to cosmological observations,

and can be elegantly implemented in a simplified model context as we show here.

This crucially relies on knowledge of the full parameter space: only considering a

single slice will only allow a line which gives the correct relic density to be drawn,

greatly reducing the overall information provided.

4.9.2 Limits from dijet resonance searches

Since our Z ′ couples to quarks one could attempt to make use of limits from dijet

resonance searches [147–150] to further constrain the model as done in for example
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Figure 4.4: Ratio of the results using interpolation inM −mχ space and the narrow

width cross section approximation detailed in the text to using a full interpolation

in M −mχ − gχ · gq space. The cross section approximation is conservative in the

bright yellow (light) areas, and overestimates the limit in the dark blue (dark) areas.

The black dots are interpolation knots inM−mχ space. Note the ratio takes values

higher than 1.2 in some parts of parameter space but the colourbar is restricted

since the approximations are conservative there. See the text for further details.

Note gDM = gχ, mDM = mχ in our notation.

[151]. This certainly gives much stronger constraints when gq/gχ > 1 which is

why we ignore this part of parameter space (we show results for gq/gχ = 2 in

our validation study in Section 4.8). For lower ratios of couplings we need to be

careful since dijet resonance searches generally assume narrow resonances and in

this part of parameter space the dark sector branching starts contributing to the

width considerably. The dashed white line on the plots show where the width of the

mediator becomes narrow enough to potentially violate such constraints assuming no

additional dark sector decays (we take this to be ΓOS/M . 0.05 to be conservative,

but note that there are recent searches [150] which have constrained much wider
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Figure 4.5: Current ATLAS monojet constraints at 90% C.L. on our model with the

full 8 TeV dataset. The dashed white line shows where ΓOS/M = 0.05. The black

dots are interpolation knots in M −mχ space. The region inside the black line is

naively ruled out by relic density contraints. For details see text. Note gDM = gχ,

mDM = mχ in our notation.

resonances). Comparing to the results from the detailed Z ′ dijet analysis in [152],

presented in Figure 4.6, and assuming the results won’t change drastically when

using an axial-vector coupling compared to a vector one, we see (note the difference

of a factor of 6 in the definition of gq) that the values of gq for which ΓOS/M . 0.05

for gq/gχ = 1/2, 1/5 in our model typically are smaller than the values currently

constrained by dijet searches, but gq/gχ = 1 might be better constrained by dijet

searches in the part of parameter space inside the dashed white line.

Realistically the dijet resonance constraints will apply for much wider resonances

than we allow here once you perform a proper analysis instead of relying on con-

straints set assuming narrow widths, as done in [151] at parton level which suggests

that monojet searches give the strongest constraints for light mediators but dijet

searches are more constraining for heavy mediators even for low values of gq/gχ.
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Figure 4.6: Limits set on a generic Z ′ model coupling equally to all quarks in [152].

Note that gB = 6gq and MZB = M in our notation.

Due to the sensitive dependence on the width it is however worth stressing that

since the model we assume here has no additional dark sector or standard model

decays for the mediator, constraints set on dark matter mediators with dijet reso-

nance searches in this part of parameter space can not be considered conservative:

the width we use is the minimum width assuming equal coupling to each generation

of quarks, and small changes to the dark sector can make a large difference to this

width. This problem is not as pronounced when gq/gχ > 1 since the width then

is dominated by SM decays, which further motivates using dijet constraints over

monojet ones in this part of parameter space. We also note that since the width

can be large, interference effects with Z/γ∗ should be properly taken into account

when using dijet searches to constrain these models – we expect interference to play

a similar role as in Drell-Yan [153] and have checked that this appears to be the

case but a detailed analysis is outside the scope of this study.

It is also possible to make use of dijet angular distributions which are sensitive

to wider resonances than the dijet mass spectrum [154, 155] and therefore can be

considered more robust than dijet resonance contraints. As shown in the parton

level study in [151] these can also be competetive with resonance searches in some

parts of parameter space, but we won’t consider them further here.
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Signal Region SR1 SR2 SR3

Emiss
T > [GeV] 400 600 800

ATLAS σexp. 95% CL
vis [fb] 28 4.5 1.5

Table 4.4: Signal region definitions in the 14 TeV analysis and expected 95 % CL

exclusion limits on the visible cross section from BSM contributions.

4.10 14 TeV Predictions

We make use of the public results in [112] as estimations for the expected back-

grounds and hence expected cross section limits at 14 TeV with 20 fb−1 of data from

the ATLAS detector assuming a low average number of pile-up collisions (µ = 60)∗.

Our event generation and detector simulation is the same, but our analysis is changed

to mirror that in [112]: we use a constant leading jet pT cut of 300 GeV and the

signal regions have been redefined as detailed in Table 4.4. The estimated reach

with 20 fb−1 of 14 TeV data for gq/gχ = 1/5, 1/2, 1 is presented in Figure 4.7. The

black line again indicates the correct relic density as discussed in Section 4.9.1.

4.11 Comparison to ATLAS 13 TeV results

A monojet analysis using 36.1 fb−1 of 13 TeV ATLAS data have recently been made

public in [156]. The analysis strategy is similar enough that it is possible to compare

to our 14 TeV predictions, keeping in mind there’s a small difference in center-of-

mass energy and a factor of two difference in the available luminosity. The ATLAS

result for a single parameter point in our signal model is presented in Figure 4.8

and shows very good agreement with the closest parameter point in our scan. This

further confirms that our strategy is very robust and could be employed in realistic

experimental limit-setting.

4.12 Conclusion

During the LHC Run II there has been a clear move towards supplementing EFT

analyses with simplified models, as a stronger and more robust way to constrain the

dark sector. These same arguments apply to Run I data, and thus it is useful to

reinterpret existing constraints on the dark sector in the simplified model framework.
∗We thank David Salek for providing us with the exact numbers for the background estimates

and expected limits.
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Figure 4.7: Predictions for the reach of the ATLAS experiment at 95% C.L. with

20fb−1 of 14 TeV data with µ = 60. The dashed white line shows where ΓOS/M =

0.05. The black dots are interpolation knots in M −mχ space. The region inside

the black line could naively be ruled out by relic density contraints. For details see

text. Note gDM = gχ, mDM = mχ in our notation.

This has the added benefit of allowing us to validate a narrow width approximation

for facilitating a wider parameter scan, and gives a clear benchmark for simplified

models to be compared to results at higher LHC energies and luminosities. We have

demonstrated this through constraints on a simple Z ′ model, with an axial-vector

coupling. The parameter space for our simplified model spans four dimensions,

making the parameter scan and visualisation of the subsequent constraints more

challenging than for EFTs. The common restriction to 2-D slices of parameter

space allows for easy comparison between several constraints, but does not tell us

how these different constraints interact as we move to different parts of the parameter

space. Here we instead scan over the full 4-D parameter space, presenting results as

contours, allowing us to retain the maximum information possible on constraints.

By making a well-motivated narrow width approximation we can perform such scans
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Figure 4.8: Limits set on our model by ATLAS [156]. Their chosen parameter point

is close to the √gqgχ = 0.5 contour on the gq/gχ = 1/5 plot in Figure 4.7 and shows

excellent agreement, taking the small difference in center-of-mass energy and factor

of two in luminosity into account.

in an accurate and computationally reasonable way.

This allows for a more complete understanding of the strengths of the monojet

channel for constraining dark sectors and facilitates comparison to contraints from

other experiments and astronomical observations, as shown here by comparing to

dijet and a simultaneous scan over relic density constraints. Whilst the scope of this

analysis is limited to a single simplified model, this technique shows good prospects

for the (re)interpretation of constraints across a broader model-space.

Having discussed the phenomenology of a Simplified Dark Matter model which

falls squarely in the WIMP paradigm of dark matter, we will spend the next chapter

investigating the collider phenomenology of an enlarged dark sector with a dark,

potentially confining, gauge group.
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Strongly-interacting Dark Sectors

at Hadron Colliders

5.1 Attribution Notice

This chapter is based on results first published in [2] which I wrote together with

Dr. Christoph Englert and Dr. Michael Spannowsky. I performed the calculations

together with Dr. Christoph Englert and was responsible for all results except for

those in Section 5.6 which are due to Dr. Christoph Englert, and created all of

the original figures except for Figures 5.3, 5.4 which were created by Dr. Christoph

Englert.
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5.2 Summary

As outlined in Section 3.2.1.2, the ΛCDM paradigm suffers from a number of issues

related to relatively small-scale structures, including the core vs cusp [92], too-big-to-

fail [93], missing satellite [94] and Tully-Fisher Galaxy Halo [95–97] problems. These

could be ameliorated if there were self-interactions among the dark matter particles.

The self-interaction cross section required to fit observations without being excluded

by others is of the same order-of-magnitude as nuclear interactions, 0.1 cm2/g ≤
σ/mχ ≤ 10 cm2/g ∼ barn/GeV [157–160]. The observation of the Bullet Cluster

called cross sections of this magnitude into question, as they would cause drag

on the dark matter density distribution compared to the visible component of the

cluster which was not observed [161]. However recent work has shown that such

an analysis is sensitive to the details of both the model used for the dark matter

density distribution of the bullet halo and the observational method used to infer the

(non)-existence of any drag, and in fact a self-interaction cross section of 2 cm2/g

can be completely consistent with the data [162, 163]. Dark sectors with strong

interactions are therefore still a viable alternative to the ΛCDM paradigm which

can solve many of its apparent shortcomings, and have seen considerable interest

in the particle dark matter community. Here we will assume the existence of a

minimally-coupled dark sector which runs to strong interactions in the infrared,

and address the question of whether the scaling behavior of this dark sector can

be observed in missing energy signatures at present and future hadron colliders.

We compare these findings to the concrete case of self-interacting dark matter and

demonstrate that the energy-dependence of high momentum transfer final states can

in principle be used to gain information about the UV structure of hidden sectors at

future hadron colliders, subject to large improvements in systematic uncertainties,

which could complement proof-of-principle lattice investigations. We also comment

on the case of dark abelian U(1) theories.

5.3 Enlarged Dark Sectors

In the last chapter we considered a Simplified Dark Matter model with a massive,

weakly interacting particle which freezes out through an interaction with the Stan-

dard Model quarks mediated by a heavy Z ′. While such WIMP models offer a

realistic mechanism for generating the relic density and lead to the correct bottom-

up structure formation, there are other ways to achieve this.
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A popular alternative to the WIMP paradigm of dark matter is to consider the

existence of a mostly secluded larger dark sector which contains multiple particles

that are not charged under the SM gauge interactions. The interactions of the dark

sector can be protected by global symmetries and some of the particles can have a

long lifetime, thus providing plausible dark matter candidates. Collider-relevant the-

ories do not completely decouple the dark sector, but introduce interactions with the

Standard Model fields through the exchange of a mediator of a yet unknown force.

One reason to expect these to exist is that they in many cases can help cool down

the dark sector and hence lead to the correct bottom-up structure formation [89].

From a quantum field theory perspective portal interactions are often motivated

since they are allowed under the symmetries imposed and hence should exist, mod-

ulo fine-tuning. At the renormalisable level such an interaction can be facilitated

by U(1) mixing [164–166] or a so-called Higgs portal interaction [167–169].

A Higgs portal-like interaction is of particular interest, since we can argue for

its existence on general grounds in a wide class of models: if we introduce a dark

sector with particles which acquire their masses through a Higgs mechanism, this

can either be achieved through a Yukawa coupling to the Standard Model Higgs H

(this option requires the massive particles to not be singlets under GSM , and care

needs to be taken to ensure interactions with the Standard Model are sufficiently

suppressed [170]) or through a Yukawa coupling to a new scalar with a vev, φ. A

new (real or complex) scalar φ will in general allow a mixing term H†Hφ†φ to be

written down. Either way the Higgs provides a window into the dark sector.

Due to the issues the with ΛCDM paradigm outlined above, dark sectors with

strong self-interactions have recently become of interest. One avenue to introduce

self-interactions is to use the structure of the visible Standard Model sector as in-

spiration and consider the existence of a larger, potentially confining dark sector.

The existence of complex dark sectors is further motivated by the fact that there is

no a priori reason why dark matter interactions should exhibit the simple structure

usually considered in WIMP scenarios.

While the very existence of dark matter is a strong indication of the presence of

a secluded sector, dark sectors are also motivated beyond the realm of dark matter.

Portal-type interactions have been motivated in generic hidden valley scenarios [171,

172], dark energy model building [173, 174], as well as conformal SM extensions to

tackle the hierarchy problem [175–178] with potential links to leptogenesis [179]

and inflation [180]. Dark sectors and their interaction with the SM spectrum can
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therefore be considered as versatile tools to tackle apparent shortcomings of the SM,

typically leading to the production of new states in high-energy interactions.

Irrespective of their motivation, we are faced with the question of how much

we can learn about dark sectors by the very fact that their interaction with visi-

ble sectors is suppressed. How much can present and future high-energy colliders

contribute to a resolution of this question?

It is known that inclusive rates of Z and Higgs boson interactions, as well as new

resonances in multi-Higgs final states, can be indicative of mixing effects with dark

sectors [181–183]. However, depending on the complexity of mediator interactions

and dark sectors, it proves very difficult to enable a comprehensive dark sector

“spectroscopy” [184, 185]. In this chapter we show that some information about

the strong dynamics of a hidden sector can be gained by studying the momentum

dependence of telltale Emiss
T events. Although we limit ourselves to H + jet final

states in the following, our arguments apply to any process that involves mediator

production at high-energy colliders.

The chapter is organised as follows: we first review typical mediator scenarios

and discuss the extent to which strong dynamics in the dark sector can leave mea-

sureable imprints on mediator production through renormalisation group effects at

colliders in Sec. 5.4, before we focus on a minimal scenario based on Higgs por-

tal interactions. In Section 5.5 we will provide sensitivity estimates of dark sector

spectroscopy at the 14 TeV LHC and a hypothetical future 100 TeV hadron collider

and comment on the expected performance of a future lepton collider. As we will

see, this will crucially depend on improved experimental systematics. In Section 5.6

we connect the general discussion of Sections 5.4 and 5.5 to the concrete case of

self-interacting dark matter and demonstrate that aspects of dark sectors can in

principle be revealed by studying high-energy collisions. In case a state will be

discovered that can be interpreted as a dark sector-mediator, such measurements

can complement the on-going effort to construct realistic composite dark matter

scenarios using lattice simulations. We summarise and conclude in Section 5.7.

5.4 Model

How can the dynamics of a strong sector influence the mediator phenomenology?

The answer to this question is directly related to the UV properties of a partic-

ular mediator model and, to this end, we therefore focus on UV-complete models
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with scalar and vector mediators. As is well known from studies of simplified dark

matter models [110, 118, 119, 186], collider experiments are typically better suited

to discover vector mediators with gauge-like interactions to quarks and the dark

sector than scalar mediators with Yukawa-like couplings. In the vectorial case, how-

ever, the coupling to both visible and hidden sectors has to be a gauge coupling

while the mass of the mediator is realised through spontaneous symmetry break-

ing (or a Stückelberg approach). The only possibility, therefore, is to understand

the mediator interactions as part of a (Higgsed) product-group gauge theory, e.g.

SM×U(1)mediator×SU(N)dark. Resumming the logarithmic enhancements of medi-

ator production with a monojet signature can be estimated through a leading order

(LO)-improved renormalisation group calculation that replaces the fixed LO value

of g′ with running parameter as function of the probed energy scale. The behaviour

of the mediator coupling g′ in the vectorial case, however, is protected through Ward

identities which gives rise to a one loop renormalisation group equation (RGE)

µ
dg′

dµ
∝ (g′)3

16π2
, (5.1)

irrespective of the dynamics in either the visible or hidden sector, as evident from

the Standard Model one loop gauge beta functions presented in Section 2.4.6. More-

over, the mediator production cross section would only reflect the total contributing

number of degrees of freedom to the running of g′ but not their interaction prop-

erties (this is exactly the situation we encounter for the SM gauge couplings). On

the one hand, such effects are difficult to observe in the LHC’s (and a future 100

TeV collider’s) energy range unless the value of g′ was large enough to make the

validity of perturbation theory questionable and potentially introduce a low-scale

Landau pole. On the other hand the monojet cross section dominantly probes the

mediator sector only, which is not the question we would like to see addressed by

the measurement.

The LO RGE characteristics of gauge couplings are not present for scalar medi-

ators. This already becomes transparent from the SM RGEs, where the top Yukawa

interaction behaves as (Equation 2.94d):

µ
dyt
dµ

=

(
9yt
2
− 17g2

1

12
− 9g2

2

4
− 8g2

s

)
yt

16π2
. (5.2)

As a consequence the top Yukawa RGE probes the strong QCD dynamics through

the dependence on gs, which runs as in Equation 2.94c. Therefore the combined

solution of one loop RGEs indeed dials sensitivity from the QCD sector into the
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behaviour of the Higgs-top interactions. This only happens at two loop order for

gauge couplings and is hence a higher order effect for vector mediators.

We will therefore limit ourselves to scalar mediators, which can potentially allow

us to observe an echo of the strong sector dynamics in the mediator cross sections.

Our focus is a scenario consisting of a real SM-singlet scalar φ which obtains a vev

x (similar to the singlet-extended Standard Model [167, 187, 188]), generating mass

terms for three generations of SM-singlet fermion dark quarks ψ through Yukawa

interactions. These mass terms can be small since we assume most of the mass in

the dark sector results from confinement, however they need to be non-zero to keep

all the dark pions massive in order to avoid strong long-range self-interactions in

the SU(N) case. We will in general assume a SM-like hierarchy structure in the

generation masses in order to keep one of the Yukawa terms large. The full scalar

potential is given by∗:

V (H,φ) = −µ̃2H†H −
m2
φ

2
φ2 + λ1(H†H)2 +

λ2

4
φ4 +

λ3

2
φ2H†H. (5.3)

The λ3 induced mixing between φ and H generically results in interactions between

the visible and dark sector mediated by the two scalar mass eigenstates h and h′,

and we denote the mixing angle θ†. In unitary gauge:

H =

(
0

(v + h1)/
√

2

)
, φ = (x+ h2) ,

(
h

h′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
h1

h2

)
, (5.4)

θ is expressed in terms of the Lagrangian parameters by:

tan 2θ =
λ3vx

λ2x2 − λ1v2
. (5.5)

In principle we have five free parameters in the scalar sector, which we choose as

m(h),m(h′), v, x, θ, but we identify h as the Higgs-like particle discovered at the

LHC which fixes m(h) ' 125 GeV and v ' 246 GeV.

5.4.1 The confining SU(N) case

Since we are interested in dark sectors with nontrivial gauge structure we introduce

a new SU(N) gauge group (under which the SM transforms as a singlet) and let the

dark quarks transform in the M representation. We consider the U(1) case below.
∗We impose a Z2 symmetry to forbid any additional terms for simplicity.
†This notation supercedes the use of θ for the QCD-induced component of the CP violating

angle involving SU(3)C field strengths.
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Figure 5.1: Example diagram contributing to the process. The dependence on the

dark gauge group enters through the running of θ as explained in the text.

The dark sector Lagrangian then reads

Ldark = −Y i,j
ψ φψ̄iψj + h.c. + iψ̄γµDµψ −Xa

µνX
a,µν . (5.6)

The mixing of the scalars will modify the interaction strength of the mass eigenstates

with the two matter sectors: h couplings to the Standard Model are scaled by cos θ

compared to the Standard Model expectation and dark sector couplings are scaled by

sin θ compared to the φ, and vice versa for h′. This means ψ̄ψ production is allowed

through both h and h′ when kinematically possible . We assume Yψ is diagonal

which means we have four new free parameters (with the dark gauge group coupling

gd) but motivated by the structure of the Yukawa terms in the SM we assume the

third generation of dark quarks is considerably heavier than the two first ones and

set the other Yukawa terms to 0 for the purposes of calculating the RGEs, which

leaves us with Y 3,3
ψ and gd as free parameters. Showering and hadronisation can then

occur as in QCD [171, 172] and decay to low-lying states can be achieved through

additional weak interactions which will not impact the qualitative scaling behavior

induced by the strong interactions in the dark sector (like in the SM sector). In

total the free parameters for our study are:

Y 3,3
ψ , gd, θ,m(h′), x . (5.7)
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(a) (b)

(c)

Figure 5.2: Ratios of monojet channel

cross sections in the missing Emiss
T spec-

tra for 5.2(a) varying gauge groups with

the dark quarks in the fundamental rep-

resentation, 5.2(b) for SU(5) with the

dark quarks in varying representations,

and 5.2(c) for the U(1) model with vary-

ing values for the dark coupling g fixed at

MZ . We fix gd = gS at MZ as the dark

gauge sector boundary condition.

To illustrate the effects of RGE running from different N and M we fix most of

these to generic values inspired by their SM equivalents (defined at the h pole):

x = 100 GeV, Y 3,3
ψ = 0.7, θ = 0.5, and m(h′) = 150 GeV. This parameter point is

in agreement with current constraints [189]. For our chosen benchmark of a mass of

70 GeV for the heavy dark quark, production through h is kinematically suppressed

and we will ignore it from now on. Also, since Br(h′ → ψψ̄) ≈ 1 current constraints

from additional Higgs searches in visible channels are easily evaded.

We fix gd in two different ways: first, by setting gd = gS at the Z pole in order

to map out the general features of the solutions in Section 5.5, and second, by

requiring the dark IR Landau pole to be ∼0.5 GeV in order to make Λd fall in a

relevant part of parameter space for self-interacting dark matter in Section 5.6. This

second requirement could be refined by using auxiliary measurements (e.g. on the

lattice) but should capture the main features we are interested in; relevant to our

analysis is the comparison of the different dark sectors.
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Much like the top Yukawa in the Standard Model, the β function of Y 3,3
ψ will

be sensitive to the dark gauge group already at one loop level, which is the source

of the dependence on the precise form of the group of the mixing angle θ in Equa-

tion (5.5), as the one loop β functions for λ2, λ3 and x all have a dependence on

Y 3,3
ψ . Additionally these also depend on M [48–50]

µ
dgd
dµ

= −
(

11

3
C(A)− 4 T (M)

)
g3
d

16π2
, (5.8a)

µ
dY 3,3

ψ

dµ
=
(
−6 C(M) g2

d + (2 Dim(M) + 3)(Y 3,3
ψ )2

) Y 3,3
ψ

16π2
, (5.8b)

µ
dλ2

dµ
=
(

18λ2
2 + 2λ2

3 + 8 Dim(M) λ2(Y 3,3
ψ )2 − 8 Dim(M) (Y 3,3

ψ )4
) 1

16π2
,

(5.8c)

µ
dλ3

dµ
=

(
−3

2
g2

1 −
9

2
g2

2 + 12λ1 + 6λ2 + 4λ3 + 4 Dim(M) (Y 3,3
ψ )2 + 6y2

t

)
λ3

16π2
,

(5.8d)

µ
dx
dµ

= −2 Dim(M) (Y 3,3
ψ )2 x

16π2
. (5.8e)

Here C(A) is the quadratic Casimir of the adjoint representation (= N), T (M)

is the index of M, and C(M) the quadratic Casimir of M.

Taking the Standard Model as a guiding example, it is also reasonable to expect

an SU(N) to capture the most important RGE effects even when the gauge group

is enlarged, and hence this study should have some applicability beyond the simple

scenario we consider here.

5.4.2 Dark U(1)s

We also consider a model with a dark U(1) symmetry. In order to keep this force

short-ranged φ must be complex and charged under this U(1) in order to break the

gauge symmetry by generating a mass term for the new gauge boson using the extra

scalar degree of freedom. To avoid anomalies we will use three Weyl fermions and

choose the charges as qd,L ∼ 0, ud,R ∼ 1/2, dd,R ∼ −1/2, φ ∼ 1/2. The dark sector

Lagrangian is then:

Ldark = −Y i,j
u φ(u†d,R)iqjd,L − Y

i,j
d φ†(d†d,R)iqjd,L + h.c.

+ iq†d,Lσ̄
µDµqd,L + iu†d,Rσ

µDµud,R + id†d,Rσ
µDµdd,R −XµνX

µν . (5.9)
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This gives us a theory which is similar to the one introduced above, with mass-

mixing in the dark fermion sector∗, and which is not confining and has a Yukawa-like

interaction potential between the dark fermion fields thanks to the vacuum being

charged under the dark U(1). Note that we will refer to the gauge coupling in the

U(1) model as g in contrast to gd in the non-Abelian case. Much like in the non-

Abelian case we assume only the largest Yukawa term is relevant and set Y 3,3
u = 0.7

and the rest to 0. This gives a mass eigenstate with a mass of ≈ 70 GeV for the

purposes of the branching ratio calculation just like in the SU(N) case. We keep

all other parameters the same. We also assume there is no kinetic mixing between

the dark U(1) and U(1)Y . The renormalisation group equations for this model are

given below. Note that we have changed the normalisation of the φ field to that

of a complex scalar field, and include a factor of 1/
√

2 when expanding around x

(leading to factor of 2 difference for terms involving squared Yukawas).

The RGEs for this model read [48–50]

µ
dg
dµ

=
13

12

g3

16π2
, (5.10a)

µ
dY 3,3

u

dµ
=

(
−3

4
g2 + 2(Y 3,3

u )2

)
Y 3,3
u

16π2
, (5.10b)

µ
dλ2

dµ
=

(
20λ2

2 + 2λ2
3 +

3

8
g4 − 3g2λ2 + 4λ2(Y 3,3

u )2 − 2(Y 3,3
u )4

)
1

16π2
, (5.10c)

µ
dλ3

dµ
=

(
−3

2
g2

1 −
9

2
g2

2 −
3

2
g2 + 12λ1 + 8λ2 + 4λ3 + 2(Y 3,3

u )2 + 6y2
t

)
λ3

16π2
,

(5.10d)

µ
dx
dµ

= −(Y 3,3
u )2 x

16π2
. (5.10e)

5.5 Results

We use implementations of our models in the Mathematica-based package

Sarah [190] to obtain the relevant β functions at one loop for the described scenar-

ios (checked against the general forms given in [50]), and solve these for the given

boundary conditions using a slightly modified implementation of the RGE solver in

SARAH which allows for boundary conditions to be defined at other points than

the lowest scale considered.† These are then used to calculate the running of the
∗We will only work in the interaction eigenstates here.
†Sarah also calculates the two loop β functions on demand but we do not use these to keep

the dependence on N and M completely transparent as detailed in 5.8a-5.8e and 5.10a-5.10e. We
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Cut U(1) SU(2) SU(25) Bgd.

Emiss
T > 200 GeV 1.84 pb 1.70 pb 1.45 pb 432 pb

Emiss
T > 500 GeV 0.0411 pb 0.0359 pb 0.0271 pb 18.0 pb

Ratio 44.8± 1.47 47.3± 1.78 53.5± 2.66

Table 5.1: Cross sections of the signal at 100 TeV and expected measurements of

the scaling with Emiss
T using 10 ab−1 of data. The U(1) result uses g(MZ) = 0.1.

The statistics-only uncertainty on the ratio is calculated by estimating the statistical

uncertainty on the signal strength in both cases and propagating these through to

the ratio. For a CLs test based on the missing energy distribution see below.

mixing angle using the definition in Equation 5.5, which we numerically fit using

built-in Mathematica functions. This fitted function is then passed on to a FOR-

TRAN implementation of a full leading-order pp→ h′j parton level event generator

based on Vbfnlo [191] with the analytic form of the matrix element evaluated using

FormCalc [192,193], arriving at a one loop RGE-improved parton level calculation

which is typically used in QCD LO calculations. Finally we take the branching ratio

Br(h′ → ψψ̄) into account as a flat rescaling at the Higgs masses, which corresponds

to the advocated prescription of the Higgs Cross Section Working Group [194]. In

the matrix element calculation the renormalisation scale is set to pT (h′), which is a

motivated relevant scale for the logarithmically enhanced modifications of the cross

section at large momentum transfers.

5.5.1 14 and 100 TeV hadron colliders

We estimate the monojet background by generating pp → (Z → νν)j parton level

events and scaling this by a factor of 1.5 to get an estimate of the total background

following [113].∗

In order to get a handle on the strong sector dynamics, we need to study the

energy dependence of exclusive cross sections. Concretely this means we need to

determine how an excess in the monojet channel scales as a function of Emiss
T when

such a signal can be extracted from the background. This will allow us to make a

statement about the likely gauge structure of the dark sector if different dark gauge

have checked that including two loop effects does not change the results presented here.
∗While mismeasured lepton (W → νl)j events are important and slightly change the scaling

with energy of the background, this rescaling should be conservative for our purposes as back-

grounds at larger Emiss
T will be over-estimated.
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Figure 5.3: 100 TeV signal and background distributions that feed into the confi-

dence level calculation detailed in the text.

groups indeed predict a statistically relevant deviation in a comparison. The relative

scaling of the cross section as a function of missing Emiss
T for different gauge groups

and different representations of SU(5) is given in Figure 5.2. Due to our choice of

scale the behaviour will be exactly the same at all center-of-mass energies.

The constraints from single Higgs phenomenology enforce a small mixing angle

for SM-like Higgs measurements, which act as a boundary condition to the RGE

flow. We therefore find for our parameter point that the absolute cross sections at

14 TeV are too small for a measurement to be made even with the full HL-LHC

data set.∗

The cross sections at a 100 TeV proton-proton collider given in Table 5.1 are

large enough to offer an opportunity to make a measurement of the running of θ

using a data set of 10 ab−1. Given the expected small mixing angle, the largest

experimental challenge will undoubtedly be the reduction of the systematic uncer-

tainties of the measurements by over an order of magnitude compared to the recent

8 and 13 TeV monojet analyses by ATLAS and CMS [113, 146, 195, 196]. The im-

peding factor of a 14 TeV analysis, i.e. the smallness of the expected signal cross

∗By changing the parameters, however, we could indeed maximise the potential sensitivity at

the HL-LHC at the price of creating further tension with Higgs signal strength measurements. We

do not discuss this case in detail as it would require additional dynamics in order to remain viabl.e
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Figure 5.4: CLs hypothesis test detailed in the text, only assuming statistical

uncertainties.

section as well as a limited data set will be overcome at a 100 TeV machine, where

the signal cross sections are large enough to gather very large statistics with the aim

to use data-driven, as well as multivariate techniques, which essentially remove the

background uncertainties to a very large extent. Using an extrapolation from the

low-missing-energy regime is not straightforwardly possible since the low-missing-

energy phase space region receives a contribution from signal events, and is not

entirely background dominated. However, Z boson data can be extrapolated from

visible Z → e+e− and γ + jet subsidiary measurements at essentially zero statisti-

cal uncertainty (note that all involved couplings are gauge couplings following 5.1),

which essentially allows us to directly infer the dominant Z(→ νν̄)+ jet distribution

completely using data-driven techniques. Similar techniques were used already for

8 TeV analyses, e.g. [197] . Since the detector layout of a 100 TeV machine is likely

to change towards an improved electromagnetic calorimeter coverage [198,199], this

mapping from (Z → e+e−)+ jet and γ+ jet could also be performed without relying

on an extrapolation into the jet-acceptance region beyond the lepton and photon

acceptance regions |η| < 2.5 that is imposed by the current LHC setup.

In the likely case that we can gain excellent control over the background dis-

tribution in a data-driven approach (i.e. assuming only statistical uncertainties),

we can expect a 5σ discovery threshold of & 100 fb−1 using a binned log-likelihood
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approach (as detailed in Refs. [99, 200]) based on the missing energy distribution

for the SU(2) running, although the signal vs. background ratio is small. Dis-

criminating the SU(2) from the SU(20) hypothesis, for instance, should then be

possible at 95% CLs [100] for L & 1.6 ab−1 (assuming statistical uncertainties only,

Figure 5.4). Similar conclusions hold for discriminating large non-Abelian groups

against the U(1) scenario (at slightly smaller integrated luminosities).

5.5.2 Probing dark sectors through h couplings

Since our SM-like scalar h has its couplings scaled by cos(θ) we could in theory

also use these to investigate the structure of the dark sector. Measuring θ at mh is

straightforward (current measurements already put some tension on our parameter

point), after which the scaling could be investigated through a similar analysis as

above but using cleaner and better understood visible decay channels, with larger

cross sections. However, the issue with such a measurement is that θ generically

runs to smaller values and hence towards the maximum of cos θ where derivatives

vanish; at small θ1,2, cos(θ1)/ cos(θ2) ∼ 1. At our parameter point we find cross

section differences of up to 30% between SU(2) and SU(20) at a scale of 1 TeV

when looking at production scaled by sin(θ)2 (running away from the minimum),

but these differences shrink to about 1% when scaling by cos(θ)2. At smaller values

of θ(mh) this problem is further worsened and already with θ(mh) = 0.1 one needs

to investigate differences of O(0.01%), which is challenging the sensitivity range of

a future lepton collider [201,202].

5.5.3 A note on future lepton colliders

At a future lepton collider the two dominant production mechanisms for h′ would be

h′-strahlung and WW fusion. h′-strahlung is a threshold effect and would as such

be inherently insensitive to the running of θ. WW fusion dominates at higher
√
s

and does in theory feel the running of θ but since the final state would be h′νν̄, a

measurement would have to rely on a radiated photon leading to cross sections of the

order of O(1−10 fb) for
√
s = 500−1000 GeV for unpolarised e+e− beams, making

a measurement dependent on extremely large integrated luminosities. However,

thanks to the controlled kinematics at a lepton collider, the dominant background

(Z → νν̄)γ peaks strongly at Eγ = EZ = Ebeam for Ebeam � mZ , whereas the signal

peaks below Eγ < mh′ , which allows for an almost background-free analysis before

detector effects are taken into account. The choice of scale here is not straightforward
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and we can expect non-RGE electroweak effects to play a significant role. Although

this channel provides a clean avenue to test the hypothesis, RGE analyses alone

cannot obtain a reliable estimate of the sensitivity.

5.6 Potential Relation with self-interacting dark matter

As discussed at the start of the chapter, there are measurements which point towards

a large DM self-interaction cross section of the order σ/m ' 1.3 b/GeV [161]. Such

a large cross section can of course be achieved by going to very small mass scales

in the perturbative regime (see e.g. [203]) and our U(1) discussion of the previous

section is therefore directly relevant for these scenarios.

Cross sections of this size are not unusual in strongly interacting confined theories

such as QCD, and we focus on this possibility in the following in detail. While the

non-Abelian theories we have discussed so far are asymptotically free, explaining the

relatively large characteristic decrease in cross section at large momentum transfers,

they will confine at low scales which gives rise to a series of hadronic states in the

dark sector. The details are highly dependent on the respective fermion and gauge

symmetry content and the details as well as the existence of realistic confining

theories can only be clarified by lattice simulations. However, we can obtain a

qualitative estimate of whether such theories can reproduce self-interacting dark

matter scenarios by means of chiral perturbation theory (χPT). To this end we

assume that the self-interaction cross section is dominated by nonrelativistic pion

scattering, well below the energy scales of other dark hadronic resonances. This will

provide an estimate of the validity range of such scenarios and give us an idea if

our previous discussion is relevant for self-interacting dark matter scenarios without

making a particular reference to modified velocity distributions of the dark matter

halo, which are likely to be found in theories with complex interactions [204,205,205].

Modifications from both corrections due to additional hadronic contributions to the

cross section as well as a modified dark matter profile will change our numerical

outcome, but can be compensated at least numerically by changing the fundamental

parameters of χPT, which needs to be confirmed by lattice investigations.

The pion dynamics is completely determined by the [SU(N)× SU(N)]/SU(N)

nonlinear sigma model describing the coset field Φ(x) with dark pion decay constant

fπ̃:

U(x) = exp

(
iΦ(x)

fπ̃

)
. (5.11)
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Analogous to QCD we assume the pion to be the lightest hadronic state in the

spectrum; if no additional gauged U(1) symmetry is present in the dark sector this

state will remain stable. The interactions that we consider follow from expanding

the non-linear sigma model using the CCWZ prescription (see Section 2.4.2.1):

Ldark,χ =
f2
π̃

4
Tr
(
∂µU∂

µU †
)

(5.12)

and by identifying the dark pion with the uncharged pion analogous to QCD we

arrive at

Ldark,χ =
1

2
(∂π)2 +

1

f2
π̃

π2(∂π)2 + . . . , (5.13)

where the ellipsis refers to higher-order terms in the χPT expansion as well as inter-

actions of other states. With this Lagrangian we can compute the self-interaction

cross section straightforwardly (we have cross-checked our results against imple-

mentations with FeynRules [127] and FormCalc [192, 193]) and obtain in the

nonrelativistic limit
σ

m
=

m

4πf4
π̃

, (5.14)

which we can use to gauge whether self-interaction cross sections can be obtained

from theories that show similarities with QCD (we assume the mass to be generated

through a small explicit chiral symmetry violation analogous to QCD, as explained in

Section 5.4). With naive dimensional analysis [206] (NDA), we can furthermore limit

the parameter range of the dark pion decay constant given its mass. The mass needs

to be smaller than the NDA cutoff m < Λd ' 4πfπ̃ and pion scattering needs to be

in agreement with the observed self-interaction cross section of σ/m ' 1.3 b/GeV.

This locates the cutoff of the theory between 0.2 GeV . 4πfπ̃ . 0.8 GeV for pion

masses m < 0.8 GeV. Matching the Landau pole of the running of the dark sector

strong interaction to this energy scale then allows us to make a projection of the

impact of the running at large momentum transfers in the light of our discussion of

Sec. 5.5. The results are given in Figure 5.5.

As can be seen from Equation 5.14, if the self-interaction cross section is indeed

dominated by the low-energy pion interactions, the cross section alone does not con-

tain information about the strong dynamics as such (provided that the symmetry-

breaking pattern indeed produces a spectrum that matches our assumptions). If

this is the case, the only way to perform spectroscopy of the described scenario is

through studies of the momentum dependence of the fundamental parameters of the

dark sector UV theory. Since dark-gluon production is not directly accessible, an
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(a) (b)

Figure 5.5: Ratios of monojet channel cross sections in the missing Emiss
T spectra

for 5.5(a) varying gauge groups with the dark quarks in the fundamental represen-

tation, 5.5(b) for SU(5) with the dark quarks in varying representations. The value

of gd was fixed by requiring Λd ' 0.5 GeV.

investigation through portal-interactions whose presence can be established through

additional resonance searches is vital to gain information about the potential pres-

ence of such a sector given the discovery of an additional scalar which is compatible

with a Higgs mixing scenario.

Although our main focus is the general behavior of strongly interacting dark

sectors and their spectroscopy using Higgs mixing, models with self-interacting hid-

den sectors should also reproduce the correct measured relic density Ωdh
2 ≈ 0.12

to be viable dark matter candidates. Our setup is flexible and allows for thermal

freeze-out to occur either through standard annihilation into the SM as outlined in

Section 3.2.1.1, through number-changing 3 → 2 interactions between the dark pi-

ons as in [89,207] (subject to the conditions detailed in this work), or a combination

of the two, depending on the details of the chosen parameter point.

There is also the possibility that glueballs make up most of the relic density

instead of the pions as qualitatively discussed above. Since our discussion involves

asymptotically free dark sectors, the analyses of [208,209] are applicable in this case:

on the one hand, the correct relic density can be achieved by tuning the ratio of the

visible and dark sector temperatures, which, however, requires an extremely small

mixing. Under these circumstances the discovery of the additional scalar becomes

impossible. On the other hand, if both sectors are in thermal contact through non-

negligible mixing angles, we need to rely on additional (supersymmetric) dynamics

to make the model cosmologically viable [208]. Our discussion does not apply in

these cases straightforwardly and we leave an analysis of supersymmetric extensions
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to future work.∗

5.7 Conclusions

Dark sectors are SM extensions motivated to tackle a plethora of unexplained phe-

nomenological observations that require physics beyond the SM. Their appeal from a

model-building perspective comes at the price of a naturally suppressed phenomeno-

logical sensitivity yield in terrestrial experiments such as colliders. In this study,

using RGE-improved calculations, we have motivated that studying the energy de-

pendence of scalar mediators, produced at a future hadron collider and decaying

invisibly, can be utilised to gain some insights into the nature of the hidden sector,

in particular because data-driven methods will be available for large data sets of

10 ab−1. Gaining excellent systematic control over the backgrounds well beyond

the current expectations of theoretical as well as experimental uncertainties will be

crucial to obtain these insights into strongly interacting dark sectors, which can

complement other lattice investigations.

We have used this rather general observation for the concrete case of self-

interacting dark matter, whose large cross section can be naturally explained by

strong dynamics. If the strongly interacting dark matter scenario turns out to be

true and its relation to the TeV scale through e.g. Higgs mixing becomes favoured,

then the described approach will be a unique collider-based strategy that provides in-

sight into a strongly interacting sector (supplied by calculations of finite corrections

which are not governed in our RGE-based approach), albeit remaining experimen-

tally challenging.

∗It is worthwhile mentioning that the authors of [208] found that the number of colours is

required to be small, which decreases the relative impact of the RGE running when the mixing

angle interactions of hidden and visible sectors are non-neglible.
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hhjj production and the CP
nature of the Higgs sector

6.1 Attribution Notice

This chapter is based on results first published in [3] which I wrote together with
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tion performed by the co-authors and first presented in [210]. The same analysis
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6.2 Summary

As outlined in Sections 2.4.2.2 and 3.1.1, the search for di-Higgs production at the

LHC in order to measure the Higgs trilinear coupling and set constraints on or

discover new physics is one of the major goals of the LHC high luminosity phase.

Experimental feasibility studies [211, 212] suggest that such analyses will only be

successful if information from a range of channels is included. We will therefore

here investigate di-Higgs production in association with two hadronic jets and give

a detailed discussion of both the gluon- and weak boson fusion contributions, with a

particular emphasis on the phenomenology with modified Higgs trilinear and quartic

hhV †V gauge couplings. We perform a detailed investigation of the full hadronic

final state and find that hhjj production should add sensitivity to a di-Higgs search

combination at the HL-LHC with 3 ab−1. Since the WBF and GF contributions are

sensitive to different sources of physics beyond the Standard Model, we devise search

strategies to disentangle and isolate these production modes. While gluon fusion

remains non-negligible in WBF-type selections, sizeable new physics contributions

to the latter can still be constrained. We demonstrate this by investigating the

sensitivity that can be obtained for a measurement of the quartic Higgs-gauge boson

couplings, which can be interpreted as a proxy for the Higgs self-energy and therefore

can potentially be related to solutions to the hierarchy problem, as outlined in

Section 3.1.1.

We also consider the phenomenology of CP violating extended Higgs sectors

by investigating a subset of CP-odd effective field theory operators, and show that

perturbative unitarity arguments together with the non-observation of any new res-

onant states in the LHC’s energy range thus far can be used to strongly constrain

the low-energy Wilson coefficients of many of these. Extending our discussion to an

operator which can be generated in a simplified model of a CP violating Two Higgs

Doublet potential with a portal-like real scalar, we show that there is still space for
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Figure 6.1: Sample Feynman diagrams contributing to pp →
hhjj via gluon fusion.

CP violating effects in the Higgs sector. We then return to our discussion of hhjj

production and show that the weak boson fusion component is highly sensitive to

this operator.

6.3 hhjj production as a precision test of the Standard

Model

A measurement of the Higgs trilinear self-coupling would provide both a precision

test of the Standard Model and a sensitive probe of beyond Standard Model physics.

This Higgs self-coupling manifests itself primarily in a destructive interference in

gluon fusion-induced di-Higgs production [213–215] through feeding into the trilinear

Higgs interaction with strength λ3
SM = mh

√
η/2 in the SM. The latter relation can

be altered in BSM scenarios, for example the SM coupling pattern can be distorted

by the presence of a dimension six operator ∼ (H†H)3, and di-Higgs production is

the only channel with direct sensitivity to this interaction [216,217]. A modification

solely of the Higgs trilinear coupling, which is typically invoked in di-Higgs feasibility

studies, is predicted in models of µ̃2-less electroweak symmetry breaking [218].

After the Higgs discovery, analyses of the di-Higgs final state at the high-

luminosity LHC and beyond have seen considerable attention. Feasibility studies by

ATLAS and CMS [211, 212] have highlighted the complexity of these analyses and



110 Chapter 6. hhjj production and the CP nature of the Higgs sector

the necessity to explore different production mechanisms to obtain the strongest

constraints possible.

Di-Higgs production in association with two jets is a particularly important

channel in this regard since this final state receives contributions from the weak

boson fusion (WBF) production mode. The phenomenological appeal of the WBF

mode is twofold. Firstly, the weak boson fusion component of pp→ hhjj is sensitive

to modifications of the gauge-Higgs sector [210, 219], which can lead to large cross

section enhancements. Secondly, the QCD uncertainties for the WBF topologies

are known and under theoretical control [220, 221], such that a search for BSM

electroweak-induced deviations is not hampered by QCD systematics. This situation

is very different from QCD-induced production [222–225], and can be attributed to

the particular phenomenology of WBF-like processes [226–231].

However, an additional source of uncertainty that was neglected until the calcu-

lation in [210] is the correct inclusion of the gluon fusion contribution to pp→ hhjj

analyses. Similar to single Higgs + 2 jet production [232,233], the correct inclusion

of massive fermion thresholds is crucial to a reliable prediction of QCD-induced

pp→ hhjj [41].

Given that the cross sections in WBF hhjj production are very suppressed

compared to WBF hjj production (the WBF hhjj cross section is ∼ 750 times

smaller at 14 TeV), we have to rely on the dominant hadronic Higgs decay modes

to be able to observe this final state. This rules out one of the most crucial single

Higgs WBF selection tools - the central jet veto [234]. The observation of WBF-

induced pp→ hhjj production is further hampered by the top threshold in the QCD-

mediated process. Since the top threshold sets the scale of the di-Higgs subsystem,

an analysis that tries to retain as many low pT Higgs bosons as possible leads to a

QCD contribution that dominates over the WBF component when minimal WBF-

like cut requirements are imposed [210].

In this chapter we perform a detailed comparison of EFT-approaches to QCD-

mediated pp → hhjj against a calculation keeping the full mass dependencies of

top and bottom quarks in Section 6.4. We compare the QCD-induced pp → hhjj

phenomenology to the WBF signature in Section 6.5 before we discuss general ap-

proaches to isolate the signal from the dominant top backgrounds in a hadron level

analysis in Section 6.6. This sets the stage for a discussion about the prospects to

isolate the WBF and GF components in Sections 6.6.1 and 6.6.2, followed by a study

on constraining V †V hh couplings using the WBF induced signal in Section 6.6.3.
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λ3 0 · λ3
SM [fb] 1 · λ3

SM [fb] 2 · λ3
SM [fb]

GF 10.73 5.502 2.669

WBF 4.141 2.010 0.9648

Table 6.1: Cross section normalisations for the GF and WBF samples at 14 TeV,

for details see text. The WBF normalisation follows from [220] and includes higher

order QCD effects.

To complement the interpretation in terms of λ3 and V †V hh measurements, we also

consider perturbative unitarity constraints on CP violating effects in the Higgs sec-

tor in Section 6.7, and ultimately show that a hhjj measurement strongly constrains

an operator which is unaffected by such theoretical considerations in Section 6.9.

We focus on collisions with 14 TeV throughout.

6.4 The gluon fusion contribution

6.4.1 Finite top mass effects

Effective field theory approximations in the mt → ∞ limit, as introduced in Sec-

tion 2.4.5.1, can not be invoked to study di-Higgs final states at colliders in a re-

liable way due to the effects of the top-quark threshold [235, 236]. Additionally

the breakdown of the mt → ∞ approximation is worsened in the presence of addi-

tional jet emission [41, 237]. Finite mt effects must therefore be considered for all

QCD di-Higgs production channels. This is crucially important when considering

WBF-induced hhjj production as signal as the GF-induced component will act as

a non-reducible background.

The computational challenges in QCD-mediated hhjj production are significant,

with the gluon-fusion channels particularly time consuming. The standard method

of simulating a differential cross section from unweighted events is not feasible in

this case, and we instead use a reweighting technique that is exploited in higher

order calculations and experimental analyses (see for example [238]).

We generate GF hhjj events by implementing the relevant higher dimensional

operators in the mt → ∞ limit obtained by expanding the low-energy effective

theory discussed in Section 2.4.5.1,

Leff = −1

4

αS
3π
GaµνG

aµν log(1 + h/v) (6.1)
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in MadEvent v5.1 [239] using the FeynRules/Ufo [240] framework.∗ This allows

us to sample a weighted set of events that we subsequently feed into our analysis

solely depending on their final state kinematics. If an event passes the selection

requirements of a certain search region, we correct for the full mass dependence

using the reweighting library based on GoSam package [241,242] at this stage. The

reweighting employs exactly the same matrix elements used for the event gener-

ation and the trilinear coupling is steered through a modification of the GoSam

matrix element, i.e. variations of the trilinear coupling are part of the reweighting.

A selection of Feynman diagrams which contribute to the gluon fusion signal are

illustrated in Figure 6.1. The GoSam code used for the reweighting is based on

a Feynman diagrammatic approach using QGRAF [243] and FORM [244, 245] for

the diagram generation, and Spinney [246], Haggies [247] and FORM to write an

optimised fortran output. The reduction of the one loop amplitudes was done using

Samurai [248], which uses a d-dimensional integrand level decomposition based on

unitarity methods [249–253]. The remaining scalar integrals have been evaluated

using OneLoop [254]. Alternative reduction techniques can be used employing

Ninja [255–257] or Golem95 [258–260]. To validate the reweighting procedure we

have performed a full phase space integration and we find full agreement within the

statistical uncertainties between the result obtained from reweighting and the result

from the full phase space integration.

6.4.2 Phenomenology of QCD-mediated hhjj production

Top thresholds are particularly prominent in the di-Higgs invariant mass distribu-

tion, which makes it well-suited to show the improvements of our finite mt calcula-

tion compared to the effective theory of Equation 6.1. Other observables constructed

from the six particle final state are also relevant when performing a targeted phe-

nomenological analysis so we will discuss a number of them here.

In Figures 6.2, 6.3, and 6.4 we show a selection of hhjj final state observables

for inclusive cuts pT,j > 20 GeV and |ηj | < 5, no cuts on Higgs bosons are imposed.

We label Higgs bosons and jets according to their hardness, i.e. pT,h1 > pT,h2 and

pT,j1 > pT,j2. The cross sections are given in Table 6.1. The inclusive gluon fusion

cross section is about 2.5 times larger than the WBF cross section approximately

∗The effective theory implementation can be modified in the sense that only one effective vertex

insertion is allowed. This is gives only a mild ∼ 10% effect in the tail of the distribution, and is

not relevant for an order one EFT/full theory rescaling, see below.
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Figure 6.2: Maximum Higgs and jet transverse momenta in QCD-mediated hhjj

production, including the ratio of full theory to the effective theory calculation for

three different values of the Higgs trilinear coupling. λ = λ3 in our notation.
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Figure 6.3: Invariant mass and pseudo-rapidity distributions of the jet system

in QCD-mediated hhjj production. We show the effective theory and full theory

results for three values of the trilinear Higgs coupling, applying only generator-level

cuts of pT,j ≥ 20 GeV and |ηj | < 5. λ = λ3 in our notation.

independent of the value of the Higgs trilinear coupling.

As previously established in [41, 210, 235] the di-Higgs system is badly mod-

elled by the effective theory which overshoots the full theory cross section at high

momenta. The mhh distribution in Figure 6.4(a) is the crucial observable which

parametrises the finite top quark mass effects, and agrees well at small invariant
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Figure 6.4: Invariant mass of the di-Higgs system and pseudo-rapidity difference

between the leading Higgs and the leading jet in QCD-mediated hhjj production.

We show the effective theory and full theory results for three values of the trilinear

Higgs coupling, applying only generator-level cuts of pT,j ≥ 20 GeV and |ηj | < 5.

λ = λ3 in our notation.

masses. The EFT describes low maximum transverse Higgs momenta pT,h1 reason-

ably well, as shown in Figure 6.2(a). The jet emission on the other hand integrates

over a considerable range of mhh, and the ratio of full theory vs effective theory is

less than one for the entire range of pT,j1, Figure 6.2(b).

Considering just the dijet system in Figure 6.3, we observe that the jet kinemat-

ics is not severely impacted by the reweighting procedure upon marginalising over

the di-Higgs kinematics. The phase space dependence of the dijet invariant mass

Figure 6.3(a) is relatively mild aside from the total rescaling of the inclusive cross

sections, and the ratio for the pseudo-rapidity distribution of the jets is nearly flat,

Figure 6.3(b). This is also true for the azimuthal angle difference ∆φjj . The angular

distributions of the leading members of the jet-Higgs system are relatively mildly

impacted by the reweighting too Figure 6.4(b) and can be approximated by a total

reweighting by a K-factor. This agrees with the mhh being the observable most

sensitive to the top threshold, as suggested by the large impact of the reweighting

on mhh in Figure 6.4(a). A reweighting based on mhh to correct for finite top mass

effects could therefore potentially be used as a time-saving approach with reasonable

accuracy in future analyses.
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6.5 The weak boson fusion contribution

The weak boson fusion contribution to pp→ hhjj has received considerable atten-

tion and precise higher-order QCD corrections are provided in [220,221,231]. Due to

the sensitivity of the WBF contribution to both the trilinear coupling and the quar-

tic V †V hh (V = W,Z, γ) vertices, as shown in the Feynman diagrams in Figure 6.5,

weak boson fusion to two Higgs bosons can, in principle, provide complementary

information about BSM physics which remains uncaptured in other associated di-

Higgs production channels.

We generate WBF samples with varying λ3 using MadEvent v4 [261] and

normalise the cross section to NLO accuracy [220]. The WBF hhjj contribution

shares the QCD properties of WBF hjj production [226] which means it shares the

distinctive ∆η(j1, j2) distribution shown in Figure 6.6(a): to produce the heavy

di-Higgs pair we probe the initial state partons at large momentum fractions. This

together with a colour-neutral t-channel exchange of the electroweak bosons leads to

energetic back-to-back jet configurations at large rapidity separation and moderate

transverse momenta with a centrally produced Higgs pair. The production of an

additional Higgs boson in comparison to single Higgs production via WBF leads to

a cross section reduction by three orders of magnitude (see Table 6.1) in the SM.

Such a small inclusive production cross section highlights the necessity of considering

dominant Higgs decay channels such as h → bb̄ and h → τ+τ− which makes it

impossible to use central jet vetos [234] as a means to control the background and

GF contribution in a targeted analysis.

The gluon fusion contribution is bigger by a factor of 2.5 than the WBF com-

ponent of hhjj production. However with increasing invariant di-Higgs mass the

WBF contribution is enhanced relative to GF production as a consequence of the

suppression above the 2mt threshold, as shown in Figure 6.6(b).

Since we cannot rely on vetoing hadronic activity in the central part of the

detector, a potential discrimination of GF from WBF needs to be built on the

following strategy, which we will investigate in Section 6.6:

• To isolate the di-Higgs (WBF+GF) signal we can exploit the relative hardness

of the di-Higgs pair which peaks around ∼ 2mt. Such hard events are less likely

to be produced by (ir)reducible backgrounds.

• Focussing on large mhh we can enhance WBF over GF by stringent cuts on

the jet rapidity separation. This will also imply a significant decrease of QCD-
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Figure 6.5: Sample Feynman diagrams contributing to pp → hhjj in weak boson

fusion.

WBF (λ = λSM)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

∆η(j1, j2)

dσ
/

d∆
η
(j

1,
j2

)
[f

b]

(a)

WBF (λ = λSM)
GF (λ = λSM)

10−3

10−2

dσ
/

dm
hh

[f
b/

G
eV

]

300 400 500 600 700 800 900 1000
0

0.2
0.4
0.6
0.8

1
1.2

mhh [GeV]

W
B

F/
G

F

(b)

Figure 6.6: The ∆η(j1, j2) distribution of the weak boson fusion contribution at

parton level (a) and the mhh distribution of the weak boson fusion and gluon fusion

contributions compared with correct cross section normalisation (b), both satisfying

generator-level cuts of pT,j ≥ 20 GeV and |ηj | < 5. λ = λ3 in our notation.

dominated backgrounds.

• By explicitly allowing central jet activity, we can exploit the colour correlation

differences in WBF vs GF to further purify our selection. Since colour flow
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Figure 6.7: Shape comparison of ∆η(j1, j2) and mhh distributions for our two

sources of signal (GF and WBF), the dominant background tt̄jj and the rest of

the backgrounds (stacked scaled by relative cross sections), after the Base Selection

of Section 6.6 has been applied. λ = λ3 in our notation.

is tantamount to energy flow in the detector, event shapes are particularly

well-suited observables for unravelling the colour correlations in the final state

once the reconstructed di-Higgs pair has been removed∗.

∗Detailed discussions of event shapes at hadron colliders can be found in [262,263].
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Cut setup Base Selection [fb] GF Selection [fb] WBF Selection [fb] Normalisation∗ [fb]
GF (λ = 1 · λSM) 1.396× 10−2 5.722× 10−3 5.378× 10−4 4.013× 10−1

GF (λ = 0 · λSM) 2.562× 10−2 8.122× 10−3 8.767× 10−4 7.831× 10−1

GF (λ = 2 · λSM) 7.167× 10−3 3.906× 10−3 3.034× 10−4 1.947× 10−1

WBF (λ = 1 · λSM) 3.292× 10−3 4.999× 10−4 1.485× 10−3 1.466× 10−1

WBF (λ = 0 · λSM) 7.706× 10−3 7.154× 10−4 2.820× 10−3 3.020× 10−1

WBF (λ = 2 · λSM) 1.103× 10−3 1.815× 10−4 3.912× 10−4 7.037× 10−2

tt̄jj 5.712 3.390× 10−2 1.801× 10−2 1.0130× 104

tt̄h 6.229× 10−2 7.047× 10−3 5.658× 10−5 3.862× 101

Zhjj 5.118× 10−3 1.278× 10−3 1.026× 10−4 4.737× 101

ZZjj 1.171× 10−3 6.659× 10−5 7.639× 10−7 2.257× 102

ZWWjj 1.888× 10−5 5.461× 10−6 2.039× 10−7 5.368× 10−1

total background 5.781 4.230× 10−2 1.817× 10−2 -

S/B (λ = 1 · λSM) 1/335.1 1/6.799 1/8.983

S/B GF† (λ = 1 · λSM) 1/414.3 1/7.480 1/36.55

S/B WBF† (λ = 1 · λSM) 1/1760 1/96.06 1/12.60

S/
√
B (3 ab−1, λ = 1 · λSM) 0.3930 1.657 0.8219

∗ branchings included in normalisation
† considering only this as signal

Table 6.2: Cross sections for the two sources of signal, and backgrounds, after the various selections described in the text are applied,

together with various measures of significance in the bottom four rows.
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6.6 Taming the background

For our hadron level analysis we shower our signal samples with Herwig++ [264]

and generate backgrounds as follows: tt̄jj, tt̄h, Zhjj, and ZZjj with Sherpa [265],

and ZWWjj with MadEvent v5. We find the dominant backgrounds to be tt̄jj

and tt̄h production, for which next-to-leading order results are available [266–277]

and we use inclusive K factors Ktt̄jj ' 1 and Ktt̄h ' 1.5 to estimate the higher

order contributions to these backgrounds. Higgs branching ratios are set to the

values agreed upon by the Higgs Cross Section Working Group [194].

We begin the hadron level analysis implemented in Rivet [137] by recreating a

base selection similar to [210]:

1.) We require two tau leptons using a two tau-trigger based on staggered transverse

momentum selection cuts pT ≥ 29, 20 GeV in |ητ | < 2.5 and assume a flat tau

tagging efficiency of 70% with no fakes.

Jets are constructed by clustering R = 0.4 anti-kT jets using FastJet [138]

with pT,j ≥ 25 GeV and |ηj | ≤ 4.5.

2.) The two leading jets are b-tagged with an acceptance of 70% and fake rate of

1% [278] in the central part of the detector |ηj | < 2.5. We remove events if

either of the two leading jets overlaps with a tau. Any additional jets which do

not overlap with a tau are considered as potential “tagging jets”, of which we

require at least two.∗

3.) As a final step of this base selection we require the b jet and tau pairs to repro-

duce the Higgs mass of 125 GeV within ±15 and ±25 GeV respectively.†

The signal and background cross sections after these cuts are presented in the

Base Selection column of Table 6.2. We find that the background contribution

of tt̄jj dominates with tt̄h also providing a larger-than-signal background resulting

in S/B ∼ 1/300, making a study based only on these selections extremely chal-

lenging. Since we only have ∼ 40 expected gluon fusion and ∼ 10 expected weak

boson fusion events at 3 ab−1 luminosity, additional selections must also be careful

to retain enough signal cross section to allow statistically meaningful statements to

be made with a finite amount of data.
∗It was argued recently [279] that single jet tagging [280] could provide an alternative at high

luminosity for single Higgs production at lost WBF/GF purity.
†A high mass resolution is a crucial cornerstone of any successful di-Higgs analysis to assure a

minimum pollution of Z boson decay backgrounds [281].
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(a) (b)

Figure 6.8: Expected limits on the gauge-Higgs quartic couplings ζ =

gV †V hh/g
SM
V †V hh

under the assumption of no systematic uncertainties (a) and 20%

systematic uncertainties (b). The 95% C.L. limit on ζ is defined by the value for

which the expected number of theory events intersects with the experimental limit.

Shape comparisons for the rapidity and di-Higgs invariant mass distributions as

motivated in the previous section are shown in Figure 6.7. Indeed, as expected,

cutting on the rapidity distance between the jets will serve to purify towards a

WBF-only selection at a reduced background rate. The dominant backgrounds are

unlikely to produce a large invariant mass mhh. However the WBF contribution,

due to the lack of the 2mt threshold peaks at a considerably lower invariant mass,

leading to significant decrease of the WBF contribution for a reasonably strong cut

on mhh, which is required to observe the hhjj signal at the given low signal yield,

even at 3 ab−1 luminosity.

6.6.1 Prospects to isolate gluon fusion

We can extend the analysis outlined in Section 6.6 with the aim to purify the

selection towards the GF component.∗ We make use of the hard Higgs candidates

to greatly reduce the backgrounds by requiring mhh ≥ 500 GeV and additionally

require ∆η(j1, j2) ≤ 5 to minimise the weak boson fusion contribution. The signal

and background cross sections after these cuts are applied are presented in the ‘GF

Selection’ column of Table 6.2.

The total background is reduced by a factor of ∼ 100 while the gluon fusion

contribution only is reduced by a factor of ∼ 2.5 which allows for an encouraging
∗Following the analysis of [282], we can expect negligible interference between WBF and GF

and which allows us to make this distinction.
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Figure 6.9: Shape comparisons of N -jettiness and thrust calculated in the major

direction after the gluon fusion selection of Section 6.6.1 (a,c) and WBF Selection

of Section 6.6.2 (b,d) have been applied. λ = λ3 in our notation.

S/
√
B ∼ 1.7 with 3 ab−1 of data. The weak boson fusion contribution is also

suppressed compared to GF which allows for a clean probe of the physics accessible

in the gluon fusion contribution.

6.6.2 Prospects to isolate weak boson fusion

Similarly we can extend the analysis towards isolating the WBF component. Since it

has slightly softer Higgs candidates we require mhh ≥ 400 GeV and ∆η(j1, j2) ≥ 5

to reduce both the gluon fusion and background contributions. The signal and

background cross sections after these cuts are applied are presented in the ‘WBF

Selection’ column of Table 6.2.
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The total background is reduced by a factor of ∼ 300 while three times more

of the weak boson fusion contribution is retained compared to the GF selection,

resulting in S/
√
B ∼ 0.8 with 3 ab−1 of data due to the large reduction in the

gluon fusion contribution. However even so the WBF selection is composed of one-

to-three parts GF to WBF, which means measurements of physics that only enters

the weak boson fusion contribution will need to take this gluon fusion “pollution”

into account. This suggests a proper treatment of the gluon fusion component, as

we have provided here, is crucial for any analysis relying on the WBF production

mode.

6.6.3 Constraining the quartic V †V hh contribution

As mentioned in Section 6.5 there is a contribution from quartic V †V hh vertices to

the WBF induced signal, and modifications of the corresponding gV †V hh couplings

away from their SM values using the Higgs Cross Section Working Group κ frame-

work [194] will greatly enhance the signal cross section. This allows us to constrain

ζ defined by gV †V hh = ζ × gSM
V †V hh

. To achieve this we have generated events with

varying ζ using MadEvent v5 and applied the WBF selections described in Sec-

tion 6.6.2 to estimate the enhancement of the signal, which is compared to expected

cross section limits on the signal with 3 ab−1 of data in the WBF selection under the

assumptions of no systematic uncertainties and 20% total systematic uncertainties

for comparison. The results are presented in Figure 6.8. We find that in the more

realistic scenario of 20% systematic uncertainties the expected constraint on the

gV †V hh couplings is 0.55 < ζ < 1.65 at the 95% confidence level. A measurement of

pp→ hhjj is therefore crucial to constrain new physics which enters predominantly

through enhancements to gV †V hh, which can be used as a proxy for investigating

the nature of electroweak symmetry breaking as outlined in Section 3.1.1.

6.6.4 Event shapes of the tagging jets system

The analysis strategies outlined so far have mainly relied on exploiting correlations

in the di-Higgs system, with only ∆η(j1, j2) carrying information about the tagging

jets. Following similar applications in the context of single Higgs production [283],

we have also investigated a range of event shapes in the tagging jets system. These

could offer additional discriminating power through capturing colour correlations in

the different signal contributions beyond angular dependencies. More specifically,

we will present results for N -jettiness [284,285] and the thrust major which provided
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the best results.

We calculate N -jettiness by minimising:

τN = C
∑
k

pT,k min(∆Rk,1, . . . ,∆Rk,N ) , (6.2)

where C is a normalisation which cancels when taking the ratio of two τs, the sum

is taken over all visible momenta which do not belong to one of the identified Higgs

candidates within |η| < 5, and ∆Rk,n is the distance in the η−φ plane between the

k-th momentum and the n-th reference vector (which are collectively defined such

that they minimise Equation 6.2). τ3/2 is then explicitly given by τ3/τ2.

Thrust major is defined by maximising the scalar product with radiation in the

plane perpendicular to the direction of the thrust vector:

Tmaj = max
~n·~nT=0

∑
k |~pk · ~n|∑
k |~pk|

. (6.3a)

Here ~nT is the normalised thrust vector:

~nT = max
~n

∑
k |~pk · ~n|∑
k |~pk|

. (6.3b)

Again the sums run over all visible momenta which do not belong to one of the

identified Higgs candidates within |η| < 5.

Both of these observables are very sensitive to radiation away from the jet axes

in the event, and thus non-trivial colour connections in the underlying hard matrix

element which generate such radiation.

We find τ3/2 and Tmaj show promise for improving the WBF selection, but the

signal cross section is already too low for us to be able to make meaningful use of

this insight. The τ3/2 and Tmaj distributions after the GF and WBF selections have

been applied are presented in Figure 6.9. Cutting, for example, on Tmaj < 0.05, the

gluon fusion contribution is reduced by 80%, while the WBF contribution is reduced

by only 55% amounting to a total of 2 expected WBF and 0.3 expected GF events,

with backgrounds very strongly suppressed. This means that WBF can in principle

be observed at a small rate that can be used to set constraints on new physics in an

almost GF-free selection with greatly reduced backgrounds.

The event shape distributions can also be used to greatly reduce the background

in the GF selection as evident from Figure 6.9(c). It should be noted that these

improvements of GF vs WBF vs background ultimately depend on underlying event

and pile up conditions and have to be taken with a grain of salt in this hadron level

analysis. However the clear separation that can be achieved with these observables
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indicate that an analysis employing multivariate analysis techniques could, at least

in theory, significantly improve the results presented here. These techniques may

also prove useful at a 100 TeV collider where the di-Higgs production cross section

is substantially higher [286].

6.7 CP structure of the Higgs sector

Having shown the potential of a measurement of hhjj production to constrain λ3 and

V †V hh vertices, we will also demonstrate its utility in constraining new operators

in the Higgs-gauge sector. These can arise for example as the result of an enlarged

Higgs sector. Here we will consider the case of CP violating effects from such an

enlarged sector.

There is strong evidence that h can be characterised by a dominant CP-even
coupling pattern to gauge bosons [287, 288]. The sensitivity of this measurement is

driven by large modified production rates compared to the Standard Model (SM) if

CP-odd couplings were dominant [289–291], as well as different kinematics if cross

section information is not included in the analysis [288,292–294].

The experimental observations of Higgs boson decays to electroweak bosons

h → ZZ,WW outlined in Table 2.4 are already a strong indication of a CP-even
character of the gauge-Higgs interactions. A CP-odd interaction parameterised by

L ⊃ gZZ̃h/v hZ
µνZ̃µν which overpowers the L ⊃ ghhZ mZ hZ

µZµ term that follows

from gauge boson mass generation through electroweak symmetry breaking (EWSB)

would imply the breakdown of perturbation theory, only avoided if the longitudinal

gauge boson degrees of freedom are generated by a mechanism which is not directly

related to the observed Higgs boson with mh ' 125 GeV. This would be difficult to

reconcile with the otherwise successful description of the physics at this scale using

perturbation theory. Taking the measurements in the ZZ channel at face value,

the latter would need to be accompanied by a low scale of perturbative unitarity

violation, well below the TeV scale, which is typically mended by either resolving

a potential substructure responsible for the TeV scale or by accessing new resonant

degrees of freedom. However, the LHC has already explored regions well beyond

this regime without any evidence of neither weakly nor strongly-coupled degrees

of freedom, as discussed in Section 2.4.2. In this sense, the statistically signifi-

cant observation of pp → h → ZZ alone does cement the very character of mostly

CP-even couplings to vector bosons, which is a generic property of spontaneous
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symmetry breaking directly linked with perturbative unitarity of the Higgs-gauge

sector [295,296].

Strong constraints on CP violating interactions are typically inferred from flavor

and electric dipole measurements [297–303]. These indirect probes of CP viola-

tion (which in the EDM context are strongest for interactions with first or second

generation fermions) need to be contrasted with direct searches as performed by

ATLAS and CMS. It is therefore natural to ask how CP violation can be accom-

modated by current Higgs measurements, in particular by the Run I combination

of ATLAS and CMS data [34]. Given the absence of any conclusive hints for new

resonant physics around the TeV scale, and taking into account the aforementioned

unitarity-related issues, we can expect that a low energy effective formulation of

TeV scale physics will reflect the imprint of a “good” probabilistic behavior of the

underlying UV model. Understanding an effective theory formulation as the tool of

mediating measurements between theories with widely separated scales, large fun-

damental CP violating effects at a scale that lies well above the electroweak scale

could therefore present themselves at low scales in the guise of operators that do

not immediately imply unitarity violation close to the TeV scale. Another possibil-

ity is the presence of additional intermediate degrees of freedom which could mend

whatever unitarity violation that seems to be present above the TeV scale. Put dif-

ferently, if no new particles are present, unitarity imposes a well-defined bias on the

perturbative expansion of new physics effects in terms of a dimension six extended

SM effective field theory framework [27]:

L = LSM +
∑
i

Ci(µ
2)

Λ2
i

Oi . (6.4)

This hierarchy will be fully reflected by the Wilson coefficients if we choose all

Λi ≡ Λ � v in Equation 6.4 and limit ourselves to weakly-coupled UV theories.

The latter point is required to give perturbative unitarity violation a well-defined

meaning.

We will analyse the tree-level interplay of CP violation in the fermion-Higgs

and gauge-Higgs sectors and unitarity using the tools of effective field theory. As-

suming that amplitudes are well-behaved to high energies, we identify operators

in Section 6.8 which are largely unconstrained by tree-level unitarity requirements.

Using recent signal strength measurements as reported by ATLAS and CMS in [34],

we analyse the direct phenomenological implications of allowed CP violation in the

Higgs sector for future LHC exotics searches in Section 6.9. We provide a summary
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of this work and offer conclusions in Section 6.10.

6.8 Unitarity and CP violating Operators

We consider the lowest order CP-odd operators involving the physical Higgs field,

which lead to CP-violation in conjunction of the CP-even operators in the Standard

Model. A comprehensive list of operators has been presented in [304], for the purpose

of this study we limit ourselves to a few key operators, which, on the one hand, are

relevant to the dimension-6 framework. On the other, we also discuss the particular

example of an operator which arises in the EFT expansion of Two Higgs Doublet

Models, and allows us to make a connection to the dark matter-motivated extensions

considered in Chapters 4 and 5.

In this study we work in the broken phase of SU(2)L × U(1)Y and consider CP
violating operators effectively up to dimension 5. With this condition, we have the

unique operator in the fermion-Higgs sector:

Ohff4 = hψ̄fγ5ψf , (6.5a)

with f denoting the Standard Model fermions (f = u, d, s, c, b, t).

In the gauge-Higgs sector, we consider the following operators:

OhF F̃5 = hFµνF̃µν . (6.5b)

We use F = (A,Z,W,G) as the (dual) field strengths of the photon, Z-boson, W±-

boson and gluon here. These operators can be generated by integrating out massive

fermions with CP-odd Yukawa couplings as in Equation 6.5a, and arise in general

in non-linear Higgs EFT [305]. We also consider an alternative new dimension 4

operator in the gauge-Higgs sector:

OhhZ4 = h(∂µh)Zµ . (6.5c)

This operator deserves a special comment as its appearance is linked to extending

the dimension six EFT framework to a simplified multi-Higgs model, based on a

two Higgs doublet model potential. If EWSB is triggered by more than one Higgs

doublet, in the Georgi basis [306]∗ the kinetic term,

Lkin = |DµH1|2 + |DµH2|2 , (6.6)

∗Given by H1 = [G+, (v + h1 + iG0)/
√

2]T , H2 = [H+, (h2 + iA)/
√

2]T .
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leads to the massless would-be Goldstone boson G0 to be eaten by the Z boson,

Lkin ⊃ mZ (∂µG
0)Zµ . (6.7)

This term is removed by Rξ gauge fixing, while the CP-odd A couples as:

Lkin ⊃
gZ
2
h2(∂µA)Zµ − gZ

2
(∂µh2)AZµ . (6.8)

If there is mass mixing between the CP-even h1, h2 and odd A states as would be

induced by a non-zero Im λ∗5λ
2
6 in the 2HDM potential∗ [307] we have CP violation

in the Higgs sector: the situation is similar to the neutral kaon K0 system in the

Standard Model. However we would not immediately induce the operator in Equa-

tion 6.5c as the expression in Equation 6.8 would disappear for A, h2 → h1 after

diagonalising since it is anti-symmetric. However if we allow dimension-6 operators,

L6 ⊃
c6

Λ2
(H†1DµH2)(H†2D

µH1) ⊃ c6v
2 gZ i

8Λ2
[h2 (∂µh2)Zµ +A (∂µA)Zµ] , (6.10)

it becomes clear that Equation 6.5c is generically induced by an EFT expansion of a

CP violating 2HDM. While the operator in Equation 6.5c therefore can be connected

to CP violation in a 2HDM potential straightforwardly, we will also show how it can

arise in a dark matter-inspired extension to a CP violating 2HDM. If there is in

addition to the two Higgs doublet potential a portal-type real singlet scalar S we

can postulate a dimension 5 operator:

L5 ⊃
cS
Λ
S (DµH1)†(DµH2) . (6.11)

We then have additional interactions in unitary gauge:

L5 ⊃
cSv gZ

4Λ
[S (∂µA)Zµ + i S (∂µh2)Zµ] . (6.12)

If we also introduce a portal interaction

V (H1, S) ⊃ η |H1|2 S ⊃
ηv1 h1S

2
, (6.13)

we can see that mass mixing among the scalars in Equation 6.12 will induce Equa-

tion 6.5c.
∗We use the standard conventions for the 2HDM potential in this section:

V (H1, H2) ⊃ 1

2
λ5(H†1H2)(H†1H2) + λ6(H†1H1)(H†1H2) + λ7(H†2H2)(H†1H2) + h.c. (6.9)

While we only consider CP violation through mass-mixing here, it can also be introduced through

interactions by non-zero Im λ∗5λ
2
7 and Im λ∗7λ6.
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CP-mixing in the two Higgs doublet potential will then again link the operator

in Equation 6.5c to CP violation in the Higgs sector. If cSv ∼ Λ, the operator in

Equation 6.12 is not heavily mass suppressed and could potentially greatly enhance

the amount of CP violation present thanks to the 2HDM potential.

While this setup appears somewhat contrived it is not unjustified from a BSM

perspective: the singlet scalar portal is well-motivated in dark sector models as out-

lined in Section 5.3, and introducing a second Higgs doublet allows the couplings

to quarks in a generic Z ′-mediated simplified dark matter model to be completely

spin-dependent which ameliorates tension with direct dark matter detection con-

straints, as discussed in Section 4.4. In this sense this model could arise naturally

as a so-called Two Mediator Dark Matter Simplified Model [308] generalisation of

the model presented in Chapter 4, where S is interpreted as the dark Higgs.

Since we are not interested in the effects of other new operators we assume that

the additional states are sufficiently heavy to not immediately influence the Higgs

decay phenomenology as well as unitarisation rules through additional channels

opening up. We therefore assume h is dominantly composed of h1 in the following.∗

We will see that this particular coupling is perturbatively unconstrained.

In order to respect the stringent flavor constraints which exist we only consider

flavour diagonal operators as in Equation 6.5a. With these operators we can calcu-

late the high energy behavior of 2→ 2 scattering amplitudes from an initial state i

to a final state f , using the partial wave decomposition introduced in Section 2.4.2.1.

As discussed there, unitarity together with perturbativity (which we also have to

impose for an expansion of the operators in Equation 6.5 to be meaningful) requires

the partial waves to be small compared to unity and we will define the critical value

of the Wilson coefficients in our theory by saturating

|afij (Λ)| = 1 . (6.14)

Λ should here be read as the highest scale at which we require our EFT to be

consistent.

We will consider the following Lagrangian:

L = LSM + ChhZ h(∂µh)Zµ + Chtt ht̄γ
5t+

∑
F,F̃

ChF F̃
v
OhF F̃5 . (6.15)

∗It should also be noted that the presence of multiple mixings typically yields a more SM-like

phenomenology of the lightest state in terms of signal strengths as compared to minimal Higgs

portal scenarios [182].
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Figure 6.10: Saturation value of the Wilson coefficients of the operators in Equa-

tion 6.15 for the zeroth partial wave in 2 → 2 scattering. Λ should here be inter-

preted as the intended cutoff scale of the effective theory: if Ci(Λ) is greater than

the critical value, the effective theory is not perturbatively unitary. In this sense the

critical value can be seen as a theoretical limit on the allowed contributions from

these operators as a function of the cutoff scale of the Standard Model.

We focus on the top quark for the reasons outlined in Section 3.1.1 and choose the

electroweak vacuum expectation value as reference scale where necessary. Typically

the partial waves exhibit a hierarchy in the angular momentum J .

We have surveyed the list of processes relevant for unitarity violation at tree-

level. These include vector, Higgs and fermion scattering, as well as combinations of

the different particle species [309, 310]. We find that the tightest constraints follow

from the J = 0 projections and will focus on the most constraining channels, but

also mention other channels that are relevant for the discussion of the remainder of

this study. Our results are collected in Figure 6.10 and we detail them below:

Ohff4 : We first consider fermion-fermion scattering tt̄ → tt̄, which receives contri-

butions from the operator in Equation 6.5a. We include the (modified) Higgs,

Z boson and photon intermediate states and discard the gluon contribution as

it corresponds to a non-trivial colour configuration, which does not interfere

with the colour singlet exchange. The zeroth partial wave of tt̄→ tt̄ for identi-

cal helicity (zero total angular momentum) gives rise to only weak constraints

on the Wilson coefficient |Chtt| ' 7.1, not dependent on the scale Λ. The

amplitude also quickly approaches an asymptotic value as a consequence of
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energy scales cancelling between the spinor normalisations and the s-channel

suppression leading to an energy-independent value.

Superior bounds can be obtained from tt̄→ VLVL. Note that due to the ver-

tex structure induced by the operators of Equation 6.5, the Wilson coefficients

ChF F̃ do not contribute to scattering processes involving longitudinally polar-

ized vector bosons.∗ Hence, the limit obtained from inelastic fermion scatter-

ing to gauge bosons provides a way to derive stringent unitarity constraints on

Ctth without the influence of accidental cancellations between the interactions

in the lagrangian 6.15. It is worth noting that the CP-odd Higgs interactions

therefore also exhibit a completely different unitarity-related behavior than

their CP-even counterparts [40]. Numerically we find that tt̄→ W+
LW

−
L pro-

vides the most stringent constraint among these channels as the amplitude

shows a ∼ Ctth
√
s behavior.

OhF F̃5 : We derive unitarity bounds on the Wilson coefficients ChAÃ, ChZZ̃ , and Chgg̃
through investigating V V → V V scattering for transverse polarisations of the

participating vector bosons V = A,Z, g. For equal helicity and transverse ZZ

scattering we obtain, for example,

M(ZTZT → ZTZT ) = −
4C2

hZZ̃

v2

s
(
s− 4m2

Z

)
s−m2

h

+ {SM} , (6.16)

where {SM} refer to the well-known results of the SM [40], which do not give

rise to unitarity violation. For the massless gluons and photons we find a

similar relation for the unitarity violation-driving part.

The channels involving both A and Z introduces a cross-talk between the

ChAÃ, ChAZ̃ and ChÃZ channels and the results quoted in Figure 6.10 are

calculated assuming ChAÃ, ChÃZ = 0, which allows us to set constraints on

ChAZ̃ individually.

OhhZ4 : J = 0 unitarity constraints on this operator are calculated from multi-Higgs

scattering. For tt̄→ hh in the equal helicity case, we obtain

M(tt̄→ hh) =
e

2sW cW

mt
√
s

s−m2
Z

ChhZ + {SM} , (6.17)

∗ The Feynman rule for the vertex induced by the operator in Equation 6.5 is given as ∝
εαβµνp

µ
1p
ν
2 , which vanishes when contracting with the longitudinal polarization vectors of external

gauge bosons: εαβµνpµ1p
ν
2ε
α
L(p1)εβL(p2) = 0.
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Wilson Most sensitive Scaling of |M| limit at

coefficient channel at large s Λ = 5TeV

Ctth tt̄→W+
LW

−
L Ctth

√
s 1.24

ChF F̃ VTVT → VTVT C2
hF F̃

s 0.26

ChGG̃ gT gT → gT gT C2
hGG̃

s 0.09

ChAZ̃ ZTAT → ZTAT C2
hAZ̃

s 0.36

ChhZ hh→ hh C2
hhZ 5.82

Table 6.3: Representative values of perturbative unitarity constraints of the opera-

tors considered in this work at Λ = 5 TeV, in addition to the most sensitive channel

to unitarity constraints.

which shows that only weak constraints can be derived from this channel as

the amplitude becomes quickly negligible at energies
√
s � mZ even when

ChhZ 6= 0. This result also shows that unitarity constraints from the fermion

sector are parametrically suppressed by the quark mass and that the top-quark

sector will provide the most dominant unitarity constraints.

hh → ZZ and hh → WW induced by OhhZ4 vanish, irrespective of helicities.

This also holds for hh→ hZL, leaving only hh→ hh as a potentially sensitive

channel to ChhZ for J = 0. In this channel, however, crossing symmetry

guarantees that the amplitude can only have a small sensitivity on the energy

of the scattering process for s � m2
Z ,m

2
H . With s + t + u = 4m2

h and this

cancellation only slightly affected by the different propagators of the s, t, u

channels for large enough energy, the unitarity constraint becomes largely

insensitive to the probed energy (Figure 6.10). Amplitudes for ZZ → hZ

vanish irrespective of polarisations; WW → hh does not receive contributions

from OhhZ4 insertions, and hh→ hZL is suppressed by an order of magnitude

compared to hh→ hh at the amplitude level.

Table 6.3 summarises the constraints on the Wilson coefficients we’ve found in

this section based on the perturbative unitarity argument. Out of the operators

we consider in this work, OhhZ4 is special in the sense that perturbative unitarity

arguments do not limit the associated Wilson coefficient’s range. This means that a



132 Chapter 6. hhjj production and the CP nature of the Higgs sector

(a)

g

g

H

Z
t

t

t

(b)

g

g

h

hZ
t, b

t, b

t, b

(c)

g

g

h

h

q

t, b

t, b

t, b

(d)

g

g

Z

ZH
q

q

q

(e)

g

g

Z

Z

q

q

q

q

(d)

φ

fi

fj

Figure 6.11: New contribution to Higgs pair production from gluon fusion gg → hh,

induced by the operator Ohff4 . We suppress the fermion flow directions as well as

SM contributions.

potentially large CP violation with this term could be induced by a non-perturbative

or perturbative UV completion.

6.9 hhjj as a window into the CP violating Gauge-Higgs

sector

Considering CP violation in the Higgs-gauge sector in a collider phenomenology

context, we will therefore focus on the operator OhhZ4 which is weakly constrained

by unitarity arguments. Such an operator will impact multi-Higgs final states. The

dominant process of this type is Higgs pair production through gluon fusion gg →
hh, which can receive a new Z boson-mediated contribution from OhhZ4 .∗ However,

since tt̄ → hh does not give rise to an energy-dependent unitarity constraint, we

can already anticipate that the absorptive parts of the gg → hh amplitude will be

largely unaffected.

In Figure 6.12 we compare sensitivity estimates for di-Higgs productions from

ATLAS [311] and CMS [312] with the expected enhancement of pp→ hh at the LHC

due to the operator OhhZ4 . The most optimistic constraints that can be set from this

channel result from the 1.9-σ significance reported by CMS for the bb̄γγ + bb̄τ+τ−

combination [312], which translates into a Wilson coefficient constraint

|ChhZ | . 16.5 > 4π . (6.18)

This constraint is weaker than the perturbative limit and does not probe the unitar-

ity limit imposed by hh→ hh scattering from Figure 6.10. This result is expected in
∗Note that the bottom contribution needs to be included to avoid spurious loop singularities

related to SU(3)2 × SU(2) anomaly cancellations.
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the light of our unitarity discussion of Section 6.8 and means the dominant di-Higgs

production channel can not be used to constrain the operator.

The observed sensitivity of pp → hh to OhhZ4 dominantly arises from contribu-

tions of Equation 6.17, which contribute to the imaginary part of the loop-induced

gg → hh amplitude near the the threshold m(hh) ' 2mt through modifying the in-

terference pattern that exists in gluon fusion between the box- and triangle-induced

amplitude contributions (see Section 2.4.2.2). While the interference is modified, the

magnitude of this change induced by OhhZ4 quickly dies out for larger di-Higgs in-

variant masses. This kinematic suppression cannot be circumvented, but it points to

a different channel that accesses a distinct kinematic configuration of OhhZ4 , which is

not probed by the unitarity constraints of Figure 6.10 - di-Higgs production through

weak boson fusion (WBF), which accesses t-channel virtual massive gauge bosons,

Figure 6.13.

This leads to a sizeable contribution to WBF-induced di-Higgs production, which

can be investigated through the hhjj final state as outlined in Section 6.6.2 above.

We make a projection of the HL-LHC’s expected sensitivity to ChhZ by generating
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Figure 6.12: The expected exclusions of ATLAS [211, 311] and CMS [312] for the

high-luminosity (HL)-LHC (3000 fb−1, 14 TeV) for pp → hh + X, overlaid by the

di-Higgs cross section as a function of ChhZ relative to the SM expectation. To

highlight the different ATLAS exclusions, we do not plot them across the entire

Wilson coefficient range.
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Figure 6.13: Representative Feynman diagram contributing to Higgs pair production

from weak boson fusion pp→ hhjj, induced be the operator OhhZ4 .
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Figure 6.14: The expected exclusion for the high-luminosity (HL)-LHC (3000 fb−1,

14 TeV) for the WBF-induced component of pp→ hhjj using the analysis detailed

in the text, overlaid by the cross section as a function of ChhZ relative to the SM

expectation. Two different systematics scenarios are assumed.

hadron level hhjj events using MadEvent [128] and Herwig [313], and use the

results from Section 6.6.2 to make a projected sensitivity estimate using the CLs

method [314, 315]. To show the impact of uncertainties we again provide limits

based on using 20% flat background systematics as well as excluding systematics for

comparison in Figure 6.14.

Accessing the t-channel W and Z bosons in the initial state enhances the sensi-
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tivity to ChhZ way below the unitarity limit, with the expected constraints

|ChhZ | . 0.06 , (6.19)

well within the validity of the perturbative expansion of Equation 6.15.

6.10 Conclusions

After discovering single Higgs production at the Large Hadron Collider, new anal-

ysis strategies need to be explored to further constrain the presence of new physics

beyond the Standard Model. Higgs pair production is pivotal in this regard as con-

straints from multi-Higgs production contain complementary information, in partic-

ular with respect to the Higgs boson’s self-interaction. Cross sections for di-Higgs

production are generically small at the LHC, which highlights the necessity to ex-

plore other viable channels than pp→ hh to enhance sensitivity in a combined fit at

high luminosity. To this end, we have investigated pp→ hhjj production in detail in

this study. Keeping the full top and bottom mass dependencies, we find sensitivity

of pp→ hhjj searches at the LHC for production in the SM and beyond. The gluon

fusion contribution remains important at high invariant di-Higgs masses where the

dominant backgrounds can be suppressed to facilitate a reasonable signal vs back-

ground discrimination. It remains large even for selections that enhance the weak

boson fusion fraction of pp→ hhjj events. This “pollution” is important when such

selections are employed to set constraints on new physics effects that enter in the

WBF contribution exclusively. Large new physics effects in the WBF contribution

can still be constrained, which we have illustrated through an investigation of the

constraints that can be set on deviations of the quartic V †V hh couplings from their

SM values with the HL-LHC, demonstrating that a measurement of pp→ hhjj will

provide a powerful probe of these. Employing observables which are intrinsically

sensitive to the different colour correlation of WBF compared to GF, the discrimi-

nation between GF, WBF, and background can be further improved. However, the

signal cross section is typically already too small to use such a strategy to constrain

the presence of new physics if those effects are only a small deviation around the

SM. If new physics effects are sizable, such an approach will remain a well-adapted

strategy to minimise GF towards a pure WBF selection.

We have also considered CP violating effects in extensions to the Higgs sector,

and shown that many such extensions can be strongly constrained by requiring their

general description in terms of an effective theory to be perturbatively unitary at
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the cutoff scale of the effective theory. A particular operator, OhhZ4 = h∂µhZ
µ,

which will arise in for example CP violating 2HDM models and extended simplified

dark matter models, turns out to not be sensitive to such theoretical constraints.

We have also shown that this operator is difficult to constrain with a measurement

of pp → hh production, but that hh → hhjj production offers a highly sensitive

probe.
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7.1 Attribution Notice
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created all figures.
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7.2 Summary

As outlined in Sector 3.1.1, the large top Yukawa coupling suggests the top quark

could play a special role in electroweak symmetry breaking. In this chapter we will
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present a comprehensive study of the BSM applications of measuring the polarisation

of top quarks in a top resonance search context, and interpret constraints that can be

derived from such an analysis in terms of a Randall-Sundrum model where the right-

handed top quark plays such a privileged role. We focus on kinematically challenging

regions of the parameter space where ATLAS and CMS start losing sensitivity due to

the width of the expected resonance. Following the general modeling and analysis

strategies pursued by the experiments, we analyse the semi-leptonic and the di-

lepton tt̄ channels and show that including polarisation observables can provide

considerable shape information with large data sets. This will allow us to set limits

for parameter choices where sensitivity from m(tt̄) is not sufficient. In a wider

context we use this to point out the importance of spin observables as part of a more

comprehensive set of observables to gain sensitivity to BSM resonance searches.

7.3 Spin observables for top resonance searches at the

LHC

Given the lack of any conclusive hint for new physics beyond the Standard Model

at the Large Hadron Collider so far, it is interesting to consider avenues to en-

hance the sensitivity of searches that target new states and interactions which are

kinematically accessible.

Observables which directly reflect the final state momentum transfer, such as in-

variant mass or transverse momentum distributions, are obvious choices for searches

for new resonant states. However, if the new physics production cross section is

small, these observables might not have enough shape information to isolate the

signal from the competing backgrounds satisfactorily. In these circumstances, the

LHC experiments typically favor multivariate techniques over rectangular cut flows.

While this approach can increase the sensitivity dramatically, care needs to be taken

during the training stage of the analysis. In particular, experimental constraints

(such as the detector’s granularity, response effects and so on) need to be included

and understood precisely in order to formulate a realistic sensitivity estimate. The

optimisation of these methods lies firmly within the remit of the expertise of the

experimental community. Observables which enhance the sensitivity in a cut-flow

based analysis will retain their power when used in such a context, so from this per-

spective it is still useful to investigate individual observables. Additionally this also

allows us to gain a physical understanding of where the shape information comes
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from which can be absent in high-dimensional multivariate analyses.

For instance, constraints on the production cross section of new resonant states

derived from mass resonance searches are strongly dependent on the assumed width

of the new state. Larger widths reduce the shape information the pole of the res-

onance provides when in the energy range of a collider as the signal increasingly

resembles a continuum excess rather than a localised peak. We will show that spin

polarisation observables are precisely observables which can provide complementary

shape information in such a case.

In this study we will focus on an extra-dimensional model used as a benchmark

for top resonance searches by both ATLAS and CMS, see for example [316, 317].

This compactified Randall-Sundrum (RS) model [22] introduces a series of isolated

graviton resonances into the 4D effective theory. If SM fields propagate in the entire

five-dimensional Anti-de Sitter (AdS) background geometry, the 4D theory will also

contain Kaluza-Klein copies of the low energy states that are identified with the

SM.

The ATLAS study in [316] demonstrates that the constraint on the production

cross section of a 3 TeV gluon gKK decaying to tt̄ weakens by almost an order of

magnitude when going from Γ/m = 10% to Γ/m = 40%. Such large widths can be

problematic from a modeling perspective, as discussed in Section 4.4, but are not

unexpected in strongly-coupled theories inherent to the dual formulation of RS-type

theories. In fact, one of the coupling choices we will make in our analysis corresponds

to a width of Γ/m = 37.5%, to be compared to Γ/m ≈ 15% for the default coupling

choice made for the standard ATLAS and CMS benchmark point. This does not

require the presence of additional strongly coupled states in the direct vicinity as

these are given by the higher Kaluza-Klein modes which still are well-separated in

mass, although the convolution with parton densities could in practice produce a

non-negligible contribution at lower masses as their widths also get large. We will

assume such contributions are not relevant for the purposes of this study.

From the AdS/CFT [318–321] perspective, the top quark being the heaviest

particle discovered so far plays a special role as its mass could be direct evidence

of (at least partial) compositeness. A potential composite structure of extra reso-

nances could therefore be reflected in the analysis of the associated top quark spin

observables, while a tt̄ bump search alone does not access this level of detail.

These BSM-induced effects can be contrasted with the fact that tt̄ production in

the SM at the LHC is dominated by parity-invariant QCD processes. We therefore
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can expect to produce almost unpolarised tops. At the high invariant masses we

consider there is a sizeable contribution from weak processes which makes the SM

expectation slightly left-handed: for m(tt̄) > 3 TeV, Pt ≈ −0.15 where Pt = +(−)1

correspond to completely right-(left-)handed tops. This fact has inspired many

studies of top polarisation as a probe into BSM physics, both in pair [322–324]

and single [325–328] production. As the decays of Kaluza-Klein gluons gKK and

gravitons GKK in our model are dominated by right-handed tops these distributions

are modified for the signal component as pointed out in for example [329,330].

The crucial point which motivates our expectation that spin observables will

carry additional shape information is that increasing the width of a parent particle

only has a modest effect on the spin observables of its decay products. Therefore,

they should offer a great opportunity to not only access more shape information

generically, but also maintain this shape information when considering wider signal

models. We will show that this allows enhancements to the sensitivity of analyses

like [316].

In this study we consider pp → gKK/GKK → tt̄ production and focus on both

the semi-leptonic and di-leptonic final states of the top decays in the region where the

reported sensitivity is low. Our goal is to determine to what extent top polarisation

and spin correlation measurements allow us to make stronger empirical statements

for the models studied in for example [316].∗ Our results can be considered as a

litmus test which motivates the inclusion of such observables in analyses based on

the aforementioned multivariate techniques pursued by the experiments, and gives

a solid theoretical basis for the gains in sensitivity that can be achieved by doing so.

This chapter is organised as follows: in Section 7.4 we introduce the model and

discuss relevant parameter choices for our analysis to make this study self-consistent.

In Section 7.5.1 we discuss the semi-leptonic final state, while Section 7.5.2 focuses

on the di-leptonic final state. In Section 7.6 we summarise our results and we present

our conclusions in Section 7.7.

7.4 The Model

In RS1 models [22] the hierarchy problem is solved by introducing an extra compact-

ified dimension rUV < z < rTeV with a warped anti-de Sitter geometry AdS5. This
∗While our search focuses specifically on the Randall-Sundrum model as it allows us to investi-

gate the interplay of spin observables and cross sections in a theoretically self-consistent way, they

directly generalise to a Z′ case with chiral couplings to 3rd generation fermions.
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explains fine-tuning inMPlanck/MWeak in terms of the localisation of the 4D graviton

near the "Planck" brane, z = rUV with a fundamental scale ofMPlanck and the Higgs

sector near the "TeV" brane, z = rTeV, with a fundamental scale of MWeak. Thanks

to the warped geometry we then expect MPlanck/MWeak ∼ exp{πk(rTeV − rUV)},
where k is the AdS curvature scale and rC = rTeV − rUV is the size of the extra

dimension. This is solved by krC ∼ 11 for the observed values of the Planck and

weak scales, and hence massively reduces the required fine-tuning.

If the SM fermions propagate in all five dimensions, we can additionally explain

the structure of the Standard Model Yukawa sector through localisation [23]. The

profile of the fermions’ wave function is determined by a localisation factor ν which

exponentially peaks towards the Planck brane for ν < −1/2 and towards the TeV

brane for ν > −1/2 (this can be understood as mixing with CFT bound state in the

dual picture). To avoid electroweak constraints from Z → bLb̄L while reproducing

the correct Yukawa structure we will set νtR > νQ3L > νother following [331]. In

general we will keep νother < −1/2.

Setups with the right-handed top quark localised close to the TeV brane, a flat

third generation left-handed quark doublet profile, and the other fermions localised

close to the Planck brane are phenomenologically viable [331]. Thanks to tR living

on the TeV brane and (t, b)L being almost flat, the dominant decay mode of gKK
and GKK is to tRt̄R.

These are typical parameter choices that underpin the experimental analyses.

For the graviton, branching fractions to hh and VLV
†
L are also sizeable as the Higgs

and therefore also the longitudinal modes of the weak bosons are located on the TeV

brane, but strong constraints on the masses of both particles m(gKK) and m(GKK)

can be derived from top resonance searches [316,317].

Our model setup therefore follows ATLAS and CMS [316,317] but varies slightly

between the gluon and graviton signals. In general the gluon will always be easier to

discover due to much larger cross sections as it can be produced efficiently through

uū and dd̄ annihilation, whereas graviton production is dominated by gluon fusion.

As such it does not make sense to compare identical parameter points and we focus

on choices which give a (relatively) narrow and a wide resonance for each signal

model.

For our graviton samples we use the model file from [332] and consider the above

extreme case where tR is localised on the TeV brane (i.e. being fully composite),

Q3L is very close to flat, and the decay widths of the lightest KK graviton resonance
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therefore are:

Γ(G1 → tRt̄R) = 9
(3.83c)2mG1

960π
, (7.1)

Γ(G1 → φφ) = 4
(3.83c)2mG1

960π
, (7.2)

with c = k/MPlanck. The factor of 3.83 is the first root of the Bessel function J1

which is encountered in RS models for the wave function along the compactified

direction, and which stems from the boundary condition for gravitons. φ here sums

over the components ZL, WL, and h of φ as outlined in Section 2.4.2. Decays to

right-handed tops are therefore dominant at ∼ 70% and offer good prospects for

detection, however, both ZZ [333] and WW searches offer additional information

[334, 335]. We consider two values of c = {1, 2} which correspond to widths of

ΓG1/mG1 = {6.2%, 25%}. While c = 2 is in the upper end of the range where

we can trust our assumption that higher curvature terms can be neglected in our

calculations [333] this is a useful point to consider in order to have a wide, fully

polarised resonance as one of our benchmark points. Note that our model setup

has mG1 ≈ 1.5mg1 which would put our chosen mass points in tension with current

constraints onmg1 , however our intention is to show the value of adding polarisation

information to searches and G1 is a useful example of a source of a fully polarised

resonance: searches for g1 will in general always be more sensitive due to the more

efficient production mechanism.

For our gluon sample, generated with the model file introduced in [336], we

soften the localisation requirement and set νQ3L ∼ −0.4 and vary νtR ∼ {−0.3, 0}
which corresponds to effective couplings of gg1bLb̄L = gg1tL t̄L = gS , and gg1tR t̄R =

{2, 6}gS . These give widths of Γg1/mg1 = {6.2%, 37.5%} and branching ratios to

tt̄ = {78.5%, 96.5%}. While always dominated by right-handed tops, the fraction

of right-handed to left-handed tops also changes which should be reflected in the

polarisation observables.

7.4.1 Event Generation and Analysis

Our background is leading order semi- and di-leptonic tt̄ samples generated using

MadGraph 5 [128, 239] and reweighted to the NNLO cross section given in [337–

339]. We focus on
√
s = 14 TeV collisions. Our signal samples are also generated

with MadGraph using the UFO model format [240] to import models implemented

in the FeynRules [127] language. These parton level samples are then showered

in Herwig 7.0.3 [264, 340] and analysed using the Rivet framework [137] which
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we also use for applying smearing and efficiencies to the physics objects according

to typical ATLAS Run II resolutions (where available, with Run I resolutions used

otherwise) [341–343] at the beginning of the analysis routine.

7.5 Analyses

7.5.1 Semi-leptonic study

7.5.1.1 Analysis Selections and Reconstruction

The analysis of the semi-leptonic samples focuses on reducing non-tt̄ backgrounds

and reconstructing the individual tops, largely following the boosted approach de-

tailed in [316]. We start by finding electrons with pT > 25 GeV for |η| < 2.47

and muons with pT > 25 GeV with |η| < 2.7. We then cluster narrow anti-kT [63]

R = 0.4 jets with pT > 25 GeV inside |η| < 2.8 and fat Cambridge-Aachen [62,344]

R = 1.2 jets with pT > 250 GeV inside |η| < 2, and require at least one of each after

removing narrow jets which overlap with the leading fat jet.

Since we are interested in highly boosted tops, we have to accept some overlap

between the lepton and b-jet on the leptonic side so we do not require these to

be isolated and assume we can veto events with hard leptons from heavy flavour

decays inside QCD-produced jets.∗ Following [346], we top-tag the leading fat jet

with HEPTopTagger [347, 348] mostly using the default setup of [348]. Note

our choice of R = 1.2 is well-motivated compared to the choice of R = 1.5 in the

benchmark study in [348] since we consider much heavier resonances. Our only

deviations from the default setup is that we require the candidate to have a mass

between 140 and 210 GeV and a pT > 250 GeV, since widening the mass windows

allows us to gain some statistics while still keeping non-tt̄ backgrounds negligible

and our signal tops are so highly boosted that there is no loss in efficiency in a

slightly higher cut in pT . This provides our hadronic top candidate and we require

at least one of the narrow jets to be b-tagged with an efficiency of 70% and fake rate

of 1%, see for example [278].

Our narrow jets tend to be quite hard since we are interested in the high-mtt̄

region but we have checked that the leading narrow jet pT distribution peaks in the

range from 50 GeV to 300 GeV where the MV1 algorithm used by ATLAS outper-

forms this naive estimate [349] for our signal samples. To reflect the degradation of

∗See [345] for a proof-of-principle investigation using the muon final state.
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(b) Di-leptonic tt̄ channel.

Figure 7.1: Distributions of m(tt̄) for the semi-leptonic (a) and di-leptonic (b) anal-

yses for the background SM tt̄ and signal samples after all analysis selections and

detector effects. Note that the semi-leptonic analysis manages to reconstruct peaks

for the narrow signal models, whereas the di-leptonic one smears out all of the signal

models into something resembling continuum excesses.

performance at higher pT , we use a fake rate for light quarks and gluons of 10% above

300 GeV. We have checked that combining the pT -dependent b-tagging with contem-

porary top-tagging techniques renders the Wjj background negligible compared to

SM tt̄ production at our signal mass points. We expect other SM backgrounds to be

negligible: we find lower signal Acceptance × Efficiencies than the 13 TeV ATLAS

study in [350] thanks to our stricter top-tagging which further suppresses all non-tt̄

backgrounds. The final sensitivity of our study could potentially be improved by

using a more permissive top-tagging algorithm and taking care to estimate non-tt̄

background contributions.

In the next step, we require missing transverse energy /pT with |/pT | > 20 GeV

and |/pT |+mT > 60 GeV where mT =
√

2pT,l|/pT |(1− cosφl/p).

We reconstruct the leptonic W by assuming that its decay products are the

leading lepton and a neutrino, which accounts for all of the reconstructed missing

transverse momentum. The longitudinal component of the neutrino momentum is

found by assuming the W is produced on-shell, and we choose between the two

resulting solutions by picking the one which minimises |mblν −mt| after combining

with the leading b-tagged jet. This object is our leptonic top candidate.

We extract m(tt̄) by adding the found leptonic and hadronic top candidates and
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Figure 7.2: Distribution of ∆φ(l+l−) for the considered scenarios for invariant

masses m(tt̄) > 2 TeV. The signal models all use m(G1/g1) = 3 TeV.

define θl± by boosting to the leptonic top’s rest frame and taking the angle between

the lepton and the top’s direction of travel.∗ The final m(tt̄) distribution is shown

in Figure 7.1(a) and the cos θl± distribution in Figure 7.3(a).

7.5.2 Di-leptonic study

The semi-leptonic final state discussed in Sec. 7.5.1 is naively much more attractive

due to a six times larger branching fraction (since we are only considering elec-

trons and muons) and a less involved reconstruction of the individual top momenta.

Nonetheless, it is worthwhile to also consider the di-leptonic final state as it offers

two clean final state leptons which enable a comparably straightforward measure-

ment of spin correlations with increasing statistics.

When considering di-leptonic tt̄ decays, however, we run into a qualitatively new

issue related to the reconstruction of the individual top momenta: with two neutrinos

in the final state, we will have to make an educated guess of how the single missing

transverse energy vector decomposes into the transverse components of the neutrinos

pT,ν/ν̄ before reconstructing the longitudinal momentum components. There are a

number of approaches that we outline in the following.

The first method is to simply solve the full system of kinematic equations by

assuming all intermediate particles are produced on-shell and that your measured

∗Note that there are studies [351] that aim to extract the polarisation information from boosted

hadronic tops but we do not attempt to do so here. We can expect the sensitivity of such a

measurement to be smaller than that of the leptonic side measurement.
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Figure 7.3: cos θl± distributions for the SM tt̄ and signal samples for the semi-

leptonic (a) and di-leptonic (b) analyses after all analysis selections and detector

effects, in both for m(tt̄) > 2 TeV. Since the signal produces right-handed tops we

see a large modification of these lepton angle distributions when compared to the

SM expectation which at these high invariant masses is slightly left-handed. Note

that the polarisation of the tops from g1 decays differs between the two coupling

choices and this can be discerned in both analyses.

kinematic quantities are exact [352, 353]. This will in general provide up to eight

sets of solutions, one of which being close to the true momenta assuming that the

assumptions are valid. Using smeared kinematic quantities results in a larger mean

number of solutions which causes large combinatorial uncertainties. CMS have made

use of this approach together with a Matrix Element-method [354] to reduce the

number of solutions on the basis of the matrix element weight.

A second method is to use so-called “neutrino weighting” [355,356], which scans

over a large number of proposed neutrino solutions and constructs and assigns in-

dividual weights for each guess based on how well the solution solves the kinematic

equations. It is then possible to calculate observables for single events by either

selecting the solution with the highest weight, or adding up the values for all so-

lutions with correct weighting. This method is often used by ATLAS and has the

advantage of only relying on kinematic information.

A third method, which is the one we will adopt in this work, uses kinematic in-

sights from theMT2 [357] observable. The so-calledMT2 Assisted On Shell (MAOS)

method [358, 359] uses the solution for the transverse components of the two neu-
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Figure 7.4: Kinematics for the mT calculation (left) and MT2 calculation (right).

The diagrams here should not be interpreted in the usual Feynman diagram sense:

a solid line final state momentum indicates it is visible, and a dashed line final state

momentum indicates it is invisible. Note that these should not be interpreted as

particles: on the right-hand diagram pa denotes all of the visible particles from the

bottom Y decay, and p1 denotes all of the invisible particles from the same decay.

We can only hope to measure the total transverse component of all of the invisible

particles in the final state at a hadron collider.

trino momenta which providesMT2. The bisection method for calculatingMT2 [360]

and subsequent improvements of the algorithm [361–363] have made it possible to

find the solution efficiently. The solutions for the neutrino momenta k±ν/ν̄ (where

± denotes the remaining twofold ambiguity in the longitudinal components) will

approach the true solutions for MT2 → m(t), with k±ν/ν̄ = pν/ν̄
∗ for MT2 = m(t)

with all kinematic quantities measured exactly and all intermediate particles on-

shell. Therefore this approach provides an approach to improve the quality of the

reconstruction if required by only using events with m(t) −MT2 < C for some cut

C. For completeness we will discuss the MT2 calculation in more detail below.

7.5.2.1 Estimating invisible momenta with MT2

The transverse mass observable mT is used to measure the W mass in leptonic

decays. The relevant kinematics are presented in the left-hand diagram of Figure 7.4.

The crucial point here is that since we do not know the fractions of the proton

momenta the scattering partons carry in a proton-proton collision, we can not rely

on momentum conservation along the beam line. Using the momenta as defined in

this diagram, the transverse mass is given by:

∗In this very particular situation we should find k+ = k−.
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m2
T = m2

l +m2
ν + 2

√
ElTE

ν
T − ~plT .~pνT = (αl + αν)2, α = (ET , ~pT ) . (7.3)

Here we’ve introduced the α notation to denote the (2 + 1) dimensional momentum

which drops the component along the beam line. The transverse component of the

neutrino momentum can be calculated since we can assume (to a good approxima-

tion) momentum conservation in the transverse plane. Assuming no finite width

effects, this suggests mT ≤ mW
∗ and allows mW to be measured as the cutoff when

a large number of events have been recorded. Generalising this to the situation

with a parent particle P decaying to two daughters Y , which further decay semi-

invisibly, will allow us to define the MT2 observable. The kinematics are shown

in the right-hand diagram of Figure 7.4. Note we still can only measure the total

invisible transverse momentum /pT , and have to deal with this ambiguity in the in-

dividual invisible momenta somehow. We will assume that the masses of the two Y

particles are identical, and similarly that the masses of the two invisible momenta

p1/2 are identical. MT2 is then given by:

M2
T2 = min

~p1,T+~p2,T=/pT

[
max

(
m2
T (α1, αa),m

2
T (α2, αb)

)]
. (7.4)

The ambiguity in the individual invisible momenta is here dealt with by minimis-

ing over all possible values, keeping the sum equal to the observable /pT . Performing

this min max using a naive, numerical approach is very computationally expensive

and error-prone as there can be several local minima and a max distribution does

not have a smooth first derivative. There is a more clever method thanks to Cheng

& Han [360]: assuming the invisible momenta are single particles with the same

mass mi, we have:

p2
1 = p2

2 = m2
i , (p2

1/2 + p2
a/b)

2 = µ2
Y , p

x/y
1 + p

x/y
2 = /p

x/y . (7.5)

This allows us to calculate:

µ2
Y = m2

i +m2
a + 2(E1Ea − px1pxa − py1pya)

⇒ E1 =
pxa
Ea

px1 +
pya
Ea

py1 +
µ2
Y −m2

i −m2
a

2Ea
, (7.6)

∗The two are equivalent if the rapidity of the lepton and neutrino are the same.
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where we have used that we expect MT2 to be invariant under boosts along the z-

direction to set pza to 0. The same can be done on the other side to find an expression

for E2 in terms of the momenta on the other side. A physical momentum must have

p2
1 ≥ 0, which can be rewritten as:

(pz1)2 = E2
1 − (px1)2 − (py1)2 −m2

i ≥ 0 . (7.7)

Combining Equations 7.6 and 7.7 we see that the physical solutions in the px1 , p
y
1–

plane are given by an ellipse Ω1. Doing the same thing on the other side of the decay,

and remembering that px/y1 +p
x/y
2 = /px/y, we can express the requirement that both

invisible momenta are physical as two ellipses Ω1,Ω2 in the px1 , p
y
1–plane, with the

size set by µ2
Y . M

2
T2 is then given by the value of µ2

Y which uniquely determines

Ω1 ∩ Ω2
∗. Therefore, by definition, this solution also provides unique values for

px1/2, p
y
1/2 which can be used together with an on-shell assumption for Y to fully

reconstruct the invisible momenta, modulo a four-time combinatoric uncertainty in

the longitudinal components.

As mentioned above, assuming all momenta are exact and all particles are on-

shell, the solution for the neutrino momenta given by this method will be exact

when µ2
Y = m2

Y .

7.5.2.2 Analysis Selections and Reconstruction

We begin the analysis by finding electrons with pT > 25 GeV inside |η| < 2.47 and

muons with pT > 25 GeV inside |η| < 2.7. We then find anti-kT R = 0.4 jets with

pT > 25 GeV with |η| < 2.8. Again we have to accept some overlap between the

leptons and jets due to the large top boost, so we do not require these to be isolated

and again assume we can separate very hard prompt leptons from a nearby jet. We

then b-tag the jets within |η| < 2.5 with 70% efficiency and a 1% fake rate (10%

for pT > 300 GeV with the comments regarding this choice made in Section 7.5.1.1

also valid here), and require at least two b-tags. We also require missing transverse

energy /pT with |/pT | > 60 GeV.

While the high boost of our tops means that we can usually correctly pair b-

jets to leptons by taking the ones closest to each other in η − φ space, we make

∗Determining whether two ellipses overlap is non-trivial: a general solution using the roots of

the characteristic polynomials calculated using Sturm-Habicht sequences [364] was first presented

in [363], and an algorithm making use of this solution was only recently implemented in the MT2

context [362].
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use of some standard approaches to further reduce the combinatorial uncertainty.

Due to the large boost we consider, we do not gain much from cutting on M tt̄
T (0),

which is often considered in the literature [365–368], where M tt̄
T (0) is defined as the

transverse mass of the entire tt̄ system when mνν̄ = 0:

(
M tt̄
T (0)

)2
= m2

vis + 2

(√
|pT |2 +m2

vis|/pT |+ pT · /pT
)
. (7.8)

We therefore select the candidate which minimises at least two out of three test

variables: T2, T3, and T4 defined in [367]. These correspond to how well the solution

corresponding to each pairing reconstruct the W and top masses and the expected

MT2 distribution. If either of the pairings returns complex solutions for the neutrino

momenta we automatically select the other one. Once we have selected a pairing we

veto the event if MT2 > m(t) or mbl >
√
m(t)2 −m(W )2.∗ We find that vetoing

the entire event if neither pairing results in a viable-seeming solution suppresses

the WWjj background with little signal efficiency loss. We do not use mbl for

determining the correct pairing (referred to as the T1 test variable in [367]) since

this would make the total number of test variables even and it correlates strongly

with T2.

As discussed above we reconstruct the individual neutrinos using the MAOS

method. We take the solution for the transverse momenta of the neutrinos which

gives the correct MT2, and solve the remaining kinematic constraints to give two

solutions for the longitudinal component of each neutrino. This results in four final

solutions for the complete kinematics of the event with equal weights. This technique

has been used for example in phenomenological studies of production angle mea-

surements in [358] and top polarisation measurements in [369]. Despite the fourfold

combinatorial uncertainty which introduces a large smearing of the final m(tt̄) dis-

tribution as shown in Fig 7.1(b), it reproduces truth-level angular observables well

as this only affects the longitudinal neutrino momenta. The cos θl± distribution in

Figure 7.3(b) shows this in practice and confirms the final distributions are closer to

their true shapes than in the semi-leptonic analysis. Unlike in the semi-leptonic case

in Section 7.5.1.1 we can extract the lepton angle from both tops by again boosting

to the individual rest frames and taking the angle of their decay lepton to the top

direction of travel.

∗Ignoring smearing, finite width effects, and O(mb) corrections to mbl these correspond to

unphysical solutions.
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Figure 7.5: Two-dimensional shape distributions of m(tt̄) and cos θl± for the ex-

pected SM background (a) and a narrow (gtR = 2) g1 (b) in the semi-leptonic anal-

ysis. This corresponds to the worst-case scenario among our signal models from the

perspective of gaining additional information from the polarisation measurement.
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Figure 7.6: Two-dimensional shape distributions of m(tt̄) and cos θl± for the ex-

pected SM background (a) and a narrow (c = 1) G1 (b) in the di-leptonic analysis.

This corresponds to one of the best scenarios among our signal models from the

perspective of gaining additional information from the polarisation measurement.



152
Chapter 7. Constraining resonances in the tt̄ spectrum using

polarisation information

100 101 102 103

L [fb−1]

101

102

103

9
5

%
 C

.L
. 
lim

it
 o

n
 µ

Semi-leptonic channel, c= 1, m(G 1) = 3 TeV

θl +mtt

mtt

(a)

100 101 102 103

L [fb−1]

102

103

9
5

%
 C

.L
. 
lim

it
 o

n
 µ

Semi-leptonic channel, c= 1, m(G 1) = 3 TeV

θl +mtt

±1σ
±2σ
mtt

(b)

Figure 7.7: Limits on µ for a narrow (c = 1) G1 assuming (a) no systematics and (b)

5% systematics (see text for details on how this is propagated to the individual bins)

which can be set with different assumed total luminosities using m(tt̄) and cos θl±

(black line) and only using m(tt̄) (red line) with the semi-leptonic analysis. The ±σ
bands are for the combined result. µ = 1 corresponds to σ×Br (G1 → tt̄) = 0.3 fb.

7.6 Discussion of Results

7.6.1 Signal vs Background discrimination

We estimate the limits that can be set on the signal strength µ = σ/σexpected
∗ for

our model setups with them(tt̄) and combinedm(tt̄) - θl± distributions by using the

CLs method as outlined in Section 3.3: for each of the 2D-binned distributions (ex-

amples of which are shown in Figures 7.5,7.6) we calculate the Poissonian likelihood

ratio bin-by-bin. To avoid spurious exclusions we do not use bins which have no

background events – this has a negligible effect as we have ensured there is sufficient

statistics in all bins which are expected to contribute to the exclusion limit for our

signal models.

When calculating limits we use a flat Gaussian systematic of 5% on the total

cross section† of the background and only statistical uncertainties for the signal. To

propagate the systematic uncertainty to individual bins we assume the fractional

systematic error is the same in all bins, and calculate the correct uncertainty which

would lead to the stated uncertainty on the total cross section when adding up all the

∗Note this use of µ differs from that in from Chapter 2. For the rest of this chapter µ will refer

to the signal strength.
†We can expect that data-driven methods, that use the low m(tt̄) spectrum to extrapolate to

our signal region become well-controlled with large data sets.
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Figure 7.8: Limits on µ for a wide (gtR = 6) g1 assuming (a) no systematics and

(b) 5% systematics on the total cross section (see text for details on how this is

propagated to the individual bins) which can be set with different assumed total

luminosities using m(tt̄) and cos θl± (black line) and only using m(tt̄) (red line)

with the di-leptonic analysis. The ±σ bands are for the combined result. µ = 1

corresponds to σ × Br (g1 → tt̄) = 200 fb.

bins assuming they are statistically independent. In general introducing systematic

uncertainties and propagating these in a consistent manner always requires us to

make an assumption of how this is to be done which introduces a large effect on the

final limit on µ. In order to provide an estimate of the importance of the systematic

uncertainty on our limits we also present a comparison to limits calculated with no

systematic uncertainties in Figures 7.7 and 7.8.

7.6.2 Improvement from top polarisation observables

Before we comment on the shape information gain from including polarisation-

sensitive observables let us quickly investigate the expected phenomenology in the

model we consider. As can be seen from Figure 7.1, the reconstruction smears out the

resonance so the signal appears very wide for all signal models in the semi-leptonic

and di-leptonic analysis. For relatively narrow resonances our reconstruction of the

semi-leptonic channel yields a better performance, however, for the wider parame-

ter points the mtt̄ distribution quickly loses its peak-like features. In such a case,

setting limits by using m(tt̄) as a single discriminant effectively means constraining

a continuum excess.

Considering directly-inferred angular quantities like ∆φ(l+l−) from, for example,
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Figure 7.9: Limits on µ for a wide (c = 2) G1 using the semi-leptonic (a) and di-

leptonic (b) analyses for a fixed luminosity of 100 fb−1 with no systematics as a

function of resonance mass using m(tt̄) and cos θl± (black line) and only using m(tt̄)

(red line). The ±σ bands are for the combined result.
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Figure 7.10: Limits on µ for a wide (c = 2) G1 using the semi-leptonic (a) and

di-leptonic (b) analyses for a fixed luminosity of 100 fb−1 with 5% systematics on

the total cross section (propagated to bins as explained in the text) as a function of

resonance mass using m(tt̄) and cos θl± (black line) and only using m(tt̄) (red line).

The ±σ bands are for the combined result.

the di-lepton final state offers limited shape information. This is in particular true

when we would like to discriminate between different signal hypothesis once an

excess has been discovered. The reason for the lack of information in ∆φ(l+l−) is

the large considered mass range of the tt̄ resonance, which leads to back-to-back

tops and leptons as a consequence.
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It is exactly the boost to the top rest frame which lifts this degeneracy. And

since the signal produces highly polarised tops, we see a large modification of these

lepton angle distributions, which provides the additional shape information (Fig-

ure 7.3) which we can use to tighten the estimated constraint on µ when combined

with m(tt̄), Figures 7.5 and 7.6 (we also show the distribution of the expected SM

background which exhibits no particular resonant features in the m(tt̄) − cos θl±

plane). Note that the polarisation of the tops from g1 decays differs between the

two coupling choices and this is visible in both channels. The apparent difference

in the difference in polarisation between the two coupling choices can be traced to

the non-linear nature of the transfer functions from the truth distribution to the

reconstructed distribution in the two cases.

Using the m(tt̄)− cos θl± correlation as the baseline of the limit setting outlined

above we obtain a large improvement by a factor up to ∼ 3 on the limit on µ with

increasing luminosity compared to m(tt̄) alone in Figure 7.9(b) for the ideal case of

the di-leptonic analysis of a wide highly polarised resonance, as the large statistics

available with 100 fb−1 provide an efficient sampling of the sensitivity unveiled in

Figures 7.6. This relative improvement reduces for smaller reconstructed widths

that can be reached in the semi-leptonic channel as shape information is gained in

m(tt̄), yet an improvement at large luminosity by a factor of ∼
√

2 is still possible

for our benchmark narrow less-polarised gluon in Figure 7.7(a), which is the least

sensitive of our parameter points.

It is exactly the additional shape information from including polarisation infor-

mation which renders the analyses potentially sensitive – depending on systematics

– to broad gluon-like resonances at L ∼ 100 fb−1 at our benchmark point. Discrim-

ination solely based on m(tt̄) flattens out and an analysis which focuses exclusively

on resonant-like enhancements will have less sensitivity by factors up to 3.

The improvement is not too sensitive on the precise mass scale around our chosen

benchmark, and becomes especially relevant at large widths as alluded to in the

beginning of this work, Figures 7.8, 7.9, 7.10.

7.7 Conclusions

Resonance searches in the tt̄ final state are a well-motivated strategy for discover-

ing new physics beyond the Standard Model [316, 317]. While peaks in the mass

spectrum are very powerful indicators of the presence of such new physics, we also
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often expect to see large modifications to other distributions and including this

shape information through multi-dimensional distributions often offers a good way

to improve sensitivity. Additionally, if the resonance becomes wide, invariant mass

distributions necessarily lose shape information. We have performed a detailed in-

vestigation of the semi-leptonic and di-leptonic tt̄ final states for
√
s = 14 TeV and

provide quantitative estimates of the information gain from including top polarisa-

tion information in the limit setting. Our results demonstrate that this information

helps to ameliorate the loss of shape information in the invariant mass spectrum

for wider signal models. To make our analysis comparable to the practice of the

experiments we have focussed on the RS scenario as a particular candidate that

provides a theoretically well-defined framework for such a phenomenological situa-

tion. For the fully-polarised scenarios we study in this work we find improvements

of factors of up to 3 (2) on the limit of the signal strength for the di-(semi)-leptonic

analysis at large luminosity, with larger improvements for wider signal models as

expected. For our benchmark choice of 3 TeV resonances, including this information

is crucial to exclude certain KK gluon resonances at 95%. Interestingly the larger

improvement for the di-leptonic analysis allows this channel to become competitive

with semi-leptonic one for resonance searches for these types of models, however we

would like to note that this statement heavily depends on the systematics modelling

and only a dedicated experimental analysis can fully assess the relative sensitivities.

While these improvements are specific to our parameter choices at face value,

similar relative improvements can be expected for other, non-graviton or gluon res-

onances (not limited to RS models) that predict a net polarisation of the top pair.

Polarisation information is therefore an important ingredient to a more comprehen-

sive analysis strategy that builds upon the invariant top pair mass, using additional

shape information through multivariate approaches.



Chapter 8

Conclusions

In this thesis we have discussed the Standard Model of particle physics, its ap-

plication and relevance to high energy hadron colliders, and some open questions

that we hope can be answered by the experiments at the Large Hadron Collider.

In particular we have focused on searches for microscopic models for dark matter,

and methods for revealing the nature of electroweak symmetry breaking using the

structure of the Higgs sector.

Chapter 2 reviewed the Standard Model and the calculational tools used to ob-

tain the results in Chapters 5 and 6. In particular the Higgs sector of the Standard

Model, the application of perturbative unitarity arguments for constraining parame-

ters, and the calculation of renormalisation group equations were reviewed in detail.

Chapter 3 focused in part on the Hierarchy problem of the Higgs sector in the Stan-

dard Model, and its connection to the question of what the underlying nature of

electroweak symmetry breaking is. The second part focused on dark matter and

in particular on how to connect quantum field theory dark matter models to the

macroscopic observations which motivate them. To remain self-contained the Boltz-

mann equation which underlies the thermal freezeout mechanism for generating the

relic density used in Chapter 4 was reviewed in detail, and the statistical framework

employed throughout the thesis was similarly introduced.

In Chapter 4 we showed how to facilitate scans of the full parameter space

of a Simplified Dark Matter Model, and demonstrated that this allows for a more

meaningful comparison between collider constraints and the relic density to be made.

This motivates the interpretation of future results using our method, especially if

searches continue to return null results and we require a more complete picture of

the status of the full parameter space of a model in order to target searches better.

In Chapter 5 we considered the phenomenology of a strongly interacting dark sector

at the Large Hadron Collider and future hadron colliders, and calculated the size of

the leading logarithmic quantum corrections to dark matter production which could

be used to disentangle the internal structure of a dark sector after a hypothetical



158 Chapter 8. Conclusions

discovery. While such effects are hard to disentangle at the Large Hadron Collider,

we show that our results could be used at a future 100 TeV Collider if a scalar

mediator connected to a dark sector is discovered in the Large Hadron Collider

energy range.

In Chapter 6 we presented a detailed study of hhjj production, both through

gluon fusion using the full leading order result and weak boson fusion, and showed

that the weak boson fusion channel is uniquely sensitive to modifications of the

quartic V V †hh vertices from their Standard Model expectation. However the gluon

fusion component remains sizeable even if we apply strict selections towards the

weak boson fusion component, necessitating our detailed simulation. We further

considered CP violation in the Higgs sector and again found that the weak boson

fusion channel of hhjj production is highly sensitive to an operator which appears

generically in effective expansions of CP violating Two Higgs Doublet Models, but

is insensitive to perturbative unitarity arguments and other production channels.

Other leading CP violating effective operators are strongly constrained by pertur-

bative unitarity arguments, as the absence of new resonant physics in the Large

Hadron Collider energy range pushes the necessary completion to the TeV scale.

Finally, in Chapter 7 we investigated the use of shape information from top po-

larisation observables in searches for resonances decaying to top pairs. It was shown

that including this information can greatly improve the statistical sensitivity of the

searches towards signal models which predict polarised tops in both the di-leptonic

and semi-leptonic final states. This was demonstrated with a well-motivated bench-

mark Randall-Sundrum model. Looking forward, as the Large Hadron Collider col-

lects more data we can expect machine learning algorithms to become widespread

in order to fully exploit shape information in observables towards signal and back-

ground discrimination, and a robust understanding of the underlying physics will be

crucial both to guide the experiments towards interesting observables, and to avoid

spurious discoveries and exclusions. Our study provides an example of an observable

which is decorrelated from the hard kinematics underlying the resonant decay but

still carries robust information about the underlying signal model. In the future it

would be interesting to study such effects in a more systematic way.
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