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Abstract 

 
Mangroves are a group of woody plants that occur in the dynamic tropical and 

subtropical intertidal zones. Mangrove forests offer numerous ecosystem services 

(e.g. nutrient cycling, coastal protection and fisheries production) and support 

costal livelihoods worldwide. Rapid environmental changes and historical 

anthropogenic pressures have turned mangrove forests into one of the most 

threatened and rapidly vanishing habitats on Earth. Yet, we have a restricted 

understanding of how these pressures have influenced mangrove abundance, 

composition and functions, mostly due to limited availability of mangrove field 

data. Such knowledge gaps have obstructed mangrove conservation programs 

across the tropics.   

This thesis focuses on the plants of Earth’s largest continuous mangrove forest — 

the Sundarbans — which is under serious threat from historical and future habitat 

degradation, human exploitation and sea level rise. Using species, environmental, 

and functional trait data that I collected from a network of 110 permanent sample 

plots (PSPs), this thesis aims to understand habitat preferences of threatened 

mangroves, to explore spatial and temporal dynamics and the key drivers of 

mangrove diversity and composition, and to develop an integrated approach for 

predicting functional trait responses of plants under current and potential future 

environmental scenarios.  

I found serious detrimental effects of increasing soil salinity and historical tree 

harvesting on the abundance of the climax species Heritiera fomes. All species 

showed clear habitat preferences along the downstream-upstream gradient. The 

magnitude of species abundance responses to nutrients, elevation, and stem 

density varied between species. Species-specific density maps suggest that the 

existing protected area network (PAN) does not cover the density hotspots of any 

of the threatened mangrove species.    

Using tree data collected from different salinity zones in the Sundarbans (hypo-, 

meso-, and hypersaline) at four historical time points: 1986, 1994, 1999 and 2014, 

I found that the hyposaline mangrove communities were the most diverse and 

heterogeneous in species composition in all historical time points while the 
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hypersaline communities were the least diverse and most homogeneous. I 

detected a clear trend of declining compositional heterogeneity in all ecological 

zones since 1986, suggesting ecosystem-wide biotic homogenization. Over the 28 

years, the hypersaline communities have experienced radical shifts in species 

composition due to population increase and range expansion of the disturbance 

specialist Ceriops decandra and local extinction or range contraction of many 

endemics including the globally endangered H. fomes.  

Applying habitat-based biodiversity modelling approach, I found historical tree 

harvesting, siltation, disease and soil alkalinity as the key stressors that negatively 

influenced the diversity and distinctness of the mangrove communities. In 

contrast, species diversity increased along the downstream – upstream, and 

riverbank — forest interior gradients, suggesting late successional upstream and 

forest interior communities were more diverse than the early successional 

downstream and riverbank communities. Like the species density hotspots, the 

existing PAN does not cover the remaining biodiversity hotspots.  

Using a novel integrated Bayesian modelling approach, I was able to generate 

trait-based predictions through simultaneously modelling trait-environment 

correlations (for multiple traits such as tree canopy height, specific leaf area, 

wood density and leaf succulence for multiple species, and multiple 

environmental drivers) and trait-trait trade-offs at organismal, community and 

ecosystem levels, thus proposing a resolution to the ‘fourth-corner problem’ in 

community ecology.  Applying this approach to the Sundarbans, I found substantial 

intraspecific trade-offs among the functional traits in many tree species, 

detrimental effects of increasing salinity, siltation and soil alkalinity on growth 

related traits and parallel plastic enhancement of traits related to stress 

tolerance. My model predicts an ecosystem-wide drop in total biomass 

productivity under all anticipated stress scenarios while the worst stress scenario 

(a 50% rise in salinity and siltation) is predicted to push the ecosystem to lose 30% 

of its current total productivity by 2050. 

Finally, I present an overview of the key results across the work, the study’s 

limitations and proposals for future work.  
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Chapter 1 . General Introduction 

 

1.1 What are mangroves?   

Mangroves are woody plants that grow at the interface between land and sea. 

They first appeared along the shores of the Tethys Sea and then diverged from 

their terrestrial relatives during the Late Cretaceous to Early Tertiary (Ricklefs et 

al. 2006). Mangrove forests (30°N and 30°S latitude, 1.37-1.5x105 km2) occur in 

the dynamic tropical and subtropical intertidal zones (Giri et al. 2011) and consist 

of approximately seventy taxonomically diverse plant species from two plant 

divisions, twenty-seven genera, twenty families and nine orders (Duke et al. 

1998). Mangroves have many highly specialized adaptations to cope with extreme 

environmental conditions such as saline anaerobic sediments, high temperature 

and regular flooding (Mitra 2013). The adaptation mechanisms in mangroves are 

mainly of three forms: morphological, physiological and anatomical (Naskar & 

Palit 2015). Morphological adaptations in many mangroves include 

pneumatophores (breathing roots) to grow in anaerobic sediments and viviparous 

propagules to promote seed dispersal and formation of new forest stands. 

Physiological adaptations include salt exclusion, extrusion or accumulation to 

reduce salt stress on plant body. Anatomical adaptations may include thick cuticle 

and sunken stomata to ensure efficient water use by mangroves under limited 

freshwater availability. Collectively, these mechanisms ensure the long-term 

persistence and propagation success of mangroves living under extreme 

environments (Duke et al., 1998).    

Based on the development of adaptive mechanisms over time and habitat 

preferences, mangrove plants are categorized into two groups: exclusive  and non-

exclusive mangroves (Wang et al., 2010). Exclusive mangroves are highly adapted 

and their geographic ranges are strictly confined to the intertidal environmental 

settings (they do not expand into terrestrial communities). On the other hand, 

non-exclusive mangroves lack such derived traits and tend to grow in a relatively 

benign environment of the intertidal zone. They can even expand their ranges 

towards terrestrial plant communities (Tomlinson 1986). For example, the flagship 
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species of the Sundarbans mangrove ecosystem – Heritiera fomes – is a non-

exclusive species while the other major species such as Excoecaria agallocha, 

Ceriops decandra and Xylocarpus mekongensis are exclusive mangrove species. 

These species show a number of differences in their life-history and morphological 

traits and reproductive processes. H. fomes is an evergreen mangrove tree species 

that grows up to 25 m in height and produces pneumatophore. It regenerates 

through seed and the germination type is hypogeal (Mahmood 2015). The 

regeneration is more successful under moderate crown cover than the open areas. 

This species has moderate light demands although prefers shade at the early stage 

of growth (Siddiqi 2001). Flowering time for this species is April – June and the 

fruiting time is May – July.  E. agallocha is a deciduous tree that grows up to 5 – 

15 m with irregular crown structure. The species mostly shows epigeal germination 

and do not have pneumatophores. It also has the ability to copice (Mahmood 2015). 

Flowering time for this species is April – July and the fruiting time is May – 

September. Ceriops decandra is an evergreen, slow growing tree that grows up to 

4 m in height and can survive for long periods under extreme environmental 

conditions. The species shows viviparous germination and also has good coppicing 

ability (Mahmood 2015). Flowering time for this species is March – May and the 

fruiting time is April – July. X. mekongensis is a deciduous tree that grows up to 

20 m in height with peg or cone-shaped pneumatophores. Germination type is 

hypogeal in this species. Flowering time for this species is March – May and the 

fruiting time is April – August (Siddiqi 2001).    

 

1.2 Mangroves are threatened world-wide 

Mangrove forests support coastal livelihoods worldwide and provide numerous 

ecosystem services, including nutrient cycling (Feller et al. 2010), storm/tsunami 

protection (Ostling et al. 2009), carbon sequestration (Alongi 2014), and fisheries 

production (Carrasquilla-Henao & Juanes 2017). Mangroves are the most carbon-

dense forests in the world (1,023 Mg C ha-1) (Donato et al. 2011). The estimated 

monetary value of the ecosystem services provided by mangrove forests is US 

$4185 ha-1 y-1 (Friess 2016). Despite such ecological and economic contributions, 

mangroves are declining rapidly because of land clearing, coastal development, 

over-harvesting, aquaculture expansion, altered hydrology, nutrient over-
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enrichment and changes in rainfall and sea surface temperature (Polidoro et al. 

2010; Daru et al. 2013; Ghosh et al. 2017). Since the 1950s, the world-wide 

mangrove forest coverage has declined by 50% (Feller et al. 2010) and the 

geographic range and population sizes of most of the mangrove plant species have 

contracted (Polidoro et al. 2010). The current rate of mangrove deforestation is 

1-2% per year (Alongi 2015). Different aspects of climate change such as sea level 

rise (SLR), altered precipitation patterns and increased temperature and 

storminess may further accelerate the loss (Ward et al. 2016). This loss and 

degradation may seriously limit the capacity of mangroves to provide valuable 

ecosystem services for current and future generations.  

1.3 Modelling mangrove abundance  

The influence of climate change on mangrove forests’ worldwide distribution is 

now well accepted. Studies have shown differential responses of mangroves to 

fine-scale variations in salinity (Alongi 2015; Banerjee et al. 2017; Hoppe-Speer et 

al. 2011), nutrients (Naidoo 2009; Reef et al. 2010), and hydroperiod (Crase et al. 

2013). Hence, future global climate scenarios and changes in fine-scale 

environmental conditions may cause species compositional shifts and range 

contraction (in an adverse situation, e.g. drought and high salinity) or expansion 

(in suitable condition, e.g. adequate rainfall, low salinity and improved nutrient 

supply) of individual mangrove species. Quantifying the relationship between 

environmental variables and observed species abundance or occurrence using 

habitat suitability models (HSMs), has been a widely used approach to address 

these challenges for diverse taxa including upland plants (Smolik et al. 2010; 

Pottier et al. 2013), birds (Moudrý & Šímová 2013), butterflies (Eskildsen et al. 

2013), fish (Gasper et al., 2013), seals (Anderwald et al. 2012), and dolphins 

(Hastie et al., 2005). Theoretical background and practical guidelines for 

constructing HSMs have been explicitly described by Guisan & Zimmermann 

(2000), Austin (2002), Guisan & Thuiller (2005), Franklin (2010) and Miller (2010).  

HSMs are static in nature and assume equilibrium or pseudo-equilibrium between 

the environment and observed species patterns. These static models fail to 

capture the response of species under changing environmental conditions and 

have limited ability to cope with non-equilibrium situations (e.g. invasion, climate 

change) because they assume that habitats are closed, stable and without 
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competition (Guisan & Zimmermann 2000; Dormann 2007). Despite such 

fundamental limitations, HSMs have been widely used for forecasting or 

hindcasting species distributions in space and time (Elith & Leathwick 2009). The 

outputs of HSMs — species distribution/density maps — can be used for identifying 

critical habitats of threatened mangrove species. HSMs can also be used to locate 

appropriate mangrove restoration sites by matching maps of critical 

environmental variables and species historical ranges or habitat preferences 

(Hirzel & Le Lay, 2008). HSMs have been increasingly used to project the potential 

effects of global warming on species distributions and ecosystem properties 

(Franklin 2010). Global biodiversity databases (e.g. GBIF, BISS etc.) have little 

information on mangroves (Ellison 2001). In this context, HSM research on 

mangroves can contribute baseline data in these databases. So far, mangrove-

related global and regional conservation work has not focused on species-specific 

distributions in space although such information about either abundant or 

endangered species is important for identifying critical habitats and no-take zones 

and also for establishing coastal protected areas (Polidoro et al. 2010).   

Mangrove modelling research has been dominated by topics such as mangrove 

demography (Khoon & Eong 1995), stand structure and dynamics (Luo et al., 2010; 

Rakotomavo & Fromard, 2010), ecosystem services (Barbier et al. 2011), food 

webs (Siple & Donahue 2013), evolution and molecular ecology (Daru et al. 2013; 

Triest 2008) and biological invasion (Geller et al., 2010). Moreover, application of 

remote-sensing technology to provide spatio-temporal information on mangroves 

has been an active area of research during the last two decades (Giri et al., 2011; 

Heumann, 2011; Kuenzer et al., 2011). However, the use of HSMs for mangroves 

has been limited. Only recently, Record et al. (2013) provided the first example 

of applying species and community distribution models to coastal mangroves 

worldwide. However, fine-scale environmental data-driven regional or local HSMs 

that offer realistic predictions for both species and habitat conservation (Franklin 

2010) are limited for mangroves.  
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1.4 Modelling mangrove biodiversity 

1.4.1 Biodiversity quantification: state-of-the-art  

Understanding the processes that shape biodiversity and explaining biodiversity 

patterns across space and time are crucial for identifying vulnerable ecosystems, 

habitats or species and for developing realistic conservation plans (Meynard et al. 

2011). These processes are, however, scale-dependent. For example, biodiversity 

at a local scale may be related to competition or random dispersal whereas 

regional diversity may be related to environmental filtering (Swenson et al. 2012). 

Two prominent theories — ‘niche theory’ (Hutchinson 1957) and ‘neutral theory’ 

(Hubbell 2001) — have quite different explanations about the processes that shape 

biodiversity. Niche theory asserts that the amount of resource use varies across 

species, so only species having differentiated niches can coexist in a particular 

ecological community. The neutral theory assumes that community individuals 

have the same chance to reproduce and death, and relative abundances of species 

vary for demographic stochasticity or ‘ecological drift’. It further assumes that 

demographic processes take place at the local scale and demographic drift may 

be responsible for species extinction. Demographic drift may also be responsible 

for species extinction from the regional species pool. The regional species pool 

may gain novel species via speciation and contributes to local diversity via 

propagule dispersion. The neutral theory of Hubbell thus proposes ‘limited 

dispersal’ instead of ‘niche specialization’, as the main mechanism responsible for 

spatial variation across ecological communities. 

Biodiversity is simplified by partitioning regional species diversity (γ) into local (α) 

and turnover (β). α (alpha) diversity represents species diversity of a specific site, 

β (beta) diversity represents species compositional variation among sites, and γ 

(gamma) diversity is the sum of diversity for the various sites within an ecosystem. 

Species richness and numerous indices that incorporate relative abundances of 

species are two principle measurement schemes of alpha diversity. α diversity can 

be estimated in many ways  (Maurer & Mcgill 2011). However, Shannon’s index of 

diversity (Shannon & Weaver 1949) and measures based on Simpson’s 

concentration (Simpson 1948) are the most commonly used indices. Jost (2006, 

2007) has strongly criticized the use of index values of these indices in making 
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ecological statements and suggested using the ‘effective number of species’ which 

he termed ‘true diversity’.   

β diversity can be defined in two ways: directional turnover and non-directional 

variation. In the case of directional turnover, species compositional change is 

measured along a specified gradient (e.g. spatial, temporal or environmental), 

and in case of non-directional variation, variation in species composition is 

measured without reference to any specific gradient (Legendre & De Cáceres 

2013). Both β diversity versions are frequently used to explain the connections 

between local and regional diversity, and for visualizing spatial patterns of species 

assemblages (De Cáceres et al. 2012). Various β diversity indices have been 

proposed to quantify species compositional variation (directional or non-

directional). Whittaker (1960) first proposed a non-directional β diversity index 

for species richness (β = γ/α), and Nekola & White (1999) developed a directional 

β index by introducing the slope of the similarity decay in species composition 

with geographic distance. After these initial approaches, the number of indices 

has been increasing. Currently, the most popular indices belong to two families: 

additive (α + β = γ)(Lande 1996) and multiplicative (α x β = γ)(Whittaker 1972).   

While debates on several aspects of diversity measurements (e.g. partitioning 

diversity, scale, theoretical clarity, biological meaning) are ongoing (Barwell et 

al. 2015), a variety of approaches have been taken by ecologists (Jost, 2006, 2007, 

2010; Mendes et al., 2008; Tuomisto, 2010a, 2010b; Veech & Crist, 2010) to 

develop a unified index of diversity measurement. Most of these approaches, 

abundance-based in nature, have tried to integrate several components of 

diversity (e.g. evenness, scale etc.) into a single unified equation. However, 

Leinster & Cobbold (2012) criticized these approaches for not accounting for the 

species relative abundances. Reeve et al. (2016) have recently proposed a unified 

framework that resolves these problems and offers direct diversity comparison 

between constituent communities of an ecosystem, thus allowing identification of 

distinct, diverse or homogeneous communities. The main motivation behind their 

approach is to overcome the limitations of traditional diversity indices and to 

make diversity comparisons easier and informative.  



 
 

23 
 

1.4.2 Mangrove biodiversity research: state-of-the-art 

Spatial modelling of distributions of individual species has been, so far, the most 

popular strategy in ecology and biogeography (Franklin 2010). Community-level 

biodiversity modelling is gaining popularity for its ability to account for the rare 

species and to combine complex species and environmental data into a structured 

form which allows us to produce various spatial outputs such as maps of diversity 

indices, community types (sites with similar species composition), species groups 

(species with similar distributions), and gradients of compositional variation 

(Bonthoux et al., 2013). A variety of approaches: (1) ‘assemble first, predict 

later’, (2) ‘predict first, assemble later’ and (3) ‘assemble and predict together’ 

(Ferrier & Guisan 2006) are followed to produce these outputs. In the ‘assemble 

first, predict later’ approach, biological survey data are first used to estimate 

plot-level biodiversity indices which are then modelled as a function of 

environmental covariates. In the ‘predict first, assemble later’ approach, 

individual species in a study area are first modelled separately as a function of 

the environmental covariates to generate species distribution layers and then 

these layers are combined to calculate biodiversity indices for all grid cells. In the 

‘assemble and predict together’ approach, a single integrated modelling 

framework is first used to predict the spatial distributions of all species 

simultaneously and then these predictions are used to calculate biodiversity 

indices for all grid cells. While these approaches have been widely applied to 

identify hotspots and to prioritize conservation sites for a variety of taxa (e.g. 

upland tree species, birds, and fish), they have rarely been used for the mangrove 

taxa.  

Testing ‘zonation’ (distinct ordering of mangrove plants from shore to inland) and 

explaining the ‘biodiversity anomaly’ (mangrove species richness declines when 

we move along the latitudinal gradient) are the two research agendas that have 

dominated the mangrove biodiversity literature. Numerous studies have tested 

the existence of mangrove species zonation patterns. Although zonation is 

considered a common pattern in mangrove distributions world-wide (Siddiqi 2001), 

Bunt (1996) and Bunt & Stieglitz (1999) could not identify any clear-cut mangrove 

distribution patterns in Australia. Ellison et al. (2000) criticized the previous 

studies for being descriptive and tested species zonation patterns in the 

Bangladesh Sundarbans using quantitative methods. They did not notice any 
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distinct species zonation patterns. The number of mangrove plant species declines 

when we move along the latitudinal gradient – highest species richness (58 plant 

species) in the Indo-west Pacific (IWP) zone and lowest (12 plant species) in the 

Atlantic, Caribbean and Eastern Pacific (ACEP) regions. Mangrove ecologists put 

tremendous efforts to explain the cause of this ‘anomalous’ drop in species 

richness from IWP to ACEP (Ellison et al. 1999; Ellison 2001; Ricklefs et al. 2006).  

Limited understanding of how fine-scale environmental variations and human 

pressures effect mangrove communities, has obstructed the success of mangrove 

conservation initiatives in many countries (Lewis 2005). Mangrove biodiversity 

research programs have mostly relied on the species richness index which does 

not account for between-species population variability. Robust abundance-based 

unified equations for biodiversity quantification could be a promising tool to 

capture local spatial variability in species diversity and composition in the tropical 

mangrove ecosystems. 

1.5 Quantifying trait-environment relationships  

A central challenge in plant ecology is to understand and predict the spatial and 

temporal changes in species composition and the associated changes in ecosystem 

function under varying biotic and abiotic conditions. While using species-centric 

approaches has been a common practice to handle this challenge, plant ecologists 

now consider trait-based approaches as the most appropriate choice (Diaz et al. 

2007; Laughlin 2014; Chain-Guadarrama et al. 2017). Trait-based approaches are 

based on the idea that the fitness of plant species depends on how their traits 

respond to environmental drivers, thus facilitating more mechanistic prediction of 

species-, community- and ecosystem-level attributes (e.g. abundance, community 

composition, and biomass productivity etc.) under changing environmental 

conditions (Cadotte et al. 2011; Reich 2014). Plant functional traits are any 

measurable feature (morphological, physiological or anatomical) that influence a 

plant’s performance (Violle et al. 2007). Thus, functional traits play important 

roles in determining: which plant species can grow and survive under what 

environmental conditions, to what extent they acquire resources and maintain 

primary growth, and how they interact with co-existing species (Westoby & Wright 

2006). How these roles are mediated by dynamic environmental conditions in 
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natural forest ecosystems, collectively, influence the ecosystem processes, 

functioning and services (Hooper et al. 2005; Cadotte et al. 2011).  

Disentangling the association between traits and environmental drivers i.e. 

“performance filter” (Webb et al. 2010) is the building block of trait-based 

ecology because predicting filtered trait distributions based on a projection of the 

performance filter across space and time can determine species abundance and 

community composition which in turn defines ecosystem functions and services 

under changing environment. However, linking traits to environmental variables 

and abundances has been a long-standing problem known as the fourth-corner 

problem in community ecology. Ecologists have proposed both multivariate 

(Dolédec et al. 1996; Legendre et al. 1997; Dray & Legendre 2008; ter Braak et al. 

2012; Dray et al. 2014) and univariate (Pollock et al. 2012; Jamil et al. 2012; Jamil 

et al. 2013; Jamil et al. 2014; Brown et al. 2014) approaches to resolve the 

problem. Existing multivariate approaches (e.g. RLQ ordination, permutation tests 

etc.) offer a broad qualitative impression of trait-environment associations and 

help in selecting important traits and environmental variables in a trait-based 

study. However, these approaches have limited ability to quantify the strength of 

the associations between traits and environmental drivers. On the other hand, 

recent advancements in trait-based univariate (regression) approaches offer the 

flexibility of model selection, validation, and predictions. Although these 

approaches may potentially scale up individual traits to the community and 

ecosystem level processes (Funk et al. 2017), currently their usage is limited for 

single species and single traits.    

Persistent environmental pressures may eliminate species over ecological time 

scales (species sorting) and modify trait values over evolutionary time scales 

(natural selection), resulting in altered species composition, relative abundance, 

and finally productivity in local communities (Verberk et al. 2013). Species sorting 

and natural selection do not act independently on a single trait, but rather, on 

species whose survival in a specific environment is controlled by multiple 

interacting traits. However, existing trait-based univariate approaches mostly 

deal with single species (Jamil et al. 2012) and have limited statistical ability to 

model multiple species, traits, and environmental variables simultaneously and to 

incorporate complex interactions between multiple traits of multiple competing 
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species under a dynamic environment. These shortcomings thus may yield 

excessively uncertain predictions when forecasting species, community and 

ecosystem responses under future environmental scenarios (Webb et al. 2010; 

Verberk et al. 2013; Violle et al. 2014). 

Therefore, substantial methodological improvements are still required for linking 

the underlying concepts of trait-environmental relationships to quantitative 

approaches that will allow a predictive basis to community ecology and provide 

theoretical linkages between community ecology, ecosystem ecology, and 

functional biogeography. Webb et al. (2010) stated that traits-based ecology is 

now at a critical juncture where further advancements require an integrated 

quantitative approach that can analyse hierarchically structured trait data 

consistently to explain the dynamic nature of the trait–environment relationship 

and allow for robust spatial and temporal predictions of trait distributions with 

precise estimates of uncertainties. Verberk et al. (2013) consider that failure in 

detecting the response traits, in addressing the linkages and interactions among 

traits, and in differentiating which trait combinations maintain plants’ growth and 

survival under stress, are the predominant constraints responsible for low 

discriminatory power and poor mechanistic understanding of current trait-based 

approaches. Funk et al. (2017) have identified three outstanding issues (i.e.   

selecting appropriate traits; unfolding intraspecific trait variation and integrating 

this variation into models; and scaling functional trait data to community- and 

ecosystem-level processes) that need to be resolved to advance traits-based 

ecology. To do so they and many others (Webb et al. 2010; Verberk et al. 2013) 

have suggested a need for new model development. 

1.6 Study site: the Sundarbans 

The Sundarbans is Earth’s largest continuous mangrove forest covering 10,017 km2 

in Bangladesh and India. This forest is part of the Ganges-Brahmaputra delta which 

originated following the fragmentation of Gondwanaland in the early Cretaceous 

(Islam & Wahab 2005). The Bangladesh part of the Sundarbans (21°30′ — 22°30′N, 

89° 00′ – 89°55′E) covers 6017 km2. Of this 69% is forest land, and the rest 

encompasses rivers, small streams and canals. The forest is washed out by the 

tide twice a day and its hydrology depends on the fresh water discharge from the 

Ganges and the saltwater influx from the Bay of Bengal.     
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The Bangladesh Sundarbans supports the livelihood of 3.5 million coastal people 

(Islam et al. 2014), harbours breeding and nursing grounds for many marine 

organisms (Sandilyan & Kathiresan 2012), protects them from natural disasters 

(Danielsen et al. 2005), and houses the remaining habitats of many globally 

endangered plant and animal species (Siddiqi 2001). Because of these 

contributions, UNESCO declared the Bangladesh Sundarbans a World Heritage Site 

in 1997 (Gopal & Chauhan 2006). It was also declared a globally important RAMSAR 

wetland ecosystem under the Ramsar Convention in 1992 (Siddiqi 2001).  

The Sundarbans has lost half of its original size within the last 150 years due to 

the conversion of mangrove habitats to agricultural land and human settlements 

(Siddiqi 2001). Historical forest exploitation, gradual reduction in freshwater flows 

(3700 m3/s to 364 m3/s) since the construction of the Farakka dam in India in 1974, 

salinity intrusion, oil spills, cyclones, water and soil pollution have severely 

degraded the Sundarbans ecosystem by depleting the populations of many 

threatened mangroves, including the globally endangered Heritiera fomes (Ellison 

et al. 2000). Some studies (Ellison et al. 2000; Iftekhar & Islam 2004; Iftekhar & 

Saenger 2008; Mukhopadhyay et al. 2015; Aziz & Paul 2015) have described the 

negative effects of these forces on Sundarbans’ forest structure and functions.  

Along with the historical and ongoing degradations, different aspects of climate 

change, particularly, sea level rise (SLR) (Karim & Mimura 2008) are likely to have 

a significant influence on the Sundarbans. However, spatially explicit baseline 

information on the remaining populations and spatial distributions, diversity, 

species composition, and functions of the mangroves are still lacking. This scarcity 

of information has been a major impediment to national and international 

conservation efforts in the Sundarbans (Islam et al. 2014; Aziz & Paul 2015).   

1.7 Aims of the thesis 

The overall aim of this thesis is to quantify the habitat preferences of threatened 

mangroves in the Sundarbans world heritage ecosystem, to explore spatial and 

temporal dynamics and the key drivers of mangrove biodiversity, and to develop 

an integrated approach for predicting functional trait responses of plants under 

current and future environmental scenarios. The thesis comprises four data 

chapters (Chapters 2 – 5).    
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Chapter 2 determines habitat preferences and develops spatial density maps of 

the four most dominant mangrove tree species (i.e. Heritiera fomes, Excoecaria 

agallocha, Ceriops decandra and Xylocarpus mekongensis).  

Chapter 3 determines the spatial heterogeneity in alpha, beta, and gamma 

diversity at four historical time points (1986, 1994, 1999 and 2014) to uncover the 

temporal dynamics in species composition in the established ecological zones 

(hypo-, meso-, and hypersaline) in the Sundarbans. Specific questions that I ask 

here include: Which ecological (i.e. salinity) zone supports the most/least diverse 

mangrove communities? Is the most diverse ecological zone also the most 

heterogeneous (i.e. variable between plots) in species composition? How has 

compositional heterogeneity in the broader ecological zones developed over the 

28 years? How has the geographic range and density of mangroves changed since 

1986? I also develop spatial biodiversity maps to answer the following questions: 

Where are the historical and contemporary biodiversity hotspots located? Which 

habitats have changed most in species composition over time?  

Chapter 4 uncovers the influences of fine-scale habitat conditions and historical 

events in shaping the spatial distributions of mangrove alpha, beta and gamma 

diversity. My more specific questions include: What are the key drivers of 

mangrove biodiversity? How do the predictive abilities of environmental data-

driven biodiversity models compare with those of covariate-free direct 

interpolation approaches? Where are the biodiversity hotspots in the Sundarbans 

currently located? Are these hotspots well protected?  

Chapter 5 proposes a Bayesian hierarchical modelling approach to quantify trait-

environment relationships for multiple traits, species, and environmental drivers 

simultaneously, while accounting for trade-offs between different traits. I then 

apply this integrated approach on field data comprising nine prominent tree 

species, eight important environmental drivers, and four key plant morphological 

traits (canopy height, specific leaf area, wood density, and leaf succulence) and 

ask: (1) Which set of theoretical hypotheses, is best supported by the data?  (2) 

How do the different traits of each species respond to the array of environmental 

drivers? (3) Is there covariation between the responses of functional traits? Using 

the model-based predictions, I then develop trait and productivity maps under 

present and future environmental scenarios.  
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Finally, Chapter 6 provides a broader discussion of previous chapters’ results and 

proposals for future improvements.  
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Chapter 2 . The spatial distribution and habitat 
preferences of threatened mangroves in the 
Sundarbans: Implications for conservation 

*Note: This chapter has been published in ‘Scientific Reports’ (Appendix 1) 

2.1 Abstract 

The Sundarbans world heritage ecosystem is under threat from historical and 

future human exploitation and sea level rise. Limited scientific knowledge on the 

spatial distributions of the threatened tree species and their habitat requirements 

has obstructed conservation efforts in this global priority ecosystem. Using tree 

counts and environmental data collected from 110 permanent sample plots (PSPs), 

in this chapter, I developed habitat suitability models (HSMs) and species density 

maps for the four most dominant mangrove species: Heritiera fomes, Excoecaria 

agallocha, Ceriops decandra and Xylocarpus mekongensis. Generalized additive 

models of mangrove abundance data revealed steep responses to salinity 

gradients. Globally endangered H. fomes abundance declined as soil salinity 

increased. Responses to nutrients, elevation and stem density varied between 

species. X. mekongensis preferred upstream habitats while the rest preferred 

downstream and intermediate-stream areas. Historical harvesting had negative 

influences on all species, except E. agallocha. The most suitable habitats of the 

threatened species currently occur outside the existing protected area network 

(PAN). This study, therefore, recommends a reconfiguration of the existing PAN 

to include these suitable habitats and ensure their immediate protection. Finally, 

I discuss how the habitat insights and spatial predictions generated by my models 

can guide future forest studies and spatial conservation planning.   

2.2 Introduction 

The mangrove biome (137,760 km2 in 118 countries) is under severe threat. We 

have lost nearly 50% of the biome since the 1950s due to deforestation, habitat 

degradation and coastal development (Feller et al. 2010). If the current trend of 

human exploitation and habitat degradation continues, the whole mangrove biome 

may vanish in the next 100 years (Duke et al. 2007). About 16% of the total 

mangrove plant species (~ 70) are at elevated risk of extinction and 10% are near-
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threatened (Polidoro et al. 2010). However, we have limited knowledge about the 

habitat preferences and current spatial distributions of these threatened plants in 

many stressed coastal regions in the tropics, particularly, the Sundarbans, which 

is a UNESCO World Heritage Site and a RAMSAR wetland ecosystem of global 

importance (Siddiqi 2001).    

The Sundarbans contains one third of the global mangrove plant species (Ghosh et 

al. 2016) and acts as a repository of numerous globally endangered flora and fauna 

(Iftekhar & Islam 2004). However, natural (e.g. tropical cyclones, tsunamis) and 

anthropogenic (e.g. tree harvesting, aquaculture, oil spills) pressures (Ellison et 

al. 2000; Aziz & Paul 2015) have heavily degraded the Sundarbans ecosystem, 

resulting in local extinction of at least three mangrove plant species of the 

Bruguiera genus and six mammal species including Javanese rhinoceros 

(Rhinoceros sondiacus) and wild buffalo (Bulbulus bulbalis) in the last two 

centuries (Iftekhar & Islam 2004). The population of Heritiera fomes, a globally 

endangered tree species, has declined by 76% since the 1950s. Nearly 70% of the 

H. fomes trees are currently affected by the ‘top dying’ disease (Chowdhury et 

al. 2008). Declines in other major mangrove tree species (e.g. Excoecaria 

agallocha and Xylocarpus mekongensis) have also been reported (Iftekhar & 

Saenger 2008). We also know little about the current spatial distributions of 

Ceriops decandra, a globally near-threatened species (Siddiqi 2001).  

In the Sundarbans, the freshwater river flows help to modulate salt-water toxicity 

and keep the ecosystem suitable for mangrove trees. However, since the 

construction of the Farakka dam (in 1974) in the Ganges upstream, the freshwater 

supply into the Sundarbans has reduced by 65% (Iftekhar & Islam 2004), resulting 

in increased salinity levels, reduced nutrient status, and overall degradation of 

the entire ecosystem (Mukhopadhyay et al. 2015). The rate of sea level rise (SLR) 

along the Bangladesh coast was substantially higher than the global average in the 

last century (Karim & Mimura 2008). Future SLR is likely to alter the habitat 

conditions, regional hydrology, vegetation structure and functions in the 

Sundarbans (Ghosh et al. 2016). Therefore, ongoing habitat degradation and 

future SLR together may alter the current spatial distributions of these mangrove 

species and forest community composition. 
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Determining the drivers and spatial distributions of threatened species is vital for 

their management and conservation. However, lack of such knowledge  has 

obstructed the success of conservation initiatives in many countries (Lewis 2005), 

including Bangladesh (Islam et al. 2014). Only recently have coastal mangrove 

distributions been modelled at global (Record et al. 2013) and regional (Crase et 

al. 2015) scales and we are now in urgent need of Habitat Suitability Models 

(HSMs), based on fine-scale species abundance and environmental data to assist 

us in protecting threatened ecosystems such as the Sundarbans. HSMs and their 

outputs (i.e. habitat maps) are widely used during different phases of resource 

management and spatial conservation planning (Guisan & Thuiller 2005). These 

maps are also used to identify areas appropriate for establishing protected areas, 

evaluate threats to those areas, and design reserves (Guisan et al. 2013). For 

example, a baseline distribution map of the mangrove species could be an 

important tool for the forest managers to make decisions on future mangrove 

planting and forest protection via tracking population changes over time.  

In this chapter, I used tree counts and environmental data collected from a 

network of 110 permanent sample plots (PSPs) in the Sundarbans to generate 

spatially explicit baseline information on the distribution and habitat preferences 

of the four most abundant mangrove species: H. fomes, E. agallocha, C. decandra 

and X. mekongensis. I identified the key environmental variables related to their 

spatial distribution and generated species-specific spatial density maps using both 

geostatistical and regression approaches. I then demonstrated the potential 

applications of these habitat insights and spatial maps for future forest studies, 

spatial conservation planning, biodiversity protection and monitoring programs.   

2.3 Methods 

2.3.1 Study system 

The Bangladesh Sundarbans (21°30′ — 22°30′N, 89° 00′ – 89°55′E) is part of the 

Earth’s largest river delta at the Ganges-Brahmaputra estuary (Fig. 2.1). 

Geologically, the Sundarbans is of recent origin (about 7000 years old) and was 

formed through the silt deposition by the Ganges-Brahmaputra river system 

(Iftekhar & Islam 2004). The soil is finely textured, poorly drained and rich in alkali 

metal contents (Siddiqi 2001). Of its total area (6017km2), about 69% is land and 
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the rest comprises rivers, small streams and canals (Wahid et al. 2007). Most parts 

of the forest are inundated twice a day. The water level is associated with the 

joint effects of the seawater tides and freshwater input from the Ganges. 

Freshwater flow increases during the monsoon (June–September) and sharply 

drops during the dry season (October to May) due to reduced water influx from 

the Ganges. The climate is humid and tropical. Average annual precipitation is 

1700 mm. Average maximum annual temperature is between 29.4° and 31.3°C 

(Gopal & Chauhan 2006).  

2.3.2 Tree surveys 

To monitor biodiversity and forest stock the Bangladesh Forest Department (BFD) 

established a network of 120 PSPs in the Sundarbans in 1986 (Fig. 2.1). Each PSP 

is 0.2 ha in size (100 x 20 m) and divided into 5 20 x 20 m subplots. Of these, 110 

PSPs were positioned to represent the ecological zones (i.e. hyposaline, 

mesosaline and hypersaline) and the forest types (Iftekhar & Saenger 2008). The 

remaining 10 relatively smaller sized  PSPs (20 x 10 m) were established to monitor 

forest regeneration, and were not considered in this thesis. As part of the 2008 – 

2014 forest inventories, my fieldwork team, together with the BFD tagged every 

tree with stem diameter ≥ 4.6 cm (because mangroves grow very slowly and this 

threshold value has been used in all previous forest inventories in the Sundarbans 

since the early 1900’s (Iftekhar & Saenger 2008)), recorded at 1.3 m from the 

ground with a unique tree number and recorded tree counts for each of the 110 

PSPs.  
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Fig. 2.1 Sampling sites (triangles) in the Sundarbans, Bangladesh. The thin grey 

lines represent the canals.   

 

2.3.3 Environmental data  

Environmental data were collected from all 110 PSPs during January — June 2014. 

I adopted a soil sampling design (Fig. 2.2), collected 9 soil samples from each PSP 

(to a depth of 15 cm) to account for the within-plot variation in soil parameters. 

For soil texture analysis (percentage of sand, slit and clay), I used the hydrometer 

method (Gee & Bauder 1986). I determined soil salinity (as electrical conductivity 

— EC) in a 1:5 distilled water:soil dilution (Hardie & Doyle 2012) using a soil 

conductivity meter — Extech 341350A-P Oyster. I took field measurements for soil 

pH and oxidation reduction potential (ORP) using digital soil pH and ORP (Extech 

RE300 ExStik) meters. Soil NH4 concentration was measured following the Kjeldahl 

method (Bremner & Breitenbeck 1983). 

 



35 
 

35 
 

 

Fig. 2.2 Soil sampling design. Total 9 soil samples (circles, 0 – 30 cm depth) were 

(3 samples/subplot) collected in the ends and middle of the 20 x 20 subplots in 

each PSP. 

 

I measured total phosphorus (P) using the molybdovanadate method and a 721-

spectrophotometer. Soil potassium (K), magnesium (Mg), iron (Fe), zinc (Zn), 

copper (Cu), and sulphide concentrations were measured using an atomic 

absorption spectrophotometer (AA-7000) at the soil chemistry laboratory of the 

Civil and Environmental Engineering Department in the Shahjalal University of 

Science and Technology, Bangladesh. I analysed each of the nine soil samples first 

and then averaged the results. Five elevation (above-average sea level) readings 

for each PSP were randomly extracted from the digital elevation model with 

accuracy (i.e. accuracy at pixel level) ±1 m for the Sundarbans region (IWM 2003). 

Then I averaged these readings to reduce the error associated with the digital 

elevation model. A proportional distance from the river-sea interface, measured 

using the map of the Sundarbans,  was used to calculate and classify “upriver 

position” (henceforth, URP) of each PSP (Norman C. Duke et al. 1998). Here 

‘downstream’ represents the lower third (0 – 33% upriver from the sea) of the 

estuarine system, ‘intermediate’ represents the middle third (34 – 66% upriver 

from the sea), and ‘upstream’ represents the upper third (67 – 100% upriver from 

the sea). This scheme is useful for understanding how individual mangrove’s 

habitat preference vary along the downstream– upstream gradient.    

2.3.4 Covariate selection 

To develop a biologically informative covariate set for my HSMs, I followed Twilley 

& Rivera-Monroy's (2005) conceptual framework. This framework comprises three 

broad categories of variables (i.e. resources, regulators and hydroperiod) that are 
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believed to control mangrove forest structure and function (Krauss et al. 2008; 

Reef et al. 2010; Crase et al. 2013). Resources (i.e. nutrients) are used by plants 

and their availability is related to tree productivity. Here, I selected soil NH4, P, 

K, Mg, Fe and Zn based upon the detailed explanation of nutrient requirements of 

mangrove plants available in the mangrove literature (Reef et al. 2010). 

Regulators are non-resource variables that influence the growth and 

establishment of mangroves. I employed soil salinity as the main regulator. 

Hydroperiod (the duration, frequency and depth of inundation) is recognized as 

an important determinant of mangrove distribution (Crase et al. 2013). PSP level 

hydroperiod data are not available for the Sundarbans, so I selected elevation as 

a proxy that reflects the possible variation in hydroperiod across the Sundarbans. 

I also selected URP of each PSP as a covariate to account for the effects of the 

river systems on mangrove distributions along the downstream-upstream gradient.  

The relative abundance of a mangrove species may influence the abundance of 

another through biotic interactions i.e. competition or facilitation (Wisz et al. 

2013). In fact, each tree interacts with the trees that are in its neighbourhood 

through multiple concurrent interactions (Le Roux et al. 2013). Given the super-

dominance of E. agallocha and H. fomes (see section 2.3.2) and tree structural 

complexities (i.e. multiple stems in C. decandra) which might have increased tree 

measurement (i.e. diameter) errors, I initially considered two alternative 

measures of abundance: (1) density of all stems for each plot, and (2) total basal 

area for each plot as biotic variables. HSMs of species with basal area as a 

covariate had lower explanatory and predictive powers, compared to models with 

density of all stems. Therefore, I selected density of all stems for each plot 

(hereafter, DAS) as a simple proxy for biotic interaction.  

The Sundarbans has a long exploitation history (Siddiqi 2001). Illegal tree 

harvesting is also common (Iftekhar & Islam 2004). Hence, I incorporated historical 

harvesting (henceforth, HH) as a covariate in my HSMs due to its potential 

influence on present tree densities in the PSPs. HH denotes the number of cut 

trees (detected by counting stumps) in each PSP from the first census (1986) to 

the last census (2014). 

I checked for multi-collinearity in my set of candidate covariates using the vifstep 

function of ‘usdm’ package (Naimi 2015) in R 3.2.2 (R Core Team 2016), which 
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first calculates Variance Inflation Factors (VIF) for all predictor variables, then 

removes the one with highest VIF that exceeds the threshold of 2.5 and repeats 

the procedure until no variable with VIF > 2.5 remains. This led to the exclusion 

of Zn from my covariate set (Appendix 2A).  

2.3.5 Habitat suitability analyses 

I used generalized additive models (GAMs) (Wood 2006) with a Poisson likelihood 

and a log-link for their ability to handle complex, non-monotonic relationships 

between the response and the predictor variables (Guisan et al. 2002). Moreover, 

by using non-parametric smoothing functions, GAMs can often construct 

biologically insightful relationships between response and covariates without a-

priori hypotheses (Guisan & Thuiller 2005). Smoothed responses used cubic basis 

splines executed within the ‘mgcv’ package (Wood 2011) in R.   

Using the ‘dredge’ function in the ‘MuMIn’ package (Barton 2015), I fitted 

candidate models with all possible combinations of covariates and ranked them 

using the Akaike Information Criterion (AIC) (Burnham & Anderson 2002). I then 

obtained the relative support for each model by calculating the ∆AIC (the 

difference between the best model’s AIC value and the AIC value for each of the 

other models). Kullback–Leibler information loss is minimal between models with 

∆AIC ≤ 2 (Burnham & Anderson 2002). So, I used the ‘∆AIC ≤ 2’ criterion to select 

my confidence set of models for each mangrove species. I then calculated Akaike 

weights (AICw) to inspect relative support for each model in the confidence set. 

AICw values range from 0 to 1 and the sum of all AICw across the confidence set 

is 1. When there was only one model with ∆AIC ≤ 2, it was unambiguous that it 

outperformed all possible candidate models. When there were multiple competing 

models, I used AIC-weighted model averaging to reduce model selection 

uncertainty and bias. I determined Relative Importance (RI) of each covariate by 

summing the AICw of the models in which the covariate was retained. RI values 

range between 0 and 1, where 0 indicates that the target covariate is never 

included in the competing models, 1 indicates inclusion of the covariate in all the 

competing models. I ranked the covariates based on their RI values. Residual 

diagnostic plots for the best GAMs did not show violations of the Poisson dispersion 

assumption.  
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Goodness-of-fit of the models was measured using the R2 (coefficient of 

determination) statistic between the observed and estimated abundance values. 

For validation purposes, I partitioned my dataset into a calibration (88 PSPs, 80% 

of the full data) and validation (22 PSPs, 20% of the full data) subsets. The 

validation dataset was randomly chosen to cover the whole Sundarbans and was 

employed to assess the predictive power of the fitted models via the R2 statistic 

applied to the model’s predictions for the validation data. I also mapped the 

actual and predicted abundances of both calibration and validation set to check 

for any spatial patterns of prediction errors.  

2.3.6 Spatial mapping 

I mapped mangrove species densities over the entire Sundarbans using two 

different approaches: (1) direct interpolation of plot-level raw abundance using 

geostatistical methods, and (2) habitat-based predictions from my HSMs. 

Environmental data collection is demanding, whereas tree abundance 

measurements are taken regularly at the PSPs. Therefore, it is useful to know how 

close the predictions of the habitat models were compared to simple interpolation 

methods. To directly interpolate individual mangrove species abundances, I used 

ordinary kriging (OK), a widely-used interpolation technique. Selecting an 

appropriate variogram model is a prerequisite for kriging success. I fitted three 

different variogram models to each mangrove: Spherical, Exponential and 

Gaussian, and selected the model with least sum of squared errors. The spherical 

model offered best fit for H. fomes, the exponential model provided best fit for 

E. agallocha and C. decandra, and the Gaussian model for X. mekongensis (see 

Appendix 2B for the semivariograms of the species).  

For producing covariate surfaces, I fitted Spherical, Exponential and Gaussian 

variogram models to each covariate, and selected the model with least sum of 

squared errors (see Appendix 2C for the semivariograms of the covariates). I then 

used these covariate surfaces (Appendix 2D) to generate model-averaged 

predictions of species density over the entire Sundarbans.  

Each grid-cell of the interpolated surface was 625 m2 (25m x 25m). The covariate 

surfaces were constructed by OK using the ‘gstat’ package (Pebesma 2004) in R. 

A protected area network (PAN) comprising three Wildlife Sanctuaries (WS) – East 

WS, West WS, and South WS has been operational since the 1970s. I superimposed 
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the PAN on my species density maps for evaluating its spatial extent to cover the 

current density hotspots of the threatened tree species. I also compared the 

predictive abilities of the direct and habitat-based approaches. Here, I used the 

normalized root mean square error (NRMSE) statistic derived from the leave-one-

out cross-validation procedure. For normalization, the root mean square error 

statistic was divided by the range of the actual species abundances. Both habitat-

based and direct predictions of the mangrove tree abundances were mapped using 

the ‘raster’ package (Hijmans 2015) in R. I further mapped the prediction 

discrepancy between these two approaches, to look for any spatial patterning in 

the prediction errors. 

 

2.4 Results 

2.4.1 Tree surveys 

A single survey of each of the 110 PSP’s carried out between 2008 — 2014 gave a 

total of 49409 trees of 20 species from 13 families and 18 genera (Table 2.1). The 

most abundant mangrove tree species was E. agallocha (59.69% of total trees), 

followed by H. fomes (30.89%), C. decandra (6.12%) and X. mekongensis (0.82%). 

The remaining 16 species were extremely rare comprising only 2.49% of the total 

count.  
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Table 2.1 Taxonomy and global conservation status of the mangrove species 

surveyed in the 110 permanent sample plots (PSPs) in the Bangladesh Sundarbans. 

*IUCN global population trend, † Not assessed for the IUCN Red List, LC = Least 

concern, DD = Data deficient, NT = Near threatened, VU= Vulnerable, EN = 

Endangered, D = Decreasing. 

 

Latin name Family IUCN conservation 

status 

Global population 

trend* 

Aegiceras corniculatum  Myrsinaceae LC D 

Amoora cucullata  Meliaceae NA† NA 

Avicennia officinalis  Avicenniaceae LC D 

Bruguiera sexangula  Rhizophoraceae LC D 

Cerbera manghas Apocynaceae NA NA 

Ceriops decandra  Rhizophoraceae NT D 

Cynometra ramiflora  Fabaceae NA NA 

Excoecaria agallocha  Euphorbiaceae LC D 

Excoecaria indica Euphorbiaceae DD D 

Heritiera fomes  Malvaceae EN D 

Intsia bijuga  Leguminosae VU D 

Lumnitzera racemosa  Combretaceae LC D 

Hypobathrum racemosum  Rubiaceae NA NA 

Pongamia pinnata  Leguminosae LC Stable 

Rhizophora mucronata  Rhizophoraceae LC D 

Sonneratia apetala  Lythraceae LC D 

Talipariti tiliaceum  Malvaceae NA NA 

Tamarix dioica  Tamaricaceae NA NA 

Xylocarpus granatum  Meliaceae LC D 

Xylocarpus mekongensis  Meliaceae LC D 
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2.4.2 Habitat models 

The best GAMs for estimating species abundances explained the variability of H. 

fomes (68%), E. agallocha (84%), C. decandra (73%) and X. mekongensis (75%) 

(Table 2.2). Salinity, K, DAS (total density of individuals), URP (upriver position) 

and HH (historical harvesting) were included in the best GAMs of all mangrove 

species. Mg and Fe were included (RI = 1.00) in the best GAMs for H. fomes, E. 

agallocha and X. mekongensis, with P (RI = 1.00) for H. fomes, E. agallocha, and 

C. decandra, and also elevation (RI = 1.00) for H. fomes and X. mekongensis.  The 

partial response plots of the best GAM (Fig. 2.3) indicated that H. fomes 

abundance decreased with increasing soil salinity (> 7 dS m-1). In contrast, 

increasing salinity was associated with increasing abundances of E. agallocha (> 7 

dS m-1), C. decandra (> 6.2 dS m-1), and X. mekongensis (> 7 dS m-1).   

Responses to nutrients varied between species. The high abundance of H. fomes 

was associated with low chemical concentrations of P (< 30 mg Kg-1), K (< 6 gm Kg-

1), Mg (< 2.75 gm Kg-1) and Fe (< 30 gm Kg-1) in the soil.  In contrast, the high 

abundance of E. agallocha was associated with relatively high concentrations of P 

(> 30 mg Kg-1), K (> 6 gm Kg-1), Mg (> 2.75 gm Kg-1) and Fe (> 30 gm Kg-1), and low 

concentrations of NH4 (< 0.70 gm Kg-1). High C. decandra abundance was related 

to high K (> 5 gm Kg-1) and low NH4 (< 0.70 gm Kg-1) and P (< 30 mg Kg-1) 

concentrations. High X. mekongensis abundance was related to low K (< 5 gm Kg-

1) and Mg (< 1.60 gm Kg-1). H. fomes and X. mekongensis preferred elevated sites. 

H. fomes abundance showed a declining trend after a certain value of DAS (> 500 

trees/0.2 ha). In turn, E. agallocha, C. decandra and X. mekongensis displayed 

positive responses to increasing DAS. The abundances of E. agallocha (URP > 65%) 

and C. decandra (URP > 50%) sharply decreased with increasing URP, indicating 

their high preference for down- and mid-stream habitats. In contrast, H. fomes 

and X. mekongensis abundances increased with increasing URP (> 50%, indicating 

their preference for upstream habitats). High HH was related to low abundances 

of H. fomes, C. decandra and X. mekongensis. In contrast, E. agallocha had high 

abundance in the sites that experienced high HH.  
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Table 2.2 Results of generalized additive models (GAMs) built for the four major mangrove species of the Bangladesh Sundarbans. DE = 

deviance explained, RI = relative variable importance in the model selection process. Covariates: soil salinity, elevation above average-

sea level (ELE), soil NH4, total phosphorus (P), potassium (K), magnesium (Mg), iron (Fe), upriver position (URP), density of all stems for 

each plot (DAS) and historical harvesting (HH).  

 

 

Species 

 

Model 

rank 

 

Salinity 

 

ELE 

 

NH4
 

 

P 

 

K 

 

Mg 

 

Fe 

 

URP 

 

DAS 

 

HH 

 

∆AIC 

 

∆AICw 

 

 

Adj-R2 

 

DE (%) 

 

H. fomes     
 

 

E. agallocha  

 

 

 

C. decandra  

 

 

 

 

X. mekongensis     

 

1 + + ─ + + + + + + + 0.00 0.99 0.67 68 

RI 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     

               

1 + ─ + + + + + + + + 0.00 0.66 0.83 84 

2 + + ─ + + + + + + + 1.39 0.33   

RI 1.0 0.67 0.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0     

               

1 + ─ + + + ─ ─ + + + 0.00 0.46 0.65 73 

2 ─ + + + + ─ ─ + + + 0.53 0.35   

3 + + + + + ─ ─ + + + 1.84 0.18   

RI 0.65 0.65 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0     

               

1 + + ─ ─ + + ─ + + + 0.00 0.75 0.84 75 

RI 1.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0      
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Fig. 2.3 Effects of covariates inferred from the best GAMs fitted to the abundances 

of the four prominent mangrove species in the Sundarbans. The solid line in each 

plot is the estimated spline function (on the scale of the linear predictor) and 

shaded areas represent the 95% confidence intervals. Estimated degrees of 

freedom are provided for each smoother following the covariate names. Zero on 

the y-axis indicates no effect of the covariate on mangrove abundances (given 
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that the other covariates are included in the model). Covariate units: soil salinity 

= dS m-1, elevation = m (above average-sea), NH4 = gm Kg-1, P = mg Kg-1, K = gm 

Kg-1), Mg = gm Kg-1, Fe = gm Kg-1, URP = % upriver, DAS = density of all stems for 

each plot, and historical harvesting (HH) = total number of harvested trees in each 

plot since 1986.   

 

The predictive abilities of the GAMs were R2 = 0.75 for H. fomes, R2 = 0.78 for E. 

agallocha, and R2 = 0.51 for C. decandra. The predictive ability of the GAMs for X. 

mekongensis was somewhat lower (R2 = 0.24) than the other species (possibly due 

to its high densities in the northern upstream areas and sporadic occurences in 

the remaining Sundarbans). When GAMs were used to estimate mangrove 

abundances for all 110 PSPs, a strong association (H. fomes, R2 = 0.67; E. 

agallocha, R2 = 0.83; C. decandra, R2 = 0.65; X. mekongensis, R2 = 0.84) was found 

between the actual and estimated abundances. Spatial maps of the actual and 

estimated abundances of the mangroves (both calibration and validation datasets) 

looked similar and the residuals did not show spatial clustering (Appendices 2E & 

2F).  

2.4.3 Mangrove distribution maps 

Spatial density maps of the species produced through GAMs and direct 

interpolation (kriging raw abundances) are presented in Figs. 2.4 and 2.5. The E. 

agallocha GAM had better predictive ability than ordinary kriging (OK) (Table 2.3). 

For H. fomes and X. mekongensis, both approaches had almost identical predictive 

performances. Figure 2.6 represents the habitat mapping uncertainties related to 

these methods. 
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Fig. 2.4 Spatial density ha-1 of the mangrove species in the Sundarbans based on 

habitat-based models (GAMs). Areas inside the bold black lines represent the three 

protected areas. 

 

Overall, my species density maps reveal that the H. fomes density hotspots were 

restricted to the eastern Sundarbans. E. agallocha density was highest in the 

north-western region. C. decandra density was highest in the western and 

southern regions and X. mekongensis density was highest in a few specific areas 

in the northern (Kalabogi and Koyra) and north-western (Koikhali) regions. All the 

three protected areas (i.e. East WS, West WS and South WS) that are distributed 

in the downstream areas (Figs. 2.4 & 2.5) do not include the density hotspots for 

any of the species.  
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Fig. 2.5 Spatial density ha-1 of the mangrove species in the Sundarbans based on 

geostatistical technique (OK). Areas inside the bold black lines represent the three 

protected areas.  
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Table 2.3 Comparison of predictive accuracy (through leave-one-out cross 

validation) between the habit-based models (GAMs) and ordinary kriging (OK) 

based on the normalized root mean square error (NRMSE) of the predicted species 

abundances versus the actual abundances. NRMSE is expressed here as a 

percentage, where lower values indicate less residual variance. 

 

 

 

GAMs OK 

NRMSE (%) 

H. fomes 20 20 

E. agallocha 14 23 

C. decandra 26 21 

X. mekongensis 15 16 

 

 

 

Fig. 2.6 Spatial distributions of the predicted abundance differences between the 

GAMs and ordinary kriging for the four species. 
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2.5 Discussion 

This study is the first to quantify mangrove habitat preferences and to identify 

the key drivers regulating mangroves spatial distributions in the Sundarbans. The 

high explanatory and predictive power of the HSMs confirm their usefulness for 

making regional habitat maps.  

2.5.1 Habitat models 

High salinity stress can impede mangrove growth and development (Nandy et al. 

2007) and affect structural development of mangrove forests (Washington et al. 

2001). My results showed that the response of the mangrove species varied steeply 

along the salinity gradient in the Sundarbans (Fig. 2.3). H. fomes showed a strong 

negative response while the remaining mangrove species showed a strong positive 

response to increasing soil salinity. Although mangrove plants are not salt lovers, 

they manage to tolerate salt stress via elaborate adaptations (i.e. anatomical, 

physiological, and morphological) (Vovides et al. 2014). However, extreme salt 

stress impedes growth and development via toxicity, altered osmolarity and 

reduced photosynthesis of many mangroves (Nandy et al. 2007). When mangroves 

experience salt stress, depletion of leaf protein is necessary to modulate the salt 

stress (Parida & Das 2005). This protein depletion mechanism facilitates the 

synthesis of new stress-related proteins for keeping appropriate water potential 

to modulate the salt stress. The protein depletion rate is much lower in H. fomes 

than E. agallocha and C. decandra (Dasgupta et al. 2012) which goes some way 

towards explaining their dissimilar responses to salt concentration. Low 

photosynthesis rate, the presence of high stomatal density (indicates uncontrolled 

transpiration), a thin cuticle and near-absence of water storage tissues (indicates 

inefficient water storage and use) in the leaves (see Das 1999) further suggest that 

highly saline habitats are unsuitable for H. fomes. The positive response of E. 

agallocha to increased salinity may be due to its high protein depletion rate 

(Dasgupta et al. 2012), optimal photosynthesis under salt stress and salt 

accumulation ability in leaves (Nandy et al. 2009). Additionally, this positive 

response may also be the result of E. agallocha’s release from competition with 

the less salt-tolerant H. fomes. Chen & Ye's (2014) finding that the salt tolerance 

ability of E. agallocha increases with its age provides further supports for such 

results. The positive response of C. decandra to increased salinity may be due to 



49 
 

49 
 

its high protein depletion rate and salt exclusion ability of roots. C. decandra is a 

‘disturbance specialist’ for its superior ability to invade highly saline and degraded 

(polluted, silted, and eroded) habitats (Harun-or-Rashid et al. 2009). X. 

mekongensis responded positively to increased salinity. This finding is in 

agreement with Hossain et al. (2014) reporting high germination and seedling 

growth in X. mekongensis under extremely saline conditions.  

My results reveal that the magnitude of response to nutrients varied between 

species. NH4
 and P were found to be the key limiting factors for forest productivity 

in many tropical ecosystems (Baribault et al. 2012). In the Sundarbans, E. 

agallocha and C. decandra could grow abundantly in the NH4-poor habitats. E. 

agallocha prefers relatively P-rich habitats (> 30 mg Kg-1) while H. fomes grows 

abundantly in the P limited sites (< 30 mg Kg-1). Soil K helps to modulate salinity-

induced drought stress in plants by enhancing the water uptake and retention 

capacity of plants (Sardans & Peñuelas 2015). Relatively greater densities of E. 

agallocha and C. decandra in the hypersaline and relatively K-rich habitats (i.e. 

north-western and southern Sundarbans) imply that these species might have 

developed strategies for efficient utilization of K in salinity stressed habitats. Fe 

and Mg play important roles in metabolic and physiological processes in plants 

(Alongi 2010). E. agallocha prefers Fe-rich habitats, whilst H. fomes prefers Fe-

poor habitats. The Mg preference range of E. agallocha (> 2.75 gm Kg-1) is 

somewhat higher than that of H. fomes (< 2.75 gm Kg-1) and X. mekongensis (< 

1.60 gm Kg-1). This difference may be associated with the mechanisms (e.g. 

chemical composition of the source rock material, the weathering process etc.) 

that regulate the availability of Mg to plants (Gransee & Führs 2013). I 

acknowledge that fitted response curves for each mangrove species only reveals 

how its abundances are related to multiple covariates within their observed 

habitat conditions. Since these covariates include proxies for biotic interactions, 

these curves do not necessarily reveal the physiological limits (i.e. the 

fundamental niche) of the mangroves. 

Although the Sundarbans is a deltaic swamp with a narrow elevation gradient (0.50 

m – 4.0 m above mean sea level), it is characterized by diverse elevation values. 

The western zone is more elevated than the eastern zone because of tectonic 

activity and higher sediment deposition (Iftekhar & Islam 2004). This disparity may 
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be responsible for variable inundation levels in different parts of the ecosystem 

with subsequent changes in soil salinity and nutrients, and may ultimately have 

forced the mangrove trees to be distributed in distinct zones (Bunt 1996). Ellison 

et al. (2000) tested this hypothesis using randomization tests and data from 11 

sampling stations in the Sundarbans, and concluded that the mangrove trees in 

the Sundarbans do not show any distinct patterns (i.e. absence of zonation) along 

the elevation gradient. In contrast, my results show that H. fomes (> 2.00 m) and 

X. mekongensis (> 2.75 m) display a clear preference for elevated sites (Fig. 2.3). 

I could reveal these patterns because of my larger sample size of 110 PSPs 

distributed over the entire region, and my multivariate and nonlinear modelling 

methodology.   

The inclusion of DAS in the best GAMs with maximum RI (1) scores indicates the 

importance of adding biotic variables in HSMs. H. fomes abundance tends to drop 

when the DAS value is > 500 trees/0.2 ha, indicating the super dominance of 

generalists such as  E. agallocha (shows a positive linear response to DAS). Ellison 

et al. (2000) observed a negative association between H. fomes and E. agallocha. 

On the contrary, X. mekongensis abundance is greater in the highly-populated 

northern habitats (Figs. 2.4 & 2.5) where the species coexists with H. fomes and 

Bruguiera sexangula. My correlative inferences might not necessarily reflect the 

causal mechanisms of biotic interactions (competition or facilitation) on species 

distributions. Nevertheless, they help to improve the explanatory and predictive 

power of HSMs and may form the basis for more mechanistic studies.  

Like DAS, URP (representing the downstream — upstream gradient) was also 

retained in the best GAMs with maximum RI scores, demonstrating the influence 

of river systems on mangroves’ spatial distributions. The river system covers about 

1700 km2 and frequently change channels. Erosion and compensatory accretion 

are common along the river banks. The freshwater supply from these rivers mainly 

controls the amount of alluvium deposit in the forest floor, which in turn regulate 

the availability of plant nutrients (Siddiqi 2001). The negative response of E. 

agallocha and C. decandra abundances to increasing URP indicate their preference 

for habitats distributed between the downstream to intermediate positions (0 – 

66% upriver from the sea). On the other hand, H. fomes and X. mekongensis’s 

clear positive response to URP (> 50%) would support a characterization of these 
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species as upland specialists. These differences in mangrove habitat preferences 

along the downstream — upstream gradient may be related to the change in 

regional hydrology since the construction of the Farakka dam (1974) on the Ganges 

in India which has silted up most of its southbound distributaries heading towards 

the Sundarbans’ river system. As a result, the carrying capacities of the major 

river (e.g. Sibsa and Posur) systems have radically changed with about 65% 

reduction in the freshwater flow (Wahid et al. 2007).  

2.5.2 Mangrove distribution maps 

H. fomes is now facing extinction in the Indian Sundarbans and Myanmar (Blasco 

et al. 2001). The Bangladesh Sundarbans now supports the sole remaining viable 

population of this globally endangered mangrove (Iftekhar & Islam 2004). Figures 

2.4 & 2.5 represent that the eastern region of the Bangladesh Sundarbans supports 

the highest H. fomes populations, the central and northern regions support 

intermediate densities, and the species is almost absent in the western region. 

This may indicate historical range contraction of the species even in the 

Bangladesh Sundarbans as palynological evidence suggests its past dominance in 

the western region (Gopal & Chauhan 2006). The sharp negative response of H. 

fomes to increasing HH (Fig. 2.3) implies that this has been one of the main target 

species for illegal harvesting. In fact, H. fomes stem density has declined by 50% 

(1960 — 1990) all over the Sundarbans because of habitat degradation and mass 

exploitation (Iftekhar & Saenger 2008). H. fomes favours freshwater dominated 

habitats and shows a negative response to increased soil salinity. Therefore, the 

highest abundances in the eastern region may be related to its proximity to the 

freshwater dominated Baleshwar River. However, the  freshwater supply to the 

eastern zone has been dropping because of heavy siltation in the internal channels 

(Wahid et al. 2007). Therefore, further harvesting and reductions in freshwater 

supply could push this species over the brink of extinction.  

E. agallocha habitat maps indicate this species’ wide distribution across the entire 

Sundarbans, except the upstream-dominated northern region. Contrary to H. 

fomes, E. agallocha is a salt tolerant fast growing and reproducing species with 

high ability to colonize open and degraded habitats (Harun-or-Rashid et al. 2009). 

E. agallocha abundance increased in the sites with high historical harvesting 

intensity (Fig. 2.3). Natural calamities (i.e. tropical cyclones and tsunamies) and 
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tree mortality have created large forest gaps in the Sundarbans and the amount 

of open areas has been increasing by 0.05% each year (Iftekhar & Islam 2004). 

Hence, I assume that these conditions may favour E. agallocha to increase its 

density and expand its range even to the upstream-dominated northern region.  

C. decandra hotspots are now distributed in the south and south-western zones 

(Figs. 2.4 & 2.5). Intermediate C. decandra densities in the central and south-

eastern regions provide a clear indication of its landward range expansion. 

Interestingly, although C. decandra belongs to the ‘Near Threatened’ status 

globally, its populations seem to be increasing and the species may be expanding 

its landward range.  

High-density populations of X. mekongensis are currently restricted to Kalabogi, 

Koyra and Koikhali regions in the Sundarbans. The distribution of the species is 

patchy in the rest of the ecosystem. X. mekongensis abundances show a strong 

negative response to increasing historical harvesting intensity (Fig. 2.3). Because 

of its high timber price in the black market, this has been the target species for 

illegal harvesting since the colonial regime (Raju 2003). At present, most of the 

X. mekongensis trees (64%) are infected by the heart rot disease (Siddiqui & Khair 

2012). Hence, X. mekongensis is under severe pressure in the Sundarbans, and 

could be at higher risk of local extinction.  

2.5.3 Implications for conservation 

My species density maps advocate the immediate protection of the remaining 

suitable habitats (hotspots) of H. fomes and X. mekongensis, the two species most 

at risk of local and global extinction. However, the existing protected area 

network, comprising East, West, and South Wildlife Sanctuaries, does not include 

the hotspots of any of these threatened species (Figs. 2.4 & 2.5). According to the 

Bangladesh Wildlife Preservation Order 1973 (amended in 1974) these sanctuaries 

were established to ensure completely undisturbed habitat for the protection of 

wildlife, vegetation, soil and water (Islam et al. 2014). The capacity of these 

sanctuaries to conserve biodiversity with limited physical and technological 

resources, has been highly disputed (Islam et al. 2014). Given the circumstances, 

a preventative approach involving the design of a new or extended network of 

protected areas with improved logistics support is a plausible option offering 
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expediency and cost effectiveness over long term forest restoration projects 

(Possingham et al. 2015).  

The usefulness of HSMs in guiding species habitat restoration, protection, and 

replanting projects is well documented (Franklin 2010). Although recognising the 

potential existence of environmental stressors should be the first step in 

reforestation and restoration planning, a limited understanding of mangroves 

habitat requirements has limited the success of such initiatives in many countries 

(Lewis 2005). In the Sundarbans, previous replanting campaigns (based on 

educated guesses) were also unsuccessful (Islam et al. 2014). In this context, the 

regional HSMs of this study with detailed information on the mangroves’ habitat 

requirements, may guide the future mangrove replanting initiatives. The absence 

of a persistent soil seed bank of H. fomes and X. mekongensis in the Sundarbans 

has recently been identified (Harun-or-Rashid et al. 2009). Thus, this study 

recommends planting of endemics such as H. fomes in the forest gaps, to 

safeguard these habitats from invasive species (Biswas et al. 2007).   

The Sundarbans has a history of extensive exploitation particularly during the 

1980s (Siddiqi 2001). The Bangladesh government enforced a full logging ban in 

1989 (Sarker et al. 2011). Despite such law enforcement, illegal felling of trees is 

common (Iftekhar & Islam 2004). My results also indicate the negative effects of 

historical harvesting on the populations of the threatened mangrove species. This 

exploitation is also directly linked with the habitat loss of many mangrove-

dependent animals including the globally endangered Royal Bengal tiger (Aziz et 

al. 2013). My mangrove distribution maps may guide ongoing and future protection 

and monitoring initiatives of the government to combat illegal logging through 

recording mangrove population changes or predicting changes and identifying 

areas (or species) that may be most affected by future harvesting and other human 

interventions (e.g. settlement and shrimp farming).  

The predictive performances of the GAM-based and the direct interpolation 

approach are nearly identical, and the habitat suitability maps show high spatial 

congruence, except in few areas where the direct interpolation method 

underestimated H. fomes and C. decandra densities (Fig. 2.5 and Appendix 2B). 

This localized density underestimation may be related to the limited ability of the 

direct interpolation method in capturing fine scale environmental variations 



54 
 

54 
 

(Appendix 2C) that might shape mangrove density distributions (Franklin 2010). 

These uncertainties also suggest allocating more sampling efforts in these areas. 

Miller et al. (2007) asserted that the direct interpolation approach is inappropriate 

for species habitat mapping because of its limited ability to accommodate 

environmental and biotic predictors. 

2.6 Conclusions 

This study demonstrates the usefulness of habitat modelling as a tool for 

predicting mangrove abundances and provides novel insights into the underlying 

ecology of these species. The HSMs and complementary habitat maps provide 

spatially explicit information on the remaining habitats of the threatened 

mangrove species, and form the baseline for designing cost-effective field 

inventories, biodiversity assessment and monitoring programs. Most importantly, 

the Bangladesh Forest Department can readily use the distribution maps in their 

existing protection and monitoring initiatives designed to combat illegal logging 

in the Sundarbans. The relative performance of the direct interpolation-based 

species distribution maps against the habitat-based spatial density maps indicates 

their usefulness when environmental data are not available. I could not make HSMs 

for the remaining 16 mangrove species in my data due to their low prevalence. 

Future studies may usefully extend their sampling efforts beyond the existing PSP 

network to record these rare mangroves.  
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Chapter 3 . Spatio-temporal patterns in mangrove 
biodiversity in the Sundarbans  

 

3.1 Abstract 

Rapid global change and human pressure have turned mangrove forests into one 

of the world’s most threatened ecosystems. Yet, we have a restricted 

understanding of how mangrove species composition and diversity have changed, 

mostly due to limited availability of mangrove field data. Such knowledge gaps 

have obstructed mangrove conservation programs across the tropics, but 

particularly in the Sundarbans. In this chapter, I established spatially explicit 

baseline biodiversity information for the Sundarbans using long-term mangrove 

tree data collected from a network of 110 permanent sample plots at four 

historical time points: 1986, 1994, 1999 and 2014. I determined the spatial and 

temporal heterogeneity in alpha, beta, and gamma diversity in three ecological 

zones (hypo-, meso-, and hypersaline) and also uncovered how the geographic 

range and populations of the mangroves changed in these zones. Spatially, the 

hyposaline mangrove communities were the most diverse and distinct (most 

heterogeneous in species composition) while the hypersaline communities were 

the least diverse and most homogeneous in all historical time points. Since 1986, 

I have detected a declining trend of compositional heterogeneity (between-site 

variability in species composition) and a significant spatial contraction of distinct 

and diverse communities over the entire ecosystem. Temporally, the western and 

southern hypersaline communities have undergone radical shifts in species 

composition for population increase and range expansion of the invasive species 

Ceriops decandra and local extinction or range contraction of endemics including 

the globally endangered Heritiera fomes. The legislated network of protected 

areas does not cover the surviving biodiversity hotspots located in the hyposaline 

habitats. In addition to suggesting the immediate coverage of these hotspots under 

protected area management, my novel biodiversity insights and spatial maps can 

form the basis for future spatial conservation planning, biodiversity assessment, 

monitoring and protection initiatives for the Sundarbans.  
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3.2 Introduction 

Historical anthropogenic pressures and rapid environmental changes have turned 

highly productive tropical and sub-tropical mangrove forests into Earth’s one of 

the most threatened and rapidly vanishing habitats, causing worldwide loss of 

coastal livelihoods and ecosystem services (Lee et al. 2014; Malik et al. 2015; 

Friess 2016). Floristic composition and diversity play key roles in sustaining these 

services. However, since 1950, we have lost nearly 50% of global mangrove 

coverage (Feller et al. 2010). The current rate of mangrove deforestation is 1 — 

2% per year (Alongi 2015). The loss may further accelerate due to future sea level 

rise (SLR) (Ward et al. 2016). Despite the drastic nature of these losses, we have 

a limited understanding of spatial and temporal changes in biodiversity in tropical 

mangrove plant communities.  

Different aspects of biodiversity such as species alpha, beta and gamma diversity, 

represent different fundamental aspects of natural communities which can be of 

particular conservation interest (Socolar et al. 2015). For example, spatial maps 

of species richness (a measure of alpha diversity) can guide us locating the 

biodiversity hotspots while analyses of long-term changes in species composition 

(beta diversity) can provide insights on species invasion, extinction and biotic 

homogenisation (Smart et al. 2006; Gaston & Fuller 2008; Jarnevich & Reynolds 

2010). Therefore, to serve long-term conservation and protection of threatened 

flora, fauna and habitats, we need to look at all aspects of biodiversity.    

Mangrove ecologists have, thus far, mostly relied on alpha diversity, in particular, 

the species richness index (Ellison 2001; Record et al. 2013; Osland et al. 2017) 

that does not account for the abundance-related heterogeneity in vegetation 

structure. In fact, explaining why mangrove tree species richness decreases along 

the latitudinal gradient (termed a ‘biodiversity anomaly’, Ricklefs et al. 2006) has 

dominated the mangrove biodiversity literature in the last two decades. While 

such global studies offer a broader insight on biodiversity patterns, management 

and conservation initiatives are essentially implemented based on regional or local 

needs. Nevertheless, limited availability of long-term mangrove field data has 

been a major constraint for conducting spatio-temporal biodiversity studies in 

threatened tropical coastal regions (Ellison 2001), but particularly in the 

Sundarbans. 



57 
 

57 
 

The Sundarbans has already lost half of its original size over the last 150 years, 

mostly due to deforestation, habitat degradation and conversion of mangrove 

habitats to agricultural land (Siddiqi 2001). The remaining Sundarbans has now 

transformed into a highly stressed ecosystem due to a historical and ongoing 

reduction in freshwater flows in the river system, siltation, salinity intrusion, 

water and soil pollution (Ellison et al. 2000; Wahid et al. 2007). Increasing salinity 

and historical forest exploitation have strongly affected the populations of many 

threatened tree species (Chapter 2). Further deterioration of the ecosystem 

through salinity intrusion and SLR is likely to significantly affect the remaining 

populations and spatial distributions of the endangered, rare as well as the 

common species.  

Based on soil salinity, the Bangladesh Sundarbans was divided into three ecological 

zones i.e. hyposaline zone (< 2 dS m-1), mesosaline zone (2 – 4 dS m-1) and 

hypersaline zone (> 4 dS m-1) in the 1980s (Siddiqi 2001). Management and 

conservation decisions are made based on the status of tree growth and forest 

stock in these ecological zones (Iftekhar & Saenger 2008). The salinity level over 

the entire Sundarbans has already increased by 60% since 1980 due to a reduction 

in the freshwater supply from the transboundary rivers for dam constructions in 

1974 (Aziz & Paul 2015). Yet, we know little about how the mangrove tree 

communities of different salinity zones have changed for such alteration in habitat 

conditions. Collectively, such knowledge gaps and the lack of baseline biodiversity 

maps, has been a major impediment to national and international conservation 

efforts in the Sundarbans.   

In this chapter, using mangrove tree data spanning 28 years, collected in 1986, 

1994, 1999, and 2014, from 110 permanent sample plots (PSPs) in the Sundarbans, 

I looked at different aspects of the mangrove communities. My main goal was to 

understand the spatial structure of the biodiversity components — within-plot 

(alpha), between-plot (beta), and total (gamma) diversity — at these four 

historical time points and to disentangle the temporal dynamics in species 

composition both within the ecological zones and across the whole Sundarbans 

ecosystem. More precisely, I asked the following questions: Which ecological (i.e. 

salinity) zone supports the most/least diverse mangrove communities? Is the most 

diverse ecological zone also the most heterogeneous (i.e. variable between plots) 
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in species composition? How has compositional heterogeneity in the broader 

ecological zones developed over the 28 years? How has the geographic range and 

density of mangroves changed since 1986? I also developed spatial maps of all 

aspects of biodiversity to answer the following questions: Where are the historical 

and contemporary biodiversity hotspots located? Which habitats have changed 

most in species composition over time? Finally, I demonstrated the potential 

applications of these new maps and insights in the ongoing and future biodiversity 

research, forest protection, reforestation and restoration programs.   

3.3 Methods 

3.3.1 Tree data 

Tree data were collected from the PSP network comprising 110 equal-sized PSPs 

(0.2 ha, 100 x 20 m, divided into five 20 x 20 m subplots, Fig. 3.1) in the 

Bangladesh Sundarbans during four complete forest censuses: 1986, 1994, 1999 

and 2014. Every tree with d.b.h (diameter at breast height – 1.3 m from the 

ground) ≥ 4.6 cm was tagged with a unique tree number and identified. The PSP 

network represents the ecological (i.e. salinity) zones and the forest types (for 

details see Iftekhar & Saenger 2008). The hyposaline zone comprises 50 PSPs 

representing the H. fomes, H. fomes — Execration agallocha, and E. agallocha — 

H. fomes forest types. The mesosaline zone comprises 30 PSPs representing the 

H. fomes – E. agallocha, and E. agallocha — H. fomes forest types. The hypersaline 

zone comprises 30 PSPs representing the E. agallocha — Ceriops decandra and the 

C. decandra — E. agallocha forest types.   
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Fig. 3.1 Permanent Sample Plots (PSPs) in the Sundarbans, Bangladesh. Black 

triangles, green pentagons, and orange circles represent the PSPs located within 

the hypo-, meso- and hypersaline ecological zones, respectively.  

 

3.3.2 Biodiversity partitioning  

I used the framework developed by Reeve et al. (2016) for partitioning biodiversity 

because it allowed me to investigate the hierarchical structure of mangrove 

biodiversity in a highly complex ecosystem like the Sundarbans by assessing 

biodiversity at three different spatial scales, at the scale of the ecosystem as a 

whole, of the three salinity zones, and of the 110 individual PSPs, and also, at four 

different time points (1986, 1994, 1999, and 2014). This framework, based on 

Rényi’s notion of generalised relative entropy (Rényi 1961), and extending Hill 

(1973), Jost (2006; 2007) and Leinster and Cobbold's (2012) notions of ecosystem 

diversity, partitions ecosystem diversity in a way that allows us to understand the 

true subcommunity alpha, beta and gamma diversity structure and dynamics. As 

the alpha, beta and gamma diversity measures proposed by Reeve et al. (2016) 

are independent from each other, they do not necessarily reflect variations of a 

mathematical formulation rather they help to provide biological insights over 
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individual communities across an ecosystem. Figure 3.2 presents how I adopted 

this framework to investigate spatial and temporal biodiversity patterns in the 

Sundarbans based on my long-term (28-year) dataset.    

 

Fig. 3.2 Biodiversity partitioning scheme used in this chapter to explain spatial 

subcommunity (SC) alpha, beta, and gamma diversity structures across the 

ecological zones (i.e. hypo-, meso-, and hypersaline zones) and the whole 

ecosystem (Sundarbans) in four historical time points (in 1986, 1994, 1999 and 

2014), and to investigate temporal dynamics in species composition across the 

individual subcommunities as well as the individual ecological zones over the 28 

years.   

 

All of the analyses are based on the comparison between the biodiversity of a 

larger part of the data (called a metacommunity) with the biodiversity of its 

subsets (called subcommunities). The definition of the metacommunity 

(hereafter, MC) and its partitioning into subcommunities (hereafter, SCs) is done 

in a way suitable to the question being asked. For example, in a spatial analysis, 
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a MC will be the ecosystem or a single ecological zone at a time point, and in a 

temporal analysis, either a single PSP or one ecological zone at all four time points 

combined. Each PSP represents a SC in a spatial analysis and a single time point 

at whatever spatial scale is being examined in temporal analyses. For the spatial 

analyses, I used two MC levels ─ ecological zone and the whole Sundarbans 

ecosystem ─ to investigate how the biodiversity components (i.e. alpha, beta and 

gamma) in each SC looks like in relation to its ecological zone or in relation to the 

whole ecosystem. To avoid bias from the uneven distribution of PSPs among the 

ecological zones (50 in hyposaline, 30 in mesosaline, and 30 in the hypersaline 

zone), I repeatedly subsampled 30 PSPs from the hyposaline zone at random in the 

analyses (100 iterations). Thus, in analyses, each ecological zone as a MC 

comprised 30 PSPs i.e. SCs, and the whole Sundarbans ecosystem as a MC 

comprised 90 SCs, 30 from each of the three ecological zones. This diversity 

framework, which extends and enhances existing approaches, allowed me to use 

identical diversity and partitioning analyses to address all of my spatial and 

temporal questions to ensure consistency across the whole study. In particular, I 

was able to make spatial and temporal comparisons of the PSPs and zones to 

identify which were the most diverse individually (alpha diversity), which were 

the most representative of the MC in terms of having similar species composition 

— or conversely which were the most distinct individually and heterogeneous as a 

whole (beta diversity), and which contribute the most to overall MC diversity 

(gamma diversity).  

I used the normalised alpha diversity (denoted 𝛼) which represents the diversity 

of a single SC (PSP) in isolation, or the average diversity of SCs across an ecological 

zone or the whole ecosystem to identify the zones with the richest local 

biodiversity. Because the SC value of 𝛼 is a local measure, it is independent of the 

MC composition, and so the value of 𝛼 of a SC is the same when estimated for a 

MC comprising 30 SCs (any ecological zone) as well as for a MC comprising 90 SCs 

(the whole ecosystem). 

The normalised beta diversity measure, 𝜌, measures representativeness and 

assesses how well a SC represents the species composition of its MC. For a SC, it 

takes its lowest value when every tree is completely dissimilar to every other tree 

in the rest of the MC, at which point its value is the proportion of the total number 
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of trees in that SC, reflecting the fact that the SC represents only itself. It is 

maximised (with value 1) only when the species distribution of the SC is identical 

to that of the MC, since it represents the whole MC perfectly. Low 

representativeness therefore suggests high spatial heterogeneity in species 

composition within the MC, and high representativeness suggests spatial 

homogeneity. At a community and MC level, high values of 𝜌 therefore suggest 

that the system is homogeneous at the spatial scale of the SC, with the same 

species found everywhere with the same relative abundances, and low values at 

the MC level suggest that the MC is very heterogeneous at the same (SC) scale. 

Low values at the community level again suggest that its constituent SCs poorly 

represent the MC, but this could be either for the same reason (high heterogeneity 

among SCs) or because the community itself poorly represents the MC. The two 

cases can be distinguished by making the community, here the ecological zone, 

into a MC. If the heterogeneity remains, then the former is true, if not then the 

latter. I used this, to investigate to what extent each SC represents the species 

composition of its ecological zone and also the whole ecosystem.      

The gamma diversity, γ, is the conventional gamma diversity (Hill 1973; Jost 2006; 

Leinster & Cobbold 2012) at the MC level that reflects the total species diversity 

in an unpartitioned ecosystem or an ecological zone. Here, I partitioned the MC 

gamma diversity into SC (PSP) gamma diversity that measures each PSP’s average 

contribution to (or influence on) the MC diversity per tree. This diversity measure 

combines the alpha diversity of a SC with its beta diversity to assess the overall 

contribution of the PSP to the MC (Reeve et al. 2016).      

The values of all these diversity measures (alpha, beta, and gamma; 

subcommunity/PSP, community/zone, and metacommunity/whole ecosystem) are 

moderated by a viewpoint parameter, q, which takes a value between 0 and ∞, 

where q = 0 relates to species richness, q = 1 relates to Shannon entropy (Shannon 

& Weaver 1949), and q = 2 relates to Simpson’s concentration index (Simpson 

1948), but the latter two measures put more weight on the more dominant species 

than species richness. For all of my analyses, I report the results using the above 

three values (0, 1, and 2) of q, writing them as 𝛼 
0

, 𝜌
 

1
, 𝛾 

2 , etc.  
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3.3.3 Spatial and temporal biodiversity analyses 

Four spatial snapshots (species counts over the plot matrix obtained in 1986, 1994, 

1999 and 2014) were analysed individually to determine spatial SC level alpha, 

beta and gamma diversity relative to two MC levels: the ecological zone level and 

the whole-ecosystem level. I then averaged the alpha, beta, and gamma diversity 

values of the SCs and also calculated the 95% confidence intervals. This helped 

me to identify spatially which ecological zone was the most/least diverse (alpha), 

how representative/heterogeneous the SCs were at the four historical time points 

(beta), and which SCs contributed most/least to the overall diversity of the 

ecological zones as well as the whole Sundarbans ecosystem (gamma).   

To understand long-term dynamics in species composition across the SCs of the 

Sundarbans’ ecosystem, I estimated their temporal representativeness (𝜌). 

Following Reeve et al. (2016), here each PSP’s summed composition over the four 

census times (1986 – 2014) formed the MC and each PSP composition in each census 

time was the SC. I calculated the temporal MC 𝜌 following the same method as 

before for the spatial analysis. Temporal 𝜌 values of the PSPs of each of the 

ecological zones were then averaged (and confidence intervals calculated) to 

understand which zones contained PSPs that changed the most in terms of their 

composition (seen as low representativeness). I also pooled the species data of 

the SCs (30 PSPs) of each zone and estimated temporal 𝜌 for each of the hypo-, 

meso-, and hypersaline zones as a whole to understand how each ecological zone 

changed in species composition over the 28 years. All the diversity analyses were 

performed using the R statistical software, version 3.2.3 (R Core Team 2016). 

3.3.4 Biodiversity mapping 

Here I considered the MC comprising of all 110 PSPs surveyed at the four time 

points to ensure maximum area coverage and estimated the SC alpha, beta and 

gamma diversity. Using these SC level values, I developed spatial maps of each of 

the diversity facets for the four census points through ordinary kriging (OK) which 

is the most widely used geostatistical interpolation technique. OK uses a linear 

combination of weights at observed locations to provide unbiased prediction at 

unsampled locations (Bivand et al 2013). Because selecting an appropriate 

semivariogram model is a prerequisite for kriging success, I fitted three different 
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semivariogram models to each mangrove: Spherical, Exponential and Gaussian, 

and selected the model with least sum of squared errors. The spherical model 

offered best fit for all the biodiversity measures and the semivariograms for them 

are presented in Appendices 3A, 3B and 3C.  OK was performed using the ‘gstat’ 

package version 1.1 — 5 (Pebesma 2004) and the spatial maps were constructed 

using the ‘raster’ package version 2.5 — 8 (Hijmans 2015) in R. I followed a similar 

mapping procedure to build surfaces for temporal beta diversity (𝜌). This approach 

of mapping temporal 𝜌 in a spatial context helped me to identify areas with high 

temporal dynamics in species composition. I also superimposed the existing 

protected area network (PAN) onto my biodiversity maps to examine its ability to 

support the historical and current biodiversity hotspots in the Sundarbans.   

3.3.5 Mangrove population dynamics and range analyses 

In Sundarbans, many rare endemic tree species are facing extinction risk (Chapter 

2). Information on historical and current population sizes of these critical species 

is essential for their protection and conservation. Hence, I calculated the 

percentage contribution of each species to the total composition (sum of 

populations of all species) of each ecological zone for the first (1986) and the last 

census (2014). Then I calculated the percentage composition change for each 

species of each ecological zone from 1986 to 2014.  

Following Gillette et al. (2012), I determined how the mangrove species’ range 

expanded or contracted in the hypo-, meso- and hypersaline zones over the 28 

years. Historical and concurrent environmental changes in the Sundarbans may 

promote the geographic expansion of some species (especially invasive or 

disturbance specialists) and geographic contraction of others (especially 

endemics). This disproportionate expansion of generalist or invasive species 

relative to endemics is the key mechanism behind biotic homogenization 

(McKinney & Lockwood 1999). To test this, I subtracted the number of PSPs in each 

ecological zone at which a mangrove species occurred in 1986 from the number of 

PSPs in which it occurred in 2014. The resulted value was then standardized by 

the number of total PSPs in which the species was present in both times. This 

value lies between -1 to 1 (positive values indicating range expansion). New 

species (i.e. introduction) in the ecological zone get the highest value (= 1), and 

the species that disappeared from the zone (i.e. local extinction) get the lowest 
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value (= -1). A species has value 0 value if it occurs exactly in the same number 

of PSPs both in 1986 and 2014, meaning that the species range remains unchanged 

over time.  

3.4 Results 

3.4.1 Spatial and temporal dynamics 

Spatially, the subcommunities (SCs) of the hyposaline zone were the most 

individually diverse ( 𝛼 
1

, Fig. 3.3a) and simultaneously the most heterogeneous in 

species composition (lowest representativeness, 𝜌
 

1
, Fig. 3.3b, c) in all historical 

time points, leading to the SCs being the largest contributors to the overall 

diversity (per tree, 𝛾 
1 , Fig. 3.3d, e) of the ecosystem over the 28 years. The SCs 

of the hypersaline zone were the least diverse in all historical time points although 

alpha diversity increased in this zone (also in the mesosaline zone) in the last 15 

years (as a result of the invasion of the disturbance specialist C. decandra).  

The SCs of the mesosaline zone were spatially the most homogeneous in species 

composition (i.e. high representativeness) and stable over time. In contrast, since 

1986, the SCs of both the hypo- and hypersaline zones showed trends of increasing 

representativeness, 𝜌, (i.e. decreasing compositional heterogeneity) and 

decreasing contribution, γ, to the overall diversity of the ecosystem, indicating 

biotic homogenization and increasing dominance of generalists. Similar patterns 

were observed when rare species were given the same importance as the dominant 

species (q = 0) and the relative abundances of the dominant species were 

considered (q = 2) (Appendices 3D & 3E).   

The SCs of the hypersaline zone and the zone itself (sample plots pooled) had the 

least temporal beta (𝜌) diversity i.e. representativeness (Appendix 3F), suggesting 

that the hypersaline habitats saw the highest turnover in species composition in 

the Sundarbans over the 28 years.    
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Fig. 3.3 Spatial subcommunity alpha, beta, and gamma diversities (viewpoint 

parameter, q = 1) in the ecological zones of the Sundarbans in four time points 

since 1986.  
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3.4.2 Biodiversity maps 

Both historically and currently, the hyposaline habitats of the northern Sundarbans 

support the most biodiverse ( 𝛼 
1

, Fig. 3.4a) SCs. Spatial coverage of the 

unrepresentative i.e. heterogeneous PSPs ( 𝜌
 

1
, Fig. 3.4b) and also the SCs 

contributing most to the overall diversity ( 𝛾 
1 , Fig. 3.4c) of the ecosystem have 

declined over the 28 years and are now only restricted to the northern hyposaline 

habitats. The established protected area network does not cover these 

biodiversity hotspots. The spatial biodiversity maps for q = 0 and q = 2 showed 

similar patterns (Appendices 3G & 3H). The semivariograms of the biodiversity 

indices (Appendices 3A, 3B, and 3C) indicates that the variation in alpha diversity 

between sampling locations is relatively better explained by their proximity to 

each other, compared to the beta and gamma diversity indices, suggesting a fair 

amount of uncertainty remains in predicting beta and gamma diversity using direct 

interpolation technique.   

 

Fig. 3.4 Spatial distributions of subcommunity alpha, beta and gamma diversities 

(for viewpoint parameter, q = 1) over the entire Sundarbans generated through 

ordinary kriging. The black contours represent the three protected areas. 
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The western and southern habitats in the hypersaline and mesosaline zones and a 

part of the northern hyposaline zone (specifically the Kalabogi region) 

experienced radical temporal shifts in species composition since 1986 (Fig. 3.5). 

3.4.3 Mangrove population and range dynamics  

With 21 historical species presence, the hyposaline zone was the most species-

rich ecological zone in the Sundarbans (Table 3.1). Since 1986, the percentage 

composition declined for 13 species in the hyposaline zone, for 8 species in the 

mesosaline zone, and for all species in the hypersaline zone, except C. decandra. 

Between 1986 and 2014, the contribution of the invading species C. decandra to 

the total composition increased by about 97% in the hyposaline, 96% in the 

mesosaline, and 67% in the hypersaline zone. Conversely, the contribution of the 

climax species H. fomes substantially declined in the meso (-16.48%) and 

hypersaline (-21.66%) zones.  
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Fig. 3.5 Spatial maps showing the distributions of temporal change in subcommunity beta diversity (viewpoint parameter, q = 0, 1, and 2) 

during 1986 – 2014 generated through ordinary kriging. The black contours represent the three protected areas. 
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Table 3.1 Mangrove populations change during 1986 – 2014.   

  

Hyposaline zone 

 

Mesosaline zone 

 

Hypersaline zone 

 

 Abundance % CC* Abundance % CC Abundance % CC 

Species  1986 2014  1986 2014  1986 2014  
Excoecaria agallocha 9572 (46.97) 8635 (46.59) -0.41 7338 (47.95) 9301 (56.34) 8.04 9505 (85.32) 11558 (80.45) -2.94 

Heritiera fomes  8525 (41.43) 8253 (44.53) 3.12 7754 (50.67) 5998 (36.33) -16.48 1215 (10.91) 1009 (7.02) -21.66 

Avicennia officinalis 568 (2.79) 193 (1.04) -45.60 1 (0.01) -- -100.00 6 (0.05) 4 (0.03) -31.84 

Sonneratia apetala 436 (2.14) 116 (0.63) -54.73 -- -- 0.00 5 (0.04) 3 (0.02) -36.49 

Amoora cucullata 350 (1.72) 337 (1.82) 2.85 51 (0.33) 33 (0.20) -25.02 57 (0.51) 41 (0.29) -28.39 

Bruguiera sexangula 290 (1.42) 339 (1.83) 12.49 1 (0.01) 1 (0.01) -3.79 4 (0.04) 5 (0.03) -1.56 

Xylocarpus mekongensis 198 (0.97) 297 (1.60) 24.51 38 (0.25) 41 (0.25) 0.01 76 (0.68) 69 (0.48) -17.37 

Cynometra ramiflora 180 (0.88) 14 (0.08) -84.24 71 (0.46) 19 (0.12) -60.25 -- -- -- 

Cerbera manghas 130 (0.64) 21 (0.11) -69.83 -- -- -- -- -- -- 

Talipariti tiliaceum 59 (0.29) 31 (0.17) -26.76 -- -- -- -- -- -- 

Aegiceras corniculatum 33 (0.16) 15 (0.08) -33.35 -- -- -- -- -- -- 

Excoecaria indica 8 (0.04) 4 (0.02) -29.05 -- -- -- -- -- -- 

Tamarix dioica 8 (0.04) 3 (0.02) -41.61 -- -- -- -- -- -- 

Barringtonia racemosa 7 (0.03) 0 (0.00) -100.00 -- -- -- -- -- -- 

Ceriops decandra 4 (0.02) 258 (1.39) 97.22 20 (0.13) 1098 (6.65) 96.15 257 (2.31) 1669 (11.62) 66.87 

Sonneratia caseolaris 3 (0.01) 0 (0.00) -100.00 -- -- -- -- -- -- 

Intsia bijuga 2 (0.01) 3 (0.02) 24.51 -- -- -- -- -- -- 

Lannea coromandelica 2 (0.01) 0 (0.00) -100.00 -- -- -- -- -- -- 

Xylocarpus granatum 1 (0.005) 9 (0.05) 81.64 14 (0.09) 12 (0.07) -11.45 16 (0.14) 9 (0.06) -39.26 

Pongamia pinnata 1 (0.005) 2 (0.01) 37.48 -- -- -- -- -- -- 

Sapium indicum 1 (0.005) 0 (0.00) -100.00 -- -- -- -- -- -- 

Petunga roxburghii -- 3 (0.02) 100.00 -- 4 (0.02) 100.00 -- -- -- 

Salacia chinensis -- -- -- 12 (0.08) -- -100.00 -- -- -- 

Rhizophora mucronata -- -- -- -- 1 (0.01) 100.00 -- -- -- 

Lumnitzera racemosa -- -- -- 3 (0.02) 1 (0.01) -52.79 -- -- -- 

Totals 20378 18533   15303 16509   11141 14367   

*Compositional change          
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Over the 28 years, C. decandra and I. bijuga considerably expanded their range, 

C. ramiflora contracted its range, B. racemose, S. caseolaris, L. coromandelica 

and S. indicum faced local extinction, and P. roxburghii newly arrived in the 

hyposaline zone (Fig. 3.6). In the mesosaline zone, P. roxburghii and R. mucronata 

recently arrived, C. decandra widely expanded its range, A. cucullata and C. 

ramiflora substantially contracted their range, and A. officinalis and S. chinensis 

faced local extinction. The range of the highly salt tolerant C. decandra and the 

pioneer species S. apetala considerably expanded in the hypersaline zone while 

the range of the salt intolerant H. fomes and A. cucullata contracted over time.    
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Fig. 3.6 Mangrove species range change during 1986 – 2014 in the Sundarbans. 
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3.5 Discussion 

3.5.1 Spatial structure and temporal dynamics  

Salinity limits mangrove establishment, growth and development and mangrove 

species occupy distinct positions of coastal areas due to differential salt tolerance 

ability (Parida & Das 2005). In the Sundarbans, the most diverse (alpha) and 

distinct (least representative) SCs were distributed in the hyposaline zone (Fig. 

3.3) where the soil salinity level usually stays below 2 dS m-1 because of adequate 

fresh water supply from the nearby Baleswar — Passur river system (Siddiqi 2001). 

This salinity level can allow widespread coexistence of both non-halophytes 

(species that survive optimally in fresh water dominated mangrove habitats, but 

likely to die at hypersaline soils, e.g. A. cucullata, I. bijuga, C. ramiflora and T. 

tiliaceum) and facultative halophytes (species that grow well in  fresh water 

dominated habitats but unable to survive at high salinity levels, e.g. H. fomes, B. 

sexangula and X. mekongensis) (Krauss & Ball 2013). This might have contributed 

to the high diversity and distinctiveness of the hyposaline SCs. In contrast, the 

hypersaline zone (the salinity level often exceeds 4 dS m-1) supported the least 

diverse (alpha) SCs because of the super dominance of obligate halophytes 

(species that show optimum growth and reproduction in hypersaline conditions, 

e.g. C. decandra and E. agallocha).   

My results showed a clear trend of increasing representativeness (decreasing 

heterogeneity) in the hyposaline and hypersaline SCs since 1986 (Fig. 3.3). In line 

with that, the contribution of these SCs to the overall diversity of the ecological 

zones was also declining substantially. These results indicate that the previously 

distinct SCs of two extreme environmental settings (low and high saline conditions) 

are becoming homogeneous in species composition over time. This pattern might 

be closely related to increasing salinity (Aziz & Paul 2015) and historical tree 

harvesting which has resulted in local extinction, range contraction and population 

decline of many salt-intolerant species (including the climax species H. fomes) 

and widespread colonization of many opportunistic obligate halophytes, 

particularly, C. decandra (Table 3.1, Fig. 3.6).   

Surprisingly, alpha diversity increased in the SCs of all the ecological zones, 

particularly in the last census time – 2014. This sudden shift is related to the 
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radical range expansion of C. decandra during the last 15 years including the 

introduction and localized population growth of some non-halophytes in the meso- 

and hyposaline habitats (Table 3.1, Fig. 3.6). This scenario is in agreement with 

the basic homogenization theory that assumes that changes in alpha diversity can 

be independent of between-habitat homogenization because replacement of 

locally distinct SCs (containing rare species) with generalists would reduce 

heterogeneity, but the SCs may remain the same/increase in species number 

(Olden & Poff 2003; Smart et al. 2006). Over the four historical time points, the 

SCs of the mesosaline zone showed stable and higher representativeness (i.e. 

homogeneity in species composition) compared to the SCs of the other ecological 

zones. This compositional stability might be due to prevailing intermediate 

environmental conditions in this zone which support both facultative and obligate 

halophytes. Previous studies (Flowers et al. 2010; Krauss & Ball 2013) on other 

mangrove systems also reported stable forest structure and optimum tree growth 

and physiological functions at moderate salinity concentrations.   

3.5.2 Spatial biodiversity maps 

My spatial biodiversity maps (Fig. 3.4, Appendices 3G & 3H) indicated that both 

historical and current biodiversity hotspots (alpha) were confined to the northern 

(specifically the Kalabogi region) hyposaline habitats in the Sundarbans. These 

upstream habitats are only inundated by spring high tides so receive the lowest 

amount of saltwater from the Bay of Bengal (Chowdhury, De Ridder, et al. 2016). 

These habitats now also support the most unrepresentative i.e. distinct SCs 

comprising the remaining assemblages of the unique H. fomes – B. gymnorhiza – 

X. mekongensis forest type (Iftekhar & Saenger 2008). The mangrove assemblages 

of the rest of the ecosystem are currently more or less homogeneous followed by 

a gradual decline in spatial coverage of the distinct communities in all historical 

time points since 1986. Except the upstream northern habitats, all areas were also 

poor in alpha diversity in all historical time points (except an increase in 2014 in 

the south and southeastern downstream areas, mostly due to the invasion of C. 

decandra). This ecosystem-wide compositional homogeneity and poor alpha 

diversity might be somewhat related to the historical decline in areas that 

supported unique tree assemblages and to concurrent hyper-dominance of 

generalists — E. agallocha and C. decandra (Iftekhar & Saenger 2008).  
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It is worth mentioning here that the semivariograms of the different biodiversity 

measures (Appendices 3A, 3B, and 3C) suggests that the variation in alpha diversity 

between sampling points can be better described by their proximity to each other, 

compared to the beta and gamma diversity indices. This indicates that a 

considerable amount of uncertainty remains when we interpolate between 

community variability in species composition and the contribution of each 

community to the overall biodiversity of the ecosystem through kriging. Therefore, 

future studies should consider incorporating fine-scale variability in habitat 

conditions in their habitat-based biodiversity models to produce more reliable 

beta and gamma diversity maps of the region.  

3.5.3 Conservation implications  

Similar to the species density maps in Chapter 2, the established protected area 

network does not cover the remaining biodiversity hotspots (Fig. 3.4, Appendices 

3G & 3H) that support most of the remaining populations of X. mekongensis and 

H. fomes, the two species most at risk of local and global extinction. Hence, in 

addition to bringing threatened mangrove species under immediate protection, 

this study advocates bringing the remaining biodiversity hotspots under protected 

area management to ensure their immediate protection and long-term 

conservation of the many threatened species living there.  

I found that already many mangrove tree species have faced local extinction and 

the abundance and geographic range of many of the remaining species have 

substantially declined over the last three decades (Table 3.1, Fig. 3.6). These 

results suggest that conservation initiatives should immediately focus on the 

endangered (e.g. H. fomes) as well as the rare endemics (e.g. C. ramiflora, C. 

manghas and A. cucullata etc.) whose populations and geographic ranges have 

declined drastically in recent times because further exploitation of these 

threatened species may push them to the brink of extinction. My results further 

suggest prioritisation of rare endemic species in the future mangrove replanting 

projects.  

Illegal felling of mangrove trees is becoming increasingly common (Iftekhar & 

Saenger 2008) in the Sundarbans. The Bangladesh Forest Department has started 

implementing a SMART (Spatial Monitoring and Reporting Tool) patrol management 
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system in the Sundarbans for adequate forest protection. My biodiversity maps can 

guide this ongoing initiative as well as the long-term forest protection and 

conservation programs. More precisely, my results suggest these conservation and 

protection efforts to primarily focus on the remaining biodiversity hotspots 

located in the northern upstream hyposaline zone.    

3.6 Conclusions 

Using 28 years mangrove census data, I report, for the first time, on how species 

composition and diversity of the mangrove assemblages have changed across space 

and time in the Sundarbans. I quantified species-specific ranges as well as 

population dynamics under different environmental settings. My biodiversity maps 

offer spatially explicit information on the remaining biodiversity hotspots and the 

areas that have experienced the highest turnover in species composition since 

1986. These novel results can guide future biodiversity research, biodiversity 

assessment and monitoring programs in the Sundarbans. The Bangladesh Forest 

Department can also readily use my biodiversity maps with complementary 

information on population size and range dynamics of the species (particularly for 

endangered and rare endemics) in their ongoing and future mangrove conservation 

and protection initiatives. The presence of many rare species (with very few 

historical occurrences) in my long-term datasets advocates for the extension of 

the current PSP network. Due to the unavailability of long-term environmental 

data for the Sundarbans, I used the established ecological (i.e. salinity) zones to 

describe the spatio-temporal patterns of different aspects of biodiversity. The 

projected SLR range along the Bangladesh coast may alter the regional hydrology 

with associated changes in salinity and nutrient availability in the ecological 

zones, so we need to account for the fine-scale habitat conditions in future 

biodiversity studies to make robust and practically useful biodiversity predictions.   
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Chapter 4 . Uncovering the drivers of mangrove 
biodiversity in the Sundarbans  

 

4.1 Abstract 

Tropical mangrove forests are amongst the most threatened and rapidly vanishing 

habitats on Earth. Yet, we have a restricted understanding of the drivers and 

spatial patterns of biodiversity in threatened mangrove plant communities. Using 

species, environmental and historical disturbance data from the 110 permanent 

sample plots (PSPs) in the Sundarbans, in this chapter, I provide the first 

comprehensive and consistent quantification and habitat-based modelling of all 

fundamental aspects of biodiversity (i.e. alpha, beta and gamma diversity) in 

threatened mangrove communities. I applied Generalized Additive Models (GAMs) 

to determine the key drivers shaping the spatial distributions of mangrove 

diversity and composition in the Sundarbans. Baseline biodiversity maps were 

constructed using covariate-driven habitat models and their predictive 

performances were compared with covariate-free (i.e. direct interpolation) 

approaches to see whether the inclusion of habitat variables bolster spatial 

predictions of biodiversity indices or we can rely on purely spatial approaches 

when environmental data are not available. I found that historical tree harvesting, 

disease, siltation and soil alkalinity were the key stressors causing loss of alpha 

and gamma diversity in threatened mangrove communities. Both alpha and gamma 

diversity increased along the downstream-to-upstream and riverbank-to-forest 

interior gradients. Mangrove communities subjected to intensive past tree 

harvesting, disease prevalence and siltation were more representative (beta 

diversity) i.e. homogeneous in species composition. In contrast, the heterogeneity 

of the communities increased along the salinity and downstream-to-upstream 

gradients. Overall, the habitat-based models showed better predictive ability than 

the covariate-free approach. Nevertheless, a small margin of differences in 

predictive ability between the approaches demonstrates the utility of direct 

interpolation approaches when environmental data are unavailable. Given that 

the surviving biodiversity hotspots (comprising many globally endangered tree 

species) are located outside the established protected area network (PAN) and 
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hence open to constant human exploitation, this study suggests bringing them 

immediately under protected area management.  

4.2 Introduction 

Tropical and subtropical mangrove forests (30° N and 30° S) support coastal 

livelihoods worldwide and provide ecosystem services including nutrient cycling, 

coastal protection, carbon sequestration, and fisheries production (Lee et al. 

2014). However, they are amongst the most threatened and rapidly vanishing 

habitats on Earth (Polidoro et al. 2010; Richards & Friess 2016). The mangrove 

biome has already lost about 50% of its coverage since the 1950s for land 

conversion, deforestation, and habitat degradation (Feller et al. 2010). The 

International Union for Conservation of Nature (IUCN) has listed 40% of mangrove 

tree species as Threatened (Polidoro et al. 2010). Increasing anthropogenic 

pressures and anticipated sea level rise (SLR) are likely to alter the structure and 

functions of the remaining mangrove forests (Duke et al. 2007). 

Making spatial predictions of biodiversity is important for pinpointing the locations 

or communities requiring immediate or long-term protection and conservation 

actions, in evaluating threats to those communities, and in monitoring spatial 

distributions and temporal dynamics in biodiversity (Socolar et al. 2015). A variety 

of biodiversity modelling approaches (e.g. stacked species distribution models, 

macroecological models, ordination, and stochastic models) (Ferrier & Guisan 

2006; Mateo et al. 2017) have been applied to understand the spatial patterns of 

species richness and composition in different forest ecosystems (e.g. neo-tropical, 

boreal and temperate forests). However, their application to mangrove forests is 

limited (but see Record et al. 2013) due to the scarcity of field data (Ellison 2001), 

thus resulting in poor understanding of mangrove biodiversity patterns.  

Each of the three established aspects of biodiversity (alpha, beta and gamma, 

Whittaker 1960) characterizes different fundamental attributes of natural 

communities which can be of specific conservation interest. For example, spatial 

maps of alpha diversity can help in specifying the most species rich (i.e. 

biodiversity hotspots) habitats while beta diversity maps can determine the most 

heterogeneous (i.e. distinct) communities. Thus far, mangrove biodiversity studies 

have mostly relied on alpha diversity, in particular, the species richness index 
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(Ellison 2001; Record et al. 2013; Osland et al. 2017) that does not account for the 

variability in species relative abundances (Shannon & Weaver 1949). At a regional 

scale, mangrove plant communities may look spatially homogeneous because 

mangrove forests are relatively species-poor compared to the upland tropical 

forests. In turn, at finer scales, considerable heterogeneity in species relative 

abundances becomes apparent (Farnsworth 1998). Therefore, in addition to the 

richness index, we need to consider heterogeneity in species relative abundances 

while measuring biodiversity indices (Barwell et al. 2015). Most importantly, 

looking at how different aspects of biodiversity respond to variations in 

environmental drivers is important for constructing more informative and 

practically useful biodiversity maps.  

Constructing maps of biodiversity indices can help to investigate spatio-temporal 

variations in natural communities, to locate habitats or communities or species 

require immediate protection and to support spatially explicit conservation 

planning (Devictor et al. 2010). Both habitat-based and covariate-free (direct 

interpolation methods such as kriging) approaches are used for mapping 

biodiversity indices. Although covariate-free approaches have been criticized for 

low predictive ability (Granger et al. 2015), the relative performance of the 

approaches has rarely been tested using field data.   

Testing the ‘zonation’ hypothesis (i.e. the distinct ordering of tree species along 

the shore-to-inland gradient, Ellison et al. 2000) and explaining the ‘biodiversity 

anomaly’ (i.e. why mangrove plant species richness drops along the latitudinal 

gradient, Ricklefs et al. 2006), have been the key agendas dominating the 

mangrove biodiversity literature in the last two decades. While such studies have 

substantially improved our insight on species sorting and richness, limited 

attention has been paid to understanding how abiotic, biotic and historical 

anthropogenic pressures have contributed to spatial variations in mangrove 

diversity and composition. Such knowledge gaps have obstructed the success of 

conservation initiatives in many tropical coastal regions (Lewis 2005), particularly 

in the Sundarbans (Islam et al. 2014).      

Using a newly introduced abundance-based framework for biodiversity partitioning 

(Reeve et al. 2016) and a habitat-based biodiversity modelling approach, my main 

goal was to uncover the influences of fine-scale habitat conditions and historical 
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events in shaping the spatial distributions of mangrove alpha, beta and gamma 

diversity. My more specific questions included: What are the key drivers of 

mangrove biodiversity? How do the predictive abilities of environmental data-

driven biodiversity models compare with those of covariate-free direct 

interpolation approaches? Where are the biodiversity hotspots in the Sundarbans 

currently located? Are these hotspots well protected? Finally, I discussed the 

potential applications of these novel insights and biodiversity maps for future 

mangrove research, biodiversity protection, monitoring, and spatial conservation 

planning.   

4.3 Methods 

4.3.1 Data collection  

Tree and environmental data were collected from 110 PSPs (100 x 20 m, divided 

into 5 20 x 20 m subplots, Fig. 4.1) established by the Bangladesh Forest 

Department (BFD) in 1986. As part of the 2008 – 2014 surveys, my field team, 

together with the BFD tagged every tree (d.b.h ≥ 4.6 cm at 1.3 m from the ground) 

with a unique tree number and recorded tree counts for the PSPs. In total, we 

recorded 49409 trees from 20 mangrove species (Table 2.1, Chapter 2). The top 

four dominant species contributed to about 98% of the total count, indicating 

sporadic occurrences of many rare species in the ecosystem.  

Environmental data were collected in 2014 (January – June). I collected 9 soil 

samples from each PSP (soil depth = 15 cm) implementing a soil sampling design 

(Fig. 2.2, Chapter 2) to account for the within-plot variations in soil variables. I 

then determined soil sand, silt and clay percentages, salinity, pH, oxidation 

reduction potential (ORP), NH4, P, K, Mg, Fe, Zn, Cu and sulphide concentrations 

(see section 2.3.3 in Chapter 2). For each soil variable, I recorded the average 

reading from 9 soil samples. I retrieved elevation readings (above-average sea 

level) and calculated the “upriver position” (URP) for each PSP (Duke et al. 1998). 
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Fig. 4.1 Sampling sites (triangles) in the Sundarbans, Bangladesh. Blue areas 

represent water bodies.  

 

4.3.2 Covariate selection  

Similar to Chapter 1, here I followed the conceptual framework of Twilley & 

Rivera-Monroy (2005) to construct a biologically informative variable set for my 

mangrove biodiversity models. As described earlier in Chapter 2, this framework 

comprises three broad categories of variables (i.e. resources, regulators and 

hydroperiod) that are believed to explain vegetation structure and productivity in 

coastal mangrove forests. I selected three essential plant macro-nutrients (i.e. 

soil NH4, P and K) as resource variables; soil salinity, pH and silt as regulators; and 

elevation as a simple proxy of hydroperiod.      

Biotic interactions (e.g. competition or facilitation) between plants can influence 

species composition at a local scale (Howard et al. 2015). Competitive exclusion 

of weak competitors by superior competitors in stressed mangrove habitats may 

lead to species-poor mangrove communities dominated by a single or few 
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opportunistic species (Saenger 2002). To account for such influences, initially, I 

considered two candidate biotic variables: (1) ‘community size’ – total number of 

individuals in each PSP, and (2) total basal area in each PSP. Diversity models using 

the basal area as a covariate had lower explanatory powers, compared to models 

with ‘community size (CS)’. Therefore, I selected CS as a proxy of biotic 

interactions.  

I incorporated URP of each PSP in my covariate set to account for the influence of 

the river systems on species composition along the downstream — upstream 

gradient. In riverine estuaries, tidal inundation levels, soil physical and chemical 

properties can significantly vary along the riverbank — inner forest gradient 

(Berger et al. 2008) which influence colonization success and survival of mangrove 

plants. To account for such variations in estuarine settings, I included the straight-

line distance of each PSP from the nearest riverbank (henceforth, DR).  

Tropical coastal ecosystems are prone to both natural and anthropogenic 

disturbances (Sherman et al. 2000). Natural disturbances (such as tree disease and 

mortality) and anthropogenic disturbances (such as tree harvesting) offer rooms 

for tree recruitment through gap creation, thus influence vegetation composition 

(Duke 2001). Therefore, a clear understanding of community dynamics in 

mangrove forests is not possible without a comprehensive understanding of the 

historical and concurrent disturbance events. To account for the influences of 

natural and human disturbances on current diversity and species composition in 

the Sundarbans, I incorporated historical harvesting (HH) and disease prevalence 

(DP) as covariates in my models. Here HH and DP represent the total number of 

illegally harvested and diseased (for example, ‘top dying’ disease (dieback of the 

foliage and twigs in part of the crown) of H. fomes, ‘heart rot’ disease of X. 

mekongensis etc.) trees in each PSP from historical records (1986 to 2014). Finally, 

using Variance Inflation Factors (Robinson & Schumacker 2009), I checked for 

multi-collinearity in the covariates (Appendix 4A) and removed covariates leading 

to VIF greater than 2.5. This led to the removal of ORP from my covariate set 

(Appendix 4B). 
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4.3.3 Biodiversity partitioning 

For partitioning biodiversity, I again applied the framework of Reeve et al. (2016). 

As in Chapter 3, each PSP represents a subcommunity (SC), and here the PSPs 

together (1 - 110) form the metacommunity (MC). This partitioning scheme allows 

us to understand and easily compare the diversity and species composition in every 

single SC in relation to the MC (the whole Sundarbans ecosystem) and again I 

measured SC alpha (𝛼), beta (𝜌), and gamma (γ) diversity. I considered three 

values i.e. 0, 1 and 2 for the viewpoint parameter, q, and presented all my results 

using these three q values, writing them as 𝛼 
0

, 𝜌
 

1
, 𝛾 

2 , etc.  

4.3.4 Biodiversity modelling 

I constructed generalized additive models (GAMs, Wood 2006) to quantify how 

different biodiversity components responded to different variables. Guided by 

data and using non-parametric smoothing functions, GAMs can capture response-

predictors relationships without a priori knowledge of the functional form of these 

relationships (Guisan & Thuiller 2005). These advantageous features of GAMs are 

well suited for uncovering unknown biodiversity — environment linkages in 

dynamic ecosystems such as the Sundarbans where multiple environmental 

gradients have interactive effects on species distributions (Chapter 2). All analyses 

were done in R version 3.2.3 (R Core Team 2016). Biodiversity GAMs were built 

using cubic basis splines with the Gamma error distribution using the ‘mgcv’ 

package version 1.8 — 7 (Wood 2011). Model selection and model averaging were 

carried out using the ‘MuMIn’ version 1.15.1 (Barton 2015) package.  

I exhaustively fitted GAMs for each diversity index with all possible combinations 

of covariates. Then I ranked the fitted GAMs using the second-order AIC (AICc) 

because the ratio between sample size and the number of covariates was < 40 

(Burnham & Anderson 2002). Models whose AICc had values less than 2 from the 

best model (∆AICc <2) were retained as competing models (Burnham & Anderson 

2002). The relative support for each of the competing models was then determined 

using their Akaike weights (AICcw, vary between 0 to 1, and the sum of all AICcw 

across the competing models is 1). To reduce model selection uncertainty and 

bias, I then conducted model averaging to predict the diversity indices. To 

determine the strength of the covariates, I ranked them based on their Relative 
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Importance (RI) values. RI of each covariate was calculated by totalling the AICcw 

of the models in which the covariate was included. RI values vary between 0 and 

1, where 0 specifies that the target covariate is not included in any of the 

competing models while 1 means that the covariate is included in all competing 

models. I measured goodness-of-fit of the biodiversity models using the R2 

(coefficient of determination) statistic between the observed and estimated 

values of the diversity indices.  

4.3.5 Biodiversity mapping 

I applied two different approaches to make spatial biodiversity predictions. First, 

I used the habitat-based models (GAMs) and interpolated covariate surfaces to 

produce model-averaged predictions. Second, I used a direct interpolation 

method, ordinary kriging (OK), that simply relied on the empirical spatial 

autocorrelation between neighbouring PSPs (did not consider environmental 

covariates) to make purely spatial predictions. I compared these two approaches 

because environmental data collection is challenging, whereas tree surveys are 

conducted annually at the PSPs. Hence, it is useful to know how close the 

predictions of the habitat-based biodiversity models were compared to direct 

interpolation methods. The size of each grid-cell of the interpolated surfaces was 

625 m2 (25m x 25m). I compared the predictive abilities of GAMs with OK, using 

the normalized root mean square error (NRMSE) statistic resulting from a leave-

one-out cross-validation (LOOCV) procedure. OK was performed using the ‘gstat’ 

package version 1.0 —26 (Pebesma 2004) in R.   

As mentioned earlier, the largest mangrove protected area network (PAN) 

comprising three Wildlife Sanctuaries (WS) — East WS, West WS, and South WS, 

has been operational in the Sundarbans since the 1970s. To evaluate its capacity 

to support the remaining biodiversity hotspots in the Sundarbans, I superimposed 

this onto my spatial biodiversity maps. All the biodiversity maps were constructed 

using the ‘raster’ package version 2.4 — 18 (Hijmans 2015) in R.  
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4.4 Results 

4.4.1 Habitat-based biodiversity models 

The explanatory power and the goodness-of-fit of the alpha, beta and gamma 

diversity GAMs varied when I increased weight on species relative abundances (q 

= 0, 1 and 2) in the subcommunities (SCs). α 
1

 (Shannon entropy) GAM explained 

more deviance (DE = 71%) and showed better fit (Adj. R2 = 0.71) compared to those 

for α 
0

  (species richness) and α 
2

  (Simpson’s concentration) (Table 4.1), suggesting, 

for alpha diversity, the model with a moderate focus (q = 1) on species relative 

abundances in the SCs could capture more signal compared to the models that 

only considered species presence-absence (q = 0) or put more importance to the 

more dominant species (q = 2) in the SCs. Like α 
1

, the γ 
1  GAM could capture more 

signal than γ 
0  and γ 

2  GAMs. In contrast, for beta diversity, with DE = 65% and Adj. 

R2 = 0.70, the 𝜌
 

2
 GAM captured more signal than the 𝜌

 

0
 and 𝜌

 

1
 GAMs, implying 

that my covariates could more successfully explained the variability in species 

composition across the SCs when the variability was mostly contributed by more 

dominant species.  

4.4.2 Drivers and responses of biodiversity components 

The relative importance (RI) of the covariates in influencing biodiversity indexes 

also varied when I changed the weight on species relative abundances in the SCs. 

For example, while historical harvesting (HH) had no influence on 𝜌
 

0
 (possibly due 

to high number of shared species between SCs or HH did not lead to species 

extirpation), it had stronger effects on 𝜌
 

1
 and 𝜌

 

2
, indicating that the influence of 

past tree harvesting in shaping current community composition becomes clearer 

when I accounted for the variability in species relative abundances across the SCs.  

In general, several abiotic and biotic drivers had combined effects on the spatial 

distributions of the biodiversity indexes. SC alpha diversity was mainly influenced 

by community structure (CS), upriver position (URP), distance to riverbank (DR) 

and silt (Table 4.1 and Appendix 4C). CS, URP, salinity, HH, silt and disease 

prevalence (DP) were the predominant drivers for spatial variations in SC beta 
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diversity. SC gamma diversity was mostly influenced by CS, URP, salinity, DR, HH, 

pH and silt.  
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Table 4.1 Results of GAMs for nine diversity measures. Summaries of model fit in rightmost three columns are only shown for the best model (DE = 

deviance explained). Numbers in the main part of the table (enclosed in box) represent the Relative Importance (RI) of each covariate. Dark-shaded 

cells highlight covariates that were retained in the best model for each biodiversity index. Light-shaded cells represent covariates retained in other 

models within the candidate set. Dashed boxes indicate no participation of that covariate in any of the candidate models. The covariate short-hands 

are: community size (CS), upriver position (URP), salinity, distance to riverbank (DR), historical harvesting (HH), acidity (pH), silt concentration, 

disease prevalence (DP), soil total phosphorus (P), soil potassium (K), elevation above average-sea level (ELE), and soil NH4.  
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The partial response plots of the best alpha, beta, and gamma diversity GAMs (for 

q = 0, 1 and 2) showed similar relationships across the models (Fig. 4.2, Appendices 

4D & 4E). While alpha diversity (for α 
1

) increased with increasing DR (> 1500 m) 

and URP (> 80%), it decreased with increasing HH (> 175 tree cuts/0.2 ha), silt (> 

20%), CS (> 450 trees/0.2 ha) and pH (> 7.25). The response of alpha diversity 

varied for different nutrients. The K concentration that maximised α 
1

 was 5.5 gm 

Kg-1 while increasing soil P (> 35 mg Kg-1) was related to decreasing α 
1

. Mangrove 

communities showed increasing representativeness (for 𝜌
 

2
) i.e. homogeneity in 

species composition with increasing HH (> 150 tree cuts/0.2 ha), silt (> 20 %), DP 

(> 25 diseased trees/0.2 ha), and CS (> 450 trees/0.2 ha). In contrast, communities 

showed decreasing representativeness i.e. increasing heterogeneity in species 

composition with increasing salinity (> 6.5 dS m-1) and URP (> 70%). Gamma 

diversity (for γ 
1 ) showed strong positive responses to increasing DR (> 1000 m), 

salinity (> 8 dS m-1), and URP (> 70%), and negative responses to increasing HH (> 

175 tree cuts/0.2 ha), silt (> 20%), CS (> 500 trees/0.2 ha) and pH (> 7.25).     
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Fig. 4.2 Effects of covariates inferred from my best GAMs fitted to the biodiversity 

indices for q = 1. The solid line in each plot is the estimated spline function (on 

the scale of the linear predictor) and shaded areas represent the 95% confidence 

intervals. Estimated degrees of freedom are presented for each smooth following 
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the covariate names. Zero on the y-axis indicates no effect of the covariate on 

biodiversity index values. Covariate units: CS = total number of individuals in each 

plot, URP = % upriver, soil salinity = dS m-1, DR = distance (m) of each plot from 

the riverbank, Historical harvesting (HH) = total number of harvested trees in each 

plot since 1986, silt (%), disease prevalence (DP) = total number of diseased trees 

in each plot since 1986, P = mg Kg-1 and K = gm Kg-1. 

 

4.4.3 Biodiversity maps 

Spatial alpha, beta and gamma diversity maps produced via GAMs are presented 

in Fig. 4.3. Alpha diversity maps (first row) uncovered that hotspots in species 

richness (q = 0), Shannon entropy (q = 1) and Simpson’s concentration (q = 2) were 

restricted to the northern (specifically the Kalabogi region) and eastern 

(specifically the Sharankhola region) Sundarbans. Beta (second row) and gamma 

(third row) diversity maps revealed that the entire Sundarbans looks homogeneous 

when I considered only species presence or absence (q = 0) i.e. not accounted for 

the between-species variability in relative abundances. Allowing increasing weight 

on species abundance (q = 1 and 2) revealed that the most heterogeneous (or 

distinct) mangrove communities and the communities that contributed most to 

the overall biodiversity of the ecosystem were restricted to the northern upstream 

habitat. Additionally, like my interpolated biodiversity maps in Chapter 3, habitat-

based maps in this chapter show that the established protected area network 

(PAN) does not currently include the most diverse and distinct (i.e. biodiversity 

hotspots) mangrove communities. Prediction error was always reduced by the use 

of environmental covariates, but particularly for alpha and gamma diversity. 

Regarding beta diversity, while the predictive ability of the GAMs was better than 

that of kriging for 𝜌
 

0
 and 𝜌

 

1
, both approaches had similar prediction error (24%) 

for 𝜌
 

2
 (Table 4.2).  

 

 

 



91 
 

91 
 

 

Fig. 4.3 Spatial distributions of SC alpha, beta and gamma diversities (for q = 0 - 

2) over the entire Sundarbans generated through GAMs. Higher values of α and γ 

indicate greater species diversity and community contribution to the overall 

diversity of the ecosystem. Lower values of ρ indicate greater heterogeneity in 

species composition (i.e. community distinctness) and higher values of ρ represent 

greater representativeness (i.e. homogeneity) in species composition. The black 

contours represent the three protected areas. 

 

Table 4.2 Comparison of predictive accuracy (through leave-one-out cross 

validation) of the habit-based (GAMs) and Kriged diversity models using 
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normalized root mean square error (NRMSE) of the predicted versus the actual 

diversity values. NRMSE is expressed here as a percentage, where lower values 

indicate less residual variance. 

 

 

 

 

 

 

 

 

 

 

 

4.5 Discussion 

This chapter provides a baseline quantification and habitat-based modelling of all 

three aspects of biodiversity (alpha, beta and gamma) in threatened mangrove 

communities. Contrary to the common assumption that one or two straightforward 

environmental gradients (salinity and inundation) control mangrove biodiversity 

(Ellison 2001), my results highlight that several environmental drivers, biotic 

interactions and historical events have combined effects on spatial patterns of 

mangrove diversity and species composition. High explanatory and predictive 

power of the biodiversity models confirm their usefulness in constructing spatially 

explicit predictions of different aspects of biodiversity. The ability of the models 

to reveal previously unknown linkages between the biodiversity aspects and 
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abiotic, biotic and disturbance variables have yielded novel biological insights and 

thus now prompt many ecological questions for future studies.  

4.5.1 Drivers and responses of biodiversity components 

Inclusion of URP in the best biodiversity GAMs (with maximum RI scores, except 

URP for 𝜌
 

0
, Table 4.1), suggest strong influence of the downstream/upstream 

gradient in shaping spatial distributions of all aspects of biodiversity in the 

Sundarbans. Species diversity (alpha), SC contribution to the overall diversity of 

the ecosystem (gamma) and heterogeneity of the communities (beta) increased 

along the downstream/upstream gradient (URP > 65%), suggesting downstream 

and intermediate-stream areas are no more suitable for many salt-intolerant 

species (e.g. H. fomes) that were abundant in the past (Gopal & Chauhan 2006) 

while the most suitable habitats supporting widespread coexistence of salt-

intolerant, salt-tolerant and rare species are currently restricted to the late 

successional upstream area, corroborating  my individual species level findings in 

Chapter 2. 

CS was also retained in all the best GAMs (with maximum RI scores), demonstrating 

the importance of including biotic variables in habitat-based biodiversity models. 

Increasing CS contributed to decreasing species diversity (alpha and gamma) and 

increasing homogeneity (representativeness), providing a strong signal for biotic 

filtering in harsh estuarine settings. From the response plots (Fig. 4.2, Appendices 

4D & 4E), it appears that this pattern arises when SCs have > 450 trees. These SCs 

are, indeed, distributed in the western and south-western Sundarbans. Chapter 2 

revealed the super dominance of E. agallocha and C. decandra in these mangrove 

communities. Ellison et al. (2000) showed negative associations between these 

generalists and facultative endemics, particularly, H. fomes. In fact, the super-

dominant saturated communities can support higher numbers of small-diameter 

individuals (larger CS) that may not compete but offer limited space for new 

species to colonise and grow. On the other extreme, northern mangrove 

communities which are dominated by large-diameter, late-successional species 

(e.g. H. fomes and X. mekongensis) are usually less populated and support many 

rare endemics. These late-successional communities are more diverse and distinct 

than the densely-populated communities (Fig. 4.3).  
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My analyses uncovered a strong impact of HH and DP in shaping current 

distributions of the biodiversity components in the Sundarbans, implying the 

importance of integrating past disturbance events in habitat-based models for 

more accurate predictions. I found a significant negative effect of HH on alpha 

and gamma diversities, although DP had no visible effect. This discrepancy may 

be related to local extinction of many rare endemics during past formal and 

informal logging activities while DP that did not lead to species extirpation but 

reduced their relative abundances (Banerjee et al. 2017). However, for beta 

diversity, both HH and DP contributed to increasing homogeneity in species 

composition across the SCs (Fig. 4.2). This again indicates that the diseases have 

not infected all trees equally rather they have only infected and removed a few 

endemics such as H. fomes (top-dying disease) and X. mekongensis (heart rot 

disease) which have resulted in increasing homogeneity in the mangrove 

communities. Therefore, by using the approach of Reeve et al. (2016) to look at 

how DP simultaneously effects alpha, beta and gamma diversity, we are able to 

get indications of the pathogenicity of the disease (i.e. whether it is a generalist 

and infects and removes all species equally or if it is a specializes on specific host 

species). Mangrove habitats with past logging history are usually nutrient-poor,  

absorb higher amounts of heavy metals, and are prone to species invasion (Ngole-

Jeme et al. 2016). Harvesting- and disease-induced tree mortalities have created 

large as well as small forest gaps in the Sundarbans. Intriguingly, the large 

diameter tree species (i.e. H. fomes and X. mekongensis) that still dominate the 

less saline habitats, recruit poorly in the forest gaps (Iftekhar & Islam 2004). 

Instead, these forest gaps are increasingly colonized by the disturbance specialists 

(e.g. C. decandra) (Mukhopadhyay et al. 2015). Therefore, increasing colonization 

and dominance of disturbance specialists in the historically disturbed SCs are the 

possible mechanisms responsible for increasing similarity among mangrove 

communities. This result somewhat contrasts with the Intermediate Disturbance 

Hypothesis which states that diversity of coexisting species is maximum at 

intermediate intensities of disturbance (Connell 1978). 

Highly silted mangrove communities in the Sundarbans are not only poor in alpha 

and gamma diversities but also almost similar in species composition (Fig. 4.2). 

These results are in agreement with Mitra & Zaman (2016), reporting limited 

growth and regeneration of many mangroves due to sediment burial of aerial roots 
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in the Sundarbans. Sediment burial of aerial roots (inhibiting root aeration) is a 

major reason for worldwide mangrove mortality (De Deurwaerder et al. 2016). 

However, at the species level, the sensitivity of individual species to sediment 

burial can vary substantially. For example, Thampanya et al., (2002), in their 

experimental work on Thailand mangroves, observed 100% mortality in Avicennia 

officinalis, 70% in Rhizophora mucronata, and 40% in Sonneratia caseolaris under 

extreme sediment accretion level (32 cm). The Sundarbans is an active delta 

where the river network annually transports about 2.4 billion tons of sediments 

(Mitra & Zaman 2016). Therefore, future research is required to understand 

species-specific sensitivities and adaptations (e.g. modified rooting architecture) 

to siltation because this will help to forecast which species may colonize the newly 

formed islands, and which sites are compatible for replanting in future siltation 

scenarios.   

Although in their pioneering work, Ellison et al. (2000) found no evidence for 

‘zonation’ in the Sundarbans, I detected a  clear pattern of increasing alpha and 

gamma diversities along the riverbank/forest interior gradient. Communities that 

are at least 1500 m away from the riverbank had higher alpha diversity and 800 m 

away had higher contribution to the overall ecosystem diversity compared to the 

near-bank communities, implying late successional forest interior communities 

were more diverse than the early successional riverbank communities.   

Salinity has been considered a key limiting factor for species richness in coastal 

ecosystems (Feller et al. 2010). It appears from my analyses that salinity had no 

effect on species richness although the importance of salinity slightly increased 

for Shannon entropy and Simpson concentration, implying the role of salinity 

becomes clearer when I accounted for between-species variability in relative 

abundance. Regarding beta diversity, increasing salinity contributed to increasing 

compositional heterogeneity among the SCs (Fig. 4.2). This pattern suggests high 

plot-to-plot variation in composition in the degraded saline soils for population 

declines and range contraction of many salt-intolerant species (e.g. H. fomes) and 

increasing colonization success of the salt-tolerant generalists such as E. agallocha 

and C. decandra (Iftekhar & Saenger 2008; Aziz & Paul 2015; Mukhopadhyay et al. 

2015).   
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Nitrogen (N), phosphorus (P), and potassium (K) were found to be the important 

soil nutrients limiting mangrove forest structure in many tropical coastal regions 

(Lovelock et al. 2006; Naidoo 2009; Da Cruz et al. 2013). Interestingly, these 

resource variables received less support in my biodiversity models, reconfirming 

the high importance of regulators and historical disturbances in structuring 

mangrove communities (Twilley & Rivera-Monroy 2005).   

4.5.2 Mangrove biodiversity maps 

GAM-based baseline biodiversity maps for the Sundarbans (Fig. 4.3) reveal that 

currently the most species-rich ( α 
0

) tree communities are confined to the northern 

(specifically, Kalabogi) and eastern (specifically, Sarankhola) regions. Due to the 

proximity of Baleshwar and Posur rivers (Aziz & Paul 2015), these areas receive a 

greater amount of freshwater than the rest of the ecosystem which may help to 

keep them suitable for many salt-intolerant and rare plant species. The remaining 

ecosystem is relatively species-poor. α 
1

 (Shannon entropy) and α 
2

 (Simpson’s 

concentration index) maps not only show similar patterns but also pinpoint the 

areas i.e. the north-western and south-western Sundarbans where the super-

dominance of generalists has resulted in lower alpha diversity. These areas are 

prone to high salinity fluctuation and saltwater flooding throughout the year which 

together was found to inhibiting regeneration and growth of many plant species 

(Ghosh et al. 2016). Spatial variability in species composition becomes clearer 

when more weight was put on the dominant species ( 𝜌
 

1
, 𝜌

 

2
), compared to the rare 

species ( 𝜌
 

0
). In general, the most distinct communities and the communities that 

contribute most to the overall biodiversity of the whole ecosystem ( γ 
0 , γ 

1 , γ 
2 ), 

are currently restricted to the northern upstream habitats housing many 

endangered tree species (Chapter 2). Like alpha diversity, the rest of the 

ecosystem also looks homogeneous in terms of species composition.     

Restricted distributions of diverse and distinct mangrove communities in a few 

specific areas indicate for historical pressures on Sundarbans’s floral composition, 

as reported by many (Gopal & Chauhan 2006; Aziz & Paul 2015; Ghosh et al. 2016). 

The freshwater supply from the transboundary rivers into the Sundarbans has 

substantially declined (3700 m3/s to 364 m3/s) since the construction of the 

Farakka dam (1974) in India (Mirza 1998). The average soil salinity has already 
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increased by 60% since 1980 (Aziz & Paul 2015). Illegal harvesting of trees and 

heavy siltation in the internal channels are ongoing (Rahaman et al. 2015). 

Chapter 2 results revealed that the coverage of distinct and diverse areas has 

substantially reduced in the Sundarbans over the 28 years. Findings in this Chapter 

lead me to conclude that additional harvesting, siltation, cuts in freshwater supply 

and range expansions of the generalists under projected SLR (Mukhopadhyay et al. 

2015) may convert the whole Sundarbans into a species-poor homogeneous 

mangrove ecosystem.   

The existing approaches for biodiversity mapping without including environmental 

data (i.e. (1) predicting diversity from stacked species distribution layers, and (2) 

estimating a diversity index in few sites and then predicting these estimated 

values for an entire study area using geostatistical interpolation methods) are 

shown to produce inaccurate spatial predictions of diversity indices (Granger et 

al. 2015). In this study, in general, the environmental data-driven GAMs showed 

better predictive ability than the covariate-free direct interpolation method 

(Table 4.2), thus, supporting the inclusion of fine-scale environmental, biotic and 

historical disturbance data for more accurate mapping of biodiversity indices. 

However, similar performances of these approaches in predicting 𝜌
 

2
, and small 

differences in prediction error for α 
0

 (species richness) and γ 
0 , indicates the utility 

of direct interpolation methods when environmental data are not available.  

4.5.3 Conservation applications 

SLR is likely to have drastic impacts on riverine and sea-dominated mangrove 

forests worldwide, particularly, the Sundarbans. Under the projected SLR range 

by 2100 (30 – 100 cm) which is significantly higher than the global range (26 – 59 

cm) (Karim & Mimura 2008), the Sundarbans is likely to lose 10 – 23% of its present 

area (Payo et al. 2016) with alteration to soil biogeochemistry (Banerjee et al. 

2017) and estuarine hydrology (Wahid et al. 2007). Given the severity of these 

future environmental impacts on Sundarbans’ threatened plant communities, 

identifying the existing and future environmental stressors of mangrove 

biodiversity is important. This chapter identified siltation, soil salinity and pH as 

the dominant environmental stressors responsible for decreasing species diversity 

and community distinctness (Table 4.1, Fig. 4.2, Appendices 4D & 4E). These novel 
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habitat insights and baseline biodiversity maps have valuable applications in 

designing and implementing climate-smart mangrove enhancement (reducing 

abiotic stresses that caused mangroves’ biodiversity loss), restoration (restoring 

specific areas where certain mangrove species/distinct assemblages previously 

existed) and reforestation initiatives in the Sundarbans. Previous studies (McKee 

& Faulkner 2000; Lewis 2005; Kodikara et al. 2017) show that considerable 

uncertainty remains in rebuilding the degraded mangrove habitats to their 

previous state. However, my results about the key stressors and their spatial 

distributions can help the forest managers about deciding which mangrove 

communities or which stressors to target for future reforestation and restoration 

initiatives.  

My biodiversity maps (Fig. 4.3) again reveal that the established protected area 

network (PAN), covering 23% area of the entire Sundarbans, does not include the 

most diverse and distinct communities (i.e. biodiversity hotspots). With restricted 

distributions in the northern and eastern regions, these unique communities 

support the remaining populations of many globally endangered tree species 

(Chapter 2). These biodiversity hotspots are very close to the local communities 

and vulnerable to opportunistic tree harvesting (Iftekhar & Islam 2004), so this 

study suggests bringing them under protected area management for long-term 

conservation of the threatened species living there.   

My results have important implications for devising nutrient enrichment programs 

in coastal ecosystems. The negative response of alpha diversity to increasing soil 

P and K concentrations suggest that the mangroves of the Sundarbans may suffer 

from nutrient toxicity in highly silted hypersaline habitats. Although nutrient 

enrichment programs were previously implemented in estuarine mangrove forests 

to support plant growth and development, such programs resulted in widespread 

mortality of many plant species worldwide (Lovelock et al. 2009). Therefore, this 

study suggests for taking extreme caution while implementing nutrient 

enrichment programs in the Sundarbans and elsewhere and also advocates for 

experimental and field-based studies that explicitly investigate the responses of 

individual mangrove species to nutrients under different environmental settings.    

The biodiversity maps can guide the biodiversity protection and monitoring 

initiatives in the Sundarbans. Also, these maps can contribute to successful 
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implementation of the REDD+ (Reduced Emissions from Deforestation and 

Degradation) (Gardner et al. 2012) initiatives for enhancing carbon stock (through 

biodiversity conservation) as well as financial returns.  

4.6 Conclusions 

In this Chapter, I have provided a baseline quantification and habitat-based 

modelling of all three aspects of biodiversity (alpha, beta and gamma), to 

determine their drivers and to make predictions about their spatial patterning in 

the Sundarbans. I found that several environmental drivers, biotic interactions and 

historical events had combined effects on the biodiversity components. 

Specifically, historical harvesting, increasing community size, siltation, salinity 

intrusion, disease, soil alkalinity and nutrient toxicity were the dominant stressors 

responsible for reducing species diversity and community distinctness. Although 

habitat-based models showed better predictive ability than the covariate-free 

approach, the small margin of differences in predictive ability between the 

approaches demonstrates the utility of direct interpolation approaches when 

environmental data are unavailable. My baseline biodiversity maps uncovered that 

the most diverse and distinct mangrove communities (biodiversity hotspots), 

comprising many globally endangered tree species, had restricted distributions in 

the freshwater-dominated northern and eastern regions. Although these 

biodiversity hotspots are susceptible to human exploitation, they were not 

included in the existing PAN, thus suggesting for an immediate expansion of the 

protected area. I believe details on the drivers and their capacity to influence 

mangroves’ diversity and composition, and the biodiversity maps, collectively, will 

contribute to designing and implementing climate-smart mangrove enhancement, 

restoration, reforestation and nutrient enrichment initiatives. Also, my maps can 

guide the existing and future mangrove biodiversity protection, monitoring and 

REDD+ initiatives. The existing PSP network covers 83% (20 out of 24) of the true 

mangrove species in the Sundarbans, suggesting that future studies may need to 

extend their sampling efforts beyond the current PSP network. Elevation, as a 

proxy of hydroperiod, received the least support in my models. Given that 

projected SLR is likely to alter the regional hydrology in the Sundarbans with 

changes in soil-biogeochemistry and tidal inundation, this study suggests adding 

hydroperiod as a predictor in future biodiversity models. 
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Chapter 5 . Solving the fourth-corner problem: 
Forecasts of functional traits and ecosystem 
productivity from spatial, multispecies, trait-based 
models 

 

5.1 Abstract 

Forecasting productivity and stress across an ecosystem is complicated by the 

multiple interactions between competing species even within a trophic level, the 

unknown levels of intraspecific trait plasticity and complex dependencies between 

those traits in individual trees. Integrating these factors requires a previously 

missing conceptual and quantitative synthesis of how multiple species and their 

functional traits interact with each other and with the various changing 

environmental attributes (an unresolved challenge known in community ecology 

as the “fourth-corner problem”). I proposed such a synthesis and applied it to the 

world’s largest mangrove forest, the Sundarbans. This sentinel ecosystem is being 

impacted simultaneously by both climate change and multiple types of human 

exploitation. Across the ecosystem, I found extensive variability in environmental 

parameters, especially both relatively benign and extreme conditions of salinity 

and siltation, the former in upriver areas, the latter a result of damming of 

freshwater entering the ecosystem. I identified the retreat in growth-related 

traits and a plastic enhancement of survival-related traits, both clear indications 

of stress, and quantify both the trait-environment relationships involved and 

strong intraspecific trade-offs between traits, which vary between mangrove tree 

species. This Bayesian model allowed me to predict that if historical increases in 

salinity and siltation are maintained, whole-ecosystem productivity will decline 

by 30% by 2050. My spatially explicit modelling approach provides the foundations 

for trait-based predictions in plant ecology, bridges community and ecosystem 

ecology through simultaneously modelling trait-environment correlations and 

trait-trait trade-offs at organismal, community and ecosystem levels, and is 

readily applicable across the Earth’s ecosystems. 
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5.2 Introduction 

Understanding and predicting the effects of global environmental changes on the 

Earth’s forest ecosystems is a core challenge confronting community ecology, 

ecosystem ecology, and the nascent field of functional biogeography. To address 

this challenge, the use of plant functional traits, rather than taxonomic identities, 

has gained momentum (Diaz et al. 2007; Kraft et al. 2008; Lavorel et al. 2011; 

Soudzilovskaia et al. 2013; Kunstler et al. 2015; Kraft et al. 2015; Faucon et al. 

2017). Functional traits are any measurable morphological or physiological feature 

that may influence overall fitness or performance (e.g. growth, survival) of 

primary producers (Violle et al. 2007). In nature, productivity and stress levels of 

primary producers are affected by a complex causal network encompassing 

multiple functional traits, multiple species and multiple environmental drivers 

(Fig. 5.1).  

 

Fig. 5.1 Productivity and stress levels in plant species are governed by community 

composition, functional traits and spatio-temporal environmental heterogeneity, 

but these three determinants also interact with each other in non-trivial ways. 
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Changes in traits via natural selection and species sorting (species elimination 

under persistent stress), may alter plant performance, community structure and 

primary production (Webb et al. 2010) but, again, natural selection and species 

sorting do not act independently on single traits, single species or as a result of 

single environmental stressors (Verberk et al. 2013). Therefore, attempting to 

model productivity and stress without integrating these complex dependencies 

between traits, species and the environment constricts our mechanistic insights 

and limits reliable predictions.  

Linking trait(s) to environmental drivers has been a longstanding problem – known 

as “the fourth-corner problem” in community ecology (Legendre et al. 1997). For 

its resolution, ecologists have proposed trait-based approaches such as the fourth-

corner correlation (Legendre et al. 1997; Dray & Legendre 2008), the multivariate 

RLQ (Dolédec et al. 1996; Dray et al. 2014), the Community Weighted trait Means 

(CWM) (Lavorel et al. 2007), and regression methods (Pollock et al. 2012; Jamil et 

al. 2012; Jamil et al. 2013; Brown et al. 2014; Warton et al. 2015). Among these, 

the fourth-corner correlation and RLQ approaches have received much historical 

attention (Kleyer et al. 2012). Using a combination of environmental (R), species 

(L) and trait (Q) data tables and permutation tests, these approaches look at 

pairwise associations between a single trait and single environmental variable 

using significance testing of association hypotheses. Ecologists routinely apply 

them for identifying the response traits i.e. ‘traits that mediate the response of 

plant species to the environment’ (Pakeman 2011). While such trait-based 

approaches hold promise (Funk et al. 2017), substantial methodological 

difficulties remain (Webb et al. 2010; Verberk et al. 2013; Dray et al. 2014) that 

limit their utility for community ecology, ecosystem ecology and functional 

biogeography. For example, detection of pairwise trait-environment relationships 

(TER) cannot detect the effect of multiple environmental drivers acting on the 

same functional trait, and significance testing says little about the strength of 

TER. Most importantly, they lack an integrated modelling framework to translate 

the TER into forecasts of community and ecosystem dynamics.  

Recently proposed regression approaches relax these limitations by supporting 

model selection, validation, and quantitative predictions. They model species 

abundance (or presence-absence) as a function of traits and environmental 
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variables and their interaction terms (a product of a single trait with a single 

environmental variable) to describe TER (ter Braak et al. 2017). However, such 

approaches have focused on one species at a time (Jamil et al. 2012) and ignored 

intraspecific covariation between traits (Funk et al. 2017), hence not managing to 

account for the complex interactions between species, traits and the 

environment. This may be the cause of their limited predictive power (Funk et al. 

2017; ter Braak et al. 2017). The CWM approach has been widely applied to 

directly correlate community level trait values with environmental variables 

(Peres-Neto et al. 2017). However, quantifying TER only using community level 

data, likely understates individual heterogeneity [aggregation bias, (Webb et al. 

2010)], thus resulting in inaccurate TER quantification and inconsistent parameter 

estimations (Verberk et al. 2013; Peres-Neto et al. 2017). The shortcomings of 

existing trait-based approaches have raised concerns (Webb et al. 2010; Verberk 

et al. 2013; Violle et al. 2014; Funk et al. 2017) about how accurately they will 

forecast species, community and ecosystem responses under future environmental 

scenarios.  

Trait distributions within individual species are nested within communities. These 

communities operate within their ecosystem context and respond dynamically to 

multiple environmental drivers (Webb et al. 2010). Thus, trait-based modelling 

frameworks that integrate the underlying concepts of TER, formalise ecological 

hypotheses [for example, habitat filtering (Weiher & Keddy 1995) and limiting 

similarity (MacArthur & Levins 1967; Chesson 2000) hypotheses]  as models and 

test them in a single analysis using all data, can provide the foundations for trait-

based predictions in plant ecology. This may also bring stronger theoretical 

linkages between community and ecosystem ecology. However, by looking at 

species, traits and the environment in a fragmented way, existing trait-based 

approaches offer limited scope for rigorous hypotheses testing, model selection 

and spatial predictions. We therefore need a synthetic approach for coexisting 

species, their traits, environmental variables and associated uncertainties. 

In this Chapter, I have developed a spatially-explicit, Bayesian regression model 

that uses multiple explanatory variables (the environmental drivers) and multiple 

interacting responses (the different traits describing each of several species). My 

model accounts for intraspecific variations in traits, integrates fundamental 
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ecological hypotheses into the model-building process, offers model selection and 

generates spatial predictions for traits with associated estimates of uncertainty.  

I applied the approach to the Sundarbans. This sea-dominated, dynamic ecosystem 

is ideal for testing mechanistic trait-based approaches because it comprises many 

globally endangered tree species that need to maintain their fitness under 

constant environmental stress (Chapter 2). I focused on nine prominent tree 

species [constituting 99% of the total tree populations in the Sundarbans, (Iftekhar 

& Saenger 2008)], eight prominent environmental drivers, and four key traits 

[canopy height (Height), specific leaf area (SLA), wood density (WD), and leaf 

succulence (LS)] covering the “leaf economic spectrum” (Wright et al. 2004) and 

the “wood economic spectrum” (Chave et al. 2009) and reflecting the “acquisitive 

— conservative continuum” (Reich et al. 1997; Grime et al. 1997; Díaz et al. 2015). 

Using my integrated approach, I asked: 1) Which set of theoretical hypotheses 

about trait responses to the environment, is best supported by the data? 2) How 

do the different traits of each species respond to the array of environmental 

drivers? 3) Is there covariation between the responses of functional traits? Finally, 

I explored the fate of the Sundarbans by developing trait and productivity maps 

under present and future environmental scenarios, with corresponding measures 

of prediction uncertainty.  

5.3 Methods 

5.3.1 Species, trait and environmental data 

I collected data from 110 0.2 ha permanent sample plots (PSPs) covering the entire 

Sundarbans (Fig. 5.2) and recorded a total of 49409 trees from 20 species (Table 

2.1, Chapter 2). The top four dominant species (i.e. E. agallocha, H. fomes, C. 

decandra and X. mekongensis) together contributed 98% of the total count. In this 

Chapter, I focused on species that occurred in > 5% of the PSPs.  

I collected nine soil samples from each PSP (soil depth = 15 cm) implementing a 

novel soil sampling design (Fig. 2.2, Chapter 2) to account for within-plot variation 

in soil parameters and used the average value of the samples. My biologically 

informative variable set for the trait-based models comprised three broad 

categories of variables: (1) resources, (2) regulators and (3) disturbance (Guisan 
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& Thuiller 2005). Resource variables included NH4, P, and K, regulators include 

salinity, silt, pH, and upriver position (URP). URP (the proportional distance of a 

PSPs from the river-sea interface) accounts for the influence of the downstream 

— upstream gradient on species functions and composition (Duke et al. 1998). I 

used historical harvesting (HH, the total number of tree cuts in each PSP since 

1986) as the disturbance variable to account for its possible influences on current 

species compositions and functions.  

 

Fig. 5.2 Sampling sites (triangles) for species, environmental and trait data 

collection in the Sundarbans, Bangladesh. Blue areas represent water bodies. 

 

I selected and measured four core functional traits — canopy height, wood density 

(WD), specific leaf area (SLA), and leaf succulence (LS). Height and SLA are growth 

stimulating traits that represent plant’s acquisitive resource-use strategy. Height 

is central to a plant’s resource (carbon) acquisition strategy for its role in 

regulating plant’s ability to compete for light (Díaz et al. 2015). SLA reflects the 

efficiency of leaf for light capture per unit biomass invested, hence regulates the 

relative growth rate of trees (Pérez-Harguindeguy et al. 2013). In contrast, WD 
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and LS are survival-related traits that represent a plant’s conservative resource-

use strategy under stress. WD controls tree hydraulics, architecture, defence and 

growth potential. LS offers accumulation of water and dissolved ions in leaves 

under salinity stress. Therefore, LS is a prominent indicator of species’ resistance 

to salinity and drought (Wang et al. 2011).  

I measured all functional traits following standard trait measurement protocols 

(Pérez-Harguindeguy et al. 2013). From each PSP, I recorded trait measurements 

for 3 individual trees per species. For each tree, I collected a wood sample and at 

least three matured leaves from the sun-exposed branches for laboratory 

measurements. All trait samples, as well as the environmental data, were 

collected in 2014 (January – June). I determined canopy height (m) using a Suunto 

clinometer. For specific leaf area, I (1) measured green weights of the leaves 

immediately after collection in the field, (2) derived fresh area of the leaves using 

their images (captured by a digital camera — Nikon D5500) in Adobe Photoshop 

CS6, (3) quantified dry mass of the leaves using a digital balance (precision ~ 0.001 

g) after keeping the green leaves in an oven at 65⁰C for 72 hours, and (4) 

calculated SLA as fresh leaf area (cm2)/dry mass (g). Leaf succulence was 

calculated as leaf green mass (g) – leaf dry mass (g)/fresh leaf area (dm-2) (Wang 

et al. 2011). For WD, I (1) collected wood cores using an increment borer, (2) 

estimated fresh volume of the cores using the formula of a cylinder (V=πr2 l, where 

r = radius of the core, and l = length of the core), (3) quantified dry mass of the 

cores using a digital balance (precision ~ 0.001 g) after keeping the fresh cores in 

an oven at 105°C for 72 hours, and (4) calculated WD as dry mass (g)/fresh wood 

volume (cm3). 

5.3.2 Model development and inference   

Using functional traits as response variables and environmental drivers as 

predictor variables, I developed a Bayesian hierarchical model to account for 

interactions between traits, between traits and environmental variables, and their 

variability across the species. The response and predictor variables were 

standardized to increase fitting robustness and facilitate comparisons between 

the strength of different effects. I started with a simple model assuming all 

constituent species of the ecosystem show a similar functional response to the 

environmental filters. Then, I iteratively increased the complexity of the model 
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and compared the performance of the models using the DIC (deviance information 

criterion), the Bayesian analog of the Akaike Information Criterion (Spiegelhalter 

et al. 2002). I obtained posterior distributions and 95% CI (credible intervals) for 

the parameters using Markov Chain Monte Carlo (MCMC) in the symbolic language 

JAGS version 4.2.0 (Plummer 2015) with the ‘runjags’ interface version 2.0.2 - 8  

(Denwood 2016) in software R version 3.2.3 (R Core Team 2016) (JAGS codes for 

the models are in Appendix 5F). To evaluate the convergence of the two MCMC 

chains, I inspected the trace plots and ensured that the potential scale reduction 

factor (Gelman-Rubin statistic) for all monitored parameters was < 1.05 (Gelman 

et al. 2004). For reducing the chance of any relic effects of initial values, I 

discarded the first 5000 samples as burn-in and then simulated two independent 

MCMC chains for 60000 iterations. Spatially explicit trait and fine-scale 

environmental data on tropical and sub-tropical coastal ecosystems are 

exceedingly rare (Ellison 2001). Indeed, credible previous trait and environmental 

data on the Sundarbans are unavailable. Therefore, I used non-informative priors 

in all models to allow data to dominate posterior parameter estimation. For 

assessing the goodness-of-fit of the best model, I used R2 values from regressions 

of observed vs. predicted traits.     

5.3.3 Mapping traits and productivity 

Using kriged surfaces (Appendix 2B, Chapter 2) of the environmental variables, 

the best Bayesian model predicted functional trait distributions for the four most 

prominent species (together contributed 98% of the total count). Then, using 

previously derived species density maps (Fig. 2.4, Chapter 2), I averaged the 

summed posterior trait values of each species weighted by their relative 

abundance in each grid cell to produce community trait maps for the entire 

ecosystem.   

To develop whole-ecosystem biomass productivity maps, I first built species-

specific trait-based productivity models. I then linked these models with the 

species traits and density maps to generate productivity predictions. I modelled 

biomass productivity of individual trees (taking basal area as a proxy) as a linear 

function of the functional traits using a GLM framework. I fitted all possible 

candidate models with all possible combinations of predictor variables. I then used 

the ‘∆AIC ≤ 2’ criterion (Burnham & Anderson 2002) to determine a set of 
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competing models and performed model averaging to predict plot level species-

specific productivity. Finally, I linked the GLM approach with the Bayesian mean 

posterior trait surfaces and species density predictions to produce spatial 

productivity maps for the whole ecosystem.   

5.3.4 Forecasting traits and productivity 

Salinity intrusion and siltation have strong influences on species abundances and 

community composition in the Sundarbans (Chapters 2, 3 & 4). The SLR rate along 

the Bangladesh coast in the 20th century was significantly higher than the global 

average. The soil salinity level has already increased by 60% since 1980 due to 

drop in freshwater supplies from the transboundary rivers (Aziz & Paul 2015). 

Assuming continuation of such historical pressures which may further affect plant 

functions via physiological stress and shifting relationships among species, I 

updated the environmental and species distribution maps for five future stress 

scenarios (E1 = 10, E2 = 20, E3 = 30, E4 = 40 and E5 = 50% increase in salinity and 

siltation), and then used them to forecast traits and forest productivity under 

these novel environments. Here, I considered E5 as the worst stress scenario for 

the ecosystem by 2050.   

To evaluate the robustness of these forecasts, I used samples from the joint 

posterior distribution of all model parameters to simulate traits and productivity 

distributions for both current and future environmental scenarios. Using these 

simulations, I then mapped the posterior probability of deterioration of traits [a 

decrease in growth (Height and SLA) trait values and an increase in survival (WD 

and LS) trait values] and productivity at each grid cell, averaged across all grid 

cells in the ecosystem, in response to each of the future stress scenarios, to 

uncover the uncertainty related to my forecasts. All maps were generated using 

the ‘raster’ package version 2.4 – 18 (Hijmans 2015)  in R.  
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5.4 Results 

5.4.1 Integrated modelling approach  

My approach is an extension of the multivariable regression models typically used 

to quantify species-habitat associations (Elith & Leathwick 2009) on the basis of 

one response and multiple explanatory variables. I have augmented this approach 

by allowing it to model several interdependent response variables (multiple 

functional traits from multiple species), using a Bayesian hierarchical modelling 

framework. This allowed a single model, fitted simultaneously to all my data, to 

capture TER for 4 traits, 9 tree species, and 8 environmental drivers, while 

accounting for trade-offs between different traits. Based on this inferential 

template, several trait-based models (Fig. 5.3) were developed, prompted from 

the viewpoints of distinct ecological hypotheses. Conducting formal model 

selection among these competing versions of the model, allowed me to understand 

how TER can differ across species, to generate species-specific and community-

wide trait predictions, and finally to translate these spatial predictions into spatial 

forecasts of whole-ecosystem productivity.   

Initially, the traits of all constituent tree species were assumed to respond 

identically to environmental drivers (Model I, my base model), formulating the 

hypothesis that extreme habitat filtering drives different species to show similar 

functional responses in stressful environments (Weiher & Keddy 1995). This was 

challenged with two alternative hypotheses. In Model II, I incorporated variability 

in trait-trait relationships (TTR) for different species to capture the effects of 

taxonomic variability on trait plasticity. On the other hand, to formalise the 

consequences of the ‘limiting similarity’ hypothesis (MacArthur & Levins 1967; 

Chesson 2000), in Model III I allowed trait responses to environmental drivers (the 

trait-environment relationships, TER) to vary across species, implying that 

resource partitioning and specialization (morphological or physiological) cause 

different coexisting species to show dissimilar functional responses to 

environmental drivers . Fig. 2 shows the relative quality of fit of the trait-based 

models in terms of the deviance information criterion (DIC) (Spiegelhalter et al. 

2002). Both models very strongly improved DIC over Model I (ΔDIC > 1000), with 

Model III being preferred and therefore selected for future model comparisons 

(but see Model VIII below). 
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Fig. 5.3 Flow chart of the different ecological hypotheses compared via model 

selection. The different versions (I to IX) of my model were constructed by 

partitioning the variability in the data in different ways to estimate trait-

environment relationships (TER) across multiple species by taking account of the 

intraspecific trait-trait relationships (TTR) at various hierarchical levels. The 

performances of the trait-based models were evaluated using DIC (the deviance 

information criterion, whose numerical value is displayed under each model), with 

arrows denoting tests made. Black arrows indicate that a new model improved DIC 

over the older model, red did not, solid arrows point to new models that were 

selected (the models outlined in black). Dashed arrows point to new models that 

were not selected (the models outlined in red). 
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In extreme environments such as mangrove forests, species can usually tolerate a 

certain level of stress via specialization (Feller et al. 2010). Hence, it is likely that 

all species show an average functional response to environmental filters. 

Nevertheless, the strength of the response around that average may vary for 

different species and for different traits depending on how severe the stress 

conditions are and how one trait facilitates or constrains another.  

I incorporated these ecological hypotheses into models IV to VII. Model IV tested 

the hypothesis that although the mangrove species differed in their response to 

the environmental drivers regarding their traits, that variability is around a 

common interspecific average response. This model was also strongly preferred 

(ΔDIC > 500), so the next models investigated the variability around that mean. 

Model V tested whether the amount of variability around the mean is different for 

each trait and Model VI tested whether it is different for each environmental 

driver. Model V was weakly preferred over Model IV (ΔDIC > 10), but Model VI was 

very strongly preferred (ΔDIC > 1000), so Model VI was selected. Model VII then 

tested whether the amount of variability around the average response is also 

different for each trait (as Model V), but it was not preferred over Model VI. 

This completed my analysis of the trait-environment relationships, so Model VIII 

tested whether the TTR is different for each species (recapitulating Model II, 

which was set aside in favour of Model III). This was still very strongly preferred 

(ΔDIC > 1000), so Model IX (analogously to Model IV) tested whether, although the 

TTR is different for each species, that variability is around a common interspecific 

mean. Model IX was not preferred over Model VIII, indicating that there was no 

common mean for the trait-trait relationships. 

5.4.2 Model comparison summary 

Model VIII (DIC = 48828) which is nested within Models I, III, IV and VI, was 

identified as the preferred model (ΔDIC > 1000 for all models it was nested within), 

showing evidence that tree species growing in a stressed ecosystem like a 

mangrove forest have a typical functional response to the environmental filters 

with inter-specific variability around this average, and the amount of variability 

is further contingent upon the nature and magnitude of the filters. I further 
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observed inter-specific variability in trait-trait relationships across the species, 

but the data provided no evidence for further patterns within the TTRs.    

The explanatory power of the best model was high (regressions of observed vs. 

predicted trait values yielded — canopy height: R2 = 0. 68, specific leaf area: R2 = 

0.64, wood density: R2 = 0.94 and leaf succulence: R2 = 0.67) and plots of 

predictions vs. observations indicate that the model made unbiased predictions 

(Appendix 5A). The potential scale reduction factor (Gelman-Rubin statistic) for 

all monitored regression parameters was < 1.05, indicating model convergence.  

5.4.3 Drivers of functional traits 

Soil salinity and siltation are the dominant environmental drivers that limit species 

canopy height (Fig. 5.4, Table 5.1). However, the intensity of such detrimental 

effects varies across the species. Salt-induced drop in canopy height is highest in 

the most prominent tree species (H. fomes) of the ecosystem [posterior mean ɸ = 

-0.59, 95% CI = (-0.69, -0.50)]. In contrast, increasing URP (i.e. more available 

freshwater) favours height increase in many species, including the pioneer species 

S. apetala [ɸ = 0.18, 95% CI = (0.05, 0.32)] and the climax H. fomes [ɸ = 0.16, 95% 

CI = (0.08, 0.24)].  Soil pH, salinity, siltation, and K have limiting effects on 

specific leaf area (SLA) of many species. In contrast, I identified a strong positive 

response of SLA to URP and NH4 – suggesting that nitrogen-rich upstream habitats 

favour plants’ resource-acquisition in tropical coastal environments.  

While the growth traits (Height and SLA) show a strong negative response to 

increasing salinity, siltation and pH, I discovered a clear positive response of the 

survival traits (WD and LS) to these dominant environmental filters (Fig. 5.4, Table 

5.1), suggesting a substantial growth-survival trade-off across the species. 

Nevertheless, the strength of this positive response or positive filtering (adaptive 

shifts in trait values to increase resistance to stress) varies across the species, 

trait types, and environmental drivers. For example, salinity is the dominant 

positive filter for H. fomes [ɸ = 0.19, 95% CI = (0.15, 0.22)], siltation for B. 

sexangula [ɸ = 0.12, 95% CI = (0.04, 0.20)] and pH for X. mekongensis [ɸ = 0.11, 

95% CI = (0.07, 0.15)] in terms of WD, while salinity is the predominant positive 

filter for LS and the filtering is highest in X. mekongensis [ɸ = 0.34, 95% CI = (0.25, 

0.43)].   
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Fig. 5.4 Effects of environmental drivers (URP = upriver position) on the functional 

traits (Canopy height = Height, SLA = specific leaf area, WD = wood density, LS = 

leaf succulence) and intraspecific covariation among the functional traits. Each 

circle represents a species. Species are ordered (left to right, then top to bottom) 

based on their overall abundance (e.g. E. agallocha1 is the most abundant and S. 

apetala9 is the least abundant species). The fill-colours of the circles indicate the 

type and strength of the trait response (red for a negative response and blue for 

a positive one, see scale on right). A dashed circle around all 9 species indicates 

that the average species trait response to this environmental driver is strong 

(negative or positive, i.e. 95% credible intervals do not include 0). Regarding 

intraspecific covariation among the traits, the colour gradient represents the 

posterior correlations between traits. Posterior means and 95% credible interval 

values for the parameters are presented in Tables 5.1 and 5.2. 

 

5.4.4 Covariation among the functional traits 

SLA and LS show negative associations in most species (Fig. 5.4, Table 5.2), and 

for H. fomes I found broader trade-offs between growth and survival traits. I also 

noticed an apparent facilitation between the growth traits in A. officinalis, and 

between the survival traits in X. mekongensis and A. cucullata.



114 
 

114 
 

Table 5.1 Posterior mean and 95% credible intervals of the standardized regression coefficients from the best model (Model VIII), 

representing the effects of the environmental drivers on canopy height (CH), specific leaf area (SLA), wood density (WD) and leaf 

succulence (LS) of nine tree species in the Sundarbans. Average CH, SLA, WD and LS responses across species are included at the bottom 

of the table. The highlighted numbers indicate a significant response to each driver: red for a negative and blue for a positive response. 

Here, I defined significance as the event of the 95% credible intervals not including 0.   

 

Species 

 

Traits 

 

NH4 

 

 

P 

 

K 

 

Salinity 

 

Silt 

 

pH 

 

URP 

 

Harvesting 

 CH 0.05 

(0.00; 0.10) 

0.08  

(0.03; 0.13) 

-0.04  

(-0.09; 0.01) 

-0.20  

(-0.26; -0.15) 

-0.08  

(-0.13; -0.04) 

0.02  

(-0.03; 0.06) 

0.09  

(0.04; 0.15) 

0.00  

(-0.05; 0.05) 

E. agallocha SLA 0.10 

(0.02; 0.17) 

0.04 

(-0.03; 0.12) 

-0.06 

(-0.13; 0.02) 

-0.09 

(-0.17; 0.00) 

-0.11 

(-0.18; -0.03) 

-0.15 

(-0.23; -0.08) 

0.26 

(0.18; 0.35) 

0.10 

(0.02; 0.18) 
 WD -0.01 

(-0.03; 0.01) 

-0.02 

(-0.05; -0.01) 

0.00 

(-0.03; 0.02) 

0.06 

(0.04; 0.09) 

0.04 

(0.02; 0.06) 

0.03 

(0.01; 0.05) 

-0.02 

(-0.05; 0.01) 

-0.02 

(-0.05; 0.01) 

 LS -0.07 

(-0.13; 0.02) 

0.03 

(-0.03; 0.09) 

0.00 

(-0.06; 0.06) 

0.12 

(0.06; 0.19) 

-0.04 

(-0.09; 0.02) 

0.10 

(0.05; 0.16) 

-0.02 

(-0.09; 0.04) 

-0.04 

(-0.10; 0.02) 

 CH 0.08  

(0.01; 0.15) 

0.08 

(0.01; 0.16) 

-0.05  

(-0.12; 0.02) 

-0.59  

(-0.69; -0.50) 

-0.14  

(-0.21; -0.07) 

-0.05  

(-0.13; 0.01)  

0.16  

(0.08; 0.24) 

0.10  

(0.02; 0.18) 

H. fomes SLA 0.06 

(0.02; 0.09) 

0.01 

(-0.02; 0.05) 

-0.05 

(-0.09; -0.02) 

-0.06 

(-0.10; -0.02) 

-0.06 

(-0.09; -0.03) 

-0.06 

(-0.09; -0.02) 

0.18 

(0.14; 0.22) 

-0.04 

(-0.08; 0.01) 

 WD -0.05 

(-0.08; 0.02) 

-0.01 

(-0.04; 0.02) 

0.01 

(-0.02; 0.05) 

0.19 

(0.15; 0.22) 

0.08 

(0.05; 0.11) 

0.07 

(0.04; 0.10) 

-0.04 

(-0.07; 0.01) 

0.00 

(-0.03; 0.04) 

 LS -0.03 

(-0.07; 0.01) 

0.00 

(-0.04; 0.04) 

0.00 

(-0.04; 0.04) 

0.04 

(0.01; 0.08) 

0.02 

(-0.01; 0.05) 

0.05 

(0.02; 0.08) 

-0.08 

(-0.11; 0.04) 

0.00 

(-0.04; 0.03) 

 CH 0.01  

(-0.01; 0.03) 

0.03  

(0.01; 0.05) 

0.00 

 (-0.02; 0.02) 

-0.04  

(-0.07; -0.02) 

-0.03  

(-0.06; -0.01) 

0.01  

(-0.01; 0.03) 

0.01  

(-0.03; 0.04) 

-0.01  

(-0.04; 0.03) 

C. decandra SLA 0.00 

(-0.04; 0.04) 

0.01 

(-0.02; 0.05) 

0.01 

(-0.02; 0.04) 

0.01 

(-0.03; 0.04) 

-0.02 

(-0.06; 0.02) 

-0.03 

(-0.06; 0.01) 

0.14 

(0.09; 0.20) 

-0.04 

(-0.10; 0.02) 

 WD -0.01 

(-0.04; 0.03) 

0.00 

(-0.04; 0.03) 

0.00 

(-0.03; 0.04) 

0.09 

(0.06; 0.13) 

0.01 

(-0.03; 0.05) 

0.03 

(0.00; 0.06) 

0.02 

(-0.03; 0.07) 

-0.05 

(-0.11; 0.01) 
 LS -0.15 

(-0.24; 0.07) 

0.07 

(-0.01; 0.14) 

0.02 

(-0.05; 0.09) 

0.03 

(-0.06; 0.13) 

0.03 

(-0.06; 0.12) 

0.04 

(-0.03; 0.12) 

-0.18 

(-0.30; 0.07) 

-0.01 

(-0.12; 0.10) 
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 CH 0.01  

(-0.05; 0.08) 

0.05  

(-0.02; 0.12) 

0.00  

(-0.07; 0.07) 

-0.15  

(-0.21; -0.08) 

-0.10  

(-0.16; -0.03) 

0.04  

(-0.02; 0.10) 

0.14  

(0.07; 0.21) 

-0.05  

(-0.13; 0.02) 

X. mekongensis SLA 0.05 

(-0.02; 0.12) 

0.04 

(-0.04; 0.11) 

-0.13 

(-0.21; -0.05) 

-0.12 

(-0.20; -0.05) 

-0.01 

(-0.08; 0.06) 

-0.09 

(-0.16; -0.03) 

0.15 

(0.08; 0.23) 

0.08 

(0.01; 0.16) 
 WD 0.01 

(-0.04; 0.06) 

0.03 

(-0.01; 0.08) 

0.01 

(-0.04; 0.06) 

0.13 

(0.08; 0.17) 

-0.01 

(-0.06; 0.04) 

0.11 

(0.07; 0.15) 

0.04 

(-0.01; 0.09) 

0.00 

(-0.05; 0.06) 

 LS -0.04 

(-0.13; 0.04) 

0.02 

(-0.06; 0.11) 

0.01 

(-0.07; 0.09) 

0.34 

(0.25; 0.43) 

-0.07 

(-0.15; 0.02) 

0.11 

(0.03; 0.19) 

-0.03 

(-0.12; 0.06) 

-0.07 

(-0.16; 0.02) 

 CH 0.00  

(-0.06; 0.06) 

0.00  

(-0.06; 0.08) 

-0.01  

(-0.07; 0.05) 

0.01  

(-0.07; 0.08) 

-0.06  

(-0.13; 0.01) 

0.00  

(-0.06; 0.07) 

-0.02 

(-0.09; 0.04)  

-0.05  

(-0.12; 0.03) 

A. cucullata SLA 0.10 

(0.03; 0.16) 

0.08 -0.11 -0.15 0.07 -0.07 0.16 0.09 

(0.01; 0.16) (-0.18; -0.04) (-0.24; -0.07) (-0.01; 0.16) (-0.15; 0.00) (0.08; 0.23) (0.01; 0.18) 

 WD -0.03 

(-0.09; 0.02) 

0.09 

(0.02; 0.15) 

0.04 

(-0.02; 0.11) 

0.12 

(0.04; 0.20) 

0.04 

(-0.03; 0.11) 

-0.01 

(-0.08; 0.06) 

-0.04 

(-0.10; 0.03) 

-0.07 

(-0.14; 0.01) 

 LS -0.05 

(-0.13; 0.03) 

0.16 

(0.06; 0.26) 

-0.01 

(-0.10; 0.07) 

0.11 

(0.01; 0.22) 

0.03 

(-0.07; 0.12) 

-0.03 

(-0.12; 0.06) 

-0.07 

(-0.16; 0.02) 

0.05 

(-0.05; 0.15) 

 CH 0.05  

(-0.06; 0.18) 

0.04  

(-0.09; 0.16) 

-0.03  

(-0.13; 0.08) 

-0.15  

(-0.30; -0.07) 

0.00  

(-0.11; 0.12) 

0.05  

(-0.08; 0.18) 

0.13  

(0.00; 0.26) 

-0.05  

(-0.17; 0.07) 

A. officinalis SLA 0.15 

(0.04; 0.25) 

0.05 

(-0.06; 0.16) 

-0.11 

(-0.19; -0.02) 

0.08 

(-0.02; 0.18) 

-0.01 

(-0.11; 0.08) 

-0.04 

(-0.16; 0.07) 

0.14 

(0.04; 0.24) 

0.00 

(-0.10; 0.10) 

 WD -0.01 

(-0.07; 0.06) 

-0.01 

(-0.08; 0.06) 

0.03 

(-0.03; 0.09) 

0.02 

(-0.03; 0.07) 

0.00 

(-0.06; 0.05) 

0.02 

(-0.06; 0.10) 

0.04 

(-0.02; 0.10) 

0.01 

(-0.06; 0.08) 

 LS -0.05 

(-0.16; 0.06) 

-0.03 

(-0.14; 0.09) 

0.14 

(0.04; 0.26) 

-0.06 

(-0.18; 0.05) 

-0.03 

(-0.13; 0.07) 

0.01 

(-0.11; 0.13) 

-0.14 

(-0.25; 0.02) 

-0.02 

(-0.12; 0.09) 

 CH -0.04  

(-0.16; 0.09) 

0.03  

(-0.10; 0.15) 

-0.05  

(-0.16; 0.07) 

-0.23  

(-0.36; -0.09) 

-0.02  

(-0.12; 0.08) 

0.01  

(-0.10; 0.12) 

0.12  

(-0.01; 0.25) 

-0.06  

(-0.17; 0.04) 

B. sexangula SLA 0.05 

(-0.08; 0.17) 

0.00 

(-0.14; 0.13) 

-0.06 

(-0.18; 0.06) 

0.07 

(-0.11; 0.26) 

0.02 

(-0.11; 0.15) 

-0.02 

(-0.14; 0.12) 

0.19 

(0.04; 0.35) 

0.17 

(0.03; 0.32) 

 WD 0.02 

(-0.09; 0.12) 

0.07 

(-0.04; 0.18) 

0.06 

(-0.04; 0.15) 

0.11 

(0.01; 0.20) 

0.12 

(0.04; 0.20) 

0.03 

(-0.06; 0.13) 

0.05 

(-0.07; 0.16) 

-0.02 

(-0.10; 0.06) 

 LS -0.03 

(-0.13; 0.08) 

0.02 

(-0.08; 0.13) 

0.03 

(-0.06; 0.12) 

0.01 

(-0.08; 0.11) 

0.10 

(0.03; 0.18) 

0.00 

(-0.10; 0.09) 

0.01 

(-0.10; 0.14) 

-0.05 

(-0.11; 0.03) 

 CH 0.06  

(-0.02; 0.15) 

0.00  

(-0.09; 0.11) 

-0.02  

(-0.13; 0.08) 

0.00  

(-0.15; 0.15) 

0.00  

(-0.06; 0.06)  

0.00  

(-0.10; 0.11) 

-0.02  

(-0.11; 0.07) 

-0.03 

(-0.09; 0.03) 

C. ramiflora SLA 0.03 

(-0.07; 0.13) 

0.05 

(-0.07; 0.16) 

-0.09 

(-0.21; 0.02) 

-0.03 

(-0.22; 0.15) 

0.06 

(-0.03; 0.15) 

-0.12 

(-0.24; 0.00) 

0.16 

(0.05; 0.27) 

-0.03 

(-0.10; 0.05) 
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 WD 0.03 

(-0.07; 0.12) 

0.07 

(-0.04; 0.19) 

0.05 

(-0.06; 0.16) 

0.04 

(-0.12; 0.22) 

0.03 

(-0.05; 0.10) 

0.04 

(-0.07; 0.15) 

0.00 

(-0.10; 0.10) 

0.03 

(-0.04; 0.10) 

 LS -0.06 

(-0.15; 0.02) 

-0.07 

(-0.18; 0.03) 

0.00 

(-0.10; 0.10) 

-0.02 

(-0.16; 0.12) 

-0.03 

(-0.09; 0.03) 

-0.01 

(-0.11; 0.09) 

-0.01 

(-0.10; 0.08) 

0.00 

(-0.06; 0.05) 

 CH 0.08  

(-0.04; 0.22) 

0.11 

(-0.02; 0.25) 

-0.05  

(-0.17; 0.05) 

-0.18  

(-0.33; -0.03) 

0.02  

(-0.13; 0.16) 

-0.03  

(-0.16; 0.10) 

0.18  

(0.05; 0.32) 

-0.01  

(-0.16; 0.13) 

S. apetala SLA 0.02 

(-0.08; 0.12) 

0.07 

(-0.03; 0.17) 

0.01 

(-0.06; 0.08) 

-0.04 

(-0.11; 0.04) 

-0.02 

(-0.14; 0.10) 

-0.02 

(-0.11; 0.07) 

0.07 

(0.01; 0.16) 

0.02 

(-0.11; 0.16) 

 WD 0.00 

(-0.11; 0.11) 

-0.01 

(-0.12; 0.09) 

-0.01 

(-0.08; 0.07) 

0.04 

(-0.04; 0.11) 

0.03 

(-0.08; 0.15) 

0.03 

(-0.06; 0.13) 

0.00 

(-0.08; 0.08) 

-0.02 

(-0.15; 0.12) 

 LS -0.08 

(-0.20; 0.04) 

0.07 

(-0.04; 0.19) 

0.04 

(-0.05; 0.13) 

-0.14 

(-0.25; -0.03) 

0.10 

(-0.03; 0.23) 

-0.03 

(-0.15; 0.08) 

-0.02 

(-0.12; 0.09) 

-0.02 

(-0.15; 0.13) 

Average effect CH 0.03  

(-0.02; 0.08) 

0.04  

(-0.01; 0.09) 

-0.03  

(-0.07; 0.02) 

-0.11  

(-0.19; -0.03) 

-0.04  

(-0.09; 0.01) 

0.01  

(-0.05; 0.06) 

0.07  

(0.02; 0.13) 

-0.02  

(-0.07; 0.04) 

 SLA 0.05 

(0.01; 0.10) 

0.03 

(-0.02; 0.09) 

-0.06 

(-0.11; -0.01) 

-0.02 

(-0.10; 0.05) 

-0.01 

(-0.06; 0.04) 

-0.06 

(-0.11; -0.01) 

0.13 

(0.07; 0.20) 

0.03 

(-0.02; 0.09) 

 WD 0.00 

(-0.05; 0.04) 

0.02 

(-0.03; 0.07) 

0.02 

(-0.02; 0.06) 

0.05 

(-0.02; 0.13) 

0.03 

(-0.02; 0.08) 

0.03 

(-0.01; 0.08) 

0.00 

(-0.05; 0.06) 

-0.01 

(-0.06; 0.04) 

 LS -0.06 

(-0.11; 0.01) 

0.03 

(-0.03; 0.08) 

0.02 

(-0.03; 0.07) 

0.03 

(-0.05; 0.11) 

0.01 

(-0.04; 0.06) 

0.02 

(-0.03; 0.08) 

-0.05 

(-0.11; 0.01) 

-0.02 

(-0.07; 0.04) 
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Table 5.2 Intraspecific covariation among the traits. Blue numbers indicate significant positive and red numbers indicate significant 

negative posterior correlations between traits. Here, I defined significance as the event of the 95% credible intervals not including 0. 

 

 

 

 

 

 

 

 

 

Species 

 

Height – SLA 

 

 

Height - WD 

 

Height - LS 

 

 

SLA - WD 

 

SLA - LS 

 

WD - LS 

E. agallocha -0.03 

(- 0.11; 0.04) 

-0.06 

(-0.18; 0.04) 

0.03 

(-0.06; 0.10) 

-0.01 

(-0.11; 0.07) 

-0.15 

(-0.25; -0.06) 

0.06 

(-0.04; 0.13) 

H. fomes 0.05 

(-0.03; 0.13) 

-0.19 

(-0.33; -0.09) 

-0.1 

(-0.22; -0.01) 

-0.02 

(-0.14; 0.08) 

-0.27 

(-0.45; -0.14) 

0.09 

(-0.02; 0.17) 

C. decandra -0.06 

(-0.24; 0.07) 

-0.10 

(-0.29; 0.04) 

-0.03 

(-0.17; 0.08) 

-0.08 

(-0.26; 0.05) 

-0.19 

(-0.35; -0.07) 

0.06 

(-0.06; 0.14) 

X. mekongensis -0.03 

(-0.17; 0.06) 

-0.08 

(-0.26; 0.04) 

-0.06 

(-0.19; 0.02) 

0.05 

(-0.08; 0.15) 

-0.20 

(-0.36; -0.08) 

0.13 

(0.03; 0.21) 

A. cucullata -0.03 

(-0.28; 0.12) 

-0.04 

(-0.3; 0.11) 

-0.07 

(-0.30; 0.08) 

-0.17 

(-0.47; 0.01) 

-0.05 

(-0.27; 0.08) 

0.18 

(0.02; 0.27) 

A. officinalis 0.14 

(0.02; 0.21) 

0.02 

(-0.20; 0.13) 

-0.07 

(-0.23; 0.03) 

-0.11 

(-0.44; 0.09) 

-0.29 

(-0.60; -0.11) 

0.17 

(-0.04; 0.28) 

B. sexangula 0.01 

(-0.15; 0.11) 

-0.10 

(-0.46; 0.09) 

0.01 

(-0.32; 0.17) 

-0.07 

(-0.29; 0.06) 

0.19 

(0.05; 0.26) 

0.22 

(-0.06; 0.35) 

C. ramiflora 0.00 

(-0.54; 0.21) 

-0.02 

(-0.62; 0.21) 

-0.12 

(-1.0; 0.16) 

-0.10 

(-0.62; 0.12) 

-0.05 

(-0.67; 0.18) 

-0.18 

(-0.95; 0.09) 

S. apetala 0.08 

(-0.24; 0.21) 

0.05 

(-0.29; 0.19) 

-0.1 

(-0.40; 0.06) 

-0.08 

(-0.93; 0.18) 

-0.30 

(-0.90; -0.01) 

0.24 

(-0.10; 0.36) 
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5.4.5 Trait and productivity maps 

My integrated Bayesian approach offers species-specific as well as community-

wide spatial trait predictions under current and future stress scenarios regarding 

salinity intrusion and siltation, and link them with the trait-based productivity 

models to forecast ecosystem productivity. It further evaluates the robustness of 

such forecasts by propagating parameter uncertainty through sampling from the 

joint posterior distribution of all model parameters and simulating traits and 

productivity distributions for both current and future stress scenarios.   

Spatial maps (Fig. 5.5) revealed that the most productive tree communities are 

currently distributed in the freshwater dominated eastern and northern 

Sundarbans. If historical increases in salinity and siltation are maintained, my 

model predicts a significant productivity loss over the entire ecosystem under all 

future stress scenarios (10, 20, 30, 40 and 50% increase in salinity and siltation) 

(Fig. 5.6A) although there is the possibility of local productivity gains in a few of 

the communities, particularly under the least stress future scenarios (Appendix 

5B). The worst stress scenario (a 50% rise in salinity and siltation) is predicted to 

push the ecosystem to lose 30% of its current total productivity by 2050 (Fig. 5.6A).  
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Fig. 5.5 Current status (first column) and worst-case scenario for the year 2050 

(second column), of community-weighted posterior mean of tree canopy height 

(Height), specific leaf area (SLA), wood density (WD), leaf succulence (LS) and 

forest productivity (FP) in the Sundarbans world heritage ecosystem. Uncertainties 

related to these forecasts are mapped as the posterior probability of deterioration 

(see section 5.3.4 and Appendices 5B & 5C) in the third column. Deterioration is 

considered to be a decrease in productivity and growth trait (Height and SLA) 

values, or an increase in survival trait (WD and LS) values. 



120 
 

120 
 

 

Fig. 5.6 Bar charts show the response of the ecosystem to each of five future stress 

scenarios, E1 to E5, representing a 10% to 50% increase in both salinity and 

siltation for the whole Sundarbans ecosystem by 2050. (A) shows mean percentage 

decline in whole ecosystem productivity; (B) shows mean percentage decline in 

community canopy height (CH) and community specific leaf area (SLA), and 

increase in community wood density (WD) and community leaf succulence (LS); 
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(C) shows mean percentage decline in CH and SLA, and increase in WD and LS for 

four prominent mangrove tree species under five future stress scenarios. The 

species short-hands are Excoecaria agallocha (Ea), Ceriops decandra (Cd), 

Xylocarpus mekongensis (Xm) and Heritiera fomes (Hf). Decreases in CH and SLA 

and increases in LS and WD are considered to be deteriorations in the traits. 

 

The eastern and northern regions currently support the tallest mangrove 

communities. However, if the habitat degradation trend is continued, it is highly 

likely that these tallest communities will turn into dwarf communities, following 

an average of 36% height loss by 2050 (Fig. 5.6B, Appendix 5C). In turn, I predict 

a community-wide increase in the values of LS (14%) and WD (5%) – indicating 

highly plastic responses of the mangrove species to ensure efficient water use and 

mechanical support under the extreme stress scenarios, by 2050.  Community SLA 

showed more stable patterns between time-points.  

My species-specific trait predictions (Figs. 5.7, 5.8, 5.9 & 5.10) further determined 

that although every constituent species of the ecosystem will lose height under 

the future stress scenarios, the loss will be substantially higher for the climax 

species H. fomes (52%) by 2050 (Fig. 5.7, Appendix 5D). The increase in WD (9%) 

is also highest for this species. In turn, the disturbance specialist species — C. 

decandra - which is expected to undergo ecosystem-wide range expansion by 2050 

(Appendix 5E), loses the least amount of height and SLA, compared to others. 
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Fig. 5.7 Current status (first column) and worst-case scenario for the year 2050 

(second column), of posterior mean of tree canopy height for four prominent 

mangrove tree species in the Sundarbans world heritage ecosystem. Uncertainties 

related to these forecasts are mapped as the posterior probability of a decrease 

in canopy height in the third column.  
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Fig. 5.8 Current status (first column) and worst-case scenario for the year 2050 

(second column), of posterior mean of tree SLA for four prominent mangrove tree 

species in the Sundarbans world heritage ecosystem. Uncertainties related to 

these forecasts are mapped as the posterior probability of a decrease in SLA in 

the third column.  
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Fig. 5.9 Current status (first column) and worst-case scenario for the year 2050 

(second column), of posterior mean of tree wood density for four prominent 

mangrove tree species in the Sundarbans world heritage ecosystem. Uncertainties 

related to these forecasts are mapped as the posterior probability of an increase 

in wood density in the third column.  
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Fig. 5.10 Current status (first column) and worst-case scenario for the year 2050 

(second column), of posterior mean of tree leaf succulence for four prominent 

mangrove tree species in the Sundarbans world heritage ecosystem. Uncertainties 

related to these forecasts are mapped as the posterior probability of an increase 

in leaf succulence in the third column.  
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5.5 Discussion 

Primary production in tropical forest ecosystems is affected by the complex 

interactions between species’ functional traits and the scene set by different 

environmental drivers. These are interconnected processes that collectively 

(through forest species composition and individual species function) determine 

fundamental functional aspects of the entire forest, such as its productivity. 

Looking at subsets of this causal network (e.g. statistical relationships between 

single traits and the environment) can only reveal part of the biological signal in 

the data. By underrepresenting the complexity of the connections between traits, 

species and environment (a challenge known as the “fourth-corner problem”), any 

predictive model of future forest dynamics stands to suffer from increased 

imprecision and by failing to propagate parameter uncertainty through to the 

prediction stages we risk ascribing unjustifiable confidence in any such 

predictions. In this paper, I have developed an analytical approach that follows a 

more holistic view of forest ecosystems, both by developing a model as complex 

as the data would support and by fully propagating parameter uncertainty into the 

predictions. This approach resolves the “fourth-corner problem”, contributes to 

the clarification of different theoretical hypotheses about how complex forest 

ecosystems function, uncovers the environmental drivers of functional traits, and 

generates predictions about how traits and forest productivity will be affected by 

the environmental change in the future.  

My integrated Bayesian approach allowed different ecological hypotheses to be 

tested in a single analysis simultaneously using all available data. In extreme 

environments, such as the tropical inter-tidal zones, tree communities may 

comprise functionally redundant species (Ricotta et al. 2016). Therefore, the 

studied species might have shown homogeneous functional responses to the 

stressors. Model I (Fig. 5.3) which represents this expectation (i.e. the ‘habitat 

filtering’ hypothesis (Weiher & Keddy 1995)) received the least support in my 

analyses. Rather, I found better support for Model III (representing the ‘limiting 

similarity’ hypothesis (MacArthur & Levins 1967; Chesson 2000)), suggesting that 

resource partitioning and specialization cause different coexisting mangrove 

species to show disparate functional trait responses to the environmental drivers. 

However, Model VIII, which considers both the ‘habitat filtering’ (by assuming that 

all species show an average functional trait response to the environmental drivers) 
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and the ‘limiting similarity’ (by assuming that the amount of variability around 

the average functional trait response depends on the nature and magnitude of the 

drivers) hypotheses, received the most support from my data. This suggests that 

habitat filtering and limiting similarity jointly explain mangroves’ trait responses 

to the environment. 

Applying my approach to the dynamic Sundarbans ecosystem, I determined 

salinity, siltation, pH and upriver position as the key drivers governing plants’ trait 

responses (Fig. 5.4, Table 5.1). Further, I discovered diverging trait responses 

among the species and the strength of such responses to the environmental drivers 

was found to vary across the trait categories. For example, among the traits, 

height was more affected by salinity than the other drivers and the magnitude of 

the effect was significantly higher on the climax species H. fomes than the 

generalists — E. agallocha and C. decandra. These species-specific differences in 

canopy height (and for other traits) responses could be related to the variability 

in water stress, nutritional imbalance, and salt stress that the species experience 

under variable saline environments (Rasool et al. 2013).  

Simultaneous plastic decreases in growth traits (Height and SLA) and plastic 

increases in survival traits (WD and LS) along the soil salinity, siltation and pH 

gradients, suggest conservative resource-use (low resource acquisition and 

turnover rates, and slow growth rates) as the dominant ecological strategy in many 

species to ensure their long-term survival under unfavourable environments 

(Rosado et al. 2016). The growth and survival traits showed opposing responses to 

increasing upriver-position (i.e. more available freshwater), suggesting that the 

same species can increase resource acquisition and growth under benign 

environmental conditions.   

My model predicts an ecosystem-wide productivity loss under all future stress 

scenarios and forecasts a 30% loss of its current total productivity under the 

highest stress scenario by 2050 (Fig. 5.6A, Appendix 5B). This productivity loss is 

mainly associated with the community-wide decreases (36%) in height, by 2050 

(Fig. 5.6B, Appendix 5C). Trait maps (Fig. 5.5) reveal that community SLA and WD 

show more stable patterns between the stress scenarios. This could be the result 

of turnover in species composition rather than stasis in stress conditions (Appendix 

5E). For example, while the climax species — H. fomes (medium SLA and high WD) 
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— is projected to lose most of its suitable habitat by 2050, both generalist — E. 

agallocha (high SLA and low WD) —  and disturbance specialist species — C. 

decandra (low SLA and high WD) — are likely to replace most of the degraded 

habitats and are projected to undergo ecosystem-wide range expansions. My 

species-specific predictions further uncovered spatial variability in plastic 

responses of the traits under projected stress conditions. I found that, under 

increasing stress, every species will lose canopy height and SLA, but the loss will 

be substantially higher for the climax species H. fomes (52% height and 16% SLA 

loss by 2050) (Fig. 5.6C, Appendix 5D) which is in agreement with the previous 

results that the species has narrower salt-tolerance than the generalists because 

of its limited ability to balance water and salt uptake (Das 1999). Plastic increases 

in conservative trait values (WD and LS) were also predicted to be highest for this 

species, implying maximum stress on the species contributing the most biomass.  

While my approach incorporated multiple species, intra-specific variations in 

traits, in common to other existing approaches (Dolédec et al. 1996; Legendre et 

al. 1997; Lavorel et al. 2007; Pollock et al. 2012; Jamil et al. 2012; Jamil et al. 

2013; Dray et al. 2014; Brown et al. 2014; Warton et al. 2015), it did not consider 

competitive interactions between species. Species-species interactions can lead 

to trait divergence (i.e. limited trait similarity) or sometimes trait convergence 

when traits have a strong influence on the competitive ability of the coexisting 

species which in turn may affect the species composition and biomass productivity 

in forest communities. However, my empirical inferences can inform more 

mechanistic models of tree dynamics (Purves et al. 2008; Grueters et al. 2014; 

Chauvet et al. 2017) that will better capture tree interaction dynamics.  

In addition, several fundamental unknowns might also interfere with my forecasts. 

The first is the climate- or local stress-induced trait acclimation and adaptation 

that could potentially affect the accuracy of the projected trait values and 

productivity. However, variability in acclimation potential among different tree 

species and different trait types have yet to be discovered in mangrove ecosystems 

and elsewhere (Van Bodegom et al. 2014). The second unknown is the degree to 

which environment–trait relationships and trait–trait interactions will remain the 

same under future climatic and stress conditions (i.e. whether they undergo 

abiotic/biotic filtering).  
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Another area of improvement is to consider traits that directly measure the fitness 

or reproductive success of individual species. The fitness of individual species 

depends mainly on its ability to use and conserve resources or to tolerate abiotic 

and biotic stresses (Grime 2001). Therefore, the ideal trait for predicting species, 

community and ecosystem level productivity under variable stress scenarios is one 

whose function directly reflects the physiological or mechanical mechanisms 

controlling resource acquisition or conservation or stress tolerance in primary 

producers. Physiological (or hard) traits such as  the relative growth rate of plants 

(RGR) which directly measures biomass allocation in plants, offer such an 

opportunity. However,  their quantification is costly and time demanding and 

cannot be measured for large numbers of species in many regions of the world 

(Weiher et al. 1999). All the traits in this study are ‘soft’ or ‘morphological’ traits. 

The functional interpretations of them are rather indirect which might have 

resulted in increased uncertainty in parameter estimations and spatial predictions 

of traits and productivity. The positive side of including them is that they are 

available for all tree species whatever the scale is and closely represent many 

‘hard’ traits. For example, I considered SLA as a surrogate of RGR as species with 

high SLA-leaves have higher RGR (Pérez-Harguindeguy et al. 2013). Future models 

incorporating available ‘hard’ traits or a mixture of ‘soft’ and ‘hard’ traits may 

offer a better mechanistic understanding of trait-environment relationships, and 

more accurate predictions of shifts in trait range under future environmental 

conditions and resulting consequences for ecosystem functioning.  

My integrated approach not only advances our understanding of previously 

unknown functional trait responses of threatened taxa such as mangroves under 

variable stress conditions, but also provides forest managers a much-needed 

functional basis to tailor science-driven management and conservation actions 

particularly for conservation priority areas like the Sundarbans. Inadequate 

knowledge of how different mangrove species respond in dynamic coastal 

environments has previously led to unsuccessful conservation efforts in many 

tropical regions (Lewis 2005), including the Sundarbans (Islam et al. 2014). 

Therefore, determining the environmental drivers that limit mangroves’ growth 

and survival is crucial before designing and implementing habitat restoration and 

reforestation programs. For example, my finding that soil salinity, alkalinity and 

siltation are the most limiting environmental drivers of mangroves’ primary 
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growth and resource acquisition, especially for the climax species, can target the 

selection of species and sites for future reforestation and restoration initiatives.  

My finding that currently the productivity hotspots are confined to the hyposaline 

eastern and northern regions in the Sundarbans and the projected 30% decline in 

productivity, lends strong support for immediate habitat enhancement programs 

(e.g. river dredging for increasing freshwater flows and for reducing silt 

deposition) in the eastern and northern regions. Most importantly, the 

productivity maps can be important tools for implementing the United Nations 

REDD+ (Reduced Emissions from Deforestation and Degradation) initiatives and 

guiding national strategy while negotiating for payments for ecosystem services 

(Rahman et al. 2015).  

The application of my proposed approach is not limited to mangrove forests rather 

this is a generalizable foundation for powerful modelling of trait-environment 

linkages under changing climate and for predicting their consequences on 

ecosystem functions and services in other forest ecosystems of the world (e.g. 

boreal, temperate, and other tropical forests). The increasing availability of 

spatially explicit global datasets for plant functional traits (Kattge et al. 2011), 

species distributions (Hudson et al. 2014), and high-resolution environmental 

layers (Shangguan et al. 2014) provide opportunities for such applications, 

especially within dynamic global vegetation models (Scheiter et al. 2013). 
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5.6 Conclusions 

This integrated Bayesian approach provides the foundations for trait-based 

predictions in plant ecology through simultaneously modelling trait-trait and trait-

environment correlations (for multiple traits, species, and environmental drivers) 

at organismal, community and ecosystem levels, thus resolving many fundamental 

methodological problems of the existing ordination/permutation and univariate 

approaches, and bridges community, ecosystem ecology, and functional 

biogeography. These novel developments allow us to (1) integrate fundamental 

ecological hypotheses into the model building process, (2) quantify the strength 

of the trait-environment relationships, (3) identify the degree of intraspecific 

covariation among multiple traits, (4) predict species-specific and community-

level trait distributions with accurate estimates of uncertainty, and (5) forecast 

whole-ecosystem productivity under future environmental conditions. Applying 

this approach to the Sundarbans, I discovered (1) joint effects of habitat filtering 

and limiting similarity in shaping trait responses to environment with parallel 

contribution of intraspecific variability in trait-trait interactions, (2) substantial 

intraspecific trade-offs among the functional traits in many tree species, (3) 

serious detrimental effects of increasing salinity, siltation and soil alkalinity on 

functional traits associated with plants’ resource acquisition and growth, (4) 

plastic enhancement of traits related to stress tolerance, indicative of plants 

prioritizing survival over growth, and (5) ecosystem-wide drop in biomass 

productivity under all anticipated stress scenarios with an average of 30% 

productivity loss by 2050 in the worst scenario. These findings advance our 

understandings on how species living in stressed ecosystems respond to 

environmental change and provide policymakers and managers with a much-

needed functional basis for developing strategic approaches and setting targets 

for forest conservation, restoration, and ecosystem management. Because of its 

high computational efficiency, my integrated approach is applicable to any forest 

ecosystem across broad global scales, to predict shifts in ecosystem functioning 

and services under a rapidly changing climate.  
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Chapter 6 . General Discussion 

 

6.1 An overview of my thesis findings 

My overall aim of this thesis was to understand mangroves’ habitat requirements 

and spatial distributions, to explore spatio-temporal patterns and drivers of 

Sundarbans’ biodiversity, and to develop an integrated approach for predicting 

species trait responses and forest productivity under changing environments. In 

Chapter 2, using GAMs on mangrove abundances, I determined habitat preferences 

and spatial distributions of the four major mangrove tree species. The climax 

species H. fomes showed a strong negative response to salinity and human 

harvesting. H. fomes and X. mekongensis preferred upstream habitats while the 

remaining species preferred downstream to intermediate-stream areas. The 

magnitude of responses to nutrients, elevation, and the biotic interaction term 

varied between species. Spatial maps show that the established protected area 

network (PAN) does not cover the density hotspots of any of the tree species.      

In Chapter 3, using long-term mangrove tree data collected at four historical time 

points (1986, 1994, 1999 and 2014), I uncovered the spatial heterogeneity in 

alpha, beta, and gamma diversity and temporal dynamics in species abundances, 

geographic range, and composition in the existing ecological zones (hypo-, meso-

, and hypersaline) of the Sundarbans. Here, I also developed regional biodiversity 

maps to pinpoint the historical and current biodiversity hotspots and to specify 

the areas that experienced shifts in species composition over time. I found that 

the hyposaline zone supported the most diverse and heterogeneous communities 

(in terms of species composition) at all historical time points. In contrast, the 

hypersaline zone comprised the least diverse and most homogeneous 

communities. Most importantly, I detected a clear trend of decreasing 

heterogeneity in the mangrove communities of all ecological zones since 1986, 

providing a strong signal for ecosystem-wide biotic homogenization. Biodiversity 

maps revealed that the established PAN neither supported the historical 

biodiversity hotspots nor the existing hotspots. They further identified the 

western and southern hypersaline zones as the areas that have experienced the 

greatest species compositional shifts (biotic differentiation) since 1986.  
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In Chapter 4, using GAMs on tree count, environmental and historical disturbance 

data, my objectives were to determine the key drivers for different aspects 

(alpha, beta and gamma) of mangrove biodiversity and to develop habitat data-

driven baseline biodiversity maps for the Sundarbans. I found historical tree 

harvesting, siltation, disease and soil alkalinity as the key stressors that negatively 

influenced the diversity (alpha) and distinctness (beta) of the mangrove 

communities. In contrast, species diversity increased along the downstream – 

upstream, and riverbank – forest interior gradients, suggesting the late 

successional upstream and forest interior communities are more diverse than the 

early successional downstream and riverbank communities. Like the species 

density hotspots, the existing PAN does not cover the remaining biodiversity 

hotspots.  

In Chapter 5, I developed an integrated Bayesian modelling approach to quantify 

trait-environment correlations for multiple traits, species, and environmental 

drivers simultaneously while accounting for the intraspecific variation in traits. 

The approach thus resolves the ‘fourth-corner problem’ (Legendre et al. 1997) 

and provides a foundation for mechanistic trait-based predictions in plant ecology. 

Applying this approach on the Sundarbans,  I found (1) combined effects of habitat 

filtering and limiting similarity in shaping trait responses to environment with 

parallel contribution of intraspecific variability in trait-trait interactions, (2) 

substantial intraspecific trade-offs among the functional traits in many tree 

species, (3) serious detrimental effects of increasing salinity, siltation and soil 

alkalinity on plant primary growth, and parallel plastic enhancement of traits 

related to stress tolerance and (4) ecosystem-wide drop in biomass productivity 

under all anticipated stress scenarios.   

Although each data chapter had separate aims and answered specific questions, 

they mainly covered three central themes: habitat preferences of mangroves, 

spatio-temporal patterns and drivers of mangrove biodiversity, and species trait 

responses to environmental drivers. I collect the insights for each of the themes 

below and then briefly discuss the practical implications of my findings, 

limitations and potential areas for future improvements.   
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6.1.1 Habitat preferences of mangroves 

Habitat suitability analyses in Chapter 2 uncovered that multiple environmental 

drivers (i.e. salinity, upriver position, harvesting, nutrients) simultaneously 

influence spatial distributions of mangroves. This contrasts with the common 

mangrove-centric assumption that only a few abiotic stressors (e.g. temperature, 

tidal waves etc.) shape mangrove distributions in the harsh tropical inter-tidal 

zones (Ellison 2001).  

All the mangroves showed steep responses to increasing salinity although the 

magnitude of the responses clearly varied between species. H. fomes showed a 

strong negative response while the remaining species showed clear positive 

responses. These results are in agreement with previous studies (Ball 2002; 

Dangremond et al. 2015) reporting that differential salt tolerance and salinity 

optima among mangrove species contribute to spatial variability in mangrove 

populations in tropical coastal areas.  

Changes in river hydro-geomorphological features along the downstream-

upstream gradient alter habitat qualities which in turn may cause spatial 

variability in species distributions (Angiolini et al. 2011). Likewise, I found 

differential habitat preferences of the Sundarbans’ mangroves along the 

downstream-upstream gradient. Most suitable habitats of H. fomes and X. 

mekongensis are now located in the upstream areas although records show their 

widespread distributions over the entire forest in the 19th century (Gopal & 

Chauhan 2006). This shift in habitat preferences may be related to riparian 

degradation through hydrological modification (e.g. a 60% drop in the freshwater 

flow in the Sibsha and Posur river system), increasing river-bank erosion and 

siltation which have modified the fluvial geomorphology of the waterbodies in the 

Sundarbans (Wahid et al. 2007).    

Before the Bangladeshi government enforced a full logging ban in 1989 (Sarker et 

al. 2011), the Sundarbans was managed for sustainable timber production in the 

Pakistani (1948 — 1970) and the British (1600 — 1947) regimes (Ghosh et al. 2015). 

Despite the enforcement of a full logging ban, tree harvesting by local 

communities is common (Iftekhar & Saenger 2008). My results showed that past 

harvesting has had substantial negative effects on the populations of H. fomes, X. 
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mekongensis and C. decandra. Siddiqi (2001) reported intensive past harvesting of 

C. decandra by local communities for fuelwood, and selective logging of H. fomes 

and X. mekongensis by the BFD for timber supply. Interestingly, E. agallocha 

showed the opposite pattern: a clear trend of population increase in the highly-

exploited areas in the past. Frequent tropical cyclones, past industrial and illegal 

logging, and tree mortality have resulted in large as well as small forest gaps in 

the Sundarbans and the size of open areas has been increasing by 0.05% each year 

(Iftekhar & Islam 2004). E. agallocha is a salt tolerant fast producing species that 

can easily colonise open and degraded habitats (Harun-or-Rashid et al. 2009). I 

assume that these conditions may favour E. agallocha to increase its density even 

in the H. fomes and X. mekongensis dominated stands. Increasing dominance of 

E. agallocha in the previously H. fomes dominated stands, and increasing coverage 

of mono-specific E. agallocha stands - 0.69% per year during 1981-1997 (Iftekhar 

& Saenger 2008) - provide support for my assumption.   

In common with other terrestrial plant communities, nutrient availability is 

recognized as a major driver for spatial variability in abundance, composition and 

productivity in mangrove communities (Feller et al. 2010). Often, mangrove soils 

are poor in nutrients and nutrient availability is irregularly driven by a complex 

interaction between abiotic and biotic variables (Reef et al. 2010). Mangroves 

have developed several nutrient conservation strategies (e.g. resorption of 

nutrients before leaf shedding, evergreenness) to maintain growth and 

development under such conditions. Moreover, mangroves can show high plasticity 

in their ability to opportunistically exploit nutrients when they become available 

depending on their physiological requirements, thus for a specific nutrient the 

responses of different species may vary (Reef et al. 2010). Likewise, I found that 

the magnitude of response to nutrients varied between mangroves in the 

Sundarbans.  

H. fomes prefers NH4 rich habitats while the others can grow abundantly in NH4-

poor habitats. Terrestrial plants put considerable respiration effort to uptake and 

assimilate N and those are well adapted to the efficient uptake and assimilation 

of NH4 require much less respiration efforts (i.e. less metabolic cost) compared to 

uptake and assimilation of other N forms (Reef et al. 2010). This indicates that H. 

fomes might have increased its capacity to efficiently utilize NH4 as the main N 
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source for saving metabolic cost under increasing salinity stress in the Sundarbans. 

Conversely, the apparent preference of salt-tolerant mangroves for NH4-poor 

habitats may be related to their preference for other forms of N, or they may 

suffer from NH4 toxicity (Kronzucker et al. 1997). Soil P is a key constraint for 

forest productivity in the tropics (Baribault et al. 2012). Interestingly, in the 

Sundarbans, all the mangroves show a preference for habitats with relatively 

lower P availability. K is a key soil macro-nutrient that can modulate salinity-

induced drought stress by improving the water uptake and retention capacity of 

plants (Sardans & Peñuelas 2015). The salt-tolerant species such as E. agallocha, 

C. decandra and X. mekongensis maintain high abundances in the K-rich habitats 

(north-western Sundarbans). Fe and Mg are required in minute quantities for 

successful mangrove growth because of their roles in metabolic and physiological 

processes (Alongi 2010). Responses to Fe substantially varied between species. 

Interestingly, mangroves mostly accumulate Fe in roots (Alongi 2010). H. fomes 

and X. mekongensis have extensive aerial root system (i.e. pneumatophores). E. 

agallocha has spreading surface roots, and C. decandra has extensive knee roots 

(Siddiqi 2001). These differential rooting structures may be related to diverse Fe 

use efficiency in the mangroves. H. fomes’s higher preference range for Mg than 

X. mekongensis  may be related to the distribution and chemical properties of the 

source rock material, the weathering process, and salinity levels which control 

the availability of Mg to mangrove plants (Gransee & Führs 2013).      

The above responses to nutrients indicate that the mangroves of Sundarbans may 

be highly plastic in their ability to utilize nutrients (i.e. withstand low-nutrient 

conditions, but able to exploit high levels of nutrients when other stresses are 

withdrawn). Future research is required to understand the plasticity levels in 

different mangroves, and their nutrient acquisition, and conservation strategies 

under different stress scenarios (e.g. salt stress and flooding).    

Species distribution maps reveal that currently, the eastern region of the 

Sundarbans supports the remaining H. fomes hotspots, the north-western region 

supports the E. agallocha hotspots, the western and southern regions support the 

C. decandra hotspots, and few specific areas in the northern (Kalabogi and Koyra) 

and north-western (Koikhali) regions support the X. mekongensis hotspots. H. 

fomes was the most abundant species both in the Bangladesh and Indian parts of 
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the Sundarbans just 200 years ago (Siddiqi 2001). Currently, the species is at the 

elevated risk of extinction in the Indian Sundarbans. Historical obstruction of 

freshwater influx from the Ganga-Bhagirathi-Hooghly river system, salinity 

intrusion, deposition of industrial effluents, and aquaculture expansion which 

have gradually transformed it into world’s one of the most degraded mangrove 

ecosystems (Kathiresan 2010). The more stress tolerant species C. decandra is now 

the climax species in the heavily degraded Indian Sundarbans.  

Most of the world’s H. fomes trees are now restricted only to the less saline 

eastern region of the Bangladesh Sundarbans. Evidence of widespread distribution 

of H. fomes in the western region (currently, the hypersaline zone) in the past 

(Gopal & Chauhan 2006), suggests historical range contraction of the species in 

the Bangladesh Sundarbans. C. decandra has already replaced a substantial 

amount of H. fomes range: 0.08% year-1 during the period 1981—1997 (Iftekhar & 

Saenger 2008). Gopal & Chauhan (2006) have documented an annual replacement 

of about 0.4% of the total forest area by C. decandra. Therefore, the Indian 

Sundarbans case should be taken as a warning regarding the future availability of 

suitable habitats for H. fomes and other salt-intolerant (freshwater loving) species 

in the Bangladesh Sundarbans.    

6.1.2 Spatio-temporal patterns and drivers of mangrove biodiversity 

Species diversity, composition, abundance, and geographic range of the 

mangroves have substantially changed in the Sundarbans over the last three 

decades (Chapter 3). This finding is consistent with recent remote-sensing 

technique-based studies (Giri et al. 2007; Mukhopadhyay et al. 2015; Ghosh et al. 

2015) reporting species and vegetation cover changes in the Sundarbans since the 

1980s. Chapter 4 further determined the drivers for spatial variability in diversity 

and species composition.   

At all historical time points (1986, 1994, 1999 and 2014), the hyposaline mangrove 

communities remained the most diverse (alpha) while the hypersaline 

communities remained the least diverse. Chapter 2 has already revealed 

widespread distributions of the facultative halophyte H. fomes in the  less saline 

nitrogen rich upstream areas that also allow co-existence of other salt-intolerant 

non-halophytes (Siddiqi 2001). In turn, two obligate halophytes: E. agallocha and 
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C. decandra showed super-dominance in the highly saline down – intermediate 

stream habitats. Therefore, the relatively higher diversity in the hyposaline 

communities may be closely related to suitable habitat conditions that supported 

historical coexistence of both facultative (e.g. H. fomes) as well as other 

opportunistic non-halophytes.  

Surprisingly, in the last 15 years, alpha diversity sharply increased in the 

communities of the southern meso- and western hypersaline areas. My temporal 

beta diversity analyses detected that these areas have also experienced radical 

shifts in species composition over the 28 years. Salinity fluctuation is highest in 

these areas and often the salinity level remains high for longer, inhibiting the 

regeneration process and inducing disease outbreaks in many salt-intolerant 

species, including H. fomes (Ghosh et al. 2016). Habitat-based biodiversity models 

in Chapter 4 uncovered that historical harvesting, increasing siltation, salinity, pH 

and community size (dominance of generalists) have strong negative effects on 

alpha diversity while increasing upstream and forest interior environment have 

strong positive effects on alpha diversity as well as the gamma diversity. Chapter 

4 further showed that increasing salinity could promote increasing heterogeneity 

in the communities. This is due to the increasing colonization success of the 

opportunistic stress-tolerant species (e.g. E. agallocha and C. decandra) in the 

degraded saline soils in the Sundarbans (Iftekhar & Saenger 2008; Aziz & Paul 2015; 

Mukhopadhyay et al. 2015) with associated population declines and range 

contraction of many stress-intolerant species (Chapter 3). Therefore, range and 

population expansion of the stress-tolerant species and range contraction and 

population loss of the stress-intolerant species under increasing salt stress, 

harvesting, siltation, and soil alkalinity could be the possible mechanisms that 

resulted in sudden alpha diversity increase and alteration to the species 

composition (particularly in the southern meso- and western hypersaline 

communities) over the 28 years.   

A disproportionate expansion of generalist (or invasive) species relative to 

specialist endemics which results in reduced distinctness in natural communities 

is the key mechanism responsible for biotic homogenization (Olden 2006). Chapter 

3 revealed (1) increasing similarity (decreasing distinctness) among mangrove 

communities since 1986, (2) range expansion of the widespread stress-tolerant 
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species (e.g. E. agallocha and C. decandra) and range contraction of the local 

endemics, (3) increasing abundance of the stress-tolerant species and decreasing 

abundance of the stress-intolerant endemics including the climax H. fomes, and 

(4) local extinction of many rare mangrove species. These findings strongly comply 

with the basic assumptions of the biotic homogenization theory (McKinney & 

Lockwood 1999; Olden & Poff 2003; Olden & Rooney 2006).  

Chapter 4 determined historical tree harvesting, increasing disease prevalence, 

siltation, soil alkalinity, nutrient toxicity as the key stressors responsible for 

increasing similarity among mangrove communities. Since the construction of the 

Farakka dam in the upstream, both water and soil salinity have been increasing in 

the Sundarbans (Mirza 1998; Wahid et al. 2007). The average soil salinity has 

already increased by 60% since 1980 (Aziz & Paul 2015). As a result, hyposaline 

areas are transforming into mesosaline areas and mesosaline areas are 

transforming into hypersaline areas (Ghosh et al. 2016). Despite the ongoing ban 

on logging (Sarker et al. 2011), opportunistic tree felling is common (Iftekhar & 

Islam 2004). This ongoing transformation in habitat conditions coupled with forest 

exploitation and sea level rise may seriously alter the current biodiversity and 

species composition in the Sundarbans. Biodiversity maps in Chapter 3 revealed 

that the spatial coverage of the heterogeneous (distinct) communities gradually 

declined at all historical time points since 1986. Together, Chapter 3 and Chapter 

4 maps confirm that the most diverse and the most distinct communities are now 

confined to a specific area (Kalabogi) in the Sundarbans while the rest of the 

ecosystem looks homogeneous in terms of species composition, suggesting further 

degradation and forest exploitation may transform these remaining biodiversity 

hotspots into species-poor homogeneous patches.   

6.1.3 Quantifying species trait responses to environmental drivers 

A variety of approaches — the CWM (Lavorel et al. 2007), the fourth corner 

correlation (Legendre et al. 1997; Dray & Legendre 2008), the multivariate RLQ 

(Dolédec et al. 1996; Dray et al. 2014), and the more recent regression approches 

(Pollock et al. 2012; Jamil et al. 2012; Jamil et al. 2013; Brown et al. 2014;  

Warton et al. 2015) — are used to disentangle the link between species traits and 

environmental drivers (known as ‘the fourth-corner problem’ in community 

ecology) and to model the link for predicting species, community and ecosystem 
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responses under future environmental scenarios. The survival of a species in a 

specific environment is controlled by how its functional traits (morphological or 

physiological or anatomical) respond to multiple environmental stressors and how 

the trait themselves interact (Verberk et al. 2013). Therefore, the interplay 

between multiple plant functional traits, multiple species and multiple 

environmental drivers may collectively influence species abundance, community 

composition and ecosystem productivity.  

However, current trait-based approaches often look at species, traits and the 

environment in a fragmented way, and frequently deal with the effect of single 

(or sometimes several) environmental driver on individual species traits without 

considering the complex interactions between multiple traits of multiple 

competing species under a dynamic environment. These shortcomings raise serious 

concerns (Webb et al. 2010; Verberk et al. 2013; Funk et al. 2017) about how 

precisely the existing approaches will forecast species, community and ecosystem 

responses under future environmental conditions. Therefore, we need an 

integrated quantitative approach that represents the complexity of the 

connections between traits, species and environmental drivers while developing a 

predictive model of future forest dynamics. In Chapter 5, I proposed such an 

integrated approach that models trait-environment relationships for multiple 

traits, species, and environmental drivers simultaneously while accounting for 

intraspecific trait variation. In this way, this novel approach resolves the long-

lasting ‘fourth-corner problem’ problem and contributes to the clarification of 

different theoretical assumptions about how complex forest ecosystems function, 

determines the environmental drivers of functional traits, and makes predictions 

about how traits and forest productivity will be affected by the future changes in 

the environment.   

A common assumption in mangrove literature is that a few strong environmental 

gradients (such as salinity and tidal inundation) shape structural and functional 

properties of mangrove forests, and regular species sorting along these gradients 

are responsible for poor species diversity and relatively homogeneous species 

composition at least at a regional scale (Farnsworth 1998). This reflects the 

‘habitat filtering’ theory (Weiher & Keddy 1995), a widely tested theory for many 

taxa in diverse ecosystems. An alternative assumption also exists saying fine-scale 
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variation in habitat conditions in the dynamic inter-tidal zones may cause 

variability in species composition and functioning which reflects the ‘limiting 

similarity’ theory (MacArthur & Levins 1967; Chesson 2000). My proposed 

integrated Bayesian approach allowed these ecological hypotheses to be tested in 

a single analysis simultaneously using all available data and revealed that habitat 

filtering and limiting similarity together explain mangroves’ trait responses to the 

environment with strong influences of within-species variability in trait-trait 

relationships.  

Applying my approach to the Sundarbans, I found severe detrimental effects of 

increasing salinity, siltation and soil alkalinity, and a significant positive effect of 

increasing upriver position (i.e. more available freshwater) on height and SLA, 

indicating trees living in the freshwater-dominated upstream areas have higher 

resource acquisition and growth rates than those living in the alkaline and highly 

silted hypersaline environments. In parallel, a plastic enhancement of survival 

traits — WD and LS — was common in many species. Higher LS is a common 

adaptation mechanism in many plants to ensure water use efficiency under 

extended stress (e.g. drought, salinity etc.) periods (Wang et al. 2011). Denser 

wood confers mechanical stiffness to trees growing under heavily silted saline 

soils, but needs more biomass investment and is therefore costlier to construct 

per unit of stem height (Feller et al. 2010). This extra resource investment of trees 

in structural support leaves less available resource in a plant body that could be 

used for fitness purposes (such as photosynthesis and primary growth), 

representing the growth-survival trade-off (Lawson et al. 2015). My integrated 

approach identified such trade-off in the most abundant species of the ecosystem 

— H. fomes.  

Contrary to the common assumption that mangroves show homogeneous 

functional responses under stress as they are believed to share evolutionarily 

convergent traits (Farnsworth 1998), I discovered plastic trait responses among 

the species and the strength of such responses to the environmental drivers varied 

for both growth and survival traits. For example, while salinity has its greatest 

negative effect on the height of H. fomes and its greatest positive effect on X. 

mekongensis LS, pH has no significant effect on the height of any of the species. 

But increasing pH significantly affects the SLA of all species with maximum 
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negative effect on E. agallocha. These findings indicate that multiple 

environmental drivers simultaneously act on traits, and plastic responses of traits 

and trait-trait interactions differ among different species which might collectively 

determine the growth and survival of species.   

My model predicts that currently the most productive mangrove tree communities 

are distributed in the freshwater-dominated hyposaline habitats (eastern and 

northern regions) while the most unproductive communities are distributed in the 

highly silted hypersaline habitats (western and south-western regions) in the 

Sundarbans. Biomass productivity in tree communities is closely connected with 

the community-wide trait values (Grime 1998; Diaz et al. 2007). Hence, higher 

biomass productivity in the hyposaline habitats than the silted hypersaline 

habitats might be related to relatively higher community-wide height and SLA 

(which together may facilitate greater light capture, photosynthetic rates and net 

carbon gain) and relatively lower community-wide wood density (resulting in 

higher stem hydraulic conductivity, photosynthetic carbon gain and lower 

construction costs per wood volume) in the hyposaline habitats. The relatively 

nutrient-rich soils (particularly, nitrogen) and biodiverse hyposaline habitats 

(Chapters 3 & 4) might also contribute to greater biomass productivity in these 

regions because plants can grow faster in nutrient-rich soils (Pastor et al. 1984; 

Prado-Junior et al. 2016) and a higher diversity of species offers efficient use of 

available resources because of higher niche differentiation and interspecific 

facilitation (Tilman 1999).  

Chapter 2 and Chapter 4 showed strong negative effects of increasing salinity and 

siltation on endemic species abundances and diversity in the Sundarbans. 

Projected sea level rise (32 cm by 2050)  along the Bangladesh coasts (Karim & 

Mimura 2008) and  other aspects of climate change such as increased temperature, 

monsoon flooding and extended dry season are likely to severely degrade the 

Sundarbans ecosystem with subsequent effects on species traits and forest 

productivity. My model-based forecasts show that the biomass productivity of the 

ecosystem is likely to drop under all projected stress scenarios (10, 20, 30, 40 and 

50% increase in salinity and siltation) with a maximum of 30% whole-ecosystem 

productivity loss under the worst stress scenario by 2050. This productivity loss is 

mainly related to a significant reduction in community-wide height (36% by 2050) 
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because of change in species compositiojn and an ecosystem-wide population 

increase and range expansions of the less-biomass contributing generalists (such 

as E. agallocha and C. decandra (Chapters 3 and 5). My species-specific predictions 

further revealed that every species would lose canopy height and SLA and gain WD 

and LS under all projected stress conditions, but the rate of loss might vary 

between the species. Most importantly, the height loss and WD gain could be 

greatest in the most biomass-contributing species H. fomes, suggesting maximum 

stress on that globally endangered species.   

6.2 Practical applications  

Chapter 2 specified the environmental requirements of the threatened mangroves 

and produced species distribution maps. Chapter 5 uncovered how functional 

responses of different mangrove species vary along the environmental gradients 

and generated species- and community-level trait maps under current and future 

environmental conditions. Together, these species-centric and trait-based 

findings, can help forest managers selecting suitable species and sites for 

replanting. For example, a significantly stronger negative response of H. fomes 

abundance and canopy height to increasing salinity compared to the responses of 

the generalists (E. agallocha and C. decandra) imply for choosing relatively benign 

upstream habitats for H. fomes replanting and planting the generalists or salt-

tolerant early-successional species (e.g. S. apetala) in the highly degraded barren 

areas for initial site stabilization.   

The process of biotic homogenization has been underway in the Sundarbans 

resulting in spatial contraction of diverse and distinct mangrove communities in 

the Sundarbans (Chapter 3). Biodiversity maps revealed that both the historical 

and contemporary biodiversity hotspots were located at the northern (specifically 

the Kalabogi region) hyposaline habitats that support the unique association of X. 

mekongensis and H. fomes, the two species most at risk of local and global 

extinction. Therefore, future conservation and protection initiatives should 

primarily focus on these surviving hotspots because further habitat degradation 

and exploitation of these threatened species may push them to the brink of 

extinction.   
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Establishing coastal protected areas has been common practice in the tropics to 

conserve forest resources and to offer social and economic benefits to the forest-

dependent communities (de Almeida et al. 2016). A PAN (the largest coastal PAN 

in the world) is also operational in the Sundarbans to confirm completely 

undisturbed habitats for plants and animals. My species density maps (Chapter 2), 

biodiversity maps (Chapters 3 and 4) and the forest productivity maps (Chapter 5) 

have shown that the established PAN does not cover the species density, 

biodiversity, and forest productivity hotspots. Therefore, this thesis advocate for 

bringing these hotspots under protected area management to ensure the long-

term conservation of the many threatened species living there.   

Historical harvesting had a significant negative effect on the abundance of most 

of the mangroves (Chapter 2) and appeared responsible for the diminishing 

distinctness of the mangrove communities (Chapter 4). Many rare and endemic 

plant species including the climax H. fomes have faced range contractions or local 

extirpations over the last three decades (Chapter 3). Although logging has been 

legally prohibited since 1989 (Sarker et al. 2011), opportunistic harvesting of 

valuable timber-yielding species (mostly X. mekongensis and H. fomes) by 

poachers is common (Iftekhar & Saenger 2008). The BFD has ratified the 

‘Bangladesh Biodiversity Act 2017’ to reduce biodiversity loss and recently 

initiated the SMART patrol management system to stop this illegal practice in the 

Sundarbans. My species density and biodiversity maps can guide these valuable 

protection and monitoring initiatives through tracking individual species 

populations and community-level diversity changes or predicting changes and 

recognizing habitats or species that may be affected by future human 

interventions.  

Both mangrove enhancement (reducing biotic and abiotic stresses that caused 

mangroves’ population decline) and mangrove restoration (restoring specific areas 

where certain mangrove species previously existed) initiatives are regularly taken 

in the tropical coastal regions to enhance species resistance and resilience to 

climate change and to offset predicted losses from climate change impacts (Lewis 

2005). However, inadequate understanding of which environmental drivers 

regulate mangroves abundances, composition and functions have resulted in 

unsuccessful mangrove enhancement and restoration projects in many countries 
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(Lewis 2005) including the Sundarbans (Islam et al. 2014). This thesis determined 

the key drivers responsible for spatial variations in mangrove distributions, 

diversity, and functions in the Sundarbans. For example, salinity and historical 

harvesting predominantly affect H. fomes abundance, siltation, disease, historical 

harvesting and pH affect the diversity and distinctness of the mangrove 

communities, and soil salinity, alkalinity, and siltation act simultaneously to limit 

mangroves’ resource acquisitive traits and overall ecosystem productivity. These 

novel habitat and functional insights and the spatial maps of species, biodiversity, 

traits, and forest productivity can guide the future mangrove enhancement and 

restoration initiatives in the Sundarbans.  

Also, my proposed integrated approach (Chapter 5) for quantifying trait-

environment relationships and predicting ecosystem properties (such as 

productivity) is not restricted to mangroves. It can be readily applied to any other 

forest ecosystems of the world (e.g. boreal, temperate, and other tropical forests) 

to address various management and conservation issues therein.   

Finally, based on the findings in Chapters 2 ─ 5, this thesis recommends to ─ 

• Replant globally endangered H. fomes and locally threatened X. 

mekongensis in less saline upstream habitats (Chapter 2).  

• Focus protection actions (e.g. regular patrolling, increase the number of 

resource protection officers and rangers) on the endangered (e.g., H. 

fomes) as well as the rare endemics (e.g. C. ramiflora, C. manghas and A. 

cucullata) whose populations and geographic ranges have substantially 

declined in recent times (Chapter 3). 

• Take extreme caution while implementing nutrient enrichment programs 

because the mangroves of the Sundarbans may suffer from nutrient toxicity 

in highly silted hypersaline habitats (Chapter 4).  

• Focus future conservation and protection initiatives primarily on the 

surviving biodiversity hotspots located in the northern Sundarbans 

(Chapters 3 and 4).   
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• Extend or establish new protected areas for immediate protection of the 

remaining species density, biodiversity and forest productivity hotspots in 

the Sundarbans (Chapters 2, 3, 4 and 5). 

• Take initiatives to test the suitability of interventions such as river dredging 

to increase the freshwater supply in the Sundarbans to reduce the salinity 

stress on tree growth and productivity of the ecosystem. 

6.3 Limitations and future directions 

The HSMs of the mangroves (Chapter 2) are data-driven correlative models that 

do not necessarily reflect the causal relationships between species and 

environmental conditions. Here, the fitted response curves for each mangrove 

species only described how its densities were correlated with multiple predictors 

within their observed environmental ranges. Since these predictors include 

proxies for competition, these curves do not necessarily reveal the physiological 

limits (i.e. the fundamental niche) of the mangroves. Future studies may 

overcome the above limitations by developing mechanistic models (Dormann et 

al. 2012) that relate physiological (or morphological) traits with habitat data to 

translate species – environment interaction into fitness components (e.g. survival, 

growth, reproduction etc.) for predicting species distribution across space and 

time (Kearney & Porter 2009).  

Because of low prevalence ratio (many zeroes) in the dataset, I could not develop 

HSMs for the 15 rare mangrove species. Future studies can usefully extend their 

sampling efforts beyond the existing PSP network to record these rare mangroves.    

As previous environmental data were unavailable, I used ordinary kriging to 

generate biodiversity (alpha, beta and gamma) maps for four historical time points 

(Chapter 3). Because this direct interpolation approach does not accommodate 

environmental and biotic predictors, it might have increased prediction 

uncertainty (Miller et al. 2007). Chapter 4 used both environmental and biotic 

variables to model and to produce spatial biodiversity maps. Here, the habitat-

based models showed better predictive ability than the covariate-free direct 

interpolation approach. However, small differences between the approaches in 
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terms of predictive accuracy demonstrates the utility of direct interpolation 

approaches when environmental data are unavailable. 

Anthropogenic pressures, sea level rise, and natural calamities may alter the 

already stressed habitats of the mangroves with subsequent changes in the salinity 

and nutrient levels. Therefore, the mangrove HSMs (Chapter 2), the biodiversity 

models (Chapter 3) and the trait-based models (Chapter 5) should be updated with 

new environmental data. I could not incorporate hydroperiod data into my models 

due to their unavailability which might have affected the predictive accuracy of 

the models. Hydroperiod (the frequency, duration and depth of tidal inundation) 

directly regulates salinity and nutrient dynamics in mangrove forest floors, thus, 

influences mangrove regeneration and growth (Crase et al. 2013). The anticipated 

sea-level rise in the Bangladesh coast may considerably alter the Sundarbans’ 

regional hydrology. Therefore, future studies should include plot level 

hydroperiod information when they become available.  

Similar to the existing trait-based approaches (Dolédec et al. 1996; Legendre et 

al. 1997; Lavorel et al. 2007; Pollock et al. 2012; Jamil et al. 2012; Jamil et al. 

2013; Dray et al. 2014; Brown et al. 2014; Warton et al. 2015), the proposed 

Bayesian integrated approach (Chapter 5) did not include species-species 

interactions. Such inclusion might have contributed to better parameter estimates 

as species composition and functions of plant communities can be mediated by 

competition-induced shifts in traits i.e. trait divergence or convergence (Grime 

2006; Mayfield & Levine 2010). Nevertheless, my modelling framework can be 

easily extended to include the abundance of one tree species as a covariate for 

another (Chapter 2).   

I used easily measurable morphological (‘soft’) traits that are proxies of ‘hard’ 

traits (for example, SLA as a proxy of the relative growth rate of plants, Pérez-

Harguindeguy et al. 2013). ‘Hard’ traits directly influence the resource acquisition 

or conservation or stress tolerance hence the fitness in primary producers (Grime 

2001). Therefore, future models incorporating important ‘hard’ traits may offer a 

better mechanistic understanding of how species, community and ecosystem will 

respond to future environmental changes.  
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6.4 Conclusions 

Global climate change, local habitat modifications, and human interventions are 

acting simultaneously to push the mangrove biome to the brink of extinction. Yet, 

we have a restricted understanding of how these global and local drivers regulate 

mangrove populations, composition and functions in space and time. Such 

fundamental knowledge gaps have obstructed the management and conservation 

programs across the tropics but particularly in the Sundarbans — a global priority 

ecosystem that is being impacted simultaneously by climate change, habitat 

modifications and multiple types of human exploitation. Therefore, the main 

motivation behind this thesis was to fill such knowledge gaps and to provide a 

spatially explicit baseline for managing and conserving mangrove populations, 

biodiversity, and ecosystem functioning in the threatened Sundarbans.   

Moving from autecology to synecology and applying species-centric to trait-centric 

approaches on mangrove field data, this thesis (i) advances our understanding on 

previously unknown habitat preferences of mangroves and their spatial 

distributions, (ii) explores spatial and temporal dynamics and the determinants of 

mangrove biodiversity, and (iii) develops a novel integrated approach that resolves 

the “fourth-corner problem” and contributes to the clarification of different 

theoretical assumptions about species functional responses under stress, specifies 

the environmental drivers of functional traits, and generates predictions about 

how traits and forest productivity will be affected by future changes in 

environmental conditions. 

The findings of this thesis have important management and conservation 

implications. Results on species habitat suitability and functional trait analyses, 

together, can guide regional forest managers in selecting suitable species and sites 

for replanting. The ecosystem-wide decline of diversity and distinctness of the 

mangrove communities and range contractions or local extirpations of many rare 

and endemic species over the last three decades suggest for extending the existing 

protected area network as they currently do not cover the remaining species 

density and biodiversity hotspots. In addition to providing a basis for designing 

spatially explicit and cost effective field inventories and monitoring programs, my 

species, biodiversity, traits, and forest productivity maps can guide the forest 

protection, habitat enhancement and restoration initiatives in the Sundarbans.  
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Finally, this thesis points for possible improvements in several areas. The 

correlative HSMs and the habitat-based biodiversity models can be updated to 

mechanistic models by incorporating physiological or morphological traits for 

predicting species distribution across space and time. The integrated approach for 

quantifying trait – environment relationships could be extended to account for 

species-species interactions and should incorporate physiological traits when 

available. The HSMs, the biodiversity models and the trait-based models should 

be updated time to time with new environmental data to account for the spatial 

and temporal changes in the habitat conditions. Given the roles of hydroperiod in 

modulating habitat conditions that in turn may limit or favour plant growth and 

development, I suggest the inclusion of hydroperiod in future models. 
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Abstract 
 
The Sundarbans, the largest mangrove ecosystem in the world, is under threat 
from historical and future human exploitation and sea level rise. Limited scientific 
knowledge on the spatial ecology of the mangroves in this world heritage 
ecosystem has been a major impediment to conservation efforts. Here, for the 
first time, we report on habitat suitability analyses and spatial density maps for 
the four most prominent mangrove species — Heritiera fomes, Excoecaria 
agallocha, Ceriops decandra and Xylocarpus mekongensis. Globally endangered H. 
fomes abundance declined as salinity increased. Responses to nutrients, 
elevation, and stem density varied between species. H. fomes and X. mekongensis 
preferred upstream habitats. E. agallocha and C. decandra preferred down-stream 
and mid-stream habitats. Historical harvesting had negative influences on H. 
fomes, C. decandra and X. mekongensis abundances. The established protected 
area network does not support the most suitable habitats of these threatened 
species. We, therefore, recommend a reconfiguration of the network to include 
these suitable habitats and ensure their immediate protection. These novel 
habitat insights and spatial predictions can form the basis for future forest studies 
and spatial conservation planning, and have implications for more effective 
conservation of the Sundarbans mangroves and the many species that rely on 
them.   
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Introduction  
 
The mangrove biome, spanning over 137,760 km2 of coastal areas in 118 countries 
is under severe threat. Nearly 50% of the biome has been lost since the 1950s 
because of inadequate habitat protection, and large-scale habitat alteration1. If 
the current rate of mangrove loss continues, the whole mangrove biome will 
disappear in the next 100 years2. There are only 70 mangrove species worldwide, 
compared to between 40,000 and 53,000 tropical forest tree species3. Already 16% 
of mangrove species are critically endangered, endangered or vulnerable and 10% 
are near-threatened4. More than 40% of the mangrove-endemic vertebrates are 
now also at risk of extinction due to habitat loss5.  
 
The Sundarbans stretches along the coast of Bangladesh (6,017 km2) and India 
(4,000 km2) and forms the largest single block of halophytic mangrove forest in 
the world. This unique ecosystem provides the breeding and nursing habitats for 
diverse marine organisms, houses the last habitats of many endangered animals 
e.g. Royal Bengal tiger (Panthera tigris) and Ganges river dolphin (Platanista 
gangetica), supports the livelihoods of about 3.5 million coastal dwellers and helps 
reduce the death toll of tsunamis and cyclones6 in the area. It was designated a 
Ramsar site under the Ramsar Convention in 19927. UNESCO declared the 
Sundarbans a World Heritage Site in 1997, because of its ‘Outstanding Universal 
Value’, biological diversity and the ecosystem services the area provides7. 
   
Historical human pressures (i.e. over-exploitation, dam construction, shrimp and 
salt farming, and regular oil spills) have  severely degraded the Sundarbans 
ecosystem by depleting forest tree stock8. Sundarbans is a sea-dominated delta, 
where freshwater river flows help to modulate salt-water toxicity and keep the 
ecosystem suitable for mangrove trees. Ganges’ freshwater flow into the 
Sundarbans has dropped from 3700 m3 s-1 to 364 m3 s-1 since the construction of 
the Farakka dam in India9 in 1974. In addition, the rate of sea level rise (SLR) along 
the Bangladesh coast (5.93 mm yr-1) in the last century was substantially higher 
than the global average (1.0 – 2.0 mm yr-1)10. The National Adaptation Program of 
Action has projected 32 cm and 88 cm of SLR by 2050 and 2100, respectively. The 
Sundarbans as an already stressed ecosystem is likely to be less resilient to the 
impact of climate change.  
 
In Sundarbans, the population of the globally endangered species, H. fomes, is 
estimated to have declined by 76% since 1959 and about 70% of the remaining H. 
fomes trees are affected by the ‘top dying’ disease11. Dramatic declines in other 
dominant mangrove species (e.g. E. agallocha and X. mekongensis) have also been 
reported12. We have limited understanding of the current spatial distributions of 
C. decandra, a globally near-threatened species7. Future climate scenarios (in 
particular for SLR) and ongoing habitat degradation may alter the current spatial 
distributions of these mangrove species and forest community composition. 
 
A limited understanding of mangrove spatial distributions and mangrove species 
habitat requirements has reduced the success of conservation initiatives in many 
countries13, including Bangladesh14. Only recently have coastal mangrove 
distributions been modelled at global15 and regional16 scales and we are now in 
urgent need of Habitat Suitability Models (HSMs), based on fine-scale species 
abundance and environmental data to assist us in protecting threatened 
ecosystems such as the Sundarbans. HSMs and their outputs (i.e. habitat maps) 
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are widely used during different phases of resource management and spatial 
conservation planning17. These maps are also used to identify areas appropriate 
for establishing protected areas, evaluate threats to those areas, and design 
reserves18. For example, a baseline distribution map of the mangrove species 
could be an important tool for the forest managers to make decisions on future 
mangrove planting and forest protection via tracking population changes over 
time.  
 
In this study, we use tree counts and environmental data collected from a network 
of 110 permanent sample plots distributed across the entire Sundarbans to 
generate spatially explicit baseline information on the distribution and habitat 
preferences of the four most abundant mangrove species i.e. Heritiera fomes, 
Excoecaria agallocha, Ceriops decandra and Xylocarpus mekongensis. We identify 
the key environmental variables related to their spatial distribution and generated 
species-specific spatial density maps using both geostatistical and regression 
approaches. We then demonstrated the potential applications of these habitat 
insights and spatial maps for future forest studies, spatial conservation planning 
and biodiversity protection and monitoring programs.   
 
Materials and methods 
 
Study system. The Bangladesh Sundarbans (21°30′ — 22°30′N, 89° 00′ – 
89°55′E) is part of the world’s largest river delta at the Ganges-Brahmaputra 
estuary (Fig. 1). Geologically, the Sundarbans is of recent origin (about 7000 years 
old) and was formed through the silt deposition by the Ganges-Brahmaputra river 
system19. The young, slightly calcareous soil is finely textured, poorly drained, 
rich in alkali metal contents, and with no distinct horizon in the sediment 
deposits7. Of its total area (6017km2), about 69% is land and the rest comprises 
rivers, small streams and canals9. A major portion of this forest is washed by the 
tide twice a day and the water level is related to the combined effects of the 
seawater tides in the Bay of Bengal and freshwater input from the Ganges. During 
the monsoon (June–September), freshwater flow increases and during the dry 
season (October to May), fresh water flow sharply drops because of the reduced 
water influx from the Ganges. The climate is humid, maritime and tropical. Mean 
annual  precipitation is 1700 mm (range: 1474 to 2265 mm); and mean maximum 
annual temperature is between 29.4°–31.3°C (range: 9.3° to 40° C)20. 
 
Tree surveys. The Bangladesh Forest Department (BFD) established a 
network of 120 permanent sample plots (PSPs) in the Sundarbans in 1986 for 
monitoring biodiversity and forest stock (Fig. 1). Of these, 110 PSPs (120 x 20 m 
(0.2. ha), divided into 5 20 x 20 m sub-quadrats) were positioned to represent the 
ecological zones (i.e. freshwater, moderately saline, and saltwater zones), and 
the forest types12. The remaining relatively smaller sized 10 PSPs (20 x 10 m) were 
established to monitor ground vegetation mainly in the south-western Sundarbans, 
and were not considered in this study. The BFD tagged with a unique tree number 
and measured every tree with stem diameter ≥ 4.6 cm (recorded at 1.3 m from 
the ground). The height of each tree was also recorded. In this study, we used 
BFD’s last tree data (2008 — 2013) for 91 PSPs, and the tree data we collected 
(January — June 2014) for 19 PSPs.   
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Figure 1. Sampling sites (triangles) in the Sundarbans, Bangladesh. 
 
 
Environmental data. We collected environmental data from all 110 PSPs 
during January – June 2014. We adopted a soil sampling design (Supplementary 
Figure S1), collected 9 soil samples (to account for the within plot variation in soil 
parameters) from each PSP to a depth of 15 cm in polyethylene bags using a 
cylindrical soil core sampler of 5 cm in diameter for laboratory analysis. For soil 
texture analysis (percentage of sand, slit and clay), we used the hydrometer 
method21. We determined soil salinity (as electrical conductivity — EC) in a 1:5 
distilled water:soil dilution22 using a conductivity meter (Extech 341350A-P 
Oyster). Soil pH and oxidation reduction potential (ORP) were measured in the 
field using digital soil pH and ORP (Extech RE300 ExStik) meters. Soil ammonium 
concentration (NH4) was determined following the Kjeldahl method23. We 
measured total phosphorus (P) using the molybdovanadate method and a 721-
spectrophotometer. Soil potassium (K), magnesium (Mg), iron (Fe), zinc (Zn), 
copper (Cu), and sulphide concentrations were measured using an atomic 
absorption spectrophotometer (AA-7000). We analyzed each soil sample and then 
averaged (9 samples) the results. Five elevation (above-average sea level) 
readings for each PSP were extracted from the digital elevation model with 
accuracy (i.e. accuracy at pixel level) ±1 m for the Sundarbans region available in 
BFD24. We then averaged these 5 readings to minimize the error related to the 
digital elevation model. A proportional distance from the river-sea interface was 
used to calculate and classify “upriver position” (henceforth, URP) of each PSP25. 
Here ‘downstream’ represents the lower third (0 — 33% upriver from sea) of the 
estuarine system, ‘intermediate’ represents the middle third (34 — 66% upriver 
from sea), and ‘upstream’ represents the upper third (67 — 100% upriver from 
sea). This scheme is useful to understand each mangrove’s habitat preference 
along the downstream (seawater dominated river system) - upstream (freshwater 
dominated river system) gradient.  
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Covariate selection for mangrove HSMs. To construct a biologically 
informative covariate set for our HSMs, we followed the conceptual framework 
developed for mangroves26. This comprises three broad categories of variables 
(i.e. resources, regulators and hydroperiod) that are believed to control mangrove 
forest structure and function27,28,29. Resources (i.e. nutrients) are depleted by 
mangrove trees and their availability is linked to tree productivity and indirect 
competition among individual trees. Here, we used soil NH4, P, K, Mg, Fe, and Zn 
based upon the detailed explanation of nutrient requirements of mangroves 
available in the mangrove literature28. Regulators are non-resource variables that 
influence mangrove growth. We employed soil salinity as our main regulator. 
Hydroperiod (the duration, frequency and depth of inundation) is recognized as 
an important determinant of mangrove distribution29. Sundarbans PSP-based 
hydroperiod data are not available, so we used PSP elevation as a proxy that 
reflects the likely variation in hydroperiod across the area. We also included URP 
of each PSP as a predictor to account for the influence of the river systems on 
each mangrove’s distributions along the downstream — upstream gradient.  
 
The relative abundance of one mangrove species might influence the abundance 
of another via biotic interactions i.e. competition or facilitation30 and each 
individual tree interacts with the trees (both conspecifics and heterospecifics) 
that are in its neighbourhood through multiple concurrent interactions31. Given 
the super-dominance of E. agallocha and H. fomes (see Tree surveys section) and 
tree structural complexities (i.e. multiple stems in C. decandra, large below 
ground biomass for modified root systems in H. fomes, C. decandra, and X. 
mekongensis) in the ecosystem which might have increased tree measurement 
(i.e. diameter, height) errors, we initially considered two alternative measures of 
abundance: 1) density of all stems (including stems on multiple stemmed 
individual) for each plot, and 2) total basal area (including stems on multiple 
stemmed individual) for each plot as biotic variables. HSMs of species with basal 
area as a covariate had lower explanatory and predictive powers, compared to 
models with density of all stems. Therefore, we selected density of all stems for 
each plot (henceforth, DAS) as the biotic variable. We acknowledge that the 
salinity-stressed western and southern habitats of the Sundarbans have many small 
diameter (with stunted growth) E. agallocha and H. fomes trees32 that may not 
compete. Disentangling biotic influences from abiotic effects in structuring 
ecological communities and regulating single species distributions is still an open 
problem33. However, the inclusion of stem densities as a simple proxy of biotic 
interaction is known to enhance the explanatory and predictive power of HSMs for 
other forest systems34,33. 
 
The Sundarbans has a long exploitation history7. The government banned tree 
harvesting in 198935. About 3.5 million people depend on Sundarbans resources 
(e.g. fish, non-timber forest products, honey) for their livelihoods and illegal tree 
harvesting is common19. Therefore, we included historical harvesting (henceforth, 
HH) as a covariate in our models because of its potential influence on present tree 
densities in the PSPs. HH represents the number of illegally harvested trees 
(detected by counting stumps) in each PSP from the first census (1986) to the last 
census (2014). 
 
We checked for multi-collinearity in our set of candidate covariates by employing 
Variance Inflation Factors (VIF) through a stepwise model selection procedure. We 
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used the vifstep function of ‘usdm’ package36 in R 3.2.237, which first calculates 
VIF for all covariates, then eliminates the one with highest VIF that exceeds the 
threshold of 2.5 and repeats the procedure until no covariate with VIF > 
2.5 remains. This led to the removal of Zn from our covariate set (Supplementary 
Table S1).  
 
Habitat modelling. We used generalized additive models38 (GAMs) with a Poisson 
likelihood and a log-link because of their ability to handle complex, non-
monotonic relationships between the response and the predictor variables39. 
Moreover, by using non-parametric smoothing functions, GAMs can often construct 
biologically insightful relationships between response and covariates without a-
priori hypotheses17. Smoothed responses used cubic basis splines implemented 
within the ‘mgcv’ package40 in R.   
 
We used the ‘dredge’ function in the ‘MuMIn’ package41 to fit all possible 
candidate models with all possible combinations of covariates and ranked the 
resulting models by the Akaike Information Criterion (AIC)42. We then obtained the 
relative support for each model by calculating the ∆AIC (difference between the 
AIC value for the best model and the AIC value for each of the other models). 
Kullback–Leibler information loss is minimal between models with ∆AIC ≤ 2 42. We 
therefore used the ‘∆AIC ≤ 2’ criterion to select our confidence set of models for 
each mangrove species. We then calculated Akaike weights (AICw) to examine 
relative support for each model in the confidence set. AICw values range from 0 
to 1 and the sum of all AICw across the confidence set is 1. When there was only 
one model with ∆AIC ≤ 2, it was unambiguous that it outperformed all possible 
candidate models. When there were multiple competing models, we used AIC-
weighted model averaging on the parameter estimates of these models to reduce 
model selection uncertainty and bias. These averaged parameter estimates were 
used to predict the abundance of the mangroves species across the entire 
Sundarbans. Relative Importance (RI) of each covariate was identified by summing 
the AICw of the models in which the covariate was included. RI values range 
between 0 and 1, where 0 indicates that the target covariate is never included in 
the competing models, 1 indicates inclusion of the covariate in all the competing 
models. We ranked the covariates based on their RI values. Residual diagnostic 
plots for the best GAMs did not indicate violations of the Poisson dispersion 
assumption.  
 
We measured goodness-of-fit of the models using the R2 (coefficient of 
determination) statistic between the observed and estimated abundance values. 
For validation purposes, we partitioned our dataset into a calibration and 
validation subsets. Our calibration dataset included 88 PSPs (80% of the full data) 
and the validation data set included 22 PSPs (20%). The validation dataset was 
randomly chosen to cover the whole region and was used to examine the 
predictive power of the fitted models via the R2 statistic applied to the model’s 
predictions for the validation data. We also mapped the actual and predicted 
abundances of both calibration and validation set to check for any spatial patterns 
of prediction errors.  
 
Spatial mapping. We mapped densities of the mangrove species over the entire 
Sundarbans using two different approaches: 1) direct interpolation of plot-level 
raw abundance using geostatistical methods, and 2) habitat-based predictions 
from our HSMs. Both of these approaches were used because environmental data 
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collection is demanding, whereas tree abundance measurements are taken 
regularly at the PSPs, and it is   useful to know how close the predictions of the 
habitat model were compared to simple interpolation methods. To directly 
interpolate individual mangrove species abundances, we used Ordinary kriging 
(OK), a widely-used interpolation technique.  
 
The model-averaged predictions from our confidence set of GAMs were used to 
develop the mangrove habitat maps based on interpolated covariate surfaces. The 
size of each grid-cell of the interpolated surface was 625 m2 (25mx25m). Covariate 
surfaces for generating predictions from  the habitat model were constructed by 
OK using the ‘gstat’ package43 in R. A protected area network comprising three 
Wildlife Sanctuaries (WS) – East WS, West WS, and South WS has been operational 
since 1960. We superimposed the protected area network on the habitat maps to 
assess the existing network’s ability to support density hotspots of the mangrove 
species. We compared the predictive abilities of the direct and habitat-based 
approaches using the normalized root mean square error (NRMSE) statistic derived 
from the leave-one-out cross-validation procedure. For normalization, the root 
mean square error statistic was divided by the range of the actual species 
abundances. Both habitat-based and direct predictions of the mangrove tree 
abundances were mapped using the ‘raster’ package44 in R. We further mapped 
the prediction discrepancy between these two approaches, to look for any spatial 
patterning in the prediction errors. 
 
Results 
 
Tree surveys. A single survey of each of the 110 PSP’s carried out between 
2008 — 2014 gave a total of 49409 trees of 19 species from 13 families and 19 
genera (Table 1). The most abundant mangrove was E. agallocha (59.69% of total 
trees), followed by H. fomes (30.89%), C. decandra (6.12%), and X. mekongensis 
(0.82%). The rest of the 15 species were extremely rare comprising only 2.49% of 
the total count.  
 
Habitat models. The most parsimonious GAMs for estimating species 
abundances explained the variability of H. fomes (68%), E. agallocha (84%), C. 
decandra (73%), and X. mekongensis (75%) (Table 2). Soil salinity, K, total density 
of individuals (DAS), upriver position (URP) and historical harvesting (HH) were 
included in the best GAMs of all species. Mg and Fe were included (RI = 1.00) in 
the best GAMs for H. fomes, E. agallocha and X. mekongensis, with P (RI = 1.00) 
for H. fomes, E. agallocha, and C. decandra, and also elevation (RI = 1.00) for H. 
fomes and X. mekongensis.  The partial response plots of the best GAM (Fig. 2) 
indicated that H. fomes abundance decreased with increasing soil salinity (> 7 dS 
m-1). In contrast, increasing salinity was associated with increasing abundances of 
E. agallocha (> 7 dS m-1), C. decandra (> 6.2 dS m-1), and X. mekongensis (> 7 dS 
m-1).  
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Table 1. Taxonomy and global conservation status of the mangrove species 
censused in the 110 permanent sample plots in the Bangladesh Sundarbans. 
*IUCN global population trend, † Not assessed for the IUCN Red List, LC = Least 
concern, DD = Data deficient, NT = Near threatened, VU= Vulnerable, EN = 
Endangered, D = Decreasing. 
 

Latin name Local 
name 

Family IUCN 
conservation 
status 

Global 
population 
trend* 

Aegiceras corniculatum (L.) Blanco Khalshi Myrsinaceae LC D 
Amoora cucullata Roxb. Amur Meliaceae NA†   NA 
Avicennia officinalis L. Baen Avicenniaceae LC D 
Bruguiera sexangula (Lour.) Poiret Kakra Rhizophoraceae LC D 
Cerbera manghas L. Dagor Apocynaceae NA NA 
Ceriops decandra (Griffith) Ding Hou Goran Rhizophoraceae  NT D 
Cynometra ramiflora L.  Singra Fabaceae NA NA 
Excoecaria agallocha L. Gewa Euphorbiaceae LC D 
Excoecaria indica (Willd.) Müll.Arg. Batul Euphorbiaceae DD D 
Heritiera fomes Buch.-Ham.  Sundri Malvaceae EN D 
Intsia bijuga (Colebr.) Kuntze Bhaela Leguminosae VU D 
Lumnitzera racemosa Willd.  Kirpa Combretaceae LC D 
Hypobathrum racemosum (Roxb.) Kurz Narikali Rubiaceae NA NA 
Pongamia pinnata (L.) Pierre Karanja Leguminosae LC Stable 
Rhizophora mucronata Lam. Jhana Rhizophoraceae LC D 
Sonneratia apetala Buch-Ham. Keora Lythraceae LC D 
Talipariti tiliaceum (L.) Fryxell Bhola Malvaceae NA NA 
Tamarix dioica Roxb.   Nona Jhao Tamaricaceae NA NA 
Xylocarpus granatum Koen. Dhundal Meliaceae LC D 

Xylocarpus mekongensis Pierre  Passur Meliaceae LC D 

  
 
Table 2. Results of generalized additive models (GAMs) built for the four major 
mangrove species of the Bangladesh Sundarbans. DE = deviance explained, RI = 
relative variable importance in the model selection process. Covariates: soil 
salinity, elevation above average-sea level (ELE), soil NH4, total phosphorus (P), 
potassium (K), magnesium (Mg), iron (Fe), upriver position (URP), density of all 
stems for each plot (DAS) and historical harvesting (HH).   
  

 
Species 

 
Model 
rank 

 
Salinity 

 
ELE 

 
NH4

 

 
P 

 
K 

 
Mg 

 
Fe 

 
URP 

 
DAS 

 
HH 

 
∆AIC 

 
∆AICw 
 

 
Adj-R2 

 
DE 
(%) 

H. fomes     
 

 
E. agallocha  
 
 
 
C. decandra  
 
 
 
 
X. 
mekongensis     
 

1 + + ─ + + + + + + + 0.00 0.99 0.67 68 

RI 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0     

               

1 + ─ + + + + + + + + 0.00 0.66 0.83 84 

2 + + ─ + + + + + + + 1.39 0.33   

RI 1.0 0.67 0.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0     

               

1 + ─ + + + ─ ─ + + + 0.00 0.46 0.65 73 

2 ─ + + + + ─ ─ + + + 0.53 0.35   

3 + + + + + ─ ─ + + + 1.84 0.18   

RI 0.65 0.65 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0     

               

1 + + ─ ─ + + ─ + + + 0.00 0.75 0.84 75 

RI 1.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0      
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Figure 2. Effects of covariates inferred from our best GAMs fitted to the 
abundances of the four prominent mangrove species in the Sundarbans. The solid 
line in each plot is the estimated spline function (on the scale of the linear 
predictor) and shaded areas represent the 95% confidence intervals. Estimated 
degrees of freedom are provided for each smoother following the covariate 
names. Zero on the y-axis indicates no effect of the covariate on mangrove 
abundances (given that the other covariates are included in the model). Covariate 
units: soil salinity = dS m-1, elevation = m (above average-sea), NH4 = gm Kg-1, P = 
mg Kg-1, K = gm Kg-1), Mg = gm Kg-1, Fe = gm Kg-1, URP = % upriver, DAS = density 
of all stems for each plot, and historical harvesting (HH) = total number of 
harvested trees in each plot since 1986.   
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The response of the mangrove species varied for different nutrients. High 
abundance of H. fomes was associated with low chemical concentrations of P (< 
30 mg Kg-1), K (< 6 gm Kg-1), Mg (< 2.75 gm Kg-1) and Fe (< 30 gm Kg-1).  In contrast, 
high E. agallocha abundance was associated with relatively high concentrations of 
P (> 30 mg Kg-1), K (> 6 gm Kg-1), Mg (> 2.75 gm Kg-1), and Fe (> 30 gm Kg-1), and 
low concentrations of NH4 (< 0.70 gm Kg-1).  High C. decandra abundance was 
related to high K (> 5 gm Kg-1) and low NH4 (< 0.70 gm Kg-1) and P (< 30 mg Kg-1) 
concentrations. High X. mekongensis abundance was related to low K (< 5 gm Kg-

1) and Mg (< 1.60 gm Kg-1).  
  
H. fomes and X. mekongensis showed preferences for elevated sites. H. fomes 
abundance showed a decreasing trend after a certain value of the biotic variable 
DAS (> 500 trees/0.2 ha), while E. agallocha, C. decandra and X. mekongensis 
showed positive responses to increasing DAS. With increasing URP, the abundances 
of E. agallocha (URP > 65%) and C. decandra (URP > 50%) sharply decreased, 
indicating their high preference for down- and mid-stream habitats. In contrast, 
H. fomes and X. mekongensis abundances increased with increasing URP (> 50%, 
indicating their preference for upstream habitats). High historical harvesting of 
trees was related to low abundances of H. fomes, C. decandra and X. mekongensis. 
In contrast, E. agallocha had high abundance in the sites that experienced high 
historical harvesting.   
 
The predictive abilities of the GAMs (fitted to the calibration data and applied to 
the validation data) were R2 = 0.75 for H. fomes, R2 = 0.78 for E. agallocha, and R2 

= 0.51 for C. decandra. The predictive ability of the X. mekongensis GAMs was 
somewhat lower (R2 = 0.24) than for the other mangroves species (possibly due to 
high densities in few upstream areas and overall low abundance in the entire 
region).  When GAMs were used to estimate mangrove abundances for all 110 PSPs, 
we observed a strong association (H. fomes, R2 = 0.67; E. agallocha, R2 = 0.83; C. 
decandra, R2 = 0.65; X. mekongensis, R2 = 0.84) between the actual and estimated 
abundances. Spatial maps of the actual and estimated abundances of the 
mangroves (both calibration and validation datasets) looked similar and the 
residuals did not show spatial clustering (Supplementary Figures S2 & S3).  
 
Spatial distribution maps.  Habitat maps of the mangrove species based on 
GAMs, and direct interpolation (kriging raw abundances) are presented in Fig. 3 
and 4. GAMs for E. agallocha had better predictive accuracies than direct 
interpolation (Supplementary Table S2). For H. fomes, C. decandra and X. 
mekongensis, both of these methods had almost identical predictive 
performances. Habitat mapping uncertainties related to these methods are 
presented in Supplementary Figure S4. 
 
Overall, these maps indicate that the H. fomes density hotspots were confined to 
the eastern Sundarbans. E. agallocha density was highest in the north-western 
region, intermediate in the southern and eastern regions, and lowest in the 
northern and north-eastern regions. C. decandra density was highest in the 
western and southern regions, intermediate in the central region, and lowest in 
the northern and north-eastern regions. X. mekongensis density was highest in 
some specific areas in the northern (Kalabogi and Koyra) and north-western 
(Koikhali) regions. All the three protected areas – East WS, West WS, and South 
WS are distributed in the downstream areas (adjacent to the Bay of Bengal) (Fig. 
3), and do not support the density hotspots for any of these mangrove species.  
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Figure 3. Spatial density ha-1 of the mangrove species in the Sundarbans based 
on habitat-based models (GAMs). Areas inside the bold black lines represent the 
three protected areas.  
 
Discussion 
 
Our study is the first to quantify mangrove habitat suitability and to determine 
the key drivers regulating spatial distributions of the mangrove species in the 
Sundarbans world heritage ecosystem. The high explanatory and predictive power 
of these HSMs confirm their potential usefulness for constructing regional habitat 
maps to aid mangrove conservation initiatives. In addition, their ability to reveal 
mangroves’ responses to environmental and biotic predictors provides novel 
insights into the underlying ecology of these poorly understood but threatened 
mangrove species.   
 
Extreme salt stress impedes growth and development of many mangroves45 and 
the structural development of mangrove forests tends to be limited by high levels 
of  salinity46. In the Sundarbans, the response of the mangrove species varies 
steeply across the salinity gradient (Fig. 2). In the Sundarbans H. fomes shows a 
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clear negative response (high density in the less saline and freshwater rich eastern 
habitats) and the three other mangroves (E. agallocha, C. decandra and X. 
mekongensis) show clear positive responses to increasing soil salinity with high 
densities in hyper-saline western and southern habitats (Fig. 3 & 4). 
 

 
Figure 4. Spatial density ha-1 of the mangrove species in the Sundarbans based 
on geostatistical technique (OK). Areas inside the bold black lines represent the 
three protected areas.  
 
Our results indicate that the magnitude of response to nutrients varies across 
mangrove species. E. agallocha and C. decandra are able to grow abundantly in 
the NH4-poor habitats. Limited soil P is a key constraint for forest productivity in 
tropical ecosystems47. E. agallocha prefers relatively P-rich habitats (> 30 mg Kg-

1). In contrast, H. fomes grows abundantly in the P limited sites (< 30 mg Kg-1). 
Soil K is considered as the key macro-nutrient that can modulate salinity-induced 
drought stress by improving the water uptake and retention capacity of plants48. 
Relatively higher densities of E. agallocha, and C. decandra in the highly saline 
and relatively K-rich habitats (north-western and southern Sundarbans) indicate 
that these species might have developed strategies for efficient utilization of K in 
salinity stressed habitats. Fe and Mg are required for successful mangrove growth 
because of their roles in metabolic and physiological processes49. E. agallocha 
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clearly prefers Fe-rich habitats, whilst H. fomes prefers Fe-poor habitats. The Mg 
preference range of E. agallocha (> 2.75 gm Kg-1) is somewhat higher than that of 
H. fomes (< 2.75 gm Kg-1) and X. mekongensis (< 1.60 gm Kg-1). This disparity may 
be related to mechanisms (e.g. the distribution and chemical properties of the 
source rock material, the weathering process, and salinity levels) that control 
availability of Mg to plants50. It is worth remembering that in this study the fitted 
response curves for each mangrove species only describes how its densities are 
correlated with multiple predictors within their observed environmental ranges. 
Since these predictors include proxies for competition, these curves do not 
necessarily reveal the physiological limits (i.e. the fundamental niche) of the 
mangroves. 
 
Although the Sundarbans is a deltaic swamp with a narrow elevation gradient (0.50 
m – 4.0 m above mean sea level), it is characterized by diverse elevation values. 
The western zone is more elevated than the eastern zone because of tectonic 
activity and higher sediment deposition. This variation may be responsible for 
variable inundation levels in the mangrove habitats with consequent  differences 
in soil salinity and available nutrients, and may ultimately have forced the 
mangrove trees to be distributed in distinct zones51. This hypothesis was tested8 
using randomization tests and data from 11 sampling stations in the Sundarbans, 
and the researchers in that study concluded that the mangroves of the Sundarbans 
show no distributional patterns along the elevation gradient (i.e. absence of 
zonation). In contrast, our results show that H. fomes (> 2.00 m) and X. 
mekongensis (> 2.75 m) show clear preference for elevated sites (Fig.2). We were 
able to reveal these patterns because of our larger sample size of 110 PSPs 
distributed over the entire region, and our multivariate and nonlinear modelling 
methodology.  
  
DAS i.e. density of all stems for each plot (with maximum RI (~1) scores) was 
retained in the species best GAMs, indicating the strength of adding biotic 
variables in environmental data driven HSMs. H. fomes abundance tends to fall 
when the DAS value is > 500 trees/0.2 ha, indicating the super dominance of 
generalists (i.e. E. agallocha – shows positive linear response to DAS) and 
disturbance specialists (i.e. C. decandra). The negative association of H. fomes 
with E. agallocha and C. decandra was  observed in a previous study  in the 
Sundarbans8. Conversely, the abundance of X. mekongensis is higher in the highly-
populated habitats. Indeed, these are the northern X. mekongensis hotspots (Fig. 
3) where X. mekongensis is positively associated with H. fomes and Bruguiera 
gymnorrhiza. Although our correlative inferences might not necessarily reflect the 
causal mechanisms of biotic interactions (competition or facilitation) on species 
distributions, they do help improve explanatory and predictive power of HSMs and 
form the basis for more mechanistic studies.  
 
URP, representing the downstream-upstream gradient, was retained in all of the 
selected GAMs with maximum RI score (~1), indicating the influence of river 
systems on the spatial distribution of mangroves. The river system covers about 
1700 km2 (with maximum river width of 10 km) and continually change channels. 
Erosion and compensatory accretion are common along the river banks. The 
freshwater supply from these rivers mainly control the amount of alluvium deposit 
in the forest floor, which in turn regulate the availability of plant nutrients7. The 
negative response of E. agallocha and C. decandra abundances to increasing URP 
indicate their preference for habitats distributed between the downstream to 
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intermediate positions (0 – 66% upriver from the sea – Bay of Bengal). Conversely, 
H. fomes and X. mekongensis’s clear positive response to URP (> 50%) would 
support a characterization of these species as upland specialists. These disparities 
in mangrove habitat preferences along the downstream-upstream gradient may be 
related to the change in regional hydrology since the construction of the Farakka 
dam (1974) on the Ganges in India which has silted up most of its southbound 
distributaries heading towards the Sundarbans’ river system. As a result, the 
carrying capacities of the major river (e.g. Sibsa and Posur) systems have radically 
changed with about 60% reduction in the freshwater flow9.  
 
H. fomes is now facing extinction in the Indian Sundarbans and Myanmar52. The 
Bangladesh Sundarbans now supports the sole remaining viable population of this 
globally endangered mangrove19. Our H. fomes habitat map (Fig. 3) indicates that 
the eastern region of the Sundarbans supports the highest H. fomes populations, 
the central and northern regions support intermediate densities, and the 
mangrove is almost absent in the western region. This may indicate historical 
range contraction of the species even in the Bangladesh Sundarbans as 
palynological evidence suggests its past dominance in the western region20. The 
sharp negative response of H. fomes to increasing intensity of historical tree 
harvesting (Fig. 2) indicates that this has been one of the main target species for 
illegal harvesting. In fact, H. fomes stem density has declined by 50% (1960s – 
1990s) all over the Sundarbans because of habitat degradation and mass 
exploitation12. H. fomes prefers freshwater dominated habitats and shows a 
negative response to increased soil salinity. Therefore, the highest abundances in 
the eastern region may be related to its proximity to the freshwater dominated 
Baleshwar River. However, the  freshwater supply to the eastern zone has been 
decreasing because of heavy siltation in the internal channels9. Our findings lead 
us to conclude that further harvesting and decreases in freshwater supply (i.e. 
increased salinity) could push this species over the brink of extinction.  
 
E. agallocha habitat maps indicate this species’ wide distribution across the entire 
Sundarbans, except the upstream-dominated northern region. Contrary to H. 
fomes, E. agallocha is a salt tolerant fast growing and reproducing species with 
high ability to colonize open and degraded habitats53. E. agallocha abundance 
increased in the sites with high historical harvesting intensity (Fig. 2). Tropical 
cyclones and tree mortality have created large forest gaps in the Sundarbans and 
the amount of open areas has been increasing by 0.05% each year19. Hence, we 
assume that these conditions may favour E. agallocha to increase its density and 
expand its range even to the upstream dominated northern region.  
 
C. decandra hotspots are now distributed in the south and south-western zones 
(Fig. 3). C. decandra and other dwarf species have been replacing about 0.4% of 
the forest area every year20. Intermediate C. decandra densities in the central and 
south-eastern regions provide clear indication of its landward range expansion. 
Interestingly, although C. decandra belongs to the ‘Near Threatened’ status 
globally, its populations seem to be increasing and the species may be expanding 
its landward range.  
 
High-density populations of X. mekongensis are restricted to few specific areas of 
the Sundarbans in the northern (Kalabogi and Koyra) and north-western (Koikhali) 
regions (Fig. 3). The distribution of the species is patchy in the rest of the 
ecosystem. X. mekongensis abundances show sharp negative response to 
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increasing historical harvesting intensity (Fig. 2). This has been the target species 
for illegal felling since colonial regime because of its high timber price in the black 
market54. At present, most of the X. mekongensis trees (64%) are infected by the 
heart rot disease55. Hence, X. mekongensis is under severe pressure in the 
Sundarbans, and could be at higher risk of local extinction.  
 
The existing protected area network (East, West, and South Wildlife Sanctuaries) 
does not include the hotspots of any of these threatened species (Fig. 3). Our 
habitat maps advocate the immediate protection of the remaining suitable 
habitats (hotspots) of H. fomes and X. mekongensis, the two species most at risk 
of local and global extinction. According to the Bangladesh Wildlife Preservation 
Order 1973 (amended in 1974) these sanctuaries were established to ensure 
completely undisturbed habitat for the protection of wildlife, vegetation, soil and 
water14. The capacity of these sanctuaries to conserve biodiversity with limited 
physical and technological resources, has been highly disputed14. Given the 
circumstances, a preventative approach involving the design of a new or extended 
network of protected areas with improved logistics support is a plausible option 
offering expediency and cost effectiveness over long term forest restoration 
projects56.  
 
The usefulness of HSMs in guiding species habitat restoration, protection, and 
replanting projects is well documented. Although identifying the potential 
existence of environmental stressors should be the first step in reforestation and 
restoration planning, a limited understanding of mangroves habitat requirements 
has limited the success of such initiatives in many countries13. In the Sundarbans, 
past replanting campaigns (based on educated guesses) were also unsuccessful14. 
In this context, the regional HSMs of this study with detailed information on the 
mangroves’ habitat requirements, may guide the future restoration and mangrove 
planting initiatives of the Bangladesh Forest Department. The absence of a 
persistent soil seed bank of H. fomes and X. mekongensis in the Sundarbans has 
recently been identified53. Thus, we recommend mangrove planting in the forest 
gaps, to safeguard these habitats from invasive species57.   
 
The Sundarbans has a history of extensive exploitation particularly during the 
1980s7. The government enforced a full logging ban in 198935. Despite such law 
enforcement, illegal felling of trees is common19.  Our results also indicate the 
negative influence of historical harvesting on the populations of the threatened 
mangrove species. This exploitation is also directly linked with the habitat loss of 
many mangrove-dependent animals including the globally endangered Royal 
Bengal tiger58. Bangladesh has signed and ratified the World Heritage Convention, 
Ramsar Convention and the Convention on Biological Diversity35. The government 
of Bangladesh has recently developed the Biodiversity National Assessment and 
Program of Action 2020 to implement sufficient measures to halt further 
degradation of biological resources. Therefore, our mangrove distribution maps 
may guide these valuable protection and monitoring initiatives of the Bangladesh 
Forest Department to combat illegal logging through recording mangrove 
population changes or predicting changes and identifying areas (or species) that 
may be most affected by future harvesting and other human interventions (e.g. 
settlement and shrimp farming).  
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Conclusions 
 
This study is the first to make complete inventories in the PSP network established 
in the 1980s by the Bangladesh government for monitoring biodiversity and forest 
health, demonstrates the usefulness of habitat modelling as a tool in predicting 
mangrove abundances and provides novel insights into the underlying ecology of 
these poorly studied threatened species. The HSMs and complementary habitat 
maps provide spatially explicit information on the remaining habitats of the 
threatened mangrove species, and form the baseline for designing cost-effective 
field inventories, biodiversity assessment and monitoring programs. Most 
importantly, the Bangladesh Forest Department can readily use the distribution 
maps in their existing protection and monitoring initiatives designed to combat 
illegal logging in the Sundarbans. The relative performance of the direct 
interpolation-based species distribution maps against the habitat-based spatial 
density maps indicates their usefulness when environmental data are not 
available. We did not make HSMs for the remaining 15 mangrove species in our 
data due to their low prevalence. Future studies may usefully extend their 
sampling efforts beyond the existing PSP network to record these rare mangroves. 
The projected sea level rise along the Bangladesh coast, which is higher than the 
global rate, may alter the hydrology of the Sundarbans with subsequent changes 
in the salinity and nutrient levels in the mangroves’ habitats. Therefore, we 
recommend including hydroperiod as a predictor in future HSMs as these data 
become available.  
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Chapter 2 

Appendix 2A. Stepwise VIF test outputs of the environmental covariates.   

Covariates  VIF 

Salinity 1.53 
NH4 1.63 
P 1.32 
K 1.35 
Mg 2.13 
Fe 1.58 
Zn 2.60 
Elevation 1.09 
URP 1.07 
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Appendix 2B. Semivariograms for the major mangrove species in the Sundarbans.  
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Appendix 2C. Semivariograms for the covariates. 
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Appendix 2D. Covariate surfaces constructed using Ordinary kriging. HH = historical 
harvesting (the number of trees harvested since 1986). 
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Appendix 2E. Spatial distributions of the actual and estimated abundances of the 
four species, and uncertainties. 
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Appendix 2F. Spatial distributions of the actual and estimated abundances of the 
four species, and uncertainties when the habitat models were applied to the 
validation data set.  
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Chapter 3 

Appendix 3A. Semivariograms for alpha diversity (viewpoint parameters, q = 0, 1 
and 2) in the Sundarbans in four time points since 1986.  
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Appendix 3B. Semivariograms for beta diversity (viewpoint parameters, q = 0, 1 and 
2) in the Sundarbans in four time points since 1986. 
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Appendix 3C. Semivariograms for gamma diversity (viewpoint parameters, q = 0, 1 
and 2) in the Sundarbans in four time points since 1986. 
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Appendix 3D. Spatial subcommunity alpha, beta, and gamma diversities (viewpoint 
parameter, q = 0) in the ecological zones of the Sundarbans in four time points since 
1986.  
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Appendix 3E. Spatial subcommunity alpha, beta, and gamma diversities (viewpoint 
parameter, q = 2) in the ecological zones of the Sundarbans in four time points since 
1986.  
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Appendix 3F. Temporal dynamics in subcommunity and zonal beta (𝛒) diversity 
during 1986 — 2014 for viewpoint parameter, q = 0, 1, and 2. 
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Appendix 3G. Spatial distributions of subcommunity alpha, beta and gamma 
diversities (for viewpoint parameter, q = 0) over the entire Sundarbans generated 
through ordinary kriging. The black contours represent the three protected areas. 
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Appendix 3H. Spatial distributions of subcommunity alpha, beta and gamma 
diversities (for viewpoint parameter, q = 2) over the entire Sundarbans generated 
through ordinary kriging. The black contours represent the three protected areas. 
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Chapter 4 

Appendix 4A. Correlation (expressed as Pearson correlation coefficients) between 
the covariates.  

 
HH DR Elevation K DP NH4 P pH Salinity Silt CS URP 

DR  0.02 
           

Elevation -0.07  0.09 
          

K  0.13  0.10  0.25 
         

DP -0.18  0.02  0.16  0.11 
        

NH4  0.3 -0.09  0.02  0.18 -0.06 
       

P -0.18 -0.19 -0.05 -0.37 -0.02 -0.12 
      

pH -0.01  0.00 -0.02 -0.13 -0.05 -0.18 -0.08 
     

Salinity -0.22 -0.16 -0.02 -0.16  0.12 -0.29  0.28 -0.03 
    

Silt  0.09  0.09  0.11  0.11  0.04  0.01  0.02  0.06 -0.05 
   

CS -0.16 -0.10  0.09  0.25  0.16 -0.04 -0.02  0.04  0.12  0.08 
  

URP  0.49  0.15  0.00  0.16 -0.22  0.15 -0.15 -0.15 -0.14 -0.03 -0.35 
 

ORP  0.06  0.04  0.01  0.20 -0.03  0.25  0.02 -0.89 -0.09  0.03  0.00 0.17 
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Appendix 4B. Stepwise VIF test outputs of the environmental covariates. The 
covariate short-hands are: community size (CS), upriver position (URP), salinity, 
distance to riverbank (DR), historical harvesting (HH), acidity (pH), silt 
concentration, disease prevalence (DP), soil total phosphorus (P), soil potassium 
(K), elevation above average-sea level (ELE), and soil NH4. 

Covariates  VIF 

CS 1.33 
URP 1.65 
Salinity 1.29 
DR 1.13 
HH 1.50 
pH 2.43 
Silt 1.09 
DP 1.14 
P 1.32 
K 1.5 
Elevation 1.12 
NH4 1.27 
ORP 5.58 
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Appendix 4C. Results of GAMs for nine diversity measures. Summaries of model fit 
in rightmost three columns are only shown for the confidence set models i.e. models 
with ∆AICc ≤ 2. + symbol indicates that the covariates were retained and – symbol 
indicates that the covariates were not retained in the confidence set models for each 
biodiversity index. The covariate short-hands are: community size (CS), upriver 
position (URP), salinity, distance to riverbank (DR), historical harvesting (HH), 
acidity (pH), silt concentration, disease prevalence (DP), soil total phosphorus (P), 
soil potassium (K), elevation above average-sea level (ELE), and soil NH4. 

  
 
CS 

 
URP 

 
Salinity 

 
DR 

 
HH 

 
pH 

 
Silt 

 
DP 

 
P 

 
K 

 
ELE 

 
NH4 

 
AICc 

 
∆AICc 

 
AICcw 

Alpha 
 

+ + -- + -- -- -- -- -- -- -- -- 362.58 0.00 0.16 
 

α
0

 
+ + -- -- -- -- -- -- -- -- -- -- 362.92 0.34 0.14 

  
+ + -- + + -- -- -- -- -- -- -- 363.25 0.67 0.12 

  
+ + -- -- + -- -- -- -- -- -- -- 363.29 0.72 0.11 

  
+ + -- -- + -- -- -- -- + -- -- 363.64 1.07 0.09 

  
+ + -- -- -- -- -- -- -- + -- -- 363.83 1.26 0.09 

  
+ + -- + -- -- -- -- -- + -- -- 363.96 1.39 0.08 

  
+ + -- + -- -- + -- -- -- -- -- 364.10 1.53 0.08 

  
+ + -- + + -- -- -- -- + -- -- 364.14 1.56 0.07 

  
+ + -- + -- -- -- + -- -- -- -- 364.51 1.93 0.06 

                 
 

α
1

 
+ + -- + + + + -- + + -- -- 118.89 0.00 0.42 

  
+ + + + + + + -- -- -- -- -- 120.35 1.46 0.20 

  
+ + -- + + -- + -- + + -- -- 120.42 1.53 0.20 

  
+ + -- + -- + + -- + + -- -- 120.60 1.70 0.18 

                 

 

α
2

 
+ + + -- -- + -- -- + -- + -- 96.88 0.00 0.28 

  
+ + -- -- -- -- -- -- + + -- -- 97.57 0.69 0.20 

  
+ + -- + -- -- -- -- + + -- -- 98.18 1.30 0.15 

  
+ + -- -- -- -- -- -- + + + -- 98.34 1.46 0.14 

  
+ + -- -- -- + -- -- + + -- -- 98.59 1.71 0.12 

  
+ + -- -- + -- -- -- + + -- -- 98.72 1.83 0.11 

                 

 

 

 

 

 

 

Beta 

 
+ -- + + -- -- -- + -- + -- -- -247.97 0.00 0.12 

𝜌
 

0
 

-- + + + -- -- -- + + -- -- -- -247.79 0.17 0.11 

 
+ -- + -- -- -- -- + -- + -- -- -247.53 0.43 0.09 

 
+ -- + -- -- -- -- + + -- -- -- -247.50 0.46 0.09 

 
+ -- + + -- -- -- + + -- -- -- -247.44 0.53 0.09 

 
+ -- + + -- -- -- + + + -- -- -247.26 0.71 0.08 

 
-- -- + -- -- -- -- + -- + -- -- -247.06 0.91 0.07 

  
+ -- + -- -- -- -- + + + -- -- -246.99 0.98 0.07 

  
+ -- + + -- -- -- -- + + -- -- -246.73 1.23 0.06 

  
+ -- + + -- -- -- + -- -- -- -- -246.73 1.24 0.06 

  
-- + + + -- -- -- + + + -- -- -246.61 1.36 0.06 

  
-- -- + -- -- -- -- + + + -- -- -246.29 1.67 0.05 

  
+ + + -- -- -- -- + + -- -- -- -246.06 1.91 0.04 

                 

 

𝜌
 

1
 

+ + + -- + -- + + -- -- -- -- -105.82 0.00 0.15 
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+ + + -- + + -- + -- -- -- -- -105.60 0.21 0.14 

  
+ + + + + + -- + + -- -- -- -105.56 0.25 0.13 

  
+ + + + + + -- + -- -- -- -- -105.31 0.51 0.12 

  
+ + + -- + -- -- + -- -- -- -- -104.99 0.83 0.10 

  
+ + + -- + + -- + + -- -- -- -104.66 1.16 0.08 

  
+ + -- -- + -- -- + -- -- -- -- -104.50 1.32 0.08 

  
+ + + -- -- -- + + -- -- -- -- -104.21 1.60 0.07 

  
+ + + -- + -- + + + -- -- -- -104.21 1.61 0.07 

  
+ + -- -- + -- + + -- -- -- -- -104.00 1.81 0.06 

                 

 

𝜌
 

2
 

+ + + -- + + + + + + + -- -61.93 0.00 0.37 

  
+ + + + + + + + + + -- + -61.55 0.39 0.30 

  
+ + + -- + + + + -- -- -- -- -60.37 1.56 0.17 

  
+ + -- + + -- + -- + -- -- + -60.20 1.73 0.16 

                 

Gamma 
 

+ + -- + -- + -- + -- -- -- -- 786.94 0.00 0.12 
 

γ0
 

+ + -- + -- + -- + -- -- -- + 787.16 0.22 0.11 
  

+ + -- + -- -- -- + -- -- -- + 787.53 0.59 0.09 
  

+ + -- + -- + -- + -- -- + -- 787.54 0.60 0.09 
  

+ + + + + + -- + -- -- -- -- 787.99 1.06 0.07 
  

+ + -- + -- + + + -- -- -- -- 788.01 1.08 0.07 
  

+ + + + + + + + -- -- -- + 788.09 1.15 0.07 
  

+ + + + -- + -- + -- -- -- -- 788.15 1.22 0.07 
  

+ + -- + + + -- + -- -- -- -- 788.20 1.26 0.06 
  

+ + + + -- + + + -- -- -- -- 788.24 1.30 0.06 
  

+ + -- + -- + + + + -- -- -- 788.73 1.79 0.05 
  

+ + + + + + -- + -- -- + -- 788.74 1.80 0.05 
  

+ + + + -- + + + + -- -- -- 788.78 1.85 0.05 
  

+ + -- + + + -- + -- -- + -- 788.92 1.99 0.04 
                 

  
+ + + + + + + -- + -- + + 279.25 0.00 0.65 

 

γ1  + + + + + + + + -- -- -- -- 280.51 1.26 0.35 
                 

  
+ + + + + + + -- -- -- -- -- 98.50 0.00 0.28 

 

γ2
 

+ + -- + + -- + -- + + -- -- 98.58 0.08 0.27 
  

+ + + + + + + -- + + -- -- 98.90 0.40 0.23 
  

+ + + + + -- + -- + + -- -- 99.05 0.55 0.21 
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Appendix 4D. Effects of covariates inferred from my best GAMs fitted to the 
biodiversity measures for q = 0.   
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Appendix 4E. Effects of covariates inferred from my best GAMs fitted to the 
biodiversity measures for q = 2.   
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Chapter 5 

Appendix 5A. Goodness of fit plots employing regressions of observed trait values 
vs. the posterior mean of the predicted trait values from the best model (Model VIII) 
for canopy height (A), SLA (B), wood density (C) and leaf succulence (D). 
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Appendix 5B. Different viewpoints of possible deterioration in terms of overall 

ecosystem productivity, under five future stress scenarios, E1 to E5, representing a 
10% to 50% increase in both salinity and siltation for the whole Sundarbans 
ecosystem by 2050. A) The posterior probability of deterioration of the whole 
ecosystem in terms of productivity. B) The proportion of grid cells across the whole 
ecosystem where the expected (mean) response is a deterioration of overall 
ecosystem productivity. C) The posterior probability of deterioration of any individual 
grid cell, averaged across all grid cells in Sundarbans. 
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Appendix 5C. Different viewpoints of possible deterioration in terms of community 

traits, under five future stress scenarios, E1 to E5, representing a 10% to 50% 
increase in both salinity and siltation for the whole Sundarbans ecosystem by 2050. 
A)  The posterior probability of deterioration of the whole ecosystem in terms of 
community traits: CH, SLA, WD and LS; B) The proportion of grid cells across the 
whole ecosystem where the expected (mean) response is a deterioration in terms 
of the community traits; C) The posterior probability of deterioration of any individual 
grid cell, averaged across all grid cells in the Sundarbans in terms of the community 
traits. Decreases in CH and SLA and increases in LS and WD are considered to be 
deteriorations in the traits. 
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Appendix 5D. Different viewpoints of possible deterioration in terms of each of the 

traits of the individual species, under five future stress scenarios, E1 to E5, 
representing a 10% to 50% increase in both salinity and siltation for the whole 
Sundarbans ecosystem by 2050. A) The posterior probability of deterioration of traits 
(CH, SLA, WD and LS) for four prominent tree species across the entire ecosystem; 
B) The proportion of grid cells across the whole ecosystem where the expected 
(mean) response is a deterioration for each of the traits of the individual species; C) 
The posterior probability of deterioration of any individual grid cell, averaged across 
all grid cells in the Sundarbans in terms of each of the traits of the individual species. 
Decreases in CH and SLA and increases in LS and WD are deteriorations in the 
traits. 
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Appendix 5E. Current and future (2050) density distributions of four mangrove tree 

species in the Sundarbans (Chapter 2).   
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Appendix 5F. R code for the trait-based models 

##### DATA & LIBRARY IMPORT #### 
 
library(xlsx) 
library(runjags) 
library(sqldf) 
library(XLConnect) 
library(XLConnectJars) 
library(data.table) 
library(rjags) 
 
# Data arrangement 
db <- dbConnect(SQLite(), dbname="Test.sqlite.JAGS") # database 
 
# Importing excel raw data 
wb <- loadWorkbook("data.xlsx") 
setMissingValue(wb, value = "NA") 
 
Tables <- readWorksheet(wb, sheet = getSheets(wb)) 
 
names(Tables) = c("ENVIRONMENT", "SPECIES", "TRAIT")    # Names of the data frames 
str(Tables)      # structure of Tables 
names(Tables)    # Names of the elements of Tables 
 
# Incerting tables into database 
 
with(Tables, { 
  dbWriteTable(conn = db, name = "ENVIRONMENT", value = ENVIRONMENT, row.names = FALSE, overwrite=TRUE) 
  dbWriteTable(conn = db, name = "SPECIES", value = SPECIES, row.names = FALSE,overwrite=TRUE) 
  dbWriteTable(conn = db, name = "TRAIT", value = TRAIT, row.names = FALSE,overwrite=TRUE) 
}) 
 
## # Creation of overall species, environment and trait data frame 
sp.en.traits <- dbGetQuery(db,"SELECT ENVIRONMENT_TRAIT,TRAIT.SPECIES_TRAIT, ENVIRONMENT.NH4, ENVIRONMENT.P, 
ENVIRONMENT.K, ENVIRONMENT. SALINITY, ENVIRONMENT.SILT, ENVIRONMENT.PH,ENVIRONMENT.URP, 
                   ENVIRONMENT.HH, TRAIT.HEIGHT, TRAIT.SLA,TRAIT.WD,TRAIT.SC 
                    
                   FROM ENVIRONMENT JOIN TRAIT ON ENVIRONMENT.ENVIRONMENT_ENVIRONMENT = 
TRAIT.ENVIRONMENT_TRAIT 
                   WHERE TRAIT.SLA IS NOT NULL AND TRAIT.WD IS NOT NULL AND TRAIT.SC IS NOT NULL AND 
                    
                   SPECIES_TRAIT IN ('E_agallocha','H_fomes','C_decandra','X_mekongensis','A. officinalis','A_cucullata',  
                   'B_sexangula','C_ramiflora','S_apetala')") # species that occurred in > 5% of the plots.  
 
n<-length(sp.en.traits[,1]) # Sample size 
vmax<-4 # Number of traits to be considered 
 
# Standardizing trait variables  
 
CH<-((sp.en.traits$CH-mean(sp.en.traits$CH))/sd(sp.en.traits$CH)) 
SLA<-((sp.en.traits$SLA-mean(sp.en.traits$SLA))/sd(sp.en.traits$SLA)) 
WD<-((sp.en.traits$WD-mean(sp.en.traits$WD))/sd(sp.en.traits$WD)) 
LS<-((sp.en.traits$LS-mean(sp.en.traits$LS))/sd(sp.en.traits$LS)) 
 
traits<-as.matrix(cbind(CH,SLA,WD,LS)) # trait matrix 
 
# Standardizing trait variables 
 
NH4<-((sp.en.traits$NH4-mean(sp.en.traits$NH4))/sd(sp.en.traits$NH4)) 
P<-((sp.en.traits$P-mean(sp.en.traits$P))/sd(sp.en.traits$P)) 
K<-((sp.en.traits$K-mean(sp.en.traits$K))/sd(sp.en.traits$K)) 
SALINITY<-((sp.en.traits$SALINITY-mean(sp.en.traits$SALINITY))/sd(sp.en.traits$SALINITY)) 
SILT<-((sp.en.traits$SILT-mean(sp.en.traits$SILT))/sd(sp.en.traits$SILT)) 
PH<-((sp.en.traits$PH-mean(sp.en.traits$PH))/sd(sp.en.traits$PH)) 
URP<-((sp.en.traits$URP-mean(sp.en.traits$URP))/sd(sp.en.traits$URP)) 
HH<-((sp.en.traits$HH-mean(sp.en.traits$HH))/sd(sp.en.traits$HH)) 
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######################################################################### 
# JAGS Model 1: TER (trait-environment relationship) and  
# TTR (trait-trait # relationship) are fixed across the species 
######################################################################### 
model1<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
  ch[i]    <-
a[1,1]+a[1,2]*NH4[i]+a[1,3]*P[i]+a[1,4]*K[i]+a[1,5]*SALINITY[i]+a[1,6]*SILT[i]+a[1,7]*PH[i]+a[1,8]*URP[i]+a[1,9]*HH[i]                                 
  sla[i]   <-
a[2,1]+a[2,2]*NH4[i]+a[2,3]*P[i]+a[2,4]*K[i]+a[2,5]*SALINITY[i]+a[2,6]*SILT[i]+a[2,7]*PH[i]+a[2,8]*URP[i]+a[2,9]*HH[i]         
  wd[i]  <-
a[3,1]+a[3,2]*NH4[i]+a[3,3]*P[i]+a[3,4]*K[i]+a[3,5]*SALINITY[i]+a[3,6]*SILT[i]+a[3,7]*PH[i]+a[3,8]*URP[i]+a[3,9]*HH[i]      
  ls[i]     <-
a[4,1]+a[4,2]*NH4[i]+a[4,3]*P[i]+a[4,4]*K[i]+a[4,5]*SALINITY[i]+a[4,6]*SILT[i]+a[4,7]*PH[i]+a[4,8]*URP[i]+a[4,9]*HH[i]      
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  for( j in 1:vmax) # Number of traits 
  { 
  a[j,k] ~ dnorm(0,averagetau) 
   
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(0.01,0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,0.01) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  } 
   
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
   
  # data # n, vmax, traits, NH4, P, K, SALINITY, SILT, PH, URP, HH 
  # monitor # a, averagetau, sigma 
   
} 
" 
# Model1 outputs 
init.model1<-run.jags(model1, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model1<-extend.jags(init.model1, sample=20000) 
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print(extend.init.model1) 
dic.extend.init.similar<-extract(extend.init.model1, what='dic') # DIC, pD 
 
 
######################################################################### 
# Model 2: TTR varies across the species 
######################################################################### 
species<-as.integer(factor(sp.en.traits$SPECIES)) # species as factors  
 
model2<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
  ch[i]  <-
a[1,1]+a[1,2]*NH4[i]+a[1,3]*P[i]+a[1,4]*K[i]+a[1,5]*SALINITY[i]+a[1,6]*SILT[i]+a[1,7]*PH[i]+a[1,8]*URP[i]+a[1,9]*HH[i]                                 
  sla[i] <-
a[2,1]+a[2,2]*NH4[i]+a[2,3]*P[i]+a[2,4]*K[i]+a[2,5]*SALINITY[i]+a[2,6]*SILT[i]+a[2,7]*PH[i]+a[2,8]*URP[i]+a[2,9]*HH[i]         
  wd[i] <-
a[3,1]+a[3,2]*NH4[i]+a[3,3]*P[i]+a[3,4]*K[i]+a[3,5]*SALINITY[i]+a[3,6]*SILT[i]+a[3,7]*PH[i]+a[3,8]*URP[i]+a[3,9]*HH[i]      
  ls[i]   <-
a[4,1]+a[4,2]*NH4[i]+a[4,3]*P[i]+a[4,4]*K[i]+a[4,5]*SALINITY[i]+a[4,6]*SILT[i]+a[4,7]*PH[i]+a[4,8]*URP[i]+a[4,9]*HH[i]      
   
  # Definition of the likelihood 
  mu[i,1]<-ls[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[species[i],,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  for( j in 1:vmax) # Number of traits 
  { 
  a[j,k] ~ dnorm(0,averagetau) 
   
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  for (m in 1:9)  
  { 
  sigma[m,j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
  } 
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  for (m in 1:9)  
  {  
  sigma[m,j,k]~dnorm(0,tauvar) 
  } 
  } 
  } 
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  for (m in 1:9)  
  { 
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  sigma[m,j,k]<-sigma[m,k,j] 
   
  } 
  } 
  } 
  for (m in 1:9)  
  { 
  omega[m,1:vmax,1:vmax]<-inverse(sigma[m,1:vmax,1:vmax]) # Conversion of var-cov matrix into precision matrix 
  }   
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, sigma, tauvar 
   
} 
" 
# model2 outputs 
 
init.model2<-run.jags(model2, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model2<-extend.jags(init.model2, sample=20000) 
print(extend.init.model2) 
dic.extend.init.model2<-extract(extend.init.model2, what='dic') # DIC, pD 
 
######################################################################### 
# Model 3: TER varies across the species 
######################################################################### 
model3<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
ch[i]<-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  tau.b ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  for(j in 1:vmax) # Number of traits 
  { 
   
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(0,tau.b) 
  } 
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(0.01,0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 



224 
 

224 
 

  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,0.01) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  }  
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a,tau.b,sigma 
   
} 
" 
# model3 outputs 
init.model3<-run.jags(model3, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic"))  
extend.init.model3<-extend.jags(init.model3, sample=20000) 
print(extend.init.model3) 
dic.extend.init.model3<-extract(extend.init.model3, what='dic') # DIC, pD 
 
######################################################################### 
# Model 4:TER varies around a common mean  
######################################################################### 
model4<-" 
model 
{ 
  for( i in 1:n) 
  { 
   # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
  tau.a ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
  for(j in 1:vmax) # Number of traits 
  { 
  averagea[j,k] ~ dnorm(0,averagetau) 
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau.a) 
  } 
  } 
  } 
   
  # Precision matrix 
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  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,tauvar) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  } 
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagetau, sigma,tau.a, tauvar 
   
} 
" 
# model4 outputs 
init.model4<-run.jags(model4, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model4<-extend.jags(init.model4, sample=20000) 
print(extend.init.model4) 
dic.extend.init.model4<-extract(extend.init.model4, what='dic') # DIC, pD 
 
######################################################################### 
# Model 5: TER varies around the common mean for each trait 
######################################################################### 
model5<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(j in 1:vmax) # Number of traits 
  { 
  tau[j] ~ dgamma(0.0001,0.01) 
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  for(k in 1:9) # Number of coefficients per trait 
  { 
  averagea[j,k] ~ dnorm(0,averagetau) 
   
for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau[j]) 
  } 
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,tauvar) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  } 
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagea, sigma,tau, tauvar 
   
} 
" 
# model5 results 
 
init.model5<-run.jags(model5, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model5<-extend.jags(init.model5, sample=20000) 
print(extend.init.model5) 
dic.extend.init.model5<-extract(extend.init.model5, what='dic') # DIC, pD 
 
######################################################################### 
# Model 6: TER varies around the common mean for each environmental driver 
######################################################################### 
model6<-" 
model 
{ 
  for( i in 1:n) 
  { 
   
  # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
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  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  tau[k] ~ dgamma(0.0001,0.01) 
   
  for(j in 1:vmax) # Number of traits 
  { 
   
  averagea[j,k] ~ dnorm(0,averagetau) 
   
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau[k]) 
  } 
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,tauvar) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  } 
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagea, sigma,tau, tauvar 
   
} 
" 
# model6 outputs 
init.model6<-run.jags(model6, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model6<-extend.jags(init.model6, sample=20000) 
print(extend.init.model6) 
dic.extend.init.model6<-extract(extend.init.model6, what='dic') # DIC, pD 
 
######################################################################### 
# Model 7: TER varies around the common mean for each trait and environmental driver 
######################################################################### 
model7<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
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  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  for(j in 1:vmax) # Number of traits 
  { 
   
  tau[j,k] ~ dgamma(0.0001,0.01) 
   
  averagea[j,k] ~ dnorm(0,averagetau) 
   
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau[j,k]) 
  } 
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  sigma[j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
   
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  sigma[j,k]~dnorm(0,tauvar) 
  } 
  } 
   
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  sigma[j,k]<-sigma[k,j] 
  } 
  } 
  omega<-inverse(sigma) # Conversion of var-cov matrix into precision matrix 
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagea, sigma,tau, tauvar   
} 
" 
# model7 outputs 
init.model7<-run.jags(model7, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model7<-extend.jags(init.model7, sample=20000) 
print(extend.init.model7) 
dic.extend.init.model7<-extract(extend.init.model7, what='dic') # DIC 
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######################################################################### 
# Model 8: TTR varies across the species   
######################################################################### 
model8<-" 
model 
{ 
  for( i in 1:n) 
  { 
  # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-ch[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-ls[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[species[i],,]) 
  } 
   
  # PRIORS 
   
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  tau[k] ~ dgamma(0.0001,0.01) 
   
  for(j in 1:vmax) # Number of traits 
  { 
   
  averagea[j,k] ~ dnorm(0,averagetau) 
   
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau[k]) 
  } 
  } 
  } 
   
  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  for( j in 1:vmax) 
  { 
  for (m in 1:9)  
  { 
  sigma[m,j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
  } 
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
  for (m in 1:9)  
  {  
  sigma[m,j,k]~dnorm(0,tauvar) 
  } 
  } 
  } 
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
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  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  for (m in 1:9)  
  { 
  sigma[m,j,k]<-sigma[m,k,j] 
   
  } 
  } 
  } 
  for (m in 1:9)  
  { 
  omega[m,1:vmax,1:vmax]<-inverse(sigma[m,1:vmax,1:vmax]) # Conversion of var-cov matrix into precision matrix 
  }   
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagetau, sigma, tauvar 
   
} 
" 
# model8 outputs 
init.model8<-run.jags(model8, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model8<-extend.jags(init.model8, sample=20000) 
print(extend.init.model8) 
dic.extend.init.model8<-extract(extend.init.model8, what='dic') # DIC, pD 
 
######################################################################### 
# Model 9: TTR varies around a common mean 
######################################################################### 
model9<-" 
model 
{ 
  for( i in 1:n) 
  { 
   
  # Linear predictors for individual traits 
  ch[i] <-
a[1,1,species[i]]+a[1,2,species[i]]*NH4[i]+a[1,3,species[i]]*P[i]+a[1,4,species[i]]*K[i]+a[1,5,species[i]]*SALINITY[i]+a[1,6,s
pecies[i]]*SILT[i]+a[1,7,species[i]]*PH[i]+a[1,8,species[i]]*URP[i]+a[1,9,species[i]]*HH[i]                                 
  sla[i]<-
a[2,1,species[i]]+a[2,2,species[i]]*NH4[i]+a[2,3,species[i]]*P[i]+a[2,4,species[i]]*K[i]+a[2,5,species[i]]*SALINITY[i]+a[2,6,s
pecies[i]]*SILT[i]+a[2,7,species[i]]*PH[i]+a[2,8,species[i]]*URP[i]+a[2,9,species[i]]*HH[i]   
  wd[i] <-
a[3,1,species[i]]+a[3,2,species[i]]*NH4[i]+a[3,3,species[i]]*P[i]+a[3,4,species[i]]*K[i]+a[3,5,species[i]]*SALINITY[i]+a[3,6,s
pecies[i]]*SILT[i]+a[3,7,species[i]]*PH[i]+a[3,8,species[i]]*URP[i]+a[3,9,species[i]]*HH[i]   
  ls[i] <-
a[4,1,species[i]]+a[4,2,species[i]]*NH4[i]+a[4,3,species[i]]*P[i]+a[4,4,species[i]]*K[i]+a[4,5,species[i]]*SALINITY[i]+a[4,6,s
pecies[i]]*SILT[i]+a[4,7,species[i]]*PH[i]+a[4,8,species[i]]*URP[i]+a[4,9,species[i]]*HH[i]  
   
  # Definition of the likelihood 
  mu[i,1]<-CH[i] 
  mu[i,2]<-sla[i] 
  mu[i,3]<-wd[i] 
  mu[i,4]<-sc[i] 
   
  traits[i,]~dmnorm(mu[i,], omega[species[i],,]) 
  } 
  # PRIORS 
  # Setting up of the regression coefficients matrix 
   
  averagetau ~ dgamma(0.0001,0.01) 
   
  for(k in 1:9) # Number of coefficients per trait 
  { 
   
  tau[k] ~ dgamma(0.0001,0.01) 
   
  for(j in 1:vmax) # Number of traits 
  { 
   
  averagea[j,k] ~ dnorm(0,averagetau) 
   
  for (m in 1:9)  
  { 
  a[j,k,m] ~ dnorm(averagea[j,k],tau[k]) 
  } 
  } 
  } 
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  # Precision matrix 
  # Setting up of the variances vector (the diagonal of the var-cov matrix) 
   
  tauvar~dgamma(1.00, 1.00) 
   
  tau.c~dgamma(0.0001,0.01) 
   
  for( j in 1:vmax) 
  { 
  for (m in 1:9)  
  { 
  sigma[m,j,j]~dgamma(1, 0.01) # mean 1 variance high 
  } 
  } 
  # Setting up of the lower diagonal part of var-cov matrix 
  for( j in 2:vmax) 
  { 
  for(k in 1:(j-1)) 
  { 
   
  avsigma[j,k]~dnorm(0,tauvar) 
   
  for (m in 1:9)  
  {  
  sigma[m,j,k]~dnorm(avsigma[j,k],tau.c) 
  } 
  } 
  } 
  # Mirroring of the lower diagonal by the upper diagonal of the var-cov matrix 
  for( j in 1:(vmax-1)) 
  { 
  for(k in (j+1):vmax) 
  { 
  for (m in 1:9)  
  { 
  sigma[m,j,k]<-sigma[m,k,j] 
   
  } 
  } 
  } 
  for (m in 1:9)  
  { 
  omega[m,1:vmax,1:vmax]<-inverse(sigma[m,1:vmax,1:vmax]) # Conversion of var-cov matrix into precision matrix 
  }   
  # data # n, vmax, traits, NH4, P, K,SALINITY, SILT, PH, URP, HH, species 
  # monitor # a, averagea,sigma,tauvar,tau.c 
} 
" 
# model9 outputs 
init.model9<-run.jags(model9, n.chains=2, burnin=4000, sample=10000,modules=c("glm","dic")) 
extend.init.model9<-extend.jags(init.model9, sample=20000) 
print(extend.init.model9) 
dic.extend.init.model9<-extract(extend.init.model9, what='dic') # DIC, pD 
 
 

 
 




