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Abstract 
 

In our interactions with the environment, we often make inferences based on 

noisy or incomplete perceptual information - for example, judging whether the 

person waving their hand in the distance is someone we know (as opposed to a 

stranger, greeting the person behind us). Such judgments are accompanied by a 

sense of confidence, that is, a degree of belief that we are correct, which 

ultimately determines how we act, adjust our subsequent decisions, or learn 

from errors. Neuroscience has only recently begun to characterise the 

representations of confidence in the animal and human brain, however the 

neural mechanisms and network dynamics supporting these representations are 

still unclear. 

The current thesis presents empirical findings from three studies that sought to 

provide a more complete characterisation of confidence during perceptual 

decision making, using a combination of electrophysiological and neuroimaging 

methods. Specifically, Study 1 (Chapter 2) investigated the temporal 

characteristics of confidence in relation to the perceptual decision. We recorded 

EEG measurements from human subjects during performance of a face vs. car 

categorisation task. On some trials, subjects were offered the possibility to opt 

out of the choice in exchange for a smaller but certain reward (relative to the 

reward obtained for correct choices), and the choice to use or decline this 

option reflected subjects‟ confidence in their perceptual judgment. Neural 

activity discriminating between high vs. low confidence trials could be observed 

peaking approximately 600 ms after stimulus onset. Importantly, the temporal 

profile of this activity resembled a ramp-like process of evidence accumulation 

towards a decision, with confidence being reflected in the rate of the 

accumulation. Our results are in line with the notion that neural representations 

of confidence may arise from the same process that supports decision formation.  

Extending on these findings, in Study 2 (Chapter 3) we asked whether rhythmic 

patterns within the EEG signals may offer additional insights into the neural 

representations of confidence. Using an exploratory analysis of data from Study 

1, we identified confidence-discriminating oscillatory activity in the alpha and 
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beta frequency bands. This was most prominent over the sensorimotor 

electrodes contralateral to the motor effector that subjects used to indicate 

choice (i.e., right hand), consistent with a motor preparatory signal. Importantly 

however, the effect was transient in nature, peaking long before subjects could 

execute a response, and thus ruling out a direct link with overt motor behaviour. 

More intriguingly, the observed confidence effect appeared to overlap in time 

with the non-oscillatory representation of confidence identified in Study 1. In 

line with the view that motor systems track the evolution of the perceptual 

decision in preparation for impending action, results from Studies 1 and 2 open 

the possibility that confidence-related information may also be contained within 

these signals. 

Finally, following on from our work in the first study, we next aimed to 

capitalise on the single-trial neural representations of confidence obtained with 

EEG, in order to identify potentially correlated activity with high spatial 

resolution. To this end, in Study 3 (Chapter 4) we recorded simultaneous EEG 

and fMRI data while subjects performed a speeded motion discrimination task 

and rated their confidence on a trial-by-trial basis. Analysis of the EEG revealed 

a confidence-discriminating neural component which appeared prior to 

participants‟ overt choice and was spatiotemporally consistent with our results 

from the first study. Crucially, we showed that haemodynamic responses in the 

ventromedial prefrontal cortex (VMPFC) were uniquely explained by trial-to-trial 

fluctuations in these early confidence-related neural signals. Notably, this 

activation was additional to what could be explained by subjects‟ confidence 

ratings alone. We speculated that the VMPFC may support an early and/or 

automatic readout of perceptual confidence, potentially preceding explicit 

metacognitive appraisal.  

Together, our results reveal novel insights into the neural representations of 

perceptual confidence in the human brain, and point to new research directions 

that may help further disentangle the neural dynamics supporting confidence 

and metacognition. 
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Chapter 1. General Introduction 
 

Every day we make judgments about perceptual aspects of our environment 

(i.e., perceptual decisions), on the basis of noisy or incomplete information. 

Such judgments are invariably accompanied by a sense of likelihood that we are 

correct, and we rely on these to optimally interact with the external world. 

Having access to an internal estimate of decision accuracy is essential in 

regulating adaptive behaviour in an uncertain world - our sense of confidence in 

a judgment can influence subsequent decisions and actions (Folke et al. 2016, 

Kepecs et al. 2008, Kiani and Shadlen 2009, Lak et al. 2014, van den Berg et al. 

2016b), and support learning processes (Guggenmos et al. 2016, Lak et al. 2017, 

Daniel and Pollmann 2012). Over the past century, the topic of decision 

confidence has attracted considerable scientific interest, with recent years in 

particular seeing rapid progress in characterising its behavioural, computational, 

and neurobiological correlates, in both humans and animals. Nevertheless, the 

neuroscientific study of decision confidence is only in its infancy and many 

questions are yet to be addressed. In particular, the mechanisms by which 

confidence in a perceptual decision is formed in the human brain, and the 

network dynamics that support these processes, are unclear. The current 

chapter will summarise research that has focused on characterising the neural 

correlates of perceptual decision making and associated confidence, in humans 

and animals, and outline outstanding questions that motivated the current 

thesis.  

 

Perceptual decision making: neural mechanisms   

Animals 

The term “perceptual decision” is used to refer to the process of committing to 

one of several potential alternatives (i.e., judgments or choices), based on an 

integration of sensory information (Heekeren et al. 2008). This process has been 

described in the framework of sequential sampling models, which postulate that 

a decision is formed via a noisy accumulation of sensory information over time, 
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with the decision terminating when an internal threshold has been reached 

(Usher and McClelland 2001, Ratcliff 1978, Smith and Ratcliff 2004). Strong 

support for such a mechanism comes primarily from non-human primate 

neurophysiological research (see Gold and Shadlen, 2007, for a review). In these 

studies, monkeys are trained to perform two-alternative forced choice tasks, 

such as the random-dot motion discrimination paradigm (Newsome and Pare, 

1988) and express their choice by making a saccade towards a target. Single-cell 

recordings have revealed that upon stimulation, choice-selective neurons in 

frontal and parietal areas such as the frontal eye field (Kim and Shadlen 1999), 

superior colliculus (Horwitz and Newsome 1999), or lateral intraparietal area 

(Shadlen and Newsome 2001, Roitman and Shadlen 2002) exhibit a gradual 

increase in firing rates, which remains elevated and reaches a common level 

before a response is made. Importantly, the profile of this activity is modulated 

by the quality of sensory evidence, with stronger stimulus strength eliciting 

steeper accumulation rates. Additionally, it predicts monkeys‟ choice-related 

behaviour, with steeper buildup of activity resulting in faster and more accurate 

responses (Shadlen and Newsome 2001, Roitman and Shadlen 2002).  

 

Humans 

Perceptual decisions in the human brain appear to be supported by a similar 

mechanism of bounded evidence accumulation. Specifically, electrophysiological 

(Van Vugt et al. 2012, Philiastides and Sajda 2006, de Lange et al. 2013, Donner 

et al. 2009, Philiastides et al. 2014, Wyart et al. 2012, Polania et al. 2014) and 

neuroimaging (Liu and Pleskac 2011, Ploran et al. 2007, Heekeren et al. 2004, 

Krueger et al. 2017) work has revealed signals which resemble the dynamic 

patterns observed in single-unit recordings. One example is a recent EEG study 

(Philiastides et al. 2014) where subjects were asked to perform visual 

categorisations of face vs. car stimuli. Authors revealed ramp-like signals over 

centroparietal electrodes, the slope of which scaled positively with the strength 

of the stimulus and matched predictions from a sequential sampling model of 

decision making (i.e., the drift diffusion model; Ratcliff, 1978). The buildup rate 

of this activity was additionally predictive of subjects‟ choice accuracy on a 
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trial-by-trial basis. A similar centroparietal signal was observed by O'Connell et 

al. (2012), who showed that the buildup of activity predicted subjects‟ response 

time even when stimulus difficulty remained constant, consistent with decision-

related activity that reflects internal noise in the decision process. Importantly, 

both studies showed that this activity was independent of motor preparation. 

Similar patterns have been observed across different tasks and sensory 

modalities (O'Connell et al. 2012, Kelly and O'Connell 2013, Murphy et al. 2015), 

pointing to a potentially domain-general decision signal. 

Oscillatory neural signals also appear to reflect decision-related processes. 

Specifically, activity resembling a process of bounded evidence accumulation has 

been observed in the theta (Van Vugt et al. 2012) and gamma (Polania et al. 

2014) frequency bands. Intriguingly, a few studies have found that decision-

related activity can be observed in action-selective neural signals, as measured 

with MEG. Namely, when subjects express their perceptual choices via motor 

behaviour (e.g., button presses), a reduction of oscillatory activity in the alpha 

and beta bands (approximately ~8-30 Hz), can be observed over the 

contralateral motor cortex, following perceptual stimulation and prior to overt 

choice. Although typically associated with motor-related planning and 

preparation (Pfurtscheller and Lopes da Silva 1999), this activity nevertheless 

occurs long before a response is made, scales with accumulated evidence within 

upstream (sensory) regions (Donner et al. 2009), and its slope is modulated by 

stimulus strength (de Lange et al. 2013), consistent with a decision-related 

process. Interestingly, these signals can appear as early as the decision signals 

observed in the time domain (O'Connell et al. 2012). While there is strong 

empirical evidence that motor-preparatory activity is distinct from action-

independent decision processes (Kelly and O'Connell 2013, Wyart et al. 2012, 

Filimon et al. 2013), this finding has supported the view that decision-related 

information may also be carried by motor systems in support of impending 

actions (Gold and Shadlen 2007, Gold and Shadlen 2000, Siegel et al. 2011). 
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Confidence in perceptual decision making 

As the neural correlates of perceptual decisions are being uncovered, there has 

been growing interest in understanding how confidence in these decisions may 

arise and become available for metacognitive evaluation and report. The 

following sections provide a brief review of the empirical work aimed at 

characterising the neural basis of confidence in perceptual decisions. 

 

Measuring confidence 

The methods that have been used most commonly to obtain behavioural 

measures of confidence can broadly be categorised according to their explicit or 

implicit nature (see Kepecs and Mainen (2012) for a detailed review). Human 

experiments typically rely on explicit reports, whereby subjects provide 

confidence ratings upon making a task-related choice. These can be verbal 

reports, where subjects select from discrete categories (e.g., “High” vs. “Low”, 

Peters et al., 2017) or make use of scales (e.g., ranging from “Not at all 

confident” to “Totally confident”, Lebreton et al., 2015). Alternatively, and 

more commonly, subjects are asked to use numerical or visual analogue scales 

(Fleming et al. 2010, Festinger 1943, Baranski and Petrusic 1994, Hebart et al. 

2016), where the lowest value typically indicates a guess.  

Implicit measures of confidence require the experimental design to be 

constructed such that subject‟s choices reflect confidence indirectly. One 

variant that has been used in research on rodents is the waiting-based method 

(Kepecs et al. 2008, Lak et al. 2014). Upon making a perceptual decision, 

subjects can choose to wait for a delayed reward (which is provided only for 

correct responses) or alternatively abort the trial to initiate a new one. In this 

paradigm, subjects‟ willingness to wait for a reward is predictive of the 

likelihood of making a correct response, thus serving as a proxy for confidence. 

An alternative approach is the wagering technique, which requires subjects to 

choose between safer vs. riskier (but potentially more rewarding) options, the 

outcome of which depends on the accuracy of their (over or covert) decision 

(Middlebrooks and Sommer 2012, Kiani and Shadlen 2009). One variant of this 



15 
 

method is the “opt-out” task, used predominantly in the monkey literature 

(Kiani and Shadlen 2009, Odegaard et al. 2017, Komura et al. 2013). Subjects 

make perceptual discriminations which are rewarded for correct responses. 

Importantly, on some trials, in addition to the two stimulus alternatives, a third 

response option is available which allows subjects to opt out of the choice in 

exchange for a smaller but certain reward. The rationale behind this approach is 

that the choice to select or waive the sure reward option reflects the subjective 

belief that a judgment is correct. Indeed, studies employing this task show that 

subjects are more likely to be accurate on trials where the opt-out was offered 

and declined, compared to those in which it was not offered to begin with (Kiani 

and Shadlen 2009).  

In humans, this method may provide an advantage over the classic rating task, in 

that subjects must use the internal evaluation of their judgment accuracy to 

maximise their rewards, thus serving as an incentive to accurately reveal this 

information (Persaud et al. 2007). A potential downside, however, is that opt-

out behaviour can also be influenced by subjects‟ aversion to risk (Fleming and 

Dolan 2010), which is not an issue in ratings tasks. An additional advantage of 

the rating tasks is the ability to obtain graded measures of confidence (as 

compared with binary values obtained with opt-out tasks), which may allow for 

more precise inferences about underlying neural representations.  

 

Behavioural correlates and theoretical framework 

Early studies investigating the behavioural properties of confidence have 

revealed close links with quantities known to influence, or reflect, the decision 

process. In particular, it is well-established that confidence tends to increase 

with the strength of sensory information (Peirce and Jastrow 1884, Festinger 

1943, Baranski and Petrusic 1998). Additionally, confidence correlates with 

behavioural manifestations of the decision, such as choice accuracy and response 

time. Confident choices are more likely to be correct (Baranski and Petrusic 

1998), and are associated with shorter response times (Baranski and Petrusic 

1998, Festinger 1943, Vickers and Packer 1982). These observations reinforce the 



16 
 

idea that confidence is a fundamental aspect of the decision process, and have 

led to both implicit and explicit assumptions that confidence of a decision is 

based on the same process that underlies the decision (Vickers 1979, Kepecs et 

al. 2008, Hebart et al. 2016, Kiani and Shadlen 2009, Fetsch et al. 2014). There 

is however growing evidence that confidence can, in some instances, be 

dissociated from the decision process itself. Behaviourally, this is best reflected 

by incongruences between objective task performance and subjective evaluation 

of one‟s performance. For example, humans tend to be overconfident in their 

choices when stimulus strength is poor (and performance consequently lower), 

and conversely underestimate their performance when the task is easy (Baranski 

and Petrusic 1994, Baranski and Petrusic 1999, Zylberberg et al. 2014). Similarly, 

the ability to accurately estimate one‟s own performance (i.e., metacognitive 

ability) can vary across individuals (Fleming et al. 2010, Fleming et al. 2012), 

such that high performance on a task can be accompanied by near-chance 

performance on the metacognitive task. Theoretical frameworks accounting for 

such dissociations between decision and performance have suggested that 

confidence relies on, or can be influenced by, additional processes occurring 

after the decision (Moran et al. 2015, Yu et al. 2015, Pleskac and Busemeyer 

2010, Baranski and Petrusic 1998). For example, the two-stage dynamic signal 

detection (2DSD) (Pleskac and Busemeyer 2010), a type of sequential sampling 

model, posits that the process of evidence accumulation leading to a decision 

continues to develop after the choice to inform confidence. Such a view is 

additionally supported by the observation that decisions can be promptly 

followed by changes of mind (Resulaj et al. 2009, van den Berg et al. 2016a), 

suggestive of additional processing beyond the initial choice.  

 

Neural correlates  

 

Animals 

As pointed out in the previous sections, the ability to access information about 

one‟s performance is not limited to humans, and can also be observed in other 

species. Indeed, rodents and non-human primates appear to use internal 
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estimates of accuracy to maximise rewards (Kepecs and Mainen 2012, 

Middlebrooks and Sommer 2012, Kiani and Shadlen 2009, Lak et al. 2014). This 

discovery has been critical for characterising confidence-related processes at the 

neural level. Single-unit recordings in the animal brain make it possible to 

observe confidence-related neural activity with both high temporal and high 

spatial precision, whereas pharmacological inactivation studies can additionally 

reveal causal links with behaviour.  

An important insight into the possible neural mechanisms underlying confidence 

comes from a seminal study by Kiani and Shadlen (2009). In their experiment, 

rhesus monkeys were trained to perform a random-dot motion discrimination 

task, whereby confidence was measured by means of an opt-out method (see 

previous sections). Choice-selective neurons within the lateral intraparietal (LIP) 

cortex exhibited choice-related buildup in firing rates, consistent with the 

process of evidence accumulation observed previously in this region. More 

importantly however, this activity also predicted confidence in the decision, 

i.e., whether the monkey would select or decline the sure reward option. 

Specifically, confident trials were characterised by a higher buildup rate, with 

activity reaching higher magnitudes prior to choice. Overall, these findings 

indicate that confidence-related information may emerge from the decision 

process itself, i.e., is encoded in the neural activity that supports it. A similar 

observation was made by Middlebrooks and Sommer (2012). They identified 

neurons in the supplementary eye field exhibiting differential activity for both 

choice (correct vs. error) and confidence (high vs. low), with this activity 

showing considerable temporal overlap. As will be discussed in the following 

section, these observations raise the possibility that a similar mechanism might 

underlie decisions in the human brain. 

  

Two recent studies have pointed out that representations of confidence may 

occur independently of the decision process. For example, pharmacological 

inactivation of the OFC was shown to affect rats‟ ability to optimally wait for a 

performance-dependent reward, indicating disrupted internal estimates of 

decision accuracy and/or outcome. Despite this effect on confidence, task 

performance per se remained unhindered (Lak et al. 2014). Similarly, Komura et 
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al. (2013) showed that pharmacological inactivation of the monkey pulvinar (a 

region of the visual thalamus) increased the number of times monkeys made an 

opt-out choice (suggesting lower confidence), without affecting performance on 

the perceptual task. These studies point to a possible dissociation between 

regions that carry neural representations of confidence vs. choice.  

 

Interestingly, representations of confidence have also been identified in regions 

of the brain involved in reward and learning. Neurons in the orbitofrontal cortex 

(OFC), a region implicated in decision making and reward processing (Wallis 

2007), have been shown to carry confidence-related information during an 

olfactory categorisation task. Similarly, midbrain dopamine neurons, which are 

known to play a role in reward prediction and learning, also appear to encode a 

form of confidence. De Lafuente and Romo (2011) found that dopamine firing 

rates in the monkey brain were modulated by stimulus strength during correct 

detections of a vibrotactile stimulus, but not during missed trials, suggesting 

activity here was linked to the monkey‟s subjective experience (as opposed to 

objective stimulus properties). Extending these findings, Lak et al. (2017) 

showed that learning signals within dopamine neurons appeared to incorporate a 

measure of objective confidence (as estimated by an extended reinforcement 

learning model). Interestingly, these signals were observed prior to overt 

choices, leading authors to speculate that these reflect the evolving decision and 

could potentially influence impending choices. 

 

Overall, findings from animal research suggest that the brain may carry multiple 

representations of confidence, potentially supporting different cognitive 

processes and behaviours. In regions such as the LIP and SEF, a form of 

confidence may emerge from the decision process, whereas regions such as the 

pulvinar and OFC appear to encode confidence separately from the decision. 

Bayesian theories of neural computation (Knill and Pouget 2004) suggest that the 

brain represents perceptual decisions in the form of probability distributions. 

Within this framework, confidence information is naturally present in the 

decision-related neural code (Meyniel et al. 2015, Pouget et al. 2016), in line 

with the role of LIP or SEF in encoding both choice and confidence. In a similar 
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line of reasoning, one mechanistic account of confidence proposes a framework 

by which confidence-related information emerging from the decision process is 

read-out by higher-order monitoring networks (Insabato et al. 2010), and it has 

been suggested that frontal regions, such as the OFC in the rat brain, may be 

likely candidates for such a role  (Pouget et al. 2016, Lak et al. 2014).  

 

Humans 

Temporal correlates. In humans, the neural substrates of decision confidence 

have been explored using primarily non-invasive methods such as 

electroencephalography (EEG), magnetoencephalography (MEG), functional 

magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS). 

The millisecond temporal resolution of EEG and MEG provides a valuable tool for 

temporally characterising confidence-related processes, which in turn can help 

uncover underlying neural mechanisms. Nevertheless, only a limited number of 

studies have investigated the temporal correlates of confidence in human 

subjects. Of these, some have focused on events occurring after subjects have 

committed to a response, showing that signals that follow termination of the 

overt choice (i.e., motor response) reflect metacognitive processes (Murphy et 

al. 2015, Boldt and Yeung 2015). For example, Boldt and Yeung (2015) 

investigated the relationship between post-decision error-detection and 

confidence processing, bringing evidence for a common neural signature for the 

two (i.e., the classic error-positivity, or Pe, evoked component). Interestingly 

however, they also show that the amplitude of the stimulus-locked evoked 

component P300, which has been linked to evidence accumulation towards a 

decision (Twomey et al. 2015, Murphy et al. 2015), was modulated by reported 

confidence. While an interesting observation, the question of how this signal 

may relate to the decision process itself was not explicitly addressed here. Two 

studies have explicitly investigated the temporal characteristics of decision 

confidence relative to the decision. Zizlsperger et al. (2014) recorded scalp EEG 

from subjects during performance of a random-dot motion categorization task. 

They showed that ERP signals discriminated between levels of self-reported 

confidence as early as 300 ms following stimulus onset. This effect, which was 
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observed over occipitoparietal electrodes, was closely preceded by a neural 

representation of stimulus difficulty with similar topography, leading authors to 

suggest that the perceptual decision and confidence-related processes may 

overlap in time and share a neural substrate. Finally, a recent study (Peters et 

al. 2017) recorded intracranial EEG during a face vs. house categorization task. 

Subjects‟ choices revealed that sensory evidence was used differently for making 

a choice vs. reporting confidence, indicating a dissociation between the two 

processes. Interestingly, a dissociation between confidence and the decision 

could also be observed at the neural level, as reflected by stronger and earlier 

choice-related discrimination of neural signals. However, the spatial profile of 

this early choice-related activity (i.e., seen primarily over occipital regions) 

makes it unclear whether this may have reflected the decision process itself, or 

rather, an earlier process related to sensory evidence encoding, a distinction 

supported by monkey neurophysiology and human fMRI experiments (Heekeren et 

al. 2004, Gold and Shadlen 2007).  

Spatial correlates. Similarly to animal work, studies in human subjects have 

revealed distributed networks that appear to hold neural representations of 

confidence, with regions of the prefrontal cortex (PFC) being most frequently 

observed in fMRI experiments (Hilgenstock et al. 2014, Rolls et al. 2010b, 

Fleming et al. 2012, Lau and Passingham 2006, Fleck et al. 2006, Heereman et 

al. 2015). The anterior portion of the PFC, in particular, appears to play a role in 

metacognitive evaluation of perceptual decisions (Baird et al. 2013, Fleming et 

al. 2010, Fleming et al. 2012). One fMRI study explicitly demonstrating the role 

of the anterior PFC in metacognition was conducted by Fleming et al. (2012). 

Participants performed face vs. house categorisations and were asked to rate 

their confidence after each choice. Blood oxygen level-dependent (BOLD) 

activity in the rostrolateral prefrontal cortex (RLPFC) correlated with confidence 

at the time of rating, and was enhanced during confidence rating compared to a 

control task. Importantly, the strength of the relationship between RLPFC 

activation and confidence reports was predictive of subjects‟ metacognitive 

ability, thus implicating this region in metacognitive processes. In support of this 

finding, it has also been shown that metacognitive ability correlates with macro-

(Fleming et al. 2010) and microstructure (Allen et al. 2017) of the anterior PFC, 
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whereas damage to this region appears to impair metacognitive ability in 

perceptual decision making (Fleming et al. 2014)(though a recent study also 

showed improvement in metacognitive ability with temporary TMS disruption of 

activity in this region). Interestingly, correlates of perceptual confidence have 

also been detected in the striatum, a structure involved in reward processing. 

Specifically, Hebart et al. (2016) reported a positive correlation with reported 

confidence in the ventral portion of this region during a random-dot motion 

discrimination task. They speculate confidence-related striatal activation could 

represent implicit reward signals, which may serve to drive learning.  

Overall, humans studies have focused predominantly on characterising 

confidence as a metacognitive process. However, as shown in the previous 

sections, confidence-related information can be observed earlier, near the time 

of the decision itself, and prior to overt commitment to choice or explicit 

metacognitive evaluation (Kiani and Shadlen 2009, Zizlsperger et al. 2014, 

Middlebrooks and Sommer 2012). Moreover, there is growing support for the idea 

that confidence processing is supported by hierarchical architectures relying on 

integration of confidence-related information by higher-order networks (Insabato 

et al. 2010, De Martino et al. 2013), and involving post-decisional processes 

(Maniscalco and Lau 2016, Pleskac and Busemeyer 2010, Fleming and Daw 2017, 

Yu et al. 2015, Moran et al. 2015, Resulaj et al. 2009), thus allowing the 

introduction of additional noise or changes in confidence-related signals prior to 

metacognitive report. In support of this view, one fMRI experiment that has 

investigated the neural correlates of confidence during value-based choices (De 

Martino et al. 2013) found that confidence emerging from a value-based decision 

process was encoded the same region that supported the decision (i.e., the 

ventromedial prefrontal cortex (VMPFC). Importantly, they showed that the 

rostrolateral PFC appeared to encode a noisy readout of this quantity in support 

of metacognitive report.  

Overall, it becomes clear that, to understand the neural underpinnings of these 

complex network dynamics involved in confidence processing, it is necessary to 

begin characterising confidence-related quantities with both high-temporal and 

high-spatial precision. 



22 
 

Simultaneous EEG/fMRI. To date, no known studies have simultaneously 

investigated the spatiotemporal correlates of decision confidence in humans. 

Using advanced methods for the analysis of EEG signals, it is possible extract 

time-resolved single-trial measures representing cognitive events of interest, 

which can then be spatially characterised with fMRI. In particular, single-trial 

multivariate analysis of the EEG (Sajda et al. 2009) differs from conventional 

ERP-averaging approaches in that it preserves trial-to-trial variability of the 

neural response, which may hold valuable information about underlying neural 

activity. This method relies on simultaneously integrating information across a 

large number of sensors, and on using this information to identify EEG 

components that optimally discriminate between the conditions of interest. As 

such, signal quality can be improved whilst simultaneously preserving temporal 

information that would otherwise be lost through averaging across trials. EEG 

data alone cannot however provide precise spatial information about neural 

activity. To overcome this limitation, recent advances in neuroimaging methods 

have been developed which make possible the simultaneous acquisition of EEG 

and fMRI measurements, and these are becoming more widely used in the study 

of decision making (Pisauro et al. 2017, Goldman et al. 2009, Fouragnan et al. 

2015). Combined with the single-trial EEG analysis techniques, it is possible to 

characterise neural signals of interest with higher precision and spatiotemporal 

accuracy than allowed by either method alone. Namely, the single-trial 

variability in EEG components of interest can be used to detect functionally 

correlated activity in the fMRI BOLD signal. Applied to the study of confidence, 

this method makes it possible to capitalise on endogenous (i.e., neural) signals 

associated with confidence, and expose potential latent states that might not be 

captured by behavioural reports alone.  

Aims of the thesis 

As this chapter has highlighted, there is overall a growing body of research 

uncovering the neural correlates of decision confidence. Nevertheless, several 

questions merit additional consideration, some of which are addressed in the 

current thesis. Firstly, as presented earlier, empirical work in non-human 

primates suggests that confidence-related information may become available 
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early on in the decision process, and potentially encoded in the decision process 

itself. The possibility that such a mechanism might underlie perceptual 

confidence in the human brain has not yet been explicitly assessed. This 

question motivated our first study, which will be presented in Chapter 2. In 

short, we collected EEG measurements from human subjects during performance 

of a face vs. car visual categorisation task. Using a single-trial multivariate 

analysis of the EEG, we found that neural signals discriminating between high 

and low confidence displayed a temporal pattern consistent with a process of 

decision-related evidence accumulation. We showed that confidence was 

reflected in the rate of this buildup, in line with the notion that confidence-

related information may be represented in the same neural process that 

supports the decision.  

Our second study, which extended this work, is presented in Chapter 3. As 

highlighted above, rhythmic neural activity has been shown to contain 

information about the ongoing decision process, offering insights into the 

underlying neural mechanisms of decision making which surpass the information 

obtained from time-domain analyses. We thus asked whether such signals may 

also hold information about the confidence in the perceptual decision. Using 

data from our first study, we adopted an exploratory approach whereby we 

sought to characterise neural representations of confidence in the frequency 

domain.  

Finally, Chapter 4 presents the third and final study, in which we aimed to 

capitalise on the trial-by-trial variability in the time-resolved, endogenous 

markers of confidence identified with EEG, to identify potentially correlated 

activation in the fMRI data. To this end we collected simultaneous EEG and fMRI 

recordings while subjects performed a random-dot motion discrimination task 

and rated their confidence on a trial-by-trial basis. The primary goal of this 

approach was to characterise confidence-related signals with higher 

spatiotemporal precision than permitted by either method in isolation, and 

importantly, to obtain a more accurate representation of early confidence 

signals (i.e., occurring near the time of the decision and prior to explicit 

metacognitive evaluation) than has so far been possible in human studies. 
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Chapter 2. Neural representations of confidence emerge 

from the process of decision formation during perceptual 

choices 
 

 

Summary 

 

Choice confidence represents the degree of belief one‟s actions are likely to be 

correct or rewarding and plays a critical role in optimising our decisions. Despite 

progress in understanding the neurobiology of human perceptual decision-

making, little is known about the representation of confidence. Importantly, it 

remains unclear whether confidence forms an integral part of the decision 

process itself or represents a purely post-decisional signal. To address this issue 

we employed a paradigm whereby on some trials, prior to indicating their 

decision, participants could opt-out of the task for a small but certain reward. 

This manipulation captured participants‟ confidence on individual trials and 

allowed us to discriminate between electroencephalographic signals associated 

with certain-vs-uncertain trials. Discrimination increased gradually and peaked 

well before participants indicated their choice. These signals exhibited a 

temporal profile consistent with a process of evidence accumulation, 

culminating at time of peak discrimination. Moreover, trial-by-trial fluctuations 

in the accumulation rate of nominally identical stimuli were predictive of 

participants‟ likelihood to opt-out of the task, suggesting confidence emerges 

from the decision process itself and is computed continuously as the process 

unfolds. Correspondingly, source reconstruction placed these signals in regions 

previously implicated in decision making, within the prefrontal and parietal 

cortices. Crucially, control analyses ensured that these results could not be 

explained by stimulus difficulty or changes in attention. 

 

Introduction 
 

Imagine running in the park on a rainy day, trying to discern whether the person 

across the lawn is an old friend. The decision to keep concentrating on your 
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stride or change directions to go greet them depends on your level of confidence 

that it is really them. Choice confidence is crucial not only for such mundane 

tasks, but also for more biologically and socially complex situations. It provides a 

probabilistic assessment of expected outcome and can play a key role in how we 

adjust in ever-changing environments, learn from trial and error, make better 

predictions, and plan future actions.  

In recent years, systems and cognitive neuroscience have begun to examine the 

neural correlates underlying perceptual decision making. As a result, many 

monkey neurophysiology (Gold and Shadlen 2007, Kim and Shadlen 1999, 

Mazurek et al. 2003, Newsome et al. 1989, Shadlen et al. 1996, Shadlen and 

Newsome 2001), human neuroimaging (Heekeren et al. 2004, Heekeren et al. 

2006, Heekeren et al. 2008, Ho et al. 2009, Ploran et al. 2007, Tosoni et al. 

2008, Cheadle et al. 2014), and human electrophysiology (de Lange et al. 2010, 

Donner et al. 2009, Donner et al. 2007, Philiastides et al. 2006, Philiastides and 

Sajda 2006, Ratcliff et al. 2009, O'Connell et al. 2012, Wyart et al. 2012) 

experiments have provided converging support that perceptual decisions are 

characterised by a noisy temporal accumulation of sensory evidence which 

culminates when an observer commits to a choice. Despite this progress, 

however, it remains unclear how confidence is represented in the human brain 

and what its relationship is with the decision process itself.  

Current theoretical and experimental accounts have regarded confidence as a 

metacognitive event that relies on new information arriving beyond the decision 

point (Fleming et al. 2012, Pleskac and Busemeyer 2010, Yeung and Summerfield 

2012). Conversely, little has been done in the way of exploring whether 

confidence might emerge earlier in the decision process and before one commits 

to a choice. Evidence for the latter has recently emerged from a limited number 

of animal studies (Shadlen and Kiani 2013, Kiani and Shadlen 2009, Middlebrooks 

and Sommer 2012), proposing that choice confidence in perceptual judgments 

might be an inherent property of the decision process itself and that the same 

neural generators involved in evidence accumulation also encode choice 

confidence. To date, it remains unclear whether confidence forms an integral 

part of the decision process itself and whether it emerges from the same neural 
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generators involved in accumulating evidence for the decision. Similarly, it is 

unknown whether confidence is reflected in the rate of evidence accumulation 

itself. 

To address these open questions, we collected electroencephalography (EEG) 

data during a binary, delayed-response, task in which correct responses were 

rewarded with monetary incentives. Importantly, on a random half of trials and 

after forming a decision, participants were given the option to opt out of the 

task for a smaller but sure reward (a form of post-decision wager; Kiani and 

Shadlen, 2009). We expected participants to waive the sure reward when they 

were certain of their choice, and select it otherwise. This in turn allowed us to 

use a multivariate single-trial classifier to discriminate between certain-vs-

uncertain trials to identify the temporal characteristics of the neural correlates 

of choice confidence. Importantly, additional control analyses were carried out 

to ensure that confidence-related effects could not be explained by stimulus 

difficulty or trial-by-trial changes in attention. 

 

Materials and Methods 
 

Participants. Nineteen subjects (7 males) aged between 18-36 years (mean = 

23.4 years) participated in the experiment. All had normal or corrected-to-

normal vision and reported no history of neurological problems. Written 

informed consent was obtained in accordance with the School of Psychology 

Ethics Committee at the University of Nottingham.  

 

Stimuli and task. Stimuli consisted of 20 face (face database, Max Planck 

Institute for Biological Cybernetics, Tuebingen, Germany) (Troje and Bulthoff 

1996) and 20 car greyscale images obtained from the web (size 500×500 pixels, 

8-bits/pixel). Spatial frequency, contrast, and luminance were equalised across 

all images, and the magnitude spectrum of each image was adjusted to the 

average magnitude spectrum of all images. We manipulated the phase spectrum 

of the images to obtain noisy stimuli of varying levels of sensory evidence (i.e. 

we manipulated the percentage phase coherence of our images) (Dakin et al. 
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2002). Stimuli were presented centrally on a plain grey background on a 

computer screen using PsychoPy software (Peirce 2007). The display was 

situated 1m away from the subject, with each stimulus subtending 

approximately 8 × 8 degrees of visual angle.  

 

We used a training session prior to the main task to identify subject-specific 

phase coherence values for the stimuli used in the main task. Specifically, during 

training subjects were required to perform a simple speeded face vs. car 

categorisations over a total of 600 trials, using images with 7 different phase 

coherence values (27.5-42.5%, in increments of 2.5%). Each image was presented 

for 0.1 s and subjects were allowed a maximum of 1.25 s to make a response. 

The response was followed by an inter-trial interval, randomised between .75-

1.5 s. There were an equal number of face and car stimuli, and these were 

presented in random order. Based on performance during this session, we 

selected three subject-specific phase coherence levels for the main task 

(henceforth referred to as Low, Medium, and High), which spanned 

psychophysical threshold (in the range 60-80% accuracy).  

 

For the main experiment, subjects performed face vs. car categorisations during 

a delayed-response, post-decision wagering paradigm designed to discriminate 

between certain and uncertain trials (Fig. 2.1A). Importantly, on a random half 

of the trials, subjects were offered the option to opt-out of the task for a 

smaller (relative to a correct response) but sure reward (SR). This manipulation 

encouraged subjects to select the SR option on low confidence trials (Kiani and 

Shadlen 2009). Responses were rewarded with points (correct = 10 points, 

incorrect = 0 points, SR choice = 8 points). The total number of points collected 

was translated into a monetary payment at the end of the experiment. Each trial 

began with a face or car stimulus presented for 0.1s at one of the three possible 

sensory evidence levels. Stimulus presentation was followed by a forced delay 

(i.e., the decision time) randomised between 0.9-1.4s. This delay was 

introduced prior to revealing whether participants could opt-out of the task, to 

ensure they formed a decision on every trial. Next, a visual response cue (1s) 

informed participants whether or not the SR option would be available – this was 
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indicated by a green or red fixation cross, respectively. In addition, the letters 

“F” (for face) and “C” (for car) where positioned randomly to the left and right 

of the central fixation cross to indicate the mapping between stimulus and motor 

effectors (right index and ring fingers, respectively). The latter manipulation 

aimed at separating the decision process from motor planning and execution. 

Subjects indicated their choice by pressing one of three buttons on a response 

box (LEFT/RIGHT for a stimulus choice, MIDDLE for the SR). They were instructed 

to respond after the response cue was removed from the screen. A response was 

followed by an inter-trial interval randomised in the range 1-1.5 s. Overall 

subjects performed 480 trials, divided into two blocks of 240 trials each.  

 

EEG data acquisition. We recorded EEG data during performance of the main 

task, in an electrostatically shielded room, using a DBPA-1 digital amplifier 

(Sensorium Inc., VT, USA), at a sampling rate of 1000Hz. We used 117 Ag/AgCl 

scalp electrodes and three periocular electrodes placed below the left eye and 

at the left and right outer canthi. Additionally, a chin electrode was used as 

ground. All channels were referenced to the left mastoid. Input impedance was 

adjusted to <50kOhm. To obtain accurate event onset times we placed a 

photodiode on the monitor to detect the onset of the stimuli. An external 

response device was used to collect response times. Both signals were collected 

on two external channels on the EEG amplifiers to ensure synchronization with 

the EEG data. 

 

EEG data pre-processing. We applied a 0.5-100Hz band-pass filter to the data to 

remove slow DC drifts and high frequency noise. These filters were applied non-

causally (using MATLAB “filtfilt”) to avoid phase related distortions. Additionally, 

we re-referenced our data to the average of all electrodes. To remove eye 

movement artefacts, participants performed an eye movement calibration task 

prior to the main experiment, during which they were instructed to blink 

repeatedly several times while a central fixation cross was displayed in the 

centre of the computer screen, and to make lateral and vertical saccades 

according to the position of the fixation cross. We recorded the timing of these 

visual cues and used principal component analysis to identify linear components 
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associated with blinks and saccades, which were then removed from the EEG 

data (Parra et al. 2005). Finally, we baseline corrected our EEG data, with the 

baseline interval defined as the 100ms prior to stimulus onset.  

 

Single trial EEG analysis. To identify confidence-related activity in the neural 

data, we used a single-trial multivariate discriminant analysis (Parra et al. 2002, 

Parra et al. 2005) to estimate linear spatial weightings of the EEG sensors, which 

discriminated between certain (SR Waived) and uncertain (SR Selected) trials. 

We applied our technique to discriminate between the two groups of trials at 

various time points, in the time range between 100 ms prior to, and 1000 ms 

following the presentation of the visual stimulus (i.e. during the decision phase 

of the trial). For each participant we estimated, within short pre-defined time 

windows of interest, a projection in the multidimensional EEG space (i.e. a 

spatial filter) that maximally discriminated between the two conditions on 

stimulus-locked data (Eq. 1). Unlike conventional, univariate, trial-average 

event-related potential analysis, our multivariate approach is designed to 

spatially integrate information across the multidimensional sensor space, rather 

than across trials, to increase signal-to-noise ratio while preserving single-trial 

information.  

 

Specifically, our method aimed to identify a one-dimensional „discriminating 

component‟,  ( ), by integrating information across all D electrodes, which 

maximally discriminated between the two trial groups. We use the term 

„component‟ instead of „source‟ to make it clear that this is a projection of all 

the activity correlated with the underlying source. We did this by applying a 

weighting vector   (i.e. a spatial filter) to our multidimensional EEG data ( ( )), 

as summarised in the equation below:  

 

 ( )     ( )   ∑     ( )
 
               (1) 

 

We used logistic regression and a reweighted least squares algorithm to learn the 

optimal discriminating spatial weighting vector   (Jordan and Jacobs 1994). We 

used this approach to identify a   for several short pre-defined training windows 
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centred at various latencies across our epoch of interest. Specifically, we used a 

60 ms training window and stimulus-locked onset times varying from 100 ms 

before until 1000 ms after the stimulus, in increments of 10ms. The spatial 

filters ( ) obtained this way applied to an individual trial produce a 

measurement of the component amplitude for that trial. In separating the two 

groups of trials the discriminator was designed to map the component 

amplitudes for one condition to positive values and those of the other condition 

to negative values; note that this mapping was arbitrary. Here, we mapped the 

high confidence (SR Waived) trials to positive values and the low confidence (SR 

Selected) trials to negative values.  

 

We quantified the performance of the discriminator for each time window using 

the area under a receiver operating characteristic (ROC) curve, referred to as an 

Az-value, using a leave-one-out procedure (Duda et al. 2001). To assess the 

significance of the discriminator we used a bootstrapping technique where we 

performed the leave-one-out test after randomising the trial labels. We 

repeated this randomization procedure 1000 times to produce a probability 

distribution for Az, and estimated the Az leading to a significance level of 

p<0.01. 

 

To visualize the profile of the discriminating component,  , across individual 

trials, we also constructed discriminant component maps (see Fig. 2.2C for an 

example). To do so we applied the spatial weighting vector   of the window 

that resulted in the highest discrimination performance between SR Waived vs. 

SR Selected trials, across an extended time range (100 ms before until 1000 ms 

after the stimulus). Each row of one such discriminant component map 

represents a single trial across time. We also sorted trials (i.e., the rows of these 

maps) based on the amplitude of the discriminating component in the time 

window of maximum discrimination. We also used this approach to compute the 

temporal profile of the discriminating component,  , along the sensory evidence 

dimension to look for evidence of a gradual build-up of activity leading up to the 

point of maximum discrimination and to extract single-trial slopes of this 

accumulating activity. Slopes were computed using linear regression between 
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the onset- and peak times of the accumulating activity extracted from individual 

participants. Specifically, we extracted subject-specific accumulation onset-

times by selecting (through visual inspection) the time point at which the 

discriminating component activity began to rise in a systematic fashion after an 

initial dip in the data following any early (non-discriminative) evoked responses 

present in the data (as seen in Fig. 2.4A). Peak accumulation times were 

selected as the time points of maximum discrimination across individual 

participants. To justify our choice for a linear model, we fit three additional 

models (exponential, logarithmic and power-law) to the individual subject 

accumulation patterns, using the same onset and peak accumulation times. We 

compared the goodness of fit to the data (mean square error) and found that the 

linear model provided the best fit to the accumulating activity, across all levels 

of sensory evidence. 

 

Given the linearity of our model we also computed scalp projections of the 

discriminating components resulting from Eq. 1 by estimating a forward model 

for each component: 

 

a   
   

   
            (2) 

 

where the EEG data ( ) and discriminating components ( ) are now in a matrix 

and vector notation, respectively, for convenience (i.e., both   and   now 

contain a time dimension). Equation 2 describes the electrical coupling of the 

discriminating component   that explains most of the activity in   (refer to 

Parra et al. 2002 for a detailed derivation of a). Strong coupling indicates low 

attenuation of the component   and can be visualised as the intensity of vector 

a. We used these scalp projections as a means of localizing the underlying 

neuronal sources (see next section). 

 

Distributed source reconstruction. To spatially localize the resultant 

discriminating component activity related to choice confidence we used a 

distributed source reconstruction approach based on empirical Bayes (Friston et 

al. 2008) as implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The 

http://www/
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method allows for an automatic selection of multiple cortical sources with 

compact spatial support that are specified in terms of empirical priors, while the 

inversion scheme allows for a sparse solution for distributed sources (refer to 

Friston et al., 2008, for details). We used a three-sphere head model, which 

comprised of three concentric meshes corresponding to the scalp, the skull and 

the cortex. The electrode locations were co-registered to the meshes using 

fiducials in both spaces and the head shape of the average MNI brain.  

 

To compute the electrode activity to be projected onto these locations, we 

applied Eq. 2 to extract, at each time point, the scalp activity that was 

correlated with the confidence discriminating component   estimated during 

peak discriminator performance (i.e. we computed a forward model indexed by 

time, a(t)). We estimated a(t) in 1 ms data increments in the time range 

between 300 and 880 ms after stimulus onset (i.e. around the peak 

discrimination time).  

 

Analysis of neural data. We used different logistic regressions to examine how 

neural activity correlated with participants‟ behavioural performance. To factor 

out the effect of task difficulty in our analyses, we first z-scored, at each level 

of sensory evidence separately, both the single-trial confidence component 

amplitudes (i.e.,   at the end of the accumulation process) and the single-trial 

slopes of the accumulating activity itself (Acc. Slopes). Subsequently, we 

proceeded to perform different regression analyses on these trial-to-trial 

residual fluctuations (i.e., deviations from mean   and Acc. Slopes). Regression 

analyses were performed separately for each subject.  

 

To assess how the fluctuations in discriminant component amplitude   

(estimated from discriminating certain vs uncertain trials) influenced 

participants‟ likelihood of waiving the Sure Reward (SR), on trials where this 

option was available, we performed the following regression analysis: 

 

                 (        )               (3) 
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We expected a positive correlation between the two quantities (as larger   

amplitudes are expected to reflect more confident trials), and thus we tested 

whether the regression coefficients resulting across subjects (  s in Eq. 3) came 

from a distribution with mean larger than zero (using a one-tailed t-test). We 

also repeated this analysis for each level of sensory evidence separately and 

tested whether   remained a significant predictor of participants‟ likelihood to 

waive the SR in each of the three levels. Moreover, we tested for differences in 

explanatory power across the three levels by comparing the resulting regression 

coefficients (using one-tailed paired t-test). 

 

To assess how the slope of the accumulating activity influenced behavioural 

performance, we used the same rationale as with the previous analysis. 

Specifically, we used the accumulation slopes as a predictor for the probability 

of waiving the SR, on trials where this option was available:   

 

                 (                    )       (4) 

 

We hypothesised that, if confidence is an inherent property of the accumulation 

process itself, then accumulation slopes would be positively correlated with the 

probability of waiving the SR (i.e.,   >0), and we performed a one-tailed t-test 

to formally test for this hypothesis. 

  

Next, we investigated whether accumulation slopes provided additional 

explanatory power for the probability of waiving the SR than what was already 

conferred by the discriminant component amplitude   (i.e. whether a significant 

positive correlation with accumulation slopes would still be present if the 

discriminant component amplitude   was included as an additional predictor in 

the regression):  

 

                 (                            )             (5) 
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As before, we a performed a one-tailed t-test to assess whether regression 

coefficients for accumulation slopes (  s in Eq. 5) came from a distribution with 

mean larger than zero. 

 

To rule out the possibility that confidence effects are driven by changes in 

attention across trials we included two additional predictors in the previous 

regression model, corresponding to two well-known neural signatures of 

attention; 1) pre-stimulus EEG power in the α band (         ), which was linked 

to top-down control of attention (Wyart and Tallon-Baudry 2009) and was shown 

to correlate with visual discrimination performance (Thut et al. 2006, van Dijk et 

al. 2008), resulting from the analysis described in the next section and 2) an 

evoked component appearing 220 ms post-stimulus (    ), which was shown (in 

the same task used here) to index allocation of attentional resources required 

for the decision (Philiastides et al. 2006), and was localized in areas of the 

frontoparietal attention network (Philiastides and Sajda 2007).  

 

                 (                                                )           (6) 

 

We expected the fluctuations associated with confidence in both discriminant 

component amplitude   and accumulation slopes to remain a significant positive 

predictor of the likelihood of waiving the SR and thus we tested whether the 

resulting regression coefficients across subjects (  s and      in Eq. 6) came 

from a distribution with mean larger than zero (using a one-tailed t-test).  

 

Single-trial power analysis. Pre-stimulus alpha power was obtained using a 

wavelet transform as in (Tallon-Baudry et al. 1996, Mazaheri and Jensen 2006). 

In short, single trials were convolved by a complex Morlet wavelet  (    )  

      (       )    (      ), where          , and   is the imaginary unit. 

  (  √ )     is a normalisation term, whereas the constant   defines the 

time-frequency resolution tradeoff and was set to 7. The wavelet transformation 

produces a complex time series for the frequencies    of interest (here 8-12 Hz). 

Single-trial power was calculated by averaging the squared absolute values of 

the convolutions in the 500 ms preceding the onset of the stimulus at the 
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subject-specific peak alpha frequency and occipitoparietal sensor with the 

highest overall alpha power. 

 

Results 

Our participants‟ behavioural performance indicated that our paradigm was 

successful in capturing choice confidence. Specifically, our participants selected 

the SR more frequently in more difficult trials (F (2, 36) = 55.87, p < .001, post 

hoc paired t-tests, all p < .001, Fig. 2.1B), consistent with previous reports 

showing that confidence scales with the amount of sensory evidence (Vickers and 

Packer 1982). Importantly, there was no difference in the frequency of choosing 

the SR across face and car trials (t (18) = 1.7, p = 0.11) ensuring this effect was 

not driven by one of the two stimulus categories.  

More interestingly, accuracy on trials in which participants were offered the SR 

and rejected it was significantly higher compared to the trials in which the SR 

was not available (F (1, 18) = 100.26, p < .001, Fig. 2.1C). This effect was 

present for all levels of sensory evidence suggesting that participants waived the 

SR based on a sense of confidence on each trial rather than on the level of 

stimulus difficulty. Overall there was no significant difference in accuracy 

between face and car trials indicating that there was no category-specific choice 

bias (t (18) = 0.76, p = 0.46). As expected (Blank et al. 2013, Philiastides et al. 

2006, Philiastides and Sajda 2006), there was also a main effect of stimulus 

difficulty (F (2, 36) = 28.99, p < .001, post hoc paired t-tests, all p < .001, Fig. 

2.1C), with accuracy increasing with the amount of sensory evidence. Finally, we 

note, that due to the delayed-response paradigm employed here, there were no 

significant differences in response time between certain (SR Waived) and 

uncertain (SR Selected) trials (420ms and 406ms respectively, t (18) = 0.99, p = 

.33). 
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Figure 2.1. Experimental design and behavioural performance. A. Schematic 

representation of the behavioural paradigm. Participants had to categorise a briefly 

presented (0.1 s) image, at one of three possible levels of sensory evidence, as being a 

face or car. Stimulus presentation was followed by a random delay (0.9-1.4s) during 

which participants had to form a decision. Next, a visual response cue (1s) informed 

participants whether a small (relative to a correct choice) but sure reward (SR) was 

available or not, with either a green or red cross, respectively. The letters “F” (for 

face) and “C” (for car) where positioned randomly to the left and right of the fixation 

cross, indicating the mapping between stimulus and motor effectors (right index and 

ring fingers respectively). Participants indicated their choice as soon as the response 

cue was removed from the screen. B. Mean proportion of SR choices (on trials where the 

SR was offered), across subjects, as a function of sensory evidence. C. Mean proportion 

of correct responses, across subjects, for SR Waived (green) vs. SR Absent (red) trials, as 

a function of the three levels of sensory evidence. Error bars in B and C represent 

standard errors across subjects. 
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To identify confidence-related activity in the neural data, we used a single-trial 

multivariate approach to discriminate between certain (SR Waived) and 

uncertain (SR Selected) trials. We observed that the discriminator's performance 

increased gradually after 300 ms (i.e. after early encoding of the stimulus) and 

peaked around 600 ms post-stimulus, on average. This pattern of discriminator 

performance was visible in individual data (Fig. 2.2A) as well as in the group 

average (Fig. 2.2B), consistent with the idea that confidence develops gradually 

as the decision process unfolds and culminates before one commits to a choice 

(Ding and Gold 2013, Kiani and Shadlen 2009). To visualise the temporal profile 

of this discriminating component activity across trials, we also constructed 

single-trial component maps by applying our subject-specific spatial projections 

estimated in the time window yielding maximum confidence discrimination 

(using Eq. 1) to an extended time window. These maps clearly highlight the 

overall difference in component amplitude   between SR Waived and SR 

Selected trials and the temporally broad response profile of the discriminating 

component, both of which contributed to the discriminator‟s performance. The 

maps also highlight the trial-by-trial variability in the amplitude and temporal 

spread of this component, providing qualitative support that decision confidence 

might represent a graded quantity (Fig. 2.2C). 

 

To provide further support linking this discriminating component to choice 

confidence, we considered trials in which the SR was not available (i.e. SR 

Absent) and participants were forced to make a face/car response. Importantly, 

these trials can be considered as “unseen” data (they are independent of those 

used to train the classifier), and can be subjected through the same neural 

generators (i.e. spatial projections) estimated during discrimination of SR 

Waived vs. SR Selected trials. We expected that these trials would contain a 

mixture of confidence levels and therefore the resulting mean component 

amplitude at the time of peak discrimination would be situated between those 

of the certain and uncertain trial groups (i.e. SR Waived > SR Absent > SR 

Selected). Indeed, this was the case and the mean SR Absent activity was 

significantly different from both the SR Selected (t (18) = 7.53, p < .001) and SR 

Waived (t (18) = -7.71, p < .001) (Fig. 2.2D). The mixture of both high and low 
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confidence trials within the SR Absent group can be further appreciated by 

inspecting the resulting single-trial component amplitudes (Fig. 2.2C; middle 

panel). 
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Figure 2.2. Neural representation of choice confidence. A. Classifier performance (Az) 

during high-vs-low confidence discrimination (i.e. SR Waived vs. SR Chosen) of stimulus-

locked single-trial data, for a representative subject. The dotted line represents the 

subject-specific Az value leading to a significance level of p=0.01, estimated using a 

bootstrap test. The scalp topography is associated with the discriminating component 

estimated at time of maximum discrimination. B. Mean classifier performance and scalp 

topography across subjects during confidence (i.e. SR Waived vs. SR Chosen) 

discrimination (dark grey). For comparison, mean classifier performance during accuracy 

(i.e. Correct vs. Incorrect) discrimination for SR Absent trials is also shown (light grey). 

Shaded areas represent standard errors across subjects. C. Single-trial discriminant 

component maps, for a representative subject, obtained by applying the subject-

specific spatial projections estimated at the time of maximum discrimination (black 

window) to an extended time range relative to the onset of the stimulus and across all 

trials (including SR Absent trials that were independent of those used to train the 

classifier). Each row in these maps represents discriminant component amplitudes, y(t), 

for a single trial across time. Within each trial group (top to bottom panel: SR Waived, 

SR Absent, SR Selected), trials are sorted by mean component amplitude (y) at time of 

maximum discrimination. Red represents positive and blue negative component 

amplitudes, respectively. D. Mean component amplitude for the SR Absent group was 

situated between those of the high and low confidence groups (SR Waived and SR 

Selected). This is consistent with a mixture of “certain” and “uncertain” trials in the SR 

Absent group as can be seen in C for one participant (i.e. a mixture of red and blue 

component amplitudes). Error bars are standard errors across subjects. E. Trial-by-trial 

deviations from the mean component amplitude at time of maximum confidence 

discrimination were positively correlated with the probability of waiving the SR. To 

visualize this association the data points were computed by grouping trials into five bins 

based on the deviations in component amplitude. Importantly, the curve is a fit of Eq. 3 

to individual trials. Grey curves are fits of Eq. 3 to each of the three levels of sensory 

evidence separately (light to dark grey represents high to low sensory evidence. F. Mean 

classifier performance and scalp topography across subjects within an individual level of 

sensory evidence (medium phase coherence; results looked very similar for the other 

two levels). Note that the patterns are qualitatively very similar to those shown in B for 

which classification was performed over all trials. Shaded area represents standard 

errors across subjects. G. Mean component amplitude for correct SR Waived (confident) 

trials (dark grey) and correct SR Absent (on average, less confident) trials (light grey), 

split by level of sensory evidence. Error bars are standard errors across subjects. 

 

A potential concern is that subjects‟ choice to waive or select the SR (and 

consequently our discriminator‟s performance) is driven primarily by the physical 

properties of the stimulus (i.e. stimulus difficulty). This is unlikely, as changes in 

early stimulus encoding would have produced significant discrimination 

performance earlier in the trial (i.e. around 170–200 ms post-stimulus, driven by 

EEG components known to be affected by stimulus evidence – N170/P200 
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(Jeffreys 1996, Liu et al. 2000, Philiastides et al. 2006)), which was absent in our 

data (see discriminator performance at the relevant time windows in Fig. 2.2A, 

B). Nonetheless, we performed additional analyses to ensure that stimulus 

difficulty could not explain the observed effects. 

 

We first removed the overall influence of stimulus difficulty by computing the 

trial-to-trial deviations around the mean discriminating component activity, 

separately for each level of sensory evidence, and used these residual 

fluctuations as predictors of participants‟ choices to waive the SR in a single-

trial logistic regression analysis (Eq. 3). We found a significant positive 

correlation (t (18) = 15.19, p < .001) between component amplitudes and the 

probability of waiving the SR (i.e. bigger amplitudes, higher probability of SR 

waived; Fig. 2.2E). Crucially, we also repeated this regression analysis separately 

for each level of sensory evidence and found that our component amplitudes 

remained a significant predictor of subjects‟ opt-out behaviour within each level 

of stimulus difficulty (all p < .001), without significant differences in explanatory 

power across the three levels (all p ≥ .2 ; Fig. 2.2E). Similarly, we repeated the 

discrimination between certain-vs-uncertain trials using observations from 

individual levels of sensory evidence and demonstrated that our discriminator 

performance remained virtually unchanged compared to our main analysis 

(compare Fig. 2.2B with 2.2F for a single level of difficulty). 

  

To identify the spatial extent of our confidence component, we first computed a 

forward model of the discriminating activity (Eq. 2), which can be visualised in 

the form of a scalp map (Fig. 2.2A, B). Importantly, we used these forward 

models as a means of localizing the underlying neural generators using a 

Bayesian distributed source reconstruction technique (Friston et al. 2008). The 

source analysis revealed sources in areas in the anterior prefrontal cortex with a 

pronounced left bias and in regions of the posterior parietal cortex, bilaterally 

(Fig. 2.3; explained variance > 97%), areas which have previously been 

implicated in perceptual decision making and evidence accumulation, both in 

the human (Heekeren et al. 2006, Ploran et al. 2007, Tosoni et al. 2008) and 

primate (Kim and Shadlen 1999, Shadlen and Newsome 2001, Kiani and Shadlen 

2009) brains. These results, coupled with the gradual build-up of confidence-
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related discriminating activity (Fig. 2.2A, B), suggest that choice confidence 

might be encoded in the same brain areas supporting evidence accumulation and 

decision formation. Moreover, they raise the intriguing possibility that 

confidence is computed continuously as the decision process unfolds, thus being 

reflected in the slope of the process of evidence accumulation itself (Ding and 

Gold 2013, Kiani and Shadlen 2009).  

 

 
 

Figure 2.3. Spatial representation of choice confidence. A distributed source 

reconstruction technique (Friston et al. 2008) revealed neural generators associated 

with choice confidence in anterior prefrontal cortex (with a left bias) and in distinct 

clusters in parietal cortex, bilaterally (along the intraparietal sulcus). Slice coordinates 

are given in millimetres in MNI space. 

 

To formally test these predictions, we subjected the data through the same 

neural generators (i.e. spatial projections) estimated for the confidence 

discrimination but stratified our trials along the sensory evidence dimension 

instead. In doing so, we observed ramp-like activity starting, on average, at 300 

ms post-stimulus, which built up gradually to the time of peak confidence 

discrimination (Fig. 2.4A), and whose slope was parametrically modulated by the 

amount of sensory evidence (F (2,36) = 10.6, p < 0.001, Fig. 2.4B), consistent 
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with a process of evidence accumulation (Philiastides et al. 2006, Kelly and 

O'Connell 2013, Philiastides et al. 2014, O'Connell et al. 2012). Importantly, this 

finding suggests that choice confidence and evidence accumulation share 

common neural generators. To investigate whether confidence emerges from the 

decision process itself, we tested whether the trial-by-trial build-up rates of the 

accumulating activity were predictive of participants‟ opt-out behaviour. 

Specifically, we used single-trial slope estimates of the accumulating activity to 

predict participants‟ decisions to waive the SR in a new logistic regression model 

(Eq. 4). As in the previous analysis, overall stimulus difficulty effects were 

removed from individual trials. We found a significant positive correlation (t (18) 

= 11.94, p < .001) between the slope of accumulation and the probability of 

waiving the SR (i.e. steeper slopes, higher probability of SR waived, Fig. 2.4C).  

 

 

 
 

Figure 2.4. Choice confidence and evidence accumulation. A. Subjecting our data 

through the same spatial distribution of component activity estimated during confidence 

discrimination (i.e., Fig. 2.2A, B) revealed a gradual build-up of activity (i.e. 

accumulating activity) earlier in the trial that was modulated by the amount of sensory 



43 
 

evidence (i.e. % stimulus phase coherence). Trials were locked to the onset of the 

stimulus and averaged across subjects. B. Mean slope of the accumulating activity 

across subjects was positively correlated with the amount of sensory evidence. Slopes 

were estimated by computing linear fits through the data based on subject-specific 

onset and peak accumulation times. Error bars represent standard errors across 

subjects. C. Trial-by-trial deviations from the mean accumulation slope were positively 

correlated with the probability of waiving the SR. To visualize this association the data 

points were computed by grouping trials into five bins based on the deviations in the 

slope of the accumulating activity. Importantly, the curve is a fit of Eq. 4 to individual 

trials.  

 

A potential confound of the previous analysis is that the slope of the 

accumulating activity simply echoes the confidence effects we identified earlier 

on the amplitude of our discriminating component, as the latter were extracted, 

on average, near the end of the accumulating activity. Crucially, we found that 

the two quantities were only partially correlated (r = .39, p < .001), due to the 

high degree of inter-trial variability in internal components of decision 

processing as has been described previously by accumulation-to-bound models 

(Ratcliff et al. 2009, Bogacz et al. 2006, Mulder et al. 2014, van Maanen et al. 

2011). As such we found that each exerted a separate influence on our 

participants‟ opt-out behaviour (Eq. 5, t (18) = 2.96, p = .008), which suggests 

that traces of confidence begin to develop as early as the decision process itself 

and continue to be reflected in the process of evidence accumulation, becoming 

progressively more robust as the decision unfolds. 

 

Importantly, to rule out that our confidence effects are driven by changes in 

attention across individual trials we exploited two well-known neural signatures 

of attention (pre-stimulus alpha (Wyart and Tallon-Baudry 2009) and a post-

stimulus evoked response indexing allocation of attentional resources 

(Philiastides et al. 2006)), which we used as additional predictors of our 

participants‟ opt-out behaviour in a different logistic regression model (Eq. 6). 

Crucially, we found that our original confidence component amplitudes and 

accumulation slopes remained significant predictors of the likelihood of waiving 

the SR (component amplitudes: t (18) = 14.51, p < .001, one-tailed t-test; slopes: 

t (18) = 2.15, p < .05).  Furthermore, to test whether local fluctuations in 

attention could further explain our findings, we used a serial autocorrelation 
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regression analysis to predict our discriminator component amplitudes ( ) on the 

current trial using those on the immediately preceding five trials and found no 

significant effects (all p > 0.1). Taken together, these results provide compelling 

evidence that our observed effects could not be explained purely by changes in 

attention. 

 

To ensure that accuracy, which was shown to correlate partially with decision 

confidence (Vickers et al. 1985, Vickers and Packer 1982), is not responsible for 

the reported effects, we performed two additional control analyses. First, we 

used SR Absent trials, which contained trial-to-trial accuracy information and 

trained a separate classifier to discriminate between correct and incorrect trials. 

If our confidence effects were a mere manifestation of differences between 

correct and incorrect trials then classification performance would have been 

comparable to that obtained along the confidence dimension. Instead, classifier 

performance was significantly reduced relative to our SR Waived vs. SR Selected 

discrimination (Fig. 2.2B, t (18) = 5.1, p < .001, paired t-test).   

 

Finally, we performed an analysis in which we subjected the data through the 

same neural generators (i.e. spatial projections) estimated for the confidence 

discrimination and partitioned our trials in two groups in a way that ensured 

accuracy remained constant while confidence was altered across the groups. 

Specifically, we compared component activity between correct SR Waived trials 

(confident trials) and correct SR Absent trials (which are, on average, less 

confident as they contain a mixture of confident and non-confident choices). We 

found that the component amplitudes for the more confident group of trials 

were significantly higher (t (18) = 9.4, p < .001, paired t-test) with persistent 

effects across all levels of sensory evidence (Fig. 2.2G, post hoc paired t-tests, 

all p <. 001). Taken together, these results endorse the notion that our reported 

confidence effects cannot be explained purely by differences in decision 

accuracy. 
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Discussion 
 

Here, we used a multivariate single-trial EEG approach, coupled with a 

distributed source reconstruction technique, to provide a mechanistic account 

on how decision confidence is represented in the human brain. We showed that a 

neural representation of confidence arises as early as the decision process itself 

and becomes progressively more robust as the decision unfolds, culminating 

shortly before one commits to a choice. Importantly, we demonstrated that this 

representation is reflected in the rate of evidence accumulation, thereby linking 

the development of choice confidence to the same neural mechanism used to 

form the decision itself. Consistent with this interpretation, source 

reconstruction placed confidence-related activity in regions previously 

implicated in evidence accumulation and decision making in human prefrontal 

and parietal cortices (Heekeren et al. 2006, Ploran et al. 2007, Filimon et al. 

2013, Tosoni et al. 2008).  

 

Together, these findings lend support to the idea that there exists a general-

purpose decision making network involved in accumulating evidence for a 

decision while simultaneously encoding the confidence in that decision. Overall, 

our findings are in line with a recent report showing that neurons in lateral 

intraparietal cortex of the primate brain represents the formation of the 

decision as well as the degree of confidence underlying that decision (Kiani and 

Shadlen 2009). Similarly, a growing body of evidence from animal 

neurophysiology suggest that when the brain forms a decision it does so in a way 

that resembles a Bayesian inference, in the sense that even for binary choices, a 

decision is formed by sampling and gradually accruing information from 

probability distributions rather than single estimates representing each of the 

alternatives (Ma et al. 2006, Zemel et al. 1998). In this framework, a measure of 

confidence arising directly from the decision process itself can therefore be 

thought of as a graded quantity, representing degree of belief that an impending 

choice will be correct.  

 

Key to establishing a quantitative association between decision confidence and 

neural activity was our ability to exploit single-trial information within each 
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class of nominally identical stimuli, thereby controlling for confounding effects 

of stimulus difficulty and attention. Specifically, we demonstrated that trial-by-

trial fluctuations in confidence-related neural activity remained predictive of 

opt-out behaviour even after accounting for the overall amount of task difficulty 

as well as when extracted and tested separately for each level of sensory 

evidence. Similarly, we addressed the possibility that our confidence effects 

merely reflected changes in participants‟ attentional state on each trial, either 

prior to, or during the decision process.  

 

In doing so, we considered two neural measures, which have previously been 

hypothesized to reflect top-down influences of attention on the decision process 

during visual discriminations, and investigated the extent to which they 

predicted participants‟ choice confidence (i.e., opt-out behaviour). Importantly, 

we showed that neither of these measures hindered the explanatory power of 

the confidence discriminating neural activity. Likewise, we also showed that 

local fluctuations in attention across trials, as assessed via a serial 

autocorrelation regression analysis, could not provide an adequate account of 

our findings. Whilst we do not dismiss the possibility that trial to trial variability 

in attention may exert a top-down influence on the efficiency of stimulus 

encoding and/or decision process, and ultimately on the level of confidence in 

one‟s choice, our findings render a purely attentional account of the observed 

confidence effects unlikely.  

 

Although we designed our experiment to discourage explicit updating of reward 

expectations (i.e., we did not provide feedback as to whether a choice was 

correct or not) it remains possible that our representation of choice confidence 

can be explained by the expected value of the chosen option in so far as the 

latter is correlated with one‟s belief that their choice is correct. In fact, it has 

recently been suggested that structures such as the ventromedial prefrontal 

cortex may use a common neural currency to represent both confidence and 

value associated with a choice (Lebreton et al. 2015). Nevertheless, the regions 

we identified here as being associated with choice confidence (using source 

reconstruction analysis) appear to be located outside the networks most 
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commonly associated with expected reward and value signals (Dreher et al. 

2006, Kable and Glimcher 2007, Knutson et al. 2005, Rangel et al. 2008, Rolls et 

al. 2008, Rushworth and Behrens 2008, Philiastides et al. 2010).  

 

Finally, our findings that confidence signals appear as early as the process of 

evidence accumulation itself constitute evidence against a purely metacognitive 

(post-decisional) account of decision confidence, and are consistent with a 

recent study showing temporal overlap of confidence- and decision-related 

electrophysiological signal during perceptual decisions (Zizlsperger et al. 2014). 

Importantly, however, our results do not exclude the possibility that confidence 

representations persist beyond the decision point and after a behavioural choice 

was made (Fleming et al. 2012, Pleskac and Busemeyer 2010). Nonetheless, 

these metacognitive representations are captured using post-decisional 

subjective confidence reports, which are likely to be subjected to additional 

influences arriving after the decision point (e.g. internal noise, expected reward 

etc.). In addition, the extent to which these post-decisional signals influence 

metacognitive assessment and subsequent choices remains unclear. Future 

studies designed to investigate how decisional and post-decisional confidence 

signals interact to shape behaviour would be necessary. In particular, 

understanding how confidence traces arising from the process of decision 

formation are communicated to regions implicated in metacognitive appraisal 

would be required (Fleming et al. 2012, De Martino et al. 2013, Hebart et al. 

2014).  

 

In summary, choice confidence represents the degree of belief that one‟s actions 

are likely to be correct and as such can play a critical role in how we interact 

with the world around us. Here, we provided a mechanistic account on how 

confidence is represented in the human brain and provided strong evidence that 

linked the development of choice confidence to the same mechanism and neural 

generators used to form the decision itself. These results could provide the 

foundation upon which future computational studies could continue to 

interrogate the mechanistic details of the influence of confidence on decision 

making (Zylberberg et al. 2012). Crucially, our findings coupled with our ability 
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to exploit the relevant neural signatures non-invasively and on a trial-by-trial 

basis, may have direct implications for decision-making problems that rely on 

inconclusive or partially ambiguous evidence. Specifically, they can provide the 

platform for developing cognitive interfaces that can help facilitate, and 

ultimately optimise decision making (Sajda et al. 2009, Sajda et al. 2007).  
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Chapter 3. Alpha- and beta-band oscillatory activity 

reflects neural representations of confidence in 

perceptual decisions 
 

 

Summary 

 

Confidence in a perceptual decision represents an internal estimate of accuracy, 

and as such can play an essential role in informing relevant goal-directed 

actions. Electrophysiological studies have shown that oscillatory patterns in the 

neural activity that characterises perceptual decisions contains valuable 

information about its underlying neural mechanisms, however it is not clear 

whether these rhythmic fluctuations may also be informative about the 

associated confidence. The current study adopted an exploratory approach to 

address this question. We used a post-decision wagering paradigm to 

behaviourally separate high- from low-confidence choices. Specifically, subjects 

made face vs. car visual categorisations and were rewarded for correct 

responses, with the possibility to opt out of the task for a smaller but certain 

reward on a random subset of trials. Subject‟s decision to use or refuse this 

option indicated confidence (low and high, respectively) in their judgment. 

Importantly, the perceptual decision and motor response stages were separated 

by a forced delay during which the exact response mapping remained unknown. 

We identified confidence-discriminating oscillatory activity in the alpha and beta 

bands. This was most prominent over the sensorimotor electrodes contralateral 

to the motor effector (i.e., right hand) used for indicating choice. The effect 

was transient in nature, peaking before subjects could plan a response, and 

appeared to overlap in time with a (separate) confidence-related signal which 

we previously identified in the time-domain, and which was shown to reflect 

both the decision formation and associated confidence. Together, these results 

open the possibility that motor systems may track both the evolving perceptual 

decision and formation of confidence, in preparation for impending action. 
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Introduction 

 

Confidence in a perceptual decision represents an individual‟s subjective 

assessment of the likelihood that a judgment is correct, and as such can 

contribute significantly to guiding relevant actions. A driver may, for instance, 

initiate a press of the brake pedal based on the strength of belief that the 

object spotted in the distance on the road is an animal and not a shadow.  

The electrophysiological correlates of perceptual confidence have been 

investigated in both human and animal subjects, showing that confidence-

relevant information can be identified early in the decision process, and as early 

as the decision process itself (Kiani and Shadlen 2009, Gherman and Philiastides 

2015, Zizlsperger et al. 2014, Middlebrooks and Sommer 2012). In the previous 

chapter we identified neural activity in the EEG signal which reliably 

discriminated between high- and low-confidence perceptual decisions. This 

activity exhibited a ramp-like temporal profile modulated by the strength of 

sensory evidence, thus resembling a gradual build-up of decision-related 

evidence accumulation, as observed by previous EEG studies (O'Connell et al. 

2012, Twomey et al. 2015, Kelly and O'Connell 2013, Philiastides et al. 2014), 

and consistent with the idea that confidence relies on information contained in 

the decision process itself (Kiani and Shadlen 2009).  

While time-domain analyses of neural activity can offer valuable insights into the 

temporal properties and underlying mechanisms of confidence-related processes, 

the rhythmic properties inherent to these signals can potentially contain 

complementary information. Spectral analysis can be better suited for 

characterising sustained modulations of relevant oscillatory signals which are not 

phased-locked to, but still induced by, perceptual events of interest (Donner and 

Siegel 2011, Pfurtscheller and Lopes da Silva 1999). Spectral markers of 

perceptual decision processes have been identified across different frequency 

ranges, including theta (Van Vugt et al. 2012), beta (Haegens et al. 2011, Donner 

et al. 2009), and gamma bands (Donner et al. 2009, Polania et al. 2014). In 

particular, these studies have revealed that the magnitude of oscillatory activity 

scales with both stimulus properties and choice-related behaviour (i.e., decision 
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time and performance), in a fashion that resembles an accumulation of decision-

related evidence. Of particular interest are several studies which have shown 

that oscillatory activity in the alpha and beta frequencies, recorded over motor 

and premotor regions, can exhibit similar characteristics in anticipation of an 

impending response (Donner et al. 2009, Wyart et al. 2012, O'Connell et al. 

2012, Haegens et al. 2011, de Lange et al. 2013). These effects have been 

observed over the hemisphere contralateral to the motor effector, and consist in 

the suppression in the oscillatory power during perceptual stimulation and 

decision formation stages, with the magnitude of the suppression scaling with 

the strength of sensory evidence, and behavioural performance. Together, these 

observations have led to the view that the motor system may track the decision 

process as it forms (i.e., in a continuous fashion), in support for an impending 

action (Gold and Shadlen 2007, Gold and Shadlen 2000, Siegel et al. 2011). 

 

As the rhythmic dynamics of perceptual decisions are being uncovered, the 

question emerges whether these oscillatory signals may also carry information 

about the confidence associated with the decision. Indeed, taking together the 

observation that decision-related neural signals hold information about eventual 

confidence (see Chapter 2), and the finding that motor systems carry 

information about the decision process, one might predict that confidence-

related information may also be encoded in the motor system. Currently, the 

spectral dynamics of perceptual confidence are not well understood. 

Confidence-discriminating activity has been detected in the gamma band using 

intracranial EEG (Peters et al. 2017). In addition, there is evidence that 

oscillatory activity in the theta band may support metacognitive processes 

(Wokke et al. 2017), with midfrontal theta signalling task performance via 

increases in power after detected errors (Cohen 2016, Murphy et al. 2015). 

Finally, a recent study (Kubanek et al. 2015) has demonstrated that confidence 

in an auditory decision can be inferred from motor-selective alpha-band activity 

before a response is initiated, suggesting information in lower frequency bands 

may encode not only decision-related information, but also confidence in the 

impending action.  
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Here, we aimed to investigate whether confidence-discriminating oscillatory 

activity can be detected during visual decision making, and if so, how this might 

relate to confidence-related evoked responses in the time-domain. We 

performed analyses on an existing dataset (results from the previous study are 

reported in Chapter 2). Subjects performed a delayed-response post-decision 

wagering task (Kiani and Shadlen 2009, Fetsch et al. 2014) whereby they made 

perceptual categorisations of face-vs.-car stimuli and were rewarded for correct 

choices. On a random subset of trials, subjects were allowed to withhold from 

making a stimulus choice by selecting a smaller but certain reward instead. 

Behaviour on these trials was used as an indicator of confidence, with subjects‟ 

decision to exercise or ignore the opt-out choice reflecting low or high 

confidence in the perceptual judgment, respectively. Using a frequency-analysis 

approach, we identified confidence-discriminating activity over electrode sites 

corresponding to the motor effector used subsequently to express choice. These 

signals were transient in nature and were only observed during the decision 

stage of the trial (i.e., considerably in advance of an overt behavioural 

response). These were independent of the strength of stimulus evidence or 

spontaneous fluctuations in the prestimulus period. Interestingly, the timing of 

these signals appeared to coincide with a non-oscillatory confidence-related 

signal identified previously over parietal electrodes. Our results thus suggest 

that motor systems may carry information about both the evolving perceptual 

decision and associated confidence.  

 

Materials and Methods 

 

This study is based on reanalysis of data presented in Chapter 2 (see also 

Gherman and Philiastides, 2015). All methodological details relating to 

participants, stimuli and behavioural paradigm, as well as EEG data acquisition 

and pre-processing, are identical unless otherwise specified. 

Participants. Nineteen healthy paid volunteers (7 males, mean age = 23.4 years, 

range 18-36) participated in the study. All had normal or corrected-to-normal 

vision and reported no history of neurological problems. Informed consent was 
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obtained from all subjects in accordance with the School of Psychology Ethics 

Committee at the University of Nottingham. 

Stimuli and task. Stimuli and the behavioural paradigm are described in more 

detail in Chapter 2 (Fig. 2.1A). In short, the behavioural task dissociated 

between high- and low-confidence perceptual judgments by means of a post-

decision wagering method (Kiani and Shadlen 2009). Specifically, subjects made 

delayed-response visual categorisations of noisy face and car stimuli, and 

received rewards in the form of points (correct response = 10 points; incorrect 

response = 0 points), which were converted into monetary bonuses at the end of 

the experiment. Importantly, on a random half of the trials, an additional 

response option was available, which allowed subjects to opt out of the face/car 

choice in exchange for a smaller (8 points) but certain reward (henceforth 

referred to as the sure reward, SR). The goal of this manipulation was to 

encourage participants to select the sure reward option on these trials if they 

were uncertain of their perceptual judgment, and provide a face/car response 

otherwise. Importantly, subjects were not aware in advance whether this option 

would be available.  

On each trial, the visual stimulus was presented for 100 ms, followed by a 

random forced delay of 900-1400 ms (i.e., the decision phase). Next, a visual 

cue (1000 ms) informed subjects of their response options. Specifically, a red-

coloured central fixation cross indicated that the SR option was not available 

and thus a face/car choice response was required, whereas a green-coloured 

cross indicated that the SR option was available. Letters “F” (face) and “C” (car) 

located randomly on the left and right sides of the fixation cross informed 

subjects of the mapping between stimulus and motor effector (index and ring 

fingers, respectively). This served to reduce potential confounds related to 

motor preparation processes during the decision phase of the trial. A response 

was only permitted once the response cue disappeared, during the inter-trial 

interval (1000-1500 ms), and thus at least 2000 ms after onset of the stimulus. 

Subjects made all responses using one of three buttons on a button box, namely 

a left/right press for a providing a stimulus response, and a central press for 

exercising the SR option. 
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EEG data acquisition. We recorded EEG data during performance of the main 

task, in an electrostatically shielded room, using a DBPA-1 digital amplifier 

(Sensorium Inc., VT, USA), at a sampling rate of 1000Hz. We used 117 Ag/AgCl 

scalp electrodes and three periocular electrodes placed below the left eye and 

at the left and right outer canthi. Additionally, a chin electrode was used as 

ground. All channels were referenced to the left mastoid. Input impedance was 

adjusted to <50kOhm. To obtain accurate event onset times we placed a 

photodiode on the monitor to detect the onset of the stimuli. An external 

response device was used to collect response times. Both signals were collected 

on two external channels on the EEG amplifiers to ensure synchronization with 

the EEG data. 

 

EEG data pre-processing. We applied a 0.5-100Hz band-pass filter to the data to 

remove slow DC drifts and high frequency noise. These filters were applied 

noncausally (usingMATLAB “filtfilt”) to avoid phase related distortions. 

Additionally, we re-referenced our data to the average of all electrodes. To 

remove eye movement artefacts, participants performed an eye movement 

calibration task prior to the main experiment, during which they were instructed 

to blink repeatedly several times while a central fixation cross was displayed in 

the centre of the computer screen, and to make lateral and vertical saccades 

according to the position of the fixation cross. We recorded the timing of these 

visual cues and used principal component analysis to identify linear components 

associated with blinks and saccades, which were then removed from the EEG 

data (Parra et al. 2005).  

 

EEG spectral analysis. Spectral analyses were performed using the FieldTrip 

toolbox (Oostenveld et al. 2011), and custom MATLAB (MathWorks) code. Pre-

processed data were segmented into epochs from -1000 to 1500 ms relative to 

the onset of the face/car stimulus. We computed the time–frequency 

representations of the EEG signal at 49 frequencies (4-100 Hz, in steps of 2 Hz), 

using a sliding-window Fourier transform. Time-frequency decomposition was 

performed separately for each channel and trial, on time windows centred from 
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-300 ms to 1000 ms (step-size of 50 ms) relative to the onset of the face/car 

stimulus (i.e., the decision stage). Prior to the Fourier transform, windows of 

interest were multiplied with a single Hanning taper. In an effort to maintain an 

optimal balance between spectral and temporal resolution of the time-frequency 

power estimates (Cohen 2014), the length of the sliding window was adapted to 

each frequency. Specifically, we used logarithmically-spaced numbers of cycles 

(rounded to the nearest integer), ranging from 4 cycles (1000 ms) for the lowest 

frequency (4Hz), to 16 cycles (160 ms) for the highest frequency (100Hz).  

We also performed a separate control analysis where we further optimised 

parameters for detecting relevant activity in the high frequency ranges (30-100 

Hz). Namely, we computed time-frequency representations using the multitaper 

approach (Mitra and Pesaran 1999), with three orthogonal slepian tapers, a 

sliding fixed window length of 250 ms, and frequency smoothing of ±8Hz. The 

multitaper method can be better suited for estimating frequency representations 

characterised by low signal-to-noise ratio, as is the case with oscillatory signals 

in the higher frequency range (Cohen 2014). Nonetheless, this adjustment did 

not change our results (i.e., no effects of confidence were observed in the 30-

100 Hz range). 

Single-trial power estimates resulting from the time-frequency decomposition 

were averaged across trials, separately for each trial group of interest (i.e., 

SRWAIVED waived vs. SRSELECTED) and subject. Resulting values were subsequently 

baseline-normalised using a decibel (dB) transform: 

dB=10*log10(Power/Baseline). The baseline was defined as the average power 

estimated from 5 sliding windows (step-size of 50 ms) in the -500 to -300 ms 

interval prior to stimulus onset, and using the same frequency-specific window 

lengths as for the post-stimulus period. Baseline normalisation was performed 

individually for each channel and frequency. To increase signal-to-noise ratio of 

the baseline estimate, this was computed by averaging across all experimental 

trials. Thus, normalisation was performed in a non-condition-specific manner, 

preserving potential power differences between the trial groups of interest in 

the prestimulus interval. Baseline-normalised condition averages obtained this 
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way, in the form of channel-frequency-time sets, were used for further 

statistical analysis. 

Statistical analysis. We compared oscillatory power in the two trial groups of 

interest, namely SRWAIVED and SRSELECTED, and used a non-parametric cluster-based 

permutation approach (Maris and Oostenveld 2007) as implemented by the 

FieldTrip toolbox, to assess significance of the results. This method aims to 

address the multiple comparisons problem resulting from testing for effects at 

multiple electrode sites, frequencies and time points, with increased statistical 

power compared to more conservative procedures such as the Bonferroni 

correction. It does so by clustering data samples exhibiting similar effects 

according to their adjacency in space, time and/or frequency. For every 

channel-frequency-time sample, SRWAIVED and SRSELECTED averages were compared 

across subjects by means of a paired t-test. All samples whose t-values exceeded 

a cluster-defining threshold of αTHRESHOLD=.001 (two-sided tests) were grouped 

into channel-frequency-time clusters (minimum of 2 channels per cluster). The 

cluster-level summary statistic was defined as the sum of all t-values within each 

cluster obtained this way.  

Finally, significance was established by comparing the cluster-level summary 

statistic against the randomisation null distribution resulting from 2000 random 

permutations. Namely, for each iteration, SRWAIVED and SRSELECTED averages were 

permuted within each subject, and the maximum cluster-level summary statistic 

was used to build the randomisation null distribution. Clusters in the observed 

data which exceed the family-wise error-corrected threshold of αCLUSTER=.01 were 

considered significant.  

 

 

Results 
 

Behaviour. All behavioural results are presented in the Results section of 

Chapter 2. Importantly, we showed that responses on the decision task were 

more likely to be correct on trials where subjects were offered the SR option 

and declined it (i.e., by indicating a stimulus choice), compared to trials in 

which the SR option was not available to begin with (F (1, 18) = 100.26, p < .001, 
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see Fig. 2.1C). This finding is consistent with confident choices being more 

accurate (Baranski and Petrusic 1998), and thus indicate that the paradigm 

accurately captured subjects‟ confidence in their perceptual decisions. 

Additionally, we showed that when sensory evidence was weaker, subjects 

selected the SR more often (F (2, 36)=55.87, p<.001, post hoc paired t-tests, all 

p b .001, see Fig. 2.1B), suggestive of decreasing confidence (Vickers and Packer 

1982, Festinger 1943). 

Frequency analysis. The cluster-based permutation analysis revealed two 

channel-time-frequency clusters (Fig. 3.1) where oscillatory activity differed 

significantly between the SRWAIVED vs. SRSELECTED trial groups (pCLUSTER=.001 and 

pCLUSTER=.002, respectively). Together, these spanned the alpha and beta (~10-22 

Hz) frequency bands and showed a negative effect of confidence, i.e., a 

reduction of oscillatory activity in high- compared to low-confidence trials (Fig. 

3.1). For the first cluster, this difference was most pronounced in the alpha and 

low-beta frequency ranges (~10-16 Hz) between approximately 550-650 ms 

relative to stimulus onset (Fig. 3.1, white dots), and located over parietal and 

left centro-posterior electrodes. For the second cluster, the difference was 

stronger in the mid-beta frequency range (~18-22 Hz) between ~500-600 ms 

post-stimulus, and appeared more localised in the left centro-lateral sensors 

(Fig. 3.1, orange dots).  

We performed additional control analyses by focusing on two subsets of the 

spatio-temporo-spectral data that showed confidence-discriminating activity, as 

informed by our cluster-based permutation analysis. Specifically, we extracted 

the data (i.e., power estimates) from all channels, frequency bins, and time 

windows covered by each of the two clusters (see Fig. 3.1). For the first cluster 

(henceforth referred to as Cluster 1), data were extracted from parietal and left 

centro-posterior electrodes (Fig. 3.2, top electrode map), within the 10-16 Hz 

(i.e., alpha/beta) frequency range, and the 550-650 ms time window, whereas 

for the second cluster (Cluster 2), we focused on data from left centro-parietal 

electrodes (Fig. 3.2, bottom electrode map), within the 18-22 Hz frequency 

range, and the 500-600 ms time window.  
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Figure 3.1. Confidence-discriminating spatio-temporo-spectral clusters obtained with 

the cluster-based permutation analysis (pCLUSTER<.01). Colours represent average t-values 

resulting from the subject-level paired comparisons. 

 

To visualise the time-frequency representation of the confidence-discriminating 

activity, we averaged our data subsets across the spatial (channel) dimension. 

Results are displayed in Fig. 3.2A. Next, we evaluated the temporal profile of 

the confidence-discriminating activity relative to baseline, by averaging data 

across both the spatial and spectral dimensions. As can be observed in Fig. 3.2A 

and Fig. 3.2B, a suppression of oscillatory activity was present in both trial 

groups following stimulus onset, which was more pronounced for SRWAIVED 

choices. To formally test this effect whilst avoiding circularity, we performed 

individual comparisons of the SRWAIVED and SRSELECTED trial groups, with a separate 

set of trials which were not used in the cluster analysis (i.e., “unseen” data), 

namely those in the SRABSENT condition where subjects were not offered the 

possibility to opt out of the decision. As these trials are likely to contain a 
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mixture of certain and uncertain choices, we therefore expected corresponding 

oscillatory power to be situated, on average, between that of the SRWAIVED and 

SRSELECTED conditions. We performed group-level paired t-tests at each time point 

within the decision period, and found significant differences (p<.05, 

uncorrected, see Fig. 3.2B) across extended time windows, thus suggesting that 

confidence-discriminating activity observed here is unlikely to be merely 

artifactual.  

 

Figure 3.2. Confidence-discriminating oscillatory activity. Top and bottom figures 

represent data subsets extracted on the basis of the two clusters identified in the 

cluster-based permutation analysis, respectively. A. Time-frequency representation of 

baseline-normalised power. Colours represent t-values resulting from the subject-level 

paired comparisons. B. Time course of oscillatory power, separated by trial groups of 

interest. Markers running along the bottom of the plot represent significant (p<.05, 

uncorrected) differences between the SRABSENT  and SRWAIVED/SRSELECTED trials (green and 

red, respectively), for each time point of interest. 
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Overall, the spatio-temporo-spectral pattern of the observed oscillatory activity is 

qualitatively similar to the well-established phenomenon known as event-related 

desynchronisation (Pfurtscheller and Lopes da Silva 1999), which refers to the 

suppression of oscillatory power in the upper alpha (~8-14 Hz; also known as “mu”) and 

beta (~15-30 Hz) bands, associated with motor processing. This effect, which is 

observed over sensorimotor regions and typically lateralised to the hemisphere 

contralateral to the motor effector, is hypothesised to play a role in the representation, 

preparation, and execution of movement (Cheyne 2013, Pfurtscheller and Lopes da Silva 

1999, McFarland et al. 2000, Alegre et al. 2003, Neuper and Pfurtscheller 2001), though 

interestingly a few studies have also shown that its evolution in time can reflect the 

formation of perceptual decisions that inform associated actions (Donner et al. 2009, 

O'Connell et al. 2012, de Lange et al. 2013).  

Confidence-related desychronisation effects within both clusters appeared transient in 

nature (see Fig. 3.2B), with oscillatory power for SRWAIVED and SRSELECTED converging to the 

same near-baseline values before 1000 ms post-stimulus, and thus prior to the end of 

the decision phase and onset of the response-informative cue (note that the response-

informative cue was presented at least 1000 ms after stimulus onset). Additionally, 

there was no evidence of confidence-related effects in the time period leading to a 

behavioural response, as assessed with a separate cluster-based permutation analysis in 

which data were locked to the onset of response. These observations remained true 

even at considerably more liberal thresholds (αTHRESHOLD=.05, two-sided test; 

αCLUSTER=.05). While the latter is likely a consequence of the forced delay employed in 

this paradigm, and therefore unsurprising, overall the above observations suggest that 

the confidence-related suppression in oscillatory power is unlikely to be linked to 

subjects‟ overt motor responses during the response stage of the trial.   

Strength of sensory evidence. Motor-preparatory activity in the alpha and beta 

frequency bands has previously been shown to be modulated by the strength of sensory 

evidence that informs subsequent choice (de Lange et al. 2013). To test whether 

stimulus difficulty alone may explain our confidence-discriminating oscillatory activity, 

we removed this influence in our data by extracting trial-to-trial fluctuations around the 

mean power estimates (i.e., z-scores) within each level of sensory evidence. We then 

repeated the cluster-based permutation analysis on the resulting values, as detailed 

above. We found that our results remained both qualitatively and quantitatively very 

similar (Fig. 3.3), with the two clusters continuing to show significant differences 

between SRWAIVED and SRSELECTED trial groups (pCLUSTER=.002 for both clusters). This suggests 
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that the observed effect cannot be purely explained by the physical properties of the 

stimulus.   

 

 

Figure 3.3. Confidence-discriminating spatio-temporo-spectral clusters obtained with 

the cluster-based permutation analysis (pCLUSTER<.01), where influences of task difficulty 

have been removed (see „Strength of sensory evidence‟ subsection in Results). Colours 

represent t-values resulting from the subject-level paired comparisons. 

Prestimulus states. Alpha- and beta-band desynchronisation over 

motor/premotor regions can occur spontaneously (i.e., prior to stimulus 

presentation), affecting both the oscillatory activity during the perceptual 

decision, and associated behaviour (de Lange et al. 2013). Additionally, 

prestimulus fluctuations in the alpha-band have also been shown to affect 

confidence in upcoming perceptual decisions (Baumgarten et al. 2016, Samaha 

et al. 2017). To test whether our results are independent of prestimulus 

oscillatory states, we inspected the prestimulus interval (time windows centred 

between -300 and 0 ms relative to stimulus onset) for potential differences 
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between SRWAIVED and SRSELECTED but found no evidence for confidence-

discriminating activity in any of the frequencies of interest, even at lenient 

thresholds (pTHRESHOLD=.05, two-sided test; pCLUSTER=.05). To formally assess this, 

we also compared average condition differences (i.e., power estimates for 

SRWAIVED minus SRSELECTED) between the prestimulus and decision periods (i.e., -

300 to 0 ms vs. 50 to 1000 ms, relative to stimulus onset), and showed these 

were significantly larger during the decision stage of the trial for both frequency 

ranges of interest (t(18)=4.51, p<.001, and t(18)=2.68, p=.015, respectively). 

Together, these results suggest that observed confidence effects were unlikely 

to reflect biases carried on from the prestimulus period. 

Relationship with non-oscillatory signatures of confidence. In Chapter 2, we 

performed a temporal characterisation of non-oscillatory (i.e., time-domain) 

neural signatures of confidence, using a single-trial multivariate classification 

analysis of the EEG. In short, we identified a transient neural component 

(referred to as  , see Chapter 2 Materials and methods section) which 

discriminated between SRWAIVED and SRSELECTED trials, beginning early in the trial 

and peaking approximately 600 ms after stimulus onset (see Fig. 2.2B). 

Importantly, this confidence-discriminating activity appeared to develop 

simultaneously with the decision process, and was reflected in the same process 

of evidence accumulation that characterised it. Moreover, its corresponding 

scalp topography showed contributions from centroparietal electrodes - this was 

distinct from the topography associated with confidence-related oscillatory 

activity, which appeared lateralised over sensorimotor regions, thus likely 

indicating separate underlying neural generators for the two signals.  

Although oscillatory power estimates (particularly in lower frequency bands, e.g. 

<30 Hz) are by their very nature less temporally precise than their time-domain 

counterparts, it is interesting to note that the observed confidence-

discriminating oscillatory activity in the present study appeared to overlap in 

time with the confidence-related neural component   identified previously in 

the time-domain. Specifically, group-level confidence effects within Cluster 1 

(alpha/beta) and Cluster 2 (beta) oscillatory activity (Fig. 3.2B) showed peaks at 

650 ms and 600 ms post-stimulus, respectively (as reflected by the t-values 
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resulting from paired comparisons between SRWAIVED and SRSELECTED conditions 

across time; results not depicted).  

To further characterise the relationship between these two confidence-

discriminating signals, we investigated their correlation at the single-trial level. 

To this end, we first extracted single-trial power estimates across all trial groups 

and performed a decibel transformation on these:             (     ). 

Resulting values were then averaged across the spatio-temporo-spectral 

dimensions that characterised the two clusters (separately for each cluster). We 

used linear regression to assess how these values correlated with the single-trial 

estimates of the confidence-discriminating component  , extracted from 

subject-specific time windows of peak confidence discrimination (see Chapter 2, 

Materials and Methods section). This analysis was performed separately for each 

subject. We assessed significance using the non-parametric Wilcoxon signed rank 

test for non-normally distributed data. As we expected a negative relationship 

between the two confidence-related signals, we tested whether regression 

coefficients (betas) resulting across subjects came from a distribution with a 

median smaller than 0. Indeed, we found a significant effect at the group level 

(Cluster 1: Z = -3.54, p <. 001; Cluster 2: Z = -3.3, p <. 001). For visualisation, 

this relationship is displayed in Fig. 3.4. 

 

 

Figure 3.4. Relationship with time-domain confidence signals. Power in the confidence-

discriminating oscillatory signals (x-axis) was negatively correlated with the amplitude 

of the confidence-related component   (y-axis), on a trial-by-trial basis. To visualise 

this relationship, trials were grouped into five bins based on the magnitude of the 

power estimates. Power estimates for A and B are computed using the two data subsets 

informed by the cluster-based permutation analysis (i.e., Cluster  1 and 2, respectively; 
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see „Frequency analysis‟ subsection for details), averaged across the spatial, temporal, 

and spectral dimensions. Importantly, fitted lines represent fits of the linear regression 

model to individual trials.  

 

Discussion 

Here, we showed that confidence in perceptual judgments was reflected in 

oscillatory activity within the alpha and beta frequency bands (approx. 10-22 

Hz). Specifically, visual stimulation was followed by suppression in the 

oscillatory power, which was on average more pronounced for high- than low-

confidence trials. This effect could be observed during the decision stage of the 

trial and at least 2 seconds before subjects made a response, and was strongest 

over the centro-posterior electrodes found contralateral to the motor effector 

used to express choice (i.e., right hand). We showed that these effects could not 

be purely explained by the strength of available sensory evidence or by potential 

spontaneous fluctuations in prestimulus states.  

Overall, the spatial and spectral characteristics of these effects appear 

consistent with a motor-related “desynchronisation”, which refers to the 

reduction in oscillatory power in the alpha and beta frequency ranges (typically 

~8-30 Hz) before and/or during movement, and which is most prominent over 

sensorimotor regions contralateral to the motor effector (Pfurtscheller and 

Lopes da Silva 1999). While it is typically associated with execution 

(Pfurtscheller and Aranibar 1979), planning/preparation (Tzagarakis et al. 2010, 

Tzagarakis et al. 2015, Pfurtscheller and Berghold 1989, Pfurtscheller and Lopes 

da Silva 1999) or representation (McFarland et al. 2000) of movement, a few 

recent studies have also involved alpha and beta suppression in carrying 

information about action-informative perceptual decisions (Donner et al. 2009, 

O'Connell et al. 2012, de Lange et al. 2013).  

The relationship between confidence and low-frequency neural oscillations 

observed here is in line with a recent report by Kubanek et al. (2015). In their 

study, subjects performed an auditory discrimination task, and reported their 

decision using button presses. Consistent with our results, confident choices 

showed stronger power suppression in the alpha band following stimulus 
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presentation, which authors interpret as reflecting confidence in the impending 

action. 

Interestingly, in our experiment, we showed that differences between high- and 

low-confidence trial groups were detectable in the oscillatory activity as early as 

300ms, and peaked approximately 600-650 ms after stimulus onset. The 

temporal profile of this effect appeared similar to a confidence-related neural 

component we identified in the time-domain (Gherman and Philiastides, 2015; 

see Chapter 2, Fig. 2.2B). This latter signal resembled a process of decision-

related evidence accumulation and carried information about subjects‟ 

confidence. Importantly, its scalp topography differed considerably from the 

spatial distribution of the confidence-related oscillatory activity, in that it 

mainly showed contributions from centroparietal sites (as opposed to lateralised 

central/centroposterior distribution observed in the oscillatory activity). Thus, 

while correlated, the two signals likely rely on separate neural generators, in 

line with the observation that motor-preparatory activity is distinct from action-

independent decision processes (Kelly and O'Connell 2013, Wyart et al. 2012, 

Filimon et al. 2013).  

Nevertheless, the idea that underlying neural processes for the two different 

signals may occur in parallel or in temporal proximity is consistent with a 

growing body of literature suggesting that as the decision forms, decision-related 

information “leaks” into motor centres that support relevant impending action, 

thus facilitating efficient response (Song and Nakayama 2009). For instance, 

electrophysiological work indicates that, when the mapping between a stimulus 

and motor effector is known, contralateral oscillatory activity in the alpha/beta 

bands is modulated by the strength of the sensory evidence, can predict choice-

related behaviour, and is characterised by a gradual buildup pattern that begins 

during stimulus viewing, suggesting motor-preparatory signals reflect the 

evolving decision process (O'Connell et al. 2012, Donner et al. 2009, de Lange et 

al. 2013, Haegens et al. 2011). Similar findings from animal electrophysiology 

support this hypothesis, showing that regions of the brain that support choice-

relevant action (e.g., lateral intraparietal cortex in the non-human primate 

brain) encode a gradual build-up of decision-related evidence (de Lafuente et al. 



66 
 

2015, Huk and Shadlen 2005), suggesting that motor-preparatory systems reflect 

the decision process as it forms, possibly via a continuous flow of information 

from decision making areas (Gold and Shadlen 2000, Gold and Shadlen 2003, 

Selen et al. 2012). Notably, decision-related evidence in these regions has also 

been shown to carry information about eventual confidence in that decision 

(Kiani and Shadlen 2009). Thus, within this framework, it is possible that the 

confidence-discriminating oscillatory activity we observe over sensorimotor sites 

in the present study may reflect the evolving decision process, as well as the 

confidence-related information it holds.  

 

We did not observe confidence-related activity in the theta frequency band. 

Midfrontal theta activity is thought to support performance/error monitoring 

(Murphy et al. 2015, Cohen 2016), a process argued to share a common 

mechanism with confidence-related processes (Boldt and Yeung 2015, Yeung and 

Summerfield 2012). However, error monitoring signals are typically observed 

following overt behaviour during speeded-response tasks (i.e., in response to 

detected errors), whereas the current task required subjects to wait through a 

delay prior to making a response, and thus was unlikely to have engaged such a 

mechanism during the decision phase of the trial.  

Similarly, no confidence-related activity was identified in the gamma band, 

which was previously shown to encode the decision-related evidence 

accumulation (Polania et al. 2014, Donner et al. 2009) and to discriminate 

between high- and low-confidence choices (Peters et al. 2017). However, these 

studies have used MEG and electrocorticography, respectively, which may be 

better suited for recording gamma activity due to their superior signal-to-noise 

ratio and spatial sensitivity (Crone et al. 2006, Cheyne 2013). 

A potential limitation of the present study was the absence of any measurements 

of overt motor behaviour during the perceptual decision task. This would be 

necessary in order to ensure the observed effects could not merely be explained 

by movement of the motor effector during stimulus presentation and/or 

decision. We note however that similar effects have been observed in the 
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absence of motor behaviour, as recorded with electromyography (Kubanek et al. 

2015).  

To conclude, we showed that, during perceptual decision making, putative 

motor-systems corresponding to the motor effector appear to store signals that 

dissociate between subjects‟ eventual confidence, and do so considerably in 

advance of overt motor responses. Overall, the temporal profile of this activity 

appears consistent with a potentially continuous input of decision- and 

confidence-related information to these regions. Additional research will be 

needed to understand the mechanisms by which confidence-discriminating 

signals originate here, specifically whether their link with confidence may be an 

epiphenomenon of their correlation with the decision variable, or whether the 

confidence-related information may serve an adaptive function, for example by 

influencing action itself or potentially even serving as input to further 

metacognitive evaluation and communication processes. 
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Chapter 4. Human VMPFC encodes early signatures of 

confidence in perceptual decisions  

 

Summary 

Decision confidence refers to an individual‟s internal estimate of judgment 

accuracy, and thus plays a critical role in adaptive behaviour. Correspondingly, 

recent years have seen significant progress towards understanding its neural 

basis in relation to post-decisional metacognitive evaluation. Despite this 

progress however, the early, decisional, stages of confidence processing remain 

underexplored. Here, we used a simultaneous EEG/fMRI approach to provide a 

spatiotemporal account of confidence during perceptual decision making. 

Participants performed a random-dot direction discrimination task and rated 

their confidence on each trial. Using a multivariate single-trial classifier on the 

EEG data, we identified a stimulus- and accuracy-independent neural component 

which discriminated between High vs. Low confidence trials, and which 

appeared prior to participants‟ behavioural response. Crucially, we used the 

trial-to-trial variability of this EEG-derived confidence signal to detect 

associated fMRI responses in the ventromedial prefrontal cortex (VMPFC), a 

region not previously linked with confidence for perceptual decisions. Notably, 

this activation was additional to what could be explained by subjects‟ 

confidence ratings alone, and by potential confounding variables (perceptual 

accuracy, response time, and attention). Our results raise the possibility that the 

VMPFC supports an early readout of perceptual decision confidence, and are in 

line with recent work proposing a domain-general role for this region in encoding 

confidence.  
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Introduction 

 

Our everyday lives involve frequent situations where we must make judgments 

based on noisy or incomplete sensory information – for example deciding 

whether crossing the street on a foggy morning, in poor visibility, is safe. Being 

able to rely on an internal estimate of whether our perceptual judgments are 

accurate is fundamental to adaptive behaviour and accordingly, recent years 

have seen a growing interest in understanding the neural basis of confidence 

judgments. 

Within the perceptual decision making field, one line of research has focused 

specifically on identifying neural correlates of confidence during metacognitive 

evaluation (i.e., while subjects actively judge their performance following a 

choice), and demonstrated the functional involvement of the anterior prefrontal 

cortex (Fleming et al. 2012, Hilgenstock et al. 2014). Concurrently, 

psychophysiological work in humans and non-human primates using time-resolved 

measurements have shown that confidence encoding can also be observed at 

earlier stages, and as early as the decision process itself (Kiani and Shadlen 

2009, Gherman and Philiastides 2015, Zizlsperger et al. 2014).  

Correspondingly, recent fMRI studies have reported confidence-related signals 

nearer the time of decision (e.g., during perceptual stimulation) in regions such 

as the striatum (Hebart et al. 2016), dorsomedial prefrontal cortex (Heereman 

et al. 2015), cingulate and insular cortices (Paul et al. 2015), and other areas of 

the prefrontal, parietal, and occipital cortices (Heereman et al. 2015, Paul et al. 

2015). Interestingly, confidence-related processing has also been reported in the 

ventromedial prefrontal cortex (VMPFC) during value-based and a range of 

ratings tasks (De Martino et al., 2013; Lebreton et al., 2015), however the extent 

to which this region is additionally involved in perceptual judgments relying on 

temporal integration of sensory evidence remains unclear.  

Importantly, research investigating the neural correlates of decision confidence 

has thus far relied – nearly exclusively – on correlations with behavioural 

measures, the most common of these being the subjective ratings given by 

participants after the decision (see Grimaldi et al., 2015, for a review). 
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However, theoretical and empirical work suggests that post-decisional 

metacognitive judgments may be affected by processes occurring after 

termination of the initial decision (Fleming et al. 2015, Moran et al. 2015, 

Pleskac and Busemeyer 2010, Yu et al. 2015, Murphy et al. 2015, Fleming and 

Daw 2017, van den Berg et al. 2016a, Navajas et al. 2016), such as integration of 

existing information, processing of novel information arriving post-decisionally, 

or decay (Moran et al. 2015), and may consequently be only partly reflective of 

early confidence-related states.  

Here we aim to derive a more faithful representation of these early confidence 

signals using EEG, and exploit the trial-by-trial variability in these signals to 

build parametric EEG-informed fMRI predictors, thus aiming to provide a more 

complete spatiotemporal account of decision confidence. We hypothesise that 

using an electrophysiologically-derived (i.e. endogenous) representation of 

confidence to detect associated fMRI responses would provide not only a more 

temporally precise, but also a more accurate spatial representation of 

confidence around the time of decision.  

To test this hypothesis, we collected simultaneous EEG/fMRI data while 

participants performed a random-dot direction discrimination task and rated 

their confidence on each trial. Using a multivariate single-trial classifier to 

discriminate between High vs. Low confidence trials in the EEG data, we 

extracted an early, stimulus- and accuracy-independent discriminant component 

appearing prior to participants‟ behavioural response. We then regressed the 

resultant single-trial component amplitudes against the fMRI signal and 

identified a positive correlation with this early confidence signal in a region of 

the VMPFC that has not been previously linked to perceptual decisions. Crucially, 

activation of this region was unique to our EEG-informed fMRI predictor (i.e., 

additional to those detected with a conventional fMRI regressor, which relied 

solely on participants‟ post-decisional confidence reports).  
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Materials and Methods 

Participants. Thirty subjects participated in the simultaneous EEG/fMRI 

experiment. Four were subsequently removed from the analysis due to near 

chance (n=3) and ceiling (n=1) performance, respectively, on the perceptual 

discrimination task. Additionally, one subject was excluded whose confidence 

reports covered only a limited fraction of the provided rating scale, thus yielding 

an insufficient number of trials to be used in the EEG discrimination analysis (see 

below). Finally, one subject had to be removed due to poor (chance) 

performance of the EEG decoder (see below). All results presented here are 

based on the remaining 24 subjects (age range 20-32 years). All were right-

handed, had normal or corrected to normal vision, and reported no history of 

neurological problems. The study was approved by the College of Science and 

Engineering Ethics Committee at the University of Glasgow (CSE01355) and 

informed consent was obtained from all participants. 

Stimuli and task. All stimuli were created and presented using the PsychoPy 

software (Peirce 2007). They were displayed via an LCD projector (frame 

rate=60Hz) on a screen placed at the rear opening of the bore of the MRI 

scanner, and viewed through a mirror mounted on the head coil (distance to 

screen = 95cm). Stimuli consisted of random dot kinematograms (Newsome and 

Pare 1988), whereby a proportion of the dots moved coherently to one direction 

(left vs. right), while the remainder of the dots moved at random. Specifically, 

each stimulus consisted of a dynamic field of white dots (number of dots=150; 

dot diameter=0.1 degrees of visual angle, dva; dot life time=4 frames; dot 

speed=6 dva/s), displayed centrally on a grey background through a circular 

aperture (diameter=6 dva). Task difficulty was controlled by manipulating the 

proportion of dots moving coherently in the same direction (i.e., motion 

coherence). 

We aimed to maintain overall performance on the main perceptual decision task 

consistent across subjects (i.e., near perceptual threshold, at approximately 75% 

correct). For this reason, task difficulty was calibrated individually for each 
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subject on the basis of a separate training session, prior to the day of the main 

experiment.  

Training. To first familiarise subjects with the random dot stimuli and facilitate 

learning on the motion discrimination task, subjects first performed a short 

simplified version of the main task (lasting approx. 10 minutes), where feedback 

was provided on each trial. The task, which required making speeded direction 

discriminations of random dot stimuli (see below), began at a low-difficulty level 

(motion coherence = 40%) and gradually increased in difficulty in accordance 

with subjects‟ online behavioural performance (a 3-down-1-up staircase 

procedure, where three consecutive correct responses resulted in a 5% decrease 

in motion coherence, whereas one incorrect response yielded a 5% increase). 

This was followed by a second, similar task, which served to determine subject-

specific psychophysical thresholds. Seven motion coherence levels (5%, 8%, 12%, 

18%, 28%, 44%, 70%) were equally and randomly distributed across 350 trials. The 

proportion of correct responses was separately computed for each motion 

coherence level, and a logarithmic function was fitted through the resulting 

values in order to estimate an optimal motion coherence yielding a mean 

performance of approximately 75% correct. Subjects who showed near-chance 

performance across all coherence levels or showed no improvement in 

performance with increasing motion coherence were not tested further and did 

not participate in the main experiment. No feedback was given for this or any of 

the subsequent tasks. 

Main task. On the day of the main experiment, subjects practised the main task 

once outside the scanner, and again inside the scanner prior to the start of the 

scan (a short 80 trial block each time). The main task required subjects to judge 

the motion direction of random dot kinematograms (left vs. right) and rate how 

confident they were in their choice, on a trial-by-trial basis (Fig. 2.1A).  

Each trial began with a random dot stimulus lasting for a maximum of 1.2 s, or 

until the subject made a behavioural response. Subjects were instructed to 

respond as quickly as possible, and had a time limit of 1.35 s to do so. The 

message “Oops! Too slow” was displayed if this time limit was exceeded or no 

direction response was made. Once the dot stimulus disappeared, the screen 



73 
 

remained blank until the 1.2 s stimulation period elapsed and through an 

additional random delay (1.5-4 s). Next, subjects were presented with a rating 

scale for 3 s, during which they reported their confidence in the previous 

direction decision. The confidence scale was represented intuitively by means of 

a white horizontal bar of linearly varying thickness, with the thick end 

representing high confidence. Its orientation on the horizontal axis (thin-to-thick 

vs. thick-to-thin) informed subjects of the response mapping, and this was 

equally and randomly distributed across trials to control for motor preparation 

effects. To make a confidence response, subjects moved an indicator (a small 

white triangle) along a 9-point marked line. The indicator changed colour from 

white to yellow when a confidence response was selected and this remained on 

the screen until the 3 s elapsed). A final delay (blank screen, jittered between 

1.5-4 s) ended the trial. Failing to provide either a direction or a confidence 

response within the respective allocated time limits on a given trial rendered it 

invalid, and this was subsequently removed from further analyses. This resulted 

in a total fraction of .04 (.02 and .02, respectively) of trials being discarded.  

Subjects performed 2 experimental blocks of 160 trials each, corresponding to 

two separate fMRI runs. Each block contained two short (30 s) rest breaks, during 

which the MR scanner continued to run. Subjects were instructed to remain still 

throughout the entire duration of the experiment, including during rest breaks 

and in between scans. Motion coherence was held constant across trials, at the 

subject-specific level estimated during training. The direction of the dots was 

equally and randomly distributed across trials. To control for confounding effects 

of low-level trial-to-trial variability in stimulus properties on decision 

confidence, an identical set of stimuli was used in the two experimental blocks. 

Specifically, for each subject, the random seed, which controlled dot stimulus 

motion parameters in the stimulus presentation software was set to a fixed 

value. This manipulation allowed for subsequent control comparisons between 

pairs of identical stimuli.   

Subjects were encouraged to explore the entire scale when making their 

responses and to abstain from making a confidence response on a given trial if 

they became aware of having made a motor mapping error. This was in an effort 
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to minimise the influence of premature responses, which are likely caused by a 

release the motor system from global inhibition under time pressure (Forstmann 

et al. 2008), and therefore unreflective of the decision process or confidence per 

se. Additionally, subjects were instructed to make their responses as quickly and 

accurately as possible, and provide a response on every trial. All behavioural 

responses were executed using the right hand, on an MR-compatible button box. 

EEG data acquisition. EEG data was collected simultaneously with the fMRI data 

during performance of the main task, using an MR-compatible EEG amplifier 

system (Brain Products, Germany). Continuous EEG data was recorded using the 

Brain Vision Recorder software (Brain Products, Germany) at a sampling rate of 

5000 Hz. We used 64 Ag/AgCl scalp electrodes positioned according to the 10-20 

system, and one nasion electrode. Reference and ground electrodes were 

embedded in the EEG cap and were located along the midline, between 

electrodes Fpz and Fz, and between electrodes Pz and Oz, respectively. Each 

electrode had in-line 10 kOhm surface-mount resistors to ensure subject safety. 

Input impedance was adjusted to <25 kOhm for all electrodes. Acquisition of the 

EEG data was synchronized with the MR data acquisition (Syncbox, Brain 

Products, Germany), and MR-scanner triggers were collected separately to 

enable offline removal of MR gradient artifacts from the EEG signal. Scanner 

trigger pulses were lengthened to 50μs using a built-in pulse stretcher, to 

facilitate accurate capture by the recording software. Experimental event 

markers (including participants‟ responses) were synchronized, and recorded 

simultaneously, with the EEG data. 

EEG data processing. Preprocessing of the EEG signals was performed using 

Matlab (Mathworks, Natick, MA). EEG signals recorded inside an MR scanner are 

contaminated with gradient artifacts and ballistocardiogram (BCG) artifacts due 

to magnetic induction on the EEG leads. To correct for gradient-related 

artifacts, we constructed average artifact templates from sets of 80 consecutive 

functional volumes centred on each volume of interest, and subtracted these 

from the EEG signal. This process was repeated for each functional volume in our 

dataset. Additionally, a 12 ms median filter was applied in order to remove any 

residual spike artifacts. Further, we corrected for standard EEG artifacts and 
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applied a 0.5–40 Hz band-pass filter in order to remove slow DC drifts and high 

frequency noise. All data were downsampled to 1000 Hz.  

To remove eye movement artifacts, subjects performed an eye movement 

calibration task prior to the main experiment (with the MRI scanner turned off, 

to avoid gradient artifacts), during which they were instructed to blink 

repeatedly several times while a central fixation cross was displayed in the 

centre of the computer screen, and to make lateral and vertical saccades 

according to the position of the fixation cross. We recorded the timing of these 

visual cues and used principal component analysis to identify linear components 

associated with blinks and saccades, which were subsequently removed from the 

EEG data (Parra et al. 2005).  

Next, we corrected for cardiac-related (i.e., ballistocardiogram, BCG) artifacts. 

As these share frequency content with the EEG, they are more challenging to 

remove. To minimise loss of signal power in the underlying EEG signal, we 

adopted a conservative approach by only removing a small number of subject-

specific BCG components, using principal component analysis. We relied on the 

single-trial classifiers to identify discriminating components that are likely to be 

orthogonal to the BCG. BCG principal components were extracted from the data 

after the data were first low-pass filtered at 4 Hz to extract the signal within the 

frequency range where BCG artifacts are observed. Subject-specific principal 

components were then determined (average number of components across 

subjects: 1.8). The sensor weightings corresponding to those components were 

projected onto the broadband data and subtracted out. Finally, data were 

baseline corrected by removing the average signal during the 100 ms prestimulus 

interval. 

Single-trial EEG analysis. To identify confidence-related signals in the EEG data 

with increased statistical power, we first separated trials into three confidence 

groups (Low, Medium, High), on the basis of the original 9-point confidence 

rating scale. Specifically, we isolated High- and Low-confidence trials by pooling 

across each subject‟s three highest and three lowest ratings, respectively. To 

ensure robustness of our single trial EEG analysis, we imposed a minimum limit 

of 50 trials per confidence trial group. For those data sets where subjects had an 
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insufficient number of trials in the extreme ends of the confidence scale, 

neighbouring confidence bins were included to meet this limit.   

We used a single-trial multivariate discriminant analysis, combined with a sliding 

window approach (Parra et al. 2005, Sajda et al. 2009) to discriminate between 

High and Low confidence trials in the stimulus-locked EEG data. This method 

aims to estimate, for predefined time windows of interest, an optimal 

combination of EEG sensor linear weights (i.e., a spatial filter) which, applied to 

the multichannel EEG data, yields a one-dimensional projection (i.e., a 

“discriminant component”) that maximally discriminates between the two 

conditions of interest. Importantly, unlike univariate trial-average approaches 

for event-related potential analysis, this method spatially integrates information 

across the multidimensional sensor space, thus increasing signal-to-noise ratio 

whilst simultaneously preserving the trial-by-trial variability in the signal, which 

may contain task-relevant information. In our data, we identified confidence-

related discriminating components,  (t), by applying a spatial weighting vector 

  to our multidimensional EEG data  (t), as follows:  

 ( )     ( )   ∑     ( )
 
                            (1) 

 

where   represents the number of channels, indexed by  , and   indicates the 

transpose of the matrix. To estimate the optimal discriminating spatial weighting 

vector  , we used logistic regression and a reweighted least squares algorithm 

(Jordan and Jacobs 1994). We applied this method to identify   for short (60 ms) 

overlapping time windows centred at 10 ms-interval time points, between -100 

and 1000 ms relative to the onset of the random dot stimulus (i.e., the 

perceptual decision phase of the trial). This procedure was repeated for each 

subject and time window. Applied to an individual trial, spatial filters ( ) 

obtained this way produce a measurement of the discriminant component 

amplitude for that trial. In separating the High and Low trial groups, the 

discriminator was designed to map the component amplitudes for one condition 

to positive values and those of the other condition to negative values. Here, we 

mapped the High confidence trials to positive values and the Low confidence 

trials to negative values, however note that this mapping is arbitrary. 
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To quantify the performance of the discriminator for each time window, we 

computed the area under a receiver operating characteristic (ROC) curve (i.e., 

the Az value), using a leave-one-out trial procedure (Duda et al. 2001). We 

determined significance thresholds for the discriminator performance using a 

bootstrap analysis whereby trial labels were randomised and submitted to a 

leave-one-out test. This randomisation procedure was repeated 500 times, 

producing a probability distribution for Az, which we used as reference to 

estimate the Az value leading to a significance level of p<0.01. 

 

Given the linearity of our model we also computed scalp projections of the 

discriminating components resulting from Eq. 1 by estimating a forward model 

for each component: 

 

a   
   

   
                          (2) 

 

where the EEG data ( ) and discriminating components ( ) are now in a matrix 

and vector notation, respectively, for convenience (i.e., both   and   now 

contain a time dimension). Equation 2 describes the electrical coupling of the 

discriminating component   that explains most of the activity in  . Strong 

coupling indicates low attenuation of the component   and can be visualised as 

the intensity of vector a.  

 

Single-trial power analysis. We calculated prestimulus alpha power (8-12Hz) in 

the 400 ms epoch beginning at -500 ms relative to the onset of the random dot 

stimulus. To do this, we used the multitaper method (Mitra and Pesaran 1999) as 

implemented in the FieldTrip toolbox for Matlab 

(http://www.ru.nl/neuroimaging/fieldtrip). Specifically, for each epoch data 

were tapered using discrete prolate spheroidal sequences (2 tapers for each 

epoch; frequency smoothing of ±4Hz) and Fourier transformed. Resulting 

frequency representations were averaged across tapers and frequencies. Single-

trial power estimates were then extracted from the occipitoparietal sensor with 

http://www.ru.nl/neuroimaging/fieldtrip
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the highest overall alpha power and baseline normalised through conversion to 

decibel units (dB). 

 

MRI data acquisition. Imaging was performed at the Centre for Cognitive 

Neuroimaging, Glasgow, using a 3-Tesla Siemens TIM Trio MRI scanner (Siemens, 

Erlangen, Germany) with a 12-channel head coil. Cushions were placed around 

the head to minimize head motion. We recorded two experimental runs of 794 

whole-brain volumes each, corresponding to the two blocks of trials in the main 

experimental task. Functional volumes were acquired using a T2*-weighted 

gradient echo, echo-planar imaging sequence (32 interleaved slices, gap: 0.3 

mm, voxel size: 3 × 3 × 3 mm, matrix size: 70 × 70, FOV: 210 mm, TE: 30 ms, TR: 

2000 ms, flip angle: 80°). Additionally, a high-resolution anatomical volume was 

acquired at the end of the experimental session using a T1-weighted sequence 

(192 slices, gap: 0.5 mm, voxel size: 1 × 1 × 1 mm, matrix size: 256 × 256, FOV: 

256 mm, TE: 2300 ms, TR: 2.96 ms, flip angle: 9°), which served as anatomical 

reference for the functional scans. 

fMRI preprocessing. The first 10 volumes prior to task onset were discarded 

from each fMRI run to ensure a steady-state MR signal. Additionally, 13 volumes 

were discarded from the post-task period at the end of each block. The 

remaining 771 volumes were used for statistical analyses. Pre-processing of the 

MRI data was performed using the FEAT tool of the FSL software 

(http://www.fmrib.ox.ac.uk/fsl) and included slice-timing correction, high-pass 

filtering (>100 s), and spatial smoothing (with a Gaussian kernel of 8 mm full 

width at half maximum), and head motion correction (using the MCFLIRT tool). 

The motion correction preprocessing step generated motion parameters which 

were subsequently included as regressors of no interest in the general linear 

model (GLM) analysis (see fMRI analysis below). Brain extraction of the structural 

and functional images was performed using the Brain Extraction tool (BET). 

Registration of EPI images to standard space (Montreal Neurological Institute, 

MNI) was performed using the Non-linear Image Registration Tool with a 10-mm 

warp resolution. The registration procedure involved transforming the EPI images 

into an individual‟s high-resolution space (with a linear, boundary-based 

registration algorithm, (Greve and Fischl 2009)) prior to transforming to standard 
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space. Registration outcome was visually checked for each subject to ensure 

correct alignment. 

 

fMRI analysis. Whole-brain statistical analyses of functional data were 

conducted using a general linear model (GLM) approach, as implemented in FSL 

(FEAT tool):  

                                                               (3) 

where   represents the BOLD response time series for a given voxel, structured 

as a T×1 (T time samples) column vector, and   represents the T×N (N 

regressors) design matrix, with each column representing one of the 

psychological regressors (see GLM analysis below for details), convolved with a 

canonical hemodynamic response function (double-gamma function). 

  represents the parameter estimates (i.e., regressor betas) resulting from the 

GLM analysis in the form of a N × 1 column vector. Lastly, ε is a T × 1 column 

vector of residual error terms. A first-level analysis was performed to analyse 

each subject‟s individual runs. These were then combined at the subject-level 

using a second-level analysis (fixed effects). Finally, a third-level mixed-effects 

model (FLAME 1) was used to combine data across all subjects. 

Simultaneous EEG/fMRI analysis. With the combined EEG/fMRI approach, we 

sought to identify confidence-related activation in the fMRI surpassing what 

could be explained by the relevant behavioural predictors alone. In particular, 

we looked for brain regions where BOLD responses correlated with the 

confidence-discriminating component derived from the EEG analysis. Our 

primary motivation behind this approach was the hypothesis that endogenous 

trial-by-trial variability in the confidence discriminating EEG component (near 

the time of perceptual decision, and prior to behavioural response) would be 

more reflective of early internal representations of confidence at the single-trial 

level, compared to the metacognitive reports which are provided post-

decisionally and therefore likely to be subjected to additional processes. We 

predicted that the simultaneous EEG/fMRI approach would enable identification 

of latent brain states that might remain unobserved with a conventional analysis 
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approach. To this end, we extracted trial-by-trial amplitudes of  ( ) (resulting 

from Eq. 1) at the time window of maximum confidence discrimination, and used 

these to build a BOLD predictor, which we henceforth refer to as the YCONF 

regressor. Importantly, to avoid possible confounding effects of motor 

preparation/response, the time of this component was determined on a subject-

specific basis, by only considering the period prior to the behavioural choice 

(mean peak discrimination time = 708 ms from stimulus onset, SD=162 ms). Thus, 

on average this was selected 287ms (SD=171 ms) prior to each subject‟s mean 

response time.  

Note that the trial-by-trial variability in our EEG component amplitudes is driven 

mostly by cortical regions found in close proximity to the recording sensors and 

to a lesser extent by distant (e.g., subcortical) structures. Nonetheless, an 

advantage of our EEG-informed fMRI predictors is that they can also reveal 

relevant fMRI activations within deeper structures, provided that their BOLD 

activity covaries with that of the cortical sources of our EEG signal. 

GLM analysis. We designed our GLM model to account for variance in the BOLD 

signal at two key stages of the trial, namely the perceptual decision period 

(beginning at the onset of the random dot visual stimulus) and the metacognitive 

evaluation/rating (beginning at the onset of the rating scale display), 

respectively. A total of 10 regressors were included in the model. Our primary 

predictor of interest was the EEG-derived endogenous measure of confidence 

(YCONF regressor). We modelled this as a stick function (duration = 0.1 s) locked 

to the stimulus onset, with event amplitudes parametrically modulated by the 

trial-to-trial variability in the confidence discriminating component  ( ). To 

ensure variance explained by this regressor was unique (i.e., not explained by 

subjects‟ behavioural reports), we included a second regressor whose event 

amplitudes were parametrically modulated by confidence ratings, and which was 

otherwise identical to the YCONF regressor (i.e., RatingsDEC regressor, duration = 

0.1 s, locked to stimulus onset). Importantly, YCONF amplitudes were only 

moderately correlated with behavioural confidence ratings (mean R=.39, 

SD=.07), thus allowing us to exploit additional explanatory power inherent to 

this regressor. Other regressors of no interest for the perceptual decision stage 
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included: one regressor parametrically modulated by prestimulus alpha power in 

the EEG signal (to control for potential attentional baseline effects), one 

categorical regressor (1/0) accounting for variability in response accuracy, and 

one unmodulated regressor (all event amplitudes set to 1) modelling stimulus-

related visual responses of no interest across both valid and non-valid (missed) 

trials (all event durations = 0.1 s, locked to stimulus onset). To control for motor 

preparation/response, we also included a parametric regressor modulated by 

subjects‟ reaction time on the direction discrimination task (duration = 0.1 s, 

locked to the time of behavioural response).  

Additionally, locked to the onset of the metacognitive rating period, we included 

one parametric regressor (duration = 0.1 s) with event amplitudes modulated by 

subjects‟ confidence ratings, one boxcar regressor with duration equivalent to 

subjects‟ active behavioural engagement in confidence rating (to minimise 

effects relating to motor processes), and one unmodulated regressor (duration = 

0.1 s). Lastly, we included one categorical boxcar regressor (1/0) to model non-

task activation (i.e., rest breaks within each run). Motion correction parameters 

obtained from fMRI preprocessing were entered as additional covariates of no 

interest.  

Resampling procedure for fMRI thresholding. To estimate a significance 

threshold for our fMRI statistical maps whilst correcting for multiple 

comparisons, we performed a nonparametric permutation analysis that took into 

account the a priori statistics of the trial-to-trial variability in our primary 

regressor of interest (YCONF), in a way that trades off cluster size and maximum 

voxel Z-score (Debettencourt et al. 2011). For each resampled iteration, we 

maintained the onset and duration of the regressor identical, whilst shuffling 

amplitude values across trials, runs and subjects. Thus, the resulting regressors 

for each subject were different as they were constructed from a random 

sequence of regressor amplitude events. This procedure was repeated 200 times. 

For each of the 200 resampled iterations, we performed a full 3-level analysis 

(run, subject, and group). Our design matrix included the same regressors of 

non-interest used in all our GLM analysis. This allowed us to construct the null 

hypothesis H0, and establish a threshold on cluster size and Z-score based on the 
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cluster outputs from the permuted parametric regressors. Specifically, we 

extracted cluster sizes from all activations exceeding a minimal cluster size (5 

voxels) and Z-score (2.57 per voxel) for positive correlations with the permuted 

parametric regressors. Finally, we examined the distribution of cluster sizes 

(number of voxels) for the permuted data and found that the largest 5% of 

cluster sizes exceeded 162 voxels. We therefore used these results to derive a 

corrected threshold for our statistical maps, which we then applied to the 

clusters observed in the original data (that is, Z=2.57, minimum cluster size of 

162 voxels, corrected at p=0.05). 

 

Results 

Behaviour. On average, subjects indicated their decision on the direction 

discrimination task 994 ms (SD = 172 ms) after stimulus onset and, consistent 

with our subject-specific calibrations of the stimulus difficulty (i.e., targeting 

psychophysical threshold), they performed correctly on 75% (SD = 5.2%) of the 

trials. In providing behavioural confidence reports, subjects tended to employ 

the entire rating scale, showing that subjective confidence varied from trial-to-

trial despite perceptual evidence remaining constant throughout the task. As a 

general measure of validity of subjects‟ confidence reports, we first examined 

the relationship with behavioural task performance. Specifically, confidence is 

largely known to scale positively with decision accuracy and negatively with 

response time (Vickers and Packer 1982, Baranski and Petrusic 1998) (though this 

relationship is not perfect, and is subject to individual differences, e.g., 

(Fleming and Dolan 2012, Fleming et al. 2010, Baranski and Petrusic 1994, 

Zylberberg et al. 2014)). As expected, we found a positive correlation with 

accuracy (subject-averaged R = .30; one-sample t-test, t(23) = 13.9, p < .001) 

(Fig. 4.1B), and a negative correlation with response time (subject-averaged R = 

-.27; one-sample t-test, t(23) = -7.8, p < .001) (Fig. 4.1C). Thus, subjects‟ 

confidence ratings were generally reflective of their performance on the 

perceptual decision task. 
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Figure 4.1. Experimental design and behavioural performance. A. Schematic 

representation of the behavioral paradigm. Subjects made speeded left vs. right motion 

discriminations of random dot kinematograms calibrated to each individual‟s perceptual 

threshold. Stimulus difficulty (i.e., motion coherence) and was held constant across 

trials. Stimuli were presented for up to 1.2 s, or until a behavioural response was made. 

After each direction decision, subjects rated their confidence on a 9-point scale (3 s). 

The response mapping for high vs. low confidence ratings alternated randomly across 

trials to control for motor preparation effects, and was indicated by the horizontal 

position of the scale, with the tall end representing high confidence. All behavioural 

responses were made on a button box, using the right hand. B. Mean proportion of 

correct direction choices as a function of reported confidence. C. Mean response time 

as a function of reported confidence. Error bars in B and C represent the standard errors 

across subjects. 

 

Next, we asked whether subjects‟ confidence reports could be explained by local 

fluctuations in attention. To address this possibility, we performed a serial 

autocorrelation regression analysis on a single subject basis, which predicted 

confidence ratings on the current trial from ratings given on the immediately 

preceding five trials. On average, this model accounted for only a minimal 
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fraction of the variance in confidence ratings (subject-averaged R2 = .07). 

Finally, we sought to rule out the possibility that trial-to-trial variability in 

confidence could be explained by potential subtle differences in low-level 

physical properties of the stimulus that may go beyond motion coherence (e.g., 

location and/or timing of individual dots). To this end, we compared subjects‟ 

confidence reports on the two experimental blocks which contained an identical 

set of stimuli, and found no significant correlation between these (R = 0.02, p = 

0.44). Taken together, these results support the hypothesis that subjects‟ 

reports reflected internal fluctuations in their sense of confidence, which are 

largely unaccounted for by external factors. 

EEG-derived measure of confidence. We conducted a single-trial multivariate 

discrimination analysis on the EEG data between Low vs. High confidence trials 

(see Materials and Methods), on the basis of subjective confidence reports. It is 

important to note that separating trials in this manner only served to increase 

the precision of the discrimination process, i.e., estimate the electrode 

contribution patterns that optimally captured confidence. Data from all trials, 

including those not originally used in the discrimination analysis, were 

subsequently subjected through these spatial filters, resulting in discriminant 

component amplitudes that represent graded (individual trial) measures of 

internal confidence. 

We found that discrimination performance (Az) between the two confidence trial 

groups peaked, on average, 708 ms after stimulus onset (SD = 162ms, Fig. 4.2A). 

To visualise the spatial extent of this confidence component, we computed a 

forward model of the discriminating activity (Eq. 2), which can be represented 

as a scalp map (Fig. 4.2A). Importantly, both the temporal profile and electrode 

distribution of confidence-related discriminating activity appeared consistent 

with our previous work (Gherman and Philiastides 2015) where we used stand-

alone EEG to identify time-resolved signatures of confidence during a face vs. 

car task. Together these observations are an indication that the temporal 

dynamics of decision confidence can be reliably captured using EEG data 

acquired inside the MR scanner, and that these early confidence-related signals 

may generalise across tasks. 
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Figure 4.2. Neural representation of confidence in the EEG. A. Classifier performance 

(Az) during High- vs. Low-confidence discrimination for stimulus-locked single-trial data, 

i. Mean confidence discrimination performance as a function of time (shaded area 

represents standard errors across subjects). Inset shows average (normalised) 

topography associated with the discriminating component at subject-specific times of 

peak confidence discrimination, ii. Distribution of peak confidence discrimination times 

across subjects. In selecting these, we considered only the discrimination period ending 

on average at least 100 ms (across-subject mean 271±162 ms) prior to the subjects‟ 

mean response times, to minimise potential confounds with activity related to motor 

execution (due to a sudden increase in corticospinal excitability in this period (Chen et 

al. 1998), iii. Distribution of Az values at the time of peak confidence discrimination 

across subjects. B. Mean amplitude of the confidence discriminant component as a 

function of confidence group (Low, Medium, High; grey bars). As expected, component 

amplitudes for the Medium confidence trials (i.e., trials which were independent from 

those used to perform the discrimination analysis) are situated between the Low and 

High confidence trials. The mean component amplitudes for individual confidence 

ratings (weighted by each subjects‟ trial count per rating) are also shown (inset). C. 

Mean amplitudes of the confidence discriminant component did not differ significantly 

between trials showing High vs. Low prestimulus oscillatory power in the alpha band. D. 

Mean amplitude of the confidence discriminant component, separated by confidence 

group and accuracy on the perceptual task. No significant differences were observed 

between correct and error trials (light and dark grey bars, respectively). White dots in 

B, C, and D represent individual subject means. 
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To provide additional support linking this discriminating component to choice 

confidence, we considered the Medium-confidence trials. Importantly, these 

trials can be regarded as “unseen” data, as they are independent from those 

used to train the classifier. We subjected these trials through the same neural 

generators (i.e. spatial projections) estimated during discrimination of High vs. 

Low confidence trials and, as expected from a graded quantity, found that the 

mean component amplitudes for Medium-confidence trials were situated 

between, and significantly different from, those in the High- and Low-confidence 

trial groups (both p < .001, Fig. 4.2B ).  

Further, we aimed to address potential confounding effects in our EEG results. 

As with the behavioural data, we first addressed the possibility that the 

observed variability in the confidence discriminating component could be 

attributed to local fluctuations in attention, by conducting a serial 

autocorrelation analysis. As before, this model only explained a small fraction of 

the variance in component amplitudes (subject-averaged R2 = .03). We also 

assessed the influence of a neural signal known to correlate with attention (Thut 

et al. 2006) and predict visual discrimination (van Dijk et al. 2008), namely 

occipitoparietal prestimulus alpha power. To do this, we separated trials into 

High vs. Low alpha power groups, individually for each subject, and compared 

the corresponding average discriminant component amplitudes. We found that 

these did not differ significantly between the two groups (paired t-test, p=.19, 

Fig. 4.2C). Next, we tested whether our results could be explained by subjects‟ 

task performance (i.e., accuracy of the direction decision), by comparing 

discriminant component amplitudes for correct vs. error responses. We 

performed this comparison separately for each of the three confidence trial 

groups (Low, Medium, High) and found no significant differences between these 

(paired t-tests, all p>.45, Fig. 4.2D). Finally, we note that variability in the 

confidence discriminant component was also independent of stimulus difficulty, 

as this was held constant across all trials. We further supported this by showing 

that discriminant component amplitudes between the two identical-stimulus 

experimental blocks were not significantly correlated (mean R = .02; one-sample 

t-test, p = .39). 
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fMRI correlates of reported confidence. Although the fMRI model employed 

here was primarily aimed at identifying activation correlating with endogenous 

(electrophysiologically-derived) signatures of confidence at the time of decision, 

our design matrix also included regressors accounting for variance linked to 

subjects‟ behavioural confidence reports, as well as other potentially 

confounding factors (task performance, response time, attention, and visual 

stimulation; see Materials and Methods).  

Thus, we first inspected the activation patterns associated with confidence 

ratings during the perceptual decision phase of the trial (Fig. 4.3A).  The 

coordinates of all activations are listed in Table 4.1. We found that the BOLD 

response increased with reported confidence in the striatum, lateral 

orbitofrontal cortex (OFC), the ventral anterior cingulate cortex (ACC) – areas 

thought to play a role in human valuation and reward (Grabenhorst and Rolls 

2011, Rushworth et al. 2007, O'Doherty 2004) – as well as the right anterior 

middle frontal gyrus, amygdala/hippocampus, and visual association areas. 

Overall, these activations appear consistent with findings from previous studies 

that have identified spatial correlates of decision confidence (De Martino et al. 

2013, Hebart et al. 2016, Heereman et al. 2015, Rolls et al. 2010a). Negative 

activations (i.e., regions showing increasing BOLD response with decreasing 

reported confidence) were found in the right supplementary motor area, 

dorsomedial prefrontal cortex, right inferior frontal gyrus (IFG), anterior 

insula/frontal operculum, in line with previous reports of decision uncertainty 

near the time of decision (Hebart et al. 2016, Heereman et al. 2015).  
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Figure 4.3. Parametric modulation of the BOLD signal by reported confidence. A. 

Clusters showing positive correlation with confidence during the decision phase of the 

trial. B. Clusters showing negative correlation with confidence at the onset of the rating 

cue (i.e., rating phase). All results are reported at |Z|≥2.57, and cluster-corrected 

using a resampling procedure (minimum cluster size 162 voxels; see Materials and 

Methods). Ang Gyr, angular gyrus; Ant Ins, anterior insula; IFG (orb), inferior frontal 

gyrus (orbital region); LOFC, lateral orbitofrontal cortex; MedFG, medial frontal gyrus; 

MidFG, middle frontal gyrus; NAcc, nucleus accumbens; pgACC, pregenual anterior 

cingulate cortex; RLPFC, rostrolateral prefrontal cortex; SFG, superior frontal gyrus. 

The complete lists of activations are shown in Tables 1 and 2. 

 

During the metacognitive report stage of the trial (i.e., rating phase, Fig. 4.3B), 

we found negative correlations with confidence ratings in extended networks 

(Table 4.2) which included regions of the rostrolateral prefrontal cortex 

(bilateral, right lateralised), middle frontal gyrus, superior frontal gyrus 

(extending along the cortical midline and into the medial prefrontal cortex), 

orbital regions of the IFG, angular gyrus, precuneus, posterior cingulate cortex 

(PCC), and regions of the occipital and middle temporal cortices. These 

activations are largely in line with research on the spatial correlates of choice 

uncertainty (Grinband et al. 2006, Fleming et al. 2012) and metacognitive 

evaluation (Fleming et al. 2012, Molenberghs et al. 2016). Finally, positive 

correlations were observed in the striatum and amygdala/hippocampus, as well 
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as motor cortices. Intriguingly, the seemingly distinct confidence-related 

network activations at the time of the perceptual decision vs. metacognitive 

report suggest these regions may encode qualitatively distinct representations of 

confidence at different times within the trial, for example faster and more 

automated representations of confidence (see (Lebreton et al. 2015)) around the 

time of decision, in contrast to metacognitive representations, when explicit 

evaluation/report are required.  

 

   Peak MNI 

coordinates 

(mm) 

 

Brain region BA Laterality X Y Z Z value 

(peak) 

Positive parametric effect (Z>2.57)       

Striatum (nucleus accumbens / 

ventral putamen) 

- L -10 4 -10 4.64 

 - R 12 4 -10 4.09 

Lateral orbitofrontal cortex 11/47 L -28 46 -8 4.46 

 47 R 32 38 -6 3.86 

Anterior cingulate cortex 32/10 R, L 2 36 6 4.19 

Lateral occipital cortex (inferior) 19 L -42 -68 -10 4.04 

 19 R 48 -82 8 3.13 

Middle frontal gyrus (anterior) 10 R 40 62 10 3.94 

Striatum (dorsal putamen / 

pallidum) 

- L -28 -18 2 3.72 

Occipital pole 17 R, L 4 -102 8 3.66 

Cerebellum - R 22 -46 -22 3.55 

Inferior temporal gyrus  37 R 54 -46 -16 3.51 

Negative parametric effect (Z<-2.57)       

Superior frontal gyrus 

(supplementary motor area) 

6 R 14 12 64 5.62 

Dorsomedial prefrontal cortex 6/32 R, L -6 12 52 4.13 

Inferior frontal gyrus 44/45 R 50 16 2 3.95 

Precentral gyrus 6 R 50 4 46 3.61 

 6 L -44 2 38 3.46 

MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere; BA, 

approximate Broadmann area. 

 

Table 4.1. Complete list of brain activations correlating with subjects‟ confidence 

reports, at the time of stimulus onset (decision phase). 
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   Peak MNI 

coordinates 

(mm) 

 

Brain region BA Laterality X Y Z Z 

value 

(peak) 

Positive parametric effect (Z > 2.57)       

Amygdala / Hippocampus - R 28 -10 -14 4.16 

 - L -28 -12 -12 3.27 

Putamen - L -22 18 2 4.01 

Precentral gyrus 6/4 L -38 -10 70 3.87 

 6 R 38 -14 70 3.04 

Negative parametric effect (Z< -2.57)       

Angular gyrus 39 L -58 -56 34 5.87 

Angular gyrus 39 R 60 -54 36 5.82 

Superior frontal gyrus / RLPFC 10/9 R 24 58 26 5.84 

 10/9 L -20 52 26 5.2 

Inferior frontal gyrus (orbital area)  

/ Anterior insula 

13/45 L -44 24 -8 5.58 

 13/45 R 42 22 -6 5.26 

Middle frontal gyrus 8/9 R 44 20 42 5.56 

 8/9 L -40 20 42 4.92 

Medial frontal gyrus 8/9 L, R 0 42 34 5.19 

Inferior frontal gyrus (triangular 

area) 

45 L -50 22 6 5.02 

 45 R 58 30 8 4.94 

Precuneus 7 L, R -2 -68 38 4.51 

Occipitotemporal gyrus 37 L -38 -62 -22 4.34 

Posterior cingulate cortex 23 L, R -2 -26 32 4.76 

Middle temporal gyrus (anterior) 20/21 R 50 2 -34 4.36 

Thalamus - R 10 -10 2 4.35 

 - L -12 -10 6 3.82 

Lingual gyrus 18 L -2 -80 0 4.14 

Calcarine cortex 17 R 16 -90 2 4.14 

 17 L -12 -92 2 3.93 

Middle temporal gyrus (posterior) 21/37 R 56 -34 -12 3.93 

 21 L -54 -30 -8 3.82 

Inferior occipital gyrus  18 R 28 -90 -10 3.19 

Lateral occipital cortex (superior) 19 R 44 -74 20 3.58 

 19 L -40 -88 20 3.43 

MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere; BA, 

approximate Broadmann area; RLPFC, rostrolateral prefrontal cortex 

 

Table 4.2. Complete list of brain activations correlating with subjects‟ confidence 

reports, at the time of confidence rating (rating phase). 
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fMRI correlates of EEG-derived confidence. We used the single-trial variability 

associated with the confidence discriminating component to construct a 

parametric EEG-derived fMRI regressor (YCONF regressor), in order to identify 

potential brain regions encoding internal representations of early confidence as 

captured by this EEG component.  

Crucial to our approach was modelling the fMRI activation using time-resolved, 

electrophysiologically-derived signatures of confidence which were specific to 

each subject. These measures captured the variability in the neural 

representation of confidence around the perceptual decision itself (i.e., prior to 

behavioural response), and at a time point of maximum confidence 

discrimination, thus allowing us to detect its associated spatial correlates with 

increased temporal and spatial precision, relative to what behavioural ratings 

and fMRI measurements alone permitted. Importantly, as these signals were only 

partially correlated with reported confidence, they could potentially provide 

additional explanatory power in our fMRI model.  

This EEG-informed fMRI analysis revealed a large cluster in the ventromedial 

prefrontal cortex (VMPFC, peak MNI coordinates [-8 40 -14]), extending into the 

subcallosal region and ventral striatum, and a smaller cluster in the right 

precentral gyrus (peak MNI coordinates [30 -20 64]), where the BOLD response 

correlated positively with the EEG-derived confidence discriminating component 

(Fig. 4.4). Recent studies have linked the VMPFC to confidence in value-based as 

well as other complex decisions (De Martino et al. 2013, Lebreton et al. 2015), 

however this region is not typically associated with confidence in perceptual 

decisions (though see (Heereman et al. 2015)). This finding is consistent with 

recent work proposing a domain-general role for the VMPFC in encoding 

confidence (Lebreton et al. 2015), and raises the possibility that this region 

holds information about early confidence signals emerging prior to the execution 

of a behavioural choice.  

Importantly, we note that the EEG-derived measures, which informed the fMRI 

analysis, were independent of task difficulty, accuracy, or attention, as 

discussed in previous sections. Additionally, the GLM model included separate 

regressors controlling for these variables, and other potential confounds (see 
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Materials and Methods). In particular, our simultaneous EEG/fMRI approach 

allowed the introduction of an additional level of control for attentional 

confounds in the fMRI analysis, namely by including the same EEG-derived index 

of attention as a nuisance predictor in the GLM model. This regressor showed 

significant correlation with the intraparietal regions and the frontal eye fields, 

consistent with the dorsal attentional network thought to be involved in top-

down control of visual attention (Corbetta and Shulman 2002). 

 

 

Figure 4.4. EEG-informed fMRI results. Positive parametric modulation of the BOLD 

signal by EEG-derived single-trial confidence measures (see Materials and Methods), 

during the decision phase of the trial. Results are reported at |Z|≥2.57, and cluster-

corrected using a resampling procedure (minimum cluster size 162 voxels). VMPFC, 

ventromedial prefrontal cortex.  

 

Next, we asked whether BOLD activation observed in the VMPFC during the 

perceptual decision period was uniquely associated with the EEG-derived YCONF 

regressor, i.e., over and above what could be explained by the behavioural 

confidence ratings (i.e., the RatingsDEC regressor, Fig. 4.3A) alone. To test this, 

we compared mean parameter estimates (z-scored beta values) associated with 

the two predictors, within the VMPFC region identified with the YCONF regressor. 
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We found that, across subjects, these were significantly higher for the YCONF 

regressor than for the RatingsDEC regressor (paired t-test, t (23) = 9.48, p<.001). 

Moreover, VMPFC parameter estimates for the YCONF regressor remained 

significantly higher than those associated with the RatingsDEC, even when the 

latter were obtained with a control GLM model that did not include YCONF as a 

predictor (paired t-test, t (23) = 7.99, p<.001). Taken together, these 

observations indicate that our EEG-derived endogenous measures of confidence 

were better predictors of VMPFC activity at the time of decision than the post-

decision behavioural reports. 

The scalp map associated with our confidence discriminating EEG component 

showed a diffused topography including contributions from several 

centroparietal electrode sites, however our EEG-derived regressor did not show 

significant activation in parietal regions. One possibility is that the observed 

spatial pattern reflects sources of shared variance between the EEG component 

and confidence ratings themselves (which was otherwise controlled for in our 

original fMRI analysis). To test this, we ran a separate control GLM analysis 

where the confidence ratings (RatingsDEC) regressor was removed, and found that 

with this model the YCONF regressor explained additional variability of the BOLD 

signal within several regions, including precuneus/PCC regions of the parietal 

cortex. Notably, activity in these regions has been previously shown to scale 

with decision confidence (De Martino et al. 2013, White et al. 2014). 

 

Discussion 

Here, we used a simultaneous EEG/fMRI approach to investigate the neural 

correlates of confidence during perceptual decisions. We found that BOLD 

activation in the VMPFC was uniquely explained by the single-trial variability in 

an early EEG-derived neural signature of confidence occurring prior to subjects‟ 

behavioural expression of response and metacognitive report. Importantly, we 

showed that this activity surpassed what could be explained by subjects‟ 

behavioural reports alone. Our results provide empirical support for the 

involvement of the VMPFC in confidence of perceptual decisions, consistent with 
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recent evidence for a domain-general role of the VMPFC in encoding decision 

confidence. In turn this suggests that the VMPFC may support an early readout of 

confidence, distinct from explicit metacognitive evaluation.  

Our method allowed us to capitalise on the increased explanatory power 

inherent to our time-resolved internal measures of confidence, to identify 

relevant activation in the fMRI data. This, in turn, provided a more precise 

spatiotemporal characterisation than allowed by fMRI measures alone. The 

observation that the VMPFC holds information about confidence signals occurring 

prior to behavioural response is intriguing, as it raises novel possibilities for the 

role of this region in the confidence processing stream. Specifically, the VMPFC 

may encode early confidence representations (at, or near, the time of decision), 

which in turn could have important adaptive functions in influencing action that 

follows from the perceptual decision, and potentially informing the choice (Lak 

et al. 2017). Additionally, such signals may be qualitatively different from 

confidence estimates available at the time of report as the latter are likely to 

undergo additional processing that continues after a choice is made (Moran et al. 

2015, Resulaj et al. 2009, Pleskac and Busemeyer 2010).  

Computational and neurobiological accounts of confidence processing have 

proposed architectures by which a first-level form of confidence in a decision 

emerges as a natural property of the neural processes supporting the decision, 

which in turn is read out (i.e., summarised) by separate higher-order monitoring 

network(s) (Pouget et al. 2016, Insabato et al. 2010, Meyniel et al. 2015). As the 

VMPFC is not typically known to support perceptual decision processes, the 

VMPFC confidence signals we observe here are thus likely to represent a readout 

of confidence-related information from upstream regions. 

Consistent with a role as a monitoring module providing a confidence readout, 

recent work suggests the VMPFC may encode confidence in a task-independent 

and possibly domain-general manner. Specifically, several functional 

neuroimaging studies have shown positive modulation of VMPFC activation by 

confidence, across a range of decision making tasks (Lebreton et al. 2015, De 

Martino et al. 2013, Heereman et al. 2015, Rolls et al. 2010a). Notably, one 

study showed that fMRI activation in the VMPFC was modulated by confidence 
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across four different tasks involving both value-based and non-value based rating 

judgments (Lebreton et al. 2015). Furthermore, evidence from memory-related 

decision making research appears to also implicate the VMPFC in confidence 

processing (see Hebscher and Gilboa, 2016, for a review). Our results in the 

present study complement current literature by bringing empirical support for 

the involvement of VMPFC in perceptual decision making. 

The observation that the VMPFC, a region known for its involvement in choice-

related subjective valuation (Rangel and Hare 2010, Bartra et al. 2013, 

Philiastides et al. 2010, Pisauro et al. 2017) encodes confidence signals during 

perceptual decisions raises an interesting possibility for interpreting our results. 

Our behavioural paradigm did not involve an explicit reward/feedback 

manipulation and accordingly, the observed confidence-related activation 

cannot be interpreted as an externally driven value signal. Instead, as has been 

suggested previously (Barron et al. 2015, Lebreton et al. 2015), a likely 

explanation is that, by being an internal measure of performance accuracy, 

confidence is inherently valuable. Such a signal may represent implicit reward 

and possibly act as a teaching signal (Lak et al. 2017, Guggenmos et al. 2016, 

Daniel and Pollmann 2012) to drive learning (e.g., perceptual learning (Diaz et 

al. 2017, Kahnt et al. 2011, Law and Gold 2009).  

 

In line with this interpretation, Hebart et al. (2016) observed positive correlation 

with confidence in the ventral striatum, a region known for its involvement in 

reward (O'Doherty et al. 2004). Authors suggest that confidence signals in this 

region may play a role in confidence-driven learning, such that feelings of 

reward associated with a choice reinforce optimal behavior on subsequent 

choices. A different study (Guggenmos et al. 2016) demonstrated that regions of 

the human mesolimbic dopamine system, namely the striatum and ventral 

tegmental area, encoded both anticipation and prediction error related to 

decision confidence (i.e., in the absence of feedback), similar to what is 

typically observed during reinforcement learning tasks where feedback is explicit 

(Fouragnan et al. 2015, Preuschoff et al. 2006, Fouragnan et al. 2017). 

Importantly, these effects were predictive of subjects‟ perceptual learning 

efficiency. Thus, confidence in valuation/reward networks could be propagated 
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back to the decision systems to optimize the dynamics of the decision process, 

for example by means of a reinforcement-learning mechanism.  

 

In conclusion, we showed that by employing a simultaneous EEG/fMRI approach, 

we were able to localise an early representation of confidence in the brain with 

higher spatiotemporal precision than allowed by fMRI alone. In doing so, we 

provided novel empirical evidence for the encoding of a generalised confidence 

readout signal in the VMPFC preceding explicit metacognitive report. Our 

findings provide a starting point for further investigations into the neural 

dynamics of confidence formation in the human brain and its interaction with 

other cognitive processes such as learning, and the choice itself.  
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Chapter 5. General Discussion 

 

Overview 

 

The sense of confidence in our judgments is a vital factor in our interactions 

with the environment. From decisions as complex as choosing a career, to as 

simple as discerning between objects in dim light, the degree to which we 

believe we are correct influences our actions and subsequent decisions. As 

discussed in the introductory chapter, there has been significant progress 

towards uncovering the neural basis of confidence-related processes within the 

past decade. Combined work in animals and humans suggests that even for 

simple perceptual decisions, the construction of confidence involves the 

interaction of multiple neural networks (Grimaldi et al. 2015, Meyniel et al. 

2015). Regions of the prefrontal cortex have been implicated in higher-order 

monitoring processes associated with metacognitive appraisal (Fleming et al. 

2012, Fleming et al. 2010), however confidence-related information has also 

been detected at earlier stages of processing, as early as the decision process 

itself (Zylberberg et al. 2016, Kiani and Shadlen 2009, Middlebrooks and Sommer 

2012, Zizlsperger et al. 2014). Human studies investigating the neural correlates 

of confidence have focused primarily on identifying neural signals that support 

metacognitive (i.e., monitoring) processes, however, to begin to understand the 

complex neural dynamics involved in confidence processing, it is relevant to 

identify neural representations that may precede or contribute to these higher-

order signals. To this end, the current thesis sought to offer a more complete 

characterisation of confidence representations occurring near the time of the 

perceptual decision, in the human brain. 

 

Chapters 2 and 3 relied on the high temporal precision of EEG measurements to 

investigate the neural mechanisms supporting confidence formation during a 

face vs. car categorisation task. More specifically, in Chapter 2 we asked 

whether, as suggested by some theoretical accounts (Pouget et al. 2016, Meyniel 

et al. 2015, Insabato et al. 2010) and animal neurophysiology (Kiani and Shadlen 



98 
 

2009), confidence may be represented in the neural activity that underlies the 

decision process. Chapter 3 further investigated whether rhythmic activity in 

these time-resolved signals may contain additional information about the neural 

mechanisms supporting confidence processes. Finally, building on findings from 

our first study (Chapter 2), and capitalising on single-trial neural signatures of 

confidence estimated with EEG, in Chapter 4 we recorded simultaneous 

EEG/fMRI measurements aiming to identify potential networks linked with this 

activity. We hypothesised that the trial-to-trial variability within these 

endogenous measures would capture early confidence-related signals (i.e., 

occurring prior to overt commitment to choice or explicit metacognitive 

evaluation) with higher accuracy than allowed with metacognitive reports only 

(which may reflect additional influences resulting from post-decisional 

processes, Pleskac and Busemeyer, 2010, Moran et al., 2015, Yu et al., 2015, van 

den Berg et al., 2016a). 

 

Key findings 

 

Using a single-trial multivariate analysis of the EEG, the first study revealed 

confidence-discriminating activity peaking on average 600 ms after stimulus 

onset. This neural representation of confidence appeared to be reflected in the 

rate of evidence accumulation that characterised the perceptual decision, 

supporting the idea of a shared mechanisms underlying confidence and choice 

(Kiani and Shadlen 2009). The scalp topography associated with this activity 

showed centroparietal electrode contributions, similar to neural representations 

of evidence accumulation that have been identified across different tasks and 

sensory modalities (Kelly and O'Connell 2013, O'Connell et al. 2012, Philiastides 

et al. 2014). Complementing this observation, the second study revealed that a 

separate, motor-preparatory signal (Pfurtscheller and Lopes da Silva 1999), also 

carried information about subjects‟ confidence. Specifically, oscillatory activity 

in the alpha- and beta-bands (approx. 10-22 Hz) over the contralateral 

hemisphere relative to the motor effector was reduced during high- vs. low-

confidence choices. This effect began shortly after stimulus onset (~300 ms) and 

peaked around 600-650 ms (i.e., seconds before a motor response), showing 
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large overlap with the neural representation of confidence in the time-domain 

(though it must be noted that oscillatory activity estimates are inherently less 

temporally precise than time-domain measurements). While distinct from 

supramodal decision signals (O'Connell et al. 2012), motor-preparatory signals 

have been shown to reflect the evolving decision process (O'Connell et al. 2012, 

Donner et al. 2009, de Lange et al. 2013), consistent with a continuous flow of 

information from regions that encode the decision (Selen et al. 2012, Gold and 

Shadlen 2003). It follows that if such signals hold information about the decision 

formation, they may also carry information about confidence inherent to this 

process. Together, our EEG data indicate that neural representations of 

confidence may simultaneously be available within neural circuits relevant to 

the decision and the impending action. The view that confidence and choice are 

encoded within the same neural code is also consistent with Bayesian accounts 

of neural processing (Knill and Pouget 2004) postulating that perceptual choices 

are represented as probability distributions, with confidence thus being 

reflected in the neural code that represents the decision (Meyniel et al. 2015, 

Pouget et al. 2016). This of course does not exclude the possibility that 

confidence information, as revealed by our EEG data, may be read out and 

integrated by higher-order structures (De Martino et al. 2013, Insabato et al. 

2010, Hebart et al. 2016, Fleming et al. 2012).  

 

In Chapter 4, we recorded simultaneous EEG and fMRI measurements while 

subjects performed a random-dot motion discrimination task. Single-trial 

analysis of the EEG revealed a confidence-discriminating component whose 

temporal profile and scalp topography matched our results from the face vs. car 

categorisation task in Chapter 2, pointing to a non-task-specific neural 

representation of confidence. Importantly, our EEG-informed fMRI analysis 

showed that single-trial variability within the EEG-derived neural signatures of 

confidence uniquely explained activation in the ventromedial prefrontal cortex 

(VMPFC) during the decision phase of the trial. As discussed in Chapter 4, this 

region has been shown to encode confidence in several decision making tasks 

(Lebreton et al. 2015, De Martino et al. 2013, Heereman et al. 2015), however 

its role in perceptual confidence is not clear. As the VMPFC is not typically 
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associated with perceptual decision making, we speculated that activity here 

could represent a higher-order readout of confidence-related information. 

Multiple regions have been shown to encode confidence independently of the 

perceptual decision, including the orbitofrontal cortex in the rat brain (Lak et al. 

2014), pulvinar in the monkey (Komura et al. 2013), and the PFC (Fleming et al. 

2012, Fleming et al. 2010, Rounis et al. 2010, Lau and Passingham 2006, Baird et 

al. 2013) and striatum (Hebart et al. 2016) in humans, suggesting confidence 

may be read out and used by multiple neural circuits, potentially serving 

different functional purposes. 

 

Importantly, our results implied that representations of confidence in the VMPFC 

are better explained by early internal confidence signatures (extracted prior to 

overt choice or explicit metacognitive evaluation) than by behavioural 

confidence reports, which are theorised to rely on additional noisy post-

decisional processing (Pleskac and Busemeyer 2010, Moran et al. 2015, Yu et al. 

2015). One explanation for this finding could be, for example, shorter post-

decisional processing delays that introduce additional changes to the confidence 

readout. Potentially in line with this is the observation that the VMPFC seems to 

support an automatic readout of confidence (i.e., in the absence of explicit 

report) (Lebreton et al. 2015). Similarly, the vmPFC is thought to encode an 

early and automatic “feeling of rightness” (Moscovitch and Winocur 2002, 

Hebscher and Gilboa 2016) in memory judgments. As such, whereas explicit 

metacognitive evaluation may involve additional post-decisional processing, 

and/or integration of information from multiple sources (e.g., action- or choice-

related information, Fleming et al., 2015), regions such as the VMPFC may 

encode an automatic (potentially faster) confidence readout. Such a distinction 

could be made for example between the VMPFC and the anterior PFC. The RLPFC 

appears consistent with a role in deliberate metacognitive evaluation (i.e., 

explicit engagement in self-monitoring). Namely, haemodynamic responses in 

this area scale with confidence during explicit metacognitive report, as shown in 

our study (Chapter 4) and other experiments (Fleming et al. 2012, Hilgenstock et 

al. 2014), and are more pronounced during confidence report than during a 
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control task (Fleming et al. 2012). Follow up studies could explicitly investigate 

this potential distinction.  

 

Limitations and future directions 

 

It is worth noting that while the simultaneous EEG/fMRI approach offers clear 

advantages over the use of these two techniques in isolation, it is nevertheless 

not free of limitations. In particular, our approach relied on using early EEG-

derived neural signatures of confidence to spatially identify networks that might 

be functionally linked to these early signals. However, as EEG recorded at the 

scalp surface likely contains mixed inputs from multiple structures, confidence-

related contributions are difficult to entirely separate from other sources of 

variability, and thus these signals may still contain influences unrelated to 

confidence on a trial-by-trial basis. While our interpretations of the VMPFC 

activation pattern appears consistent with existing literature, it will be 

important to obtain additional validation for the role of this region from follow-

up studies.  

 

The advantages of our approach nevertheless seem to outweigh its limitations. 

Our results can be used to create novel data-driven hypotheses which in turn can 

inform future experiments.  Here, we identified the VMPFC as a candidate region 

for processing confidence in perceptual decision making near the time of the 

decision. Future studies can further evaluate its functional role, as well as its 

causal contributions to behaviour. In particular, it will be important to formally 

establish whether the VMPFC plays a causal role in metacognitive evaluation for 

perceptual decisions, i.e., whether disrupting activity in this region may affect 

confidence independently of performance, as has been observed in other regions 

of the animal and human brain (Rounis et al. 2010, Komura et al. 2013, Lak et 

al. 2014). Additionally, given the known role of this region in subjective value 

processing (Philiastides et al. 2010, Rangel and Hare 2010), future studies can 

explicitly investigate whether confidence-related responses in the VMPFC may 

potentially play a role in learning in the absence of feedback (Daniel and 
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Pollmann 2012, Guggenmos et al. 2016, Lak et al. 2017) by acting as implicit 

reward/valuation signals (Lebreton et al. 2015, Barron et al. 2015). 

 

Together, empirical findings from our three studies reinforce the observation 

that information about perceptual confidence is represented across multiple 

neural systems. Additionally, we provide novel insights into the underlying 

neural mechanisms and spatiotemporal representations of confidence in the 

human brain, as well as demonstrate how the simultaneous EEG/fMRI approach 

can be used to characterise these. Modelling approaches may offer additional 

insights with respect to the computations by which the observed neural 

signatures of confidence are generated. Variants of sequential-sampling-type 

models have been used for determining confidence in animals and humans at the 

time of choice (Kepecs et al. 2008, De Martino et al. 2013, Vickers 1979, Kiani 

and Shadlen 2009), and thus could serve as basis for extensions of this work. 

  

Conclusion 

 

The current thesis presented empirical findings from three studies which 

investigated the neural correlates of confidence during human perceptual 

decision making. We demonstrated that, similarly to observations from animal 

literature, confidence-related information could be inferred from the same 

process of evidence accumulation supporting decision formation. Interestingly, 

confidence-discriminating neural activity was simultaneously present in motor-

preparatory signals, consistent with a continuous flow of decision- and 

confidence-related information into the sensorimotor systems. Finally, we 

showed that activation in the VMPFC explained variability in internal confidence 

representations identified near the time of the decision (i.e., prior to subjects‟ 

overt response or explicit metacognitive evaluation), in line with a role of this 

region in encoding early and/or automatic representation of confidence. Our 

results represent a step towards a more complete characterisation of the neural 

dynamics involved in confidence processing, and provide a tool for continuing to 

disentangle the neural sources contributing to human confidence and 

metacognition. 
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