
https://theses.gla.ac.uk/8589/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
UNDERSTANDING THE PROGRESSION OF CML THROUGH THE REGULATION OF SELF-RENEWAL AND CELL SURFACE MARKERS

Dr Gillian A. Horne
MRCP MRes MBChB BSc (Med Sci)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

August 2017

Section of Experimental Haematology
Institute of Cancer Sciences
College of Medical, Veterinary and Life Sciences
University of Glasgow
'All truths are easy to understand once they are discovered; the point is to discover them'

Galileo Galilei

In memory of Professor Tessa L. Holyoake

1963 - 2017
Abstract

Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder that is associated with a reciprocal translocation between the long arms of chromosomes 22 and 9, giving rise to the Philadelphia (Ph) chromosome and the subsequent formation of the BCR-ABL fusion gene, encoding the constitutively active oncogenic tyrosine kinase, BCR-ABL. Advances in targeted therapies in chronic phase (CP) CML, notably the use of tyrosine kinase inhibitors (TKI), have led to a ten-fold reduction in disease progression to an accelerated or blast phase (BP). However, if left untreated, or in patients where resistance to TKIs exists or develops, the disease eventually progresses. BP can be myeloid, lymphoid or of an undifferentiated immunophenotype and, despite chemotherapeutic agents, will often end with a terminal outcome.

Progression to BP disease is thought to arise for three reasons: patient non-compliance, TKI resistance, which may be BCR-ABL dependent or independent, and disease persistence. Disease persistence suggests that a small population of cells survive despite TKI therapy, gain or have self-renewal properties, and reside in select haemopoietic bone marrow niches. These cells, termed leukaemic stem cells (LSCs), are not fully dependent on BCR-ABL, relying on deregulation of stem cell intrinsic pathways for their survival.

Within this thesis, we have explored the role of the self-renewal pathway, Notch, in the maintenance and progression of stem and progenitor populations within primary CML samples. We firstly identified, through focussed gene expression analysis, a deregulation of Notch pathway components within CP-CML samples. The Notch receptor, NOTCH2, was upregulated within this population. This was confirmed at protein level. The pathway was, however, deemed not to be activated through in vitro experimental assessment of proliferation, apoptosis, and cell cycle analysis in CP primary samples treated with the gamma-secretase inhibitor, DAPT. In view of the abundant expression of the receptor, we hypothesised that the pathway could be reactivated through exogenous stimulation upon ligand binding. An OP9 co-culture system, as well as plate-bound recombinant ligand, were utilised to allow for the overexpression of the Notch ligands, Delta-like 1 and Jagged1. We have demonstrated that Notch signalling can be reactivated within CP-CML samples, and that cellular function upon reactivation is dependent on cell maturity, i.e. immature Lin-CD34+CD38- and mature Lin-CD34+CD38+ cells. The short-term effects of Notch activation through Jagged1 in CD34+ CP-CML cells led to early erythroid differentiation that is blocked in an immature state. This was determined through cell surface identification of
erythroid markers. There was an increase in expression of both CD71 and GlyA with the addition of stromal co-culture. As CD33 expression was maintained, it suggested that although the samples had initiated differentiation, they could not progress beyond an immature phenotype. To corroborate the possible involvement of Notch activation through Jagged1 interaction in early differentiation, gene expression was investigated in primary CD34⁺ CP-CML patient samples. There was a statistically significant increase in expression of key genes involved in early erythroid differentiation, namely, \(p38 \) and \(PU.1 \), which have notable involvement in development of (pro)erythroblasts. Further to this, within the Lin⁻ CD34⁺CD38⁻ population, short-term activation of Notch through Jagged1 led to a significant reduction in colony formation with long-term colony initiating cell assays. This suggests that pulsed Notch activation may exhaust stem cell activity within the CP-CML phenotype and represent a possible targeted approach towards the CML LSC.

These findings did not translate on disease progression to a myeloid BP phenotype. Notch could not be reactivated despite the presence of the Notch receptor, \(NOTCH2 \). To investigate this further, we sorted CP (n=12), myeloid BP (n=11), and lymphoid BP (n=5) into stem and progenitor populations, before undertaking quantitative PCR of 90 self-renewal gene components of Wnt/\(\beta \)-catenin, Notch, Hedgehog, and BMP signalling pathways. The self-renewal pathways were highly deregulated between CP and BP, and suggested a two-phase disease process (i.e. CP and AP/BP), rather than triphasic (i.e. CP, AP and BP). There was statistically significant upregulation in Wnt/\(\beta \)-catenin components in myeloid BP compared to CP, particularly \(TCF7 \). We hypothesised that Wnt upregulation was preventing Notch activation in myeloid BP-CML. Further to this, transcriptional expression of self-renewal and cell survival pathways was compared between the Ph positive (+) acute leukaemias, namely, myeloid BP, lymphoid BP and Ph+ acute lymphoblastic leukaemia (ALL) (n=5). There was limited change in gene expression profiles of the self-renewal pathway components between myeloid and lymphoid BP disease, but gene expression could segregate Ph+ ALL from lymphoid BP upon gene clustering. This suggests that self-renewal gene components may offer diagnostic implications in the diagnosis of lymphoid BP and Ph+ ALL.

We next sought to provide further functional data as to the immunophenotypic marker of the CML LSC within CP disease. Our group has previously identified that CD93 is highly upregulated in CP-CML LSCs. Furthermore, using flow cytometry, we demonstrated significant upregulation of CD93 protein expression on lin⁻CD34⁺CD38⁻CD45RA⁻CD90⁺ CML LSCs from peripheral blood and bone marrow of CP-CML patients (n= 17) compared
to normal HSC from healthy peripheral blood stem cell donors (n=7) and bone marrow donors (n=4). FISH confirmed that 100% of linCD34+CD38 CD45RA CD90+CD93+ CML cells were BCR-ABL+ in all samples assessed. This thesis has further highlighted the LSC capability of a CD93+ selected population through functional in vitro and in vivo analysis. We have demonstrated that CD93+ CML-LSCs have increased colony-forming capability within long-term colony initiating cell assays. Furthermore, in xenograft transplantation experiments (n = 5), after 16 weeks, CD34+CD93+ CML LSC engrafted lethally irradiated NOD/SCID/IL-2Rg-/- (NSG) mice with BCR-ABL positive cells, whereas CD34+CD93- cells from the same patient samples failed to engraft to significant levels. FISH confirmed that engrafted human cells were BCR-ABL positive. We further highlighted the immature LSC phenotype of CD93-selected cells through bulk and single cell gene expression analysis of 90 cell survival and self-renewal pathway components.

Overall the work presented in this thesis has furthered our understanding of the role of self-renewal within CML maintenance and progression, as well as further implicating the use of the cell surface marker, CD93, in the identification of the CML-LSC. This data will help guide novel therapeutic approaches towards the CML LSC in future experimental work, as well as guide further development in the transcriptional differences and potential targets in the Ph+ acute leukaemias.
Acknowledgements

As I reflect on the last few years of this PhD, I am reminded of the family, friends (old and new) and colleagues that have helped through the good times, the frustrating times, the repetitive times, and the late nights. This thesis is as much theirs, helping me in my clinical, academic and personal development.

It is with immense gratitude that I thank the following people who have supported me throughout this PhD, from the initial grant applications to the end. First and foremost, I would like to thank my supervisors, Professor Mhairi Copland and Professor Tessa Holyoake. Your guidance has been instrumental in allowing me to continue on this career path. Mhairi, thank you for listening to me and allowing me to develop my ideas. I feel privileged to have you as my primary supervisor and mentor for this thesis and for many years to come. Tessa, your work ethic inspires me - as well as your running! Your questioning only made me better and I thank you for this. To my ‘third’ supervisor, Dr Helen Wheadon, thank you for your constant guidance – you went above and beyond to develop me as a scientist. Thank you also to Dr Karen Keeshan, Dr Alison Michie, Dr David Vetrie, Dr Heather Jorgenson and Dr Graham Hamilton, who have offered guidance and have always shown an interest in my ideas.

To my ‘lab family’ – thanks for the banter! Dr Victoria Campbell - my night time and early morning lab buddy – thanks for your help (clinically and academically), and always being able to hold a conversation about celebrity gossip! Dr Ross Kinstrie and (almost) Dr Chris Estell – my gossipy girl pals who listen to me moan and help me out of any scientific conundrum! Miss Heather Morrison (my gene expression guru) and Miss Jen Cassels (my flow cytometry queen) – you two could rule the world (if only with your cheesy music taste). Thank you to Mrs Karen Dunn for teaching me all things mouse – I look forward to more mousey adventures! Dr Alan Hair, Mrs Diane Verrecchia, Mrs Angela Newlands, and Ms Michelle Bradley – the POG would be lost without you, and I thank you for being just really nice people! There are too many of the POG team to thank by name, but each of our ‘lab family’ has helped me at various stages and I am immensely grateful to each PI, PhD, postdoc, and masters student I have come in contact with. To my clinical colleagues – thank you for understanding.

To my EHA-ASH TRTH family – your guidance has helped me develop this project and make it better (hopefully). Every single person I have met through this program is
inspirational and makes me strive to do better. The collaborations and connections that have been developed will last a lifetime. Thank you to the Wellcome Trust who funded this fellowship, and to the patients who have donated samples to enable the research within the Paul O’Gorman Leukaemia Research Centre to be so world-renowned.

To ‘the girls’ (Eilidh, Bee, and Katie) – thanks for not forgetting I existed when I was working ‘all’ the time and for getting me out for a cocktail or two! To my mum, dad, David, Mo, and Les…thanks for listening to me and keeping me grounded. Dad, thanks for asking me repeatedly if it is done yet – it is! And finally, to my husband, Dan - thank you for always being there with the tea on!

To finish, in the words of F. Scott Fitzgerald, ‘you don’t write because you want to say something; you write because you’ve got something to say’.
Publication research output 2013-2017

Publications

Bisling KE, Brewin JN, McGovern AP, Horne GA et al. DNMT3A mutations at R882 hotspot are only found in major clones of acute myeloid leukemia. Leuk Lymphoma. 2014 Mar;55(3):711-4

Publications in preparation

Horne GA, Morrison H, Kinstrie R, Hair A, Cassels JE, Wheadon H, Holyoake TL, Copland M. Notch pathway activation targets leukemic stem cells in chronic phase CML, but cannot be activated upon disease progression to myeloid blast phase.

Horne GA, Hamilton G, Holyoake TL, Copland M. Whole exome sequencing maps progression to myeloid and lymphoid blast phase in an unusual presentation of progressive CML.
Declaration

I declare that, except where explicit reference is made to the contribution of others, that this dissertation is the result of my own work and has not been submitted for any other degree at the University of Glasgow or any other institution.

Dr Gillian A. Horne
Table of contents

Abstract .. iii
Acknowledgements ... vi
Publication research output 2013-2017 .. viii
Declaration ... x
Table of contents .. xi
List of figures ... xiv
List of tables ... xviii
List of abbreviations .. xix

1. Introduction ... 1

1.1 Haemopoiesis ... 1

1.1.1 Hierarchical haemopoiesis ... 1
1.1.2 Phenotypic characterisation of human HSCs ... 3
1.1.3 The maintenance of HSCs through quiescence and self-renewal .. 5

1.2 Intrinsic and extrinsic regulation of HSC function .. 7

1.2.1 The bone marrow microenvironment .. 7
1.2.2 Intrinsic regulation of HSC function .. 9
1.2.3 Haemopoiesis and developmental signalling pathways .. 10

1.2.3.1 The Notch signalling pathway .. 10
1.2.3.2 The Wnt/β-catenin signalling pathway ... 14
1.2.3.3 The Hh Signalling pathway .. 15
1.2.3.4 The BMP signalling pathway ... 17

1.2.4 Integration of signalling pathways .. 18

1.2.5 Cancer stem cells in haematological malignancy ... 20

1.2.5.1 The identification and origin of LSCs .. 21
1.2.5.2 Self-renewal pathways in LSCs – a potential target .. 24
1.2.5.3 Evolutionary conserved self-renewal pathways in LSCs ... 25

1.2.5.3.1 Hedgehog signalling and the LSC .. 25
1.2.5.3.2 Wnt/β-catenin signalling and the LSC .. 27
1.2.5.3.3 Notch signalling and the LSC .. 29
1.2.5.3.4 BMP signalling and the LSC .. 30

1.2.6 Clinical implications of LSC and drug targets .. 31
1.2.7 Chronic myeloid leukaemia as a paradigm for a CSC malignancy 33

1.3 Chronic myeloid leukaemia ... 36

1.3.1 Molecular biology and clinical pathogenesis of CML ... 37
1.3.2 Defining treatment response ... 38

1.3.3 Treatment of CML ... 41

1.3.4 Why does treatment fail? .. 46

1.3.4.1 Patient compliance .. 46
1.3.4.2 Resistance to therapy .. 47

1.3.4.2.1 BCR-ABL-dependent mechanisms .. 47
1.3.4.2.2 BCR-ABL-independent mechanisms .. 49

1.3.4.3 Disease persistence .. 50
1.3.4.4 Stopping trials ... 51
List of figures

1.1 Simplified hierarchical model of haemopoiesis .. 2
1.2 Phenotypic characterisation of the haemopoietic hierarchy 5
1.3 Simplified representation of the bone marrow microenvironment 8
1.4 Simplified representation of the Notch signalling pathway 12
1.5 Simplified representation of the Wnt signalling pathway ... 15
1.6 Simplified representation of the Hh signalling pathway ... 16
1.7 Simplified representation of the BMP signalling pathway 18
1.8 Protein interconnectivity of self-renewal pathways in normal HSCs 19
1.9 Complex interactions between self-renewal pathways ... 24
1.10 The development of BCR-ABL through the translocation of chromosome 9 & 22 ... 37
1.11 Schematic diagram of a treatment algorithm for TKI use in CML 45
1.12 Schematic of point mutations according to position .. 48
2.1 Representative flow cytometry plots pre and post CliniMACS system of a primary CML sample .. 77
2.2 Representative flow cytometry analysis of cell sorting with a BD FACS aria and DIVA software .. 82
2.3 Confirmation of MSC phenotype according to the international society for cellular therapy .. 83
2.4 The long-term culture initiating cell assay ... 86
2.5 Representative example for FISH within CP-CML cells ... 87
2.6 Representative example of AnnexinV/7AAD staining in the context of apoptosis ... 89
2.7 Representative example of PI staining and cell cycle analysis 90
2.8 Schematic representation of CFSE assay by flow cytometry 91
3.1 Notch pathway components are differentially expressed between CP-CML CD34+ and normal CD34+ samples .. 103
3.2 Focussed gene analysis identifies that the Notch signalling pathway is silenced in CD34+ CP-CML .. 105
3.3 Focussed gene analysis identifies that the metalloprotease, ADAM17, statistically correlates with Notch receptor expression ... 106
3.4 FBXW7 represents a prognostic indicator at 12 and 18 months 107
3.5 Upregulation of Notch receptors was confirmed by IF .. 108
3.6 Pharmacological inhibition of Notch does not alter cellular growth in CD34+ CP-CML cells in plastic culture .. 109
3.7 Pharmacological inhibition of Notch does not alter the cell cycle in CD34+ CP-CML cells in plastic culture .. 110
3.8 Pharmacological inhibition of Notch does not affect apoptotic ability of CD34+ CP-CML cells in plastic culture conditions 111
3.9 Schematic representation of co-culture experimentation .. 112
3.10 In vitro activation of the Notch pathway through ligand alters the growth potential of CP-CML CD34+ patient samples ... 113
3.11 In vitro activation of the Notch pathway through ligand binding alters the growth potential at 5 days when samples are normalised to non-stromal conditions 114
3.12 Co-culturing on OP9JAG1 stroma is associated with increase activation of the Notch pathway at gene and protein level ... 115
3.13 The Notch pathway can be activated in CD34+ CP-CML cells through the Jagged1 protein .. 115
3.14 Notch activation through exogenous ligand binding does not influence cell cycle distribution of CD34+ CP-CML cells in short-term culture .. 116
3.15 Stromal co-culture with OP9 cells increases percentage of total viable cells in later cell divisions .. 118
3.16 Activation of Notch through Jagged1 leads to decreased expression of CD34 within a bulk viable cell population ... 119
3.17 Activation of Notch through Jagged1 potentially increases late apoptosis 120
3.18 Co-culture with CP-CML mesenchymal stem cells (MSCs) demonstrated expression of Jagged1 and protection against IM .. 121
3.19 in vitro activation of Notch through Jagged1 induces early differentiation of CD34+ CP-CML primary samples .. 122
3.20 Notch activation within CD34+ CP-CML leads to a trend towards increased erythroid colony formation, although this was not statistically significant 123
3.21 Schematic representation of erythroid differentiation and associated gene changes ... 124
3.22 Gene expression of regulatory erythroid differentiation genes confirms functional data .. 125
3.23 Representation of flow activated cell sorting to Lin-CD34+CD38- population 126
3.24 in vitro activation of Notch increases growth potential in mature CP-CML populations, and not immature populations .. 127
3.25 In vitro activation of Notch increases apoptotic ability in immature CP-CML populations .. 128
3.26 Schematic of long-term culture initiating cell assay experimental design 129
3.27 In vitro activation of Notch through Jagged1 significantly decreases colony formation in LTC-IC assays in an immature population, suggesting a possible therapeutic target towards the CP-CML LSC .. 130
3.28 Schematic representation of c-MYC and p53 within CP-CML 133
4.1 Focussed gene expression analysis demonstrates that the Notch pathway components are likely silenced within primary myeloid BP samples 143
4.2 Pharmacological inhibition of Notch does not alter cellular growth in myeloid BP samples in plastic culture ... 145
4.3 Pharmacological inhibition of Notch does not affect apoptotic ability of myeloid BP samples in plastic culture conditions .. 145
4.4 Co-culture with Notch ligand support does not alter the growth potential in mature or immature myeloid BP cells ... 146
4.5 Co-culture with Notch ligand support does not alter the apoptotic ability in mature and immature myeloid BP progenitor cells ... 147
4.6 Co-culture with Notch ligand support does not alter colony formation in mature and immature myeloid BP cells ... 147
4.7 Gene expression of HES1 and MAML confirms that the Notch pathway is not activated through exogenous ligand expression 148
4.8 Gene expression clustering suggests a two-stage disease process within CML 150
4.9 Focussed gene expression of Notch receptors and ligands 151
4.10 Focussed gene expression of the metalloproteases, ADAM10 and ADAM17, in CML progression to myeloid BP ... 152
4.11 Focussed gene expression of MAML ... 152
4.12 Focussed gene expression of negative regulators of the Notch pathway.............. 153
4.13 Focussed gene expression of the Notch downstream targets, HES1 and HIF1A.... 154
4.14 The interconnectivity between self-renewal pathways and activation of HES1 154
4.15 Focussed gene expression of components of Wnt/β-catenin canonical signalling . 155
4.16 Focussed gene expression of components of Wnt/β-catenin canonical signalling . 156
4.17 Focussed gene expression of components of Hh signalling 157
4.18 Focussed gene expression of BMP4.. 157
4.19 Focussed gene expression of components of BMP signalling 158
4.20 Focussed gene expression of cell cycle components ... 160
4.21 Focussed gene expression of MCM7 and MCM9 ... 161
4.22 Focussed gene expression of differentiation components 162
4.23 Focussed gene expression of differentiation components 163
4.24 Focussed gene expression of components involved in apoptosis 164
4.25 Focussed gene expression of EZH2 in CML disease progression 165
5.1 FACS strategy for lymphoid BP samples ... 179
5.2 Following thaw, lymphoid BP samples have a low recovery rate with variation in percentage of a lineage negative population ... 180
5.3 Lymphoid BP samples have a varying percentage of CD34+ and CD34+CD38− cells ... 180
5.4 The CML population is the largest of the lymphoid BP sub-populations 181
5.5 Gene clustering could not segregate myeloid and lymphoid BP disease 183
5.6 Focussed gene expression of Notch pathway components suggests active Notch in a lymphoid subset.. 185
5.7 Focussed gene expression of HES1 between myeloid BP and lymphoid BP 186
5.8 Focussed gene expression of HIF1A between myeloid BP and lymphoid BP 186
5.9 Focussed gene expression of Wnt/β-catenin pathway components between myeloid BP and lymphoid BP ... 187
5.10 Focussed gene expression of STIL between myeloid BP and lymphoid BP 188
5.11 Focussed gene expression of TGFβ and p38 between myeloid BP and lymphoid BP... 188
5.12 Focussed gene expression of cell cycle regulators between myeloid BP and lymphoid BP .. 190
5.13 ΔCT values for all populations within gene expression analysis 191
5.14 Focussed gene expression of lineage commitment regulators between myeloid BP and lymphoid BP .. 192
5.15 Gene clustering of self-renewal and cell survival components can segregate lymphoid BP and Ph+ ALL ... 194
5.16 Focussed gene expression of lineage commitment regulators between myeloid BP and lymphoid BP .. 195
5.17 Focussed gene expression of Notch ligands between lymphoid BP and Ph+ ALL 196
5.18 Focussed gene expression of HES1 and HIF1A between lymphoid BP and Ph+ ALL ... 197
5.19 Focussed gene expression of Notch negative regulators between lymphoid BP and Ph+ ALL... 198
5.20 Focussed gene expression of Wnt/β-catenin pathway components between lymphoid BP and Ph+ ALL ... 199
5.21 Focussed gene expression of Hh pathway components between lymphoid BP and Ph+ ALL ... 200
5.22 Expression of BMP4 in lymphoid BP and Ph+ ALL ... 200
5.23 Focussed gene expression of stem cell survival components between lymphoid BP and Ph+ ALL ... 201
5.24 Focussed gene expression of SCL between lymphoid BP and Ph+ ALL 202
5.25 Focussed gene expression of cell cycle regulators between lymphoid BP and Ph+ ALL ... 203
6.1 PCA of normal HSC, CP-CML LSC, and progenitor populations 213
6.2 Gene expression is deregulated between normal and CP-CML LSCs 213
6.3 Cell surface markers are deregulated between normal and CP-CML LSCs 214
6.4 CD93 is upregulated within CP-CML at gene and protein level 215
6.5 Sorting strategy for Lin CD34+CD38+CD90−CD93+/− populations 218
6.6 Lin−CD34−CD38−CD90−CD93+ cells have increased potential towards secondary replates .. 219
6.7 Lin CD34−CD93+ have greater self-renewal capacity that Lin CD34+CD93+ in vitro ... 220
6.8 Schematic of NSG experiment .. 221
6.9 BCR-ABL analysis by FISH prior to NSG engraftment model 221
6.10 Significant engraftment was not identified at 8 weeks in CD93+ or CD93− populations .. 222
6.11 Non-BCR-ABL engraftment leads to multi-lineage cell potential 223
6.12 Lin CD34−CD93+ cells confer higher rates of engraftment compared to Lin−CD34+93+ cells ... 224
6.13 Schematic experimental design for gene expression profiles between Lin− CD34−CD38−CD90−CD93+ and Lin−CD34+CD38−CD90−CD93+ populations .. 226
6.14 CD93 gene expression is higher within the Lin−CD34−CD38−CD90−CD93+ population .. 227
6.15 Gene expression profiling can segregate Lin−CD34+CD38−CD90−CD93+ and Lin− CD34−CD38−CD90−CD93+ populations .. 228
6.16 Gene expression of Lin−CD93− suggests lineage restriction 229
6.17 Gene expression of Lin−CD93+ confers a stem cell signature 230
6.18 Frequency of gene expression identifies gene differences between CD93+ and CD93− single CML cells .. 231
6.19 Gene clustering cannot clearly discriminate between CD93+ and CD93− populations .. 233
6.20 Correlation is identified between CD93+ and CD93− samples vs bulk using Spearman’s Coefficient .. 234
6.21 No significant change of BCR-ABL expression was identified between CD93+ and CD93−-selected single cells as determined by multiplex PCR .. 235
List of tables

1.1 Definitions of treatment response in CML ... 39
1.2 Definition of minimum required response to TKI therapy 40
1.3 Point mutation and recommended action for TKI choice ... 49
2.1 Cell line origin and culture conditions .. 74
2.2 CP-CML samples used including age, gender, breakpoint BCR-ABL mutation, and WCC at diagnosis ... 78
2.3 AP and BP samples used within this thesis ... 80
2.4 Ph+ ALL samples ... 80
6.1 Cell surface marker fold change between CP-CML LSC versus normal 215
6.2 Single cell GEP identifies that CD93+ selected single cells have a stem cell signature ... 235
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
<tr>
<td>7AAD</td>
<td>7 amino actinomycin D</td>
</tr>
<tr>
<td>ABL</td>
<td>Abelson murine leukaemia viral oncogene homolog</td>
</tr>
<tr>
<td>ADAM</td>
<td>a disintegrin and metalloproteinase</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>acute myeloid leukaemia</td>
</tr>
<tr>
<td>AP</td>
<td>accelerated phase</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BCR</td>
<td>breakpoint cluster region protein</td>
</tr>
<tr>
<td>BM</td>
<td>bone marrow</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenic protein</td>
</tr>
<tr>
<td>BP</td>
<td>blast phase</td>
</tr>
<tr>
<td>CCyR</td>
<td>complete cytogenetic response</td>
</tr>
<tr>
<td>CFC</td>
<td>colony forming cells</td>
</tr>
<tr>
<td>CFSE</td>
<td>carboxyfluorescein diacetate succinimidyle ester</td>
</tr>
<tr>
<td>CHR</td>
<td>complete haematological response</td>
</tr>
<tr>
<td>CK1</td>
<td>casein kinase 1</td>
</tr>
<tr>
<td>CLL</td>
<td>chronic lymphocytic leukaemia</td>
</tr>
<tr>
<td>CLP</td>
<td>common lymphoid progenitors</td>
</tr>
<tr>
<td>CML</td>
<td>chronic myeloid leukaemia</td>
</tr>
<tr>
<td>CMP</td>
<td>common myeloid progenitors</td>
</tr>
<tr>
<td>CMR</td>
<td>complete molecular response</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CP</td>
<td>chronic phase</td>
</tr>
<tr>
<td>CSC</td>
<td>cancer stem cells</td>
</tr>
<tr>
<td>CSL</td>
<td>CBF-1-Suppressor of Hairless/lat1</td>
</tr>
<tr>
<td>CXCL12</td>
<td>stromal cell-derived factor 1</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DAPT</td>
<td>N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester</td>
</tr>
<tr>
<td>DHH</td>
<td>desert hedgehog</td>
</tr>
<tr>
<td>DLL</td>
<td>delta-like</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
</tr>
<tr>
<td>ELN</td>
<td>European Leukemia Net</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence In Situ Hybridisation</td>
</tr>
<tr>
<td>FMO</td>
<td>fluorescence minus one</td>
</tr>
<tr>
<td>FSC</td>
<td>forward-angle scatter</td>
</tr>
<tr>
<td>fucose-GlcNAc</td>
<td>fucose-N-acetylgalactosamine</td>
</tr>
<tr>
<td>GCSF</td>
<td>granulocyte colony stimulating factor</td>
</tr>
<tr>
<td>Gfi1</td>
<td>growth factor independence 1</td>
</tr>
<tr>
<td>GMP</td>
<td>granulocyte-monocyte progenitors</td>
</tr>
<tr>
<td>GO</td>
<td>gemtuzumab ozogamicin</td>
</tr>
<tr>
<td>GSC</td>
<td>gamma secretase complex</td>
</tr>
<tr>
<td>GSK3β</td>
<td>glycogen synthase kinase 3β</td>
</tr>
<tr>
<td>HBSS</td>
<td>hanks balanced salt solution</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>SHH</td>
<td>sonic hedgehog</td>
</tr>
<tr>
<td>SMO</td>
<td>smoothened</td>
</tr>
<tr>
<td>SRC</td>
<td>SCID-repopulating cells</td>
</tr>
<tr>
<td>SSC</td>
<td>side-angle scatter</td>
</tr>
<tr>
<td>STIM</td>
<td>STop IMatinib</td>
</tr>
<tr>
<td>STK36</td>
<td>serine threonine kinase 36</td>
</tr>
<tr>
<td>TCF/LEF</td>
<td>T-cell factor/lymphoid enhancer factor</td>
</tr>
<tr>
<td>Tel</td>
<td>translocation Ets leukaemia</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>transforming growth factor beta 1</td>
</tr>
<tr>
<td>TKI</td>
<td>tyrosine kinase inhibitor</td>
</tr>
</tbody>
</table>
1. Introduction

1.1. Haemopoiesis

1.1.1. Hierarchical haemopoiesis

The generation of mature and differentiated blood cells from a haemopoietic stem cell (HSC) is one of the best-characterised hierarchical systems. It relies on an intricate balance between self-renewal and differentiation, highlighting key features that have been critical to our understanding of how stem cells are maintained, differentiate, and are altered during haematological disease (Bhatia et al, 1997a; Bhatia et al, 1997b; Doulatov et al, 2010; Kiel et al, 2005; Majeti et al, 2007; Notta et al, 2011; Notta et al, 2016; Spangrude et al, 1988; Till & McCulloch, 1961).

In general, self-renewing cell types with extended life spans are rare and remain at the theoretical peak of the hierarchy (figure 1-1). These include long-term HSCs, as well as short-term HSCs, and intermediates with less durable self-renewal potential, termed multipotent progenitors (MPPs). They are defined by the capacity to perpetually self-renew, whilst contributing to a pool of differentiating cells. Oligoclonal progenitors (i.e. common myeloid progenitors (CMP) and common lymphoid progenitors (CLP)) appear in increased numbers below the self-renewing cell types. They have a shorter life-span and it is from these the common lineages for myelopoiesis (Akashi et al, 2000) and lymphopoiesis (Kondo et al, 1997) are isolated. Oligopotent CMPs undergo further constraint into megakaryocyte-erythroid progenitors (MEPs) that make platelets and erythrocytes, and granulocyte-monocyte progenitors (GMPs) that make granulocytes and monocytes.

Much of this understanding was developed within murine models using in vivo repopulating assays to assess sustained self-renewal and multipotent differentiation capacity. Subsequently, xenotransplantation models and robust in vitro colony assays, including long-term culture initiating cell assays (LTC-IC), have translated these findings into a humanised model (Copland et al, 2008; Doulatov et al, 2010; Galy et al, 1995; Laurenti et al, 2013; Manz et al, 2002; Sutherland et al, 1990).
Although, this hierarchical idea was first postulated in 1909 (Konstantinov, 2000; Maximow, 1909), the continual advancement of scientific technique has led to an increased understanding of haemopoiesis, and its re-development. Although the standard model is used extensively as an operational paradigm, experimental data have challenged it. For example, the identification of a population of cells that have lymphoid developmental capacities, but can also give rise to granulocytes and macrophages, but not to megakaryocytes or erythrocytes, has been identified in both murine and human studies (Adolfsson et al, 2005; Ceredig et al, 2006; Doulatov et al, 2010; Reynaud et al, 2003). This population of cells, termed lymphoid-primed multipotent progenitors (LMPP), are not consistent with the established concept of dichotomous lineage segregation and remain contentious. However, their identification questions the mechanism through which MPPs lose lineage specific potential.

Furthermore, uncertainty remains concerning the myelo-erythro-megakaryocytic arm of the hierarchy, in part due to the fact that clonogenic in vitro assays do not read out all colony types at the same time making it difficult to account for all cells within a phenotypically pure
population. Paired daughter analysis of mouse HSC cell divisions have demonstrated that MEPs can be derived from HSCs directly without progressing through conventional MPPs and CMPs (Yamamoto et al, 2013). Transcriptional studies of highly purified or single-cell murine HSCs have established that molecular programmes corresponding to myeloid-erythroid-megakaryocyte fates can directly emerge in multipotent cells, arguing that cellular differentiation is not a gradual process and that myeloid differentiation can occur without progressing through the CMP stage (Guo et al, 2013; Månsson et al, 2007; Pronk et al, 2007; Yamamoto et al, 2013). Most recently, Notta et al mapped the lineage potential of nearly 3000 single cells from 33 different cell populations of stem and progenitor cells to obtain a two-tier hierarchy for development in early and late haemopoiesis (Notta et al, 2016). Regardless, although these data challenge the standard model, a clear consensus has yet to be made on a revised model of haemopoiesis and for the purpose of this thesis, the former hierarchical model will be used.

1.1.2. Phenotypic characterisation of human HSCs

As already described, murine models remain an indispensable approach for studying haemopoiesis, with loss or gain of gene function models allowing precise determination of the cellular components essential in its maintenance and deregulation. Human studies, however, remain imperative in our understanding of the haemopoietic hierarchy in view of the complex interactions within the bone marrow (BM) and peripheral blood (PB), as well as the differences that are noted between murine and human models. For example, tumourigenesis or epigenetic vulnerability in species that vary in size, ecology, age to reproductive maturity, and lifespan will lead to differing cellular responses (Hahn & Weinberg, 2002).

The phenotypic characterisation of human HSCs has been fundamental in the pursuit to understand normal and abnormal haemopoiesis. CD34, a surface glycoprotein, was initially discovered to be expressed on primitive haemopoietic tissues, but absent on mature differentiated cells, representing only 1-4% of BM haemopoietic cells (Civin et al, 1984). This population has been shown to be multipotent, highly enriched for colony forming cell (CFC) activity in assays in vitro and having the capacity for long-term haemopoietic reconstitution in murine xenograft models and clinical HSC transplantation studies (Hogan et al, 2002; Kang et al, 2008; Krause et al, 2013a; Lu et al, 1993; Sutherland et al, 1989; Sutherland et al, 1990; Vogel et al, 2000). Its physiological function is poorly understood, but roles in adhesion and differentiation have been described (Belay et al, 2017; Domogala et al, 2017; Ohnishi et al, 2013; Salati et al, 2008). However, it has been demonstrated that
CD34-deficient mice retain normal PB counts and a response to haemopoietic stress (Cheng et al, 1996). This may be, in part, due to the observation that CD34 positive (CD34+) cells appear to be a heterogeneous population, with some evidence to suggest that CD34 negative (CD34-) cells may be more primitive (Anjos-Afonso et al, 2013; Bhatia et al, 1998; Bonnet & Dick, 1997; Matsuoka et al, 2015; Zanjani et al, 1998). Within human studies, Zajani et al demonstrated in vivo engraftment potential of some LinCD34- BM cells in foetal sheep in primary and secondary recipients, and Bhatia et al showed engraftment of human cord blood LinCD34- cells in NOD/SCID mice (Bhatia et al, 1998; Zanjani et al, 1998). Within the latter, CD34+ cells were noted from the LinCD34- transplanted animals, suggesting CD34- to be more primitive. These studies suggest that LinCD34- possess in vivo repopulating activity, rather than clonogenic and LTC-IC activity. Because these findings have been shown within in vivo models, it may suggest that cell-to-cell interaction within the BM microenvironment can influence self-renewal and repopulating potential, and this will be explored later in this chapter.

In view that the specificity of CD34 within an HSC population has yet to be fully determined, other surface markers in combination have been used to identify an HSC population. These include CD38, CD90, CD49f and CD45RA. Between 90 and 99% of CD34+ cells express CD38; these cells have been shown not to possess self-renewal potential. Subsequently, it is the LinCD34+CD38- cells which are enriched in LTC-IC and have engraftment potential (Bhatia et al, 1997a; Hao et al, 1995; Huang & Terstappen, 1994a). In combination with CD34, CD90 demarcates a population of immature cells, with expression reducing in the presence of markers of maturing lineage commitment (Baum et al, 1992; Chen et al, 1995; Murray et al, 1995; Negrin et al, 2000). Further studies have introduced CD45RA as a marker of more differentiated cells (Bhatia et al, 1997b; Conneally et al, 1997; Craig et al, 1994; Lansdorp et al, 1990; Majeti et al, 2007; Schiavone et al, 1995). Similarly, CD49f expression has been described with enriched long-term HSC activity (van Galen et al, 2014; Yu et al, 2012), although its precision is variable between samples and, therefore, it is not typically used to define an HSC population in refined sorting strategies of human samples. Therefore, a current phenotype for human HSCs can be identified as LinCD34+CD38-CD90+CD45RA- (figure 1-2).
1.1.3. The maintenance of HSCs through quiescence and self-renewal

A refined cell sorting strategy to isolate highly purified stem and progenitor cell populations has led to an increased understanding of their functional and molecular properties, particularly within an HSC population. In order for an HSC population to be maintained, HSC loss through apoptosis, senescence or commitment to differentiation must be balanced with self-renewal capability (Goodell et al, 1996; Orford & Scadden, 2008; Passegué et al, 2005). HSCs are mainly quiescent (i.e. residing in G0 phase of the cell cycle). However, as they differentiate, a progressive reduction in the percentage of G0 cells is noted with a corresponding increase in the proliferation rate of each progenitor population (Catlin et al, 2011; Nygren et al, 2006). Although quiescence in itself does not define a stem cell, it is a major regulator of HSC function, with the ability to promote higher engraftment potential in
in vivo models, and its loss resulting in an imbalance of progenitor cells leading to HSC depletion (Cheshier et al, 1999; Mahmud et al, 2001; Orford & Scadden, 2008; Vanegas & Vernot, 2017; Wang et al, 2015). At a molecular level, cell cycle regulators play an integral role. As expected within a non-proliferative state, there are higher levels of the negative cell cycle regulators and lower levels of genes involved in DNA replication, for example CyclinA2 and CyclinB1 are downregulated owing to their role in cell cycle progression and proliferation (Forsberg et al, 2010; Kalaszczynska et al, 2009). Genes integral in transcriptional regulation, such as Foxo3 and Ezh1 are conversely upregulated within an HSC population (Miyamoto et al, 2007; Mochizuki-Kashio et al, 2011). In keeping with this, expression of positive cell cycle regulators, such as CyclinD1, has been shown to increase during differentiation (Passegué et al, 2005).

Although quiescence is a major regulator of HSCs, it is the cell’s capacity for self-renewal that defines it. This function is critical to sustaining a hierarchical cell population. Self-renewal can be achieved through symmetric and asymmetric cell division, but the regulation of this has yet to be fully elucidated (Caussinus & Hirth, 2007; Daynac & Petritsch, 2017; Morrison & Kimble, 2006; Wu et al, 2007). Recent evidence suggests that ligand-dependent signalling pathways’, such as Notch, Hedgehog (Hh), and Wnt/β-catenin, play a pivotal role (Campbell et al, 2008; Duncan et al, 2005; Staal et al, 2016; Weli et al, 2010). These pathways are often controlled through cell-to-cell interaction in the BM microenvironment, where the HSCs reside. Further to this, external signals from epigenetic modification and hypoxia, as well as intrinsic factors of the HSCs are deemed important (Belle et al, 2016; Bourdieu et al, 2017; Hasemann et al, 2014; Kramer & Challen, 2017; Vukovic et al, 2016).
1.2. Intrinsic and extrinsic regulation of HSC function

1.2.1. The bone marrow microenvironment

Haemopoietic stem and progenitor cells (HSPC) reside within the BM, which harbours distinct areas (or ‘niches’) that allow for the exogenous regulation of HSPC behaviour. Schofield first postulated this in 1978 (Schofield, 1978); however, it has only been in recent years with the advances in imaging techniques and selective genetic manipulation of specific cell populations that detailed insights of the BM anatomy and physiology have been generated (Kim et al, 2017; Le et al, 2017; Malide et al, 2014; Pang et al, 2015; Wang et al, 2017).

The BM microenvironment (figure 1-3) is composed of extracellular matrix proteins, including collagen, fibronectin, laminin and hyaluronic acid, as well as cellular elements, including haemopoietic and non-haemopoietic cells. Non-haemopoietic cells include mesenchymal stem and progenitor cells (MSPC), osteoprogenitors, osteocytes, endothelial cells, adipocytes, sympathetic nerve fibres, and non-myelinating Schwann cells (Smith & Calvi, 2013). These cells make up two distinct, yet controversial, niche types, namely the vascular and osteoblastic niches (Calvi et al, 2003; Kiel et al, 2005; Leatherman, 2013; Nilsson, 2001; Zhang et al, 2003). The exact roles that each niche contribute in the maintenance of haemopoietic cells, and indeed HSCs, remains contentious, with it being suggested that the more primitive cells mainly reside in one niche (i.e. the osteoblastic niche) and then migrate on their development (Ding & Morrison, 2013; Ehninger & Trumpp, 2011).
Schematic representation of the BM microenvironment. The BM consists of two niche-types, namely the osteoblastic and vascular niche. Within both niches is a collection of cells that lead to the secretion of chemokines, cytokines, and ligand interaction that governs HSC maintenance, expansion and self-renewal.

The niche cells bi-directionally communicate with haemopoietic cells via a number of different mechanisms. One such mechanism is through secreted factors, such as stem cell factor (SCF), transforming growth factor beta 1 (TGF-β1), and platelet factor 4 (PF4 also called CXCL4), and chemokines, such as stromal cell-derived factor 1 (CXCL12) (Camacho et al, 2017; Schroeder et al, 2016). Furthermore, sympathetic nerve fibres can modulate HSPC function via the secretion of noradrenaline, as well as oxygen tension within the niche (Yamazaki et al, 2011). Beside these mechanisms, cell-bound molecules such as adhesion molecules and ligands play an important role in HSPC maintenance and development, leading to both self-renewal and differentiation properties.

MSPC have a clear functional role within normal and deregulated haemopoiesis (Friedenstein et al, 1968). It has been shown that the simultaneous injection of donor MSCs with HSCs accelerates the recovery of haemopoiesis after lethal total body irradiation (Noort et al, 2002; Zhang et al, 2004). Similarly marrow stromal cells can maintain haemopoiesis in vitro for periods longer than 6 months (Dexter et al, 1977).
Further to this, it is known that HSPC fate can be influenced by different tissue environments (Trentin, 1971), and indeed deregulated states can influence the environment in which they reside. This highlights the role for bi-directional communication as being integral in the maintenance and development of HSCs in haematological disease. For example, the first evidence for niche-driven deregulation of haemopoiesis was demonstrated in mice with deletions in the retinoblastoma gene, the retinoic acid receptor gamma, or the Notch ligand endocytosis regulator, Mib1 (Kim et al, 2008; Walkley et al, 2007). Deletions in these genes led to a myeloproliferative disease phenotype and highlighted that deletions in non-haemopoietic cells could contribute to hematological disease initiation. Furthermore, alterations in evolutionary conserved self-renewal pathways have been shown to predispose to leukaemia induction. For example, constitutively active β-catenin in osteoblasts has been demonstrated to induce an acute myeloid leukaemic (AML) phenotype (Kode et al, 2014). Furthermore, within this paper was the observation that Jagged1 was increased in osteoblasts, which, in turn increased Notch signalling in HSC progenitors. It was subsequently suggested within this paper that Notch activation led to the development of genomic instability and chromosomal deregulation leading to the development of AML.

Further to this, many examples have been presented to demonstrate that leukaemic HSPCs can also remodel the BM microenvironment. For example, within chronic phase (CP) chronic myeloid leukaemia (CML), it has been shown that CML cells secrete granulocyte colony stimulating factor (GCSF) that results in decreased expression of CXCL12 and impairment of HSPC function (Zhang et al, 2012). Moreover, CML cells can stimulate the expansion of osteoblasts by a number of mechanisms, including cell-to-cell contact between leukaemic cells and mesenchymal stem cells (MSCs) (Schepers et al, 2013). This data suggests that remodeling of the BM microenvironment by leukaemia cells or other disease processes may reduce its ability to support normal haemopoiesis.

Taken together, these data demonstrate the importance of, not only HSC to the BM microenvironment, but also how deregulated cells can influence their surroundings, and vice versa.

1.2.2. **Intrinsic regulation of HSC function**

As has previously been determined, haemopoiesis and HSC activity relies on an intricate balance of self-renewal and differentiation. This is achieved through both intrinsic and extrinsic mechanisms that act as regulating controls. As has been described above, extrinsic
regulation is imperative in this process; however, it is known that external regulatory signals must integrate with intrinsic mechanisms to have their effect.

There are many intrinsic factors that have been shown to be implicated in the regulation of self-renewal and differentiation. For example, in brief, translocation Ets leukaemia (Tel) has been demonstrated to be required for HSC self-renewal, with its inactivation leading to the depletion of HSCs in the BM (Hock et al, 2004). Furthermore, overexpression of the transcription factor, HoxB4 has been shown to increase the self-renewal potential of HSCs in both in vitro and in vivo models (Hong et al, 2014; Magnusson et al, 2007; Oshima et al, 2011; Sharma et al, 2006; Yu et al, 2014). Growth factor independence 1 (Gfi1) has been identified as a positive regulator of HSC self-renewal that functions to restrain HSC proliferation through upregulation of the cell cycle inhibitor, p21, since its expression is decreased in Gfi1 null HSCs (Zeng et al, 2004). As has previously been described, cell cycle regulators are imperative within this process. In keeping with this is the balance of cell survival pathways, such as Janus kinase/signal transducers and activators of transcription (JAK-STAT) (amongst others), with Stat3 and Stat5 being shown to be positive regulators of HSC self-renewal (Kato et al, 2005; Schuringa et al, 2004a; Schuringa et al, 2004b). This list is not exhaustive but highlights the importance of intrinsic regulation within the process of HSC function.

1.2.3. Haemopoiesis and developmental signalling pathways
Data has been presented above that highlights the critical role for extrinsic and intrinsic signals in the maintenance and function of HSCs. Within this discussion has been the importance of cell-to-cell interaction between HSCs and the BM microenvironment where they reside. Included in these are the ligand-dependent evolutionary conserved self-renewal pathways, Notch, Wnt/β-catenin, bone morphogenetic protein (BMP), and Hh. All have been implicated in the regulation of HSC self-renewal and stem cell expansion (Campbell et al, 2008; Delaney et al, 2010; Delaney et al, 2005; Duncan et al, 2005; Staal et al, 2016; Weli et al, 2010).

1.2.3.1. The Notch signalling pathway
The Notch signalling pathway has a recognised role in the maintenance and expansion of HSCs. It is an evolutionary conserved signalling pathway that was first discovered in 1917 by Thomas Hunt Morgan in Drosophila melanogaster with observations of a notched phenotype in the wings of flies with the Notch gene mutation (Morgan, 1917). Notch
signalling has been shown to be involved in a variety of cell-fate decisions that influence the development and function of many organs, including stem cell maintenance, cell proliferation, haemopoiesis and apoptosis (Capaccione & Pine, 2013; Chiba, 2006; Cowart et al, 2012; Ohishi et al, 2003; Schwanbeck & Just, 2011; Yugawa et al, 2013).

It is a ligand-dependent signalling pathway that activates as a result of cell-to-cell interaction between the Notch receptor on the target cell and the ligand on the adjacent cell (figure 1-4). Mammals express four transmembrane Notch receptors (Notch 1-4) and five transmembrane ligands (Delta-like (DLL) 1, DLL3, DLL4, Jagged (JAG) 1, and JAG2). The ligands differ in their extracellular domains and functional capability dependent on cell contact. For example, Delta family ligands can mediate Notch activation in trans and Notch inhibition in cis (Espinoza et al, 2013). The relative affinity of Notch receptors for Notch ligands is controlled by receptor glycosylation mediated by the addition of fucose-N-acetylglucosamine (fucose-GlcNAc) moieties (Stanley, 2007). Three intracellular proteolytic cleavages occur to alter downstream gene expression.

Firstly, Notch precursor proteins, processed in the trans-Golgi apparatus, are cleaved by a furin-like convertase to produce the mature Notch receptor, consisting of Notch extracellular and Notch transmembrane subunits. Mature receptors are then taken to the plasma membrane, with subsequent membrane-associated ligand engagement. Upon ligand-receptor interaction, extracellular Notch is dissociated from the intracellular subunit. This triggers cleavage by a disintegrin and metalloproteinase (ADAM) protease (either ADAM 10 or 17). This cleavage allows release of a short extracellular peptide that is then immediately cleaved by the gamma secretase complex (GSC), liberating intracellular Notch to translocate to the nucleus and initiate Notch signalling by binding to the CBF-1-Suppressor of Hairless/lag1 (CSL), a constitutive transcriptional repressor, displacing co-repressors and recruiting co-activators, such as Mastermind-like (MAML) proteins. The Notch-CSL-MAML complex, in turn, recruits transcriptional regulators forming the Notch transcriptional complex. It is this that activates Notch downstream target genes, including HES1 (Ohishi et al, 2003). Notch signalling, particularly in the haemopoietic system is complicated by the number of Notch receptors and ligands expressed by both haemopoietic and stromal cells within the microenvironment, as well as the interaction between Notch and other key self-renewal signalling pathways, namely, Hh and Wnt/β-catenin (Campbell et al, 2008; Duncan et al, 2005).
Aside from ligands, Notch signalling is positively regulated by Musashi-1 (Msi-1), an RNA-binding protein belonging to a conserved family of neural RNA-binding proteins. Msi-1 binds and represses the translation of Numb. Numb is a membrane associated negative regulator of Notch that prevents the intracellular domain of the Notch receptor migrating to the nucleus (Imai et al, 2001; Pasto et al, 2014). Furthermore, other negative regulators exist in this complex system. Phosphorylation of the intracellular domain by CDK8 promotes FBXW7-mediated ubiquitination and degradation of the intracellular Notch receptor, which subsequently terminates Notch signalling (Hannon et al, 2012; King et al, 2013; Takeishi et al, 2013). To add another level of complexity, the addition of one of the fringe N-acetylglucosamine (GlcNAc)-transferases (lunatic, manic, or radical) leads to the ‘fringe effect’ whereby the addition of GlcNAc to the O-fucose sugar can either inhibit Notch signalling when interacting with the JAG ligand, or initiate Notch signalling when interacting with the DLL ligand (LaVoie & Selkoe, 2003; Thomas & van Meyel, 2007).

There is a documented role for Notch signalling in haemopoiesis, with differing roles in HSCs and differentiated cells described. For example, forced activation of Notch1 in haemopoietic cells has been shown to increase HSC self-renewal capacity (Kunisato et al, 2003). However, in differentiated cells, Notch1 activation favours lymphoid lineage
commitment (Stier et al, 2002), particularly within early T-lineage development. Furthermore, *in vivo* exposure of mouse or human haemopoietic progenitors to Notch ligands has been shown to enhance cytokine-mediated expansion and, thus has led to clinical trials assessing the role of Notch within haemopoietic recovery after cord blood transplantation (Dahlberg et al, 2011; Delaney et al, 2010; Delaney et al, 2005; Varnum-Finney et al, 2003).

Within HSC regulation, the role of Notch signalling remains controversial. Several *in vivo* studies have demonstrated preserved HSC function despite genetic strategies to block transcriptional activation of all Notch receptors (Maillard et al, 2008). However, inactivation of *Notch2* has also been shown to delay reconstitution (Varnum-Finney et al, 2011). Further to this, there is a noted role of cell-to-cell interaction between osteoblasts that express Jagged1, and HSCs, maintaining a self-renewal HSC state (Benveniste et al, 2014; Poulos et al, 2013). In keeping with this, pan inhibition of activated Notch blocks both T cell development and HSC maintenance and expansion, demonstrating the role of Notch within the HSC-BM environment. However, there have been published reports that suggest the contrary – that inhibition of Notch1 or Jagged1 has no effect on HSC self-renewal capacity (Mancini et al, 2005).

The role of Notch is complex with divergent reports both from *in vitro* and *in vivo* experiments. The reasons for this are numerous. Firstly, the pathway can generate numerous ligand-receptor interactions, each with differing functional relevance, with expression on the tissue of interest being integral in its assessment. For example, in murine B cell development, DLL1 functions as the main ligand for Notch2 whereas in T cell development DLL4 interacts with Notch1 (Kang et al, 2014; Meng et al, 2016; Ting et al, 2017). Furthermore, differing experimental design can lead to variation in Notch signal intensity (Delaney et al, 2010; Gama-Norton et al, 2015; Varnum-Finney et al, 2003); for example, it has never been formally shown if signal intensity varies *in vitro* or *in vivo*. There will also be varying signalling intensity between plate-bound ‘isolated’ ligands versus stromal support from *in vivo* experiments, which will have a much wider array of ligands and self-renewal pathway interactions. A further explanation could come from non-canonical Notch signalling, whereby downstream signalling molecules can be activated through bypassing the co-complex formation with MAML. For example, DLL1 ligands have been suggested to activate IL-6 mediated signalling in CD34+ cells, but not in purified HSCs. This not only suggests a potential for non-canonical activation, but also highlights the differing roles one may see in immature and mature populations (Csaszar et al, 2014). There remains much to
be gained through the understanding of this pathway and its interactions in normal and malignant HSCs.

1.2.3.2. The Wnt/β-catenin signalling pathway

The Wnt/β-catenin signalling pathway (figure 1-5) has been shown to be integral in haemopoiesis and malignant haematology (Galán-Díez et al, 2016; Richter et al, 2017; Staal et al, 2016). In the absence of Wnt/β-catenin signalling, free cytoplasmic β-catenin is degraded by a multiprotein complex, including glycogen synthase kinase 3β (GSK3β), casein kinase 1 (CK1) alpha, and scaffold proteins (including adenomatous polyposis coli (APC) and axin). Phosphorylation is initiated by CK1 alpha, which primes β-catenin for GSK3β-dependent phosphorylation of Ser33, Ser37 and Thr41 residues. Receptor-ligand interaction allows for the stabilisation of β-catenin via the recruitment of axin and inhibition of GSK3β (Li et al, 2012a). This allows β-catenin to accumulate within the cytoplasm and translocate to the nucleus where it interacts with members of the T-cell factor/lymphoid enhancer factor (TCF/LEF) subfamily of transcription factors to induce expression of Wnt downstream target genes (Willert & Nusse, 1998).

It has been demonstrated that many cellular proteins can directly and indirectly interact with β-catenin and other components of the Wnt/β-catenin pathway. Further to this, the intensity of the signal can have a concentration-dependent effect on cell fate (Luis et al, 2011). It is well established that there is a role for Wnt/β-catenin signalling in embryonic haemopoiesis (Austin et al, 1997; Cheng et al, 2008; Corrigan et al, 2009; Tran et al, 2010), however, its role in adult haemopoiesis is yet to be fully determined. In the adult BM microenvironment, the ligands, Wnt2b, Wnt5a, and Wnt10b are expressed (Van Den Berg et al, 1998), with evidence to suggest a role in lineage commitment. Wnt5a is expressed by mature B cells, while Wnt10b is produced by myeloid cells, erythrocytes and immature B cells (Congdon et al, 2008; Liang et al, 2003). Further to this, Wnt10b has been shown to be upregulated within BM regeneration (Congdon et al, 2008).

In vitro experiments and gain- or loss-of-function in vivo studies have yielded differing results as to the role of Wnt/β-catenin signalling in HSC function (Kirstetter et al, 2006; Luis et al, 2009; Reya et al, 2003). For example, constitutively active β-catenin in vivo in a Bcl2-transgenic model increases HSC proliferation, and repopulation capacity upon transplantation into lethally irradiated mice (Reya et al, 2003). However, conditional overexpression of a stabilised form of β-catenin led to a block in multi-lineage differentiation, transient HSC expansion, and long-term HSC exhaustion (Kirstetter et al,
Additionally, HSCs from Wnt3a knockout murine foetal liver reconstituted haemopoiesis in primary transplant, but had severely impaired secondary transplant capacity, suggesting impaired self-renewal potential (Luis et al, 2009). In some respects, these results mirror the inconsistencies found in the similar experiments interrogating self-renewal pathways, including Notch (described above) and Hh signalling, as described below (Gao et al, 2009; Hofmann et al, 2009b; Merchant et al, 2010).

![Figure 1-5 Simplified representation of the Wnt/β-catenin signalling pathway](image)

In the absence of Wnt signalling, free cytoplasmic β-catenin is degraded by a multiprotein complex. Receptor-ligand interaction allows for the stabilisation of β-catenin via the recruitment of axin and inhibition of GSK3β. This allows β-catenin to accumulate within the cytoplasm and translocate to the nucleus where it interacts with members of the T-cell factor/lymphoid enhancer factor (TCF/LEF) subfamily of transcription factors to induce expression of Wnt downstream target genes.

1.2.3.3. The Hedgehog signalling pathway

The Hh signalling pathway (figure 1-6) is an evolutionarily conserved signalling pathway that was first discovered during the study of embryonic patterning in *Drosophila* (Nusslein-Volhard, 1980). It is critical for both embryonic development and adult tissue homeostasis, including chromatin formation (Zhan et al, 2011), cell cycle regulation (Kenney, 2000; Roy & Ingham, 2002) and stem cell self-renewal (Memmi et al, 2015). In the adult, its functions are cell and tissue dependent, with its activation being implicated in the maintenance of cancer stem cells (CSC) in both solid (Ischenko et al, 2008; Samadani & Akhavan-Niaki, 2015) and haematological malignancies (Irvine et al, 2016; Long et al, 2011; Zhao et al, 2009). Activation of the canonical Hh pathway appears to be linked to primary immotile cilia, with documented reports of primary cilia within haemopoietic tissue (Irvine et al, 2016; 2006; Scheller et al, 2006).
Singh et al, 2016a). The canonical pathway is ligand-dependent, relying upon receptor-ligand interaction between one of the three possible ligand isoforms – Sonic (SHH), Desert (DHH), and Indian (IHH) – to the Hh receptors, Patched1 (PTCH1) and Patched2 (PTCH2). In the absence of ligand support, PTCH1 is located within the primary cilia, emphasising the importance of cilia within the canonical route. Ligand-PTCH1 interaction causes the internalisation of PTCH and the subsequent activation of Smoothened (SMO). Activated SMO then moves into the cilium allowing for the accumulation of the active forms of GLI2 and GLI3 in the nucleus. This potentiates the activity of other positive regulators, including serine threonine kinase 36 (STK36), resulting in activation of key downstream targets (Ischenko et al, 2008).

The role of Hh signalling in haemopoiesis is complex and has been shown to be dependent on developmental stage, cell lineage, and extrinsic factors, for example, under regenerative stress (Bhardwaj et al, 2001; Trowbridge et al, 2006a). Evidence suggests that Hh plays a vital role in early haemopoietic development (Cridland et al, 2009). However, its role within adult haemopoiesis is controversial, with some reports suggesting a dispensable role within normal haemopoiesis (Gao et al, 2009; Hofmann et al, 2009b; Trowbridge et al, 2006a). For example, knockout of SMO in in vivo models has been shown not to adversely affect steady-state normal haemopoiesis (Gao et al, 2009; Hofmann et al, 2009b). Furthermore, SMO

Figure 1-6 Simplified representation of the Hh signalling pathway

Upon receptor-ligand interaction, PTCH1 is internalised and there is subsequent activation of SMO. Activated SMO moves into the cilium allowing for the accumulation of the active forms of GLI2 and GLI3 in the nucleus. This potentiates the activity of other positive regulators, including STK36, resulting in activation of key downstream targets.
inhibition within early phase clinical trials has shown little or no haemopoietic toxicity (Cohen, 2012; Feldmann et al, 2007).

1.2.3.4. The BMP signalling pathway

Like the self-renewal signalling pathways described above, there is a complex role noted within BMP signalling and haemopoiesis. The BMPs belong to the transforming growth factor beta (TGF-β) superfamily and have been shown to be involved in diverse cellular functions, including cell proliferation, differentiation, apoptosis, and stem cell self-renewal, in both embryonic and adult phenotypes (Herpin & Cunningham, 2007; Miyazono et al, 2005). The BMP pathway functions through receptor-mediated intracellular signalling (figure 1-7) (Toofan et al, 2014). Two types of receptors have been identified; namely type I receptors (Alk2, Alk3, and Alk6) and the type II receptors (Bmpr2a and Bmpr2b) (Kirmizitas et al, 2017). Different combinations of type II receptors with any of the type I receptors confers specificity and cellular consequence. Within the canonical system, upon ligand binding with BMP2 or 4, type I receptors become phosphorylated, leading to the heterodimerisation with the type II receptor. This, in turn, phosphorylates the corresponding Smad proteins and drives the formation of the Smad-Smad complex (Blank & Karlsson, 2011). This complex translocates to the nucleus where it regulates transcription of the downstream target genes (Derynck & Zhang, 2003).

Canonical BMP signalling has been shown to be important in both early embryonic and adult haemopoiesis (Crisan et al, 2015). BMP4 maintains the reconstitutive ability of HSCs in vitro (Bhatia et al, 1999). Furthermore, Smad5 has been shown to negatively regulate the proliferation and self-renewal of early yolk sac derived multipotent haemopoietic progenitors (Khurana et al, 2014; Liu et al, 2003) with inhibition of Smad-dependent BMP signalling enhancing homing and engraftment of BM HSCs (Monteiro et al, 2008). In vivo, in conditional Bmpr1a mutant mice, the pool size of HSCs is controlled by trabecular bone volume (Zhang, 2003). Thereby suggesting that BMP signalling mediated by Bmpr1a controls HSC number through regulation of the niche. This is consistent with previous findings using a transgenic mouse model in which parathyroid hormone receptor is expressed (Calvi et al, 2003).
Upon ligand binding, type I receptors become phosphorylated, which leads to the heterodimerization of these receptors with type II receptors. This in turn phosphorylates the corresponding R-Smads and drives the formation of R-Smad–co-Smad complex. The Smad–Smad complex then translocates to the nucleus where it forms a complex with transcription factors and cofactors to regulate the transcription of BMP target genes involved in the cell cycle, proliferation and self-renewal.

1.2.4. Integration of signalling pathways

The evolutionary-conserved self-renewal pathways’ described above have a clear, yet complex, role within haemopoiesis. The complexity to understand their role in haemopoiesis lies in the fact that they do not act in isolation, relying on interactions between pathways to maintain a balance between self-renewal and differentiation. This is particularly relevant within the BM microenvironment, where intracellular signalling proteins can impact on one or more of the pathways. But while many of the phenotypic and functional properties have been determined, the regulation of how these pathways interact has not been fully elucidated (Reya, 2003). The complexity of the interconnectivity between self-renewal pathways can be demonstrated on basic proteomic analysis of self-renewal pathway proteins in normal HSCs, as demonstrated in figure 1-8. Although gene and protein interconnectivity can be hypothesised through bioinformatic analysis, ongoing experimental analysis of the functional output has allowed some of these interactions to be validated.
Figure 1-8 Protein interconnectivity of self-renewal pathways in normal HSCs

Protein interconnectivity analysis of self-renewal pathways in normal HSCs as determined by proteinsting.com. There is a clear interconnectivity between proteins of the self-renewal pathways depicted, namely, Notch, Wnt/β-catenin, Hh, and BMP.

Many of these interactions are dependent on communication between the BM microenvironment and the cell of interest, as described above. Also, hypoxia has been shown to promote an undifferentiated state in a Notch-dependent manner, likely owing to the activation of HIF-1α (Gustafsson et al, 2005). Furthermore, downstream targets of Notch signalling are Hh and Wnt/β-catenin components, including Gli2, Gli3, and TCF4 (Li et al, 2012b). Further to this, Wnt/β-catenin signalling influences Notch1 expression, with manipulation of the pathway by overexpression of β-catenin promoting significant expansion of murine HSCs in vitro (Reya, 2003). However, its role, as stated above in vivo has been questioned since β-catenin has been conditionally expressed or deleted without having an effect on haemopoiesis (Cobas et al, 2004; Kirstetter et al, 2006). Again, this suggests a complex role in an in vivo setting and influence through the BM microenvironment. As described previously, axin and GSK3β mediate the phosphorylation and degradation of β-catenin in a basal state. Inhibitors of GSK3β gene have been shown to promote human and mouse HSC maintenance (Sato et al, 2004) and haemopoietic
repopulation in transplanted mice (Trowbridge et al, 2006b) by modulating gene targets of Wnt/β-catenin, Notch and Hh pathways. Furthermore, Wnt/β-catenin signalling influences the stability of GLI1 allowing for its accumulation (Nakamura et al, 2013; Noubissi et al, 2009).

As well as direct interactions between pathways, it has been shown that protein concentration influences cellular function. For example, BMP4 has differential effects on human HSCs depending on concentration, maintaining but not expanding human HSCs in vitro (Bhatia et al, 1999). Cross talk between hypoxia, HIF-1α, and TGF-β/Smad signalling has, in fact, been demonstrated in relation to CXCL12 induction and subsequent HSC induced homing towards this chemokine (Tabatabai et al, 2006). Furthermore, Wnt/β-catenin signalling and BMP cooperate to influence HOX activity.

This data demonstrates the complexities of interactions between self-renewal pathways at a basal HSC level, but it is the alterations and interconnectivity within haematological malignancy that may warrant further investigation when considering potential therapeutic targets, particularly within a stem cell driven disease phenotype, such as CML.

1.2.5. Cancer stem cells in haematological malignancy
CSC offer the concept that a small population of cells sharing characteristics of differentiation, self-renewal and homeostatic control, allow for the maintenance and dissemination of disease (Alison et al, 2011; Reya et al, 2001). Within haematological disease, these are referred to as leukaemic stem cells (LSCs). LSCs are mostly quiescent, in G0-phase and out of the cell cycle, and home to the BM microenvironment, in which they are protected from apoptosis and conventional treatments (Busfield et al, 2014; Crews & Jamieson, 2012; Zhang et al, 2013). Within a variety of haematological malignancies, including AML (Bonnet & Dick, 1997), CML (Graham et al, 2007; Zhang et al, 2013), and multiple myeloma (Yaccoby et al, 1998), the existence of LSCs has been identified. In vivo and in vitro experimental models have demonstrated that LSCs share many features with HSCs (Bhatia et al, 1997c), including self-renewal and engraftment potential, but have also offered critical differences in functional properties (Jordan et al, 2006), which allows for a therapeutic index of intervention, that would permit targeting of LSCs, whilst maintaining normal haemopoiesis. For the purpose of this thesis, only AML and CML LSCs will be discussed in detail.
1.2.5.1. The identification and origin of LSCs

AML LSCs were one of the first CSC populations to be characterised within haematological and solid malignancy (Bonnet & Dick, 1997; Lapidot et al, 1994). The complexity in morphological, genetic, and epigenetic heterogeneity within AML makes identifying an appropriate therapeutic target challenging, but may allow for LSC characterisation if the AML LSCs have distinct features according to their subtype. However, the immunophenotypic identification of the AML LSC remains a persistent area of debate (Blair et al, 1997; Blair et al, 1998; Bonnet & Dick, 1997; Jordan et al, 2000). Historically, LSCs (both in AML and CML) have been characterised within the CD34⁺CD38⁻ population, where their presence has been shown to be capable of generating leukaemic primary, secondary and tertiary engraftment in non-obese diabetic severe combined immunodeficient (NOD-SCID) mice (Bonnet & Dick, 1997; Lapidot et al, 1994). However, recent studies have suggested that LSC activity can extend into the CD34⁺CD38⁺ population, with data indicating that leukaemia-initiating capacity could be present in a mature CD34⁻ population (Sarry et al, 2011; Taussig et al, 2010). This suggests that LSCs can either be derived from HSCs or from progenitor cells that acquire self-renewal properties.

Additional markers of AML LSCs have been identified, including CD123 (Al-Mawali et al, 2016; Ehninger et al, 2014), CD33 (Ehninger et al, 2014), CD45RA (Kersten et al, 2016), CD47 (Majeti et al, 2009), CD96 (Hosen et al, 2007), and CD93 (Iwasaki et al, 2015). Some are currently being translated into the clinical setting for identification or targeting of the LSC, including monoclonal antibodies towards CD47 (NCT02678338) and CD123 (NCT02848248), as well as anti-CD123-chimeric antigen receptor-T (CART) cells (NCT03114670; NCT02159495) (Luo et al, 2015; Mardiros et al, 2013). However, safety concerns have been described. For example, CD47 is expressed on the majority of normal tissues and may prevent the ability to achieve a therapeutic level of antibody (Jaiswal et al, 2009; Oldenborg, 2013). Further to this, CD123 has been demonstrated to be expressed on HSCs, and not on all LSCs, therefore inhibition of CD123 may have some consequences in normal haemopoiesis (Gill et al, 2014; Taussig et al, 2005).

Probably the most well established of these approaches, is the use of gemtuzumab ozogamicin (GO), an anti-CD33 monoclonal antibody conjugated with calicheamicin, which remains under clinical evaluation. There have been large randomised studies of the use of GO in newly diagnosed patients with AML (Burnett et al, 2011; Burnett et al, 2012; Castaigne et al, 2012; Petersdorf et al, 2013b). Within the AML15 clinical trial (Burnett et al, 2011), a subgroup analysis revealed an improved overall survival at 5 years for patients...
with favourable cytogenetics (79% versus 71%, \(p=0.001\)), but no benefit for patients with unfavourable cytogenetics. Furthermore, 70% of all intermediate-risk patients had a 10% improvement in 5-year overall survival if given GO during induction, but this seemed dependent on white cell count, performance status, or secondary disease. Within AML16 (Burnett et al, 2012), there was no difference in the initial response rate, and the treatment-related mortality was similar, without any increase in toxicity with GO. However, at a median follow-up of 30 months, the relapse rate was significantly lower with GO (68% versus 76%, \(p=0.007\)), and the 3-year overall survival was significantly better (25% versus 20%, \(p=0.05\)).

The difficulties in identifying a universal marker of AML LSCs are, in part, due to the intra-patient and inter-patient heterogeneity identified within AML LSC populations (Eppert et al, 2011; Taussig et al, 2010) and has been particularly noted within relapse, where AML LSC frequency and phenotypic diversity have been shown to be much greater compared to the initial diagnostic LSC (Mendler et al, 2015; van Rhenen et al, 2007).

Regardless of these complexities, the importance of AML LSCs clinically is well established. Most pertinently, within the identification of minimal residual disease (MRD) (i.e. submicroscopic disease identified using molecular and immunophenotypic techniques), which resembles that of the diagnostic disease population, allows response to therapy to be followed over time, and offers a prognostic indicator for adverse outcome (Feller et al, 2004; Ivey et al, 2016). It seems reasonable that LSCs reside within this population, having only been minimally impacted by conventional chemotherapy that targets dividing cells, and therefore, it stands that treatments focussing on the elimination of LSCs will reduce MRD and ultimately improve disease outcomes. Furthermore, it has been shown that AML patients with a greater number of LSCs or a more prevalent stem cell phenotype at diagnosis have inferior clinical outcomes compared to those who have fewer LSCs or a less prevalent stem cell phenotype (Eppert et al, 2011; van Rhenen et al, 2005).

Although the most historic evidence of LSCs within haematological disease arise within AML, much insight into potential therapeutic strategies can be acquired from CML, where the CP disease represents a classic example of the stochastic CSC hypothesis model, without the molecular, epigenetic and genetic heterogeneity seen within AML. Furthermore, it is known that as the disease progresses to the acute BP, committed progenitors gain self-renewal function; again highlighting the potential for LSC to be derived from a more mature progenitor population (Jamieson et al, 2004; Kinstrie et al, 2016; Radich et al, 2006).
Therefore, understanding the LSC in CML may be clinically transferable to other stem cell-driven diseases, including AML.

In CML, low-level \textit{BCR-ABL} positive LSCs, as defined within a CD34⁺CD38⁻ population, have been identified in the BM of tyrosine kinase inhibitor (TKI)-treated CP-CML patients in deep molecular response (i.e. those that achieve a 4-log or greater reduction of quantitative \textit{BCR-ABL} expression from standardised baseline over a prolonged period) (Bhatia et al, 2003a; Chomel et al, 2011; Chomel et al, 2016; Chu et al, 2011). These cells have been shown to be capable of growth in LTC-IC assays and have murine engraftment potential, demonstrating their self-renewal capability. The demonstration that CML LSCs persist in the presence of a targeted therapy explains the phenomenon of disease persistence, and highlights that LSCs are BCR-ABL independent, relying on other pathways to sustain their survival (Corbin et al, 2011; Hamilton et al, 2012). The concept of disease persistence through quiescent LSCs has been further highlighted in recent years by trials exploring the discontinuation of TKIs in CP-CML patients with sustained deep molecular response; these will be described in detail within a later section in this introduction (Mahon et al, 2010; Richter et al, 2016; Ross et al, 2013; Takahashi et al, 2012).

A number of challenges remain within both the scientific and clinical communities in the eradication of LSCs, in both AML and CML. Firstly, in the identification of an appropriate specific target, or pan-target, that will enable permanent eradication of the LSCs. Secondly, when an appropriate target is identified that is clinically justifiable, the timings of intervention must be deduced, as well as the evaluation of disease persistence. This will remain a huge clinical challenge, especially in view that therapies that are only effective against the stem cell compartment (which represents 1-2% of bulk) may be difficult to evaluate due to the persistence of bulk malignant cells and concordant chemotherapy-based treatment.
1.2.5.2. **Self-renewal pathways in LSCs – a potential target**

As discussed, self-renewal is considered to be the integral property of the LSC, and its deregulation is known to affect the development, maintenance, and persistence of LSCs in both AML and CML. To date, a number of aberrant signalling pathways have been proposed to contribute to the LSC phenotype (Liao et al, 2012; Martelli et al, 2010; Naughton et al, 2009; Sengupta et al, 2007; Zhao et al, 2007). These pathways, including Hh, Notch and Wnt/β-catenin, are known regulators of self-renewal, and are often differentially expressed following genetic events. A number of deregulated proteins within these pathways may represent a broadly applicable therapeutic strategy, however, it is well known that these pathways rarely work in isolation, and rely on a web of activity leading to disease maintenance, persistence, and progression. The complexities in interaction between these pathways in LSCs are well documented and will be discussed under each heading below (figure 1-9).

![Complex interactions between self-renewal pathways](image)

Figure 1-9 Complex interactions between self-renewal pathways.

The interconnectivity between self-renewal pathways is well documented within the LSC. It is known that proteins within each of the pathways, namely Hh, Wnt/β-catenin, and Notch, can both antagonise and agonise the other pathways by cross talk leading to both up- and downregulation of downstream targets.

To add to this complexity in AML is the genetic variation that is seen, as this can mediate the proliferative and anti-apoptotic signals. Expression of specific oncogenes, such as
FLT3, RAS, and MLL, may create new dependencies on specific signalling pathways in LSCs, and activate signalling pathways in isolation or simultaneously (Somervaille et al, 2009; Stirewalt et al, 2001). Therefore, developing a therapeutic intervention that is efficacious in all activated pathways remains unachievable. Our best option remains to understand the acquired vulnerability in the mechanisms of the signalling pathways, which may offer a therapeutic window to eradicate the LSCs and plan for clinical translation.

1.2.5.3. **Evolutionary conserved self-renewal pathways in LSCs**

1.2.5.3.1. **Hedgehog signalling and the LSC**

The Hh signalling pathway has been shown to be inappropriately activated in a number of malignancies, including AML and CML, where it is intrinsically involved in the maintenance and expansion of the LSC compartment (Dierks et al, 2008; Long et al, 2011; Zhao et al, 2009). Within haematological malignancy, activation of the pathway has been shown to be linked to primary immotile cilia (Campbell et al, 2016; Singh et al, 2016), where the receptor-ligand interaction causes the internalisation of PTCH1 and subsequent activation of SMO. This enables SMO to move into the cilium allowing for the accumulation of the active forms and the activation of key downstream targets (Irvine & Copland, 2012). SMO is the critical mediator in the canonical pathway and, therefore, represents a key therapeutic target to prevent the pathway’s activation. SMO can be readily targeted with pharmacological agents, including cyclopamine, and clinical grade agents, such as LDE225 (sonidegib) (Irvine & Copland, 2012; Martinelli et al, 2015).

However, the pathway’s complexity lies in its interactions and dependency with other key survival pathways. It has been suggested that the survival of CML progenitor cells is maintained by both the auto-activation of Hh and β-catenin (Su et al, 2012). Furthermore, Hh activation modulates NUMB-p53 responses, therefore, Hh suppression will subsequently alter p53 target genes; p53 is referred to as the guardian of the genome, therefore, careful evaluation of modulation of its function needs to be gained (Colaluca et al, 2008; Sheng et al, 2013). p53 as a modulatory target in leukaemia is an area which is becoming of increasing interest; both in CML (Abraham et al, 2016) and AML (Latif et al, 2015).

The importance of Hh signalling in CML is well established, with SMO inhibition leading to reduced self-renewal capacity of CML LSCs in both *in vitro* models with clinical grade SMO antagonists, and *in vivo*, where Smo-deficient mice have reduced leukaemogenesis in primary and secondary transplantation models (Dierks et al, 2008; Irvine et al, 2016; Zhao
et al, 2009). Furthermore, combination of SMO antagonists with TKIs has been demonstrated to lead to a synergistic reduction of CP CML LSCs in patient samples in vitro and CP and BC CML xenograft transplantation models (Irvine et al, 2016; Sadarangani et al, 2015). Our group has recently demonstrated that LDE225, a small molecule clinically investigated SMO inhibitor, used alone and in combination with the TKI, nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro (Irvine et al, 2016). The combination had no effect on normal HSCs and when combined, these agents reduced CD34+ CP-CML cell engraftment in NSG mice. Furthermore, upon administration to EGFP+/SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients.

Importantly, deregulation of Hh may potentially contribute to disease progression, with differential Hh activity increasing as CML progresses to blast phase (BP) (Su et al, 2012), and increased gene expression of PTCH1 has been observed in BP samples (Sengupta et al, 2007). Therefore, early targeting of the pathway may be therapeutically viable to reduce disease progression.

Whilst preclinical data appears promising to support the Hh pathway as a therapeutic target in CML, clinical trials utilising SMO antagonists as a therapeutic option have halted in early phases. Within solid tumors, these inhibitors have successfully been translated into clinical practice (Rudin et al, 2009; Von Hoff et al, 2009), however, within CML when combined with TKI, toxicity has been a major limitation (Ottmann et al, 2015; Shah et al, 2014).

In AML, the role of Hh has not been fully elucidated, with limited data available on the implications of Hh deregulation on disease biology, perhaps due to the vast heterogeneity seen within the disease. Activation of Hh, through SMO and GLI expression, has been described within primary AML samples, particularly acute promyelocytic leukaemia (APML) (Bai et al, 2008; Yang et al, 2013); no SMO mutations have been identified to account for this increase in activity (Campbell et al, 2016). It is clear, however, that there is a prognostic significance in its expression, with increased GLI1 and GLI2 being associated with reduced overall survival and as a marker of prognosis, respectively (Wellbrock et al, 2015).

Studies suggest that HHIP, a membrane-associated or soluble glycoprotein that functions to bind Hh ligands, can suppress leukaemic cell proliferation (Kobune et al, 2012);
furthermore, within the same study, reduced stromal HHIP expression was shown to contribute towards the development of AML. *HHIP* can be modulated through standard chemotherapy agents, where it has been demonstrated that 5-azacitadine-mediated amplification of stromal cell *HHIP* expression led to attenuated leukaemic cell proliferation potential.

The biological significance of pathway modulation has yet to be fully understood, with varying results available. Genetic inactivation of *SMO* in MLL-AF9-transformed LSCs does not affect AML development in primary recipient mice (Hofmann et al, 2009). Conversely, SMO inhibition with cyclopamine has been shown to reduce proliferation in myelomonocytic cell lines (Campbell et al, 2016). AML, as a disease, shows great heterogeneity and, therefore, focused evaluation through each of the classified disease entities needs to be undertaken, but it appears that there may be a therapeutic role for Hh inhibitors within a myelomonocytic phenotype. It is more clear that pharmacologic inhibition of Hh signalling appears to enhance AML ‘gold-standard’ therapy by sensitising LSCs to chemotherapy within the BM microenvironment (Fukushima et al, 2016a), which may lead to clinical advances in the eradication of AML LSCs. Currently, clinical trials are under way to investigate Hh inhibitors in AML, and early phase 1/2 results appear promising (Cortes et al, 2016a; Martinelli et al, 2015). Of note, a subsequent phase 2 clinical trial of LDE225 in AML, NCT01826214, recently closed due to lack of efficacy as a single agent; perhaps highlighting the limited activity of SMO inhibition on bulk disease.

1.2.5.3.2. **Wnt/β-catenin Signalling and the LSC**

The Wnt/β-catenin signalling pathway plays an essential role in the maintenance and differentiation of LSCs and the propagation of malignancies (Clevers, 2006; Jamieson et al, 2004). Its activation has been demonstrated in acute disease, namely AML LSCs and within myeloid BC CML (Ho et al, 2016; Jamieson et al, 2004). Furthermore, it has been suggested that a deletion within β-catenin reduces the ability of mice to develop *Bcr-Abl* positive leukaemia, which is suggestive of a role in the pathogenesis of chronic disease (Zhao et al, 2007). Therefore, targeting Wnt/β-catenin is a viable option in eradication of the LSC and in the prevention of disease progression and dissemination.

Within CML, loss of β-catenin in a murine model of CML impaired the development of the disease by inhibiting LSC self-renewal, and genetic and pharmacological inhibition of β-catenin activity synergised with TKI to target the loss of CML LSCs (Heidel et al, 2012; Jamieson et al, 2004). CBP/catenin antagonists have demonstrated efficacy in eliminating the CML and acute lymphoblastic leukaemia (ALL) LSC population *in vitro* and *in vivo*
A similar importance is seen within AML, where high expression of Ctnnb1 has been reported to correlate with poor prognosis (Ysebaert et al, 2006). Deletion of β-catenin within murine models has been shown to significantly reduce development and transplantation of AML driven by MLL-AF9 or HoxA9 (Wang et al, 2010; Yeung et al, 2010). In turn, within murine models of MLL-rearrangement AML it has been shown that self-renewal of LSCs is mediated, in part, by Ctnnb1, suggesting that Ctnnb1 may represent a therapeutic target within this subtype. Genetic and pharmacological inhibition of Ctnnb1 leads to decreased leukaemia formation. Interference with prostaglandin signalling has been shown to target the Wnt/β-catenin axis in HSCs (Goessling et al, 2009), and treatment with COX inhibitors, such as indomethacin, has been shown to lead to a decrease of LSCs in secondary recipients (Wang et al, 2010). This is mediated through Ctnnb1, although translating this clinically would be a challenge in view of adverse risk of bleeding. Inhibitors of canonical Wnt/β-catenin signalling are currently undergoing phase I clinical trials in AML (NCT01398462) (Cortes et al, 2014b).

Again, the interactions with other survival pathways, complicates antagonising Wnt/β-catenin. For example, within CML, TKI exposure has been shown to upregulate CD27 signalling, resulting in activation of Wnt target genes, which include Notch and c-Myc (Riether et al, 2015; Schurch et al, 2012). Wnt/β-catenin-Notch interaction is well documented, particularly within the BM microenvironment, where mutations of Ctnnb1 have been found in osteoblasts resulting in overexpression of Notch ligands and activation of the Notch pathway in HSCs (Kode et al, 2014).

The non-canonical Wnt (i.e. β-catenin independent) signalling pathways are diverse and can be initiated by WNT interaction with Frizzled receptors, or RYK and ROR receptor tyrosine kinases, to regulate small GTPases, as well as calcium flux and kinase cascades (Ford et al, 2013). This area is not as well characterised in LSC maintenance as the canonical pathway (Shen et al, 2014). Non-canonical signalling has been shown to exert an antagonistic effect on canonical signalling, with Wnt5a promoting GSK3β independent degradation of β-catenin and competing with Wnt3a for binding to the receptor complex (Anastas & Moon, 2013). A greater understanding of the non-canonical pathway may decipher an interesting therapeutic approach in β-catenin inhibition.
1.2.5.3.3. Notch signalling and the LSC

Notch signalling is involved in a variety of cell-fate decisions that influence the development and function of many organs, including stem cell maintenance, cell proliferation, haemopoiesis and apoptosis (Bray, 2016; Chiba, 2006).

Its role in malignancy has been shown to be cell and tissue-dependent, with the pathway playing both oncogenic and tumour suppressive roles depending on cell and cancer type (Capaccione & Pine, 2013; Pancewicz & Nicot, 2011; Schwanbeck & Just, 2011; Yugaw et al, 2013). In haemopoietic malignancies, accumulating evidence demonstrates its importance in growth, differentiation, and apoptosis (Chiang et al, 2013; Etet et al, 2012; Hannon et al, 2012; Kamdje et al, 2011; Pancewicz & Nicot, 2011; Schwanbeck & Just, 2011), with its role in T-ALL, chronic lymphocytic leukaemia (CLL), and B cell leukaemias and lymphomas well documented (Ellisen et al, 1991; Etet et al, 2012; Hannon et al, 2012; Kamdje & Krampera, 2011). Improved understanding of the Notch signalling pathway in these malignancies suggests that the Notch pathway may be a prime drug target; however, the therapeutic role of Notch inhibition may be directly dictated by its toxicities and the influence of its inhibition on other cell lineages, including the myeloid lineage (Deangelo et al, 2006; Krop et al, 2012).

Reports about the role which Notch plays in myeloid disease are conflicting, as Notch activation in myeloid precursors has been shown to promote self-renewal, induce and inhibit differentiation to monocytes, or induce apoptosis (Carlesso et al, 1999; Li et al, 1998; Sarmento et al, 2005; Schroeder et al, 2003). Early observations suggested that Notch signalling may play a role in myeloid progression (Milner et al, 1996; Schroeder et al, 2003; Tan-Pertel et al, 2000), with its role best characterised within AML. Importantly, it has been shown that exposing AML cells to plate-bound Notch ligands led to a full range of responses from proliferation to growth arrest that varied with patient sample, suggesting again the difficulty evaluating signalling pathways due to inter-patient heterogeneity (Tohda & Nara, 2001). More recently, observations have supported a tumour suppressive role for Notch signalling in immature LSC compartments of AML disease models (Chen et al, 2008; Kannan et al, 2013; Klinakis et al, 2011; Lobry et al, 2013; Tohda & Nara, 2001). Furthermore, in AML cell lines and primary patient blasts, downregulation of Notch1 expression was associated with a decrease in PU.1-mediated differentiation capacity, indicating a pivotal role in maintenance of an immature state (Chen et al, 2008).
Within CML, the data is limited. In another myeloproliferative disorder, chronic myelomonocytic leukaemia, a tumour suppressor role for the Notch pathway was again described, supporting a loss-of-function hypothesis (Klinakis et al, 2011). Conversely, however, a recent paper has identified an antagonistic role between Notch and TKIs within primitive samples; although the mechanisms have not been fully elicited, this perhaps is representative of crosstalk between signalling pathways (Aljedai et al, 2015). Recent data from our group has suggested the importance of Notch activation within LTC-IC assays, where activation of the CD34+38- population through Jagged1 led to a statistically significant reduction in colonies (Horne et al, 2016). It remains to be seen if this pathway has a functional and, indeed, therapeutic role, within CML biology. There are no clinical trials underway evaluating Notch modulation in myeloid disease.

1.2.5.3.4. BMP signalling and the LSC

BMP have been shown to be involved in diverse cellular functions, from apoptosis to self-renewal, in embryonic and adult phenotypes. Dysregulation within the BMP-TGF-β pathway is critical in LSC survival (Laperrousaz et al, 2013; Miyanari & Torres-Padilla, 2012; Naka et al, 2010), particularly mediated by its downstream target genes in the Cdx-Hox axis.

Interaction between Wnt/β-catenin and BMP signalling regulates the Cdx family of homeobox transcription factors – the master regulators of Hox gene expression (Lengerke et al, 2008). Cdx2 is aberrantly expressed in AML and promotes leukaemia propagation through deregulation of Hox genes (Scholl et al, 2007), with its overexpression demonstrated in 90% of AML patients and overexpression in vivo leading to increased engraftment in NSG murine models. Aberrant expression of HOX genes has been linked to both AML and CML (Grier et al, 2005; Scholl et al, 2007), with overexpression of HoxB3 (Sauvageau et al, 1997), HoxB8 (Perkins et al, 1990), or HoxA10 (Sauvageau et al, 1997) leading to the generation of acute leukaemia in murine models, as well as being associated with expansion of the HSC compartment in in vitro and in vivo models (Antonchuk et al, 2002; Thorsteinsdottir et al, 2002). Although this represents an interesting target of both Wnt/β-catenin and BMP, no translational evidence is available for an antagonistic influence in LSC regression.

Genomic studies within primary CD34+ CML samples suggest that components of the pathway, including target genes, are downregulated (Gerber et al, 2013; Radich et al, 2006; Toofan et al, 2014). This raises the possibility that the pathway can be activated through extrinsic mechanisms, and emphasises the role of the BM microenvironment in the
protection of LSCs against TKI-mediated apoptosis. It has been shown that type 1 receptors are present on LSCs in primary CML samples, with an associated downregulation of BMP ligands (Laperrousaz et al, 2013; Toofan et al, 2014). CML aspirate and trephine BM samples had significantly higher levels of BMP2 and BMP4 compared to normal donors. This suggests that there is the ability to upregulate the BMP pathway and that it is via extrinsic mechanisms within the diseased BM microenvironment/niche. Laperrousaz et al (Laperrousaz et al, 2013) demonstrated that expression of BMP2 and BMP4 varied depending on niche cell type, with BMP2 and BMP4 being more highly expressed in polymorphonuclear cells and endothelial sinusoid cells, respectively. In response to increased levels of soluble BMP2 and BMP4, they showed that CML LSCs maintained their primitive phenotypes and enhanced LTC-IC potential, indicating that the BMP pathway can suppress differentiation and potentiate LSC survival.

1.2.6. Clinical implications of LSC and drug targets

The above suggests that as LSCs retain dependency on self-renewal pathways, they could be selectively targeted if the complexities in their interactions are fully understood. Disappointingly, despite strong in vitro and in vivo preclinical data, drugs against these targets have yet to be implemented in the clinical setting as a standard of care. This is, in part, due to trial design, as well as toxicities that are generated, particularly in areas with high cell turnover, such as within the gastrointestinal tract.

The clinical need for alternative and more effective therapies in AML and CML are different. AML represents a disease where there has been little progress in therapeutic strategies, with improvement in survival likely secondary to better supportive measurements rather than improvements in standard chemotherapeutics. The need for targeted and individualised treatments is a necessity in the disease for improved outcome and eventual cure. However, the targeting of LSCs is likely only to be effective in a minority of patients and will vary, dependent on the sub-class of disease. The difficulty remains in 1) identification of LSC in bulk samples with no established immunophenotype, and 2) understanding the differences in signalling pathways within an epigenetic, genetic, and morphologically heterogeneous disease.

Within CML, there has been an overall improvement in survival of approximately ten-fold since the introduction of targeted therapy against BCR-ABL (Bower et al, 2016). This has led to the majority of patients achieving close to normal life expectancy, when treated with TKIs. The need for eradication of the LSC is necessary to enable complete eradication of
CML and subsequent cure, allowing patients to stop therapy, and to alleviate a financial burden within healthcare systems. Like AML, a biomarker of the LSC needs to be identified and sensitive enough to identify CML LSCs at low level following treatment. Although many labs have performed extensive analysis to identify markers of a primitive cell population in the preclinical setting, including CD26 (Culen et al, 2016; Herrmann et al, 2015; Warfvinge et al, 2017) and IL1-RAP (Järås et al, 2010; Landberg et al, 2016; Warfvinge et al, 2017; Ågerstam et al, 2016), none have been shown, as yet, to be robust enough at clinical translation. CD26, however, is showing increasing promise in this area with recent data suggesting a correlation between CD26 expression and treatment response, as well as Lin CD34+CD38-low CD45RA-cKit-CD26+ population being identified as a potential therapeutic target at a single cell level (Culen et al, 2016; Warfvinge et al, 2017).

Although identification of the CML LSC appears to be within reach, little is known about the biology of the LSC in those patients that are in deep molecular response, with much of our understanding and the previous data coming from a drug-naïve population. Clinically, the therapeutic need will be in those that are on TKI therapy.

The biological understanding of aberrant self-renewal pathways within the LSC and potential targets is well underway; however the preparation for translation into the clinical setting needs to be considered. Firstly, as stated above, within each disease the immunophenotypic characterisation of the LSC needs to be established. When this is verified and supported internationally, there are considerations that need to be addressed to translate targeted inhibition or activation clinically.

Firstly, decisions regarding evaluation of response to self-renewal modulation. Within an in vivo and in vitro setting, these responses are often generated by utilising immature populations of sorted cells or genetically manipulating murine models. Within a clinical setting, the response of bulk disease cannot be used as a surrogate for the clinical effect on the LSC population as there are differential sensitivities between the bulk and LSC populations, nor can evaluation of survival be used as a surrogate in treatment evaluation. Clearly, established markers of the LSC (e.g. murine engraftment, LTC-IC assessment, replating efficiency) may be used as a surrogate for response, or an MRD evaluation could be used to generate some understanding of the proportion of LSC at diagnosis and then following treatment.

Secondly, comparing new, targeted approaches to standardised chemotherapy regimens needs to be carefully executed. The use of GO in AML has directed understanding of the
evaluation of a targeted response compared to standard treatments (Petersdorf et al, 2013; Rowe & Lowenberg, 2013), with a realisation that often a targeted therapeutic approach within bulk samples will require a longer treatment period to achieve a clinical response. Can overall survival be used as an endpoint if standard chemotherapy eradicates bulk disease, whereas targeted approaches are acting as an adjunctive therapy that requires longer duration to see an effect?

Thirdly, treatment timings of intervention will be essential in the understanding of disease biology. The treatments could be started simultaneously to allow for the likely longer duration needed for the targeted therapy to achieve a response. But this would cause difficulties in an appropriate primary clinical end-point and evaluation of the LSC response to therapy. Alternatively, the treatments could be sequenced to allow for identification of those patients, particularly with CML, where targeted therapy (in addition to BCR-ABL TKI) is not needed, and in AML, in those that have MRD positivity despite chemotherapy. This would, however, open the potential for clonal evolution of the disease, which may render it more difficult to treat and skew results of an LSC-targeted approach. With a concurrent approach, it is likely that drug toxicities may be a clinical issue, rendering the approach undeliverable as a standard-of-care.

Therefore, not only is an in-depth understanding of aberrant signalling pathway biology within LSCs required for generation of appropriate and justifiable therapeutic targets in the eradication of LSCs, careful consideration in the isolation and identification of LSCs, endpoint response, and timing of therapy is needed to enable translation of the therapeutic targets into a clinical setting.

1.2.7. Chronic myeloid leukaemia as a paradigm for a cancer stem cell malignancy

As described above, increasing evidence suggests that many malignancies function through primitive cell populations that share properties with somatic stem cells, termed CSCs (LSCs for leukaemias). Conventional chemotherapy is unable to eradicate these and, therefore, development of targeted therapies is a necessity to lead to cure. CML represents an excellent disease model of LSCs, as it is a clonal disorder with its origin traceable to the very primitive multipotent stem cell (Fialkow et al, 1967; Fitzgerald et al, 1971; Yamamoto et al, 2013). Furthermore, CML is a well understood disease, with numerous well validated experimental models that can be manipulated, when compared to the heterogeneity seen within AML.
Much evidence has been provided to demonstrate a functional role of CML as a paradigm for a stem cell disease. Clinically, it has been observed that packed red cell transfusions from cells derived from CML patients could lead to temporary homologous BM engraftment and Philadelphia positive (Ph+) progeny in the PB of severely neutropenic recipients’ (Levin et al, 1963). The first experimental evidence came from in vivo transplantation and in vitro stem cell assays (Copland et al, 2008; Daley et al, 1990; Foley et al, 2013; Graham et al, 2007a; Holyoake et al, 1999; Koschmieder et al, 2005). Furthermore, unlike other oncogenes, Bcr-Abl expression in murine haemopoietic progenitors fails to confer self-renewal capability and fails to induce leukaemia in vivo, confirming a stem cell origin of disease (Foley et al, 2013; Huntly et al, 2004).

Although it is generally accepted that the cell of origin within CML is the HSC, its clonal origin is traceable to the multipotent stem cell, giving rise to both haemopoietic and endothelial cells (Fang et al, 2005; Fialkow et al, 1967; Gunsilius et al, 2000). This highlights evidence presented in the previous section of the thesis of the importance of the BM microenvironment within the disease process, altering intra-cellular signalling and protein expression that may affect cross talk between the LSC and BM microenvironment. The interactions between LSCs and the BM remain an important area of research and may determine the best strategy for eradication of the LSC. In many myeloid leukaemias’ there is enhanced osteoblastic proliferation and a marked increase in LSCs and progenitor expansion (Krause et al, 2013). LSCs rely on the BM niche for their persistence and modulate it to enhance survival, and a number of key interactions with self-renewal pathways contribute to the chemo-resistance that is seen. Deregulation of BMP has been shown in murine models where Bmpr1a/Alk3 conditional knockout mice have impaired BMP signalling, which leads to increased niche size and thereby enhanced numbers of HSCs (Zhang et al, 2003b). Furthermore, a number of ligand-receptor mediated pathways regulate CML LSC, and in turn alter signalling pathways responsible for their maintenance, including the thrombopoietin receptor, MPL, which regulates JAK-STAT signalling (Zhang et al, 2016). MPL has been shown in high levels to lead to reduced TKI sensitivity in CML, although, in turn, a higher sensitivity to JAK inhibitors. Expansion of the osteoblast layer of the CML BM microenvironment can contribute to creating a hostile environment for HSC, mediated through alterations in TGF-β, Notch and pro-inflammatory signalling (Bowers et al, 2015; Krause et al, 2013). However, there are difficulties in utilising the BM
microenvironment therapeutically – how should the pathways within the marrow be targeted? Would peripheral injections suffice to produce a large enough concentration of blockade without leading to adverse effects? Signalling pathways clearly play an important role in determining cell survival, proliferation and differentiation of the leukaemic clone. Therefore, it seems pertinent to understand the role of differing signals within a CML LSC population, to fully identify potential therapeutic targets.
1.3. Chronic myeloid leukaemia

CML is an acquired myeloproliferative disorder that originates from a constitutively active oncogenic tyrosine kinase, BCR-ABL. It was first identified in the mid-1800s, where descriptions of splenomegaly and leucocytosis were described by independent physicians’ (Bennett, 1845; Craigie, 1845; Kampen, 2012; Virchow, 1845). Although Bennett initially described his case as an infective process, Virchow suspected a neoplastic disorder that he called ‘white blood cell disease’ or ‘leukaemia’. Following this, the Philadelphia chromosome was identified, where the observation of an abnormally small G-group chromosome was made – this was the first link between chromosomal abnormalities and human cancer (Nowell, 1962; Nowell & Hungerford, 1960) and paved the way in the understanding that cancer could be of genetic consequence. However, despite these initial discoveries, it was only in 1973 that Janet Rowley recognised that the Ph chromosome was the product of a reciprocal translocation between chromosome 9 and 22 (Rowley, 1973). The translocation partners were later identified as BCR and ABL, with the associated upregulation of tyrosine kinase activity leading to the cell’s proliferation and survival (Groffen et al, 1984; Heisterkamp et al, 1983; Melo et al, 1993; Shtivelman et al, 1985).

CML accounts for 15-20% of all adult leukaemias, with an incidence of approximately 1 in 100,000. The median age of presentation is between 40 and 60 years. The disease normally runs a triphasic course from an initial CP to an accelerated phase (AP), and then to the acute phase of the disease, termed BC or BP. Without treatment, disease progression is inevitable. Duration of disease, before progression or death has been shown to be 4-6 years, 1 year, and 3-6 months, if left untreated for CP, AP and BP, respectively, but this remains highly variable between patients (Jabbour & Kantarjian, 2014). Expansion of the myeloid compartment in the BM characterises the CP of the disease and leads to a left shift of the myeloid lineage in the PB and resultant accumulation of mature neutrophils, often with the presence of basophilia and thrombocytosis. Splenomegaly is often detected on clinical examination. On progression to AP and BP, there is a block in differentiation and leukaemic blasts accumulate in the BM and PB, leading to a similar clinical presentation as seen in acute leukaemia, with severe BM failure (Sawyers, 1999), and a very poor prognosis.
1.3.1. Molecular biology and clinical pathogenesis of CML

The Philadelphia chromosome is pathognomonic of CML (Nowell, 1962; Nowell & Hungerford, 1960; Rowley, 1973). It consists of a shortened chromosome 22, resulting from a reciprocal translocation, t(9;22)(q34;q11), between the long arms of chromosome 9 and 22 (figure 1-9) (Rowley, 1973). The Philadelphia translocation adds a 3’ segment of the Abelson murine leukemia viral oncogene homolog (ABL) gene from chromosome 9q34 to the 5’ segment of the breakpoint cluster region protein (BCR) gene on chromosome 22q11. This creates a hybrid BCR-ABL that can be subsequently transcribed into mRNA which gives rise to the BCR-ABL protein. More than 95% of patients with CML harbour this mutation, along with 15-30% of adults with ALL, and 2% of adults with de novo AML (Crews & Jamieson, 2012).

The ABL gene encodes a 145kD non-receptor kinase and contains 3 SRC homology (SH) domains, SH1, SH2, and SH3 (Van Etten, 1999). SH1 is the functionally active tyrosine kinase domain, with SH2 important in protein-protein interactions, and SH3 regulating tyrosine kinase activity through an inhibitory function. The main function of the ABL protein is to integrate signals from intra- and extracellular sources to affect survival, proliferation and apoptosis (Brasher & Van Etten, 2000; Hantschel et al, 2012; Nagar et al, 2003). The BCR gene encodes a 160kD protein that acts as a serine threonine kinase via a domain at the N-terminus. Further to this, it has a dimerisation domain, as well as central and C-terminal domains that allow interaction with signalling proteins (Hantschel & Superti-Furga, 2004). The phosphorylation of BCR itself can activate signalling pathways, including RAS, as well as JAK-STAT and PI3k-AKT, maintaining the cell’s proliferation and survival (Danial & Rothman, 2000).
As discussed, the translocation of the 3’ portion of ABL to 5’ portion of BCR leads to the formation of a BCR-ABL transcript, which gives rise to the BCR-ABL protein. Different breakpoints within the BCR sequence have been identified and, depending on where the break occurs, three chimeric BCR-ABL proteins of different molecular weight can be produced (p190, p210, and p230 BCR-ABL) (Melo, 1997). Most CML patients harbour the p210 BCR-ABL protein, while the p190 BCR-ABL is mainly seen in patients with Philadelphia chromosome positive (Ph+) ALL, and rarely with CML. p230 BCR-ABL has been associated with a variant form of CML, termed chronic neutrophilic leukaemia, which tends to run an indolent course, although classical cases of CML in association with p230 BCR-ABL have been described (Arana-Trejo et al, 2002; Bertorelle et al, 2001; Elliott et al, 2005). All three proteins have been shown to have in vitro transformation properties and in vivo leukaemogenic activity, although have different kinase affinity (Clark et al, 1988; Daley et al, 1990; Konopka et al, 1984; Li et al, 1999). Via autophosphorylation and substrate phosphorylation, BCR-ABL can directly and indirectly activate the signalling pathways central to its transforming activity (Cai et al, 2017; Cutler et al, 2017; Horne et al, 2017). Further to the activation of signalling pathways, various structural alterations of ABL and BCR can facilitate leukaemogenic activity. For example, the N-terminal coiled-coil motif of BCR increases its tyrosine kinase activity and enables binding by ABL (Dorey et al, 2001; Hantschel, 2012; Hantschel & Superti-Furga, 2004; Schindler et al, 2000). Structurally, these alterations allow for multiple protein-protein interactions and activation of downstream signalling pathways that confer a survival and proliferative advantage. Furthermore, BCR interferes with the adjacent SH3 kinase regulatory domain, which in turn causes ABL to become constitutively active.

There is a clear pathognomonic role for BCR-ABL in CML. Furthermore, it also enables diagnostic certainty and an ability to monitor disease response to treatment via assessment of quantitative (q)BCR-ABL.

1.3.2. Defining treatment response

It has been well described that patient outcome correlates with speed and depth of treatment response (Druker et al, 2006; Hanfstein et al, 2012; Hochhaus et al, 2009; Hughes et al, 2010). The aim of treatment is to achieve haematological, cytogenetic and molecular response at critical time points from treatment initiation (table 1-1). Molecular measurements utilise qRT-PCR to estimate the amount of BCR-ABL mRNA relative to an internal reference gene/housekeeping, most commonly ABL1 or GUSB. The results are
expressed on an International Scale (IS) as a percentage, with 100% \(BCR-ABL \) IS corresponding to the International Randomized Study of Interferon and STI571 (IRIS) study (NCT00333840) standardized baseline and 0.1% \(BCR-ABL \) IS being defined as a major molecular response (MMR or MR3; 3 log reduction from the standardized baseline) (Hughes et al., 2006). An International Scale has been developed to ensure molecular responses across laboratories are consistent (Branford et al, 2008).

<table>
<thead>
<tr>
<th>Response</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete haematological response (CHR)</td>
<td>Normalisation of peripheral blood Resolution of splenomegaly</td>
</tr>
<tr>
<td>Minimal cytogenetic response</td>
<td>>65-95% Ph+ metaphases in bone marrow</td>
</tr>
<tr>
<td>Minor cytogenetic response</td>
<td>>35-65% Ph+ metaphases in bone marrow</td>
</tr>
<tr>
<td>Partial cytogenetic response</td>
<td>1-35% Ph+ metaphases in bone marrow</td>
</tr>
<tr>
<td>Major cytogenetic response (MCyR)</td>
<td>0-35% Ph+ metaphases in bone marrow</td>
</tr>
<tr>
<td>Complete cytogenetic response (CCyR)</td>
<td>0% Ph+ metaphases in bone marrow</td>
</tr>
<tr>
<td>Major molecular response (MMR) or MR3.0</td>
<td>3 log reduction in (BCR-ABL) relative to control</td>
</tr>
<tr>
<td>MR4.0</td>
<td>(BCR-ABL \leq0.01%) or undetectable disease in cDNA with 10,000–31,999 (ABL1) transcripts or 24,000–76,999 (GUSB) transcripts</td>
</tr>
<tr>
<td>MR4.5</td>
<td>(BCR-ABL \leq0.0032%) or undetectable disease in cDNA with 32,000–99,999 (ABL1) transcripts or 77,000–239,999 (GUSB) transcripts</td>
</tr>
<tr>
<td>MR5</td>
<td>(BCR-ABL<0.001%) or undetectable disease in cDNA with greater than or equal to100,000 (ABL1) transcripts, or greater than or equal to240,000 (GUSB) transcripts</td>
</tr>
</tbody>
</table>

Table 1-1 Definitions of treatment response in CML

European Leukemia Net (ELN) criteria detailing definitions of response to TKI. \(BCR-ABL \) is the quantitative RT-PCR assessment of \(BCR-ABL1:ABL1 \) (or other housekeeping gene) in the International Scale. Ph+; Philadelphia chromosome positive (Baccarani et al, 2013; Cross et al, 2015).

Evidence and guidelines suggest that at 3 months, a \(BCR-ABL \) of greater than 10% should trigger an examination of compliance and, if indicated, TKI resistance. Within the German CML IV study, amongst the patients that did not achieve a \(BCR-ABL \) of less than 10% at 3 months, overall survival at 5 years was poorer (87% versus 97% for patients with a \(BCR-ABL \) of less than 1%) (Hanfstein et al, 2012). Furthermore, a \(BCR-ABL \) of greater than 9.84% has been demonstrated to be the strongest predictor of inferior event free survival and overall survival (Marin et al, 2012).
Within Europe, these findings have been adopted and formalised into guidelines developed by the ELN (Baccarani et al, 2013) and the National Comprehensive Cancer Network (NCCN), recommending key treatment milestones which form the basis of CML monitoring, enabling an objective and internationally validated assessment of response to therapy, and early recognition of those being treated sub-optimally or failing therapy and would warrant a change in therapy or further investigation (table 1-2).

<table>
<thead>
<tr>
<th>Time</th>
<th>Optimal</th>
<th>Warning</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>High risk; CCA</td>
<td>CCA</td>
<td>CCA</td>
</tr>
<tr>
<td>3 months</td>
<td>BCR-ABL1 ≤ 10% +/- Ph+ ≤ 35%</td>
<td>BCR-ABL1 > 10% +/- Ph+ 36-95%</td>
<td>No CHR, and/or Ph+ >95%</td>
</tr>
<tr>
<td>6 months</td>
<td>BCR-ABL1 <1% +/- Ph+ 0</td>
<td>BCR-ABL1 >10% +/- Ph+ 1-35%</td>
<td>BCR-ABL1 >10% and/or Ph+ >35%</td>
</tr>
<tr>
<td>12 months</td>
<td>BCR-ABL1 ≤ 0.1%</td>
<td>BCR-ABL1 >0.1-1%</td>
<td>BCR-ABL1 >1% and/or Ph+ >0</td>
</tr>
<tr>
<td>Then, and at any time</td>
<td>BCR-ABL1 ≤ 0.1%</td>
<td>Confirmed clonal abnormalities, Ph-</td>
<td>Loss of CHR</td>
</tr>
</tbody>
</table>

Table 1-2 Definition of minimum required response to TKI therapy
ELN criteria detailing minimum required response to first-line TKI therapy from initiation (Baccarani et al, 2013).

Molecular monitoring is the most sensitive approach in determining TKI-failure and disease progression, and enables salvage therapy to be commenced at loss of molecular rather than loss of cytogenetic or haematological response. (Branford et al, 2012; Hanfstein et al, 2012; Hughes et al, 2010; Milojkovic et al, 2012). However, at present, cytogenetic response remains included in the guidelines, and BM examinations are still recommended in a diagnostic approach. This is particularly important at baseline to assess for additional cytogenetic abnormalities. Current guidelines suggest performing a BM examination at baseline, 3, 6, and 12 months to ensure CCyR has been achieved (Baccarani et al, 2013). There is evidence to support the association between event free survival and overall survival with cytogenetic response, as demonstrated within the 6 year follow-up for the IRIS trial, where the event free survival rate was 59%, 85%, and 91% for patients with no cytogenetic response, MCyR, or CCyR at 6 months, respectively (Hochhaus et al, 2009). For second generation TKIs, these milestones occur earlier (Kantarjian et al, 2012; Larson et al, 2012). However, with advances and increased sensitivity in molecular monitoring, most centres, including our own, are moving away from this frequency of BM assessment. An alternative method to determine cytogenetic response is with the use of Fluorescence In Situ
Hybridisation (FISH) on PB, and when combined with a BCR-ABL transcript level of ≤1% (IS) leads to reassurance that the disease is being adequately treated (Oehler, 2013).

1.3.3. Treatment of CML

The introduction of TKIs in the management of CML is one of the greatest advances in the treatment of leukaemia. Since their introduction, there has been at least a 10-fold increase in survival rates compared to the pre-TKI era, where initial treatment was based on standard cytotoxic chemotherapy, such as busulphan and hydroxycarbamide. Although these treatments allowed for a haematological response, no cytogenetic response could be achieved as the pathognomonic insult was not being targeted (Hehlmann et al, 1993). Furthermore, these treatments are associated with numerous side-effects, including myelosuppression. Interferon alpha was introduced as a standard of care in the mid-80s, and demonstrated a significant improvement compared to preceding therapies, with a 15% higher 5-year survival (Talpaz et al, 1986). Cytogenetic response and overall survival were improved when combined with systemic chemotherapy, such as cytarabine (Beck et al, 2001). Within the 1980s, it also became clear that allogeneic stem cell transplantation could result in long-term disease-free survival and probably cure the disease for selected patients, though not without significant risk of morbidity and mortality (Clift et al, 1982; Fefer et al, 1979; Goldman et al, 1982).

With the discovery of BCR-ABL activation, came the hypothesis that targeting BCR-ABL could eliminate disease, and in 1996 preclinical data demonstrated that a modified 2-phenylaminopyrimidine induced apoptosis of BCR-ABL positive human cells, including primary CML cells, with little toxicity on normal cells (Druker et al, 1996). This compound, now known as imatinib, specifically inhibited BCR-ABL tyrosine kinase activity by competitive inhibition at the ATP-binding site of the BCR-ABL protein. This subsequently resulted in the inhibition of phosphorylated proteins from downstream signalling pathways. Although it effectively inhibits BCR-ABL, it blocks other kinases, including platelet-derived growth factor receptor and c-KIT (Giles et al, 2009). Its clinical ability was demonstrated in the International Randomized Study of Interferon and STI571 (IRIS) study, where imatinib (STI571) was shown to induce significantly higher rates of haematological and cytogenetic responses, and subsequently overall survival compared to the interferon-alpha plus low-dose cytarabine; the gold-standard therapy prior to TKIs (O'Brien et al, 2003; O'Brien, 2008). Initial assessment at 19 months, demonstrated a CCyR rate of 74% versus 9% (p<0.001) and failure to progress at 12 months of 99% versus 93% (p<0.001) in the imatinib arm compared to interferon-alpha plus low-dose cytarabine, respectively.
Importantly this response was durable, with an 8-year follow-up demonstrating an event free survival rate of 91% and overall survival rate of 93% (Hochhaus et al, 2009; O'Brien, 2008). Now, off pharmaceutical patent (2016), imatinib is the current gold standard for first line therapy of CML in UK. However, 8-year follow-up within the trial highlighted that only 55% of patients enrolled remained on imatinib therapy, highlighting potential issues with tolerability and adverse events amongst this patient group. Although dose escalation of imatinib can improve response rates in patients with a sub-optimal response, switching to second or third generation TKIs can be more effective (Cortes et al, 2010a; Cortes et al, 2010b; Kantarjian et al, 2012; Larson et al, 2012). Since the introduction of imatinib, second and third generation TKIs have been developed. Current guidelines suggest that for first-line therapy, dasatinib and nilotinib can be used as an alternative or for treatment of cases with TKI failure (Baccarani et al, 2013).

Dasatinib is a second generation TKI that has been shown to be significantly more potent than imatinib in vitro. Again, like imatinib, dasatinib has been shown to target other tyrosine kinases, including the Src family, which influences the increased incidence of TKI-related side-effects, such as pleural effusions (Aplenc et al, 2011; Hantschel et al, 2007; Kantarjian et al, 2012; Lindauer & Hochhaus, 2010; Shah et al, 2004) seen with dasatinib. The DASISION trial (NCT00481247) compared dasatinib 100mg OD and imatinib 400mg OD in the setting of front-line treatment (Kantarjian et al, 2010). At 12 months, the primary outcome of confirmed CCyR was 83% versus 72% (p=0.007) (Jabbour et al, 2014) in the dasatinib and imatinib arms, respectively. Five year follow-up demonstrated that dasatinib achieved deeper responses at earlier time points, with a higher proportion of patients achieving MMR at 3 months in the dasatinib arm (84% versus 64%, p<0.0001) (Cortes et al, 2016b). Correlating with this was a decreased progression to BC. Rates of grade 3 or 4 haematologic adverse events were higher for dasatinib versus imatinib. Drug related pleural effusion was more common with dasatinib (28%) than with imatinib (0.8%), but did not impair the achievement of cytogenetic and molecular response (Cortes et al, 2016b). The UK STI571 Prospective International Randomised Trial 2 (SPIRIT2) phase 3 clinical trial (NCT01460693) confirmed these results, with 12 month MMR being achieved in 57.5% versus 46% in the dasatinib and imatinib arms, respectively (p<0.001). Again treatment toxicity played a major role in dasatinib treatment, with pleural effusions occurring more frequently with dasatinib than imatinib (24.1% versus 1.2%) (Osborne et al, 2015). In patients intolerant or resistant to imatinib, dasatinib has demonstrated durable response rates, with the START-C phase 2 study demonstrating a 2 year CCyR rate of 53%, with 90% of these being maintained at 24 months. Furthermore, the START-R study demonstrated
significantly higher rates of CCyR comparing dasatinib 70mg twice daily with high dose imatinib at 2 years (i.e. 400mg twice daily) (44% versus 18%, p=0.0025) (Kantarjian et al, 2009; Mauro et al, 2008; Milojkovic et al, 2012)

Nilotinib, a structural analogue to imatinib, has increased affinity for BCR-ABL in vitro compared to imatinib (Weisberg et al, 2005). Like dasatinib, nilotinib has been shown to induce a sustained haematological and cytogenetic response in more patients, when compared with imatinib. The Evaluating Nilotinib Efficacy and Safety in Clinical Trials – Newly Diagnosed patients (ENESTnd) study (NCT00471497) presents the mainstay of this data. This phase 3, randomised clinical trial compared two doses of nilotinib (300mg BD, and 400mg BD) to imatinib (400mg OD). The use of nilotinib was associated with significantly higher MMR at 12 months compared to imatinib, with limited change between the two doses of nilotinib used (44% versus 43% versus 22% for nilotinib 300mg BD, nilotinib 400mg BD and imatinib 400mg OD, respectively; p<0.001) (Kantarjian et al, 2011b; Saglio et al, 2010). Five-year follow-up demonstrated the cumulative incidence of MMR to be 77% for both doses of nilotinib and 60% with imatinib (p<0.0001) (Kantarjian et al, 2011b; Saglio et al, 2010). Although, event free survival was not statistically changed between trial arms, there was an advantage with reducing rates of disease progression in those with intermediate and high-risk disease receiving nilotinib, as estimated through the Sokal score. This highlights the role for second generation TKIs in prevention of disease transformation. As with dasatinib, adverse events and toxicity with nilotinib use is significant. Within the ENESTnd study, the 6 year cumulative cardiovascular side effect event rate was significantly increased in the nilotinib arm, with a concentration effect of increasing doses (Hochhaus et al, 2016). Other notable side-effects, included skin rash, headaches, and pancreatitis (rarely). As well as first line therapy, like dasatinib, nilotinib has been shown to offer an alternative for a second-line approach (Kantarjian et al, 2011a).

As well as the first and second generation TKIs, bosutinib and ponatinib are available for use in treatment failure, or, in the case of ponatinib, with the detection of a T315I mutation (Brümmendorf et al, 2015; Cortes et al, 2014a; Cortes et al, 2012; Cortes et al, 2013). Bosutinib, a dual Src/Abl TKI, demonstrates a more potent in vitro activity against Bcr-Abl than imatinib (Golas et al, 2003; Puttini et al, 2006; Rassi & Khoury, 2013). Like other TKIs, bosutinib has activity against a wide range of tyrosine kinases, including c-KIT and platelet-derived growth factor receptor (Puttini et al, 2006). The phase 3 clinical trial, Bosutinib Efficacy and Safety in newly diagnosed chronic myeloid leukemia (BELA) (NCT00574873), compared the efficacy and safety of bosutinib against imatinib (Cortes et
Following a dose escalation to 500mg OD, the trial allowed the potential for further increase to 600mg OD for patients with inadequate molecular and cytogenetic response. At 24 months, cumulative CCyR were similar in bosutinib (79%) and imatinib (80%) arms; however, cumulative MMR rates were significantly higher with bosutinib (59% versus 49%) (Brümmendorf et al, 2015). Importantly, bosutinib appeared to retain activity across mutations that confer imatinib resistance (see section 1.3.4.2), with the exception of T315I and responses were independent of whether patients had resistance or intolerance to imatinib. The most common side effects have been shown to include, diarrhoea, nausea, and vomiting (Gambacorti-Passerini et al, 2014; Nakaseko et al, 2015). Diarrhoea is the most common side-effects noted clinically with bosutinib. Within the BELA trial, it occurred in 84% of patients, with 9% experiencing grade 3 symptoms. It is generally self-limiting and patients should be warned of this prior to drug initiation and given prophylactic loperamide.

Ponatinib is currently the only TKI active against the T315I mutation (O'Hare et al, 2009; Zhou et al, 2011), and therefore remains an important treatment modality in CML. The Ponatinib Ph-positive ALL and CML Evaluation (PACE) trial (NCT01207440) evaluated approximately 500 patients that were considered resistant or intolerant of dasatinib and nilotinib or if they had CML with a T315I mutation (Cortes et al, 2013). The trial used a dose of 45mg OD ponatinib and patients were stratified into both disease phase and mutational state. Within our own clinical practice, this dose can be reduced to 30mg with good effect, and clinical trials assessing this lower dose are currently ongoing. In the PACE trial, at 12 months, MCyR was achieved in 56% of the patient cohort, with 75% of patients harbouring the T315I mutation achieving MCyR. Long-term follow-up confirmed a sustained response, with 83% of these patients remaining in MCyR at 3 years (Cortes et al, 2014a) and 39% of patients achieving MMR or better. Within this trial, patients responded more favourably if they had received fewer prior TKIs. As with other TKIs, significant adverse events were noted. Particularly, arterial occlusive events occurred in 28% of patients, with the most common treatment adverse events being abdominal pain, rash, headache, and constipation (Cortes et al, 2014a). Severe hypertension occurred in 20% of the cohort taking ponatinib. Vascular occlusion and cardiovascular events occurred more commonly with increasing age and prior cardiovascular co-morbidities. Clearly, for our own clinical practice, cardiovascular side effects must be considered and in early 2014, a revised warning was issued regarding ponatinib and the risk of thrombotic events, vascular occlusions, and heart failure (Gainor & Chabner, 2015). The indications for ponatinib use according to manufacturers prescribing information (www.iclusig.com) include the
treatment of adult patients with T315I-positive CML or Ph+ ALL, or in the treatment of adults with any stage of CML or Ph+ ALL for whom no other TKI therapy is indicated.

With the information depicted above, figure 1-10 represents a schematic plan for TKI therapy within CP-CML according to ELN guidelines and current evidence.

Figure 1-11 Schematic diagram of a treatment algorithm for TKI use in CML
Schematic for TKI use in CP-CML, with 1st, 2nd and 3rd line therapy available. TKI choice should be based on an individual basis, with co-morbid conditions carefully evaluated. For example, cardiovascular disease and diabetes should be considered prior to initiating nilotinib in view of significant adverse events. This is based on current ELN guidelines.
With such an array of TKIs available and a significant increase in survival compared to the pre-TKI era, the role of allogeneic transplant is more limited than in the pre-TKI era. It remains an important treatment option however, with high-risk disease, and those with T315I positive advanced CML. Outcomes following transplantation remain superior for patients in CP compared to advanced phase disease, with a 5-year survival of approximately 90% in those with CP compared to 10-20% with BP. However, in view that TKI therapy is generally well tolerated and not associated with the significant morbidity and mortality seen with allogeneic transplantation, the question remains whether there is a role for transplantation in CP-CML at all. Targeted therapy in CP-CML is clearly a great medical achievement and success. However, despite a targeted therapeutic approach, a small number of patients will not respond, or sub-optimally respond, to TKI therapy.

1.3.4. Why does treatment fail?
It has been estimated that about 30% of patients’ fail to achieve an MMR at 2 years (Kantarjian & Cortes, 2011). The reasons for this are three fold, relying on patient compliance to TKI, resistance to therapy, and disease persistence.

1.3.4.1. Patient compliance
Patient compliance remains integral to achieving adequate response. Indeed, it has been estimated that non-compliance with TKI increases sub-optimal response by approximately 3-fold (Noens et al, 2009). The Adherence Assessment with Glivec: Indicators and Outcomes (ADAGIO) study allowed assessment of compliance in a cohort of 169 CML patients over a 90-day period. Only 14.2% of the cohort was found to be completely compliant with TKI, while 71% took less than recommended, and 14.8% more than recommended. Non-compliance was associated with sub-optimal response to TKI (Noens et al, 2009).

The assessment of compliance remains a difficult area of clinical evaluation. However, microelectronic monitoring has allowed observation of the number of times a bottle cap is removed, and serves as a marker of compliance within a population. In a study by Marin et al, it was determined that treatment compliance is a critical factor in achieving and maintaining a deep molecular response, with the probability of achieving MMR and complete molecular response (CMR) significantly better in those with compliance of greater than 90%. Furthermore, compliance was the only independent predictor for achieving CMR (Marin et al, 2010). Compliance of 85% or less and having never achieved MMR have been shown to be the only independent predictors of TKI failure (Ibrahim et al, 2011).
Non-compliance remains a complex clinical issue with a number of factors demonstrated to influence this. Included in this are complex psychological issues, such as depression, disbelief of disease, as well as polypharmacy, longevity of taking the medication, and side-effects, to name a few. In view of its importance clinically, methods have, and are, being introduced to provide patients with increasing support (Bordonaro et al, 2014; Cornelison et al, 2012). For example, within our own services at the West of Scotland Cancer Centre, increased support is being made available through the introduction of CML-specific nurse specialists that give ongoing psychological support, as well as phone-consultations and the development of support groups. This has allowed for increased home support, as well as peer-to-peer support in CML community groups, to enable better compliance. It has been demonstrated that increased accessibility to pharmacists, behavioural specialists, and other healthcare professionals assists with the identification of an individual’s reasons behind non-compliance and ultimately, development of individualised care plans to overcome it (Eliasson et al, 2011; Osterberg & Blaschke, 2005).

1.3.4.2. Resistance to therapy
Non-compliance can be managed within a multidisciplinary team if identified promptly. However, despite good compliance, a number of patients’ will respond sub-optimally or fail therapy. This can be due, in part, to developing resistance to TKI therapy. Inherent or acquired resistance to therapy has been demonstrated in in vitro cell line models and primary samples (Mahon et al, 2000). There has been increasing interest in resistance to TKI therapy of late, but in depth discussion is beyond the scope of this thesis. However, to aid understanding of the reasons for disease progression and the complex nature of its underlying mechanisms, this will be discussed in brief. Resistance to therapy can occur via BCR-ABL-dependent or BCR-ABL-independent mechanisms.

1.3.4.2.1. BCR-ABL-dependent mechanisms
The most common mechanism of resistance to TKI is the development of point mutations or amplification of the BCR-ABL gene, which alters the kinase domain of BCR-ABL rendering the TKI ineffective. These mutations can develop at any stage of disease, and can be utilised clinically to guide TKI choice.

To date, more than 90 BCR-ABL point mutations have been identified, with a lesser number biologically characterised (Azevedo et al, 2017; Cavelier et al, 2015; Gibbons et al, 2014; Khorashad et al, 2013; Shah et al, 2002; Szankasi et al, 2016). Four different clusters of
BCR-ABL kinase domain mutations have been described, and include those that affect the P-loop, the SH2 domain, the SH3 domain, and the activation loop (Branford et al, 2003; Schindler et al, 2000; Soverini et al, 2011). The T315I mutation that results from the replacement of threonine by isoleucine at ABL amino acid position 315 is arguably the most therapeutically relevant mutation within CML, as ponatinib remains the only therapeutic option. Although many mutations have been identified, their clinical significance varies, with not all mutations resulting in relapse or disease progression (Hughes et al, 2006; Jabbour et al, 2006; Nicolini et al, 2006). Identification of specific mutations, including T315I, F317L/V/I/C, Y253H, F359V/C/I, V299L, and E255K, however remains imperative to TKI choice (table 1-3; figure 1-11).

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>T315I</td>
<td>Consider ponatinib</td>
</tr>
<tr>
<td>T315A</td>
<td>Consider nilotinib or bosutinib (rather than dasatinib)</td>
</tr>
<tr>
<td>F317L/V/I/C</td>
<td>Consider nilotinib or bosutinib (rather than dasatinib)</td>
</tr>
<tr>
<td>Y253H</td>
<td>Consider dasatinib or bosutinib (rather than nilotinib)</td>
</tr>
<tr>
<td>F359V/C/I</td>
<td>Consider dasatinib or bosutinib (rather than nilotinib)</td>
</tr>
<tr>
<td>V299L</td>
<td>Consider nilotinib</td>
</tr>
<tr>
<td>E255K/V</td>
<td>Consider dasatinib</td>
</tr>
<tr>
<td>Any other mutation</td>
<td>Consider dasatinib, nilotinib, bosutinib, ponatinib</td>
</tr>
</tbody>
</table>

Table 1-3 Point mutation and recommended action for TKI choice (Ai & Tiu, 2014)

Furthermore, the type of mutation can be associated with phase of disease, with mutations at M244, M351, and G250 frequently detected in CP, and mutations at T315, E255, and Y253 being found in AP and BP (Branford et al, 2009; Soverini et al, 2006). The ELN recommends screening for mutations in any patient with treatment failure or sub-optimal response, including rise in \(BCR-ABL \) transcript levels to allow for early detection of mutations and appropriate change in therapy.
Further to this, additional mechanisms have been postulated to confer TKI resistance. For example, within the BP cell line, K562, it has been demonstrated that there is an increase in expression of the P-glycoprotein efflux pump when passaged through increasing doses of imatinib (Mahon et al, 2000). However, this same cell line also demonstrated a 6-fold amplification of the *BCR-ABL* gene, and no discrimination between the imatinib resistance versus the P-glycoprotein overexpression was made.

1.3.4.2.2. **BCR-ABL-independent mechanisms**

As well as BCR-ABL-dependent mechanisms, BCR-ABL-independent mechanisms of resistance have been described that rely on the alteration of cellular signalling, and cell cycle regulation within the downstream pathways that have been altered with activation of the protein and inhibition of multiple non-BCR-ABL kinases (Li & Li, 2007). The BCR-ABL protein activates alternative signalling pathways, including SRC kinase, RAS, and JAK-STAT signalling (Cortez et al, 1997; Gallipoli et al, 2014; Pendergast et al, 1993). The aberrant activation of these pathways leads to the CML cell’s proliferation and enhanced survival.

The activation of the SRC family kinases has been shown to promote both disease progression, as well as TKI-unresponsiveness. BCR-ABL directly interacts with SRC family kinases resulting in both a conformational change in the ABL kinase domain through phosphorylation of SH2 and SH3, as well as activation of SRC family kinases, Hck, Lyn, and Fyn), leading to cell growth, differentiation and survival (Danhauser-Riedl et al, 1996; Hu et al, 2006; Meyn et al, 2006; Stanglmaier et al, 2003). Additionally, while there have been no clinical examples of SRC-activating mutations in imatinib-resistant cell lines or primary CML specimens, cellular activation of this pathway through numerous other cross-talk networks may still facilitate resistance (Donato et al, 2003; Ptasznik et al, 2004; Wu et
al, 2008). RAS signalling has also shown to be activated through Grb2-mediated binding of the Y177 moiety in the BCR sequence (Cortez et al, 1997; Pendergast et al, 1993), however, the specific mitogen-activated protein kinases that Ras activates in CML are yet to be fully elucidated. Furthermore, studies have demonstrated that Grb2 can recruit Gab-2 with subsequent activation of both PI3k and ERK pathways (Sattler et al, 2002). The mechanism by which these signalling pathways are activated has been shown to be through the expression of plasma membrane transporter molecules, including the ABC family of transporters, ABCG2 and MDR-1. It has been suggested that overexpression of these protein complexes might confer resistance through reducing intracellular imatinib concentration (Mahon et al, 2003). However, a clear correlation between transporter molecule expression and patient response to imatinib has not been fully elucidated.

Furthermore, clonal evolution occurs when CML cells acquire additional chromosomal abnormalities, or epigenetic modulation. Cytogenetic aberrations have been described in an increasing percentage in BP compared to CP, with some, such as aberrations within chromosome 17 leading to changes within the TP53 gene, and subsequent poor outcome (Cortes et al, 2003; Lahaye et al, 2005; O'Dwyer et al, 2002; Wendel et al, 2006). Epigenetic methylation and post-translation acetylation alter gene expression and subsequent protein function. Within CML, the role of epigenetic modification at a biological and therapeutic level are becoming of increasing interest (Bixby & Talpaz, 2011; Lee et al, 2007; Scott et al, 2016).

1.3.4.3. **Disease persistence**

TKI resistance and activation of alternative signalling pathways has been shown to be involved in failure to respond to TKI therapy. However, in addition to this is the phenomenon of disease persistence, which suggests that despite a targeted therapeutic approach, BCR-ABL-independent mechanisms are being exploited to sustain the survival of LSC (Bhatia et al, 2003b; Chomel et al, 2011; Deininger, 2012). As described, these cells are resistant to therapy, meaning that on cessation of TKI treatment the disease is likely to return (Chu et al, 2011; Deininger, 2012; Graham et al, 2008; Hamilton et al, 2012; Ross et al, 2013). The role of LSCs has been extensively described above, and highlights that further information and understanding is needed to identify the underlying mechanisms that confer survival to CML LSCs under TKI therapy.
1.3.4.4. Stopping trials

Multiple clinical trials exploring the discontinuation of TKIs in CP patients with sustained molecular remission (Etienne et al, 2017; Mahon et al, 2014; Mahon, 2015; Mahon et al, 2010; Mahon et al, 2016; Rea et al, 2012; Ross et al, 2010; Ross et al, 2013; Takahashi et al, 2012) have been performed. These trials have demonstrated that discontinuation of therapy can be selectively achieved, with most recent ‘Stop Imatinib’ (STIM) trial (NCT00478985) data stating the cumulative incidence of molecular relapse at 60 months was 61% (CI 52-70%), with few cases of late relapse being observed (Mahon et al, 2014). This suggests that if molecular relapse is to occur, it happens early. Comparable results have been reported worldwide (Mahon et al, 2014; Mahon et al, 2010; Rea et al, 2012; Ross et al, 2010; Ross et al, 2013; Takahashi et al, 2012). The European Stop Kinase Inhibitor (EURO-SKI) trial (NCT01596114) is the largest study to date, with recruitment of over 800 patients. Most recent analysis demonstrated a molecular-recurrence free survival of 62% at 6 months, 56% at 12 months, and 52% at 24 months (Mahon et al, 2016). The DAsatinib DIstcontinuation (DADI) study (NCT01627132) analysed molecular-relapse free survival after stopping dasatinib as second-line therapy or beyond. The probability of molecular-recurrence free survival was 49% at 6 months, and 48% at 12 months, with all molecular relapses occurring within 7 months of stopping therapy. All patients with molecular relapse regained deep molecular response within 6 months (Imagawa et al, 2015). The UK equivalent trial currently in process (DESTINY – DeEscalation and Stopping Treatment of Imatinib, Nilotinib or sprYcel in chronic myeloid leukaemia: NCT01804985) and is analysing the role of dose reduction before complete suspension of TKI treatment. Interim data suggested that decreasing TKI treatment to half the standard dose was associated with improvement in TKI adverse events, in patients with stable MR3 or more. This suggested that many patients are being overtreated and that there is scope for TKI dose reduction prior to discontinuation to assess response (Clark et al, 2016).

Although these results indicate the possibility for TKI discontinuation in a small subset of CML patients, they highlight an uncertainty surrounding the ‘trigger’ event(s) in molecular relapse, and question if sustained BCR-ABL expression, LSC persistence, microenvironmental factors or, indeed, multiple factors are the cause. Within the TWISTER trial (Ross et al, 2013), LSCs could still be identified by functional assays in all undetectable (by quantitative-polymerase chain reactions (qPCR)) MRD samples derived from patients’ no longer on TKI treatment, suggesting that these cells, although present, were not yet driving a leukaemic process. But then, it is known that in up to 30% of normal individuals, low level of BCR-ABL expression can be identified (Bose et al, 1998; Takahashi et al, 2012),
perhaps suggesting that \textit{BCR-ABL} transcript level alone is not sufficient for CML maintenance. It is unknown, however, what cell types these transcripts are originating from and if this is significant long-term. Interestingly, a single copy of \textit{Bcr-Abl} expressed from the endogenous BCR locus in a knock-in murine model is not sufficient to induce leukaemia (Foley et al, 2013). Therefore, although it is clear that a certain level of \textit{BCR-ABL} needs to be expressed at the stem cell level to cause CML, it is unclear if further molecular changes or aberrant signalling is needed to drive molecular relapse and disease progression. Furthermore, it is unknown if \textit{BCR-ABL} is the initiating insult, or if host factors, such as epigenetic and genetic changes influence disease outcome and precede the acquisition of \textit{BCR-ABL}. Regardless, it is apparent, that further insight into why LSCs survive TKIs is vital in the quest for cure.

1.3.5. \textbf{Ph+ Acute leukaemia}

As has been previously described, CML runs a triphasic disease course. If left untreated, the disease will inevitably progress to the more acute form of the disease, termed BC or BP. The median survival remains poor, with most treatments ineffective in this phase of disease. BP CML does not represent the only Ph+ acute leukaemia, with both Ph+ ALL and \textit{de novo} Ph+ AML described within the literature. Within this group of diseases, the treatment approaches differ, although survival advantage remains poor in all groups. This section will describe each disease entity separately to aid understanding of their similarities and differences at a molecular level.

1.3.5.1. \textbf{Blast phase CML}

Despite a targeted therapeutic approach with TKIs in CML, a small number of patients will present in or progress to the acute phase of the disease, termed BC or BP. BP is defined by the World Health Organisation (Arber et al, 2016) as the presence of at least one of

- blasts comprising approximately 20\% of PB white cells or nucleated BM cells,
- extramedullary blast proliferation, or
- large foci or clusters of blasts in the BM

The ELN diagnostic criteria rests on at least 30\% blasts in PB white cells or nucleated BM cells, or the demonstration of extramedullary blast infiltrates (Baccarani et al, 2013). Regardless, if progression to BP is suspected, it needs to be acted on with immediate effect to aid outcome. It can present as either myeloid or lymphoid in lineage, with approximately two-thirds of cases being found to be of a myeloid phenotype (Kinstrie et al, 2016).
Approximately 25% of patients present with a pre B-lymphoblastic phenotype, with occasional cases of T-cell transformation having been identified (Atallah et al, 2002; Rosenthal et al, 1977). This suggests that within BP, LSCs may play an important role in view of the ability to differentiate to both lineages. However, a high degree of heterogeneity has been recognised, with multiple immunophenotypically distinct populations identified (Kinstrie et al, 2016). Furthermore, it has been shown that within BP disease, committed progenitors can acquire self-renewal properties (Jamieson et al. 2004). As such, the LSC in BP-CML may reside in at least 3 subsets, namely Lin-CD34+CD38−, Lin-CD34+ cells remaining from CP, and the disease-driving Lin-CD34+CD38+ granulocyte-macrophage progenitors/common myeloid progenitors (GMPs/CMPs) (Jamieson et al, 2004).

The incidence of progression to BP under TKI treatment ranges between 0.7 and 4.5% (Cortes et al, 2013; Hehlmann et al, 2011; Hughes et al, 2014). As expected, there is a great reduction in incidence of progression on treatment compared to the pre-TKI era, where, within the German CML study group, it was shown that incidence of progression decreased from 1.5-3.7% (CML studies I-IIIa (Hehlmann et al, 1994a; Hehlmann et al, 2003; Hehlmann et al, 1994b)) to 0.3-2.2% (CML IV (Hehlmann et al, 2014)) per year. The rate of progression falls sharply when MMR is obtained (Hehlmann et al, 2011; Hehlmann et al, 2014). Reported incidence of CML presentation in BP ranges from 0.9 to 6.7% (Hoffmann et al, 2015).

Responses to TKIs in BP are transitory, and median survival following diagnosis of BP remains only 6.5 to 11 months in those treated with TKI alone (Hehlmann, 2012). This is, in part, secondary to the development of additional mutations within the BCR-ABL kinase domain leading to TKI resistance. As such, the mainstay of treatment remains TKI plus conventional aggressive chemotherapy, followed by allogeneic stem cell transplantation (if able) (Hehlmann et al, 2012). Despite this approach, 5-year survival rates have been shown to be less than 20%, therefore, deciphering a therapeutic strategy remains of utmost importance for this patient group.

The mechanisms responsible for progression to BP remain poorly understood, particularly when determining why patients progress to either lymphoid or myeloid lineage BP. Although, the risk of progression to BP on TKI therapy is greatly reduced if MMR is reached, there has been no correlation found between BCR-ABL expression and either progression or the development of secondary genetic changes. It is thought that BCR-ABL expression provides a favourable environment for genetic instability and maintenance of
secondary DNA modifications (Bacher et al, 2005a; Bacher et al, 2005b; Bacher et al, 2005c; Radich, 2007). Although this, in itself, does not explain why some of these mutations are lineage-specific. However, common mutations have been identified within phenotypes, with 20-30% and 38% generating mutations in TP53 and RUNX1, respectively, within a myeloid phenotype and almost 50% of lymphoid BP cases having a CDKN2A/B or IKZF1 mutation (Bacher et al, 2005c; Mullighan et al, 2008; Roche-Lestienne et al, 2008).

As described, studies to identify the LSC population in BP disease are more limited when compared to the information available for CP. Jamieson et al found that the HSC population (linCD34+CD38−CD90−CD45RA+) was not expanded in myeloid BP-CML and identified the GMP population as a potential source of LSCs in myeloid BP (Jamieson et al, 2004). However, this study did not assess the multipotent progenitor (MPP; lin-CD34+CD38−CD90-CD45RA-)/LMPP-like subpopulations, nor did it assess in vivo LSC activity. Further studies by the Jamieson group identified activation of β-catenin as the likely mechanism of enhanced self-renewal capacity in the myeloid BP GMP cells (Jamieson et al, 2004; Minami et al, 2008). Less information is available regarding the LSC populations in lymphoid BP-CML. A case report of a patient with imatinib-resistant lymphoid BP-CML indicated that the imatinib-resistant sub-clone (E255K kinase domain mutation) likely originated in the B-cell committed progenitor compartment, but no functional stem cell assays were performed (Kobayashi et al, 2011). The LSC is, however, likely to be fundamental in view of the role it plays in disease development and persistence. From the literature, it can be gleaned that in BP-CML, the LSC subsets are Lin CD34+CD38− and Lin CD34− cells remaining from CP-CML and the disease-driving Lin CD34+CD38+ GMP/CMPs. Each of these has deregulated self-renewal. However, understanding their role is made hugely complicated by the inter-connectivity seen between self-renewal pathways (Radich, 2007), and also the heterogeneity seen between cases (Kinstrie et al, 2016). Various self-renewal pathways have been implicated in this, including Wnt-β-catenin, which is probably the most established (Abrahamsson et al, 2009; Radich et al, 2006; Sengupta et al, 2007; Zhao et al, 2007). Other self-renewal pathways’, including Hh and BMP, have been linked to this process, but their exact role has yet to be fully elucidated (Jamieson et al, 2004; Radich et al, 2006; Su et al, 2012). Certainly, it may arise that the role for self-renewal pathways will be determined from which subset the LSC derives. For example, accumulation of β-catenin in the nucleus of GMPs leads to increased self-renewal potential (Abrahamsson et al, 2009; Ysebaert et al, 2006). It seems pertinent, therefore, that the role for each evolutionary conserved self-renewal pathway be determined, as this will aid understanding and the development of therapeutic strategies for BP CML.
1.3.5.2. **Ph+ acute lymphoblastic leukaemia**

Ph+ acute lymphoid-phenotype leukaemias encompass both lymphoid BP CML (described above) and Ph+ ALL. These two diseases are clinically distinct, but can often be mislabelled. Ph+ ALL accounts for approximately 25-30% of ALL diagnosed in adults. Although 70-90% of cases will achieve a complete remission with conventional chemotherapy, long-term survival remains poor, reflecting high rates of relapse and failure of salvage regimens. It encompasses three main phenotypes:

- a lymphoid lineage restricted phenotype with either p190 or p210 BCR-ABL fusion variants
- a stem cell phenotype with either p190 or p210 BCR-ABL fusion variant, or
- misclassified lymphoid BP CML, which has a stem cell phenotype and expresses p210 BCR-ABL fusion variant.

The differences between both lymphoid BP and Ph+ ALL lie in the BCR-ABL fusion variants and activation of other kinases, particularly SRC kinases, as well as potentially within the cell of origin (Hu et al, 2004). The two BCR-ABL fusion variants, p190 and p210, are determined by the different amounts of BCR that they include, leading to different molecular weights (Soekarman et al, 1990). The larger 210kD fusion protein (p210) is almost always found in CML, but is also present in approximately 10-15% of Ph+ ALL. Inversely, the 190kD fusion protein is found in the majority of paediatric Ph+ ALL, 25-30% of adult Ph+ ALL, and only rarely in CML (Advani & Pendergast, 2002). In both, the signalling pathways involved in cell proliferation and survival are deregulated, leading to the phosphorylation of many proteins (Mullighan, 2012a; b; Radich et al, 2006). Included in this is the activation and phosphorylation of STAT5, which has been demonstrated to be required for progression to lymphoid transformation (Hantschel et al, 2012). The JAK-STAT pathway is integral to disease progression, but it is also known to have many interactions with self-renewal pathways that have not yet been fully described. Further to this, attempts to address the differences between lymphoid BP and Ph+ ALL have focussed on studies to address the cell of origin, with conflicting results. As CML is known to be a stem cell disease, *BCR-ABL* should theoretically be identified in all cell types. Similarly, with ALL being lineage-restricted, it would be anticipated that *BCR-ABL* would be restricted to the lymphoid lineage. However, there is data to suggest that both produce a multi-lineage involvement. Furthermore, it has been shown that Ph+ cells within a myeloid compartment
in ALL may correlate with a more favourable prognosis (Secker-Walker, 1984; Secker-Walker et al, 1978), although this remains contentious (Cuneo et al, 1994b).

1.3.5.3. De Novo Ph+ acute myeloid leukaemia

De novo Ph+ AML accounts for 0.5-3% of all AML cases and by definition has no evidence of CML either before the onset of AML or after successful treatment (Keung et al, 2004; Soupir et al, 2007). Its pathogenesis remains controversial with some reports suggesting that it represents a de novo myeloid BP of CML rather than signifying an isolated disease entity (Neuendorff et al, 2016). Indeed, although p190 BCR-ABL transcripts have been described, most cases express the p210 BCR-ABL transcript (Neuendorff et al, 2016). Further to this, it has been suggested that age-dependent clonal haemopoiesis may play a role, with previous data demonstrating that ‘healthy’ individuals harbour BCR-ABL. Thus, the co-occurrence of BCR-ABL within age-dependent clonal haemopoiesis could lead to the development of disease. Despite limited experimental and clinical data, the WHO classification has acknowledged de novo Ph+ AML in its most recent guidelines.

In view that clinical descriptions of de novo Ph+ AML are so few, little is known about its characteristic features. Clinical presentations, however, are similar to that of AML, with no difference in morphology and immunophenotypic analysis to differentiate it. The criteria to differentiate it from BP-CML include an acute presentation, lack of previous history of CP-CML and no splenomegaly. In general, PB count will not demonstrate a basophilia and there will be a lower mature myeloid cell count.

Cytogenetic and molecular features may differentiate between BP-CML and de novo Ph+ AML (Berger et al, 1993; Bacher et al, 2011). For example, in CML, clonal evolution occurs in 60-80%, with a lower percentage in Ph+ AML. Deletions in 7q have been described in Ph+ AML, but remain rare with BP-CML. Molecular mutations such as NPM1 and FLT3, are more common in Ph+ AML. Furthermore, deletions of IKZF and CDKN2A/B have been described in Ph+ AML, as well as the concomitant loss within immunoglobulins and T cell receptor gene complexes (Nacheva et al, 2013).

Currently, no standardised treatment for de novo Ph+ AML exists, although given the small numbers, it would be difficult to conduct a randomised clinical trial to determine this. From the limited data available, TKI-alone does not achieve a sustained response. Although this is perhaps unsurprising as BCR-ABL is not thought to be the clinical driver of the disease,
but most likely provides a proliferative advantage. The addition of TKI to standardised AML conventional chemotherapy seems a reasonable approach allowing treatment of an acute phenotype with the addition of a targeted TKI. Prognosis, however, seems to be poor with induction failure and relapse common in cases of de novo Ph+ AML described (Keung et al, 2004; Soupir et al, 2007). In keeping with this, the NCCN clinical guidelines in oncology recognise it as a poor-risk group, comparable with complex karyotype AML.

1.3.5.4. The unanswered questions
Ph+ acute leukaemias’ clearly represent a spectrum of disease entities, including myeloid and lymphoid BP-CML, Ph+ ALL, and de novo Ph+ AML. All have a poor prognosis, but due to the paucity of patients and heterogeneity of disease, randomised controlled trials are difficult to initiate and evaluate. Furthermore, the pathophysiology of each disease has not yet been fully elucidated.

Within BP-CML, there is limited evidence on the factors that drive disease progression from a CP myeloid phenotype to an acute disease entity that can present in either lineage. It has been hypothesised that LSCs are imperative as a causative mechanism, and that the initiating lesion remains at a stem cell level, rather than a more differentiated phenotype. However, there is no real documented evidence to how lineage decision is driven within this subset. Furthermore, there is little to no evidence on the variation of self-renewal and survival signalling pathways between phenotypes, and if lymphoid BP should be managed as per a disease of lymphoid origin, rather than that of myeloid. Without a randomised control trial, it is difficult to justify this treatment decision. Perhaps understanding genomic regulation between myeloid and lymphoid BP disease and other acute Ph+ acute diseases will guide diagnostic strategies and potential therapeutic strategies.
1.4. Aims

The following thesis is an investigation into the identification and eradication of the CML LSC in CP through evaluation of the self-renewal pathway, Notch, and the cell surface marker, CD93. Further to this, it has enabled investigation into the genomic differences of self-renewal and survival pathways in both the progression of disease and between subsets of Ph+ acute leukaemia.

Experiments were designed to address the following specific aims:

1. To examination the role of the Notch signalling pathway in CP-CML and in the progression of disease to a myeloid BP phenotype

As has been described through the introduction of this thesis, self-renewal pathways remain fundamental in the maintenance and propagation of the LSC in CML. However, despite much experimental evidence into the role of Hh, Wnt/β-catenin and BMP signalling, there is limited and conflicting data on the role of Notch signalling within this disease model, or within disease progression. Within this thesis I have extensively evaluated the role of Notch signalling within CP-CML and through disease progression to a myeloid BP phenotype.

2. To examine the genomic variation in self-renewal signalling pathways in
 a. Disease progression to myeloid BP disease
 b. Between myeloid BP and lymphoid B
 c. Lymphoid BP and Ph+ ALL

The role which self-renewal pathways play within disease progression and between Ph+ acute leukaemias has yet to be fully elucidated. Within this thesis, I have analysed the genomic variation of self-renewal pathways through Fluidigm analysis in primary samples. This has allowed some understanding of the interconnectivity within and between diseases, and provides preliminary data to enable further targeted investigation.

3. To evaluate the functional role of CD93 in CML LSC in vitro and in vivo

Our group has recently identified upregulation of CD93 within a LSC phenotype in CP-CML. This data has been extended to include functional in vitro and in vivo experimentation, as well as single cell genomic analysis to validate this finding and examine the heterogeneity of the CP CML LSC.
2. Materials and Methods

2.1. Materials

The names and addresses of the suppliers are listed below.

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Biosystems</td>
<td>Lingley House, 120 Birchwood Boulevard, Warrington, WA3 7QH, UK</td>
</tr>
<tr>
<td>BD Biosciences</td>
<td>The Danby Building, Edmund Halley Road, Oxford, OX4 4DQ, UK</td>
</tr>
<tr>
<td>BioRad</td>
<td>Maxted Rd, Hemmel Hempstead, West Sussex, HP2 7DX, UK</td>
</tr>
<tr>
<td>Bioscience Lifescience Ltd</td>
<td>10 Orchard Place, Nottingham Business Park, Nottingham, NG8 6PX, UK</td>
</tr>
<tr>
<td>Cell Signalling Technology</td>
<td>2316 ZA Leiden, The Netherlands</td>
</tr>
<tr>
<td>Cellagen Technology</td>
<td>5940 Pacific Mesa Court, San Diego, CA 92121, USA</td>
</tr>
<tr>
<td>eBioscience</td>
<td>3 Fountain Drive, Paisley, PA4 9RF, UK</td>
</tr>
<tr>
<td>New England Biolabs</td>
<td>75-77 Knowl Piece, Wilbury Way, Hitchin, Herts SG4 0TY, UK</td>
</tr>
<tr>
<td>Eppendorf UK Ltd</td>
<td>Endurance House, Vision Park, Histon, Cambridge, CB24 9ZR</td>
</tr>
<tr>
<td>Eurofins MWG Operon</td>
<td>Westway Estate 28-32 Brunel Road, Acton, London, W3 7XR, UK</td>
</tr>
<tr>
<td>Fisher Scientific UK</td>
<td>Bishop Meadow Road, Loughborough, Leicestershire, LE1 5RG, UK</td>
</tr>
<tr>
<td>Fluidigm UK Ltd</td>
<td>90 Fetter Lane, London, EC4A 1EQ, UK</td>
</tr>
<tr>
<td>Fred Baker Scientific Ltd</td>
<td>3 Kancer Court, Cheshire, WA17 1PN, UK</td>
</tr>
<tr>
<td>GraphPad Software, Inc.</td>
<td>7825 Fay Avenue, Suite 230 La Jolla, CA 92037 USA</td>
</tr>
<tr>
<td>Greiner Bio-One Ltd.</td>
<td>Unit 5, Stroudwater Business Park, Gloucestershire, GL10 3SX, UK</td>
</tr>
<tr>
<td>Invitrogen, Paisley, UK Ltd. Part of Life Technologies</td>
<td>3 Foundation Drive, Paisley, UK</td>
</tr>
<tr>
<td>Jackson ImmunoResearch, Laboratories, Inc.</td>
<td>UK distributor; Stratech Scientific Limited</td>
</tr>
<tr>
<td>Labtech International Ltd.</td>
<td>Acorn House, The Broyle, Ringmer, East Sussex, BN8 5NN, UK</td>
</tr>
<tr>
<td>Millipore (U.K.) Limited</td>
<td>Suite 3 & 5, Croxley Green Buisiness Park, Watford, WD18 8YH, UK</td>
</tr>
<tr>
<td>Miltenyi Biotec Ltd.</td>
<td>Almac House, Church Lane, Bisley, Surrey, GU24 9DR, UK</td>
</tr>
<tr>
<td>Novartis Pharmaceuticals UK Ltd</td>
<td>Frimley, Camberley, Surrey, GU16 7SR, UK</td>
</tr>
<tr>
<td>Peprotech EC Ltd.</td>
<td>Peprotech House, 29 Margavine Road, London, W6 8LL, UK</td>
</tr>
<tr>
<td>Promega UK</td>
<td>Delta House, Southampton Science Park, Southampton, SO16 7NS, UK</td>
</tr>
<tr>
<td>Supplier</td>
<td>Address</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Qiagen</td>
<td>Fleming Way, Crawley, West Sussex, RH10 9NQ, UK</td>
</tr>
<tr>
<td>R&D Systems</td>
<td>19 Barton Lane, Abingdon Science Park, Abingdon, OX14 3NB, UK</td>
</tr>
<tr>
<td>Santa Cruz Biotechnology, Inc</td>
<td>Heidelberg, 69115, Germany</td>
</tr>
<tr>
<td>Scientific Lab Supplies Ltd</td>
<td>204 Main St, Coatbridge, ML5 3RB, UK</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>The Old Brickyard, New Rd, Gillingham, Dorset, SP8 4XT, UK</td>
</tr>
<tr>
<td>Stem Cell Technologies</td>
<td>40 Rues des Berges, Minipar Polytec, Bâtiment Sirocco, 38000 Genoble, France</td>
</tr>
<tr>
<td>Stratech Scientific Limited</td>
<td>Oaks Drive, Newmarket, Suffolk, CB8 7SY, UK 340 A Street #101 Ashland, OR97520, USA</td>
</tr>
<tr>
<td>ThermoFisher Scientific</td>
<td>3 Fountain Drive, Paisley, PA4 9RF, UK</td>
</tr>
</tbody>
</table>

2.1.1. Tissue culture

2.1.1.1. Tissue culture materials

<table>
<thead>
<tr>
<th>Plastics</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blunt ended needles</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Cryotubes</td>
<td>Fisher Scientific, Loughborough, UK</td>
</tr>
<tr>
<td>Eppendorf tubes (0.5 / 1.5ml)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>FACS tubes (sterile/unsterile)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Falcon tubes (15, 50ml)</td>
<td>Fred Baker Scientific, Cheshire, UK</td>
</tr>
<tr>
<td>Flat bottomed culture plates (6, 12, 24, 48, 96 well)</td>
<td>Greiner Bio-One, Gloucestershire, UK</td>
</tr>
<tr>
<td>Flat bottomed culture plates coated with collagen type 1 (6 and 24 well)</td>
<td>Scientific Lab supplies, Coatbridge, UK</td>
</tr>
<tr>
<td>Haemocytometer</td>
<td>Hawksey, UK</td>
</tr>
<tr>
<td>Media filtration system</td>
<td>Scientific Lab supplies, Coatbridge, UK</td>
</tr>
<tr>
<td>Non-adherent tissue culture dishes (35mm / 100mm)</td>
<td>Scientific Lab supplies, Coatbridge, UK</td>
</tr>
<tr>
<td>Non-adherent tissue culture flasks (75cm³)</td>
<td>Scientific Lab supplies, Coatbridge, UK</td>
</tr>
<tr>
<td>Pipette tips (p10, p20, p100, p200, p1000)</td>
<td>Greiner Bio-One, Gloucestershire, UK</td>
</tr>
<tr>
<td>Sterile tissue culture pipettes (5, 10, 25, 50ml)</td>
<td>Scientific Lab supplies, Coatbridge, UK</td>
</tr>
<tr>
<td>Syringe filters (22 micron)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Syringes (5, 10, 20, 50 ml)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Tissue culture flasks (25, 75, 150 cm³)</td>
<td>Greiner Bio-One, Gloucestershire, UK</td>
</tr>
</tbody>
</table>
2.1.1.2. Tissue culture reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha MEM medium</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>BIT 9500 serum substitute (BIT)</td>
<td>Stem Cell Technologies, British Columbia, Canada</td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>CliniMACS CD34+ beads</td>
<td>Miltenyi Biotec, Auburn CA</td>
</tr>
<tr>
<td>CliniMACS PBS/EDTA buffer</td>
<td>Miltenyi Biotec, Auburn CA</td>
</tr>
<tr>
<td>CliniMACS tubing set and columns</td>
<td>Miltenyi Biotec, Auburn CA</td>
</tr>
<tr>
<td>Demecolcine (Colcemid; N-Deacetyl – N – Methylcolchicine)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Dimethylsulphoxide (DMSO)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>DNase I (Recombinant human DNAse)</td>
<td>Stem Cell Technologies, British Columbia, Canada</td>
</tr>
<tr>
<td>Dulbecco’s modified eagle medium (DMEM)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Dulbecco’s phosphate buffered saline (PBS)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Dulbecco’s phosphate buffered saline without Ca(^{2+}) and Mg(^{2+}) (DPBS)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Ethanol 100%</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Foetal bovine serum (FBS)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Genetecin G418 (1013-027)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Ham’s F12 / DMEM (F12/DMEM)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Hanks balanced salt solution (Ca(^{2+}) Mg(^{2+}) free) (HBSS-CMF)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Histopaque</td>
<td>Miltenyi Biotec, Auburn CA</td>
</tr>
<tr>
<td>Horse serum</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Human serum albumin 20% (HSA 20%)</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>Human serum albumin 4.5% (HSA 4.5%)</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>Hydrocortisone 21 – Hemi Succinate (Sodium salt)</td>
<td>Stem Cell Technologies, British Columbia, Canada</td>
</tr>
<tr>
<td>Hygromycin B</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Imatinib</td>
<td>Novartis, Frimley, UK</td>
</tr>
<tr>
<td>Iscove’s modified dulbecco’s medium (IMDM)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>L-glutamine 200mM (100x)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Magnesium chloride (1.25M)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Methocult H4034</td>
<td>Stem Cell Technologies, British Columbia, Canada</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Myelocult 5100</td>
<td>Stem Cell Technologies, British Columbia, Canada</td>
</tr>
<tr>
<td>N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester (DAPT)</td>
<td>Cellagen Technology, USA</td>
</tr>
<tr>
<td>Penicillin (5000u)/ streptomycin (5mg/ml) solution (Pen/Strep)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td></td>
<td>Supplier</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Recombinant human Flt-3 ligand (Flt3L)</td>
<td>Peprotech EC Ltd, UK</td>
</tr>
<tr>
<td>Recombinant human G-CSF (G-CSF)</td>
<td>NHS pharmacy</td>
</tr>
<tr>
<td>Recombinant human IL-3 (IL-3)</td>
<td>Peprotech EC Ltd, UK</td>
</tr>
<tr>
<td>Recombinant human IL-6 (IL-6)</td>
<td>Peprotech EC Ltd, UK</td>
</tr>
<tr>
<td>Recombinant human SCF (SCF)</td>
<td>Peprotech EC Ltd, UK</td>
</tr>
<tr>
<td>Recombinant Jagged1</td>
<td>R&D systems, Abingdon, UK</td>
</tr>
<tr>
<td>RPMI 1640 medium (RPMI)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Sterile water (dH₂O)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Tri-sodium citrate (0.155M)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Trypan blue solution (8M)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Trypsin-EDTA (0.25%)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>β-mercaptoethanol (200mM)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
</tbody>
</table>

2.1.1.3. Tissue culture media components (not listed within text)

2.1.1.3.1. Serum free media (SFM)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDM</td>
<td>97.25ml</td>
<td></td>
</tr>
<tr>
<td>BIT</td>
<td>25ml</td>
<td></td>
</tr>
<tr>
<td>L-Glutamine</td>
<td>1.25ml</td>
<td></td>
</tr>
<tr>
<td>Penicillin/streptomycin</td>
<td>1.25ml</td>
<td></td>
</tr>
<tr>
<td>β-mercaptoethanol (200mM)</td>
<td>250ul (i.e. 400uM)</td>
<td></td>
</tr>
<tr>
<td>Low density lipoprotein (10mg/ml)</td>
<td>250ul (40ug/ml)</td>
<td></td>
</tr>
<tr>
<td>Filter sterilise through 0.22um filter before use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.1.3.2. SFM with high growth factor (SFM+5GF)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFM</td>
<td>10ml</td>
<td></td>
</tr>
<tr>
<td>IL-3 (50ug/ml)</td>
<td>4ul</td>
<td>20ng/ml</td>
</tr>
<tr>
<td>IL-6 (50ug/ml)</td>
<td>4ul</td>
<td>20ng/ml</td>
</tr>
<tr>
<td>G-CSF (50ug/ml)</td>
<td>10ul</td>
<td>50ng/ml</td>
</tr>
<tr>
<td>SCF (50ug/ml)</td>
<td>20ul</td>
<td>100ng/ml</td>
</tr>
<tr>
<td>Flt3L (50ug/ml)</td>
<td>20ul</td>
<td>100ng/ml</td>
</tr>
</tbody>
</table>

2.1.1.3.3. MSC media

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM</td>
<td>400ml</td>
<td></td>
</tr>
<tr>
<td>Hyclone FBS</td>
<td>100ml</td>
<td>20%</td>
</tr>
</tbody>
</table>

2.1.1.3.4. Long-term myeloid culture medium (LTMCM)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelocult</td>
<td>500ml</td>
<td></td>
</tr>
</tbody>
</table>
Hydrocortisone 21 – Hemisuccinate (1x10⁻⁴ M) 1 ml 0.2x10⁻⁶ M

2.1.1.4. Tissue culture solutions

2.1.1.4.1. Thawing solution of primary samples (DAMP)

<table>
<thead>
<tr>
<th>Volume concentration</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>418.75 ml</td>
</tr>
<tr>
<td>Tri-sodium citrate (0.155 M)</td>
<td>53 ml 8.2 mM</td>
</tr>
<tr>
<td>HSA 20%</td>
<td>24 ml 1%</td>
</tr>
<tr>
<td>DNase I (~2500U/1ml)</td>
<td>2 ml 10U/ml</td>
</tr>
<tr>
<td>MgCl₂ (1M)</td>
<td>1.25 ml 2.5 mM</td>
</tr>
</tbody>
</table>

2.1.1.4.2. PBS/2% FBS washing solution

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>FBS</td>
</tr>
</tbody>
</table>

2.1.1.4.3. PBS/20% FBS quenching solution

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
</tr>
<tr>
<td>FBS</td>
</tr>
</tbody>
</table>

2.1.1.4.4. Freezing solution for primary samples

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5% HSA</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
</tbody>
</table>

2.1.1.4.5. Freezing solution for cell lines

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
</tbody>
</table>

2.1.1.4.6. LTC-IC harvest washing buffer

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDM</td>
</tr>
<tr>
<td>FBS</td>
</tr>
</tbody>
</table>
2.1.2. *Immunofluorescence*

2.1.2.1. *Immunofluorescence reagents*

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% ethanol</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>100% methanol</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>4’,6-diamidino-2-phenylindole (DAPI)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Fix and Perm Reagents A/B</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Formamide</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>KCL 0.75M</td>
<td>University of Glasgow</td>
</tr>
<tr>
<td>LS1 BCR-ABL Dual Colour FISH probe set</td>
<td>Abbott Diagnostics, Maidenhead, UK</td>
</tr>
<tr>
<td>Poly-L-Lysine</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Rubber cement</td>
<td>Halfords, Braehead, UK</td>
</tr>
<tr>
<td>SSC</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
</tbody>
</table>

2.1.2.2. *FISH solutions*

2.1.2.2.1. *Hypotonic KCL solution*

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl 0.75M</td>
<td>1ml</td>
</tr>
<tr>
<td>dH₂O</td>
<td>10ml</td>
</tr>
</tbody>
</table>

2.1.2.2.2. *Fixative*

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>2ml</td>
</tr>
<tr>
<td>Methanol</td>
<td>9ml</td>
</tr>
</tbody>
</table>

2.1.2.2.3. *Stock SSC buffer (x20 concentration) (20X SSC)*

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSC</td>
<td>132g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>500ml</td>
</tr>
<tr>
<td>Pure HCl</td>
<td>Titrate to pH 5.3</td>
</tr>
</tbody>
</table>

2.1.2.2.4. *FISH wash buffer I (2xSSC 0.1% NP40)*

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20X SSC</td>
<td>100ml</td>
</tr>
<tr>
<td>dH₂O</td>
<td>899ml</td>
</tr>
<tr>
<td>NP40</td>
<td>1ml</td>
</tr>
<tr>
<td>Pure HCl</td>
<td>Titrate to pH7</td>
</tr>
</tbody>
</table>

2.1.2.2.5. *FISH wash buffer 2 (0.4xSSC 0.3% NP40)*

<table>
<thead>
<tr>
<th>Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20X SSC</td>
<td>10ml</td>
</tr>
</tbody>
</table>
2.1.2.2.6. **FISH denaturation buffer**

<table>
<thead>
<tr>
<th>Volume</th>
<th>Formamide 70%</th>
<th>49ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20X SSC</td>
<td>7ml</td>
</tr>
<tr>
<td></td>
<td>dH<sub>2</sub>O</td>
<td>14ml</td>
</tr>
<tr>
<td></td>
<td>Pure HCl</td>
<td>Titrate to pH7</td>
</tr>
</tbody>
</table>

2.1.3. Flow cytometry

2.1.3.1. **Flow cytometry reagents**

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-amino actinomycin D (7-AAD, Viaprobe solution)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Annexin V – FITC or Annexin V - APC</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Anti-goat FITC</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Anti-mouse IgG2a FITC</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Anti-mouse IgG2a FITC</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Anti-rabbit IgG FITC or PE</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Anti-rabbit IgG PE</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Carboxyfluorescein diacetate succinimidyl diester (CFSE)</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>FACS clean solution</td>
<td>Becton Dickinson, Oxford, UK</td>
</tr>
<tr>
<td>FACS flow solution</td>
<td>Becton Dickinson, Oxford, UK</td>
</tr>
<tr>
<td>Fix and Perm Kit</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>HBSS-CMF</td>
<td>Invitrogen, Paisley, UK</td>
</tr>
<tr>
<td>Propidium Iodide (PI)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
</tbody>
</table>

2.1.3.2. **Flow cytometry antibodies**

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse anti-human CD19-V450 (HIB19)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD33-PerCP-Cy5.5 (P67.6)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD34-APC (581)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD34-PerCP (8G12)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD36-APC (CB38)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD38-V450 (HIT2)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD45-FITC (H130)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD45RA-APC H7 (HI100)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD71-FITC (M-A712)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD73-V450 (AD2)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD90-PE Cy7 (5E10)</td>
<td>BD Biosciences, Oxford, UK</td>
</tr>
<tr>
<td>Mouse anti-human CD93-PE (R3)</td>
<td>eBioscience, ThermoFisher Scientific, Paisley, UK</td>
</tr>
</tbody>
</table>
2.1.4. Western blotting

2.1.4.1. Western blotting reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-mercaptoethanol (50uL/ml)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Ammonium persulphate (APS)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>BSA protein</td>
<td>BioRad, Hampstead, UK</td>
</tr>
<tr>
<td>ECL</td>
<td>BioRad, Hampstead, UK</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>horseradish-peroxidase (HRP)-labelled secondary antibodies</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Immune-blot polyvinyliden difluoride (PVDF) membrane</td>
<td>BioRad, Hampstead, UK</td>
</tr>
<tr>
<td>Milli Q ultrapure water</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>NP40</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Phosphatase inhibitor cocktail</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Protease inhibitor cocktail</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Quickstart Bradford Dye Reagent</td>
<td>BioRad, Hampstead, UK</td>
</tr>
<tr>
<td>Sodium dodocyl sulphate (SDS)</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>SRX-101A medical film processor</td>
<td>Konica Minolta Medical Graphic, Inc., Banbury, UK</td>
</tr>
<tr>
<td>Stripping solution</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>TEMED</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Trisma base</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
</tbody>
</table>

2.1.4.2. Western blotting antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Reactive Species</th>
<th>Dilution</th>
<th>Block</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAM10, C-terminus</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>5% Milk</td>
<td>Millipore</td>
</tr>
<tr>
<td>Anti-mouse IgG (H+L)- HRP conjugated</td>
<td>Horse</td>
<td>1:10000</td>
<td>5% BSA</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>Anti-rabbit IgG (H+L)- HRP conjugated</td>
<td>Goat</td>
<td>1:10000</td>
<td>5% BSA</td>
<td>Cell Signalling</td>
</tr>
</tbody>
</table>
2.1.4.2.1. Western blotting solutions

2.1.4.2.1.1. 1M Tris HCl

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisma base</td>
<td>60.6g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>500ml</td>
</tr>
<tr>
<td>HCl/NaCl</td>
<td>To appropriate PH</td>
</tr>
</tbody>
</table>

2.1.4.2.1.2. 10% SDS

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS</td>
<td>10g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>91ml</td>
</tr>
</tbody>
</table>

2.1.4.2.1.3. 10% APS

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>0.1g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>1000ul</td>
</tr>
</tbody>
</table>

2.1.4.2.1.4. 10X TBS

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>87.6g</td>
</tr>
<tr>
<td>Tris</td>
<td>58.1g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>1000ml</td>
</tr>
</tbody>
</table>

2.1.4.2.1.5. 1X TBSN

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP40 10% (25ml NP40/250ml H₂O)</td>
<td>5ml</td>
</tr>
<tr>
<td>1xTBS</td>
<td>1000ml</td>
</tr>
</tbody>
</table>

2.1.4.2.1.6. Semi-dry transfer buffer (10X)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>29.3g</td>
</tr>
<tr>
<td>Tris</td>
<td>58.1g</td>
</tr>
<tr>
<td>SDS</td>
<td>3.75g</td>
</tr>
<tr>
<td>dH₂O</td>
<td>1000ml</td>
</tr>
</tbody>
</table>
2.1.4.2.1.7. Semi-dry transfer buffer (1X)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>200ml</td>
</tr>
<tr>
<td>10X Transfer buffer stock</td>
<td>100ml</td>
</tr>
<tr>
<td>dH₂O</td>
<td>700ml</td>
</tr>
</tbody>
</table>

2.1.4.2.1.8. Blocking solution (5X)

<table>
<thead>
<tr>
<th></th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>25g</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>5g</td>
</tr>
<tr>
<td>1xTBS</td>
<td>500ml</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>Sprinkle</td>
</tr>
</tbody>
</table>

2.1.5. Molecular biology

2.1.5.1. Molecular biology reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>20X taqman gene expression assay</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>2X assay loading reagent</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>2X taqman universal PCR(mastermix)</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Applied Bioscience micro RNA kit</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Arcturus picopure RNA isolation kit</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Boric acid</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>DNAse1</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>dNTP mix</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
<tr>
<td>GE loading reagent</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Gene expression master mix</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Molecular biology grade 100% ethanol</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>Molecular biology grade H₂O</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>Random primers</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Reverse transcriptase</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>RNA easy micro kit</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>RNA easy mini kit</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>RNase inhibitor</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>RNeasy mini kit</td>
<td>Qiagen, Crawley, UK</td>
</tr>
<tr>
<td>Taqman gene expression assay</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>TE buffer, pH 8</td>
<td>Applied Biosystems, Warrington, UK</td>
</tr>
<tr>
<td>Tris base</td>
<td>Sigma-Aldrich, Dorset, UK</td>
</tr>
</tbody>
</table>
2.1.5.2. Molecular biology solutions

2.1.5.2.1. 10X TBE buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boric acid</td>
<td>55g</td>
</tr>
<tr>
<td>EDTA (0.5M, pH 8.0)</td>
<td>40ml</td>
</tr>
<tr>
<td>Tris base</td>
<td>108g</td>
</tr>
<tr>
<td>dH2O</td>
<td>1000ml</td>
</tr>
</tbody>
</table>

2.1.5.2.2. 2X reverse transcription mastermix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X RT Buffer</td>
<td>2ul</td>
</tr>
<tr>
<td>25X dNTP mix</td>
<td>0.8ul</td>
</tr>
<tr>
<td>10X RT Random primers</td>
<td>2ul</td>
</tr>
<tr>
<td>Reverse transcriptase 50u/ul</td>
<td>1ul</td>
</tr>
<tr>
<td>RNase inhibitor</td>
<td>1ul</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>3.2ul</td>
</tr>
</tbody>
</table>

2.1.5.2.3. Fluidigm assay mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X assay loading reagent</td>
<td>2.5ul</td>
</tr>
<tr>
<td>20X TaqMan Gene expression assay</td>
<td>2.5ul</td>
</tr>
</tbody>
</table>

2.1.5.2.4. Fluidigm sample mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X TaqMan universal PCR Mastermix</td>
<td>2.5ul</td>
</tr>
<tr>
<td>20X GE sample loading reagent</td>
<td>0.25ul</td>
</tr>
<tr>
<td>cDNA</td>
<td>2.25ul</td>
</tr>
</tbody>
</table>

2.1.5.3. Primers

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL-A3-B</td>
<td>GTTTGGGCTTCACACCATTCC</td>
<td>-</td>
</tr>
<tr>
<td>ACVR2A</td>
<td>ACCATGGGCTAGAGGATGGGC</td>
<td>GCCAACCCAAAGTCAGCAAT</td>
</tr>
<tr>
<td>ACVR2B</td>
<td>CTGCAACGAACGCTTCACTC</td>
<td>CAGGACGATGAGGGAAAGGCC</td>
</tr>
<tr>
<td>ADAM 10</td>
<td>ATGGCAAAAGATGATAAAAGATTATGC</td>
<td>AATCGTTGCAAGGGGATCC</td>
</tr>
<tr>
<td>ADAM 17</td>
<td>CTTCTACAGATACATGGGCAGAG</td>
<td>CTCTATCTGTATTCATAGCCTTTA</td>
</tr>
<tr>
<td>ADAM19</td>
<td>GTTTACACACAGACCAAGAACG</td>
<td>CTTGTGTTGTGGCTGC</td>
</tr>
<tr>
<td>AKT1</td>
<td>TGGACTACCTGCACCTGGGAGAA</td>
<td>GTGCGCAAAAGGCGCTTACATGG</td>
</tr>
<tr>
<td>AKT2</td>
<td>CCAACACCTTTTGTATACGCTGC</td>
<td>GCTTCAGACTGTGGCGACCAT</td>
</tr>
<tr>
<td>AKT3</td>
<td>GATGCCCTCAACACCCATCAT</td>
<td>GTCCATGCAGCTCATACCATCCCT</td>
</tr>
<tr>
<td>ATM</td>
<td>CGGAGCTGTATGATAGCAAACATACTA</td>
<td>CAGATAGAGGCTGAAAGTCACAGA</td>
</tr>
<tr>
<td>ATR</td>
<td>CAGCTCTCTATGAAAGGCCATTCAA</td>
<td>GTTCTACTGTTCATGCCTGGTC</td>
</tr>
<tr>
<td>Gene</td>
<td>Sequence 1</td>
<td>Sequence 2</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>B2M</td>
<td>TTGTCTTTCAAGACAGACTGG</td>
<td>ATCCGGCATCCTCAAACCTCC</td>
</tr>
<tr>
<td>BCL2</td>
<td>ATCGCCCTGGTGGATGACTGAGT</td>
<td>GCCAGGAGAAATCAAACAGAGGC</td>
</tr>
<tr>
<td>BCR</td>
<td>BCR-CSR</td>
<td>-</td>
</tr>
<tr>
<td>BMM1</td>
<td>GCCATCGAAACAAGAGAATCA</td>
<td>GCTGGTCTCCAGGTAACGA</td>
</tr>
<tr>
<td>BMM1</td>
<td>AACTGATAGATGGATATAAAACGC</td>
<td>CTTCGAGAAACTTTCTAAATGTC</td>
</tr>
<tr>
<td>BMP10</td>
<td>ACCCACCTGGAGCTCAGAGGGAGGAGAAATCAAACAGAGGC</td>
<td>GCCCATTAAACAGACCCAG</td>
</tr>
<tr>
<td>BMP7</td>
<td>CAGGCTCTGAAGAGACGACAGCA</td>
<td>TTGGTGTGTCGTTCAAGGA</td>
</tr>
<tr>
<td>C-JUN</td>
<td>CTTGAAAGCTCAGAGATCGGAGAAGAGAAATCAAACAGAGGC</td>
<td>CTGGGTTAGCATGAGTTGGA</td>
</tr>
<tr>
<td>CCA1</td>
<td>CTGAGGAGAAATCAAACAGAGGC</td>
<td>GCTGGTCTCCAGGTAACGA</td>
</tr>
<tr>
<td>CCA2</td>
<td>TGGCGGTACTGAGAATCGCAGCC</td>
<td>CAAGGAGGAAAGTTGGACCATGC</td>
</tr>
<tr>
<td>CENB1</td>
<td>CAGCTCTTGGGGGACATTGGAAAC</td>
<td>ACTGGCAGGGCACTAGTGAC</td>
</tr>
<tr>
<td>CENE1</td>
<td>CAACAGTGGCAAGGCTCCGAAG</td>
<td>CAAAGTGGGACTGATCCTAAAGTGATC</td>
</tr>
<tr>
<td>CENE2</td>
<td>CAAGATGAGGAGATGCAAGGCACT</td>
<td>GCAGCAGATCATTTCTGACTGG</td>
</tr>
<tr>
<td>CD79A</td>
<td>GAACGAGAAAGCTCCGGTGCAGG</td>
<td>TGCCCATACCTGGTGAAG</td>
</tr>
<tr>
<td>CD93</td>
<td>GGCGAAGATTTACTCTCGTGGTT</td>
<td>GAGAGTTAAAGGCTCAGAGGAGGAGGATG</td>
</tr>
<tr>
<td>CDC25A</td>
<td>GTCTAGATTCTCTCTGGGAGCTTGGTT</td>
<td>CAAAAGGCTCAGAGGAGGAGGATG</td>
</tr>
<tr>
<td>CDC25B</td>
<td>GGATTTGTTGGACATCTCTAGAGAGG</td>
<td>ACTGGGCTGATCAGTGAGGATG</td>
</tr>
<tr>
<td>CDC25C</td>
<td>CACTGAGCTTACAGTTCTGCAAGGG</td>
<td>GGCTGACATTCTAGGATG</td>
</tr>
<tr>
<td>CDK2</td>
<td>GCCTGATTACAAAGACAGGTGATCCTCCAG</td>
<td>TGCCGGGACTGATCCTGTAAGAG</td>
</tr>
<tr>
<td>CDK4</td>
<td>GAAACTCTGACAGCAGCGTGGCAG</td>
<td>AGGCAGGAGATTTCCCTGGT</td>
</tr>
<tr>
<td>CDK4</td>
<td>CCCATGACGACAGTGGATGTTG</td>
<td>AACACGAGGCTGATCCTGGAAGAG</td>
</tr>
<tr>
<td>CDK6</td>
<td>CCTGCAAGGAAAGAAGAACTGC</td>
<td>CTTCCCATTTCCCTCAGG</td>
</tr>
<tr>
<td>CDK6</td>
<td>CCGAAGCTTTCGGGTCACCCAG</td>
<td>GTGGATCAAGATCCTGAGATG</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>GTGGGACACTGAGCCTCATCCAG</td>
<td>TGCCGGGACTGATCCTGTAAGAG</td>
</tr>
<tr>
<td>CDKN1C</td>
<td>CACGATGGGAGGCTCCTGGTG</td>
<td>CTTGGGACTGAGCAGAGAG</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>CCGAATGTTACGTTGTCGGAGG</td>
<td>CACGGGAGGCTTCTGAGGAGT</td>
</tr>
<tr>
<td>CDKN2B</td>
<td>GGTTGCTAGCAATCTTCCAG</td>
<td>CTGAAGTTTGTGGGTTGCA</td>
</tr>
<tr>
<td>CDKN3A</td>
<td>GTTTTAATAGTGTCTTCAGAGGTG</td>
<td>GTGCCAGCTATTGTGCTCCG</td>
</tr>
<tr>
<td>CHEK1</td>
<td>CCATCGACAAGAATATTCATTCCAG</td>
<td>CTGGGAGACATGCTGACACAG</td>
</tr>
<tr>
<td>CHEK2</td>
<td>ATGAGAAGCTTTATTGGGAGGAGG</td>
<td>GCTGAGGAGGAAAGTTGGGATGAGG</td>
</tr>
<tr>
<td>CSF1R</td>
<td>GGACATTCAACAGGCTCT</td>
<td>GCTGAGGAGGAAAGTTGGGATGAGG</td>
</tr>
<tr>
<td>CSF2R</td>
<td>GTTACCACACCAGCATCAG</td>
<td>TGGGCAGTTCCACAGTAAAT</td>
</tr>
<tr>
<td>CSF3R</td>
<td>TTGGGAGACAGATCTACGAAC</td>
<td>CATGAGGAGGAAAGTTGGGATGAGG</td>
</tr>
<tr>
<td>CYC1</td>
<td>ATGGGAGAAGACGCTTTCTCAG</td>
<td>GGTTGCTGATCCTGAGAAGAG</td>
</tr>
<tr>
<td>CYC1L</td>
<td>ATGAGGAGAAGGCTCTAGCCT</td>
<td>TGCCGGGACTGATCCTGTAAGAG</td>
</tr>
<tr>
<td>CYCLIN D3</td>
<td>TGATGCTGAGGAGTTGGTGA</td>
<td>TGCAAGTGGTTTTTGTG</td>
</tr>
<tr>
<td>CYCLIN E1</td>
<td>TTCCCGCTGAGTGTATACATG</td>
<td>CCCATTTGTCGAGCAACAGATG</td>
</tr>
<tr>
<td>DAAM1</td>
<td>AGAGATGATGCCAGCGAAGG</td>
<td>TCTCCACCTCAGACCTGGG</td>
</tr>
<tr>
<td>DDK3</td>
<td>GCATCTCGAGGAGACCTGCTT</td>
<td>GTCTGGAGCAGCCTCAGT</td>
</tr>
<tr>
<td>DLL1</td>
<td>GCCTGGATGTGAGTGTGGCAGC</td>
<td>ACAGCCTGAGAGGAGGATG</td>
</tr>
<tr>
<td>DLL3</td>
<td>CACTCAACAAACCTGAAGAGCAACAGC</td>
<td>GACGCTGATGAGGAGGAGGAG</td>
</tr>
<tr>
<td>DLL4</td>
<td>TCCTCTGAGGCTCCAGACCTGCTT</td>
<td>CTTGGGAGGAGGAGGAGGAG</td>
</tr>
<tr>
<td>DTX1</td>
<td>ATCCCGAGGATGTTGGTTCG</td>
<td>GTAGCTGAGTGTGACAGAC</td>
</tr>
<tr>
<td>E2F1</td>
<td>GGAACCCTGAAGCTGAGGACCATCAG</td>
<td>CAGTGAGGCTCATTGAGGAG</td>
</tr>
<tr>
<td>E2F2</td>
<td>CTCTCGAGGCCTCAGCTGCTT</td>
<td>CTTGGGAGGAGGAGGAGGAG</td>
</tr>
<tr>
<td>Gene</td>
<td>Sequence</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>E2F3</td>
<td>AGCGGTCTACGTACCTCTACG</td>
<td>TGTTGAGCAGACCAGGAGACGT</td>
</tr>
<tr>
<td>EFN1</td>
<td>GTCTGAGAGTTCACGCAGCCT</td>
<td>CACTGACAGTCACCTCCAG</td>
</tr>
<tr>
<td>EFN4</td>
<td>GAGGCTCCAGGCTCTCTCTGCTG</td>
<td>AATGCTCCATCTTGTGCTGACG</td>
</tr>
<tr>
<td>EGR1</td>
<td>TGACCCGAGAGCCTTTTTCCT</td>
<td>TGGGTTGCTGCTGTCACAT</td>
</tr>
<tr>
<td>EGR2</td>
<td>CTGACCTCAGGCTGACGAG</td>
<td>GTTGTGACTCCACCTCCAG</td>
</tr>
<tr>
<td>ENOX2</td>
<td>GAGCTGAGAGGAAAGGGAAGG</td>
<td>GTGAACTGAGATTTCTCCAG</td>
</tr>
<tr>
<td>ETS1</td>
<td>GAGTCAACCCACGTCCATCCA</td>
<td>ATGGGATTGGACGACCTT</td>
</tr>
<tr>
<td>FAT1</td>
<td>ATCTGTGAGGCTTCTTGCTGCTG</td>
<td>CATCTGTAGCTCGACTT</td>
</tr>
<tr>
<td>FAT2</td>
<td>CACTGACAGTACCTGGGAGG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>FAT3</td>
<td>GACAGAGACACATCCGACGTC</td>
<td>GCCTCTTCACATAGACCT</td>
</tr>
<tr>
<td>FAT4</td>
<td>CCCACATTTGCCAGTAAACGG</td>
<td>GTGAACACTGAGATTTCTCCAG</td>
</tr>
<tr>
<td>FBXW7</td>
<td>CTTTCTCTTGAGAGGAGAATGAC</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>FOS</td>
<td>AGGAGAATCCGAAGGGAAAGG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>FOXM1</td>
<td>TCACAAACCCGACCGTCCTCCCACTTG</td>
<td>GCAGCAGTATGAAAAAAGAG</td>
</tr>
<tr>
<td>FOXO1</td>
<td>CTACGAGGGATGTTGAGACGT</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>FOXO3</td>
<td>CCTACTTCAAGGATAAGGGCAG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>FURIN</td>
<td>CCAGATCTACCTCGACGAG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>GATA3</td>
<td>CGAAGTCTGAGAACCAACCA</td>
<td>GGTTCCTGCTGGATGGATC</td>
</tr>
<tr>
<td>GEMIN2</td>
<td>TGTGACCTGAGGCTCTCCATAC</td>
<td>TCACTGAGTAAATCACTGTTG</td>
</tr>
<tr>
<td>GF11</td>
<td>GCCCTCCCCAGAGAGACTAT</td>
<td>CTTGTCAGGAGTCCATG</td>
</tr>
<tr>
<td>GLI1</td>
<td>AGCAGAGAGTGAGGAAACGG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>GLI3</td>
<td>CTCTTCTGAGGAGAAAATTCCT</td>
<td>CTTGTCAGGAGTCCATG</td>
</tr>
<tr>
<td>GNB2L1</td>
<td>TCTCCTCAGGAGCCAGCTTG</td>
<td>GCGATTGGAGATGATATCC</td>
</tr>
<tr>
<td>GSK3B</td>
<td>CGACTCCACCAAGTACGGCAGT</td>
<td>GGTTCCTGCTGGATGGATC</td>
</tr>
<tr>
<td>HES1</td>
<td>GGAGAAAAATTCCTGAGCTC</td>
<td>GGTTCCTGCTGGATGGATC</td>
</tr>
<tr>
<td>HEY1</td>
<td>CGCAGATCTACCTCCCTGAGG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HEY2</td>
<td>GAAAGTAGCTCCAGGCTCAG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HHIP</td>
<td>GCCATTAGTTAATGCTCCTTGGG</td>
<td>TCTGAGTATGTTGCTGAGG</td>
</tr>
<tr>
<td>HIP1</td>
<td>CTAATCATGAGGCTGACGAG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HLF</td>
<td>GCCCATGTATCAAGAGAGCCTC</td>
<td>GCGGCTGCTGTTCTGCTT</td>
</tr>
<tr>
<td>HOXA4</td>
<td>ATGTGCGCCCATGCTACAA</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HOXA5</td>
<td>AAGGTCAGACGACAGAGGCTG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HOXA6</td>
<td>TGCCGGTCGGCTGAACTG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>HOXB4</td>
<td>CTTGGATGCGCGGAGAAGAGCTG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>ICA1</td>
<td>CATGCTCGGGAAGATGGGAT</td>
<td>GGAACAGCAGCTACAGAG</td>
</tr>
<tr>
<td>IHH</td>
<td>GAGACTGATGAAAGCAAGACGT</td>
<td>CAGCGGGATCTGAGGCT</td>
</tr>
<tr>
<td>IKZF1</td>
<td>AACGTCGCCAACAGTTAAGAG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>INHB1</td>
<td>AAAGTGCGGAGGAGAGGTAT</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>INK4A</td>
<td>CTCGTGCTATGCTACTGAGGGA</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>INK4C</td>
<td>CTGTAATGGACAAATATGGATGG</td>
<td>GGAACAGCAGCTACAGAG</td>
</tr>
<tr>
<td>INK4D</td>
<td>GTGTCATGCAGGCTCTTTTC</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>JAG1</td>
<td>TGAGGATCTCAGACCTACCCG</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>JAG2</td>
<td>CAAAACCTGATGCTGCGCGCCT</td>
<td>CACACACTGAGTCAGG</td>
</tr>
<tr>
<td>LEF1</td>
<td>CACTGACAGTACCTCATTGC</td>
<td>CAGCGAGTCATACGTACCT</td>
</tr>
<tr>
<td>LEF1</td>
<td>CTAACCCTCCTCAGGTCAGTC</td>
<td>GTGTCAGGAACACTTGCCT</td>
</tr>
<tr>
<td>Gene</td>
<td>Sequence 1</td>
<td>Sequence 2</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>LFNG</td>
<td>GCCACAAGGAGATGACGTT</td>
<td>GAGCATTTTGTGATGACCAGC</td>
</tr>
<tr>
<td>MAML</td>
<td>GCAACACGACTTCCTCAGAGG</td>
<td>GTGAACCTGTCAAACACTGTGTTG</td>
</tr>
<tr>
<td>MDM2</td>
<td>TGTTGCGGTGCAAGCTCTTCTC</td>
<td>CACAGATGATCTGAGTCCAGT</td>
</tr>
<tr>
<td>MEIS1</td>
<td>AAGCAGTTGCCAACAGCAGCGG</td>
<td>CGTCTGGTGTGGACTGTCTAT</td>
</tr>
<tr>
<td>MEIS1</td>
<td>AAGACCGGGACTCACCACATC</td>
<td>TGACGTTGACTAGTCCAAGAACC</td>
</tr>
<tr>
<td>MFNG</td>
<td>CTGTGACAGTTCTGGTTTGC</td>
<td>ATGTGITTCCAAGAACCAGGAC</td>
</tr>
<tr>
<td>MPL</td>
<td>ACTCAGCGGACTTCCTTGTGGA</td>
<td>CATAGCGGACTTCCTTGTGGA</td>
</tr>
<tr>
<td>MPO</td>
<td>GCATCATCGGTACCCAGTTC</td>
<td>GGTGTGATGCTCTGTTGTC</td>
</tr>
<tr>
<td>MTRX1</td>
<td>AGACTGCGAGTCCTCTTTGGTG</td>
<td>CAGCCAGTACTTCTCTGGAGACC</td>
</tr>
<tr>
<td>MYC</td>
<td>GACTCTTGTTCTGGAGATGC</td>
<td>GGATGAGGAGTCTTCTGCTAT</td>
</tr>
<tr>
<td>NF21B1</td>
<td>AGATGTACCCTATTTGGGAAGGC</td>
<td>TGCTCTAATTATGGAAGGTAGGCT</td>
</tr>
<tr>
<td>NOTCH 1</td>
<td>TCCACTGTGAGAACAACACGC</td>
<td>ACTCATTGACATCGTGCTGGC</td>
</tr>
<tr>
<td>NOTCH 2</td>
<td>GCAAAATGATTGATCACTCCGGA</td>
<td>TGCAGGCTAGAATTACATACATC</td>
</tr>
<tr>
<td>NOTCH 3</td>
<td>TACTCGTAGGCACTGTGAGCAG</td>
<td>CATTACACACTGATGAGCAG</td>
</tr>
<tr>
<td>NOTCH 4</td>
<td>TTCCACTGCTCTCTGCGGACAA</td>
<td>TGGCACAGGCTGCTTGGAATC</td>
</tr>
<tr>
<td>NUMB</td>
<td>CCAAAACGAGTGACGTGTTGCC</td>
<td>CCAAGGGTGGGTCTTTCAGGC</td>
</tr>
<tr>
<td>P190 BCR- e1-A</td>
<td>GACTGCGACTCCAATGAGAC</td>
<td>-</td>
</tr>
<tr>
<td>P210 BCR- e1-A</td>
<td>GAAGTAGTTCCAGAAAGGCTTCCC</td>
<td>-</td>
</tr>
<tr>
<td>p38</td>
<td>GAGCGTTACCAGAAGCTCTGTC</td>
<td>AGTAACCCGACTGTCTCTGAGGTT</td>
</tr>
<tr>
<td>PBX1</td>
<td>GAGAGGATACAGTGATGGACTCG</td>
<td>GGAGGTATCAGAGTGAACACTGC</td>
</tr>
<tr>
<td>PML</td>
<td>CCGACTAGGATGACAGTCCGGA</td>
<td>GTTTTGCCGACATGCTTGCTCCG</td>
</tr>
<tr>
<td>PREP1</td>
<td>ATTTGCATCAGGACGTGCGCAGAC</td>
<td>GAGACTGAGGCTGCTTGCGAAG</td>
</tr>
<tr>
<td>PSEN1</td>
<td>GGTGTTCTGCTTATAATACAGGCTTC</td>
<td>AAGCATATGTAGATGACACTGAC</td>
</tr>
<tr>
<td>PTCH1</td>
<td>CTTTTTTGTTTCAAACCTCAGGAGGAC</td>
<td>TGTCTCCAAGTCTGTAATTTTGCTCCG</td>
</tr>
<tr>
<td>PTCH2</td>
<td>TGTTGGTAGAGGCTGCTACTC</td>
<td>GCATTGTCACACAGGCAAG</td>
</tr>
<tr>
<td>RFNG</td>
<td>CTTGTACCCTGGAGAACCCTGCA</td>
<td>TCTTGATGCGAGGTGAGCCT</td>
</tr>
<tr>
<td>RP56k1</td>
<td>TACTCGGGTACTTGTGAA</td>
<td>GATAGGAGGAGTCTTCTTACT</td>
</tr>
<tr>
<td>RUNX1</td>
<td>CACCTACACAGAGCCATCA</td>
<td>CTGCGAAAAGGACAAGCTTCC</td>
</tr>
<tr>
<td>RUNXIT1</td>
<td>ATCAACAAACAGAGGCGCACA</td>
<td>CTGCGAGGTTCATCCTGCTT</td>
</tr>
<tr>
<td>RUNX2</td>
<td>AACAAGAGGCTTGCCTCGGGA</td>
<td>CATACGACCCAGCATTCCGAG</td>
</tr>
<tr>
<td>SHH</td>
<td>CGAGCGGATTATAAGGACAAGTACACC</td>
<td>GCGTCTAACTTGTCTTACCACC</td>
</tr>
<tr>
<td>SMAD6</td>
<td>CTCTCTACTGTCGGGTCTC</td>
<td>AGAATCCACCCGGAAGAGT</td>
</tr>
<tr>
<td>SMAD7</td>
<td>CCATCACCTTACGCACTTCTC</td>
<td>CCGAGGGGACAGATAATCTG</td>
</tr>
<tr>
<td>SMO</td>
<td>CTGACTGCGGACTTCCGAGG</td>
<td>CTGCAGGTCTTCCAGCTTGG</td>
</tr>
<tr>
<td>SMURF1</td>
<td>ATGACGTTGCTGCGGAGTATA</td>
<td>CAGGGAGGAGTCTTCTTACT</td>
</tr>
<tr>
<td>SMURF2</td>
<td>GACAGGATCTTCTCAGATGTC</td>
<td>AGCTTTTCAATAGGGTGAGGTGTT</td>
</tr>
<tr>
<td>SPI1</td>
<td>GTGGCTTATGACACGGATCTC</td>
<td>AAGCTCAGGACTGTGGT</td>
</tr>
<tr>
<td>STAT3</td>
<td>CCTAGATCGGCTAGAAACACTGG</td>
<td>GGTTCCTTTTGTAGGAAAC</td>
</tr>
<tr>
<td>STIL</td>
<td>GAACAAGCTGCAAGTGGAGAAC</td>
<td>AGTACGGCTTCCAGCTTCCCC</td>
</tr>
<tr>
<td>SUFU</td>
<td>CTCCAGGAGATTACCTGCTATTCA</td>
<td>TGCTCAGGAGTGTGGGGAAG</td>
</tr>
<tr>
<td>TAZ</td>
<td>CCGTGTCCAAATCACCAGTCTCT</td>
<td>CTTGTGACGAGCAGATGTGCTT</td>
</tr>
<tr>
<td>TCF3</td>
<td>TACGCCCTCCGAGCTTCCAGC</td>
<td>ACCTGAAACTCCGAACTGC</td>
</tr>
<tr>
<td>TCF4</td>
<td>AACACTAAACAGCTCCTCCTGATT</td>
<td>CCATCTGACTTCTTGGGCG</td>
</tr>
<tr>
<td>TCF7</td>
<td>TCAACAGATCCTGGGTCGC</td>
<td>CTTTTCTTTGGGGCGCAG</td>
</tr>
<tr>
<td>Gene</td>
<td>Sequence</td>
<td>TSS Region</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>TEAD1</td>
<td>CCTGGCTATCTATCCACCATGTG</td>
<td>CTGGTCCCTCCTTTGCTGCTGT</td>
</tr>
<tr>
<td>TEAD3</td>
<td>GCAGTAGATGTGCACGCAAGAT</td>
<td>TGGATGGTGCTTGTGGAGGT</td>
</tr>
<tr>
<td>TEAD4</td>
<td>GCTCTGGATGTGGAGTTCTCG</td>
<td>GGCTTGACTGGCTGATGTG</td>
</tr>
<tr>
<td>TLE1</td>
<td>TGTCATATGGATTAACATTTGAAAATGC</td>
<td>CACGTTCAAACAGCTGGG</td>
</tr>
<tr>
<td>TLE2</td>
<td>TATGAGATGTACGTACGGGC</td>
<td>CAGGAAAGGGATTAATCTGAGC</td>
</tr>
<tr>
<td>TLE3</td>
<td>GTCTTGACAGGATCAAAGACG</td>
<td>CATTTCAATGTTCAAGCCATAGGA</td>
</tr>
<tr>
<td>TLE4</td>
<td>GAAAAACCACCAGAGTTGACC</td>
<td>GTCAAGCCCTCCTGCTCATTCC</td>
</tr>
<tr>
<td>TP53</td>
<td>TTCTTGACATCTGGACAGCC</td>
<td>GGGGTAGTGGAATCAACCC</td>
</tr>
<tr>
<td>TP73</td>
<td>ACTTTGAGATCTGATGAAGGC</td>
<td>GAGGACCAGCAGCCGTAGGA</td>
</tr>
<tr>
<td>TYW1</td>
<td>ATTTGACATCAAGACGCAGGCC</td>
<td>GTTGCGAAATCCCTCGTCTGT</td>
</tr>
<tr>
<td>UBE2D2</td>
<td>CCATGGCTCTGAGAGATCC</td>
<td>GATAGGGACTGTCACTTTGGCC</td>
</tr>
<tr>
<td>VEGF</td>
<td>AGAAGGAGGGAGGAGAATCA</td>
<td>AGGGTACTCTGGAAGATGTCC</td>
</tr>
<tr>
<td>WWTR1</td>
<td>GAGAAGCTCCTCACGGAATGTG</td>
<td>CGTTTGTCTGGAAGACAGTCA</td>
</tr>
<tr>
<td>YAP1</td>
<td>GCAGTTGAGAGCTGTTTCTC</td>
<td>GCCATGTTGTTGATGATCG</td>
</tr>
<tr>
<td>ZEB2</td>
<td>CCGCCACGAGAAGAATGAAG</td>
<td>TACCTGCTCTTTGGGTTAGC</td>
</tr>
</tbody>
</table>
2.2. Methods

2.2.1. Drugs and reagents

N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester (DAPT) was made into stock dilutions of 10mM in dimethylsulphoxide (DMSO) and stored at -20 degrees Celsius (°C). Imatinib was made into stock dilutions of 10mM in DMSO. Dilutions to working concentrations were made with media. DMSO was used as a negative control dependent on drug concentration. Growth factors were reconstituted as per manufacturer’s guidelines.

2.2.2. General tissue culture

A list of the materials used for tissue culture can be seen in section 2.1.1.1 and 2.1.1.2. Media composition (not listed within table 2-4) and specific solutions can be seen in section 2.1.1.3 and 2.1.1.4.

2.2.2.1. Standard cell culture conditions

All cell culture procedures were performed using sterile technique in a laminar airflow hood. All cell culture was incubated in a humidified atmosphere at 37°C in 5% carbon dioxide (CO₂).

2.2.2.2. Culture of cell lines

A variety of cell lines were used and are listed below (table 2-2). All culture conditions were as described by either American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), or from the originating institution. OP9-GFP and OP9-DLL1 stromal cells were a kind gift from Professor Zúñiga-Pflücker (University of Toronto). OP9-JAG1 stromal cells were a kind gift from Dr Bianca Blom (University of Amsterdam). The overexpression of DLL1 and JAG1 was initially confirmed using Western blotting or flow cytometry protein quantification.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Origin</th>
<th>Culture conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M210B4</td>
<td>Cell line derived from BM stromal cells from a (C57BL/6J X C3H/HeJ)F1 mouse; the cells express laminin and collagen IV, but do not express collagen I or Factor VIII. These cells have 90% RPMI 1640 + 10% FBS; maintain cells until 80% confluency; split cell 1:6 to 1:10 every 2 to 3 days. Every 2 weeks, 160uL of genetecin and 25uL hygromycin B per 2ml media was added for cell selection.</td>
<td>Stem Cell Technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SL/SL</td>
<td>Cell line derived from BM stromal cells from the SL/SL mouse; these cells have been engineered to produce IL-3 and human SCF.</td>
<td>90% RPMI 1640 + 10% FBS; maintain cells until 80% confluence; split cell 1:6 to 1:10 every 2 to 3 days. Every 2 weeks, 320uL of genetecin and 50uL hygromycin B per 2ml media was added for cell selection.</td>
</tr>
<tr>
<td>OP9GFP</td>
<td>Murine embryonic stem cells from BM/stroma</td>
<td>Alpha Minimum Essential Medium without ribonucleosides and deoxyribonucleosides and with 2.2 g/L sodium bicarbonate. To make the complete growth medium, add the following components to the base medium: FBS to a final concentration of 20%; maintain cultures at a cell concentration between 4x10^3 and 1x10^4 cells/cm^2.</td>
</tr>
<tr>
<td>OP9DLL1</td>
<td>Murine embryonic stem cells from BM/stroma with retroviral stable expression of the notch ligand, DLL1.</td>
<td>Alpha Minimum Essential Medium without ribonucleosides and deoxyribonucleosides and with 2.2 g/L sodium bicarbonate. To make the complete growth medium, add the following components to the base medium: FBS to a final concentration of 20%; maintain cultures at a cell concentration between 4x10^3 and 1x10^4 cells/cm^2.</td>
</tr>
<tr>
<td>OP9JAG1</td>
<td>Murine embryonic stem cells from BM/stroma with</td>
<td>Alpha Minimum Essential Medium without ribonucleosides and deoxyribonucleosides and</td>
</tr>
</tbody>
</table>
retroviral stable expression of the notch ligand, JAG1. with 2.2 g/L sodium bicarbonate. To make the complete growth medium, add the following components to the base medium: FBS to a final concentration of 20%; maintain cultures at a cell concentration between 4x10^3 and 1x10^4 cells/cm^2.

Table 2-1 Cell line origin and culture conditions

2.2.2.3. **Primary CML and normal CD34+ cell collection and enrichment**

Leukapheresis samples were obtained with written informed consent, in accordance with the declaration of Helsinki and with Greater Glasgow and Clyde NHS Trust Ethics Committee approval from patients with CML.

In brief, on attainment of the sample, 6ml of histopaque solution was added to a 15ml falcon tube and allowed to warm to room temperature. The whole blood sample was diluted 1 in 2 with PBS, and carefully layered drop-wise onto the histopaque solution. Samples were centrifuged at 400xg for 30min at room temperature. Following this, the opaque interface containing the mononuclear cells (MNC) was carefully aspirated with a 3ml sterile pastette and transferred to a sterile 15ml falcon tube. These cells were then washed twice with sterile PBS at a centrifugation force of 300xg for 5 min.

Large volume samples from leukapheresis were CD34-purified directly through the CliniMACS system (Miltenyi Biotec, Bisley, UK) by Dr Alan Hair. The CliniMACs system is an immune-magnetic beads system that positively selects CD34+ cells using super-paramagnetic beads coupled with a suitable CD34+ monoclonal antibody. Briefly, super-paramagnetic CD34+ beads (~50nM diameter) were added to the primary cell MNC sample and the resulting suspension passed through a high-gradient magnetic separation column, which resulted in the retention of the magnetic beads as the sample passed through. Purity was assessed by flow cytometry, which confirmed all samples were >95% CD34+ post selection. A representative example is shown in figure 2-1. If the sample was not to be immediately used *in vitro*, samples were stored in cryotubes at -185°C until required for use. Each sample was determined to be Ph+ by FISH following CD34+ enrichment.
Figure 2-1 Representative flow cytometry plots pre and post CliniMACS system of a primary CML sample.
CD34 expression is plotted against CD45 expression to assess the purity of the population.

The CP-CML samples used within this thesis are listed in table 2-3, with AP and BP samples in table 2-4, and Ph+ ALL samples in table 2-5. Ph+ ALL samples were kindly gifted to us from the UKALL14 clinical trial by Professor Adele Fielding.
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Chapter</th>
<th>Experiment</th>
<th>Age</th>
<th>Gender</th>
<th>Subtype</th>
<th>Breakpoint</th>
<th>WCC at diagnosis</th>
<th>Pre Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML110</td>
<td>6</td>
<td>Microarray validation</td>
<td>48</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML111</td>
<td>6</td>
<td>Microarray validation</td>
<td>-</td>
<td>-</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CML112</td>
<td>4</td>
<td>Gene expression</td>
<td>-</td>
<td>-</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML113</td>
<td>3,4</td>
<td>Gene expression/functional data</td>
<td>53</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CML269</td>
<td>4</td>
<td>Gene expression</td>
<td>74</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>312</td>
<td>none</td>
</tr>
<tr>
<td>CML273</td>
<td>4</td>
<td>Gene expression</td>
<td>60</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>307</td>
<td>none</td>
</tr>
<tr>
<td>CML332</td>
<td>6</td>
<td>TKI effect</td>
<td>62</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>132</td>
<td>none</td>
</tr>
<tr>
<td>CML339</td>
<td>6</td>
<td>NSG</td>
<td>34</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML340</td>
<td>6</td>
<td>NSG</td>
<td>55</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML342</td>
<td>6</td>
<td>Cell cycle</td>
<td>54</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML343</td>
<td>6</td>
<td>LT-CIC</td>
<td>46</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>4.8</td>
<td>none</td>
</tr>
<tr>
<td>CML347</td>
<td>6</td>
<td>LT-CIC</td>
<td>34</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>385.8</td>
<td>Imatinib</td>
</tr>
<tr>
<td>CML350</td>
<td>6</td>
<td>LT-CIC</td>
<td>-</td>
<td>-</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CML351</td>
<td>6</td>
<td>NSG</td>
<td>-</td>
<td>-</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CML366</td>
<td>4</td>
<td>Gene expression</td>
<td>41</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML368</td>
<td>4</td>
<td>Gene expression</td>
<td>51</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CML373</td>
<td>6</td>
<td>NSG</td>
<td>48</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML385</td>
<td>6</td>
<td>NSG</td>
<td>51</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML388</td>
<td>6</td>
<td>TKI effect</td>
<td>61</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>227.6</td>
<td>none</td>
</tr>
<tr>
<td>CML391</td>
<td>6</td>
<td>NSG</td>
<td>33</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>141</td>
<td>Interferon</td>
</tr>
<tr>
<td>CML393</td>
<td>6</td>
<td>NSG</td>
<td>35</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>CML395</td>
<td>6</td>
<td>NSG</td>
<td>34</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
</tr>
<tr>
<td>Sample</td>
<td>Age</td>
<td>Gender</td>
<td>Phase</td>
<td>Mutation</td>
<td>WCC at Diagnosis</td>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.399</td>
<td>51</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>214</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.407</td>
<td>50</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.436</td>
<td>18</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>300</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.441</td>
<td>66</td>
<td>F</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.443</td>
<td>63</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.444</td>
<td>47</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>313.4</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.446</td>
<td>35</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>65.5</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.452</td>
<td>45</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>275</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML.456</td>
<td>64</td>
<td>M</td>
<td>CP</td>
<td>p210</td>
<td>-</td>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2- CP-CML samples used, including age, gender, breakpoint BCR-ABL mutation, WCC at diagnosis if known and pre-treatment.
<table>
<thead>
<tr>
<th>Identifier</th>
<th>Chapter</th>
<th>Experiment</th>
<th>Breakpoint</th>
<th>Subtype</th>
<th>Additional Chromosomal Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML184</td>
<td>4</td>
<td>Gene expression</td>
<td>p210</td>
<td>AP</td>
<td>none</td>
</tr>
<tr>
<td>CML402</td>
<td>4</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>AP</td>
<td>none</td>
</tr>
<tr>
<td>CML403</td>
<td>4</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>AP</td>
<td>none</td>
</tr>
<tr>
<td>CML404</td>
<td>4</td>
<td>Gene expression</td>
<td>p210</td>
<td>AP</td>
<td>none</td>
</tr>
<tr>
<td>CML371</td>
<td>4,5</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>mBP</td>
<td>none</td>
</tr>
<tr>
<td>CML384</td>
<td>4,5</td>
<td>Gene expression</td>
<td>p210</td>
<td>mBP</td>
<td>none</td>
</tr>
<tr>
<td>CML405</td>
<td>4,5</td>
<td>Gene expression</td>
<td>p210</td>
<td>mBP</td>
<td>-</td>
</tr>
<tr>
<td>CML406</td>
<td>4,5</td>
<td>Gene expression</td>
<td>p210</td>
<td>mBP</td>
<td>yes</td>
</tr>
<tr>
<td>R6900</td>
<td>4,5</td>
<td>Gene expression</td>
<td>p210</td>
<td>mBP</td>
<td>-</td>
</tr>
<tr>
<td>RB810</td>
<td>4,5</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>mBP</td>
<td>-</td>
</tr>
<tr>
<td>RB900</td>
<td>4,5</td>
<td>Gene expression</td>
<td>p210</td>
<td>mBP</td>
<td>-</td>
</tr>
<tr>
<td>CML407</td>
<td>5</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>lBP</td>
<td>yes</td>
</tr>
<tr>
<td>050-04</td>
<td>5</td>
<td>Gene expression</td>
<td>p210</td>
<td>lBP</td>
<td>none</td>
</tr>
<tr>
<td>CML267</td>
<td>5</td>
<td>Gene expression</td>
<td>p210</td>
<td>lBP</td>
<td>none</td>
</tr>
<tr>
<td>CML407</td>
<td>5</td>
<td>Gene expression/functional data</td>
<td>p210</td>
<td>lBP</td>
<td>none</td>
</tr>
<tr>
<td>CML408</td>
<td>5</td>
<td>Gene expression/functional data</td>
<td>-</td>
<td>lBP</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2- 3 AP and BP samples used within this thesis

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Chapter</th>
<th>Experiment</th>
<th>UKALL14 trial nos</th>
<th>Breakpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL1</td>
<td>5</td>
<td>Gene expression</td>
<td>14-1-432</td>
<td>p190</td>
</tr>
<tr>
<td>ALL2</td>
<td>5</td>
<td>Gene expression</td>
<td>14-1-467</td>
<td>p190</td>
</tr>
<tr>
<td>ALL3</td>
<td>5</td>
<td>Gene expression</td>
<td>14-1-475</td>
<td>p190</td>
</tr>
<tr>
<td>ALL4</td>
<td>5</td>
<td>Gene expression</td>
<td>14-1-479</td>
<td>p190</td>
</tr>
<tr>
<td>ALL5</td>
<td>5</td>
<td>Gene expression</td>
<td>14-1-490</td>
<td>p210</td>
</tr>
</tbody>
</table>

Table 2- 4 Ph+ ALL samples used within this thesis
2.2.2.4. **Cryopreservation of cells**

Cryopreservation, in liquid nitrogen at -185°C, of both cell lines and fresh primary cells was used for long-term storage. 4x10^6 to 2x10^7 CD34^+ selected cells or 1x10^6 unselected MNC were suspended in 1 to 2ml of an equal volume primary cell freezing solution (section 2.1.1.4.4; 20% DMSO in 4.5% HSA giving a final concentration of 10% DMSO) and aliquoted into cryotubes.

Cell lines were cryopreserved as per guidelines from ATCC or DSMZ. In brief, 5x10^6-1x10^7 cells were suspended in cell line freezing solution (section 2.1.1.4.5; 90% FBS and 10% DMSO). Cells were then transferred to a cryofreezer container (‘Mr Frosty’) and slowly cooled at a controlled rate to -80 °C before being transferred to -185 °C freezer for long-term storage.

2.2.2.5. **Cell recovery post cryopreservation**

CD34^+ primary cells were removed from liquid nitrogen and immediately thawed at 37 °C in a water bath. Following this, 10ml of thawing solution (DAMP; section 2.1.1.4.1) was gradually added to the cells over 10 min with constant gentle agitation to prevent clumping. The cells were then centrifuged at 210xg for 10 min and washed a further twice in 10ml DAMP. Finally, the cell pellet was re-suspended in SFM and 5 Growth Factor (SFM+5GF) (section 2.1.1.3.2); cell number and viability was assessed by trypan blue exclusion and the cells cultured overnight at 37°C with 5% CO₂ in a non-adherent tissue culture flask at a maximum density of 1x10^6 cells/ml. Culture in SFM+5GF maximises cell recovery post thaw. The following day these cells were washed twice in PBS with 2% FBS, re-suspended in fresh low growth factor SFM (SFM+LGF) (i.e. 1 in 100 dilution of SFM+5GF) and a viable cell count performed.

2.2.2.6. **FACS of Primary CD34+ cells**

Cell sorting was kindly performed by Miss Jennifer Cassels. Fluorescence activated cell sorting (FACS) was utilised in a number of experiments to isolate CD34^+38^+ and CD34^+38^- fractions, as well as in the isolation of Lin CD34^+CD38 CD90^-CD93^+ and Lin CD34^-CD38 CD90^-CD93^- cell populations. In brief, fresh or recovered CD34^+ cells were washed and resuspended in PBS/2%FBS. Cells were counted and stained with appropriate antibodies (depending on the experiments) for 30 minutes (min) at room temperature in the dark. 2x10^4 cells were used for relevant single colour controls to define positive and negative staining for each marker and to set compensation. Further to this, a fluorescence minus one (FMO) control was used to ensure the proper identification of appropriate gating strategy. Stained cells were washed and filtered through a 0.22uM filter prior to sorting with a BD FACS Aria with Diva software. Figure 2-2 demonstrates a representative example for sorting of CD34^-CD38 CD90^-CD93^-/+ populations. All CML samples were assessed for Ph+ status, confirmed by dual colour FISH.
Figure 2- Representative flow cytometry analysis of cell sorting with a BD FACS Aria and DIVA software.
Following antibody staining as described within the text, samples were analysed and sorted with a BD FACS Aria and DIVA software. FMO controls were utilised for an accurate gating strategy. Cell sorting was performed by Miss Jennifer Cassels.
2.2.2.7. **Culture of primary cells**

CD34+ cells or sorted populations were maintained in suspension culture in SFM+LGF at 37°C with 5% CO₂ in tissue culture hydrophobic flasks prior to experimental set-up. Prior to each experiment, cells were washed in PBS/2%FBS and resuspended in fresh medium at the desired density for each experimental arm. Cells were harvested at different time points for RNA, protein and functional assays as dictated by the experimental design.

2.2.2.8. **Mesenchymal stem cells**

2.2.2.8.1. **MSC Isolation**

Human MSCs were isolated from CP CML patient BM samples after written informed consent in accordance with the declaration of Helsinki and with Greater Glasgow and Clyde NHS Trust Ethics Committee approval. Cells were placed into a T75 NunC flask in DMEM medium in the presence of 20% Hyclone FBS and incubated at 37°C with 5% CO₂ for >7 days until cell populations had adhered. Suspension cells were subsequently removed and the adherent cells washed with PBS. Cells were characterised in accordance with the International Society for Cellular Therapy and cryopreserved at early passage number (i.e. passage 1 to 3) to maintain viability on thaw.

2.2.2.8.2. **MSC Characterisation**

MSC phenotype was confirmed according to the International Society for Cellular Therapy, with confirmation of CD45-CD34-Lin-CD90+CD73+CD105+ phenotype and positive Nestin immunofluorescence (Figure 2-3).

![MSC Characterisation](image)

2.2.2.9. **Co-culture**

Figure 2-3 Confirmation of MSC phenotype according to the International Society for Cellular Therapy

(A) Flow cytometry of markers used in the identification of a confirmed MSC phenotype; pink represents the isotype control. (B) Immunofluorescence (IF) of MSCs from a CP-CML patient stained with Nestin.
Stromal cells were seeded onto sterile tissue culture flat bottom plastic (6 well/12 well plates). OP9 stromal cells were seeded at a 1 in 24 ratio with suspension cells (i.e. 1 stromal cell per 24 suspension cells) 24 hours prior to co-culture. All experiments were performed in at least experimental triplicate. M210B4 and SL/SL were seeded at 75000 cells per 24 well plate as per the LTC-IC protocol. When recombinant ligand was used, sterile tissue culture flat bottom plates were coated in differing concentrations of recombinant Jagged1 (R-Jag1) (10-50ng/ml), left at 37°C for 12 hours prior to removing the excess ligand, and then adding suspension cells. Binding the ligand to the plate ensures that they are competent to deliver a signal. It has been previously demonstrated that soluble Notch ligands can act as dominant negative inhibitors, and therefore, assessment of activation was undertaken in all samples with IF of the cleaved form of the receptor.

2.2.2.10. Cell counting and viability assessment

All cell counts were performed using a haemocytometer. Cell viability was assessed by trypan blue dye exclusion, utilising the finding that non-viable cells absorb trypan blue due to damaged membranes, whereas viable cells do not. Trypan blue stock solution (8mM) was diluted 1:10 with PBS to give a working solution of 0.8mM. 10ul of this solution was added to 10ul of cell suspension to give a 1:2 dilution of cells, prior to being added to a haemocytometer counting chamber. A minimum of 100 viable cells were counted, and where necessary, the cell suspension solution diluted if needed. Cell count was performed on an inverted microscope. Given that the cover-slide is held 0.1mm above the counting surface, each 1mm² has a volume of 0.1uL. The absolute viable cell count per ml was the number of unstained cells per mm² multiplied by the trypan blue dilution factor and then by 10⁴.

2.2.2.11. Colony forming cell assay

Colony forming cell (CFC) assays are clonal progenitor assays that measure the proliferation capacity and multipotency of haemopoietic progenitors. Methylcellulose supplemented with growth factors (methocult H4034) was thawed at 4°C overnight, well mixed and divided into 2.6ml tubes. These aliquots could then be stored at -20°C until required. Following recovery, CD34+ CML cells were cultured for 5 days with or without stromal support (OP9GFP, OP9JAG1, OP9DLL1, R-Jag1) in SFM+LGF. The cells were then harvested, washed in PBS, re-suspended in fresh SFM and viable cell counts performed. Each of the different cell suspensions was inoculated into a single tube of methocult to give a final concentration of 4x10³ cells/ml and the final volume of inoculums made up with SFM to equal 10% of the original volume of methocult. These tubes were thoroughly mixed and 1.1ml of resultant single cell suspension plated in duplicate into 35mm culture dishes. The duplicate assays were placed in a 100mm culture dish with a further 35mm dish containing 3ml sterile water to maximise humidity. These were cultured under standard conditions for 14-18 days prior to colony
assessment using an inverted microscope and a counting grid. Following culture, all progenitor cells with colony forming potential in that specific GF context will have proliferated and differentiated fully. The resultant colonies can then be assessed for size (broadly reflective of original proliferative capacity) and constituent cell types from which can inferred the degree of lineage commitment and hence the maturity of the cell of origin.

The capacity of an individual haemopoietic progenitor cell colony to replate in a CFC assay has been used as an indicator of the self-renewal potential of that progenitor. CFC replating assays were performed to assess effects on self-renewal capacity. In replating experiments, 50 single colonies from each experimental arm were harvested/‘plucked’ from methocult between days 10-12 of primary culture. Each single colony was resuspended in 20uL of fresh SFM, before being plated in 100uL of methocult within each well of a 96-well plate. The plates were incubated for 12-14 days at 37°C and 5% CO₂ prior to counting the number of wells with viable colonies.

2.2.2.12. Long-term culture-initiating cell assay

The LTC-IC assay has been demonstrated to maintain human HSCs in vitrō for at least 8-10 weeks with extended culture of cells in the presence of a suitable supportive stromal environment. It is an established technique that allows assessment of the maintained self-renewal potential of cells in prolonged culture.

The assay (figure 2-4) utilises an irradiated adherent feeder layer of M210B4 and SL/SL cells to support myelopoiesis (Hogge et al, 1996), with these stromal cells being genetically modified to stably express IL-3 and G-CSF, and IL-3 and SCF, respectively. Stromal cell lines were maintained under selection with genetin and hygromycin B. Early passage was used within all experiments (i.e. <6 passage). Stromal cells were initially irradiated under a cobalt γ-ray source for a total of 80Gy to prevent proliferation within the prolonged culture. A viable cell count of both irradiated cells was performed and the concentration of each adjusted to 1.5x10⁵ per ml. Cell suspensions were mixed in a 1 to 1 ratio before 1ml was plated to each central well of a 24-well type 1 collagen coated plate (i.e. 8 central wells). This created a fully confluent layer. Humidity was maximised with the addition of 1ml sterile water to the remaining wells. Plates were maintained in an incubator for up to 1 week until required. LTMCM was prepared by adding 1uM hydrocortisone to myelocult. This media was made up fresh on each media change.

In general, primary cells were cultured within their experimental condition for 5 days. Viable cell counts were performed. 1x10⁵ cells from each experimental condition were washed in PBS/2%FBS and resuspended in 2ml LTMCM. The LTMCM was carefully aspirated from the
adherent cells, prior to 1ml of our primary cell suspension being added (i.e. 50,000 cells per well; each arm performed in at least duplicate). The plates were cultured under standard conditions for 6 weeks. Each week, 500μL media was removed carefully in an attempt not to disturb the adherent layer, and replaced with fresh LTMC. After 6 weeks in culture, the entire contents of each well was harvested. The supernatant from each well was collected into a 15ml falcon tube. The wells were washed twice with 1ml HBSS and added directly into the 15ml falcon tube. 500μL 0.25% trypsin/EDTA was added to each well and incubated at 37°C. Following trypsinisation, 25μL of FBS was added to each well and the entire contents collected to the falcon tube. The wells were washed with 1ml IMDM/2% FBS twice, with both washes transferred to the 15ml falcon tube. The falcon tubes were centrifuged for 10 min at 210xg and the supernatant dispensed. Cells were resuspended in 1ml IMDM/2% FBS and viable cell counts performed. 50,000 viable cells in 30μL of SFM were inoculated into 3ml methocult. These tubes were then thoroughly mixed, left to settle at room temperature and 1.1ml of the resultant single cell suspension was plated into duplicated 35mm culture dishes. The assays were then placed in 100mm culture dishes with a 35mm dish containing 3ml sterile water to maximise humidity. Assays were cultured under standard conditions for 12-14 days prior to colony assessment using an inverted microscope and counting grid. Colony numbers were then counted and comparison between treatment arms was made.

Figure 2-4 The long-term culture initiating cell assay
Schematic representation of the long-term culture initiating cell (LTC-IC) assay, where suspension cells (namely, sorted populations of CML cells) are cultured in the presence of an irradiated stromal layer that is necessary to maintain myelopoiesis. Cells are cultured under specific conditions for 6 weeks prior to assessment with colony forming cell assays.
2.2.3. Fluorescence in situ hybridisation

FACS-sorted cells were incubated at 37°C for 15 min in a hypotonic solution of 0.075M KCl. Cells were centrifuged at 1500rpm for 5 min and supernatant carefully removed. Cells were re-suspended in fixative (3:1 methanol: acetic acid) added in a drop wise manner, with constant vortexing. Cells were then incubated for 5 min at room temperature, centrifuged at 12000rpm for 2 min and supernatant removed. Cells were washed twice in fixative before re-suspension in 1ml fixative. Fixed cells were centrifuged at 12000rpm for 2 min and re-suspended in fresh fixative. 3µl of fixed cell suspension was dropped onto a glass slide, air-dried and cell density checked using a phase contrast microscope. Probe mixes were prepared according to manufacturer’s instructions and 2µl added to cells on slide and coverslips placed and sealed with rubber solution. Slides were heated in a hybridisation chamber for 5 min at 72°C and then 37°C overnight. Coverslips were removed and slides washed in a 0.4x SSC/3% NP40 wash buffer at 72°C for 2 min and then washed in a 2x SSC/ 1% NP40 wash buffer at room temperature for 2 min. DAPI mounting medium (Vector Laboratories) was applied, a coverslip attached and the slide analysed using an AXIOvision AX10 fluorescent microscope and AXIOvision software. Chromosome t(9;22) BCR-ABL fusion was detected by a dual colour dual fusion probe (figure 2-5).

![Figure 2-5](image-url)

Figure 2-5 Representative example for FISH within CP-CML cells
The identification of BCR-ABL is diagnostic of CML. In order to effectively analyse the CML samples, FISH was utilised as per clinical protocol in the assessment of activated protein.
2.2.4. Flow cytometry

2.2.4.1. Detection and quantification of protein expression

Flow cytometry allows for the characterisation of both chemical and physical properties of a single cell through the use of fluorochrome-labelled antibodies. In brief, a single cell suspension is presented to at least one laser leading to the excitation of the fluorochrome. Light is emitted at different wavelengths allowing for simultaneous measurement of cellular properties. For example, size and granularity of single cells can be measured by the forward-angle scatter (FSC), and side-angle scatter (SSC), respectively. Typically, this can be used to identify cell types in PB for diagnostic purposes. Furthermore, identification of specific cell surface and intracellular proteins can be utilised in sorting of cells phenotypically (described above), or into single cells, for diagnostic and experimental data.

To detect and quantify levels of protein expression, cells were harvested and washed in PBS/2%FBS. To allow for a precise gating strategy, a FMO control was used, whereby all antibodies bar one is used for each antibody in the series to allow for precise gating strategy (figure 2-2). A single stain control was also used as an internal antibody control.

Following washing, 5x10⁴ cells were used within each unstained, single-stained and FMO control, where cells were re-suspended in 100ul PBS/2%FBS prior to the addition of antibody (concentration calculated in previous dilution experiments’). The ‘bulk-stain’ sample was re-suspended in 100-450ul PBS/2%FBS prior to the addition of antibody - this volume was dependent on cell number. Samples were stained for 30 min at 4°C and then washed twice with PBS/2%FBS before being filtered through a 0.22µM filter. Cells were resuspended in 100-500µL of PBS/2%FBS and analysed immediately using a FACSCantoII flow cytometer (BD Biosciences), data was acquired using BD FACSDiva (BD Biosciences) software, and analysed using FlowJo (Tree Star Inc, Ashland, USA) software. When an unconjugated primary antibody was used, the cells were washed and resuspended in 100µL of PBS/1%BSA with either 2µL of the secondary anti-rabbit IgG FITC conjugate (1:50 dilution), or 10µL of the secondary anti-rabbit IgG PE conjugate (1:10 dilution), depending on the requirement for multi-parametric flow cytometry analysis, at 4°C in the dark for 30 min. A range of antibodies used is detailed in section 2.1.2.2.

Quantification of the protein of interest within each sample was calculated in relative terms, using the ratio between the geometric mean fluorescence intensity (MFI) of the antibody labelled live cells and the geometric MFI of the isotype labelled live cells. When measuring changes in levels of protein within each sample following treatment, the MFI ratio (calculated as explained above) for each treatment arm was expressed as a percentage.
2.2.4.2. Apoptosis assays

Apoptosis was measured by flow cytometry using annexin V and 7-amino actinomycin D (7AAD) staining. Annexin V is a phospholipid binding protein that has a high affinity for phosphatidylserine in the presence of physiological calcium concentration. As cells apoptose, there is a shift and translocation of phosphatidylserine to the external surface of the phospholipid layer that comprises the plasma membrane. 7AAD is only able to stain dead or late apoptotic cells, and therefore, when combined with annexin V allows for the detection of early and late apoptosis (figure 2-6). Practically, following a wash in PBS/2%FBS 0.5-1x10^5 cells were resuspended in 100µL of annexin V buffer containing 5µL annexin V conjugated to relevant fluorochrome and 5µL 7AAD and incubated at room temperature for 15 min in the dark. Following incubation, 400µL of HBSS was added to the cell suspension and analysis was immediately performed by flow cytometry. Unstained and single stained cells were used to set voltages and compensation.

![Figure 2-6 Representative example of AnnexinV/7AAD staining in the context of apoptosis](image)

Representative example of annexinV/7AAD staining. Viable cell populations will be negative for both annexin V and 7AAD, cells in early apoptosis would be annexin V positive but 7AAD negative, and cells in late apoptosis would be positive for both annexin V and 7AAD.

2.2.4.3. Cell cycle analysis

Flow cytometry can be used in the assessment of the cell cycle status of cells within each sample and following treatment and varying culture conditions. To do this, a DNA-binding fluorescent dye was used, termed propidium iodide (PI).

Practically, cells were fixed with ice-cold 100% ethanol. Ethanol allows cells to be fixed and permeabilised in a one-step process. Samples were stored at -20°C for no more than 5 days before analysis. When ready to be analysed, samples were washed twice in PBS/2%FBS.
ensure only DNA was stained, cells were treated with ribonuclease (100ug/ml), and then stained with PI (50ug/ml), before being immediately analysed using the FACSCantoII flow cytometer; data was acquired using BD FACSDiva software, and analysed using FlowJo software (figure 2-7).

Figure 2-7 Representative example of PI staining and cell cycle analysis
PI was used to assess cell cycle status within both primary and cell line samples. Using FlowJo technology, samples were gated according to their PI content that can depict cells in G0-G1 and S-G2-M. Gates were fixed following first analysis (i.e. plastic or untreated control) to allow comparison with differing experimental conditions.

2.2.4.4. CFSE
Carboxyfluorescein diacetate succinimidyle ester (CFSE) is an intracellular dye used to track cell divisions of heterogeneous and asynchronous cell populations by flow cytometry. It is a lipophilic molecule that upon entering the cell, intracellular esterases cleave the acetate groups to yield the fluorescent carboxyfluorescein molecule. Further to this, the succinimidyl ester group reacts with primary amines on intracellular proteins, cross-linking the dye and fixing it within the cytoplasm of the cell. It allows for stable cell staining, and upon division, the dye is equally divided between the two daughter cells determining a serial dilution of the dye with each division, and hence allowing a measure of the number of divisions a sample has undergone in culture (figure 2-8).
Practically, the cell sample was resuspended in 5ml PBS/2%FBS and stained with 10uL of a 500uM solution of CFSE dye to give a final concentration of 1uM. Cells were stained for 10 min at 37°C in a water bath, while a small aliquot of cells was kept unstained to allow for a control in analysis. Following the 10 min incubation, CFSE was quenched by adding 10X volume of ice cold PBS/20%FBS and then washed once more in fresh PBS/2%FBS. Cells were analysed every 24 hours to allow identification of cell divisions. To identify the undivided cell population following treatment, a control well was set up to which 100ng/ml of colcemid was added which effectively blocks cells proliferation. In some cases, cells were also stained with cell surface markers to allow for identification of differentiation with proliferation.

2.2.5. Immunofluorescence

Cells were plated on poly-lysine-coated slides at 60,000 cells/well at baseline and following 5 days with or without treatment. Preparations were fixed in 4% paraformaldehyde for 15 min then permeabilised with 0.2% TritonX100 (Sigma-Aldrich, Dorset) for 10 min. Cells were blocked for 2 hours prior to primary antibodies being applied for 12 hours at 4°C. After washing fives times with PBS, cells were incubated in Alexa fluor linked secondary antibodies for 2 hours. After a final wash with PBS, the slides were mounted in 0.1ug/ml DAPI (4’,6-diamidino-2-phenyloindole) mounting medium and viewed by fluorescence microscopy using a Zeiss imager M1 microscope. To illustrate intensity of immunolabelling digital images were captured at identical exposure times.

2.2.6. Western blotting

Western blotting allows for a measure of a fractionated protein component. Proteins are first separated according to their molecular weight, before being transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane, which will contain all proteins in the sample being analysed. The use of primary antibodies and the crosslinking with a secondary antibody that contains a detectable enzyme allows for the identification of specific proteins within each
sample. Samples are quantified against a housekeeping gene that is stably expressed within the cells, such as \textit{GAPDH} or \textit{SHP2}.

\subsection*{2.2.6.1. Preparation of protein lysates}
Protein lysates were prepared as follows; cells were harvested and washed twice in cold PBS (1200 rpm for 5 min). They were then re-suspended in freshly made lysis buffer with protease inhibitors (approximately 50ul per 1x10^6 cells) and mixed thoroughly. The lysate preparations were then incubated on ice for 30 min; then spun at 14000 rpm at 4°C for 10 min. The supernatants were then decanted into 500uL eppendorf tubes and stored in aliquots at -80°C prior to use. Samples were thawed and quantified prior to use to allow equal expression within the experimental design.

\subsection*{2.2.6.2. Protein quantification}
Protein lysates were quantified using Quickstart Bradford Dye Reagent. Following the manufacturers protocol, a standard curve was prepared using BSA protein standards, at concentrations ranging from 0 to 20ug/ml. Absorbance was read at 595 nM on a Spectramax M5 plate reader and analysed with SoftMax Pro 5.2 software.

\subsection*{2.2.6.3. Gel electrophoresis and immunolabelling}
Between 10-20ug of protein lysate was made up to a final volume of 12ul in solubilisation buffer and 3ul of sample buffer reducing agent. Samples were heated to 95°C for 5 min prior to Sodium Dodecyle Sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). 7.5% acrylamide gels were used to separate proteins larger than 50kDa and 10% gels for proteins smaller that 50kDa. Cell lysates were fractionated by SDS-PAGE in 1x running buffer at 80V for 30 min and 180V for 45 min. Separated proteins were transferred onto PVDF membrane using a semi-dry transfer method. PVDF was immersed in 100% methanol for 1 min before being saturated in 1x semi-dry transfer buffer. Four 1.0 mm Whatman paper strips were placed below the PVDF membrane, the gel was then added on top of the membrane followed by four more paper strips, the stack was then compressed to remove air bubbles. Proteins were transferred onto the membranes at 40mA/gel for 60 min. Blots were washed with 1xTBST, blocked in TBST containing either 5% BSA or 5% milk for 1 hour at room temperature. Following block, the blots were incubated with primary antibody overnight at 4°C. Blots were then washed four times with TBST and incubated with horseradish-peroxidase (HRP)-labelled secondary antibodies for 1 hour at room temperature. Secondary antibody was washed four times with TBST, followed by two washes with TBS and then blots were developed using Bio-Rad ECL and developed on a SRX0101A Medical Film Processor.

\subsection*{2.2.6.4. Membrane re-probing}
Membrane re-probing allows sequential incubation of a membrane with different antibodies by removing antibodies bound into the membrane without removing the actual protein. This was performed by incubating the PVDF membrane with the Re-Blot Plus Strong stripping solution diluted 1:10 with distilled water. Following two brief washes (5 min per wash) in TBST, the membrane was re-blocked for 1 hour and finally incubated with a different primary antibody.

2.2.7. Gene expression analysis

All reagents and primers used can be found in section 2.1.3.

Gene expression is assessed through polymerase chain reaction (PCR) technology, a technique used to amplify short specific regions of DNA, provided at least part of the sequence is known. In general, two short oligonucleotide primers are designed to capture complimentary areas on each of the DNA strands of the double helix; these are at opposite ends of the sequence to be amplified. In the presence of the primers and excess nucleotides, as well magnesium chloride, heating causes the double stranded DNA to separate. Cooling allows the primers to anneal to their complimentary sequences. The DNA sequence 3’ to the primer can be copied by polymerase (such as Taq) forming new complete double stranded DNA molecules extended from forward to reverse primary sequences. Successive rounds of this process leads to amplification of the target gene.

2.2.7.1. Primer design

Primers were designed using NCBI software; all sequences can be seen in section 2.1.3.3. Primers were synthesised commercially using Eurofins MWG Operon and were reconstituted with the appropriate volume of nucleic acid free water to achieve a stock concentration of 100µM. Dilutions were made to achieve the appropriate working concentration of 25µM and aliquots prepared to ensure sterility and prevent numerous freeze-thaw events.

2.2.7.2. RNA extraction

Total RNA was isolated from pellets using either the Qiagen RNasy Mini Kit or the Applied Biosystems Arcturus Picopure RNA isolation kit (depending on sample size) according to the manufacturer’s instructions. The quantity and purity of the extracted RNA was measured using a nanodrop spectrophotometer Nd-1000 (Labtech International, East Sussex, UK). An absorbance at 260nm quantified nucleic acid and the ratio of 260/280 determined purity (pure RNA ratio is 2.0).

2.2.7.3. cDNA synthesis

Reverse transcription of RNA into cDNA was carried out by using the High Capacity cDNA Reverse Transcription Kit. 10µL of the extracted RNA was mixed with 10µL of 2X Reverse
Transcription Mastermix (2.2.4.8) in a PCR tube and reaction carried out as per manufacturer’s protocol (i.e. 25°C for 10 min, 37°C for 120 min and 85°C for 5 seconds (secs)). cDNA was kept at -20°C for long-term storage.

2.2.7.4. **Target amplification**

Due to the low level of expression of target genes of interest and for consistency throughout experimental design, a preamplification step of the cDNA was carried out using Qiagen Multiplex PCR plus kit. The manufacturers protocol was followed. Pre-amplification cycling conditions involved an initial PCR activation step for 5 min at 95°C, then 14 cycles of: 30 secs at 95°C, 90 secs at 60°C, and 90 secs at 72°C; the reaction was then finished with an extension of 10 min at 68°C.

2.2.7.5. **Real time- PCR (RT-PCR)**

RT-PCR allows detection of messenger RNA expression following reverse transcription into cDNA. Following a PCR reaction, the PCR products are run on an agarose gel by electrophoresis and separated according to their size and stained with ethidium bromide prior to their detection. This is a qualitative analysis, and was used within this thesis to ensure primers were specific, and working prior to quantitative analysis.

Practically, 50-100ng of cDNA was used and mixed with the RT-PCR mix in a PCR tube. Following cycling conditions, the PCR products were run in 2% agarose gel in order to visualise the individual DNA bands. The gel was prepared with 1g agarose powder in 50ml of 1X TBE buffer. The mixture was heated in a microwave until the agarose powder had completely dissolved. 2uL ethidium bromide (10mg/ml) was added and the mix poured into a casting tray. The gel was left to set for about 30 min. Each well of the gel was loaded with 10uL of PCR product mixed with 2ul loading dye (6X); 2uL of 100bp DNA ladder was loaded in a separate lane and then run at 50V in a tank filled with 1x TBE buffer. The PCR products were detected using an ultraviolet light source.

2.2.7.6. **Fluidigm gene expression**

Quantitative RT-PCR allows for the quantification of the cDNA products in a sample by detection of increasing level of fluorescence during the reaction, as the PCR products accumulate during amplification. By plotting fluorescence against the number of cycles of the PCR reaction, it is possible to determine the cycle number at which the increase in fluorescence is exponential and exceeds the set background fluorescence threshold. This is termed the Ct threshold. During an exponential phase of the reaction, the reaction has not yet reached its saturation and the DNA target doubles every cycle so that the quantity of the PCR product is
directly proportional to the amount of template nucleic acid, with any differences in fluorescence signal secondary to different starting amounts of cDNA in the samples tested.

The Fluidigm BioMark HD system integrates thermal cycling and fluorescence detection in a Fluidigm dynamic array integrated fluidic circuit (IFC) and provides a high-throughput qRT-PCR using standard primers or TaqMan gene expression assays. The system allows simultaneous PCR reactions in nanolitre volumes on a single microfluidic device. Prior to Fluidigm analysis, all cDNA samples were preamplified as described above. Unincorporated primers were removed using Exonuclease I, following the manufacturers protocol. The thermal cycling conditions were 30 min at 37°C (digestion), then 15 min at 80°C (enzyme inactivation).

Gene expression levels were determined by 48:48 or 96:96 Dynamic Biomark Array, following the manufacturer’s defined protocols for primer-based assays. Sample mixes and assay mixes were loaded into the wells of a previously primed dynamic array integrated fluidic circuit. The sample and assay mixes were combined through the IFC chip network of the microfluidic channels, chambers and valves automatically assembling individual PCR reactions. Thereafter, cycling conditions involved 60 secs hot start at 95°C, and then 30 cycles of: 5 secs at 96°C and 20 secs at 60°C, followed by a melting curve step for 3 secs at 60°C.

Relative gene expressions were analysed by the delta delta (ΔΔ) Ct method using an average of five to six housekeeping genes (UBE2D2, B2M, ENOX2, GN2B1, TYW1, and CYC1) as a reference control and an assigned calibrator. This allows analysis of the relative change in expression between samples by calculating the difference in delta Ct values between the cell types. Fold change between samples can then be assessed as each cycle represents a doubling, assuming that the relative amplification efficiencies are similar between comparators.

Primers were purchased from Eurofins MWG Operon shown in section 2.1.3.3. Heat maps were produced using PermutMatrix software or heatmap.2 in R/Bioconductor; these used Pearson distance for dissimilarity and complete linkage for hierarchical clustering.
2.2.7.7. Fluidigm C1 Single cell gene expression

Advances in single cell analysis have allowed for a more complete investigation of the cellular heterogeneity that may exist within populations and enables a more detailed examination of the homogeneity or heterogeneity of a population than was previously possible.

To assess single cell gene expression, Fluidigm C1 single cell gene expression was used to isolate single cells into individual reaction chambers using an IFC-based system. Following capture, cells were examined by microscopy for viability and to ensure single cell capture. Any concern over single cell status led to the well being withdrawn from examination. The C1 single cell auto prep system allows a reliable approach to reproducibly process 96 cells in parallel with minimal user intervention that could lead to contamination.

Practically, following sorting into appropriate populations, 4000 cells were loaded into a 10-17 micron Fluidigm C1 single cell auto prep IFC, and cell capture performed according to the manufacturer’s instructions. Capture efficiency was determined using microscopy to exclude samples from the analysis with no or more than one cell captures or samples where in addition to cell there was cellular debris. Upon capture, reverse transcription and cDNA preamplification were performed in the Fluidigm C1 single cell auto prep IFC, as per manufacturers instructions. Relative gene expressions were analysed by the ΔΔCt method as described above. All statistical analysis was performed through R/Bioconductor. The statistical analyses were performed using Limma modified t-test applying Benjamini-Hochberg adjustment for multiple hypothesis testing.

2.2.8. In vivo experimentation

2.2.8.1. Xenotransplantation model

The NSG mouse model was used to assay human LSCs with in vivo engraftment capacity (SCID-repopulating cells or SRC). CP-CML Lin-CD34+CD93+ or Lin-CD34+CD93- cells were isolated by FACS sorting (1x10^6 cells/mouse), washed and transplanted via tail vein injection into sublethally irradiated (200 cGy) 8-12 week old NSG mice. Mice were euthanised after 16 weeks and marrow contents of femurs were obtained. To assess human cell engraftment, cells were labeled with anti-human CD45, CD33 and CD19 antibodies prior to analysis by flow cytometry. Human CD45+CD33+ cells were isolated by FACS sorting and analysed by FISH for the BCR-ABL gene rearrangement.

2.2.8.2. Notch2 overexpression model

Rosa-Inl N2IC mouse – these mice were generated in the Aifantis lab (NYU) by the insertion of a loxP flanked splice acceptor NEO-ATG cassette with two polyA sites followed by ICN2 into the ROSA26 locus, allowing the ROSA26 promoter to drive expression of the NEO-ATG
cassette. Cre recombinase-mediated excision of NEO-ATG results in use of the splice acceptor in the ICN2 cassette and irreversible expression of the transgene

2.2.9. Statistics

All results shown are the mean +/- standard error of the mean (mean +/- SEM) unless otherwise stated. All statistical analysis was performed with Graph Pad prism software using the two-sided unpaired or paired student’s t-test when two groups were compared. When multiple groups were compared, a one-way ANOVA with correction for multiple groups’ comparison was used. Within single cell gene expression analysis, a Limma modified t-test applying Benjamini-Hochberg adjustment for multiple hypothesis testing was used. A p value of <0.05 was considered significant.
3. Results I

3.1. Introduction

The introductory chapter to this thesis has clearly demonstrated that despite TKI therapy being highly efficacious at eradicating \textit{BCR-ABL} positive proliferative cells, they are unable to eradicate the most primitive quiescent LSCs in \textit{in vitro} and \textit{in vivo} assays (Bhatia et al, 2003b; Chomel et al, 2016; Chu et al, 2011; Graham, 2002). These residual cells underpin the phenomenon of disease persistence. This has been further highlighted in recent TKI discontinuation clinical trials, where more than half of patients developed an early molecular relapse upon discontinuation of therapy in the context of a deep molecular response (Clark et al, 2016; Imagawa et al, 2015; Mahon et al, 2010; Mahon et al, 2016; Rea et al, 2012; Ross et al, 2010; Ross et al, 2013; Ross, 2015; Takahashi et al, 2012). This evidence concludes that CML LSCs are independent of BCR-ABL kinase activity for their survival, and imply that when BCR-ABL is inhibited through maximal pharmacological intervention with TKI therapy, other factors drive cell survival through genetic, epigenetic or alternative signalling pathways (Corbin et al, 2011b; Foley et al, 2013; Hamilton et al, 2012).

As previously discussed, self-renewal is considered to be an integral property of the LSC, and its deregulation is known to affect the development, maintenance, and persistence of the CML LSCs within the context of disease persistence. To date, a number of aberrant signalling pathways have been proposed to contribute to the LSC phenotype. These pathways, including Hh, Wnt/β-catenin and BMP, are known regulators of cell survival, and are often differentially expressed following genetic events (Fukushima et al, 2013; Irvine et al, 2016; Laperrousaz et al, 2013; Liao et al, 2012; Lu et al, 2013; Sengupta et al, 2007; Zhao et al, 2007). A number of deregulated proteins within these pathways may represent a broadly applicable therapeutic strategy; however, it is well known that these pathways rarely work in isolation, and rely on an interconnecting web of activity leading to disease maintenance, persistence, and progression (Sengupta et al, 2007; Sinclair et al, 2013; Zon, 2008). To understand the true potential of targeting an individual self-renewal pathway protein, one must ascertain the impact of manipulating an individual pathway in a given disease. This will allow for better understanding of the acquired vulnerability in the mechanisms of the signalling pathway, which will, in turn, allow for a therapeutic window to eradicate the LSCs. Although, our lab and others have documented the effects of many signalling
pathways in CML, including Hh, Wnt-β-catenin, and BMP, the role that the Notch signalling pathway plays in myeloid disease remains controversial.

The Notch signalling pathway has been implicated in a number of malignancies with its role being cell- and tissue-dependent. In cancer biology, Notch signalling has been demonstrated to play both an oncogenic and tumour suppressive role, depending on cell and cancer type (Al-Hajj et al, 2003; Leong & Karsan, 2006; Miele, 1999; Pancewicz & Nicot, 2011; Pasto et al, 2014; Prasetyanti et al, 2013; Suman et al, 2013). In haemopoietic malignancies, accumulating evidence demonstrates its importance in growth, differentiation, and apoptosis (Chiang et al, 2013; Hannon et al, 2012b; Nwabo Kamdje et al, 2011; Pancewicz & Nicot, 2011; Seke Etet et al, 2012).

Notch receptors 1-3 are expressed in both immature and mature blood cells (Chiba). Deregulation of Notch was first identified in T-cell ALL where mutation rates in NOTCH1 have been reported in 50-70% of cases (Ellisen et al, 1991; Hannon et al, 2012b; Nwabo Kamdje et al, 2011; Roma et al, 2012). Similarly, Notch receptor mutations have been identified in a range of mature B cell leukaemias and lymphomas (Crews & Jamieson, 2012). Improved understanding of the Notch signalling pathway in these malignancies suggests that the Notch pathway may be a prime drug target; however, the therapeutic role of Notch inhibition may be directly dictated by the effects of its inhibition on other cell lineages, including the myeloid lineage (Deangelo et al, 2006; Tosello & Ferrando, 2013).

Reports about the role which Notch plays in myeloid disease are conflicting, as Notch activation in myeloid precursors has been shown to promote self-renewal, induce or inhibit differentiation to monocytes, or induce apoptosis (Carlesso et al, 1999; Li et al, 1998; Sarmento et al, 2005; Schroeder et al, 2003). Early observations suggested that Notch signalling may play a role in myeloid progression (Schroeder et al, 2003; Tan-Pertel et al, 2000). For example, Tan-Pertel et al demonstrated that Notch enhanced cell survival of the 32D cell line and promoted entry into a myeloid cell fate. 32D cells proliferate as blasts in the presence of the cytokines GM-CSF and IL-3, but initiate differentiation and undergo granulopoiesis in the presence of G-CSF. Interestingly, an earlier study contradicted this, observing that an activated form of Notch1 could inhibit G-CSF-induced granulocytic differentiation of 32D myeloid progenitors (Milner et al, 1996). It should be noted, however, that both studies used a truncated form of Notch
rather than inhibition of full-length Notch and inhibition of full-length Notch in this cell line has yet to be described.

Importantly, in 2001, Todha et al showed that exposing AML cells to plate-bound Notch ligands led to a full range of responses from proliferation to growth arrest that varied with patient sample, suggesting a combinatorial role between self-renewal pathways and molecular disease (Tohda & Nara, 2001). More recently, observations have supported a tumour suppressive role for Notch signalling in myeloid disease (Chen et al, 2008; Kannan et al, 2013; Klinakis et al, 2011; Lobry et al, 2013; Yin et al, 2009). A recent study identified a tumour suppressor role for the Notch pathway in another myeloproliferative disorder, chronic myelomonocytic leukaemia (CMML). This offers evidence for the existence of inactivating Notch mutations in CMML, and is supportive of a loss-of-function mechanism in myeloid disease (Klinakis et al, 2011). Furthermore, in AML cell lines and primary patient blasts, downregulation of Notch1 expression was associated with decrease in PU.1-mediated differentiation capacity, indicating a pivotal role in maintenance of an immature state (Chen et al, 2008). Recently, it was observed that human AML samples, isolated into stem and progenitor populations, express Notch receptors, however activation of downstream Notch targets was low, suggesting that Notch is present but not active in the samples analysed (Kannan et al, 2013; Lobry et al, 2013). Subsequent activation of the Notch receptors or Notch targets led to AML growth arrest in vivo and conversely Notch inhibition via dnMAML enhanced proliferation (Kannan et al, 2013), again suggesting a role of Notch in myeloid neoplastic proliferation.

Data is limited within CML. Notch has been shown to inhibit growth of the CML cell line, K562, although the authors do not assess endogenous active Notch signalling, instead only analysing Notch receptors at an mRNA level (Yin et al, 2009). Furthermore, it has been demonstrated that, using an in vivo model of CP-CML and BP-CML, that Numb, a Notch antagonist, was present at low levels in CP disease, but at high levels in BP, suggesting that there is a change in Notch signalling with progression of disease (Ito et al, 2010).

Unpublished microarray studies by the Copland laboratory confirm that HES1, a Notch downstream target gene, expression is increased in very primitive lin-CD34+CD38-CD90+CML stem/progenitor cells compared to normal. Furthermore, there is a progressive increase in HES1 expression as CML progresses. Additional unpublished
microarray studies have shown that TKI treatment of CD34+ CML stem/progenitor cells regulates gene expression in pathways critical for self-renewal, including Notch. In addition, HES1 was found to be highly expressed in CML blast crisis. This has been further demonstrated in vivo, where retroviral co-expression of Hes1 with Bcr-Abl resulted in generation of an aggressive acute leukaemia. However, the question remains, if HES1 is being regulated by the Notch pathway or, indeed, another signalling mechanism, as recent evidence suggests that despite relatively high levels of Notch1 receptor in a panel of primary AML patients, HES1 was expressed at low levels (Chiaramonte et al, 2005).

These differing observations could be explained by existence of multiple molecular interactions between Notch signalling and other self-renewal pathways, which are likely to correlate with the ability of Notch to function as an oncogene or a tumour suppressor. The role that Notch is playing within CP-CML in isolation or in combination with other self-renewal pathways, if any, remains unanswered.
3.2. Aims

Based on the evidence provided above, the specific aims set out in this chapter are:

1. To assess the expression of the Notch signalling pathway elements in CD34+ CP-CML patient samples;
2. To assess the functional role, if any, of the Notch signalling pathway in CD34+ CP-CML patient samples;
3. To assess differences in the functional role of the Notch signalling pathway between stem and progenitor cells in CP-CML.
3.3. Results

3.3.1. The Notch signalling pathway is silenced in CD34+ CP-CML patient samples

To address the possible involvement of the Notch signalling pathway in CML, Notch pathway gene expression was investigated in primary CML patient samples. Using Fluidigm technology, mRNA expression of 24 CD34+ CP-CML patient samples was compared to normal BM CD34+ samples, purchased from Stem Cell Technologies. Relative gene expression levels were determined using the average normal CD34+ value as a calibrator, calculated using the delta delta (ΔΔ) CT method (Schmittgen & Livak, 2008), using an average of six housekeeping genes as reference. The CP-CML samples had no preceding treatment prior to analysis. 4 samples failed the analysis.
Figure 3 - 1 Notch pathway components are differentially expressed between CP-CML CD34+ and normal CD34+ samples

Gene expression profiling (GEP) for Notch pathway components was determined from normal CD34+ BM samples (n=6), and CML cells after CD34+-selection from peripheral blood (n=20). Gene expression was determined by Fluidigm array analysis. Relative gene expression levels were determined by the average normal CD34+ value as a calibrator calculated using the ΔΔCT method, with an average of six housekeeping genes as reference. CP-CML CD34+ samples had no preceding treatment prior to analysis. Heatmaps were produced using PermutMatrix software. (A) Heatmap representation of fold change between CP-CML and normal CD34+ sample. (B) Heatmap representation of Notch pathway components between CP-CML and normal CD34+ samples with sample clustering. (C) Heatmap representation of Notch pathway components between CP-CML and normal CD34+ samples with gene clustering. (D) Heatmap representation of Notch pathway components between CP-CML and normal CD34+ samples with gene and sample clustering. There was no prognostic significance between quantitative BCR-ABL level and Notch pathway components at 6, 12, and 18 months as determined by ELN guideline criteria (Baccarani et al. 2013).

This demonstrated that the Notch signalling pathway components are highly deregulated at the mRNA level in CP-CML compared to normal (figure 3-1A). Gene clustering methods determined that patient samples (figure 3-1B) and Notch pathway components (figure 3-1C) could be clustered upon gene expression, however, on analysis of quantitative BCR-ABL expression at 6, 12, and 18 months, there was no prognostic relevance noted on clustering in isolation or together (figure 3-1D).

Focussed gene analysis established that the Notch signalling pathway was inactive, as demonstrated through downregulation of the Notch target genes, HES1 (p<0.0001; figure 3-2A), and HIF1A (p=0.0029). Decreased expression compared to normal was shown in other downstream targets, including HEY1, but this was not determined to be statistically significant (p=0.3019). In parallel, the Notch negative regulators, MFNG (p=0.0108), and NUMB (p=0.0114) were upregulated (figure 3-2B). Taken together, these data suggests that the pathway may be silenced in CP-CML.

In these patient samples, the Notch receptor, NOTCH2, was significantly upregulated compared to normal CD34+ samples, p=0.0001 (figure 3-2C). As Notch ligand expression was also downregulated at an mRNA level (figure 3-2D), this was highly suggestive that the downregulation of the pathway was not secondary to cis-inhibitory mechanisms (del Álamo et al, 2011).
Figure 3 - 2 Focussed gene analysis identifies that the Notch signalling pathway is silenced in CD34+ CP-CML

Relative gene expression levels for 20 CD34+ CP-CML samples were determined against the average normal CD34+ values calculated using the ΔΔCT method with an average of six housekeeping genes as reference. Fold change is relative to normal CD34+ samples (n=6). (A) Dot plot representing fold change expression values for Notch target genes. (B) Dot plot representing fold change expression values for negative regulators of the Notch pathway. (C) Dot plot representing fold change expression for Notch ligands. (D) Dot plot representing fold change expression of Notch receptors. P values were determined by an unpaired t-test with Welch correction (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).

Noted within this mRNA expression data were two distinct populations of low and high expression of the metalloprotease, ADAM17 (figure 3-3). On further examination of these patient samples, it was noted that ADAM17 expression correlated with Notch receptor mRNA expression, as demonstrated through spearman rank correlation (R) (R = 0.7717 [p=0.0001], R = 0.8255 [p<0.0001] with NOTCH1 and NOTCH2, respectively). However, this did not correlate to prognostic relevance in terms of quantitative BCR-ABL expression at 18 months. Furthermore, there was no correlation with the downstream target gene, HES1. Again, highlighting that the pathway is silenced within the samples analysed.
Figure 3 - Focused gene analysis identifies that the metalloprotease, ADAM17, statistically correlates with Notch receptor expression

Relative gene expression levels for 20 CD34+ CP-CML samples were determined against the average normal CD34+ values calculated using the ΔΔCT method with an average of six housekeeping genes as reference. Fold change is relative to normal CD34+ samples (n=6). P values were generated relative to normal CD34+ samples. P values were determined by an unpaired t-test with Welch correction (* p<0.05, ** p<0.01, *** p<0.001). The triangles represent samples with low ADAM17 expression, and the circles represent samples with high ADAM17 expression. Pearson’s correlation coefficient between ADAM17 and NOTCH1 demonstrated an R-value of 0.7717 (p=0.0001), and between ADAM17 and NOTCH2 0.8255 (p<0.0001).

3.3.2. FBXW7 confers prognostic relevance at 12 and 18 months

FBXW7 is an E3 ubiquitin ligase and is a substrate recognition component of the Cullin-1/SCF complex that targets specific substrate proteins for poly-ubiquination and degradation of the 26S proteasome. Fbxw7 has been shown in vivo to target many proto-oncoproteins, growth promoters, and anti-apoptotic molecules, including Cyclin E, c-Myc, Notch1, c-Jun, mTOR, and Mcl1 (King et al. 2013; Nakayama & Nakayam 2006; Matsuoka et al. 2008; Reavie et al. 2010). Within the same dataset used in section 3.3.1, we analysed the expression of FBXW7 in the 20 CML patient samples, where quantitative BCR-ABL expression was known at 6, 12, and 18 months. Classifying these samples into good and intermediate/poor responders, in accordance with the ELN guidelines for management of CML (Baccarani et al. 2013), it was shown that FBXW7 represents a prognostic indicator of BCR-ABL response at 12 and 18 months (figure 3-4). FBXW7 has an indispensable role in the maintenance of quiescence, with deletions
in Fbxw7 leading to cell exhaustion. This, perhaps, highlights the potential role of FBXW7 as a therapeutic modality within CP-CML in the eradication of the LSCs.

Figure 3 - 4 FBXW7 represents a prognostic indicator at 12 and 18 months
Relative gene expression levels for 20 CD34+ CP-CML samples were determined against the average normal CD34+ values calculated using the ΔΔCT method with an average of six housekeeping genes as reference. Fold change is relative to normal CD34+ samples (n=6).
3.3.3. **Upregulation of Notch receptors are present at protein level**

The upregulation of *NOTCH1* and *NOTCH2* genes was confirmed at protein level through IF. Using an antibody for the full-length receptor, IF was performed on 4 CD34+ CP-CML samples. Within all samples, a punctate appearance was noted for both NOTCH1 and NOTCH2 full-length receptors within the cytoplasm of the cells, with varying expression levels noted across patient samples, consistent with the gene expression findings (figure 3-5). In view that the pathway was inactive by gene expression, we confirmed this at protein level with the cleaved, activated form of the Notch receptor, val1744, which was absent on CD34+ CP-CML cells by either IF (n=4) or western blotting (n=2). These results supported the gene expression data that the Notch receptors, *NOTCH1* and *NOTCH2*, are present on the cell surface of CP-CML samples, but are not activated.

![Image showing upregulation of Notch receptors through IF](image.png)

Figure 3 – 5 Upregulation of Notch receptors was confirmed by IF

To illustrate intensity of immunolabelling, digital images were captured at identical exposure times. The expression of full length (FL) Notch1, FL Notch2, and cleaved Notch 1/2 (val1744) are depicted here for 4 CP-CML samples. The punctate appearance of the FL receptor is visible in a cytoplasmic distribution in all samples. There was no activation of cleaved Notch present.
3.3.4. **Pharmacological inhibition of Notch does not alter cellular growth in CD34⁺ CP-CML in plastic culture conditions**

To ensure that Notch signalling was not active in CP-CML and gain further insight into the functional role of the Notch pathway in CP-CML, 5 CD34⁺ primary samples were cultured with and without the pharmacological Notch inhibitor, DAPT; a gamma secretase inhibitor (GSI) that prevents the dissociation and translocation of the intracellular aspect of the Notch receptor to the nucleus. Cells (n=5) were thawed or used fresh from CD34⁺-selection and cultured in low growth factor SFM on non-stromal conditions (i.e. plastic culture without stromal support) with and without 10uM DAPT for 7 sequential days. Trypan blue exclusion cell counts every 24 hours showed that there was no statistically significant difference between untreated and treated samples in terms of cell growth (figure 3-6).

![Graph showing cell counts over days in culture](image)

Figure 3 - 6 Pharmacological inhibition of Notch does not alter cellular growth in CD34⁺ CP-CML cells in plastic culture

CD34⁺ CP-CML cells were used from isolation of fresh peripheral blood samples or thawed and cultured in low growth factor SFM with or without the presence of 10uM DAPT (n=5). DMSO treated cells were used as an 'untreated' control. Cells were counted using trypan blue exclusion cell counts every 24 hours. No statistical difference was seen with the addition of DAPT over sequential days in culture as analysed using a paired student's t-test at each time-point (n=5; p>0.05).

Furthermore, analysis of cell cycle (figure 3-7) and apoptosis (figure 3-8) following up to 7 days of culture in these patient samples did not demonstrate any statistical change in cell cycle components or apoptotic ability with the addition of DAPT. Together, these results, as expected, demonstrate that pharmacological inhibition of the Notch signalling pathway does not alter cellular growth function in CD34⁺ CP-CML samples in plastic culture conditions and validated our gene expression data.
Figure 3 - 7 Pharmacological inhibition of Notch does not alter the cell cycle in CD34+ CP-CML cells in plastic culture

CD34+ CP-CML cells were used from isolation of fresh peripheral blood samples and cultured in low growth factor SFM with or without the presence of 10uM DAPT (n=5). DMSO treated cells were used as 'untreated' control. Following five days in culture, cells were washed with 2ml 2%FBS/PBS, and then fixed with ice-cold ethanol prior to freezing. Within 48 hours of freezing, samples were centrifuged at 300g for 5 min prior to being washed with 2%FBS/PBS and PI stain added. Samples were incubated for 15 min before being immediately analysed by flow cytometry. (A) Representation of flow cytometry analysis of cell cycle. (B) There was no statistical difference seen in cell cycle status between populations as determined by a student's t test (p=0.9, n=5).
CD34+ CP-CML cells were used from thaw or isolation of CD34+-selected fresh peripheral blood samples and cultured in low growth factor SFM with or without the presence of 10uM DAPT (n=5). DMSO treated cells were used as ‘untreated’ control. Following five days in culture, following a 2% FBS/PBS wash, 0.5-1x10^5 cells were re-suspended in 100µL of annexinV buffer containing 5µL annexin-V conjugated to relevant fluorochrome and 5µL 7AAD. Samples were incubated at room temperature for 15 min in the dark. Following incubation, further 200µL of annexinV buffer was added to the cell suspension and analysis was immediately performed by flow cytometry. Unstained and single stained cells were used to set voltages and compensation. (A) Representation of flow cytometry analysis of CML443; side panel demonstrates single stain controls. (B) Combined data collection of annexinV/7AAD staining. There was no statistical difference between populations (p>0.05, n=5).
3.3.5. **Notch pathway silencing within CP-CML is not secondary to increased methylation of the receptor**

It was next sought to investigate if the Notch pathway was silenced by increased methylation of the Notch components. To do this, H3K27me3 and H3K4me3 levels of the Notch components were interrogated within the E-MTAB-2581 microarray dataset. On global analysis, the Notch pathway was globally downregulated. H3K27me3 was statistically significantly increased for *LFNG* only, with no increase in H3K4me3 between normal (n=3) and CP (n=3) samples. This suggests that there were no aberrant methylation patterns to disrupt normal Notch signalling events and that, therefore, inferred that the Notch pathway could be exogenously activated in CP-CML samples.

3.3.6. **In vitro activation of the Notch pathway through ligand binding alters the growth potential of CP-CML CD34+ patient samples**

In view that the CP-CML CD34+ cells specifically and abundantly express the Notch receptor, *NOTCH2*, and that the pathway was confirmed to be functionally inactive at basal state (i.e. on plastic culture without stromal support), it was hypothesised that Notch signalling could be reactivated through exogenous activation in CP-CML CD34+ cells upon ligand binding to the Notch receptor. As both the osteoblastic niche and MSCs express the Notch ligands, DLL1 and JAG1, it was decided to focus our experimental upregulation of the Notch pathway through these ligand interactions. The OP9 co-culture system was utilised, to allow for the overexpression of the DLL1 or JAG1 proteins, using OP9-GFP cells as control stroma (figure 3-9).

![Figure 3 - 9 Schematic representation of co-culture experimentation](image)

CD34+ CP-CML samples were thawed or used fresh from CD34+ isolation, and cultured on plastic or on OP9 stromal conditions in low growth factor SFM for the duration of the experiment. Functional analysis was then performed as described within each experimental model. The DLL1 protein was only expressed within the OP9DLL1 stroma; whereas, both OP9GFP and OP9JAG1 expressed the JAG1 protein, with a concentration effect seen.
within the expression between the GFP and JAG1 cell line (i.e. increased expression within OP9JAG1).

Compared to non-stromal conditions, culturing over 7 days on OP9-GFP led to a significant increase in growth as assessed by trypan blue exclusion cell counts (p=0.02, n=5). The overexpression of JAG1 led a further increase compared to OP9-GFP (p=0.002), suggesting that the increase in growth potential was secondary to culturing in the presence of increasing concentrations of the JAG1 protein, and not due to ‘stromal’ effects alone (figure 3-10).

Figure 3 - 10 In vitro activation of the Notch pathway through ligand binding alters the growth potential of CP-CML CD34+ patient samples

CD34+ CP-CML cells were used from isolation of fresh peripheral blood samples or thawed and cultured in low growth factor SFM with or without the presence of stroma. Within each co-culture experiment, OP9 stromal cells only underwent a maximum of 8 passages before use. OP9 stromal cells were seeded at a 1 in 24 ratio with suspension cells (i.e. 1 stromal cell per 24 suspension cells) 24 hours prior to co-culture. 50,000 CD34+ cells were seeded onto plastic or stromal conditions in 12 well plates and counted every 24 hours using trypan blue exclusion cell counts. Compared to non-stromal conditions, culturing over 7 days on OP9GFP led to a statistically significant increase in growth (p=0.02, n=5). The overexpression of JAG1 led to a further increase compared to OP9GFP (p=0.002, n=5), suggesting that the increase in growth potential was secondary to culturing in the presence of increasing concentrations of JAG1 protein.
In view of patient variability, the cell counts were normalised to their non-stromal control at day 5 (figure 3 – 11). With this, it was clear, that there was a statistical significant increase in trypan blue exclusion cell count following 5 days of culture between the OP9GFP and OP9JAG1 experimental arms. Subsequently, experiments following this were conducted for between five and seven days.

Upregulation of the pathway was confirmed with increased expression of *HES1*, a downstream target of the Notch pathway, at the gene level (n=6 plastic conditions; n=4 OP9JAG1 co-culture, p=0.001), and overexpression of the val1744 protein by IF (n=4) (figure 3-12). Co-culturing with OP9GFP also led to an increase in expression compared to normal, consistent with the expression of JAG1 in the cell line. There was no increase expression of *HES1* in those CML cells co-cultured with OP9DLL1 cells.
Activation of the pathway through JAG1, and not DLL1, was further confirmed by utilising DAPT, where we observed a significant decrease in live cell counts within the OP9GFP (p=0.01) and OP9JAG1 (p=0.018) experimental arms (figure 3-13). There was no decrease in cell counts observed on non-stromal conditions (i.e. plastic), nor culturing on OP9DLL1 stroma, which was consistent with the HES1 gene expression data.

Figure 3 - 12 Co-culturing on OP9JAG1 stroma is associated with increase activation of the Notch pathway at gene and protein level

(A) Relative gene expression levels of HES1 for n=5 CD34+ CP-CML samples co-cultured against the average normal CD34+ values calculated using the ΔΔCT method with an average of six housekeeping genes as reference. Fold change is relative to normal CD34+ samples (n=5). 1 samples cultured on OP9JAG1, 2 samples cultured on OP9GFP, and 3 samples cultured on OP9DLL1 failed the analysis. There was a statistically significant increase in HES1 in samples cultured on OP9JAG1 compared to non-stromal conditions. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001). (B) Immunofluorescence of val1744 protein, the active form of the Notch receptor, suggested an increase in Notch activity in cells cultured with OP9GFP (not shown) and OP9JAG1.
In vitro activation of the Notch pathway through ligand binding does not alter cell cycle status in CP-CML CD34+ patient samples

From this, it was questioned if activation of the Notch pathway through exogenous ligands pushed the CD34+ CP-CML cells into cycle (i.e. S-G2-M phase) leading to increased growth potential. CP-CML CD34+ cells were cultured from thaw or used fresh from CD34+-isolation in low growth factor SFM, with or without stromal conditions and fixed prior to PI staining and flow cytometry analysis. Culturing on stromal conditions with active Notch ligands did not influence the cell cycle distribution of CD34+ CP CML cells in short term in vitro culture (p >0.05, n=3) (figure 3-14).

![Flow Cytometry Figure](image)

Figure 3 - 14 Notch activation through exogenous ligand binding does not influence cell cycle distribution of CD34+ CP-CML cells in short term culture

CD34+ CP-CML cells were used from isolation of fresh peripheral blood samples or thawed and cultured in low growth factor SFM with or without the presence of stroma. Within each co-culture experiment, stroma only underwent a maximum of 8 passages before use. OP9 stromal cells were seeded at a 1 in 24 ratio with suspension cells (i.e. 1 stromal cell per 24 suspension cells) 24 hours prior to co-culture. Within each condition, 10μM DAPT, was added to one arm of the experiment. Cells were subsequently counted at sequential days using trypan blue exclusion. Results are shown at day 5. In view of patient variability, within each co-culture condition, counts were normalised to the untreated control. There was a statistically significant decrease in cell number in the OP9GFP and OP9JAG1 on addition of DAPT, suggesting that the activated pathway was being inhibited causing a reduction in cell number. (n=5, p<0.05; p value determined by a students t-test).
3.3.8. In vitro activation of the Notch pathway through ligand binding leads to a decrease in CD34 positivity and early erythroid differentiation

Next, it was questioned if the increased growth potential noted within the initial trypan blue exclusion cell counts could be explained by alteration in cell division kinetics. This was in the knowledge that activation of the Notch pathway through Jagged1 ligand-receptor interaction in other disease processes has been shown to alter symmetric and asymmetric division, which has accounted for proliferation states (Srinivasan et al. 2016; Costa et al. 2016).

In order to investigate the effect of exogenous Notch ligands on the cell division kinetics of CD34+ CP-CML cells, CFSE dye incorporation was used with flow cytometry analysis. Briefly, CP-CML CD34+ cells were thawed or used fresh, stained with CFSE and cultured in the presence of non-stromal or stromal conditions. Following 5 days in culture, cells were harvested for viable cell count and flow cytometry analysis. CD34+ expression was assessed with a monoclonal CD34+ antibody conjugated to the fluorescent dye APC. Only cells in the viable gate (set by FSC and SSC criteria) were included in the analysis. Three samples were analysed.

Although no statistical difference was noted between the three populations, there was a trend towards an increase in the percentage of viable cells in later divisions on stromal co-culture compared to non-stromal conditions, suggesting that cells are protected somewhat to enable increased divisions. However, this was not dependent on activated Notch signalling with no statistical difference noted between OP9GFP and OP9JAG1 co-cultures (figure 3-15).
Figure 3 – 15 Stromal co-culture with OP9 cells increases percentage of total viable cells in later cell divisions
CD34+ CP-CML cells were stained with CFSE and cultured with or without stromal for five days before analysis using flow cytometry. (A) Rainbow dot plot representing cells within each cell division for each of the co-culture conditions. (B) Histogram representation of total divisions and colcemid control for each non-stromal and stromal condition. From this visual representation, stromal co-culture can be seen to increase total cell divisions compared to culture on plastic only. (C) Percentage of total viable cells within each division for each condition. The bars represent the mean value from 3 primary samples, while the error bars represent SEM. There was no statistical difference between cell divisions and experimental conditions, but sample variability was extensive.
With a trend towards increased viable cells at day 5 on stromal co-culture with OP9 cells, we hypothesised that this could be extended to a primitive population with the knowledge that if activation of the Notch signalling pathway was altering the balance between the number of self-renewal and commitment divisions that are occurring, there would be less primitive cells at each division gate due to the resultant increased differentiation. This was measured through reduced expression of primitive surface phenotypic markers, such as CD34 and, more primitively, CD38.

Within the same samples used above (n=3, CD34+ CP-CML), there was an overall statistically significant decrease in overall expression of CD34 within the viable cell population (figure 3-16A) in cells cultured on OP9JAG1 stroma compared to plastic control. However, due to sample variability, differences in CD34 expression for each cell division were not significant. (figure 3-16B).

Figure 3 – 16 Activation of Notch through Jagged1 leads to decreased expression of CD34 within a bulk viable cell population

CD34+ CP-CML cells (n=3) were stained with CFSE and cultured with or without stroma for five days before analysis using flow cytometry. (A) Percentage of total viable cells within CD34 positive and negative gates. Error bars represent SEM. There was a statistically significant decrease in CD34 positive cells between plastic and OP9JAG1 co-culture as determined by an unpaired student’s t-test (p<0.05, n=3). (B) Percentage of total viable cells within each division for each condition. The bars represent the mean value from 3 primary samples, while the error bars represent SEM. There was no statistical difference between cell divisions and experimental conditions, but sample variability was extensive.
This led us to question if the decrease in CD34 positivity in the viable cell populations was secondary to cell differentiation or if there was an element of apoptosis within the samples to account for this loss.

To investigate this, apoptosis was first analysed using annexinV and 7AAD staining in CD34+ samples following 5 days of co-culture with and without stromal conditions (n=3). There was an increase in percentage of cells in late apoptosis in those cultured in the presence of OP9JAG1 compared to OP9GFP; this was evident in both raw and normalised values (figure 3-17); this was not statistically significant.

![Figure 3 – 17 Activation of Notch through Jagged1 potentially increases late apoptosis](image)

CD34+ CP-CML cells were used from thaw or isolation of CD34-selected fresh peripheral blood samples and cultured in low growth factor SFM with or without the presence of stromal conditions (n=3). Following five days in culture, following a 2% FBS/PBS wash, 0.5-1x10^5 cells were re-suspended in 100µL of annexinV buffer containing 5µL annexinV conjugated to relevant fluorochrome and 5µL 7AAD. Samples were incubated at room temperature for 15 min in the dark. Following incubation, further 200µL of annexinV buffer was added to the cell suspension and analysis was immediately performed by flow cytometry. Unstained and single stained cells were used to set voltages and compensation. (A) Combined data collection of annexinV/7AAD staining. There was no statistical difference between populations as analysed by a multicomparison ANOVA (p>0.05, n=3). (B) OP9JAG1 percentages normalised to OP9GFP to allow for sample variability. There was no statistical difference between populations (p>0.05, n=3)
To evaluate if this could be translated to co-culture within a ‘human’ co-culture model, human MSCs were isolated from CP-CML patient BM and authenticated with the CD45 CD34 Lin CD90*CD73*CD105* phenotype (figure 3-18A) and positive Nestin IF (chapter 2.3.2.8.2). JAG1 expression was confirmed through IF (figure 3-18B), before CD34+ CP-CML samples (n=4) were cultured with and without the presence of MSCs, and with and without 5uM IM. MSC co-culture protected from IM-induced apoptosis, as has previously been described (p<0.0001, n=4) (Zhang et al, 2013). There was a modest increase in early apoptosis between untreated non-stromal and stromal co-cultures, which may represent the release of cytokines from the stromal cells or activation through JAG1 (p=0.008, n=4) (figure 3-18C).

Figure 3 – 18 Co-culture with CP-CML MSCs demonstrated expression of JAG1 and protection against IM.

(A) Human MSCs were isolated from CP-CML patient bone marrow and authenticated with the CD45 CD34 Lin CD90*CD73*CD105* phenotype. (B) Immunofluorescence demonstrated expression of Nestin and JAG1. (C) Annexin V and 7AAD analysis of apoptosis by flow cytometry demonstrated protection against IM-induced cell death (P<0.0001; viable cells), but an increase in early apoptosis on MSC was noted between untreated cultures (p=0.008, n=4)
In view that there was only a modest increase in apoptotic ability in activation of Notch through JAG1, cell surface expression was next determined for myeloid and erythroid differentiation markers; namely, CD33, CD36, Glycophorin A (GlyA), and CD71. Four CD34+ CP-CML samples were thawed or used fresh from CD34+-isolation and cultured with or without stroma for 5 days. Suspension cells were washed with PBS/2%FBS solution and stained with the appropriate antibody and analysed with flow cytometry, as described within chapter 2.3.2.6. Absolute percentage of positive cells is demonstrated in figure 3-19A. In view of sample variability, values were normalised to the non-stromal control (i.e. plastic culture) (figure 3-19B). This demonstrated that there was no significant change in CD33 or CD36 expression with the addition of co-culture and exogenous activation of Notch through ligand binding with JAG1. However, there was an increase in expression of both CD71 and GlyA with the addition of stromal co-culture, specifically JAG1. This was statistically significant for CD71 (p<0.05, n=4), where a significant increase in expression was noted in association with activation of Notch through JAG1 interaction. GlyA expression was not significantly increased, suggesting that although the samples had initiated erythroid differentiation, they were halted at an immature erythroid state.
If short-term culture, allowed for early myeloid/erythroid differentiation, it was hypothesised that long-term differentiation assays would yield an increase in erythroid colony formation with the exogenous activation of Notch signalling through co-culture. CFC assays are clonal progenitor assays that measure the proliferation capacity and multi-potency of haemopoietic progenitors. CD34+ CP-CML cells (n=5) following co-culture in non-stromal and stromal conditions were inoculated into a semi-solid culture medium containing a standard growth factor cocktail. Following culture for 12 days, colonies were evaluated and counted. Each condition was set up in duplicate and mean between plates calculated. There was a huge variation between samples, but no statistical change was noted between OP9GFP and OP9JAG1 (p=0.7, n=5), and furthermore between the non-stromal and OP9JAG1 experimental arms (p=0.068, n=5). No difference noted in GM or GEMM colonies (data not shown). Colonies were BCR-ABL positive in all conditions, as determined by FISH.

![Figure 3 – 19 In vitro activation of Notch through JAG1 induces early differentiation of CD34+ CP-CML primary samples](image)

CFC assays were performed with CD34+ CP-CML cells (n=5) following co-culture in non-stromal and stromal conditions. There was a huge variation between samples, but no statistical change was noted between OP9GFP and OP9JAG1 (p=0.7, n=5), and furthermore between the non-stromal and OP9JAG1 experimental arms (p=0.068, n=5). Colonies were BCR-ABL positive in all conditions, as determined by FISH.
To corroborate the possible involvement of Notch activation through JAG1 interaction in early erythroid differentiation, gene expression was investigated in primary CD34+ CP-CML patient samples (n=5). Using Fluidigm technology, mRNA expression of baseline/plastic culture, OP9GFP co-culture and OP9JAG1 co-culture after 5 days was compared to normal peripheral blood CD34+ samples. Relative gene expression levels were determined using the average normal CD34+ value as a calibrator, calculated using the ΔΔ CT method, using an average of six housekeeping genes as reference. The patients had had no TKI treatment prior to sample collection and analysis.

Previous data available on gene transcription involved in differentiation through myeloid and erythroid phenotype was utilised to identify the major players in early erythroid differentiation (figure 3-21). There was a statistically significant increase in expression of key genes involved in early erythroid differentiation, namely, p38 (p<0.05 between baseline and OP9JAG1 culture) and PU.1 (p<0.05 between baseline and OP9JAG1 culture), which has known involvement in development of erythroblasts (figure 3-22). Furthermore, there was little change in gene expression in regulators of the stem cell phenotype, namely GATA2, NFKB1, and PI3K. Interestingly, there was a statistically significant increase in TP53 between culture on plastic alone and OP9JAG1
co-culture (p<0.05). There was no statistical change between OP9GFP and OP9JAG1 co-culture, but this may be explained by the amount of JAG1 that is present in OP9GFP compared to OP9JAG1 stromal cells (figure 3-22).

In turn, these results, suggest the hypothesis that activation of Notch through Jagged1 in CP-CML CD34+ cells may lead to halted early erythroid differentiation with a possible increase in apoptosis. However, the difficulty in assessing Notch activation in CD34+ CP-CML cells is that the influence of the pathway is likely to change between a self-renewing population and a more mature population. Therefore, it is not surprising that experiments using bulk CD34+ cells produce large inter-patient variability, with a non-conclusive role of the pathway in short term in vitro culture.
3.3.9. **In vitro activation of the Notch pathway has differing function in short and long-term culture, and in immature and mature populations**

To address if Notch signalling impacts stem and progenitor populations differently, CP-CML patient samples (n=3) were sorted into immature and mature cell populations, namely Lin-CD34+CD38- and Lin-CD34+CD38+, using FACS. In brief, fresh or recovered CD34+ cells were washed and resuspended in 2%FBS/PBS. Cells were counted and stained with appropriate antibodies for 30 min at room temperature in the dark. 2x10^5 cells were used for relevant single colour controls to define positive and negative staining for each marker and to set compensation. Stained cells were washed and filtered through a 0.22uM filter prior to sorting with a BD FACS Aria with Diva software. Figure 3-23 demonstrates a representative example for the sorted populations. All CML samples were assessed for Ph+ status, confirmed by dual colour FISH.

Figure 3 – 22 Gene expression of regulatory erythroid differentiation genes confirms functional data

Using Fluidigm technology, mRNA expression of culture on plastic, OP9GFP co-culture and OP9JAG1 co-culture after 5 days was compared to normal peripheral blood CD34+ samples. Relative gene expression levels were determined using the average uncultured normal CD34+ value as a calibrator calculated using the ΔΔ Ct method, using an average of six housekeeping genes as reference. There was a statistically significant increase in overexpression of key genes involved in early erythroid differentiation, namely, p38 (p<0.05 between baseline and OP9JAG1 culture) and PU.1 (p<0.05 between baseline and OP9JAG1 culture), which has known involvement in development of erythroblasts (figure 3-22). Furthermore, there was little change in gene expression in regulators of the stem cell phenotype, namely GATA2, NFKB1, and PI3K. Interestingly, there was a statistically significant increase in TP53 between baseline and OP9JAG1 co-culture (p<0.05). There was no statistical change between OP9GFP and OP9JAG1 co-culture.

Figure 3 - 23 Representation of flow activated cell sorting to Lin-CD34+CD38- population

Representative example of FACS sorting to Lin-CD34+CD38- cell populations.
Following cell sorting, cells were co-cultured on non-stromal or stromal conditions for 5 days. At day 5, there was a statistically significant increase in cell growth of the CD34⁻CD38⁺ population between the non-stromal (i.e. plastic) and OP9JAG1 stromal conditions (p<0.05, n=3). There was a trend towards increased growth in the OP9JAG1 experimental arm compared to OP9GFP, although this was not significant, likely in keeping with basal levels of JAG1 on the OP9GFP stroma. This was, however, not statistically significant (figure 3-24). Within the CD34⁺CD38⁻ experimental arm, there was no statistical difference in trypan blue exclusion cell counts over the five days analysed, but there was a trend towards reduced cell counts in the OP9JAG1 arm compared to the OP9GFP arm (figure 2-24).

![Graph showing cell counts](image)

Figure 3 – 24 In vitro activation of Notch increases growth potential in mature CP-CML populations, and not immature populations

Following FACS sorting, CD34⁺ CP-CML cells were cultured with or without the presence of stroma. At day 5, there was a statistically significant increase in cell growth of the CD34⁺CD38⁺ population between the non-stromal (i.e. plastic) and OP9JAG1 stromal conditions (p<0.05, n=3). Within the CD34⁺CD38⁻ experimental arm, there was no statistical difference in trypan blue exclusion cell counts.

In view of the decreased trend in growth potential in the CD34⁺CD38⁻ population with OP9JAG1 co-culture, apoptotic ability was next analysed using annexinV and 7AAD staining between the stromal conditions in the mature and immature experimental arms. There was no statistical change within the CD34⁺CD38⁺ populations, but an increase trend in both early and late apoptosis with the CD34⁺C38⁻ (p>0.05, n=3) (figure 3-25). This was important because it suggested that activation of the pathway within an immature LSC population was toxic to the cells in short-term *in vitro* culture. In view
of this, it was hypothesised that Notch activation through OP9JAG1 may lead to decrease in self-renewal capacity in long-term assays.

Self-renewal activity can be measured both in vitro and in vivo in assays that approximate stem cell activity in the original population by observing the behaviours of their progeny under various conditions. As discussed within the methods section, the most robust demonstration and quantification of self-renewal activity is from limited dilution xenograft transplantation. However, within our model of exogenous activation in an immature phenotype, this is impractical and infeasible. In vitro assays offer a surrogate measure of self-renewal activity and allow for small cell numbers as well as co-culture conditions. To question if exogenous activation would affect the long-term culture ability of an immature stem cell population, LTC-IC assays were used. Following extended culture over 6 weeks in a supportive stromal co-culture, cells with residual colony forming capacity can be assessed and their prevalence in the initial sample inferred.

Figure 3 – 25 *In vitro* activation of Notch increases apoptotic ability in immature CP-CML populations

CD34+ CP-CML cells were sorted into CD34+CD38+ and CD34+CD38- populations and cultured in low growth factor SFM with or without the presence of stroma (n=3). Within each co-culture experiment, OP9 stromal cells only underwent a maximum of 8 passages before use. OP9 stromal cells were seeded at a 1 in 24 ratio with suspension cells (i.e. 1 stromal cell per 24 suspension cells) 24 hours prior to co-culture for 5 days. Following five days in culture, following a 2% FBS/PBS wash, 0.5-1x10^5 cells were re-suspended in 100µL of annexinV buffer containing 5µL annexin-V conjugated to relevant fluorochrome and 5µL 7AAD. Samples were incubated at room temperature for 15 minutes in the dark. Following incubation, further 200µL of annexinV buffer was added to the cell suspension and analysis was immediately performed by flow cytometry. Unstained and single stained cells were used to set voltages and compensation. There was no statistical change within the CD34+CD38+ populations, but an increase trend in both early and late apoptosis with the CD34+CD38- when co-cultured with OP9JAG1 cells (p>0.05, n=3).
In brief (figure 3-26), CP-CML Lin-CD34+CD38- and Lin-CD34+CD38+ were co-
cultured for 7 days on non-stromal and stromal conditions as previously described. To
ensure no OP9-effect, cells were also cultured on plate-bound recombinant JAG1; this
allowed for true representation of JAG1 exogenous activation without stromal
influence. Hygromycin and geneticin-selected M210B4 and SL-SL fibroblast stromal
cells were irradiated at 80Gy 24 hours prior to use within the assay, before being plated
on gelatin-coated plates at a confluence of each cell type adjusted to 1.5x10^5/ml. 50,000
of the cultured CP-CML-selected cells were suspended in 1ml myelocult/hydrocortisone media in duplicate, and then seeded onto the M210B4/SL-SL
irradiated stroma for 6 weeks. Weekly, 500ul media was carefully changed with fresh
myelocult/hydrocortisone media ensuring that the stromal and suspension cells were not
disturbed. Following 6 weeks in culture, cells were harvested and inoculated into
methocult as per the CFC assay protocol, before colonies counted between 12-14 days
following harvest.

Figure 3 – 26 Schematic of long-term culture initiating cell assay experimental
design
Schematic representation of the LTC-IC assay, where suspension cells (namely, sorted populations
of CML cells) are cultured in the presence of an irradiated stromal layer that is necessary to maintain
myelopoieiss. Cells are cultured under specific conditions for 6 weeks prior to assessment with
colony forming cell assays.
Three CP-CML samples were analysed, with 4 replicates per experimental arm. Colony numbers were counted following 12 -14 days in methocult. Data was presented normalised to the plastic control. Within the Lin’CD34+38+ population, there was no significant reduction in colony number in the samples cultured on OP9GFP or OP9JAG1 stroma. On plate-bound recombinant JAG1 co-culture there was a decrease in colony number, although this was not statistically significant. The addition of DAPT in the initial co-culture with OP9GFP and OP9JAG1, rescued the effect on colony formation in those that were co-cultured with OP9JAG1 stroma (figure 3-27).

Within the Lin’CD34+38- experimental arm there was no change in colony formation between non-stromal conditions and co-culture with OP9GFP. However, there was a statistically significant reduction in colony formation between both plastic and OP9GFP compared to OP9JAG1 or recombinant JAG1 co-culture (p<0.05 in both comparisons) (figure 3-27). This suggested that short-term activation of Notch in in vitro culture led to a statistically significant reduction in self-renewal and the ability to form colonies, and therefore, suggests that short-term activation of Notch may represent a therapeutic modality towards the CML LSC.
Figure 3 – 27 *In vitro* activation of Notch through JAG1 significantly decreases colony formation in LTC-IC assays in an immature population, suggesting a possible therapeutic target towards the CP-CML LSC

3 CP-CML samples were used in analysis, with 4 replicates per experimental arm. Colony numbers were counted following 12 -14 days in methocult. Data was presented normalised to the plastic control. Within the LinCD34+38+ population, there was no significant reduction in colony number in the samples cultured on OP9GFP or OP9JAG1 stroma. On plate-bound recombinant JAG1 co-culture there was a decrease in colony number, although this was not statistically significant. The addition of DAPT in the initial co-culture with OP9GFP and OP9JAG1, rescued the effect on colony formation in those that were co-cultured with OP9JAG1 stroma. Within the LinCD34+38-experimental arm there was no change in colony formation between non-stromal conditions and co-culture with OP9GFP. However, there was a statistically significant reduction in colony formation on both plastic and OP9GFP compared to OP9JAG1 or recombinant JAG1 co-culture (p<0.05 in both experimental arms as per ANOVA).
3.4. Discussion

For the first time, within this chapter, we present data that suggests a functional action of Notch signalling within CP-CML, and confirm previously suggested findings that there is, indeed, a role for Notch signalling within myeloid disease.

Using CD34+ CP-CML primary samples, it was demonstrated that Notch receptors were present, but not active, within CP-CML at both mRNA and protein level. This was shown through mRNA expression of the Notch receptors, *NOTCH1* and *NOTCH2*, which were significantly overexpressed within a CP-CML population. Protein expression of the extracellular receptor was validated using IF. The pathway was inactive, as evidenced through the expression of the downstream targets, *HES1* and *HIF1A*, and with absent expression, through IF and western blotting, of val1744, which represents the cleaved Notch receptor upon canonical pathway activation (Chiang et al, 2013). This was again shown on evaluation of microarray datasets, which showed the pathway was globally downregulated. I next validated this gene and protein expression data through functional evaluation of the pathway on non-stromal culture conditions (i.e. plastic culture) with and without the addition of the pharmacological Notch inhibitor, DAPT. Addition of DAPT on non-stromal *in vitro* culture conditions did not functionally alter cell growth, cell cycle, or apoptosis in CD34+ CP-CML samples, suggesting that Notch signalling is silenced in CD34+ CP-CML and excludes a “positive” role for Notch signalling in CML disease progression or treatment resistance.

Overexpression of Notch receptors has previously been described in CP-CML (Aljedai et al, 2015). However, within this paper, it was suggested that the pathway was active within the disease subset, through expression of *HES1* transcripts compared to housekeeping genes in 4 samples (p<0.05). This, however, was not consistent through samples, nor consistent within the subpopulations analysed. Furthermore, the overexpression of *HES1* was not described at a protein level and the protein expression of the receptor was identified using a monoclonal antibody that targets the extracellular aspect of the receptor, which does not confirm activation, merely the presence of an extracellular receptor. Our results were more consistent with the data described in AML, where it has been shown that there is an upregulation of *NOTCH2*, but with no confirmed activation at basal cell level (Klinakis, 2011; Lobry et al, 2013; Oh et al, 2013).
Analysis of global gene expression of Notch signalling components demonstrated no statistical correlation with *BCR-ABL* expression at 12 and 18 months. However, *FBXW7* was shown to be a prognostic indicator between good and poor responders in accordance to ELN guidelines (Baccarani et al, 2013). *FBXW7* is not unique to Notch signalling and has been shown *in vivo* to target many proto-oncogenes, growth promoters, and anti-apoptotic molecules. Furthermore, *FBXW7* has been shown to have an indispensable role in the maintenance of adult HSC quiescence (Matsuoka et al, 2008; Thompson et al, 2008). Deletions of Fbxw7 in HSCs and CML LSCs have been shown to lead to c-Myc accumulation, activation of the TP53 signalling pathway, aberrant cell cycle entry and eventual exhaustion (Reavie et al, 2013; Reavie, 2010). TP53 mutations can accompany disease progression in human CML and TP53 loss in some cases impedes the anti-leukaemic response to BCR-ABL inhibition (Kelman et al, 1989; Wendel et al, 2006), suggesting that loss of TP53 in some tumours could constitute an adaptive response to the increase in the levels of c-Myc during CML progression.

![Diagram](image)

Figure 3 – 28 Schematic representation of c-MYC and p53 within CP-CML

Recently, published work within the Holyoake group has highlighted the association between c-Myc and p53 within CML LSCs, functioning as central hubs within the regulatory process of disease maintenance (Abraham et al, 2016) (figure 3-28). Using clinically tractable inhibitors, namely the HDM2 inhibitors, RG7112 (Roche), and BET inhibitors, CPI-203 and CPI-0610 (Constellation Pharmaceuticals), it was shown that
selectively targeting these transcription factors could lead to elimination of the CML LSC both in vitro and in vivo. Our data, perhaps, highlights further the potential role now of FBXW7 as a therapeutic modality within CP-CML in the eradication of the LSCs, or at least in the identification of those who will inevitably be poor responders in accordance with BCR-ABL activity.

In view that the CP-CML CD34+ cells specifically and abundantly express the Notch receptor, NOTCH2, and that the pathway was confirmed to be functionally inactive at basal state (i.e. on plastic culture without stromal support), it was then hypothesised that Notch signalling could be reactivated through exogenous activation in CP-CML CD34+ cells upon ligand binding to the Notch receptor. As has been described in detail within the introductory chapter, multiple cell types within the BM microenvironment express Notch receptors and ligands. This could be of particular importance in CML, where emerging evidence indicates that not only do the CML LSCs strongly rely on the BM niche for their self-renewal and proliferation, but they also modify the BM to their advantage (Bhatia et al, 1995; Krause et al, 2013b). The BM contains an endosteal osteoblastic niche, which supports quiescence and self-renewal and a more vascular/peri-sinusoidal niche that promotes proliferation and differentiation; both associate with supporting MSCs. Notch plays an important role in osteogenesis and angiogenesis, and can influence osteoblast differentiation positively or negatively (Ramasamy et al, 2014). Despite the abundance of data on Notch and HSC function, controversy remains regarding the precise role of Notch signalling in normal physiology owing to the intricacies of some Notch-related phenotypes (Dahlberg et al, 2011; Delaney et al, 2005). For example, the effects of Notch ligand activation vary based on the relative density of Notch surface receptors (Delaney et al, 2005). Also, there is precedence for differential effects by various Notch ligands, with distinct roles of JAG1/2 versus DLL in lymphoid development. For example, Delta1-induced signalling completely inhibits the differentiation of human haemopoietic progenitors into the B cell lineage and promotes the emergence of cells with a phenotype of T cell/natural killer (NK) precursors, while JAG1-induced signalling does not disturb B or T cell/NK development (Jaleco et al, 2001). It was, therefore, decided to focus our experimental upregulation of the Notch pathway through JAG1 and DLL1 ligands utilising an OP9 co-culture system and plate-bound recombinant ligand approach in an in vitro setting. This was of particular importance as manipulation of Notch ligands influences both haemopoietic and mesenchymal stromal cell fates and ultimately, alters the microarchitecture of the BM microenvironment, thereby altering the dynamics of the
same regulatory interactions under investigation. We first needed to understand how upregulation through ligand binding could alter the myeloid CD34+ cells before trying to tackle a 3D in vitro or in vivo approach.

Our data demonstrated that upon JAG1 activation of the Notch pathway, as demonstrated by differences between OP9GFP and OP9JAG1 experimental arms, there was increased growth potential of CD34+ cells, although this was not explained by CFSE assays to confirm proliferation rates, nor change in cell cycle distribution. This can, in part, be explained by the basal concentration of JAG1 within the OP9GFP experimental arm. Activation of the pathway was confirmed at gene level with increased expression of HES1 and the val1744 protein in both the OP9GFP and OP9JAG1 experimental arms. To overcome the basal levels of JAG1 in the OP9GFP cell line, we adopted two approaches: the first was to assess all experiments against a non-stromal control, and then compare to plate-bound recombinant JAG1 in isolated experiments. Recombinant JAG1 allowed for assessment of the influence of Notch activation negating the contributing factors from stromal cells, such as expression of other self-renewal pathways and cytokine release.

CFSE assays showed a number of interesting findings. Firstly, it demonstrated an increased trend towards percentage of viable cells in later division on stromal co-culture compared to non-stromal conditions, suggesting that in stromal conditions, cells are protected somewhat to enable increased divisions. This was again confirmed within MSC experiments where co-culture on MSC led to protection of CD34+ against TKI-induced apoptosis. Within our experiments, this was not clearly dependent on activation of Notch through JAG1 expression. This suggests that Notch activation is not solely responsible for protection of LSC within disease states. Previously, it has been suggested that this protection of CML stem and progenitor cells from TKIs is through a close interplay between N-cadherin and the Wnt pathway (Zhang et al, 2013), amongst other pathways (Agarwal & Bhatia, 2015; Perrotti et al, 2016; Toofan et al, 2014; Zhou et al, 2016). Secondly, this data demonstrated that globally, JAG1-induced Notch activation led to a decrease in the percentage of total viable CD34+ cells. This is perhaps, not surprising, in that Notch activation may be altering the balance between the number of self-renewal cells and commitment divisions that are occurring. The normal function of Notch within HSCs has previously been discussed, but to recap, this is largely dependent on activating ligand strength that controls specifying haemopoietic fate (Gama-Norton et al, 2015). It has been suggested that canonical Notch signalling is
dispensable for the maintenance of HSCs in the adult BM under physiologic conditions (Maillard et al, 2008), with further support found in the conditional deletion of Notch1 or Notch1 plus Notch2 under the control of the interferon-dependent expression of Mx-Cre that specifically and exclusively affected lymphoid differentiation, but not other haemopoietic lineages (Besseyrias et al, 2007; Radtke et al, 1999).

This data led us to establish that upon JAG1 activation, cells undergo a degree of apoptosis, but more significantly, it causes a push towards early erythroid differentiation that is blocked in an immature state (i.e. proerythroblast phase). This was determined through cell surface identification of erythroid markers. There was an increase in expression of both CD71 and GlyA with the addition of stromal co-culture. This was only statistically significant with CD71 surface expression. As CD33 expression was maintained, it suggested that although the samples had initiated differentiation, they could not progress beyond an immature phenotype. To corroborate the possible involvement of Notch activation through JAG1 interaction in early differentiation, gene expression was investigated in primary CD34$^+$ CP-CML patient samples. There was a statistically significant increase in overexpression of key genes involved in early erythroid differentiation, namely, $p38$ ($p<0.05$) and $PU.1$ ($p<0.05$), which have notable involvement in development of (pro)erythroblasts. Furthermore, there was little change in gene expression in regulators of the stem cell phenotype, namely $GATA2$ and $NFkB1$. This is the first time this has been proposed within a CML phenotype.

Literature evidence remains conflicting regarding the role of Notch activation in normal differentiation models (Schroeder et al, 2003; Tan-Pertel et al, 2000; Zeuner et al, 2011). Initial in vitro studies suggested that Notch signalling accelerated myeloid differentiation (Schroeder et al, 2003; Tan-Pertel et al, 2000), with subsequent studies contesting this conclusion, with one study suggesting that Notch can suppress myelopoiesis in vitro (de Pooter et al, 2006) and further studies suggesting it can induce a megakaryocyte differentiation. Within an AML subset, Notch activation through DLL4 led to leukaemia initiating cells differentiating into more mature cell types with morphology resembling macrophages or dendritic cells, and an increased proportion of cells undergoing apoptosis (Lobry et al, 2013). Erythropoiesis involves the progressive differentiation of uncommitted progenitors to mature erythrocytes. However, not only differentiation but also apoptosis participates in the regulation of cell survival and mature red cell turnover. The amount of Epo mainly dependent on hypoxia, is one of the key factors in controlling the survival of erythroid cells. Other transcription factors
including GATA1 and, more recently, TP53 have been implicated in regulating apoptosis at different stages of erythroid maturation (Robert-Moreno et al, 2007); again consistent with the data presented within this chapter.

The difficulty in assessing Notch activation in CD34+ CP-CML cells is that the influence of the pathway is likely to change between a self-renewing population and a more mature population. Therefore, it is unsurprising that experiments using bulk CD34+ cells produce large inter-patient variability, with a non-conclusive role of the pathway in short term in vitro culture.

Analysis of sorted immature and mature populations, suggested that the cellular function of Notch through Jagged1 interaction was variable dependent on cell maturity, with activation in mature progenitors leading to increased growth by trypan blue exclusion cell counts, and within an immature population, leading to apoptosis. We next questioned if exogenous activation would affect the long-term culture ability of an immature stem cell population; LTC-IC assays were used. Notably, there was a statistically significant reduction in colony formation between both plastic and OP9GFP compared to OP9JAG1 or recombinant JAG1 co-culture. This suggested that short-term activation of Notch in an in vitro co-culture system led to a statistically significant reduction in self-renewal and the ability to form colonies. This has not previously been described, and although it provides a potential therapeutic role in the eradication of the LSC, I have failed to present the mechanism by which this occurs. A hallmark feature of adult stem cells is their relative proliferative quiescence. Although these cells are considered immortal, HSCs can exhaust and this is frequently hastened by proliferative stress. For example, HSCs are capable of reconstituting the haemopoietic system following transplantation. However, after serial transplantation, HSCs gradually decline and are eventually exhausted. I propose that activation of the Notch pathway through the JAG1 protein leads to increased cell growth, differentiation and apoptosis in CP-CML cells, that ultimately leads to LSC exhaustion and a decrease in colony formation.
3.5. Future Work

In order to evaluate the function of Notch activation as a therapeutic modality, we have firstly embarked on translating the in vitro findings to an in vivo setting. This will allow for evaluation within a BM microenvironment. With thanks to the Aifantis laboratory (NYU), we have utilised the ROSA26-ICN2 murine model, which were generated by insertion of a loxP flanked splice acceptor NEO-ATG cassette with two polyA sites followed by ICN2 into the ROSA26 locus, allowing the ROSA26 promoter to drive expression of the NEO-ATG cassette. Cre-recombinase–mediated excision of NEO-ATG results in use of the splice acceptor in the ICN2 cassette and irreversible expression of the transgene (Lobry et al. 2013; Klinakis et al. 2011). Following confirmed activation of Notch, animals will be sacrificed and BM cells retrovirally transduced with BCR-ABL as described (Mizuno et al. 2008; Li et al. 1999), and monitored for leukaemic progression.

In order to prove that stem cell exhaustion is the mechanism by which Notch activation reduces LSC colony formation long-term, serial BM transplantation into lethally irradiated mice would be undertaken. However, this is most likely going to be inhibited by cell numbers needed, as one would have to isolate the LSC population in view of the proposed dual functions of Notch. A simpler approach in an in vitro setting is to use serial CFC assays following LTC-IC assays to mimic the in vivo approach. This would provide evidence that the cells are becoming more exhausted within the Notch activated samples (i.e. colonies will not form in serial CFC assays in the Notch activated experimental arm).

Further to this, we have recently set-up a 3D in vitro model to allow for evaluation of cell interactions between different niche components. This will allow for a detailed evaluation of activating Notch on different cell types, as well as cell interactions. Our quiescent 3D BM niche uses magnetic nanoparticles to form MSC spheroids via magnetic levitation (Lewis et al, 2017). On implantation into a type I collagen gel (stiffness akin to BM), the cells in the spheroids are viable, but quiescent, express high levels of STRO-1 and nestin, can be tracked/sorted (due to their fluorescent tag) and respond to stimulation. These are then co-cultured above a monolayer of osteoblasts or endothelial cells, recapitulating the endosteal and perivascular components of the BM niche, respectively. LSC are then introduced into the system and cultured on the collagen matrix, allowing homing and migration towards the MSC spheroid. By
fluorescently tagging MSC and LSC cell populations (using fluorescent magnetic nanoparticles (mNPs)), this system uniquely enables the migration/interaction with the various cell populations to be monitored over time by live imaging using Incucyte Zoom™ system. Following disaggregation using collagenase, self-renewal and differentiation of the cell populations can be monitored and enumeration using specific markers by multi-parameter flow cytometry performed. The major advantages of this 3D system are (1) all the cells used are human, derived from primary patient samples enabling the leukaemia cells to interact with osteoblasts, MSC and endothelial cells within an extracellular matrix, creating a physiological environment mimicking the human in vivo BM niche. (2) By creating MSC spheroids using magnetic nanoparticles the MSC survive in an immature dormant quiescent state until stimulated by cell-to-cell interactions, tissue damage or extrinsic stimulation. The MSC then have the capacity to divide and differentiate appropriately akin to the natural BM microenvironment. (3) By fluorescently tagging MSC and HSC/LSC cell populations this system uniquely enables the migration, interaction and remodelling within the various cell populations to be monitored over time by live imaging. (4) Scale, sufficient cells can be co-culture using this system to enable the detailed biochemical and molecular assays to be performed-thus advancing research into the pathophysiology of leukaemia initiation and progression. (5) Microinjection of growth factors/small molecule inhibitors using hydrogel systems will enable localised effects to be monitored. (6) This model provides an ideal platform for drug screening with the potential to be adopted for high throughput screening of small molecule inhibitors or siRNA libraries by pharmaceutical companies. (7) This system will provide a valid alternative to mouse models and allows for limited cell numbers. Development of this project is currently underway in collaboration with Drs Helen Wheadon and Catherine Berry (both University of Glasgow).
4. Results II

4.1. Introduction

Despite a targeted therapeutic approach with TKIs in CML, a small number of patients will present in or progress to the acute phase of the disease, termed BC or BP. The incidence of progression to BP under TKI treatment ranges between 0.7 and 4.5% (Cortes et al, 2013; Hehlmann et al, 2011; Hughes et al, 2014) and is defined, as described within the introduction, according to the World Health Organisation (Arber et al, 2016) by the presence of at least one of

1. Blasts comprising approximately 20% of peripheral blood (PB) white cells or nucleated bone marrow cells,
2. Extramedullary blast proliferation, or
3. Large foci or clusters of blasts in the bone marrow.

Responses to TKIs in BP are transitory, and median survival following diagnosis of BP remains at only 6.5 to 11 months in those treated with TKI alone (Hehlmann, 2012). Therefore, if progression is suspected, it needs to be acted on with immediate effect to optimise outcome. As previously described within the introductory chapter, it can present as either myeloid, lymphoid, or biphenotypic in lineage, with approximately two-thirds of cases being found to be of a myeloid phenotype (Atallah et al, 2002; Kinstrie et al, 2016; Rosenthal et al, 1977). This suggests that within BP, LSCs may play an important role in view of the ability to differentiate to both lineages. However, a high degree of heterogeneity has been recognised, with multiple immunophenotypically distinct populations identified (Kinstrie et al, 2016). Furthermore, it has been shown that within BP disease, committed progenitors can acquire self-renewal properties (Jamieson et al, 2004; Kinstrie et al, 2016). As such, the LSC in BP-CML may reside in at least 3 subsets, namely Lin−CD34+CD38−, Lin−CD34+ cells remaining from CP, and the disease-driving Lin−CD34+CD38+ GMPs and CMPs (Jamieson et al, 2004; Kinstrie et al, 2016).

To date, it remains unclear the mechanisms responsible for progression to BP, nor those that determine lineage decision. This has been discussed within the introductory section 1.3.5.1. It is clear, however, there may be a role for self-renewal pathways within this process, which remains unsurprising in view of the role that the LSC plays within disease development and persistence. Most of the data available surrounds myeloid BP, which is more common. In BP-CML, the LSC subsets has been shown to result in
multiple populations with the immunophenotype of normal progenitors, as well as stem cells (Kinstrie et al, 2016). Various self-renewal pathways have been implicated in this, including Wnt/β-catenin, which is probably the most well established (Abrahamsson et al, 2009; Radich et al, 2006b; Sengupta et al, 2007; Zhao et al, 2007). Other self-renewal pathways, including Hh and BMP, have been linked to this process, but their exact role has yet to be fully elucidated (Jamieson et al, 2004; Radich et al, 2006; Su et al, 2012). Certainly, it may be shown that the role for different self-renewal pathways will be determined dependent upon which subset the LSC derives from. For example, accumulation of β-catenin in the nucleus of GMPs leads to increased self-renewal potential (Abrahamsson et al, 2009; Ysebaert et al, 2006). It seems pertinent, therefore, that the role for each evolutionary conserved self-renewal pathway be determined, as this will aid understanding and the development of therapeutic strategies.

In view of the finding that within a CP-CML model Notch activation, through JAG1, led to early differentiation and reduction in colony formation in short-term and long-term in vitro culture, respectively, we questioned if this could be translated to a BP phenotype, and indeed lead to a therapeutic advantage. There is a documented role for Notch pathway components in the progression of disease; however, the reports remain conflicting. It has been documented that within the K562 cell line, Notch inhibition can induce erythroid maturation (Lam et al, 2000). However, within the same cell line, activation of the pathway through a lentiviral model has led to a reduction in colony formation (Suresh & Irvine, 2015). Furthermore, activated intracellular Notch has been shown to cooperate with Bcr-Abl contributing to CML blast crisis in an in vivo model (Mizuno et al, 2008). Contrary to these observations, inactivation of Notch1 in mouse HSCs induced CMML and Notch1 here has been suggested to have a tumour suppressor role (Klinakis et al, 2011). In this study, conditional knockdown of Notch1/2/3 genes in mouse models induced CMML-like disease and introduction of Notch1 or Notch2 could rescue the disease phenotype. This study also reported that intracellular Notch1 expression in murine leukaemia-initiating cells upregulated Hes1 levels, which led to the repression of myeloid expansion. However, Hes1 has been previously reported to cause CML BP transformation in mice (Nakahara et al, 2010).

The data presented within results I suggests a potential role for the eradication of the LSC in CP disease; therefore, it was sought to determine if this could be translated into a myeloid BP phenotype, where there is huge need for novel therapeutic agents.
4.2. Aims

Based on the evidence provided above, the specific aims set out in this chapter are:

1. To assess the expression of the Notch signalling pathway elements in myeloid BP-CML patient samples;
2. To determine the functional role, if any, of the Notch signalling pathway in myeloid BP-CML patient samples;
3. To assess the interconnectivity between self-renewal pathways through gene expression analysis between CP and myeloid BP.
4.3. Results

4.3.1. The Notch signalling pathway is silenced in primary myeloid BP CML

To evaluate the role of Notch signalling within a myeloid BP phenotype, Notch pathway gene expression was investigated in primary myeloid BP-CML samples. Using Fluidigm technology, mRNA expression of 11 myeloid BP-CML patient samples was compared to normal PB CD34+ samples. Relative gene expression levels were determined using the average normal CD34+ value as a calibrator calculated using the \(\Delta \Delta \text{Ct} \) method (Schmittgen & Livak, 2008), using an average of five housekeeping as reference. All but one patient sample had been exposed to TKI prior to analysis.

![Figure 4](image-url)

Figure 4 - 1 Focussed gene expression analysis demonstrates that the Notch pathway components are likely silenced within primary myeloid BP samples

Relative gene expression levels for 11 CD34+ BP-CML samples were determined against the average normal CD34+ PB values calculated using the \(\Delta \Delta \text{Ct} \) method with an average of five housekeeping genes as reference. Fold change is relative to normal CD34+ PB samples (n=3). (A) Dot plot showing fold change expression values for Notch receptors. (B) Dot plot showing fold change expression values for Notch downstream targets and MAML. (C) Dot plot showing fold change expression of negative regulators of the pathway. P values were determined by an unpaired t-test (* \(p<0.05 \), ** \(p<0.01 \)).
Focussed gene analysis confirmed that the Notch receptor, NOTCH2, was statistically upregulated compared to normal CD34+ PB samples (p=0.0035; figure 4-1A). NOTCH1 was overexpressed, but this was not deemed statistically significant (p=0.21; figure 4-1A). The downstream target, HES1, was statistically upregulated within the myeloid BP samples (p=0.0023; figure 4-1B); however, the pathway was deemed to be silenced with no statistical change shown in gene expression of other downstream targets, such as HIF1A (p=0.3632; figure 4-1B). Furthermore, the intracellular complex of the pathway necessary for downstream activation, MAML was not significantly overexpressed within this population (p=0.96; figure 4-1B). Negative regulators were overexpressed compared to normal samples, but this was not statistically significant (figure 4-1C).

Although the gene expression analysis was suggestive that the majority of myeloid BP samples did not demonstrate active Notch signalling through gene expression analysis, it was not conclusive, as HES1, a major downstream target of the Notch pathway was significantly upregulated. Furthermore, although HIF1A and MAML did not demonstrate a statistically significant upregulation, they had increased expression compared to the normal PB samples. The cleaved aspect of the intracellular NOTCH2 receptor, val1744, was absent through IF and western blotting.

Therefore, to confirm that the pathway was not upregulated, the pharmacological Notch inhibitor, DAPT, was utilised. Three myeloid BP-CML primary samples were thawed or used fresh, and sorted into CD34+ populations, as previously described. Cells were cultured in low growth factor SFM on non-stromal conditions (i.e. plastic culture without stromal support) with and without 10uM DAPT for five sequential days. Trypan blue exclusion cell counts showed that there was no statistically significant difference between untreated and treated samples in terms of cell growth; however, there was notable heterogeneity between samples (figure 4-2). Of note, there was a slight increase in growth potential amongst those samples treated with DAPT for 5 days in vitro.
To determine if the increase in growth potential was a ‘true’ finding, annexinV and 7AAD were utilised to assess apoptosis and live cell populations. There was no change in apoptotic ability, nor percentage of live cells, between experimental arms using flow cytometry measurement of annexinV and 7AAD, suggesting that Notch inhibition on plastic culture does not alter apoptotic ability, within a myeloid BP phenotype (figure 4-3).

To determine if the increase in growth potential was a ‘true’ finding, annexinV and 7AAD were utilised to assess apoptosis and live cell populations. There was no change in apoptotic ability, nor percentage of live cells, between experimental arms using flow cytometry measurement of annexinV and 7AAD, suggesting that Notch inhibition on plastic culture does not alter apoptotic ability, within a myeloid BP phenotype (figure 4-3).

Figure 4 - 2 Pharmacological inhibition of Notch does not alter cellular growth in myeloid BP samples in plastic culture
CD34+ myeloid BP cells were cultured in low growth factor SFM with or without the presence of 10uM DAPT (n=3). DMSO treated cells were used as an ‘untreated’ control. Cells were counted using trypan blue exclusion cell counts every 24 hours. No significant difference was seen with the addition of DAPT over sequential days in culture as analysed using a paired student’s t-test at each time-point (n=3; p>0.05).

Figure 4 - 3 Pharmacological inhibition of Notch does not affect apoptotic ability of myeloid BP samples in plastic culture conditions
Myeloid BP cells were cultured in low growth factor SFM with or without the presence of 10uM DAPT for 5 days (n=3). DMSO treated cells were used as ‘untreated’ control. Samples were stained with annexinV and 7AAD as previously described. Unstained and single stained cells were used to set voltages and compensation. There was no significant difference between populations as analysed using a paired student’s t-test at each time-point (n=3; p>0.05).
4.3.2. In vitro activation of Notch through ligand binding does not alter cellular function in primary myeloid BP samples

In view that myeloid BP CD34+ cells specifically and abundantly express the Notch receptor, NOTCH2, and that the pathway was deemed functionally inactive at basal state (i.e. on plastic culture without stromal support), it was hypothesised that Notch signalling could be reactivated exogenously by altering cellular function, as had been demonstrated within a CP phenotype. As within the CP experimental model, an OP9 co-culture system was used to allow for the overexpression of the DLL1 and JAG1 proteins, using OP9-GFP cells as control stroma. CP-CML samples had demonstrated changes between a mature and immature population, therefore myeloid BP-CML samples were sorted into these populations using CD34 and CD38 expression. Three samples were used.

Following cell sorting, cells were cultured on non-stromal and stromal conditions for six sequential days in low growth factor SFM. Trypan blue exclusion cell counts were conducted every 24 hours to assess cell growth between experimental arms. There was no statistical change in cell growth between non-stromal and stromal conditions (p>0.05; figure 4).

![Figure 4](image.png)

Figure 4 - Co-culture with Notch ligand support does not alter the growth potential in mature and immature myeloid BP cells

Myeloid BP progenitor cells were sorted by CD34 and CD38 expression before being cultured in low growth factor SFM with or without the presence of stroma. Within each co-culture experiment, OP9 stromal cells underwent a maximum of 8 passages before use. OP9 stromal cells were seeded at a 1 in 24 ratio with suspension cells (i.e. 1 stromal cell per 24 suspension cells) 24 hours prior to co-culture. 50,000 myeloid cells were seeded onto plastic or stromal conditions in 12 well plates and counted every 24 hours using trypan blue exclusion cell counts. There was no significant change between co-culture conditions, nor between mature and immature populations as assessed by a multiple comparison ANOVA at each time-point (n=3; p>0.05).
To confirm this pattern, apoptosis assays were used to determine live population percentage and apoptotic ability within a co-culture system. AnnexinV and 7AAD was assessed by flow cytometry as previously described. Within both populations, culturing on stroma led to an apparent increase in live cells, however this was not significant, nor dependent on activation of the Notch signalling pathway (figure 4-5).

CFC assays were used to assess the capacity for proliferation and differentiation within both population subsets. This was in view of the differentiation potential seen within a CP phenotype. CD34+ BP-CML cells following co-culture in non-stromal and stromal conditions were inoculated into a semi-solid culture medium containing a standard growth factor cocktail. Following culture for 12 days, colonies were evaluated and counted. Each condition was in duplicate and mean between plates calculated. Over four BP-CML samples, there was no statistical change between colony formation upon co-culture (figure 4-6).
This was suggestive that either the pathway was not being activated by the co-culture conditions or that activation had no effect on cellular function. To determine this, RNA was extracted from the previously co-cultured samples and analysed for both the downstream Notch target, $HES1$, and the intracellular complex necessary for target activation, $MAML$. This was to determine if there were changes at a gene level between co-culture conditions. There was no statistical change between experimental arms (figure 4-7). This was corroborated at protein level using IF of val1744, the intracellular component of the Notch receptor, which showed no activity. This confirmed that the pathway was not being activated in any of the co-culture conditions, nor between immature and mature populations. This was not comparable to the CP-CML data.

![Figure 4 - 6 Co-culture with Notch ligand support does not alter colony formation in mature and immature myeloid BP cells](image)

Myeloid BP cells were sorted by CD34 and CD38 expression. Following co-culture in non-stromal and stromal conditions for five days, cells were inoculated into a semi-solid culture medium containing a standard growth factor cocktail. Following culture for 12 days, colonies were evaluated and counted. Each condition was in duplicate and mean between plates calculated. There was no difference between co-culture conditions ($p>0.05$; $n=3$). Colonies were BCR-ABL positive in all conditions, as determined by FISH.

![Figure 4 - 7 Gene expression of $HES1$ and $MAML$ confirms that the Notch pathway is not activated through exogenous ligand expression](image)

Using Fluidigm technology, mRNA expression of CD34$^+$CD38$^+$ and CD34$^+$CD38$^-$ culture on plastic, OP9GFP co-culture, OP9DLL1 and OP9JAG1 co-culture after 5 days was compared to normal peripheral blood CD34$^+$ samples. Relative gene expression levels were determined using the average normal CD34$^+$ value as a calibrator calculated using the $\Delta\Delta$ Ct method, using an average of five housekeeping genes as reference. There was no difference between populations, nor within co-culture conditions, as determined by a multiple comparison ANOVA ($p>0.05$).
4.3.3. Gene expression analysis of evolutionary conserved self-renewal pathways between CP and myeloid BP disease

The functional data generated above did not demonstrate a clear functional role for Notch signalling within myeloid BP primary samples. In part, this could be due to the heterogeneity that is seen between BP samples (Kinstrie et al, 2016). It can be concluded, however, that activation of the pathway does not have the same functional relevance as within CP (Results I). It was hypothesised at this juncture that the Notch signalling pathway could not be activated in the same way as a CP phenotype due to aberrancies of other self-renewal pathways and/or upregulation of negative regulators.

It is well documented that as CML progresses, self-renewal pathways are deregulated (Sengupta et al. 2007; Jamieson et al. 2004). Self-renewal pathways are modulated by interconnecting signals within the microenvironment. This, subsequently means, that upregulation of downstream targets, such as HES1, can be acquired via other pathways. Moreover, understanding the interconnectivity between pathways, may, in turn, help understand the reasons that CP disease can progress to either myeloid or lymphoid lineage BP.

To try and delineate interconnections between self-renewal pathways, RNA was extracted from CP, AP, and myeloid BP before assessing gene expression of self-renewal pathway components, including components of the Notch, Wnt/β-catenin, Hh, and BMP pathways, as well as the main apoptotic regulators, including TP53. This was to determine gene expression changes between CP, AP, and myeloid BP disease.

Using Fluidigm technology, quantitative PCR of 90 self-renewal and cell survival genes was performed with the primary sample RNA. 100ng was transcribed to cDNA across all samples to enable comparison between groups. Samples were plated in duplicate, and as more than one Fluidigm plate was to be used, an internal sample control was used across plates to enable comparison. On global gene expression analysis, CP could be segregated from AP and myeloid BP by differential gene expression through gene clustering of the fold change compared to the PB CD34+ population (figure 4-8). AP and myeloid BP could not be distinguished through this method, suggesting that the differential gene expression in CML progression is a two-step phenomenon rather than three; this has been previously described (Radich et al. 2006).
Gene expression clustering suggests a two-stage disease process within CML

Gene expression profiles (GEPs) were determined from CP, AP, and myeloid BP populations. Gene expression levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by $\Delta\Delta C_t$ method using an average of five housekeeping genes as reference and the average CD34$^+$ value as the calibrator for fold change. Heat maps and gene clustering were produced by using heatmap.2 in R/Bioconductor.

Focussed gene analysis of this dataset demonstrated that there was a notable deregulation of all self-renewal pathways between CP and myeloid BP disease. The Notch pathway was no exception. There was a statistically significant increase in the Notch receptors, NOTCH1 and NOTCH2, between CP and myeloid BP disease (p=0.007 and p=0.03, respectively; figure 4-9 A-B). However, there was no statistical
change in the Notch ligands (figure 4-9 C-E). Furthermore, there was a statistically significant increase in gene expression of the metalloproteases necessary for proteasome cleavage of the pathway on activation, namely ADAM10 (p=0.0004; figure 4-10A) and ADAM17 (p=0.0043; figure 4-10B).

![Figure 4 - 9 Focussed gene expression of Notch receptors and ligands](image)

Using Fluidigm technology, mRNA expression was determined for CP, AP, and myeloid BP compared to normal PB CD34+ samples. Relative gene expression levels were determined using the average normal CD34+ value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t test between populations to enable determination of significance gene changes within disease progression. (A) Dot plot showing gene expression of NOTCH1. (B) Dot plots showing gene expression of NOTCH2. (C) Dot plots showing gene expression of JAG1. (D) Dot plots showing gene expression of DLL1. (E) Dot plots showing gene expression of DLL3. P values were determined by an unpaired t-test between populations (* p<0.05, ** p<0.01, *** p<0.001).
There was a statistically significant increase in *MAML* between CP and myeloid BP. However, compared to normal PB samples, these were not significant as stated above (figure 4-11). This suggests that although there is a shift in Notch signalling through progression to myeloid BP disease, the pathway is not likely active as this critical co-activator is not elevated compared to normal.

Interestingly, the negative regulators, *FBXW7* and *MFNG*, were increased in myeloid BP compared to CP (p=0.02, and p=0.007, respectively), and between CP and AP,
suggesting that this could potentially be a mechanism to its silencing (figure 4-12A-B). Expression of the negative regulator, RFNG, was not altered in any phase of disease (figure 4-12C).

As previously documented, the Notch downstream target, HES1, has a statistically significant increase in expression within myeloid BP compared to normal PB CD34+ samples. Furthermore, the gene expression data demonstrated a statistically significant increase in expression of the Notch downstream targets, HES1 (p=0.0008) and HIF1A (p<0.0001), in progression from CP to myeloid BP (figure 4-12). This cannot be explained by the gene expression of the Notch pathway components demonstrated above.

Figure 4 - 9 Focused gene expression of negative regulators of the Notch pathway
Analysis of gene expression was determined using the ΔΔCt method as previously described. (A) Dot plot showing gene expression of FBXW7 compared to normal PB CD34+ samples in the three phases of disease. (B) Dot plot showing gene expression of MFNG compared to normal PB CD34+ samples in the three phases of disease. (C) Dot plot showing gene expression of RFNG compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01).
Figure 4 - 13 Focussed gene expression of the Notch downstream targets, HES1 and HIF1A

Analysis of gene expression was determined using the ΔΔCt method as previously described. (A) Dot plot showing gene expression of HES1 compared to normal PB CD34+ samples in the three phases of disease. (B) Dot plot showing gene expression of HIF1A compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, *** p<0.001, **** p<0.0001).

This led to the question also whether the upregulation of both HES1 and HIF1A was secondary to the activation of other self-renewal pathways. Furthermore, it was hypothesised that the activation of other self-renewal pathways was preventing activation of Notch components. For example, if considering HES1, the gene can be upregulated by numerous mechanisms (figure 4-14). These include through the BMP, Wnt/β-catenin and Hh pathways, as well as directly through HIF1A. Within each pathway, there is influence in the negative regulation of Notch.
Components of the canonical Wnt/β-catenin pathway were examined in view of previous literature evidence suggesting the pathway’s involvement in CML progression (Abrahamsson et al, 2009; Radich et al, 2006). There was a statistically significant increase in expression of TCF4 (p=0.0002) and TCF7 (p=0.0005), the major endpoint mediators of Wnt/β-catenin signalling, between CP and myeloid BP (figure 4-15A-B). TCF7 was significantly increased between CP and AP (p=0.04; figure 4-15B). Lymphoid enhancer factor 1 (LEF1) was unchanged (figure 4-15C). This indicated that the Wnt/β-catenin pathway was activated during disease progression. GSK3β was statistically significantly increased between CP and both AP (p=0.02) and myeloid BP disease (p=0.02) (figure 4-15D). It is, however, difficult to correlate gene expression of GSK3β, as it is the phosphorylated protein that accumulates during canonical Wnt/β-catenin activation.
Figure 4 - 15 Focussed gene expression of components of Wnt/β-catenin canonical signalling

Analysis of gene expression was determined using the ΔΔCt method as previously described. Dot plots showing gene expression of (A) TCF4 (B) TCF7 (C) LEF1 and (D) GSK3β compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01, *** p<0.001).

Furthermore, TLE3 and TLE4 had increased expression in myeloid disease progression, with a statistical increase in expression between CP and myeloid BP for both (p=0.0001 and p=0.0003, respectively; figure 4-16A-B), and between AP and myeloid BP for TLE4 (p=0.01) (figure 4-16A). This data validates that canonical Wnt/β-catenin components are deregulated within a myeloid BP phenotype.

Figure 4 - 16 Focussed gene expression of components of Wnt-β-catenin canonical signalling

Analysis of gene expression was determined using the ΔΔCt method as previously described. (A) Dot plot showing gene expression of TLE3 compared to normal PB CD34+ samples in the three phases of disease. (B) Dot plot showing gene expression of TLE4 compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (** p<0.01, *** p<0.001).

Wnt/β-catenin activity influences Hh activity and vice versa. It has been shown that Wnt/β-catenin signalling can influence the stability of GLI1 allowing for its cellular accumulation. To investigate this, the Hh pathway was next analysed. The Hh receptors, PTCH1 and PTCH2 were not statistically changed between CP, AP, and myeloid BP (figure 4-17A-B). As expected, GLI1 was significantly overexpressed in myeloid BP compared to CP disease (p=0.01; figure 4-17C). Interestingly, SUFU, a negative regulator of Hh was increased in myeloid BP compared to CP and AP (p=0.02 and p=0.01, respectively; figure 4-17D). This may suggest that GLI1 is being regulated through another self-renewal pathway, such as Wnt/β-catenin, or that SUFU has a dual role in the regulation of Hh.
There is known cooperation between BMP4 and both Hh and Wnt/β-catenin signalling. BMP4 expression associates with Hh signalling in determining HSC fate, both in embryonic and adult haemopoiesis. There was no statistical change in BMP4 expression in progression of disease (figure 4-18).

Figure 4 - 17 Focused gene expression of components of Hh signalling

Analysis of gene expression was determined using the ΔΔCt method as previously described. (A) Dot plot representing gene expression of PTCH1 compared to normal PB CD34+ samples in the three phases of disease. (B) Dot plot showing gene expression of PTCH2 compared to normal PB CD34+ samples in the three phases of disease. (C) Dot plot showing gene expression of GLI1 compared to normal PB CD34+ samples in the three phases of disease. (D) Dot plot showing gene expression of SUFU compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01).

Figure 4 - 18 Focused gene expression of BMP4

Analysis of gene expression was determined using the ΔΔCt method as previously described. Dot plot represents gene expression of BMP4 compared to normal PB CD34+ samples in the three phases of disease (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).
Within the canonical BMP pathway, SMADs are the major signal transducers. Upon phosphorylation of type I receptors, SMAD1, 5, and 7 become phosphorylated and form a complex with SMAD4. Within our data, there was no increase in SMAD5 between CP and AP/myeloid BP (figure 4-19D). SMAD1 and 7 were not analysed. SMAD4 had increased expression in myeloid BP (p=0.005) compared to CP (figure 4-19C), and this may suggest that a complex between SMAD1/5/7 and SMAD4 was not formed. Interestingly SMAD6 was statistically significantly upregulated in advanced phases compared to CP (p=0.04 between CP and AP; p=0.01 between CP and myeloid BP) (figure 4-19E). The BMP pathway is inhibited by SMAD6, which inhibits phosphorylation of SMAD1/5/7. Therefore, this gene expression data may suggest that the pathway is downregulated in all stages of CML.
It is clear from the gene expression data presented above, that varying components of self-renewal pathways’ are deregulated between CP and advanced CML. It is this deregulation that makes deciphering a therapeutic target within a self-renewal pathway challenging. We next analysed the downstream targets of these pathways that have a function in cell cycle, differentiation, and apoptosis, in an attempt to determine the cause of deregulation within CML progression.

CCND1, CCND2, and CYCLIN E1 were picked to assess G0-G1 phase of the cell cycle; STIL was chosen to assess cell cycle regulation through mitosis; and p21 was used to determine cell cycle inhibition (although varying reports suggest that within CML, this is increased in proliferative capacity, as considered within the discussion). The cell cycle genes, including CCND1, CCND2, p21, CYCLIN E1, and STIL were statistically and significantly upregulated during disease progression, in keeping with the increased proliferative rate seen within an acute phase phenotype. CCND1 and CCND2 were upregulated between myeloid BP and CP (p<0.0001 and p=0.03, respectively; figure 4-20A-B), with a statistically significant increase in expression of CCND1 between CP and AP (p=0.04; figure 4-20A). CYCLIN E1 was also significantly upregulated between CP and AP (p=0.01), as well as CP and myeloid BP disease (p=0.002; figure 4-20E). These findings are in keeping with increased cell cycle transition and proliferative capacity seen with disease progression. p21 is known to confer resistance to TKI in disease progression (Ferrandiz et al, 2010). Within our dataset, it was shown to have an increased expression compared to normal PB and between CP and myeloid BP disease (p=0.0001; figure 4-20C)). FOXO1 was not statistically increased in disease progression (figure 4-20D).
Figure 4 - Focussed gene expression of cell cycle components

Analysis of gene expression was determined using the \(\Delta \Delta C_t \) method as previously described. Dot plot showing gene expression of (A) CCND1, (B) CCND2, (C) p21, (D) FOXO1, (E) CYCLIN E1, and (F) STIL, compared to normal PB CD34\(^+\) samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* \(p<0.05 \), ** \(p<0.01 \), *** \(p<0.001 \), **** \(p<0.0001 \)).
It is known that as CML progresses abnormalities develop within DNA replication and subsequent formation of DNA double stranded breaks, leading to cellular instability. In keeping with this, MCM7 and MCM9 were analysed. MCM7 has been demonstrated to encode the protein essential for the initiation of genomic replication, with MCM9 required as a pre-replication complex. Both were increased between CP and myeloid BP (p=0.002 and p=0.005, respectively; figure 4-21).

RUNX1, a downstream target of BMP, was evaluated as it has been previously shown that abnormalities with **RUNX1** expression may promote CML disease progression, with mutations demonstrated within progressive phenotypes. In keeping with this, **RUNX1** was statistically increased between CP and myeloid BP (p=0.008) and between AP and myeloid BP (p=0.0093; figure 4-22A). We next analysed markers of a proliferative phenotype, namely the **GATA** gene family, where **GATA2** has been shown previously to be involved in evolution to myeloid BP, and c**JUN**, which has been demonstrated to regulate cell cycle. There was no change in expression of c**JUN** or **GATA1** (figure 4-22B-C). **GATA2** has been shown to correlate with prognosis within CML progression (Giotopoulos et al, 2015). Within our dataset, there was increased expression between CP and AP (p=0.01), as well as CP and myeloid BP, as expected (p<0.0001; figure 4-22D). **GATA3** was also increased between CP and both AP and myeloid BP, but the overall expression was lower compared to normal PB CD34+ cells (figure 4-22E).
Figure 4 - 22 Focussed gene expression of differentiation components

Analysis of gene expression was determined using the ΔΔCt method as previously described. Dot plots showing (A) RUNX1, (B) cJUN, (D) GATA1, (E) GATA2, and (F) GATA 3, compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01, **** p<0.0001).

MPO expression was comparable between disease stages, in keeping with the myeloid phenotype of the samples (figure 4-23A); there was no significant change in expression between phases. Both *MEIS1* and *SPII* have been implicated in the balance of differentiation and disease progression. Within our data, there was an increase in expression of *MEIS1* through disease progression, although there was no significant change compared to normal PB (figure 4-23B). *SPII* demonstrated an increase between
myeloid BP and normal PB, as well as between CP and myeloid BP disease (p=0.01; figure 4-23C).

Figure 4 - 23 Focussed gene expression of differentiation components
Analysis of gene expression was determined using the ΔΔCt method as previously described. (A) Dot plot representing gene expression of MPO compared to normal PB CD34+ samples in the three phases of disease. (B) Dot plot representing gene expression of MEIS compared to normal PB CD34+ samples in the three phases of disease. (C) Dot plot representing gene expression of SPI1 compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, *** p<0.001, **** p<0.0001).

Transcription factors necessary for apoptosis were significantly increased between CP and myeloid BP disease. *HIPK1*, which is downstream of Hh, has been shown to activate Wnt/β-catenin. It was statistically increased between CP and myeloid BP disease (p<0.0001; figure 4-24A). *NFκB* activity has been shown to be present within a blast phenotype; in keeping with this, there was a statistically significant increase in expression between CP and myeloid BP (p=0.0002; figure 4-24B). *TP53* and *MYC* have been demonstrated within our group to be key ‘hubs’ within LSC persistence and targeting these has been shown to lead to LSC eradication (Abraham et al, 2016). Within our data, there was increased expression of *TP53* between CP and AP, as well as myeloid BP disease (figure 4-24C). However, there was also increased expression of *MDM2* with disease progression (figure 4-24D); this was not significant in
comparison to normal PB. MYC showed increased expression between CP and myeloid BP (p=0.01 (figure 4-24E); again, this was not significant compared to normal PB controls, as was also the case for TGF-β which showed a statistically significant increase between CP and both AP (p=0.006) and myeloid BP (p=0.001; figure 4-24F).

Figure 4 - 24 Focussed gene expression of components involved in apoptosis

Analysis of gene expression was determined using the ΔΔCt method as previously described. Dot plots showing (A) HIPK1, (B) NFKβ, (C) TP53, (D) MDM2, (E) MYC, and (F) TGF-β compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).
EZH2 has been demonstrated to result in myeloprolifative neoplasm and has been shown to mediate activity of methyltransferase activity. Our data showed statistically significant increase in expression in all phases of disease, compared to normal. (CP, p=0.0066, AP, p=0.012, mBC, p=0.0005), although this was not significant between stage of disease.

Figure 4 – 25 Focussed gene expression of EZH2 in CML disease progression
Analysis of gene expression was determined using the ΔΔCt method as previously described. Dot plot representing gene expression of EZH2 compared to normal PB CD34+ samples in the three phases of disease. P values were determined by an unpaired t-test between the experimental population and normal, with an ANOVA used to determine significance between phase of disease (* p<0.05, ** p<0.01, *** p<0.001).
4.4. Discussion

Within this chapter, data is presented that suggests the Notch pathway has a differing functional role in myeloid BP-CML compared to CP-CML. This is the first time that primary myeloid BP cells have been used to understand this pathway in this phase of the disease. Previous literature evidence relies on cell line data or \textit{in vivo} retroviral models and provides conflicting outcomes.

Firstly, our data suggests that within primary myeloid cells, the Notch pathway is inactive at a basal state (i.e. on plastic non-stromal culture). This was based on gene expression data, where, despite a statistically significant increase in the Notch downstream target, \textit{HES1}, there was no objective evidence of the pathway being activated, with no statistical change in other downstream targets, such as \textit{HIF1A}, and no increase in expression of \textit{MAML}, the intracellular complex necessary for downstream activation. This was confirmed through functional analysis, which suggested that despite inhibition of the pathway using the gamma-secretase inhibitor, DAPT, there was no statistically significant change in trypan blue cell counts or apoptotic ability over six days in \textit{in vitro} culture.

As there was an abundance of the Notch receptor, \textit{NOTCH2}, on the myeloid BP cells, we next questioned if the pathway could be upregulated through exogenous expression of the Notch ligands, DLL1 and JAG1, as had been demonstrated within CP-CML. An OP9 co-culture system was used as previously described within chapter 3, and samples were sorted into immature and mature progenitor phenotypes using CD34 and CD38 expression. In cell proliferation, apoptosis, and differentiation assays, there was no change in cellular function within any co-culture model. The pathway was not deemed to be upregulated through exogenous activation with Notch ligands, by both gene expression of \textit{HES1} and \textit{MAML}, as well as IF of the val1744 protein.

This was, somewhat, surprising, in view of the mounting evidence that Notch signalling plays a role in acute myeloid disease, namely AML, with increasing and convincing evidence suggesting that Notch activation in myeloid precursors promotes self-renewal, induces and inhibits differentiation to monocytes, or can induce apoptosis (Carlesso et al, 1999; Li et al, 1998; Sarmento et al, 2005; Schroeder et al, 2003). Furthermore, early observations have shown that Notch signalling may play a role in myeloid progression (Schroeder et al, 2003; Tan-Pertel et al, 2000). More recently, observations have
supported a tumour suppressive role for Notch signalling in AML (Chen et al, 2008; Kannan et al, 2013; Klinakis et al, 2011; Lobry et al, 2013; Yin et al, 2009). It was observed that human AML samples expressed Notch receptors, however activation of downstream Notch targets was low, suggesting that Notch was present but not active in the samples analysed (Kannan et al, 2013; Lobry et al, 2013). Subsequent activation of the Notch receptors or Notch targets led to AML growth arrest in vivo and conversely Notch inhibition via dnMAML enhanced proliferation (Kannan et al, 2013), again suggesting a role of Notch in myeloid neoplastic proliferation. Within CML itself, there is a clear role for Hes1 within an acute phenotype, with in vivo data using a retroviral model resulting in an aggressive acute Bcr-Abl positive leukaemia, and as our data has suggested, myeloid BP disease is associated with an increasing activation of HES1. It is likely, as our data suggests, that this is not being mediated by Notch signalling and the question remains, what is driving its expression.

To evaluate this, it was next questioned if other signalling pathways were driving the increasing expression of HES1. This was in the knowledge that aberrancies within signal transduction pathways are the key in self-renewal, proliferative, and anti-apoptotic potential within CML progression and the CML LSC (Crews & Jamieson, 2012; Radich et al, 2006; Steelman et al, 2004; Zon, 2008). These pathways include the evolutionary conserved self-renewal pathways, Hh, Wnt/β-Catenin, TGF-β, BMP, and Notch, as well as survival pathways, such as MAPK and JAK-STAT signalling, leading to the upregulation of oncogenic transcription factors, such as c-MYC. It is known that these pathways and transcription factors do not act in isolation, relying on interconnective networks between them (Sinclair et al, 2013). RNA was extracted from CP, AP, and myeloid BP samples before being transcribed into cDNA at equal concentrations to allow for comparison between samples. Gene clustering of the data generated suggested that CML progression is a two-step phenomenon from CP to advanced/acute phase disease. This has previously been documented within the GSE1470 microarray dataset (Radich et al, 2006) and suggested that our dataset would be comparable in determining changes in gene expression through focussed gene analysis. Gene expression demonstrated notable deregulation of all evolutionary conserved self-renewal pathways between CP and AP/myeloid BP. Within the Notch pathway, there was a statistically significant increase in NOTCH1, NOTCH2, ADAM10, and ADAM17, which suggested that these cells had the machinery to allow for upregulation of the
pathway. In conjunction with this, there was a statistically significant increase in expression of the negative regulators, *MFNG* and *FBXW7*.

In addition to the core components of the Notch pathway, additional proteins modulate its activity; these include the Fringe family of glucosyltransferases (Haltiwanger & Stanley, 2002; Thomas & van Meyel, 2007). Fringe molecules, including *MFNG*, glycosylate Notch, thereby modifying the receptor’s response to its ligands. In general, glycosylation increases the response of Notch to Delta-like, but decreases Jagged-induced Notch signalling. In mammals, this decrease in Jagged-induced Notch cleavage occurs with no reduction in Jagged-Notch binding (Hicks et al, 2000; Yang et al, 2005). This perhaps offers an explanation for the inability of the Notch receptors to activate through JAG1, as would have been expected following the CP data generated in the previous chapter.

As has been discussed within earlier chapters, *FBXW7* is not unique to Notch signalling and has been shown in vivo to target many proto-oncogenes, growth promoters, and anti-apoptotic molecules. Furthermore, *FBXW7* has been shown to have an indispensable role in the maintenance of adult HSC quiescence (Matsuoka et al, 2008; Thompson et al, 2008). Deletions of Fbxw7 in HSCs and CML LSCs have been shown to lead to c-Myc accumulation, activation of the TP53 signalling pathway, aberrant cell cycle entry and eventual exhaustion (Reavie et al, 2013; Reavie, 2010). Within our dataset, there was a small but statistically significant increase in MYC expression between CP and myeloid BP. c-MYC is activated through direct BCR-ABL-mediated phosphorylation and the MAPK and JAK-STAT pathways to induce growth-factor independent proliferation and has been shown to be a key mediator of leukaemogenesis in CML (Afar et al, 1994; Askew et al, 1991; Notari et al, 2006; Xie et al, 2002). In keeping with this, *p38* was statistically and significantly increased between CP and myeloid BP. c-MYC has been also implicated in driving disease progression, as elevated expression confers an increased risk of progression to BP (Calabretta, 2004; Lucas et al, 2015; Radich, 2007). Additionally, inhibition of c-MYC is able to target TKI-resistant CML cells (Abraham et al, 2016; Winter et al, 2012), indicating that inhibition of c-MYC may have further therapeutic applications in advanced stage or TKI resistant disease. Activation of c-MYC has been shown to increase TP53 and, indeed, this is apparent within our own dataset. TP53 mutations can accompany disease progression in human CML and *TP53* loss in some cases impedes the anti-leukaemic
response to BCR-ABL inhibition (Kelman et al, 1989; Wendel et al, 2006), suggesting that loss of p53 in some tumours could constitute an adaptive response to the increase in the levels of c-Myc during CML progression. Within our own dataset, although there is a statistically significant increase in TP53, we cannot correlate this as being clinically relevant without the TP53 mutational status of each of the samples used and evaluation at a protein level.

The gene expression data demonstrated a statistically significant increase in expression of the Notch downstream targets, HES1 and HIF1A, in progression from CP to myeloid BP. Both may be modulated through other self-renewal pathways. Their importance, however, in CML proliferation and progression is well documented, as described for HES1 earlier in this chapter (Jamieson, 2010; Nakahara et al, 2010). HIF1A has been shown to promote chronic CML cell proliferation by upregulating p21 expression (Zhang et al, 2012). p21, a cell cycle inhibitor has been shown to be upregulated with high levels of Bcr-Abl and that retaining p21 in a cytosolic location can allow Bcr-Abl to evade the cell cycle arrest normally induced by nuclear p21 (Keeshan et al, 2003). To understand the potential mechanisms for upregulation of HES1 and HIF1A, we next assessed self-renewal components of other pathways in view that the interconnectivity between self-renewal pathway components has been shown to alter expression of these genes.

We demonstrated that Wnt/β-catenin expression was increased between CP and myeloid BP disease. This was through the statistically increased expression of TCF4 and TCF7. There was no statistically significant change in LEF expression. The Wnt/β-catenin pathway plays an essential role in the maintenance and differentiation of LSCs and the propagation of malignancies (Clevers, 2006). Its activation has been shown to be critical within the previously mentioned GSE1470 dataset (Radich et al, 2006). The importance of deregulation of Wnt/β-catenin has been described in both disease initiation and disease progression within CML (Zhao et al, 2007). It has been previously reported that TLE3 expression can be directly induced by Wnt/β-catenin signalling, as part of a negative feedback loop within the canonical pathway (Kokabu et al, 2014). It is, therefore, unsurprising that both TLE3 and TLE4 have increased expression within our dataset. Furthermore, in unpublished data, with our collaborator, Dr Helen Wheadon, TLE3 has been shown to be of prognostic relevance in the determination of poor responders to TKIs. In the absence of Wnt/β-catenin signalling, cytoplasmic β-catenin is ultimately phosphorylated by GSK3β and targeted for degradation by an
actin-mediated multimeric complex. GSK3β can, therefore be increased within the context of Wnt/β-catenin activation. GSK3β is an interesting area of leukaemia research because of its role in preserving a quiescent HSC despite having negative effects on self-renewal (through inhibitory phosphorylation of Hh, Notch and Wnt/β-catenin signalling) (Foltz et al, 2002; Grimes & Jope, 2001; Jia et al, 2002). Retrospectively, it is difficult to ascertain any functional relevance from gene expression data of GSK3β because its function is from a phosphorylated protein. This is despite data suggesting that the ability of self-renewal in Ph+ precursors being linked to Wnt/β-catenin activation through GSK3β missplicing, or via impairment in binding through a BCR-ABL-mediated phosphorylation (Abrahamsson et al, 2009; Jamieson et al, 2004; Reddiconto et al, 2012). NFKβ was shown to be upregulated within our data between CP and myeloid BP. Increased GSK3β has been shown to upregulate NFKβ leading to increased proliferation and aggressiveness of solid tumours, such as Gliomas (Hoesel & Schmid, 2013). Furthermore, GSK3β has been shown to bind and phosphorylate the intracellular Notch component, and attenuation of GSK3β activity reduces phosphorylation of intracellular Notch in vivo, suggesting a dual functional role in Notch inhibition and activation (Foltz et al, 2002; McCubrey et al, 2013).

Wnt/β-catenin signalling can influence the stability of GLI1 allowing for its intracellular accumulation (Noubissi et al, 2009). Furthermore, downstream Hh targets have been shown to modulate Wnt/β-catenin signalling. Within our gene expression data, GLI1 was statistically overexpressed when CP was compared to myeloid BP. However, SUFU, a negative regulator of Hh, was significantly increased within a myeloid phenotype and between CP and myeloid BP. This could suggest that Wnt/β-catenin signalling, in part, is driving the expression of GLI1 within our subset. However, HIP1K, a downstream target of Hh was also upregulated between CP and myeloid BP. HIP1K has been shown to both promote and antagonise Wnt/β-catenin signalling, as well as its autophosphorylation being shown to drive TP53 expression. Mutations within SUFU have been demonstrated to drive hyperactivation of the pathway in basal cell carcinomas and medulloblastomas, which may offer an explanation (Taylor et al, 2002). Regardless, there is a clinical role for inhibition of Hh signalling within a myeloid BP phenotype as discussed within the introductory chapter (Cortes et al, 2016a; Fukushima et al, 2013; Fukushima et al, 2016b; Jamieson et al, 2011).
The BMPs belong to the TGF-β superfamily and have been shown to be involved in a huge array of diverse cellular functions, including cell proliferation, differentiation, apoptosis, and stem cell self-renewal, in both embryonic and adult phenotypes (Herpin & Cunningham, 2007; Miyazono et al, 2005). Dysregulation within the BMP-TGF-β pathway has been shown to be critical in LSC survival (Laperrousaz et al, 2013; Miyazono, 2012; Naka et al, 2010). The BMP pathway functions through receptor-mediated intracellular signalling (Toofan et al, 2014). It has been shown that type 1 receptors are present on LSCs in primary CML samples, with an associated downregulation of BMP ligands (Laperrousaz et al, 2013). Within the same study, CML aspirate and trephine BM samples had significantly higher levels of BMP2 and BMP4 compared to normal donors. Our data suggested that BMP4 was upregulated compared to normal PB, but that there was no change between CP and AP/advanced disease. SMADs are the major signal transducers in the canonical BMP pathway. Upon phosphorylation of type I receptors, SMAD1/5/7 become phosphorylated and form a complex with SMAD4. Within our data set, there was no increase in SMAD5. SMAD4 had increased expression in myeloid BP, but this may suggest that the SMAD-complex was not formed. Interestingly SMAD6 was statistically significantly upregulated in all phases compared to CP. The BMP pathway is inhibited by SMAD6 and SMAD7 which inhibits phosphorylation of SMAD1/5/8. Therefore this suggests, as previous functional data has, that within isolated CML cells, the pathway is not activated, but has the ability to be activated through receptor-ligand binding, and this may represent a therapeutic modality.

Cell cycle gene expression favoured a positive regulation of cell cycle progression (i.e. progression through all phases of the cell cycle, mitosis, and proliferation), with statistically significant increased expression of CCND1, CCND2, CYCLIN E1, and STIL. This is in keeping with an increased proliferative rate seen within an acute disease setting. For example, CCND2 has been shown to be increased in BCR-ABL expressing lymphoblasts and required for their proliferation (Deininger et al, 2001). The regulation of quiescence remains important despite the increased proliferation seen within BP disease. Interestingly, p21, a cell cycle inhibitor, is increased in myeloid BP compared to CP as the disease balances acute proliferation with stem cell quiescence. Furthermore, the location of p21 seems to be integral in its function, as described above, with cytosolic p21 allowing Bcr-Abl to evade the cell cycle arrest normally induced by
nuclear p21 (Keeshan et al, 2003). Furthermore, p21 is known to confer resistance to TKI in disease progression. In keeping with this idea, TGF-β was increasingly upregulated between CP and myeloid BP. TGF-β has a key role in maintenance of quiescence and has been hugely implicated in LSC survival (Miyazono, 2012; Naka et al, 2010).

The transition of CML from CP to BP is characterised by the accumulation of molecular and chromosomal abnormalities, but the molecular mechanisms underlying this genetic instability are poorly understood. There is some evidence as to the relationship between BCR-ABL expression and activity of proteins involved in DNA repair (Radich, 2007; Shet et al, 2002). To this avail, our data demonstrated an increased expression in the DNA replication genes, MCM7 and MCM9, between CP and myeloid BP disease. There is accumulating evidence that suggests that BCR-ABL causes this directly through induction of ROS inducing DNA breaks requiring repair and by interacting directly with the repair machinery to inhibit performance (Skorski, 2008). It has also been shown that BCR-ABL directly drives expression of certain members of the DNA repair pathways resulting in increased DNA instability (Skorski, 2008). The uncontrolled activity of MCM7 and MCM9 may represent an interesting therapeutic target in myeloid BP disease in the control of genomic instability.

Interestingly, our data revealed that EZH2 was significantly and consistently upregulated through all phases of CML. Within our centre, and others, recently published data has described the use of global and transcriptomic analysis to determine the functional dependency of LSCs on EZH2 and its use as a therapeutic modality. Our group showed that combining an EZH2 inhibitor with TKI was highly effective at eradicating the LSC population (Scott et al, 2016). Our data, therefore, may suggest the possibility of expanding this therapeutic modality to a myeloid BP phenotype.

Our gene expression data highlights the difficulty in understanding the interconnectivity between signalling pathways. This is an area of research that needs further investigation and understanding to enable the development of therapeutic agents to eradicate myeloid BP. Our data has shown that Notch signalling has no relevance within this model. This may, in part be due to the increase of MFNG and FBXW7, but will be largely due to modification of other self-renewal pathways’, such as Wnt/β-catenin and Hh.
4.5. Future work

The data presented above raises interesting possibilities for further research into the regulation of self-renewal pathways within myeloid BP. The mechanism by which Notch is inhibited within myeloid BP disease has not been fully elucidated. The role which the Fringe process plays in this offers exciting potential as glycosylation is an elegant means for regulating self-renewal pathways, particularly Notch. Although the functional relevance of this within myeloid BP is unlikely to offer a practical therapeutic advantage as, not only would a two-step approach need to be utilised to inhibit the fringe affect, followed by Notch activation. As we demonstrate no functional relevance to either inhibition or activation of the pathway, it is difficult to predict if this will yield therapeutic potential.

More relevant to therapeutic intervention is the continued understanding of gene regulation within disease progression. The regulation of DNA repair genes, including *MCM7* and *MDM9*, may prove an interesting area of therapeutic advantage and experimental models analysing their inhibition are currently under investigation within our group.
5. Results III

5.1. Introduction

As has previously been discussed within this thesis, the transformation of CP CML to BP, or the presentation of CML in BP, is associated with a high mortality despite therapeutic intervention with TKIs (Radich, 2007; Saußele & Silver, 2015). Progression to BP may present as either myeloid, lymphoid, or an undifferentiated phenotype. This variation can be, somewhat, anticipated in view of the importance of the LSC in CML pathogenesis (Crews & Jamieson, 2012; Graham et al, 2008; Holyoake et al, 1999; Jamieson et al, 2004). The pathophysiology of what drives disease progression, however, remains poorly understood. Furthermore, the literature available determining factors that induce lineage potential within the disease phenotype is limited (Wang et al, 2015).

It is thought that BCR-ABL provides a favourable environment for the development and maintenance of secondary DNA modifications (Bacher et al, 2005a; Radich, 2007). Although this, in itself, does not explain why some of these mutations are lineage-specific. Numerous genetic mutations have been identified in BP disease. Some are common to both lineages, and it has been hypothesised that these merely act as a surrogate for genomic instability rather than the genes pivotal for progression. Others are implicated more commonly in either myeloid or lymphoid disease, such as TP53 and RUNXI, respectively (Calabretta, 2004; Roche-Lestienne et al, 2008). Within myeloid BP, deregulation of self-renewal and cell survival pathways can be correlated with progression, as described in Results II. However, the exact mechanisms by which they act have not been fully elucidated. Within lymphoid BP, less information is available and, therefore, it is difficult to hypothesise cause and effect of genetic mutations or indeed alteration of signalling pathways.

Further to this, studies to identify the LSC population in BP disease are more limited when compared to the information available for CP. Jamieson et al found that the HSC population (lin CD34⁺CD38⁻CD90⁺CD45RA⁻) was not expanded in myeloid BP-CML and identified the GMP population as a potential source of LSCs in myeloid BP (Jamieson et al, 2004). However, this study did not assess the multipotent progenitor (MPP; lin CD34⁺CD38⁻CD90⁻CD45RA⁻)/LMPP-like subpopulations, nor did it assess in vivo LSC activity. Further studies by the Jamieson group identified activation of β-catenin as the likely mechanism of enhanced self-renewal capacity in the myeloid BP.
GMP cells (Jamieson et al, 2004; Minami et al, 2008). Less information is available regarding the LSC populations in lymphoid BP CML. A case report of a patient with imatinib-resistant lymphoid BP-CML indicated that the imatinib-resistant sub-clone (E255K kinase domain mutation) likely originated in the B-cell committed progenitor compartment, but no functional stem cell assays were performed (Kobayashi et al, 2011). In order to increase understanding of the lineage-specificity within CML progression, one must understand not only the differences in cell survival and self-renewal pathway components that may occur between a myeloid and lymphoid phenotype, but also the heterogeneity that is seen within Ph+ acute leukaemias, especially if the cell of origin is not the LSC, as would be expected. This will allow understanding for alternative therapeutic strategies between the conditions.

Ph+ acute lymphoid-phenotype leukaemias encompass both lymphoid BP CML and Ph+ ALL. These two diseases are clinically distinct, but can often be mislabelled. Ph+ ALL accounts for approximately 25-30% of ALL diagnosed in adults. Although 70-90% of cases will achieve a complete remission with conventional chemotherapy, long-term survival remains poor reflecting high rates of relapse and failure of salvage regimens. It encompasses three main phenotypes:

- A lymphoid lineage restricted phenotype with either p190 or p210 BCR-ABL fusion variant;
- A stem cell phenotype with either p190 or p210 BCR-ABL fusion variant, or
- Misclassified lymphoid BP CML, which has a stem cell phenotype and expresses p210 BCR-ABL fusion variant.

The differences between both lymphoid BP and Ph+ ALL lie in the BCR-ABL fusion variants, as described within the introduction to this thesis, as well as potentially within the cell of origin. The two BCR-ABL fusion variants, p190 and p210, are determined by the different amounts of BCR that they include, leading to different molecular weights (Soekarman et al. 1990). The larger 210kD fusion protein (p210) is almost always found in CML, but is also present in approximately 30% of Ph+ ALL. Inversely, the 190kD fusion protein is found in the majority of paediatric Ph+ ALL, 25-30% of adult Ph+ ALL, and only rarely in CML (Advani & Pendergast, 2002). In both, the signalling pathways involved in cell proliferation and survival are deregulated, leading to the phosphorylation of many proteins (Mullighan, 2012a; Radich et al, 2006). Included in this is the activation and phosphorylation of STAT5, which has been
demonstrated to be required for progression to lymphoid transformation (Hantschel et al, 2012). The JAK-STAT pathway is integral part to disease progression, but it is also known to have many interactions with self-renewal pathways that have not yet been fully described. Further to this, attempts to address the differences between lymphoid BP and Ph+ ALL have focussed on studies to address the cell of origin, with conflicting results (Hovorkova et al, 2017; Hunger, 2017; Thomas, 2012). As CML is known to be a stem cell disease, BCR-ABL should theoretically be identified in all cell types. Similarly, with ALL being lineage restricted, it would be anticipated that the BCR-ABL would be restricted to the lymphoid lineage. However, there is evidence to suggest that both produce a multi-lineage involvement (Anastasi et al, 1996; Cuneo et al, 1994a; Pajor et al, 2000; Schenk et al, 1998).

Based on this information, we firstly hypothesised that there would be changes between gene expression patterns of cell survival and self-renewal pathways between myeloid and lymphoid BP disease. Furthermore, we hypothesised that the gene expression patterns would be different between Ph+ ALL and lymphoid BP, in keeping with the idea that these are distinct disease subtypes.
5.2. **Aims**

Based on the evidence provided above, the specific aims set out in this chapter are:

1. To evaluate the heterogeneity of lymphoid progenitor sub-populations within lymphoid BP disease;
2. To evaluate the gene expression changes of self-renewal and cell survival signalling pathways between myeloid and lymphoid BP;
3. To evaluate the gene expression changes of self-renewal and cell survival signalling pathways between lymphoid BP and Ph+ ALL.
5.3. Results

5.3.1. Lymphoid BP is an immunophenotypically heterogeneous disease

To identify if lymphoid BP samples were heterogeneous at an immunophenotypic level, samples were thawed and cultured in high growth factor SFM overnight. This was to ensure the samples had been under the same conditions to allow gene expression comparison with myeloid BP samples in later experiments. Samples were sorted by FACS into HSC, MPP, CMP, CLP (lin\(\text{CD34}^+\text{CD38}^+\text{CD45RA}^+\text{CD10}^+\text{CD19}^-\text{CD33}^-\)) and pro B (lin\(\text{CD34}^+\text{CD38}^+\text{CD45RA}^+\text{CD10}^+\text{CD19}^+\text{CD33}^-\)) cell populations (figure 5-1).
Samples were analysed using FlowJo software to determine heterogeneity. Four samples were analysed in detail; however, two of these samples had a recovery rate of only 10% and only Lin-CD34+CD38+ and Lin-CD34+CD38- populations identified and, therefore, are not included in the detailed immunophenotypic analysis. Of the two remaining samples, recovery rate was low, as has been previously demonstrated with BP samples (figure 5-2A). Furthermore, there was a variation in percentage of lineage negative cells within the live population (range between 43% and 85%) (figure 5-2B).

Next, the percentage of CD34+ and CD34+CD38- populations was assessed in comparison to the lineage negative population (figure 5-3). There was again a variation between the two samples, with CD34 and CD34+CD38- expression of lineage negative cells. There appeared to be a lower immature component (i.e. CD34+CD38-) compared to previous experiments within myeloid BP CML, with the population ranging between 0.03 and 1%.

Figure 5 - 1 FACS strategy for lymphoid BP samples
Cells were washed in PBS/2%FBS and counted following thawing. 5x10^4 cells were used within each unstained and single-stained control, where cells were re-suspended in 100ul PBS/2%FBS prior to the addition of antibody. The ‘multi-stain’ sample was re-suspended in 450ul PBS/2%FBS prior to the addition of antibody. Samples were stained for 30 min at 4°C and then washed twice with PBS/2%FBS before being filtered through a 0.22uM filter. Cells were sorted with a BD FACS Aria with Diva software.

Figure 5 - 2 Following thaw, lymphoid BP samples have a low recovery rate with a variation in percentage of a lineage negative population
Cells were thawed and sorted as per figure 5-3. Immediately after FACS sorting, cells were analysed using FlowJo v7 software. (A) Percentage of live cells in each sample. (B) Percentage of lineage negative cells isolated and FACS sorted into sub-populations.

Figure 5 - 3
A

![Graph A](image)

B

![Graph B](image)
Between the samples, there were differences in the proportion of immature and mature populations (figure 5-4). For example, sample 1 had an increased percentage of immature cells, with an increased percentage of HSCs and MPPs, whereas sample 2 had a greater number of differentiated cells (i.e. CMP). The CLP populations were comparable between samples. Neither sample had a pro-B population. Despite this, the majority of cells within both samples were akin to a CMP population, namely 20-83% of cells when compared to the LinCD34+CD38- population. Samples were collected and immediately isolated into RNA samples due to small cell numbers following sorting.

Figure 5 - 3 Lymphoid BP samples have a varying percentage of CD34+ and CD34+CD38- cells

Cells were thawed and sorted as per figure 5-1. Immediately after FACS sorting, cells were analysed using FlowJo v7 software. The percentage of CD34+ and CD34+CD38- populations were calculated against the lineage negative population. There was variation in both with CD34+ cells ranging between 22 and 83%, and CD34+CD38- cells ranging between 0.03 and 1%.

Between the samples, there were differences in the proportion of immature and mature populations (figure 5-4). For example, sample 1 had an increased percentage of immature cells, with an increased percentage of HSCs and MPPs, whereas sample 2 had a greater number of differentiated cells (i.e. CMP). The CLP populations were comparable between samples. Neither sample had a pro-B population. Despite this, the majority of cells within both samples were akin to a CMP population, namely 20-83% of cells when compared to the linCD34+CD38+ population. Samples were collected and immediately isolated into RNA samples due to small cell numbers following sorting.

Figure 5 - 4 The CMP population is the largest of the lymphoid BP sub-populations

Cells were thawed and FACS sorted as per figure 5-3. Immediately after FACS sorting, cells were analysed using FlowJo v7 software. The percentages of sub populations were gated in the lineage negative population according to the sorting strategy.
5.3.2. Self-renewal gene expression is equivalent between myeloid and lymphoid BP

As described, myeloid (n=11), lymphoid BP (n=4) and normal PB (n=3) samples were thawed, cultured, and sorted into stem and progenitor populations as previously described and RNA extracted. Using Fluidigm technology, quantitative PCR of 90 self-renewal and cell survival signalling genes was performed. 100ng of RNA was transcribed to cDNA across all samples to enable comparison between groups. Samples were plated in duplicate or triplicate, and as more than one Fluidigm plate was to be used, an internal sample control was used across plates to enable comparison. Myeloid and lymphoid BP sub-populations were pooled for analysis to ascertain a global expression pattern between disease phenotypes, rather than between sub-populations. The sub-population data will be presented within publication. On global gene expression analysis, myeloid and lymphoid BP could not be distinguished by gene clustering methods (figure 5-5). Each duplicate or triplicate was represented independently within all analysis. This is perhaps, unsurprising, in view that the cell of origin will be the same for both populations and in view that on immunophenotypic analysis, the majority of cells were within a CMP population.
Figure 5 - Gene clustering could not segregate myeloid and lymphoid BP disease
Gene expression profiles (GEPs) were determined from myeloid BP and lymphoid BP populations. GEP levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by ΔΔCt method using an average of five housekeeping genes as reference and the average Normal PB value as the calibrator for fold change. Heat maps and gene clustering were produced by using heatmap.2 in R/Bioconductor.
For the purpose of this chapter, focussed gene expression results will be presented as fold change against normal to represent the change associated with a malignant phenotype. Black asterisks above the gene of interest represent statistically significant change between leukaemic samples and normal CD34+ PB. These were determined using an unpaired student’s t-test between experimental arms on the delta CT values. Black asterisks with a contector represent statistically significant change between myeloid and lymphoid BP. This was again done using an unpaired student’s t-test between myeloid and lymphoid BP samples on the delta CT value. Although, there were many genes that were statistically significantly changed between leukaemic and normal, the main question in this chapter was surrounding gene expression changes between myeloid and lymphoid BP disease.

In keeping with the global gene expression analysis, there was little difference in gene expression of the key self-renewal and cell survival signalling pathway components between myeloid and lymphoid BP disease. For example, within the Notch pathway, there was little statistically significant difference in Notch components between myeloid and lymphoid BP (figure 5-6). This was, despite, statistically significant changes in the pathway’s components between leukaemic samples and normal PB samples. Interestingly, MAML was statistically significantly upregulated compared to normal PB in the lymphoid BP subset, but not within myeloid BP. This, perhaps, suggests that there is activated expression of the pathway in lymphoid BP disease and may represent an interesting therapeutic target.
Figure 5 - 6 Focused gene expression of Notch pathway components suggests active Notch in a lymphoid phenotype

Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB CD34+ samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference. (A-B) Dot plots showing gene expression of NOTCH1 and NOTCH2. (C-F) Dot plots showing gene expression of Notch components, ADAM10, ADAM17, MAML and MFNG. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01).
HES1 was statistically significantly upregulated in both myeloid and lymphoid disease compared to normal PB. There was no statistically significant increase in HES1 expression in lymphoid compared to myeloid BP (figure 5-7). This is, perhaps, surprising in view of its known influence in lineage commitment inducing normal HSCs to move into a lymphoid path.

Similarly, the Notch downstream target, HIF1A, was upregulated in both lymphoid and myeloid BP; however, there was no change in expression between disease phenotypes (figure 5-8). Together, this suggests that the downstream targets of Notch and the pathway components do not necessarily influence lineage specificity between myeloid and lymphoid BP disease.
Again, in keeping with the global gene expression analysis, there was only significant statistical change in a small number of genes from components of self-renewal pathways' between disease phenotypes. This is not in keeping with our initial hypothesis and, perhaps suggests a limited dependence on self-renewal pathways in myeloid and lymphoid BP. Furthermore, it suggests that self-renewal pathways do not seem to be important in terms of lineage specificity in driving the disease phenotype.

Of the genes assessed, the only significant change in the self-renewal pathways was within the Wnt/β-catenin pathway, with increased expression of \(\text{LEF1} \) (\(p=0.02 \)) and \(\text{TLE4} \) (\(p=0.04 \)) within the lymphoid BP samples (figure 5-9). There was a statistically significant increased expression of \(\text{TLE4} \) in both disease phenotypes compared to normal PB. There is a noted role of \(\text{LEF1} \) is B-cell lineage commitment through the activation of Pax5, and loss of \(\text{TLE4} \) enables stem cell self-renewal (Laing et al, 2015; Nutt et al, 1999).

Figure 5 - 8 Focussed gene expression of \(\text{HIF1A} \) between myeloid BP and lymphoid BP
Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the \(\Delta\Delta C_t \) method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t-test to enable determination of significant gene changes between disease phenotypes (\(^* p<0.05 \)).

Figure 5 – 9 Focussed gene expression of Wnt/β-catenin pathway components between myeloid BP and lymphoid BP
Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the \(\Delta\Delta C_t \) method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of \(\text{LEF1} \). (B) Focussed gene expression of \(\text{TLE4} \). \(\text{P} \) values were determined by an unpaired t-test (\(p<0.05, ^{* * * } p<0.0001 \)).
Although, there was only minimal statistically significant change in a small number of self-renewal pathway components, a number of the downstream targets were statistically changed between myeloid and lymphoid lineage. These included STIL, which was statistically significantly decreased in lymphoid disease (figure 5-10). This is in keeping with its role in the regulation of lineage commitment, with increased expression favouring myeloid differentiation.

Figure 5 - 10 Focussed gene expression of STIL between myeloid BP and lymphoid BP

Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference. P values were determined by an unpaired t-test (** p<0.01, **** p<0.0001).

Further to this, a statistically significant decrease in expression was noted in TGF-β and p38 within in lymphoid BP samples compared to myeloid BP (p=0.02 and p=0.04, respectively; figure 5-11). Both genes were increased in expression compared to normal PB, but this was not statistically significant.
The cell cycle regulators, \textit{CCND1} and \textit{CCND2}, were significantly decreased in lymphoid compared to myeloid BP samples (p=0.05 and p=0.0001, respectively; figure 5-12A and B). \textit{CCND1} was statistically significantly increased in both disease phenotypes compared to normal PB, with \textit{CCND2} statistically significantly increased compared to normal in the lymphoid BP samples alone. Moreover, \textit{RUNX1} and \textit{CYCLIN E1} were significantly decreased in the lymphoid BP compared to myeloid (p=0.002 and p=0.002, respectively; figure 5-12C and D). \textit{CJUN} and \textit{FOXO1} were significantly increased in lymphoid BP compared to myeloid (p=0.003 and p=0.05, respectively; figure 5-12E and F), although there was no statistically significant change compared to normal PB. The difficulty in ascertaining information from cell cycle regulators is the large degree of variation that is seen between samples. This is highlighted when analysing samples at a \(\Delta\text{Ct}\) level. For examples, within \textit{CCND2} and \textit{FOXO1} (figure 5-13), the \(\Delta\text{Ct}\) levels are presented for all populations within the analysis. \(\Delta\text{Ct}\) was used to acquire statistical change as described above.
Figure 5 - 12 Focussed gene expression of cell cycle regulators between myeloid BP and lymphoid BP

Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of CCND1. (B) Focussed gene expression of CCND2. (C) Focussed gene expression of RUNX1. (D) Focussed gene expression of CYCLINE1. (E) Focussed gene expression of CJUN. (F) Focussed gene expression of FOXO1. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).
The changes in the downstream target genes listed above are unlikely to represent a change in cell lineage specificity, but merely describe the differences in cell cycle pattern between the two BP phenotypes.

Within our dataset, the most striking finding was that there was no change between BP phenotypes for genes known to be involved in lineage commitment. Most notably, the GATA genes (GATA1, GATA2, and GATA3), and MYC, which have a known effect on myeloid commitment, were not statistically changed between myeloid and lymphoid BP (figure 5-14). Together these data suggest that lymphoid BP disease has a similar gene expression pattern to myeloid BP. This is, perhaps, in keeping with its stem cell origin.

Figure 5–13 ΔCT values for all populations within gene expression analysis
ΔCT values for all populations within gene expression analysis demonstrate the variability between samples.
Figure 5 – 14 Focussed gene expression of lineage commitment regulators between myeloid BP and lymphoid BP

Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of GATA1. (B) Focussed gene expression of GATA2. (C) Focussed gene expression of GATA3. (D) Focussed gene expression of MYC. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).
5.3.3. Lymphoid BP and Ph+ ALL have distinct gene expression alterations of self-renewal and cell survival signalling pathway components

Because of the similarities in self-renewal and cell survival gene expression between myeloid and lymphoid BP, we next questioned if there was a significant change between Ph+ ALL samples and lymphoid BP disease. This was with the view that the cell of origin differs between lymphoid BP and Ph+ ALL and it may guide potential future therapeutic targets, as well as increasing the understanding of the gene expression differences between them.

Ph+ ALL sample RNA (n=5) was kindly gifted to us from the UKALL14 clinical trial by Professor Adele Fielding. All samples were of B cell origin and treatment naive. Again, 100ng of RNA was used in keeping with previous experiments. Lymphoid BP sample RNA (n=5) were used in duplicate or triplicate and generated as previously. Again, Fluidigm technology was used to determine the quantitative gene expression of 90 self-renewal and cell survival signalling genes. Relative gene expression levels were determined using the average normal PB samples as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference.

Global gene analysis demonstrated that Ph+ ALL and lymphoid BP could be segregated by gene clustering methods (figure 5-15). This suggests that these are distinct disease entities as described by self-renewal and cell survival signalling pathways.
Gene clustering of self-renewal and cell survival components can segregate lymphoid BP and Ph+ ALL

Gene expression profiles (GEPs) were determined from lymphoid BP and Ph+ ALL samples. GEP levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by $\Delta\Delta C_t$ method using an average of five housekeeping genes as reference and the average normal PB value as the calibrator for fold change. Heat maps and gene clustering were produced using heatmap.2 in R/Bioconductor.

Figure 5 – 15 Gene clustering of self-renewal and cell survival components can segregate lymphoid BP and Ph+ ALL

Gene expression profiles (GEPs) were determined from lymphoid BP and Ph+ ALL samples. GEP levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by $\Delta\Delta C_t$ method using an average of five housekeeping genes as reference and the average normal PB value as the calibrator for fold change. Heat maps and gene clustering were produced using heatmap.2 in R/Bioconductor.
Focussed gene expression analysis of the Ph+ ALL and lymphoid BP samples demonstrated that there was little change in self-renewal pathway components between the two diseases. For example, within the Notch pathway (figure 5-16), a pathway with a noted role within T-cell ALL, the only gene to be significantly altered was the Notch receptor, NOTCH2, which was significantly lower in the Ph+ ALL arm (p=0.02; figure 5-16B). However, compared to normal PB samples, NOTCH2, ADAM10, and ADAM17 were significantly overexpressed in both lymphoid BP and Ph+ ALL. Compared to normal PB, MAML was significantly increased in lymphoid BP, but not within Ph+ ALL.

Figure 5 – 16 Focussed gene expression of lineage commitment regulators between myeloid BP and lymphoid BP
Using Fluidigm technology, mRNA expression was determined for lymphoid BP and Ph+ ALL samples compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t-test to enable determination of significant gene changes between disease phenotypes (* p<0.05, ** p<0.01, *** p<0.001).
Expression of \textit{JAG1} was significantly lower in Ph+ ALL compared to lymphoid BP (p=0.017; figure 5-17A), although neither disease phenotype had altered expression in comparison to normal PB. No change was noted for \textit{DLL1} or \textit{DLL3} between lymphoid BP and Ph+ ALL; however, a statistically significant increase in \textit{DLL1} was noted compared to normal for both (figure 5-17B and C). This may have implications in \textit{cis}-inhibitory mechanisms within the cells, especially if translated to protein level.

![Graph A](image1)

Figure 5 - 17 Focussed gene expression of Notch ligands between lymphoid BP and Ph+ ALL

Using Fluidigm technology, mRNA expression was determined for lymphoid BP and Ph+ ALL samples compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the \(\Delta\Delta\text{Ct}\) method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of \textit{JAG1}. (B) Focussed gene expression of \textit{DLL1}. (C) Focussed gene expression of \textit{DLL3}. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).

To investigate this further, the downstream targets of the Notch signalling pathway were evaluated. Interestingly, compared to normal PB, there was no statistical change in \textit{HES1} expression in Ph+ ALL, suggesting that the Notch pathway was not activated within this disease phenotype (figure 5-18A). There was, however, a statistically significant increase in expression of \textit{HIF1A} in both diseases (p=0.03 for lymphoid BP and p=0.001 for Ph+ ALL), and of \textit{HES1} in the lymphoid BP population (p=0.01),
compared to normal PB (figure 5-18). This is perhaps suggestive that there are not the same interactions between self-renewal pathways’ in different Ph+ acute leukaemias; furthermore, as discussed within the introduction to this thesis, the BM niche has been shown to be remodelled differently in disease and perhaps this varies between the Ph+ acute leukaemias. There was a statistically significant increase in expression of HIF1A in Ph+ ALL compared to lymphoid BP which may suggest an interesting therapeutic target in Ph+ ALL pending further functional experiments’ (p=0.01; figure 5-18B).

Figure 5 – 18 Focussed gene expression of HES1 and HIF1A between lymphoid BP and Ph+ ALL
Using Fluidigm technology, mRNA expression was determined for lymphoid BP and Ph+ ALL samples compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t-test to enable determination of significant gene changes between disease phenotypes. (A) Focussed gene expression of HES1. (B) Focussed gene expression of HIF1A. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01).

There was a statistically significant increase in FBXW7 compared to normal PB within the Ph+ ALL (p=0.002; figure 5-19A), but there was no change in expression between lymphoid BP and Ph+ ALL of the Notch negative regulators, FBXW7, MFNG, and RFNG (figure 5-19).
As per previous results, self-renewal pathway components and downstream targets were next analysed to determine interaction and potential therapeutic targets within both diseases. Within the Wnt/β-catenin pathway, there was no statistical difference between lymphoid BP and Ph+ ALL; however, in keeping with other results, statistically significant change was noted for both conditions compared to normal PB. This is in keeping with the leukaemic phenotype. Notably, TCF4 (p=0.012; figure 5-20A), TCF7 (p=0.0055; figure 5-20B), LEF1 (p=0.04; figure 5-20C), TLE3 (p=0.008; figure 5-20E), and TLE4 (p=0.0002; figure 5-20F) were statistically significantly upregulated within Ph+ ALL compared to normal PB, suggesting a dependence on the Wnt pathway in the leukaemic phenotype. TLE3 (p=0.04; figure 5-20E) and TLE4 (p<0.0001; figure 5-20F) were overexpressed in lymphoid BP compared to normal.
Similarly, within the components of the Hh pathway, there was no change in expression between lymphoid BP and Ph+ ALL (figure 5-21). There was, however, an increased expression of SUFU (p<0.0001 in lymphoid BP, p=0.0032 in Ph+ ALL; figure 5-21A) in both experimental arms compared to normal PB, with no statistically significant increase in the expression of the downstream target, HIPK1.

Figure 5 - 20 Focussed gene expression of Wnt/β-catenin pathway components between lymphoid BP and Ph+ ALL
Using Fluidigm technology, mRNA expression was determined for lymphoid BP and Ph+ ALL samples compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of TCF4. (B) Focussed gene expression of TCF7. (C) Focussed gene expression of LEF1. (D) Focussed gene expression of GSK3β. (E) Focussed gene expression of TLE3. (F) Focussed gene expression of TLE4. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).
As previously described, there is known cooperation between BMP4 and both Hh and Wnt/β-catenin signalling. There was no statistical change between lymphoid BP and Ph+ ALL in BMP4 expression, or between the Ph+ leukaemias and normal PB (figure 5-22). Furthermore, there were no significant difference in the SMADs analysed between lymphoid BP and Ph+ ALL, or compared to normal PB (data not shown). This suggests that there is a limited role for BMP within lymphoid BP and Ph+ ALL.

Figure 5 – 21 Focussed gene expression of Hh pathway components between lymphoid BP and Ph+ ALL

Using Fluidigm technology, mRNA expression was determined for lymphoid BP and Ph+ ALL samples compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of GLI1. (B) Focussed gene expression of SUFU. (C) Focussed gene expression of HIPK1. P values were determined by an unpaired t-test (** p<0.01, **** p<0.0001).

Figure 5 - 22 Expression of BMP4 in lymphoid BP and Ph+ ALL

Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCt method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t-test to enable determination of significant gene changes between disease phenotypes. There was no statistical change between experimental arms, nor compared to normal PB.
As expected, there was significant difference in stem cell survival regulators, namely \textit{GATA1} (\(p=0.004\)) and \textit{GATA2} (\(p<0.0001\)), which had a statistically significant lower expression in Ph+ ALL compared to lymphoid BP disease (figure 5-23). This is perhaps representative of the stem cell origin of lymphoid BP disease, compared to Ph+ ALL. Compared to normal, there was no statistical change between normal and lymphoid BP for \textit{GATA1} expression, likely owing to the degree of variation noted within samples. There was, however, a statistically significant increase in expression of \textit{GATA1} (\(p<0.05\)) and a decrease in \textit{GATA2} (\(p<0.05\)), when comparing Ph+ ALL to normal. There was no change in \textit{GATA3} expression between lymphoid BP and Ph+, nor compared to normal. \textit{GATA3} has a known role within the T-lymphocyte lineage, but its role within self-renewal and the HSC population remains unclear.

![Graphs showing gene expression levels](image)

Figure 5 – 23 Focussed gene expression of stem cell survival components between lymphoid BP and Ph+ ALL

Using Fluidigm technology, mRNA expression was determined for myeloid and lymphoid BP compared to normal PB samples. Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the \(\Delta\Delta\text{Ct}\) method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of \textit{GATA1}. (B) Focussed gene expression of \textit{GATA2}. (C) Focussed gene expression of \textit{GATA3}. \(P\) values were determined by an unpaired t-test (*\(p<0.05\), ***\(p<0.001\), ****\(p<0.0001\)).
Contrary to data in AML, which suggests a clinical significance in increased expression of \textit{GATA1}, \textit{GATA2} and \textit{SCL} expression (Shimamoto et al, 1994), there was no statistically significant change in expression of \textit{SCL} compared to normal or between disease phenotypes (figure 5-24).

\textbf{Figure 5 – 24 Focussed gene expression of SCL between lymphoid BP and Ph+ ALL}

Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. Statistical significance was generated by unpaired t test between populations to enable determination of significance gene changes within disease phenotype. There was no statistical change between experimental arms, or compared to normal PB.

No significant change was noted between other cell cycle regulators in the two Ph+ leukaemias, including \textit{CCND1}, \textit{CCND2}, \textit{p21}, \textit{FOXO1}, \textit{STIL} and \textit{CYCLINE1} (figure 5-25). There was a statistically significant increase expression in \textit{p21} (p=0.01 for lymphoid BP and p=0.001 for Ph+ ALL) and \textit{STIL} (p=0.0002 for lymphoid BP and p<0.0001 for Ph+ ALL) in both populations, with statistically significant increase expression in \textit{FOXO1} (p<0.05) within Ph+ ALL.
Figure 5 – 25 Focussed gene expression of cell cycle regulators between lymphoid BP and Ph+ ALL

Relative gene expression levels were determined using the average normal PB value as a calibrator calculated using the ΔΔCT method, using an average of five housekeeping genes as reference. (A) Focussed gene expression of CCND1. (B) Focussed gene expression of CCND2. (C) Focussed gene expression of p21. (D) Focussed gene expression of FOXO1. (E) Focussed gene expression of STIL. (F) Focussed gene expression of CYCLIN E1. P values were determined by an unpaired t-test (* p<0.05, ** p<0.01, *** p<0.001).
5.4. Discussion

The data presented above raises the possibility that lymphoid BP and myeloid BP samples are similar in gene expression of self-renewal and cell survival pathway components. This suggests that the two disease processes are, perhaps, more similar than previously anticipated. Furthermore, it provides evidence to suggest that perhaps the treatment of lymphoid BP should be based on chemotherapeutic agents used within acute myeloid disease, rather than acute lymphoblastic disease. In keeping with this, the current UK BP clinical trial, MATCHPOINT (Management of Transformed Chronic myeloid leukaemia: Ponatinib and Intensive chemotherapy: a dose finding study), utilises a chemotherapy regimen commonly used for high risk and relapsed/refractory AML (FLAG-Ida) in both disease subtypes (Bergua et al, 2016; Burnett et al, 2013).

Furthermore, both myeloid and lymphoid BP are heterogeneous diseases encompassing immature and mature phenotypes within the same population (Kinstrie et al, 2016). The heterogeneity described within lymphoid BP in this chapter is only based on two samples, and clearly this needs to be expanded to encompass other samples to understand the true heterogeneity that is present. There are some difficulties in this, however, as lymphoid BP disease is a rare entity and, therefore, this will be a longstanding endeavour. Although our group has recently published with regards to heterogeneity in myeloid BP disease (Kinstrie et al, 2016), within lymphoid BP this data is limited to case-based analysis and immunophenotypic change (Bettelheim et al, 1985; Cervantes et al, 1998; Ilaria, 2005). Within the Cervantes study, 17 out of 19 patients were of B-lineage phenotype, with the other 2 being T-lineage. Similar to our own data, all the samples had one or more myeloid markers expressed (Cervantes et al, 1998). This report also suggested that lymphoid BP was seldom associated with an AP, which clearly has an implication in management. Subsequently, being able to identify a gene expression profile within lymphoid BP may help in the earlier diagnosis of the disease and quick initiation of treatment.

To determine this, we assessed the gene expression of 90 self-renewal and cell survival components between myeloid and lymphoid BP disease. This was with the initial hypothesis that there would be aberrancies between the two disease phenotypes that may guide earlier diagnosis and novel therapeutic approaches. Self-renewal pathways were utilised because of the known association of acquisition of self-renewal properties, specifically of Wnt/β-catenin pathway, within BP disease (Jamieson et al, 2004).
Although there is some data to describe this within myeloid BP, there is inadequate data within lymphoid BP, with even less known about the genes responsible for determining lineage-selectivity. As described within the introductory paragraph to this discussion, the gene expression data, firstly, demonstrated that the 90 self-renewal and cell survival components could not segregate myeloid and lymphoid BP phenotypes on global gene analysis through gene clustering methods. This is in keeping with recent single cell transcriptomic data within a BCR-ABL+ population, where lymphoid (n=2) and myeloid (n=1) BP samples were clustered together (Giustacchini et al, 2017). Furthermore, our data suggests that the cells have limited alteration in self-renewal components, likely owing to the LSC in the disease pathogenesis. It is known that the LSC in BP-CML may result in at least 3 subsets, namely Lin CD34+CD38–, Lin CD34– cells remaining from CP, and the disease-driving Lin CD34+CD38+ GMPs (Jamieson et al, 2004). Our data, in some respects, reflects this, as there were no statistical differences between both myeloid and lymphoid BP disease. Furthermore, as the data was pooled, it suggests that there are similar degrees of immature and mature populations in both disease phenotypes.

All key self-renewal pathway components of Notch, Wnt/β-catenin, Hh, and BMP, were analysed, although not all were reported within this results section due to statistical significance not being achieved. The Notch signalling pathway has a known role within lineage decision making of the normal HSC population, particularly towards a lymphoid bias (Delaney et al, 2010; Jaleco et al, 2001; Ohishi et al, 2003a; Ohishi et al, 2002). The main components of the pathway were not statistically changed between myeloid and lymphoid BP disease. However, as there was a statistically significant increased expression of NOTCH2, ADAM10, and ADAM17 compared to normal PB, it suggested that within BP disease these may be the components to upregulate the pathway. Interestingly, MAML, the intracellular component of Notch required for canonical activation of its downstream targets, was significantly increased in lymphoid BP compared to normal, but not within myeloid BP. This perhaps suggests that the Notch pathway is, indeed, upregulated within lymphoid BP disease, however, further functional analysis is required to fully determine this and we are currently in the process of extending this experimental work. Despite this, there was no statistically significant increase in the downstream targets of Notch, HES1 and HIF1A, between myeloid and lymphoid disease. Within the previous chapter, the complex activation of these downstream targets was explored and therefore, although HES1 was statistically significantly increased in both myeloid and lymphoid BP compared to normal, this
could be driven through a number of different mechanisms within each phenotype; for example, through the activation of other self-renewal pathways.

Assessing a role for the Notch signalling pathway using gene expression data is difficult due to differing ligand-receptor interactions leading to varying functional roles. For example, although within previous chapters, we have demonstrated the potential for LSC eradication with NOTCH2-JAG1 interaction in CP disease, it is known that Notch-Delta1 interactions can promote T-cell lineage commitment and maturation (Besseyrias et al, 2007). Further functional analysis needs to be evaluated within Lymphoid BP as to the effect of differing ligand-receptor binding.

In keeping with the global gene expression analysis through clustering methods between myeloid and lymphoid BP, there were limited changes between self-renewal pathway components in other pathways analysed. Only within the Wnt/β-catenin pathway were there significant changes between myeloid and lymphoid BP disease. Within lymphoid BP, there was a statistically significant increase in *LEF1* and *TLE4*. Furthermore, *TLE4* was shown to be statistically significantly increased within both myeloid and lymphoid BP compared to normal PB. The importance of deregulation in Wnt/β-catenin has been described in disease initiation and progression of CML (Abrahamsson et al, 2009; Radich et al, 2006; Zhao et al, 2007). Furthermore, *LEF1* has been shown to regulate accumulation of β-catenin intracellularly and be important in leukaemogenesis. In murine experiments, increased LEF1 led to abnormalities of haemopoietic differentiation and developed B-ALL and AML, with the LSC exhibiting lymphoid characteristics (Petropoulos et al, 2008). Furthermore, there has shown to be inactivation of *LEF1* in T-cell ALL (Gutierrez et al, 2010a; Gutierrez et al, 2010b), with overexpression perhaps highlighting the B-cell phenotype of our Ph+ ALL samples. *TLE4* has been previously demonstrated to enable stem cell differentiation.

Within our dataset, *STIL* was significantly unregulated in both myeloid and lymphoid BP compared to normal PB. *STIL* has a noted role in the regulation of lineage commitment, with increased expression favouring myeloid differentiation. In keeping with this, expression in lymphoid BP was significantly lower compared to the myeloid BP samples. The increase in expression in comparison to normal may be explained by the mixed population seen within lymphoid BP samples, with the identification of a CMP population in the samples extensively immunophenotyped. *TGF-β* was noted to be significantly decreased in lymphoid BP compared to myeloid BP. *TGFβ* has been
shown to maintain leukaemic initiating cell potential within CML CP (Miyazono, 2012; Naka et al, 2010) and the decreased expression in lymphoid BP may be in keeping with a more differentiated phenotype. Within our dataset, the most striking area was that there was no change between populations of genes known to be involved in lineage commitment. Most notably, the GATA genes (GATA1, GATA2, and GATA3), and MYC, which have a known effect on myeloid commitment, did not significantly change between myeloid and lymphoid BP. Together this data suggests that lymphoid BP disease has a similar gene expression pattern to myeloid BP. This is, perhaps, in keeping with its stem cell and myeloid origin.

These data presented emphasise the similarities between myeloid BP and lymphoid BP disease, with only minimal changes suggestive of novel therapeutic targets. In view of this, we next sought to question if there were differing gene expression profiles of self-renewal and cell survival pathways within the Ph+ acute leukaemias. This was in view of the known differences in cell of origin between them, with lymphoid BP representing a distinctly stem cell disease, and Ph+ ALL a more differentiated phenotype. Indeed, on global gene expression of the 90 self-renewal and cell survival components, the two diseases could be segregated with gene clustering methods.

On focussed gene analysis, there were similar expression patterns of the self-renewal pathway components between lymphoid BP and Ph+ ALL. Although there was a statistically significant decrease in NOTCH2 expression in Ph+ ALL compared to lymphoid BP. NOTCH2, ADAM10, and ADAM17 were significantly upregulated compared to normal PB samples in both Ph+ leukaemias. This suggests that, as with lymphoid BP, Ph+ ALL has the components necessary for Notch activation. However, despite this, only lymphoid BP had a statistically significant increase in expression of MAML compared to normal. In keeping with this, HES1 was not statistically significantly increased in Ph+ ALL samples, suggesting that the pathway was not active at a gene level. FBXW7, a negative regulator of Notch, was statistically significantly increased in Ph+ ALL compared to normal. As there was no statistical change in TP53 and MYC, this suggests that FBXW7 is acting independently of these survival mechanisms, and may offer a therapeutic target within the disease.
HIF1A is important within leukaemogenesis, particularly in CML (Zhang et al, 2012; Zhou et al, 2016). Within our dataset, *HIF1A* was statistically significantly increased in Ph+ ALL compared to both lymphoid BP and normal PB. Although further investigation is required to ascertain its importance in Ph+ ALL, it seems an exciting area of development. It has been shown that within ALL, blockade of *HIF1A*-mediated signalling may play an important role in chemo-sensitisisation of ALL cells under hypoxic conditions of the BM (Frolova et al, 2012). Furthermore, within childhood B-ALL, high expression of *HIF1A* is associated with a good prognosis (Silveira et al, 2014), as well as being required for active Wnt signalling in T-ALL (Giambra et al, 2015). Although our focussed gene analysis demonstrated no significant difference between lymphoid BP and Ph+ ALL within Wnt/β-catenin pathway components, there appeared to be an increased dependency on the Wnt/β-catenin pathway within Ph+ ALL, with a statistically significant increase in key Wnt components, namely *TCF4*, *TCF7*, and *LEF1*, compared to normal PB. There is clearly an identified role for the Wnt pathway in the propagation of malignancy (Clevers, 2006; van Rhenen et al, 2007), but there is only limited data of its role within Ph+ ALL (Gregory et al, 2010). There is increasing evidence of its reliance, however, in normal B-cell development and, therefore, it represents a potential area of interesting further development in its role as a novel therapeutic intervention.

As expected, there was significant change in the cell survival regulators, namely *GATA1* and *GATA2*, which had a statistically significant decrease in expression in Ph+ ALL compared to lymphoid BP disease. This is likely in keeping with the myeloid and stem cell component noted within lymphoid BP. For example, *GATA1* is known to play an essential role in the commitment to, and subsequent differentiation within, myeloid lineages, particularly, erythroid, megakaryocyte and eosinophilic (Drissen et al, 2016; Ferreira et al, 2005). Contrary to AML data, which suggests a clinical significance of *GATA1*, *GATA2* and *SCL* expression (Shimamoto et al, 1994), there was no statistical difference in *SCL* expression compared to normal or between lymphoid BP and Ph+ ALL. Furthermore, there was no significant change between other cell cycle regulators in the Ph+ acute lymphoid leukaemias, including *CCND1*, *CCND2*, *FOXO1*, *STIL* and *CYCLINE1*. This is in keeping with the leukaemic phenotype of the diseases.
Together, this data confirms that lymphoid BP and Ph+ ALL are distinct disease entities and offers potentially interesting targets for further evaluation. This chapter has offered novel insight into the similarities between myeloid and lymphoid BP disease, which has not been previously described. Further to this, it has allowed discussion into the differences between self-renewal pathways between the Ph+ acute lymphoid leukaemias, which may guide potential therapeutic targets in the future, including \textit{FBXW7} and components of the Wnt/\(\beta\)-catenin pathway within Ph+ ALL.
6. Results IV

6.1. Introduction

The concept of disease persistence through quiescent LSCs has been highlighted in recent years by trials exploring the discontinuation of TKIs in CP-CML patients with sustained deep molecular response (i.e. those that achieve a 4 log or greater reduction of quantitative BCR-ABL expression from standardised baseline over a prolonged period) (Etienne et al, 2017; Mahon et al, 2014; Mahon, 2015; Mahon et al, 2010; Mahon et al, 2016; Rea et al, 2012; Ross et al, 2010; Ross et al, 2013; Takahashi et al, 2012). These trials have demonstrated that discontinuation of therapy can be selectively achieved, with STIM trial data stating the cumulative incidence of molecular relapse at 60 months was 61% (CI 52-67%), with few cases of late relapse being observed (Mahon et al, 2014). This suggests that if molecular relapse is to occur, it happens early. Comparable results have been reported worldwide (Mahon et al, 2014; Mahon et al, 2010; Rea et al, 2012; Ross et al, 2010; Ross et al, 2013; Takahashi et al, 2012). The EURO-SKI trial is the largest study to date, with recruitment of over 800 patients. Most recent analysis demonstrated a molecular-recurrence free survival of 62% at 6 months, 56% at 12 months, and 52% at 24 months (Mahon et al, 2016). The DADI study analysed molecular-relapse free survival after stopping dasatinib as second-line therapy or beyond. The probability of molecular-recurrence free survival was 49% at 6 months, and 48% at 12 months, with all molecular relapses occurring within 7 months of stopping therapy. All patients with molecular relapse regained deep molecular response within 6 months (Imagawa et al, 2015). The UK equivalent trial currently in progress (DESTINY) is analysing the role of dose reduction before complete suspension of TKI treatment. Interim data has suggested that decreasing TKI treatment to half the standard dose was associated with improvement in TKI adverse events, in patients with stable MR3 or more. This suggested that many patients are being overtreated and that there is scope for TKI dose reduction prior to discontinuation to assess response (Clark et al, 2016).

Although these results indicate the possibility for TKI discontinuation in a small subset of CML patients, they highlight an uncertainty surrounding the ‘trigger’ event(s) in molecular relapse, and question if sustained BCR-ABL expression, LSC persistence, microenvironmental factors, or, indeed, multiple factors are contributory factors. It is known that in up to 30% of normal individuals, low levels of BCR-ABL expression can be identified (Biernaux et al, 1995; Bose et al, 1998), perhaps suggesting that BCR-ABL
transcript level alone is not sufficient in CML maintenance. It is unknown, however, what cell types these transcripts are originating from and if this is significant long-term. Interestingly, a single copy of \textit{BCR-ABL} expressed from the endogenous BCR locus in a knock-in murine model is not sufficient to induce leukaemia (Foley et al, 2013; Huntly & Gilliland, 2005; Huntly et al, 2004). Therefore, although it is clear that a certain level of \textit{BCR-ABL} needs to be expressed at the stem cell level to cause CML, it is unclear if further molecular changes or aberrant signalling is needed to drive disease persistence, molecular relapse and disease progression. Furthermore, it is unknown if \textit{BCR-ABL} is the initiating insult, or if host factors, such as epigenetic and genetic changes influence disease outcome. Regardless, it is clear that eradication of \textit{BCR-ABL} is not a prerequisite for long-term disease free survival, and this suggests that other factors, including CML LSCs, are responsible for molecular relapse.

It has been well documented that CML LSCs are not eradicated by TKIs \textit{in vitro}, with initial studies by the Holyoake group demonstrating that a population of Lin\textsuperscript{CD34+} CML progenitors have the ability to remain quiescent, are insensitive to the TKI, imatinib, and can engraft into NOD SCID gamma (NSG) mice (Graham, 2002; Hamilton et al, 2012; Verstegen et al, 1999). Furthermore, Bhatia \textit{et al} translated this into the clinical setting by showing that cells of a similar phenotype could be identified in the bone marrow of imatinib-treated CML patients in CCyR (Bhatia et al, 2003b). These studies, amongst others, verify that CML LSCs are not absolutely dependent on \textit{BCR-ABL} activity for their survival and may determine disease persistence (Chomel et al, 2011; Corbin et al, 2011b; Deininger, 2012).

It seems pertinent therefore, that a biomarker of the CML LSC is discovered to enable detection of those individuals that can come off therapy and those that need to remain on therapy, as this will have both financial and psychological implications for the healthcare system and the patient group, respectively. Although many labs have performed extensive analysis to identify markers of a primitive cell population in the preclinical setting, including CD26 (Culen et al, 2016; Herrmann et al, 2015; Warfvinge et al, 2017) and IL1-RAP (Järås et al, 2010; Landberg et al, 2016; Warfvinge et al, 2017; Ågerstam et al, 2016), none have been shown, as yet, to be robust enough for clinical translation. CD26, however, is showing increasing promise in this regard with recent data suggesting a correlation between CD26 expression and treatment response, as well as Lin\textsuperscript{CD34+CD38lowCD45RA\textsuperscript{cKIT\textsuperscript{+CD26+}} population being identified as a potential therapeutic target at a single cell level (Culen et al, 2016; Warfvinge et al, 2017).
Although identification of the CML LSC appears to be within reach, little is known about the biology of the LSC in those patients that are in deep molecular response, with much of our understanding and the previous data coming from a drug-naïve population. Clinically, the therapeutic need will be in those that are on TKI therapy. In keeping with this, (Giustacchini et al, 2017) recently described a novel approach in determining single-cell gene expression within a LSC phenotype between BCR-ABL+ and BCR-ABL negative cells of the same patients, as well as those on TKI treatment. This will advance our understanding of LSC biology within CML and other stem cell diseases.

Within the Copland group, we have sought to understand the biology of CML LSCs compared to normal, in an effort to aid the identification of this subset of cells. Previous unpublished work has demonstrated that the GEP of CML LSCs is more akin to normal stem and progenitor cells, and not normal HSCs, as represented through Principal Component Analyses (PCA) where, when plotted together, LSCs from patients with CP CML (n=6) have a global gene expression signature that appears more mature than normal HSCs (n=3), and is positioned overlapping the progenitor subpopulations’ (GSE47927) (figure 6-1).

Within this dataset (GSE47927), 1217 genes were deregulated between CP-CML LSCs and normal HSCs (figure 6-2). We initially utilised this gene expression data to evaluate the expression of cell surface markers. Using z scores to normalise the gene expression for each sample, we plotted heat maps using R/Bioconductor. This demonstrated the variable expression of cell surface markers between CP-CML LSCs and normal HSCs (figure 6-3).
Figure 6 - 1 PCA of normal HSC, CP-CML LSC, and progenitor populations
Data analysed by DI as part of (Irvine, 2013). Each axis represents a principal component of the variability in the normal and CP samples. An individual point within the axes represents each microarray and each subpopulation grouping by a different colour (green for HSC, orange for MPP); an ellipse is positioned at 2 standard deviations around the normal HSC (red), normal MPP (Orange) and CP-CML LSC (black). The other progenitor populations are shown without ellipses.

Figure 6 - 2 Gene expression is deregulated between normal and CP-CML LSCs
A volcano plot showing deregulation of genes in a comparison of Lin CD34+CD38 CD90+ cells from 6 CP-CML samples against the same population derived from 3 normal samples (GSE47927). Areas of significance are indicated by a dark green (equivalent to q<=0.01) or light green (equivalent to q<=0.05) background. Genes reaching significance are coloured red (q<=0.01) or orange (q<=0.05); non-significant genes are grey. Data analysed by GH and LH.
Figure 6 - 3 Cell surface markers are deregulated between normal and CP-CML LSCs
Mean expression levels between normal HSCs (n=3) and CP-CML LSCs (n=6) from GSE47297 were normalised across each gene (z score) and represented using heatmap.2 in R/Bioconductor. Yellow represents increased expression and blue represents decreased expression within the data set. Samples could be clustered into disease process, i.e. normal and CP-CML. Data analysed by GH and HM.
Although there was variable expression noted across the cell surface markers analysed, some cell surface markers were expressed at significant and differential levels between the CML LSC and normal HSC populations (Table 6-1). Of note, CD93 demonstrated a six-fold increased expression in CP-CML compared to normal HSC and represented an interesting target for further analysis.

<table>
<thead>
<tr>
<th></th>
<th>P-value</th>
<th>Fold change CP-CML vs. normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD93</td>
<td>2.5x10^-5</td>
<td>6</td>
</tr>
<tr>
<td>CD47</td>
<td>9.25x10^-8</td>
<td>-1.88</td>
</tr>
<tr>
<td>CD96</td>
<td>0.0017</td>
<td>-3.08</td>
</tr>
<tr>
<td>CD59</td>
<td>0.0013</td>
<td>-1.63</td>
</tr>
<tr>
<td>CD53</td>
<td>0.0011</td>
<td>-1.62</td>
</tr>
<tr>
<td>CD62L</td>
<td>0.085</td>
<td>-2.72</td>
</tr>
</tbody>
</table>

Table 6 - 1 Cell surface marker fold change between CP-CML LSC versus normal

Analysis of the microarray, GSE47927, demonstrated significant fold change between CP-CML vs. normal in a number of cell surface markers. The table represents the most statistically significant genes identified. Data analysed by HM and GH.

This was confirmed at the gene level within CD34+ selected PB and BM CML samples compared to normal BM samples, purchased from Stem Cell Technologies (figure 6-4A). A statistically significant increase in CD93+ cells was noted within the LSC population of PB CP-CML samples at the protein level (n=20) compared to normal (figure 6-4B).

Figure 6 - 4 CD93 is upregulated within CP-CML at gene and protein level

(A) RNA from 30 BM and PB CP-CML samples was utilised to validate the gene expression of CD93. All samples were isolated from CD34+ selected cells, and compared to normal BM (n=5). Compared to normal, there was a statistically significant increase in CD93 gene expression in BM and PB, as determined by an unpaired student’s t test (p<0.001). (B) CD93 protein expression was assessed by flow cytometry in CD34+CD38+CD90+ populations between CML (n=22) and normal (n=7). A statistically significant increase in percentage of CD93+ cells was determined using an unpaired student’s t test (p<0.0001).
CD93 is a glycoprotein, which comprises a C-type lectin-like domain, five EGF-like domains, a transmembrane domain and a short cytoplasmic tail (Christian et al, 2001; Nepomuceno et al, 1997). It can appear in two forms: a cell-associated full-length and a truncated soluble form (Greenlee-Wacker et al, 2011), which confer functional variability. Although CD93 was previously identified as a receptor for complement component 1, subcomponent q phagocytosis (C1qRp), which was initially shown to be involved in the C1q-mediated enhancement of phagocytosis, several studies have reported the contrary and the functional roles for CD93 are extensive. A variety of functions have been described, including high expression promoting dissemination of malignancy through angiogenesis (Bao et al, 2016; Langenkamp et al, 2015; Orlandini et al, 2014), apoptosis (Norsworthy et al, 2004), and monocyte inflammation (Greenlee-Wacker et al, 2011; Jeon et al, 2010), as well as being implicated in leukocyte migration and cell adhesion (Galvagni et al, 2016). Knockout CD93 murine models remain viable and show no severe developmental abnormalities, although phagocytosis is decreased \textit{in vivo} in these animals (Norsworthy et al, 2004). Furthermore, membrane CD93 protein and mRNA expression has been described in cells of myeloid origin, stem cells, endothelial cells and platelets (Ikewaki et al, 2010; Nepomuceno & Tenner, 1998).

The role of CD93 as an immature cell marker, or biomarker, has been explored in a variety of malignancies (Lee et al, 2009; Olsen et al, 2015), including within multiple myeloma, where a recent study showed that higher gene expression of CD93 was associated with higher survival rates amongst patients with multiple myeloma (MM) treated with bortezomib, indicating that high levels of CD93 may be a possible marker for better outcome in these patients (Stessman et al, 2013).

Within myeloid disease, CD93 has been shown to offer potential as a biomarker for an AML LSC population, where it has been identified as a part of the AML LSC gene signature, and expression confirmed at protein level (Saito et al, 2010). Furthermore, it has been shown, more recently, that CD93 expression can identify a predominantly cycling, non-quiescent leukaemia-initiating cell population in MLL-rearranged AML, providing opportunities for selective targeting and eradication of the AML LSC (Iwasaki et al, 2015b). The functional role of CD93 expressing cells within CML has yet to be identified.
6.2. **Aims**

In view of the above, the specific aims set out in this chapter were

1. to assess the self-renewal capability of CD93 within the LSC compartment,
 and
2. to assess the gene expression differences between Lin−CD34+CD38−CD90+CD93+ and Lin−CD34+CD38−CD90+CD93− cells at bulk and single cell level.
6.3. Results

6.3.1. CD93+, but not CD93− CML cells have LIC and self-renewal capacity in vitro and in vivo

Because CD93 was upregulated within an LSC phenotype at gene and protein level, it was hypothesised that CD93+ cells would correlate with the self-renewal properties of CML LSCs. To address this, primary CP-CML samples were sorted into Lin−CD34+CD38−CD90+CD93+ and Lin−CD34+CD38−CD90+CD93− populations (figure 6-5).
We first sought to identify differential potential of the cells with CFC assays. Two thousand FACS-sorted cells from the Lin^−CD34^+CD38^−CD90^+CD93^+ and Lin^−CD34^+CD38^+CD90^+CD93^− populations were plated in duplicate in Methocult. Plates were incubated at 37°C for 10-12 days before colonies were counted. Colonies were BCR-ABL positive as determined by FISH. An increase in number of colonies was noted within the Lin^−CD34^+CD38^−CD90^+CD93^+ population compared to Lin^−CD34^+CD38^+CD90^+CD93^− (n=4 CP-CML samples) (figure 6-6A); however, this was not statistically significant as determined by a paired student’s t test, and perhaps reflects the fact that primary colony formation in progenitor assays is largely driven by committed progenitors and not stem cell self-renewal. Up to 50 primary colonies per sample were next individually picked and re-suspended in 200µl fresh Methocult in 96 well plates. Plates were incubated at 37°C for 12 days before positive wells were counted. This demonstrated no statistical change in replating capability between Lin^−CD34^+CD38^−CD90^+CD93^+ population compared to Lin^−CD34^+CD38^+CD90^+CD93^− (figure 6-6B); there was, however, a trend towards increased replating potential in the CD93^+ selected cells.

![Figure 6 - 5 Sorting strategy for Lin^−CD34^+CD38^−CD90^−CD93^+/- populations](image)

Cells were thawed and cultured overnight in SFM+5GF. Cells were then washed in PBS/2%FBS and counted. 5x10^4 cells were used within each unstained, single-stained and FMO control, where cells were re-suspended in 100µl PBS/2%FBS prior to the addition of antibody (concentration calculated in previous dilution experiments’). The '5-stain' sample was re-suspended in 450µl PBS/2%FBS prior to the addition of antibody. Samples were stained for 30 minutes at 4°C and then washed twice with PBS/2%FBS before being filtered through a 0.22µM filter. Cells were sorted with a BD FACS Aria with Diva software.

![Figure 6 - 6 Lin^−CD34^+CD38^−CD90^+CD93^+/- do not differ in CFC and replating potential](image)

(A) CP-CML samples (n=4) were sorted according to figure 5-3 and plated in duplicate into methocult for 12-14 days prior to colony counts. The graph indicates the mean number of colonies for each CP-CML, with mean and standard deviation for each population. There was no statistical significance between the populations (p>0.05; n=4 CP-CML samples). (B) The graph indicates the percentage of positive wells per population from replating assays (p>0.05; n=4 CP-CML samples), with mean and standard deviation. There was no statistical difference between populations, as determined by a paired student’s t test; however, there was an apparent trend towards an increase in percentage of positive wells in the Lin-CD34+38-90+93+ population.
To interrogate this further, LTC-IC assays were utilised. LTC-IC assays represent the most stringent in vitro surrogate measure of the functional activity of HSCs. Samples were sorted into Lin-CD34+93+ and Lin-CD34+93- populations. 50,000 cells from each sorted population (n=3, CP-CML samples) were cultured in six duplicates on a stromal feeder layer (a 1:1 mix of irradiated (80Gy) SL/SL and M210B4 murine fibroblasts) in long-term myeloid culture medium (MyeloCult supplemented with hydrocortisone). Cultures were maintained for 6 weeks with 50% media changes performed weekly before being harvested into Methocult for 12 days prior to colonies being counted. Results demonstrated a statistically significant increase in colonies within the Lin- CD34+93+ arm of the experiment with no, or few, colonies within the Lin-CD34+93- experimental arm (Figure 6-7A and 6-7B). This suggested that CD93+ selected cells have increased self-renewal capacity in vitro compared to CD93- selected cell population.

![Figure 6 - 7 Lin-CD34+CD93+ have greater self-renewal capacity that Lin-CD34-CD93- in vitro](image)

3 CP-CML samples were sorted in Lin-CD34+93+ and Lin-CD34+93- populations. 50,000 cells from each sorted population were cultured in six duplicates on a stromal feeder layer of irradiated SL/SL and M210B4 in long-term myeloid culture medium. Cultures were maintained for 6 weeks with 50% media changes performed weekly. (A) The graph indicates the number of colonies from each experimental arm (n=3 CPCML samples), with mean and standard deviation. There was a statistical significant difference between Lin-CD34+93+ and Lin-CD34+93- populations as demonstrated using a paired student's t-test (****, p<0.0001).

We next sought to identify if this increased self-renewal capacity could be translated in vivo and utilised a NSG engraftment model to evaluate this (figure 6-8). The NSG mouse model was used to assay human LSCs with in vivo engraftment capacity (SCID-repopulating cells).
Prior to sorting, CP-CML samples (n=5) were assessed for *BCR-ABL* expression within a Lin−CD34+ population by FISH (figure 6-9). CP-CML Lin−CD34+CD93+ or Lin−CD34+CD93− cells were then isolated by FACS sorting (1x10⁶ cells/mouse) (figure 6-5), washed and transplanted via tail vein injection into sub-lethally irradiated (2 Gy) 8-12 week old NSG mice. Samples were not selected for CD38 or CD90, as cell numbers were deemed too small to proceed with transplantation.

Figure 6 - 9 BCR-ABL analysis by FISH prior to NSG engraftment model

FISH was performed as per 2.3.2.13 prior to being analysed using an AXIOvision AX10 fluorescent microscope and AXIOvision software. Chromosome t(9;22) *BCR-ABL* fusion was detected by a dual colour dual fusion probe (Abbott Molecular). Upon thawing, all samples were *BCR-ABL* positive, with only one sample (CML395) being less than 100%.
PB was removed at 8 weeks from the mice utilised for three of the CML samples, and analysed for engraftment using CD45 and CD33 expression by flow cytometry. There was no significant difference in CD45+33+ expression between the LinCD34+93+ and LinCD34+93− populations at this time point, suggesting that engraftment had not yet occurred or was not detectable and, therefore, peripheral blood engraftment was not analysed in the further 2 samples (figure 6-10).

Figure 6 - 10 Significant engraftment was not identified at 8 weeks in CD93+ or CD93- populations
Following transplantation via tail vein injection into sublethally (2 Gy) irradiated NSG mice, blood sampling was performed at 8 weeks. To assess human cell engraftment, cells were labelled with anti-human CD45, CD33 and CD19 antibodies prior to analysis by flow cytometry. CD45+CD33+ cells were determined as a percentage of total cells. There was no statistically significant difference between the experimental arms at 8 weeks, suggesting that engraftment had not yet occurred. n=3 CP-CML samples, p value calculated from paired student’s t test between arms of the experimental for each CP-CML sample. Performed and analysed by GH and RK.

All mice were euthanised after 16 weeks and marrow contents of femurs were obtained. To assess human cell engraftment, cells were labeled with anti-human CD45, CD33 and CD19 antibodies prior to analysis by flow cytometry. This allowed for analysis of lineages within the engrafted samples. Within CML395, there was no statistical change in engraftment potential between the LinCD34+CD93+ and LinCD34+CD93− experimental arms (figure 6-11A). However, on closer analysis of the flow cytometry data, it is clear that the engraftment potential in the CD93− population is mixed lineage, suggesting that this is secondary to BCR-ABL negative cells, which engraft better than BCR-ABL positive cells and engraft with both myeloid and lymphoid lineage cells. This was, indeed, validated in the pre-FISH analysis, which demonstrated a small, but biologically significant, percentage of BCR-ABL negative cells within the sample. Furthermore, on analysis of the post engraftment sort, the CD34+ populations were
BCR-ABL negative within the CD93-selected populations (figure 6-11B). Consequently, within this sample, it is clear that the engraftment potential in the CD93-selected population is driven by ‘normal’ stem cells, which have good engraftment potential and engraft both lymphoid and myeloid lineages (figure 6-11C).

There was a statistically significant increase in engraftment with CD93-selected cells, as determined by student’s t test, in the further 4 independent CP-CML samples (figure 6-12A), where prior to engraftment there was 100% BCR-ABL positive expression with FISH in CD93- and CD93-selected ssamples. Human CD45+CD33+ cells were isolated by FACS sorting at 16 weeks and again analysed by FISH for the BCR-ABL gene rearrangement. These samples were BCR-ABL positive (figure 6-12B) demonstrating again that the CD93-selected population has an increased leukaemia-
initiating and self-renewal capacity and, ultimately, may represent an immature phenotype within the hierarchy that can be used as a biomarker for the CML LSC.

Figure 6 - 12 Lin-CD34+CD93+ cells confer higher rates of engraftment compared to Lin-CD34-CD93- cells

Mice were euthanised after 16 weeks and marrow contents of femurs were obtained. (A) Human cell engraftment was characterised by percentage of CD45+CD33+ cells. There was a statistically significantly increased engraftment in the CD93+ experimental arm as determined by the student’s t test (*, p<0.05; **, p<0.01; ***, p<0.001). (B) Human CD45+ cells were isolated by FACS sorting and analysed by FISH for the BCR-ABL gene rearrangement. Percentage of BCR-ABL positive cells, as determined from analysis of 100 cells, was assessed for each murine experiment. Performed and analysed by GH and RK.

6.3.2. Gene expression profiling of CD93+-selected CP-CML stem cells confirms their quiescent character and biomarker potential

These results have demonstrated that CD93+Ph+-selected populations have functional properties of the CML LSC, with evidence of increased self-renewal and engraftment potential. It was subsequently hypothesised that lin-CD34+CD38-CD90+CD93+ CML cells would have a more mature and less lineage restricted gene expression profile compared to lin-CD34+CD38-CD90+CD93- cells. We next sought to characterise the differences in the lineage gene expression profile between CD93+ and CD93- selected CML LSC populations and determine gene expression for each population at the single cell level.
To interrogate this, CP-CML subpopulations with the greatest functional capability compared to normal were identified from previous data generated within our lab (Copland, 2007). In brief, normal and CP-CML samples were FACS-sorted into HSC/LSC, CMP, GMP, and MEP subpopulations. Results suggested a significant change in functional status between normal and CP-CML subpopulations within the HSC/LSC compartment (lin-CD34+CD38–CD45RA–CD90+), where the CML LSC population demonstrated significantly increased proliferation (14 fold expansion; P<0.001) compared to normal HSCs (no expansion) after 5 days in vitro culture in physiological growth factors. In addition, equivalent numbers of CML LSCs produced approximately 4-fold more colonies in CFC assays than normal HSCs (329±56 versus 86±17 per 2,000 cells, respectively (p<0.05)). The LSC compartment was, therefore, utilised in subsequent experiments to accurately characterise the expression between the 93+ and 93− populations.

CP-CML cells were sorted into (1) lin-CD34+, (2) lin-CD34+CD38–CD90+CD93− and (3) lin-CD34+CD38–CD90–CD93+ populations (figure 5-5). RNA was harvested at baseline from ‘bulk’ populations (1) to (3) and cDNA generated. cDNA was generated from single cells using the Fluidigm C1 autoprep system. Using Fluidigm technology, quantitative PCR of 90 lineage-specific and cell survival genes was performed within all populations of cells (1) to (3) in ‘bulk’ samples (n=3), and at single cell level (n=150 lin-CD34+CD38–CD90+CD93+, n=150 lin-CD34+CD38–CD90–CD93− single cells; n=3 samples in total). Multiplex PCR was used to determine if BCR-ABL was present at a single cell level following pre-amplification with the Fluidigm C1 autoprep system (figure 6-13)
The inherent biological heterogeneity between patient samples can result in a greater variability of gene expression when compared with cell line-based experiments. This can lead to minimal statistically significant difference between populations. Furthermore, any significant changes that were noted between lineage gene expression between CD93+ and CD93- selected populations were within an already immature LSC population, making them biologically significant. ΔCT was determined as an average of 4 housekeeping genes, namely ATP, β-actin, B2M, and UBE2D2. Statistical significance was determined through an unpaired student's t-test from ΔCT values; results are presented as fold change compared to the CD34+ population.
Gene expression of CD93 was shown to be upregulated within our Lin’CD34+38’90*93’ population compared to CD34+ control and Lin’CD34+38’90*93’ population (p=0.0068) (figure 6-14).

On global gene expression analysis, the two populations could be segregated by differential gene expression through gene clustering of the fold change compared to the CD34+ population, although this was sample-dependent (figure 6-15). Within this expression cluster, the Lin’CD34+CD38 CD90*CD93’ population was associated with overexpression of genes involved in lineage restriction. Included in these were GATA1 (p=0.0007), and CBX8 (p=0.0002). Furthermore, there was an overexpression in the cell cycle gene, CYCLIND2, and lower expression of MCM4, suggesting that these cells have a more active cell cycle pattern (figure 6-16). The lin CD34+CD38 CD90*CD93+ population displayed a less lineage-restricted profile with increased expression of CDK6 (p=0.05), HOXA6 (ns), CDKN1C (ns) and C-KIT (p=0.0014), compared to the Lin’CD34+CD38 CD90*CD93’ population (figure 6-17). Taken together, this suggests that gene expression profiles of bulk lin’CD34+CD38 CD90*CD93’ population correlates with the primitive functional status of the population, and confirms previous findings that a CD93+-selected population may represent a potential biomarker of the CML LSC.
Gene expression profiling can segregate Lin-CD34+CD38-CD90+CD93+ and Lin-CD34+CD38-CD90-CD93- populations.

Gene expression profiles (GEPs) were determined from CD34+, Lin-CD34+CD38-CD90+CD93+, and Lin-CD34+CD38-CD90-CD93- populations after thawing in SFM+5GF for 24 hours. GEP levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by delta delta Ct method using an average of four housekeeping genes as reference and the average CD34+ value as the calibrator for fold change. Heat maps were produced by using heatmap.2 in R/Bioconductor.

Figure 6 - 15 Gene expression profiling can segregate Lin-CD34+CD38-CD90+CD93+ and Lin-CD34+CD38-CD90-CD93- populations
Gene expression was determined from CD34+ selected CP CML samples (n=3). Lin-CD34+CD38-CD90+CD93+ and Lin-CD34+CD38-CD90+CD93- CP-CML samples. Gene expression levels were determined by Fluidigm array analysis using the delta delta Ct method with an average of four housekeeping genes as reference. Fold change is relative to CD34+. The Lin-CD34+CD38-CD90+CD93- population was associated with decreased expression of genes involved in lineage restriction. Included in these were GATA1 (p=0.0007), and CBX8 (p=0.0002). Furthermore, there was an overexpression in the cell cycle gene, CYCLIND2, and lower expression of MCM4, suggesting that these cells have a more active cell cycle. P values were determined by an unpaired t-test (*, p<0.05; **, p<0.01; ***, p<0.001)
Figure 6 - Gene expression of Lin-CD93+ confers a stem cell signature

Gene expression was determined from CD34+ selected CP CML samples (n=3), Lin-CD34+CD38-CD90+CD93+ and Lin-CD34+CD38-CD90+CD93- CP-CML samples. Gene expression levels were determined by Fluidigm array analysis using the delta delta Ct method with an average of four housekeeping genes as reference. Fold change is relative to CD34+. The Lin-CD34+CD38-CD90+CD93+ population displayed a less lineage-restricted profile with increased expression of CDK6 (p=0.05), HOXA6 (ns), CDKN1C (ns) and KIT (p=0.0014), compared to the Lin-CD34+CD38-CD90+CD93- population. P values were determined by an unpaired t-test (*, p<0.05; **, p<0.01; ***, p<0.001).
Advances in single cell analysis have allowed for a more complete investigation of the cellular heterogeneity that may exist within populations and enables a more detailed examination of the homogeneity or heterogeneity of a population than was previously possible. Cells were isolated using fluorescence-activated cell sorting. We then performed targeted expression profiling of 90 genes in 150 single human lin−CD34+CD38−CD90+CD93+ and lin−CD34+CD38−CD90−CD93− cells isolated using Fluidigm C1 technology. Single cells were pooled into each population across 3 individual CP-CML samples. Data was analysed using R/Bioconductor. As only 2 housekeeping genes were consistent across all Fluidigm chips within the single cell experiments, namely B2M and UBE2D2, these were used to determine ΔΔ Ct levels. False discovery rate was determined at a significance level of 0.05 and all single cell analyses were adjusted for this.

The frequency of expression (i.e. the number of cells with expression for the gene above five events per population per chip) for each gene was first determined. Of the genes eligible for analysis, 20 genes had a higher frequency within the CD93+ selected population, and 53 genes had a higher frequency within the CD93− selected single cell population (figure 6-18).
Figure 6 - 18 Frequency of gene expression identifies gene differences between CD93+ and CD93- single CML cells

Cells were isolated using FACS. Targeted expression profiling of 90 genes in 150 single human Lin CD34+CD38-CD90-CD93+ and Lin CD34+CD38-CD90-CD93- cells isolated using Fluidigm C1 technology. Single cells were pooled into each population across 3 individual CP-AML samples. Data was analysed using R/Bioconductor. False discovery rate of 0.05 was used within the analysis. Of the genes eligible for analysis, 20 genes had a higher frequency within the CD93+ selected population, and 53 genes had a higher frequency within the CD93- selected single cell population. An unpaired student’s t-test was used to determine significance (*, p<0.05; **, p<0.01; ***, p<0.001).

Gene expression analysis was performed by the ΔΔCt method using B2M and UBE2D2 as a normalisation control. Hierarchical clustering was performed using R/Bioconductor. For the purpose of clustering, only genes that were expressed in all three samples were included in analysis. Hierarchical gene clustering could not clearly discriminate between CD93+ and CD93- populations at a single cell level, and therefore highlighted the heterogeneity seen within a single cell analysis (figure 6-19). However, on analysis of correlation using Spearman’s coefficient between the single cells versus bulk for each individual gene, there was correlation identified, with $R^2=0.65$ and 0.56 for CD93+ and CD93-, respectively, against bulk samples (figure 6-20). This suggests
that any statistically significant gene changes are true for the selected populations, and not secondary to technical variation between experimental design.
Figure 6 - Gene clustering cannot clearly discriminate between CD93+ and CD93- populations

Gene expression profiles were determined from CD34+, Lin CD34+CD38 CD90-CD93+, and Lin CD34+CD38 CD90+CD93- populations after thawing in SFM+5GF for 24 hours. GEPs were determined by Fluidigm array analysis. Relative gene expression levels were determined by $\Delta\Delta$Ct method using an average of two housekeeping genes as reference and the average CD34+ value as the calibrator for fold change. Heat maps were produced by using heatmap.2 in R/Bioconductor.
Figure 6 – 20 Correlation is identified between CD93+ and CD93- samples vs bulk using Spearman’s Coefficient

Cells were isolated using FACS. Targeted expression profiling of 90 genes in 150 single human lin-CD34+CD38-CD90-CD93+ and lin-CD34+CD38-CD90+CD93- cells isolated using Fluidigm C1 technology. Single cells were pooled into each population across 3 individual CP-CML samples. Data was analysed using R/Bioconductor. False discovery rate of 0.05 was used within the analysis. Of the genes eligible for analysis, a Spearman’s Correlation Coefficient was identified. R² was 0.65 and 0.56 for CD93+ and CD93- single cells, respectively.

Next, analysis of individual genes between pooled CD93+ and CD93- selected single cell populations’ were conducted. Using a limma modified t-test and correcting for false discovery rate with 0.05, 16 genes were noted to demonstrate statistically significant changes in expression between CD93+ and CD93- selected populations. Of note, CD93+ genes had lower expression of genes involved in differentiation, namely SPI1 and GATA1, and higher expression of self-renewal genes, SCA1, MAFB, LMO2, HOXA5, SPI1, FLT3, RUNX1, CSF1R, MCM7, HOXA6, and BMI1 (table 6-2). Multiplex PCR was used to determine BCR-ABL expression in single cells following pre-amplification. There was no statistical significant change in BCR-ABL expression between the CD93+ and CD93- selected populations, but a trend towards higher BCR-ABL expression in the CD93+ population (p=0.13) (figure 6-21).
Table 6 - 2 Single cell GEP identifies that CD93\(^+\)-selected single cells have a stem cell signature

Gene expression profiles were determined from CD34\(^+\), Lin CD34\(^+\)CD38 CD90\(^-\)CD93\(^+\), and Lin CD34\(^+\)CD38 CD90\(^-\)CD93\(^-\) populations after thawing in SFM+5GF for 24 hours. GEP levels were determined by Fluidigm array analysis. Relative gene expression levels were determined by \(\Delta \Delta Ct\) method using an average of two housekeeping genes as reference. Analysis of individual genes between pooled CD93\(^+\) and CD93\(^-\) single cell populations were analysed. Using a limma modified t-test and correcting for false discovery rate with 0.05, 16 genes were noted to demonstrate statistically significant changes in expression between CD93 and \(^-\) populations.

<table>
<thead>
<tr>
<th>Gene</th>
<th>logFC</th>
<th>P.Value</th>
<th>adj.P.Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA1</td>
<td>-2.09578</td>
<td>2.27E-07</td>
<td>9.75E-06</td>
</tr>
<tr>
<td>MAFB</td>
<td>-1.54523</td>
<td>2.18E-05</td>
<td>0.000313</td>
</tr>
<tr>
<td>LMO2</td>
<td>-1.19493</td>
<td>1.89E-05</td>
<td>0.000313</td>
</tr>
<tr>
<td>SPI1</td>
<td>0.802386</td>
<td>3.05E-05</td>
<td>0.000328</td>
</tr>
<tr>
<td>ORC2</td>
<td>-1.00764</td>
<td>4.74E-05</td>
<td>0.000407</td>
</tr>
<tr>
<td>HOXA5</td>
<td>-1.27036</td>
<td>7.31E-05</td>
<td>0.000449</td>
</tr>
<tr>
<td>CITED2</td>
<td>-0.978</td>
<td>7.28E-05</td>
<td>0.000449</td>
</tr>
<tr>
<td>FLT3</td>
<td>-0.94912</td>
<td>0.000349</td>
<td>0.001876</td>
</tr>
<tr>
<td>GATA1</td>
<td>1.914533</td>
<td>0.000529</td>
<td>0.002529</td>
</tr>
<tr>
<td>RUNX1</td>
<td>-0.62017</td>
<td>0.000767</td>
<td>0.003298</td>
</tr>
<tr>
<td>CSF1R</td>
<td>-1.1231</td>
<td>0.005552</td>
<td>0.019894</td>
</tr>
<tr>
<td>FLT1</td>
<td>-1.25481</td>
<td>0.007225</td>
<td>0.020712</td>
</tr>
<tr>
<td>MCM7</td>
<td>-0.72342</td>
<td>0.006025</td>
<td>0.019927</td>
</tr>
<tr>
<td>HOXA6</td>
<td>-0.78185</td>
<td>0.006518</td>
<td>0.020019</td>
</tr>
<tr>
<td>BMI1</td>
<td>-0.52627</td>
<td>0.012059</td>
<td>0.032407</td>
</tr>
</tbody>
</table>

Figure 6 – 21 No significant change of BCR-ABL expression was identified between CD93\(^+\) and CD93\(^-\) selected single cells as determined by multiplex PCR

Following single cell harvest with the Fluidigm C1 autoprep system, 1ul of the preamplified sample was used within a multiplex PCR. Single cell data was pooled across 3 CP-CML samples. Positive expression of BCR-ABL as determined through gel electrophoresis allowed identification of BCR-ABL expression for each single cell analysed. There was no statistically significant change in expression, as determined by an unpaired student’s t-test (p=0.13).
Single cell gene expression demonstrates that, even at a single cell level, there is evidence that CD93+ selection confers cell immaturity and self-renewal capability, although overall gene expression profiling cannot distinguish amongst the populations. In future experiments, it would be prudent to isolate the gene expression for BCR-ABL+ and BCR-ABL negative cells within the CD93+- and CD93- selected populations.
6.4. Discussion

Within this chapter, we have presented both functional and gene expression data to support our group's preliminary data that the glycoprotein, CD93, may represent a biomarker for the CML LSC. This was supported using both Lin⁻CD34⁺CD38⁻CD90⁺ and Lin⁻CD34⁺ populations. Initial in vitro analysis of clonal progenitor assays demonstrated no change in colony forming capacity between Lin⁻CD34⁻CD38⁻CD90⁻CD93⁺ and Lin⁻CD34⁻CD38⁻CD90⁺CD93⁻ populations. This perhaps is not surprising since the ability to form a multi-lineage colony focuses on the populations’ ability to differentiate, with only limited involvement from properties of self-renewal. Colony re-plating represents a self-renewal model with re-plating capacity greater in primitive multi-lineage or mixed colonies. This capacity has been shown to decline with cell maturity. Within our model, there was an increased trend towards re-plating efficiency from CFC assays, but this was not statistically significant. This may be, in part, due to inter-patient variability, with previous evidence suggesting that re-plating within CML is variable between different patients and can relate to patient characteristics, such as prognostic index (Gordon et al, 2003). To address this, LTC-IC were utilised to quantitatively assess HSC function. The LTC-IC assay represents the most stringent in vitro surrogate measure of the functional activity of HSCs, and relies on more extensive self-renewal capacity that the shorter-duration CFC assay with replates. Our results demonstrated a statistically significant increase in colonies within the Lin⁻CD34⁻CD93⁺ arm of the experiment (p=0.0001). These results suggest that CD93⁺-selected cells have increased in vitro self-renewal capacity.

Because the in vitro measurements of self-renewal do not reflect the complex multi-directional interactions seen within the HSC niche, we utilised an in vivo NSG engraftment model to determine if the CD93⁺-selected population could be truly representative of an increased self-renewal and leukaemia-initiating population. The experiments performed demonstrated that engraftment could only really be evaluated if the BCR-ABL status was known for each population. Furthermore, engraftment data could only be generated at 16 weeks through analysis of BM cells, with no PB engraftment evident at 8 weeks, or 16 weeks. Within four independent CP-CML samples, there was a statistically significant increase in engraftment in the CD93⁺ compared to the CD93⁻-selected population. This verified our previous findings that the CD93⁺-selected population has functional properties of LSCs, with evidence of increased self-renewal and engraftment potential. Our xenograft model allowed for
analysis of the capability of the transplanted cells to initiate CML disease in recipient mice. However, it does not evaluate the long-term potential of the engraftment to lead to a myeloproliferative neoplasm. To determine this serial transplantation experiments’ would be needed. However, within the CML xenograft murine model lies an inherent problem in that there is generally low engraftment as demonstrated within our model and others (Eisterer et al, 2005; Lewis et al, 1998).

To support our previous findings, we next sought to characterise the differences in the gene expression profiles between CD93+ and CD93-selected CML populations and determine heterogeneity of each population at bulk and single cell level. To interrogate this, we initially identified the CP-CML LSC population as having the greatest functional capability compared to normal, and all gene expression experiments were subsequently confined to this population.

We hypothesised that linCD34+CD38 CD90+CD93+ CML cells would have a more mature GEP compared to linCD34+CD38 CD90+CD93+ cells. CP-CML cells were sorted into (1) linCD34+, (2) linCD34+CD38 CD90+CD93+ and (3) linCD34+CD38−CD90+CD93+ populations. RNA was harvested at baseline from bulk populations (1) to (3) and cDNA was generated from single cells using the Fluidigm C1 autoprep system. Using Fluidigm technology, quantitative PCR of 90 lineage-specific and cell survival genes was performed within all populations of cells (1) to (3) in ‘bulk’ samples (n=3), and at single cell level (n=123 CD93+, n=120 CD93− single cells; n=3 samples in total).

Bulk sample analysis demonstrated a significant increase in expression of lineage commitment genes within the linCD34+CD38 CD90+CD93+ population, as shown by increased expression of GATA1 (p=0.0007), and CBX8 (p=0.0002). The lin−CD34+CD38 CD90+CD93+ population displayed a less lineage-restricted profile with increased expression of CDK6 (p=0.05), HOXA6 (ns), CDKN1C (ns) and CKIT (p=0.0014), compared to the linCD34+CD38 CD90+CD93+ population. Furthermore, the two populations could be segregated by differential gene expression through gene clustering.

At a single cell level, differences were noted in the frequency of expression between lin−CD34+CD38 CD90+CD93− and linCD34+CD38 CD90+CD93+ populations, particularly in GATA1, TPOR, and VWF. Although a statistically significant change was
demonstrated in gene expression between the lin-CD34+CD38-CD90+CD93+ and lin-CD34+CD38-CD90+CD93+ populations in a number of genes, we were not able to segregate the populations by differential expression using gene clustering. This highlights the heterogeneous nature of the cell populations and the inability to distinctly characterise between the two populations at a single cell level by GEP. However, there was positive correlation noted between the bulk and single cell data, suggesting that the gene expression changes determined between CD93+ and CD93- selected populations are not purely confounding variation caused by patient heterogeneity, or technical variation between bulk and single cell experimental design, but are inherent to the CD93-selectivity.

This heightens the argument that CD93+-selectivity represents an immature LSC phenotype at both gene and functional level.

There is no previous data to suggest that CD93 is a potential marker of a LSC within CML. Although, our group is the first to report a functional role for CD93 within CP-CML, previous reports have demonstrated it to be upregulated within human LSCs in AML (Iwasaki et al, 2015b; Saito et al, 2010). Most recently (Iwasaki et al, 2015b), within AMLs with genomic rearrangements of the MLL gene, it was demonstrated that LSC expression of CD93 is essential for MLL-mediated leukaemogenesis, but, in contrast to our findings, the CD93+ LSCs were cycling, non-quiescent leukaemia-initiating cells, whereby CD93-regulated self-renewal was secondary to silencing of CDKN2B, a major tumour suppressor in AML. Within the primary CP-CML samples analysed, CDKN2B was upregulated compared to CD34+ bulk within the CD93+ population. These differences may be purely an inherent feature within the disease process.

Based on the above, our results validate CD93 as a potential functional marker of the primitive CP-CML LSC population and highlight key lineage and cell survival pathways that are altered in CML LSC. The results demonstrate the heterogeneity seen within gene expression at the single cell level, which may allow for further insight into the CML LSC compartment with further analyses. An inherent flaw within our data is that both BCR-ABL+ and BCR-ABL- samples are present within the CD93+- and CD93- selected populations. Recently, (Giustacchini et al, 2017) described a novel technique that combines BCR-ABL detection with whole-transcriptome analysis of the same single cell. They demonstrated that significantly higher number of genes were
detected within the BCR-ABL+ stem cells, which correlated with increased proliferation gene expression and reduced quiescence-associated gene expression, compared to normal HSCs and BCR-ABL negative stem cells. This correlates with the activation of BCR-ABL-driven proliferation. This important work has allowed for analysis of samples from patients established already on TKI. Within these samples, a distinct subpopulation of highly quiescent BCR-ABL+ stem cells were identified, which demonstrated deregulation of specific pathways, including TGF-β, NFKβ, TNF-α, JAK-STAT, and Wnt/β-catenin. Cell cycle quiescence and a capacity for self-renewal are key features that underlie leukaemic initiation, progression, and relapse within CML. Identification, and subsequent, targeting this subset of cells is necessary for complete eradication of the disease.

Recent evidence has suggested that CD26 may represent an interesting target for the CML-LSC; indeed single cell gene analysis confers this notion (Warfvinge et al, 2017). Although, CD93 was analysed within (Warfvinge et al, 2017), analysis of its expression was within an MNC population. Our data similarly demonstrated that within an MNC population there is limited expression of CD93. Our experimental model utilised a more primitive population to include CD34+CD38-CD90+ cells. Further work is necessary to establish if there is co-expression between CD93 and CD26 population and if this alters the functionality of the cells. Furthermore, further work is necessary to establish if, as well as identifying the LSC population, CD93 can be targeted to eradicate it.
7. Thesis summary and future directions

Within this thesis, we have presented data for the identification of the cell surface marker, CD93, as a potential marker for the CP-CML LSC. Further to this, we present data for the role of the self-renewal pathway, Notch, in CP-CML LSC eradication. In view of the complexity of the Notch pathway within CP and myeloid BP, we characterised self-renewal pathway deregulation through transcriptional analysis of CML progression to myeloid and lymphoid BP, and offer a comparison between lymphoid BP and Ph+ ALL.

The identification and eradication of LSCs within CML remains an important area clinically. This has been highlighted in recent trials exploring the discontinuation of TKIs in CP patients with sustained deep molecular remission (Mahon et al., 2010, Mahon et al., 2014, Mahon, 2015, Mahon et al., 2016, Rea et al., 2012, Etienne et al., 2017, Ross et al., 2010, Ross et al., 2013, Takahashi et al., 2012). These trials have demonstrated that discontinuation of therapy can be selectively achieved.

Although these results indicate the possibility for TKI discontinuation in a small subset of CML patients, they highlight an uncertainty surrounding the ‘trigger’ event(s) in molecular relapse, and question if sustained BCR-ABL expression, LSC persistence, microenvironmental factors or, indeed, multiple factors are contributing. A single copy of Bcr-Abl expressed from the endogenous BCR locus in a knock-in murine model is not sufficient to induce leukaemia (Foley et al., 2013). Therefore, although it is clear that a certain level of BCR-ABL needs to be expressed at the stem cell level to cause CML, it is unclear if further molecular changes or aberrant signalling is needed to drive molecular relapse and disease progression. Furthermore, it is unknown if BCR-ABL is the initiating insult, or if host factors, such as epigenetic and genetic changes influence disease outcome and precede the acquisition of BCR-ABL. Regardless, it is apparent, that further insight into why LSCs survive TKIs is vital in the quest for cure. Furthermore, understanding of the LSC within CML, may offer insight in other CSC driven diseases. This is in view of the fact that CML is an extremely well understood disease, with numerous well validated experimental in vitro and in vivo models that can be manipulated, when compared to the heterogeneity seen within AML, for example.

As has been extensively described in previous chapters, identification of the CML LSC population in a clinical setting would enable therapeutic decisions in identifying those
at risk of molecular relapse, and those where TKIs can be stopped. Additionally, it would aid further evaluation of the LSC population at a biological level, that would, in turn, allow for a greater understanding in potential therapeutic targets to help in their eradication. Although many labs have performed extensive analysis to identify markers of a primitive cell population in the preclinical setting, including CD26 (Herrmann et al., 2015, Cülen et al., 2016, Warfvinge et al., 2017) and IL1-RAP (Ågerstam et al., 2016, Landberg et al., 2016, Warfvinge et al., 2017, Järås et al., 2010), none have been shown, as yet, to be robust enough at clinical translation. CD26, however, is showing increasing promise in this area with recent data suggesting a correlation between CD26 expression and treatment response, as well as a potential therapeutic target at a single cell level (Warfvinge et al., 2017, Cülen et al., 2016).

To determine further markers to identify the CP-CML LSC population, we utilised data from a microarray study where Lin-CD34+CD38-CD45RA-CD90+ normal HSC (n=3) and CP-CML LSC (n=6 patients at diagnosis) populations were isolated using a FACSARia and applied to Affymetrix HuGene 1.0ST arrays. The raw data (.CEL files) was imported into Partek Genomics Suite and Ingenuity Pathway Analysis software and PCA and gene ontology ANOVA performed. A total of 1217 genes were significantly deregulated between normal HSC and CP-CML LSCs. The most significantly deregulated genes and pathways were involved with the molecular and cellular functions of cell cycle, cell assembly and organisation, cellular movement, cell death and DNA replication, recombination and repair. These results suggested that CML LSCs were less quiescent than normal HSCs. Within this dataset, we further sought to assess if there were differences in expression of cell surface molecules that may be amenable to therapeutic manipulation. Of particular interest, our microarray studies demonstrated that CD93 was highly upregulated in CP-CML LSCs (6 fold, p=2.5x10^-6). Increased CD93 expression was validated by Fluidigm digital PCR (6 fold increase, p=0.02; n=6). Furthermore, using flow cytometry, we demonstrated significant upregulation of CD93 protein expression on Lin-CD34+CD38-CD45RA-CD90+ CML LSCs from PB and BM of CP-CML patients (n= 17; mean = 63.8% CD93+) compared to normal HSC from healthy PB stem cell donors (n=7; mean = 0.8% CD93+) and BM donors (n=4; mean = 0.2% CD93+; p < 0.0001). FISH confirmed that 100% of Lin-CD34+CD38 CD90+CD93+ CML cells were BCR-ABL positive in all samples assessed. CD93 (also known as C1qRp) is a C-type lectin-like domain (CTLD)-containing glycoprotein which regulates phagocytosis, with roles in cell adhesion and leukocyte
migration. It is normally expressed on endothelial cells, haemopoietic precursors and mature cells including neutrophils, monocytes and platelets.

Within this thesis, we sought to assess the functional capability of the CD93-selected population and ascertain if these cells had ‘true’ stem cell capability. LTC-IC assays were utilised to quantitatively assess stem cell function. The LTC-IC assay represents the most stringent in vitro surrogate measure of the functional activity of HSCs, and relies on more extensive self-renewal capacity than the shorter-duration CFC assay with replates. Our results demonstrated a statistically significant increase in colonies within the Lin^CD34^CD93^+ arm of the experiment (p=0.0001). These results suggest that CD93^+ selected cells have increased in vitro self-renewal capacity. Furthermore, in xenograft transplantation experiments (n = 5), after 16 weeks, CD34^+CD93^+ CML LSC engrafted lethally irradiated NSG mice with BCR-ABL positive cells, whereas CD34^+CD93^- cells from the same patient samples failed to engraft to significant levels (3.5-30-fold increase in engraftment with CD34^+CD93^+ cells; p<0.03). FISH confirmed that engrafted human cells were BCR-ABL positive.

We subsequently hypothesised that CD93^+ selected cells would represent a more immature functional phenotype compared to CD93^- selected cells. The aim of this aspect of this thesis was to characterise differences in the gene expression profiles between CD93^+ and CD93^- CML LSC populations and determine heterogeneity of each population at a single cell level.

To interrogate this, we initially identified CP-CML subpopulations with the greatest functional capability compared to normal from existing data within our lab. Normal and CP-CML samples were FACS-sorted into HSC/LSC, CMP, GMP, and MEP subpopulations. Results suggest a significant change in functional status between normal and CP-CML subpopulations within the HSC/LSC compartment (lin^CD34^CD38^-CD45RA^-CD90^+), where CML LSC demonstrated significantly increased proliferation (14 fold expansion; P<0.001) compared to normal HSC (no expansion) after 5 days in vitro culture in physiological growth factors. In addition, equivalent numbers of CML LSC produce ~4-fold more colonies in CFC assays than normal HSC (329±56 versus 86±17 per 2,000 cells, respectively (p<0.05)). Furthermore, FISH demonstrated that >90% of lin^CD34^CD38^CD45RA^-CD90^+ CML LSC from all patient samples were BCR-ABL positive. Subsequent experiments were confined to the LSC population.
We hypothesised that lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD45RA\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) CML cells would have a more mature gene expression profile compared to lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD45RA\(^{-}\)CD90\(^{-}\)CD93\(^{+}\) cells. CP-CML cells were sorted into (1) lin\(^{-}\)CD34\(^{+}\), (2) lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) and (3) lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{+}\) populations. Using Fluidigm technology, quantitative PCR of 90 lineage-specific and cell survival genes was performed within all populations of cells (1) to (3) in ‘bulk’ samples (n=3), and at single cell level (n=123 CD93\(^{+}\), n=120 CD93\(^{-}\) single cells; n=3 samples in total).

Bulk sample analysis demonstrated a significant increase in expression of lineage commitment genes within the lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) population, as shown by increased expression of \(GATA1\) (p=0.0007), and \(CBX8\) (p=0.0002). The lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{+}\)CD93\(^{+}\) population displayed a less lineage-restricted profile with increased expression of \(CDK6\) (p=0.05), \(HOXA6\) (ns), \(CDKN1C\) (ns) and \(C-KIT\) (p=0.0014), compared to the lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) population. Furthermore, the two populations could be segregated by differential gene expression through gene clustering. At a single cell level, differences were noted in the frequency of expression between lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) and lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{+}\) populations, particularly in \(GATA1\). Although a statistically significant change was demonstrated in gene expression between the lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{-}\) and lin\(^{-}\)CD34\(^{+}\)CD38\(^{-}\)CD90\(^{-}\)CD93\(^{+}\) populations in a number of genes, we were not able to segregate the populations by differential expression using gene clustering. This highlights the heterogeneous nature of the cell populations and the inability to distinctly characterise between the two populations at a single cell level. However, on analysis of correlation using Spearman’s coefficient between the single cells versus bulk for each individual gene, there was correlation identified, with \(R^2=0.65\) and 0.56 for CD93\(^{+}\) and CD93\(^{-}\), respectively, against bulk samples. This suggested that any statistically significant gene changes are true for the selected populations, and not secondary to technical variation between experimental design. Our data on CD93 heightens the argument of the use of CD93 in the isolation and identification of the CML LSC. Further work needs to ascertain if, as well as its identification, CD93 can be utilised within CML LSCs eradication. This work is currently ongoing, where we have utilised a lentiviral approach to knock-down CD93 within primary CP-CML samples. This will need to be extended to a normal HSC population to ensure no detrimental effect, prior to discussions regarding \textit{in vivo} translation into patients.
Further to the identification of CD93 as a marker for a primitive cell population within CP-CML, we explored the role self-renewal signalling within CML maintenance and progression. In particular, the role of the Notch pathway was evaluated extensively. Firstly, we identified, at gene and protein level, the expression of Notch pathway components within CP-CML primary samples. This identified variable expression between samples, but that the Notch pathway was deemed inactive through utilisation of the gamma secretase inhibitor, DAPT, which upon culture with primary samples, led to no change in cellular functions of proliferation or apoptosis. As CD34⁺ CP-CML cells abundantly express the Notch receptor, NOTCH2, we investigated whether the pathway could be reactivated through exogenous stimulation upon ligand binding. An OP9 co-culture system was utilised to allow for overexpression of Notch ligands, DLL1 or JAG1, using OP9GFP as control stroma. Compared to non-stromal conditions, culturing over 7 days on OP9GFP led to a significant increase in growth (p=0.02, n=5). The overexpression of JAG1 led to a further increase compared to OP9GFP (p=0.002). We confirmed that activation of the pathway was through JAG1, and not DLL1, by utilising DAPT, where we observed a significant decrease in live cell counts within the OP9GFP (p=0.01) and OP9JAG1 (p=0.018) experimental arms. Upregulation of the pathway was confirmed with increased expression of HES1 at the gene level (n=4, p=0.001), and val1744 protein by IF (n=5). CP-CML samples (n=3) were FACS-sorted into Lin⁻CD34⁺38⁺ and Lin⁻CD34⁺38⁻ populations to assess for functional variation in stem and progenitor populations. Following 7 days in culture, live cell counts showed a significant increase in Lin⁻CD34⁺38⁺ cells on OP9JAG1 co-culture (p=0.04). There was a decrease in cell growth of Lin⁻CD34⁺38⁻ cells in the same experimental conditions (p=0.02), with an associated increased trend in late apoptotic cells (ns). We hypothesised that Notch activation would have a toxic influence on an immature CML LSC population. LTC-IC assays showed a significant decrease in colonies for Lin⁻CD34⁺38⁻ cells co-cultured with OP9JAG1 for 7 days (p<0.05). Further to this, CFSE assays demonstrated an increased trend towards percentage of viable cells in later division on stromal co-culture compared to non-stromal conditions, suggesting that in stromal conditions, cells are protected somewhat to enable increased divisions. This was again confirmed within MSC experiments where co-culture on MSC led to protection of CD34⁺ against TKI-induced apoptosis. Within our experiments, this was not clearly dependent on activation of Notch through JAG1 expression. This suggested that Notch activation is not solely responsible for protection of LSC within disease states. This data led us to establish that upon JAG1 activation, cells undergo a degree of apoptosis, but more significantly, it causes a push towards early erythroid
differentiation that is blocked in an immature state (i.e. proerythroblast phase). This was determined through cell surface identification of erythroid markers. There was an increase in expression of both CD71 and GlyA with the addition of stromal co-culture. This was only statistically significant with CD71 surface expression. As CD33 expression was maintained, it suggested that although the samples had initiated differentiation, they could not progress beyond an immature phenotype. To corroborate the possible involvement of Notch activation through JAG1 interaction in early differentiation, gene expression was investigated in primary CD34+ CP-CML patient samples. There was a statistically significant increase in overexpression of key genes involved in early erythroid differentiation, namely, \(p38 \) (\(p<0.05 \)) and \(PU.1 \) (\(p<0.05 \)), which have notable involvement in development of (pro)erythroblasts. Furthermore, there was little change in gene expression in regulators of the stem cell phenotype, namely \(GATA2 \) and \(NFKB1 \). This is the first time this has been proposed within a CML phenotype. This data together allows us to propose that activation of the Notch pathway through JAG1 protein leads to increased differentiation and apoptosis in CP-CML cells, that ultimately leads to LSC exhaustion and a decrease in colony formation.

In order to evaluate the function of Notch activation as a therapeutic modality, we have embarked on translating the \textit{in vitro} findings to an \textit{in vivo} setting. This will allow for evaluation within a BM microenvironment. With thanks to the Aifantis laboratory (NYU), we are in the process of utilising the ROSA26-ICN2 murine model, which was generated by insertion of a loxP flanked splice acceptor NEO-ATG cassette with two polyA sites followed by ICN2 into the ROSA26 locus, allowing the ROSA26 promoter to drive expression of the NEO-ATG cassette. Cre-recombinase–mediated excision of NEO-ATG results in use of the splice acceptor in the ICN2 cassette and irreversible expression of the transgene (Lobry et al. 2013; Klinakis et al. 2011). Following confirmed activation of Notch, animals will be sacrificed and BM cells retrovirally transduced with \(BCR-ABL \) as described (Mizuno et al. 2008; Li et al. 1999), and monitored for leukaemic development.

In myeloid BP (\(n=4 \)), in similar experiments, sorted Lin-CD34+CD38+ and Lin-CD34+38- populations did not demonstrate this functional profile of Notch activation, despite an overexpression in the \(NOTCH2 \) receptor compared to normal (\(p=0.0035 \)). To investigate this further, we sought to investigate the changes in gene expression of 90 self-renewal and cell survival components in all stages of CML, including CP (\(n=13 \)), myeloid BP (\(n=12 \)), and lymphoid BP (\(n=4 \)). Samples were sorted in stem and
progenitor populations. The self-renewal pathway components were highly deregulated between CP and myeloid BP disease. Of interest, there was a statistically significant upregulation in Wnt components in myeloid BP compared to CP, particularly TCF7 (p=0.0011). We hypothesise that Wnt upregulation is preventing Notch activation in myeloid BP-CML. Furthermore, there was a statistically significant increase in the DNA replication genes, MCM7 and MCM9, between CP and myeloid BP. The transition of CML from CP to BP is characterised by the accumulation of molecular and chromosomal abnormalities, although the molecular mechanisms are poorly understood. There is accumulating evidence that suggests that BCR-ABL causes this directly through induction of ROS, inducing DNA breaks requiring repair and by interacting directly with the repair machinery to inhibit performance (Skorski, 2008). It has also been shown that BCR-ABL directly drives expression of certain members of the DNA repair pathways resulting in increased DNA instability (Skorski, 2008). The uncontrolled activity of MCM7 and MCM9 may represent an interesting therapeutic target in myeloid BP disease in the control of genomic instability and remains an interesting area of future work.

Further to this, we explored the transcriptional changes within the Ph+ acute leukaemias. This led to some interesting observations. Firstly, the differential gene expression of self-renewal and cell survival pathways was comparable between lymphoid BP and myeloid BP, with an inability to segregate the samples by gene clustering. This is perhaps, unsurprising, in view that the disease phenotypes arise from the same cell origin, i.e. the BCR-ABL positive HSC. The Notch signalling pathway has a known role within lineage decision, particularly towards a lymphoid bias (Delaney et al., 2010, Ohishi et al., 2002, Ohishi et al., 2003, Jaleco et al., 2001). However, the main components of the pathway were not statistically changed between myeloid and lymphoid BP disease. The data of self-renewal gene expression, together, suggests that these pathways are not involved in the lineage decision in myeloid or lymphoid BP development.

Ph+ acute lymphoid-phenotype leukaemias encompass both lymphoid BP CML and Ph+ ALL. These two diseases are clinically distinct, but can often be mislabelled, as suggested within (Hovorkova et al, 2017). In view of this, we next sought to question if there was differing gene expression profiles of self-renewal and cell survival pathways within the Ph+ acute leukaemias’. This was in view of the known differences in cell of origin between them, with lymphoid BP representing a distinctly stem cell disease, and
Ph+ ALL a more differentiated phenotype. Indeed, on global gene expression of the 90 self-renewal and cell survival components, the two diseases could be segregated with gene clustering methods and confirmed that the diseases are distinct entities. Of particular interest, within our dataset, HIF1A was statistically significantly increased in Ph+ ALL compared to both lymphoid BP and normal PB. Although further investigation is required to ascertain its importance in Ph+ ALL, it seems an exciting area of development. It has been shown that within ALL, blockade of HIF1A-mediated signalling may play an important role in chemo-sensitisation of ALL cells under hypoxic conditions of the BM (Frolova et al., 2012). Furthermore, within childhood B-ALL, high expression of HIF1A is associated with a good prognosis (Silveira et al., 2014), as well as being required for active Wnt signalling in T-ALL (Giambra et al., 2015). Although our focussed gene analysis demonstrated no statistical change between lymphoid BP and Ph+ ALL within Wnt pathway components, there appeared to be an increased dependency on the Wnt pathway within Ph+ ALL, with a statistically significant increase in key Wnt components, namely TCF4, TCF7, and LEF1, compared to normal PB. Furthermore, FBXW7, a negative regulator of Notch, was statistically significantly increased in Ph+ ALL compared to normal. FBXW7 is not unique to Notch signalling and has been shown in vivo to target many proto-oncogenes, growth promoters, and anti-apoptotic molecules. Furthermore, FBXW7 has been shown to have an indispensable role in the maintenance of adult HSC quiescence (Matsuoka et al, 2008; Thompson et al, 2008). Deletions of Fbxw7 in HSCs and CML LSCs have been shown to lead to c-Myc accumulation, activation of the TP53 signalling pathway, aberrant cell cycle entry and eventual exhaustion (Reavie et al, 2013; Reavie, 2010). TP53 mutations can accompany disease progression in human CML and TP53 loss in some cases impedes the anti-leukaemic response to BCR-ABL inhibition (Kelman et al, 1989; Wendel et al, 2006), suggesting that loss of p53 in some tumours could constitute an adaptive response to the increase in the levels of c-Myc during CML progression. As there was no statistical change in TP53 and MYC, this suggests that FBXW7 is acting independently of these survival mechanisms, and may offer a therapeutic target within the disease.

This transcriptional data provides some understanding of the differences in self-renewal and cell survival signalling pathway components that may offer interesting areas of future development. Furthermore, it may lead to further work in the identification of a gene expression signature that would allow for a greater diagnostic capability and, subsequently, improvement in patient care.
Overall the work presented in this thesis has furthered our understanding of the role of self-renewal within CML maintenance and progression, as well as further implicating the use of the cell surface marker, CD93, in the identification of the CML-LSC. This data will help guide novel therapeutic approaches towards the CML LSC in future experimental work, as well as guide further development in the transcriptional differences and potential targets in the Ph+ acute leukaemias.
8. Bibliography

Bennett, J. H. (1845) Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. *Edinburgh Medical and Surgical Journal*, 64, 413-423.

Craigie, D. (1845) Case of disease and enlargement of the spleen in which death took place from the presence of purulent matter in the blood. *Edinburgh Medical and Surgical Journal*, 64, 400-413.

Crisan, M., Kartalaei, P. S., Vink, C. S., Vink, C., Yamada-Inagawa, T., Bollerot, K., van Ijcken, W., van der Linden, R., de Sousa Lopes, S. M., Monteiro, R., Mummery, C. & Dzierzak, E.

Mammalian numb Gene Expression by Interacting with Its mRNA. *Mol Cell Biol*, 21(12), 3888-3900.

Ottmann, O., Charbonnier, A., Stegelmann, F., Breccia, M., Steegmann, J. L., Olavarria, E., Jevtic, S., Cota, M., Scheuer, N. & Lipton, J. H. (2015) Smoothened (Smo) Inhibitor Lde225 Combined with Nilotinib in Patients with Chronic Myeloid Leukemia (Cml) Resistant/Intolerant (R/I) to at Least 1 Prior Tyrosine Kinase Inhibitor: A Phase 1b Study. *Haematologica*, 100, 62-63.

