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Abstract 
The aim of this thesis is to describe the rapid microwave synthesis of a number of 

transition metal carbides and nitrides as well as their structural characterization and develop 

reproducible procedures that can cut processing times and, hence, reduce the energy 

consumption. Specifically, 4 binary systems are investigated: V–C, Zr–C, Hf–C and Zr–N. 

Carbide syntheses were conducted using either elemental or oxide precursors under argon, 

whereas the nitride system was investigated from zirconium powder under either nitrogen 

or ammonia gas. 

 

Microwave syntheses were conducted using both multi-mode cavity (MMC) and single-

mode cavity (SMC) microwave reactors at a power of 800 W and 1 kW, respectively, with 

an operating microwave frequency of 2.45 GHz. Vanadium carbide production from both 

oxide and elemental precursors was achieved in 6 minutes for MMC experiments and 2 

minutes for SMC experiments. Zirconium carbide was obtained from zirconium powder and 

graphite in 20 minutes in a MMC reactor and 6 minutes in a SMC reactor. Unfortunately, 

the carbothermal reduction of ZrO2 to ZrC was not successful as the starting materials did 

not react with each other and no product formation was observed. Similar results were 

obtained for the carburization of HfO2. However, hafnium carbide was synthesized 

combining graphite with hafnium metal in 20 minutes in a MMC reactor and 6 minutes in a 

SMC reactor but the formation of additional oxide phases (i.e. HfO2) was also observed. 

Finally, zirconium nitride production was investigated in a MMC reactor and prepared in 20 

minutes from zirconium metal under either N2 or NH3 gas. Generally, oxygen inclusion was 

observed in all experiments either in the form of oxycarbide or additional oxide phase(s). 

 

Once a reproducible experimental technique was established, products were 

characterized by several analytical techniques. Powder X-ray diffraction (PXRD) was used 

to identify product phases, study the phase evolution of the microwave processes and refine 

the MW-synthesized structures by Rietveld method. Powder neutron diffraction (PND) was 

used on the V-C and Zr-C samples to evaluate product purity and the C and O occupancies 

of the final products. Scanning electron microscopy coupled with energy dispersive X-ray 

spectroscopy (SEM-EDX) provided information about product morphology, particle size 

and purity. EDX supported the evidence for oxygen inclusion across samples. Supporting 

information in favour of this was additionally offered by Raman spectroscopy. X-ray 
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photoelectron spectroscopy (XPS) was used to analyze the surface of products together with 

the chemical state of the elements present in it. 
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1 Introduction 
 

1.1 Microwave History and Theory 
A microwave (MW) is a form of non-ionizing electromagnetic radiation and, as such, 

consists of synchronized oscillations of electric and magnetic fields, perpendicular to each 

other, that self-propagate at the speed of light through vacuum [Figure 1-1]. Microwaves can 

then be characterized by the frequency of oscillation (f – number of oscillations per unit 

time) and its wavelength (λ – distance between crests). 

 

 

Figure 1-1 Schematic representation of an electromagnetic wave. The electric field, E, is in a vertical plane 
and the magnetic field, H, in a horizontal plane.1 

 

Microwaves have a frequency range that goes from 0.3 – 300 GHz and wavelengths from 

1 m – 1 mm (photon energy 1.24 µeV – 1.24 meV, respectively)2 which situate them between 

infrared and radio waves in the electromagnetic spectrum, shown in Figure 1-2.  

Several specific microwave frequencies have been allocated for industrial, medical and 

scientific applications,3,4 with the intent to minimize interference with communication 

devices, but the most widespread frequency used for both cooking and chemistry is 2.45 

GHz. At this frequency, the wavelength is ~12.2 cm and the energy of a single microwave 

photon ~1 meV, which is very low with respect to the typical energy required to ionize water 

molecules (12-13 eV)2 and contribute only to molecular rotation and vibration. For industrial 

heating applications, a microwave frequency of 900 MHz is also used. The reason lies in the 

fact that at this frequency MWs have a greater wavelength (~33.3 cm) with respect to those 

at 2.45GHz which is more suitable for the heating of bigger loads. 
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Figure 1-2 The electromagnetic spectrum, showing the frequency and wavelength associated with each type 
of electromagnetic wave.5 

 

The topic of microwave technology is based on historical events dating back to the 19th 

century. The existence of radio waves was predicted by James Clerk Maxwell in 1864 from 

his equations and it was not until many years later that their existence was conclusively 

demonstrated for the first time by Heinrich Hertz in 1888 by building a primitive spark-gap 

radio transmitter.6 In 1920, the American physicist and electrical engineer Albert Hull 

invented the cavity magnetron,7,8 a high-powered vacuum tube that could generate 

microwaves. Although the first prototypes were not efficient enough to gain commercial 

success, the first real world applications of microwaves in communications arrived with the 

development of radar technology.9 During World War II, in 1940, the design of the 

magnetron was drastically improved by John Randall and Henry Boot, who built on Hull’s 

concept to develop what is known as the modern cavity magnetron10 [Figure 1-3]. 

This revolutionary device is a diode-type electron tube, consisting of a solid metal rod 

which acts as a cathode, a ring-shaped iron anode surrounding the cathode, two magnets and 

an antenna. These components are all incorporated within a container that has been 

evacuated to allow free movement of electrons. Upon application of a very high voltage (~ 

4000 V) to the diode, electrons are emitted from the hot cathode (also called ‘filament’ or 

‘heater’). In the absence of a magnetic field, the emitted electrons would be expected to 

follow a straight line trajectory towards the anode. However, as two magnets are mounted 

above and below the tube structure, the generated magnetic field (parallel to the cathode 

axis) forces the electrons to travel in a circular motion towards the anode. The latter contains 

a series of cavities arranged in circles that resonate at a certain frequency when the electron 
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cloud blows across each cavity opening, thereby emitting electromagnetic radiation. The as-

generated microwaves are then collected by the antenna and channeled into the waveguide, 

a hollow metal pipe that confines the wave so as to propagate in one direction with minimal 

energy loss. 

 

 

Figure 1-3 The resonant-cavity magnetron and its components.11 

 

1946 was the year that saw the marketing of the first microwave oven, named 

“Radarange” and invented by Percy Lebaron Spencer of the Raytheon Company. He 

realized that microwave energy could potentially cook food when a candy bar melted in his 

pocket while experimenting with radar.12 However, Radarange was too large and expensive 

(US$5,000 – the equivalent of $54,000 in 2017) for general home applications and consumed 

3 kW of power, about three times as much today’s microwave ovens. Since then, the 

microwave oven market kept rising with the development of more affordable, energy-

efficient and smaller microwave ovens. Amana Corporation, a division of Raytheon, 

released the first counter-top microwave oven in 1967 which rapidly became popular for 

home use around the world. 

The first use of microwave heating in chemical research was proposed in 1971 by Liu et 

al. who studied the decomposition of oxygen-containing organic compounds such as 

alcohols, ketones and ethers.13 Since then, chemical laboratories started to be equipped with 

inexpensive domestic microwave ovens (DMOs) and the number of publications in the area 

grew exponentially. The first successful chemical reactions using DMOs were reported in 
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1986 by Gedye et al.14 The authors investigated four different types of organic reactions and 

prepared seven different organic compounds, observing a substantial boost (up to 1000-fold) 

in the reaction rates with respect to the equivalent reactions using conventional heating. 

These initial papers set the foundations for MW-induced chemical processing and led to the 

development of novel synthetic methods especially in organic and solution-phase 

chemistry.15–18 

On the other hand, the advancement of microwave methods in solid-state chemistry has 

faced more challenges than solution-phase chemistry and has progressed at a much slower 

pace. This has mainly been due to the unavailability of commercial laboratory microwave 

reactors for solid-state chemistry as well as the limited understanding of the interaction 

between MWs and solid materials.19 However, it was not until the early 1990s that scientists 

showed a growing interest in the microwave processing of ceramics and the number of 

published papers in the area drastically increased.20–27 To date, MWs have been employed 

extensively for the synthesis and processing of a variety of materials such as oxides, 

carbides, nitrides, etc. (see Section 1.6). Nevertheless, the use of MWs in materials 

processing still faces several challenges, including the high cost of laboratory MW apparatus 

and the lack of heating for poor MW-absorbing materials.28 

 

1.2 Microwave Heating Mechanisms 
As will be described further in Section 1.4.1, MWs interact directly with molecules, 

causing a fast rise in temperature within seconds/minutes. The two main mechanisms 

through which microwaves couple with matter are dipolar polarization and conduction – 

which are described in Section 1.2.1 and 1.2.2, respectively. The theory behind the 

interaction of MWs with matter is discussed in more details in Section 1.3. 

Generally, only the electric component of the microwave field is responsible of the 

heating effects in materials. The electric field can interact with temporary/permanent electric 

dipoles and/or charged particles, inducing one (or both) of the MW heating mechanisms, 

described below. The magnetic component of the MW field may also interact with materials, 

in case the substance contains magnetic dipoles, but this only occurs rarely. 
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1.2.1 Dipolar Polarization12,19 
Dipolar polarization (Pd) applies to substances with temporary or permanent electric 

dipoles. In electromagnetism, a dipole is a separation of positive and negative charges within 

a system and can be characterized by its dipole moment – a measure of the separation of the 

positive and negative charges. A substance having molecules with a non-uniform 

distribution of positive and negative charges possesses such dipole moments. Such 

molecules are said to be polar. An example of a polar substance is water (H2O) [Figure 1-4] 

in which the electron cloud is displaced towards the more electronegative oxygen atom. 

 

 
Figure 1-4 Schematic illustration of the dipole moment in a water molecule. Its negative pole (red) is at the 
oxygen atom (the more electronegative one) whereas its positive pole (blue) is at the hydrogen atoms (the less 
electronegative ones).29 

 

When a polar molecule is subjected to a microwave field, it aligns itself with the rapidly 

changing electric field of the MWs and collides with surrounding molecules. This results in 

the conversion of MW energy into thermal energy and heat is then dissipated by molecular 

frictions and collisions. Generally, this mechanism is the dominant effect in liquid-phase 

substances, such as water. 

The larger the dipole moment, the greater the tendency of the solvent to respond to an 

applied field by reorientation of the electric dipoles. A polar molecule behaves as a dielectric 

which is defined as an electrical insulator that can be polarized by an applied electric field. 

When a dielectric is subjected to an internal electric field, E, the polarization is proportional 

to this field and is given by equation (1-1): 

 

 𝑃" = 𝜀% 𝜀& − 1 𝐸 = 𝜀%𝜒+𝐸 (1-1) 

 

where ε0 is the permittivity of free space, εr is the relative permittivity and χe is the electric 

susceptibility of the material.30 
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1.2.2 Conduction12,19 
The conduction mechanism occurs in electrically conducting materials and, generally, in 

all the substances that contain free ions or charged particles such as electrons. When such a 

material is irradiated with microwaves, the electric component of the MW field induces 

indeed electronic/ionic motion throughout the material. This results in an increased collision 

rate between the moving particles, converting their kinetic energy into thermal energy. 

Generally, this mechanism is the dominant effect in solid materials (such as graphite). 

Graphite is one of the allotropes of carbon and has a layered and planar structure, shown 

in Figure 1-5.  

 

 
Figure 1-5 Side view of the layered and planar structure of graphite.31 

π-electrons are free to move in between the layers, making the material electrically 

conductive. Graphite is known to be a strong microwave absorber as the π-electrons will 

start following the electric field component when irradiated with MWs, reaching very high 

temperatures (> 1000°C) within minute timescales.32 In the experiments described in this 

thesis, graphite powder was used as both a starting material and a susceptor (a substance that 

couples very well with microwaves – see Section 1.3). 

 

 

1.3 Interaction of MWs with Matter 
Microwaves obey the law of optics and, as such, can be absorbed, reflected and/or 

transmitted, depending on the type of materials they interact with. Materials can therefore 

be classified as transparent (little or no interaction with MW fields, e.g. quartz), reflective 

(most of MW energy is reflected, e.g. metals) or absorbing (most of MW energy is absorbed, 

e.g. graphite),21,22 as shown in Figure 1-6. 
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Figure 1-6 The interaction of transparent (top), reflective (middle) and absorbing (bottom) materials with 
microwave energy. 

 

The absorption of microwave energy by a material is called dielectric heating and 

depends upon the complex permittivity, ε*, of the material given by:23,30 

 

 𝜀∗ = 𝜀- − 𝑖𝜀-- = 𝜀%(𝜀&- − 𝑖𝜀+00--) (1-2) 

 

where ε’ (the real component) is the dielectric constant, ε’’ (the imaginary component) 

is dielectric loss factor, ε0 is the permittivity of free space, εr’ is the relative dielectric constant 

and εeff’’ is the relative dielectric loss factor. 

The dielectric constant is a measure of the ability of a substance to store electrical energy 

in an electric field, whereas the dielectric loss factor is the loss of energy that goes into 

heating a dielectric material in a changing electric field. In other words, the dielectric loss 

factor is the amount of input microwave energy that is actually dissipated as heat and relates 

directly to the electrical conductivity of a material, σ:33 

 

 𝜀-- =
𝜎
𝜀%𝜔

 (1-3) 

 

where ε0 is the permittivity of free space and ω is the frequency of the microwave 

radiation. 
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Epsilon prime, ε', and epsilon double-prime, ε'', are important and useful terms for 

microwave engineers as their ratio gives the so-called loss tangent (also referred to as the 

dissipation factor), tanδ, which represents the ability of a substance to convert microwave 

energy into thermal energy at a given frequency and temperature:4,19 

 

 
tan 𝛿 =

𝜀′′
𝜀′  

(1-4) 

 

The greater the loss tangent, the more efficiently microwave power is converted into 

thermal energy. Microwave transparent (low-loss) materials usually have a low dissipation 

factor (tanδ < 0.1), whereas microwave absorbers (high-loss) materials have a high loss 

tangent (tanδ > 0.1). 

The dielectric properties of a material are highly dependent on the temperature, and it 

has been shown how the loss factor increases as the temperature of the material rises at a 

given frequency.34,35 In other words, microwave transparent solids – that usually do not 

couple with microwaves at room temperature – can become capable of absorbing MW 

energy more efficiently when the temperature is increased. To achieve such an effect, the 

use of a high-loss material called susceptor is usually needed. A susceptor is a substance 

used for its ability to absorb microwave energy and convert it to heat (such as graphite, SiC, 

etc.). MWs are absorbed by the susceptor and heat is transferred to the low-loss material via 

a conventional heating process which, in turn, will start absorbing MW energy as the 

temperature increases. Potentially, almost all materials can undergo “hybrid” heating with 

the above method. 

The rate of change of temperature of a given material during a dielectric heating process 

is given by the following:36 

 

 𝑑𝑇
𝑑𝑡 =

𝐾𝜀--𝑓𝐸>

𝜌𝐶A
 (1-5) 

 

where dT/dt is the rate of change of temperature of the material, K is a constant, E is the 

field strength, ρ is the density of the material and Cp is the specific heat capacity. 

Similar to Equation (1-5), Equation (1-6) describes the energy loss due to radiation of 

infrared waves from the surface of the material:36 

 

 𝑑𝑇
𝑑𝑡 = −

𝑒𝛼𝐴E
𝜌𝐶A𝑉E

𝑇G (1-6) 
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where e is the sample emissivity ratio, α is the Stefan-Boltzmann constant, As and Vs are 

the surface area and the volume of the sample, respectively. 

The microwave power effectively absorbed by a sample per unit volume, P (in W/m3), 

can be determined from Equations (1-7), (1-8) and (1-9) by making use of the dielectric 

properties of materials:22 

 

 𝑃 = 𝜎 𝐸 > 

= 2𝜋𝑓𝜀%𝜀′′ 𝐸 > 

= 2𝜋𝑓𝜀%𝜀- tan 𝛿 𝐸 > 

(1-7) 

(1-8) 

(1-9) 

 

where σ is the total effective conductivity (in S/m), E is the magnitude of the internal 

electric field (in V/m) and f is the frequency of the microwave radiation (in Hz). The 

equations described above assume that the power is uniform throughout the volume and that 

thermal equilibrium has been reached, which is not always the case. Also, the electric field 

inside the load depends on the dielectric properties of the material itself and its geometry 

and, hence, the determination of the distribution of the electric field is a complex task.37,38 

However, these equations represent an acceptable approximation for calculating the power 

absorbed by the sample. 

The microwave power absorbed by the sample is then converted into thermal energy, 

causing an increase in temperature, ∆T, from Ti to Tf, in a time interval, ∆t. Equations (1-11) 

and (1-12) are particularly useful to calculate the final temperature reached by the sample, 

Tf, and the time interval in which the latter is approached, ∆t:39 

 

 
𝑃 =

𝐾𝐶A𝑚∆𝑇
∆𝑡  

𝑇0 = 𝑇L +
𝑃∆𝑡
𝐾𝐶A𝑚

 

∆𝑡 =
𝐾𝐶A𝑚∆𝑇

𝑃  

(1-10) 

 

(1-11) 

 

(1-12) 

 

where K is the conversion factor for thermochemical calories to W (= 4.184) and m is 

the mass of the sample (in g). 

When microwaves interact with an absorbing material, the amplitude of the MW field 

and the power density will decrease exponentially from the surface to the core region [Figure 

1-6]. The penetration depth for a substance, Dp, is defined as the depth at which the field 
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amplitudes has decreased to 1/e (= 0.36788), 37% of its initial value at the surface, and is 

given by the following equation:37 

 

 
𝐷A ≅

𝜆% 𝜀-

2𝜋𝜀-- 										𝑜𝑛𝑙𝑦	𝑤ℎ𝑒𝑛	𝜀
-- ≪ 𝜀- (1-13) 

 

where λ0 is the wavelength of the microwave radiation (in m). The penetration depth is 

zero in perfectly reflective materials and infinite in perfectly transparent materials. 

In conducting materials – which are microwave reflective (e.g. metals) – the skin depth, 

δ, is usually used to described the propagation of microwaves within the material and is 

defined as the depth at which the magnitude of the electric field falls to 1/e of the value at 

the surface:23 

 

 𝛿 =
1
𝜋𝑓𝜇𝜎

 (1-14) 

 

where f is the frequency of the microwave radiation, µ is the magnetic permittivity of the 

sample and σ is the electrical conductivity. Metals usually show a very low skin depth which 

means that microwaves do not penetrate the core region of the material. As a consequence, 

most of the microwave radiation will be indeed reflected in bulky metals but will be absorbed 

in fine metal powders, causing very rapid heating of the latter. 

 

 

1.4 Microwave vs. Conventional Heating 
As a consequence of the MW heating mechanisms and the dielectric properties of 

materials, microwave heating shows some features that make this process considerably 

different from conventional heating. These characteristics are: direct heating, volumetric 

heating, instantaneous heating and selective heating. The sections below will describe in 

detail the most common properties of microwave heating and the advantages as well as 

disadvantages that this process has over conventional heating. 
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1.4.1 Properties of MW Heating 
MWs reach the substance being heated at the speed of light and subsequently couple 

directly with it. Heat is then generated within the substance itself through “direct heating” 

with minimal loss of energy. On the other hand, conventional heating behaves in a 

completely different way. Heat is transferred to the surface of the substance through 

conduction, convection or radiation and then into the substance itself by thermal conduction. 

Figure 1-7 provides a schematic illustration on how heat is transferred in both heating 

processes. 

The direct heating properties seen in microwave heating are often associated with a very 

fast conversion of electromagnetic energy into thermal energy. Heat can therefore be 

generated almost instantaneously (“instantaneous heating”) from the onset of microwave 

irradiation and very rapid reaction times are often observed.40 Also, different types of 

materials within the same sample will interact with MWs to a different extent (dependent on 

the interaction mechanisms discussed in the previous sections) and this allows specific 

substances to be heated selectively (“selective heating”).40–42 

 

 

Figure 1-7 Schematic showing the main differences between conventional (left) and microwave heating 
(right). In conventional heating, heat is driven into the substance through thermal conduction, resulting in the 
surface being warmer than the interior. In microwave heating, microwaves interact directly with the material 
being heated and volumetric heating occurs, giving an inverse temperature gradient. 

 

 

1.4.2 Volumetric Heating19 
As microwaves can penetrate materials and convert to thermal energy by coupling with 

them at a molecular level, heat can be generated “volumetrically” – throughout the volume 
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of the material [Figure 1-7]. Diffusion of heat does not occur from the surface to the core of 

the material (as in conventional heating), so all the infinitesimal elements of volume within 

a given sample are heated simultaneously. In this way, the rate of heating does not depend 

principally on the thermal conductivity and diffusivity of the sample but, instead, on the 

dielectric properties of the material itself and it is possible to achieve a more uniform and 

energy-efficient heating with respect to conventional heating. 

Unfortunately, not all materials show the dielectric or conduction properties which are 

favourable for microwave heating. In this case, a combination of microwave and 

conventional heating, called hybrid heating, is often necessary.  

 

 

1.4.3 Conventional Heating 
As discussed above, conventional and microwave heating are two very different 

processes through which a substance can be heated. Conventional heating often results in a 

relatively slow and inefficient method of transferring energy into a system.43–45 In a 

conventionally heated substance, the interior of the material is cooler than the surface [Figure 

1-7]. The rate at which heat flows through a material depends upon its thermal conductivity, 

k, which is the ability of the material to conduct or transmit heat and is given by the following 

equation: 

 

 𝑘 =
𝑄𝐿
𝐴∆𝑇 (1-15) 

 

where k is the thermal conductivity (in W/m·K), Q is the amount of heat transfer through 

the material (in J/s or W), A is the cross-sectional area of the body (in m2), L is the length of 

the body (in m) and ΔT is the difference in temperature (in K). The rate of transfer of heat 

of a material from the hot side to the cold side is then given by the thermal diffusivity, α 

[equation (1-16)]: 

 

 
𝛼 =

𝑘
𝜌𝐶A

 (1-16) 

 

where α is the thermal diffusivity (m2/s), k is the thermal conductivity (in W/m·K), ρ is 

the density (in kg/m3) and Cp is the specific heat capacity (in J/kg·K). 
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In conclusion, the thermal conductivity and diffusivity of a material, together with the 

surface area and total volume of the sample, represents an important limitation in the 

diffusion of heat within the material itself. In light of Equations (1-15) and (1-16), it can be 

said that the greater the thermal conductivity and diffusivity, the faster heat will flow through 

a given material. 

Table 1-1 illustrates the main differences, including advantages and disadvantages, of 

both microwave and conventional heating processes. 

 

Table 1-1 Main differences between microwave and conventional heating. 

Microwave Heating Conventional Heating 

Energetic coupling Conduction/convection 

Volumetric Superficial 

Selective Non selective 

Dependent on the dielectric properties of 
the material 

Dependant on the thermal conductivity of 
the material 

 

 

1.5 Conventional Routes to Transition Metal Carbides and 
Nitrides 

Several conventional synthetic routes for the production of polycrystalline transition 

metal carbides and nitrides have been reported in the literature.46–48 The manufacturing 

process of these compounds usually requires elevated temperatures for extended periods of 

time (typically 1500-2300 K for several hours). The main methods of producing carbides 

and nitrides can be divided into five types: synthesis from the elements, carbothermal 

reduction of the oxide powders, deposition from the gaseous phase, electrolysis of molten 

salts and chemical precipitation. 

The first three types [Table 1-2] are the most industrially relevant due to their ability of 

mass producing large scale (up to tons) of products and will be discussed below. However, 

these methods mostly yield low surface area compounds. 

The direct reaction of the elemental powders represents the most common synthetic 

process and involves the reaction of the metal powder with either carbon (for carbides) or 

either nitrogen gas (for nitrides) at temperatures below the melting point of the metal 
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(normally between 1500 and 2300 K).48 Carbide formation is usually performed under either 

vacuum or a reducing gas atmosphere (such as hydrogen, H2). An example of direct reaction 

of the elemental powders is the synthesis of vanadium carbide performed by Storms et al. 

(1962).49 The authors used vanadium metal and graphite as starting materials, mixed them 

in appropriate stoichiometric ratios and heated the compact at temperatures above 1000 °C. 

 

Table 1-2 Most common synthetic procedure employed for the production of transition metal carbides and 
nitrides.50 

1. Direct reaction of elemental powders 

Carbides 
Nitrides 

M + C → MC 
M + ½N2 → MN 

 

2. Carbothermal reduction of metal oxides 

Carbides 
Nitrides 

MO + 2C → MC + CO 
MO + C + ½N2 → MN + CO 

 

3. Deposition from the gaseous phase 

Carbides 
Nitrides 

MX + CxHy → MC + HX + … 
MX + N2/H2 → MN + HX + … 

 

Due to the high cost of some metal powders, the carbothermal reduction of the 

corresponding metal oxide provides an economically advantageous alternative to the direct 

reaction of the elements. The carbide/nitride phase can be synthesized by mixing the metal 

oxide powder with carbon and heating at temperatures typically between 1500 and 2300 K 

in a hydrocarbon (for carbides) or nitrogen-containing gas atmosphere (for nitrides).50 The 

term “carbothermal reduction” that the reaction proceeds by either reduction of the metal 

oxide to the corresponding metal, followed by diffusion of carbon into the latter or reduction 

of the oxide to one or more suboxides, followed by formation of an oxycarbide phase. 

However, the main downside of the aforementioned synthetic route is that it yields impurity 

phases (such as uncombined carbon) which almost always necessitate extra purification 

steps by arc melting or high vacuum annealing.47 An example of this synthetic method is 

given by the carbothermal reduction of vanadium pentoxide by Meunier et al. (1997) which 

was performed by a two-stage temperature-programmed reaction process.51 The temperature 

was rapidly raised to 430 K in the first stage and maintained for 2 h, whereas it was increased 

to 1250-1320 K in the second stage and maintained for 4 h. 
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Deposition from a gaseous phase works similarly to the methods discussed previously 

and involves the direct reaction of a metal compound (usually hydride or halide) with either 

a carbon- or nitrogen-containing gas, respectively.52 Methane is usually used as a carbon-

containing gas, whereas nitrogen as well as ammonia can be used as a nitrogen-containing 

gas. However, ammonia is favoured over nitrogen gas as it is a stronger nitriding agent.50 

In recent years, other alternative synthetic methods have been developed aiming at 

increasing the purity and reducing the production cost of carbide and nitride materials. 

Examples of these methods are: mechanical alloying,46 chemical vapour deposition 

(CVD),48 RF plasma torch,52 liquid-phase method,50 self-propagating high-temperature 

synthesis (SHS),52 and sol-gel processing.52 

Mechanical alloying is a solid-state powder processing technique that can be used to 

produce nanostructured alloy phases by ball milling the precursor materials to a fine powder. 

This synthetic route is time consuming but relatively inexpensive. However, contamination 

issues are often encountered which could be avoided by employing grinding media made of 

the same material as the powder being ground. Tungsten carbide, WC, has been successfully 

synthesized by ball-milling tungsten metal and carbon at room temperature for up to 310 

h.53,54 

Chemical vapour deposition (CVD) is often used to produce solid materials precipitated 

from the gas phase. Although this method yields high quality materials with very few 

impurities, it cannot produce large scales of bulk carbides/nitrides. Examples of materials 

synthesized through this technique are SiC and TiN, produced using a volatile silane 

derivative, hydrogen and nitrogen for the former and TiCl4 and ammonia for the latter.55,56 

SiC has also been synthesized by RF plasma technique from silica and various types of 

carbon source, such as graphite carbon black.57 Similarly to CVD, this technique produces 

nanoparticles by vapour phase reactions. 

Self-propagating high-temperature synthesis (SHS) is a synthetic method known for the 

production of both inorganic and organic compounds. Initially, the reagents are mixed and 

mechanically activated through ball milling. An exothermic reaction is then initiated which 

will spread as a combustion wave throughout the reactants. Several carbides from group IV, 

V, VI have been synthesized by using this process.52 

The sol-gel technique is used to produce a solid material from liquid reactive precursor 

materials. For carbide production, the procedure starts from a metal alkoxide solution (sol) 

which goes through a gelling process to form a system containing both a liquid and a solid 

phase (gel). The latter is then subjected to a drying process and a thermal treatment in order 

to obtain the final product. The synthesis of SiC through sol-gel technique has been 
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previously investigated from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) 

in the presence of phenolic resin, ethylcellulose, polyacrylonitrile (PAN) and starch.58 

The manufacturing processes described above are all reliable options for carbide and 

nitride production. However, they still present significant challenges that need to be 

overcome in order to make them commercially and laboratory applicable. Indeed, some of 

them are not suitable for mass production while some others require very high temperatures 

and long reaction times to obtain the target material. 

 

 

1.6 Solid-state Microwave Synthesis 
This section focuses on the microwave synthesis of solid materials that have been 

reported in the literature during late the 20th/early 21st century, with particular emphasis on 

the microwave processing of carbide and nitride materials. 

As discussed previously, the advancement of microwave synthesis in solid-state 

chemistry has proceeded at a much slower pace with respect to solution-phase chemistry. 

This is also due to the lack of coupling between microwaves and MW-transparent materials. 

Indeed, such materials show little or no interaction, transmitting most of the MW energy and 

undergoing no reaction [Section 1.3]. 

If the synthesis of a given material does not include the use of MW-absorbing reactant, 

a susceptor is usually employed as a heat source. This substance exhibits a high coupling 

efficiency at MW frequencies and promotes the rapid heating of the reagents. The latter 

couple with MWs more efficiently at higher temperature and may lead to the production of 

the target material in shorter reaction times with respect to conventional heating methods.19 

A number of broad families of materials have been synthesized in the recent years using 

MW irradiation and reported in the literature19 with the most important ones being oxides, 

carbides and nitrides. 

 

Oxides represent the most synthesized materials using MW energy because of the often 

less complex experimental conditions required and the vast variety of applications of many 

of the materials. These include materials such as NaxCo1-xMnyO2,59 YBa2Cu3O7-x 
60 and La1-

xSrxCoO3.61 

Iwasaki et al. (2000) synthesized NaxCo1-xMnyO2 as a thermoelectric conversion material 

from NaxCoO2 and NaxMnO2 in a multi-mode 28 GHz microwave heating system.59 The 

authors employed a microwave frequency of 28 GHz as it can achieve a uniform dielectric 
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field distribution and a more effective heating of inorganic materials.62 The starting materials 

were mixed and pressed into pellets which were subsequently heated in air, controlling the 

microwave power to maintain the sample temperature at 900 °C for 2 h. The same solid 

solution was previously prepared by the authors using a conventional electric furnace for 6 

h at a temperature of 900 °C which indicates that microwave processing reduced the reaction 

time by one third. Moreover, Iwasaki et al. observed an accelerated grain growth in a specific 

direction in the MW-synthesized samples which, according to the authors, might be due to 

the fact that NaxCo1-xMnyO2 couples with microwave energy selectively. Unfortunately, the 

reason why this occurred remain unclear. 

YBa2Cu3O7-x was synthesized as a superconducting material using microwave irradiation 

by Agostino et al. (2004).60 The material was obtained by mixing the oxide precursors 

(Y2O3, BaO and CuO), pelletizing the powdered mixture and heating the compact in a 

domestic microwave oven at a power of 600 W for 3.5 h. The reaction was performed under 

an oxygen flow. In this study, the authors showed how the reaction time for the synthesis of 

yttrium barium copper oxide can be reduced by using microwave processing (3.5 h compared 

to 1-2 days if conventional heating is used). 

Although most of the oxides reported in the literature have been prepared from the 

respective binary oxides using a multimode cavity reactor, a number of oxide materials has 

also been prepared by employing a single-mode cavity. Grossin et al. reported the synthesis 

of La0.8Sr0.2MnO3 from lanthanum hydroxide, La(OH)3, strontium carbonate, SrCO3, and 

manganese oxide, MnO2, using an indirect microwave heating process. The starting 

materials were mixed in appropriate stoichiometric ratios and uniaxially cold pressed into 

compacts. The pellet was positioned in the center of a single-mode cavity, inside a SiC tube 

that acts as a susceptor, and heated for 10 min at several microwave input powers: 700, 750, 

800, 900, 950 and 1000 W. This showed the effect on temperature and reaction rate as a 

function of microwave input power. In particular, the temperature rises as the power 

increases. This is due to the fact that the power effectively absorbed by the sample is 

proportional to the electric field strength squared (see Section 1.3). Moreover, the authors 

showed that single-phase products were only obtained at powers higher then 800 W as 

impurities were observed at powers below that value. 

 

Carbide and nitride materials have also been the subject of microwave studies in recent 

years because of their excellent properties and industrially important applications, which 

will be discussed further in Section 1.7. The conventional manufacturing process of such 

materials is unfortunately time- and energy-intensive as it requires the heating of the starting 

materials at high temperatures for prolonged reaction times.47 Microwave synthesis therefore 
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represents a very interesting option for the production of these substances as it can 

potentially reduce reaction times and improve the energy efficiency of the whole 

manufacturing process. A major convenience of using this method over conventional heating 

is that carbon can be used as both a starting material and susceptor. It efficiently absorbs 

MW energy which is rapidly converted into thermal energy, providing additional thermal 

heating to the reaction. 

The current research on the synthesis of carbides using microwave irradiation is 

generally focused on the more industrially relevant materials, including tungsten,63–73 

silicon74–80 and titanium carbide.79,81–83 However, many other compounds have been 

prepared.84–87 Carbide materials are usually produced by pelletizing mixtures of metal/metal 

oxide and carbon (either graphite or activated charcoal) in an appropriate stoichiometric ratio 

and heating them up with the use of a susceptor material in a MW cavity (either multi- or 

single-mode). 

The microwave-assisted synthesis of tungsten carbide was investigated by Vallance et 

al. (2007).63 The material was prepared by direct reaction of the elemental powders (W + C) 

in air using either a domestic microwave oven (800 W) or a variable-power single-mode 

MW reactor (1-3 kW). Tungsten metal and graphite were mixed together with a 

stoichiometric ratio of 1:1 and uniaxially cold-pressed into compacts. Each pellet was placed 

into a quartz tube and embedded in graphite powder used as a susceptor, without which the 

reaction would not take place. The authors reported reaction times of 20 min in a DMO at a 

power of 800 W and 40 s in an SMC reactor at a power of 3 kW. These represent 

unprecedented values for the synthesis of such material, if compared to the conventionally 

synthesized WC which requires up to 10 h to be prepared. 

Carassiti et al. (2011) studied the microwave-assisted synthesis of SiC, one of the most 

important industrial material in the world today.74 The ceramic was prepared from either 

silicon or silica combined with graphite powder. The experimental set-up used by the authors 

is similar to that used by Vallance et al. for the synthesis of WC. The use of a graphite 

susceptor was crucial as well. The reaction times reported by the authors are once again 

reduced when compared to those obtained using conventional heating (up to 12 h). Single-

phase SiC was prepared in 5 min in a MMC reactor at a power of 800 W, which could be 

further reduced to 20 s in a SMC reactor at a power 3 kW. 

Another important material prepared by microwave irradiation is aluminium carbide, 

Al4C3. The microwave-assisted synthesis of this material faced more challenges with respect 

to those for WC and SiC described above. Al4C3 is not as stable as TMCs at high 

temperatures. It can indeed undergo oxidation at temperatures above 1400 °C.84 The use of 

an inert/sealed environment is therefore essential. Kennedy et al. (2015) successfully 
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synthesized Al4C3 from aluminium metal and graphite in 30 min in a MMC reactor at a 

power of 800 W.84 The pellet containing the starting materials was inserted in a quartz tube 

and embedded in graphite powder which was used as a susceptor. The reaction tube was 

evacuated in order to prevent unwanted oxide phases to form (such as Al2O3 and Al2OC). 

Up to 12 h are required to synthesize Al4C3 conventionally, whereas a much reduced reaction 

time (30 min) was reported by the authors using microwave irradiation. 

 

A number of publications can also be found in the literature concerning the microwave 

synthesis of binary and ternary nitrides, most of which report the employment of multimode 

cavities.88–95 These materials are usually synthesized by either direct nitridation of the 

corresponding metals or reduction of their oxides and subsequent nitridation. 

Brooks et al. (2004) reported the synthesis of three different nitride phases (GaN, TiN 

and VN) using a microwave-induced plasma reactor based on a domestic microwave oven 

at a power of 900 W.94 The precursors used for the preparation of such materials were Ga2O3, 

TiO2 and V2O5, respectively. The powdered metal oxides (2 g) were placed in an alumina 

boat inside a U tube which was subsequently evacuated to 10-2 mbar. Ammonia was used as 

a nitriding agent at a flow rate 113 cm3 min-1 to give a pressure of 20 mbar. Finally, the 

plasma was ignited and the reaction occurred. The total duration of each experiment was 2.5 

h for GaN, 3.5 h for TiN and 6 h for VN which is much lower than the 8-12 h required in 

the commercial process.94 

Examples of nitrides synthesized in a single-mode microwave reactor can be found in 

the literature as well. Hsieh et al. (2007) investigated the synthesis of AlN which was 

performed under nitrogen gas.96 The material usually requires approximately 8 h to be 

prepared conventionally but the authors synthesized the same phase in 30 min using a single-

mode MW cavity. 

In summary, the same trends in processing are usually observed in the synthesis of oxide, 

carbide and nitride materials using microwave irradiation. The microwave processing of 

such materials is often accompanied by reduced reaction times with respect to the 

corresponding method using conventional heating. Moreover, it is known that the observed 

reaction time decreases as the microwave input power increases and the employment of a 

single-mode cavity can further decrease reaction time over a multimode equivalent. 
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1.7 Transition Metal Carbides and Nitrides 
The majority of transition metal carbides (TMCs) and transition metal nitrides (TMNs) 

are interstitial alloys formed by the incorporation of carbon or nitrogen into the lattices of 

transition metals and are classified as nonoxidic ceramics. They combine the physical 

properties of ceramics (high melting points, hardness, resistance to corrosion, etc.) with the 

electric and magnetic properties of metals. Because of these outstanding features, these 

compounds find a myriad of applications in several technological areas as well as at extreme 

conditions of pressure and temperature. 

The most commonly useful TMCs and TMNs are those formed from the elements of 

group 4-6 but generally most transition metals form carbides and nitrides. Table 1-3 

summarizes the Group 4-10 metals and their most stable carbides and nitrides. 

 

Table 1-3 Stoichiometry of the most stable Group 4-10 transition metal carbides and nitrides.97,98 

Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 

Ti V Cr Mn Fe Co Ni 

Zr Nb Mo Tc Ru Rh Pd 

Hf Ta W Re Os Ir Pt 

       

MC/MN MC1-x/ 
MN1-x 

M3C2/ 
M3N2 

M2C/M2N M3C/M3N M3N 
No stable 
carbide/ 
nitride 

 

Early transition metals tend to form simple structures, such as in TiC that crystallizes in 

a face-centered cubic structure.99 Conversely, late transition metal carbides and nitrides are 

characterized by more complex structures with formula M3C2/M3N2 (as in the orthorhombic 

Cr3C2 – space group Pnma)100 or M3C/M3N (as in the orthorhombic Fe3C – space group 

Pnma).101 The factors that influence the structure of TMCs and TMNs will be further 

discussed in the next section. 
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1.7.1 Structure, Synthesis and Applications of TMCs and TMNs 
The structure of transition metal carbides and nitrides can be thought of as metallic 

lattices in which the non-metal atoms (C and N) are incorporated at interstitial positions. The 

non-metal atoms sit in a position between the metallic atoms, called interstices. The metal 

lattice may subsequently undergo an expansion due to the incorporation of the non-metal 

atoms, which weakens the energy of the metal-metal bonds. 

The bonding in TMCs and TMNs derives from the interaction of the 2s and 2p orbitals 

of carbon or nitrogen with the d orbitals of the transition metal atoms. It is predominantly 

metallic or covalent with a small percentage of ionic bonding (due to the difference in 

electronegativity between the transition metal and the non-metal atoms).46 The percentage 

of ionic bonding is higher in nitrides due to the higher value of the first ionization energy of 

nitrogen than that of carbon. 

The crystal structure of TMCs and TMNs is affected by electronic (the total number of 

valence electrons) and geometric (Hägg’s rules) factors.99,102 Hägg, a Norwegian scientist, 

formulated a set of empirical rules, stating that the crystal structure is determined by the 

radius ratio, r, which is given by the following equation:103,104 

 

 𝑟 =
𝑟
𝑟_

 (1-17) 

 

where rX and rM are the radii of the non-metal (X = C, N, B or H) and metal atoms, 

respectively. When r < 0.59 (for early transition metal carbides/nitrides), the structures tend 

to be simple and resemble those of the pure metal, such as face-centered cubic (fcc), body-

centered cubic (bcc), hexagonal closed packed (hcp) and simple hexagonal (hex) [Figure 

1-8]. Usually, in this case, octahedral interstitial sites are occupied by the non-metal atom 

and the formulas MX and M2X are more common. For r > 0.59, the carbide/nitride 

compounds tend to form more complex structures (to prevent the expansion of the lattice) 

and the available interstitial sites are trigonal prisms. The stoichiometry changes to M3X and 

M4X.  
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(a) 

 

(b) 

 
Face-centered cubic Hexagonal close-packed 

 

 

(c) 

 
Simple hexagonal 

Figure 1-8 Common crystal structures in TMCs and TMNs. The blue balls represent transition metal atoms 
and the brown balls represent carbon/nitrogen atoms. 

 

Compounds of mixed C, N and O compositions are also common in the literature. Those 

with carbon and oxygen at the interstitial sites are called oxycarbides (such as tungsten and 

zirconium oxycarbides, WCxOy and ZrCxOy),105–107 those with nitrogen and oxygen are 

called oxynitrides (such as TiNxOy ZrNxOy and HfNxOy)108–110 and those with carbon and 

nitrogen are called carbonitrides (such as TiC1-xNx).111 Oxycarbide compounds are very 

common, indeed many carbides that are normally “pure” contain a certain amount of oxygen 

co-dissolved in them.102 

 

As mentioned previously, TMCs and TMNs are characterized by several exceptional 

physical, mechanical and chemical properties and, as a consequence of this, have attracted 



 23 

wide interest over the past years. Table 1-4 lists the most common physical and mechanical 

properties of Group 4-6 transition metals and their compounds.112 Early TMC and TMN 

materials have relatively high melting points (compared to that of the corresponding metal), 

which contribute to their stability at high temperature. They are therefore referred to as 

“refractory carbides or nitrides”, finding applications as rocket nozzles and jet engine parts. 

Typical melting point values for such materials go from ~2000 to 4000 K. In addition, they 

are characterized by a remarkably high hardness (1200-3000 kg/mm2), which is retained to 

very high temperatures and makes them among the hardest materials known. Because of 

these qualities, they have widespread use in industry as cutting tools and wear-resistant parts. 

The refractory carbides and nitrides show high Young’s moduli (300-700 GPa) – a measure 

of the ability of a material to withstand changes in length when under lengthwise tension or 

compression. Moreover, transition metal carbides and nitrides are also characterized by high 

chemical resistance and are attacked, at room temperature, only by concentrated acid or base 

in the presence of oxidizing agents. Due to the metallic nature of the lattice, these compounds 

show interesting electrical properties. They usually have a higher resistivity than the parent 

transition metal (in the order of 101 – 102 µΩ cm) in spite of which are still classified as 

metallic conductors.50 In addition, many transition metal compounds (such as ZrN, NbC and 

TaC) are superconductors at temperatures marginally above absolute.113–115 

Superconductivity was discovered by H. Kamerlingh Onnes in 1911 and constitutes an 

interesting property, according to which a material exhibits zero resistivity below the 

threshold of a certain critical temperature.116,117 

In conclusion, transition metal carbides and nitrides represent an important class of 

materials that find several real-world applications. Different synthetic methods exist to 

manufacture these compounds with different yields, purity, particle size and morphology. 

The choice of one route over alternatives depends largely on the aimed application for a 

given carbide. 
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Table 1-4 Physical and mechanical properties of Group 4-6 transition metals and their carbide and nitride 
compounds.112 Highlighted are the materials investigated in this research project. 

Compound 
Melting Point 
(K) 

Micro-hardness 
(kg/mm2) 

Young’s Modulus 
(GPa) 

Group 4 
Ti 1940 – 110 
TiC 3370 3000 451 
TiN 3220 2000 612 
 
Zr 2120 – 95 
ZrC 3670 2700 348 
ZrN 3250 1500 460 
 
Hf 2490 – 138 
HfC 4170 2600 352 
HfN 3660 1600 380 
 
Group 5 
V 2170 – 130 
VC 2970 2900 422 
VN 2450 1500 – 
 
Nb 2740 80 101 
NbC 3870 2000 338 
NbN 2470 1400 – 
 
Ta 3250 110 186 
TaC 3983 2500 53-78 
TaN 3360 1050 – 
 
Group 6  
Cr 2130 – 248 
Cr3C2 2070 1400 373 
CrN 1770 1100 – 
 
Mo 2890 210 325 
Mo2C 2770 1500 533 
 
W 3670 400 345 
WC 3070 2200 696 
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1.8 Chapter Summary and Scope of This Work 
This chapter defines microwaves from their prediction by James Clerk Maxwell in 1888 

to their discovery by Heinrich Hertz in 1920 and how they can be efficiently produced thanks 

to the invention of the modern cavity magnetron in 1940. The dielectric properties of 

materials were discussed together with the mechanisms through which MWs interact with 

matter, such as dipolar polarization and conduction, and how these are exploited in MW 

heating. The features of MW heating present several advantages and disadvantages over 

conventional methods and as TMCs and TMNs are materials that can be synthesized 

efficiently by MWs, their structure, synthesis and properties were discussed. 

 

The scope of this work is to study the microwave synthesis and structural characterization 

of some important transition metal carbides and nitrides. This thesis primarily focuses on 

four binary systems, V–C, Zr–C, Hf–C and Zr–N, with a main emphasis on carbides. As 

discussed in the previous sections, these materials find several applications in powder 

metallurgy and technology, as superhard and corrosion-resistant materials and materials for 

nuclear-energy production. Vanadium carbide is vastly used as a wear-resistant part in 

cutting tool bits as well as an additive to tungsten carbide to inhibit its grain growth and thus 

improve the property of the cermet.118 Zirconium carbide is also used in tool bits for cutting 

tools and in ceramic knives. Moreover, due to its low neutron absorption cross-section and 

excellent resistance against fission product corrosion, ZrC can be used as a potential 

refractory coating in nuclear reactors, replacing the currently used silicon carbide.119 

Zirconium nitride is a hard ceramic used as a coating material in industrial parts (such as 

drill bits and burs) and aerospace components. It is usually deposited by physical vapour 

deposition.120 ZrN is also used in laboratory crucibles, refractories and cermets. Hafnium 

carbide is one of most refractory binary compounds known (with a melting point of 4170 K 

– see Table 1-4). Despite that, it finds limited applications due to the high cost of production. 

Previous studies have shown that MW heating is a viable method of synthesizing such 

materials over minutes or seconds timescales, thus reducing their cost of 

production.63,74,86,87,121 When compared to corresponding furnace reactions, MW heating 

processes generally show faster reaction times86 and lower reaction temperatures.122 In this 

thesis, MW irradiation was used with the aim of reducing the reaction time (and, hence, the 

cost of production) for the synthesis of the carbide materials described above. Moreover, the 

oxygen inclusion within the structure of carbides and nitrides is a common feature observed 

for such materials but not much information can be found in the literature. This research 

project provides a small contribution in this regard. 
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Carbide synthesis was investigated via both direct reaction of the elemental powders and 

carbothermal reduction of the metal oxides in either a multimode or a single-mode cavity 

MW reactor, whereas the nitride production was investigated by nitridation of zirconium 

powder using a multimode cavity MW reactor. Throughout the programme of research, it 

was first necessary to establish a reproducible experimental procedure. The phase evolution 

in each system was subsequently probed as a function of time using Powder X-ray 

Diffraction to establish an optimum synthesis procedure and to understand reaction 

pathways in more detail. The final products were further characterized using several 

techniques such as Scanning Electron Microscopy coupled with Energy-dispersive X-ray 

Spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy and Powder 

Neutron Diffraction. 
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2 Experimental Theory and Methods 
 

 

2.1 Microwave Reactors 
Ever since microwave heating gained popularity for the synthesis of materials, the 

requirements for microwave cavities to act as reactors has led to the development of MW 

instrumentation encompassing both so called multi-mode cavity (MMC) and single-mode 

cavity (SMC) microwave reactors. Although these reactors have fundamentally different 

designs (which will be discussed in the next sections), they possess common components 

such as a microwave source (generator), waveguide and applicator. 

Most of the MW reactors found in the market make use of vacuum tubes as a MW source 

such as magnetrons1,2 and travelling-wave tubes (TWTs).3 Magnetrons are high-powered 

devices that can generate microwaves at a fixed frequency in an efficient and reliable 

manner4 and are usually used in domestic microwave ovens (DMO) and industrial-scale MW 

apparatus. For a detailed description on how this device works, see Section 1.1. The power 

output of a magnetron can be controlled by either pulse-width modulation (PWM), that 

cycles the current on and off for specific periods of time,5 or by adjusting the cathode current 

or magnetic field strength. The first method is usually used in most of the domestic 

microwave ovens commercially available. Travelling-wave tubes are usually used to 

produce MWs at variable frequencies, though it is beyond the scope of this research to 

present a detailed description of their design and how they work. 

After MWs are produced at the source, they are channelled by the waveguide into the 

cavity. The waveguide is a hollow metal pipe that confines the microwaves to propagate in 

one direction with minimal loss of energy. Its design typically affects the specific pattern of 

electromagnetic radiation that is propagated, also called the mode of MWs. Waveguides 

usually have a circular or rectangular shape as these generate well understood modes. 

The applicator is the MW cavity in which the target load is positioned and MW power is 

absorbed by this load. Multi- and single-mode cavities (described below) have different MW 

field structures which is determined by the wavelength of microwaves and the size of the 

applicator itself. The choice of the cavity depends on a number of variables including sample 

size, shape and volume. The main difference between the two cavities in terms of the 
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configuration of synthetic experiments is that single-mode reactors have small chambers that 

can accommodate only one reaction vessel whereas more vessels can be irradiated 

simultaneously in a multi-mode reactor. 

 

 

2.1.1 Multi-mode Cavity (MMC) Microwave Reactors 
A multi-mode cavity MW reactor is essentially composed of a power supply (and a 

control mechanism), a MW source (usually a magnetron) connected to a transmission line 

(waveguide) and an applicator which consists of a large metallic cuboid chamber acting as 

a Faraday cage. A domestic microwave oven falls into this category and a schematic diagram 

of its construction is shown in Figure 2-1. 

 

 
Figure 2-1 Schematic diagram of a typical microwave oven showing key internal components.6 

 

As MWs are reflected by the walls of the cavity, they resonate forming different standing 

waves. The cavity is several times larger than the wavelength of the MW radiation (12.5 cm) 

and can therefore support the propagation of multiple modes of MW energy resulting in a 

heterogeneous distribution of energy.7 Vollmer et al. (2003) studied the physics of 

microwave ovens by placing a horizontal glass plate covered with a thin film of water within 

the cavity at a height of about 8 cm and heating it at full power (800 W) for 15 s.8 As a result, 

they found the microwave intensity distribution within an oven of 29 x 29 x 19 cm3 using 

infrared thermal imaging, as shown in Figure 2-2. 
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Figure 2-2 Visualization of the horizontal mode structure in a domestic microwave oven using infrared thermal 
imaging.8 

 

From the picture above, it is possible to observe the uneven heating of the substance due 

to the so-called ‘hot spots’ (in yellow) and ‘cold spots’ (in black). This is the main reason 

why microwave ovens employ either a rotating turntable or a wave stirrer. The latter consists 

of a rotating reflector usually positioned at the top of the cavity [Figure 2-1]. Both methods 

help to provide a more homogeneous distribution of microwave energy within the cavity but 

do not entirely overcome the problem. Because of the resulting random MW field pattern,7,9–

11 the reproducibility of MMC synthesis experiments is often low, especially when large 

loads are employed, and it is hard to calculate the effective power delivered into the sample.12 

In this thesis, MMC experiments were carried out by placing a cylindrical load (quartz tube 

+ pellet + susceptor) consistently at the same position in the cavity to ensure the experimental 

parameters were as constant as possible and to maximize repeatability. The sample position 

was determined empirically. Together with a small sample size (~2 cm3), microwave 

reactions in a multi-mode cavity were found to be repeatable and reliable, yielding products 

with high purity and uniform morphology. 

In recent years, the number of commercially available multi-mode cavity MW reactors 

specifically designed for MW synthesis has increased. Figure 2-3 illustrates the CEM Mars 

6 which is equipped with 2 magnetrons and operating with a total power of 1.8 kW.5 Its 

waveguides have been strategically designed to disperse MW energy uniformly throughout 

the cavity. 
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Figure 2-3 CEM Mars 6 multi-mode cavity MW reactor.13 

 

The MMC experiments detailed in Chapter 3, 4 and 5 were conducted in a Sharp 

R272SLM domestic microwave oven. This model is touch control and operates at a MW 

frequency of 2.45 GHz and a power of 800 W. 

 

 

2.1.2 Single-mode Cavity (SMC) Microwave Reactors 
A single-mode cavity is a small compact chamber (of the order of approximately one 

half wavelength) that can support the propagation of only one mode of MW energy.14 This 

results in a more homogeneous distribution of energy and a higher power density with 

respect to a MMC and prevents the formation of the hot and cold spots. MWs are directed 

to the applicator through a rectangular waveguide and a standing wave pattern is formed by 

superimposition of a forward and reflected wave using a shot circuit tuner [Figure 2-4]. This 

generates points of no MW energy (“nodes”) and points of the highest magnitude of MW 

energy (“antinodes”). 

 

 
Figure 2-4 Nodes and antinodes standing wave pattern. 
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The tuner is finely adjusted so that the antinode of the standing wave and, hence, the 

point of maximum electric field strength is in correspondence with the sample position. 

Unlike in a MMC reactor, the electromagnetic distribution is known and so is the power 

delivered into the sample. However, single-mode MW reactors are far less commonly used 

than multi-mode MW reactors due, in part, to the complication of having to tune the 

microwave radiation but, mainly, for reasons of cost. Single-mode systems can indeed cost 

upwards of £10,000, compared to ~£40/50 for a basic domestic MW oven. 

A single-mode MW reactor possesses a number of additional components that MMC 

reactors usually do not have. Figure 2-5 provides a schematic illustration of the SMC reactor 

used for the work described in this thesis, its components and the way these are configured. 

 

 

Figure 2-5 Schematic illustration of the single-mode cavity MW reactor used. 

 

A power supply (0-1 kW) is connected to a magnetron and, together, they generate 

microwaves at a frequency of 2.45 GHz. The microwaves pass through an isolator (max 

operating power of 6 kW), which prevents reflected MW power passing back into the 

magnetron by diverting them to a water load. The isolator is connected to a dual directional 

coupler that measures the forward and reflected MW power and displays them at a power 

meter. In this system, microwaves are tuned using an automatic S-TEAM Econotuner (2.45 

GHz, max operating power 1 kW), which consists of three stubs that can move up and down 

all the way through the waveguide. The position of these stubs is controlled by computer 

software that is designed to maximise the amount of power absorbed by the sample and, 

hence, minimise the reflected power. The applicator is where the load is positioned, 

contained within a quartz tube. A quartz window is placed between the applicator and the 

autotuner to avoid external bodies reaching the magnetron which could otherwise damage 

it. The system is then terminated by a sliding short circuit that controls the location of the 
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antinode of the standing wave. All components were connected through 43.3 mm x 86.6 mm 

WR340 rectangular waveguide and supplied by Gerling Applied Engineering Inc. USA 

(with the exception of the autotuner as detailed above). The width of the waveguide is equal 

to λ/2 (where λ is the wavelength of the microwave radiation) so that only one mode of 

microwave radiation can exist. 

 

 

2.2 Synthesis and Processing 
This section describes the reagents used and the general procedure for sample preparation 

as well as the experimental set-up adopted for the synthesis of vanadium carbide (Chapter 

3), zirconium carbide and hafnium carbide (Chapter 4) and zirconium nitride (Chapter 5) 

using multi- and single-mode cavity MW reactors. 

 

2.2.1 Sample Preparation 
The synthesis of the transition metal carbides (V8C7, ZrC and HfC) was attempted using 

both elemental metal powders and the corresponding oxides as a source of the transition 

metal and graphite as a source of carbon atoms. The synthesis of zirconium nitride, ZrN, was 

only attempted using zirconium metal powder under flowing gas (N2 or NH3) as experiments 

using zirconium dioxide, ZrO2, led to no reaction with nitrogen or ammonia gas under the 

experimental conditions used (see Chapter 5). All the starting materials used in this work 

were of high purity [Table 2-1] and were analysed by powder X-ray diffraction prior to their 

use. Table 2-2 lists the attempted reactions and the respective stoichiometric ratios used. 

For the preparation of the transition metal carbides (TMCs), the required stoichiometric 

amount of starting materials was weighed out and ground together in an agate mortar and 

pestle until a homogeneous mixture was obtained. The mixed starting materials (1 g for the 

metal powder plus graphite, 0.5 g for the metal oxides plus graphite, unless otherwise 

specified) were then introduced into an 8-mm pellet die and uniaxially cold pressed using a 

hydraulic press at 5 tonnes of pressure for 5 minutes. The so-obtained pellets were embedded 

into 0.35 g of graphite powder, which acts as a susceptor material, within a 10-mm inner 

diameter open quartz tube (transparent to MWs). 

A slightly different sample preparation process was employed for the synthesis of 

zirconium nitride. Zirconium metal powder (0.3 g) was introduced into a 10-mm inner 

diameter open quartz tube. In this case, the graphite powder used as a susceptor was arranged 
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around the outside of the tube but not placed into the reaction vessel in direct contact with 

the starting material (see Section 2.2.2.1). 

 

Table 2-1 Manufacturer, purity and nominal particle size of the starting materials used. 

Reactant Manufacturer Purity Particle size 

Graphite (C) Sigma Aldrich 99.5 % < 50 µm 

Vanadium (V) Alfa Aesar 99.5 % < 44 µm 

Vanadium 
pentoxide (V2O5) 

Sigma Aldrich 99.6 % Not provided 

Zirconium (Zr) Alfa Aesar 
98.8 %, small Hf 
impurity 

< 45 µm 

Zirconium dioxide 
(ZrO2) 

M&B 99.6 % Not provided 

Hafnium (Hf) Alfa Aesar 
99.6 %, small Zr 
impurity 

< 45 µm 

Hafnium dioxide 
(HfO2) 

Alfa Aesar 99.9 % Not provided 

 

 

Table 2-2 List of all the attempted reactions for the synthesis of transition metal carbides and nitrides. 

Attempted Reactions 

Metal reactants Metal oxide reactants 

8 V + 7 C → V8C7 4 V2O5 + 27 C → V8C7 + 20 CO 

Zr + C → ZrC ZrO2 + 3 C → ZrC + 2 CO 

Hf + C → HfC HfO2 + 3 C → HfC + 2 CO 

2 Zr + N2 → 2 ZrN 
2 Zr + 2 NH3 → 2 ZrN + 3 H2 

— 
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2.2.2 Synthesis Using a MMC Reactor 
Synthesis experiments in a MMC microwave reactor were performed using sealed quartz 

tubes under flowing gas, which will be described in more detail in Section 2.2.2.1. 

 

 

2.2.2.1 Experimental Set-up Using a Sealed Quartz Tube Under Flowing Gas 
For the synthesis of the TMCs under flowing gas, a sample-containing quartz tube was 

capped with a Suba-seal® septum and sealed with Parafilm M®, subsequently to the sample 

preparation. Two syringes were inserted into the septum, to allow the inert gas (Ar, BOC, 

purity 99.998%) to be delivered into and flow out of the system. The reaction tube was then 

fed through a stainless steel tube and collar fitted to the ceiling of a modified domestic 

microwave oven to allow access to the cavity. A 12-mm hole was previously drilled to align 

with the empirically determined hot-spot. The function of the steel tube + collar is to avoid 

possible microwave leakage which could otherwise be harmful to users. The quartz tube was 

placed in the center of a beaker containing silica flour within the cavity. Figure 2-6 and 

Figure 2-7 provide a schematic illustration and a photograph, respectively, of this reaction 

set-up. 

 

 

Figure 2-6 Schematic illustration of the reaction set-up under flowing gas using a capped and sealed quartz 
tube in an MMC microwave reactor for the synthesis of TMCs. 
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Figure 2-7 Photograph (left) and diagram (right) of the reaction set-up under flowing gas using a capped and 
sealed quartz tube in an MMC microwave reactor for the synthesis of TMCs. 

 

The synthesis of zirconium nitride involved the use of a slightly different set-up in which 

graphite powder susceptor was placed outside of the reaction vessel replacing the silica flour 

in the above configuration. After the initial sample preparation, a capped and sealed quartz 

tube was fed through the stainless steel tube + collar and placed in the center of an alumina 

crucible containing the susceptor graphite powder, in turn located on a refractory fire brick. 

Two syringes were inserted into the septum to acts as gas inlet and outlet respectively [Figure 

2-8 and Figure 2-9] and either nitrogen (BOC, oxygen free) or ammonia (BOC, anhydrous, 

purity 99.98%) gas was supplied to the sample. 

 

 

Figure 2-8 Schematic illustration of the reaction set-up under flowing gas using a capped and sealed quartz 
tube in an MMC microwave reactor for the synthesis of zirconium nitride. 
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Figure 2-9 Photograph (left) and diagram (right) of the reaction set-up under flowing gas using a capped and 
sealed quartz tube in an MMC microwave reactor for the synthesis of zirconium nitride. 

 

 

2.2.3 Synthesis Using a SMC Reactor 
Synthesis experiments in a SMC microwave reactor were conducted using a broadly 

similar experimental set-up to that used for synthesis in a MMC reactor with the main 

difference being that no surrounding environment of either SiO2 (as thermal insulator) or 

graphite (as MW susceptor) was required. 

 

 

Figure 2-10 Schematic illustration of the reaction set-up under flowing gas using a capped and sealed quartz 
tube in an SMC microwave reactor. 
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After the initial sample preparation, the sealed quartz tube was positioned within the 

waveguide, held in place by a clamp stand positioned next to the SMC applicator. A 

schematic illustration and photographs of this set-up is illustrated in Figure 2-10 and Figure 

2-11. 

 

 

 

 
Figure 2-11 Photographs of the reaction set-up under flowing gas using a capped and sealed quartz tube in an 
SMC microwave reactor. 

 

 

2.3 Characterization Techniques 
In this section, the basic concepts of the analytical techniques used throughout this 

research project are presented. Initially, a theoretical background on crystallography is 

introduced, followed by information on Powder X-ray Diffraction [2.3.1] and Neutron 

Diffraction [2.3.2] which were used to identify product phases as well as to determine the 

crystal structure of the materials prepared in this thesis by Rietveld refinement methods 

[2.3.3]. The sample morphology and elemental composition was investigated by Scanning 

Electron Microscopy coupled with Energy-dispersive X-ray Spectroscopy, discussed in 

Section 2.3.4. Additional characterization was performed by Raman Spectroscopy [2.3.5] 

and surface analysis was conducted by X-ray Photoelectron Spectroscopy [2.3.6]. 
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2.3.1 Powder X-ray Diffraction 
Powder X-ray Diffraction (PXRD) is an analytical technique which uses X-rays for the 

structural characterization of powdered crystalline materials and provides a variety of useful 

information, including the phase(s) present in the sample, the unit cell dimensions of a 

particular structure and the average bulk composition in terms of the mass or molar fractions 

of crystalline phases. This rapid and non-destructive technique is used across several 

scientific disciplines, such as material science, chemistry, physics, engineering, etc. and was 

the main method used for the characterization of samples in this thesis. 

 

 

2.3.1.1 Crystallography 
Before describing diffraction in detail and discussing how this phenomenon occurs, it is 

essential to first consider the fundamentals of crystallography.15–17 Crystallography is the 

experimental science of determining the arrangement of atoms in crystalline solids. A crystal 

is a solid material constituted of atoms, molecules or ions arranged in a highly ordered and 

periodic pattern. The crystal structure is characterized by the smallest symmetric divisible 

unit, called the unit cell, which make up the crystal if repeated by simple translation in three 

dimensions. Figure 2-12 illustrates a simple unit cell which can be identified by three vectors 

(or lengths) a, b and c and the interaxial angles between them α, β and γ. 

 

 

Figure 2-12 General representation of a simple unit cell showing cell lengths and angles.18 

 

Seven crystal systems exist in total (cubic, hexagonal, tetragonal, trigonal, orthorhombic, 

monoclinic and triclinic), shown in Table 2-3, which are classified according to their 

fundamental symmetry operations.19 

The number of lattice points, N, within a unit cell is given by the following equation: 
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𝑁 = 𝑁L +

𝑁0
2 +

𝑁a
8 +

𝑁+
4  (2-1) 

 

where Ni, Nf, Nc and Ne are the number of lattice points in cell interior, in cell faces, in 

cell corners and on cell edges, respectively.  

 

Table 2-3 The seven crystal systems and corresponding Bravais lattices.20 

System Axial lengths and angles Bravais lattice Lattice 
centering 

Cubic Three equal axis at right angles 
a = b = c, α = β = γ = 90° 

Primitive 
Body-centered 
Face-centered 

P 
I 
F 

Tetragonal Three axis at right angles, two 
equals 
a = b ≠ c, α = β = γ = 90° 

Primitive 
Body-centered 

P 
I 

Orthorombic Three unequal axis at right angles 
a ≠ b ≠ c, α = β = γ = 90° 

Primitive 
Body-centered 
Base-centered 
Face-centered 

P 
I 
C 
F 

Trigonal Three equal axis, equally inclined 
a = b = c, α = β = γ ≠ 90° 

Primitive P 

Hexagonal Two equal coplanar axes at 
120°, third axis at right angles 
a = b ≠ c, α = β = 90°, γ = 120° 

Primitive P 

Monoclinic Three unequal axes, one pair not at 
right angles 
a ≠ b ≠ c, α ≠ γ = 90° ≠ β 

Primitive 
Base-centered 

P 
C 

Triclinic Three unequal axes, unequally 
inclined and none at right agles 
a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90° 

Primitive P 

 

Four main different centering types [Figure 2-13] exists as follows: primitive (P), base-

centered (A, B or C), body-centered (I) and face-centered (F).19 In the primitive centering 

type, there are lattice points on the cell corners only, giving one lattice point per unit cell. 

The base-centered type has lattice points on the cell corners as well as identical points at the 



 47 

center of each face of one pair of parallel faces of the cell, giving two lattice points per unit 

cell. A body-centered cell has lattice points on the cell corners plus an identical point at the 

center of the cell, giving two lattice points per unit cell. Finally, in a face-centered cell there 

are lattice points on the cell corners plus identical points at the center of each face of the unit 

cell, giving four lattice points per unit cell. 

 

By combining the seven crystal systems with the lattice centering types, fourteen Bravais 

lattices are obtained in three dimensional space.17 

 

 

 
Primitive (P) 

 
 Base-centered (A, B 

or C) 

 
Body-centered (I) 

 
Face-centered (F) 

Figure 2-13 Diagram showing the lattice centering types in three-dimensional space: primitive (left), base-
centered (middle-left), body-centered (middle-right), and face-centered (right). 

 

The symmetry of a unit cell can be described by its point group, that is a set of symmetry 

operations (such as rotation, inversion) all of which leave at least one point unmoved. There 

are 32 unique crystallographic point groups which, combined with the 14 Bravais lattices, 

give 230 different three-dimensional crystallographic space groups,19 all documented in the 

International Table of Crystallography. A space group represent a description of the 

symmetry of a crystal. 

In order to explain the phenomenon of diffraction from ideal crystal lattices, the 

geometrical concept of “crystallographic planes” must be introduced. A lattice plane of a 

given Bravais lattice is any plane containing at least three lattice points.21 The distance 

between crystallographic planes in the same family is called the interplanar distance or d-

spacing. The Miller indices – denoted by three integers h, k and l – represent a notation 

system used to indicate a family of planes and refer to the reciprocal of the lattice parameters 

a, b, and c (1/a, 1/b and 1/c, respectively). 
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2.3.1.2 Introduction to Diffraction 
X-rays are electromagnetic radiation with wavelength ranging from 0.01 to 10 nm and 

frequencies from 3x1016 to 3x1019 Hz. The diffraction of X-rays occurs because their 

wavelength is of the same order of magnitude as the interatomic distances in crystals, 

ranging from ~0.5 to ~2.5 Å.15 X-rays are elastically scattered spherically by the electrons 

of atoms as these are forced to oscillate with the same frequency as the electric-field 

component of the incident wave. 

 

 
Figure 2-14 Schematic showing diffraction of X-rays on parallel crystallographic planes within a crystal. A 
and B are two incident X-ray beams, A' and B' are the corresponding diffracted X-ray beams. The distance 
between crystallographic planes is dhkl and θ is the angle between the plane and the incident beam. 

 

William Lawrence Bragg, a British physicist and X-ray crystallographer, proposed a law 

(referred to as Braggs’ Law) in 1913 according to which crystals can be thought of as a set 

of parallel crystallographic planes separated by a constant parameter d and defined by their 

Miller indices, hkl.22 A diffracted X-ray beam is observed only when the reflections of the 

incident waves from adjacent crystallographic planes are in phase and interfere 

constructively [Figure 2-14]. Conversely, if the scattered waves are out of phase, they 

interfere destructively cancelling each other and no diffracted peak is observed. In other 

words, the reflections of the incident beams add up in phase when their pathlengths differ 

by an integer multiple of the wavelength. This is mathematically explained by the following 

equation: 

 

 𝑛𝜆 = 2𝑑 sin 𝜃 (2-2) 
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where n is an integer, λ is the wavelength of the incident beam, d is the interplanar 

spacing and θ is the angle of incident radiation. In crystals, the conditions of Braggs’ law are 

therefore met only at specific diffraction angles which depend upon unit cell type and size 

as well as the inter-atomic plane spacing. 

For powdered (polycrystalline) materials, the random orientation of the crystallites gives 

rise to continuous cones of intensity of diffracted X-ray radiation (Debye-Scherrer cones) 

[Figure 2-15] and not to single narrow beams as for single crystals. 

 

 
Figure 2-15 Diffracted X-ray cones from a powder (polycrystalline) sample.23 

 

 

2.3.1.3 Sample Preparation, Data Collection and Analysis 
After microwave reaction, the pellets were taken from the reaction vessel and excess 

graphite carefully removed from the surface. The samples were subsequently ground with 

an agate mortar and pestle until a fine powder is obtained to ensure sample homogeneity and 

random orientation of crystallites. The resulting powder was then inserted into a circular 

hollow space on a planar glass sample holder (flat plate) and pressed level using a glass slide 

[Figure 2-16]. A flattened sample surface is essential for the success of a PXRD structural 

analysis to prevent displacement errors (often included within the zero-shift error) caused 

when the sample sits above or below the surface of the sample holder. 
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Figure 2-16 Schematic illustration of a PXRD flat plate sample holder. 

 

All PXRD measurements in this thesis were collected using an X’pert PRO MPD 

diffractometer in Bragg-Brentano (θ-2θ) geometry using a Cu Kα1 radiation X-ray source 

(λ = 1.5418 Å) and an X’celerator solid-state detector. Figure 2-17 illustrates a schematic of 

the Bragg-Brentano geometry. In this reflection geometry, the source is fixed (stationary) 

and the sample and detector are rotated by θ and 2θ, respectively. The X-ray tube operates 

at a standard power of 40 kV and current of 40 mA. The incident X-ray beam was collimated 

using a 10-mm beam mask. In order to prevent the divergence of the incident X-ray beam, a 

series of slits were used such as 0.04 radian Soller slits, a 1/2° divergence slit and a 1/2° anti-

scatter slit. 

 

 
Figure 2-17 Setup of the diffractometer in a Bragg-Brentano geometry. 

 

For phase identification, PXRD data were collected for 1 h between 10° ≤ 2θ ≤ 85°, with 

a step size of 0.017° 2θ. For structural refinement, high quality PXRD data were obtained 

collecting for 12 h scan from 10° ≤ 2θ ≤ 110°, with a step size of 0.017° 2θ. 
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PXRD patterns were displayed as plots of intensity against 2θ in PowderCell 2.3 

software.24 This software was used to identify the phases present by comparing PXRD 

patterns with those of known structures downloaded from the Inorganic Crystal Structure 

Database (ICSD).25 The crystal system and unit cell parameters were found by indexing 

using CELREF (CELREF: Graphical Unit Cell Refinement).26 Structure refinement by the 

Rietveld method [Section 2.3.3] was performed on the 12-hour scans using the General 

Structure Analysis System (GSAS) software and the associated graphical user interface 

(EXPGUI).27,28 

 

 

2.3.2 Powder Neutron Diffraction 
Powder Neutron Diffraction (PND) is similar to PXRD in the sense that they are both 

diffraction experiments used to determine the crystal structure of crystalline materials and 

the data obtained using the former is complementary to those obtained using the latter. This 

is due to the different scattering properties of neutrons as compared to X-rays. As previously 

discussed in Section 2.3.1.2, X-rays interact with the electron cloud surrounding each atoms 

which means that heavier atoms (large atomic number, Z) diffract X-rays more intensely 

than lighter atoms (small atomic number). This technique is therefore unsuitable for the 

study of light elements (such as hydrogen with only one valence electron). Conversely, 

neutrons are scattered by atomic nuclei and can be used to study structures containing low 

atomic number materials. Moreover, each isotope contributes differently to the diffracted 

neutron intensity meaning that a distinction can be observed between, for example, protium 

(1H) and deuterium (2H), for instance. 

Unfortunately, it is not possible to produce intense neutron beams in the laboratory. Two 

main methods are currently used for the production of neutron beams with an acceptable 

intensity: a nuclear reactor and a spallation source. In a nuclear reactor, an intense flux of 

neutrons is produced by fission of enriched 235U.29 This method leads to the production of 

the so-called “thermal” neutrons with a wavelength ranging from 1 to 2 Å. However, most 

neutron diffraction experiments require a monochromated beam of neutrons which will 

necessarily implicate a loss of most of the neutron flux. The Institut Laue-Langevin (ILL) is 

an example of a nuclear reactor source for constant wavelength diffraction and is situated in 

Grenoble, France. In this facility, the diffracted neutrons are detected by a bank of 25 3He 

counters at 5 atm and counted and recorded as a function of the angles through which they 

were scattered by the sample. 
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At a spallation source, the neutron production process typically begins with negatively 

charged hydride ions, H–, which are accelerated in a linear accelerator (linac).29 A high-

energy proton beam is produced by firing the H– ions through a gold foil which removes the 

electrons from the ions. This beam bombards a heavy metal target (generally tantalum, Ta) 

which generates a pulse of neutrons which have too short a wavelength for diffraction 

experiments and therefore must be slowed down by ambient temperature water moderators. 

Spallation sources use the neutron time-of-flight scattering technique which measures the 

time (in µs), tf, taken for a neutron to travel a fixed path length, L, from the source to the 

detectors via the sample. Combining Braggs’ law [Equation (2-2)] and the de Broglie’s 

relationship [Equation (2-3)] yields Equation (2-4):30 

 

 
𝜆 =

ℎ
𝑝 =

ℎ
𝑚𝜈 (2-3) 

 
𝑛𝜆 = 𝑛

ℎ
𝑚𝜈 = 𝑛

ℎ𝑡0
𝑚𝐿 = 2𝑑 sin 𝜃 (2-4) 

 

where m is the mass of a neutron (1.67 x 10-27 kg), v is the velocity of a neutron, p is the 

momentum and h is the Planck’s constant (6.626176 x 10-34 J s). Substitution for h and m 

gives:30 

 

 𝑡0 = 2𝑑𝐿
𝑚
ℎ sin 𝜃 = 505.56𝑑𝐿 sin 𝜃 (2-5) 

 
𝑑 =

ℎ
2𝑚𝐿 sin 𝜃 𝑡0 =

1.977	𝑥	10pq

𝐿 sin 𝜃 𝑡0 (2-6) 

 

 

2.3.2.1 The POLARIS Powder Diffractometer at ISIS 
All PND experiments in this thesis were conducted at the ISIS pulsed neutron and muon 

source at the Rutherford Appleton Laboratory (RAL) in Oxfordshire using the POLARIS 

instrument. The POLARIS diffractometer at ISIS is a high intensity, medium resolution time 

of flight powder diffractometer [Figure 2-18] at the ISIS spallation source.30 It has a primary 

flight path of 14 m and a large stainless steel vacuum vessel (~20,000 litres). The instrument 

consists of six detector banks: bank 1 (very low angle, 2θ range 6-14°), bank 2 (low angle, 

2θ range 19-34°), bank 3 (low angle, 2θ range 40-67°), bank 4 (90 degrees, 2θ range 75-

113°), bank 5 (back scattering, 2θ range 135-143°) and bank 6 (back scattering, 2θ range 

146-168°). 
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Figure 2-18 Schematic of the POLARIS diffractometer at ISIS. The numbers indicate the different detector 
banks.31 

 

 

2.3.2.2 Sample Preparation, Data Collection and Analysis 
The preparation of the samples for PND analysis were performed according to the 

appropriate MMC microwave method described in Section 2.2.2.1. 

Powdered samples between 1 and 2 g were placed into a 6-mm vanadium sample can 

which was then attached to a sample rod and lowered into the sample tank of the 

diffractometer. PND data were collected for a run duration of 350 µA·h  proton beam current 

(approx. 1.5 hours) for both vanadium carbide and zirconium carbide samples. 

Structural refinement by the Rietveld method [Section 2.3.3] was performed on the PND 

scans using the General Structure Analysis System (GSAS) and the associated graphical user 

interface (EXPGUI).27,28 

 

 

2.3.3 Rietveld Refinement 
Rietveld refinement technique was originally developed by Hugo M. Rietveld in the late 

1960s for constant wavelength neutron diffraction32,33 and was subsequently also employed 

for powder X-ray diffraction data. In this thesis, Rietveld refinement has been used with both 

PXRD and PND data [Chapter 3 and 4]. 
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Rietveld refinement is a full profile structure method that allows detailed structural 

information to be extracted from diffraction data. This method is based on a least squares 

approach and refinement is performed by minimizing the difference in intensity between an 

experimental diffraction pattern (observed data) and a proposed model for the structure and 

instrumental parameters (calculated data).34 The overall goal of a Rietveld refinement is 

therefore the minimization of the residual function, M, which is given by the following 

equation: 

 

 𝑀 = 𝑤L 𝑦LstE − 𝑦Lauva
>

L

 (2-7) 

 

where wi is a weighting factor given by 1/yi
obs, yi

obs and yi
calc are the observed and 

calculated intensity, respectively, at the ith step. 

Firstly, a good starting model and a high-quality diffraction pattern need to be used in 

order to achieve a successful refinement. Scale factors are refined and background 

parameters are subsequently introduced either manually or calculated from a polynomial 

expression. For the majority of refinements in this thesis, a shifted Chebyshev function 

(function type one within GSAS) or a reciprocal interpolation function (function type eight 

within GSAS) were used to fit the pattern background. The diffraction peak positions are 

then accurately determined by varying lattice parameters and zero-point error correction 

(sample displacement from diffractometer centre – see Section 2.3.1.3). Peak intensities are 

fitted by refining peak shape parameters and varying atomic positions. Unlike constant 

wavelength PND which produces near Gaussian peaks, time-of-flight PND and PXRD 

require a combination of Gaussian, G [Equation (2-8)], and Lorentzian, L [Equation (2-9)], 

functions to define the pattern peak shape. This is known as a pseudo-Voigt combination 

function, pV, given by Equation (2-10): 
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𝑝𝑉 = 𝜂𝐿 + 1 − 𝜂 𝐺 (2-10) 
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where η is a mixing parameter and Hk is the peak half width of the kth Bragg reflection. 

Both Gaussian and Lorentzian functions make use of this term which is given by: 

 

 
𝐻> = 𝑈 tan> 𝜃 + 𝑉 tan 𝜃 +𝑊 (2-11) 

 

where U, V and W are refinable terms that represents the halfwidth (Cagliotti) parameters. 

The intensity, yi, at each point i in the diffraction pattern is given by: 

 

 𝑦Lauva = 𝑠 𝐿{ 𝐹{ >

{

𝜙 2𝜃L − 2𝜃{ 𝑃{𝐴 + 𝑦L
t� (2-12) 

 

where s is the scale factor, k represents a Bragg reflection defined by its Miller indices, 

Lk contains Lorentz polarisation and multiplicity factors, Fk is the structure factor for the kth 

Bragg reflection, Pk is the preferred orientation function, A is the absorption factor and yi
bg 

is the background intensity for the ith step. 

Intensity mismatches may still be observed due to the thermal motion of the atoms within 

the sample in which case temperature factors may be refined too. 

The R-factors are the best way to indicate the quality of fit for a Rietveld refinement and 

offer a quantitative comparison between the observed data and the calculated model. These 

include: R-profile (Rp) [Equation (2-13)], R-weighted profile (Rwp) [Equation (2-14)], R-

Bragg (RB) [Equation (2-15)], R-Intensity (RI) [Equation (2-16)] and R-expected (Re) 

[Equation (2-17)]. 
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𝑦L − 𝑦aL
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y
>
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𝑅� =

𝐼�(𝑜𝑏𝑠) − 𝐼�(𝑐𝑎𝑙𝑐)
𝐼�(𝑜𝑏𝑠)

 (2-15) 
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𝑁 − 𝑃 + 𝐶
𝑤L 𝑦L

y
>
 (2-17) 
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where IK(obs) and IK(calc) are the observed and calculated Bragg intensities of reflection 

K, respectively, N is the number of observations, P is the number of independently refined 

parameters and C is the number of constraints. In this thesis, the R-factors Rp and Rwp are 

always used, being the most mathematically important indicators for the evaluation of a 

refinement.35 Another factor used in this work and quoted quite often in the literature is the 

goodness-of-fit, χ2 (chi-squared), which is given by: 

 

 
𝜒> =

𝑅�A
𝑅+

>

=
𝑤L 𝑦L − 𝑦aL >

𝑁 − 𝑃 + 𝐶  (2-18) 

 

For an ideal perfect fit, the goodness-of-fit approaches 1. However, all these parameters 

strictly depend on the conditions of the data collected and only offer a suggestion of the 

quality of the refinement. Therefore, a visual inspection of the observed and calculated 

patterns together with reasonable bond lengths and angles often represents the most objective 

way to judge a structure model. 

 

 

2.3.4 Scanning Electron Microscopy coupled with Energy-
dispersive X-ray 

Scanning Electron Microscopy (SEM) is an analytical technique used to study the surface 

feature, morphology and texture of solid objects. A common scanning electron microscope 

uses a high-energy electron beam focused on the sample to generate several types of signals 

which are then processed to provide a three-dimensional representation of the sample. 

Figure 2-19 illustrates the basic component of a SEM microscope. The electron beam is 

produced by heating a metallic (usually tungsten) filament in an electron gun which passes 

through a series of electromagnetic lenses so that it is focused on to a portion of the sample. 

By hitting the sample, the incident beam causes the ejection of the following species: 

backscattered electrons (BSEs), secondary electrons (SEs), Auger electrons, photons of 

characteristic X-rays and cathodoluminescence.36 BSEs are elastically scattered electrons 

which originates when an electron in the incident beam circles an atomic nucleus in the 

sample and is reflected out of the specimen. SEs are the product of the ionization resulting 

from the interaction of the incident beam with the loosely bound outer-shell electrons. Auger 

electrons originate when an inner-shell electron is ejected by the incident beam and an outer-
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shell electron fills the hole, transferring the difference in energy to a second electron which 

is subsequently ejected as an Auger electron. Photons of characteristic X-rays are originated 

when an inner-shell electron in the sample is removed by the incident beam and an outer-

shell electron fills the vacancy, releasing the energy in the form of X-rays. 

 

 

Figure 2-19 Schematic representation of a SEM microscope. 

 

The backscattered and secondary electrons are then collected by detectors and an image 

is produced by converting them into signals.37 BSE images can provide information about 

the chemical composition of the sample as the intensity of the BSE signal is strongly related 

to the atomic number (Z) of the specimen. The SEs provide the image contrast since these 

emerge from more superficial locations with respect to BSEs. 

Energy-dispersive X-ray Spectroscopy (EDX) is an elemental microanalysis technique 

that is often used together with SEM. EDX relies on the principle that each element has 

known characteristic X-ray emission spectra and detects the relative abundance of these 

emitted photons versus their energy to obtain information about the elemental composition 

of the sample at specific areas.38 The drawback of EDX is that, like XRD, the analysis of 

light elements presents a real challenge and cannot be detected efficiently. 

Sample morphology and composition were studied using the Philips XL30 ESEM which 

was run in high vacuum mode with an applied accelerating voltage of 20 kV and a working 

distance of 10 mm for imaging. In order to achieve a better quality of the collected images, 

the powdered sample was dispersed onto a carbon tab stuck on an aluminum stab and 
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subsequently sputter-coated with a 10 nm layer of gold/palladium alloy to prevent charge 

building up on the sample surface of the sample. The sample was subsequently loaded into 

the instrument chamber and SEM micrographs collected. An Oxford Instruments X-act 

spectrometer using a silicon drift detector was coupled to this microscope for EDX analysis. 

The instrument was calibrated using the INCA EDX analysis software (Cu used for all 

calibration measurements). 

 

 

2.3.5 Raman Spectroscopy 
Raman spectroscopy is a vibrational spectroscopy technique that provides information 

about vibrational and rotational transitions in a system. The Raman effect was first observed 

by and named after the Indian physicist C. V. Raman, who was awarded the Nobel Prize in 

physics in 1930 for his discovery.39 As each molecule has a different set of vibrational energy 

levels, this technique is widely used in chemistry for sample identification. In a Raman 

spectrometer, a laser beam in the UV-region in the electromagnetic spectrum is focused 

through a lens on to a sample. The very weak scattered light is deflected by a curved mirror 

and focused so that it can be measured by a very sensitive detector [Figure 2-20]. A Raman 

spectrum of the sample is then obtained by plotting the intensity of the scattered light versus 

the wavenumbers. 

 

 

Figure 2-20 Typical optical configuration in a Raman spectrometer.40 

 

When the laser beam hits the sample, three types of light scattering are produced: 

Rayleigh scattering, Stokes scattering and Anti-stoke scattering.41 Rayleigh scattering occurs 

when a photon is absorbed to a higher virtual level and is subsequently scattered back to the 

initial level, retaining the incident frequency and energy (elastic scattering). Stokes 

scattering occurs when the scattered photon has a lower energy and frequency (higher 

wavelength) than that of the initial photon (inelastic scattering). Anti-Stokes scattering 
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occurs when the scattered photon has a higher energy and frequency (lower wavelength) 

than that of the initial photon (inelastic scattering). 

The three processes described above are illustrated in Figure 2-21. Rayleigh scattering is 

the predominant mode of scattering. Raman scattering, which include Stokes and Anti-

Stokes scattering, is usually much weaker. Only a small portion of photons (one every thirty 

million) is indeed inelastically scattered. 

 

 
Figure 2-21 Rayleigh, Stokes and Anti-Stokes scattering in Raman spectroscopy. 

 

Due to the different interactions between the incident electromagnetic wave and the 

vibrational energy levels of the molecule within the sample, the outgoing photon will scatter 

with an increased (Stokes scattering) or decreased (Anti-Stokes scattering) energy. The 

molecule remains in the “excited” state only for a very brief period of time before emitting 

the photon and returning to the original vibrational level.41 The primary selection rule for 

Raman spectroscopy is that the molecular polarizability must change during the molecular 

vibration (∆J = 0, ± 2). 

 

Prior to Raman measurements, samples were prepared by placing a small amount of 

powder on a glass slide and flattening it with the aid of a second glass slide. The sample was 

then inserted into the Raman spectrometer, and after adjusting the focus of the microscope 

lens onto the sample, a Raman spectrum collected. 

The Raman spectrometer used for all analysis conducted in this work was a Horiba Jobin 

Yvon Raman LabRam instrument fitted with a Quantum Venus 532 nm green laser at 150 

mW and a confocal microscope (600 grooves mm-1 grating, 100 µm aperture and 10% 

filter). Spectra were collected through a 50X objective lens in backscattering mode and a 
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Synapse CCD detector. The software used for data collection/analysis and manipulation was 

Horiba LabSpec and Microsoft Excel, respectively. 

 

 

2.3.6 X-ray Photoelectron Spectroscopy 
X-ray Photoelectron Spectroscopy (XPS) is a characterization technique used for 

analysing the surface of a material (typically up to a depth of 2-5 nm) and provides 

information about which elements are present at the surface and their chemical and 

electronic state.42,43 This technique functions in a similar way to SEM/EDX (described in 

Section 2.3.4) and relies on the photoelectric effect [Figure 2-22]. When a sample is 

irradiated with a mono-energetic Al Kα X-ray beam (Ephoton = 1486.7 eV), an electron could 

be ejected from the sample surface. This is called a photoelectron and its binding energy 

(Ebinding) is related to its kinetic energy once ejected (Ekinetic) and the energy of the initial X-

ray photon (Ephoton) and can be calculated from the following equation:44 

 

 𝐸tL�"L�� = 𝐸A�s�s� − 𝐸{L�+�La − 𝛷 (2-19) 

 

where Φ is the work function – the minimum thermodynamic energy required to remove 

an electron from the surface of a solid. 

 

 
Figure 2-22 Diagram showing the photoelectric effect. An incident X-ray photon excites the atom and a 
photoelectron is subsequently emitted. 

 

The kinetic energy of the emitted electrons is measured by an electron analyser [Figure 

2-23] and the XPS spectrum is obtained by plotting the intensity (number of photoelectrons 

versus time) versus the binding energy. 
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Figure 2-23 Basic components of a monochromatic XPS system.45 

 

Moreover, a few nanometers of surface can be removed from the specimen by Ar ion 

etching revealing a new layer that can subsequently be characterized by XPS. An ion beam 

is produced by bombarding a gas with electrons and then directed towards the sample, 

removing the superficial atoms. 

 

Measurements were run with the assistance of Dr. Sina Saremi-Yarahmadi (Department 

of Materials, University of Loughborough) using a Thermo Scientific K-Alpha+ X-ray 

photoelectron spectrometer with monochromatic Al Kα radiation (1486.7 eV), an anode 

potential of 10 kV and a 20 mA filament emission current. Samples, still in the pellet form, 

were loaded onto carbon tabs stuck on aluminium stubs and loaded into the instruments for 

data analysis. Samples were etched using Argon ion sputtering to remove a few layers of 

surface allowing analysis deeper into the material. 

 

 

2.4 Chapter Summary 
This chapter has described the key theoretical concepts and experimental methods used 

in this thesis. Sample heating was either by single- or multi-mode microwave cavity and 

characterization was conducted primarily by PXRD (Section 2.3.1), PND (Section 2.3.2), 

SEM/EDX (Section 2.3.4), Raman spectroscopy (Section 2.3.5) and XPS (Section 2.3.6). 
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3 Microwave Synthesis and Structural 
Characterization of Carbides in the V-C System 
– The V8C7 Superstructure 

 

3.1 Introduction to Vanadium Carbide 
Two different binary phases exist in the V-C system [Figure 3-1], VC (cubic, Fm-3m) 

and V2C (orthorhombic, Pbcn).1,2 The first one exhibits a large degree of nonstoichiometry 

(VC1-x where x = 0.65-0.90), while the latter has a narrow homogeneity range. Lipatnikov et 

al. (1997) reported that the stoichiometric composition VC cannot be synthesized under 

equilibrium conditions and has a tendency to form an ordered cubic superstructure V8C7.3 

This represents the most stable form and carbon-rich limit of d-VC1-x and crystallizes in an 

NaCl-derived cubic structure (space group P4332, a = 8.3303 Å), showing a long-range 

ordering of structural C vacancies.4,5 Moreover, several ordered nonstoichiometric 

superstructures have been reported in the literature, such as V8C7 (cubic, P4332), V6C5 

(hexagonal, P31) and V4C3 (hexagonal, R-3m)3,6–9 [Figure 3-2]. Being one of the hardest 

transition metal carbides – with a hardness of 9-9.5 Mohs – vanadium carbide finds industrial 

applications in different fields such as metallurgy, electronics and catalysis.10 

The work presented in this chapter focuses on the synthesis and structural 

characterization of the highly crystalline, single-phase vanadium carbide V8C7, in minute 

timescales in both multi- and single-mode microwave (MW) cavity reactors. The carbide 

material was prepared by employing vanadium metal (V) or vanadium pentoxide (V2O5) as 

a vanadium source and graphite as a carbon source under inert gas (Argon, Ar). In addition, 

the reaction profile was examined in order to gain a better understanding of both the 

microwave heating processes in the solid state as well as of the processing of transition metal 

carbides. To that end, considerable time and effort were invested in optimizing the 

experimental protocol and configuration. Once an appropriate synthetic procedure had been 

established, the as-synthesized ceramics were investigated by Powder X-ray Diffraction 

(PXRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray 

(EDX) analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Powder 
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Neutron Diffraction (PND). Further structural comparisons were made between multi-mode 

and single-mode synthesized samples. 

 

 

 
Figure 3-1 Phase diagram of the V-C system.1 

 

 

 

(a) (b)  

V + V2C 

VC + C 

L + C 
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(c) (d) 

Figure 3-2 Structures of VC (a), V8C7 (b), V6C5 (c) and V2C (d). V atoms (blue), C atoms (grey). 

 

3.2 Microwave Synthesis Studies in the V-C system 
This section describes the experimental work that was undertaken towards establishing 

a synthetic route to vanadium carbide from vanadium metal and carbon in both multimode 

and single-mode cavity reactors. 

 

3.2.1 Introduction 
Vanadium carbide has been synthesized using various methods, such as by direct reaction 

of elemental powders,2 carbothermal reduction of vanadium oxides (V2O5 and V2O3),11 

mechanical alloying,12 temperature-programmed reaction13 and a number of other routes.14–

18 However, these common approaches present several disadvantages, including energy 

inefficiency, high cost, presence of impurities and low yields. 

Storms et al. (1962) determined the solid portion of the V-VC phase diagram above 1000 

°C and successfully synthesized vanadium carbide using vanadium metal and graphite as 

starting materials.2 The precursors were mixed in appropriate stoichiometric ratios and cold-

pressed into compacts which were subsequently heated in an induction furnace at 

temperatures above 1000 °C. 

Vanadium carbide was also prepared by Meunier et al. (1995) through carbothermal 

reduction of vanadium pentoxide into a microreactor.11 The latter was reduced to the V2O3 

suboxide and subsequently carburized by a 20% mixture CH4/H2 gas. The authors used a 

temperature-programmed reaction process for the synthesis of this compound which was 
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carried out in two stages. In the first stage, the temperature was rapidly raised to 430 K and 

maintained for 2 h. In the second stage, the temperature was increased to 1250-1320 K at 

lower heating rates (0.03-0.2 K s-1) and maintained for 4 h. 

Prior attempts for synthesizing vanadium carbide using microwave irradiation have 

relied on starting materials and experimental set up that differ significantly from those 

reported in the present study. Hossein-Zadeh et al. (2014) reported the synthesis of nano-

crystalline V8C7 powders in a multi-step process through reduction of V2O5 by carbon and 

Ca (here used as a reducing metal) using high energy ball milling and subsequent MW heat 

treatment.19 V2O5, calcium and amorphous graphite were initially mixed and reacted 

according to the following equation: 

 V2O5 + 5Ca + 2C → 2VCx + 5CaO (3-1) 

The reactant powders were high-energy ball milled for 15 h at a rotation speed of 250 

rpm and ball-to-powder ratio of 20:1. The mechanical alloying was followed by treatment 

of the as-milled powder with a 5% acetic acid solution to remove the CaO by-product. The 

activated powder was then MW heated to complete the reaction and to obtain the desired 

V8C7 phase. The MW heat treatment was performed in a microwave oven at a power of 900 

W and frequency of 2.45 GHz. In this case, a SiC crucible was used as a susceptor instead 

of graphite powder. 

Previous studies conducted within the Gregory Research Group have demonstrated the 

plausibility of synthesizing refractory ceramic materials in air and/or inert atmosphere over 

minute or second timescales using MW irradiation.20–25 The procedures discussed below 

were carried out by the direct reaction of the elemental starting materials (V + C) using 

microwave heating, aiming to increase the energy efficiency and, hence, potentially reduce 

the production cost with respect to the conventional synthesis. The starting materials were 

mixed according to the following reaction: 

 8V + 7C → V8C7 (3-2) 

Although, theoretically, both starting materials (V metal and C) couple with microwaves, 

the heating of the reactant pellet alone was unsuccessful and required the use of a microwave 

susceptor, such as carbon. A susceptor is a material that couples very well with microwaves 

and converts this energy into thermal energy. Both graphite and activated charcoal are 

known to be good microwave absorbers, reaching temperatures above 1000 ºC in less than 

2 minutes.26 Graphite was used as a susceptor (as well as starting material) to provide 

additional thermal heating on the outside of the pellet. 
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The direct reaction of elemental powders is straightforward and proceeds as described 

by Equation (1-15). This reaction route was more suitable for the reaction set-up used as, 

unlike in the carbothermal reduction of vanadium(V) oxide discussed in Section 3.3, the 

pellet would be intact and not fractured by rapid gas evolution. 

 

3.2.2 Experimental 
3.2.2.1 Synthesis 

All reactions reported in this section were performed under Ar by mixing and grinding 

together V metal (Alfa Aesar, < 44 µm, 99.5%) and graphite (Sigma Aldrich, < 50 µm, 

99.5%), with a stoichiometric ratio of 8:7 according to Equation (1-15). The so-obtained 

powder mixture (1 g) was uniaxially cold pressed into a pellet without the use of a binder. 

The ideal shape of pellets would be spherical, as heat is expected to penetrate 

homogeneously the sphere and radiate outwards by conduction. Nevertheless, in this study, 

samples were pressed in a cylindrical shape with a diameter of 8 mm and height of 

approximately 5 mm. This compact was embedded in ~0.3 grams of graphite powder (here 

used as a MW susceptor) within a 10-mm quartz tube which is transparent to microwaves. 

The tube was sealed with a septum cap, parafilmed and subsequently connected to an Ar 

flow. The MW reactions were conducted by using both a multimode and a single-mode 

cavity reactor. 

For multimode cavity experiments, the tube containing the sample was placed in the 

center of a beaker containing silica powder which acts as a stand for the tube as well as a 

thermal insulator [Figures 2-7 and 2-8]. The whole apparatus was then inserted into the 

multimode cavity of a domestic MW oven (DMO) and positioned in the same location within 

the cavity to keep the experimental parameters as constant as possible. Synthesis was 

optimized and conducted for 6 minutes at a power of 800 W. 

For single-mode cavity experiments, the tube was directly placed into the applicator of 

the SMC reactor as it is held by a stand [Figures 2-10 and 2-11]. Synthesis was conducted 

for 2 minutes at a power of 1 kW. 

Regardless of the microwave reactor used, V8C7 was synthesized for the first time on 

much more rapid timescales than previously reported in the literature. Moreover, the reaction 

time could be further decreased by employing higher MW powers for the reaction process. 

After the reaction went to completion, the pellet was found to be extremely hard due to 

the fast sintering process of the carbide particles. The surface of the pellet was scratched off 
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with fine sand paper in order to remove the remaining excess of susceptor. The pellet was 

then ground, giving a fine, grey powder. 

 

3.2.2.2 Characterization 
Products were characterized using several analytical techniques. Powder X-ray 

Diffraction (PXRD) [Section 2.3.1] was used to identify product phases by reference to 

powder patterns calculated from known structures downloaded from the Inorganic Crystal 

Structure Database (ICSD)27 using the PowderCell 2.3 software.28 The data for phase 

identification was collected on a PANalytical Xpert MPD, Cu Ka1 radiation, for 1 hour over 

a range of 10 < 2q/° < 85. Crystallographic parameters were obtained by Rietveld refinement 

[Section 2.3.3] against powder XRD data collected for ca. 12 hours over a range of 10 < 2q/° 

< 110 using GSAS and EXPGUI software packages. Sample morphology and elemental 

composition were investigated by Scanning Electron Microscopy (SEM) and Energy-

dispersive X-ray Spectroscopy (EDX) [Section 2.3.4] using a Philips XL30 ESEM 

microscope coupled with an Oxford Instruments X-act spectrometer. Additional 

characterization was performed by Raman spectroscopy [Section 2.3.5]. Raman data were 

collected at room temperature using a Horiba LabRAM confocal microscope system with a 

532-nm green laser. Surface analysis was evaluated by X-ray Photoelectron Spectroscopy 

(XPS) [Section 2.3.6] using a Thermo Scientific K-Alpha+ X-ray photoelectron 

spectrometer with monochromatic Al Kα radiation (1486.7 eV). Finally, Powder Neutron 

Diffraction (PND) [Section 2.3.2] was used to obtain a definitive model for the defect 

structure and to establish the amount of any possible oxygen included in the samples. PND 

experiments were conducted at the ISIS pulsed neutron and muon source at the Rutherford 

Appleton Laboratory (RAL) in Oxfordshire using the POLARIS instrument. 

 

 

3.2.3 Results and Discussion 
 

3.2.3.1 Powder X-ray Diffraction (PXRD) 
After a 6-minute reaction in the multimode cavity, the sample was analyzed by ex-situ 

Powder X-ray Diffraction. The PXRD pattern for the so-obtained sample is shown in Figure 

3-3. Similar results were obtained after a 2-minute reaction in the single-mode cavity (PXRD 

pattern shown in the Appendix, Figure 7-1). 
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In both cases, the product was identified as V8C7, which crystallizes with a cubic sodium 

chloride superstructure (space group P4332). The PXRD pattern consists of seven sharp, 

high intensity peaks characteristic of the NaCl-type structure plus several low-intensity 

superstructure lines. The latter ones (barely visible in Figure 3-3) are not due to the presence 

of any kind of impurities but are indeed characteristic for the V8C7 superstructure.29 Figure 

7-2 in the Appendix shows a magnified image of these superstructure lines in the PXRD 

pattern shown in Figure 1-3. The seven most intense peaks represent the reflections from the 

(222), (400), (440), (622), (444), (600) and (662) planes of the cubic structure of vanadium 

carbide, V8C7. In addition, a weak reflection is observed at 2q @ 26.5° and this was visible 

in the vast majority of experiments performed under these conditions. This corresponds to 

the (002) reflection from graphite, which probably originates from residual susceptor that 

could not be completely physically removed. 

 

 
Figure 3-3 PXRD pattern taken ex-situ from vanadium metal plus graphite (8:7) heated in a MMC reactor for 
6 minutes at a power of 800 W. All reflections can be attributed to V8C7 except the one marked with *, which 
belongs to the (002) reflection from graphite. The reflections marked with • are superstructure lines 
characteristic of the V8C7 phase. 

 

Moreover, the PXRD pattern from the V + C reaction performed in the SMC microwave 

reactor is essentially indistinguishable from Figure 3-3 and same number of reflections are 

observed. 
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3.2.3.2 Rietveld Refinement 
The structure of the as-obtained V8C7 was solved by the Rietveld method against PXRD 

data, collected for 12 hours over a range of 10 < 2q/° < 110 with a step size of 0.017° (2q) 

using GSAS and EXPGUI software packages.30,31 The initial model used was the cubic 

P4332 V8C7 structure proposed by de Novion et al. (1977)6 and taken from the ICSD 

database [Figure 3-4], in which the 32 vanadium atoms occupy the (8c) and (24e) Wyckoff 

positions and the 28 carbon atoms are located at (4a), (12d) and (12d) Wyckoff positions. 

 

 
Figure 3-4 The structure of V8C7 as proposed by de Novion et al. (1977).6 

 

The background was modelled using a shifted Chebyschev function (function 1 within 

GSAS). Cell parameters, scale factor and zero point were also refined in initial cycles. Peak 

shape was subsequently modelled using the Thompson-Cox-Hastings pseudo Voigt function 

(peak shape function 2 within GSAS). Although V8C7 crystallizes in a cubic structure (which 

has fixed atomic positions in the NaCl parent structure), the atomic coordinates of most sites 

could also be refined due to the presence of the long-range ordering of vacancies at the non-

metal positions. Such refinement led to significant improvement of the goodness of fit and 

showed a small distortion of the vanadium atom positions surrounding the carbon vacancy. 

These atoms were indeed shifted towards the center of the carbon vacancy as previously 

reported by Rafaja et al. (1998).5 A corresponding displacement was also observed for the 

surrounding carbon atoms. The isotropic thermal factors (Uiso) of the vanadium sites V(1) 
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and V(2) were constrained to have the same values. The same procedure was repeated for 

the thermal factors of the carbon sites C(1), C(2) and C(3). This was due to the fact that, if 

the isotropic thermal factors were refined independently without constraint, the refinement 

would not achieve convergence. Refinement of the site occupancy factors (SOFs) was also 

attempted, but resulted in an unstable refinement (with no improvement of the goodness of 

fit parameters or bond distances) and/or in inconsistent values. All the SOFs were therefore 

fixed at 1.0 in the final refinement. 

Rietveld refinement against PXRD data [Figure 3-5] confirmed that the vanadium 

carbide superstructure V8C7 crystallizes in a cubic NaCl-type superstructure (space group 

P4332) with a long-range ordering of carbon vacancies at the non-metal positions. The 

refined lattice parameter was a = 8.3312(4) Å, consistently with prior reports [de Novion et 

al. (1966) a = 8.3340 Å 32 and Henfrey et al. (1970) a = 8.3303 Å 4]. 

 

 

 
Figure 3-5 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the vanadium carbide superstructure V8C7. Tick marks denote 
V8C7 diffraction peaks. The (002) graphite reflection at 2q = 26.5° was excluded from the refinement. 

 

The calculated crystallographic data and atomic parameters are illustrated in Table 3-1 

and Table 3-2, respectively. 

 

Table 3-1 Crystallographic data from Rietveld refinement against PXRD data for V8C7 prepared from 
vanadium metal and carbon in 6 minutes in an MMC reactor at a power of 800 W. 
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Phase data 

Chemical Formula V8C7 

Crystal system Cubic 

Space group P4332 

a  (Å) 8.3312(4)  

Volume (Å3) 577.92(1) 

Z 4 

Formula weight (g mol-1) 491.61 

Calculated density (g cm-3) 5.64984 

Rwp 0.0559 

Rp 0.0370 

χ2 3.459 

 

Table 3-2 Atomic parameters from Rietveld Refinement against PXRD data for V8C7 prepared from vanadium 
metal and carbon in 6 minutes in an MMC reactor at a power of 800 W. 

Atomic parameters 

Atom 
Type 

Wyckoff 
Site 

Fractional Coordinates 
Uiso (Å2) 

Site 
Occupancy x/a y/b z/c 

V(1) 8c 0.3731(5) 0.3731(5) 0.3731(5) 0.01177(3) 1.0 

V(2) 24e 0.1250(3) 0.3784(3) 0.1290(5) 0.01177(3) 1.0 

C(1) 4a 0.1250 0.1250 0.1250 0.01028(1) 1.0 

C(2) 12d 0.1250 0.6338(1) 0.6161(1) 0.01028(1) 1.0 

C(3) 12d 0.1250 0.3787(2) 0.8712(2) 0.01028(1) 1.0 

 

Only the V–V bond distances in vanadium carbide have been reported previously by 

Gusev et al. (2015) which are in the range of 2.883 – 3.058 Å.33 These values are in good 

agreement with those determined by Rietveld refinement in the present study and shown in 

the Appendix, Table 7-1, together with the bond angles. However, Buijink et al. (1995) 

studied the chemistry of vanadium-carbon single and double bonds and reported values for 

V–C bonds in a number of vanadium complexes.34 These are in the range of 2.0262 – 2.103 

Å, again in agreement with those reported in Table 7-1, Appendix. 
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3.2.3.3 Ex-situ Study of the V + C Reaction as a Function of Time 
From the ex-situ PXRD data, a phase analysis was conducted by monitoring the phase 

evolution as a function of time for both multimode and single-mode cavity experiments, 

which revealed information on possible reaction mechanisms. 

 

 
Figure 3-6 Ex-situ patterns for V + C pellets irradiated in an MMC reactor at a power of 800 W from t = 0 
(reagents – bottom) to reaction completion (top). 

 

Figure 3-6 illustrates the PXRD patterns collected after the V + C pellets had been 

irradiated with MWs for 0 s, 30 s, 1 min and 6 mins in the MMC reactor. Immediately before 

the start of the reaction (t = 0), only reflections from the reagents, vanadium metal and 

graphite, are present. After 30 s of MW irradiation, the amount of free carbon present in the 

sample had drastically decreased while no evidence for the presence of metallic V is 

observed.  It seems that the starting V metal has all reacted to produce vanadium carbides 

with a lower carbon content (VC1-x) with respect to stoichiometric VC. This is evident from 

the shape of reflections in the respective PXRD pattern in Figure 3-6. These peaks are highly 

unsymmetrical with the tail of each reflection at high 2q clearly less steep than the 
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corresponding edge at lower 2q. Figure 7-3 in the Appendix shows a magnified image of the 

PXRD pattern after a 2-minute reaction illustrating the unsymmetrical nature of the 

reflections at 75.7° and 79.6° 2q angles. It can therefore be concluded that the primarily 

formed vanadium carbides have a lower carbon content (VC1-x) and, accordingly, a smaller 

unit cell parameter.35 In subsequent time points (t = 30 s to t = 1 min), the intensity of the 

vanadium carbide reflections increases, the peaks become increasingly symmetrical (the 

high 2q tails become steeper and steeper) and peaks corresponding to graphite become less 

intense. As the reaction approaches completion (t = 6 min), highly crystalline V8C7 pellets 

are obtained as a single carbide phase together with a small impurity of graphite which is 

likely to originates from residual susceptor. The PXRD patterns for the V + C pellets after 0 

sec, 30 sec and 2 min of MW irradiation are shown separately in Figures 7-4 to 7-6 in the 

Appendix. 

 

 
Figure 3-7 Ex-situ patterns for V + C pellets irradiated in an SMC reactor at a power of 1 kW from t = 0 
(reagents – bottom) to reaction completion (top). 

The reaction process in the single-mode cavity synthesis is similar to that for the 

multimode cavity experiments but much shorter reaction times are required. Figure 3-7 
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illustrates the PXRD patterns collected after the V + C pellets had been irradiated with MWs 

for 0 s, 10 s, 30 s and 2 mins in a single-mode MW reactor. At t = 0, only reflections from 

the reagents, vanadium metal and graphite, are present. After 10 s of MW irradiation, no 

reflections from the vanadium metal phase are observed, suggesting that it has all reacted 

with graphite to form carbon-deficient vanadium carbide (VC1-x). As the reaction proceeds, 

the intensity of the vanadium carbide reflections increases until a single carbide phase of 

V8C7 is obtained after 2 minutes of MW irradiation. 

From Figure 3-6 and Figure 3-7, it can be seen that although the reaction appears to 

proceed by the same route in both cases, the single-mode MW experiment is much more 

rapid than the multimode reactor (equivalent). The reaction time for the synthesis of 

vanadium carbide from vanadium metal and graphite in a multimode cavity MW reactor 

operating at 800 W (6 minutes) can thus be reduced by one third (2 minutes) by employing 

a single-mode MW reactor operating at 1 kW. 

This ex-situ study of the V + C reaction as a function of time suggests a straightforward 

mechanism involving direct combination of the elements to form a succession of carbides 

that become more C-rich. The V8C7 phase is indeed obtained through the formation of 

carbon-deficient vanadium carbides VC1-x. No other stable, observable intermediates are 

identified throughout the reaction. For more detailed mechanistic insights, the MW synthesis 

of V and C should be investigated in-situ which would require the development of a 

customized single-mode MW reactor, specifically designed to perform time-resolved 

experiments by means of powder X-ray diffraction (PXRD) or, preferably, powder neutron 

diffraction (PND). 

 

 
 

3.2.3.4 Scanning Electron Microscopy (SEM) coupled with Energy-dispersive 
X-ray Spectroscopy (EDX) 

The MW-synthesized V8C7 powders prepared from vanadium metal and graphite were 

analyzed for particle size and morphology by Scanning Electron Microscopy (SEM). As 

carbide and nitride materials find industrial applications in abrasives and wear-resistant 

parts, the particle size, shape and morphology of such materials play an important role in 

their suitability for specific applications.10 

SEM micrographs for the V8C7 samples synthesized in 6 minutes in a MMC microwave 

reactor at a power of 800 W are shown in Figure 3-8. The microwave reaction yields to the 

formation of irregular micron-scale V8C7 particles, typically with dimensions of a few 

microns to a maximum of approximately 70 µm. 
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(a) 

 

(b) 

 

Figure 3-8 SEM micrographs for the V8C7 synthesized from vanadium metal and carbon in 6 minutes in an 
MMC microwave reactor at a power of 800 W. 

 

SEM micrographs for the V8C7 samples synthesized in 2 minutes in the single-mode 

cavity microwave reactor at a power of 1 kW show similar results to those prepared in the 

MMC reactor and are shown in Figure 3-9. Also in this case, the microwave reaction yields 

to the formation of irregular micron-scale V8C7 particles, typically with dimensions of a few 

microns to a maximum of approximately 70 µm. 

 

(a) 

 

(b) 

 

Figure 3-9 SEM micrographs for the V8C7 synthesized from vanadium metal and carbon in 2 minutes in a 
single-mode cavity (SMC) microwave reactor at a power of 1 kW. 

 

The SEM images obtained for the MMC and SMC samples demonstrate very similar 

particle sizes and morphologies. V8C7 particles exhibit relatively rough surfaces, in both 

cases. Larger particles are presumably the product of a sintering process undergone between 

smaller particles, and have remained intact due to incomplete post-reaction pellet grinding. 
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EDX data were collected for several crystallites and showed slightly different results. 

Some EDX spectra showed indeed that only vanadium and carbon were present [Figure 

3-10] whereas some others suggested that oxygen was also included in the structure either 

in the surface or in the bulk material [Figure 3-11]. 

The presence of oxygen in the form of additional bulk oxide phases was excluded 

beforehand, as PXRD data do not support this last option. 

 

 

Figure 3-10 EDX spectrum for the V8C7 synthesized from vanadium metal and carbon in 6 minutes in an 
MMC microwave reactor, showing that only vanadium and carbon were present. 

 

 

Figure 3-11 EDX spectrum for the V8C7 synthesized from vanadium metal and carbon in 6 minutes in an 
MMC microwave reactor, showing that oxygen was present as well as vanadium and carbon. 

 

CHN analysis was also performed on the V8C7 sample synthesized from vanadium metal 

and carbon, giving a vanadium content of 82.36 wt. % and a carbon content of 17.64 wt. %. 



 80 

These values are consistent with the theoretical ones: 82.90 wt. % for V and 17.10 wt. % for 

C. 

 

 

3.2.3.5 Raman Spectroscopy 
Further characterization was undertaken by Raman spectroscopy. Ghimbeu et al. (2011) 

used Raman spectroscopy to characterize their nanostructured vanadium nitride/multiwalled 

carbon nanotubes (VN/CNTs) composites.36 This study showed that the vanadium nitride 

used for the synthesis of the composite material had a similar Raman spectrum when 

compared to that of V2O5. According to the authors, this is probably due to the presence of 

surface oxides on the VN particles. 

 

 
Figure 3-12 Experimental Raman spectrum for the MW-synthesized V8C7 from vanadium metal and carbon 
in 6 minutes in an MMC microwave reactor. 

 

In Section 3.2.3.4, it was discussed how some EDX spectra showed the possibility of 

oxygen contamination in the sample. Raman spectroscopy was here used to provide 

additional supporting information regarding possible oxygen inclusion within the samples. 

Figure 3-12 illustrates the Raman spectrum of the MW-synthesized V8C7 from vanadium 

metal and graphite in 6 minutes in a multi-mode MW reactor. The spectrum shows the same 

characteristic bands as V2O5
37–41 [Figure 3-13] although the two compounds have different 

structures. As previously discussed in Section 3.2.3.2, V8C7 crystallizes in a cubic structure 
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with a space group of P4332 while V2O5 has an orthorhombic structure (space group Pmmn). 

Most of the bands in the V8C7 Raman spectrum appear to be slightly shifted towards lower 

Raman shifts compared to those in the V2O5 spectrum and are reported in Table 3-3. 

 

 
Figure 3-13 Raman spectrum for commercial V2O5. 

 

Raman spectroscopy experiments were conducted in sealed capillary tubes under Ar to 

make sure that the characteristic Raman bands of V2O5 observed in Figure 3-12 would not 

arise as a consequence of sample burning due to high laser powers. Moreover, samples were 

subjected to PXRD scans after Raman experiments, showing no evidence for the formation 

of oxide phases. 
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Table 3-3 Comparison of the Raman shifts of the MW-synthesized V8C7 and commercial V2O5 and their 
assigned symmetry modes. 

V8C7 Raman Shift (cm-1) V2O5 Raman Shift (cm-1) Assignment 

97 103 Ag 

141 144 B1g + B3g 

193 197 Ag 

283 286 B3g 

297 300 B2g 

404 410 Ag 

480 478 Ag 

525 530 Ag 

695 695 B2g 

994 997 Ag + B2g 

 

Vanadium pentoxide has been widely investigated due to its intriguing electrochemical 

properties.42–48 Several papers have been published in the literature that aimed at studying 

the Raman spectroscopy of this compound (thin films, nanotubes, etc.).37–41 V2O5 forms an 

orthorhombic structure (space group Pmmn) with lattice parameters a = 11.512, b = 3.564 

and c = 4.368 Å [Figure 3-14]. Its structure can be described from the packaging of V2O5 

layers along the c axis of the unit cell. Distorted VO5 square pyramids build up each layer 

and share corners and edges. Three different oxygen atoms can be observed: terminal 

(vanadyl) oxygen, O1, oxygen coordinated to two vanadium atoms, O2, and oxygen 

coordinated to three vanadium atoms, O3 [Figure 3-14]. 

Zhou et al. (2008) studied the Raman spectrum of vanadium pentoxide from density-

functional perturbation theory41 and found that the crystal modes can be classified as 

follows: 

 

 Γ 𝑉>𝑂� = 7𝐴� 𝑅 + 3𝐵y� 𝑅 + 7𝐵>� 𝑅 + 4𝐵q� 𝑅

+ 3𝐴� + 6𝐵y� 𝐼𝑅 + 3𝐵>� 𝐼𝑅 + 6𝐵q� 𝐼𝑅  
(3-3) 

 

where all the g modes are Raman active while the Bu modes are IR active. 
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Figure 3-14 Structure of vanadium pentoxide. 

 

 

Lee et al. (2003) investigated the Raman spectroscopy of vanadium oxide thin films39 

and assigned each Raman peak to the respective stretching mode. The three low-frequency 

Raman peaks at 103, 144 and 197 cm-1 were attributed to the layered structure and described 

as corresponding to the lattice vibration. The bending vibration of the V=O bonds was 

proposed to underlie the detection of the two peaks at 286 and 410 cm-1, whereas the peaks 

at 300 cm-1 and 478 cm-1 were ascribed to the bending vibrations of the doubly (V2-O) and 

triply (V3-O) coordinated oxygen, respectively. A V3-O stretching mode, which results 

from edge-shared oxygens in common to three pyramids, was thought to lead to the 

appearance of the 530 cm-1 peak. For the final two peaks, detected at 695 and 997 cm-1, the 

suggested causal agent was a V2-O stretching mode which result from corner-shared 

oxygens common to two pyramids and to the V=O (terminal oxygen) stretching mode which 

results from an unshared oxygen. 

In conclusion, the MW-synthesized V8C7 and commercial V2O5 show the same Raman 

bands in their spectra despite the difference in structure. This could be due to the inclusion 

of oxygen in the V8C7 samples (see Section 3.2.3.6 and 3.2.3.7) as reported by Ghimbeu et 

al.,36 even if synthesized under Ar. It is unclear how oxygen could be introduced into the 

system for reactions under inert atmosphere. A possible explanation could be that the 

contaminating oxygen is generated during reaction from the quartz tube which, by reacting 

O1 

O2 
O3 O3 

O3 
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with graphite susceptor, forms silicon carbide and releases carbon monoxide.20,49 O 

contamination could also be attributed to the presence of the element on the surface of 

vanadium metal or impurity in the Ar supply. It is rather unlikely that oxygen could be 

present from a leak in the argon line, as all possible measures were taken to prevent this and 

the whole procedure takes place under a positive pressure of Ar. 

 

 

3.2.3.6 X-ray Photoelectron Spectroscopy (XPS) 
The chemical nature of the V8C7 surface was analyzed by XPS. Measurements were run 

with the assistance of Dr. Sina Saremi-Yarahmadi at the Department of Materials at the 

University of Loughborough. Figure 3-15 shows the wide survey XPS spectrum for the MW-

synthesized V8C7 sample prepared from vanadium metal and carbon in 6 minutes in a multi-

mode cavity MW reactor. 

 

 
Figure 3-15 Wide survey X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
vanadium metal and carbon in 6 minutes in a MMC microwave reactor. 

 

XPS spectra obtained in the V2p, C1s and O1s regions show peaks that can be ascribed 

to the presence of vanadium, carbon and oxygen, respectively. 

For binding energies ranging from 512 to 527 eV [Figure 3-16], three different vanadium 

species were observed. The peaks at 513.8 and 521.2 eV are due to the presence of vanadium 

carbide (VC). The remaining peaks are associated with vanadium oxide species. The peaks 

at 515.8 and 523.3 eV indicate the presence of vanadium(III) oxide (V2O3) while the peaks 

at 517.7 and 525.1 eV support the presence of vanadium(V) oxide (V2O5). The existence of 
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these species stands in agreement with the Raman spectra for the V8C7 samples and 

commercial V2O5 showing the same characteristic bands (see Section 3.2.3.5). 

In the C1s region ranging from 281 to 291 eV [Figure 3-17], four different chemical 

types of carbon were found. At the lowest energy (~283.1 eV), the peak is associated with 

the presence of VC, whereas the most intense peak at 284.7 eV is due to the presence of free 

carbon. This is probably due to the unsuccessful removal of graphite susceptor from sample 

pellets. Single and double chemical bonding of carbon with oxygen (C–O and C=O) were 

observed at the highest energies 286.1 and 289.0 eV. 

For binding energies ranging from 526 to 534 eV (O1s region), two different types of 

oxygen species were observed. The peak at 530.2 eV is assigned to the presence of oxides, 

whereas the peak at 531.8 eV is more indicative of oxygen in an organic compound. 

 

 
Figure 3-16 Fitted V2p X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
vanadium metal and carbon in 6 minutes in a multi-mode MW reactor. 
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Figure 3-17 Fitted C1s X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
vanadium metal and carbon in 6 minutes in a multi-mode MW reactor. 

 

 
Figure 3-18 Fitted O1s X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
vanadium metal and carbon in 6 minutes in a multi-mode MW reactor. 

 

In light of the XPS results, it is reasonable to conclude that oxygen is indeed present to 

a depth of 10 nm in the V8C7 particles. 

The V8C7 sample was subsequently subjected to Ar ion etching in order to remove the 

surface and analyze the bulk of the sample. In this case, a sintered pellet was used rather 

than loose powder as the etching process is much less effective for the latter. Three etchings 
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were performed on the same sample. According to the etching rate used, each etching 

process is expected to remove approximately 3 nm of surface material.50 It should be noted 

that prior to the first etching, an additional etching was performed to remove dust from the 

surface and therefore an additional 3 nm has to be accounted. Therefore, after three etchings 

12 nm of surface were in principle removed. 

 

 
Figure 3-19 C1s X-ray photoelectron spectrum for the MW-synthesized V8C7 prepared from vanadium metal 
and carbon in 6 minutes in a multi-mode MW reactor after three Ar ion etchings. 

 

Figure 3-19 shows the XPS spectrum of the V8C7 samples in the C1s region after each 

etching. As the etching processes proceed, the peak at ~284 eV (which is assigned to the 

presence of free carbon) decreases. On the contrary, the peak at ~282 eV (which is assigned 

to the presence of VC) increases suggesting that the particle surface is surrounded by free 

carbon from the graphite susceptor. 

A similar trend can also be seen in the XPS spectrum of the V8C7 sample in the V2p and 

O1s regions [Figure 3-20]. The peak at ~529 eV in the O1s region (which is associated with 

the presence of vanadium oxides) decreases with etching. In the V2p region, the peaks at 

~515, 523, 517 and 525 eV (which are assigned to the presence of V2O3 and V2O5) decrease 

after etching, whereas both the peaks due to the presence of VC at ~513 and 521 eV increase. 
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Figure 3-20 V2p and O1s X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
vanadium metal and carbon in 6 minutes in a multi-mode MW reactor after three Ar ion etchings. 

 

In conclusion, XPS measurement confirmed the presence of oxygen at the vanadium 

carbide surface consistent with Raman spectroscopy. Even after three Ar ion etching 

processes which removed 12 nm of surface material, vanadium oxide species were still 

observable although the intensity of the respective peaks was found to decrease, 

significantly. Thus, oxygen might be present below the 12 nm of surface material removed. 

 

 

3.2.3.7 Powder Neutron Diffraction (PND) 
As discussed in the previous section, XPS only gives a measure of the elemental 

composition at the surface rather than the bulk. A Powder Neutron Diffraction experiment 

was therefore performed on a powdered V8C7 sample synthesized from vanadium metal and 

carbon in 6 minutes in a MMC reactor at a power of 800 W. PND was used to attempt to 

establish how much (if any) oxygen was present within the bulk carbide structure as PXRD 

is not as effective for such purposes. The reason for this lies on the fact that carbon and 

oxygen are neighboring atoms (6 and 8 electrons in total, respectively) which makes it hard 

to distinguish them by using X-rays as the latters are diffracted by electrons. On the other 

hand, neutron diffraction has the ability to discriminate between C and O as neutrons are 

diffracted by atomic nuclei. 
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PND data were collected at the ISIS facility on the POLARIS diffractometer. The 

diffractometer collects data to extremely short d-spacing, as low as 0.3 Å, by utilizing 5 

banks of detectors (see Section 2.3.2.1). The sample used for this analysis was prepared from 

vanadium metal and graphite for 6 minutes under air in a multimode cavity MW reactor at a 

power of 800 W. The sample was then loaded into a 6-mm vanadium sample can which was 

centered in the neutron beam for data collection. Data were collected for approximately 2 h 

at room temperature using 5 detectors banks. 

The sample was analyzed by PXRD prior to PND and the structure refined by the 

Rietveld method against PXRD data [Appendix, Figure 7-7, Tables 7-2, 7-3 and 7-4]. The 

same data collection parameters and refinement procedure was employed as discussed in 

Section 3.2.3.2. The structure model used for Rietveld refinements against PXRD data was 

the cubic P4332 V8C7 taken from the ICSD database.27 

Following the PND scans, the structure was refined by the Rietveld method against PND 

data, using GSAS30 and EXPGUI31 software packages. The structure model used for the 

Rietveld refinement was again the cubic P4332 V8C7 structure. 

In initial cycles, the background was refined using a reciprocal interpolation function 

(function type 8 within GSAS). The unit cell parameter, diffractometer constant DIFA and 

peak profiles were included. Modelling of the profile parameters was performed using GSAS 

function type 3, which combines back-to-back exponentials and pseudo-Voigt functions 

with Lorentzian broadening. The refinement of the V(1) and V(2) atomic coordinates did 

not lead to any improvement of the goodness of fit parameters but resulted instead in an 

unstable refinement (convergence not achieved) [Table 3-5]. This is very unusual, though, 

since those coordinates were always refined in all the previous refinements improving the 

overall fitting (see Section 3.2.3.2). On the other hand, the C(2) and C(3) atomic coordinates 

could be refined as usual. Once convergence was achieved, the thermal factors were refined 

too. Refinement of the site occupancy factors (SOFs) was also attempted, but resulted in an 

unstable refinement (with no improvement of the goodness of fit parameters or bond 

distances) and/or in inconsistent values. All the SOFs were therefore fixed at 1.0 in the final 

refinement. 
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Figure 3-21 OCD plot from POLARIS bank 4 generated by Rietveld refinement against vanadium carbide 
PND data using the cubic P4332 V8C7 structure model taken from the ICSD database. Data collected at room 
temperature for approx. 2 hours. The red tick marks indicate reflections from graphite and the black tick marks 
indicate reflections from V8C7. 

 

Table 3-4 Crystallographic data from Rietveld refinement against PND data for V8C7 synthesized from 
vanadium metal and graphite heated in a MMC for 6 minutes at a power of 800 W. 

Phase data 

Chemical Formula V8C7 

Crystal system Cubic 

Space group P4332 

a (Å) 8.33053(6)  

Volume (Å3) 576.40(1) 

Z 4 

Formula weight (g mol-1) 491.61 

Calculated density (g cm-3) 5.6121 

Rwp 0.0597 

Rp 0.0968 

χ2 6.366 
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Table 3-5 Atomic parameters from Rietveld refinement against PND data for V8C7 synthesized from vanadium 
metal and graphite heated in a MMC for 6 minutes at a power of 800 W. 

Atomic parameters 

Atom 
Type 

Wyckoff 
Site 

Fractional Coordinates 
Uiso (Å2) 

Site 
Occupancy x/a y/b z/c 

V(1) 8c 0.3750 0.3750 0.3750 0.00453(5) 1.0 

V(2) 24e 0.1250 0.3750 0.1250 0.00453(5) 1.0 

C(1) 4a 0.1250 0.1250 0.1250 0.00278(3) 1.0 

C(2) 12d 0.1250 0.6260(4) 0.6240(2) 0.00278(3) 1.0 

C(3) 12d 0.1250 0.3753(2) 0.8747(5) 0.00278(3) 1.0 

 

Figure 3-21 shows the Rietveld refinement against PND data for the MW-synthesized 

V8C7. It can be seen that there are a small number of weaker reflections which are not fitted 

by the V8C7 model. A mismatch in position is observed for the peak at d ~ 2.14 Å which was 

initially thought to be vanadium metal from either the sample can or an impurity in the 

sample. This was then added to the refinement as a third phase and subsequently excluded 

as it did not improve the peak fitting. Moreover, some problems with the peak width fitting 

at ~18 milliseconds and an intensity mismatch for the reflection at ~20 milliseconds are 

observed. These issues suggest that the cubic V8C7 structure model used may not be 

completely correct. The PND data was then indexed using to establish whether the P4332 

space group proposed by de Novion et al. (1977)6 is indeed correct or not. Unfortunately, no 

other space groups were found to match up with the PND data. The V–V and V–C atomic 

distances are consistent with values derived from PXRD data (Section 3.2.3.2) and are 

shown in the Appendix, Table 7-5, together with the bond angles. 

Gusev et al. (2015) recently studied the crystal structure of the V8C7 phase through 

Neutron and X-ray diffraction in both macro- and nanocrystalline powders.33 They found 

and confirmed what previous studies from other authors had shown,4,5 that is V8C7 

crystallizes with a cubic NaCl-type superstructure in space group P4332. 

In summary, although the refinement is not satisfactory, it would appear that the space 

group is likely correct. Further structural characterization is needed to provide a definite 

model and, unfortunately, it was not possible to measure the amount of oxygen inclusion 

within the sample from the PND data. 
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3.3 Microwave Synthesis Studies in the V2O5-C system 
This section describes experimental work undertaken to establish a synthetic route to 

vanadium carbide from vanadium(V) oxide and carbon in both a MMC and a SMC. 

 

3.3.1 Introduction 
The reactions discussed in this section were carried out by carbothermal reduction of 

vanadium(V) oxide (V2O5 + C) using microwave heating. The starting materials were mixed 

according to the following reactions: 

 4V2O5 + 27C → V8C7 + 20CO (3-4) 

In the carbothermal reduction of V2O5, a significant amount of carbon monoxide (CO) 

is released [Equation (3-4)]. It was observed that the rapid gas evolution led to fracturing of 

the pellet or, in some cases, delamination. It was found that a direct reaction of elemental 

powders was more suitable for the reaction set-up, preventing this fracturing and the 

subsequent loss of material. 

 

3.3.2 Experimental 
Synthesis 

All reactions reported in this section were performed in air by mixing and grinding 

together vanadium(V) oxide (Sigma Aldrich, 99.6%) and graphite (Sigma Aldrich, < 50 µm, 

99.5%), in a stoichiometric ratio of 4:27 according to Equation (3-4). The so-obtained 

powder mixture (0.5 g) was uniaxially cold pressed into a pellet and the use of a binder was 

found to be crucial. The binder consisted of a 5% PVA (polyvinyl alcohol) solution in 

distilled water. 0.5 ml portions of the binder solution were used for each pellet. The compact 

was embedded in graphite powder (used as a MW susceptor) within a 10-mm quartz tube. 

The tube was sealed with a red rubber stopper, parafilmed and subsequently connected to Ar 

flow. The MW reactions were conducted by using either a multi-mode or a single-mode 

cavity reactors. 

For multimode cavity experiments, the tube containing the sample was placed in the 

center of a beaker containing silica powder which stabilizes the tube and acts as a thermal 
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insulator [Figures 1-6 and 1-7]. The whole apparatus was then inserted into the multimode 

cavity of a domestic MW oven (DMO) and positioned in a consistent location within the 

cavity to keep the experimental parameters as constant as possible. Synthesis was conducted 

for 6 minutes at a power of 800 W. 

For single-mode cavity experiments, the tube was placed directly into the applicator of 

the SMC reactor and held by a stand [Figures 1-10 and 1-11]. Synthesis was conducted for 

2 minutes at a power of 1 kW. 

After the reaction went to completion, the pellet was found to be fractured or 

disintegrated. This made it impossible to collect among the graphite susceptor. As the 

microwave reaction proceeds fast, so does the carbon monoxide (CO) evolution. Once 

released, the gas tends to break the pellet contributing to the aforementioned problem. 

Nonetheless, despite these issues, the carbothermal reduction of V2O5 using microwave 

heating showed similar reaction times to those found in the direct reaction of elemental 

starting materials (V + C) [Section 3.2.2]. 

 

 

Characterization 

Products were characterized using several analytical techniques. Powder X-ray 

Diffraction (PXRD) [Section 2.3.1] was used to identify product phases by reference to 

calculated patterns from known structures downloaded from the Inorganic Crystal Structure 

Database (ICSD)27 using the PowderCell 2.3 software.28 The data was collected on a 

PANalytical Xpert MPD, Cu Ka1 radiation, for 1 hour over a range of 10 < 2q/° < 85. 

Crystallographic parameters were obtained by Rietveld refinement [Section 2.3.3] against 

powder XRD data collected for ca. 12 hours over a range of 10 < 2q/° < 110 using GSAS 

and EXPGUI software packages. Sample morphology and elemental composition were 

investigated by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray 

Spectroscopy (EDX) [Section 2.3.4]. Additional characterization was performed by Raman 

spectroscopy [Section 2.3.5]. Raman data were collected at room temperature using a Horiba 

LabRAM confocal microscope system with a 532-nm green laser. Surface analysis was 

evaluated by X-ray Photoelectron Spectroscopy (XPS) [Section 2.3.6] using a Thermo 

Scientific K-Alpha+ X-ray photoelectron spectrometer with monochromatic Al Kα radiation 

(1486.7 eV). 
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3.3.3 Results and Discussion 
 

3.3.3.1 Powder X-ray Diffraction (PXRD) 
After a 6-minute reaction in the multimode cavity, the sample was analyzed by ex-situ 

Powder X-ray Diffraction. The PXRD pattern for the so-obtained sample is shown in Figure 

3-22. Similar results were obtained after a 2-minute reaction in the single-mode cavity 

(PXRD pattern shown in the Appendix, Figure 7-8). 

 

 
Figure 3-22 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 6 minutes in 
an MMC microwave reactor at a power of 800 W. All reflections can be attributed to V8C7 except the one 
marked with *, which belongs to the (002) reflection from graphite. The reflections marked with • are 
superstructure lines characteristic of the V8C7 phase. 

 

As was observed for the vanadium metal + carbon reactions, the product was identified 

as the vanadium carbide, V8C7 (cubic, space group P4332), in each case. The PXRD pattern 

consists of seven intense, sharp peaks characteristic of a NaCl-type structure plus several 

low-intensity superstructure lines characteristics for the V8C7 phase. It was noted that, for 

V2O5 + C reactions, the intensity of the graphite reflection (marked with * in Figure 3-22) is 

higher than that for the V + C reactions. Presumably, this a consequence of the fracturing of 

the V2O5 + C pellet as CO gas evolves during the microwave reaction. Therefore, the 

graphite susceptor becomes integrated with the fractured pellet which makes its removal 
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harder. Consequently, during the carbothermal reduction of V2O5, a greater amount of 

unremoved graphite susceptor is seen. 

 

 

3.3.3.2 Rietveld Refinement 
The structure of the V8C7 product prepared from vanadium(V) oxide and graphite was 

solved by the Rietveld method against PXD data, collected for 12 hours over a range of 10 

< 2q/° < 110 with a step size of 0.017° (2q) using GSAS and EXPGUI software packages.30,31 

The structure model used is the same as that one in Section 3.2.3.2 proposed by de Novion 

et al.6 [Figure 3-4]. 

The procedure used for these refinements is essentially the same as that used for the V8C7 

samples synthesized from V + C powders (see Section 3.2.3.2). The background was refined 

first, followed by cell parameters, scale factors and zero point. Subsequently, peak shape 

parameters and atomic parameters were modelled. A similar displacement is observed for 

the vanadium and carbon atoms surrounding the carbon vacancy which are shifted towards 

the center of the non-metal position. Also in this case, the isotropic thermal factors (Uiso) of 

the vanadium sites V(1) and V(2) and carbon sites C(1), C(2) and C(3) were constrained to 

have the same values as the refinement would not achieve convergence otherwise. 

Refinement of the site occupancy factors (SOFs) resulted in an unstable refinement (with no 

improvement of the goodness of fit parameters or bond distances) and/or in inconsistent 

values. All the SOFs were therefore fixed at 1.0 in the final refinement. 

The Rietveld refinement against PXRD data is illustrated in Figure 3-23. The calculated 

lattice parameter is a = 8.3362(1) Å which is slightly higher than that one obtained for V8C7 

from the V + C reactions. Henfrey et al. (1970) suggested that a higher unit cell parameter 

can arise from oxygen content in the sample.4 The presence of residual oxide in the carbide 

lattice could be one reason why the V2O5 + C samples show a slightly higher unit cell 

parameter than the V + C samples. 

 



 96 

 
Figure 3-23 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the vanadium carbide superstructure V8C7. Tick marks denote 
V8C7 diffraction peaks. The (002) graphite reflection at 2q = 26.5° was excluded from the refinement. 

 

The calculated crystallographic data and atomic parameters are illustrated in Table 3-6 

and Table 3-7, respectively. 

 

Table 3-6 Crystallographic data from Rietveld refinement against PXRD data for V8C7 prepared from 
vanadium(V) oxide and carbon in 6 minutes in an MMC reactor at a power of 800 W. 

Phase data 

Chemical Formula V8C7 

Crystal system Cubic 

Space group P4332 

a (Å) 8.33615(3)  

Volume (Å3) 578.68(2) 

Z 4 

Formula weight (g mol-1) 491.61 

Calculated density (g cm-3) 5.6365 

Rwp 0.0608 

Rp 0.0440 

χ2 2.559 
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Table 3-7 Atomic parameters from Rietveld Refinement against PXRD data for V8C7 prepared from 
vanadium(V) oxide and carbon in 6 minutes in an MMC reactor at a power of 800 W. 

Atomic parameters 

Atom 
Type 

Wyckoff 
Site 

Fractional Coordinates 
Uiso (Å2) 

Site 
Occupancy x/a y/b z/c 

V(1) 8c 0.3701(4) 0.3701(4) 0.3701(4) 0.0117(3) 1.0 

V(2) 24e 0.1270(1) 0.3821(1) 0.1310(4) 0.0117(3) 1.0 

C(1) 4a 0.1250 0.1250 0.1250 0.0102(1) 1.0 

C(2) 12d 0.1250 0.6088(4) 0.6411(2) 0.0102(1) 1.0 

C(3) 12d 0.1250 0.3543(2) 0.8956(3) 0.0102(1) 1.0 

 

 

The bond lengths and angles of the V8C7 sample obtained from vanadium(V) oxide and 

graphite in 6 minutes in a MMC reactor are listed in Table 7-6 in the Appendix. These values 

are slightly different to those reported for the V8C7 prepared from V + C in Section 3.2.3.2 

but in good agreement with V–V and V–C bond lengths reported in previous studies.33,34 

 

 

3.3.3.3 Ex-situ Study of the V2O5 + C Reaction as a Function of Time 
The phase evolution as a function of time for both multimode and single-mode cavity 

experiments, which revealed information on possible reaction mechanisms, was investigated 

by ex-situ PXRD experiments. The data provided useful information on the progress of the 

reactions in each case. 

Figure 3-24 illustrates the PXRD patterns collected after the V2O5 + C pellets had been 

irradiated with MWs for 0 s, 30 s, 1 min, 2 mins and 6 mins in an MMC reactor. At the start 

of the reaction (t = 0), only the reflections from the vanadium(V) oxide and graphite starting 

materials are detectable. After 30 s of MW irradiation, the amount of free carbon present in 

the sample has slightly decreased while almost all the starting vanadium(V) oxide (V2O5) 

has reacted to produce vanadium(III) oxide (V2O3). Also, a few extra low-intensity peaks 

(unlabeled) are observed which could not be characterized. As time proceeds from t = 30 s 

to t = 1 min, vanadium carbide reflections start to appear while the peaks belonging to free 

carbon continues to decrease in intensity. From t = 1 min to t = 2 min, the intensity of the 

vanadium carbide reflections increases, the peak widths become narrower and the remaining 

graphite is diminished. Unlike in the direct reaction of the elemental powders (V metal + C) 
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discussed in Section 3.2.3.3, the V8C7 reflections seem to be symmetrical in the carbothermal 

reduction of vanadium pentoxide. As the reaction goes to completion (t = 6 min), highly 

crystalline V8C7 is obtained together with a small impurity of graphite which likely 

originates from residual susceptor. The PXRD patterns for the V2O5 + C pellets after 0 sec, 

30 sec, 1 min and 2 min of MW irradiation are shown separately in Figures 7-9 to 7-12 in 

the Appendix. 

 

 
Figure 3-24 Ex-situ patterns for V2O5 + C pellets heated for 6 minutes in an MMC reactor at a power of 800 
W from reagents (bottom) to reaction completion (top). 

 

The reaction mechanism for the single-mode cavity synthesis is similar to that for the 

multimode cavity experiments, but shorter reaction times are observed. Figure 3-25 

illustrates the PXRD patterns collected after the V2O5 + C pellets had been irradiated with 

MWs for 0 s, 10 s, 1 min and 2 mins in a single-mode MW reactor. At t = 0, only reflections 

from reagents vanadium(V) oxide and graphite starting materials are present. After 10 s of 

MW irradiation, almost all V2O5 has been converted to V2O3. As the reaction proceeds, the 

intensity of the vanadium(III) oxide reflections decreases while the intensity of the vanadium 
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carbide reflections increases until a single phase of V8C7 is obtained after just 2 minutes of 

MW irradiation. 

 

 
Figure 3-25 Ex-situ patterns for V2O5 + C pellets heated for 2 minutes in a SMC reactor at a power of 1kW 
from reagents (bottom) to reaction completion (top). 

 

As discussed in Section 3.3.3.1, the amount of carbon impurity is lower for the V8C7 

samples synthesized from V + C pellets compared to those prepared from V2O5 + C pellets 

probably due the CO evolution, during reaction which fractures the pellets and allows the 

graphite susceptor to enter the cracks. 

Taking together the results presented in Figure 3-24 and Figure 3-25, the single-mode 

MW reactor appears evidently much faster compared to its multimode counterpart (a 

domestic MW oven in this case). The reaction time for the synthesis of vanadium carbide 

from vanadium(V) oxide and graphite in a multimode cavity MW reactor (6 minutes) can be 

reduced by one third (2 minutes) by employing a single-mode MW reactor, although these 

reactors are not directly comparable since it is not possible to measure effective power 

absorbed by the sample in the MMC reactor. 
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This ex-situ study of the V2O5 + C reaction as a function of time suggests that the reaction 

mechanism involves the reduction of the vanadium atom from V2O5 to V2O3 to VC. No other 

stable, observable intermediates are identified throughout the reaction. 

As already explained, acquisition of more detailed mechanistic information would 

require investigation in-situ. The latter relies on the development of a customized single-

mode MW reactor, specifically designed to perform time-resolved experiments by means of 

powder X-ray diffraction (PXRD) or, even better, powder neutron diffraction (PND). 

 

 

3.3.3.4 Scanning Electron Microscopy (SEM) coupled with Energy-dispersive 
X-ray Spectroscopy (EDX) 

The MW-synthesized V8C7 powders prepared from vanadium(V) oxide and graphite 

were also analyzed for particle size, particle morphology and distribution by Scanning 

Electron Microscopy (SEM). 

Figure 3-26 illustrates the SEM micrographs for the V8C7 samples synthesized in an 

MMC reactor at a power of 800 W. Similarly to the equivalent V + C reaction, the microwave 

reaction between V2O5 and carbon yields irregular micron-scale V8C7 particles, typically 

with dimensions of a few microns to a maximum of approximately 100 µm. The main 

difference between the products from the direct reaction of elemental powders (V + C) and 

those from the carbothermal reduction of vanadium(V) oxide (V2O5 + C) is that the latter 

reaction produces more porous particles with rougher surfaces. This might be due to the fact 

that CO gas is released during the reaction (see Equation (3-4)) which hence causes the more 

porous microstructure observed by SEM. 

 

(a) 

 

(b) 

 
Figure 3-26 SEM micrographs for the MW-synthesized V8C7 from vanadium(V) oxide and carbon in a MMC 
reactor at a power of 800 W. 
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Figure 3-27 shows the SEM micrographs for the V8C7 samples synthesized in the single-

mode cavity microwave reactor at a power of 1 kW. Particles are very similar to those 

obtained from the MMC reaction, with dimensions ranging from a few microns to 100 µm. 

 

(a) 

 

(b) 

 
Figure 3-27 SEM micrographs for the MW-synthesized V8C7 from vanadium(V) oxide and carbon in a single-
mode cavity (SMC) microwave reactor at a power of 1 kW. 

 

EDX data were also collected for the particles obtained after the carbothermal 

reduction/carburization of V2O5. In Section 3.2.3.4, it was shown how some EDX spectra 

suggested that the only elements present in the samples were vanadium and carbon whereas 

some others supported the inclusion of oxygen within the V8C7 particles. Similar results 

were obtained for the carbothermal reduction/carburization of V2O5. 

 

 

3.3.3.5 Raman Spectroscopy 
Raman spectroscopy was employed to perform further characterization. Figure 3-28 

shows the Raman spectrum of the V8C7 synthesized from vanadium(V) oxide and graphite 

in a multi-mode cavity MW reactor. Like the samples synthesized from V and C, the Raman 

spectrum is very similar to that for V2O5 (see Section 3.2.3.5) which, again, suggests the 

presence of oxygen in the samples. 

Table 3-8 shows the Raman shifts for both V8C7 and commercial V2O5 (used as a starting 

material) and the respective assignments. For a description of the assignment of each Raman 

band to the respective stretching mode, see Section 3.2.3.5. 

The Raman spectra for the V8C7 samples synthesized from V2O5 and C suggests that 

oxygen is included either within the bulk structure or just on the surface of particles. Such 
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results were expected since the samples synthesized from vanadium oxide (which obviously 

contains oxygen) were treated under the same conditions as the samples synthesized from 

vanadium metal. 

 

 
Figure 3-28 Experimental Raman spectrum for the MW-synthesized V8C7 from vanadium(V) oxide and 
carbon in an MMC at a power of 800 W. 
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Table 3-8 Raman shifts of the MW-synthesized V8C7 from vanadium(V) oxide and carbon in an MMC at a 
power of 800 W and commercial V2O5 and their assigned symmetry modes. 

V8C7 Raman Shift (cm-1) V2O5 Raman Shift (cm-1) Assignment 

97 103 Ag 

141 144 B1g + B3g 

192 197 Ag 

284 286 B3g 

297 300 B2g 

407 410 Ag 

476 478 Ag 

528 530 Ag 

684 695 B2g 

993 997 Ag + B2g 

 

 

 

3.3.3.6 X-ray Photoelectron Spectroscopy (XPS) 
The chemical nature of the V8C7 surface was analyzed by XPS. The wide survey XPS 

spectrum for the MW-synthesized V8C7 samples prepared from vanadium metal and carbon 

in both multimode and single-mode MW reactors is shown in Figure 3-29. As suggested by 

Raman spectroscopy, XPS spectra obtained in the V2p, C1s and O1s regions have shown 

peaks ascribed to the presence of vanadium, carbon and oxygen, respectively. Figure 3-30, 

Figure 3-31 and Figure 3-32 show the binding energies from 512-527 eV (V2p), 281-291 

eV (C1s) and 526-534 eV (O1s), respectively. 

In the V2p region (binding energies ranging from 512 to 527 eV) [Figure 3-30], three 

different vanadium species were observed. The peaks at 513.8 and 521.2 eV are due to the 

presence of vanadium carbide (VC) whereas the remaining peaks are associated with 

vanadium oxide species. The peaks at 515.8 and 523.3 eV indicate the presence of 

vanadium(III) oxide (V2O3) while the peaks at 517.7 and 525.1 eV support the presence of 

vanadium(V) oxide (V2O5). The existence of these species stands in agreement with the 
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Raman spectra for the V8C7 samples and commercial V2O5 showing the same characteristic 

bands (see Section 3.2.3.5). 

 

 

 
Figure 3-29 Wide survey X-ray photoelectron spectrum for the MW-synthesized V8C7 sample prepared from 
V2O5 + C powders in an MMC reactor at a power of 800 W. 

 

 

In the C1s region ranging from 281 to 291 eV [Figure 3-31], four different chemical 

types of carbon were found. At the lowest energy (~283.1 eV), the peak is associated with 

the presence of VC, whereas the most intense peak at 284.7 eV is due to the presence of free 

carbon. This is probably due to the unsuccessful removal of graphite susceptor from sample 

pellets. Single and double chemical bonding of carbon with oxygen (C–O and C=O) were 

observed at the highest energies 286.1 and 289.0 eV. 

For binding energies ranging from 526 to 534 eV (O1s region) [Figure 3-32], two 

different types of oxygen species were observed. The peak at 530.2 eV is assigned to the 

presence of oxides, whereas the peak at 531.8 eV is more indicative of oxygen in an organic 

compound. 
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Figure 3-30 Fitted V2p X-ray photoelectron spectrum for the MW-synthesized V8C7 sample prepared from 
V2O5 + C powders in an MMC reactor at a power of 800 W. 

 

 

 

 
Figure 3-31 Fitted C1s X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
V2O5 + C powders in an MMC reactor at a power of 800 W. 
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Figure 3-32 Fitted O1s X-ray photoelectron spectrum for the MW-synthesized V8C7 samples prepared from 
V2O5 + C powders in an MMC reactor at a power of 800 W. 

 

The V8C7 sample was also subjected to Ar ion etching in order to remove the surface and 

analyze the core of the sample. Three etchings were performed on the same sample which 

removed 12 nm of surface in total. After this process, vanadium oxide species were still 

observed although the intensities of the respective oxide-associated peaks slightly decrease 

as the surface layers are removed. It appears therefore that oxygen is present on the surface 

of particles and its amount gradually decreases in deeper layers. Unfortunately, it was not 

possible to run any neutron diffraction experiments on the V8C7 sample obtained from 

vanadium pentoxide and carbon due to time limitations, but this will also be the subject of 

future works. Once a PND pattern of such sample is collected, this will be compared to that 

of the V8C7 sample obtained from the direct reaction of the elemental powders (V metal + 

C) to establish whether the two samples have different or comparable amount of oxygen (if 

any) dissolved in them. 

 

 

3.4 Chapter Summary 
The scope of this work was to synthesize vanadium carbide by direct reaction of 

elemental powders (V + C) and carbothermal reduction/carburization of vanadium(V) oxide 

(V2O5 + C) using either a multi- or a single-mode MW reactors. Once an appropriate 

526527528529530531532533534
Binding	energy	(eV)

O Peak	fitting

O1s	V	oxide

O1s	organic



 107 

synthetic route and reaction conditions were established, the resulting products were 

characterized by PXRD, SEM/EDX, Raman Spectroscopy, XPS and PND. 

Vanadium carbide can be synthesized from vanadium metal and carbon or vanadium(V) 

oxide and carbon under Ar in 6 minutes using an MMC reactor at a power of 800 W and in 

2 minutes using a SMC reactor at a power of 1 kW. Rietveld refinement against PXRD data 

confirmed the formation of the vanadium carbide superstructure, V8C7, as a single phase 

(together with a small amount of graphite, originating from susceptor) which crystallizes in 

a cubic structure (space group P4332) with lattice parameter a = 8.3312(4) Å (for the V + C 

reaction) and a = 8.33615(3) Å (for the V2O5 + C reaction). SEM micrographs and EDX 

spectra showed the formation of irregular micron-scale particles with dimensions ranging 

from a few microns to a maximum of 100 µm with a relatively rough surface containing 

vanadium, carbon and, at times, oxygen (although an inert atmosphere of Ar was employed). 

The oxygen inclusion evidence was also supported by Raman Spectroscopy. Raman spectra 

of the MW-synthesized products showed indeed bands which could be attributed to 

vanadium(V) oxide (V2O5). XPS analysis together with Ar ion etching confirmed the 

presence of oxygen in the ~12 nm of the surface material removed. PND investigation of the 

V + C sample synthesized in a MMC reactor aiming at evaluating the C and O occupancies 

of the final products was unfortunately unsuccessful and needs therefore to be repeated as 

part of future works. 
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4 Microwave Synthesis and Structural 
Characterization of Carbides in the Zr-C and Hf-
C Systems 

 

4.1 Introduction to Zirconium and Hafnium Carbide 
Zirconium and hafnium carbide are metal carbides of the Group 4 of the periodic table 

and are both extremely hard ceramic materials. 

Unlike the V-C system [Chapter 3], no evidence of the existence of superstructures was 

found in the literature for the Zr–C and Hf–C systems. However, ZrC and HfC both occur 

over a considerable range of composition. Sara et al. studied the phase relations in the 

zirconium-carbon system in 19651 and established that only one phase, a monocarbide ZrC, 

was found. The low-carbon and carbon-rich boundaries for this phase were determined to be 

38.5 and 48.9 at.% carbon, respectively, which suggested that zirconium carbide has a broad 

compositional field and can exists as ZrC1-x (where x = 0.77-0.98). Therefore, ZrC0.98 

represents the carbon-rich limit of ZrC1-x and crystallizes in the NaCl-type cubic structure 

(space group Fm-3m, a = 4.6986 Å) [Figure 4-3]. 

The Hf-C system behaves similarly to the Zr-C system. Deardorff et al. investigated the 

hafnium-carbon phase diagram in 1967 and found that the composition range of HfC1-x exists 

from 37.0 to 48.5 at.% carbon.2 In this case, the carbon-rich limit for hafnium carbide is then 

represented by HfC0.97 which also crystallizes in the NaCl-type cubic structure (space group 

Fm-3m, a = 4.6425 Å). Figure 4-1 and Figure 4-2 illustrate the phase diagram for the Zr-C 

and Hf-C systems, respectively. 

The work presented in this chapter focuses on the microwave synthesis and structural 

characterization of single-phase ZrC and HfC in both multi- and single-mode MW cavity 

reactors of which only the work on the Zr-C system was successful. The zirconium carbide 

material has been prepared by employing zirconium metal (Zr) as a zirconium source and 

graphite as a carbon source under Ar. Once an appropriate synthetic procedure was 

established, the so-synthesized ceramics were investigated by Powder X-ray Diffraction 

(PXRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray 

(EDX) analysis, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and 
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Powder Neutron Diffraction (PND). The carbothermal reduction of zirconium dioxide (ZrO2 

+ C) was also investigated using microwave heating but did not lead to the formation of any 

products. 

Attempts to synthesize HfC from Hf metal and graphite under Ar were also carried out 

but a partial oxidation of the Hf phase during reaction was observed and prevented reactions 

completion under the experimental conditions employed. This suggested the presence of 

oxygen in the system (although all the reactions were carried under Ar) which contaminated 

the samples. As per the ZrO2 + C reactions, the carbothermal reduction of hafnium oxide 

was also investigated but did not lead to the formation of any products as well. 

 

 

 
Figure 4-1 Phase diagram of the Zr-C system.1 

L + Zr 

Zr + ZrC 

Zr + ZrC 

ZrC + C 

L + C 
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Figure 4-2 Phase diagram of the Hf-C system.2 

 

 

 
Figure 4-3 Crystal structure of ZrC and HfC. Zr/Hf atoms (blue), C atom (grey). 
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4.2 Microwave Synthesis Studies in Zr-C system 
This section describes experimental work undertaken to establish a synthetic route to 

zirconium carbide from zirconium metal and carbon in both a MMC and a SMC. 

 

4.2.1 Introduction 
Zirconium carbide has been synthesized using various synthetic methods such as direct 

reaction of elemental powders,3 carbothermal reduction of zirconium oxide (ZrO2),4–7 

mechanical activation assisted self-propagating high-temperature synthesis,8,9 sol-gel 

route,10,11 laser pyrolysis route12 and some other synthetic methods.13,14 However, as 

discussed in Section 1.6.1, these common methods face several challenges like energy 

inefficiency, high cost, impurities and/or low yields. 

The synthesis of zirconium carbide from elemental powders was investigated by 

Nachiappan et al. (2010) by reactive hot pressing.3 This synthetic method is often used to 

decrease the reaction temperature and time by applying a relatively high pressure with 

significant improvements in densification. The authors of the study mixed stoichiometric 

and nonstoichiometric amounts of zirconium and graphite which were reactively hot pressed 

to produce monolithic ZrCx (where x = 0.5 to 1). Reactions were conducted in a vacuum hot 

press at a pressure of 40 MPa and temperatures of up to 1400 °C (held for 1 h). 

The carbothermal reduction of ZrO2 represents the most common industrial process for 

the synthesis of ZrC and was extensively investigated in previous studies. Maitre et al. 

(1997) studied the solid-state reaction between zirconia and graphite under flowing argon.5 

ZrO2-C mixtures (with a stoichiometric ratio of 1:3) were put in a vitreous carbon crucible 

and heated in a furnace by a graphite heating element at temperatures of up to 1823 K for 24 

h. 

Zirconium carbide has been previously synthesized using microwave irradiation but the 

experimental set up is slightly different from that used in the present study. Das et al. 

reported the microwave synthesis of ZrC-SiC composites by carbothermal reduction of 

zircon sand powder.15 The chemical composition of zircon sand reported by the authors is 

illustrated in Table 4-1. 
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Table 4-1 Chemical composition of zircon sand.15 

Compound Composition (wt%) 

ZrO2 62.0 

HfO2 8.0 

SiO2 28.0 

TiO2 0.2 

Al2O3 1.2 

Fe2O3 0.2 

CaO 0.4 
 

Stoichiometric mixtures of zircon sand and amorphous carbon were ground together, 

pelletized and embedded in a SiC crucible. Pellets were irradiated with 2.45 GHz 

microwaves in a domestic microwave oven at a power of 700 W under Ar for 30 minutes. 

Unfortunately, this study did not find positive confirmation from our own experiments, as 

further discussed in Section 4.3. 

The reactions discussed in this section were carried out by direct reaction of the elemental 

starting materials (Zr + C). The starting materials were mixed according to the following 

reaction: 

 Zr + C → ZrC (4-1) 

Although both starting materials (Zr and C) theoretically couple with microwaves, the 

heating of reactant pellet alone was unsuccessful and required the use of a microwave 

susceptor, such as carbon. Both graphite and activated charcoal are known to be good 

microwave absorbers, reaching temperatures above 1000 ºC in less than 2 minutes. Graphite 

was used as a susceptor (as well as a starting material) to provide additional thermal heating 

to the outside of the pellet.  

The direct reaction of elemental powders is straightforward and proceeds as described 

by Equation (1-15). This reaction route is suitable for the reaction set-up used and the 

collected pellet should be intact, hard and not fractured. 

 

4.2.2 Experimental 
 



 116 

4.2.2.1 Synthesis 
All reactions reported in this section were performed under Ar by mixing and grinding 

together Zr metal (Alfa Aesar, < 45 µm, 98.8%) and graphite (Sigma Aldrich, < 50 µm, 

99.5%), in a 1:1 stoichiometric ratio according to Equation (1-15). The so-obtained powder 

mixture (1 g) was uniaxially cold pressed into a pellet without the use of a binder. Samples 

were pressed into a cylindrical shape with a diameter of 8 mm and height of approximately 

5 mm. This compact was embedded in graphite powder (here used as a MW susceptor) 

within a 10-mm quartz tube which is transparent to microwaves. The tube was sealed with a 

septum cap, parafilmed and subsequently connected to an Ar flow. The MW reactions were 

conducted in either a multi-mode or a single-mode cavity microwave reactor. 

For multimode cavity experiments, the tube containing the sample was placed in the 

center of a beaker containing silica powder which acts as a stand for the tube as well as a 

thermal insulator. The whole apparatus was then inserted into the multimode cavity of a 

domestic MW oven (DMO) and positioned in the same location within the cavity to keep 

the experimental parameters as constant as possible. Synthesis was conducted for 6 minutes 

at a power of 800 W. 

For single-mode cavity experiments, the tube was directly placed into the applicator of 

the SMC reactor and held in place by a stand. Synthesis was conducted for 2 minutes at a 

power of 1 kW. 

As per V8C7 [Chapter 3], ZrC was synthesized for the first time on much more rapid 

timescales than previously reported in the literature. Moreover, the reaction time could be 

further decreased by employing higher MW powers for the reaction process. 

After the reaction went to completion, the pellet was found to be extremely hard due to 

the fast sintering process of the carbide particles. The surface of the pellet was physically 

cleared with fine sand paper in order to remove the remaining excess of susceptor. The pellet 

was then ground, giving a fine, grey powder. 

 

4.2.2.2 Characterization 
Products were characterized using several analytical techniques. Powder X-ray 

Diffraction (PXRD) [Section 2.3.1] was used to identify product phases by reference to 

known structures downloaded from the Inorganic Crystal Structure Database (ICSD)16 using 

the PowderCell 2.3 software.17 The data collected on a PANalytical Xpert MPD 

diffractometer, Cu Ka1 radiation, for 1 hour over a range of 10 < 2q/° < 85. Crystallographic 

parameters were obtained by Rietveld refinement [Section 2.3.3] against powder XRD data 

collected for ca. 12 hours over a range of 10 < 2q/° < 110 using GSAS and EXPGUI software 
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packages.18,19 Sample morphology, elemental composition and mapping were investigated 

by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDX) 

[Section 2.3.4]. Additional characterization was performed by Raman spectroscopy [Section 

2.3.5]. Raman data were collected at room temperature using a Horiba LabRAM confocal 

microscope system with a 532-nm green laser. Surface analysis was evaluated by X-ray 

Photoelectron Spectroscopy (XPS) [Section 2.3.6] using a Thermo Scientific K-Alpha+ X-

ray photoelectron spectrometer with monochromatic Al Kα radiation (1486.7 eV). Finally, 

Powder Neutron Diffraction (PND) [Section 2.3.2] was used to obtain a definitive crystal 

structure and to establish the oxygen stoichiometry with precision. PND experiments were 

conducted at the ISIS pulsed neutron and muon source at the Rutherford Appleton 

Laboratory (RAL) in Oxfordshire using the POLARIS instrument. 

 

4.2.3 Results and Discussion 
 

4.2.3.1 Powder X-ray Diffraction (PXRD) 
After a 20-minute reaction in the multimode cavity, the sample was analyzed by ex-situ 

Powder X-ray Diffraction. The PXRD pattern for the so-obtained samples is shown in Figure 

4-4. Similar results were obtained after a 6-minute reaction in the single-mode cavity reactor 

and the PXRD pattern is shown in the Appendix, Figure 7-13. 

The product in each of the MMC and SMC synthesis experiments was identified as 

zirconium carbide, ZrC, which crystallizes in the expected cubic structure (space group Fm-

3m). The PXRD pattern consists of nine intense, sharp peaks characteristic of a salt-like 

structure, which represent the reflections from the (111), (200), (220), (311), (222), (400), 

(331), (420) and (422) planes of the structure of zirconium carbide. An additional low 

intensity reflection is also observed in most of the experiments at 2θ @ 26.5° which 

corresponds to the (002) reflection from graphite, which probably originates from the 

unsuccessful removal of residual graphite. 
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Figure 4-4 PXRD pattern taken ex-situ from zirconium metal plus graphite (1:1) heated in an MMC reactor 
for 20 minutes at a power of 800 W under Ar. All reflections can be attributed to ZrC except the one marked 
with *, which belongs to the (002) reflection from graphite. 

 

The same reaction using the same experimental parameters was also investigated under 

air but the formation of undesired products (such as ZrO2) was observed which indicated 

that the use of an inert environment was likely essential. The so-formed oxide phase did not 

subsequently react with free carbon to produce ZrC under this conditions (see Section 3.3.3.1 

for further details). 

 

 

4.2.3.2 Rietveld Refinement 
The structure of the so-obtained ZrC was refined by the Rietveld method against PXRD 

data, collected for 12 hours over a range of 10 < 2θ/˚ < 110 with a step size of 0.017˚ (2θ) 

using the GSAS and EXPGUI software packages.18,19 The structure model used was for 

cubic Fm-3m ZrC taken from the ICSD database16 [Figure 4-3], in which the 4 zirconium 

atoms occupy the Wyckoff position (4a) whereas the 4 carbon atoms are located at the 

Wyckoff position (4b). 

The background was modelled using a shifted Chebyschev function (function 1 within 

GSAS). The cell parameters, scale factor and zero point were also refined in initial cycles. 

Peak shape was subsequently modelled using the Thompson-Cox-Hastings pseudo Voigt 
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function (peak shape function 2 within GSAS). The isotropic thermal factors (Uiso) of the 

zirconium and carbon atoms were refined independently. Refinement of the carbon site 

occupancy factor was also attempted giving a value of 0.98. This probably suggests that the 

MW-synthesized zirconium carbide (ZrC1-x – where x = 0.98) has a carbon content which is 

close to that of stoichiometric zirconium monocarbide ZrC. 

Rietveld refinement against PXRD data [Figure 4-5] confirmed that the ZrC crystallizes 

in a cubic rock-salt structure (space group Fm-3m) with a cubic lattice parameter a = 

4.69645(1) Å which is consistent with those previously reported by Bittner et al. in 1962 (a 

= 4.691 Å)20 and by Samsonov et al. in 1956 (a = 4.683 Å).21 

 

 

 
Figure 4-5 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the zirconium carbide ZrC. Tick marks denote ZrC diffraction 
peaks. The (002) graphite reflection at 2q = 26.5° was excluded from the refinement. 

 

The calculated crystallographic data and atomic parameters are illustrated in Table 4-2 

and Table 4-3, respectively. 
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Table 4-2 Crystallographic data from Rietveld refinement against PXRD data for ZrC. 

Phase data 

Chemical Formula ZrC 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.69645(1)  

Volume (Å3) 103.59(7) 

Z 4 

Formula weight (g mol-1) 101.84 

Calculated density (g cm-3) 6.5297 

Rwp 0.0981 

Rp 0.0746 

χ2 12.41 

 

 

Table 4-3 Atomic parameters from Rietveld Refinement against PXRD data for ZrC. 

Atomic parameters 

Atom 
Type 

Wyckoff 
Site 

Fractional Coordinates 
Uiso (Å2) 

Site 
Occupancy x/a y/b z/c 

Zr(1) 8c 0.0000 0.0000 0.0000 0.00618(4) 1.0 

C(1) 12d 0.5000 0.5000 0.5000 0.00502(2) 0.983(1)  

 

 

4.2.3.3 Ex-situ Study of the Zr + C Reaction as a Function of Time 
From the ex-situ PXRD data, the phase evolution was monitored as a function of time 

and a phase analysis was conducted for both multimode and single-mode cavity experiments. 

The Zr + C pellets were irradiated with MWs in a DMO for 0 s, 5 mins, 10 mins and 20 

mins and the respective PXRD patterns are shown in Figure 4-6. At t = 0 (before reaction), 

only reflections from the reagents are present (zirconium metal and graphite). After 5 

minutes of microwave irradiation, only a small amount of zirconium carbide is formed 

(broad small peaks are observed) and reflections from reagents are still present. At t = 10 

minutes, the latter reflections have mostly disappeared and only reflections from the 

products are observed. By evaluating the peak shape, it can be noticed that the reflections 
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are non-symmetrical (tail less steep than the leading edge). Figure 7-14 in the Appendix 

shows a magnified image of the PXRD pattern after a 10-minute reaction illustrating the 

unsymmetrical nature of the reflections at 66° and 69.5° 2q angles. This suggests that that 

zirconium carbides with a lower carbon content (ZrC1-x) and, hence, a smaller unit cell 

(higher 2θ angles) are formed first.1 As time proceeds, the intensity of the zirconium carbide 

reflections increases and the peaks become sharper and more symmetrical while the amount 

of graphite decreases, as indicated by its (002) reflection at 26.5°. At t = 20 minutes, the 

reaction approaches completion. Only reflections from products are observed and highly 

crystalline ZrC pellets are obtained as a likely single phase. Nonetheless, a small impurity 

of graphite is observed in the powder patterns from most of the experiments which is likely 

to originate from residual susceptor on the outer surface of the pellet. The PXRD patterns 

for the Zr + C pellets after 0 sec, 5 min and 10 min of MW irradiation are shown separately 

in Figures 7-15 to 7-17 in the Appendix. 

 

 
Figure 4-6 Ex-situ patterns for Zr + C pellets heated in an 800 W domestic MW oven from reagents (bottom) 
to reaction completion (top). 
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The same phase analysis was conducted for the single-mode cavity experiments and 

similar results over significantly shorter reaction times were observed (as expected). Figure 

4-7 illustrates the PXRD patterns collected after the Zr + C pellets had been irradiated with 

MWs for 0 s, 2 minutes, 4 minutes and 6 minutes in a single-mode MW reactor. Before MW 

irradiation (t = 0), once again, only Zr and graphite are present. After only 2 minutes, the 

starting materials are still present but zirconium carbide starts forming although at this stage 

the observed peaks are of relatively low intensity. From 2 to 4 minutes, almost all the starting 

materials have reacted and the intensity of the ZrC reflections increases giving ZrC1-x as the 

major product(s). As per the MMC experiments, a non-symmetrical peak shape is also 

observed for SMC experiments. The tail of peaks is indeed less steep than the leading edge. 

As the reaction goes to completion (t = 6 minutes), the intensity of peaks reaches a maximum 

value and a single ZrC phase is obtained. 

 

 
Figure 4-7 Ex-situ patterns for Zr + C pellets heated in a single-mode cavity MW reactor at a power of 1 kW 
from reagents (bottom) to reaction completion (top). 

 

In light of the results shown in Figure 4-6 and Figure 4-7, it is evident that a single-mode 

MW reactor leads to significantly faster ZrC synthesis than a multimode reactor (a domestic 
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MW oven was used in this study) and reaction times can be drastically cut by approximately 

one third. The microwave synthesis of zirconium carbide from zirconium metal and graphite 

takes indeed 20 minutes to go to completion in a DMO at a power of 800 W, whereas it takes 

only 6 minutes to achieve the same results using a single-mode cavity reactor at a power of 

1 kW. 

To summarise, the ex-situ study of the Zr + C reaction as a function of time suggests that 

the reaction mechanism is straightforward and involves the direct combination of the 

elements. The ZrC phase is apparently obtained through the formation of carbon-deficient 

zirconium carbide(s) ZrC1-x. No other stable, observable intermediates are identified 

throughout the reaction. In order to have detailed mechanistic information, the MW synthesis 

of Zr and C should be investigated in-situ. However, such investigation requires the 

development of a customized single-mode MW reactor, specifically designed to perform 

time-resolved experiments by means of powder X-ray diffraction (PXRD) or, even better, 

powder neutron diffraction (PND). 

 

 

4.2.3.4 Scanning Electron Microscopy (SEM) coupled with Energy-dispersive 
X-ray Spectroscopy (EDX) 

The MW-synthesized ZrC powders prepared from zirconium metal and graphite were 

analyzed by Scanning Electron Microscopy (SEM) coupled with Energy-dispersive X-ray 

Spectroscopy (EDX) for particle size and morphology. As discussed in Section 3.2.3.4, the 

particles size, shape and morphology of ceramic materials represent an important aspect 

because of their industrial application as abrasives and in wear-resistant parts.22 

 

(a) 

 

(b) 

 

Figure 4-8 SEM micrographs at (a) low and (b) higher magnification for the MW-synthesized ZrC from 
zirconium metal and carbon in 20 minutes in an MMC reactor at a power of 800 W. 
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SEM micrographs for the ZrC samples synthesized from zirconium metal and graphite 

in 20 minutes in an MMC reactor at a power of 800 W are shown in Figure 4-8. The 

microwave reaction yields irregular micron-scale ZrC particles, typically with from a few 

microns to a maximum of approximately a couple of hundred microns across. 

SEM/EDX experiments were also conducted for ZrC samples synthesized in a single-

mode cavity microwave reactor at a power of 1 kW [Figure 4-9] and show similar results to 

those shown in Figure 4-8. Irregular micron-scale ZrC particles are observed, ranging from 

a few microns to a maximum of 150 µm. 

 

(a) 

 

(b) 

 

Figure 4-9 SEM micrographs at (a) low and (b) higher magnification for the MW-synthesized ZrC from 
zirconium metal and carbon in 6 minutes in a SMC microwave reactor at a power of 1 kW. 

 

The SEM results obtained for the MMC and SMC samples are in agreement with each 

other and show similar particle size and morphology. ZrC particles have, in both cases, a 

quite rough surface and the bigger particles are the product of the sintering process 

undergone between smaller particles and remain intact even after grinding the product pellet. 

EDX data were collected for several crystallites and they all show the presence of mainly 

zirconium and carbon as expected [Figure 4-10]. However, some EDX spectra also showed 

that oxygen or hafnium impurities were contained in the samples [Figure 4-11 and Figure 

4-12], respectively. The Hf impurity is assumed to originate from the zirconium powder used 

as a starting material and as purchased from Alfa Aesar. According to the product 

specification, the Zr powder indeed contains ca. 2% of Hf which was not visible by PXRD. 
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Figure 4-10 EDX spectrum for the MW-synthesized ZrC from zirconium metal and carbon in 20 minutes in 
an MMC microwave reactor, showing that only zirconium and carbon were present. 

 

 

Figure 4-11 EDX spectrum for the MW-synthesized ZrC from zirconium metal and carbon in 20 minutes in 
an MMC microwave reactor, showing that oxygen was present as well as zirconium and carbon. 

 

 

Figure 4-12 EDX spectrum for the MW-synthesized ZrC from zirconium metal and carbon in 20 minutes in 
an MMC microwave reactor, showing that hafnium impurities were present as well as zirconium and carbon. 
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In light of the EDX data, it was assumed that some of the MW-synthesized ZrC samples 

could contain a small amount of oxygen, as seen for the V8C7 samples and discussed in 

Section 3.2.3.4. The presence of oxygen in the form of additional bulk oxide phases was 

excluded beforehand, as PXRD data do not support this last option. 

 

 

4.2.3.5 Raman Spectroscopy 
Raman spectroscopy proved to be an effective tool for the present research and provided 

further evidence of likely oxygen inclusion in the MW-synthesized V8C7 particles [see 

Section 3.2.3.5]. On this evidence in the V-C system, further characterization of the MW-

synthesized ZrC samples was performed by Raman spectroscopy. The Raman spectrum of 

ZrC synthesized from zirconium metal and graphite in 20 minutes in an MMC reactor is 

shown in Figure 4-13. 

 

 

 

Figure 4-13 Experimental Raman spectrum for the MW-synthesized ZrC from zirconium metal and carbon in 
20 minutes in an MMC microwave reactor. 
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Figure 4-14 Experimental Raman spectrum for commercial m-ZrO2. 

 

By comparison with the Raman spectrum for commercial monoclinic ZrO2 shown in 

Figure 4-14, it can be seen that the MW-synthesized ZrC shares some common bands at 

similar Raman shifts with m-ZrO2 although the two compounds have completely different 

crystal structures. 

Zirconium dioxide (or zirconia, ZrO2) is a chemically unreactive white compound. Three 

phases are known for zirconia: monoclinic (< 1,170 ºC – most naturally occurring form), 

tetragonal (1,170-2,370 ºC) and cubic (> 2,370 ºC).23 Figure 4-15 shows the crystal 

structures for these three polymorphs. 

As they have different crystal structures, these three polymorphs also have different 

Raman spectra. The spectrum of the MW-synthesized ZrC from zirconium metal and 

graphite shows some characteristic modes of both m-ZrO2 and t-ZrO2 which are summarized 

in Table 4-4. 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600 700 800 900 1000 1100

In
te
ns
ity

	(a
rb
	u
ni
ts
)

Raman	Shift	(cm-1)

m-ZrO2

99

17
5

18
8

21
9

30
3

55
6

53
5
50
2

47
3

37
9

34
4

33
1

10
12

95
9

90
5

85
2

80
675
5

63
5

61
4

57
9



 128 

(a) 

 

(b) 

 
 

(c) 

 
Figure 4-15 Crystal structures for m-ZrO2 (a), t-ZrO2 (b) and c-ZrO2 (c). Zr atoms (blue), O atoms (red). 

 

The Raman spectroscopy of both monoclinic and tetragonal zirconia has been 

extensively studied over the years and several investigations can be found in the literature24–

34. However, the mode assignments of the Raman spectra are incomplete. Keramidas et al. 

performed a Raman scattering study of ZrO2 and its phase transformations (monoclinic → 

tetragonal).30 Factor-group analysis of ZrO2 polymorphs predicted that eighteen modes (the 

Ag and Bg modes) are expected to be Raman-active. The distribution of normal modes in m-

ZrO2 is as follows: 

 

 Γ 𝑍𝑟𝑂> = 9𝐴�(𝑅) + 9𝐵�(𝑅) + 8𝐴�(𝑖𝑟	𝐸 𝑏) + 7𝐵�(𝐸 ⊥ 𝑏) (4-2) 
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All the eighteen Raman bands predicted in the study are seen in the commercial Raman 

spectrum of ZrO2 [Figure 4-14], with the exception of the bands with wavenumbers of 800 

cm-1 and above which are not mentioned in the previous publication. 

 

Table 4-4 Raman shifts of the MW-synthesized ZrC compared to those of m-ZrO2 and t-ZrO2 with their 
respective assignments. “m” stands for monoclinic, “t” for tetragonal. 

ZrC Raman Shift 
(cm-1) 

m-ZrO2 Raman 
Shift (cm-1)30 

t-ZrO2 Raman Shift 
(cm-1)34 Assignment 

94 99 – Ag 

173 175 – Ag + Bg 

183 188 – Ag 

213 219 – Bg 

263 – 264 A1g 

284 (?) – – – 

– 303 – Ag 

328 331/334 320 B1g 

370 379 – Bg 

466 473 – Ag 

513 502 – Bg 

– 535 – Ag 

580 579 606 B1g 

613 615 – Bg 

757 755 – Bg 

970 959 – – 

1020 1012 – – 

 

 

The Raman spectrum of the MW-synthesized ZrC contains many similar bands to those 

observed for m-ZrO2 and overlap has made some bands difficult to distinguish in the ZrC 

spectrum. However, some additional bands are observed in the Raman spectrum for ZrC 
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which cannot be assigned to monoclinic ZrO2 and might match more closely to bands from 

the tetragonal phase of ZrO2. The Raman spectrum of t-ZrO2 contains six bands which are 

assigned as follows:34 

 

 Γ = 	2𝐵y�(𝑅) + 3𝐸�(𝑅) + 𝐴y�(𝑅) (4-3) 

 

Only three of these bands are visible in the Raman spectrum of ZrC as illustrated in Table 

4-4. Moreover, the latter shows one extra low intensity band at 284 cm-1 which does not 

seem to belong to either of the two ZrO2 polymorphs and, hence, has not been assigned 

(although in principle, it could well be the band from m-ZrO2 at 303 cm-1). 

 

 

4.2.3.6 X-ray Photoelectron Spectroscopy (XPS) 
XPS was employed to analyze the chemical nature of the ZrC surface. Measurements 

were taken with the assistance of Dr. Sina Saremi-Yarahmadi at the Department of Materials 

at the University of Loughborough. Figure 4-16 displays the wide survey XPS spectrum for 

the MW-synthesized ZrC sample, which was prepared from zirconium metal and carbon in 

20 minutes in a multi-mode cavity MW reactor. 

 

 
Figure 4-16 Wide survey X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from 
zirconium metal and carbon in 20 minutes in a multi-mode MW reactor. 

 

The obtained XPS spectra suggest the presence of zirconium, carbon and oxygen, as 

corresponding peaks in the Zr3d, C1s and O1s regions could be detected. 

C1s
O1s

0200400600800100012001400
Binding	Energy	(eV)

Zr3d



 131 

Four different zirconium species can be distinguished for binding energies ranging from 

176 to 189 eV [Figure 4-17]. The peaks at 179.2 and 181.5 eV are due to the presence of 

zirconium carbide (ZrC). The remaining peaks at 182.4 and 184.5 eV are associated with 

zirconium oxide species. The presence of such species stands in agreement with the Raman 

spectra for the ZrC samples (see Section 3.2.3.5). 

In the C1s region ranging from 281 to 291 eV [Figure 4-18], four distinct chemical types 

of carbon were found. The lowest energy peak (~281.5 eV) is associated with the presence 

of ZrC, whereas the most intense peak at 284.9 eV corresponds to free carbon, arguably as 

a consequence of remaining traces of graphite susceptor on the sample pellets. Single and 

double chemical bonding of carbon with oxygen (C–O and C=O) were visible at the highest 

energies 286.1 and 289.0 eV. 

For binding energies ranging from 526 to 536 eV [Figure 4-19], two different types of 

oxygen species were detected. The peak at 530.2 eV is attributed to the presence of ZrO2 

species, whereas the peak at 531.9 eV is rather indicative of oxygen in an organic compound. 

 

 

 
Figure 4-17 Fitted Zr3d X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from 
zirconium metal and carbon in 20 minutes in a multi-mode MW reactor. 
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Figure 4-18 Fitted C1s X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from 
zirconium metal and carbon in 20 minutes in a multi-mode MW reactor. 

 

 
Figure 4-19 Fitted O1s X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from 
zirconium metal and carbon in 20 minutes in a multi-mode MW reactor. 

 

In light of the XPS results, it is reasonable to conclude that oxygen is indeed present to 

a depth of 10 nm in the ZrC particles. 
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The ZrC sample was subsequently subjected to Ar ion etching in order to expose the bulk 

of the sample for analysis. A sintered pellet was used rather than loose powder as the etching 

process is much less effective for the latter. Three etchings were performed on the sample, 

with an etching rate expected to yield removal of approximately 3 nm of surface material 

per etching. Notably, a pre-etching step was performed to remove surface dust, hence 

additional 3 nm have to be accounted for. Therefore, after three etchings 12 nm of surface 

were in principle removed. 

Figure 4-20 shows the XPS spectrum of the ZrC samples in the Zr3d region before and 

after the etching treatment. All the four peaks appear equally intensified following the 

etching process. This might be due to the presence of free carbon at the surface of particles 

which decreases after the etching process, as shown in Figure 4-21. The peak at 284.9 eV 

appears considerably decreased in amplitude after etching, meaning that part of the free 

carbon has been removed from the material surface. The remaining three peaks at 281.5, 

286.1 and 289.0 eV associated with the chemical bonding of carbon with zirconium and 

oxygen (Zr-C, C-O and C=O, respectively) remain largely unchanged. 

 

 

 
Figure 4-20 Zr3d X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from 
zirconium metal and carbon in 20 minutes in a multi-mode MW reactor before and after Ar ion etching. 

 

176178180182184186188
Binding	energy	(eV)

Before	etching

After	etching
Zr

Zr3d3
ZrO2

Zr3d5
ZrO2

Zr3d3
ZrC

Zr3d5
ZrC



 134 

 
Figure 4-21 C1s X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from zirconium 
metal and carbon in 20 minutes in a multi-mode MW reactor before and after Ar ion etching. 

 

 

 
Figure 4-22 O1s X-ray photoelectron spectrum for the MW-synthesized ZrC samples prepared from zirconium 
metal and carbon in 20 minutes in a multi-mode MW reactor before and after Ar ion etching. 
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The XPS spectrum of the O1s region before and after etching is shown in Figure 4-22. 

The peak at 531.9 eV associated with the presence of oxygen in an organic compound (which 

could result from the oxidation of graphite) does vary in intensity, whereas the peak at 530.2 

eV is assigned to the presence of ZrO2 increases in intensity in agreement with Figure 4-20. 

In summary, XPS measurement confirmed the presence of oxygen at the zirconium 

carbide surface, consistently with EDX and Raman spectroscopy. Progressive Ar ion etching 

treatments, removing 12 nm of surface material in total, were found insufficient to remove 

zirconium oxide species. 

 

 

4.2.3.7 Powder Neutron Diffraction (PND) 
A Powder Neutron Diffraction experiment was performed on a ZrC sample in order to 

determine the bulk crystal structure more accurately and to establish the stoichiometry of 

carbon and the existence of oxygen in the material. 

PND data were collected at the ISIS facility on the POLARIS diffractometer. For a 

description of the diffractometer, see Section 2.3.2.1. The sample used for this analysis was 

prepared by the same method discussed previously, from zirconium metal and graphite for 

20 minutes under Ar in a MMC reactor at a power of 800 W. The sample was then loaded 

into a 6-mm vanadium sample can which was centered in the neutron beam for data 

collection. Data were collected for approximately 2 h at room temperature using all 5 

detector banks. 

The sample was analyzed by PXRD prior to PND and the structure refined by the 

Rietveld method against PXRD data [Appendix, Figure 7-18, Tables 7-5 and 7-6]. The same 

data collection parameters and refinement procedure was employed as discussed in Section 

3.2.3.2. The structure model used for both Rietveld refinements against PXRD data and PND 

data was the cubic Fm-3m ZrC taken from the ICSD database. 

Following the PND scans, two Rietveld refinements against the PND data were carried 

out using different structure models. The first neutron refinement, shown in Figure 4-23, was 

carried out using the same structure model employed for the X-ray refinement described in 

Section 3.2.3.2. For the second neutron refinement [Figure 4-24], an oxygen atom was added 

at the same position where the carbon atom sits (ZrCxOy) and the occupancy factor of the 

two atoms was refined. The crystallographic data for both the ZrC and ZrCxOy refinements 

are shown in Table 4-5 and Table 4-7, respectively, and the atomic parameters in Table 4-6 

and Table 4-8. 
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Figure 4-23 OCD plot from POLARIS bank 5 generated by Rietveld refinement against PND data using the 
cubic Fm-3m ZrC structure model taken from the ICSD database. Data were collected at room temperature for 
approx. 2 h. The red tick marks indicated reflections from graphite and the black tick marks indicate reflections 
from ZrC. 

 

 

Table 4-5 Crystallographic data for Rietveld refinement against PND data for ZrC0.98 using the cubic Fm-3m 
ZrC structure model taken from the ICSD database.16 

Phase data 

Chemical Formula ZrC0.98 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.69862(1)  

Volume (Å3) 103.73(4) 

Z 4 

Formula weight (g mol-1) 103.02 

Calculated density (g cm-3) 6.5962 

Rwp 0.0537 

Rp 0.0656 

χ2 4.294 
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Table 4-6 Atomic parameters from Rietveld refinement against PND data for ZrC0.98 using the cubic using the 
cubic Fm-3m ZrC structure model taken from the ICSD database.16 

Atomic parameters 

Name 
Fractional coordinates 

Uiso Occup. 
x/a y/b z/c 

Zr1 0.0000 0.0000 0.0000 0.00332(2) 1.000(0) 

C1 0.5000 0.5000 0.5000 0.00293(4) 0.982(2) 

 

In initial cycles, the background was refined using a reciprocal interpolation function 

(function type 8 within GSAS). The unit cell parameter, diffractometer constant DIFA and 

peak profiles were included. Modelling of the profile parameters was carried out using 

GSAS function type 3, which combines back-to-back exponentials and pseudo-Voigt 

combination with Lorentzian broadening. Once convergence was achieved, the thermal 

factors and occupancies were also refined. 

 

 

 
Figure 4-24 OCD plot from POLARIS bank 5 generated by Rietveld refinement against PND data using the 
cubic Fm-3m ZrCxOy structure model derived from the ZrC structure model taken from the ICSD database. 
Data collected at room temperature for approx. 2 h. The red tick marks indicated reflections from graphite and 
the black tick marks indicate reflections from ZrC. 
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Table 4-7 Crystallographic data for Rietveld refinement against PND data for ZrC0.97O0.03 using the cubic Fm-
3m ZrCxOy structure model derived from the ZrC structure model taken from the ICSD database.16 

Phase data 

Chemical Formula ZrC0.97O0.03 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.69861(1)  

Volume (Å3) 103.73(2) 

Z 4 

Formula weight (g mol-1) 103.38 

Calculated density (g cm-3) 6.61929 

Rwp 0.0531 

Rp 0.0654 

χ2 4.198 

 

 

Table 4-8 Atomic parameters for Rietveld refinement against PND data for ZrC0.97O0.03 using the cubic Fm-
3m ZrCxOy structure model derived from the ZrC structure model taken from the ICSD database. 

Atomic parameters 

Name 
Fractional coordinates 

Uiso Occup. 
x/a y/b z/c 

Zr1 0.0000 0.0000 0.0000 0.00238(4) 1.0000 

C1 0.5000 0.5000 0.5000 0.00377(1) 0.969(3) 

O1 0.5000 0.5000 0.5000 0.00377(1) 0.032(3) 

 

 

Gendre et al. (2011) studied seven different stoichiometries of zirconium oxycarbide 

powders synthesized by carbothermal reduction of zirconia using conventional heating.35 

The samples were analyzed by PXRD and the lattice parameters were refined by the Rietveld 

method, which are shown in Table 4-9. The study showed that the lattice parameter of the 

zirconium oxycarbide phase decreases as the amount of oxygen increases. 
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Table 4-9 Stoichiometry and respective lattice parameter for the different zirconium oxycarbide specimens 
synthesized by Gendre et al.35 

Stoichimetry Lattice Parameter  
(Å) (± 0.001) 

ZrC1.00 4.698 

ZrC0.95O0.05 4.695 

ZrC0.90O0.10 4.688 

ZrC0.80O0.20 4.680 

ZrC0.70O0.30 4.679 + ZrO2 

ZrC0.60O0.40 4.679 + ZrO2 

ZrC0.50O0.50 4.679 + ZrO2 

 

Both models refined in this thesis seem to be reasonable and show similar chi-squared 

and R-factor values. Also, the lattice parameters for the two models are almost identical 

(~4.698 Å), which is the same value Gendre at al. obtained for the ZrC1.00 specimen. 

However, if oxygen is present in the bulk of the material, the amount is obviously very small 

and, hence, difficult to detect and quantify. In light of this consideration, the oxygen-

containing model does not find an undisputable confirmation without any further 

investigations. In light of this, there is no conclusive evidence for oxygen inclusion and the 

stoichiometry for the MW-synthesized zirconium carbide is probably ZrC0.98. 

 

 

4.3 Microwave Synthesis Studies in the ZrO2-C system 
This section describes experimental work undertaken to establish a synthetic route to 

zirconium carbide from zirconium oxide and carbon in both a MMC and a SMC microwave 

reactors. 

 

4.3.1 Introduction 
The reactions discussed in this section were performed on the basis of the premise of 

carbothermal reduction of zirconium dioxide followed by carburization (ZrO2 + C) using 

microwave heating. The starting materials were mixed according to the following equation: 
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 ZrO2 + 3C → ZrC + 2CO (4-4) 

 

 

4.3.2 Experimental 
Synthesis 

All reactions reported in this section were performed under Ar by mixing and grinding 

together zirconium dioxide (M&B, 99.6%) and graphite (Sigma Aldrich, < 50 µm, 99.5%), 

in a 1:3 stoichiometric ratio according to Equation (3-4). The so-obtained powder mixture 

(0.5 g) was uniaxially cold pressed into a pellet without the use of a binder. The compact 

was embedded in graphite powder (here used as a MW susceptor) within a 10-mm quartz 

tube which is transparent to microwave. The latter was sealed with a septum cap, parafilmed 

and subsequently connected to an Ar flow. The MW reactions were conducted using either 

a multimode or a single-mode cavity reactor. 

For multimode cavity experiments, the tube containing the sample was placed in the 

center of a beaker containing silica powder which acts as a stand for the tube as well as a 

thermal insulator. The whole apparatus was then inserted into the multimode cavity of a 

domestic MW oven (DMO) and positioned in the same location within the cavity to keep 

the experimental parameters as constant as possible. Synthesis was attempted with an 

irradiation time of up to 30 min at a power of 800 W. 

For single-mode cavity experiments, the tube was directly placed into the applicator of 

the SMC reactor and held in place by a stand. Synthesis was conducted for a maximum of 

10 minutes at a power of 1 kW as the reaction tube was observed to melt for longer reaction 

times. 

 

Characterization 

Products were characterized using only Powder X-ray Diffraction as no reaction was 

observed to occur between ZrO2 and carbon. PXRD [Section 2.3.1] was used to identify 

possible product phases by reference with known structures downloaded from the Inorganic 

Crystal Structure Database (ICSD)16 using the PowderCell 2.3 software.17 The data were 

collected on a PANalytical Xpert MPD diffractometer, Cu Ka1 radiation, for 1 h over a 

range of 10 < 2q/° < 85. 
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4.3.3 Results and Discussion 
 

4.3.3.1 Powder X-ray Diffraction (PXRD) 
After microwave irradiation, the pellet was found to be intact and no color change had 

occurred as if no reaction took place which was then confirmed by PXRD. 

As shown in Figure 4-25, after 20 minutes of microwave irradiation in a domestic MW 

oven at a power of 800 W, no change in PXRD patterns was observed. In both cases, only 

the starting materials ZrO2 and C were found to be present. 

Zirconia is known to be a chemically unreactive material. Its remarkable stability has 

been exploited over the years and makes ZrO2 a relevant material for refractory applications 

(such as laboratory crucibles, grinding media, etc.). 

 

 

Figure 4-25 Ex-situ PXRD patterns for the ZrO2 + C pellets heated in a domestic MW oven at a power of 800 
W from reagents (bottom) to products (top). 

 

Nawrocki et al. studied the chemistry of zirconium dioxide and its use in 

chromatography.36 The review describes both the physical and chemical properties of 
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both compounds have similar bond strengths [shown in Table 4-10], they have different 

chemical reactivity. 

 

Table 4-10 Bond energies for SiO2 and ZrO2.
36 

Bond Energy of Dissociation 
(kcal/mol) 

Bond Strength 
(kcal/mol) 

Metal Coordination 
Number 

Si–O 185 ± 7 193 ± 2.6 4 

Zr–O 180 ± 5 181.6 ± 2 7 

 

The reason for this difference in reactivity lies in the fact that, in monoclinic zirconia, 

each zirconium atom is bonded to seven oxygen atoms whereas, in silica, each silicon atom 

is tetracoordinated to oxygen. These properties combine to make zirconia a chemically 

unreactive material and silica less stable (more reactive) than the former. This difference in 

reactivity is relevant in terms of carbide synthesis. Previous studies conducted within our 

group have shown how it is possible to synthesize silicon carbide (SiC) from silica and 

graphite via microwave heating in minute timescales.37 Unfortunately, similar attempts with 

zirconia and carbon were not successful in this study. 

On the other hand, in Section 4.2.1, it was mentioned that Das et al. successfully 

synthesized ZrC-SiC composites by carbothermal reduction of zircon sand [Table 4-1] via 

microwave heating15 using a similar experimental set-up to that used in this study. The 

success of this microwave synthesis might be due to the fact that zircon sand contains a 

relatively high amount of SiO2 (28 wt. % for the study in question) which produces SiC by 

reacting with carbon. Among its wealth of applications, silicon carbide is also known to be 

a strong absorber of microwaves which induce a flow of free electrons in the semiconducting 

structure of SiC that heats up the material very quickly via a ohmic resistance heating 

mechanism.38 This is likely to be the driving force that enables ZrO2 and carbon to react in 

the presence of SiO2. 

Maitre et al. (1997) reported the synthesis of ZrC from zirconia and carbon under flowing 

Ar using conventional heating. Zirconium carbide was obtained after heating the starting 

materials for 24 h at a temperature of 1823 K, which could be a too high to be reached under 

the experimental conditions employed in this study. Unfortunately, it was not possible to 

record temperature measurements during the microwave reactions for a comparison with the 

above cited study. 
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4.4 Microwave Synthesis Studies in Hf-C system 
This section describes experimental work undertaken to establish a synthetic route to 

hafnium carbide from hafnium metal and carbon in either a MMC or a SMC reactor. 

Unfortunately, the use of the latter was attempted but, because of the fast melting of the 

reaction tubes in initial irradiation times, no further experiments were performed. Only 

MMC experiments are therefore presented in this section. 

 

4.4.1 Introduction 
Hafnium carbide has very similar chemical and physical properties to ZrC (as they are 

both group IV transition metal carbides) and has been synthesized using direct reaction of 

elemental powders, carbothermal reduction of hafnium dioxide,39,40 mechanically activated 

solid-state synthesis,41,42 sol-gel route,43 electrochemical synthesis,44 chemical vapour 

deposition45 and several other methods.46–49 However, energy inefficiency, high cost, 

impurities and/or low yields are issues that normally occur in these common synthetic 

methods. 

As per the production of ZrC, HfC is industrially synthesized by carbothermal reduction 

of HfO2. The synthesis and densification of nano-crystalline hafnium carbide powders was 

previously investigated by Feng et al. (2015).39 The starting materials used in this study were 

hafnium dioxide and a phenolic resin with char yield of 49 wt% as a hafnium and carbon 

source, respectively. These compounds were mixed in a polyethylene bottle for 4 h using 

yttria-stabilized ZrO2 balls and ethanol as the mixing media. The mixture was dried at 120 

°C for 12 h and granulated to obtain a fine powder. The latter was subsequently uniaxially 

cold pressed into 30-mm pellets which were placed in a graphite crucible and heated under 

vacuum using a spark plasma sintering (SPS) apparatus at a temperature of 1650 °C for 90 

min. 

There are no previous studies which investigate the microwave synthesis of hafnium 

carbide either from direct reaction of elemental powders or by carbothermal reduction of 

HfO2. The reactions discussed in this section were performed by direct reaction of the 

elemental starting materials (Hf + C). The starting materials were mixed in a 1:1 

stoichiometric ratio according to the following equation: 

 

 Hf + C → HfC (4-5) 
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By microwave heating the reactant pellet alone, no reaction was observed although both 

starting materials (Hf + C) theoretically couple with microwaves. This required instead the 

use of graphite as a microwave susceptor to provide additional thermal heating on the outside 

of the pellet. 

 

 

4.4.2 Experimental 
 

4.4.2.1 Synthesis 
All reactions reported in this section were performed under Ar by mixing and grinding 

together Hf metal (Alfa Aesar, < 45 µm, 99.6%) and graphite (Sigma Aldrich, < 50 µm, 

99.5%), in a 1:1 stoichiometric ratio according to Equation (4-5). The so-obtained powder 

mixture (1 g) was uniaxially cold pressed into a pellet without the use of a binder. Samples 

were pressed in a cylindrical shape with a diameter of 8 mm and height of approximately 5 

mm. This compact was embedded in graphite powder (here used as a MW susceptor) within 

a 10-mm quartz tube which is transparent to microwave. The tube was then sealed with a 

septum cap, parafilmed and subsequently connected to an Ar flow. The MW reactions were 

conducted by using both multi-mode and single-mode cavity reactors. 

For multimode cavity experiments, the tube containing the sample was placed in the 

center of a beaker containing silica powder which acts as a stand for the tube as well as a 

thermal insulator. The whole apparatus was then inserted into the multimode cavity of a 

domestic MW oven (DMO) and positioned in the same location within the cavity to keep 

the experimental parameters as constant as possible. 

For single-mode cavity experiments, the tube was directly placed into the applicator of 

the SMC reactor and held in place by a stand. 

 

 

4.4.2.2 Characterization 
Products were characterized using only Powder X-ray Diffraction as hafnium carbide 

was not successfully synthesized as a single-phase. PXRD [Section 2.3.1] was used to 

identify possible product phases by reference with known structures downloaded from the 

Inorganic Crystal Structure Database (ICSD)16 using the PowderCell 2.3 software.17 The 

data were collected on a PANalytical Xpert MPD difrractometer, Cu Ka1 radiation, for 1 

hour over a range of 10 < 2q/° < 85. 
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4.4.3 Results and Discussion 
 

4.4.3.1 Powder X-ray Diffraction (PXRD) 
After using different irradiation times for the microwave synthesis of HfC, it was found 

that the best results were obtained after a 20-minute reaction in a MMC reactor at a power 

of 800 W. Samples was then analyzed ex-situ by Powder X-ray Diffraction. The PXRD 

pattern for a so-obtained sample is shown in Figure 4-26. 

 

 
Figure 4-26 PXRD pattern taken ex-situ from hafnium metal plus graphite (1:1) heated in a DMO for 20 
minutes at a power of 800 W under Ar. The reflection marked * can be attributed to the (002) reflection from 
graphite whereas the low intensity reflections marked • belong to the hafnium dioxide phase. 

 

The products were identified as hafnium carbide (HfC), which crystallizes in a cubic 

structure (space group Fm-3m), hafnium dioxide (HfO2) and unreacted graphite. The PXRD 

pattern consists of six sharp peaks characteristic of the salt-like structure which represent the 

reflection from the (111), (200), (220), (311), (222) and (400) planes plus an extra reflection 

at 2θ = 26.5° (which belongs to the (002) reflection from graphite). Additionally, several 

weak peaks (marked with “•”) can be attributed to HfO2. 
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In Figure 4-26, it can be seen that the graphite reflection is relatively intense, especially 

when compared to the other post-reaction carbide systems discussed in this thesis. This 

suggests that there is considerable unreacted carbon remaining after reaction and that some 

hafnium metal reacts with oxygen to form HfO2. As per the V-C and Zr-C system, the 

oxygen contamination is thought to be coming from the presence of oxygen on the surface 

of the metal particles or impurity in the Ar supply. All possible measures were taken to 

prevent that oxygen could get into from a leak in the argon line. 

For reaction times longer than 20 minutes, it is observed that the intensity of HfC 

reflections decreases as those of HfO2 increase, suggesting that hafnium carbide is gradually 

oxidized to hafnium dioxide.  

The oxidation of HfC has been the subject of investigations of high-temperature 

structural materials for some years.50–53 Shimada et al. studied the isothermal oxidation of 

HfC single crystals at temperatures of 700° - 1500°C and at oxygen pressures of 0.08-80 kPa 

for 4 h.53 It was found that during and after the initial rapid oxidation of HfC with the 

formation of the oxycarbide phase, HfCxO1-x, carbon is released according to equations (4-6) 

and (4-7): 

 

 HfC + O2 → HfO2 + C (4-6) 

 HfC1-xOx + (1 – x/2)O2 → HfO2 + (1-x)C (4-7) 

  

Such temperatures (700°C - 1000°C) are easily reached during the microwave reactions 

described in this thesis.54 It is reasonable to propose that hafnium carbide (and/or the starting 

hafnium metal) undergoes oxidation during the MW reactions above due to the presence of 

oxygen in the system. 

In summary, the PXRD pattern shown in Figure 4-26 confirms the successful formation 

of HfC as a major product but the formation of the oxide phase prevents the reaction to go 

to completion as HfO2 does not react with carbon at temperatures reached within the 

microwave cavity. Unfortunately, it was not possible to measure the temperature reached 

during reactions because no such instrumentation was available. 

 

 

4.4.3.2 Ex-situ Study of the Hf + C Reaction as a Function of Time 
From the ex-situ PXRD data, a phase analysis was conducted by monitoring the phase 

evolution as a function of time for both multimode and single-mode cavity experiments. 

Figure 4-27 shows the PXRD patterns collected after the Hf + C pellets were irradiated 

with MWs for 0 s, 5 mins, 10 mins, 15 mins and 20 mins in the MMC reactor at a power of 
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800 W. At t = 0 s (when the magnetron was still off), only reflections from hafnium metal 

and graphite are present as might be expected (but demonstrating that no HfO2 could be 

detected in the starting materials). After 5 minutes of microwave irradiation, hafnium carbide 

starts to form as the amount of Hf and C decreases. Also, peaks from the hafnium oxide 

phase are observed after 5 min of irradiation (although the reactions were run under Ar). No 

other phases/intermediates are observed during the conversion to HfC. At t = 10 and 15 

minutes, hafnium metal and graphite continues to react and HfC becomes the major phase. 

At this point, only a small amount of hafnium remains which then disappears as the reaction 

time reaches 20 minutes. No more HfC is observed from this point onwards. 

 

 
Figure 4-27 Ex-situ patterns for Hf + C pellets heated in an MMC reactor at a power of 800 W for 0 seconds 
(bottom) to 20 minutes (top). 

 

The carbothermal reduction/carburization of hafnium dioxide was also investigated in 

this study and was not successful. No reaction between reactants (HfO2 + C) was observed. 
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The experiments were carried out using the same procedure used for the carbothermal 

reduction of zirconia, described in Section 4.3. Both synthetic routes turned out to be 

unsuccessful using microwave irradiation as the two oxide materials are known to be 

chemically unreactive. 

 

 

4.5 Chapter Summary 
This work aimed at synthesizing zirconium and hafnium carbides by direct reaction of 

elemental powders (Zr/Hf + C) and carbothermal reduction/carburization of 

zirconium/hafnium dioxide (ZrO2/HfO2 + C) using both multi- and single-mode MW 

reactors. Upon establishing appropriate synthetic route and reaction conditions, the resulting 

products were characterized by PXRD, SEM/EDX, Raman Spectroscopy, XPS and PND. 

Direct reactions of elemental powders under air resulted in the oxidation of the starting 

metal powder (Zr or Hf) and the subsequent formation of the respective oxide phase (ZrO2 

or HfO2) which posed as a barrier to the formation of the carbide phase. Indeed, the 

carbothermal reduction of neither zirconia nor hafnia was successful, as the starting 

materials do not couple with microwaves. 

Zirconium carbide can be synthesized from zirconium metal and carbon under Ar in 20 

minutes using an MMC reactor at a power of 800 W and in 6 minutes using a SMC reactor 

at a power of 1 kW. Rietveld refinement against PXRD data confirmed the formation of 

zirconium carbide as a single phase (together with a small amount of graphite, originating 

from susceptor) which crystallizes in a cubic structure (space group Fm-3m) with lattice 

parameter a = 4.69645(1) Å. SEM micrographs and EDX spectra revelaed the formation of 

irregular micron-scale particles with a relatively rough surface containing zirconium, carbon 

and, occasionally, oxygen as indicated by Raman Spectroscopy. Raman spectra of the MW-

synthesized products showed indeed bands which could be attributed to both m-ZrO2 and t-

ZrO2. XPS analysis taken together with Ar ion etching confirmed the presence of oxygen in 

the ~12 nm of the surface material removed. A PND investigation of the ZrC sample was 

performed using two different structure models. The first model, taken from the ICSD 

database, was the cubic Fm-3m ZrC structure. This neutron refinement supports a zirconium 

carbide sample with a Zr:C stoichiometry of 1:0.98 (ZrC0.98). The second structure model 

used was obtained by adding an oxygen atom at the same position where the carbon atom 

sits and the occupancy factors for the two non-metal atoms were refined. The obtained 

Zr:C:O stoichiometry was 1:0.97:0.03, leading to the formula ZrC0.97O0.03. Although both 
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refinements lead to plausible ZrC compositions, the presence of oxygen traces can be very 

challenging to detect. Conceivably, the bulk particle composition is ZrC0.98 with some 

oxygen present at the surface of the particles. 

Lastly, the direct reaction of hafnium metal and carbon under Ar using either a multi-

mode or a single-mode MW reactor led to the formation of hafnium carbide as a major 

product together with unreacted C and a small amount of HfO2. Once HfO2 had formed in 

this system, further production of HfC appeared impossible under the conditions employed. 

The source of this oxygen contamination is unfortunately still unclear. However, the Hf-C 

system behaves similarly to the Zr-C system and it is believed that hafnium carbide might 

be obtained as a single phase, if only oxygen could be excluded. 
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5 Preliminary Studies on the Microwave Synthesis 
and Structural Characterization of Nitrides in the 
Zr-N System 

 

5.1 Introduction to Zirconium Nitride 
Zirconium nitride is a hard ceramic material and, as such, finds myriad applications in 

refractories, cermets and laboratory crucibles. Gribaudo et al. (1994) studied the phase 

relations in the zirconium-nitrogen system1 and assessed the Zr-N phase diagram which is 

illustrated in Figure 5-1. 

Stoichiometric ZrN is the only stable phase in the zirconium-nitrogen system2 although 

other non-stoichiometric metastable phases have been previously reported in the literature, 

such as Zr3N4,3 ZrN2
4 and Zr2N.5 ZrN crystallizes in the NaCl-type cubic structure (space 

group Fm-3m, a = 4.585 Å) [Figure 5-2] and occurs over a considerable range of 

composition and can exist as ZrNx (where 0 < x < 1).2 Zerr et al. (2003) prepared Zr3N4 

through a high-pressure synthesis.6 Experiments were performed in a laser-heated diamond 

anvil cell at pressures up to 18 GPa and temperatures up to 3,000 K. The compound 

crystallizes in a cubic structure (space group I-43d) and shows a unit cell parameter of a = 

6.740 Å. 

The work presented in this chapter illustrates a preliminary study on the microwave 

synthesis and structural characterization of ZrN in a multi-mode cavity microwave reactor. 

No single-mode cavity experiments were attempted for this system, due to time limitations. 

The zirconium nitride material has been prepared by reacting zirconium metal powder with 

nitrogen (N2) or ammonia (NH3) gas at atmospheric pressure. Once an appropriate synthetic 

procedure was established, the MW-synthesized samples were investigated by Powder X-

ray Diffraction (PXRD), Scanning Electron Microscopy (SEM) coupled with Energy 

Dispersive X-ray (EDX) analysis and Raman Spectroscopy. 

The microwave reaction under N2 led to the formation of ZrN together with the apparent 

presence of unreacted Zr metal, which is more likely a nitride ZrNx with x close to zero. The 

same reaction run under NH3 led again to the formation of ZrN but the formation of a cubic 

phase is also observed which appear to be the nitride-stabilized cubic form of ZrO2. 
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Figure 5-1 Phase diagram of the Zr-N system.1 

 

 
Figure 5-2 Crystal structure of ZrN. Zr atoms (red), N atoms (blue). 

 

 

Liquid + ZrN 

αZr + ZrN 
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5.2 Microwave Synthesis Studies in Zr-N system 
This section describes experimental work undertaken to establish a synthetic route to 

zirconium nitride from zirconium metal under nitrogen or ammonia gas in a multimode 

cavity MW reactor. 

 

5.2.1 Introduction 
Zirconium nitride is conventionally normally synthesized by reacting zirconium metal 

with either nitrogen or ammonia gas7 but numerous reports on the preparation of zirconium 

nitride using different techniques have been published over the years, such as carbothermal 

reduction-nitridation of zirconium oxide,8,9 mechanical alloying of Zr powders in N2 

atmosphere,10,11 chemical vapour deposition from tetrakis(dialkylamido)zirconium 

complexes and ammonia,12 dc-reactive sputtering4,13,14 and benzene-thermal synthesis.15 

This material has never been prepared by employing microwave irradiation. The 

reactions discussed in this section were carried out by direct reaction of zirconium metal 

powder and nitrogen/ammonia, according to the following reactions: 

 

 2 Zr + N2 → 2 ZrN (5-1) 

 2 Zr + 2 NH3 → 2 ZrN + 3 H2 (5-2) 

 

Although zirconium metal powder theoretically couples with microwaves, the heating of 

the reactant alone was unsuccessful and required the use of a microwave susceptor, such as 

graphite. Unlike in the microwave synthesis of V8C7 (Chapter 3) and ZrC (Chapter 4), the 

susceptor was placed on the outside of the quartz tube and not in contact with the starting 

material, as discussed in Chapter 3 and 4. This provided enough additional thermal heating 

for the reaction to occur. 

 

5.2.2 Experimental 
5.2.2.1 Synthesis 

All reactions reported in this section were performed under N2 by placing loose Zr metal 

powder (Alfa Aesar, < 45 µm, 98.8%) within a 10-mm quartz tube which is transparent to 

microwaves. The powder (0.5 g) was not cold pressed in order to allow the reacting gas to 

penetrate the entire mass. The tube was then sealed with a septum cap, parafilmed and 



 156 

subsequently connected to nitrogen flow. The MW reactions were conducted in a multi-

mode cavity microwave reactor. 

For multimode cavity experiments, the sample-containing tube was placed in the center 

of an alumina crucible containing graphite powder, used as a microwave susceptor [Figures 

1-8 and 1-9], on top of a refractory fire brick. The whole apparatus was then inserted into 

the multimode cavity of a DMO and positioned in the same location within the cavity to 

keep the experimental parameters as constant as possible. Synthesis was conducted for 20 

minutes (with 10-minute intervals) at a power of 800 W. 

After each reaction, a yellow-brown powder was found to be compact and reduced in 

volume due to the fast sintering process of the nitride particles. The product was 

subsequently ground with the use of a mortar and pestle. 

 

5.2.2.2 Characterization 
Products were characterized using several analytical techniques. Powder X-ray 

Diffraction (PXRD) [Section 2.3.1] was used to identify product phases by reference with 

known structures downloaded from the Inorganic Crystal Structure Database (ICSD)16 using 

the PowderCell 2.3 software.17 The data were collected on a PANalytical Xpert MPD 

diffractometer, Cu Ka1 radiation, for 1 hour over a range of 10 < 2q/° < 85. Crystallographic 

parameters were obtained by Rietveld refinement [Section 2.3.3] against powder XRD data 

collected for ca. 12 hours over a range of 10 < 2q/° < 110 using GSAS and EXPGUI software 

packages.18,19 Sample morphology and elemental composition were investigated by 

Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDX) 

[Section 2.3.4]. Additional characterization was obtained from Raman spectroscopy. Raman 

data were collected at room temperature using a Horiba LabRAM confocal microscope 

system with a 532-nm green laser. 

 

5.2.3 Results and Discussion 
 

5.2.3.1 Powder X-ray Diffraction (PXRD) 
After 20-minute multimode cavity experiments, the samples were analyzed by ex-situ 

Powder X-ray Diffraction. The PXRD pattern for the MW-synthesized sample under 

nitrogen gas is shown in Figure 5-3. 
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Figure 5-3 PXRD pattern taken ex-situ from zirconium metal under nitrogen gas heated in a DMO for 20 
minutes at a power of 800 W. Reflections marked with the hkl indices belong to the zirconium nitride phase, 
the ones marked with “ * ” to zirconium metal, “ ° ” to m-ZrO2 and “ • ” to an unknown cubic phase. The 
unmarked extra reflections could not be characterized. 

 

The major product was identified as zirconium nitride, ZrN, which crystallizes with the 

rock salt structure (space group Fm-3m). The PXRD pattern consists of eight intense, sharp 

peaks characteristic of the NaCl-type structure which represent the reflections from the 

(111), (200), (220), (311), (222), (400), (331) and (420) planes. Extra reflections from 

secondary phases are also observed. The peaks marked with “ * ” in Figure 5-3 belong to 

zirconium metal (hexagonal structure – space group P63/mmc) whereas the ones marked 

with “ ° ” can very likely be attributed to m-ZrO2 and the ones marked with “ • ” can be 

indexed to a cubic phase. Two space groups can be attributed to this unknown phase: I-43d 

with lattice parameter a = 7.233 Å and Fm-3m with lattice parameter a = 5.114 Å. The first 

space group (I-43d) is the same as in Zr3N4 but this compound has a much smaller unit cell 

parameter (a = 6.740 Å),6 hence, its presence was excluded beforehand. The cubic form of 

zirconia (c-ZrO2) crystallizes in a space group Fm-3m with a lattice parameter which is 

similar to that one for the unknown phase. Table 5-1 illustrates the phase data for both the 

uncharacterized phase and c-ZrO2 taken from literature. 
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Table 5-1 Crystallographic data for the uncharacterized cubic phase (obtained as a by-product during the 
microwave reaction) and c-ZrO2 taken from literature. *Range of values for the lattice parameter of the c-ZrO2 
phase reported in literature. 

Phase data 

Chemical Formula c-ZrO2 Unknown phase 

Crystal system Cubic 

Space group F m -3 m 

a/Å 4.916 20 – 5.145 21* 5.113 

 

It is unusual, though, that cubic zirconium dioxide would be formed under the conditions 

seen during our microwave reactions. Indeed, zirconium oxide would naturally form 

monoclinic crystals during synthesis.22 However, cubic zirconia crystals can be obtained and 

require the use of a stabilizer (usually oxides, such as MgO and CaO) to remain stable at 

room temperature.23 On the other hand, Claussen et al. (1978) investigated the formation of 

nitride-stabilized cubic zirconia by mixing various nitrides (such as ZrN) with m-ZrO2 and 

hot-pressing the mixtures at 1700°C for 1 h under nitrogen gas.24 The results showed that a 

fraction of the starting m-ZrO2 underwent a heat-dependent transformation to the cubic form 

with a lattice parameter a = 5.115 Å which is consistent with the one obtained for the 

uncharacterized cubic phase [Table 5-1]. Obviously, at the time of writing this thesis, it is 

still not possible to confirm the presence of c-ZrO2 in the MW-synthesized samples without 

further investigations – which will be the subject of future works. 

By further increasing the reaction time, PXRD data showed no significant change from 

the pattern in Figure 5-3, which means that the reaction does not reach completion (see 

Section 5.2.3.3 for further details). The unreacted zirconium metal does not indeed further 

react with nitrogen gas to produce zirconium nitride. 

A similar reaction was investigated under ammonia gas which gave a slightly different 

outcome. The PXRD pattern for the MW-synthesized sample under ammonia gas is shown 

in Figure 5-4.  
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Figure 5-4 PXRD pattern taken ex-situ from zirconium metal under ammonia gas heated in an MMC reactor 
for 20 minutes at a power of 800 W. Reflections marked with the hkl indices belong to the zirconium nitride 
phase, the ones marked with “ * ” to zirconium oxide and the extra reflections marked with “ • ” can be 
attributed to an uncharacterized cubic phase. 

 

The major product was again identified as cubic zirconium nitride, ZrN, together with 

small quantities of m-ZrO2 (marked with “ * ”), a similar uncharacterized cubic phase 

(marked with “ • ”) as the one seen for the microwave reactions under nitrogen gas. Unlike 

the reactions under nitrogen gas, however, no zirconium metal is observed and so all the 

starting material appears to have been consumed. 

 

 

5.2.3.2 Rietveld Refinement 
The structure of the ZrN sample obtained from zirconium metal under nitrogen gas was 

solved by the Rietveld method against PXRD data, collected for 12 hours over a range of 10 

< 2q/° < 110 with a step size of 0.017° (2q) using GSAS and EXPGUI software packages.18,19 

The structure model used for zirconium nitride was the cubic Fm-3m ZrN, in which the 4 

zirconium atoms occupy the Wyckoff position (4a) and the 4 carbon atoms are located at the 

Wyckoff position (4b). The hexagonal Zr metal (space group P63/mmc) and the monoclinic 

(space group P2/c) and cubic (space group Fm-3m) ZrO2 structure models were also used. 

All the structure models were taken from the ICSD database.16 
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The background was modelled using a shifted Chebyschev function (function 1 within 

GSAS). Cell parameters, scale factor and zero point were also refined in initial cycles. Peak 

shape was subsequently modelled using the Thompson-Cox-Hastings pseudo Voigt function 

(peak shape function 2 within GSAS). The isotropic thermal factors (Uiso) of the zirconium 

and nitrogen atoms were also refined independently. Refinement of the nitrogen site 

occupancy factor was also attempted which further improved the goodness of fit parameters. 

Zirconium metal and the two oxide phases (m-ZrO2 and c-ZrO2) were subsequently added 

to the refinement and a much better fit was obtained. 

Rietveld refinement against PXRD data [Figure 5-5] confirmed that ZrN crystallizes with 

a cubic NaCl-type structure (space group Fm-3m) and the calculated lattice parameter is a = 

4.57689(4) Å, consistent with previous reports [Christensen et al. in 1975 (a = 4.585 Å)7]. 

 

 
Figure 5-5 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the zirconium nitride ZrN synthesized under nitrogen gas. Tick 
marks denote ZrN (bottom), Zr, m-ZrO2 and c-ZrO2 (top) diffraction peaks. 

 

The calculated crystallographic data and atomic parameters are illustrated in Table 5-2 

and Table 5-3, respectively. 
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Table 5-2 Crystallographic data from Rietveld refinement against PXRD data for ZrN synthesized from 
zirconium metal under nitrogen gas. 

Phase data 

Chemical Formula ZrN0.90 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.57689(4)  

Volume (Å3) 95.88(3) 

Z 4 

Formula weight (g mol-1) 103.57 

Calculated density (g cm-3) 7.17473 

Rwp 0.0773 

Rp 0.0523 

χ2 5.880 

 

 

Table 5-3 Atomic parameters from Rietveld Refinement against PXRD data for ZrN synthesized under 
nitrogen gas. 

Atomic parameters 

Name 
Fractional coordinates 

Uiso Occup. 
x/a y/b z/c 

Zr1 0.0000 0.0000 0.0000 0.00955(5) 1.0 

N1 0.5000 0.5000 0.5000 0.00728(2) 0.8994(9) 

 

Also the structure of the ZrN sample obtained from zirconium metal under ammonia gas 

was solved by the Rietveld method against PXRD data [Figure 5-6]. As the idea behind this 

experiment was conceived relatively late in this project, time allowed for refinement of 

PXRD data collected only up to 90°. The same structural model was used as for the previous 

refinement and the same refinement procedure was followed. The only difference was that 

attempted variation of the N site occupancy factors resulted in an unstable refinement in 

which both R-factors and the goodness of fit parameter increased and/or unrealistic values 

of the SOF were obtained. The SOFs for both Zr and N sites were fixed at 1.0. 
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Figure 5-6 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the zirconium nitride ZrN synthesized under ammonia gas. 
Tick marks denote ZrN (bottom), m-ZrO2 and c-ZrO2 (top) diffraction peaks. 

 

Table 5-4 and Table 5-5 illustrate the calculated crystallographic data and atomic 

parameters, respectively, for the Zr + NH3 sample. 

 

Table 5-4 Crystallographic data from Rietveld refinement against PXRD data for ZrN synthesized from 
zirconium metal under ammonia gas. 

Phase data 

Chemical Formula ZrN 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.57687(5)  

Volume (Å3) 95.88(5) 

Z 4 

Formula weight (g mol-1) 105.42 

Calculated density (g cm-3) 7.30264 

Rwp 0.1575 

Rp 0.1035 

χ2 2.296 
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Table 5-5 Atomic parameters from Rietveld Refinement against PXRD data for ZrN synthesized under 
ammonia gas. The fractional coordinates were not refined, as they are fixed by the structure. 

Atomic parameters 

Name 
Fractional coordinates 

Uiso Occup. 
x/a y/b z/c 

Zr1 0.0000 0.0000 0.0000 0.00917(2) 1.0 

N1 0.5000 0.5000 0.5000 0.00344(6) 1.0 

 

The refined lattice parameters for the c-ZrO2 phase in the Zr + N2 and Zr + NH3 samples 

are a = 5.1122(1) Å and a = 5.1095(2) Å, respectively. These values are close to each other 

and consistent with those of previous studies [Table 5-1]. 

 

 

5.2.3.3 Ex-situ Study of the Zr + N2 and Zr + NH3 Reactions as a Function of 
Time 

From the ex-situ PXRD data, the phase evolution was monitored as a function of time 

and a phase analysis was conducted. 

The Zr metal powder was irradiated with MWs under nitrogen or ammonia gas in a MMC 

reactor using 5 or 10-minute heating cycles. Figure 5-7 shows the phase analysis for the ZrN 

samples synthesized under nitrogen gas. At t = 0 (before MW irradiation), only reflections 

from zirconium metal are present. After the first 10-minute heating cycle (t = 10 minutes), 

zirconium nitride is formed as a major phase (sharp, high intensity peaks are observed) and 

reflections from zirconium metal have drastically decreased in intensity but still present. No 

formation of other phases is observed. After two heating cycles (t = 10 + 10 minutes), peaks 

from the starting material have almost disappeared (a few low intensity reflections remain 

visible) and the ZrN reflections increase in intensity. Moreover, the formation of a few extra 

peaks is observed which probably belong to m- and c-ZrO2. However, as discussed in Section 

5.2.3.1, the presence of cubic zirconia still needs further evidence to be confirmed. A third 

heating cycle (t = 10 + 10 + 10 minutes) was also performed in an attempt to eliminate the 

remaining starting material, but the PXRD pattern remain essentially unchanged from that 

obtained after two MW-heating cycles (20 minutes). 
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Figure 5-7 Ex-situ PXRD patterns for Zr powder heated under nitrogen gas in a multi-mode cavity MW reactor 
at a power of 800 W from reagents (bottom) to reaction completion (top). 

 

A similar PXRD analysis was carried out for the ZrN samples synthesized under 

ammonia gas and is shown in Figure 5-8. At t = 0 (before MW irradiation), only reflections 

from zirconium metal are present. After the first 5-minute heating cycle (t = 5 minutes), the 

starting Zr metal has drastically decreased in intensity and been partially converted to 

zirconium hydride (ZrH2) and zirconium hydronitrides (ZrNxHy). After two 5-minute heating 

cycles, the starting Zr metal is totally consumed when reacting with ammonia, unlike the 

microwave reactions under nitrogen gas in which a small amount of starting Zr metal is 

always present. Also, the amount of the ZrH2 and ZrNxHy decreases as the compounds are 

consumed and converted to ZrN (nitride reflections increase in intensity). Finally, after 20 

minutes of MW irradiation, ZrN is present together with a small amount of m-ZrO2 and the 

uncharacterized c-ZrO2 cubic phase, whose reflections have a higher intensity than those 

seen in patterns from the MW reactions performed under N2. 
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Figure 5-8 Ex-situ patterns for Zr powder heated under ammonia gas in a multimode cavity MW reactor at a 
power of 800 W from reagents (bottom) to reaction completion (top). 

 

In light of the PXRD, if the presence of oxygen within the reaction system could be 

prevented, the ZrN product could probably be obtained as a single-phase in experiments 

under both nitrogen and ammonia gas. The source of this oxygen contamination is 

unfortunately still unclear, but it might be due to the presence of the element on the surface 

of zirconium metal or as an impurity in the Ar supply. 

 

 

5.2.3.4 Scanning Electron Microscopy (SEM) coupled with Energy-dispersive 
X-ray Spectroscopy (EDX) 

As discussed in Section 1.7.1, refractory carbides and nitrides show remarkable 

properties such as high melting points, high hardness, etc. Because of all these features, they 

find several applications in industry as cutting tools, abrasives and wear-resistant parts.25 

The size and shape of particles for such compounds as well as their morphology are therefore 

important factors to take into account when considering the suitability of these materials for 

specific applications. 
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The MW-synthesized ZrN powders prepared from zirconium metal under nitrogen and 

ammonia gases were analyzed by Scanning Electron Microscopy (SEM) coupled with 

Energy-dispersive X-ray Spectroscopy (EDX) to investigate particle size and morphology. 

Figure 5-9 shows the SEM micrographs for the ZrN samples synthesized under nitrogen 

gas in a MMC reactor for 20 minutes at a power of 800 W. The microwave reaction yields 

clusters of irregular micron-scale ZrN particles, typically from a few microns to a maximum 

of approximately a couple of hundreds microns across. 

 

(a) 

 

(b) 

 

Figure 5-9 SEM micrographs for the ZrN synthesized from zirconium metal under nitrogen gas in 20 minutes 
in a MMC microwave reactor at a power of 800 W. 

 

The SEM micrographs for the ZrN samples synthesized under ammonia gas in a MMC 

reactor for 20 minutes at a power of 800 W are illustrated in Figure 5-10 and show a broadly 

similar morphology to that of the ZrN samples synthesized under N2. The size of the 

individual particles in the ammonia sample are smaller than those in the nitrogen-synthesized 

nitride (of the order of ≤ 10 µm) but as for the nitrogen-synthesized sample, these particles 

cluster together to form larger agglomerates. 

EDX data were collected for several crystallites for both the nitrogen- and ammonia-

synthesized samples and showed similar results. Some EDX spectra showed that only 

zirconium, nitrogen and oxygen were present [Figure 5-11]. The presence of oxygen in the 

form of additional oxide phases is supported by PXRD data (see Section 5.2.3.1, 3.2.3.2 and 

5.2.3.3). Some other EDX spectra suggested instead that carbon and/or hafnium impurities 

were also detected [Figure 5-12]. However, no source of carbon was used as a starting 

material and, hence, its presence might be due to carbon-based adhesive discs used as a 

sample holder during the SEM/EDX measurements. The hafnium impurity presumably 

comes from the zirconium powder used as a starting material and purchased from Alfa 
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Aesar, as declared by the manufacturer. According to the product specification, the Zr 

powder contains indeed ca. 2% of Hf. 

 

 

(a) 

 

(b) 

 

Figure 5-10 SEM micrographs for the ZrN synthesized from zirconium metal under ammonia gas in 20 
minutes in a MMC microwave reactor at a power of 800 W. 

 

 

 

 
Figure 5-11 EDX spectrum for the ZrN sample synthesized from zirconium metal under nitrogen gas in 20 
minutes in a MMC microwave reactor, showing that zirconium, nitrogen, oxygen and hafnium were present. 
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Figure 5-12 EDX spectrum for the ZrN samples synthesized from zirconium metal under nitrogen gas in 20 
minutes in a MMC microwave reactor, showing that zirconium, nitrogen, oxygen and carbon were present. 

 

 

5.2.3.5 Raman Spectroscopy 
Raman spectroscopy experiments were carried out for the ZrN samples as an attempt to 

further characterize the unknown cubic phase discussed above in the previous sections. 

 

 

Figure 5-13 Experimental Raman spectrum for the MW-synthesized ZrN from zirconium metal under nitrogen 
and gas in 20 minutes in a MMC microwave reactor at a power of 800 W. 

Figure 5-13 illustrates the Raman spectrum of the MW-synthesized ZrN from zirconium 

metal under nitrogen gas. 
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In Chapter 4 (Section 4.2.3.5), it was noted how MW-synthesized ZrC samples appear 

to show very similar characteristic Raman bands to combination of monoclinic and 

tetragonal ZrO2. Similar results were obtained for the Raman spectrum of the MW-

synthesized ZrN under nitrogen gas [Figure 5-13], whose band assignments are illustrated 

in Table 5-6. The ZrN spectrum contains bands at almost the same Raman shifts as the MW-

synthesized ZrC samples but with slightly different intensities. For a description of the 

assignment of each Raman band to the respective stretching mode, see Section 4.2.3.5. 

 

Table 5-6 Raman shifts of the MW-synthesized ZrN compared to those from m-ZrO2 and t-ZrO2 and their 
assignments. The bands in the experimental spectrum closely resemble a combination of these seen for the 2 
phases of ZrO2. 

ZrN Raman Shift 
(cm-1) 

m-ZrO2 Raman 
Shift (cm-1)26 

t-ZrO2 Raman Shift 
(cm-1)27 Assignment 

94 (M) 99 – Ag 

174 (M) 175 – Ag + Bg 

186 (M) 188 – Ag 

216 (M) 219 – Bg 

260 (T) – 264 A1g 

330 (T) – 320 B1g 

372 (M) 379 – Bg 

467 (M) 473 – Ag 

513 (M) 502 – Bg 

579 (T) – 606 B1g 

622 (M) 615 – Bg 

755 (M) 755 – Bg 

968 (M) 959 – – 

1013 (M) 1012 – – 

 

 

Phillippi et al. (1971) studied the Raman spectroscopy of zirconia polymorphs, including 

the cubic form of the material.28 The authors found that the Raman spectrum of a pure 
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metastable cubic ZrO2 showed only a weak broad line at 490 ± 20 cm-1 whereas Y2O3-

stabilized cubic ZrO2 has a distinct asymmetrical line at 625 cm-1 and several other weak 

broad lines at 480, 360, 250 and 150 cm-1, respectively. However, none of these bands are 

observed in the Raman spectrum of the MW-synthesized ZrN sample, which suggests that 

either the indexed cubic phase is not c-ZrO2 or the weak Raman bands of cubic zirconia are 

actually not visible due to their overlapping with stronger monoclinic and tetragonal bands. 

In conclusion, the Raman spectroscopy of the ZrN samples would support the presence 

of monoclinic zirconium dioxide phase in the sample as indicated by PXRD. However, the 

evidence is less compelling that the cubic form of zirconia is present and does not suggest 

the presence of other additional phases. 

 

 

5.3 Chapter Summary 
The aim of this work was to perform a preliminary study on the synthesis of zirconium 

nitride by direct reaction of zirconium metal with nitrogen or ammonia gas using a DMO. 

Once an appropriate synthetic route and reaction conditions were established, the resulting 

products were characterized by PXRD, SEM/EDX and Raman Spectroscopy. 

It was found that zirconium nitride can be synthesized in 20 minutes using a domestic 

microwave oven at a power of 800 W under either nitrogen or ammonia gas. The main 

difference between these two environments is that the reaction under nitrogen gas does not 

entirely consume the starting zirconium metal which remains unreacted in very small 

amounts. In the reaction under ammonia gas, this phase is not observed by PXRD. Using 

either gas sources, however, leads to formation of zirconium dioxide due to the presence of 

oxygen within the system. Two oxide phases are suggested from PXRD data: m-ZrO2 and, 

probably, nitride-stabilized c-ZrO2. The formation of the cubic form of zirconia is a 

phenomenon that deserves further investigation, due to its gemological and economic 

importance as a diamond competitor. SEM micrographs and EDX spectra showed the 

formation of irregular micron-scale particles with a relatively rough surface containing 

zirconium, nitrogen and oxygen. Hf impurities were also observed which almost certainly 

originate from the Zr powder used as a starting material (as declared by the manufacturer). 

Raman spectra of products showed bands which could be attributed to ZrN, but equally 

might be assigned to both m-ZrO2 and t-ZrO2. Unfortunately, no bands relating to the c-ZrO2 

phase were observed, maybe due to their very weak nature and overlap with more intense 

m- and t-ZrO2 Raman bands. Further investigations are needed, though, in order to confirm 
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whether the observed cubic phase is actually the cubic form of zirconia or a different 

compound. However, no other known Zr compounds possess similar crystallographic 

characteristic to c-ZrO2. 
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6 Conclusions and Future Work 
 

The work described in this thesis focuses on the MW synthesis of the Group 4 and 5 

transition metal carbides and nitrides, V8C7, ZrC, HfC and ZrN and their subsequent 

structural characterization by PXRD, PND, SEM-EDX, Raman spectroscopy and XPS. 

 

The study of carbides in the V–C system (Chapter 3) resulted in the successful synthesis 

of the vanadium carbide, V8C7, in both MMC and SMC microwave reactors. The material 

was prepared from combining carbon with either vanadium metal and vanadium(V) 

pentoxide under Ar in 6 minutes using a MMC reactor at a power of 800 W and in 2 minutes 

using a SMC reactor at a power of 1 kW. Rietveld refinement against PXRD data confirmed 

the formation of the vanadium carbide as a single phase (together with a small amount of 

graphite, originating from susceptor) which crystallizes in a cubic superstructure (space 

group P4332). The ex-situ PXRD study of the V + C reaction as a function of time shows 

that the reaction mechanism is straightforward and involves the direct combination of the 

elements to form a succession of carbides that become more C-rich. In the carbothermal 

reduction of vanadium(V) oxide, V2O5 is first converted to V2O3 and then to V8C7. SEM 

micrographs and EDX spectra showed the formation of irregular micron-scale particles from 

a few microns to a maximum of 100 µm across with a relatively rough surface containing 

vanadium, carbon and oxygen. Raman spectra provided supporting information regarding 

possible oxygen inclusion within the structure of the products. XPS spectra together with Ar 

ion etching confirmed the presence of oxygen in the first ~20 nm of the product surface. 

PND investigation of the V + C sample synthesized in a MMC reactor aiming at evaluating 

the C and O occupancies of the final products was unfortunately unsuccessful and needs 

therefore to be repeated in future. 

 

The study of carbides in the Zr-C and Hf-C systems (Chapter 4) focused on the 

microwave synthesis of zirconium and hafnium carbides (which are similar in terms of 

physical and chemical properties) from either oxide or elemental precursors using both a 

MMC and SMC reactors. Only ZrC was obtained successfully as a single phase from 

zirconium metal and carbon under Ar in 20 minutes using a MMC reactor at a power of 800 

W and in 6 minutes using a SMC reactor at a power of 1 kW. Rietveld refinement against 

PXRD data confirmed the formation of zirconium carbide as a single phase (together with a 
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small amount of graphite, originating from susceptor) which crystallizes in a cubic structure 

(space group Fm-3m) with lattice parameter a = 4.69645(1) Å. As per V8C7, SEM 

micrographs and EDX spectra showed the formation of irregular micron-scale particles from 

a few microns up to ~200 microns across with a relatively rough surface containing 

zirconium and carbon. Oxygen inclusion was confirmed as well by EDX. Raman spectra of 

the MW-synthesized products showed bands which could be attributed to both m-ZrO2 and 

t-ZrO2, providing additional supporting information about oxygen inclusion. The presence 

of oxygen (at least in the first ~20 nm of particle surface) was confirmed by XPS coupled 

with Ar ion etching. PND investigations of the ZrC samples were also performed using two 

different structure models. The first model used was the cubic Fm-3m ZrC structure as taken 

from the ICSD database. This neutron refinement supports a zirconium carbide sample with 

a Zr:C stoichiometry of 1:0.98 (ZrC0.98). The second structure model used was obtained by 

adding an oxygen atom at the same position where the carbon atom sits and the occupancy 

factor for the two non-metal atoms were refined. The Zr:C:O stoichiometry found in this 

refinement was 1:0.97:0.03 which leads to the formula ZrC0.97O0.03. Although both 

refinements show acceptable results and the difference in quality to the two structural fits is 

negligible, the presence of this very small amount of oxygen can be very challenging to 

detect. A more appropriate explanation is that the bulk particle composition is ZrC0.98 

together with some oxygen present at the surface of the particles. 

The direct reaction of hafnium metal and carbon under Ar using either a MMC or a SMC 

microwave reactor led to the formation of hafnium carbide as a major product together with 

unreacted C and a small amount of HfO2 which prevented the reaction reaching completion. 

Once HfO2 had formed in this system, further production of HfC appeared impossible under 

the conditions employed. 

The microwave synthesis of both ZrC and HfC from the oxide precursors (ZrO2 and 

HfO2) and carbon was not successful as no reaction was observed between the starting 

materials under the conditions employed. 

In light of the results obtained for this system, it is necessary to prevent oxygen entering 

the system in order to produce single phase compounds. To do so, high-purity starting 

materials that do not contain any trace of oxygen (at the surface, for instance) are highly 

recommended. However, it is extremely difficult to completely avoid oxygen contamination 

in this family of compounds (in the form of oxycarbide phases) but the formation of 

unwanted oxide phase can be certainly avoided by reducing/removing the amount of oxygen 

present in the system. 
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The study of nitrides in the Zr-N system discussed in this thesis represents a preliminary 

investigation on the microwave synthesis of cubic zirconium nitride. ZrN can be synthesized 

by direct reaction of zirconium metal with either nitrogen or ammonia gas in 20 minutes 

using a MMC microwave reactor at a power of 800 W. The Zr + N2 reaction does not entirely 

consume the starting zirconium powder which remains unreacted in very small amounts. 

This phase is not observed in the Zr + NH3 reaction by PXRD suggesting that the starting Zr 

is totally consumed. Using either gas sources, however, leads to the formation of zirconium 

dioxide due to the presence of oxygen within the system. Two oxide phases are suggested 

from PXRD data: m-ZrO2 and, probably, nitride-stabilized c-ZrO2. SEM micrographs and 

EDX spectra showed the formation of irregular micron-scale particles from a few microns 

to approx. 200 µm across with a relatively rough surface containing zirconium, nitrogen and 

oxygen. As per ZrC, Raman spectra of ZrN products showed bands which could be attributed 

to ZrN but equally might be assigned to both m-ZrO2 and t-ZrO2. Unfortunately, due to the 

lack of time towards the end of this work, further experiments would be repeated to form 

further conclusions. Firstly, the use of high-purity starting materials is strictly required since 

the oxygen contamination might well come from the presence of the element at the Zr 

particle surface. Once oxygen is excluded from the system, ZrN might be obtained as a single 

phase and subsequently characterized by further analytical techniques such as those used for 

the V–C and Zr–C systems (XPS, PND, etc.). Further investigations are also needed, though, 

in order to confirm whether the observed cubic phase is actually the cubic form of zirconia 

or a different compound. However, no other known Zr compounds possess similar 

crystallographic characteristics to c-ZrO2. In case this aspect finds a positive confirmation, 

the formation of cubic zirconia represents a phenomenon that deserves further investigations, 

due to its gemological and economic importance as a diamond competitor. Another 

interesting observation in the Zr + NH3 reaction is the formation of the zirconium 

hydronitride phases (ZrNxHy) that is not seen in the Zr + N2 system (as no hydrogen is 

present). These phases have not been extensively studied previously. Further investigations 

on these compounds would therefore be undertaken to understand the composition and 

structure of these mixed anion compounds. 

 

In conclusion, this work has proven the feasibility of microwave heating processes in the 

production of selected non-oxide ceramics and and shown them to be viable alternatives to 

conventional methods. Further studies focused on the measurement of physical properties 

(such as microhardness, Young’s modulus, electrical properties, etc.) of the MW-

synthesized materials would be informative. These data could then be compared with those 

of conventionally synthesized materials to see whether (and how) microwave synthesis 
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might influence the microstructural physical (and chemical) properties of non-oxide 

ceramics. 
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7 Appendix 
 

Tables and Figures for Chapter 3: 

 

 
Figure 7-1 PXRD pattern taken ex-situ from vanadium metal plus graphite (8:7) heated in a SMC reactor for 
2 minutes at a power of 1 kW. All reflections can be attributed to V8C7 except the one marked with *, which 
belongs to the (002) reflection from graphite. 
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Figure 7-2 Magnified image of the superstructure lines found in the PXRD pattern taken ex-situ from 
vanadium metal plus graphite (8:7) heated in a MMC reactor for 6 minutes at a power of 800 W 
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Table 7-1 Selected atomic lengths (Å) and angles (°) from Rietveld refinement against PXRD data for V8C7. 

Bond Lengths (Å) 

V(1)–V(1) 2.94529(2) V(2)–C(3) 2.08278(5) 

V(1)–V(2) 2.94529(2) C(1)–V(2) 2.08263(2) 

V(1)–C(2) 2.1076(25) C(2)–V(1) 2.1076(25) 

V(1)–C(3) 2.0656(26) C(2)–V(2) 2.08293(6) 

V(2)–V(2) 2.94529(2) C(2)–V(2) 2.0580(25) 

V(2)–C(1) 2.08263(2) C(3)–V(1) 2.0656(26) 

V(2)–C(2) 2.0580(25) C(3)–V(2) 2.0999(26) 

V(2)–C(2) 2.08293(6) C(3)–V(2) 2.08278(5) 

V(2)–C(3) 2.0999(26)   

 

Bond Angles (°) 

C(2)–V(1)–C(2) 89.33(7) V(2)–C(1)–V(2) 180.0(0) 

C(2)–V(1)–C(3) 90.20(11) V(1)–C(2)–V(1) 88.65(13) 

C(2)–V(1)–C(3) 179.18(6) V(1)–C(2)–V(2) 89.31(7) 

C(2)–V(1)–C(3) 89.994(1) V(1)–C(2)–V(2) 178.64(14) 

C(3)–V(1)–C(3) 90.48(7) V(1)–C(2)–V(2) 89.984(3) 

C(1)–V(2)–C(2) 90.0(0) V(2)–C(2)–V(2) 90.67(7) 

C(1)–V(2)–C(2) 89.32(7) V(2)–C(2)–V(2) 178.07(19) 

C(1)–V(2)–C(3) 90.47(7) V(2)–C(2)–V(2) 91.38(14) 

C(1)–V(2)–C(3) 180.0(0) V(1)–C(3)–V(1) 90.95(15) 

C(2)–V(2)–C(2) 91.37(14) V(1)–C(3)–V(2) 179.06(14) 

C(2)–V(2)–C(3) 179.17(6) V(1)–C(3)–V(2) 90.47(7) 

C(2)–V(2)–C(3) 90.48(7) V(1)–C(3)–V(2) 89.992(2) 

C(2)–V(2)–C(3) 89.32(7) V(2)–C(3)–V(2) 89.52(7) 

C(2)–V(2)–C(3) 90.20(11) V(2)–C(3)–V(2) 89.06(14) 

C(3)–V(2)–C(3) 89.06(14) V(2)–C(3)–V(2) 178.66(20) 

V(2)–C(1)–V(2) 90.0(0)   
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Figure 7-3 Magnified image of the V8C7 PXRD pattern after a 2-minute reaction illustrating the unsymmetrical 
nature of the reflections at 75.7° and 79.6° 2q angles. 
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Figure 7-4 PXRD pattern taken ex-situ from vanadium metal plus graphite (8:7) heated in a MMC reactor for 
0 seconds at a power of 800 W. 
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Figure 7-5 PXRD pattern taken ex-situ from vanadium metal plus graphite (8:7) heated in a MMC reactor for 
30 seconds at a power of 800 W. 
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Figure 7-6 PXRD pattern taken ex-situ from vanadium metal plus graphite (8:7) heated in a MMC reactor for 
2 min at a power of 800 W. 
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Figure 7-7 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the vanadium carbide superstructure V8C7, synthesized from 
vanadium metal and carbon in 6 minutes in a MMC reactor at power of 800 W. Tick marks denote V8C7 
diffraction peaks. The (002) graphite reflection at 2q = 26.5° was excluded from the refinement. 

 

Table 7-2 Crystallographic data from Rietveld refinement against PXRD data for V8C7 prepared from 
vanadium metal and carbon in 6 minutes in an MMC reactor at a power of 800 W. 

Phase data 

Chemical Formula V8C7 

Crystal system Cubic 

Space group P4332 

a  (Å) 8.33073(4)  

Volume (Å3) 578.16(1) 

Z 4 

Formula weight (g mol-1) 491.61 

Calculated density (g cm-3) 5.64748 

Rwp 0.0592 

Rp 0.0404 

χ2 3.916 
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Table 7-3 Atomic parameters from Rietveld refinement against PND data for V8C7 synthesized from vanadium 
metal and graphite heated in a MMC for 6 minutes at a power of 800 W. 

Atomic parameters 

Atom 
Type 

Wyckoff 
Site 

Fractional Coordinates 
Uiso (Å2) 

Site 
Occupancy x/a y/b z/c 

V(1) 8c 0.3750 0.3750 0.3750 0.01230(4) 1.0 

V(2) 24e 0.1250 0.3750 0.1250 0.01230(4) 1.0 

C(1) 4a 0.1250 0.1250 0.1250 0.00212(8) 1.0 

C(2) 12d 0.1250 0.617951(4) 0.632049(2) 0.00212(8) 1.0 

C(3) 12d 0.1250 0.382966(2) 0.867034(5) 0.00212(8) 1.0 
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Table 7-4 Selected atomic lengths (Å) and angles (°) from Rietveld refinement against PND data for V8C7 
synthesized from vanadium metal and graphite heated in a MMC for 6 minutes at a power of 800 W. 

Bond Distances (Å) 

V(1)–V(1) 2.94536(1) V(2)–C(3) 2.0833(6) 

V(1)–V(2) 2.94536(1) C(1)–V(2) 2.08268(1) 

V(1)–C(2) 2.175(12) C(2)–V(1) 2.175(12) 

V(1)–C(3) 2.118(19) C(2)–V(2) 2.0866(10) 

V(2)–V(2) 2.94536(1) C(2)–V(2) 1.994(11) 

V(2)–C(1) 2.08268(1) C(3)–V(1) 2.118(19) 

V(2)–C(2) 1.994(11) C(3)–V(2) 2.048(18) 

V(2)–C(2) 2.0866(10) C(3)–V(2) 2.0833(6) 

V(2)–C(3) 2.048(18)   

 

Bond Angles (º) 

C(2)–V(1)–C(2) 87.62(28) V(2)–C(1)–V(2) 180.0(0) 

C(2)–V(1)–C(3) 93.3(6) V(1)–C(2)–V(1) 85.2(6) 

C(2)–V(1)–C(3) 177.4(4) V(1)–C(2)–V(2) 87.41(33) 

C(2)–V(1)–C(3) 90.040(22) V(1)–C(2)–V(2) 175.0(6) 

C(3)–V(1)–C(3) 89.0(5) V(1)–C(2)–V(2) 89.78(5) 

C(1)–V(2)–C(2) 90.0(0) V(2)–C(2)–V(2) 92.37(27) 

C(1)–V(2)–C(2) 87.52(30) V(2)–C(2)–V(2) 173.0(9) 

C(1)–V(2)–C(3) 89.0(5) V(2)–C(2)–V(2) 95.2(7) 

C(1)–V(2)–C(3) 178.6(7) V(1)–C(3)–V(1) 88.1(10) 

C(2)–V(2)–C(2) 95.1(6) V(1)–C(3)–V(2) 178.1(10) 

C(2)–V(2)–C(3) 177.2(4) V(1)–C(3)–V(2) 89.0(5) 

C(2)–V(2)–C(3) 89.0(5) V(1)–C(3)–V(2) 89.967(34) 

C(2)–V(2)–C(3) 87.47(31) V(2)–C(3)–V(2) 91.0(5) 

C(2)–V(2)–C(3) 93.5(7) V(2)–C(3)–V(2) 92.0(11) 

C(3)–V(2)–C(3) 92.0(1) V(2)–C(3)–V(2) 177.3(14) 

V(2)–C(1)–V(2) 90.0(0)   
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Figure 7-8 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 6 minutes in 
a SMC microwave reactor for 2 minutes at a power of 1 kW. All reflections can be attributed to V8C7 except 
the one marked with *, which belongs to the (002) reflection from graphite. 
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Figure 7-9 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 0 seconds in 
an MMC microwave reactor at a power of 800 W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 189 

 
Figure 7-10 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 30 seconds 
in an MMC microwave reactor at a power of 800 W. 
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Figure 7-11 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 1 minute in 
an MMC microwave reactor at a power of 800 W. 
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Figure 7-12 PXRD pattern taken ex-situ from vanadium(V) oxide plus graphite (4:27) heated for 2 minutes in 
an MMC microwave reactor at a power of 800 W. 
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Tables and Figures for Chapter 4: 

 

 

 
Figure 7-13 PXRD pattern taken ex-situ from zirconium metal plus graphite (1:1) heated in a SMC reactor for 
6 minutes at a power of 1 kW under Ar. All reflections can be attributed to ZrC except the one marked with *, 
which belongs to the (002) reflection from graphite. 
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Figure 7-14 Magnified image of the ZrC PXRD pattern after a 10-minute reaction illustrating the 
unsymmetrical nature of the reflections at 66° and 69.5° 2q angles. 
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Figure 7-15 PXRD pattern taken ex-situ from zirconium metal plus graphite (1:1) heated in a MMC reactor 
for 0 seconds at a power of 800 W. Impurities were present in the Zr starting material bought from Alfa Aesar. 
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Figure 7-16 PXRD pattern taken ex-situ from zirconium metal plus graphite (1:1) heated in a MMC reactor 
for 5 minutes at a power of 800 W. 
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Figure 7-17 PXRD pattern taken ex-situ from zirconium metal plus graphite (1:1) heated in a MMC reactor 
for 10 minutes at a power of 800 W. 
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Figure 7-18 Observed (plusses), calculated (solid green line), and difference (solid purple line) profile plot for 
the Rietveld refinement against PXRD data for the MW-synthesized ZrC from zirconium metal and graphite. 
Tick marks denote ZrC diffraction peaks 

 

 

Table 7-5 Crystallographic data from Rietveld refinement against PXRD data for ZrC prepared from zirconium 
metal and carbon in 20 minutes in an MMC reactor at a power of 800 W. 

Phase data 

Chemical Formula ZrC 

Crystal system Cubic 

Space group F m -3 m 

a (Å) 4.69559(5)  

Volume (Å3) 103.53(2) 

Z 4 

Formula weight (g mol-1) 103.23 

Calculated density (g cm-3) 6.5297 

Rwp 0.1451 

Rp 0.1057 

χ2 18.46 
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Table 7-6 Atomic parameters from Rietveld refinement against PND data for ZrC synthesized from zirconium 
metal and graphite heated in a MMC for 20 minutes at a power of 800 W. 

Atomic parameters 

Name 
Fractional coordinates 

Uiso Occup. 
x/a y/b z/c 

Zr1 0.0000 0.0000 0.0000 0.00130(2) 1.0 

C1 0.5000 0.5000 0.5000 0.00795(5) 1.0 
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