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Abstract

Polymicrobial diseases arise when multiple micraargms colonize a host
and form multi-species biofilms. Within polymicra@bicommunities bacteria,
fungi, viruses and/or parasites directly and inttlyeinteract with one another
in a multitude of ways. The composition and theenattions between
organisms within polymicrobial biofilms govern dés®e severity and patient
outcomes. Polymicrobial infections are of signifitanterest because of the
escalating development of antimicrobial resistaramed the increasing

involvement polymicrobial biofilms in chronic angssemic infections.

The Gram-positive bacteri&taphylococcus aureuand dimorphic fungi
Candida albicanshave been shown to coexist within the human host in
polymicrobial biofilm communities which often resuh increased disease
severity and mortality. Both of these commensas @vportunistic human
pathogens that cause a plethora of infections mgngiom relatively non-
lethal local infections to life-threatening systemiinfections in
immunocompromised individualsS. aureusand C. albicanshave been co-
associated with a number of polymicrobial diseasekiding cystic fibrosis
and polymicrobial sepsis. Furthermor®, aureusand C. albicans dual-
infections have been associated with increasedevice and antimicrobial
resistance. Although an effort has been made tawvehrthe relationship
betweerS. aureusandC. albicansmetabolomics offers a powerful analytical
tool to gain a better understanding of the intéoast between this bacteria
and fungus. To gain a better understanding of thaseractions novel

methods must be developed to modulate biofilm gnowt

Metabolomics is intended to analyse the completallsmolecule component
of a biological system. Analytically, the diversjtyesent in these compounds
presents huge opportunities for improvement. Thexall/aim of this research
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was to develop novel metabolomics methods and pdyapese methods to
the analysis of &. aureukC. albicansdual species biofilm to aid in the

understanding of the relationship between thisdyactind fungi.

Characterisation of th8. aureu&C. albicansbiofilm in comparison in to the
mono-species was carried out using a number ofnigols, including
fluorescence microscopy, SEM imaging, gPCR andstmaptional analysis,
which indicated that these two organisms interath veach other on a
physical and molecular lever. Although the presesfa@. albicansfacilitates

S. aureudbiofilm formation in sera, the presence of the baatreduced the
number ofC. albicanswithin the dual-species biofilm compared to thegain
mono-species and caused ‘crinkled’ hyphae whichgesigd possible

antagonistic behaviour towards the fungi.

An untargeted liquid chromatography-mass spectmysparation method
was developed that effectively retained both palad nonpolar compounds
by serially coupling a reversed-phase liquid chrmgeaphy (RPLC) column
to a hydrophilic interaction liquid chromatograp{yiLIC) column via a T-
piece. Two independent pumps were incorporated timosystem to allow
independent gradient control of the two columnse Tilgh dilution between
the columns, achieved by the difference in flonesatenabled the retention
and separation of both polar and nonpolar standandsnumerous polar and
non-polar metabolites extracted from beer. Gook @tepes and retention

time reproducibility was achieved across all compmbalasses analysed.

Next, a targeted ion-chromatography mass-spectrgmetethod was
developed for the analysis of central carbon méisto intermediates,
specifically those involved in glycolysis, the arboxylic acid (TCA) cycle
and the Electron Transport Chain (ETC). A total roixall of the energy
metabolites standards analysed were able to beategaand detected using
IC-MS, with the exception of DHAP, G3P, oxaloacetatcetyl-CoA,
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succinyl-CoA, NAD and NADP. The method displayeddaeproducibility

and limits of detection.

The complexity of the extracted biofilms proved leaging to the IC-MS.
Sample variation and low intensities in some samgpdeips (particularly the
S. aureus samples) resulted in lower detection than expectéde
RPLC/HILIC method provided hundreds of metabolitetedtions, but
suffered in comparison to the conventional HILICtinaal, likely due to far
greater optimisation of the original technique dieg to the utilisation of the
routine pHILIC method in place of the serially canmdd method.

Untargeted metabolomics analysis highlighted sigait changes in a
number of metabolic pathways including purine, pydine, methionine and
cysteine metabolism between tBe aureusand C. albicansmono- species
and thedual-species biofilms. The differences detectedhiwitindividual
pathways suggest a difference in behaviour whenntieeoorganisms are
cultured with one another. The dramatic downregutadf a large portion of
essential metabolites within purine, pyrimidine,steyne and methionine
pathways is indicative of the bacteria struggliogtoliferate and form strong
biofilms in sera. Down-regulation of many of thetlp@ays in the dual-
species biofilm compared to tli& albicansmono-species biofilm suggests
that the presence &. aureuswithin the biofilm could be having an adverse

effect on theC. albicans

The results and conclusions herein provide greateterstanding of the
clinically important interaction betweersS. aureus and C. albicans
Microscopic and molecular characterisation enallsdalisation of the dual-
species biofilm. The development and application mktabolomics
techniques highlighted changes in metabolism betwke mono- and dual-
species biofilms, indicating that the relationshigtweenS. aureus& C.

albicansmay not be completely synergistic, as previoushgssted.
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Although the metabolomics methods developed duttmg) study performed
well, with regards to the separation of simple dead mixes and the complex
beer sample, were not suitable for biofilm analysi$irough continued
sample preparation and chromatographic optimisat@se novel methods
could offer relatively simple alternatives to motine consuming and

complex chromatographic procedures.
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1.1 Polymicrobial infections: bacteria, fungi and biofilms

Polymicrobial diseases are acute and chronic ddsefisat are caused by
various combinations of bacteria, fungi, virusesl grarasites (Brogden,
Guthmiller, & Taylor, 2005). A host can become @té®l with multiple
microorganisms in a number of ways. In synergigttymicrobial infections
a microorganism can generate a niche that is famerfor infection and
colonization by pathogens, which is often seen betwsome periodontal
pathogens (Palmer et al., 2001). Other polymictoibi@ctions occur when
the presence of one microorganism predisposes dleth colonisation or
infection by a second microorganism. For exampspiratory tract viruses
can destroy respiratory epithelium. This can cread@esions which can
enable bacteria to adhere to the surface causipgristections (Peltola &
Mccullers, 2004). In additive polymicrobial infeatis two or more non-
pathogenic microorganisms can cause infections sashbacteraemia,
abdominal abscesses, lung abscesses, odontogfatians, brain abscesses
and liver infections (Myres et al., 2002). Throughlture independent
community analysis methodologies, several disedisas were previously
characterised as being mono-microbial are now msed as polymicrobial
infections, including diseases of the oral cavdiitis media, diabetic foot
wound infections and chronic infections in the wydibrosis lung. The

composition of microbial populations predicts dseaeverity and outcomes.

1.1.1 Polymicrobial interactions

There are a number of bacterial-fungal interactitias can occur when these
micro-organisms come into contact with one anotbett) direct and indirect.
These interactions can influence behaviour, growitylence and survival
(De Sordi & Miuhischlegel, 2009; Anton Y Peleg, Hoga& Mylonakis,

2010). Interactions include the secretion of mdiesunto the environment
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for the purpose of signalling (Short, Murdoch, &dry 2014). Bacteria can
use these diffusible molecules to monitor aspettheir environment, such
as population density, termed quorum sensing, &®&y tmodulate their
behaviour accordingly (De Sordi & Miuhischlegel, 20&hort et al., 2014).
For a compound to be classified as an intercellsigmal, it has to adhere to
guidelines set out by Monds & O'Toole (2008): thempound has to be
secreted and identified by the receiving organism;organism has to possess
a receptor to sense the signal and a mechanisespmmd specifically to it;
the concentration of the signal to elicit a resgocannot be toxic to the cell;
the response is separate from the metabolism digmal; the purified signal
can reproduce the response; and the signal netwadkaptive at the level of
the community (Monds & O’'Toole, 2008). Some typéssignal molecules
produced for intracellular signalling can be redagd and influence other
non-producing species through ‘eavesdropping’ (Faigéal., 2014; Riedel et
al., 2001). There are various types of inter-kimgdeoross talk (De Sordi &
Mihlschlegel, 2009). In one-way sensing, an orgarsenses and responds to
a signal produced by another organism. One orgac@muse the signal
produced by another organism to regulate its owregknown as co-opting
for a signal. An organism can also alter the préidancor stability of a signal
from another organism, known as modulation of analigIn two-way
communication, multiple signals are exchanged betwaganisms (Cugini,
Kolter, & Hogan, 2008).

Another indirect interaction is the modification thie environment, whereby
one organism causes a change in the surroundingoement, e.g. pH.
Changes in pH can modulate hyphae formationCin albicans (Buffo,
Herman, & Soll, 1984).

As well as diffused molecules bacteria and fungnh daave physical

interactions. Bacteria can attach to hyphae andtyedls (Harriott & Noverr,
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2009; A. Y. Peleg et al.,, 2008; Tampakakis, PelegWlylonakis, 2009).
Bacterial biofilms can also be found on the surfatée fungal hyphae (D.
A. Hogan & Kolter, 2002). Physical interactions haveen associated with
reduced fungal viability. This could be due to thacteria secreting
antifungals into the environment, through direeinsfer of bacterial toxins
into fungal cells or through the depletion of nemis (Anton Y Peleg et al.,
2010).

The nature of polymicrobial interactions are specend environment
dependent. Interspecies interactions can be symbi@ross feeding of
metabolites from the enzymatic breakdown of a cadmurce or the presence
of different species within a niche can providetpection against the host’s
Immune response or anti-microbial agents (Harri&ttNoverr, 2010).
Interspecies interactions can also be antagonistg, one organism can
secrete lethal quantities of antibiotics, antifusgar bacteriocins that cause
harm to another organism. Cross kingdom interasticen also benefit one
organism, without damage to another organism throtige secretion of
molecules termed ‘cues’. ‘Coercion’ can also ocdhrough which one
organism manipulates another organisms to bensfifi without serious
damage to the other (Short et al., 2014).

S. aureusandC. albicanshave been shown to coexist within the human host
in polymicrobial biofilm communities which oftengalt in increased disease
severity and mortality (Adam, Baillie, & Douglaf)@; Baena-Monroy et al.,
2005; Tawara, Honma, & Naito, 1996).

1.1.2 Staphylococcus aureus

Staphylococcus aureyS. aureusare non-motile, Gram-positive cocci with a
diameter of 0.5 — 1.5 uM (Harris, Foster, & Riclard@002). These

facultative anaerobes are a human commensal thapasmatically colonize
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20% of the normal population, transiently colon&@% of the population,
while 20% of the population are rarely or neverooated (Williams, 1963).
S. aureusprimarily colonize anterior nares and are alsontbwn the skin,
rectum, pharynx, vagina, axillae and gastrointesti®l) tract (Wertheim et
al., 2005).

S. aureuscan grow by aerobic respiration or fermentation aalll division
occurs in more than one plane to produce grapedilsters (Tzagoloff &
Novick, 1977). Staphylococci are tolerant to hight soncentrations and also
show resistance to elevated temperatures (W. BEoK& Lambe, 1991)S.
aureusare coagulase positive, i.e. can produce a blémtng enzyme (W.
E. Kloos & Musselwhite, 1975%5. aureusorm golden colonies when grown
on a solid media, which can be used to differemtitite bacteria from
coagulase negative staphylococci (CoNS), whichygcedvhite or translucent
colonies (Howard & Kloos, 1987).

The cell membrane, comprised of a phospholipicapet, is surrounded by a
cell wall (Fig. 1-1). The cell wall encasir$§y aureuds a 20 — 40 nM thick
protective coat, mainly composed of peptidoglycard deichoic acid (a
phosphate-containing polymer), which account fdvo5nd 40% of cell wall
mass, respectively (Knox & Wicken, 1973; Shockmai&rett, 1983). The
remaining 10% of the cell wall is made up of suefgroteins, exoproteins
and peptidoglycan hydrolases (Harris et al., 20B2ptidoglycan enables the
construction of a tight multi-layered network thstcapable of withstanding
the high osmotic pressure of staphylococcus (Bkwabn, 1997), while the
teichoic acid aids in the acquisition and local@atof metal ions and the
activities of autolytic enzymes (B. Wilkinson, 1997The remaining
components are involved in surface attachment &ndaureusvirulence

(Harris et al., 2002). As well as the cell membrand the cell wall, over 90%
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of clinical strains ofS. aureushave capsular polysaccharides (Arbeit,
Karakawa, Vann, & Robbins, 1984; Thakker, Park.e@a& Lee, 1998).

iy

Cytoplasm

Phospholipid bi-layer (cell membrane)

Capsule

Peptidoglycan cell wall

Figure 1-1 Diagram of structure db. aureusell.

1.1.2.1 S. aureus virulence factors and biofilm formation

S. aureugossess a plethora of virulence factors which entitd bacteria to
infect hosts successfully and increase diseaserigetierough suppression
and evasion of host immune response and incresggihogenicity (Bien,
Sokolova, & Bozko, 2011). These virulence factoxdude the production of
adhesions, the secretion of toxins and the formatiobiofiims (Bien et al.,
2011).

S. aureussecrete cytotoxins, superantigens, proteasesgelipad coagulase.
The cytolytic toxins produced b$s. aureuscause cell leakage and lysis
through the formation of R-barrel pores in cell roeames (Foster, 2005;
Kaneko & Kamio, 2004). Each toxin targets speamfiammalian cell types.

For example, leukocytes are targeted by leukocatd Panton-Valentine
leukocidin (PVL) while a-haemolysin (Hla) exhibits specificity towards
platelets and monocytes (Kaneko & Kamio, 2004; NMémea, Dalla Serra, &
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Prévost, 2001). Superantigens, which cause norigp&ecell activation and
massive cytokines release, include enterotoxinghvbause food poisoning,
toxic shock toxin-1 which causes toxic shock symiEdTSS) and exfoliative

toxin which causes degradation and exfoliatiorhefépidermis.

Adhesins enabl&. aureudo adhere to surfaces within the host and initiate
the formation of a biofilm. The bacteria can adhévehost plasma or
extracellular matrix (ECM) components, such asagmh, fibrinogen and
fibronectin using a group of covalently anchoredtmglycan proteins
collectively known as microbial surface componeatagnising adhesive
matrix molecules (MSCRAMMSs) (Foster & HO0k, 1998;aMsso &
Schneewind, 2008; Marraffini, DeDent, & SchneewiB@06; Speziale et al.,
2009). These proteins, which include staphylocoqmadtein A (SasA),
collagen-binding protein, clumping factor A and BIfA and CIfB), and
fibronectin-binding proteins A and B (FnbpA and BB, mediate the initial
attachment stage of biofilm formation, a key vinde factor which is
essential for host colonization (Archer et al., PORien et al., 2011; Foster &
HOOk, 1998; Lowy, 1998; Yarwood, Bartels, Volper,&eenberg, 2004). A
second group of adhesins, collectively known aseted expanded-repertoire
adhesive molecules (SERAMSs), are partially bounthéocell wall (Clarke &
Foster, 2006). This group of proteins modulate flost immune system
(Chavakis, Wiechmann, Preissner, & Herrmann, 20¢@&nmel, Nemecek,
Keightley, Thomas, & Geisbrecht, 2007). The expossf the capsule
exopolysaccharides and polysaccharide intracellatdresin (PIA) are other
import S. aureusvirulence factors. Capsule polysaccharides encasgy m
pathogenic strains @&. aureusand provide protection from the host immune
response by decreasing the susceptibility of thetdsia to phagocytosis
(Thakker et al., 1998; B. J. Wilkinson & Holmes,799. PIA, composed of
poly-N-acetyl-glucosamine, is important for staphylocbce@gregation
during biofilm formation (Go6tz, 2002).
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The ability to form biofilms is a characteristicasbd by most bacteria species
and is an important mechanism required for hosbrémation and infection
(McDougald, Rice, Barraud, Steinberg, & Kjelleberg01l; Stewart &
William Costerton, 2001) Through a highly regulatedilti-step process
planktonic bacteria adhere to a biotic or abiotidace and secrete adhesions
to cement themselves to the surface as well as thachselves to other
bacterial cells (Go6tz, 2002).

Biofilm formation undergoes several stages of dgwalent (McDougald et
al., 2011; Moormeier, Bose, Horswill, & Bayles, 2000'Toole, Kaplan, &
Kolter, 2000). The first stage of biofilm formatias attachment of the
bacteria to a surface (McDougald et al., 2011).t@dnwith a surface causes
a change in gene expression that initiates MSCRAMIsynthesis along
with other cell surface proteins (Foster & HOOk9&9 Gabriela Bowden et
al., 2002; McCrea et al., 2000; J. M. Patti, AlldcGavin, & Hook, 1994;
Peschel, Vuong, Otto, & Gotz, 2000). After initttachment, the next stage
in biofilm formation is maturation. During maturati PIA is synthesised and
secreted byS. aureus Bacterial cells are stuck together through the
electrostatic interaction of positively charged RIAd the negatively charged
teichoic acids on the cell surface (Gross, Cram(itz, & Peschel, 2001;
Otto, 2008).

The mature biofilm is surrounded by ECM consistoigexopolysaccharides,
teichoic acids, extracellular genomic DNA (eDNAY)ofins and nucleic
acids (Flemming & Wingender, 2010; Gross et alQ122(Rice et al., 2007).
The ECM creates a scaffold to support biofilm siuue, acts as a protective
barrier against external stressors, e.g. antimial®bas well as exhibiting
digestive properties to enable large nutrientsetonetabolized and distributed

amongst the bacteria within the biofilm (Costertbaywandowski, Caldwell,
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Korber, & LappinScott, 1995; Flemming & Wingend2010; Hall-Stoodley,
Costerton, & Stoodley, 2004; Monds & O’Toole, 20@8to, 2008)

Once a biofilm has matured, dispersion of planidarells from the biofilm
allows the bacteria to migrate and colonize othexag within the host
(McDougald et al., 2011). Dispersal cues can bk dmisity dependent, or

environmental, including nutrient availability (MoDgald et al., 2011).

1.1.3 Candida albicans

Candida albicanss a dimorphic fungus which is able to morpholofiica
transform from unicellular yeast cells into a fikamtous invasive hyphae
form (Sudbery, Gow, & Berman, 2004). The ability meorphologically
switch is crucial forC. albicansability to adhere to surfaces and for host
tissue colonization during infection (Saville, LatzMonteagudo, & Lopez-
ribot, 2003).C. albicansis the most abundant fungal species of healthy
human microbiota and is found in the Gl tract, ogloctive tract, oral cavity
and skin (Achkar & Fries, 2010; Ganguly & Mitchef2011; Kennedy &
Volz, 1985; Kumamoto, 2002, 2011). Howewer,albicansis alsoone of the
few fungal species that can cause disease (Nobilgéoldnson, 2015)C.
albicansis an opportunistic pathogen that can cause fum@attions when
there are alterations in host microbiota (use dfbastics), host immune
response (during stress or infection by anotherrabi) or favourable
variations in the environment (changes in nutrieohtent) (Nobile &
Johnson, 2015).

1.1.3.1 C. albicans biofilm formation and infection

Infections arise whel. albicansadheres to a surface and forms a biofilm.
The developmental stages of biofilm formationdnalbicansare similar to

most other microorganisms, consisting of four terapstages; attachment,
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early stage growth (initiation), maturation andpgissal (Chandra et al., 2001;
Douglas, 2003; Hawser & Douglas, 1994; Nobile & &iell, 2006; Uppuluri
et al., 2010). During the attachment stage, spaleyieast cells adhere to a
surface. These yeast cells then proliferate to farbasal layer of anchoring
cells. The biofilm then enters a stage of maturatio which pseudohyphae
(ellipsoid cells joined end to end) and hyphae iftchaf cylindrical cells) are
formed, alongside the production of ECM. After nmation, yeast-form cells
are dispersed from the biofilm to seed new sitdhiwithe host (Chandra et
al., 2001; Douglas, 2003; Hawser & Douglas, 199dbii & Mitchell, 2006;
Uppuluri et al., 2010).

The ability to form biofilms is an important virulee factor inC. albicans

Sherry et al. (2014) categorizé€ll albicansisolates as either high biofilm
formers (HBF) or low biofilm formers (LBF) based biomass quantification
(Sherry et al., 2014). HBF were more resistantrttifingal treatment with
amphotericin B (Amp B) and resulted in higher miitaates in an infection
model (Sherry et al., 2014). Anti-microbial resista inC. albicansbiofilms

are due to the up-regulation of efflux pumps, tmespnce of recalcitrant

persister cells and the presence of ECM.

The two major classes of efflux pumps; the ATP-mgdcassette transporter
superfamily and the major facilitator class, motkildrug exportation from
cells (Anderson, 2005; Cowen, 2008; Ramage, Bachnfatterson, Wickes,
& Lopez-Ribot, 2002). In planktonic cells efflux myps are upregulated in
response to antifungal drugs. However Gn albicans efflux pumps are

upregulated within the first few hours of surfacentact and remain
upregulated throughout biofilm development (Mate@pw, & Ahearn,

2004; Mukherjee, Chandra, Kuhn, & Ghannoum, 2003.JNett, Lepak,

Marchillo, & Andes, 2009; Nobile et al., 2012; Rayeeet al., 2002; Yeater et
al., 2007). This automatic upregulation contributethe increased antifungal
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resistance ofC. albicansbiofilms. Persister cells also contribute to drug-

resistance in biofilms.

Persister cells are a sub-set of metabolically @otnyeast cells that exhibit
phenotypic variation within the biofilm and are mxtely resistant to anti-
microbial drugs (LaFleur, Kumamoto, & Lewis, 200@)rug resistance
exhibited by persister cells is the result of thetabolically dormant state of
the cells, rather than being dictated by cell membrcomposition and efflux
pump expression (Knot, Suci, Miller, Nelson, & Tiyl2006; LaFleur et al.,
2006). Although persister cells are an importamhgonent of drug resistance
in C. albicans little is known about their formation and rolesG. albicans
biofilms. ECM is another major contributor t€. albicans antifungal

resistance.

The ECM secreted b§. albicansis predominantly composed of proteins and
glycoproteins (55%), carbohydrates (25%), lipid8%) and nucleic acids
(5%) (Zarnowski et al., 2014). As well as acting a physical barrier to
antimicrobial drugs, ECM also contains constituehtst contribute to drug
resistance (Al-Fattani & Douglas, 2006; J. Nettaét 2007; J. E. Nett,
Sanchez, Cain, & Andes, 2010). For example, th&iaddf polysaccharides
B-1,3-glucans tcC. albicansplanktonic cells increased tolerance of the cells
to fluconazole and the addition ¢f1,3-glucanase t&. albicansbiofiims
increased biofilm susceptibility to fluconazole ament (Mitchell et al.,
2013; J. Nett et al., 2007). Extracellular DNA nadgo indirectly contribute
to anti-microbial resistance (Martins et al., 2010ne study reported that
treating biofilms with DNase enhanced the disruptod C. albicansbiofiims
when treated with caspofungin and Amp B (Martinenkques, Lopez-Ribot,
& Oliveira, 2012).C. albicansECM contains over 500 proteins, mainly
predicted to be enzymes, including hydrolysing emzy, which can
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breakdown molecules as a protective response acdess a nutrient resource
(Zarnowski et al., 2014).

C. albicansinfections can range in severity from superficialamsal and
dermal infections, such as thrush and nappy raskevtere systemic fungal
infections of tissues and organs with mortalityesabf up to 40% (Calderone
& Fonzi, 2001; Rex et al., 2004; Wisplinghoff et, #004).C. albicanscan
have serious implications for immunocompromised ivididials (AIDS
patients and those undergoing anticancer or immuppsssion therapies)
and healthy individuals with implanted medical de& (Weig, Gross, &
Muhlschlegel, 1998). Urinary and central venoushetgrs, pacemakers,
mechanical heart valves, joint prostheses, coméastes and dentures are all
susceptible taC. albicansinfections (Cauda, 2009; Donlan, 2002; Kojic &
Darouiche, 2004; Seddiki et al., 201%). albicansinfections account for
15% of all sepsis cases, are tiferdost common cause of clinically acquired
bloodstream infections and are the most commondiusygecies isolated from
medical device infections (Pfaller & Diekema, 20(aldanha Dominic,
Shenoy, & Baliga, 2007; Wenzel, 1995; Wisplinghetfal., 2004).

Fungal biofilms are more resistant to antifung#igerefore higher doses are
required for treatment, along with removal of anyected medical device
(Andes et al., 2012; Cornely et al., 2012; Lorthplat al., 2012; Mermel et
al., 2009). Unfortunately, the cost and dangerefice removal, along with
the complications associated with high doses afuargal drugs (e.g. kidney
and liver damage), often means that treatmentsi@r@ossible for critically
il patients. Multiple antifungal-resistant formd &. albicansare being

increasingly encountered in clinical settings (Rgenat al., 2002).
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Although infections byC. albicansand S. aureussingle-species biofilms are
well documented, microbes are often found in compp®lymicrobial

communities.

1.1.4 The role of Candida-Staph polymicrobial biofilms in disease

It is estimated that 27-56% of hospital acquiredodtream infections are
polymicrobial with S. aureusas the third most common microorganism
isolated in conjunction withC. albicans(Klotz, Chasin, Powell, Gaur, &
Lipke, 2007). The clinical outcomes of polymicrdbsgpsis compared with
monomicrobial sepsis are grave, with significantiigher mortality rates
(Pulimood, Ganesan, Alangaden, & Chandrasekar, )200#se pathogens
have been co-associated with a number of polymiarodiseases including
ventilator-associated pneumonia, cystic fibrosispesinfection of burn
wounds, urinary tract infections and denture starmgDahlén, Blomquist, &
Carlén, 2009; Ekwempu, Lawande, & Egler, 1981; Siag-Igra, Schwartz,
& Konforti, 1988; A. J. Smith et al., 2003; Valenggal., 2008).

Using anin vivo model of systemic intraperitoneal infection, cognlation of
C. albicansand S. aureushad a synergistic effect on mortality in mice (E.
Carlson, 1982). Infection with sub-lethal doseseifier species in isolation
resulted in no mortality in mice. However, co-irtien with both these
pathogens at the same doses resulted in a mortali¢éy of 100%. Heat-
inactivation of eitherC. albicansor S. aureusbefore co-infection reversed
this effect (E. Carlson, 1982). Each species cmildence gene expressiam
Vivo, resulting in increased virulence and resistanchast defences as was

reportedn vitro (Peters et al., 2010a).

C. albicansin conjunction with other bacterial species haverbé&olated
from several types of oral infections, includingopiharyngeal candidiasis
(OPC) (or thrush) and denture stomatitis. OPC atfez soft and hard palate,
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buccal mucosa, the floor of the mouth and the tengnd appears as red
patches or white curd-like lesions. Fluorescensitu hybridisation (FISH)
and 16S RNA analysis revealed the presence of fecspecies, including
LactobacillugEnterococcusspecies andStaphylococcusspecies (Dongari-
Bagtzoglou, Kashleva, Dwivedi, Diaz, & Vasilako908). Denture stomatitis
Is an inflammatory process of the oral mucous kbatls to the formation of
lesions. S. aureuswvas the most common bacteria isolated v@thalbicans
from the oral mucosa and dental prosthesis in pEtieith denture stomatitis

(Baena-Monroy et al., 2005).

Polymicrobial biofilms are prevalent in chronic wals, such as diabetic foot,
pressure and venous leg ulcers (Bertesteanu et2@l4). Aerobic or
facultative anaerobes includirf§ aureusgcoagulase-negative staphylococci,
P. aeruginosa, E. coli, Enterobactgpp. andCandidaspp. can cause delayed
wound healing and infection in both acute and clorawounds, especially
surgical wounds (Duerden, 1994; Mangram, Horanrdéea Silver, & Jarvis,
1999). The presence of bacteria within wounds cadude excessive
inflammatory response and tissue damage, which lead to abscesses,

cellulitis, osteomyelitis or limb loss (Bertesteagtwal., 2014).

Due to the severity of dual-infections, variousdsts have been carried out to
investigate the relationship betweBnaureusandC. albicansin dual-species

biofilms.

1.1.5 S. aureus and C. albicans dual-species biofilms

Dual-infections involvingC. albicansand S. aureusresult in increased
mortality in mice (Eunice Carlson, 1983; Eunice |I€am & Johnson, 1985a,
1985b). Carlson (1983) found that the presence& ofilbicansstimulated

toxin production in different strains 0b. aureusand increased mouse

mortality and morbidity when combined with subldtdases ofC. albicans
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(Eunice Carlson, 1983). Carlson and Johnson (19&5jt on to study this
disease synergism in further detail (Eunice Carlg€orJohnson, 1985a).
Carlson and Johnson found thHat aureuswas always associated witD.

albicansgrowth even when the two microorganisms were iegett different
sites on a mouse model (Eunice Carlson & Johns8@5d). Furthermore,
they discovered that the bacteria was always fawuititin the fungal biofilm

rather than at the peripherals and that mixed tidies were only found at the
fungal injection sites, which suggested fungal dglowas essential for
bacterial growth and that the fungus may have play@rotective role in the

dual-infection (Eunice Carlson & Johnson, 1985a).

S. aureugloes not form strong biofilms in serum (HarriottNoverr, 2009).
Harriott and Noverr (2009) found that sera did aib¢ct the initial attachment
of the bacteria but was unable to support subsegbmfilm formation
(Harriott & Noverr, 2009). CFU assays, along wililnofescence microscopy
and antimicrobial testing revealed that albicansand S. aureusform a
polymicrobial biofilm in serum and increasB. aureusresistance to
antimicrobials compared t&. aureusmonocultures (Harriott & Noverr,
2009). Although the presence ©Gf albicansincreaseds. aureusrancomycin
resistance, the presence or absenceSofaureushad no effect on the
susceptibility ofC. albicansto Amp B (Harriott & Noverr, 2009). Whe@.
albicans was killed off in the polymicrobial biofilms usingery high
concentrations of Amp BS. aureudbecame susceptible to vancomycin. This
trend was observed whed. albicansand S. aureuswere cultured using a
using a 0.4um polyester (PET) Transwell membrankichv physically
separated the microorganisms but allowed free mewémwf small molecules
between the membrane (Harriott & Noverr, 2009). do&r, wherS. aureus
was cultured withC. albicansmatrix, S. aureus antimicrobial resistance
increased and were comparable to the results @otaunen the bacteria and

fungi were cultured together (Harriott & Noverr,G®). Harriott and Noverr
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concluded thaC. albicansfacilitated S. aureusiofilm formation in serum
and thatC. albicansECM played a role in the increased resistances.of
aureusin polymicrobial biofilms, either by limiting thegmetration of the
drug, allowingS. aureusto up-regulate drug resistance genes or that the
matrix material itself altered the growth and gexpression ofS. aureus
resulting in the up-regulation of anti-microbialngs (Harriott & Noverr,
2009). As well as antimicrobial resistance andiloformation, the use of
fluorescence microscopy revealed tl&t aureusadhered toC. albicans
hyphae (Harriott & Noverr, 2009).

In a further study, Harriott and Noverr (2010) istrgated the mechanism of
C. albicansinduced vancomycin resistance during biofilm forimat by
analysingC. albicansmutant strains deficient in regulators of morphceges
(Harriott & Noverr, 2010). ASS. aureugpreferentially adhered tG. albicans
hyphae,they investigated mutants with various ECM and laglformation
deficiencies (Harriott & Noverr, 2010). A mutantathwas indistinguishable
from the wild-type strain supported polymicrobiabfim formation and
vancomycin resistance (Harriott & Noverr, 2010)h@&tmutants with short or
no hyphae and no ECM did not supp&t aureuspolymicrobial biofilm
formation or vancomycin resistance. Adjusting th#ial concentration<C.
albicansmutants which formed very poor biofilms to concatibns similar
to the wild-typeC. albicansdid not make a difference with regards to
polymicrobial biofilm formation, s was concluded that the lack of hyphae,
and not the lack of cell number dictated phenotyperiott & Noverr, 2010).
Interestingly,S. aureusell numbers increased when it was cultured with a
albicans mutant defective in adherence, but could still pied hyphae
(Harriott & Noverr, 2010). Harriott and Noverr thevent on to investigate
the role of different adhesins, in particular thembers of the ALS family of
adhesions that mediate aggregation with bactedaoérer yeasts (S. A. Klotz

et al., 2007). However, they concluded that it lhaya unique combination of
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these adhesions, rather than a single adhesionsthatjuired for adherence
(Harriott & Noverr, 2010). Overall, it was conclutiéhat surface-associated
adhesions and the ECM facilitafe aureugpolymicrobial biofilm formation
and subsequent vancomycin resistance, althoughpeoifis interactions
could also play a role in polymicrobial biofilm foation (Harriott & Noverr,
2010).

Peters et al. (2010) elucidated the nature andiaspaiationship of the
interactions betwee@. albicansandS. aureususing confocal scanning laser
microscopy (CLSM), characterised proteomic changesl identified
differentially regulated metabolic, stress and knge proteins during
polymicrobial biofilm growth (Peters et al., 20)0&imilar to Harriott and
Noverr (2009), the imaging analysis revealed thatureusadhered toC.
albicans hyphae and not the round yeast cells (Harriott &é&tg 2009;
Peters et al., 2010a). Preference for binding ¢ohiyphae ofC. albicanshas
been reported in a number of other species inalpu8tneptococcus pyogenes,
Acinetobacter baumanniiand P. aeruginosa (Bamford et al., 2009;
Cunningham, 2000; D. A. Hogan & Kolter, 2002; A. Releg et al., 2008).
However, many of these interactions result in furagad/or bacterial killing
during co-culture. Unlike Harriott and Noverr, Astéound that the bacteria
were dispersed throughout the entire biofilm, wherklarriott found that the
bacteria adhered ©. albicanshyphae in the uppermost region of the biofilm.
Peters cultured the biofilms on glass coverslip;jiguRPMI-FBS media,
whereas Harriott cultured biofilms on permanox chamslides using 50%
FBS in water, which could be responsible for thi#edences observed by
Peters et al. (Harriott & Noverr, 2009; PetersletZz®10a). The&. albicans —
S. aureusnteraction was found to be non-lethal through ¥BE/DEAD cell
viability assay. Through proteomic analysis it wasserved that candidal
germination may induc&. aureusvirulence and biofilm formation through

the downregulation of CodY expression which isamscriptional repressor of
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a variety of S. aureusvirulence factors (Levdikov, Blagova, Joseph,
Sonenshein, & Wilkinson, 2006). Interestingly, saVatress-related proteins
were upregulated ir5. aureuswhen it was cultured withC. albicans
Similarly, stress response proteins were upregiilateC. albicanswhen it
was cultured withS. aureus suggesting the presence of one of the
microorganismelicits a stress response in the other microorgaki®eters et
al., 2010a).

In another study, Peters et al. (2012) investig#tedole that Als3 played in
mediating the adherence @&. aureusto C. albicans hyphae (Peters,
Ovchinnikova, et al., 2012). Peters compared variadherence mutants as
well as a strain lacking the hyphal cell wall piotelwpl and determined the
level of staphylococcal binding ©. albicanshyphae using scanning electron
microscopy, confocal microscopy, adherence ELISAJ atomic force
microscopy (AFM). The findings suggested that ssailacking Als3
displayed reduced ability to adhere $ aureus.However, some adhesin
mutants showed increasé&d aureushinding when compared to the parental
strain (Peters, Ovchinnikova, et al., 2012). Théhars suggest that this could
be the result of increased expression of other knadhesins or through the
exposure of other adhesive moieties on the suda€: albicansresulting in
increaseds. aureusaadherence. Other molecules or biofilm matrix congrds
could also play a role or could be due to non-dpmeattachment (Peters,
Ovchinnikova, et al., 2012). Strains expressing 3Aksxhibited stronger
binding forces toS. aureus Significantly, Peters observes. aureuscells
beneath epithelial barriers of co-infected mousegtes. These findings
suggest a mechanism of infection by whi¢halbicansnyphae penetrat