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Abstract

Lakes are vital components of the global biosphere, supporting complex

ecosystems and playing important roles in the global biogeochemical cycle.

However, they are vulnerable to the threat from climate change and their

responses to climate forcing, eutrophication and other pressures, and their

possibly confounding interactions, are not yet well understood. Monitoring

lake health is therefore essential, in order to understand the changing patterns

over space and time.

Traditionally, in situ data, which are collected directly from within lakes

and analysed in laboratories, have been available for analysis. However,

although these data are assumed to be accurate within measurement error,

they are expensive to collect, so that few, if any, in situ sampling locations

are available for each lake, often with infrequent sampling at each location.

On the other hand, remotely-sensed data, which are derived from reflectance

measurements of the Earth’s surface, obtained from satellites, have recently

become widely available. These data have good spatial coverage of up to 300

metre resolution, covering entire lakes, often with a monthly-average time-

scale, but they must firstly be calibrated with the in situ data to ensure

accuracy, before inferences are made.

The data for this research were provided by the GloboLakes project

(www.globolakes.ac.uk), which is a consortium research project that is in-

vestigating the state of lakes and their responses to environmental drivers on

a global scale. The research primarily focusses on log(chlorophylla) data for

Lake Balaton, in Hungary, and for the Great Lakes of North America.
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The key question of interest for this research is: “How can data fusion be

performed for in situ and remotely-sensed lake water quality data, accounting

for the spatiotemporal change of support between the point-location, point-

time in situ data and the grid-cell-scale, monthly-averaged remotely-sensed

data, producing a fused dataset that takes accuracy from the in situ data

and spatial and temporal information from the remotely-sensed data?”

In order to answer this question, this thesis presents the following work:

• An initial analysis of the data for Lake Balaton motivates the following

work, by demonstrating the spatial and temporal patterns in the data,

using mixed-effects models, generalised additive models, kriging and

principal components analysis.

• Following the identification of statistical downscaling as an appropriate

method for fusion of the data, statistical downscaling models are de-

veloped, specifically in the framework of Bayesian hierarchical models

with spatially-varying coefficients, for the novel application to data for

log(chlorophylla), producing fully calibrated maps of fused data across

lake surfaces, with associated comprehensive uncertainty measures.

• Bivariate and multiple-lakes statistical downscaling models are devel-

oped and applied, motivated by the assumption that sharing informa-

tion between variables and between lakes can improve the accuracy of

model predictions.

• The statistically novel method of nonparametric statistical downscaling

is developed, to account for both the spatial and temporal aspects of

the change of support between the in situ and remotely-sensed data.

Using methodology from both functional data analysis and statisti-

cal downscaling, the model treats in situ and remotely-sensed data at

each location as observations of smooth functions over time, estimated

using bases, with the basis coefficients related via a spatially-varying
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coefficient regression. This is computed within a Bayesian hierarchical

model, enabling the calculation of comprehensive uncertainties.

This thesis presents the background, motivation, model development and

application of the novel method of nonparametric statistical downscaling,

filling the gap in the literature of accounting for changing temporal support

in statistical downscaling modelling. Results are presented throughout this

thesis, to demonstrate the utility of the method for real lake water quality

data.
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Chapter 1

Introduction and background

This introductory chapter presents the motivation for the research de-

scribed in this thesis. The research is associated with the GloboLakes project,

which is a consortium project investigating the state of lakes and their re-

sponses to environmental change, on a global scale (GloboLakes 2016). The

project provided ecological data from several lakes for analysis, which helped

to motivate the main questions of interest for this research. The background

to the research is presented, followed by a brief review of the current relevant

literature. Finally, the thesis structure is presented.

1.1 Background to the research

Lakes are complex ecosystems, playing vital roles in both the global hy-

drological and biogeochemical cycles and acting as important parts of the

global biosphere (Williamson et al. 2009). However, they are vulnerable

to climate change and their responses to climate forcing, eutrophication and

other pressures, and their possibly confounding interactions, are not yet fully

understood (Ormerod et al. 2010). Many lakes have been studied in-depth

individually, but a global picture has not yet been built up of how the global

patterns of lake health are changing over space and time.

This research is associated with GloboLakes (www.globolakes.ac.uk), which

1
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is a five-year long consortium project investigating the state of lake health

and their response to changing environmental drivers on a global scale. The

aim of GloboLakes is to gain a more in-depth understanding of lake-health

through the production of a 20 year database of observed ecological pa-

rameters (GloboLakes 2016). The project facilitated interdisciplinary work

between environmental scientists and statisticians.

GloboLakes provided data for various water quality variables, including

both in situ and remotely-sensed data. In situ data are sampled directly from

the lake surface, usually taken in a sampling tube from a boat at various pre-

defined locations within a lake. These samples are taken to a laboratory and

analysed to give data that are assumed accurate within measurement error.

However, the cost involved, in terms of resources and in monetary terms,

means that few sampling locations are available in each lake, if any at all.

In contrast, remotely-sensed data are available for a large number of lakes

worldwide, with good spatial coverage and resolution. These data are ob-

tained indirectly, often from satellites or aircraft. The remotely-sensed data

used in this research are satellite data. These include temperature data,

which were obtained from the ARC-Lake project (MacCallum & Merchant

2012, 2013). These data were acquired from the medium resolution imaging

spectrometer (MERIS) on board the European Space Agency’s ENVISAT

satellite (ESA n.d. a). This Earth-observing satellite was launched on 1st

March 2002, with contact lost on 8th April 2012, recording ten years of data

(ESA n.d. b). The main functions of ENVISAT have begun to be replaced

by satellites of the Sentinel programme. Remotely-sensed chlorophylla and

total suspended matter data are available from the Diversity II project, hav-

ing been output from the Calimnos processing chain (Brockmann Consult

et al. 2015). The benefit of these data is that the continuous monitoring by

the satellite allows the entire lake to be monitored each month, with grid

cells of up to 300m. resolution covering entire lakes. However, the fact that

these data are indirectly obtained means that calibration is required to en-
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sure accuracy, before these data can be used by environmental scientists to

assess water quality.

Chlorophylla is a variable of great importance to environmental scientists

in their understanding of lake health. Chlorophylla is produced by plants in

order to absorb their required energy from sunlight. It can be understood

as a proxy for phytoplankton biomass (Kasprzak et al. 2008), which is an

indicator of lake health. Higher levels of chlorophylla can be caused by higher

levels of cyanobacteria within the lake water, often caused by high nutrient

levels, so it is of importance to water quality investigators to know where

and when high levels of chlorophylla are occurring (Büttner et al. 1987).

Total suspended matter is a water quality variable, measuring the weight

of material left in a filter after pouring a sample of water through it. The

variable is a measure of how dense suspended particles are in a sampled

water body, with low values generally meaning clearer or cleaner water. High

phytoplankton levels may cause high levels of total suspended matter and

so high levels of this variable can mean poorer water quality. In addition,

suspended matter may be regarded as a pollutant, reducing drinking water

quality and damaging fish habitats (Paul et al. 1982). Understanding total

suspended matter levels is important for controlling sedimentation (Büttner

et al. 1987), which is the process of deposition of sediment on the lake floor.

Lake surface water temperature is not a direct measure of water quality,

but it does affect water quality indirectly, with phytoplankton blooms oc-

curring at certain times of the year, mostly due to favourable temperatures.

Lake surface water temperature has much less variation over space, within

each lake, than the other measured variables, but it may still be a useful

indicator for understanding lake water quality.
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1.2 Research aims and objectives

Given the fact that two data sources are available, one with good spatial

coverage, but requiring calibration, and the other available only for several

point locations, but assumed accurate within measurement error, the key

question of interest that this research will attempt to answer, is:

• How can data fusion be performed, to make use of the high resolu-

tion spatial and temporal information from the remotely-sensed data,

calibrated over space and time with the in situ data?

An exploratory analysis of the available data was carried out, in order

to gain an understanding of the spatiotemporal support of the data, to in-

vestigate patterns in variables over space and time, and to investigate the

relationship between data for related variables. Based upon the understand-

ing gained from this analysis, the following objectives were defined:

1. Statistical downscaling: Investigate the application and development of

statistical downscaling techniques for the calibration of remotely-sensed

data using in situ data.

2. Bivariate statistical downscaling: Develop a new framework for bivari-

ate statistical downscaling, allowing the sharing of information between

variables, to increase the understanding of the relationship between in

situ and remotely-sensed data, and increasing calibration accuracy.

3. Multiple-lakes downscaling: Develop methodology for a novel frame-

work of multiple-lakes downscaling, where data are downscaled for mul-

tiple lakes simultaneously, sharing information across lakes.

4. Spatiotemporal support: Develop novel methodology to allow the fu-

sion of data with different spatial and temporal supports, specifically

temporally-averaged, grid-scale remotely-sensed data and point-time,

point-location in situ data.
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Each of these objectives will be achieved through statistical model develop-

ment and assessment, and data analyses, to gain an understanding of the

performance and suitability of the models and modelling frameworks.

While log(chlorophylla) is a novel application for statistical downscaling,

the statistical novelty in this work is the development of nonparametric statis-

tical downscaling, which answers the question of how statistical downscaling

can be applied to data of different spatiotemporal support. The method can

be applied to a wide range of lake data, which could not otherwise be anal-

ysed in this way. The novel methodology developed in this thesis could be

applied in a wide range of areas of study beyond that of lake water quality,

allowing the fusion of information from diverse sources of data of different

spatiotemporal support.

1.3 Structure of this thesis

This thesis is divided into the following chapters:

1. Introduction and background: This chapter contains the background

information to the research project, giving the aims and objectives, an

introduction to the data and a review of the relevant literature.

2. Exploratory analysis: This chapter contains exploratory analyses of

the in situ and remotely-sensed data for Lake Balaton, investigating

each dataset separately to gain an understanding of the spatial and

temporal patterns within and between variables. The in situ data are

investigated using mixed-effects models, since there are only a small

number of data locations, while remotely-sensed data are investigated

using kriging and additive models, since these data have good spatial

coverage and so a model that takes spatial information into account

is appropriate. A discussion of common spatial and temporal patterns

in the remotely-sensed data, understood from S- and T-mode principal

component analysis, is also included.
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3. Statistical downscaling: This chapter introduces statistical downscal-

ing using a preliminary spatial-only model, before going on to deal with

spatiotemporal models, allowing the sharing of information on the spa-

tial relationship between in situ and remotely-sensed data over time.

4. Bivariate and multiple-lakes statistical downscaling: This chapter dis-

cusses bivariate downscaling, where information is shared between vari-

ables through simultaneous downscaling, and multiple-lakes downscal-

ing, where information is shared between nearby lakes, to discover

whether these can improve the estimation of the model parameters

and therefore improve the accuracy of the model predictions.

5. Nonparametric statistical downscaling: This chapter introduces the

statistically novel framework of nonparametric statistical downscaling,

which takes account of both the spatial and temporal changes of sup-

port, through the use of methodology from functional data analysis,

allowing the calibration of remotely-sensed data using in situ data that

are collected at different times at each point location.

6. Discussion and conclusions: This chapter sums up what has been

achieved by the research, any limitations, further work required and

important findings to highlight.

Chapters 3 to 5 include both methodological developments and data anal-

yses.

1.4 Introduction to the data

Lake water quality data are collected frequently in sampling programs by

water management agencies, for example the Balaton Limnological Institute

and the United States Environmental Protection Agency, while remotely-

sensed data are acquired from Earth-observing satellites operated by various

space agencies, such as the European Space Agency. Some of these data
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are available publicly, but the data used in this research have been made

available by the GloboLakes project. This section will describe in more detail

the data used in this research, focussing on the spatiotemporal support and

data quality.

1.4.1 In situ data

This research makes use of in situ data for Lake Balaton, in Hungary,

and the Great Lakes of North America.

Lake Balaton data

Lake Balaton, Hungary, is the largest lake in Central Europe (Büttner

et al. 1987). The lake is long and shallow (see Figure 1.1), with a surface
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Figure 1.1: Map of Lake Balaton, showing the nine in situ sampling locations.
Map c©OpenStreetMap contributors (www.openstreetmap.org).

area of around 596km2 and a mean depth of just 3.3m (Palmer et al. 2015).

The lake has four basins along its length, which behave somewhat separately

in terms of their hydrology (Tátrai et al. 2000). The main inflow is the River
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Zala, which flows into the westernmost basin, and the main outflow is the

Sió Canal, which leaves the lake partway along the easternmost basin (Tátrai

et al. 2000). The Tihany peninsula juts into the lake between the third and

fourth basins.

The lake has suffered greatly from poor water quality over the years, due

to overly high levels of nutrients. These high nutrient levels cause blooms of

cyanobacteria. These cyanobacteria are of concern, since a high proportion

of them are toxic to humans, farm animals, birds and fish (Bláha et al. 2009).

Additionally, the bacteria can form mats over the water surface for certain

levels of light, nutrients and temperature, leading to fish kills (Teta et al.

2017). These cyanobacteria are used as indicators of degraded water quality

and can be monitored from satellite imagery (Teta et al. 2017). Nutrient lev-

els in Lake Balaton increased in the 1960s and 1970s, following developments

in farming and a population increase in the surrounding region, causing the

lake to become eutrophic (Padisák & Reynolds 1998). In recent years, steps

have been taken to improve the water quality, including the Kis-Balaton wet-

land project at the mouth of the River Zala, which aims to reduce the levels

of nutrients reaching the lake (Tátrai et al. 2000). The highest nutrient lev-

els are found in the westernmost basin, with the easternmost basin having

improved water quality (Tátrai et al. 2000).

The Balaton Limnological Institute (BLI) was founded with the aim of

studying and understanding water quality in Lake Balaton (BLI n.d.). The

institute has collected data on chlorophylla concentration, total suspended

matter and temperature, for five locations, between the start of 2006 and the

end of 2011. Data were also collected by the Central Transdanubian Water

and Environment Management Board (KDKVI) for four locations between

the start of 2002 and the start of 2012, although temperature and total

suspended matter data are only available until the end of 2006. This gives a

total of 9 available in situ locations for this lake (see Figure 1.1). These data

were provided for this research by the University of Stirling and GloboLakes
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(www.globolakes.ac.uk).

Great Lakes data

The Great Lakes system of North America contains some of the largest

freshwater lakes in the world (see Figure 1.2). The Great Lakes themselves
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Figure 1.2: Map of the Great Lakes, showing the in situ sampling locations. Map
data c©2016 Google (www.google.co.uk/maps).

are (from the highest altitude to the lowest altitude) Lakes Superior, Michi-

gan, Huron, Erie and Ontario. Their mean surface areas are 82,100km2,

57,800km2, 58,600km2, 25,700km2 and 18,960km2, while their mean depths

are 147m, 85m, 59m, 19m and 86m, respectively (Botts & Krushelnicki 1995).

Lakes Michigan and Huron may be considered as a single lake, since the flow

between them, through the straits of Mackinac, can be in either direction

(Sellinger et al. 2008). Water from Lake Superior flows into Lake Huron via

the St. Mary’s River, while water from Lake Huron flows into Lake Erie via
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the St. Clair River, Lake St. Clair and the Detroit River. Water in turn

leaves Lake Erie via the Niagara River and the Welland Canal, to flow into

Lake Ontario. This means that any upstream changes in water quality are

carried down to Lakes Erie and Ontario, with Erie being especially affected

due to its shallow depth (Botts & Krushelnicki 1995).

Like Lake Balaton, the health of the Great Lakes system has been at

risk in recent years. The lakes have been affected by increases in human

settlements, farming and industrialisation along the lake shores. Since water

outflow from the lakes is slow, pollutants remain within each lake for long

periods of time. Lake Superior has little pollution entering it, but Lakes

Michigan, Erie and Ontario have large urban areas on their shores, along with

areas of intensive agriculture and industry. Runoff from mills and shoreline

erosion continue to affect water quality (Botts & Krushelnicki 1995).

The United States Environmental Protection Agency (EPA) carries out a

sampling program within the Great Lakes, twice each year (usually in April

and October). Data are available for 19, 11, 14, 20 and 8 sampling locations

respectively (see the red circles in Figure 1.2), for Lakes Superior, Michigan,

Huron, Erie and Ontario, between August 2002 and April 2012. These data

are available for chlorophylla concentration. Additional chlorophylla data are

available from the Lake Erie Committee of the Great Lakes Fishery Com-

mission (LEC), for 23 locations within Lake Erie (see the blue triangles in

Figure 1.2), between April 1999 and October 2011, sampled throughout the

year between Spring and Autumn. These data are all available from the

Great Lakes Monitoring website (greatlakesmonitoring.org).

1.4.2 Remotely-sensed data

Remotely-sensed data have been provided by the Diversity II project

(www.diversity2.info) and ARC-Lake (www.laketemp.net). These data are

converted using various algorithms from reflectance data from Earth surface-

facing satellites (Duan et al. 2012, Simis et al. 2005, Matthews et al. 2012,
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Brockmann et al. 2004, Brockmann Consult et al. 2015), which leads to

the loss of uncertainty information from the original data. Each satellite

makes frequent passes over each lake. A monthly-average (or a fortnightly-

average, for the ARC-Lake temperature data) is then calculated and made

available. The data resolution is fairly good for the ARC-Lake temperature

data, with 41 pixels covering Lake Balaton at a resolution of 0.05◦, comparing

favourably, in terms of spatial coverage, to the 9 in situ locations. Data

are available for chlorophyll and total suspended matter, from Diversity II.

These data have a much higher resolution than the temperature data, with

7616 grid cells covering Lake Balaton, at a resolution of approximately 300

metres. These data provide precise information on the spatial patterns in the

variables of interest to environmental scientists. However, they must first be

calibrated to ensure their accuracy.

The data for chlorophylla concentration and total suspended matter were

found to be positively skewed, so the natural log-transformed data will be

used in this research. Temperature data displayed no such skewness, so will

be left untransformed.

It was noted that some extreme values appeared in the Diversity II data

around the lake edges, which could indicate land contamination. This is

where the satellite picks up areas of land within a grid cell containing water,

meaning that the reflectance measurements are unreliable for these grid cells

(Parkinson 1997, pages 50 to 51). This issue can be dealt with simply by

removing some data around the lake edges. For Lakes Balaton and Erie, 2

grid cells are removed from the lake edges, while for the other Great Lakes,

6 cells are instead removed. I made these decisions, based upon evidence

from exploratory plots, which show some grid cells around the lake edges

with very high or low data values in comparison to their neighbouring cells,

with these cells appearing slightly further into the lake for Lakes Superior,

Michigan and Huron. Removing these grid cells still leaves a large number

of grid cells covering each lake. This procedure was not carried out for the
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temperature data, since these data have a much larger size of grid cell, so

that any land contamination within each cell should be small compared to

the amount of water in each cell. Additionally, removing grid cells around

the lake edges would remove the data for most of the 41 grid cells for Lake

Balaton, due to its thin shape, leaving few data for analysis.

1.5 Literature review

In this section, the relevant literature is summarised and discussed. Since

the main aim of this thesis is to present methodology for the fusion of data of

different spatiotemporal support, this review focusses on the literature that is

relevant to this topic. A brief discussion of data fusion is presented, followed

by noting methodology that may be of use.

1.5.1 Data fusion

Data fusion has been described as “a process dealing with the association,

correlation, and combination of data and information from single and multi-

ple sources to achieve refined position and identity estimates, and complete

and timely assessments of situations and threats as well as their significance”

(White 1991) and “the study of efficient methods for automatically or semi-

automatically transforming information from different sources and different

points in time into a representation that provides effective support for hu-

man or automated decision making” (Khaleghi et al. 2013). Hall & Llinas

(1997) note that combining same-source data can provide a statistical advan-

tage, since improved estimates of physical phenomena can be obtained via

redundant observations, while the use of multiple types of sensors can im-

prove the accuracy with which a quantity can be observed and characterised.

Data fusion is used in many sectors, such as equipment monitoring, medical,

military and remote sensing applications (Hall & Llinas 1997). Data fusion

can therefore be considered a general term that covers a number of different
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approaches.

Data fusion for chlorophyll

For remote sensing, data fusion is becoming increasingly important, with

improving sensor technologies leading to greater numbers of available data

(Schmitt & Zhu 2016). For chlorophylla data specifically, there have been

many applications of data fusion in recent years:

• Kneubühler et al. (2007) use a linear model to fuse reflectance band

data from MERIS, for Lake Kivu, with very limited in-lake data.

• Doña et al. (2015) focus on the fusion of Landsat data with MERIS

and MODIS data for the highly eutrophic lake Albufera de Valencia.

The Landsat data have high spatial resolution, but low temporal and

spectral resolution, while the MERIS and MODIS data have higher

temporal and spectral resolution, but low spatial resolution. After

converting the Landsat data onto the surface reflectance scale and con-

verting the MERIS/MODIS data onto the 30 metre scale of Landsat

observations (through nearest neighbour resampling, where each small-

scale pixel is assigned the value of its nearest large-scale pixel), they

fuse the two datasets through a pixel-by-pixel algorithm. A further

process is the calibration of the data using in-lake observations, using a

genetic programming model, which fits various sets of nonlinear mod-

elling equations to a training dataset to produce a good fit to the data

and automatically keeps the best set (based upon predictions made and

compared to a validation dataset) (Doña et al. 2015).

• Sakuno (2013) fuses daily frequency MODIS data with hourly frequency

GOCI data, for Tachibana Bay. After some data preprocessing to con-

vert the GOCI and MODIS data onto the chlorophylla observation

scale, the author fits a linear model to the data, with MODIS as re-

sponse, so that predictions can be made from GOCI data on the same
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scale. The results suggest that a linear model is not enough to obtain

good predictions across the whole study region, so that some kind of

spatially-varying method may be more appropriate.

• Kwiatkowska & Fargion (2002) outline issues in data fusion for sea

chlorophylla data from SeaWIFS and MOS datasets. These data have

different spatial resolutions and must first be projected onto a rectan-

gular grid from their original longitude and latitude grid, with the MOS

data being subsampled onto the SeaWIFS grid. The fusion takes place

through wavelet multiresolution analysis, where wavelet transforms are

applied to the satellite images.

Data fusion for air quality data

In recent years, much work has gone into developing methodology for

the fusion of air quality data from multiple sources, where measured and

modelled data are commonly available (with the measured data being in

situ, ground truth data, and the modelled data are available on a grid scale,

so that the modelled data are equivalent to the remotely-sensed lake water

data in this application):

• Wikle & Berliner (2005) present a Bayesian model for data of different

resolutions and fit it to wind data.

• Fuentes & Raftery (2005) present a Bayesian melding model for fus-

ing modelled weekly sulphur dioxide concentrations with observed data

from the CASTNet network, where neither dataset is assumed mea-

sured without error, but where there is an assumed true process on

the point-scale. The change-of-support between the data types is dealt

with through fitting integrals, which can be computationally intensive.

• Cressie & Johannesson (2008) develop fixed rank kriging, which repre-

sents large-scale spatial data using basis functions, such as smoothing
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splines, wavelets or radial basis functions, enabling efficient computa-

tion. This methodology is updated by Nguyen et al. (2012), in order

to fuse MODIS and MISR data for southern Africa.

• Berrocal et al. (2010b) present a statistical downscaling model, based

upon Gelfand et al. (2003), which fuses grid-scale modelled ozone data

from the Community Multi-scale Air Quality Model with point-scale

in situ observed ozone data, for the eastern USA. They fit a Bayesian

regression model, with spatially-varying coefficients, in order to re-

late the two sets of data, treating the in situ data as accurate. This

methodology has been adapted to allow simultaneous fusion of two re-

lated variables (Berrocal et al. 2010a), to allow for mismatch between

the assumed and true locations of data (Berrocal et al. 2012) and to

model exceedances of ozone level standards (Berrocal et al. 2014). Ad-

ditionally, a version of the model was applied by Paci et al. (2013) and

Bruno & Paci (2014) and was incorporated within the model of Rundel

et al. (2015). Wilkie et al. (2015) applied a version of the model to

log(chlorophylla) data. These models do not include structured tem-

poral dependencies, so do not explicitly take the temporal structure of

the data into account.

• Sahu et al. (2010) present an alternative statistical downscaling model,

which combines a conditional autoregressive model for gridded air qual-

ity modelled output with a space-time process model for observed point

level data. They link the model components using latent space-time

processes within a Bayesian hierarchical model, with prediction using

the point-level model. This model explicitly incorporates a space-time

component.

Despite the fact that this thesis focusses on log(chlorophylla) data, the method-

ology from the air quality data proves useful for this application. An impor-

tant difference between the datasets for air quality and for lake water quality
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data is that obtaining the in situ measurements for lake water quality vari-

ables is particularly expensive and so the available in situ data may be sparse

in comparison to those for air quality. For example, there may be very few in

situ sampling sites available across each lake, giving sparse spatial coverage

of the lake surface. Additionally, data may not be collected regularly at all

locations, since samples can only be taken when a boat can safely access

sampling sites, leading to irregular in situ data. Another point to note is

that, although remotely-sensed log(chlorophylla) data can be considered in

the same way as modelled air quality data, they are based upon observed

data, from Earth-surface reflectance measurements, so that the in situ and

remotely-sensed data are assumed to have a positive relationship. The fol-

lowing chapters will make use of the statistical downscaling methodology

from the air quality literature, but these differences in the data properties

will be taken into account.

1.5.2 Downscaling literature

The previous subsection leads to a discussion of methodology for statis-

tical downscaling. Originally developed in the climate modelling literature,

statistical downscaling has begun to be developed for the data fusion of

grid-scale modelled and observed in situ data (Berrocal et al. 2010b). The

methodology was originally developed for adapting the coarse resolution of

global climate models, of hundreds of kilometres, to the much smaller scale,

needed for impact assessment and understanding of the processes (Wilby

& Wigley 1997, Maraun et al. 2010). Two main approaches are dynamical

downscaling and statistical downscaling (Maraun et al. 2010). Dynamical

downscaling involves the nesting of a smaller-scale regional climate model

into the global climate model, with output on resolutions as high as sev-

eral kilometres (Maraun et al. 2010). On the other hand, Maraun et al.

(2010) state that statistical downscaling involves the establishment of statis-

tical links between large and local-scale weather patterns, although a more
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general definition could refer simply to a process, rather than specifically

weather.

Dynamical downscaling

Dynamical downscaling is where a numerical model with small-scale out-

put is nested within a larger-scale numerical model. Taking the example of

regional climate models, these have a higher resolution than global climate

models (50km. or less compared to hundreds of kilometres) (Maraun et al.

2010).

Schmidli et al. (2007) show that dynamical downscaling may be preferred

to statistical downscaling in some climate modelling circumstances. However,

dynamical downscaling can only produce output on a grid-cell (areal) scale

and so statistical downscaling will be focussed on here (in the context of data

fusion of satellite and in situ lake data).

Statistical downscaling

Statistical downscaling maps a large-scale predictor X to a local-scale

predictand Y, in the form:

E(Y|X) = f(X,β), (1.1)

where β is a vector of unknown parameters, which is estimated to calibrate

the downscaling scheme (Maraun et al. 2010), E(Y|X) represents the ex-

pected value of Y, given X (where “|” means “given”), and f(X,β) is a

function of X and β. Unexplained variability may also be explicitly mod-

elled as a random variable (Maraun et al. 2010).

The three types of statistical downscaling defined by Maraun et al. (2010)

are perfect prognosis (PP), model output statistics (MOS) and weather gen-

erators (WGs). Wilby & Wigley (1997) present an alternative classification

of downscaling methods in their review paper, categorising them into regres-
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sion methods, weather-pattern-based approaches, stochastic weather gener-

ators and limited area modelling. However, the classification scheme used in

the more recent review paper of Maraun et al. (2010) will be described here.

PP approaches are classical downscaling approaches, including regression

models and weather pattern-based approaches, which establish a relationship

between observed large-scale predictors and observed local-scale predictands.

These relationships can be applied to numerical model predictors, if they are

realistically simulated. Weather sequences of predictors and predictands can

be related to each other event by event, instead of only relating distributions

of predictors and predictands to each other (Maraun et al. 2010). Model

selection should use statistical criteria, to avoid over- or underfitting. PP

approaches ignore physical processes on scales between the large and local

scales (Maraun et al. 2010).

MOS approaches develop relationships between output from a medium-

scale numerical model (e.g. an RCM) and local-scale observed variables

(Maraun et al. 2010).

WGs are statistical models generating local-scale weather time series, re-

sembling the statistical properties of observed weather. WGs can condition

parameters on large-scale weather, meaning that they are hybrids between

unconditional weather generators and PP methods, or they can be calibrated

only against local-scale observations, in which case they are not true down-

scaling methods (Maraun et al. 2010).

For PP downscaling, informative predictors should be selected, which

have high predictive power. They can be identified by correlating possible

predictors with the predictands. Predictors must be well simulated by the

driving dynamical models and the relationship between predictors and pre-

dictands must be stationary (temporally stable) (Maraun et al. 2010).

Raw predictors are usually high dimensional fields of grid-based values.

Information at neighbouring grid points is not independent. The predictor

field can be decomposed into modes of variability and its dimensionality can
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be reduced, e.g. by principal component analysis (PCA) (Maraun et al. 2010).

PCA gives a set of orthogonal basis vectors, allowing a large part of variabil-

ity in the original predictor field to be represented in lower dimensions. The

predictands are not taken account of, so that the correlation between predic-

tors and predictands may not be optimal. Sari et al. (2017), for example, use

functional PCA to reduce dimensionality, before using quantile regression to

estimate extreme monthly rainfall. Canonical correlation analysis and max-

imum covariance analysis are alternative methods, which take into account

the predictand field, such that the temporal correlation between the predictor

and predictand fields is maximal (Maraun et al. 2010). This dimensionality

reduction approach is most appropriate for applications with many variables.

Possible statistical models for PP downscaling include linear regression,

generalised linear and additive models, vector generalised linear models,

weather-type based downscaling, nonlinear regression and the analog method

(Maraun et al. 2010).

1.5.3 Conclusions from this literature review

This literature review presented background to the topic of data fusion, fo-

cussing on relevant ideas from air quality and chlorophylla data fusion studies.

This thesis focusses on fusing point-scale in situ data and grid scale remotely-

sensed data, which are already on the same measurement scale (after conver-

sion from Earth surface reflectance measurements, for the remotely-sensed

data), so that only the actual fusion process is to be carried out. The method

of statistical downscaling, through a spatially-varying coefficient regression,

is particularly relevant and is focussed on. However, concerns specific to lake

water quality data, related to the different spatiotemporal support of the in

situ and remotely-sensed data, are taken into account in order to develop the

relevant novel methodology.

In the following chapters, additional literature is presented at appropriate

points.
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1.6 Spatial and temporal modelling

This section explores techniques for spatial and temporal modelling, in-

terpolation and prediction that are commonly used in environmental data

analysis. The methodology is divided into two sections, geostatistics and

nonparametric smoothing. Both of these groups of methods allow predic-

tion at new locations, given data indexed on a spatial scale, and both allow

prediction at new times, given spatiotemporally-indexed data. Nonparamet-

ric smoothing also enables the modelling of non-linear relationships between

variables, which may or may not be spatially-indexed. The following sub-

sections describe the main features of both geostatistics and nonparametric

smoothing.

1.6.1 Geostatistics

This subsection introduces geostatistics, which is a branch of spatial

statistics, where the data are a finite sample of measured values that re-

late to a spatially continuous process (Diggle & Ribeiro 2007). The spatial

structure of the data is assessed through variogram modelling, with spatial

prediction carried out through the parametric method of kriging.

Variogram modelling

Let Z(s) be a random field, indexed by spatial location s. Fitting the

variogram, which is a “model-based measure of spatial statistical dependence

in a geostatistical process” (Cressie & Wikle 2011), enables the modelling of

spatial correlation. Assuming that only a single data point is available at

each spatial location, the usual method of calculating correlation cannot be

carried out. Instead, some assumptions must be made. Intrinsic stationarity

assumes that variance over the spatial surface is constant and that correlation
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does not depend on spatial location (Bivand et al. 2013), so that:

Z(s) = m + e(s),

where m = E
(
Z(s)

)
is a constant mean, with random errors e(s). The

variogram is therefore written as:

γ(h) =
1

2
E
(
Z(s)− Z(s + h)

)2
,

(Bivand et al. 2013). Isotropy assumes that correlation does not depend

on direction (Bivand et al. 2013), so that h is replaced by distance d =

||h||. With these assumptions, there are now multiple pairs of data, with

almost identical separation distances, from which correlation is estimated as

a function of distance.

Distances d1, . . . , dn are grouped, or “binned”, into sets of similar dis-

tances d̃j, for j = 1, . . . ,m, where m is the number of bins. For each bin

d̃j, the sample variogram is then calculated from nj pairs of data Z(si) and

Z(si + d) (i = 1, . . . , nj) that are approximately distance interval d̃j apart.

The value of the sample variogram for bin d̃j is:

γ̂(d̃j) =
1

2nj

nj∑
i=1

(
Z(si)− Z(si + d)

)2
(1.2)

∀d ∈ d̃j (Bivand et al. 2013).

The nugget, sill and range of the variogram, which are displayed in Figure

1.3 for an example fitted variogram, are related to certain important char-

acteristics of the spatial distribution of the data. The nugget is the value of

the semivariance at distance zero and represents the measurement error or

small-scale variability (Bivand et al. 2013). Semivariance increases with dis-

tance, until it reaches the sill, which is the variance of the observation process

Z(s) (Diggle & Ribeiro 2007). The partial sill is the difference between the

sill and the nugget, representing the variance of the signal (Diggle & Ribeiro
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Figure 1.3: Example of a fitted variogram, showing the partial sill, nugget and
range. The sill has value equal to that of the partial sill and nugget
added together.

2007). The range is the distance at which the semivariance reaches the sill

(Bivand et al. 2013). The correlation between the data decreases to zero for

locations at least as far apart as the range.

In order to make use of the variogram for prediction and interpolation,

a variogram model is fitted to the sample variogram. This ensures that the

matrix of semivariances between observation points and possible prediction

points is nonnegative definite, so that the prediction variances are guaranteed

to be nonnegative (Bivand et al. 2013). Various parametric variogram models

can be fitted, including those in the Matérn family and the powered expo-

nential family (Cressie & Wikle 2011). The Matérn family of semivariance

functions γ(h;θ) is defined as:

γ(h;θ) = C(0;θ)− C(h;θ), (1.3)

for h ∈ Rd, where:

C(h;θ) = σ2
0I(d = 0) + σ2

1

(
2κ−1Γ(κ)

)−1
(d/φ)κKκ(d/φ),
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where I(d = 0) is the indicator function that equals 1 if d = 0 and 0 otherwise,

κ > 0 is the order parameter, determining the smoothness of the underlying

spatial process, φ > 0 is the scale parameter, determining how fast correlation

decreases to zero as distance between data locations increases, and Kκ(d/φ)

is a modified Bessel function of the second kind, of order κ (Diggle & Ribeiro

2007, Cressie & Wikle 2011). C(0;θ) = σ2
0 + σ2

1 (Cressie & Wikle 2011).

Members of the Matérn family include the exponential variogram for κ = 0.5,

where:

C(h;θ) = σ2
0I(d = 0) + σ2

1exp(−d/φ),

and the Gaussian variogram as κ→∞, where:

C(h;θ)→ σ2
0I(d = 0) + σ2

1exp
(
− (d/φ)2

)
,

(Diggle & Ribeiro 2007). The powered exponential family of semivariance

functions γ(h;θ) is defined as:

γ(h;θ) = C(0;θ)− C(h;θ), (1.4)

for h ∈ Rd, where:

C(h;θ) = σ2
0I(d = 0) + σ2

1exp
(
− (d/φ)κ

)
.

It can be seen that this family also includes both the exponential (for κ = 1)

and Gaussian (for κ = 2) variograms.

The variogram model can be fitted by weighted least squares (WLS), max-

imum likelihood (ML) or restricted maximum likelihood (REML). Cressie

(1985) shows that weighted least squares is an appropriate way to fit vari-

ogram models, although Diggle & Ribeiro (2007) recommend using ML or

REML. WLS fits the variogram model using the sample variogram, whereas

ML and REML fit an explicit model directly to the data. As ML and REML
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are likelihood-based, the distribution of the data should be checked for these

methods (Diggle & Ribeiro 2007). The best method to use can depend on

the form of the variogram, with those with a small nugget variance and a

large correlation range found to be better fitted by least squares methods

(Lark 2000).

Kriging

Kriging is a method for the interpolation of spatial data, from the Geo-

statistics literature. Given a spatial process Z(s) for which realisations

Z(s1), . . . , Z(sn) are available for n spatial locations s1, . . . , sn, kriging aims

to predict the value of the process at a new location s0, i.e. Z(s0), along with

an associated measure of uncertainty. The “best” predictor Ẑ(s0) should be

the best linear unbiased predictor (BLUP). The predictor Ẑ(s0) is the BLUP

of Z(s0), if (Piegorsch & Bailer 2005):

1. It is linear, i.e. it takes the form a0 +
∑n

i=1 aiZ(si), for some known

coefficients a0, a1, ..., an.

2. It is unbiased, i.e. E
(
Ẑ(s0)− Z(s0)

)
= 0.

3. var
(
Ẑ(s0)−Z(s0)

)
is the minimum among all linear unbiased estimators

of Z(s0).

The three types of kriging are simple (where it is assumed that Z(si) =

µ+ ε(si), with µ known and stationary), ordinary (where Z(si) = µ+ ε(si),

with µ unknown and stationary) and universal (where µ is allowed to vary

with s) (Piegorsch & Bailer 2005, Cressie 1993). Of these three methods,

universal kriging is focussed on here, since it can be applied in a wider range

of circumstances, including where there is a trend in the mean level µ.

The linear predictor is written as:

Ẑ(s0) = a0 +
n∑
i=1

aiZ(si), (1.5)
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where the coefficients a0, ..., an are chosen to minimise the mean squared

prediction error (MSPE), E
(

(Ẑ(s0)− Z(s0))2
)

. For universal kriging, let

µZ(s0) = E(s0) be the spatially-varying mean and let CZ(s, t) be the co-

variance between Z(s) and Z(t). Then the universal kriging operator that

minimises the MSPE is:

Ẑ(s0) = µZ(s0) +
n∑
k=1

ak
(
Z(sk)− µZ(sk)

)
, (1.6)

where a = (a1, ..., an)T =
∑−1

Z CZ(s0),
∑

Z = cov(Z) = [CZ(si, sj)]i,j and

CZ(s0) =
(
CZ(s0, sk) : k = 1, ..., n

)T
. The universal kriging operator is the

BLUP. This predictor attains a minimum value of MSPE of:

CZ(s0, s0)− aTCZ(s0), (1.7)

which is the kriging variance.

1.6.2 Nonparametric smoothing

This subsection describes nonparametric smoothing. Smoothing methods

from this framework can be fitted in both spatial and temporal contexts, so

are particularly relevant for spatiotemporal data that have smooth patterns

over space and time. Within this framework lie additive modelling and func-

tional data analysis, two sets of methodology for nonparametric modelling

of smooth functions. Additive modelling estimates the relationship between

a response variable y, i.e. (y1, . . . , yn)T, which is not necessarily assumed to

be smooth, and explanatory variables x1, . . . ,xp, where xj = (xj1, . . . , xjn)T

(j = 1, . . . , p), where the relationship between y and each of the response

variables is assumed to be smooth and non-linear. An additive model can be

written as:

yi = β0 + f1(x1i) + ...+ fp(xpi) + εi, (1.8)
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for i = 1, . . . , n, where the fj (j = 1, . . . , p) are smooth functions of the re-

sponse variables x1, . . . , xp, εi ∼ N(0, σ2
ε) are the independent random errors

and β0 is the intercept term (Wood 2006). Functional data analysis, on the

other hand, is concerned with expressing a response variable y as a smooth

function, where it is assumed that y1, . . . , yn are in fact observations of a

smooth function f that takes values over an infinite-dimensional space (Fer-

raty & Vieu 2006), such that yi is somewhat related to yi+1 (i = 1, . . . , n−1)

(Ramsay & Silverman 2006). For the common example, where yi is f evalu-

ated at time ti (i = 1, . . . , n), then:

yi = f(ti) + εi, (1.9)

for i = 1, . . . , n, where εi ∼ N(0, σ2
ε) are the independent random errors

(Ramsay & Silverman 2006).

Representing smooth functions

In order to fit either an additive model or a model in the functional data

analysis framework, a method must be found to enable the representation

of the smooth functions. Simple types of smoothing include bin smoothing,

where the data for the explanatory variable x are partitioned into sets of

values called “bins” and the mean value over each bin is calculated, in order

to obtain smoothed estimates (Clarke et al. 2009). This method can be

improved by changing the bin width to have equal numbers of observations

per bin (moving average smoothing), or by fitting a straight line per bin

(running line smoothing) (Clarke et al. 2009). A further improved method

is LOESS (locally-weighted regression), which fits a weighted polynomial to

data in each bin, providing smoother estimates (Clarke et al. 2009).

This section will focus, however, on smoothing via basis functions, and

specifically regression splines. In order to ensure that the model is linear

in the parameters, each smooth function f can be written in terms of basis
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functions, defining the space of functions that includes an approximation to f

as an element (Wood 2006). Let φk(x) be the kth basis function for variable

x. Then the smooth function f is:

f(x) =
m∑
k=1

φk(x)ck, (1.10)

where c, i.e. (c1, . . . , cm)T, is a vector of coefficients (Wood 2006). There

are many possible basis types, with a list of commonly used types given by

Ramsay & Silverman (2006):

• Monomials: 1, t, t2, . . . , tm.

• Fourier basis: suitable for periodic data.

• Splines (including B-splines, thin plate regression splines and cyclic

cubic regression splines (Wood 2006)): computationally efficient and

used for non-periodic data.

• Wavelets, exponential, power, polynomial, polygonal, step-function and

constant bases.

The two types of basis functions that will be focussed on in this section

are the Fourier basis and the spline basis, since both are computationally

efficient, but splines are preferred for non-periodic data and the Fourier basis

is preferred for periodic data.

A spline is a curve, made up of sections of polynomials. Specifically, a

cubic spline is made up of cubic polynomials, joined so that they are contin-

uous up to their second derivatives (Wood 2006). This leads to a fitted curve

that appears smooth to the human eye (Hastie et al. 2001). The following

paragraphs summarise different types of splines. The Fourier basis system is

then described.

B-spline basis A spline is a smooth function, made up of polynomials of

some specified degree, joined together at “breakpoints”, or “knots” (Ramsay
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& Silverman 2006). B-splines, short for “basis splines” (de Boor 1978), are

defined, using a recurrence relation, as:

Bj,1(x) =

1 for tj ≤ x < tj+1

0 otherwise

,

Bj,k(x) =
x− tj

tj+k−1 − tj
Bj,k−1(x) +

tj+k − x
tj+k − tj+1

Bj+1,k−1(x),

(1.11)

where j = 1, . . . ,m indexes over the knot sequence t = t1, . . . , tm, with m

being the basis dimension (i.e. the number of basis functions), where k is

the order of the B-splines and where x is some value on the x-axis (de Boor

1978). A complete derivation of B-splines is available in de Boor (1978).

B-splines have several important properties, of which several are partic-

ularly important to note for this application, namely:

• (i) Bj,k has small support, i.e. Bj,k(x) = 0 for x /∈ [tj, tj+k]. Each

B-spline is defined only over a small region and is zero outwith this

region, so that only at most k B-splines are non-zero over each interval

[tj, tj+1] (for j = 1, . . . ,m) (de Boor 1978).

• (ii)
∑

j Bj,k(x) =
∑s−1

j=r+1−k Bj,k(x) = 1 ∀ tr < x < ts, i.e. the basis

functions at any x sum to 1 (de Boor 1978). This is the general compact

support property.

• (iii) Bj,k(x) > 0 for tj < x < tj+k, i.e. Bj,k is positive on its support.

Since Bj,k is made up of nonnegative functions that sum to 1 (from

property (ii)), it is a “partition of unity” (de Boor 1978).

The first of these properties ensures computational efficiency, since the matrix

of inner products of these basis functions is band-structured (with non-zero

values only on the (k − 1) subdiagonals on either side of the main diagonal)

(Ramsay & Silverman 2006).

Cubic B-splines are B-splines of order k = 4. As B-splines are continuous

up to their (k − 2)th derivative, cubic B-splines have a continuous first and
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second derivative (Ramsay & Silverman 2006), so that they appear smooth

to the human eye. In order to cause a discontinuity at each endpoint, an

additional (k−1) knots are placed at the locations of the two endpoint knots

(Ramsay & Silverman 2006). This ensures that inferences are not made

outwith the region of available data. Discontinuities can also be created at

other locations along the x-axis, by placing additional knots at a location to

cause discontinuity up to the desired level of derivative (Ramsay & Silverman

2006). This flexibility is an additional benefit of B-splines and is useful, for

example, in the presence of a known changepoint.

Thin plate regression splines In order to fit splines to multiple variables

at once, one approach is to use thin plate regression splines. An example

where splines would be fitted to multiple variables is that of a spatial surface,

where the value of the surface depends upon a combination of both longitude

and latitude. The method of thin plate regression splines is based upon thin

plate splines, but avoids the high computational cost of fitting thin plate

splines (Wood 2003, 2006). In order to estimate the smooth function g(x)

from n observations (yi,xi) such that yi = g(xi) + εi, where εi are random

errors and the dimension of x is d ≤ n, the function:

||y− f||2 + λJmd(f) (1.12)

is minimised with respect to f , where f =

(
f(x1)

...
f(xn)

)
and Jmd =

∫
· · ·
∫
Rd∑

m
m!

v1!...vd!

(
δmf

δx
v1
1 ...δx

vd
d

)2

dx1 . . . dxd, where m =
∑d

i=1 vi, is the penalty that

controls excess curvature (Wood 2006). Letting 2m > d, the function that

minimises 1.12 is of the form:

f̂(x) =
n∑
i=1

δiηmd
(
||x− xi||

)
+

M∑
j=1

αjφj(x), (1.13)
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where α and δ are estimated such that TTδ = 0, where Tij = φj(xi),

M =
(
m+d−1

d

)
and:

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r) for d even,

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d for d odd.

Letting E be such that Eij = ηmd
(
||xi−xj||

)
, thin plate splines are fitted by

minimising:

||y− Eδ −Tα||2 + λδTEδ,

such that TTδ = 0, with respect to α and δ (Wood 2006).

For thin plate regression splines, let E = UDUT be the eigendecom-

position of E, such that D is the diagonal matrix of eigenvalues, ordered

from smallest to largest, and U has the corresponding eigenvectors as its

columns. Let Uk be the first k columns of U and let Dk be the first k rows

and columns of D. Then, letting δ = Ukδk, thin plate regression splines are

fitted by minimising:

||y−UkDkδk −Tα||2 + λδT
kDkδk,

such that TTUkδk = 0, with respect to δk and α (Wood 2006). Finally,

after finding an orthonormal column basis Zk such that TTUkZk = 0 and

letting δk = Zkδ̃, the problem reduces to minimising:

||y−UkDkZkδ̃ −Tα||2 + λδ̃
T
ZT
kDkZkδ̃,

with respect to δ̃ and α, with 1.13 used to evaluate the spline, after first

evaluating δ = UkZkδ̃ (Wood 2006).

Cyclic cubic regression splines Cyclic cubic regression splines ensure

that the spline function reaches the same value at each endpoint, which is

necessary for cyclical data, such as daily temperature data that are measured
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over several years. A cubic regression spline is defined by Wood (2006) as:

f(x) =
xj+1 − x
xj + 1− xj

f(xj) +
x− xj
xj+1 − xj

f(xj+1)

+

(
(xj+1 − x)3

xj+1 − xj
− (xj+1 − xj)(xj+1 − x)

)
× f ′′(xj)

6

+

(
(x− xj)3

xj+1 − xj
− (xj+1 − xj)(x− xj)

)
× f ′′(xj+1)

6
,

(1.14)

where x1, . . . , xk are the knots for which the cubic spline function f(x) is

defined. The cyclic cubic regression spline has an identical definition, except

for the additional constraints that f(x1) = f(xk) and f ′′(x1) = f ′′(xk) (Wood

2006).

Fourier basis The Fourier basis is suitable for periodic data. Periodic data

repeat the same pattern after a certain length of time, called the “period”.

An example of a periodic function is the sine curve, which has a period of

2π. The fitted smooth function is defined as:

f̂(t) = c1 + c2 sin(wt) + c3 cos(wt) + c4 sin(2wt) + c5 cos(2wt) + . . . ,

where the basis is defined as φ1(t) = 1, φ2r(t) = sin(rwt) and φ2r+1(t) =

cos(rwt) (Ramsay & Silverman 2006) (r = 1, . . . , (m− 1)/2, where m is the

basis dimension, i.e. the number of basis functions to use) and c1, . . . , cm are

the basis coefficients. The parameter w is determined by the period p = 2π/w

(Ramsay & Silverman 2006), so that if the period is, for example, p = 365,

then w = 2π/365.

If the values tj are spaced equally over an interval τ , with the period

p equal to the length of τ , then the basis is orthogonal, since the cross-

product matrix of basis functions ΦTΦ is diagonal (Ramsay & Silverman

2006). Therefore, the Fourier basis system allows computationally efficient

calculations. In any case, data over a long time period can be approximated

using a Fourier basis with relatively few basis functions, so that calculations
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should always be relatively efficient in comparison to those for a basis system

requiring a higher basis dimension.

A Fourier basis is defined completely by its basis dimension (i.e. the num-

ber of basis functions m to use) and by its period p, after which it repeats

(Ramsay et al. 2009).

Fitting in the frequentist framework

In the frequentist framework, the basis coefficients can simply be esti-

mated using ordinary least squares. The least squares criterion:

(y−Φc)T(y−Φc) (1.15)

is minimised, by taking the derivative with respect to c and setting equal to

zero, giving:

2ΦΦTc− 2ΦTy = 0. (1.16)

Solving for c gives:

ĉ = (ΦTΦ)−1ΦTy, (1.17)

so that the fitted values are:

ŷ = Φĉ = Φ(ΦTΦ)−1ΦTy = Py, (1.18)

where P is the projection, or “hat”, matrix (Ramsay & Silverman 2006).

This method makes the assumption that the “standard model for er-

ror” applies, i.e. that the residuals εj (j = 1, . . . , n) are independently and

identically distributed, with mean zero and constant variance (Ramsay &

Silverman 2006). However, this may be inappropriate if the errors are non-

stationary or autocorrelated, in which case weighted least squares should be

used instead. This involves minimising the weighted least squares criterion:

(y−Φc)TW(y−Φc), (1.19)
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where W is a symmetric positive definite matrix allowing for unequal weight-

ing of squares and products of residuals (Ramsay & Silverman 2006).

Using the standard model for error, the variance-covariance matrix for

the estimated basis coefficients is:

var(c) = σ2
ε(Φ

TΦ)−1, (1.20)

so that:

var(ŷ) = σ2
εΦ(ΦTΦ)−1ΦT = σ2

εP. (1.21)

The 95% confidence intervals for ŷ are:

ŷ± 1.96×
√

SE(ŷ), (1.22)

where SE(ŷ) are the standard errors of ŷ, which equal the diagonal of σ2
εP.

Fitting in the Bayesian framework

In the Bayesian framework, the basis coefficients are estimated through

a hierarchical model, with prior distributions placed on the basis coefficient

vector c and on the error variance parameter σ2
ε . The model is:

y|c, σ2
ε ∼ Nn(Φc, σ2

εIn), (1.23)

where Nn(Φc, σ2
εIn) is the multivariate Normal distribution with n-length

mean vector Φc and n× n covariance matrix σ2
εIn, y is the n-length vector

of data, Φ is the (n × m) matrix of m basis functions, evaluated at the n

times of data collection, c is the m-length vector of basis coefficient values,

σ2
ε is the variance associated with estimating the curve, and In is the (n×n)

identity matrix (Abraham & Khadraoui 2015, Gelman et al. 2014).
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Prior distributions for the parameters (σ2
ε)
−1 and c are:

(σ2
ε)
−1 ∼ Ga(a, b) and

c ∼ Nm(µ,Σ),
(1.24)

where Ga(a, b) is the Gamma distribution with shape parameter a and rate

parameter b. A multivariate Normal prior distribution has been chosen for

the basis coefficients, as also used in the literature by authors including Abra-

ham & Khadraoui (2015), Denison et al. (2002) and Gelman et al. (2014).

The choice of a, b, µ and Σ will be discussed in subsection 5.2.2.

This model can be fitted through Gibbs sampling, since the posterior dis-

tributions are easy to obtain. The disadvantage to the Bayesian approach,

compared to the frequentist framework, is that the computation time and

memory requirements are much greater. However, one important benefit to

fitting the model in the Bayesian framework is that the prior distribution

assigned to the basis coefficients ensures that there is no problem caused by

gaps in the data, or by unequal start and endpoints in the data for different

locations, since the prior distribution provides information that otherwise

would be missing. The frequentist model does not have this additional infor-

mation and so can suffer from near-singularity in the matrix ΦTΦ, so that

model fitting is not possible for higher basis dimensions with few available

data. Another benefit to fitting the model in the Bayesian framework is

that the statistical downscaling models developed in forthcoming chapters

are hierarchical Bayesian models, providing an opportunity for combining

statistical downscaling and functional data analysis in the same framework.

Choice of basis type and dimension

The first a priori choice that must be made, before fitting a nonparametric

smoothing model, is to select the type of basis function to use in the model.

For additive modelling, thin plate regression splines are preferred for smooth

surfaces fitted to multiple variables at once, while cyclic cubic regression
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splines are fitted to cyclical data that repeat after one cycle (Wood 2006).

For functional data analysis, the Fourier basis is preferred for periodic data,

while the B-spline basis is an efficient basis for non-periodic data (Ramsay

& Silverman 2006).

For additive modelling, the model-fitting method includes a term that

penalises excess curvature, so that the basis dimension does not have a strong

effect on any results. However, in the case where the choice of the basis

dimension must be made a priori, this choice is of great importance, since the

fitted smooth function depends on having a large enough basis dimension in

order to adequately reflect patterns in the data. The dimension choice should

also take into account the sparseness of the available data and the number of

data points available, so that it is not too large. There are, however, ways to

quantify the model fit over a changing basis dimension, in order to obtain an

optimal basis dimension. These include generalised cross validation, Akaike’s

information criterion, the deviance information criterion and leave-one-out

cross-validation.

Generalised cross validation Generalised cross validation (GCV) is a

method developed by Craven & Wahba (1979) to identify the optimal value

of the smoothing parameter in smoothing splines. It has been used by Pya

& Wood (2016) and Ruppert (2002) to select the optimal basis dimension in

a splines context. The general form of the GCV equation is:

GCV =
n RSS(

n− trace(P)
)2 ,

where n is the number of data, RSS is the residual sum of squares and P

is the projection matrix, such that ŷ = Py. This can be calculated easily,

where the goal is to fit a smooth function to some data, for a single location
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(see equation 1.10 on page 27):

GCV =
n
(
yT(In −P)T(In −P)y

)(
n− trace(P)

)2 ,

where P = Φ(ΦTΦ)−1ΦT, with Φ being the matrix of basis functions eval-

uated at sampling times of the data y.

Akaike’s information criterion and the deviance information crite-

rion Akaike’s information criterion and the deviance information criterion

measure the predictive accuracy of the model, corrected for the fact that the

model is fitted to the observed data. These criteria mostly make use of the

deviance, the log predictive density of the data given a point estimate from

the model, i.e. log
(
f(y|θ̂)

)
(Gelman et al. 2014).

Akaike’s information criterion (AIC) is defined as:

AIC = −2 log
(
p(y|θ̂MLE)

)
+ 2k,

where k is the number of parameters in the model and θ̂MLE is the vector

of maximum likelihood estimates for the parameters (approximated by the

posterior mean or median for a Bayesian model). k may be difficult to define

in a Bayesian hierarchical model, with some at least partially informative

prior information, since the effective number of parameters may in fact be

less than the total number of parameters (Gelman et al. 2014).

An alternative to AIC is the deviance information criterion (DIC), devel-

oped for the Bayesian framework. The DIC is defined as:

DIC = −2 log p(y|θ̂Bayes) + 2 pDIC,

where pDIC is a measure of the effective number of parameters and θ̂Bayes is

a vector of the posterior means or medians of the parameters (Gelman et al.
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2014). pDIC can be calculated as either:

pDIC1 = 2
(

log p(y|θ̂Bayes)− Epost

(
log p(y|θ)

))
,

where Epost

(
log p(y|θ)

)
is the expectation of log p(y|θ) over its posterior

distribution, or:

pDIC2 = 2 varpost

(
log p(y|θ)

)
,

which makes use of the variance of log p(y|θ) over the posterior distribution

(Gelman et al. 2014).

Leave-one-out cross-validation An alternative method to assess model

performance is leave-one-out cross-validation, which is the method of remov-

ing a single data point in turn and predicting its value using the model of

interest fitted to the remaining data. After predictions have been made for

all data points, the accuracy and precision of these predictions is assessed

and compared to the observed data, in order to compare the performances of

different models. An absolute, rather than comparative, measure of model

performance is the empirical interval coverage probability, i.e. the proportion

of intervals of a certain nominal coverage (e.g. 95%) that contain the true

data value, which should be close to the nominal value, for a model that is

appropriate for the data.

Alternative methods An alternative information criterion for choosing

the basis dimension is the WAIC, i.e. the Watanabe-Akaike information cri-

terion, which is a fully Bayesian approach for estimating the out of sam-

ple expectation. This approach takes the computed log pointwise posterior

predictive density and adjusts for overfitting by correcting for the effective

number of parameters through a measure derived from simulations (Gelman

et al. 2014). Like the AIC and DIC, the basis dimension that results in the

minimum WAIC value is preferred.
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A further alternative is the continuous ranked probability score (CRPS),

which was developed in the weather forecasting literature. It is a generalisa-

tion of the mean absolute error and is a scoring rule that provides a measure

for the evaluation of forecasts, allowing the ranking of competing forecast

procedures. The CRPS evaluates probability forecasts in the form of cumu-

lative distribution functions and assigns a numerical score, based upon the

predictive distribution and on the event or value that is observed (Gneiting

& Raftery 2007, Bröcker 2012).

1.7 Bayesian modelling

This section briefly presents the main features of Bayesian modelling that

are relevant to the work in this thesis. Although earlier work in this thesis

is presented in the frequentist context, later models are fitted that require

Bayesian methodology. For these models, there is not enough information

from the data to estimate all parameters in the frequentist framework, but

the provision of prior distributions in the Bayesian framework allows these

models to be fitted.

Given a vector of parameters θ and data y, it is of interest to make

inference on the values of parameters θ. Since it is of interest to make

probabilistic statements about θ|y, a model is needed for the joint probability

distribution of θ and y (Gelman et al. 2014). The joint probability mass

function or probability density function is p(θ|y) = p(θ)p(y|θ), where p(θ)

is the prior distribution and p(y|θ) is the sampling distribution, or data

distribution. Using Bayes’ theorem, the posterior distribution of θ, given the

data y, is:

p(θ|y) =
p(θ,y)

p(y)
=
p(θ)p(y|θ)

p(y)
, (1.25)

where p(y) =
∑
θ p(θ)p(y|θ) for discrete θ and p(y) =

∫
p(θ)p(y|θ)dθ for
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continuous θ. The unnormalised version of this equation is:

p(θ|y) ∝ p(θ)p(y|θ), (1.26)

where p(y|θ) is the likelihood, which is treated as a function of θ, for fixed

y (Gelman et al. 2014).

The remainder of this section presents methods for obtaining samples

from the posterior distribution p(θ|y).

1.7.1 Gibbs sampling

Gibbs sampling, developed by Geman & Geman (1984), is a method of

sampling from the posterior distributions of parameters in a Bayesian model.

This takes the form of a Markov chain, a random walk through the parameter

space, starting from an arbitrary starting point, with the next step in the

chain depending only on the current position, not on previous positions.

Assuming there are k unknown parameters in the model, the method cycles

through drawing from the full conditional distributions for each parameter

in turn, conditional on the previous values of draws for these parameters

(Kruschke 2014):

1. Draw a value from the full conditional distribution of θ
(i)
1 |θ

(i−1)
2 , . . . , θ

(i−1)
k .

2. Draw a value from the full conditional distribution of θ
(i)
2 |θ

(i)
1 , θ

(i−1)
3 , . . . , θ

(i−1)
k .

. . .

k. Draw a value from the full conditional distribution of θ
(i)
k |θ

(i)
1 , . . . , θ

(i)
k−1.

In each case above, superscripts (i) and (i−1) represent the ith and (i−1)th

draws from the full conditional distributions, respectively. After step k, the

method returns to step 1, with the value of i now increased by one. This

continues until i has reached a large number, say 10,000. The recorded

draws for each parameter eventually come from the posterior distribution for
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that parameter, but the first few draws should be discarded (Kruschke 2014,

Gelman et al. 2014).

1.7.2 Metropolis algorithm

If the full conditional distributions of a parameter cannot be calculated,

for example if the normalising constant cannot be evaluated, then an alter-

native is to use the Metropolis algorithm, which was originally developed by

Metropolis et al. (1953) and was generalised by Hastings (1970). As with

the Gibbs sampler, this is a random walk, with an acceptance rule to allow

convergence to the target distribution (Gelman et al. 2014). This proceeds

as follows (Gelman et al. 2014):

1. Draw an arbitrary value θ(0) from a starting distribution p0(θ) (Gel-

man et al. 2014). This starting distribution may be the unnormalised

posterior distribution of θ, i.e. the product of the prior and likelihood

without the normalisation constant (Kruschke 2014).

2. Sample proposal θ∗ from a proposal distribution Jt(θ
∗|θ(t−1)), where t

indexes the iteration.

3. To decide whether to accept this proposal, calculate the ratio of densi-

ties r = p(θ∗|y)

p(θ(t−1)|y)
.

4. Set the current value equal to the proposal θ(t) = θ∗ with probability

min(r, 1), keeping the current value equal to the previous value θ(t) =

θ(t−1) otherwise.

5. Repeat steps 2 to 4 many times, until the values of θ(t) come from a

stationary distribution.

The Metropolis algorithm must be tuned, to ensure that the acceptance

rate is not too high or too low. Tuning is the process of changing the variance

parameter of the proposal distribution, in order to obtain an acceptance rate
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close to an ideal value. A very high rate means that autocorrelation in the

chain is very high, so that the chain is slow to explore the parameter space.

On the other hand, a very low acceptance rate means that the chain stays

in one place for long periods of time, so that a very long run is needed. The

tuning procedure can be based upon an initial number of iterations (Gelman

et al. 2014).

1.7.3 Alternative methods

It is possible to carry out Metropolis algorithm calculations within a

Gibbs sampler, for example when some conditional posterior distributions

can be sampled from directly and some cannot. This can be done with

Gibbs steps for all possible parameters and one dimensional Metropolis for

all other parameters. Alternatively, parameters can be updated in blocks,

with either a Gibbs or a Metropolis step for each block. Gibbs sampling is

generally preferred, where possible, since it is the simplest MCMC algorithm

and the fact that the Metropolis algorithm can reject moves means that it

can be slower to explore the parameter space (Gelman et al. 2014).

Both Gibbs and Metropolis are types of the more general Metropolis-

Hastings algorithm, which allows for non-symmetrical proposal distributions

and so has a different form of the acceptance ratio (Gelman et al. 2014).

Another type of MCMC algorithm is Hamiltonian Monte-Carlo, which is

recommended by Gelman et al. (2014) and is used by the authors’ program

STAN.

A recently developed alternative to MCMC is integrated nested Laplace

approximation (INLA), which is based upon a deterministic algorithm that

directly approximates the posterior marginal densities (Rue et al. 2009, Blan-

giardo & Cameletti 2015). It is specifically designed for latent Gaussian mod-

els and is stated to be a faster, yet still valid, alternative to MCMC (Rue

et al. 2009, Blangiardo & Cameletti 2015).
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1.7.4 Convergence diagnostics

A practical issue for Bayesian modelling, that must be accounted for, is

that of convergence diagnostics. The Markov chains must be run for many

iterations, until eventually the estimated values for each parameter are drawn

from a stationary posterior distribution, which closely approximates the true

distribution of the parameter (Gelman et al. 2014). Convergence diagnostics

are used to ensure that the stationary distribution has been reached. Two

graphical methods for assessment of convergence are trace and density plots.

The trace plot is simply a plot of estimated parameter values by iteration

number. If convergence has been reached, this plot shows values centred

around a stationary median, so that the plot looks like a “hairy caterpillar”

(Gelman et al. 2014). If multiple chains are run, the distributions of these

values for each chain will be centred on the same median value, with the same

variance, if convergence has occurred. Plotting the density of the values of

converged chains produces a shape that is similar to that expected for the

posterior distribution of the parameter of interest (Gelman et al. 2014), e.g.

a bell-shaped curve should be produced, for a Normal posterior distribution.

1.8 Conclusions

This chapter presented the motivation for the research in this thesis,

namely the importance of developing a global understanding of lake health

through the use of a database of observed ecological parameters.

The main research question to be answered is whether a limited quantity

of accurate in situ lake data can be fused with remotely-sensed data, taking

accuracy from the in situ data and spatial and temporal information from

the remotely-sensed data.

One way to accomplish this fusion, taking into account the different spa-

tial and temporal supports of the two datasets, is through statistical down-

scaling, a method that is focussed on in this thesis.
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This chapter also presented methodology for the spatial and temporal

modelling of the data, through geostatistics and nonparametric smoothing.

These methods are applied in an initial analysis of the data in the following

chapter.



Chapter 2

Initial spatial and temporal

analysis of data

In this chapter, the patterns over space and through time in the in situ

and remotely-sensed data are investigated, through the use of standard sta-

tistical approaches that are widely used for the analysis of data. This leads

to an understanding of how the data relate to each other and indicates which

techniques for data fusion are suitable for this application. The in situ and

remotely-sensed data are explored separately, to investigate patterns over

space and time. The chapter focusses on the data available for Lake Bal-

aton, Hungary, discussed in the previous chapter, since Lake Balaton is of

interest due to its historically poor water quality and also since the in situ

and remotely-sensed data are available for several variables over a long period

of time. The chapters following this one build upon this work, going beyond

the standard approaches, through the development and application of more

complex statistical models that allow the fusion of information from the two

types of data investigated, rather than investigating them separately.

Firstly, an exploratory analysis is carried out on the in situ data for

temperature, chlorophylla and total suspended matter. Patterns over space

and time are explored through the application of mixed-effects models, in

order to understand how the water quality variables relate to one another,

44
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while taking into account the effect of location.

Spatial patterns evident in the remotely-sensed temperature data are ex-

plored through the application of kriging. Temperature data are investigated

in this initial analysis, since there are fewer grid cells of temperature data

covering the lake, in comparison to the number of cells of log(chlorophylla)

data or of log(total suspended matter) data, so that the analysis is less

computationally intensive. Common spatial and temporal patterns in the

remotely-sensed data are also investigated, through S- and T-mode principal

component analysis (PCA), where PCA is carried out on a matrix of time

versus locations and on a matrix of locations versus time, respectively.

Finally, additive models are used to investigate how well the remotely-

sensed temperature data relate to the in situ data.

These analyses provide an understanding of patterns in the data, which

are taken account of in subsequent analyses.

2.1 Exploring the in situ data

In situ data are available from two sources for Lake Balaton, BLI and

KDKVI, for the variables log(chlorophylla concentration (mg/m3)), log(total

suspended matter (g/m3)) and temperature (◦C) (see Table 2.1). Data from

Source Var.
Location

Dates
Keszthely Szigliget Szemes Tihany Siófok

BLI All 90 27 27 92 24 Feb 2006 – Dec 2011

KDKVI

{ Chl 204 203 204 205 Apr 2002 – Mar 2012
Temp 82 81 82 82

}
Apr 2002 – Dec 2006

TSM 45 44 45 45

Table 2.1: Numbers of in situ data available for Lake Balaton, for the variables
chlorophylla (Chl), lake surface water temperature (Temp) and total
suspended matter (TSM).

the BLI are available from the start of 2006 until the end of 2011, while

data from KDKVI are available from the start of 2002 until the start of

2012. Before 2007, the KDKVI data are available approximately fortnightly

for the three variables, with log(total suspended matter) only sampled every
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second sampling trip. From 2007 onwards, only log(chlorophylla) is available

from KDKVI, sampled weekly. Since data are sampled irregularly, there are

only 17 months for which data are available for all nine in situ locations. All

calculations and plots are produced using R (R Core Team 2017).

2.1.1 Exploratory plots

Data for each of the three variables of interest are plotted over time,

with separate lines for each location (see Figure 2.1). This plot shows that
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Figure 2.1: Plot of log(chlorophylla concentration) over time, with separate lines
for each location.

log(chlorophylla) follows similar patterns over time for each location, with one

main peak and one smaller peak per year. It can also be seen that chlorophyll

levels vary spatially along the lake. For example, levels at Keszthely in the

western basin of the lake (KesB and KesK in Figure 2.1) are generally higher

than levels at Siófok, in the eastern basin of the lake (SioB and SioK in Figure

2.1), which is explained by the presence of the main inflow, the river Zala, at

the western end of the lake, bringing with it increased nutrients. A similar

plot is produced for log(total suspended matter) (see Figure 2.2). As can

be seen from this plot, the pattern in total suspended matter concentration

is much more variable than that for log(chlorophylla). Unlike chlorophyll,
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Figure 2.2: Plot of log(total suspended matter concentration) over time, with
separate lines for each location.

there appears to be a change in the mean of total suspended matter over the

longer term, with decreasing levels between 2002 and 2004 and then slightly

increasing levels after 2008. For the data in later years, there appears to be a

single peak in total suspended matter per year. Finally, a plot of temperature

against time, with separate lines for each location, is produced (see Figure

2.3). This plot shows that temperature does not vary much over the lake,
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Figure 2.3: Plot of temperature over time, with separate lines for each location.

but has a strong seasonal pattern, with high values during summer and low
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values during winter. To understand how the three variables relate to each

other, scatterplots are produced (see Figure 2.4). These plots show that there
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Figure 2.4: Plots of log(chlorophyll), log(total suspended matter) and tempera-
ture, coloured by location. Pearson’s correlation coefficients are also
shown.

is a moderately strong, positive, linear relationship between log(chlorophylla)

and log(total suspended matter), with a correlation of 0.441. This positive

relationship makes sense, since the same processes leading to increases in

suspended matter in the lake may also lead to increases in chlorophyll, e.g.

increased soil runoff from nearby farms, or additional floating vegetation en-

tering the lake. Increases in certain bacteria and algae may directly increase

both measures. There also appears to be a weak positive linear relationship

between log(total suspended matter) and temperature, with a correlation of

0.222. The relationship between log(chlorophylla) and temperature is more

complex, with little, if any, positive relationship. It appears that variability in

log(chlorophylla) increases as temperature increases above around 15◦C. This

more complex relationship may be explained by the life cycle of cyanobacte-

ria blooms, with multiple blooms per year, with timings influenced by water

temperature amongst other environmental factors (Teta et al. 2017).
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2.1.2 Mixed-effects models for the in situ data

In order to understand how the in situ data vary over space and time,

models are fitted in a mixed-effects framework. Firstly, a model is fitted,

predicting log(chlorophylla) from log(total suspended matter), temperature,

year (to account for long-term trend), longitude, latitude and harmonic terms

accounting for seasonal patterns of two peaks per year, with location fitted

as a random effect. It is found that longitude does not have a significant

effect on log(chlorophylla), so it is removed from the model, followed by year,

giving:

log(chlorophylla)i = β0 + β1 log(total suspended matter)i + β2 (temperature)i

+ β3 (latitude)i + β4 cos

(
2π(day of year)i

365

)
+ β5 sin

(
2π(day of year)i

365

)
+ β6 cos

(
4π(day of year)i

365

)
+ β7 sin

(
4π(day of year)i

365

)
+ b (location)i + εi.

(2.1)

The model showing the estimated values of the coefficients is:

E
(
log(chlorophylla)

)
i

= 169.7 + 0.302 log(total suspended matter)i − 0.030 (temperature)i

− 3.585 (latitude)i − 0.289 cos

(
2π(day of year)i

365

)
− 0.389 sin

(
2π(day of year)i

365

)
− 0.075 cos

(
4π(day of year)i

365

)
+ 0.399 sin

(
4π(day of year)i

365

)
.

(2.2)

The random errors are εi ∼ N(0, σ2
ε) and location is fitted as a random effect,

with b ∼ N(0, σ2
b ). Estimated values of the variance parameters are 0.213 and

0.018, for σ2
ε and σ2

b , respectively, giving an estimate of intraclass correlation

(i.e. of σ2
b/(σ

2
b + σ2

ε)) of 0.078, meaning that only a small proportion of the

total variability in the data is estimated to be due to the random effect. This

small value is possibly due to latitude being included as a term in the model,

causing a lack of identifiability between latitude and the random effect of
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location. Even with this possible identifiability issue, the model is still useful

for understanding the main patterns in the data. Four harmonic terms are

included, the first two to fit a sine curve with a period of 365 days and the

second two to fit a sine curve with a period of (365/2) days, allowing both

the large and small peaks to be accounted for each year. All terms have p-

values of less than 0.05. A plot of the data and predicted values is produced

(see Figure 2.5). These predicted values are only calculated when data for
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Figure 2.5: Plot of in situ log(chlorophylla) by year, showing predictions from
model 2.1.

all predictor variables are available, so some small gaps appear on the plot.

The plot suggests that the predicted values from the model follow the in situ

data fairly closely, so the model appears to be a good fit to the data. This

model estimates that log(total suspended matter) has a small positive effect

on the value of log(chlorophylla), while temperature has a slightly negative

effect. The model also estimates that log(chlorophylla) levels decrease by

3.6 units for every increase in latitude of one degree North. It makes sense

that only one of longitude and latitude is included in the model, as the data

locations are located fairly close to a straight line. The fact that all sine and

cosine terms are statistically significant indicates that the model does fit two

separate peaks per year, agreeing with the exploratory analysis.
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Similarly, a model is fitted for log(total suspended matter). After remov-

ing both longitude and latitude, this model is:

log(total suspended matter)i = α + β1 log(chlorophylla)i + β2 (temperature)i

+ β3 (year)i + β4 cos

(
2π(day of year)i

365

)
+ β5 sin

(
2π(day of year)i

365

)
+ β6 cos

(
4π(day of year)i

365

)
+ β7 sin

(
4π(day of year)i

365

)
+ b (location)i + εi.

(2.3)

The model with the estimated coefficients shown is as follows:

E
(
log(total suspended matter)

)
i

= 173.7 + 0.610 log(chlorophylla)i − 0.059 (temperature)i

− 0.086 (year)i − 1.075 cos

(
2π(day of year)i

365

)
− 0.396 sin

(
2π(day of year)i

365

)
− 0.149 cos

(
4π(day of year)i

365

)
− 0.395 sin

(
4π(day of year)i

365

)
.

(2.4)

Location is again included as a random effect, with b ∼ N(0, σ2
b ), and the

errors are εi ∼ N(0, σ2
ε). The estimates of the variance parameters are 0.258

and 0.424, for σ2
b and σ2

ε respectively, giving an estimate of the intraclass

correlation coefficient of 0.378. This means that a substantial proportion of

variability in the in situ data is estimated as being due to the random effect

of location. The model estimates a positive effect of log(chlorophylla) on

log(total suspended matter), with a slightly negative effect of temperature.

A slightly negative trend is estimated over time, while again two peaks are

fitted per year. All p-values are statistically significant. A plot of the data

and model predictions is produced (see Figure 2.6), which illustrates this fit

to the data. It appears that this model does not capture the peaks in the

data well. Possibly these peaks are caused by another variable that has not

been measured.

In conclusion, both log(chlorophylla) and log(total suspended matter)
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Figure 2.6: Plot of in situ log(total suspended matter) by year, showing predic-
tions from model 2.3.

have strong cyclical patterns, with two peaks per year estimated for each vari-

able. The two variables are positively related and both have a slightly nega-

tive relationship with temperature. Both variables do appear to vary across

the lake. Latitude is estimated to have a significant effect on log(chlorophylla),

while the random effect of location is estimated to explain a fairly large

amount of variability in the data, for log(total suspended matter). There is

no estimated trend over time for log(chlorophylla), while log(total suspended

matter) is estimated to have a very slightly negative trend over time.

Autocorrelation in the model residuals

For each of the two fitted models, (2.1) and (2.3), plots of the autocor-

relation function and partial autocorrelation function for the residuals are

produced (see Figure 2.7). For both models, these plots identify positive

autocorrelation at small lags, meaning that the models should take account

of this autocorrelation within the fitted error structure. The aim is not to

model the autocorrelation structure explicitly, but to account for it as much

as possible, to ensure that the precisions of parameter estimates in the model

are correct. For each model, a simple AR(1) error structure is incorporated.
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Figure 2.7: Plots of the autocorrelation functions and partial autocorrelation
functions for models 2.1 and 2.3.

The models are the same as previous models, with the exception that the

errors are now ε ∼ N(0,Σ), where Σ = Vσ2. V is the correlation matrix of

the form:

V =



1 φ φ2 · · · · · ·

φ 1 φ · · · · · ·

φ2 φ 1 · · · · · ·
...

...
...

. . .

...
...

... 1


, (2.5)

where φ is the AR(1) coefficient, representing how strong autocorrelation is

over time. Estimated AR(1) coefficients are 0.333 and 0.391 for the models

for log(chlorophylla) and log(total suspended matter), respectively. These

models are named (2.1a) and (2.3a), respectively. After fitting these mod-

els, plots of the autocorrelation and partial autocorrelation functions for the

residuals are produced (see Figure 2.8). These plots show that autocorre-

lation is very small at the first few lags, for both models. It appears that

fitting an AR(1) error structure is appropriate here, as it captures much of

the autocorrelation in the residuals. After fitting this error structure, there

is no change in which variables are statistically significant and the estimated

coefficients of variables in each model change very little.

The AR(1) error structure is further investigated in Chapter 3, where,
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Figure 2.8: Plots of the autocorrelation functions and partial autocorrelation
functions for models 2.1a and 2.3a, with AR(1) error structure.

motivated by its use here, the error structure is incorporated within a statis-

tical downscaling model (see model 3.5 on page 105).

Conclusions

Through fitting mixed-effects models, both log(chlorophylla) and log(total

suspended matter) were found to depend on temperature and each other.

Both variables were estimated to have two peaks per year, in spring and

summer. Exploratory analyses showed differences in log(chlorophylla) and

log(total suspended matter) between locations. Therefore, location was fit-

ted as a random effect, meaning that the effect of other variables could be

investigated, while the effect of location was accounted for. Log(chlorophylla)

was estimated to have a decreasing trend as latitude increased, while log(total

suspended matter) was estimated to have a very slight negative trend over

time. The random effect of location was estimated to explain a fairly high

proportion of variability in the data, compared to the errors, for log(total

suspended matter), but the effect on log(chlorophylla) was difficult to under-

stand, due to possible lack of identifiability with the fixed effect of latitude.
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2.2 Exploring the remotely-sensed data

Remotely-sensed data are available from ARC-Lake (www.laketemp.net),

for the variable lake surface water temperature, and from the Diversity II

inland waters project (www.diversity2.info/products/inlandwaters), for the

variables log(chlorophylla) and log(total suspended matter).

2.2.1 Kriging the ARC-Lake temperature data

Data are available from the ARC-Lake project for lake surface water tem-

perature. These data are obtained from the (Advanced) Along-Track Scan-

ning Radiometers ((A)ATSR), instruments designed to measure sea surface

temperature, on board the European Space Agency’s ERS-2 and ENVISAT

satellites. The data are available for 41 grid cells, covering Lake Balaton,

in the form of monthly averages. They are derived from measurements of

reflected and emitted radiation, taken at various wavelengths, for individual

pixels, and are then averaged over space and time, to form data resolved over

an approximately 0.05◦ grid and monthly-averaged. Each dataset is avail-

able for either day or night values. The daytime observed spatially-resolved

monthly average time series is used here. These data are available between

July 1995 and March 2012, covering the sampling periods of both the BLI

and the KDKVI data. The locations of grid cell centres are superimposed

upon a map showing the in situ sampling locations for Lake Balaton (see

Figure 2.9). From this map, it is seen that the 41 grid cells have a reason-

ably good spatial coverage of the lake, in comparison to the in situ data.

However, there are some missing cells for certain months. It is rare for data

to be available for all 41 grid cells for each month, but many months do

have a very high proportion of data available. Table 2.2 shows that only 10

months have data available for all 41 grid cells, but 66 months have data

available for at least 31 cells and 125 months have data available for at least

21 cells.
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Figure 2.9: Map of Lake Balaton, showing the nine in situ sampling locations
and the forty-one ARC-Lake remote sensing data grid cell centres.
Map c©OpenStreetMap contributors (www.openstreetmap.org).

Number of grid cells with available data Number of months
0 24
1 – 10 24
11 – 20 28
21 – 30 59
31 – 40 56
41 10

Table 2.2: Table of number of grid cells with available data by number of months.

Kriging is a method for spatial prediction, from the geostatistics litera-

ture. It enables the prediction of a variable, based upon a variogram model

that models semivariance as a function of distance (Bivand et al. 2013).

Application to the remotely-sensed temperature data for 2006

An exploratory analysis is carried out for the year 2006, to both explore

the spatial patterns across the lake for each month and to explore differences

in those patterns over time. Plots are produced of lake surface water tem-
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perature for each month (see Figure 2.10), using the R package sp (Bivand

et al. 2013), with the initial data read-in aided by ncdf4 (Pierce 2017). The
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Figure 2.10: Remotely-sensed lake surface water temperature data (◦C) for Lake
Balaton, for a selection of months in 2006.

plots for June and August are missing, since only a few grid cells have avail-

able data for those months. Data for each month are plotted on a different

scale, since otherwise spatial patterns are obscured. This is due to the much

larger variation in temperature over time compared to space. There are gen-

erally smooth changes in temperature across the lake, within each month.

Although 41 grid cells provide a reasonable spatial coverage of the lake, the

spatial patterns can be more easily understood if interpolation is carried out,



CHAPTER 2. INITIAL ANALYSIS OF DATA 58

which can be accomplished through kriging.

Before kriging is carried out, a linear trend is fitted to the data, so that

this trend does not obscure the remaining spatial variation. The model fitted

is Zi = α+β1(longitude)i+β2(latitude)i+εi, for i = 1, . . . , n, where Zi is the

temperature at location i and εi ∼ N(0, σ2
LM) are the random errors. There

is no temporal component to this model. Longitude has a significant effect

for April, October and December, while latitude has a significant effect for

January and December. In order to keep consistency between modelling for

all 12 months, both longitude and latitude are left in each model.

Variograms are fitted to the residuals of these models (see Figure 2.11),

using the R package geoR (Ribeiro & Diggle 2001), using the Matérn co-

variance model. The plots display the sample variograms and the resulting

fitted variogram models, fitted by maximum likelihood (ML) and restricted

maximum likelihood (REML). These models fit the sample variograms fairly

well, except for April and May. This poor estimation for these months may

be due to the fairly widely-spaced remotely-sensed temperature data, which

are on a regular grid, meaning that there are no data located closely enough

to get a good estimation of the variogram at small distances. The estima-

tion of the nugget effect is therefore difficult. The scale of spatial variance

is different for different months, with semivariance reaching around 0.03 for

January, but close to 2 for April.

Universal kriging is carried out and plots are produced for the estimates

and the corresponding standard errors from this method (see Figures 2.12

and 2.13). It is unclear whether there are common spatial patterns in

temperature along the lake. For January to March, there is a colder part

of the lake around the centre, but the pattern changes from April onwards.

Figure 2.13 shows that uncertainty is lowest closest to the grid cell centres, as

can be expected. April and May have the largest universal kriging standard

errors of the months investigated, which may be due to the poor estimation

of the variogram models for these two months, which in turn may be due
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Figure 2.11: Variograms for linear model residuals for Lake Balaton 2006 tem-
perature data. Circles are sample variograms, solid line is model
fitted by ML and dotted line is model fitted by REML.

to a lack of data over space for these months. There is a sudden change

between two neighbouring grid cells for the April 2006 data, meaning that

the variogram has high nugget variance in comparison to those for other

months, which may explain why this month has the highest standard errors

of all months investigated.
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Figure 2.12: Universal kriging predictions for temperature for 2006.

2.2.2 Principal component analysis (PCA) of the remotely-

sensed temperature data

Since the previous kriging analysis suggests that there are common pat-

terns over time at each location (with higher values of temperature in sum-

mer) and potentially some common spatial patterns for different times, these

patterns are more formally analysed using principal component analysis (PCA).

This method reduces the dimensionality of a dataset, through transforming

to a new set of uncorrelated variables, which retain as much variation as

possible (Jolliffe 2002). The new set of variables is ordered from largest to

smallest in terms of the amount of variation explained, so that the first few
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Figure 2.13: Universal kriging standard errors for temperature for 2006.

variables explain most of the variation in the original data set (Jolliffe 2002).

PCA works by carrying out a decomposition of an m×n matrix of data X,

with m measurements on each of n variables, so that X = TPT, where P is an

orthonormal projection matrix (i.e. PTP = I, where I is the identity matrix)

and T is the projection of n-dimensional X onto the new r-dimensional space,

defined by P (i.e. T = XP) (Demšar et al. 2013).

P ∈ <n×r is the loading matrix and T ∈ <m×r is the score matrix, where

r is the number of independent columns in X, i.e. the rank of X, and where

r is bounded by min(m,n) (Demšar et al. 2013).

The columns of P are the directions with the maximum variance in the
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data, so the first column represents the direction with the maximum variance

of all directions and is called the first principal component (PC). The second

column represents the direction with the second largest amount of variance

in the data and is called the second PC. Further PCs are defined similarly

(Demšar et al. 2013).

Columns of P are eigenvectors of the covariance or correlation matrix

of the data, Σ, where Σ = X̆TX̆
m−1

, where X̆ is X, with the mean subtracted

from each column. Where the correlation matrix is used, each column is also

scaled to have variance 1 (Demšar et al. 2013).

Σ is defined as being positive semidefinite, so that its eigenvalues are all ≥

0. This means that ordering the decomposition of Σ, so that the eigenvalues

are in descending amplitude, gives PΛPT = Σ, where P is the score matrix

and Λ = diag(λ1, ..., λr, 0, ..., 0) is the diagonal matrix of eigenvalues, with

λ1 ≥ λ2 ≥ ... ≥ λr ≥ 0 (Demšar et al. 2013).

X is usually approximated by a small number of PCs k, where k << r ≤

n, which explain most of the variance in the data, i.e. Λ has a small number

of large eigenvalues and many small eigenvalues.

Denoting Pk as the matrix of the first k columns of P, the corresponding

scores matrix is Tk = XPk and the total proportion of variance explained is

Tk = vk
vr
× 100, where vk =

∑k
i=1 λi and vr =

∑r
i=1 λi = trace(Λ) = trace(Σ)

(Demšar et al. 2013).

In practice, PCA is usually carried out by singular value decomposition

(SVD). The SVD of an n× p matrix X is:

X = ULAT (2.6)

where U and A are n× r and p× r matrices, respectively, with orthonormal

columns such that UTU = Ir and ATA = Ir (where Ir is the r × r identity

matrix), L is an r × r diagonal matrix and r = rank(X) (Jolliffe 2002).

A and L give the eigenvectors and the square roots of eigenvalues of
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XTX, i.e. the coefficients and standard deviations of the PCs for sample

covariance matrix S. U contains the PC scores, scaled to have variance 1
n−1

.

The columns of U are the eigenvectors of XXT, corresponding to non-zero

eigenvalues, which are of interest if the roles of observations and variables

are reversed (Jolliffe 2002).

Spatiotemporal datasets, which are made up of the observed values of

variables, collected at different locations and at different times, are considered

to be made up of three subspaces. These are geographic space, temporal

space and attribute space. Six modes of PCA can then be potentially carried

out, by defining the data matrix using two of the three spaces. These are

defined by Richman (1986) as:

• O-mode — attributes versus time

• P-mode — time versus attributes

• Q-mode — attributes versus locations

• R-mode — locations versus attributes

• S-mode — time versus locations

• T-mode — locations versus time

PCA is commonly applied in the atmospheric science literature, where

only one variable is measured at each location, over a period of time (Demšar

et al. 2013). A similar application of PCA is useful for the Lake Balaton

remotely-sensed temperature data, since it reveals common patterns in the

data over space and time, for the single variable. The most common mode

of PCA used in the atmospheric science literature is S-mode, where the data

matrix has location as the columns (variables) and time as the rows (Demšar

et al. 2013), but T-mode, which uses a transposed version of the S-mode

data matrix, is also used (Jolliffe 2002). The main difference between the

two modes is that S-mode aims to isolate groups of stations that co-vary



CHAPTER 2. INITIAL ANALYSIS OF DATA 64

similarly, useful for regionalisation or observing spatial patterns of interest,

whereas T-mode aims to isolate subgroups of observations with similar spatial

patterns, thereby allowing a simplification of the time series (Richman 1986).

Application to the Lake Balaton Data

Both S-mode and T-mode PCA are carried out, in order to understand the

common patterns in the remotely-sensed temperature data for Lake Balaton

over space and over time.

S-mode PCA S-mode PCA aims to find spatial locations that have similar

temporal patterns (Richman 1986), which enables the reduction of the spatial

dimensionality of the data. The Lake Balaton dataset is formed into a matrix,

with the 41 locations in the lake as the columns and the 405 timepoints as

the rows. The members of the matrix xi,j are the observations of lake surface

water temperature (◦C). The matrix is:

X =


x1,1 · · · x1,41

...
...

x405,1 · · · x405,41

 . (2.7)

Performing an S-mode PCA on this dataset allows the investigation of

the variability in the time series of temperatures across different locations

in the lake, to investigate any patterns. Depending on the results, a fur-

ther investigation into reducing the spatial dimensions of the data could be

appropriate.

Firstly, the variances of the measurements at each of the 41 locations are

investigated. These are all fairly similar, at around 80 for all locations. Due

to the similarity of the variances within each location, either the correlation

or the covariance matrix of the data can be used for computation of the PCs.

It is decided to centre each column of the data matrix to have mean zero and

then scale each column to have variance one, similar to using a correlation
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matrix in the calculations. Let the scaled matrix be X̆.

The PCA procedure is now carried out. The first PC is found to explain

99.92% of variance in the data, with the second largest PC only explaining

0.043% of variance in the data. This is illustrated by a scree plot, which shows
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Figure 2.14: Scree plot (left) and biplot (right) for S-mode PCA on ARC-Lake
data.

the proportions of variance explained by the first ten PCs, and a biplot, which

shows the first and second PCs and the directions of the greatest variance

in the variables (see Figure 2.14). The scree plot shows that only the first

component really explains any variance in the data, with all of the other

PCs, from 2 onwards, explaining almost zero variance. In addition, the

biplot shows that the directions of the greatest variances in the variables are

all very similar, all in the direction of PC1, with almost no variance in the

direction of PC2. The biplot shows that the score for time 331 on component

2 is fairly high, but plots of the data over time for each location do not show

anything unusual about the data for this time point. This may be due to

the fact that the main patterns of variance in the data are already explained

by the first component, so that the remaining components reflect very small

changes in patterns in the data.

The variable loadings for PC1, α1,1, ..., α41,1, are all approximately -0.156,
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so that the first principal component represents an average of the temporal

patterns for each location. Since this first component explains such a high

proportion of the variance of the data (99.92%), any contrasts of temporal

patterns between different locations explain very little variance, compared to

the average pattern.

These results may be due to the patterns of temperature over time being

very similar for all locations in Lake Balaton, so that the differences in tem-

poral patterns in temperature between locations are very small. The PCA

has not identified any distinct separate groups of remotely-sensed locations

that share similar temporal patterns in temperature, with the exception of

the case where all locations are put into a single group.

A plot of the loadings for the first PC is produced, along with their
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Figure 2.15: Plot of PC1 loadings (top) and scores (bottom) for S-mode PCA.

associated scores (see Figure 2.15). The plot legend makes it clear that there

is very little variation in PC loading values across the lake. The scores have

their highest values in winter, so they may represent the negative of average

LSWT over time (i.e. highest values in summer and lowest values in winter).

Loadings have been arbitrarily assigned negative values, so that the scores

reflect this. The map of S-mode PC loadings shows very little variation in
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the PC loading values, so that the variation in LSWT over time seems to be

similar over all locations in the lake.

T-mode PCA T-mode PCA aims to find timepoints with similar spatial

patterns (Richman 1986), which could enable the reduction of the temporal

dimensionality of the data. A T-mode PCA, where observations of LSWT

are formed into a matrix with timepoints as columns and locations as rows,

can be carried out. Here, X is a (41 × 405) matrix. The scores matrix

T = X̆P is a (41 × 41) matrix, where P is the (405 × 41) loadings matrix

and X̆ contains the centred and scaled columns of X. Here, scores for each

PC are a linear combination of scaled LSWT over time at each location.

The first seven PCs cumulatively explain 39, 59, 71, 78, 84, 88 and 91 %

of variance in the data, respectively, as shown in the scree plot (see Figure
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Figure 2.16: Scree plot (left) and biplot (right) for T-mode PCA on ARC-Lake
data.

2.16). The appropriate number of PCs could be between 3 and 7, based on

the percentages of variance explained. The biplot looks like a dandelion head,

with variables pointing in all directions. Since the PCs are weighted averages

of LSWT, with different weights at different times of the year, this pattern

makes sense. LSWT increases and decreases fairly constantly throughout the
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year, so while weights for one timepoint could be increasing with respect to

one PC, they could be increasing or decreasing with respect to another.

A plot of the first T-mode PC is produced (see Figure 2.17). Here, the
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Figure 2.17: Plot of PC1 scores (top) and loadings (bottom) for T-mode PCA.

map represents the scores, rather than the loadings, and the time series plot

represents the loadings, rather than the scores. The first T-mode PC seems

to be an average of LSWT over the years, or at least represents the most

common pattern of LSWT over the years. The loadings represent the time-

points when this pattern is clearest in the data, i.e. highest values are when

the observed pattern of LSWT is closest to the average over the years. Since

several PCs are needed, it appears that there are several different patterns

in LSWT over the lake, throughout the years of study.

Conclusions The conclusion from the S-mode PCA is that all locations in

the lake have fairly similar temporal patterns of remotely-sensed tempera-

ture. The dimensionality of the data could possibly be reduced, by taking the

average of the temperatures across the lake, at each time point. The results

from the T-mode PCA are much less clear. A possible interpretation is that

the spatial patterns of remotely-sensed temperature vary over time, with
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few groups of times that share similar spatial patterns in remotely-sensed

temperature.

PCA provides a useful method for dimensionality reduction and for pro-

viding an understanding of the main patterns in the data. In some applica-

tions, PCA may be the main piece of formal statistical analysis. However,

the method cannot be used to make predictions at new locations, except in

combination with another method, such as principal component regression.

There is therefore a need to move onto more complex methods, while taking

into account the understanding of the spatial and temporal patterns in the

data that is gained from the PCA.

2.3 Investigating the relationship between in

situ and remote sensing data through ad-

ditive modelling

As noted in the introductory chapter, additive modelling provides a method

for the smoothing of data over space and over time. Additive modelling is

applied here, to predict temperature at in situ data locations, from remotely-

sensed temperature data. This demonstrates whether smoothing the data

spatially improves the estimates of in situ temperature, compared to simply

taking the remote sensing data value at the nearest grid cell to the location

of each in situ data point.

2.3.1 Application to the Lake Balaton data

In order to investigate how well the in situ and remotely-sensed data

for log(chlorophylla) relate to each other, the datasets are matched. This

could be accomplished by simply comparing the in situ data points to the

remotely-sensed data points with the nearest cell centres in Euclidean dis-

tance. Alternatively, a smooth surface could be fitted to the remotely-sensed
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data for each time point, with predictions made at the in situ data locations.

This could be accomplished by kriging, as carried out in a previous section,

but this section focusses on additive modelling, due to the ease of adding

temporal components to the model.

Since several months have too few available remotely-sensed tempera-

ture data to fit a good spatial surface, the reconstructed fortnightly daytime

remotely-sensed temperature data are used here. Firstly, the in situ tem-

perature data are matched by their sampling dates to their nearest set of

remotely-sensed temperature data in time. The data for the four in situ

sampling locations that are monitored by the KDKVI are focussed on here,

due to their fairly regular fortnightly sampling. Data are available between

2002 and 2006. The analysis is carried out using the R package mgcv (Wood

2006).

A model is fitted to the remotely-sensed temperature data:

yij = f(x1i, x2i) + f(wj) + f(zj) + εij, (2.8)

where yij is the remotely-sensed temperature for location i at time j, f(x1i, x2i)

is a smooth function of longitude x1 (degrees East) and latitude x2 (degrees

North), f(wj) is a smooth function of year and f(zj) is a smooth function

of day of the year. f(x1i, x2i) and f(wj) are fitted by thin plate regression

splines, while f(zj) is fitted by cyclic cubic splines, which ensures that the

fitted value at day 1 is similar to the fitted value at day 365. The possible

presence of spatial autocorrelation is assessed through the fitting of vari-

ograms to the model residuals, with only f(x1i, x2i) as a predictor, ensuring

that the temporal autocorrelation does not enter the variogram calculations.

The resulting fitted sample variograms, fitted to residuals for model 2.8 for

each month, lie within the Monte-Carlo envelope (which consists of 100 sim-

ulated variograms with no spatial autocorrelation assumed (Diggle & Ribeiro

2007)), indicating that there is no evidence of spatial autocorrelation remain-
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ing in the residuals. Temporal autocorrelation is assessed through fitting the

model with only f(wj) and f(zj) as predictors and plotting autocorrelation

and partial autocorrelation functions for each location. It is found that an

autoregressive process of order 1 is appropriate, so that the errors are changed

from εij ∼ N(0, σ2) to εi ∼ Nt(0, σ
2V), where:

V =



1 φ φ2 · · · φt−1

φ 1 φ · · · φt−2

φ2 φ 1 · · · φt−3

...
...

...
. . .

...

φt−1 φt−2 φt−3 · · · 1


(2.9)

is the matrix of autocorrelation parameters. P-values for all three terms are

less than 0.05, indicating that they should all remain in the model. These

terms are plotted in Figure 2.18, to show their fitted effects. The estimated

s(lon,lat,8.7)

17.2 17.4 17.6 17.8 18.0

46
.7

5
46

.8
5

46
.9

5

Longitude (degrees East)

La
tit

ud
e 

(d
eg

re
es

 N
or

th
) −1se +1se

Longitude
(degrees East)

La
tit

ud
e

(d
eg

re
es

 N
or

th
)

s(lon,lat,8.7)

1995 2000 2005 2010

−
10

0
5

10

Year

f(
Ye

ar
,1

)

0 100 200 300

−
10

0
5

10

Day of year

f(
D

ay
 o

f y
ea

r,6
.8

6)

Figure 2.18: Plot of smoothing terms for Model 2.8a (left to right): contour and
perspective plots of f(x1i, x2i) and plots of f(wj) and f(zj).

effect of longitude and latitude is much greater along the lake than across
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the lake. It is estimated that remotely-sensed temperatures are greater in

the centre of the lake and close to both ends of the lake. Year is estimated

as being a linear term, so that it can be refitted as such, giving an estimated

increase of 0.031◦C for each one year increase, with a 95% confidence interval

of 0.006◦C to 0.056◦C. The effect of day is fairly strong, with high values in

summer, compared to winter. The model explains approximately 97.8% of

the variability in the data, as assessed from adjusted R2, so that it appears

to be a very good fit to the data. A plot of predictions from model 2.8 at

each of the four in situ locations (see Figure 2.19) shows that the variation
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Figure 2.19: Plot of predictions from model 2.8 at in situ locations, showing
remotely-sensed data (points) and predictions (solid lines).

between the locations is estimated as being very small in comparison to the

variation over time, which seems to agree with the data.

Predictions from model 2.8 are made at the in situ data locations, for

each fortnight. These are compared to the results from simply matching the

in situ data to their nearest remote sensing grid cell centre, for each fortnight.

Root mean squared errors (RMSE) are then calculated, to compare the model

estimates, with smaller values representing a smaller difference between the

predictions and the observed in situ data. The root mean squared errors for

each set of predictions are 3.022 and 2.681, respectively, indicating that using

the additive model including smooth terms for both space and time results
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in improved predictions compared to simply matching in situ data to their

nearest grid cell and fortnight centres.

2.4 Conclusions

This chapter has detailed exploratory analysis of both the in situ data and

the remotely-sensed temperature data, in order to understand the patterns

in the data and to highlight issues that might arise in subsequent analyses.

Strong cyclical patterns were observed in the in situ log(chlorophylla)

and temperature data, with two peaks per year for the log(chlorophylla)

data and one peak per year for temperature data. Patterns are less clear for

log(total suspended matter), with much higher variability over time. Clear

spatial patterns in log(chlorophylla) were also identified for Lake Balaton,

with higher values in the southwest of the lake, near the in-flowing water

from the River Zala. Some spatial variation in temperature was identified,

although the variation over time was much stronger than that over space.

Mixed-effects models were fitted to the in situ data for log(chlorophylla)

and log(total suspended matter). The model for log(chlorophylla) included

terms for log(total suspended matter), longitude, latitude and cyclical terms

for day of the year, suggesting that log(chlorophylla) is affected by the amount

of sediment in the water and has changes in its levels over space and also

over time. Similarly, the model for log(total suspended matter) suggested

that the variable was affected by log(chlorophylla) levels and temperature,

with a slightly positive trend over time and cyclical patterns within each year.

These models and exploratory plots demonstrated the positive relationship

between log(chlorophylla) and log(total suspended matter), and the less clear

relationship between each of these variables and temperature.

Examining the remotely-sensed temperature data revealed that these data

had better spatial coverage than the in situ data. An application of kriging

demonstrated the smooth spatial patterns present in the data, but showed
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that these differed between months. Principal component analysis was per-

formed, in both S-mode and T-mode, which aim to find locations with similar

temporal patterns, and to find times with similar spatial patterns, respec-

tively. The results suggested that all locations have similar temporal pat-

terns, with the first component explaining almost all of the variance in the

data. The scores show that the pattern of high temperatures in summer and

low temperatures in winter is common to all locations. The results of the

T-mode PCA are less clear, with no single principal component explaining a

large proportion of the variance in the data.

Additive modelling was performed, to investigate how smoothing the

remotely-sensed data over space could improve the relationship between the

in situ and remotely-sensed data. The work suggests that there is some vari-

ation over space, but that temporal variation is much stronger. There is a

suggestion that accounting for different spatial and temporal sampling loca-

tions and times helps to bring the remotely-sensed estimates closer to the in

situ data values.



Chapter 3

Statistical downscaling

This chapter discusses statistical downscaling methodology, focussing on

its development and application in the context of lake water quality data,

specifically log(chlorophylla) data. The chapter begins with a discussion

of the background and motivation for the investigation of the technique,

followed by the applications and model developments that these motivate.

Finally, the conclusions that may be drawn from the work in this chapter are

detailed, along with the requirements for further developments.

3.1 Background and motivation

The aim of this thesis is to develop methodology for the fusion of data

with support that differs over space, over time, or over both space and time.

This chapter deals with the spatial aspect of this, with the temporal de-

velopment detailed in chapter 5. The in situ log(chlorophylla) data for

Lake Balaton were obtained from water samples, taken at point locations

directly from the lake surface and then analysed in a laboratory. Conse-

quently, these samples are assumed to be accurate within measurement er-

ror. However, these data tell the investigator very little about the spatial

patterns of log(chlorophylla) over the lake surface, since they cover only 9

locations within a fairly large lake, of approximately 596km2 in surface area

75
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(Palmer et al. 2015). Remotely-sensed data, captured by instruments aboard

Earth-facing satellites that measure surface reflectance data and converted

to log(chlorophylla) data via an algorithm, are also available for Lake Bala-

ton. However, these data are available for averages over grid cells and over

months, meaning that they have different spatial and temporal support from

the point scale in situ data. Additionally, these data require calibration, due

to the indirect nature of the data capture (via an algorithm, which results

in the loss of information on uncertainty). The previous chapter contains

work on additive modelling, which suggests that spatial smoothing of the

remotely-sensed data leads to improved estimation over the lake. In this

chapter, this idea will be taken further, so that the relationship between the

in situ and remotely-sensed data will be modelled, with smoothly spatially-

varying parameters. This chapter aims to develop methodology to fuse the

in situ and remotely-sensed data, in order to take spatial information from

the remotely-sensed data, but calibrate them using the assumed-accurate in

situ data, thus providing improved estimates over the whole lake.

3.2 Spatial statistical downscaling: model de-

velopment

This section introduces spatially-varying coefficient modelling. From this

base, a spatial statistical downscaling model for data fusion of in situ and

remotely-sensed log(chlorophylla) data is developed, followed by an applica-

tion to data for Lake Balaton, which demonstrates the utility of the model

for such data.



CHAPTER 3. STATISTICAL DOWNSCALING 77

3.2.1 Spatially-varying coefficient modelling and sta-

tistical downscaling

In order to fuse data of different spatial support, a statistical model

must be developed that can relate the point-scale in situ and grid-cell-scale

remotely-sensed data. This can be accomplished through a model in which

coefficients are allowed to vary smoothly over space, in a similar way to

the model of Gelfand et al. (2003). In this section, the temporal change-of-

support aspect is ignored, to be investigated in later sections. It is assumed

here that the in situ and remotely-sensed data are collected at the same

time, for each month. Let y = (y1, . . . , yn)T be an n-length vector of in

situ data for a single time, where yi is the in situ data value for location

i (where i = 1, . . . , n) and n is the number of in situ data locations, and

let x = (x1, . . . , xn)T be the vector of remotely-sensed data for the same

time, for the grid cells that contain these in situ locations, so that xi is the

remotely-sensed data value for the grid cell that contains in situ location i.

A simple model relating the two variables is the linear regression model:

yi = α + βxi + εi,

for i = 1, . . . , n, where εi ∼ N(0, σ2
ε) are the random errors, with residual

error variance σ2
ε , α is the intercept coefficient and β is the slope coefficient,

which together control the slope and intercept of the estimated line repre-

senting the relationship between x and y. This model assumes that the

errors have a Normal distribution and that the errors are independent and

Normally distributed around zero, which must be checked after fitting the

model to data. A more natural way of writing this model in the Bayesian

framework makes explicitly clear the distribution of the data:

yi ∼ N(α + βxi, σ
2
ε),
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for i = 1, . . . , n. Here, the mean of the Normal distribution for yi is α + βxi

and the variance is σ2
ε . The model is written in vector form as:

y ∼ Nn(α1 + βx, σ2
εIn),

where 1 is an n-length vector of ones, In is the n × n identity matrix and

Nn() represents the multivariate Normal distribution for a vector of length

n. Writing the model is this form is helpful for making clear the differences

between this model and the more complex models developed in this chapter.

A model with spatially-varying coefficients is:

y ∼ Nn(α+ β � x, σ2
εIn), (3.1)

where � represents the Schur product, or Hadamard product, operation.

The errors of model 3.1 are assumed to be independent, since the spatial de-

pendence structure is accounted for through the coefficients α and β. Here,

α and β are now n-length vectors of coefficients, rather than scalars, with

α = (α1, . . . , αn)T and β = (β1, . . . , βn)T. The model requires one intercept

coefficient and one slope coefficient for each in situ data location, so some

additional information is required in order to be able to fit the model. It

is assumed that α and β each vary smoothly over space, with a correlation

structure that is both valid and fits decreasing correlation with increasing dis-

tance. The Matérn family of correlation functions does this and also allows

for different degrees of smoothness in the underlying spatial processes (Dig-

gle & Ribeiro 2007). The Matérn family was introduced in subsection 1.6.1

on page 20 and contains the exponential and Gaussian correlation functions.

Although any member of the Matérn family would be a sensible choice, the

exponential correlation function (ρ(d) = exp(−φd), where ρ(d) is the corre-

lation between data at distance d apart and φ is a spatial decay parameter,

that controls how quickly the correlation decays towards zero as d increases)
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is chosen. Compared to the Gaussian function, the exponential function is

simpler, since choosing φ is more difficult on the squared scale of the Gaussian

function, since changes in the spatial decay parameter cause larger changes

in the resulting speed of decay to zero for the Gaussian function.

Model 3.1 is fitted in the Bayesian framework. This allows the incor-

poration of prior distributions, which provide information in the absence of

information from the data. Fitting the model in the Bayesian framework

allows the fitting of the model to data for a small number of locations, which

is the case for the lake water quality data for Lake Balaton.

Prior distributions for α and β are as follows:

α ∼ Nn

(
0, σ2

αexp(−φαD)
)

and

β ∼ Nn

(
1, σ2

βexp(−φβD)
)
,

where the correlation structure chosen is the exponential spatial correlation

structure, with D being the symmetrical n× n matrix of distances between

in situ locations, so that:

D =


d1,1 · · · d1,n

...
...

dn,1 · · · dn,n

 ,

where di,j is the distance between in situ locations i and j, for i = 1, . . . , n

and j = 1, . . . , n. φα and φβ are the spatial decay parameters, representing

how fast correlation decays towards zero as distance increases, while σ2
α and

σ2
β are the spatial variance parameters, representing how variable estimates

of α and β are over space. The prior mean vectors are chosen to be 0 and

1, since the in situ and remotely-sensed data are both measures of the same

variable, log(chlorophylla), so that the relationship between these data is

expected to be relatively close to the line of equality. Variance parameters

are given non-informative prior distributions, since nothing is known about
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the values of these parameters a priori. These prior distributions are inverse-

gamma distributions:

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ) and

(σ2
ε)
−1 ∼ Ga(aε, bε),

where small values of a and b, such as 0.001 and 0.001, give noninformative

prior distributions (Lunn et al. 2013). Small values of a and b have been

used extensively in the literature, including in Clark & Gelfand (2006) and

Waller & Carlin (2010). Gelman et al. (2014), however, note that there is

no proper limiting distribution with a = 0.001 and b = 0.001 and state that

posterior inferences are in fact sensitive to the choice of a and b. Sahu et al.

(2006) and Sahu et al. (2010) instead recommend choosing the values 2 and

1 for a and b, respectively, to lead to a prior distribution with mean 1 and

infinite variance. In order to investigate whether using the values a = 2

and b = 1 in place of a = 0.001 and b = 0.001 affects the results, model

3.1 is fitted using both of these sets of values for the prior distributions

of the variance parameters. The spatial decay parameters, φα and φβ are

given uniform prior distributions, with endpoints chosen based upon the

range of distances in the matrix D. However, Sahu et al. (2006) note that

the spatial decay parameters often suffer from identifiability problems when

estimated along with spatial variance parameters. They also note that the

computational complexity of the model calculations can be reduced, if spatial

decay parameters are set to optimal values, rather than being estimated

within the model. For example, in model 3.1, computational complexity is

reduced through estimating exp(−φαD) and exp(−φβD) only once, instead of

recalculating these values at each iteration of the Markov Chain Monte Carlo

sampler. Sahu et al. (2006) suggest instead that spatial decay parameters

should be estimated using a grid search over a range of plausible values and

then set equal to the values that result in best model fit. Upon application to
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the log(chlorophylla) data for Lake Balaton, it is confirmed that convergence

is poor for the spatial decay parameters, so a cross-validation is carried out

in order to choose the best values for φα and φβ. A full model has now been

developed, which regresses the in situ data on the remotely-sensed data, with

smoothly-varying coefficients. This model is a spatial statistical downscaling

model, since it takes remotely-sensed data on a grid scale and calibrates

it using point-scale in situ data, allowing prediction at any point location

within a remotely-sensed grid cell. The model addresses the spatial change

of support problem of the two types of log(chlorophylla) data.

3.2.2 Application of spatial statistical downscaling model

3.1 to log(chlorophylla) data for Lake Balaton

In order to better understand the model, it is applied to the data for

log(chlorophylla), for Lake Balaton. There are remotely-sensed data available

for 115 months, for 7616 remotely-sensed grid cells, but in situ data are only

available for 9 locations. Of the 115 months in the remotely-sensed data,

only 17 contain data for all 9 in situ locations, so this application makes

use of a dataset of in situ data for 17 months, for 9 locations, and also the

corresponding remotely-sensed data for the 9 grid cells containing the in situ

data locations, for these 17 months. Since model 3.1 is suitable for modelling

data for only a single time, it is fitted to data for each of the 17 months

separately. In order to get the in situ and remotely-sensed data on the same

temporal scale, all in situ data collected within a single month for a single

location are averaged and assumed to have been sampled on the 15th day of

that month. Similarly, the monthly-averaged remotely-sensed data for each

grid cell are assumed to have been sampled on the 15th day of each month.

This choice is arbitrary and a choice of any other day, for example, the first

day of each month, would make no difference to the values of the predictions

resulting from the model. The 15th day is simply chosen, since it is close to
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the centre of each month. Chapter 5 presents methodology that removes the

need for this assumption. However, an assumption such as this is required,

in order to fit the initial statistical downscaling models, which deal with the

spatial change-of-support only.

Taking the data for March 2011 as an example, the model is fitted to

data for the 9 in situ sampling locations and their 9 corresponding remotely-

sensed grid cells, with predictions made at grid cell centres using up to 7616

remotely-sensed data. The model-fitting procedure is carried out using C++

and R, with the model itself fitted in C++, with help from the Rcpp (Eddelbuet-

tel 2013, Eddelbuettel & François 2011) and RcppArmadillo (Eddelbuettel

& Sanderson 2014) R libraries, and analysis carried out in R using the coda

(Plummer et al. 2006) and sp (Bivand et al. 2013) libraries. The model is fit-

ted through Markov Chain Monte Carlo, using Gibbs sampling, since all full

conditional posterior distributions are of the forms of known distributions.

The model is run for two chains, for 100,000 iterations each, after a burn-in

period of 10,000, thinned to save parameter values for every 20th iteration.

Two versions of the model are fitted, using the two different versions of prior

distributions for variance parameters discussed in the previous subsection,

namely Inv-Gamma(a, b), with a = 0.001 and b = 0.001, or a = 2 and b = 1.

Predictions are made from the fitted model at any location within the

lake. However, since predicting within each of the 7616 grid cells would be

computationally intensive, predicting instead for far fewer locations is prefer-

able. In order to ensure that these locations allow a good understanding of

spatial patterns in log(chlorophylla) throughout the lake, Delaunay refine-

ment triangulation is carried out to choose prediction locations with optimal

coverage of the lake surface. A Delaunay triangulation provides the optimal

triangulation of an area (Shewchuk 1997). Delaunay refinement was used,

for example, by Wan & Hu (2013) to determine the optimal locations of

boreholes, so that an area under geological examination could be covered

with the minimum number of boreholes to leave no gaps larger than 1.5
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kilometres. In the case of Lake Balaton, it allows the optimal selection of

prediction locations across the lake, to ensure a fairly even coverage with no

large gaps. Given a set of points P, an unconstrained triangulation is a set

of disjoint triangles that have vertices forming P and that fill the convex

hull of P (Shewchuk 1997). An unconstrained Delaunay triangulation of P

is a triangulation such that any line in the triangulation of P is such that

there is a circle passing through the line endpoints (which are in P) that

does not contain any other points in P (Shewchuk 1997). This ensures that

the Delaunay triangulation provides the optimal coverage of a surface, in

the sense of maximising the minimum angles out of all possible triangula-

tions (Shewchuk 1997). The triangulation is carried out using the R package

RTriangle (Shewchuk 1996), using a constrained Delaunay triangulation,

where the algorithm is constrained to only insert new nodes within the de-

fined boundaries (Shewchuk 1997), which in this case are a set of points that

have been manually selected with the help of a plot of the 7616 available

grid cells. With the aim of obtaining around 1000 prediction locations in the

lake, after some trial and error, the algorithm is run with a maximum allow-

able triangle area of 4.5311× 10−5 units2, giving a set of Delaunay nodes of

length 997 and good spatial coverage of the lake. These nodes are shown in

Figure 3.1, with the original boundary nodes shown in red and the inserted

Delaunay nodes coloured in blue. The plot shows that the resulting set of

997 prediction locations have good spatial coverage.

Model checking for a Bayesian model includes both checking of the model

assumptions and checking that the Markov chains have converged. The as-

sumptions of the model, using each of the variance prior distributions dis-

cussed previously, are checked using a plot of residuals versus fitted values

and a plot of observed quantiles of the distribution of the residuals versus

quantiles from the standard Normal distribution (see Figure 3.2). Since the

residuals show a random scatter around zero in both plots, without changing

patterns over the fitted values, there is no evidence against the assumptions
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Figure 3.1: Plot of 997 nodes of Delaunay triangulation for Lake Balaton data,
constrained by the input boundary points (red).

that the residuals have mean zero and that the variance of the residuals is

homoscedastic. The points on each Q-Q plot lie close to a straight line,

providing no evidence against the assumption that the residuals have a Nor-

mal distribution. Plots of parameter values for each iteration (trace plots)

and their density plots provide no evidence against the assumption that the

chains for each parameter have converged to their stationary distributions,

so that inferences can be made using the resulting estimates.

Example trace and density plots are shown in Figures 3.3 and 3.4, for

the Lake Balaton log(chlorophylla) data for October 2008, for the inverse

spatial variances for the intercept and slope coefficients ((σ2
α)−1 and (σ2

β)−1),

for the inverse error variance ((σ2
ε )
−1), for the slope and intercept parame-

ter for in situ data location 1 (α1 and β1) and for the predicted intercept,

slope and in situ data value for prediction location 1 (α̃1, β̃1 and ỹ1). The

trace plots show the characteristic shapes of converged chains, with values

for both chains (i.e. the black line for chain 1 and the red line for chain 2)

varying around a median that does not change over iteration number and

with constant variance over iterations. The density plots also suggest that

convergence has been reached, with right-skewed distributions for the inverse
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Figure 3.2: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.1, fitted to log(chlorophylla) data for October 2008, for Lake
Balaton. The top plots are for model 3.1 with Inv-Ga(0.001, 0.001)
prior distributions for the variance parameters, while the bottom
plots are for the model with Inv-Ga(2, 1) prior distributions.

variance parameters ((σ2
α)−1, (σ2

β)−1 and (σ2
ε )
−1) and unimodal bell-shaped

curves for the remaining parameters, which have Normal posterior distribu-

tions. Figures 3.3 and 3.4 are compared to investigate the differences between

the posterior distributions for the same parameters, when the variance pa-

rameters have prior distributions Inv-Ga(0.001, 0.001) or Inv-Ga(2, 1). The

main difference between the two sets of plots is that those for the inverse-

variance parameters (σ2
α)−1, (σ2

β)−1 and (σ2
ε )
−1 have fewer spikes when the

Inv-Ga(2, 1) prior distribution is used, so that the maximum values for all
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Figure 3.3: Example trace (left) and density (right) plots for parameters (σ2
α)−1,

(σ2
β)−1, (σ2

ε )
−1, α1, β1, α̃1, β̃1 and ỹ1 (top to bottom), for model 3.1

with Inv-Ga(0.001, 0.001) prior distributions for the variance param-
eters, fitted to the Lake Balaton data for October 2008.
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Figure 3.4: Example trace (left) and density (right) plots for parameters (σ2
α)−1,

(σ2
β)−1, (σ2

ε )
−1, α1, β1, α̃1, β̃1 and ỹ1 (top to bottom), for model

3.1 with Inv-Ga(2, 1) prior distributions for the variance parameters,
fitted to the Lake Balaton data for October 2008.
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iterations are less than 20, compared to over 3000 for (σ2
β)−1 and (σ2

ε )
−1,

when the Inv-Ga(0.001, 0.001) prior distribution is used.

As mentioned in the previous section, the spatial decay parameters exhibit

poor convergence and must be set to appropriate values, rather than fitted as

part of the model. These are chosen through a leave-one-out cross-validation,

where data for each location are removed in turn and predicted using the

model fitted to the remaining data. Once predictions have been made at

each location, the predictions are compared to the observed in situ data,

with the accuracy and precision of the predictions assessed through various

summary statistics. Examples of these are root mean squared error (RMSE),

mean absolute error (MAE), variance of predictions, 95% empirical credible

interval coverage and mean 95% credible interval length:

• Mean squared error (MSE) is a measure of prediction accuracy and is

defined as MSE(ŷ,y) =
∑n
i=1(ŷi−yi)2

n
, where n is the length of in situ

data vector y and ŷ is the vector of predictions. MSE is a measure of

the variance-bias trade-off, since MSE(ŷ,y) = var(ŷ) +
(
bias(ŷ,y)

)2
.

RMSE is simply the square root of MSE, i.e. MSE transformed back

to the data scale. Smaller values are preferred.

• MAE is defined as MAE(ŷ,y) =
∑n
i=1 |ŷi−yi|

n
and also provides a measure

of prediction accuracy.

• Smaller variance of predictions ŷ is preferred.

• 95% credible interval empirical coverage provides an absolute measure

of model performance, since the empirical coverage (i.e. what propor-

tion of 95% credible intervals include the observed in situ data value)

should be close to the nominal 95% coverage for any model.

• Smaller values of mean 95% credible interval length are preferred, since

this indicates higher precision of model predictions.
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This leave-one-out cross-validation is carried out for each combination

of the sequence of values 0.001, 0.01, 0.1, 0.5, 5 and 10 for φα and φβ, giv-

ing a total of 36 cross-validation runs. This sequence of values is chosen

to cover a wide range of possible parameter values, with 0.001 leading to

high correlation across the entire lake and 10 leading to a small effective

range of correlation. Summary statistics are calculated and plotted against

values of φα and φβ in Figure 3.5 (for the model using Inv-Ga(0.001, 0.001)

prior distributions for the variance parameters) and in Figure 3.6 (for the

model using Inv-Ga(2, 1)). These plots show that smaller values of φα and
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Figure 3.5: Plots of cross-validation summary statistics for model 3.1, for
each combination of φα = 0.001, 0.01, 0.1, 0.5, 5, 10 and φβ =
0.001, 0.01, 0.1, 0.5, 5, 10.

φβ are preferred for the Lake Balaton dataset. For the model using Inv-

Ga(0.001, 0.001) prior distributions, RMSE, MAE and 95% credible interval

length reach their minima at φα = 0.01 and φβ = 0.001, while the variance
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Figure 3.6: Plots of cross-validation summary statistics for model 3.1, for
each combination of φα = 0.001, 0.01, 0.1, 0.5, 5, 10 and φβ =
0.001, 0.01, 0.1, 0.5, 5, 10.

of predictions reaches its minimum for φα = 0.001 and φβ = 0.001. The

95% credible interval coverage lies close to the nominal value for all values

of φα and φβ. From these results, values around φα = 0.01 and φβ = 0.001

are chosen as the most appropriate values for this model, although values

up to say 0.1 and 0.1 could still be justified from these results. These small

values of spatial decay parameters mean that the estimated correlations in

intercept and slope coefficients decay slowly towards zero, with coefficients

for locations far apart in the lake still showing correlation. No further inves-

tigation is carried out, to improve the estimates of φα and φβ, since the small

differences in the values of the summary statistics in the plots show that the

model is not particularly sensitive to the values of these parameters, for this

dataset. Figure 3.6 shows that the results for RMSE, MAE and variance of
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predictions are similar for the model using Inv-Ga(2, 1) prior distributions,

compared to the results for the model using Inv-Ga(0.001, 0.001) prior dis-

tributions. The 95% credible interval coverage is, however, slightly greater,

while the mean 95% credible interval length is slightly longer, for the model

using Inv-Ga(2, 1) prior distributions.

These results do not provide evidence that the model is particularly sen-

sitive to the choice of parameters for the inverse-gamma prior distributions

for the variance parameters, or that the Inv-Ga(0.001, 0.001) prior distribu-

tions have any adverse effects on the model predictions. For consistency,

Inv-Ga(0.001, 0.001) prior distributions are used for the variance parameters

of each model in the remainder of this thesis, allowing a comparison between

the models to be made. Further investigation of the effects of changing these

prior distributions, for example to Inv-Ga(2, 1) distributions, is left for future

work.

Plots are produced of the original remotely-sensed data for these 997 loca-

tions and the corresponding calibrated values, with the in situ data overlaid

on both plots (see Figure 3.7). The original remotely-sensed data display

clear spatial patterns, with lower log(chlorophylla) values in the northeast

basin of the lake, with other areas of lower values along the southern edge of

the lake. The in situ data are available only along the length of the lake, so

do not capture many of the spatial patterns in the lake. However, the in situ

data do have higher values in the northeast lake basin. The corresponding

predictions can be thought of as calibrated remotely-sensed data. These pre-

dictions are calibrated, so that predicted values near in situ data locations

are much closer to these values than the original remotely-sensed data are.

Without the aid of the white circles on the plot, it is difficult to identify

the in situ data overlaid on the calibrated data, indicating the success of

the modelling process in calibrating the remotely-sensed data. Plots of the

predicted values of α and β are produced (see Figure 3.8). These plots show

that the values of the intercept and slope parameters do vary across the lake.
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Data for March 2011
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Figure 3.7: Data for March 2011 (top) and resulting predictions from model 3.1
(bottom). In situ data are overlaid on each plot, surrounded by
white circles.

These parameters appear to be positively correlated, with similar patterns

along the lake. The fact that the highest values of both α and β are found in

the southwesternmost basin of the lake is reflected by the fact that this part

of the lake has the largest difference between the remotely-sensed data and

the predictions from model 3.1, as shown in Figure 3.7. These plots show

that the posterior predictions for α and β are different from their prior mean

values of 0 and 1, with ranges covering around 1.1 to 1.9 and 0.72 to 0.88,

respectively. This means that the true values of α and β are far from their

prior means, for this particular month, with the relationship between the in
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Predicted α for March 2011
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Figure 3.8: Predicted α (top) and β (bottom) from model 3.1, for March 2011.

situ and remote sensing data having a positive intercept and a slope that is

not parallel to the line of equality. This demonstrates that the calibration of

the satellite data, through fusion with the in situ data, is required for this

month, as the remotely-sensed data show a biased level of log(chlorophylla).

Finally, plots of the 95% credible interval bounds for predictions from

model 3.1 for March 2011 are produced in Figure 3.9. The lower bounds lie

between 0 and 2.5, while the upper bounds lie between 2 and 6.

Taken together, the information provided by the model for the exam-

ple month of March 2011 is enough to conclude that the log(chlorophylla)

levels for that month are highest on average in the southwest basins of the
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Lower 95% credible interval bounds
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Figure 3.9: Upper (top) and lower (bottom) bounds for 95% credible interval for
March 2011 predictions from model 3.1.

lake, near to the main inflow from the river Zala, with lower levels in the

northeasternmost basin, near to the main outflow of the Sió canal. Median

levels of log(chlorophylla) lie somewhere between 2 and 4 units, with 95%

credible interval bounds from 0 to 6 units, for the southwesternmost part of

the lake. Levels of log(chlorophylla) in the northeasternmost basin lie some-

where around 1 to 2 units, with 95% credible intervals from around −2 to

3 units. The model provides both estimates and quantified uncertainties for

the investigator.
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3.2.3 The Berrocal et al. (2010b) spatial downscaling

model

Berrocal et al. (2010b) present a statistical downscaling model, building

upon the spatially-varying coefficients model of Gelfand et al. (2003). Their

application is a fusion of in situ air quality data y = (y1, . . . , yn)T with

modelled air quality data x = (x1, . . . , xn)T, with many in situ data available.

Their model uses coregionalisation to model the correlation between slope

and intercept parameters α = (α1, . . . , αn)T and β = (β1, . . . , βn)T and may

be preferred in the case where correlation is expected between each pair of

spatially-varying intercept and slope parameters. The model is:

y ∼ Nn

(
γ +α+ (δ + β)� x, σ2

εIn
)
,

γ ∼ N(0, σ2
γ),

δ ∼ N(0, σ2
δ ),αi

βi

 =

a11 0

a21 a22

w0i

w1i

 ,

a11 ∼ logN(0, σ2
11),

a21 ∼ N(0, σ2
21),

a22 ∼ logN(0, σ2
22),

w0 ∼ Nn

(
0, exp(−φ0D)

)
,

w1 ∼ Nn

(
0, exp(−φ1D)

)
,

(3.2)

for i = 1, . . . , n, where n is the number of in situ spatial locations in the

model, a11 and a22 are given log-Normal prior distributions (since they act

as spatial variances and should not go below zero), a21 acts as a kind of

correlation parameter, D is the n × n matrix of distances between all in

situ locations and φ0 and φ1 are spatial decay parameters, which are given

uniform prior distributions (Berrocal et al. 2010b).

The connection between each pair of intercept and slope parameters αi
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and βi is through the spatial decay parameter φ0, since αi = a11w0i and βi =

a21w0i+ b22w1i. This means that it is assumed that the spatial pattern of the

slope coefficients is related to the spatial pattern of the intercept parameters,

with the strength of the relationship modelled using the parameter a21.

The model is fitted to the log(chlorophylla) data for Lake Balaton and

trace and density plots (see Figure B.2 on page 219) indicate that the con-

vergence of the MCMC chains has been reached, while diagnostic plots (see

Figure B.25 on page 241) provide no evidence against the model assumptions

of homoscedasticity of residuals and mean-zero Normality of residuals. The

parameters a11 and α1 in Figure B.2 have some high values, which suggest

that there may be a problem with the estimation of the parameter a11 for

this dataset. It may be of interest to investigate different prior distributions

for this parameter.

A leave-one-out cross-validation is carried out, to compare the perfor-

mance of model 3.2 to that of model 3.1, for the Lake Balaton log(chlorophylla)

data. Data corresponding to each of the 9 in situ locations are removed in

turn and predicted using the model fitted to the remaining data. This process

is carried out separately for data for each of the 17 months and root mean

squared error (RMSE), mean absolute error (MAE), variance of predictions,

mean 95% empirical interval coverage and mean 95% credible interval length

are calculated using all data and predictions. These summary statistics are

shown in Table 3.1. RMSE and MAE are lower for model 3.1 than for model

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.1 0.409 0.321 0.489 0.967 1.984
Model 3.2 0.460 0.348 0.526 0.941 2.290

Table 3.1: Table of summary statistics for leave-one-out cross-validation for mod-
els 3.1 (with φα = 0.01 and φβ = 0.001) and 3.2 (with φ0 = 0.01 and
φ1 = 0.1).

3.2, so that 3.1 has more accurate predictions than model 3.2 for this dataset.

The variance of predictions and the mean 95% credible interval length are
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also lower for model 3.1, so that the predictions are more precise. The 95%

empirical interval coverage is close to the nominal 95% for both models, so

that there is no evidence against the suitability of the models for the data.

3.2.4 Simulation study

Since model 3.2 does not outperform model 3.1, a simulation study is

carried out in order to investigate the circumstances in which one model

outperforms the other, as measured by accuracy and precision of their pre-

dictions. The number of in situ locations is varied between 5 and 20, to

give a range of values greater than and smaller than 9 in situ data locations

for Lake Balaton. The values of the spatial decay parameters are varied be-

tween 0.001 and 10, to give a range of parameter values that cover the range

assuming slow decline to zero (for 0.001) and fast decline to zero (for 10).

Firstly, a grid of simulated data values is created, with dimensions ap-

proximately equal to those of Lake Balaton. The data are simulated using

the R package RandomFields (Schlather et al. 2015), using a Matérn covari-

ance structure, with parameters estimated from the observed in situ data for

Lake Balaton for one month. A grid of remotely-sensed data is simulated

by fitting a linear model with the remotely-sensed observed data for Lake

Balaton as the response and the in situ data as the explanatory variable and

using this fitted relationship to predict a remotely-sensed data value for each

simulated in situ data grid cell, with a small amount of random error added.

For spatial decay parameter values 0.001, 0.01, 0.1, 0.5, 5 and 10, k + 20

locations are randomly chosen 500 times, for k = 5, 9 and 20, where k is the

number of simulated in situ data to which the model is fitted and 20 is the

number of additional simulated in situ data locations at which predictions

are made. The Berrocal et al. (2010b) model and model 3.1 are fitted to

each set of k locations and predictions made for each corresponding set of

20 locations. Predictions are then compared to the simulated in situ data

values and appropriate summary statistics calculated.
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The two simulated datasets are plotted (see Figure 3.10), showing that

Figure 3.10: Plot of simulated in situ (top) and remotely-sensed (bottom) data.

both datasets follow similar spatial patterns, but that the remotely-sensed

dataset generally has higher values than the in situ dataset.

Both models are fitted using JAGS (Plummer 2003) via R, for 2 chains each,

for 500 iterations of initialisation (where the program generates initial values

for each parameter), followed by a burn-in period of 10,000 iterations and

the sampling period of 10,000 iterations, with every second iteration recorded

(in order to save computer memory). For both models, the assumptions are

checked (through plots of residuals versus fitted values and quantile-quantile

plots, for a selection of model runs) and convergence is checked (through

trace and density plots for a selection of parameters and model runs), giving

no evidence against the validity of the model assumptions or the assumption

of convergence of MCMC chains.

The resulting model performance summary statistics are plotted in Figure

3.11. RMSE, MAE, variance of predictions, 95% credible interval empirical
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Figure 3.11: Plots of performance statistics from the simulation study for model
3.1 and the model of Berrocal et al. (2010b).
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coverage and mean 95% credible interval length are all calculated and are

assessed in turn. The RMSEs for both models generally increase with in-

creasing φ, with model 3.1 having lower RMSE for smaller values of φ, for

5, 9 and 20 locations. The same pattern appears for MAE. Variance of pre-

dictions is lower for model 3.1 than for the Berrocal et al. (2010b) model, for

small values of φ and for all values of φ for the models fitted to 5 sampling lo-

cations. Empirical 95% credible interval coverage is higher than the nominal

95% for almost all values of φ for all numbers of locations, for both models,

indicating that both models are appropriate for the simulated data under

study. Finally, mean 95% credible interval length generally increases with

increasing φ and decreases with increasing numbers of sampling locations.

For small values of φ, the interval length is smaller for model 3.1 than for the

Berrocal et al. (2010b) model, but this reverses for higher values of φ, for 9

and 20 sampling locations.

These results suggest that model 3.1 should be preferred for this applica-

tion, for small numbers of sampling locations, for small values of the spatial

decay parameters φ. In the following chapters, the simpler model 3.1 will be

extended and developed. Although this model does not explicitly model the

intercept and slope parameters as being correlated, model 3.1 is both simpler

and more computationally efficient than that of Berrocal et al. (2010b) and

is shown to perform similarly to it and outperform it for small numbers of

sampling locations and small values of spatial decay parameters φ.

3.3 Spatiotemporal statistical downscaling model

development

In this section, spatiotemporal developments of the statistical downscal-

ing model with spatially-varying coefficients (3.1) are discussed. The aim of

this section is to allow the calibration of data for multiple months at once,

motivated by the idea of improving parameter estimates and hence prediction
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accuracy through the sharing of information over time.

3.3.1 Spatiotemporal development of model 3.1

Model 3.1 is re-written as:

yj ∼ Nn(αj + βj � xj, σ
2
εjIn), (3.3)

where yj is the vector of in situ data at time j (j = 1, . . . , t) for locations 1 to

n (where yj = (yj,1, . . . , yj,n)T), xj is the vector of remote sensing data at time

j for the grid cells containing locations 1 to n (where xj = (xj,1, . . . , xj,n)T)

and σ2
εj is the error variance for time j. The terms αj (= (αj,1, . . . αj,n)T)

and βj (= (βj,1, . . . βj,n)T) are modelled directly as spatially-varying terms,

through their prior distributions:

αj ∼ Nn

(
0, σ2

αjexp(−φαjD)
)

and

βj ∼ Nn

(
1, σ2

βjexp(−φβjD)
)
,

where D is the matrix of distances between in situ locations. Other prior

distributions are:

(σ2
αj)
−1 ∼ Ga(aα, bα),

(σ2
βj)
−1 ∼ Ga(aβ, bβ) and

(σ2
εj)
−1 ∼ Ga(aε, bε).

This model results in identical computations to those resulting from model

3.1, but re-writing the model in this form makes clear the ways in which

information can be shared over time, potentially improving the model per-

formance and resulting in more accurate calibrated data from which to draw

inferences. There is no temporal dependence structure within the model.

The three variance parameters σ2
αj, σ

2
βj and σ2

εj are estimated separately in

model 3.3, but can be estimated as σ2
α, σ2

β and σ2
ε , with information pooled
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across times. Should this be appropriate, each case of σ2
αj, σ

2
βj and σ2

εj in

model 3.3 can be replaced with σ2
α, σ2

β and σ2
ε , giving:

yj ∼ Nn(αj + βj � xj, σ
2
εIn),

αj ∼ Nn

(
0, σ2

α exp(−φαD)
)
,

βj ∼ Nn

(
1, σ2

β exp(−φβD)
)
,

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ) and

(σ2
ε)
−1 ∼ Ga(aε, bε).

(3.3a)

The derivations of full conditional posterior distributions for models 3.3 and

3.3a are given in the appendix (see sections A.1 and A.2 on pages 196 and

201, respectively).

Models 3.3 and 3.3a are fitted to the log(chlorophylla) data for Lake

Balaton and trace and density plots (see Figures B.3 and B.4 on pages 220

and 221) provide no evidence that the MCMC chains have not converged,

while diagnostic plots (see Figures B.26 and B.27 on page 242) provide no

evidence against the validity of the assumptions that residuals have zero mean

and are homoscedastic and Normally distributed. Firstly, the values of σ2
αj,

σ2
βj and σ2

εj for each month j in model 3.3 are compared, to explore whether

using a pooled estimate appears to be appropriate. The model (3.3) is fitted

to the dataset of 17 months of log(chlorophylla) data for 9 locations in Lake

Balaton, with φα = 0.01 and φβ = 0.001. Estimates for the three variance

parameters are summarised in Table 3.2. This table shows that the estimates

Minimum 1st quar-
tile

Median Mean 3rd
quartile

Maximum

σ2
αj 1.352 2.710 3.708 3.610 4.805 5.401
σ2
βj 0.063 0.474 0.762 0.888 1.140 2.538
σ2
εj 0.013 0.041 0.056 0.081 0.119 0.234

Table 3.2: Summary table for estimates of variance parameters of model 3.3 for
each month j.
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of the variance parameters do vary between months, but a pooling estimate

for each variance parameter can still be investigated. The two models 3.3

and 3.3a are therefore compared through a leave-one-out cross-validation,

with data for one location of the 9 removed in turn and predicted using the

remaining data for the 17 months, with φα = 0.01 and φβ = 0.001. The

resulting summary statistics are presented in Table 3.3, showing that model

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.3 0.409 0.321 0.489 0.967 1.984
Model 3.3a 0.393 0.300 0.407 0.941 1.432

Table 3.3: Table of summary statistics of leave-one-out cross-validations for mod-
els 3.3 and 3.3a.

3.3a with the pooled variance estimates has improved prediction ability in

comparison to model 3.3 (as assessed from RMSE and MAE), slightly lower

prediction variance and improved precision of predictions (with narrower 95%

credible intervals). Empirical 95% credible interval coverage is close to the

nominal value for both models.

As written, model 3.3a cannot be fitted to months that have missing data,

without using Bayesian methods for the imputation of missing data, since it

is assumed that n is the same for each timepoint. A simple solution is to

swap each occurrence of n in the model to nj (j = 1, . . . , t), so that only the

available data are used in the calculations for each month. This allows the

calculation of the posterior distributions. The distance matrix D is replaced

by Dj, where Dj is the nj × nj matrix of distances between the nj available

in situ locations for month j. For clarity, the model is re-written below, as:

yj ∼ Nnj(αj + βj � xj, σ
2
εInj), (3.4)
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with spatially-varying coefficients

αj ∼ Nnj

(
0, σ2

αexp(−φαDj)
)

and

βj ∼ Nnj

(
1, σ2

βexp(−φβDj)
)
,

and other prior distributions

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ) and

(σ2
ε)
−1 ∼ Ga(aε, bε).

The main conclusion from this section is that model 3.3a and its variant

model 3.4 are useful models for statistical downscaling of log(chlorophylla)

data for Lake Balaton. Model 3.4 is also applicable in the presence of missing

data.

In the remainder of this and in the following chapter, the aspects of

model development that are discussed are the ability (or lack of ability) of

the models to predict and calibrate data at new times, the potential of sharing

information between variables, when multiple variables require simultaneous

calibration, and the potential to calibrate data for multiple lakes at once. The

next subsection focusses on the possibility of extending model 3.3a to include

smoothing over time, as a preliminary investigation of whether prediction and

calibration of data is possible for times outwith the set of times in the data,

using the current statistical downscaling framework.

3.3.2 Spatiotemporal models including smoothing over

time

This subsection consists of an investigation of extending model 3.3a to

include smoothing over time, through both a model including autoregressive

errors and a model including a temporal application of spatial covariance

functions.
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Spatiotemporal model with autoregressive errors

The first model extension is the model including autoregressive errors.

The use of these errors induces correlation over time between model predic-

tions, but assumes that the data are equally-spaced over time, which is not

the case for the log(chlorophylla) data available for Lake Balaton. The model

is:

yj ∼ Nn(αj + βj � xj, σ
2
εIn), (3.5)

for j = 1, . . . , t, where yj is the vector of in situ data at time j at locations

1 to n, xj is the vector of remote sensing data at time j at the grid cells

containing locations 1 to n and σ2
ε is the error variance. The terms αj

and βj are modelled directly as spatially-varying terms, through their prior

distributions:

αj ∼ Nn

(
µj, σ

2
αexp(−φαD)

)
and

βj ∼ Nn

(
νj, σ

2
βexp(−φβD)

)
,

where µj = (µj,1, . . . , µj,n)T and νj = (νj,1, . . . , νj,n)T are mean vectors, with

autoregressive hyperprior distributions:

µj,i ∼ N(ψµµj−1,i, θ
2
µ) and

νj,i ∼ N(ψννj−1,i, θ
2
ν),

for j = 1, . . . , t and i = 1, . . . , n. Other prior distributions are:

ψµ ∼ Unif(0, 1),

ψν ∼ Unif(0, 1),

(θ2
µ)−1 ∼ Ga(aµ, bµ),

(θ2
ν)
−1 ∼ Ga(aν , bν),

(σ2
α)−1 ∼ Ga(aα, bα),
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(σ2
β)−1 ∼ Ga(aβ, bβ) and

(σ2
ε)
−1 ∼ Ga(aε, bε).

The autoregressive process coefficients ψµ and ψν display poor conver-

gence, so need to be chosen, instead of being fitted within the model. This

poor convergence may be due to the small number of times for which data are

available for Lake Balaton, of 17 months, making the estimation of these pa-

rameters difficult. Appropriate values of these parameters are chosen through

a leave-one-out cross-validation, where for a selection of combinations of val-

ues for ψµ and ψν , data corresponding to one of the 9 in situ data locations

are removed in turn and predicted using the remaining data. The cross-

validation is carried out for model 3.5 for ψµ and ψν each set equal to values

from the length-6 sequence 0.01, 0.2, 0.4, 0.6, 0.8, 0.99, giving a total number

of 36 combinations. The spatial decay parameters are set equal to the near-

optimal values for this dataset, selected earlier, of φα = 0.01 and φβ = 0.001.

Trace and density plots (see Figure B.5 on page 222) show good convergence

for the parameters in the model, while diagnostic plots (see Figure B.28 on

page 243) provide no evidence against the model assumptions that residuals

have mean zero, are homoscedastic and Normally distributed. Root mean

squared error (RMSE), mean absolute error (MAE), variance of predictions,

95% credible interval coverage and mean 95% credible interval length are

calculated for each combination of parameters and are displayed in Figure

3.12. These plots show that the smallest RMSE and MAE are found for

lower values of ψµ, with the lowest value of RMSE found for ψµ = 0.2 and

ψν = 0.01 and the lowest value of MAE found for ψµ = 0.01 and ψν = 0.2.

Variance of predictions displays the opposite pattern, with values decreasing

with increasing ψµ. This makes sense, since higher ψµ means more corre-

lation over time and hence lower variability of predictions. Empirical 95%

credible interval coverage is close to the nominal 95% for all combinations of

parameters. Mean 95% credible interval length increases with increasing ψµ,

with a minimum value reached at ψµ = 0.01 and ψν = 0.4. The summary
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Figure 3.12: Plots of summary statistics for a leave-one-out cross-validation for
model 3.5 for sequences of values of ψµ and ψν .

statistics for model 3.5 with ψµ = 0.2 and ψν = 0.01 are given in Table 3.4.

RMSE, MAE, variance of predictions and mean 95% credible interval length

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.5 0.336 0.275 0.343 0.954 1.316

Table 3.4: Table of summary statistics for leave-one-out cross-validation for
model 3.5, with ψµ = 0.2 and ψν = 0.01.

are all slightly less for model 3.5, with ψµ = 0.2 and ψν = 0.01, than for

model 3.3a, so there is some evidence here that including smoothing over

time does improve the accuracy of the predictions from the model.
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Spatiotemporal model using temporal covariance functions

The second model extension incorporates spatial covariance functions over

time. Let this model be called (3.5a). Specifically, the exponential spatial

covariance function is applied to a t × t matrix T of time periods between

in situ data sampling times. The model equation is identical to that for

model 3.5 on page 105, but the terms αj and βj are modelled directly as

spatially-varying terms, through their prior distributions:

yj ∼ Nn(αj + βj � xj, σ
2
εIn),

αj ∼ Nn

(
µj, σ

2
α exp(−φαD)

)
,

βj ∼ Nn

(
νj, σ

2
β exp(−φβD)

)
,

(3.5a)

with temporally-varying means µj = (µj,1, . . . , µj,n)T and νj = (νj,1, . . . , νj,n)T,

which are given hyperprior distributions:

µi ∼ Nt

(
0, θ2

µ exp(−ψµT)
)

and

νi ∼ Nt

(
1, θ2

ν exp(−ψνT)
)
,

for i = 1, . . . , n, where µi = (µ1,i, . . . , µt,i)
T, νi = (ν1,i, . . . , νt,i)

T and T is a

t×t matrix of time periods between times j = 1, . . . , t, calculated in the same

way as for distances between spatial locations. The other prior distributions

are:

(θ2
µ)−1 ∼ Ga(aµ, bµ),

(θ2
ν)
−1 ∼ Ga(aν , bν),

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ) and

(σ2
ε)
−1 ∼ Ga(aε, bε).

The temporal decay parameters display poor convergence, so they are set

equal to appropriate values, which are selected through a leave-one-out cross-
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validation. The parameters ψµ and ψν are each set equal to values from the

length-6 sequence 0.001, 0.01, 0.1, 1, 5, 10, giving a total of 36 combinations

of values of ψµ and ψν . A leave-one-out cross-validation is performed, where

data for each of the 9 in situ locations for the Lake Balaton data are removed

in turn and predicted from model 3.5a fitted to the remaining data, for each

combination of ψµ and ψν . The spatial decay parameters are set equal to

the near-optimal values for this dataset, selected earlier, of φα = 0.01 and

φβ = 0.001. Trace and density plots (see Figure B.6 on page 223) show ev-

idence of convergence for the model parameters, while diagnostic plots (see

Figure B.29 on page 243) provide no evidence against the model assump-

tions that residuals have zero mean, are homoscedastic and are Normally

distributed. Plots of the resulting summary statistics are shown in Figure

3.13 for each combination of the parameters. There does not appear to be a
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Figure 3.13: Plots of summary statistics for a leave-one-out cross-validation for
model 3.5a for sequences of values of ψµ and ψν .
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clear relationship between any of the summary statistic values and ψν , but

RMSE, MAE and mean 95% credible interval length have their lowest values

for ψµ > 0.1. RMSE and MAE both reach their lowest values for ψµ = 10 and

ψν = 0.001. Variance of predictions reaches its lowest value for ψµ = 0.1.

ψµ > 1 leads to generally higher variances of predictions. Empirical 95%

credible interval coverage lies close to the nominal value for all fitted values

of ψµ and ψν . Taking ψµ = 10 and ψν = 0.001, the values of summary statis-

tics for the leave-one-out cross-validation are given in Table 3.5. This table

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.5a 0.348 0.285 0.31 0.941 1.382

Table 3.5: Table of summary statistics for leave-one-out cross-validation for
model 3.5a, with ψµ = 20 and ψν = 15.

shows that results from model 3.5a with ψµ = 10 and ψν = 0.001 are simi-

lar to those from model 3.5 (i.e. the model using autoregressive parameters)

with ψµ = 0.2 and ψν = 0.01. Both of these models result in lower values of

RMSE and MAE than the spatiotemporal models without smoothing over

time, models 3.3 and 3.3a. However, RMSE and MAE are the lowest for the

model with autoregressive parameters, model 3.5.

Discussion of spatiotemporal models with smoothing over time

Two models have been developed in this subsection, to deal with smooth-

ing over time in addition to smoothing over space. For model 3.5, which

makes use of autoregressive parameters to smooth over time, the two pa-

rameters ψµ and ψν control how strong the dependence is in the intercept

and slope parameters over time. A leave-one-out cross-validation shows that

the values of these parameters that lead to the most accurate predictions

are ψµ = 0.2 and ψν = 0.01, suggesting that correlation is low over time for

both the intercept and slope parameters. For model 3.5a, which uses tempo-

ral covariance matrices to smooth over time, the parameters ψµ and ψν are
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temporal decay parameters, which control how fast correlation decays over

time as the time period between observations increases, so that larger values

indicate faster decay in correlation. Through a cross-validation, the values

of ψµ and ψν are estimated as 10 and 0.001, respectively, although any value

of ψν seems reasonable. The predictions are not sensitive to the choices of

the values of these parameters, as shown by the small ranges of the scales

of the plots on Figure 3.13. These results agree with those from model 3.5

that there is little evidence of correlation over time for the intercept param-

eter, but that there may be correlation over time for the slope parameter.

Results from both of these models are similar, when their respective param-

eters ψµ and ψν are set equal to the values that produced the most accurate

predictions. With these parameter values, the models perform better than

the spatiotemporal model 3.3a, which does not include smoothing over time.

This provides evidence that smoothing over time may be helpful in improving

predictions. However, these models do not take the patterns of in situ and

remotely-sensed data fully into account, since they make use of correlation

over time, ignoring the cyclical temporal patterns of log(chlorophylla), so

may not produce very accurate predictions at new timepoints. These models

assume that the in situ data and the remotely-sensed data are collected at

the same time each month, ignoring the temporal change-of-support prob-

lem. This motivates further development, in order to address the different

spatiotemporal support for the in situ and remotely-sensed data, which is

discussed in Chapter 5.

3.4 Applications to the Lake Erie data

It is of interest whether the same conclusions regarding the optimal model

for prediction are drawn when a different dataset is under investigation.

There are in situ and remotely-sensed log(chlorophylla) data available for

20 months, for 20 locations in Lake Erie. As shown in Figure 1.2, the spa-
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tial coverage of the 20 EPA locations in Lake Erie is extensive. However,

the temporal coverage is poor in comparison to the data for Lake Balaton,

with only 20 times for which data are available, spread over 10 years. A

plot of the in situ data for a single location in Lake Erie and the remote

sensing data for the corresponding grid cell and months is shown in Figure

3.14. The in situ and remote sensing data follow similar patterns over time,
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Figure 3.14: In situ and remotely sensed log(chlorophylla) data versus time for
one location in Lake Erie.

but the poor temporal coverage of the in situ data makes this difficult to

assess. There are two months of remotely sensed data that have particularly

high values in comparison to the corresponding in situ data, in August 2008

and April 2009. Without associated information on the uncertainty of these

values, which can be lost through the conversion process of the algorithm, it

is difficult to know whether these data are reliable without a comparison to

the in situ data. Although these data bear some resemblance to those for

Lake Balaton, there are important differences. Notably, the ecological and

hydrological processes within the lake could be different, since Lake Erie is a

large lake, which is part of the Great Lakes ecosystem (Botts & Krushelnicki

1995), while Lake Balaton is a much shallower lake that is affected greatly by

the inflow from a single source (Palmer et al. 2015). Additionally, the in situ
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data for Lake Erie have a greater spatial extent than those for Lake Balaton,

but are sampled much less frequently, with trips to all 20 locations only twice

each year. Due to the improved spatial coverage, but diminished temporal

coverage, the estimation of spatial patterns at each time could potentially be

improved for the Lake Erie data compared to the Lake Balaton data, while

patterns over time may be less well estimated.

Models are fitted to the Lake Erie data, with comparisons made through

a leave-one-out cross-validation for each model, where data are removed for

each of the 20 locations in turn and the model re-fitted to the remaining 19

locations. This allows a fair comparison between the models and gives an idea

of how the models perform in general. As with the Lake Balaton data, the

spatial decay parameters φα and φβ are estimated as part of the leave-one-out

cross-validation, since otherwise these parameters are difficult to estimate

within the model. For each model, the assumptions and convergence are

checked. Trace and density plots (see Figures B.7 and B.8 on pages 224

and 225, respectively) provide no evidence that the MCMC chains have not

converged, while diagnostic plots (see Figures B.30 and B.31 on page 244)

provide no information against the model assumptions that residuals are

homoscedastic and mean-zero, Normally distributed.

For the spatial downscaling model 3.1 (see 78), the resulting summary

statistics from the leave-one-out cross-validation are plotted against φα and

φβ, in Figure 3.15. These plots show that smaller values of φα and φβ lead

to more accurate and more precise predictions, with the minimum values of

RMSE and MAE reached for φα = 0.5 and φβ = 0.001 and the minimum

value of 95% credible interval length reached for φα = 0.1 and φβ = 0.001.

The variance of the predictions is also smaller for smaller values of φβ. The

95% credible interval coverage is close to the nominal 95% for all values

of φα and φβ, with slightly higher coverages for higher values of φα and

φβ. From this information, φα = 0.5 and φβ = 0.001 are chosen as near-

optimal values for this dataset. These values are similar to those for the Lake
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Figure 3.15: Plots of cross-validation summary statistics for model 3.1, for Lake
Erie data, for each combination of φα = 0.001, 0.01, 0.1, 0.5, 5, 10
and φβ = 0.001, 0.01, 0.1, 0.5, 5, 10.

Balaton dataset, which are φα = 0.01 and φβ = 0.001. However, the larger

estimated value of the spatial decay parameter φα for Lake Erie means that

it is estimated that correlation between the intercept parameters decreases

more quickly to zero as distance between spatial locations increases, for Lake

Erie compared to Lake Balaton. As with the Lake Balaton data, a range of

values of φα and φβ could be selected and justified from these results, for

model-fitting.

The same process is carried out for the spatiotemporal downscaling model

3.3a, with pooled variances over time (see page 101), resulting in the same

near-optimal values of φα = 0.5 and φβ = 0.001 selected. Table 3.6 shows

the resulting model summary statistics, with φα and φβ set equal to 0.5 and

0.001, respectively. This table shows that the spatial and spatiotemporal
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RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.1 0.582 0.427 0.621 0.958 2.649
Model 3.3a 0.568 0.420 0.613 0.943 2.235

Table 3.6: Table of summary statistics for leave-one-out cross-validation for mod-
els 3.1 and 3.3a, with φα = 0.5 and φβ = 0.001, for Lake Erie data.

models lead to fairly similar levels of predictive accuracy, as assessed from

RMSE and MAE. RMSE is, however, slightly lower for the spatiotemporal

model 3.3a than for the spatial model 3.1. The variance of predictions, 95%

credible interval coverage and 95% credible interval length are all very similar

between both models. This suggests that sharing information over time helps

in the estimation of model parameters for this dataset.

Plots of the data and predictions are shown in Figure 3.16 for model 3.3a

fitted to the log(chlorophylla) data for Lake Erie. The in situ data for August

2007 are slightly lower than the remotely-sensed data in the northeast of the

lake, but are similar to the remotely-sensed data in the centre and southwest

of the lake. The predictions from model 3.3a are highest in the southwest

of the lake, reflecting the pattern seen in the in situ and remotely-sensed

data. This may be due to the main inflows into the lake, which enter in the

southwest, bringing in more nutrients to this part of the lake. The northeast

part of the lake is estimated to have lower levels of log(chlorophylla). This is

the part of the lake closest to the main outflows, where nutrient-laden water

leaves the lake. Predicted levels of α̃ are highest in the southwest of the

lake, with areas of high levels also towards the lake centre and northeast.

Predicted levels of β̃ are highest in the southwest of the lake and lowest in

the northeast of the lake, where they become negative over a small area.

It is estimated that the remotely-sensed and in situ data have a positive

relationship over much of the lake, but a weak, or inverse, relationship in the

northeast of the lake.

Models 3.5 and 3.5a, which perform smoothing over time through the use

of AR(1) coefficients and temporal covariance matrices, respectively (see the
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Data for August 2007
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Figure 3.16: Remotely-sensed data and predicted ỹ, α̃ and β̃ for model 3.3a
fitted to the log(chlorophylla) data for Lake Erie. In situ data are
overlaid on the top two plots, surrounded by white circles.
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subsection starting on page 104), are also fitted to the Lake Erie dataset, to

investigate how smooth the changes in relationship between the in situ and

remotely-sensed data are over time and to investigate whether incorporating

smoothing into the models leads to improved accuracy of predictions for these

models. As with the Lake Balaton data, the values of the parameters ψµ and

ψν are chosen outwith the model-fitting process, as otherwise convergence

does not occur for these parameters. As usual, the best values of these

parameters are selected through a leave-one-out cross-validation, with the

model refitted for several values of ψµ and ψν . Diagnostic plots (see Figures

B.32 and B.33 on page 245) suggest that the model assumptions of zero-

mean Normality and homoscedasticity of residuals are valid for models 3.5

and 3.5a, while the trace and density plots provide no evidence against the

assumption of convergence of MCMC chains for the model parameters (see

Figures B.9 and B.10 on pages B.32 and B.33)

The values of the resulting summary statistics are displayed in Figure

3.17. For model 3.5, which performs smoothing over time using AR(1) pa-

rameters, the RMSE, MAE and mean 95% credible interval length increase

with increasing ψµ, while the variance of predictions decreases. There is

no obvious pattern of change with changing ψν , for this model. Mean 95%

credible interval empirical coverage lies slightly below the nominal 95% level

for all investigated values of ψµ and ψν , with values generally closer to 93%

coverage. The minimum value of RMSE occurs at ψµ = 0.01 and ψν = 0.8,

while the minimum value of MAE occurs at ψµ = 0.01 and ψν = 0.2, so that

both of these sets of spatial decay parameter values are near-optimal for this

model and dataset. For model 3.5a, which performs smoothing over time us-

ing temporal covariance matrices, the main pattern is that small values of ψν

lead to smaller RMSE, MAE and 95% credible intervals, while small values of

ψµ lead to smaller variances of predictions, but wider 95% credible intervals.

Mean 95% credible interval coverage is slightly below the nominal 95% level

for all values of ψµ and ψν , generally lying close to 0.925. The minimum
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Figure 3.17: Plots of cross-validation summary statistics for models 3.5 (top) and
3.5a (bottom), for Lake Erie data, for each combination of φµ =
0.01, 0.2, 0.4, 0.6, 0.8, 0.99 and φν = 0.01, 0.2, 0.4, 0.6, 0.8, 0.99 (top),
and φµ = 0.001, 0.01, 0.1, 1, 5, 10 and φν = 0.001, 0.01, 0.1, 1, 5, 10
(bottom).
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values of RMSE and MAE are both reached at ψµ = 10 and ψν = 0.001,

so that these are near-optimal values of these parameters for this model and

dataset. The ranges of the scales of these plots are all very small, show-

ing that the model predictions for both models are not particularly sensitive

to the parameter values being investigated. In particular, model 3.5 is not

sensitive to the value of ψν and model 3.5a is not sensitive to the value of

ψµ.

Table 3.7 shows the resulting summary statistics for a leave-one-out cross-

validation with parameter values chosen as the near-optimal estimates iden-

tified above, namely ψµ = 0.01 and ψν = 0.8 for model 3.5 and ψµ = 10 and

ψν = 0.001 for model 3.5a. These summary statistics allow a comparison be-

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.5 0.550 0.403 0.592 0.903 2.183
Model 3.5a 0.553 0.411 0.599 0.928 2.198

Table 3.7: Table of summary statistics for leave-one-out cross-validation for mod-
els 3.5 and 3.5a, with φα = 0.5 and φβ = 0.001, and with ψµ and ψν
set equal to their chosen values (0.01 and 0.8 for model 3.5 and 10
and 0.001 for 3.5a), for the Lake Erie data.

tween these models and models 3.3 and 3.3a. Both model 3.5 and 3.5a have

lower RMSE, MAE, variance of predictions and 95% credible interval length

than models 3.3 and 3.3a, suggesting that incorporating correlation over time

improves the accuracy and precision of estimates of log(chlorophylla) data for

Lake Erie. However, the 95% credible interval coverage lying slightly below

the nominal level suggests that the estimates are not as precise as claimed

for either models 3.5 or 3.5a.

3.5 Conclusions and discussion

The aim of this chapter was to develop statistical downscaling mod-

els, motivated by the task of calibrating grid-scale remotely-sensed data for
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log(chlorophylla), using point-scale in situ log(chlorophylla) data. Method-

ology was developed that enables fusion of these two data types, allowing

predictions to be made at any location, along with associated measures of

uncertainty. The utility of the models was demonstrated through the use of

plots for an example month, allowing comparison of the remotely-sensed and

in situ data and the resulting downscaled surface.

Spatiotemporal developments of the models allow both the fitting of mod-

els to data for various times at once and also the sharing of information across

times, leading to improved estimates of model parameters and to improved

accuracy of the resulting calibrated log(chlorophylla) surfaces.

Although the spatial model 3.1 and the spatiotemporal models 3.3, 3.3a

and 3.4 are able to spatially calibrate data, allowing prediction to be made at

any location within the area covered by the remotely-sensed data, they are

unable to predict at times outwith those in the dataset. Additionally, these

models assume that the support for the in situ data and the remotely-sensed

data is the same, ignoring the fact that the in situ data have a point-time

scale, while the remotely-sensed data are monthly-averaged. These issues are

addressed in Chapter 5.



Chapter 4

Bivariate and multiple lakes

downscaling

The previous chapter introduced developments and applications of sta-

tistical downscaling models, for a single lake, e.g. Lake Balaton or Lake Erie,

and for a single variable, e.g. log(chlorophylla). It was demonstrated that

sharing information, specifically sharing over time, helped to improve the

accuracy of model predictions. Taking this into account, this chapter inves-

tigates whether sharing information between related variables and between

neighbouring lakes helps to improve the accuracy of predictions.

This chapter presents developments in bivariate statistical downscaling,

where two variables are downscaled at once in order to share information

between them. A second development, multiple lakes downscaling, is also

presented. This is where data are calibrated over multiple lakes at once,

enabling the sharing of information between lakes, while allowing for dif-

ferences in data patterns between lakes. The background and motivation

are presented, followed by model development and an application to data.

Conclusions and discussion of the methodology are then presented.

121
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4.1 Bivariate statistical downscaling

Bivariate statistical downscaling is a method for data fusion of two related

variables simultaneously, with the aim of producing improved calibration in

comparison to downscaling each variable separately. The aim of the method-

ology is to accomplish the fusion through sharing information on the relation-

ship between the in situ and remotely-sensed data between the two variables

being modelled. This methodology makes the assumption that there is a sim-

ilar relationship between the in situ and remotely-sensed data for the two

variables selected, so these variables must be chosen carefully, based on both

expert ecological knowledge and empirical evidence, such as exploratory plots

of the data. Berrocal et al. (2010a) develop a bivariate version of the uni-

variate statistical downscaling model that was introduced in Berrocal et al.

(2010b), where they model the in situ data for each of two related variables on

the remotely-sensed data for the variable of interest and the related variable,

with the spatially-varying parameters modelled through coregionalisation.

The approach taken in this section will instead build within the framework

of models developed in the previous chapter. Additionally, the aim here is

to calibrate the remotely-sensed data for each variable using as much infor-

mation as possible from the in situ data for both variables, which contrasts

with the approach in the paper, where remotely-sensed data for multiple vari-

ables are calibrated using in situ data for multiple variables. The approach

described here introduces correlation between variables, through correlated

errors.

4.1.1 Motivational exploratory analysis

In order to motivate the development of bivariate downscaling method-

ology, plots of data for Lake Balaton are produced. The variables available

for both the in situ and remotely-sensed data are log(chlorophylla), log(total

suspended matter) and water temperature. Scatterplots of data for these
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variables (see Figures 4.1 and 4.2) show that the strongest relationship by
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Figure 4.1: Plots showing relationships between in situ log(chlorophylla)
(mg/m3), log(total suspended matter) (g/m3) and lake surface water
temperature (◦C), with correlations shown in lower-right corners.
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Figure 4.2: Plots showing relationships between remotely-sensed
log(chlorophylla) (mg/m3), log(total suspended matter) (g/m3) and
lake surface water temperature (◦C), with correlations shown in
lower-right corners.

far is between log(chlorophylla) and log(total suspended matter), for both

data types, with correlations of 0.441 and 0.558 for the in situ and remotely-

sensed data, respectively. This may be explained by the fact that changes

in these two variables may be caused by similar environmental or catchment

drivers. Water temperature has a fairly smooth change over time, without

the same local effects that log(chlorophylla) and log(total suspended matter)

respond to, explaining the weaker relationship between water temperature

and the other variables, with weak correlations displayed on the plots. This

section will therefore focus on modelling log(chlorophylla) and log(total sus-
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pended matter) together.

Model 3.1 is firstly fitted separately to the data for log(chlorophylla) and

log(total suspended matter), for Lake Balaton. The dataset for Lake Bala-

ton only contains 5 locations for which both log(chlorophylla) and log(total

suspended matter) in situ data are available for the same set of times. These

data are available for 18 months at all 5 of these locations, for each of the

two variables. Therefore, this section of analysis works with an 18×5 dataset

for each variable, which has fewer locations than the 17× 9 dataset that was

analysed in the previous chapter, but still contains sufficient information on

the spatial patterns in the data in order to fit statistical downscaling models.

The residuals from model 3.1 fitted to data for the two variables can be in-

vestigated. Figure 4.3 shows that there is not a strong relationship between
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Figure 4.3: Plot of residuals for model 3.1 fitted to the 18× 5 log(chlorophylla)
and log(total suspended matter) data for Lake Balaton.

the residuals for the two variables, with correlation estimated to be −0.06,

i.e. very close to zero.

Given the small number of available data, it is of interest to investigate

whether sharing information between variables is useful. Since sharing infor-

mation over time improved estimates of σ2
α and σ2

β in model 4.1a, it makes

sense to investigate whether these parameters can be estimated more ac-

curately by sharing information between variables in a bivariate modelling
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framework.

4.1.2 Spatial bivariate downscaling model

This subsection introduces the bivariate downscaling model, in its spatial

form. The following subsection describes an application to the data for Lake

Balaton.

A spatial bivariate statistical downscaling model is:y1i

y2i

 ∼ N2

α1i + β1ix1i

α2i + β2ix2i

,Σε

 , (4.1)

where:

Σε =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


is the variance-covariance matrix for errors, modelling the correlation be-

tween errors for both variables. Prior distributions for this model are:

α1 ∼ Nn

(
0, σ2

α1
exp(−φα1D)

)
,

α2 ∼ Nn

(
0, σ2

α2
exp(−φα2D)

)
,

β1 ∼ Nn

(
1, σ2

β1
exp(−φβ1D)

)
,

β2 ∼ Nn

(
1, σ2

β2
exp(−φβ2D)

)
,

(σ2
α1

)−1 ∼ Ga(aα1 , bα1),

(σ2
α2

)−1 ∼ Ga(aα2 , bα2),

(σ2
β1

)−1 ∼ Ga(aβ1 , bβ1),

(σ2
β2

)−1 ∼ Ga(aβ2 , bβ2) and

Σε ∼ Inv-W(Aε, bε),

where α1 = (α1,1, . . . , α1,n)T, α2 = (α2,1, . . . , α2,n)T, β1 = (β1,1, . . . , β1,n)T

and β2 = (β2,1, . . . , β2,n)T, and where aα1 , bα1 , aα2 , bα2 , aβ1 , bβ1 , aβ2 , bβ2 ,
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Aε and bε are parameters that must be chosen a priori. For non-informative

prior distributions, each a and b are set to small values, such as 0.001, while

Aε is set equal to the identity matrix of dimension 2, and bε is set equal to

3 (Gelman et al. 2014).

A bivariate or multivariate relationship can also be modelled using the

linear model of coregionalisation (LMC), as carried out by Berrocal et al.

(2010a) and in the spBayes R package (Finley et al. 2007, 2013). The LMC

models the correlation between variables through correlated intercept and

slope parameters, rather than through correlated errors.

An adjustment to model 4.1 is to have common prior distributions for

the spatial variances for both variables, giving an alternative set of prior

distributions:y1i

y2i

 ∼ N2

α1i + β1ix1i

α2i + β2ix2i

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

α1 ∼ Nn

(
0, σ2

αexp(−φαD)
)
,

α2 ∼ Nn

(
0, σ2

αexp(−φαD)
)
,

β1 ∼ Nn

(
1, σ2

βexp(−φβD)
)
,

β2 ∼ Nn

(
1, σ2

βexp(−φβD)
)
,

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

Σε ∼ Inv-W(Aε, bε).

(4.1a)

These models fit regressions on the in situ data, with the corresponding

remotely-sensed data as the only explanatory variable. This means that the

regressions for the two variables are only related through correlated errors.

The full conditional distributions for the parameters of model 4.1a are derived

in the appendix (see section A.3 on page 204).

In order to assess the performance of models 4.1 and 4.1a and compare

to the performance of the univariate model (i.e. the spatial statistical down-
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scaling model 3.1, presented on page 78), these models are fitted to data for

Lake Balaton, for the 18 months of log(chlorophylla) and log(total suspended

matter) data for which data for 5 in situ locations were available. The model

performances are compared through a leave-one-out cross-validation, where

data corresponding to each of the 5 in situ locations are removed in turn

and predicted from each model fitted to data for the remaining 4 locations.

The convergence of MCMC chains in each model is checked using trace and

density plots (see Figures B.11 and B.12 on pages 228 and 229). The model

assumptions are checked using diagnostic plots (see Figures B.34 and B.35

on page 246). Summary statistics are then calculated to compare the pre-

dictions and observed in situ data. These resulting summary statistics are

displayed in Table 4.1. These results show that model 4.1 (i.e. the bivariate

Model RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Chl 3.1 0.809 0.632 1.031 0.967 6.162
4.1 1.500 1.416 0.169 1.000 10.503
4.1a 0.635 0.532 0.189 1.000 7.735

TSM 3.1 0.733 0.629 0.181 1.000 16.115
4.1 1.574 1.483 0.196 1.000 12.367
4.1a 0.644 0.527 0.206 1.000 8.214

Table 4.1: Table of summary statistics of leave-one-out cross-validations for mod-
els 3.1 (i.e. the univariate spatial model), 4.1 (i.e. the bivariate spatial
model) and 4.1a (i.e. the bivariate spatial model with pooled spatial
variances across variables), fitted to Lake Balaton log(chlorophylla)
and log(total suspended matter) data.

spatial model without pooled spatial variance parameters across variables)

performs poorly compared to the univariate model 3.1, when fitted to the

18 by 5 dataset for Lake Balaton. This is perhaps due to the small num-

ber of available data for each month causing difficulty in estimating all of

the parameters well. On the other hand, model 4.1a, which is a bivariate

spatial model with correlated errors and pooled spatial variance parameters

across variables, performs much better, with much lower RMSE and MAE in

comparison to the univariate model and the bivariate model without pooling
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across variables (i.e. model 4.1). This is true for both the log(chlorophylla)

data and the log(total suspended matter) data. The variance of predictions

and mean 95% credible interval coverage are both fairly similar for all three

models under consideration. The main conclusions from this analysis are that

the bivariate spatial model 4.1 does not produce improved levels of prediction

compared to the univariate spatial model 3.1 and in fact performs badly for

the dataset of interest. Model 4.1a, which is a bivariate spatial model that

pools estimates for spatial variance parameters across parameters, performs

much better than the other models investigated and so can be preferred for

this dataset.

Predictions are made from model 4.1a, using data for March 2011 as an

example, for 997 locations as determined by a Delaunay triangulation (see

Figure 3.1 and the related description on page 84). These predictions are

shown, along with the original remotely-sensed and in situ data, on Fig-

ures 4.4 and 4.5. These plots show that there is some difference between

the in situ and surrounding remotely-sensed log(chlorophylla) data for all

5 locations in the lake, but that this difference is no longer evident in the

resulting calibrated surface of predictions from model 4.1a. For the log(total

suspended matter) data, there are much larger differences between each in

situ data point and its surrounding remotely-sensed data. However, the re-

sulting calibrated surface from model 4.1a lies much closer to the observed

values of in situ log(total suspended matter) data. These plots show that

calibration has been achieved for both log(chlorophylla) and log(total sus-

pended matter), with the resulting predictions for each variable over the lake

retaining the spatial patterns from the remotely-sensed data for that variable,

but pulled towards the values of the accurate in situ data.

The estimated values of ρ for model 4.1a, when fitted to each of the 18

months of data for Lake Balaton separately, lie between 0.006 and 0.06, with

a median value around 0.028. This means that the model is fitting very little

correlation between the errors for the two variables, which agrees with the
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Figure 4.4: Plots of remotely-sensed log(chlorophylla) data for March 2011 and
resulting predictions from model 4.1a, with in situ data overlaid and
circled in white.

results from the exploratory fitting of the univariate spatial model 3.1, which

suggested that there was little correlation between the model residuals for

log(chlorophylla) and log(total suspended matter), when fitted separately to

data for each variable.

4.1.3 Spatiotemporal bivariate downscaling model

In order to share information over time, a spatiotemporal extension to

the bivariate model is developed, based upon model 4.1. The model has

the additional subscript j, which represents time (j = 1, . . . , t). The spatial

variance parameters, σ2
α1

, σ2
α2

, σ2
β1

and σ2
β2

, and the error matrix, Σε, are
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Figure 4.5: Plots of remotely-sensed log(total suspended matter) data for March
2011 and resulting predictions from model 4.1a, with in situ data
overlaid and circled in white.

estimated using data for all timepoints. The model is:y1ji

y2ji

 ∼ N2

α1ji + β1jix1ji

α2ji + β2jix2ji

,Σε

 , (4.2)

where y1ji is the in situ data for log(chlorophylla) at time j (j = 1, . . . , t)

for in situ location i (i = 1, . . . , n), y2ji, x1ji and x2ji are the correspond-

ing values of data for in situ log(total suspended matter), remotely-sensed

log(chlorophylla) and remotely-sensed log(total suspended matter), respec-
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tively, and:

Σε =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


is the variance-covariance matrix for errors, modelling the correlation be-

tween errors for both variables. Prior distributions for this model are:

α1j ∼ Nn

(
0, σ2

α1
exp(−φα1D)

)
,

α2j ∼ Nn

(
0, σ2

α2
exp(−φα2D)

)
,

β1j ∼ Nn

(
0, σ2

β1
exp(−φβ1D)

)
,

β2j ∼ Nn

(
0, σ2

β2
exp(−φβ2D)

)
,

(σ2
α1

)−1 ∼ Ga(aα1 , bα1),

(σ2
α2

)−1 ∼ Ga(aα2 , bα2),

(σ2
β1

)−1 ∼ Ga(aβ1 , bβ1),

(σ2
β2

)−1 ∼ Ga(aβ2 , bβ2) and

Σε ∼ Inv-W(Aε, bε).

A revised model (4.2a), based upon model 4.1a, is created, with σ2
α1

and

σ2
α2

replaced by the common parameter σ2
α, and σ2

β1
and σ2

β2
replaced by σ2

β.

Similarly, φα1 and φα2 are replaced by φα, while φβ1 and φβ2 are replaced by

φβ, resulting in further sharing of information between variables:

y1ji

y2ji

 ∼ N2

α1ji + β1jix1ji

α2ji + β2jix2ji

,Σε

 ,

α1j ∼ Nn

(
0, σ2

αexp(−φαD)
)
,

α2j ∼ Nn

(
0, σ2

αexp(−φαD)
)
,

β1j ∼ Nn

(
0, σ2

βexp(−φβD)
)
,

β2j ∼ Nn

(
0, σ2

βexp(−φβD)
)
,

(σ2
α1

)−1 ∼ Ga(aα1 , bα1),

(4.2a)
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(σ2
α2

)−1 ∼ Ga(aα2 , bα2),

(σ2
β1

)−1 ∼ Ga(aβ1 , bβ1),

(σ2
β2

)−1 ∼ Ga(aβ2 , bβ2) and

Σε ∼ Inv-W(Aε, bε).

4.1.4 Application of spatiotemporal bivariate down-

scaling model to data for Lake Balaton

Models 4.2 and 4.2a are fitted to the Lake Balaton data for the 18 months

for which in situ log(chlorophylla) data and log(total suspended matter) data

are both available for 5 locations. In order to compare the performance of

the bivariate models 4.2 and 4.2a with that of univariate model 3.3a (i.e. the

spatiotemporal statistical downscaling model with pooled spatial variances

over time, described on page 101), a leave-one-out cross-validation is carried

out, where data for each of the 5 in situ locations can be removed in turn

and predicted. The convergence of MCMC chains was checked from trace

and density plots for each model (see Figures B.13 and B.12 on pages 230

and 229), while diagnostic plots (see Figures B.36 and B.37 on pages 247 and

247) provide no evidence against the validity of the model assumptions that

residuals have mean zero, are homoscedastic and are Normally distributed.

The summary statistics calculated from the resulting predictions are given

in Table 4.2. This table shows that there are very little differences between

RMSE MAE Variance of
predictions

95% credible in-
terval coverage

Mean 95% credi-
ble interval length

Model 3.3a 0.500 0.338 2.668 0.965 2.116
Model 4.2 0.501 0.340 2.669 0.965 2.428
Model 4.2a 0.474 0.322 2.689 0.959 2.286

Table 4.2: Table of summary statistics for leave-one-out cross-validation for mod-
els 3.3a (i.e. the univariate spatiotemporal model described on page
101), 4.2 and 4.2a. (i.e. the bivariate spatiotemporal models with-
out and with pooled estimates of spatial variance parameters between
variables, respectively.)

the univariate model 3.3a and the bivariate models 4.2 and 4.2a in terms
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of their accuracy and precision at predicting. This can be explained, if the

estimated correlation between the errors for the two variables is examined.

Since Σε =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(see, for example, model 4.2), then ρ = Σε,1,2√

Σε,1,1Σε,2,2
,

which has a posterior median estimate of 0.245 for model 4.2 and 0.215 for

model 4.2a. This shows that there is very little estimated correlation between

the residuals for the two variables, so it appears that not much is gained from

fitting the bivariate model to the log(chlorophylla) and log(total suspended

matter) data for Lake Balaton. It is of note, however, that the predictions

for model 4.2a are more accurate than those for model 4.2, as measured by

RMSE and MAE, showing that sharing information between the variables

through common parameters σ2
α and σ2

β can improve the accuracy of the

predictions.

4.2 Multiple-lakes statistical downscaling

The concept of multiple-lakes statistical downscaling is motivated by the

data available for the Great Lakes of North America. There are both in situ

and remotely-sensed data available for Lakes Superior, Michigan, Huron and

Erie. The in situ data are available from the Great Lakes Monitoring website

(greatlakesmonitoring.org) and the remotely-sensed data are available from

the Diversity II project (www.diversity2.info). Since these lakes are located

nearby in space and are interconnected, they share some features of their

ecology. On the other hand, each lake has a different hydrological status, due

both to the shapes of the lakes and increasing nutrient levels as water moves

downstream from Lake Superior. This can be accounted for, by including

lake-specific parameters within any statistical downscaling model.

In this section, multiple-lakes statistical downscaling models will be de-

veloped, discussed and applied to the Great Lakes. These models will be

compared and contrasted, to understand whether these models are really

beneficial and, if so, in which circumstances.
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4.2.1 Model development

The spatial-only single lake model was described in the previous chapter.

This model could be applied to data for each lake individually, or alterna-

tively to data for all lakes at once, effectively treating all Great Lakes as part

of the same larger lake. Both of these possibilities are investigated in the

application subsection, where these models are applied to the data.

Full multiple-lakes statistical downscaling models

The multiple lakes downscaling model takes into account the overall pat-

terns in the intercept and slope coefficients of the relationship between the in

situ and remotely-sensed log(chlorophylla) data, while also allowing for lake-

specific adjustments and spatially-varying adjustments. A first development

of a multiple-lakes model is:

yj(i) ∼ N(α + βi + γj(i) + (δ + ηi + κj(i))� xj(i), σ2
ε ), (4.3)

for i = 1, . . . , l and j = 1, . . . , ni, where l is the number of lakes and ni

is the number of in situ sampling locations within lake i, where yj(i) is the

value of the in situ data point at location j within lake i, xj(i) is the corre-

sponding remotely-sensed data value, α and δ are the overall intercept and

slope parameter, respectively, βi and ηi are the lake-specific intercept and

slope parameters, modelled as adjustments to the overall parameters, and

γj(i) and κj(i) are the spatially-varying parameters, which vary smoothly over

space, within each lake. Prior distributions are as follows:

(σ2
ε)
−1 ∼ Ga(aε, bε),

α ∼ N(0, σ2
α),

βi ∼ N(0, σ2
β) for i = 1, . . . , l − 1,

βl = −
n−1∑
i=1

βi,
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δ ∼ N(1, σ2
δ ),

ηi ∼ N(0, σ2
η) for i = 1, . . . , l − 1, and

ηl = −
n−1∑
i=1

ηi,

with the sum-to-zero constraints for β and η ensuring that
∑l

i=1 βi = 0 and∑l
i=1 ηi = 0, so that these parameters behave as lake-specific adjustments

to the overall intercept and slope parameters. The spatially-varying param-

eters are given different prior distributions, depending upon whether these

parameters are assumed to vary smoothly within each lake separately or over

all lakes. Assuming a separate spatially-varying intercept and slope for each

lake, their prior distributions are:

γi ∼ Nni

(
0, σ2

γexp(−φγDi)
)

and

κi ∼ Nni

(
0, σ2

κexp(−φκDi)
)
,

(4.3a)

for i = 1, . . . , l, where γi = (γ1(i), . . . , γni(i))
T, κi = (κ1(i), . . . , κni(i))

T and Di

is the ni × ni matrix of distances between locations within lake i, i.e.

Di =


d1,1 · · · d1,ni

...
...

dni,1 · · · dni,ni

 ,

where di,j is the distance between locations i and j. Alternatively, assum-

ing that the spatially-varying intercept and slope parameters vary smoothly

across all lakes, the prior distributions of the spatially-varying parameters

are:

γ ∼ Nn

(
0, σ2

γexp(−φγD)
)

and

κ ∼ Nn

(
0, σ2

κexp(−φκD)
)
,

(4.3b)

where n =
∑l

i=1 ni is the total number of in situ locations within all lakes,

D is the matrix of distances between all n locations, γ = (γ1, . . . , γn)T =
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(γ1(1), . . . , γn1(1), γ1(2), . . . . . . , γnl(l))
T and κ = (κ1(1), . . . , κn1(1), κ1(2), . . . . . . ,

κnl(l))
T = (κ1, . . . , κn)T. The remaining hyperprior distributions are specified

as:

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
γ)
−1 ∼ Ga(aγ, bγ),

(σ2
δ )
−1 ∼ Ga(aδ, bδ),

(σ2
η)
−1 ∼ Ga(aη, bη) and

(σ2
κ)
−1 ∼ Ga(aκ, bκ).

Each of the a and b parameters are chosen a priori, with small values, such

as 0.001 and 0.001, leading to noninformative prior distributions (Lunn et al.

2013). As mentioned in Chapter 3, it should be noted that Gelman et al.

(2014) state that posterior distributions may in fact be sensitive to the choice

of values for a and b, while Sahu et al. (2006) and Sahu et al. (2010) suggest

choosing a = 2 and b = 1 instead, giving a distribution with mean 1 and

infinite variance. This chapter continues to use the values a = 0.001 and

b = 0.001, to allow comparison between the models fitted in earlier chapters

and since there was no evidence that model 3.1 was particularly sensitive to

the choice of a and b.

Treating model 4.3 as two separate models, 4.3a and 4.3b, named after

the respective equations for the prior distributions of their spatially-varying

parameters given above, model 4.3b has the advantage over model 4.3a of

potentially being able to estimate the spatial variance parameters more accu-

rately, using the larger number of data available over all lakes in comparison

to using data for each lake separately. However, a potential problem with

model 4.3b is that lake-specific differences in the relationships between the

in situ and remotely-sensed data are only accounted for by the lake-specific

parameters.
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Convergence issues Initial model runs confirmed the need for the sum-

to-zero constraint for the lake-specific parameters, as otherwise these could

not easily be separated from the estimates of the overall intercept and slope

parameters. Poor convergence was also discovered in the estimates of the

spatially-varying slope parameters and several variance parameters. Further

work could investigate whether different prior distributions for the variance

parameters may be more appropriate and possibly lead to improved con-

vergence. Several authors note the problem of the lack of identifiability of

spatially-varying slopes in statistical downscaling models and conclude that

the spatially-varying slope parameter can be replaced with a constant slope,

while retaining the spatially-varying intercept parameter (Fuentes & Raftery

2005, Berrocal et al. 2010b, 2012, 2014, Rundel et al. 2015). Replacing a

spatially-varying slope with a constant slope is justified by Fuentes & Raftery

(2005) on the basis that their preliminary investigation found that the bias of

their numerical model output was mostly additive, with little multiplicative

bias. Motivated by this, Berrocal et al. (2010b) fit several models with a

spatially-varying multiplicative bias and several with a constant multiplica-

tive bias, and find that models with constant multiplicative bias perform

slightly better for their data.

Resulting reduced models

After removing the spatially-varying slope parameter, κ, from model 4.3,

the resulting reduced model is:

yj(i) ∼ N
(
α + βi + γj(i) + (δ + ηi)� xj(i), σ2

ε

)
for j = 1, . . . , n and i = 1, . . . , l,

α ∼ N(0, σ2
α),

δ ∼ N(0, σ2
δ ),

βi ∼ N(0, σ2
β) for i = 1, . . . , l − 1,

(continued on next page)

(4.4)
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βl = −
l−1∑
i=1

βi,

ηi ∼ N(0, σ2
η) for i = 1, . . . , l − 1,

ηi = −
l−1∑
i=1

ηi,

γi ∼ Nni

(
0, σ2

γexp(−φγDi)
)

for i = 1, . . . , l (for model 4.4a),

γ ∼ Nn

(
0, σ2

γexp(−φγD)
)

(for model 4.4b),

(σ2
ε)
−1 ∼ Ga(aε, bε),

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
γ)
−1 ∼ Ga(aγ, bγ),

(σ2
δ )
−1 ∼ Ga(aδ, bδ),

(σ2
η)
−1 ∼ Ga(aη, bη),

where model 4.4a fits a smooth surface for the spatially-varying intercept

parameter over each lake separately and model 4.4b fits a smooth surface for

the spatially-varying intercept parameter over all lakes at once.

These models are simplified by removing the lake-specific parameters, to

give:

yj(i) ∼ N(α + γj(i) + δ � xj(i), σ2
ε ) for j = 1, . . . , n and i = 1, . . . , l,

α ∼ N(0, σ2
α),

δ ∼ N(0, σ2
δ ),

γi ∼ Nni

(
0, σ2

γexp(−φγDi)
)

for i = 1, . . . , l (for model 4.5a),

γ ∼ Nn

(
0, σ2

γexp(−φγD)
)

(for model 4.5b),

(σ2
ε)
−1 ∼ Ga(aε, bε),

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
γ)
−1 ∼ Ga(aγ, bγ),

(σ2
δ )
−1 ∼ Ga(aδ, bδ),

(4.5)
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where model 4.5a fits a smooth surface for the spatially-varying intercept

parameter over each lake separately and model 4.5b fits a smooth surface for

the spatially-varying intercept parameter over all lakes at once.

Comparing results from this model to results from models 4.4a or 4.4b

allows the assessment of whether lake-specific parameters are needed in this

modelling framework, for the datasets investigated.

Single-lakes model for comparison

A single-lakes version of model 4.4 is:

yj(i) ∼ N(βi + γj(i) + ηixj(i), σ
2
ε,i) for j = 1, . . . , ni and i = 1, . . . , l,

βi ∼ N(0, σ2
β,i),

ηi ∼ N(0, σ2
η,i),

γi ∼ Nni

(
0, σ2

γ,iexp(−φγDi)
)
,

(σ2
ε,i)
−1 ∼ Ga(aε, bε),

(σ2
β,i)
−1 ∼ Ga(aβ, bβ),

(σ2
γ,i)
−1 ∼ Ga(aγ, bγ),

(σ2
η,i)
−1 ∼ Ga(aη, bη).

(4.6)

This is a single-lakes model written in the same framework as the multiple-

lakes models. It is fitted to each lake i separately, for i = 1, . . . , l. This

allows a comparison, to assess whether single-lakes or multiple-lakes models

produce the best calibration of the remotely-sensed data with the in situ

data. A version of this model, to be fitted to data for all lakes at once, is:

yj ∼ N(β + γj + ηxj, σ
2
ε) for j = 1, . . . , n,

β ∼ N(0, σ2
β),

η ∼ N(0, σ2
η),

γ ∼ Nn

(
0, σ2

γexp(−φγD)
)
,

(4.7)
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(σ2
ε)
−1 ∼ Ga(aε, bε),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
γ)
−1 ∼ Ga(aγ, bγ),

(σ2
η)
−1 ∼ Ga(aη, bη).

Model 4.7 treats all of the data as if they are from the same lake.

Spatiotemporal multiple-lakes statistical downscaling

The spatial statistical downscaling models can be developed into spa-

tiotemporal models, allowing the models to be fitted to data for various times

at once and also allowing the sharing of information across time, in order to

improve the estimation of the parameters within each model. Spatiotemporal

versions of models 4.4a, 4.4b, 4.5a, 4.5b, 4.6 and 4.7 are:

yh,j(i) ∼ N(α + βi + γh,j(i) + (δ + ηi)� xh,j(i), σ2
ε ), (4.4-ST)

yh,j(i) ∼ N
(
α + γh,j(i) + δ � xh,j(i), σ2

ε

)
, (4.5-ST)

yh,j(i) ∼ N(βi + γh,j(i) + ηixh,j(i), σ
2
ε,i) (4.6-ST)

and

yh,j ∼ N(β + γh,j + ηxh,j, σ
2
ε), (4.7-ST)

where all prior distributions are the same as those for the spatial-only multiple-

lakes downscaling models, with the exceptions of:

γh,i ∼ Nni

(
0, σ2

γexp(−φγDi)
)

(a)

and

γh ∼ Nn

(
0, σ2

γexp(−φγD)
)
, (b)
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to give models 4.4a-ST, 4.5a-ST and 4.6-ST (each using prior distribution

(a) for γh,i) and 4.4b-ST, 4.5b-ST and 4.7-ST (each using prior distribution

(b) for γh).

4.2.2 Model fitting and results

In order to gain an understanding of how well the models described in

the previous subsections fit to the data for the Great Lakes, a k-fold cross-

validation is carried out. There are in situ log(chlorophylla) data available for

19, 11, 14 and 20 locations for lakes Superior, Michigan, Huron and Erie, re-

spectively, collected by the US Environmental Protection Agency (EPA) and

made available through the Great Lakes Monitoring website (greatlakesmon-

itoring.org). These data are available for 20 months (April and August each

year, between August 2002 and April 2012).

A k-fold cross-validation is where data are split into k subsets, before

fitting the model with each of the k data subsets removed in turn. Predictions

are then made at these removed locations and various model performance

statistics calculated, based upon the predictions and their relationship with

the observed in situ data. Here, k is chosen as 16, so that data for 4 of the

64 in situ locations are left out each time. The data are sorted randomly

into these 16 data subsets, using the sample function in R. This high value of

k and the resulting small number of locations to remove each time removes

the possibility that all data for a lake could be put into a single subset and

removed entirely for a model run.

The convergence of parameters is checked for each model, using trace and

density plots (see Figures B.15, B.16, B.17, B.18 and B.19 on pages 232 to

236), while diagnostic plots (see Figures B.38, B.39, B.40, B.41 and B.42 on

pages 248 to 250) provide no evidence against the validity of the assumptions

that residuals are mean-zero Normally distributed and homoscedastic.

The RMSE, MAE, variance of predictions, empirical 95% credible interval

(CI) coverage and mean interval length are calculated for each model, to
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compare the model performances at predicting the observed in situ data.

The results of this k-fold cross-validation are given in Tables 4.3 and 4.4.

Models 4.4a-ST, 4.4b-ST (which are both spatiotemporal multiple-lakes mod-

els without spatially-varying slope parameters) and 4.5a-ST (the spatiotem-

poral multiple-lakes model without lake-specific parameters) are fitted to the

data. In addition, model 4.6-ST (the spatiotemporal single-lakes model) is

fitted to the data for each lake separately and to data for all lakes (as model

4.7-ST), treating the four Great Lakes as a single large lake.

Model RMSE MAE Variance of
predictions

95% CI cover-
age probability

Mean CI
length

Model 4.4a-ST 0.424 0.301 0.845 0.949 1.582
Model 4.4b-ST 0.392 0.278 0.858 0.940 1.675
Model 4.5a-ST 0.439 0.309 0.855 0.947 1.594
Model 4.6-ST, separate
lakes

0.425 0.302 0.849 0.950 1.582

Model 4.7-ST, all lakes 0.395 0.280 0.844 0.941 1.754

Table 4.3: Performance statistics for several models for four Great Lakes, for
log(chlorophylla).

Model Lake RMSE MAE Variance of
predictions

95% CI cover-
age probability

Mean CI
length

Model
4.4a-ST

Superior 0.290 0.220 0.068 0.941 1.150
Michigan 0.261 0.211 0.068 0.981 1.153
Huron 0.277 0.213 0.032 0.954 1.075
Erie 0.658 0.504 0.609 0.930 2.598

Model
4.4b-ST

Superior 0.289 0.218 0.066 0.991 1.838
Michigan 0.261 0.210 0.069 0.976 1.143
Huron 0.278 0.213 0.033 0.954 1.070
Erie 0.626 0.480 0.445 0.938 2.593

Model
4.5a-ST

Superior 0.289 0.219 0.078 0.941 1.175
Michigan 0.257 0.206 0.073 0.995 1.733
Huron 0.264 0.196 0.046 0.989 1.640
Erie 0.564 0.423 0.475 0.833 1.514

Model 4.6-ST,
separate lakes

Superior 0.290 0.220 0.068 0.941 1.148
Michigan 0.263 0.212 0.069 0.981 1.146
Huron 0.278 0.214 0.033 0.950 1.068
Erie 0.627 0.480 0.448 0.940 2.592

Model 4.7-ST,
all lakes

Superior 0.292 0.221 0.087 0.991 2.001
Michigan 0.264 0.209 0.102 0.995 1.818
Huron 0.280 0.207 0.077 0.986 1.690
Erie 0.562 0.419 0.545 0.840 1.529

Table 4.4: Individual performance statistics for several models for four Great
Lakes, for log(chlorophylla).
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Table 4.3 shows that models 4.4a-ST and 4.6-ST, fitted to each lake sepa-

rately, both perform fairly similarly. This is also true, when the performance

of the models is compared for each lake, separately (see Table 4.4). This in-

dicates that having the overall parameters α and δ in model 4.4a-ST, with βi

and ηi treated as lake-specific adjustments, may be unnecessary, since treat-

ing βi and ηi as parameters in their own right, as in model 4.6-ST, leads to

similar results.

Model 4.4b-ST performs very similarly to model 4.7-ST, fitted to data for

all lakes at once. This suggests that the lake-specific parameters of model

4.4b-ST may not be required, for this dataset. This appears to be the case

for all four lakes investigated.

The models that fit a spatial surface over all four lakes perform better at

predicting in situ data than those that fit a separate spatial surface to each

lake. From these results, model 4.7-ST, fitted to all lakes at once, performs

as well as the model developed specifically for multiple-lakes downscaling

(4.4b-ST), providing no evidence that a multiple-lakes downscaling model

is needed. This means that model 4.7-ST can be fitted to the data for

several related lakes simultaneously, providing a continuous spatial surface

of predictions over all four lakes.

An example plot of predictions for August 2003 is shown in Figure 4.6.

In order to do this, model 4.7-ST is fitted to data for 15 months for which

data are available for all 64 in situ sampling locations across four Great

Lakes. A Delaunay triangulation is carried out, in order to select around

1000 prediction locations within the lakes. This ensures that a large enough

number of prediction locations, with optimal coverage, is used to gain a good

understanding of spatial patterns in the lakes, while ensuring that the model

is not too computationally expensive. This plot helps to explain why model

4.7-ST is preferred over the multiple lakes models. Since the spatial patterns

are fairly similar over the four lakes, it makes sense to fit a smooth spatial

surface covering all lakes at once. The bottom plot shows that the in situ



CHAPTER 4. BIVARIATE/ MULTIPLE LAKES DOWNSCALING 144

Longitude (degrees East)

La
tit

ud
e 

(d
eg

re
es

 N
or

th
)

42

44

46

48

−92 −90 −88 −86 −84 −82 −80

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Longitude (degrees East)

La
tit

ud
e 

(d
eg

re
es

 N
or

th
)

42

44

46

48

−92 −90 −88 −86 −84 −82 −80

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.6: Remotely-sensed log(chlorophylla) (top) and downscaled surface
(bottom) from model 4.7-ST for August 2003, for 1005 locations
in four Great Lakes. In situ data are overlaid, surrounded by white
circles.

data are similar to their surrounding remotely-sensed data, demonstrating

that calibration has been achieved here. Even with this common spatial

surface over all lakes, the differences in spatial patterns between the lakes
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are accounted for by the model, with Lake Michigan having generally higher

values of log(chlorophylla) than Lake Superior, for example. Additionally,

the much higher levels of log(chlorophylla) in Lake Erie are accounted for by

the model, without the necessity for lake-specific parameters.

4.2.3 Conclusions and discussion

It was found that a specific multiple-lakes model is not necessary in the

context of statistical downscaling of data for four Great Lakes. It is pos-

sible to instead fit a model over all four lakes, ignoring the effect of the

lake boundaries. This adequately calibrates the remotely-sensed data for all

four lakes, using the in situ data. The model predicts reasonable levels of

log(chlorophylla) over all four lakes, with lower levels in Lake Superior and

higher levels (with more variation) in Lake Erie. These predictions reflect

the patterns in the in situ data and also reflect the known ecological patterns

in the lake system, with water flowing from Superior through to Lake Erie,

picking up more nutrients as it flows.

It was found that fitting a model with a smooth surface over all four lakes

at once leads to improved predictions in comparison to fitting a model with

separate spatial surfaces over all four lakes. This makes sense, since fitting a

single spatial surface over all four lakes involves the sharing of information,

which leads to improved estimates of the parameters and hence improved

accuracy of predictions.

For this application, it is fortunate that there are in situ data available

for the same months for each of 64 locations in four lakes. This is due to

the fact that all four lakes are sampled by the US Environmental Protec-

tion Agency, using the same equipment. In other cases, there may not be

in situ data available at similar times, so that the model could not be fitted

to several lakes at once. In order to downscale data of this type, the model

would need to account for the different sampling times of the data. A mod-

elling framework that accomplishes this, using functional data methodology,
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is developed in the following chapter.

The methodology is able to downscale data for several nearby lakes at

once. Downscaling data for several distant lakes is another issue. In the case

of lakes that are far apart, it may make more sense to simply fit separate

downscaling models to each lake. This would require further study.

4.3 Overall conclusions and discussion

In this chapter, developments of the spatiotemporal statistical downscal-

ing model were introduced. These involved the sharing of information be-

tween simultaneously-downscaled variables and also between neighbouring

lakes.

The application of bivariate downscaling is motivated by the availability

of two related variables in the Lake Balaton dataset, namely log(total sus-

pended matter) and log(chlorophylla), which have positive correlation. The

model that was developed fits correlation between the errors for the two

variables. It was found that simultaneously downscaling these two variables,

using this bivariate downscaling model, led to a slightly improved accuracy

of calibration. Again, sharing information enabled an improved accuracy of

predictions.

Multiple lakes downscaling is motivated by the data for the Great Lakes

of North America. The data for Lakes Superior, Michigan, Huron and Erie

were investigated here. All four lakes are connected as part of the same

lake system. However, each lake differs in characteristics such as size and

shape and position in the lake system, so differences between the lakes were

considered in the analysis. The second section in this chapter investigated

multiple-lakes downscaling models, that accounted for differences between

lakes, while also sharing information between them on the relationship be-

tween in situ and remotely-sensed data. Various models were developed and

it was discovered that downscaling data for multiple lakes simultaneously
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could in fact be accomplished by treating all data as being from a single

lake and fitting a single smooth surface over all lakes at once. It was found

that this method resulted in more accurate predictions than fitting separate

models to each lake individually.



Chapter 5

Nonparametric statistical

downscaling

This chapter presents the development and application of a method for

the fusion of data of differing spatial and temporal support, incorporating

aspects of both datasets. Nonparametric statistical downscaling is a novel

technique to accomplish this data fusion, incorporating aspects of both sta-

tistical downscaling and functional data analysis. This chapter describes the

motivation behind the method, the development of the nonparametric sta-

tistical downscaling model, applications to lake water quality datasets for

Lakes Balaton and Erie and, finally, a brief discussion of the utility of the

method and the conclusions reached.

5.1 Background and motivation

So far, the question of data fusion between data of differing spatial sup-

port has been addressed through statistical downscaling, specifically in the

context of fusing in situ and remotely-sensed log(chlorophylla) data for var-

ious lakes. However, these methods require that both in situ and remotely-

sensed data are available on the same temporal scale, an assumption that

is often not met in practice. While both the in situ and remotely-sensed

148
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data are available at a fixed set of sampling locations (point locations and

grid cells, respectively), the in situ data are sampled irregularly over time,

whereas the remotely-sensed data are available for monthly-averages. Method-

ology in earlier chapters simply averages in situ data over their months, to

put them on the same temporal support as their corresponding remotely-

sensed data. However, this still leaves gaps in the in situ data, with some

months having no in situ data sampled at any location, so that the statistical

downscaling model is unable to calibrate the remotely-sensed data for these

months.

Functional data analysis is an approach that treats the data as observa-

tions of smooth functions, rather than simply points, assuming an underlying

continuous process. There has been extensive research into fitting curves to

temporal data, in the context of functional data analysis, and so the use of

this approach appears to offer a solution to the temporal support problem.

This motivates the development of a model for nonparametric statistical

downscaling, which is described and explained later in this chapter, after

some preliminary applications to the data.

5.2 Preliminary application to the data

Before developing the nonparametric statistical downscaling model, some

preliminary applications of functional data methodology are carried out, us-

ing the log(chlorophylla) data for Lake Balaton. To recap briefly, there are

in situ data available for 9 locations within the lake, sampled frequently be-

tween 2002 and 2012, but with some gaps, especially during the year of 2007

for the data collected by the BLI (locations 1 to 5 of 9). The remotely-sensed

data are available for 115 monthly averages for 7616 grid cells across the lake,

so there are no issues of missing data to deal with for the remotely-sensed

data.

In this section, cubic B-splines are chosen as the basis type. Basis di-
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mension differs between locations, in this preliminary demonstration, but

equally-spaced breakpoints will be used.

5.2.1 Preliminary application of frequentist model

The frequentist model is:

f(yi) =
m∑
k=1

φk(xi)ck,

for i = 1, . . . , n, where y = (y1, . . . , yn)T is a vector of data recorded at times

t1, . . . , tn, φk is the kth basis function and ck is the coefficient corresponding

to the kth basis function. The model is fitted by least squares (see equations

1.15 to 1.18 on page 32) to the in situ data for locations 1 and 9, separately,

in order to demonstrate the differing fit to sparse and more abundant data.

For location 9, data are available between June 2002 and December 2011,

with 93 data points available in total. The pattern of log(chlorophylla) in

Lake Balaton has two peaks per year (Palmer et al. 2015), which should

require around 4 basis functions per year. Taking into account the addi-

tional knots required at each endpoint, the number of basis functions for

this preliminary application is calculated as 41. The 41 cubic B-spline basis

functions are plotted (see Figure 5.1, top). Using the fda (Ramsay et al.

2014) package in R (R Core Team 2017), a smooth function is fitted to the

in situ data for location 9 and, separately, to the remotely-sensed data for

location 9, which is made up of 115 monthly averages between June 2002 and

December 2011. Model fits to the data are plotted (see Figure 5.1, centre

and bottom). These plots show that the two-peaks-per-year pattern in the

in situ log(chlorophylla) data is adequately captured by the fitted smooth

function, which follows the data closely. The remotely-sensed data for the

grid cell corresponding to location 9 has a less regular pattern than the in

situ data, so that the smooth function does not follow the data so closely,

but it does follow most of the patterns in the data.
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Figure 5.1: Basis functions (top), smooth function fitted to in situ data (centre)
and smooth function fitted to remotely-sensed data (bottom), for
Lake Balaton location 9. 95% confidence intervals for fitted function
values are shown as dashed lines and data are solid points.

For location 1, the in situ data are only available between May 2006

and December 2011, with no data during 2007, giving a total of 45 available

data points. In order to adequately fit the smooth function to the pattern

of two peaks in log(chlorophylla) per year, the basis dimension should be

close to 25. Fitting a smooth function using this basis dimension is, however,

not possible, since the matrix (ΦTΦ) is singular and so cannot be inverted,

due to having too few data points. A smaller dimensional basis is instead

used, allowing for the smooth function to be fitted to the data, but this has

the expense of being only able to model longer-term patterns in the data.

Figure 5.2 shows the basis functions and the fitted smooth curve using cubic

B-splines of dimension 15. Here, the smooth curve can only fit a pattern

of one peak of log(chlorophylla) per year. However, the basis dimension is
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Figure 5.2: Basis functions (top) and smooth function fitted to in situ data (bot-
tom), for Lake Balaton location 1. 95% confidence intervals for fitted
function values are shown as dashed lines and data are solid points.

still too large, since the estimated curve and confidence intervals during 2007

lie far from the values of observed data for any other year, reaching values

close to −50. Any B-spline basis fitted to these data must not have multiple

breakpoints during the gap in the data in 2007, so a much smaller basis

dimension is required. A dimension 5, cubic B-spline basis avoids extreme

curve estimates, but does not show useful patterns in the data, meaning that

it is of limited use here.

5.2.2 Preliminary application of Bayesian model

In order to resolve the difficulties found when fitting the frequentist model

to data with gaps over time, the Bayesian formulation of the model is inves-

tigated. As stated in equations 1.23 and 1.24 on page 33, this model is:

y|c, σ2
ε ∼ Nn(Φc, σ2

εIn),

(σ2
ε)
−1 ∼ Ga(a, b),

c ∼ Nm(µ,Σ),
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where y = (y1, . . . , yn)T is the n-length vector of data, Φ is the n × m

matrix of basis functions evaluated at the times of data collection t1, . . . , tn,

c = (c1, . . . , cm)T is the vector of basis coefficients corresponding to each

basis function, σ2
ε is the variance of the errors, In is the n×n identity matrix

and a, b, µ and Σ are parameters that are chosen a priori.

The prior distributions on the basis coefficients and error variance provide

additional information that comes in useful around gaps in the data. The

aim of fitting a model with equal basis dimension for all locations motivates

the investigation of the Bayesian model. Before fitting the model, the co-

efficients for the prior distributions in equation 1.24 are chosen as µ = 0,

Σ = 100×Im, a = 0.001 and b = 0.001. These are chosen to provide minimal

prior information, to avoid influencing estimates for times when data were

available, but to provide enough information to enable model fitting without

extreme curve estimates at times when no data were available. 0 is a reason-

able prior mean value to choose, when no further information is available,

since it is not known whether the true mean value is positive or negative

(Denison et al. 2002). Im is sensible, since no further information on the

dependence structure is available a priori (Denison et al. 2002). a = 0.001

and b = 0.001 are common choices for coefficients of the Gamma distribu-

tion, since small values of these coefficients only slightly affect the values of

the posterior estimates for parameter σ2
ε . The choice of 100, in the mean of

the prior covariance matrix 100× Im, is data-dependent, chosen so as not to

be too small (such as 1, which leads to a strong prior distribution and pulls

posterior basis coefficient estimates close to the prior mean), while also not

too large (such as 106, which leads to an almost uninformative prior distri-

bution that does not provide enough information in the presence of gaps in

the data). The observed variance in the basis coefficients is observed to vary

only up to values around 10, when fitted in the frequentist framework. A

sensitivity analysis was carried out, where the model was re-fitted with 100

varied from 20 to 1000, to ensure that this made little difference to the model
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estimates.

Again, examples of the model fit to in situ data for locations 1 and

9 are given here. For both locations, the same basis is used, namely the

cubic B-spline basis of dimension 41. Models are run using C++ code us-

ing the R packages Rcpp (Eddelbuettel & François 2011, Eddelbuettel 2013)

and RcppArmadillo (Eddelbuettel & Sanderson 2014). The model is run

for 10,000 iterations, for each location, and checked for convergence using

trace and density plots. The fact that the model predictions (and credible

intervals) over time display smooth patterns is also an indication that the

convergence of parameters to their stationary distributions has been reached,

since otherwise a jagged pattern would be observed.

The fitted smooth curve is plotted for the in situ data for location 9 (see

Figure 5.3), along with the 95% credible intervals. The fitted smooth curve
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Figure 5.3: Smooth function fitted to the Lake Balaton location 9 in situ data
using the Bayesian model (solid line), along with the corresponding
95% credible intervals (dotted lines). The data are shown as points.

is identical to that for the frequentist model. The fitted credible intervals are

fairly wide and include almost all of the observed in situ data, suggesting

that the empirical coverage probabilities are close to their nominal 95%.

The benefit to fitting the Bayesian model is illustrated for the in situ

data for location 1. A plot of the resulting fitted smooth curve is shown in

Figure 5.4. The fitted smooth curve follows the two-peaks-per-year pattern,

where data are available. During the gap in available data during 2007,

the model predicts that the data reach as low as −2, but credible intervals

are appropriately wide for this time period, covering the range of values
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Figure 5.4: Smooth function fitted to the Lake Balaton location 1 in situ data
using the Bayesian model (solid line), along with the corresponding
95% credible intervals (dotted lines). The data are shown as points.

observed in the available data. These intervals lie between −14 and 14 at

their extremes. Although these wide intervals are unavoidable during the

periods without data, the Bayesian model is able to fit a smooth function

allowing for the fitting of up to two peaks per year, while appropriately

expressing the lack of certainty in function estimates during periods without

data.

5.3 Developing a model for nonparametric sta-

tistical downscaling

Nonparametric statistical downscaling combines the method of expressing

the shape of the data through functions defined by their basis coefficients,

with data fusion of the in situ and remotely-sensed data. Since the in situ

data for a location and the remotely-sensed data for the corresponding grid

cell are measures of the same variable, it is assumed that their basis co-

efficients are positively related, as long as the same basis is used for both

datasets. This idea is explored in the next subsection. Should this be a

reasonable assumption to make, the fully Bayesian nonparametric statistical

downscaling model makes use of these basis coefficients for different locations,

in order to fuse data of different spatiotemporal support.

This section focusses on model development, firstly using a simple linear
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regression to test the idea behind nonparametric downscaling, before moving

on to the fully Bayesian functional downscaling model.

5.3.1 Examining the correspondence of in situ and

remotely-sensed basis coefficients

Firstly, the relationship between basis coefficients for the in situ and

remotely-sensed data for one location is explored, taking the example of

Lake Balaton location 9. A scatterplot of these coefficients (see Figure 5.5)

shows that there is a positive, probably linear relationship between the two
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Figure 5.5: Scatterplot of in situ and remote sensing data basis coefficients, from
fitting curves using a cubic B-spline basis of dimension 41.

sets of basis coefficients. A linear model is fitted, of the form:

cj = α + βdj + εj, (5.1)

where cj (j = 1, . . . ,m) are the basis coefficients for the in situ data, dj are

the basis coefficients for the remotely-sensed data and εj ∼ N(0, σ2
ε) are the

random errors. Predictions are:

ĉj = α̂ + β̂dj, (5.2)

where α̂ and β̂ are the estimated intercept and slope, respectively, from model

5.1. The back-transformation to give the predicted in situ data value at time
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t, i.e. ŷ(t), is:

ŷ(t) =
m∑
j=1

ĉjφj(t), (5.3)

where t is some time at which to predict and φj(t) is the jth basis function

evaluated at this time. These models are fitted in the frequentist framework,

through least squares. The resulting predicted curve from this method is

plotted, for location 9, in Figure 5.6. The predicted smooth curve from this
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Figure 5.6: Predicted smooth curve using basis coefficients estimated using a
linear model, for Lake Balaton location 9 data.

model resembles the observed in situ data, so that this preliminary analysis

suggests that the idea of calibrating data through fitting the relationship

between basis coefficients for in situ and remote sensing data is appropriate

and warrants further development.

5.3.2 Combining a linear model and functional data

analysis methodology

A first step to developing a fully Bayesian nonparametric statistical down-

scaling model is to investigate the combination of functional data analysis

methodology and a linear model. Since the previous section shows that the

basis coefficients for in situ and remote sensing data for a single location

show a positive, possibly linear relationship, it makes sense to pursue this

challenge.
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Given in situ log(chlorophylla) data y at a single location, remotely-

sensed log(chlorophylla) data x for the grid cell containing the location of y,

a matrix of basis functions Φ evaluated at the in situ sampling times and a

matrix of basis functions Ψ evaluated at the remote sensing sampling times,

separate Bayesian models are given for the estimation of the basis coefficients

for the in situ data (Model 5.4), for the estimation of the basis coefficients

for the remotely-sensed data (Model 5.5) and for the linear regression of the

remotely-sensed basis coefficients on the in situ basis coefficients (Model 5.6).

The model for the in situ basis coefficients is:

y|c, σ2
y ∼ Nq(Φc, σ2

yIq), (5.4)

where q is the number of in situ data y, and where prior distributions are:

c ∼ N(µy,Σy) and

(σ2
y)
−1 ∼ Ga(ay, by).

The model for the remotely-sensed basis coefficients is:

x|d, σ2
x ∼ Np(Ψd, σ2

xIp), (5.5)

where p is the number of remotely-sensed data x, and where prior distribu-

tions are:

d ∼ N(µx,Σx) and

(σ2
x)
−1 ∼ Ga(ax, bx).

The linear model regressing the remotely-sensed basis coefficients on the in

situ basis coefficients is:

c ∼ N(α1 + βd, σ2
εIm), (5.6)
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with prior distributions:

α ∼ N(µα, σ
2
α),

β ∼ N(µβ, σ
2
β) and

(σ2
ε)
−1 ∼ Ga(aε, bε).

The next stage in model development is to combine these three models

together. This model is:

y|c, σ2
y ∼ Nq(Φc, σ2

yIq), (5.7)

with prior distributions:

(σ2
y)
−1 ∼ Ga(ay, by) and

c|α, β,d, σ2
ε ∼ N(α1 + βd, σ2

εIm)

and hyperprior distributions:

(σ2
ε)
−1 ∼ Ga(aε, bε),

α ∼ N(µα, σ
2
α) and

β ∼ N(µβ, σ
2
β).

To estimate the basis coefficients for the remotely-sensed data within the

model, the following three hyperpriors are added:

x|d, σ2
x ∼ Np(Ψd, σ2

xIp),

(σ2
x)
−1 ∼ Ga(ax, bx) and

d ∼ Nm(µd,Σd).

Posterior estimates of all parameters in this model are obtained through

Gibbs sampling, with the posterior distribution of predictions given as (ỹ|·) ∼

Nq̃(Φ̃c, σ2
yIq̃), where q̃ is the number of times at which predictions are to be
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made and Φ̃ is the matrix of basis functions evaluated at the prediction times.

5.3.3 Nonparametric statistical downscaling: a fully

Bayesian model for data fusion

The next step in this procedure is to incorporate a statistical downscaling

model, rather than a simple linear model. The fully Bayesian nonparametric

statistical downscaling model is written as:

yi|ci, σ2
y ∼ Nqi(Φici, σ

2
yIqi),

(σ2
y)
−1 ∼ Ga(ay, by),

cij|αij, βij, dij, σ2
c ∼ N(αij + βijdij, σ

2
c ),

αj|σ2
α ∼ Nn

(
0, σ2

αH22(φα)
)
,

βj|σ2
β ∼ Nn

(
1, σ2

βH22(φβ)
)
,

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
c )
−1 ∼ Ga(ac, bc),

xi|di, σ2
x ∼ Npi(Ψidi, σ

2
xIpi),

(σ2
x)
−1 ∼ Ga(ax, bx),

di ∼ Nm(µd,Σd),

(5.8)

where:

• yij is the value of in situ data at time j at location i (i = 1, . . . , n and

j = 1, . . . , qi).

• xij is the value of remotely-sensed data at time j at location i (i =

1, . . . , n and j = 1, . . . , pi).

• qi is the number of in situ data collected at location i.

• pi is the number of remotely-sensed data collected at location i.
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• n is the number of in situ data locations i.

• m is the number of basis functions in each Φi and Ψi.

• Φi are the basis functions evaluated at times of data collection for yi.

• Ψi are the basis functions evaluated at times of data collection for xi.

• H22(φα) = exp(−φα ×D22), where φα is selected a priori and D22 is

the matrix of distances between in situ locations i.

• H22(φβ) = exp(−φβ ×D22), where φβ is selected a priori, with D22 as

above.

• ay, by, aα, bα, aβ, bβ, ac, bc, ax, bx,µd and Σd are values to be chosen a

priori. A small value for each of ay, by, aα, bα, aβ, bβ, ac, bc, ax and bx,

such as 0.001, results in non-informative prior distributions. Sensible

values for µd and Σd are 0 and Im, reflecting lack of knowledge of the

signs of the coefficients di and of their dependence structure.

A directed acyclic graph (DAG) can be created for this model (see Figure

5.7) and the full conditional posterior distributions of the model parameters

are given in the appendix (see section A.4 on page 211).

5.4 Model fitting

In this section, the nonparametric statistical downscaling model (5.8) is

applied to the log(chlorophylla) data for Lakes Balaton and Erie, to demon-

strate and evaluate its effectiveness for data fusion.

5.4.1 Application to data for Lake Balaton

The effectiveness of the nonparametric statistical downscaling model (5.8)

is demonstrated through fitting to the log(chlorophylla) data for Lake Bal-

aton. This process highlights the advantages, disadvantages and issues as-
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sociated with fitting the model to log(chlorophylla) data. The process is

illustrated using a B-spline basis and a Fourier basis. For these models, the

spatial decay parameters φα and φβ are each set equal to 0.1, as earlier results

show that these are reasonable values for this dataset and that the model

predictions are not sensitive to small changes in these values.

B-spline basis dimension for Lake Balaton

Given that a B-spline basis has been chosen, the basis dimension is esti-

mated as:

Basis dimension =

(
(tmax − tmin)× 2× r

365

)
+ 3, (5.9)

where r is the expected number of peaks in the data per year, tmax is the

maximum sampling date and tmin is the minimum sampling date, with the

difference (tmax − tmin) measured in days. The rationale behind this choice

of formula is that the basis dimension must be large enough that the main

patterns in the data are captured. The formula is based upon the assumption

that there must be at least two basis functions per peak, in order to capture

the pattern well enough. The additional three basis functions are required,

since there are two additional breakpoints at each endpoint of the range of

the basis and only one is otherwise already accounted for by the formula.

This formula gives an estimate of 41 basis functions for the Lake Balaton

dataset, based upon the assumption that two peaks in log(chlorophylla) are

expected.

An empirical estimate of the optimal basis dimension is gained through

GCV, DIC and a leave-one-out cross-validation, allowing the comparison of

model performance for different numbers of basis functions. GCV and DIC

both suggest that basis dimensions around 30 to 60 are reasonable. The

model is fitted with basis dimension varying from 30 to 60 and a leave-one-

out cross-validation is carried out for each dimension (with data for each lo-
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cation in turn removed and predicted from the model fitted to the remaining

data). For each basis dimension, the model is fitted to the log(chlorophylla)

data for Lake Balaton and trace and density plots (see Figures B.20 and

B.21 on pages 237 and 238 for an example using basis dimension 49) provide

no evidence against the assumption that the MCMC chains have converged,

while diagnostic plots (see Figure B.43 on page 250 for an example using

basis dimension 49) provide no evidence against the model assumptions of

homoscedasticity and mean-zero Normality of residuals. Root mean squared

error (RMSE), mean absolute error (MAE), variance of predictions, mean

95% credible interval coverage and mean 95% credible interval width are cal-

culated for each basis dimension (see Figure 5.8). RMSE and MAE should
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Figure 5.8: Plots of summary statistics versus basis dimension for a leave-one-out
cross-validation for Lake Balaton, for B-spline basis.

give a good indication of how well the model predicts, when fitted using dif-

ferent basis dimensions. Both decrease with increasing basis dimension, until

around 45, after which their values vary, but do not decrease further on av-

erage. The first time RMSE and MAE reach low points is at basis dimension

49, indicating that the model predicts fairly well using this basis dimension,

and also indicating that the theoretical optimal value of 41 is slightly too

small for this dataset. Increasing the dimension beyond 49 only serves to
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increase computation time and mean credible interval length, without lead-

ing to an improved model predictive ability, so that 49 should be selected

as the optimal basis dimension for the B-splines basis for the Lake Balaton

log(chlorophylla) data.

Fourier basis dimension for Lake Balaton

If a Fourier basis is chosen, the formula to estimate the optimal basis

dimension is:

Basis dimension = 2× expected number of peaks in log(chlorophylla) per year + 1,

(5.10)

which leads to an estimate of 5 as the optimal basis dimension, for the Lake

Balaton log(chlorophylla) data. Similarly to the previous formula for esti-

mating the basis dimension for the B-spline basis (equation 5.9), this formula

assumes that two basis functions per peak, per year are required, with an

additional knot required at an endpoint of the range of the basis. GCV and

DIC also suggest that a small basis dimension is appropriate here. As with

the B-spline basis, a leave-one-out cross-validation is a good way to estimate

the optimal basis dimension empirically. This is carried out, similarly to that

for the B-spline basis, with assumptions checked in the same way and found

to be reasonable. Plots of resulting summary statistics (see Figure 5.9) show

that RMSE and MAE decrease as basis dimension increases from 3 to 5, but

then mostly level off. This agrees with the theory that at least 5 basis dimen-

sions are required to model the two-peaks-per-year log(chlorophylla) pattern

well, but the minimum value is reached at dimension 9. This may be due to

the fact that 9 basis functions are able to model the shape of the two peaks

better than 5 basis functions would be. The mean credible interval length

reaches a minimum at 7, but is still low at 9. From this, 9 is a reasonable

choice for the optimal basis dimension, for this dataset.
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Figure 5.9: Plots of various summary statistics versus basis dimension for a leave-
one-out cross-validation.

Comparison of the nonparametric and previously-fitted statistical

downscaling models and choice of basis type

While the goal is to develop a model that fuses data of different spa-

tiotemporal support, it is important that this model performs at least as

well as the simpler models fitted previously, as otherwise its usefulness is

limited. Once again, this is assessed empirically through a leave-one-out

cross-validation. This allows a comparison between the two basis types and

between the nonparametric downscaling model and its simpler counterpart

(specifically model 3.4, the spatiotemporal statistical downscaling model with

variance pooled over time), for which corresponding summary statistics have

been calculated previously. These statistics are displayed in Table 5.1, for

each model, for each of the two basis types, for their calculated optimal basis

dimensions. The RMSE and MAE values demonstrate that nonparametric

statistical downscaling can outperform traditional statistical downscaling, as

long as an appropriate basis dimension is selected. It was mentioned ear-

lier that either the B-spline or the Fourier basis are suitable, depending on

whether periodicity is a reasonable assumption for the data. From these re-

sults, the Fourier basis leads to more accurate predictions than the B-spline
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Model RMSE MAE Variance of
predictions

95% CI
coverage

Mean 95%
CI length

3.4 0.554 0.388 0.643 0.907 1.594
5.8 (B-spline, 49) 0.504 0.379 0.490 0.992 3.430
5.8 (Fourier, 9) 0.451 0.352 0.313 0.973 2.090

Table 5.1: Summary statistics for cross validation assessing nonparametric down-
scaling model performance, for the Lake Balaton data.

basis, although the difference is not so large that a B-spline basis is considered

inappropriate. In fact, a B-spline basis can still be preferred, if the advice

from ecological specialists is that an aperiodic relationship is expected over

time. Although RMSE and MAE are important in comparing the models,

other measures of performance are also important. The variances of predic-

tions are lower for the nonparametric models and specifically for the Fourier

basis, as expected due to the predictions varying more smoothly over time.

The mean 95% credible interval (CI) coverage is close to 95% for all three

models. Finally, the mean 95% credible interval length is greater for both

nonparametric statistical downscaling models, so that estimates are less pre-

cise for the nonparametric models, which appears to be the only downside

to these models, at least when fitting to this dataset. This section of anal-

ysis has demonstrated the ability of the nonparametric downscaling model

to perform as well as previously fitted models. The next section focusses

on understanding the patterns in predictions from the nonparametric model

over space and over time.

Illustration of calibrations from the nonparametric statistical down-

scaling model

The previous section showed that the nonparametric statistical downscal-

ing model is able to predict with ability equal to (and in fact slightly greater

than that for) model 3.4. This section shows that the patterns in these pre-

dictions are sensible and relate to the patterns observed in the in situ data.

All of the predictions from the nonparametric downscaling model are from
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the model fitted with basis dimension 49 (for the B-spline basis) or 9 (for the

Fourier basis). The patterns in the predictions over time are shown for the

two bases, predicted at Lake Balaton location 1, based on data for locations

2 to 9 (see Figure 5.10). On each plot, the estimated smooth function for
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Figure 5.10: Predictions for Lake Balaton location 1 log(chlorophylla) data from
a nonparametric downscaling model fitted to data for locations 2 to
9, using a B-spline basis of dimension 49 (top) and a Fourier basis
of dimension 9 (bottom). Points are data, solid lines are predictions
and dashed lines are 95% credible intervals.

location 1 is shown as a solid line, with 95% credible intervals in dotted lines.

These predicted curves lie close to, and follow the main patterns in, the ob-

served data for location 1, for both basis types. In addition to demonstrating

the apparent good performance of the model at predicting patterns in the

data, these plots also illustrate a possible reason for the improved perfor-

mance of the Fourier basis-fitted model in comparison to the B-spline-fitted

model. This is that, although the Fourier basis assumes that the pattern in

log(chlorophylla) repeats every year, the B-spline basis has the problem of

being more variable, probably due to the B-spline basis having to make do

with few data over certain periods of time, while the Fourier basis uses data

across years and hence smooths out excess variability.

The ability of the nonparametric statistical downscaling model to ad-
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equately calibrate data over space is also of importance and can be illus-

trated through plots of predictions for March to May 2003, along with pre-

dictions from a traditional statistical downscaling model (3.4) and the origi-

nal remotely-sensed data (see Figure 5.11). The top plots show the original

data for these months, which are 3 of 115 for which remotely-sensed data

are available. Predictions are made for the middle of each month. On plots

for months that have available in situ data, these data are overlaid and sur-

rounded by white circles. There are no in situ data for March 2003. For

April, the available in situ data lie fairly close in value to their surround-

ing remotely-sensed data, while for May 2003, the available in situ data are

higher than their surrounding remotely-sensed data, especially in the south-

west of the lake, indicating the need for the calibration of the remotely-sensed

data. This difference in the relationship between the in situ data and the

remotely-sensed data between these months can be explained by differences

in the quality of satellite readings, for example due to differences in cloud

cover, or possibly to a change in the angle of the satellite, resulting in a

change in the amount of the Earth’s atmosphere that the light must pass

through and therefore poorer calibration for one month. Predictions from

the traditional downscaling model are good for April and May, in that they

lie close to the in situ data values, but retain spatial characteristics from

the remotely-sensed data, but no predictions can be made for March at all.

The nonparametric model, in both its B-spline and Fourier forms, also fits

predictions that lie close to the observed in situ data, with those from the

B-spline-version model retaining more spatial structure from the remotely-

sensed data. This may be a reason that a B-spline-based model would be

preferred, although the Fourier-based model may be preferred if the aver-

age patterns over the years are of most interest. Finally, both versions of

the nonparametric statistical downscaling model are able to predict at the

month with only remotely-sensed data available, taking information across

both space and time to calibrate the data, whereas the traditional model
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cannot do this.

Plots of the standard errors for the traditional and nonparametric models

(see Figure 5.12) show that standard errors are larger for the traditional

model than for either version of the nonparametric model, for this particular

dataset. This is not necessarily true for other datasets. For all models, the

standard errors are much smaller than the variation over space within each

month, which means that the model gives a useful understanding of patterns

in log(chlorophylla) over space.

5.4.2 Application to data for Lake Erie

This subsection details the investigation of the data for Lake Erie, through

the use of the nonparametric downscaling model.

The data for Lake Erie suffer from two quality problems. The first issue

is that the in situ data are collected infrequently over time, with only twice-

yearly sampling for the data collected by EPA and large gaps over winter

of the data collected by LEC. The second issue is that the remotely-sensed

data change in variability after the end of 2007, with temporal patterns much

less clear after this time (see Figure 5.13, showing example patterns for two

locations). It is unclear from the plot whether the in situ and remote sensing

data follow the same patterns over time, since so few EPA data are available

and since the available EPA in situ data may miss out one or more peaks in

the data, apparently only covering a trough that does not appear so clearly

in the remote sensing data. Despite the data issues, it is still of interest to

apply the developed methodology to allow inference about the patterns in

log(chlorophylla) over space and over time. The analysis proceeds, with the

data from November 2008 onwards removed, giving 65 months of available

data from June 2002 until October 2007.

Similarly to the Lake Balaton data, a leave-one-out cross-validation is

carried out for both the B-spline and Fourier bases, to determine the empiri-

cally optimal basis dimension. Using formulae 5.9 and 5.10, the theoretically
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Figure 5.13: Plots of log(chlorophylla) over time for two locations in Lake Erie
(top: EPA, location 1; bottom: LEC, location 21). Hollow circles
are remotely-sensed data, while solid diagonal squares are in situ
data.

optimal basis dimension is estimated as 14 or 24 for B-splines, depending on

whether the number of peaks per year is 1 or 2, and 3 or 5 for the Fourier

basis, again depending on the expected number of peaks per year. For each

basis dimension, the convergence of the MCMC chains is checked using trace

and density plots (see Figures B.22 and B.23 on pages 239 and 240 for an

example using basis dimension 14), while diagnostic plots (see Figure B.44

on page 251 for an example using basis dimension 14) provide no evidence

against the assumptions that the residuals have mean zero, are Normally

distributed and are homoscedastic. Plots of summary statistics from the

leave-one-out cross-validation are given in Figure 5.14, where the B-spline

basis is fitted for a sequence between 5 and 29, increasing by 3 each time,

and where the Fourier basis is fitted for the sequence of odd numbers be-

tween 3 and 19. The top plots show that RMSE reaches a minimum at 11,

while MAE reaches a minimum at 14. Since 14 is the dimension required

for at least one peak per year, it is selected over 11, giving both a theoreti-

cally and empirically reasonable choice. The mean prediction interval length

increases with increasing basis dimension, but has very little difference be-
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Figure 5.14: Summary statistics for Erie data from cross-validation using B-
spline (top 5) and Fourier (bottom 5) basis.

tween dimensions 11 and 14. The bottom plots show that RMSE and MAE

generally increase with increasing basis dimension, for the Fourier basis, with

a minimum reached at dimension 5. Mean 95% credible interval length also

increases with increasing basis dimension, with a minimum reached at dimen-

sion 5. Mean 95% credible interval coverage is slightly less than the nominal

95% for Fourier basis dimension 5, but not so much that alarm should be

raised.

Choosing the basis dimensions to be 14 for B-splines and 5 for the Fourier
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basis, the results from fitting the nonparametric model are compared to those

from fitting model 3.4 (which is the spatiotemporal statistical downscaling

model with pooling of estimates for the spatial variance parameters over

time) (see Table 5.2). These results contrast with those for Lake Balaton,

Model RMSE MAE Variance of
predictions

95% CI
coverage

Mean 95%
CI length

3.4 0.624 0.452 0.512 0.818 2.097
5.8 (B-spline, 14) 0.840 0.649 0.292 1 14.607
5.8 (Fourier, 5) 0.621 0.463 0.390 0.944 2.579

Table 5.2: Summary statistics for cross validation comparing traditional and non-
parametric downscaling models, for the Lake Erie data.

since the nonparametric downscaling model does not outperform the tradi-

tional model. In fact, RMSE and MAE are higher for the nonparametric

downscaling model using the B-spline basis of optimal dimension 14 than

for the traditional downscaling model. The mean 95% credible interval (CI)

length is also extremely high for the model using the B-spline basis, com-

pared to the other models. This may be due to the in situ data sparseness

over time, meaning that understanding the smooth patterns in the in situ

data is difficult. The model fitted using the B-spline basis leads to unusual

patterns in the fitted smooth curve, with corresponding wide credible inter-

vals. The nonparametric model using the Fourier basis, however, is found to

perform very similarly to the traditional model, with a higher 95% credible

interval coverage, which lies very close to the nominal 95% coverage. The

improved performance of the model using the Fourier basis, compared to the

model using the B-spline basis, may be due to the ability of the model to

use data over all years, rather than relying on there being enough data in

each year to understand the smooth pattern. These results show that the

nonparametric statistical downscaling model is able to perform as well as the

traditional model, even in the absence of densely-sampled in situ data with

good temporal coverage. However, the requirement to check which basis type

is most suitable is highlighted.
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Plots of predictions over time (see Figure 5.15) show how overly smooth
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Figure 5.15: Plots of predictions from model 5.8 at Erie locations 1 and 21, for
B-spline dimension 14 and Fourier dimension 5 bases. Points are
data, solid lines are predictions and dashed lines are 95% credible
intervals.

the predictions appear for the B-spline basis, as these do not follow the

observed in situ data well where they are available. The predictions from

the model with the Fourier basis do, however, follow the patterns in the

observed in situ data for the LEC locations, as shown for the example in the

bottom plot. The ability of the model using the Fourier basis to predict at

the EPA locations is difficult to assess, due to the lack of in situ data over

time for these locations.

Spatial predictions can also be produced for the nonparametric statistical

downscaling model applied to Lake Erie (see Figure 5.16). These predictions
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are made at 1000 locations in the Lake, determined using a Delaunay triangu-

lation in order to give the optimal coverage of the area, for the month-centres

of March to May 2003. Also shown are predictions from the traditional model

3.4 and the original remotely-sensed data. In situ data are overlaid, sur-

rounded by white circles. For April 2003, predictions for the nonparametric

model fitted using both the Fourier and B-spline bases, and predictions from

the traditional model, are similar, with lower values in the centre of the lake,

compared to the east and west. None of the models take much information

from the remotely-sensed data, since it does not relate very strongly to the in

situ data for this lake. The same is true for May 2003. For March 2003, only

remotely-sensed data are available, so predictions are only available from the

nonparametric model, with similar patterns to those in the closest months

with in situ data, such as April 2003. This demonstrates the strength of

the nonparametric model, which is able to predict at any time, whether in

situ data are available at that time or not. Standard errors are also plot-

ted (see Figure 5.17). For this dataset, the standard errors are higher for the

nonparametric downscaling model than for the traditional model, in contrast

to the case for the Lake Balaton data. This might be due to the temporal

sparseness of the in situ data, meaning that the predictions from a model

that requires good temporal information are less certain than those from a

model that does not.

5.5 Conclusions and further work

This section summarises the conclusions reached from the analysis and

details further work that is required. In this chapter, a method for downscal-

ing data of different spatiotemporal support was developed, incorporating

methodology from the fields of both statistical downscaling and functional

data analysis. The model calibrates remotely-sensed data, available on a

grid-cell and monthly-average scale, using in situ data on a point-location
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and point-time scale, through treating the observed data as observations of

unknown smooth functions, fitted through use of basis functions. The two

data types are related through their basis coefficients, which are modelled as

spatially-varying, thus bringing in the spatial component of the model. The

model is therefore able to predict at any point location and point time within

the region and period of available data, whether in situ data are available

for that point location or time, or not. The statistical novelty of the model

is in the incorporation of functional data methodology within the statistical

downscaling framework.

Two main choices to be made in fitting the model were discussed, namely

the choices of basis type and basis dimension. The common basis types of

the B-spline and Fourier basis were discussed, with the Fourier basis more

suitable for periodic data and the B-spline basis able to model data more

flexibly. The second important choice to make involved the selection of the

basis dimension, i.e. the number of basis functions to use to model the smooth

function. The basis dimension could be estimated, based on assumed or ob-

served temporal patterns in the data, although it was found to be more ap-

propriate to obtain a better estimate of the optimal basis dimension through

cross-validation, in order to gain a good understanding of how well the model

performs for various different basis dimensions. Another issue that was un-

derstood, through the analysis, was that either the B-spline or Fourier basis

could be most appropriate for the data, if periodicity was a reasonable as-

sumption for the data. In the data examined, the values of log(chlorophylla)

were expected to have slightly differing patterns over the years, but the use

of a Fourier basis still led to an improved model prediction accuracy, pos-

sibly due to the Fourier basis taking into account data over multiple years,

compared to the reliance of the B-spline basis on possibly sparse data within

each year separately.

The model was fitted to data for two lakes, one of which (Lake Balaton)

had much better quality data available than the other (Lake Erie). For each
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lake respectively, using the same dataset for all models, it was found that

the nonparametric model outperformed the traditional model for the Lake

Balaton data, but not for the Lake Erie data. For the Lake Balaton data,

the nonparametric model provided improved estimates, even when these es-

timates were only required at times of in situ data collection. Along with the

ability to predict at any timepoint, the nonparametric model has the benefit

of being computationally efficient, with the spatial downscaling part of the

model using parameters of dimension determined by the basis dimension,

rather than by the possibly higher dimensional data. The Lake Erie data,

however, present the potential drawback to the model, which is that the in

situ data really need to give at least some idea of the temporal patterns in

the data, which is not the case for Lake Erie. This case can be presented as a

more typical case for lakes around the world, for which in situ data sampling

is expensive and so carried out only infrequently. Even with the temporally

sparse in situ data, however, the nonparametric downscaling model using

the Fourier basis performed as well as the traditional model at predicting

the values of the in situ data. This analysis highlighted the need to deter-

mine the most appropriate basis type from an application to the data, rather

than making an assumption a priori, since the Fourier basis was found to

greatly outperform the B-spline basis for the Lake Erie dataset.

For Lake Balaton, it can be concluded that the values of log(chlorophylla)

are generally higher in the southwest of the lake (around 3.5 units for May

2003), while the values in the northeast of the lake are generally the lowest

(closer to 1 unit for May 2003). The models estimated that there was a

two-peaks per year pattern in log(chlorophylla) data for lake Balaton, with

the highest values in summer and a secondary smaller peak in spring. The

inferences made using the nonparametric statistical downscaling model agree

with the knowledge in the literature on patterns of log(chlorophylla) data over

both space and time for Lake Balaton.

For Lake Erie, there was a weaker relationship between the in situ and
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remotely-sensed data. The model was unable to derive much information on

temporal patterns from the in situ data, which could have led to the resulting

surfaces of spatial predictions not reflecting many of the spatial patterns in

the remotely-sensed data. It was clear, however, that the lake centre often

had the highest levels of log(chlorophylla).

For both lakes, standard errors were small in comparison to the changes in

log(chlorophylla) levels estimated over space and over time, so that a precise

understanding of the patterns in the data is gained from fitting the model.

The nonparametric statistical downscaling model allows the production

of plots of calibrated log(chlorophylla) data over both space and time, as

shown throughout this chapter. This allows water quality investigators to

understand how patterns change in the lake over space and time. The model

addresses the spatiotemporal support issue identified in previous chapters

and has been shown to perform as well as previously described traditional

models. This statistically novel technique should be of practical use to water

quality researchers in order to better understand lake health variation over

space and time.



Chapter 6

Conclusions

This thesis has developed methodology for the data fusion of in situ and

remotely-sensed data, accounting for the challenges that these data of differ-

ent spatiotemporal support present. Motivated by the GloboLakes project

and the data provided for log(chlorophylla) in Lake Balaton and the Great

Lakes of North America, the need for data fusion of in situ and remotely-

sensed data was identified, so that the accuracy from the in situ data could

be combined with spatial and temporal information from the remotely-sensed

data.

Statistical downscaling models, which fuse data of different spatial sup-

port, were developed and applied in the novel application area of data for

log(chlorophylla), producing fully calibrated spatial surfaces, with associated

comprehensive uncertainty estimates. In order to improve the accuracy of

model predictions, bivariate and multiple-lakes statistical downscaling mod-

els were developed, so that information on the relationship between the in

situ and remotely-sensed data could be shared between variables and be-

tween lakes. For all of these statistical downscaling methods, the data must

be available on the same temporal support. Nonparametric statistical down-

scaling was developed, to allow the data fusion of data with different spatial

and temporal support, filling a gap in the literature relating to temporal

support in statistical downscaling.

183
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The following sections provide more detail on the methodology, applica-

tions and conclusions from each chapter of this thesis.

6.1 Chapter 1: Introduction and background

Chapter 1 introduced the background to the research, the GloboLakes

project and the data that are available for analysis. The importance of

the variables chlorophylla, total suspended matter and lake surface water

temperature were described and the main research aims and objectives were

discussed.

The literature review detailed the methodology from the data fusion lit-

erature that are relevant to this research. For chlorophylla, methods such as

linear modelling, a pixel-by-pixel algorithm, a genetic programming model

and wavelet multiresolution analysis were among those used, while for air

quality data, Bayesian melding, fixed rank kriging and statistical downscal-

ing were amongst those used. Statistical downscaling was identified as an ap-

propriate method for analysis of the log(chlorophylla) data, based upon the

similarity to the change-of-support problem to which it was applied in the

air quality data to that of the in situ and remotely-sensed log(chlorophylla)

data.

The relevant methodology from geostatistics, nonparametric smoothing

and Bayesian modelling was then presented, to give the basis upon which

methods in the later chapters depend.

6.2 Chapter 2: Initial spatial and temporal

analysis of data

Patterns in the data for Lake Balaton were identified through the use

of exploratory plots. These showed that log(chlorophylla) and log(total sus-

pended matter) had a positive relationship and that there were cyclical pat-
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terns in each of log(chlorophylla), log(total suspended matter) and temper-

ature over time. For log(chlorophylla), there was a clear two-peaks per year

pattern, with a small peak in spring and a larger peak in summer, while

for temperature, the pattern was a strong one-peak-per-year pattern, with

the highest temperatures in summer. The cyclical pattern for log(total sus-

pended matter) was less strong, but there were generally higher values in

summer than in winter.

Mixed effects models were fitted to the log(chlorophylla) and log(total

suspended matter) data. Log(chlorophylla) was modelled using a pattern

of two peaks per year, with latitude as a fixed effect, providing evidence of

a strong pattern over time and of variation over space, accounting for the

effects of log(total suspended matter) and temperature. Similarly, log(total

suspended matter) was modelled using a pattern of two peaks per year, but

had no significant effect of longitude or latitude. There was, however, a large

estimated contribution of the random effect of location, providing evidence

of patterns over both space and time for this variable.

Kriging was used to interpolate the remotely-sensed temperature data

for Lake Balaton spatially, in order to get an improved understanding of the

spatial patterns in temperature for each month. Universal kriging, which

allows for a trend in the mean level across space, was carried out separately

for each month in the dataset and predictions were made over a dense grid

covering the lake. The resulting plots of the fitted surface showed that differ-

ent patterns of lake surface water temperature were observed during different

months, suggesting that the changes in temperature over space were small,

on average, in comparison with the changes over time.

Principal component analysis (PCA) was carried out on the remotely-

sensed temperature data, to identify the common patterns over space and

time, which could enable reduction of the spatial or temporal dimensions of

the data. Two modes of PCA were applied, namely S-mode and T-mode,

which apply the PCA to the matrix of times versus locations and its trans-
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pose, respectively. S-mode aims to isolate groups of locations that covary

similarly, while T-mode aims to isolate the groups of times with similar spa-

tial patterns. The results of the S-mode PCA suggested that almost all

locations covary similarly, so that the first component explained almost all

of the variance in the data. The results of the T-mode PCA suggested that

there were no groups of times with similar spatial patterns, since a large

number of components were required, in order to explain a high proportion

of variance in the data.

Generalised additive models (GAMs) were used to investigate the effect

of smoothing data on improving the relationship between the in situ and

remotely-sensed data. The remotely-sensed data were regressed on smooth

functions of latitude, longitude, year and day of the year, with independent,

Normally distributed random errors. For each time, predictions were made

from the model at the in situ data locations. Predictions were also made,

by taking the value of the remotely-sensed data at the cell nearest to each

in situ location. These two sets of predictions were compared through the

root mean squared error, showing that the predictions from the GAM were

more accurate. This suggests that smoothing should be considered, when

modelling the relationship between the in situ and remotely-sensed data.

6.3 Chapter 3: Statistical downscaling

The objective of Chapter 3 was to develop and apply statistical downscal-

ing models for the fusion of the in situ and remotely-sensed log(chlorophylla)

data. Firstly, a spatial statistical downscaling model was developed, which

regressed the in situ data on the remote sensing data for the corresponding

grid cells, with smoothly spatially-varying intercept and slope coefficients,

within a hierarchical Bayesian modelling framework. Predictions were made

over the lake and a plot of the resulting fused data showed that the remotely-

sensed data had been calibrated with the in situ data, so that the resulting
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surface of predictions was a fully calibrated surface, reflecting the spatial

patterns in the data.

The spatial statistical downscaling model must be fitted to data for each

month separately, but a spatiotemporal statistical downscaling model was

developed that was fitted to the data for all times in the dataset at once.

This model was adapted to share information over time, by using the same

spatial variance parameters for all times in the data, which led to improved

estimates of these parameters and hence improved predictions overall.

Models that fitted correlation over time, using an autoregressive process

and temporal covariance matrices, were fitted to the data. These led to a

slight improvement in the accuracy of predictions made from these models,

compared to those from the previous spatiotemporal model, suggesting that

accounting for smoothing over time may be appropriate.

These models were fitted to the data for both Lake Balaton, which has

data for 17 months corresponding to 9 in situ locations, and Lake Erie, which

has data available for 20 months corresponding to 10 in situ locations, but

temporally-sparse, spread out over 10 years.

For the novel application to log(chlorophylla) data, the spatiotemporal

statistical downscaling models were able to fuse in situ and remotely-sensed

data successfully, resulting in spatial surfaces of fused data that were cali-

brated with the in situ data, with associated uncertainty measures.

6.4 Chapter 4: Bivariate and multiple lakes

downscaling

Chapter 4 fitted bivariate and multiple-lakes downscaling models to data

for Lake Balaton and the Great Lakes, respectively. Bivariate and multiple-

lakes downscaling models were both motivated by the assumption that shar-

ing information can improve the accuracy of predictions. Bivariate down-

scaling shares information between two variables, while multiple-lakes down-
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scaling shares information between neighbouring lakes.

6.4.1 Bivariate statistical downscaling

Bivariate statistical downscaling was fitted as an extension to the spatial

statistical downscaling model, with two variables modelled simultaneously.

The correlation structure between the two variables was built in through

a correlated error structure. A second model additionally shared spatial

variance parameters between variables. It was found that the second model

resulted in improved accuracy of predictions, in comparison to those from

fitting a separate model to each variable separately, while the first model

with correlated errors showed no improvement.

6.4.2 Multiple lakes statistical downscaling

Since groups of nearby lakes are likely to share similar patterns of ecolog-

ical variables, information can be shared between lakes, in order to improve

the estimation of the relationships between the in situ and remotely-sensed

data for each lake.

The multiple-lakes downscaling model was developed in the same frame-

work as the previous statistical downscaling models, so that the in situ data

are regressed on the remotely-sensed data. The model fits an overall intercept

parameter, with a lake-specific intercept parameter and a spatially-varying

intercept parameter. Likewise, the model fits an overall slope parameter, a

lake-specific slope parameter and a spatially-varying slope parameter. The

lake-specific parameters are constrained to have mean zero and account for

lake-specific changes in the intercept and slope parameters, which may occur

due to differences in the hydrological or ecological structures between dif-

ferent lakes. The spatially-varying parameters were either assumed to vary

smoothly over each lake separately, or to vary smoothly over all lakes.

The multiple-lakes model was fitted to the data for the Great Lakes and
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it was found that there were convergence problems for some parameters.

Simplified versions of the model were fitted, with some of the parameters re-

moved, which solved the convergence problems. The results from fitting the

models were compared to those from fitting a separate statistical downscaling

model to each lake, and to those from fitting a statistical downscaling model

to data for all lakes at once, without any lake-specific parameters. It was

found that fitting a statistical downscaling model over all lakes at once re-

sulted in predictions that were equally accurate, compared to those from the

best of the multiple-lakes models that specifically accounted for lake-specific

effects, so that the lake-specific models were deemed to be unnecessary for

the Great Lakes data.

It would be of interest to apply the multiple-lakes downscaling models to

data for different lakes around the world, to investigate whether there are

circumstances where lake-specific parameters are required. This is, however,

beyond the scope of the current research, and is suggested here as a topic for

future work.

6.5 Chapter 5: Nonparametric statistical down-

scaling

Chapter 5 presented nonparametric statistical downscaling, which is the

main methodological development of this thesis. Using methodology from

both functional data analysis and statistical downscaling, this chapter de-

scribed the motivation and development of the nonparametric statistical

downscaling model, which fuses data of both different spatial and tempo-

ral support, addressing the temporal change-of-support problem that the

existing statistical downscaling models do not account for.

The gap in the literature of accounting for changes in temporal sup-

port was identified. Since the in situ data for the Lake Balaton and the

Great Lakes datasets were sampled at point times, while the corresponding
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remotely-sensed data were available for monthly averages, the change-of-

support had to be accounted for. This was accomplished through incorpo-

rating functional data analysis within the statistical downscaling framework.

Specifically, this involved treating the in situ and remotely-sensed data at

each location as observation of smooth curves over time. These curves were

estimated using basis functions and the basis coefficients of the in situ and

remotely-sensed data were then related through a spatially-varying coeffi-

cients regression. The curve estimation and spatially-varying coefficients re-

gression were fitted within a Bayesian hierarchical model, so that errors were

carried through the model to give a realistic, comprehensive uncertainty es-

timate for each model prediction.

There are four main benefits to this model, for the Lake Balaton and Lake

Erie data. The most important is that it accommodates the spatiotemporal

change of support between the in situ and remotely-sensed data, resulting

in data fusion of the two datasets, with no data aggregation required. This

leads to the second benefit, which is that predictions can be made at any

time and any location within the lake, whether in situ data were available

for that time and location or not. This is a benefit over the statistical down-

scaling models from previous chapters, which were only able to predict over

space within a month for which some in situ data were available and not

for months for which no in situ data were sampled. The third benefit is

dataset specific and is that the nonparametric statistical downscaling model

resulted in slightly more accurate predictions than those from spatiotempo-

ral statistical downscaling models from earlier chapters. This third benefit

is a good addition for these datasets, but even without it, this model may

be preferred, since it addresses the problem of changing spatiotemporal sup-

port that other models have ignored. The fourth benefit is that the method

is computationally efficient, since the spatially-varying coefficient regression

part of the model is fitted using the basis coefficients, which are likely to be

of a lower dimension that the data themselves.
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6.6 Discussion, limitations and future work

This thesis aimed to develop methodology for data fusion of in situ and

remotely-sensed data, accounting for the spatiotemporal change of support

between the data types. After preliminary modelling identified the spatial

and temporal patterns in the data, statistical downscaling was identified as

an appropriate method for the fusion of log(chlorophylla) data, which is the

type of data that this thesis has focussed on. Fitted in the Bayesian hi-

erarchical model framework, a model with spatially-varying coefficients was

fitted to data for each month in the dataset, resulting in a fully calibrated

spatial surface of fused data for each month, with associated measures of

uncertainty. The model accounted for the spatial change of support between

the point-location in situ data and the grid-cell-scale remotely-sensed data,

but ignored the temporal change of support, so that the in situ data had to

be aggregated over each month. The model was extended to a spatiotempo-

ral version, sharing information over time and improving the accuracy of the

predictions made. Versions of the model that included smoothing over time

were also developed. These models slightly improved the accuracy of the

predictions, suggesting that smoothing over time was appropriate for gain-

ing a better understanding of the data. Bivariate models and multiple lakes

models were developed, based upon the assumptions that sharing informa-

tion between variables and between neighbouring lakes would improve the

accuracy of predictions from the models. It was found that sharing informa-

tion between two variables, which were modelled simultaneously, did improve

the performance of the model. However, it was found that multiple-lakes

downscaling models with lake-specific parameters were unnecessary, since a

simpler statistical downscaling model performed as well, without account-

ing for lake-specific effects. Finally, the temporal change of support problem

was tackled, through the development of the nonparametric statistical down-

scaling model, which is a novel statistical development that incorporates the
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estimation of the in situ and remotely-sensed data at each location as smooth

functions over time. The nonparametric statistical downscaling model was

found to accomplish the main objective of the research, through the fusion

of data of different spatiotemporal support, to produce a fused dataset that

incorporates the accuracy from the in situ data and the spatial and temporal

information from the remotely-sensed data.

The main limitation of the earlier work on statistical downscaling in this

thesis and of the methods in the literature, such as those of Berrocal et al.

(2010b) and Berrocal et al. (2010a), is that the temporal change of support

is ignored. It is important for the application of lake water quality data that

this is addressed, since the in situ data for variables such as chlorophylla

and total suspended matter are often only available at irregular sampling

times, while their corresponding remotely-sensed data are often available for

monthly averages. This limitation and the resulting gap in the literature

were addressed by the novel development of the nonparametric statistical

downscaling model, allowing data to be input without any aggregation and

predictions to be made for any time.

All of the statistical downscaling models investigated in this thesis make

use of Inv-Ga(0.001, 0.001) as prior distributions for their variance param-

eters. This distribution has been used extensively in the literature for this

purpose, but has also been criticised by some authors. Since the main aim of

this work is to present novel methodology, the investigation of whether alter-

native prior distributions would be more suitable is left for future work. An

initial comparison of the first statistical downscaling model did not suggest

that the results were particularly sensitive to a change in the prior distribu-

tions for the variance parameters, giving no cause for concern.

A limitation of all models developed in this thesis is the computational

complexity, which increases with the number of times and locations in the

data, and the number of times and locations at which to predict. Since the

models are fitted in the Bayesian framework, through Gibbs sampling, this
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computational complexity can become quite large. Steps were taken to reduce

the computational complexity of the models, including coding them in Rcpp

and identifying the parts of the full conditional posterior distributions that

could be simplified. Additionally, the nonparametric statistical downscaling

model carries out the spatially-varying coefficient regression part of the model

on the basis coefficients, rather than the possibly higher dimensional data,

keeping the computational complexity low. A Delaunay triangulation was

carried out for each lake, to determine the locations at which to predict to

give an optimal coverage of the lake surface. However, the maximum number

of locations at which to predict was chosen to be around 1000 for each lake,

since otherwise the memory used in the model-fitting process became too

high. It would be useful to be able to predict at a larger number of locations,

in order to gain an improved spatial understanding of the data for very large

lakes. Suggestions for future work, to address this limitation, include inves-

tigating alternative methods for improving the mixing of the MCMC chains,

so that convergence is reached after a smaller number of iterations, and inves-

tigating how the thinning of the MCMC chains can be used to improve the

computational efficiency of the models. Alternatively, the possibility of im-

plementing the models in the INLA framework could be investigated, since

INLA avoids MCMC altogether (Rue et al. 2009, Blangiardo & Cameletti

2015).

For the nonparametric statistical downscaling model in particular, a sug-

gestion for future work is an investigation of how the estimation of the basis

dimension can be incorporated within the model, as this must currently be

chosen outwith the model. This would be a challenge, since the same basis

dimension must be used for the in situ and remotely-sensed data correspond-

ing to each in situ location. A benefit to this would be that the number of

decisions to be made by the modeller would be reduced, making the model

more attractive to a non-statistician. Additionally, this would ensure that the

prediction errors took into account the uncertainty associated with estimat-
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ing the optimal basis dimension, since otherwise the dimension is assumed

to be fixed and known.

A further suggestion for future work is the application of the models to

different datasets. The models from Chapters 3 and 4 were investigated

using datasets with few in situ sampling locations and few months for which

data were available for all locations. Although the small number of in situ

sampling locations is not unusual for lake water data, it would be of interest

to apply the models to datasets with more frequent sampling over time at

each location, to investigate how the performances of the models compared

to their performances when applied to the Lake Balaton and Lake Erie data.

A final important point to note about the models is that, although they were

developed for the application of fusing log(chlorophylla) data, there is no

reason that the models cannot be applied to data from different spheres of

research. For example, the nonparametric statistical downscaling model can

be applied to fuse point-location data with grid-cell data, each with either a

point-time or averaged-time scale, for any variable.



Appendix A

Derivation of full conditional

posterior distributions

This appendix presents the derivations of the full conditional posterior

distributions for models 3.3, 3.4, 4.1 and 5.8. These full conditional distri-

butions are required for Gibbs sampling and are the posterior distributions

of each model parameter, given the values of every other parameter in the

model. They are used in Gibbs sampling to iteratively update the values

of each parameter, given the value of each other parameter at the previous

iteration (Gelman et al. 2014).

In the following sections, the notation f(x|·) indicates the posterior dis-

tribution of the variable x, given the values of all of the other variables in

the model.
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A.1 Spatiotemporal statistical downscaling model

3.3

The spatiotemporal statistical downscaling model 3.3 is written as follows:

yji ∼ N(αji + βjixji, σ
2
εj

),

αj ∼ Nn

(
0, σ2

αj
exp(−φαD)

)
,

βj ∼ Nn

(
1, σ2

βj
exp(−φβD)

)
,

(σ2
αj

)−1 ∼ Ga(aα, bα),

(σ2
βj

)−1 ∼ Ga(aβ, bβ),

(σ2
εj

)−1 ∼ Ga(aε, bε),

(A.1)

where yji is the value of in situ data for log(chlorophylla) at time j (j =

1, . . . , t) and location i (i = 1, . . . , n), xji is the value of remote sensing data

at time j for the grid cell containing in situ location i, D is the n×n matrix

of distances between in situ locations, αj = (αj1, . . . , αjn)T is the vector of

intercept parameters for time j, βj = (βj1, . . . , βjn)T is the vector of slope

parameters for time j, 0 is an n-length vector of zeros and 1 is an n-length

vector of ones.

The probability density functions for the data distribution and for the

distributions of each parameter in the model can be written as follows:

f(yji) =
1√

2πσ2
εj

exp

(
− 1

2σ2
εj

(
yji − (αji + βjixji)

)2

)
,

f(αj) =
1

(2π)
n
2 |σ2

αj
exp(−φαD)| 12

exp

(
−1

2
(αj − 0)T

(
σ2
αj

exp(−φαD)
)−1

(αj − 0)

)
,

f(βj) =
1

(2π)
n
2 |σ2

βj
exp(−φβD)| 12

exp

(
−1

2
(βj − 1)T

(
σ2
βj

exp(−φβD)
)−1

(βj − 1)

)
,

f
(
(σ2

αj
)−1
)

= baαα (σ2
αj

)−1(aα−1)exp
(
− bα(σ2

αj
)−1
)
/Γ(aα),

f
(
(σ2

β)−1
)

= b
aβ
β (σ2

βj
)−1(aβ−1)exp

(
− bβ(σ2

βj
)−1
)
/Γ(aβ),

f
(
(σ2

ε)
−1
)

= baεε (σ2
εj

)−1(aε−1)exp
(
− bε(σ2

εj
)−1
)
/Γ(aε),
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for j = 1, . . . , t and i = 1, . . . , n. For calculation of the full conditional

posterior distributions of αj and βj, it is useful to know the data distribution

in vector form:

f(yj) =
1

(2π)
n
2 (σ2

εj
)
n
2

exp

(
− 1

2σ2
εj

n∑
i=1

(
yji − (αji + βjixji)

)2

)

=
1

(2π)
n
2 |σ2

εj
In|

1
2

exp

(
−1

2

(
yj − (αj + Xjβj)

)T

(σ2
εj

In)−1
(
yj − (αj + Xjβj)

))
,

where In is the n× n identity matrix and:

Xj =


xj1 0 · · · 0

0 xj2 · · · 0
...

...
...

0 0 · · · xjn


is an n× n diagonal matrix with the vector of remotely-sensed data at time

j, xj = (xj1, . . . , xjn)T, as its diagonal.

The full conditional posterior distributions are calculated as follows:

f((σ2
εj

)−1|·) ∝ (σ2
εj

)−1(aε−1)exp
(
− bε(σ2

εj
)−1
)

× (σ2
εj

)−1(n
2

)exp

(
−(σ2

εj
)−1

(
1

2

n∑
i=1

(
yji − (αji + βjixji)

)2

))

∝ Ga

(
aε +

n

2
, bε +

1

2

n∑
i=1

(
yji − (αji + βjixji)

)2

)
.

f((σ2
αj

)−1|·) ∝ (σ2
αj

)−1(aα−1)exp
(
− bα(σ2

αj
)−1
)

× (σ2
αj

)−1(n
2

)exp

(
−1

2
αT
j

(
σ2
αj

exp(−φαD)
)−1
αj

)
∝ Ga

(
aα +

n

2
, bα +

1

2
αT
j exp−1(−φαD)αj

)
.

f((σ2
βj

)−1|·) ∝ Ga

(
aβ +

n

2
, bβ +

1

2
(βj − 1)Texp−1(−φβD)(βj − 1)

)
.
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f(αj|·) ∝ exp

(
−1

2
αT
j

(
σ2
αj

exp(−φαD)
)−1
αj

)
× exp

(
−1

2

(
αj − (yj −Xjβj)

)T

(σ2
εj

In)−1
(
αj − (yj −Xjβj)

))
= exp

(
− 1

2

(
αT
j

(
(σ2

αj
exp(−φαD))−1 + (σ2

εj
In)−1

)
αj

−αT
j

(
(σ2

εj
In)−1(yj −Xjβj)

)
+ . . .

))
∝ N(ΣαjAαj ,Σαj), where

Σαj =
((
σ2
αj

exp(−φαD)
)−1

+ (σ2
εj

In)−1
)−1

and Aαj = (σ2
εj

In)−1(yj −Xjβj).

f(βj|·) ∝ exp

(
−1

2
(βj − 1)T

(
σ2
βj

exp(−φβD)
)−1

(βj − 1)

)
× exp

(
−1

2

(
Xjβj − (yj −αj)

)T

(σ2
εj

In)−1
(
Xjβj − (yj −αj)

))
= exp

(
− 1

2

(
βT
j

(
(σ2

βj
exp(−φβD))−1 + XT

j (σ2
εj

In)−1Xj

)
βj

− βT
j

(
(σ2

βj
exp(−φβD))−11 + XT

j (σ2
εj

In)−1(yj −αj)
)

+ . . .
))

∝ N(ΣβjAβj ,Σβj), where

Σβj =
((
σ2
βj

exp(−φβD)
)−1

+ XT
j (σ2

εIn)−1Xj

)−1

and Aβj =
(
σ2
βj

exp(−φβD)
)−1

1 + XT
j (σ2

εj
In)−1(yj −αj).

Predictions at new locations i (i = 1, . . . , p, where p is the number of

locations at which predictions are to be made), are made by sampling from

the posterior predictive distribution:

ỹji ∼ N(α̃ji + β̃jix̃ji, σ
2
εj

), (A.2)

for j = 1, . . . , t and i = 1, . . . , p, where x̃ji is the value of remotely-sensed data

for the grid cell containing prediction location i, at time j, σ2
εj

is the error

variance, estimated from fitting the model to the data, and the distributions

of α̃j and β̃j are conditional on the values of αj and βj obtained from fitting

the model to the data. The joint distribution of predicted α̃j and observed
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αj is:

α̃j
αj

 ∼ Np+n

µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22

 ,

so that the conditional distribution of α̃j, given αj, is:

α̃j|αj ∼ Np

(
µ1 + Σ12Σ

−1
22 (αj − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
,

where µ1 = 0, µ2 = 0, Σ11 = σ2
αj

exp(−φαD11), Σ12 = σ2
αj

exp(−φαD12),

Σ21 = σ2
αj

exp(−φαD21) and Σ22 = σ2
αj

exp(−φαD22). The matrix of dis-

tances between prediction and in situ data locations is partitioned as follows:

D =

D11 D12

D21 D22

 ,

where D11 is the matrix of distances between prediction locations, D22 is the

matrix of distances between in situ data locations, and D12 and D21 are the

matrices of distances between locations of in situ data and predictions. The

conditional distribution of α̃j|αj therefore simplifies to:

α̃j|αj ∼ Np

(
0 + exp(−φαD12) exp(−φαD22)−1(αj − 0),

σ2
αj

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

))
.

Given that φα and φβ are chosen before fitting the model, the only parts of

the mean and covariance matrix of the distribution of α̃j|αj that must be

re-calculated at each iteration of the Gibbs sampler are αj and σ2
αj

.

Let θ ∼ Nd(µ,Σ) be a length-d vector, with a multivariate Normal dis-

tribution with mean vector µ and covariance matrix Σ. A random sample

from θ can be drawn as follows (Gelman et al. 2014):

• Let A be a lower triangular matrix, such that AAT = Σ is the Cholesky

decomposition of Σ.
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• Let z be a d-length vector of independent standard Normal draws.

• Then a draw from x is µ+ Az.

In the case of sampling from α̃j|αj, this means that the Cholesky decom-

position of σ2
αj

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

)
must be calculated at each iteration of the Gibbs sampler, which is computa-

tionally expensive for a large number p of prediction locations. Fortunately,

if AAT = Σ is the Cholesky decomposition of Σ, then (
√
bA)(

√
bA)T = bΣ

is the Cholesky decomposition of bΣ. Taking note of this fact, it can be seen

that the Cholesky decomposition of the covariance matrix
(

exp(−φαD11)−

exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)
)

of the distribution of α̃j|αj only

needs to be calculated once. Updates at each iteration then simply involve

the multiplication of this value with the updated value of
√
σ2
αj

, which is

much more computationally efficient.

The conditional distribution of the slope coefficients at prediction loca-

tions, given the values of the slope coefficients at in situ data locations, is:

β̃j|βj ∼ Np

(
1 + exp(−φβD12) exp(−φβD22)−1(βj − 1),

σ2
βj

(
exp(−φβD11)− exp(−φβD12) exp(−φβD22)−1 exp(−φβD21)

))
.

As with the conditional distribution of the intercept coefficients for prediction

locations, it can be noted that the covariance matrix of this distribution is a

scalar (which updates at each iteration of the Gibbs sampler) multiplied by

a matrix (which does not update at each iteration of the Gibbs sampler), so

that there is no need to perform a Cholesky decomposition on this matrix at

each iteration of the sampler.

This model was fitted, using a Gibbs sampler, in C++, with predictions ob-

tained at new locations using the above computationally efficient procedure.

The results of fitting the model to data for log(chlorophylla) are presented in

Chapter 3.
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A.2 Spatiotemporal statistical downscaling model

3.3a

The spatiotemporal statistical downscaling model 3.3a is written as:

yji ∼ N(αji + βjixji, σ
2
ε),

αj ∼ Nn(0, σ2
αexp(−φαD)),

βj ∼ Nn(1, σ2
βexp(−φβD)),

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
ε)
−1 ∼ Ga(aε, bε),

(A.3)

where yji is the value of in situ data for log(chlorophylla) at time j (j =

1, . . . , t) and location i (i = 1, . . . , n), xji is the value of remote sensing data

at time j for the grid cell containing in situ location i, D is the n×n matrix

of distances between in situ locations, αj = (αj1, . . . , αjn)T is the vector of

intercept parameters for time j, βj = (βj1, . . . , βjn)T is the vector of slope

parameters for time j, 0 is an n-length vector of zeros and 1 is an n-length

vector of ones.

The probability density functions for the data distribution and for the

distribution of each parameter in the model can be written as follows:

f(yji) =
1√

2πσ2
ε

exp

(
− 1

2σ2
ε

(
yji − (αji + βjixji)

)2
)
,

f(αj) =
1

(2π)
n
2 |σ2

αexp(−φαD)| 12
exp

(
−1

2
(αj − 0)T

(
σ2
αexp(−φαD)

)−1
(αj − 0)

)
,

f(βj) =
1

(2π)
n
2 |σ2

βexp(−φβD)| 12
exp

(
−1

2
(βj − 1)T

(
σ2
βexp(−φβD)

)−1
(βj − 1)

)
,

f
(
(σ2

α)−1
)

= baαα (σ2
α)−1(aα−1) exp

(
− bα(σ2

α)−1
)
/Γ(aα),

f
(
(σ2

β)−1
)

= b
aβ
β (σ2

β)−1(aβ−1) exp
(
− bβ(σ2

β)−1
)
/Γ(aβ),

f
(
(σ2

ε)
−1
)

= baεε (σ2
ε)
−1(aε−1) exp

(
− bε(σ2

ε)
−1
)
/Γ(aε),
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for j = 1, . . . , t and i = 1, . . . , n. For some derivations, it is useful to work

with matrices or vectors, so the following probability density functions are

also provided here:

f(α) =
1

(2π)
tn
2 |σ2

αexp(−φαD)| t2
exp

(
−1

2

t∑
j=1

(αj − 0)T
(
σ2
αexp(−φαD)

)−1
(αj − 0)

)
,

f(β) =
1

(2π)
tn
2 |σ2

βexp(−φβD)| t2
exp

(
−1

2

t∑
j=1

(βj − 1)T
(
σ2
βexp(−φβD)

)−1
(βj − 1)

)
,

f(yj) =
1

(2π)
n
2 (σ2

ε)
n
2

exp

(
− 1

2σ2
ε

n∑
i=1

(
yji − (αji + βjixji)

)2

)

=
1

(2π)
n
2 |σ2

εIn|
1
2

exp

(
−1

2

(
yj − (αj + Xjβj)

)T
(σ2

εIn)−1)
(
yj − (αj + Xjβj

))
,

f(y) =
1

(2π)
tn
2 (σ2

ε)
tn
2

exp

(
− 1

2σ2
ε

t∑
j=1

n∑
i=1

(
yji − (αji + βjixji)

)2

)
.

where In is the n× n identity matrix and:

Xj =


xj1 0 · · · 0

0 xj2 · · · 0
...

...
...

0 0 · · · xjn


is an n× n diagonal matrix with the vector of remotely-sensed data at time

j, xj = (xj1, . . . , xjn)T, as its diagonal.

The full conditional posterior distributions are calculated as follows:

f((σ2
ε)
−1|·) ∝ (σ2

ε)
−1(aε−1)exp(−bε(σ2

ε)
−1)

× (σ2
ε)
−1(nt

2
)exp

(
−(σ2

ε)
−1

(
1

2

t∑
j=1

n∑
i=1

(
yji − (αji + βjixji)

)2

))

∝ Ga

(
aε +

nt

2
, bε +

1

2

t∑
j=1

n∑
i=1

(
yji − (αji + βjixji)

)2

)
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f((σ2
α)−1|·) ∝ (σ2

α)−1(aα−1)exp(−bα(σ2
α)−1)

× (σ2
α)−1(nt

2
)exp

(
−1

2

t∑
j=1

αT
j

(
σ2
αexp(−φαD)

)−1
αj

)

∝ Ga

(
aα +

nt

2
, bα +

1

2

t∑
j=1

αT
j exp−1(−φαD)αj

)

f((σ2
β)−1|·) ∝ Ga

(
aβ +

nt

2
, bβ +

1

2

t∑
j=1

(βj − 1)Texp−1(−φβD)(βj − 1)

)

f(αj|·) ∝ exp

(
−1

2
αT
j

(
σ2
αexp(−φαD)

)−1
αj

)
× exp

(
−1

2

(
αj − (yj −Xjβj)

)T

(σ2
εIn)

(
αj − (yj −Xjβj)

))
= exp

(
− 1

2

(
αT
j

(
(σ2

αexp(−φαD))−1 + (σ2
εIn)−1

)
αj

−αT
j

(
(σ2

εIn)−1(yj −Xjβj)
)

+ . . .
))

∝ N(ΣαjAαj ,Σαj), where

Σαj =
((
σ2
αexp(−φαD)

)−1
+ (σ2

εIn)−1
)−1

and Aαj = (σ2
εIn)−1(yj −Xjβj)

f(βj|·) ∝ exp

(
−1

2
(βj − 1)T

(
σ2
βexp(−φβD)

)−1
(βj − 1)

)
× exp

(
−1

2

(
Xjβj − (yj −αj)

)T

(σ2
εIn)−1

(
Xjβj − (yj −αj)

))
= exp

(
− 1

2

(
βT
j

(
(σ2

βexp(−φβD))−1 + XT
j (σ2

εIn)−1Xj

)
βj

− βT
j

(
(σ2

βexp(−φβD))−11 + XT
j (σ2

εIn)−(yj −αj)
)

+ . . .
))

∝ N(ΣβjAβj ,Σβj), where

Σβj =
((
σ2
βexp(−φβD)

)−1
+ XT

j (σ2
εIn)−1Xj

)−1

and Aβj =
(
σ2
βexp(−φβD)

)−1
1 + XT

j (σ2
εIn)−1(yj −αj).

Predictions are made from the posterior predictive distribution:

ỹji ∼ N(α̃ji + β̃jix̃ji, σ
2
εj

), (A.4)

where the conditional distributions of the intercepts and slopes at prediction
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locations, given their values at the locations of the in situ data, are:

α̃j|αj ∼ Np

(
0 + exp(−φαD12) exp(−φαD22)−1(αj − 0),

σ2
α

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

))
and

β̃j|βj ∼ Np

(
1 + exp(−φβD12) exp(−φβD22)−1(βj − 1),

σ2
β

(
exp(−φβD11)− exp(−φβD12) exp(−φβD22)−1 exp(−φβD21)

))
The model was fitted and predictions were made, using a Gibbs sampler

written in C++, using a computationally efficient method for obtaining sam-

ples from the distributions of α̃j|αj and β̃j|βj, which makes use of the fact

that their covariance matrices are made up of a scalar (which is updated at

each iteration) and a matrix (which does not need to be updated at each

iteration). See the previous section for further discussion of this. This com-

putationally efficient algorithm is only possible, if φα and φβ are estimated

outwith the model. This model was fitted to data for log(chlorophylla), in

Chapter 3.

A.3 Bivariate spatial model 4.1

The bivariate spatial statistical downscaling model 4.1 can be written as

follows. The likelihood is:y1i

y2i

 ∼ N2

α1i + β1ix1i

α2i + β2ix2i

,Ξ

 , (A.5)

where y1i and y2i are the in situ data for variables 1 and 2, respectively, at

location i (i = 1, . . . , n), and x1i and x2i are the remote sensing data for

variables 1 and 2, for the grid cell corresponding to in situ location i.
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The prior distributions are:

α1 ∼ Nn(0, σ2
αexp(−φαD)),

α2 ∼ Nn(0, σ2
αexp(−φαD)),

β1 ∼ Nn(1, σ2
βexp(−φβD)),

β2 ∼ Nn(1, σ2
βexp(−φβD)),

Ξ ∼ Inv-W(R−1, k),

where α1 = (α11, . . . , α1n)T and α2 = (α21, . . . , α2n)T are the vectors of

intercept parameters for variables 1 and 2, β1 = (β11, . . . , β1n)T and β2 =

(β21, . . . , β2n)T are the vectors of corresponding slope parameters, 0 is an n-

length vector of zeros, 1 is an n-length vector of ones, D is an n×n matrix of

distances between in situ locations, and the parameters φα, φβ and k, along

with the 2×2 matrix of parameters R, must be chosen outwith the modelling

process.

For some calculations, it is more useful to work with the distributions for

vectors and matrices of parameters:

α ∼ N2×n(0, I2, σ
2
αexp(−φαD))

β ∼ N2×n(0, I2, σ
2
βexp(−φβD))

yi ∼ N2(αi + βi � xi,Ξ)

y ∼ N2×n(α+ β � x,Ξ, In),

vec(α) ∼ N2n(0, σ2
αexp(−φαD)⊗ I2),

vec(β) ∼ N2n(1, σ2
βexp(−φβD)⊗ I2),

vec(y) ∼ N2n(vec(α) + vec(β)� vec(x), In ⊗Ξ),

where I2 is the 2 × 2 identity matrix, In is the n × n identity matrix and

the other parameters are αi = (α1i, α21)T, βi = (β1i, β21)T, yi = (y1i, y21)T,
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xi = (x1i, x21)T,

α =
(

(α1,α2)T

)
=

α11 α12 . . . α1n

α21 α22 . . . α2n

 ,

β =
(

(β1,β2)T

)
=

β11 β12 . . . β1n

β21 β22 . . . β2n

 ,

y =
(

(y1,y2)T

)
=

y11 y12 . . . y1n

y21 y22 . . . y2n

 ,

x =
(

(x1,x2)T

)
=

x11 x12 . . . x1n

x21 x22 . . . x2n

 ,

vec(α) = (α11, α21, α12, α22, . . . , α1n, α2n),

vec(β) = (β11, β21, β12, β22, . . . , β1n, β2n),

vec(y) = (y11, y21, y12, y22, . . . , y1n, y2n),

vec(x) = (x11, x21, x12, x22, . . . , x1n, x2n),

where � represents the Hadamard, or Schur, product operation (i.e. element-

by-element multiplication of two matrices) and ⊗ represents the Kronecker

product operation, where e.g. A⊗B =
(
a11B a12B
a21B a22B

)
, for A = ( a11 a12a21 a22 ).

The probability density functions for the parameters in this model are

written as follows:

f(α1) =
1

(2π)
n
2 |σ2

αexp(−φαD)| 12
exp

(
−1

2
αT

1

(
σ2
αexp(−φαD)

)−1
α1

)
f(α2) =

1

(2π)
n
2 |σ2

αexp(−φαD)| 12
exp

(
−1

2
αT

2

(
σ2
αexp(−φαD)

)−1
α2

)
f(β1) =

1

(2π)
n
2 |σ2

βexp(−φβD)| 12
exp

(
−1

2
(β1 − 1)T

(
σ2
βexp(−φβD)

)−1
(β1 − 1)

)
f(β2) =

1

(2π)
n
2 |σ2

βexp(−φβD)| 12
exp

(
−1

2
(β2 − 1)T

(
σ2
βexp(−φβD)

)−1
(β2 − 1)

)
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f(α) =
1

(2π)
n
2 |σ2

αexp(−φαD)| 22 |I2|
n
2

exp

(
− 1

2

(
αT

1

(
σ2
αexp(−φαD)

)−1
α1

+αT
2

(
σ2
αexp(−φαD)

)−1
α2

))
=

1

(2π)
n
2 |σ2

αexp(−φαD)| 22 |I2|
n
2

exp

(
−1

2
tr
((
σ2
αexp(−φαD)

)−1
αTI−1

2 α
))

f(β) =
1

(2π)
n
2 |σ2

βexp(−φβD)| 22 |I2|
n
2

exp

(
− 1

2

(
(β1 − 1)T

(
σ2
βexp(−φβD)

)−1
(β1 − 1)

+ (β2 − 1)T
(
σ2
βexp(−φβD)

)−1
(β2 − 1)

))
=

1

(2π)
n
2 |σ2

βexp(−φβD)| 22 |I2|
n
2

× exp

(
−1

2
tr
((
σ2
βexp(−φβD)

)−1
(β − 1)TI−1

2 (β − 1)
))

f(Ξ) =

(
2

2k
2 π

2(2−1)
4 Π2

i=1Γ

(
k + 1− i

2

))−1

|R|−
k
2 |Ξ|−

k+2+1
2 exp

(
−1

2
tr(RΞ−1)

)
f(yi) =

1

(2π)
2
2 |Ξ| 12

exp

(
−1

2

(
yi − (αi + βi � xi)

)T

Ξ−1
(
yi − (αi + βi � xi)

))
f(y) =

1

(2π)
2n
2 |Ξ|n2 |In|

2
2

exp

(
−1

2
tr
(
I−1
n

(
y− (α+ β � x)

)T
Ξ−1

(
y− (α+ β � x)

)))

f(vec(α)) =
exp
(
− 1

2

(
vec(α)− 0

)T(
σ2
αexp(−φαD)⊗ I2

)−1(
vec(α)− 0

))
(2π)

2n
2 |σ2

αexp(−φαD)⊗ I2|
1
2

f(vec(β)) =
exp
(
− 1

2

(
vec(β)− 1

)T(
σ2
βexp(−φβD)⊗ I2

)−1(
vec(β)− 1

))
(2π)

2n
2 |σ2

βexp(−φβD)⊗ I2|
1
2

f(vec(y)) =
1

(2π)
2n
2 |In ⊗Ξ| 12

exp

(
−1

2
KT(In ⊗Ξ)−1K

)
,

where K = vec(y)−
(
vec(α) + vec(β)� vec(X)

)
.

The full conditional posterior distributions for the bivariate spatial sta-

tistical downscaling model are as follows:

f
(
(σ2

α)−1| ·
)
∝ (σ2

α)−1(aα−1)exp(−(σ2
α)−1bα)

× (σ2
α)−1( 2n

2
)exp

(
−(σ2

α)−1

(
1

2

(
αT

1 exp−1(−φαD)α1 +αT
2 exp−1(−φαD)α2

)))
∝ Ga

(
aα +

2n

2
, bα +

1

2

(
αT

1 exp−1(−φαD)α1 +αT
2 exp−1(−φαD)α2

))
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f
(
(σ2

β)−1| ·
)
∝ (σ2

β)−1(aβ−1)exp(−(σ2
β)−1bβ)

× (σ2
β)−1( 2n

2
)exp

(
− (σ2

β)−1

(
1

2

(
(β1 − 1)Texp−1(−φβD)(β1 − 1)

+ (β2 − 1)Texp−1(−φβD)(β2 − 1)
)))

∝ Ga

(
aβ +

2n

2
, bβ +

1

2

(
(β1 − 1)Texp−1(−φβD)(β1 − 1)

+ (β2 − 1)Texp−1(−φβD)(β2 − 1)
))

f(Ξ|·) ∝ |R|−
k
2 |Ξ|−

k+2+1
2 exp

(
−1

2
tr(RΞ−1)

)
× |Ξ|−

n
2 exp

(
−1

2
tr
((

y− (α+ β � x)
)(

y− (α+ β � x)
)T

Ξ−1
))

∝ |Ξ|−
k+2+n+1

2 exp

(
−1

2
tr

((
R +

(
y− (α+ β � x)

)(
y− (α+ β � x)

)T
)
Ξ−1

))
∝ Inv-W

(
R +

(
y− (α+ β � x)

)(
y− (α+ β � x)

)T
, k + n

)
f
(
vec(α)| ·

)
∝ exp

(
−1

2

(
vec(α)− 0

)T(
σ2
αexp(−φαD)⊗ I2

)−1(
vec(α)− 0

))
× exp

(
− 1

2

(
vec(α)−

(
vec(y)− (vec(β)� vec(x))

))T

(In ⊗Ξ)−1

×
(

vec(α)−
(
vec(y)− (vec(β)� vec(x))

)))
= exp

(
− 1

2

((
vec(α)

)T
((
σ2
αexp(−φαD)⊗ I2

)−1
+ (In ⊗Ξ)−1

)(
vec(α)

)
−
(
vec(α)

)T
(

(In ⊗Ξ)−1
(
vec(y)− (vec(β)� vec(x))

))
+ . . .

))
∝ N(ΣαAα,Σα), where

Σα =
((
σ2
αexp(−φαD)⊗ I2

)−1
+ (In ⊗Ξ)−1

)−1

and

Aα = (In ⊗Ξ)−1
(

vec(y)−
(
vec(β)� vec(x)

))
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f
(
vec(β)| ·

)
∝ exp

(
−1

2

(
vec(β)− 1

)T(
σ2
βexp(−φβD)⊗ I2

)−1(
vec(β)− 1

))
× exp

(
− 1

2

(
mat

(
vec(x)

)
vec(β)−

(
vec(y)− vec(α)

))T

(In ⊗Ξ)−1

×
(

mat
(
vec(x)

)
vec(β)−

(
vec(y)− vec(α)

)))
∝ N(ΣβAβ,Σβ), where

Σβ =
(
σ2
βexp(−φβD)⊗ I2

)−1
+
(

mat
(
vec(x)

))T

(In ⊗Ξ)−1
(

mat
(
vec(x)

))
and

Aβ =
(
σ2
βexp(−φβD)⊗ I2

)−1
1 +

(
mat

(
vec(x)

))T

(In ⊗Ξ)−1
(
vec(y)− vec(α)

)
,

where mat
(
vec(x)

)
is the diagonal matrix with vec(x) as its diagonal, i.e.:

mat
(
vec(x)

)
=



x11 0 0 0 · · · 0 0

0 x21 0 0 · · · 0 0

0 0 x12 0 · · · 0 0

0 0 0 x22 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · x1n 0

0 0 0 0 · · · 0 x2n


.

Predictions ỹ1i and ỹ2i for variables 1 and 2 at new location i (i = 1, . . . , p,

where p is the number of locations at which to predict) are drawn from the

posterior predictive distribution:ỹ1i

ỹ2i

 ∼ N2

α̃1i + β̃1ix̃1i

α̃2i + β̃2ix̃2i

,Ξ

 , (A.6)

where x̃1i and x̃2i are the values of remote sensing data for the grid cell that

contains the in situ location i. The spatially varying parameters at prediction
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locations are drawn from conditional multivariate Normal distributions:

α̃1|α1 ∼ Np

(
0 + exp(−φαD12) exp(−φαD22)−1(α1 − 0),

σ2
α

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

))
,

α̃2|α2 ∼ Np

(
0 + exp(−φαD12) exp(−φαD22)−1(α2 − 0),

σ2
α

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

))
,

β̃1|β1 ∼ Np

(
1 + exp(−φβD12) exp(−φβD22)−1(β1 − 1),

σ2
β

(
exp(−φβD11)− exp(−φβD12) exp(−φβD22)−1 exp(−φβD21)

))
and

β̃2|β2 ∼ Np

(
1 + exp(−φβD12) exp(−φβD22)−1(β2 − 1),

σ2
β

(
exp(−φβD11)− exp(−φβD12) exp(−φβD22)−1 exp(−φβD21)

))
.

This model was fitted using a Gibbs sampling algorithm, which was written

in C++. Since the covariance matrices of the conditional multivariate Normal

distributions of α̃1|α1, α̃2|α2, β̃1|β1 and β̃2|β2 are each made up of a scalar

(which is updated at each iteration of the algorithm) and a matrix (which

does not need to be updated at each iteration of the algorithm), the com-

putationally efficient method of calculating the Cholesky decomposition of

the matrix only once (discussed in the first section of this appendix) can be

used, allowing fast and computationally efficient prediction of two variables

at many locations. This reduction in computational complexity can only be

achieved when φα and φβ are estimated outwith the model.
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A.4 Nonparametric downscaling model 5.8

The nonparametric statistical downscaling model (5.8) is written as:

yi|ci, σ2
y ∼ Nqi(Φici, σ

2
yIqi),

(σ2
y)
−1 ∼ Ga(ay, by),

cij|αij, βij, dij, σ2
c ∼ N(αij + βijdij, σ

2
c ),

αj|σ2
α ∼ Nn

(
0, σ2

αH22(φα)
)
,

βj|σ2
β ∼ Nn

(
1, σ2

βH22(φβ)
)
,

(σ2
α)−1 ∼ Ga(aα, bα),

(σ2
β)−1 ∼ Ga(aβ, bβ),

(σ2
c )
−1 ∼ Ga(ac, bc),

xi|di, σ2
x ∼ Npi(Ψidi, σ

2
xIpi),

(σ2
x)
−1 ∼ Ga(ax, bx),

di ∼ Nm(µd,Σd),

(A.7)

where:

• qi is the number of in situ data collected at location i.

• pi is the number of remotely-sensed data collected at location i.

• n is the number of in situ data locations i.

• m is the number of basis functions in each Φi and Ψi.

• yij is the value of in situ data at time j at location i (i = 1, . . . , n and

j = 1, . . . , qi), with yi = (yi1, . . . , yiqi)
T.

• xij is the value of remotely-sensed data at time j at location i (i =

1, . . . , n and j = 1, . . . , pi), with xi = (xi1, . . . , xipi)
T.

• Φi is the matrix of basis functions evaluated at times of data collection

for the in situ data yi at location i.
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• Ψi is the matrix of basis functions evaluated at times of data collection

for the remotely-sensed data xi at location i.

• H22(φα) = exp(−φαD22), where φα is selected a priori and D22 is the

matrix of distances between in situ locations i.

• H22(φβ) = exp(−φβD22), where φβ is selected a priori, with D22 as

above.

• ay, by, aα, bα, aβ, bβ, ac, bc, ax, bx,µd and Σd are values to be chosen a

priori. A small value for each of ay, by, aα, bα, aβ, bβ, ac, bc, ax and bx,

such as 0.001, results in non-informative prior distributions. Sensible

values for µd and Σd are the length-m vector of zeros ,0, and the m×m

identity matrix, Im, respectively, reflecting a lack of knowledge of the

signs of the coefficients di and of their dependence structure.

The probability density functions for the likelihood and for the prior

distributions are:

Likelihood:

f(y) =
n∏
i=1

f(yi)

=
1

(2π)
∑n
i=1 qi/2

∏n
i=1(|σ2

yIqi |1/2)
exp

(
−1

2

n∑
i=1

(yi −Φici)
T(σ2

yIqi)
−1(yi −Φici)

)
.

Prior distributions:

f(cij) =
1√

2πσ2
c

exp

(
− 1

2σ2
c

(
cij − (αij + βijdij)

)2
)
, so that

f(ci) =
m∏
j=1

f(δij) =
1

(2π)m/2|σ2
δIm|1/2

× exp

(
−1

2

(
ci − (αi + βi � di)

)T

(σ2
δIm)−1

(
ci − (αi + βi � di)

))
,

f(cj) =
n∏
i=1

f(δij) =
1

(2π)n/2|σ2
δIn|1/2

× exp

(
−1

2

(
cj − (αj + βj � dj)

)T

(σ2
δIn)−1

(
cj − (αj + βj � dj)

))
and
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f(c) =
n∏
i=1

f(ci) =
1

(2π)mn/2|σ2
δIn|m/2|Im|n/2

× exp

(
−1

2
tr
(

(σ2
δ )
−1
(
c− (α+ β � d)

)T
(Im)−1

(
c− (α+ β � d)

)))
.

f(αj) =
1

(2π)n/2|σ2
αH0(φα)|1/2

exp

(
−1

2
(αj − 0)T

(
σ2
αH0(φα)

)−1
(αj − 0)

)
, so that

f(α) =
m∏
j=1

f(αj) =
1

(2π)mn/2|σ2
αH0(φα)|m/2|Im|n/2

× exp

(
−1

2
tr
((
σ2
αH0(φα)

)−1
(αj − 0)T(Im)−1(αj − 0)

))
.

f(βj) =
1

(2π)n/2|σ2
βH0(φβ)|1/2

exp

(
−1

2
(βj − 1)T(σ2

βH0(φβ))−1(βj − 1)

)
, so that

f(β) =
m∏
j=1

f(βj) =
1

(2π)mn/2|σ2
βH0(φβ)|m/2|Im|n/2

× exp

(
−1

2
tr
((
σ2
βH0(φβ)

)−1
(βj − 1)T(Im)−1(βj − 1)

))
.

f
(
(σ2

α)−1
)

= baαα (σ2
α)−1(aα−1) exp

(
− bα(σ2

α)−1
)
/Γ(aα)

f
(
(σ2

β)−1
)

= b
aβ
β (σ2

β)−1(aβ−1) exp
(
− bβ(σ2

β)−1
)
/Γ(aβ)

f
(
(σ2

y)
−1
)

= bayy (σ2
y)
−1(ay−1) exp

(
− by(σ2

y)
−1
)
/Γ(ay)

f
(
(σ2

δ )
−1
)

= baδδ (σ2
δ )
−1(aδ−1) exp

(
− bδ(σ2

δ )
−1
)
/Γ(aδ)

f(xi) =
1

(2π)pi/2|σ2
xIpi |1/2

exp

(
−1

2
(xi −Ψidi)

T(σ2
xIpi)

−1(xi −Ψidi)

)
, so that

f(x) =
n∏
i=1

f(xi) =
1

(2π)
∑n
i=1 pi/2(σ2

x)
∑n
i=1 pi/2

∏n
i=1(|Ipi |1/2)

× exp

(
− 1

2σ2
x

n∑
i=1

(xi −Ψidi)
T(Ipi)

−1(xi −Ψidi)

)
.

f
(
(σ2

x)
−1
)

= baxx (σ2
x)
−1(ax−1) exp

(
− bx(σ2

x)
−1
)
/Γ(ax)

f(di) =
1

(2π)m/2|Σγ|1/2
exp

(
−1

2
(di − µγ)TΣ−1

γ (di − µγ)
)
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The full conditional posterior distributions for model 5.8 are:

f
(
(σ2

α)−1| ·
)
∝ Ga

(
aα +

mn

2
, bα +

1

2
tr
(
H−1

0 (φα)αTα
))

f
(
(σ2

β)−1| ·
)
∝ Ga

(
aβ +

mn

2
, bβ +

1

2
tr
(
H−1

0 (φβ)(β − 1)T(β − 1)
))

f
(
(σ2

y)
−1| ·

)
∝ Ga

(
ay +

n∑
i=1

qi
2
, by +

1

2

n∑
i=1

(yi −Φici)
T(yi −Φici)

)

f
(
(σ2

δ )
−1| ·

)
∝ Ga

(
aδ +

mn

2
, bδ +

1

2
tr
(
In
(
c− (α+ β � d)

)T
Im
(
c− (α+ β � d)

)))
f(αj|·) ∝ N(ΣαjAαj ,Σαj), where

Σαj =
((
σ2
αH0(φα)

)−1
+ (σ2

δIn)−1
)−1

and

Aαj = (σ2
δIn)−1(cj − βj � dj)

f(βj|·) ∝ N(ΣβjAβj ,Σβj), where

Σβj =
((
σ2
βH0(φβ)

)−1
+ GT

j (σ2
δIn)−1Gj

)−1

and

Aβj =
(
σ2
βH0(φβ)

)−1
1 + GT

j (σ2
δIn)−1(cj −αj)

f(ci|·) ∝ N(ΣciAci ,Σci), where

Σci =
(
ΦT
i (σ2

yIqi)
−1Φi + (σ2

δIm)−1
)−1

and

Aci = ΦT
i (σ2

yIqi)
−1yi + (σ2

δIm)−1(αi + βi � di)

f
(
(σ2

x)
−1| ·

)
= Ga

(
ax +

n∑
i=1

pi
2
, bx +

1

2

n∑
i=1

(xi −Ψidi)
T(Ipi)

−1(xi −Ψidi)

)
f(di|·) = N(ΣdiAdi ,Σdi), where

Σdi =
(
Σ−1
d + ΨT

i (σ2
xIpi)

−1Ψi + FT
i (σ2

δIm)−1Fi

)−1

and

Adi = Σ−1
d µd + ΨT

i (σ2
xIpi)

−1xi + FT
i (σ2

δIm)−1(ci −αi)

In the above equations, Gj and Fi represent diagonal matrices, with dj and

βi as their diagonals, respectively. i = 1, . . . , n and j = 1, . . . ,m, where n

is the number of in situ sampling locations and m is the number of basis

functions fitted for each location. pi is the number of remotely-sensed data

available for location i, while qi is the number of in situ data available for
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location i.

Predictions can be made at new times j (j = 1, . . . , q̃i, where q̃i is the

number of times to predict at for location i) and at new locations i (i =

1, . . . , ñ, where ñ is the number of locations at which to predict), by drawing

from the posterior predictive distribution:

ỹi|c̃i, σ2
y ∼ Nq̃i(Φ̃ic̃i, σ

2
yIq̃i),

c̃ij|α̃ij, β̃ij, d̃ij, σ2
c ∼ N(α̃ij + β̃ij d̃ij, σ

2
c ),

α̃j|αj ∼ N
(
0 + exp(−φαD12) exp(−φαD22)−1(αj − 0),

σ2
α

(
exp(−φαD11)− exp(−φαD12) exp(−φαD22)−1 exp(−φαD21)

))
,

β̃j|βj ∼ N
(
1 + exp(−φβD12) exp(−φβD22)−1(βj − 1),

σ2
β

(
exp(−φβD11)− exp(−φβD12) exp(−φβD22)−1 exp(−φβD21)

))
,

d̃i ∼ N(Σ̃diÃdi , Σ̃di),

(A.8)

where:

Σ̃di =
(
Σ−1
d + Ψ̃

T

i (σ2
xIp̃i)

−1Ψ̃i

)−1

and

Ãdi = Σ−1
d µd + Ψ̃

T

i (σ2
xIp̃i)

−1x̃i,

where Φ̃ is the matrix of basis coefficients evaluated at times of prediction for

the in situ data at location i, Ψ̃ is the matrix of basis coefficients evaluated

at times of data collection for the remotely-sensed data for the grid cell

containing location i, q̃i is the number of times at which to predict, for

location i, p̃i is the number of remotely-sensed data collected at location i

and x̃i is the vector of remotely-sensed data for the grid cell containing the

location i at which prediction is to be carried out.

The model is fitted using a Gibbs sampler, which is implemented in C++.

Obtaining draws from α̃j|αj and β̃j|βj is potentially computationally ex-

pensive, if predictions are to be made at a large number of locations, since
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the method of obtaining draws from the multivariate Normal distributions

would involve taking the Cholesky decomposition of large matrices at each

iteration of the Gibbs sampler. Noting, however, that the covariance ma-

trices of the distributions of both α̃j|αj and β̃j|βj are each made up of a

scalar that must be updated each time (i.e. σ2
α and σ2

β, respectively) multi-

plied by a matrix that needs only to be calculated once, the computations

can be reduced in complexity and sped up. The algorithm makes use of the

fact that the Cholesky decomposition of bΣ is (
√
bA)(

√
bA)T = bΣ, where

AAT = Σ is the Cholesky decomposition of Σ, so that the computation at

each iteration of the sampler multiplies a matrix by a scalar, rather than

the more complex Cholesky decomposition. It can be seen that, if φα and

φβ were to be estimated within the model, rather than being chosen before

fitting the model, then this reduction in computational complexity would

not be possible and the Cholesky decomposition would be required at each

iteration of the Gibbs sampler.



Appendix B

Diagnostic plots for statistical

downscaling models

This appendix presents plots for diagnosing whether the assumptions of

the statistical downscaling models have been met, along with trace and den-

sity plots for checking whether MCMC chains have converged. For each

model, there are too many parameters to include trace and density plots for

them all here. Plots are instead presented for a small number of parame-

ters, to give an idea of how appropriate the assumption of convergence is in

general.
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Figure B.1: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
ε )
−1,

α1, β1, α̃1, β̃1 and ỹ1, of model 3.1, fitted to the log(chlorophylla)
data for Lake Balaton for October 2008.
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Figure B.2: Trace and density plots for the parameters a11, a21, w0,1, w1,1, γ,
α1, δ and β1 of model 3.2, fitted to the log(chlorophylla) data for
Lake Balaton for October 2008.
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Figure B.3: Trace and density plots for the parameters (σ2
α1)−1, (σ2

β1)−1, (σ2
ε1)−1,

α11 and β11 of model 3.3, fitted to the log(chlorophylla) data for Lake
Balaton.
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Figure B.4: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
ε)
−1,

α11 and β11 of model 3.3a, fitted to the log(chlorophylla) data for
Lake Balaton.
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Figure B.5: Trace and density plots for the parameters α11, β11, (σ2
ε)
−1, (σ2

α)−1

and (σ2
β)−1 of model 3.5, fitted to the log(chlorophylla) data for Lake

Balaton.
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Figure B.6: Trace and density plots for the parameters α11, β11, (σ2
ε)
−1, (σ2

α)−1

and (σ2
β)−1 of model 3.5a, fitted to the log(chlorophylla) data for

Lake Balaton.
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Figure B.7: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
ε)
−1,

α1, β1, α̃1, β̃1 and ỹ1 of model 3.1, fitted to the log(chlorophylla)
data for Lake Erie.
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Figure B.8: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1,

(σ2
ε)
−1, α11, β11, α̃11, β̃11 and ỹ11 of model 3.3a, fitted to the

log(chlorophylla) data for Lake Erie.
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Figure B.9: Trace and density plots for the parameters α11, β11, (σ2
ε)
−1, (σ2

α)−1

and (σ2
β)−1 of model 3.5, fitted to the log(chlorophylla) data for Lake

Erie.
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Figure B.10: Trace and density plots for the parameters α11, β11, (σ2
ε)
−1, (σ2

α)−1

and (σ2
β)−1 of model 3.5a, fitted to the log(chlorophylla) data for

Lake Erie.
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Figure B.11: Trace and density plots for the parameters α111, β111, ρ1, σα11 , σβ11
and σ2

ε1 of model 4.1, fitted to the log(chlorophylla) and log(total
suspended matter) data for Lake Balaton.
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Figure B.12: Trace and density plots for the parameters α111, β111, ρ1, σα11 , σβ11
and σ2

ε1 of model 4.1a, fitted to the log(chlorophylla) and log(total
suspended matter) data for Lake Balaton.
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Figure B.13: Trace and density plots for the parameters α1,1,1, α1,1,2,
β1,1,1, β1,1,2, ρ, σ−1

α2
1

and (σ2
ε,1)−1 of model 4.2, fitted to the

log(chlorophylla) and log(total suspended matter) data for Lake
Balaton.
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Figure B.14: Trace and density plots for the parameters α1,1,1, α1,1,2, β1,1,1,
β1,1,2, ρ, σ−1

α2
1

and (σ2
ε,1)−1 of model 4.2a, fitted to the

log(chlorophylla) and log(total suspended matter) data for Lake
Balaton.
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Figure B.15: Trace and density plots for the parameters y1,1(1), γ1,1(1), β1,
α, η1, δ, (σ2

ε)
−1 and (σ2

γ1)−1 of model 4.4a-ST, fitted to the
log(chlorophylla) data for the Great Lakes.
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Figure B.16: Trace and density plots for the parameters ỹ1,1, γ1,1, β1,1, α, η1, δ
and (σ2

ε)
−1 of model 4.4b-ST, fitted to the log(chlorophylla) data

for the Great Lakes.
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Figure B.17: Trace and density plots for the parameters y1,1(1), γ1,1(1), α, δ,
(σ2
ε)
−1 and (σ2

γ1)−1 of model 4.5a-ST, fitted to the log(chlorophylla)
data for the Great Lakes.
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Figure B.18: Trace and density plots for the parameters y1,1(1), γ1,1(1), β1, η1,
(σ2
ε)
−1 and (σ2

γ1)−1 of model 4.6-ST, fitted to the log(chlorophylla)
data for the Great Lakes.
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Figure B.19: Trace and density plots for the parameters ỹ1,1, γ1,1, β, η, (σ2
ε)
−1

and σ2
γ of model 4.7-ST, fitted to the log(chlorophylla) data for the

Great Lakes.
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Figure B.20: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
y)
−1,

(σ2
c )
−1, α1,1, β1,1, c1,1 and (σ2

x)−1 of model 5.8, fitted to the
log(chlorophylla) data for Lake Balaton.
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Figure B.21: Trace and density plots for the parameters d1,1, α̃1,1, ˜β1,1, d̃1,1, c̃1,1

and ỹ1,1 of model 5.8, fitted to the log(chlorophylla) data for Lake
Balaton.
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Figure B.22: Trace and density plots for the parameters (σ2
α)−1, (σ2

β)−1, (σ2
y)
−1,

(σ2
c )
−1, α1,1, β1,1, c1,1 and (σ2

x)−1 of model 5.8, fitted to the
log(chlorophylla) data for Lake Erie.
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Figure B.23: Trace and density plots for the parameters d1,1, α̃1,1, ˜β1,1, d̃1,1, c̃1,1

and ỹ1,1 of model 5.8, fitted to the log(chlorophylla) data for Lake
Erie.
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Figure B.24: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.1, fitted to log(chlorophylla) data, for Lake Balaton.
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Figure B.25: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.2, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.26: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.3, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.27: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.3a, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.28: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.5, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.29: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.5a, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.30: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.1, fitted to log(chlorophylla) data for Lake Erie.
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Figure B.31: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.3a, fitted to log(chlorophylla) data for Lake Erie.
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Figure B.32: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.5, fitted to log(chlorophylla) data for Lake Erie.
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Figure B.33: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 3.5a, fitted to log(chlorophylla) data for Lake Erie.
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Figure B.34: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.1, fitted to log(chlorophylla) and log(total suspended mat-
ter) data for Lake Balaton. Plots for log(chlorophylla) data shown.
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Figure B.35: Residuals versus fitted values (left) and theoretical versus sam-
ple quantiles of the distribution of the residuals (Q-Q plot, right)
of model 4.1a, fitted to log(chlorophylla) and log(total suspended
matter) data for Lake Balaton. Plots for log(chlorophylla) data
shown.
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Figure B.36: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.2, fitted to log(chlorophylla) and log(total suspended mat-
ter) data for Lake Balaton. Plots for log(chlorophylla) data shown.
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Figure B.37: Residuals versus fitted values (left) and theoretical versus sam-
ple quantiles of the distribution of the residuals (Q-Q plot, right)
of model 4.2a, fitted to log(chlorophylla) and log(total suspended
matter) data for Lake Balaton. Plots for log(chlorophylla) data
shown.
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Figure B.38: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.4a-ST, fitted to log(chlorophylla) data for the Great Lakes.
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Figure B.39: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.4b-ST, fitted to log(chlorophylla) data for the Great Lakes.
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Figure B.40: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.5a-ST, fitted to log(chlorophylla) data for the Great Lakes.
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Figure B.41: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.6-ST, fitted to log(chlorophylla) data for the Great Lakes.
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Figure B.42: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 4.7-ST, fitted to log(chlorophylla) data for the Great Lakes.
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Figure B.43: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 5.8, fitted to log(chlorophylla) data for Lake Balaton.
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Figure B.44: Residuals versus fitted values (left) and theoretical versus sample
quantiles of the distribution of the residuals (Q-Q plot, right) of
model 5.8, fitted to log(chlorophylla) data for Lake Erie.
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Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. (2013), Applied Spatial Data

Analysis with R, second edn, Springer.
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