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Abstract

The object of this thesis, is to demonstrate the potential capabilities of injection
moulded chiral plasmonic nanostructures for enhanced sensing in biological systems.
The key phenomenon employed throughout this thesis is the generation of
electromagnetic fields, that produce a greater chiral asymmetry than that of circularly
polarised light, termed ‘superchiral’ fields. These superchiral fields will be
demonstrated as being an incisive probe into the structure, conformation, and
orientation of proteins immobilised on the nanostructure surface of these injection
moulded substrates. Initially, it will be shown how this phenomenon is sensitive to
higher order changes in protein structure induced upon ligand binding, using an
asymmetry parameter extracted from the optical rotatory dispersion (ORD) spectra.
Where these changes would not be routinely detected by conventional chiroptical
spectroscopy techniques, such as circular dichroism (CD). Further to this, as these
nanostructures display the plasmonic analogue of the interference effect,
electromagnetically induced transparency (EIT), a narrow transparency window is
created within a broad reflectance spectrum. Where the spectra can be modelled
using a simple coupled oscillator model, and the retardation phase effects extracted.
This allows two new asymmetry parameters to be introduced for characterising any
changes induced by the biological samples, the experimental separation parameter
AAS, and the modelled retardation phase asymmetries. These will be used to
characterise the orientation of three structurally similar protein fragments, called
Affimers, with the modelled phase asymmetries being shown as a particularly incisive
probe into the surface immobilised orientation. Furthermore, conformational changes
in the cancer relevant protein, HSP90, will be characterised upon the addition of
increasing concentrations of the inhibitor molecule 17-AAG. With the orientation of
the immobilised HSP90 protein being shown to influence the sensitivity observed for
any protein-ligand interactions that occur. Finally, this phenomenon will be used to
gquantitatively detect elevated protein levels in a complex solution. Elevated levels of
IgG will be measured in human blood serum solutions, utilising the isoelectric point of
the proteins in solution to enhance the level of IgG adsorbed in the protein corona.
This will demonstrate for the first time, the use of superchiral fields generated around
injection moulded chiral nanostructures, to detect protein changes in complex real life
solutions, such as human blood serum. Representing the first step in creating a high-

throughput ultrasensitive system for a range of diagnostic applications.
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Chapter 1: Introduction

1.1 Thesis Overview

Metamaterials are artificially structured materials comprised of individual structures
much smaller than the wavelength of light [1]. In contrast to bulk materials, where the
properties are determined by the intrinsic chemical constituents of the system,
metamaterials rely on the specific structures created within the material. With the
optical properties of the material being controlled by the size, shape, and arrangement
of the constituent structures [2, 3]. Allowing these materials to manipulate
electromagnetic (EM) waves in interesting ways, and produce properties that would

not be achievable from bulk materials [4].

Throughout this thesis, we will be utilising injection moulded substrates as a high-
throughput method of characterising and detecting changes in biological systems,
such as protein structural changes. Previously, chiroptical spectroscopies, such as
circular dichroism (CD) and optical rotation (OR), have been used to probe chirality
and orders of structure within biological samples. However, the low sensitivity of these
methods has limited their use when measuring samples of increasingly small
concentrations. More recently, chiroptical spectroscopy has attracted further interest
when it was theorised that electromagnetic fields could exist that produce a greater
chiral asymmetry than that of circularly polarised light (CPL), termed ‘superchiral’ [5].
It was then theorised that these superchiral fields could be significantly more sensitive
to the structure of biological molecules compared with circularly polarised light, and
could increase the sensitivity of chirally sensitive spectroscopy techniques.
Experimentally, spectroscopic measurements that exploited these fields of enhanced
chirality were first demonstrated by Hendry et al. in 2010, where they showed that
chiral electromagnetic fields generated around chiral gold nanostructures were
sensitive to different structural motifs in proteins [6]. Additionally, these experimental
results also reported that the sensitivity of these generated chiral fields were
enhanced by six orders of magnitude, relative to conventional chiroptical techniques,

with the ability to detect picogram quantities of protein.

In the first results chapter, chapter 4, we use these injection moulded chiral substrates
to further investigate the chiral field enhancement reported in previous studies [6].
Two proteins from the Shikimate pathway, a seven step metabolic pathway found in
plants and bacteria, are investigated due to each protein having well characterised

higher order structural changes upon specific ligand binding. Optical rotatory



dispersion (ORD) spectra are measured from the chiral nanostructures, with the same
AALA parameter introduced in the original experimental study being used to
characterise the changes observed. This parameter essentially measures the
changes in the effective refractive index on the asymmetry of the generated chiral
fields around the nanostructures. Hence, the basis of ‘superchiral polarimetry’
employed here, is the spectral position dependence of the plasmonic resonance on
the dielectric environment around the nanostructure surface. Conventional chiroptical
spectroscopy, such as circular dichroism (CD), can routinely only detect changes in
the secondary and, to a limited extent, tertiary structure of proteins. The two proteins
investigated in this chapter, both undergo changes in the higher order structure upon
ligand binding, with CD measurements recorded for each protein showing no
sensitivity to these changes. However, we demonstrate that superchiral polarimetry
is sensitive to the higher order structural changes induced within both proteins, due
to the anisotropy of the protein structure, in agreement with the early published results
using this property to discriminate between proteins with high a-helical content, or
high B-sheet content [6].

The detection of conformational changes in higher order protein structure, using ORD
spectra from the chiral nanostructures, relies on an interpretation based on changes
in the effective refractive index on the asymmetry of the generated chiral fields. This
is a rather simplistic interpretation of the data used to characterise protein structural
differences, and when examined theoretically, produces much smaller changes than
are observed from the experimental results [7]. This shows that there may be other
factors that lead to the significant sensitivity enhancement that is observed. In
chapters 5, 6, and 7, we will move away from the more simplistic ORD interpretation
seen in chapter 4, and develop a greater understanding of the chiral nanostructures
by recording reflectance measurements for each experiment. When reflectance
spectra are recorded from the chiral nanostructures used throughout this thesis, an
electromagnetically induced transparency (EIT) like behaviour occurs. EIT is a
quantum interference effect that appears in atomic systems consisting of three levels,
resulting in a sharp transmission window within a broad reflection or absorption band.
However, the plasmonic analogue of EIT derives from the strong coupling between
bright and dark modes of the structure, to create a narrow transparency window within
a broad reflectance spectrum [8-10]. With the strength of this coupling affecting the

optical properties of the metamaterial.

In chapters 5, 6, and 7, a new parameter will be introduced to characterise the

changes that occur in the optical spectra, as a result of biological samples being
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introduced to the nanostructure surface. This parameter AAS, the change in the
separation of the reflectance dips separated by the narrow transparency window,
essentially measures the asymmetry in the coupling of the two plasmonic modes for
the chiral nanostructures. In chapter 5, three biological molecules consisting of the
same protein scaffold, called Affimers, were immobilised on the nanostructure surface
with three different well-defined orientations. We show that one of the orientations
can be easily distinguished using the experimental AAS parameter, but the other two
orientations produce similar responses to each other, and therefore cannot be easily
differentiated. However, a simple coupled oscillator model can then be introduced to
theoretically model the experimental reflectance spectra for each measurement. This
coupled oscillator model considers the coupling between the two oscillators, as well
as the phase of the bright and dark oscillator, 8 and ¢ respectively. The coupling of
the two oscillators is related to the AAS parameter measured experimentally, but has
a much higher inherent error. However, asymmetries in the two theoretical phase
parameters, AAO and AA¢, do show differences relative to the orientation of the
biomaterial at the surface. With all three orientations of the Affimer proteins becoming
easily distinguishable, when measuring retardation phase changes in the model
values. Showing that the retardation phase changes are an incisive probe into the

orientation of biomolecules at the nanostructured surface.

In chapter 6, both the experimental AAS, and the two theoretical phase parameter
asymmetries are used to detect ligand binding and conformational changes induced
upon the cancer relevant protein, Heat shock protein 90 (HSP90). By attaching this
protein to the nanostructure surface with two different immobilised orientations, and
increasing the concentration of the inhibitor ligand introduced, a fingerprint of the
protein-ligand interactions can be obtained. With the orientation of this immobilised
protein being shown to affect the sensitivity of the phenomena to any ligand induced
changes at low concentrations. Here, the experimental AAS parameter, and the
modelled phase asymmetry parameters are shown to be in good agreement with each
other, validating the sensitivity of the measurement. With the modelled phase
parameters being shown to be a slightly more incisive probe into the conformational
changes that occur, for both orientations of the HSP90 protein, upon the addition of

increasing concentrations of the inhibitor ligand, 17-AAG.

Finally, in chapter 7, we will examine how small concentration changes of specific
proteins in human blood serum, can affect the structure and composition of the protein
corona at the nanostructured surface. The AAS parameter will be used to

experimentally measure the effect of increasing the immunoglobulin G (IgG)
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concentration within human blood serum solutions. It will be shown that when the
stock serum solution is diluted in a standard buffer, both low and high elevated levels
of 1gG in the solution will exhibit the same response. Resulting in various levels of
elevated 1gG spiked serums being indistinguishable from each other, due to the
composition of the protein corona at the nanostructured surface. To resolve this issue,
the effect of increasing the ionic strength of the dilution buffer was investigated. This
would increase the electrostatic screening in the solution, and will be shown to lower
the coverage of the protein corona on the plasmonic surface. Overall, increasing the
ionic strength of the dilution buffer for the spiked serum solutions will be shown to
increase the detection limit for elevated IgG levels, due to the lower corona coverage,
into the physiologically relevant range required in clinical applications. This
represents the first step in creating a commercially viable, high-throughput biosensing
system, utilising the effects of chiral molecules upon the superchiral fields generated
in chiral metamaterials. Although this is an early stage investigation into these effects,
results from a complex system (such as human blood serum solutions) shown here,
already demonstrate the potential of this phenomenon at probing the biological

structure and composition at metamaterial surfaces.
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Chapter 2: Theory

2.1 Chirality

When Pasteur first postulated the concept of chirality in 1848, he used the term
‘dissymmetry’ to describe objects ‘which differ only as an image in a mirror, differs
from the object that produces it’. The word ‘dissymmetry’ has more recently been
replaced by ‘chirality’ and was first used in this context by Lord Kelvin at the University
of Glasgow in 1904. As such, the modern definition of chirality given by Barron, in
terms of group theory, states that the criteria “for an object to be chiral is that it must
not possess improper rotation symmetry elements such as a centre of inversion,
reflection planes or rotation-reflection axes” and so must belong to one of the point
groups Cy, Dn, O, T or | [1]. Chirality is not only limited to objects however, and can
also be seen in electromagnetics such as circularly polarised light, where the electric
field vector of the light rotates either clockwise (right handed) or anticlockwise (left

handed) around the axis of propagation and constitutes a helical pattern.

2.1.1 Molecular Chirality

Ever since Pasteur’s discovery of right- and left-handed crystals derived from tartaric
acid, the interest in molecular chirality has continued to grow [1-3]. Molecules of
opposite chirality, called enantiomers, are identical in most regards (e.g. density and
molecular weight), however the handedness of a molecule can have an effect on
some of its properties; such as odour, potency, and toxicity [4]. In nature most
biological molecules which are chiral are found exclusively as one enantiomer, with
natural sugars being exclusively right handed and all amino acids (except Glycine,
which is not chiral) being exclusively left handed [5]. This homochirality in nature is of
particular importance, due to the fact that the handedness of a molecule strongly
affects how it interacts with other chiral molecules. This has played a significant role
in drug discovery, as one enantiomer of the drug can have a drastically different effect
to the other enantiomer, often with one having therapeutic activity and the other
causing serious side effects [6, 7]. With most drugs being synthesised as a racemic
mixture, it has become ever important to differentiate these molecules by their
respective enantiomers. This can be achieved using another property possessed by

molecules of different chirality, called optical activity.



2.2 Optical Activity

Natural optical activity can be defined as a system which has a differential response
to left- and right- circularly polarised light (CPL), without influence from external forces
such as an applied magnetic field [1]. Natural optical activity can then also be broken
down into electronic optical activity and vibrational optical activity. Where electronic
optical activity enables the measurement of circular dichroism (CD) and optical
rotation (OR), and vibrational optical activity gives rise to infrared (IR) measurements
and Raman optical activity (ROA). All of the spectroscopic measurements performed
throughout this thesis rely on electronic natural optical activity, so vibrational optical

activity will not be discussed further in this thesis.

For circularly polarised light, the tip of the electric field vector produces a circle with
time, perpendicular to the axis of propagation. This circular polarisation is said to be
right-handed if the electric field vector rotates clockwise when looking towards the

source of light, and left-handed when the electric field vector rotates anticlockwise.

NV

Figure 2.01 Electric field vectors of circularly polarised light propagating along z. Vectors

rotate clockwise when viewed in the -z direction showing right-handed polarisation.

2.2.1 Optical Rotation

From this definition of circularly polarised light, linearly polarised light can be regarded
as a superposition of equal amplitude left- and right-circularly polarised light, where
the orientation of the plane of polarisation is a function of the relative phases of both
component beams. When linearly polarised light propagates through an optically
active medium, the two circular components (left- and right-handed CPL) travel at
different velocities. This difference in velocities of the two components would
introduce a phase difference between them, and this would change the orientation of

the plane of polarisation, a (Figure 2.02). If the medium was not optically active (e.qg.
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an achiral medium) the polarisation of the linear light beam would remain unchanged,
as there would be no difference in the velocities of the left- and right-circularly

polarised components, and therefore no phase difference between them.

(a) N

Figure 2.02 (a) Electric field vector of linearly polarised light split into the two components of
left- and right-circularly polarised light propagating out of the page, (b) electric field vector

rotated at a further point of propagation though an optically active medium.

The rotation of the polarisation of a linearly polarised light beam gives rise to the effect
known as optical rotation. When a linearly polarised light beam of angular frequency
w = 2mc/A enters a transparent optically active medium at point z = 0, then at any
given instant E. and Er are the same angle from the plane of propagation at that
point, z = 0 (Figure 2.02(a)). Then at the same instant, at some point z = |, in the

optically active medium, the electric field vectors E, and Er are orientated at angles:
0L = 2ncl /vt (2.2.1)
Ok = 2mcl/AvR (2.2.2)

These changes are for E. and Er respectively from E at z = 0, as shown in Figure
2.02(b), where v’ and v® are the velocities of the left- and right-circularly polarised
components within the medium. The angle of rotation of the linearly polarised light

beam, in radians, becomes:

1 el /1 1
— —(pL Ry — " (—_ — (2.2.3)
* 2(9 +0%) A (vL vR>



As the refractive index is n = ¢/v, the angle of rotation per unit length in equation

2.2.3 can be written as:

a= % (nt — nP®) (2.2.4)

This optical rotation, the difference between the refractive indices n and nF for left-
and right-circularly polarised light respectively in the medium, is a function of circular
birefringence. When this occurs, if the medium rotates the plane of polarization
clockwise when looking towards the source of the light (as occurs in Figure 2.02(b))
the medium is classed as dextro rotatory, and if it rotates the plane of polarisation

anticlockwise then it is said to be laevo rotatory.

2.2.2 Circular Dichroism

In an optically active medium, since the refractive index is different for both E. and Er
in transparent media, then the absorbance of left- and right-handed circularly
polarised light will also be different. Thus, this differential absorption of left- and right-

circularly polarised light is known as circular dichroism (CD).
(a)

AE

Figure 2.03 (a) Electric field vector of linearly polarised light split into the two components of
left- and right-circularly polarised light propagating out of the page, (b) differential absorption
of left- and right-CPL causing elliptically polarised light, specified by angle ¢.



For circular dichroism, linearly polarised light is no longer rotated, like in optical
rotation, but it becomes elliptically polarised due to the differential absorption of the
left- and right-circularly polarised light. This differential absorption causes E. and Er
to become two different amplitudes, which no longer combine to generate linearly
polarised light, but create the elliptical polarisation as shown in Figure 2.03(b). The
ellipticity (¢) can be calculated from the ratio of the minor and major axes of the ellipse

as such:

(Egr — Ep)

_— 2.2.5
(Er + EL) ( )

tangp =
For ellipticity, when the amplitude of Er is greater than E,, it is defined as positive, as
a clockwise rotation of the electric field vector of the elliptically polarised beam occurs.
Ellipticity is often the unit used when describing CD spectra, however the CD signals
are usually very small with most proteins and biological samples showing ellipticities

in the range of 10 millidegrees. Other than ellipticity, CD can also be quantified as the

differential absorption of E. and Er where A = log%’ = ecl and is typically around

103 absorbance units for protein samples [8, 9].

2.2.3 Optical Rotatory Dispersion

Most applications of optical rotation use the rotation at some transparent wavelength,
usually the sodium D line at 589 nm. However, optical rotatory dispersion (ORD) also
exists, and measures the unequal rotation of polarisation at different wavelengths.
Since both refraction and absorption are related, circular dichroism and optical
rotatory dispersion have wavelength dependent spectra that are very close to
conventional absorption and refraction. These related spectra for circular dichroism
and optical rotatory dispersion in the absorption region are shown in Figure 2.04, and
are related together by something known as the Cotton effect. From this relationship,
the maximum ellipticity coincides with the optical rotatory dispersion curve at its point
of inflection. For optically pure enantiomers, the Cotton effect ORD spectra are always

opposite to each other but of equal magnitude.

10



ellipticity

>V

rotation

Figure 2.04 Ellipticity and related optical rotatory dispersion curves centred around the

electronic absorption wavelength 4;.

With the Cotton effect, the ellipticity and optical rotatory dispersion always have
relative signs to each other, where a positive Cotton effect is seen when the ORD
spectra rises to a peak at higher wavelengths and a trough at lower wavelengths
(shown in Figure 2.04), and a negative Cotton effect when the ORD spectra is
reversed. This is due to the fact that CD and ORD can be related to each other by a

Kramers-Kronig (KK) relation [10], resulting in the relationship seen in Figure 2.04.

2.3 Superchirality
2.3.1 Superchiral Fields

Chiral light-matter interactions are relatively weak, as shown for circular dichroism
spectroscopy, where absorption differences are typically <10-3. This can be thought
of as a consequence of the mismatch between the helical pitch of circularly polarised
light, and the relatively small size of chiral molecules such as proteins. The circularly
polarised wave has a helicity that depends upon the wavelength of the light, so that
the circularly polarised field rotates a full 360° in one wavelength (typically a few
hundred nanometres for UV/Visible light). This is considerably larger than the size of
chiral molecules (around the tens of nanometres) so the circularly polarised field

undergoes a barely perceptible twist over the distance of molecular dimensions [11].
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In recent years, it was recognised that an enhanced dissymmetry should occur if the
field lines were reoriented over a distance that is much shorter than the wavelength,
ideally close to the dimensions of molecules [12, 13]. When this occurs, the spatial
scale of molecular chirality and the chirality of the light would match. It was identified
that chiral interactions required a time-even pseudoscalar to fully describe the chirality
of electromagnetic fields. In 1964, Lipkin introduced a series of conserved quantities,
which he called ‘zilch’, to describe electromagnetic waves in a vacuum [14]. However,
these quantities were dismissed as having no physical significance by both Lipkin,
and others after him [15, 16]. It has since been realised that one of these quantities
satisfies the need for a time-even pseudoscalar, and has been termed optical chirality,
C [12].

C = EZ—OE-VxE + z—lllOB-VxB (2.3.1)
Where ¢, and yu, are the permittivity and permeability of free space respectively, and
E and B are the time-dependent electric and magnetic fields. This optical chirality
parameter captures the degree to which the electric and magnetic field vectors, E and
B, wrap around a helical axis at each point in space, i.e. the tightness of the helix. In
circular dichroism, the dissymmetry factor, g, is a dimensionless quantity that

measures the enantioselectivity of a system [17]:
AL — AR

ﬁ (2.3.2)
(4t + 4R)

g:

Where the superscripts L and R refer to left- and right-circularly polarised light
respectively. This dissymmetry factor, g, was then rewritten to include the optical

chirality parameter, C [12, 13]:

- (CC> 233
g = YcrL 20,0 (2.3.3)

Where g.p; is the dissymmetry factor under circularly polarised light, c is the speed
of light, C is the optical chirality, U, is the local electric energy density, and w is the
angular frequency. Equation 2.3.3 shows that, unlike circular dichroism, the
magnitude of the dissymmetry factor, g, is dependent on the optical chirality, C, and
not solely governed by the chirality of matter. Since the field vectors completely rotate
once per wavelength at a constant rate for circularly polarised light, the quantity

cC/2U,w equals 1. Therefore, to increase the dissymmetry factor an increase in the
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optical chirality, C, leading to the quantity c¢C/2U,w being greater than 1 in some
regions of space would be necessary. When this occurs, these fields have been
termed as ‘superchiral’ fields, as they have a much greater helicity than that of

circularly polarised light.

The first time that these ‘superchiral’ fields were produced was by creating an optical
standing wave constructed of two counter propagating waves of circularly polarised
light with opposite handedness, equal frequency, and a slightly different intensity. This
was generated by reflecting circularly polarised light of one handedness off of a
partially reflecting mirror at normal incidence, which creates the perfect conditions to
generate ‘superchirality’ [12]. Now, the most common and simplest way to get an
enhancement of the optical chirality, C, is through the use of plasmonic
nanostructures [18-22]. By using plasmonic nanostructures, strong electric and
magnetic fields in the near field of the nanostructure can be created using visible/IR
radiation. To get the optimum enhanced optical chirality, C, over a continuous region
it has been shown that the nanostructures must be designed to optimise this
parameter by using planar chiral nanostructures, ideally without sharp corners [19].
The first experiment to utilise this theory of ‘superchiral’ fields, by using chiral
gammadion nanostructures, showed a dissymmetry enhancement of ~10°% when
detecting biomolecules, compared with using circularly polarised light alone for

biomolecular detection [18].

2.4 Plasmonics

2.4.1 Plasmonic Oscillations

Plasmonic oscillations can occur in metallic thin films (at metal-dielectric interfaces)
[23], and metallic nanostructures [24], typically made of gold or silver. This is due to
the large distance between the valence electrons and positive core of a metal ion,
causing them to be weakly bound to each other. When these atoms come together to
form a thin film or nanoparticle, the valence electrons are influenced by the potential
energy of all other atoms in the system. This allows the valence electrons to freely
move throughout the system around a background of positive ion cores, essentially
generating an electron cloud or plasma. These electrons move throughout the entire
system in a random motion and keep the overall charge of the system at 0. When an
electric field is applied to the system, the electron plasma is displaced by a distance,
X, Figure 2.05(b).
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Figure 2.05 Graphical representation of plasmonic oscillations. (a) bulk metal with no electric
charge applied, (b) shows after application of an electric field causing displacement of the
electron cloud, (c) shows oscillation of electron cloud in opposite direction when electric field

turned off.

When the external electric field is switched off, the electrons in the metal will be

accelerated by the surface charges created back to their original position. Once they

have returned to their original positions (Figure 2.05(a)), they have acquired

momentum and will then keep moving in the other direction to create an electric field

of opposite sign from before, Figure 2.05(c). This will be repeated in each direction

and hence produce a plasmonic oscillation with a plasma frequency, w, [25, 26]:
ne?

2 _
O3 = e (2.4.1)

Where n is valence electron density, e is the charge of an electron, m mass of an
electron, and ¢, is the permittivity of free space. This collective oscillation can then
be thought of as an oscillation that is produced by an electric field, due to all the

electrons in the system, called a bulk plasmon, as it is throughout the bulk material.

2.4.2 Surface Plasmon Polaritons

Surface plasmon polaritons (SPP) are electromagnetic excitations that propagate
along a metal-dielectric interface, and are evanescently confined in the perpendicular
direction. These electromagnetic surface waves occur via the coupling of the
electromagnetic fields to the oscillating electron plasma of the metal [27]. This
happens when an incident electromagnetic wave, creates a charge oscillation on the

metal surface that propagates along the surface at the metal-dielectric interface. The
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collective oscillation of these surface charges excites the surface plasmon polaritons
with a different frequency than the bulk plasma frequency seen in equation 2.4.1, and

now becomes:

- Y (2.4.2)

)
PP J1+ g4

Where w, is the bulk plasma frequency, and ¢; is the relative permittivity of the

dielectric. From this, it can be seen that the surface plasmon polariton frequency is

lower than the bulk frequency, so can be excited at lower energies.
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