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Abstract 
 

Approximately 10-20% of human colorectal cancers harbour an activating BRAFV600E 

mutation, which acts as a founder mutation for an alternative, serrated pathway of 

colorectal carcinogenesis. Conversely, BRAFV600E mutations are detectable in hyperplastic 

colonic polyps: lesions traditionally considered not to harbour malignant potential. 

Furthermore, both in vitro and in vivo, activated oncogenic BRAFV600E induces a stable 

proliferation arrest: oncogene induced senescence, which is a fundamental intrinsic 

tumour-suppressor mechanism. Thus, for neoplastic transformation to occur, it is clear that 

additional genetic and epigenetic events are required. BRAFV600E-mutant colorectal cancers 

are frequently associated with a CpG island methylator phenotype (CIMP), which is 

proposed to promote neoplastic transformation by bypass of intrinsic tumour-suppressor 

mechanisms, such as silencing of CDKN2A/INK4A. Consistent with this, neoplastic 

transformation in the serrated pathway is characterised by the progressive development of 

a CIMP phenotype. An emerging body of evidence supports a model in which the 

BRAFV600E mutation directly induces CIMP through the de novo methyltransferase, 

DNMT3B. Separately, elevated DNMT3B expression has previously been linked to the 

development of CIMP in both murine and human colorectal cancer. The published data 

however do not universally support this model, and significant questions over its validity 

remain. In the present work, the relationships between BRAFV600E mutation, DNMT3B 

expression and the CpG island methylator phenotype were examined by multiple 

approaches. A panel of DNMT3B antibodies were first characterised and validated. 

Significantly, the antibody previously used to link DNMT3B and CIMP in human colon 

cancer was demonstrated not to react with human DNMT3B. The ability of BRAFV600E to 

induce CIMP was next tested by whole genome bisulfite sequencing in a primary cell 

culture model. Surprisingly, activated BRAFV600E repressed expression of DNMT3B and 

failed to induce a CIMP phenotype. Consistent with this, human colorectal cancer cell lines 

expressing activated BRAFV600E typically expressed a low level of DNMT3B, and 

inactivation of DNMT3B in a BRAFV600E-mutant, CIMP-positive cell line did not reverse 

gene silencing characteristic of CIMP. An in vitro model system was next designed to test 

functional interactions between BRAFV600E and DNMT3B. Ectopic expression of 

DNMT3B antagonised BRAFV600E-induced proliferation arrest: a hallmark of senescence. 

Moreover, ectopic DNMT3B expression was demonstrated to accelerate BrafV600E-induced 

intestinal carcinogenesis in a mouse model, and conversely, Dnmt3b knockout impaired 

BrafV600E-induced murine intestinal carcinogenesis. Analysis of human colorectal cancer 
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TCGA data was next undertaken, and confirmed that expression of DNMT3B is frequently 

elevated in human colorectal cancer and that this is often linked to amplification of the 

DNMT3B gene. However, more detailed analysis of human TCGA data revealed that 

BRAFV600E mutation is neither necessary nor sufficient to induce CIMP, and that both 

BRAFV600E mutations and CIMP are both linked to low expression of DNMT3B. Thus, 

while both BRAFV600E and DNMT3B both harbour oncogenic potential, they do not appear 

to cooperate to induce CIMP, and do not appear to cooperate frequently in human 

colorectal cancer by any mechanism.    
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1 Introduction 

1.1 The serrated pathway of colorectal carcinogenesis 

1.1.1 Introduction 

The majority of sporadic colorectal cancers arise from adenomatous polyps through the 

well-characterised adenoma-carcinoma sequence, driven by the inactivation of APC [1]. 

These lesions are typically characterised by activating KRAS mutations, loss of TP53, 

chromosomal instability (CIN), and microsatellite stability [2]. There is now recognition of 

an alternative sporadic pathway to colorectal cancer with different precursor lesions: the 

so-called “sessile serrated lesions”.  Whilst a description of serrated lesions was first 

published in the same year as the adenoma-carcinoma sequence [3] it is only 

comparatively recently that an understanding of their role in colorectal carcinogenesis and 

the molecular pathways that underlie their transformation has been established. An 

emerging body of evidence suggests that serrated pathway colorectal neoplasms represent 

a distinct clinicopathological subtype, which has implications both for the management of 

pre-malignant serrated pathway lesions and established carcinoma. Whilst pre-malignant 

sessile serrated lesions can be appropriately managed by polypectomy with subsequent 

colonoscopic surveillance, and invasive carcinoma confined to the colorectum by surgical 

resection of the affected colonic segment, it remains the case that a significant cohort of 

patients present at the time of diagnosis with metastatic disease, or develop recurrence after 

prior surgical treatment with curative intent.  To date, the treatment of metastatic colorectal 

carcinoma has involved little in the way of targeted therapies, and all current 

chemotherapeutic treatments are considered palliative. There is therefore a clear need for 

better understanding of the molecular events driving the serrated pathway of colorectal 

carcinogenesis.     

1.1.2 Classification of serrated lesions 

The classification of serrated lesions is complex and there is a lack of concordance even 

amongst expert gastrointestinal pathologists in the reporting of colonic serrated lesions [4]. 

This has significant clinical importance in the context of colorectal cancer screening 

programmes given the variable risk of progression to invasive carcinoma of these lesions.   

Below, the classification of serrated lesions is reviewed. 
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The most common serrated neoplasm encountered in clinical practice is the “hyperplastic 

polyp”. Hyperplastic polyps account for 25-30% of colonic polyps, with an estimated 

prevalence in adults of 10-15% [5-8]. Hyperplastic polyps are generally <5mm in diameter, 

and whilst the majority (88%) are located in the rectosigmoid, are found throughout the 

colon [9]. Hyperplastic polyps frequently possess mutations in KRAS (6-16.5%) or BRAF 

(62-69.6%) [10,11]. Despite a high frequency of oncogenic mutations, hyperplastic polyps 

are traditionally regarded as having no malignant potential. In this regard, they might be 

considered similar to melanocytic nevi, which also exhibit a high frequency of BRAF or 

NRAS mutations [12]. Recent North American guidance however does propose interval 

colonoscopy at ten years in asymptomatic patients with any number of hyperplastic polyps 

and at five years in patients with ≥ 4 hyperplastic polyps proximal to the sigmoid colon and 

≥1 hyperplastic polyps of ≥ 10mm in diameter because of a perceived increased risk of 

colorectal cancer development [13].  

“Sessile serrated adenomas” (SSA/P) also termed “sessile serrated lesions” (SSL) can be 

difficult to differentiate from the microvesicular subtype of hyperplastic polyp [14]. They 

are reported to be detected in between 1.7-9% of patients undergoing colonoscopy. Similar 

to hyperplastic polyps, they have a high rate of BRAF mutation (60.9-92.7%), and are more 

common in women. In contrast to hyperplastic polyps, approximately 75% of SSA/P are 

located in the proximal colon and tend to be larger than hyperplastic polyps (>64% are 

greater than 5mm).  Unlike hyperplastic polyps, SSA/P are widely believed to possess 

malignant potential. [15-19]. Approximately 13.2% of SSA/P exhibit dysplasia, which 

confers a high risk of malignant transformation [16], and it is proposed that 

adenocarcinoma develops rapidly in this pathway [19-21]. 

“Traditional serrated adenomas” (TSA) are uncommon lesions, with a prevalence of 

around 0.6-0.7% [15,22]. In contrast to SSA/P, TSA are predominantly located in the left 

colon, and exhibit a tubulovillous rather than sessile morphology [23]. Mutations in KRAS 

are detected in 29% of TSA and associated with high-grade dysplasia and intramucosal 

carcinoma. Whilst BRAF mutations are detected in 55% of TSA, they have been associated 

with low-grade dysplasia [24].    

Serrated carcinomas are most commonly found in the right colon (52%) and rectum (33%) 

and are more common in women [25]. Tumours arising from serrated pre-cursors often 

lose their serrated morphology, and only a third of carcinomas arising through this pathway 

exhibit serrated morphology [14]. 
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1.1.3 The serrated pathway in the wider colorectal cancer context 

Several classification systems for colorectal cancer have been proposed. Jass proposed a 

system of classification for colorectal cancers which combined morphological and 

molecular features of colorectal cancers, proposing five distinct groups of colon cancer [2].  

These are summarised in Table 1-1. Importantly, this classification system highlighted the 

molecular heterogeneity of colorectal cancers, and related these to morphological features, 

including serration, lending weight to the concept that serrated cancers might arise via a 

different pathway.  

Table 1-1 Jass classification system for colorectal cancer 

Summary of Jass classification system for colorectal cancer. SP = serrated polyp; Ad = adenoma 
CIN = chromosomal instability; MSI-H = microsatellite instability-high; MSI-L= microsatellite 
instability-low; MSS = microsatellite stable; CIMP-H = CpG island methylator phenotype-high; 
CIMP-L = CpG island methylator phenotype-low; CIMP-N = CpG island methylator phenotype-
negative. Adapted from Jass [2] 

Subgroup MSI CIN CIMP APC BRAF KRAS Precursor Incidence 

1 MSI-H - CIMP-H +/- + - SP 12% 

2 MSS/ 
MSI-L 

- CIMP-H +/- + + SP 8% 

3 MSS/ 
MSI-L 

+ CIMP-L + - + Ad/SP 20% 

4 MSS + CIMP-N + - + Ad 57% 

5 MSI-H - CIMP-N + - + Ad 3% 

 

More recent molecular-based classification systems lend further support to the existence of 

a molecularly distinct serrated pathway to carcinogenesis. Two recent papers have 

attempted to classify colon cancers by molecular subtypes. The first of these defined three 

colon cancer molecular subtypes (CCS 1-3) using an unsupervised consensus-based 

clustering technique. Using gene-expression data from sessile-serrated adenomas and 

principal-component analysis, CCS3 tumours were demonstrated to most likely arise from 

serrated precursors.  Significantly, CCS3 tumours were enriched for histologically poorly-

differentiated tumours, exhibited significantly reduced disease-free survival (>50% 

developed recurrence within two years) and resistance to cetuximab [26]. More recently, 

four consensus-molecular subtypes of colorectal cancer have been defined [27]. These are 

summarised in Table 1-2. Using this classification system, serrated pathway tumours might 
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largely be considered to be CMS1 (MSI-immune) as these tumours are BRAF-mutant, 

MSI-H and CIMP-H: each a feature associated with serrated colorectal carcinogenesis. 

This is however an over-simplification as CMS3 (Metabolic) tumours are KRAS-mutant 

and CIMP-L (also features of some serrated precursors). Furthermore, whilst 70% of BRAF 

mutant tumours are CMS1, 2% were CMS2, 5% CMS3 and 17% CMS4. 

Table 1-2 Consensus molecular subtypes of colorectal cancer 

The consensus molecular subtypes of colon cancer are summarised together with their reported 
incidence and associated clinical and molecular features. Adapted from Guinney et al. [27] 

Consensus Molecular 
Subtype 

Incidence Clinical and Molecular Features 

1 (“MSI immune”) 14% MSI, CIMP-H, hypermutation, BRAF mutation, 
immune cell infiltration, low incidence of SCNA, 
female preponderance, proximal colonic location 

2 (“Canonical”) 37% CIMP-N, MSS, high frequency of SCNA, epithelial-
type, Wnt & Myc activation, male preponderance, 
distal colonic location 

3 (“Metabolic”) 13% Mixed MSI status, CIMP-L, KRAS mutation, low 
frequency of SCNA, metabolic dysregulation 

4 (“Mesenchymal”) 23% CIMP-N, high frequency of SCNA, stromal 
infiltration, TGFβ activation, angiogenesis 
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1.2 Mechanisms of serrated pathway colorectal neoplasia 

An understanding of the molecular events underlying neoplastic transformation in the 

serrated pathway is principally informed by in vitro studies and modelling of the disease in 

the murine intestine, together with correlative in situ data from human cancers. The 

principle molecular event associated with the serrated pathway of colorectal neoplasia is 

thought to be the development of an activating mutation in the RAS-RAF-MEK-ERK 

signalling pathway (Figure 1-1) with subsequent activation of oncogene-induced 

senescence-like tumour suppressive mechanisms, which are suppressed during tumour 

progression. Wnt pathway activation, a CpG island methylator phenotype (CIMP) and 

microsatellite instability are also associated with this pathway to colorectal cancer, and 

these are reviewed below. 
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Figure 1-1 RAS-RAF-MEK-ERK (MAPK) signalling cascade1 

Diagrammatic overview of the RAS-RAF-MEK-ERK (MAPK) signalling cascade. GTP-binding 
results in a conformational change in RAS, with subsequent activation. RAS activation leads to 
activation of the downstream serine/threonine kinase, RAF. Activated RAF phosphorylates MEK 
with subsequent activation. Similarly, phosphorylated-MEK (pMEK) phosphorylates MAPK (aka 
ERK). Phosphorylated MAPK (pMAPK) translocates to the nucleus where it results in 
phosphorylation and activation of transcription factors, with resultant activation of MAPK signalling 
pathway target genes.   

                                                
1 Figure and text adapted from Pecorino, L. Molecular Biology of Cancer: Mechanisms, Targets and 
Therapeutics 4e; Oxford; Oxford University Press; 2016; pp84-86 
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1.2.1 BRAF and evidence for an oncogene-induced senescence pathway in 
serrated pathway carcinogenesis 

BRAF is a member of the RAF family of kinases and is mutated in around 7% of human 

carcinomas (including melanoma, thyroid, ovarian, colorectal and non-small cell lung 

cancer) with the highest incidence being in malignant melanoma. The most common BRAF 

mutation in human cancers is the T à A substitution at nucleotide 1796. This results in 

conversion of valine 600 to glutamate [28]. The mutation was originally defined as 

BRAFV599E, though following revised sequencing data (NCBI accession number 

NM_004333.2), a missing codon was demonstrated in the original sequence, with resultant 

C-terminal shift of one position of all amino acids following position 32. The mutation was 

therefore renamed BRAFV600E [29-31]. V600E is an activating mutation, which results in 

significantly enhanced kinase activity, and induces transformation in NIH3T3 cells and 

promotes transformation of immortalised human diploid fibroblasts [28,30,32]. 

Furthermore, mutant-BRAFV600E induces a transformed phenotype in MEFs [33]. 

Conversely, mutational activation of the RAS-RAF-MEK-ERK pathway in untransformed 

primary cells has been demonstrated to induce an oncogene-induced senescence 

phenotype. RAF has been demonstrated to induce oncogene-induced senescence in 

primary human fibroblasts, though in contrast to RAS-induced senescence, cells typically 

arrest in G2/M rather than G1, and do not exhibit upregulation of p53/p21 [30,34,35]. In 

further contrast to RAS-induced senescence, whilst RAF-induced senescence is associated 

with upregulation of p16INK4A expression, it has been demonstrated that expression of the 

latter is not required for the maintenance of RAF-induced senescence [30,36]. 

Furthermore, BRAF mutations are detected in pre-malignant lesions, such as melanocytic 

naevi and sessile serrated lesions in the colon [10,12,30,37,38].  

Activating BRAF mutations are detectable in 10-20% of human colorectal 

adenocarcinomas [39-43]. BRAF mutations are mutually exclusive with KRAS mutations 

[39,44]. BRAF mutations develop early in the progression of serrated pathway neoplasia, 

and are detectable in pre-malignant lesions [45]. Until recently, the ability of mutant-

BRAFV600E to drive intestinal tumourigenesis had not been demonstrated mechanistically, 

and the induction of senescence by mutant-BRAFV600E and the presence of BRAFV600E 

mutations in pre-malignant lesions is suggestive of a model where additional molecular 

events are necessary for tumourigenesis. The ability of BRAFV600E to act as a founder 

mutation in serrated pathway intestinal tumours has been demonstrated in vivo in murine 

models [46,47].  
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The first murine study to examine the effects of oncogenic BrafV600E in the intestine used 

the AhCreErT model system crossed to the conditional LSLBrafV600E allele. In this model, 

recombination occurs in both the small intestine and colon, although recombination also 

occurs in non-intestinal tissues (including bladder, liver and stomach). BrafV600E mutation 

in the intestine was found to result in an initial period of hyperproliferation, characterised 

by hyperplastic crypts. This initial proliferative burst was followed by crypt senescence, 

with upregulation of p16INK4A and senescence-associated-β-galactosidase as well as 

phospho-H2AX (γH2AX). Proliferation (assayed by immunohistochemistry for 

phosphorylated-H3 and BrdU) was almost completely undetectable in senescent crypts. 

Other senescence markers, including p53, p21WAP and p19ARF were not detected in 

senescent crypts. Crypt senescence was not sustained, and mice developed tumours which 

were proliferative, and exhibited repression of p16INK4A. The phenotype was drastically 

accelerated when the AhCreErT;LSLBrafV600E mice were crossed to Cdkn2aΔEx2,3/ΔEx2,3 mice, 

in which crypt senescence was not observed, supporting a crucial role for p16INK4A in 

tumour suppression. Silencing of Cdkn2a/Ink4a associated with tumour progression was 

demonstrated to be associated with CpG methylation of exon 1 [47].  

The ability of activated oncogenic BRAFV600E to induce serrated pathway tumours in mice 

was confirmed in a subsequent model in which the conditional LSLBrafV637E allele (the 

resultant missense mutant protein is the murine equivalent of the BRAFV600E mutant in 

humans) was crossed to the villin-Cre allele, with resultant Cre recombination in the small 

intestine and colon from before birth. Like in the AhCreErT;LSLBrafV600E model, activated 

BrafV637E was associated with crypt hyperplasia and villous serration, though crypt 

senescence in early stage hyperplasias was not demonstrated. The lesions exhibited 

similarities to human hyperplastic polyps, and were termed murine serrated hyperplasia 

(mSH). As the villin-Cre system circumvents the extraintestinal phenotypic manifestations 

associated with AhCreErT, the full continuum of serrated carcinogenesis was demonstrated 

in this model, with the development of dysplastic lesions (termed mSA-LGD and mSA-

HGD) and eventual progression to invasive carcinoma in some mice. Morphologically, 

BrafV637E-induced mSA-LGD and mSA-HGD lesions had characteristics of traditional 

serrated adenoma rather than sessile serrated adenoma, though histological comparison 

was complicated by the majority of tumours being in the small intestine, compared to the 

corresponding lesions in humans, where disease occurs in the colon. Upregulation of 

p16INK4A was not demonstrated in “healthy” Braf-mutant mucosa when compared to Braf-

WT mucosa, but significant upregulation of p16INK4A was demonstrated in mSA-LGD and 

mSA-HGD lesions, with this being most pronounced in mSA-HGD lesions. Unlike in the 
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AhCreERT;LSLBrafV600E model, p16INK4A upregulation was not associated with proliferation 

arrest. Furthermore, whilst crossing to a p16Ink4a allele led to a significant increase in 

invasive carcinoma, it did not significantly increase the number of mSAs. Furthermore, 

CpG methylation of the Cdkn2a/Ink4a promoter was demonstrated in a subset of BrafV637E-

induced mSA-HGD and carcinomas. Whilst this supports the model of a tumour-

suppressive role for p16INK4A in serrated neoplasia, it would suggest that it has a less 

critical role in dysplasia. In further contrast to AhCreErT;LSLBrafV600E model, 

VilCre;LSLBrafV637E mice exhibited activation of the p53/p21 pathway during tumour 

progression. Activated p53 was not demonstrated in mSH and was infrequently detected in 

mSA-LGD. Activated p53 was detected in 97% of mSA-HGD however. The role of a p53-

mediated tumour suppressor program was further demonstrated by crossing 

VilCre;LSLBrafV637E to p53LSL-R172H mice. The resultant VilCre;LSLBrafV637E;p53LSL-R172H mice 

developed mSA with the same frequency as Tp53 WT mice, though developed invasive 

carcinoma with much higher frequency than Tp53 WT mice, suggesting that the p53-

pathway has a tumour-suppressive role, but does not prevent dysplasia [46]. 

Whilst both murine models differ in certain critically important aspects, together they are 

broadly supportive of an oncogene-induced senescence-like tumour suppressive barrier in 

serrated pathway carcinogenesis, and this is supported by various in situ data. Alterations 

in p16INK4A expression have been demonstrated in human serrated pathway carcinogenesis. 

Expression and promoter hypermethylation of CDKN2A/INK4A have been characterised in 

BRAF-mutant serrated pathway lesions. In normal colonic mucosa, p16INK4A was 

undetectable. By contrast, p16INK4A expression was demonstrated in 100% of hyperplastic 

polyps and 86% of sessile serrated adenomas, but was absent in invasive carcinoma. These 

sequential expression changes in p16INK4A were demonstrated to correlate with promoter 

hypermethylation: hypermethylation of the CDKN2A/INK4A promoter was not 

demonstrated in normal tissue, but was present in 100% of carcinomas. Furthermore, high 

p16INK4A expression was associated with absent Ki67 positivity, suggesting that p16INK4A 

mediates proliferation arrest [48]. Subsequent studies have independently reported 

dysregulated p16INK4A expression in serrated carcinogenesis. In a study of traditional 

serrated adenomas, p16INK4A staining was present in 74% of non-dysplastic, but only 45% 

of dysplastic, BRAF-mutant TSA [49]. A further immunohistochemical study examined 

137 sessile serrated adenomas specimens exhibiting either dysplasia or carcinoma with 

adjacent non-dysplastic SSA. BRAF was mutated in 92.7% of the specimens examined. 

Loss of p16INK4A expression was demonstrated in 9% of non-dysplastic SSA and 43% of 

dysplastic/carcinoma components, and was pronounced at the interface between HGD and 
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carcinoma, supporting a tumour-suppressive function, though in this study, p16INK4A loss 

was not correlated with its promoter methylation [19].  

These latter two studies also examined p53 expression in BRAF-mutant TSA and SSA. 

Interestingly, this was broadly concordant with the pattern of p53 expression reported in 

VilCre;BrafV637E driven murine serrated neoplasia [46]. In BRAF-mutant TSA, p53 staining 

was positive in 7% of non-dysplastic TSA, compared to 45% of dysplastic BRAF-mutant 

TSA [49]. Furthermore, p53 was detected in 14% of dysplastic SSA but was absent in non-

dysplastic SSA. Furthermore, p53 positivity was significantly associated with MSS, 

consistent with previous reports [19,50].  

Loss of function mutations in key regulators of oncogene-induced senescence (both the 

p16INK4A-Rb and ATM-ATR-DDR pathways) have also been demonstrated in individuals 

with hyperplastic polyposis syndrome, a rare condition in which individuals develop 

multiple SSA lesions. 90% of the individuals in this study harboured a BRAFV600E mutation 

[51]. 

1.2.2 KRAS and evidence for an oncogene-induced senescence pathway in 
serrated pathway carcinogenesis 

Mutationally active RAS genes were first reported in human cancer cell lines in 1982 [52-

54]. Subsequently, elevated expression of human RAS family members were recognised in 

colorectal cancer, and adenomas [55]. Three human RAS genes were subsequently 

identified: HRAS, NRAS and KRAS [56]. Mutational activation of the RAS pathway is now 

recognised as a common event in a multitude of cancers. KRAS is the most commonly 

mutated of the three RAS family members in human cancer, with the highest incidence in 

pancreatic, cholangiocarcinoma and colorectal cancers [57]. HRASV12 was demonstrated to 

be transformative in fibroblasts, though only in the context of immortalisation by 

carcinogens or oncogenes: so-called oncogenic cooperation [58-60]. The ability of RAS 

proteins to transform primary epithelial cells in vitro in the context of a cooperating 

oncogene was subsequently confirmed [61,62]. By contrast, activated RAS alone has been 

demonstrated to trigger oncogene-induced senescence: with proliferation arrest in G1, 

associated with upregulation of p53 and p16INK4A and expression of SA-β-galactosidase. 

This was first demonstrated in the context of activated HRASV12 [63]. Furthermore, RAS 

mutations are detectable in premalignant lesions such as melanocytic naevi and sessile 

serrated lesions in the colon [10,38,64-68].  
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A number of murine studies have examined the ability of Kras mutations to drive intestinal 

tumourigenesis, though until recently, none had specifically related this to oncogene-

induced senescence or the serrated pathway. Janssen et al. [69] reported intestinal tumours 

in VilCreERT2;KrasV12G mice, and these were predominantly located in the small intestine 

(93%). By contrast, Sansom et al. [70] demonstrated that whilst KrasV12G mutation  

accelerated intestinal tumourigenesis in the context of Apc loss, alone it was insufficient to 

induce intestinal tumourigenesis. Similarly, KRASG12D expression in the murine intestine 

was shown to be insufficient to result in tumourigenesis, but did induce a crypt hyperplasia 

phenotype in the colon, characterised by crypt lengthening and prominent goblet cells [71]. 

A similar colonic hyperproliferative phenotype with prominent goblet cells, was 

demonstrated in a subsequent study in VilCre;LSLKrasG12D mice, in which Kras mutation 

alone was once again demonstrated to be insufficient to induce tumours [72].  

A recent study specifically addressed the ability of oncogenic KRAS to induce serrated 

pathway carcinogenesis. VilCre;KrasG12D mice developed a pan-colonic serrated 

phenotype, termed murine serrated hyperplasia (mSH). VilCre;KrasG12D mice did not 

develop colonic tumours, and exhibited features consistent with oncogene-induced 

senescence. Increased senescence-associated-β-galactosidase positivity, Dec1 and p16INK4A 

expression were demonstrated, though p53 and p19ARF were not detected. Additionally, in 

VilCre;KrasG12D mice, upregulation of p16INK4A and OIS were detectable 21 days post-

induction, and this was associated with absent BrdU positivity. Consistent with the 

observed OIS phenotype, a critical tumour-suppressive role of p16INK4A in Kras-driven 

serrated neoplasia was demonstrated by generating VilCreERT2;KrasG12D;Ink4a/Arf-/- mice. 

These developed lesions resembling human TSA in the proximal colon. These exhibited 

absent senescence-associated-β-galactosidase positivity, and were proliferative. A 

significant proportion of these lesions progressed to invasive carcinoma. Conversely, 

intestine-specific Tp53 deletion did not accelerate the colonic phenotype in 

VilCreERT2;KrasG12D mice or promote colonic tumourigenesis [66]. 

KRAS mutations develop early in the serrated pathway, and are detectable in hyperplastic 

polyps [38,68]. In a small cohort of KRAS-mutant serrated lesions, p16INK4A was 

demonstrated to be upregulated in serrated neoplasms [73]. In common with BRAF-mutant 

serrated lesions, p16INK4A positivity has also been noted in KRAS-mutant TSA, but a loss of 

p16INK4A positivity is much less tightly associated with dysplasia and invasion in KRAS-

mutant TSA than BRAF-mutant TSA. Ki67 positivity is significantly higher in advanced 

TSA than TSA, but no formal analysis of the relationship between this and p16INK4A was 
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made. By contrast, whilst non-dysplastic TSA were negative for p53, 70% of advanced 

TSA exhibited p53 positivity [49]. In serrated tubulovillous adenoma, which has been 

proposed as a precursor to KRAS-mutant MSS colorectal cancer, there is a non-significant 

trend to higher p16INK4A expression in HGD compared to LGD. By contrast, progression 

from LGD to HGD in this subgroup of tumours is associated with a significant increase in 

p53 positivity [74]. The in situ evidence therefore is broadly supportive of a KRAS-

mediated, oncogene-induced senescence-like barrier in serrated neoplasia, though the 

human data are somewhat contradictory to the murine Kras–driven serrated neoplasia data, 

which support the primacy of p16INK4A- over p53-mediated tumour suppression in this 

pathway to carcinogenesis [66].    

1.2.3 Wnt pathway activation  

The Wnt signalling pathway is a highly conserved signalling pathway of considerable 

importance in human colorectal adenocarcinoma. A summary of the Wnt signalling 

pathway is given in in Figure 1-2. Evidence of Wnt pathway activation has been 

demonstrated in murine models of Braf-induced serrated colorectal neoplasia. In 

AhCreErT;LSL-BrafV600E mice, Wnt pathway activation was demonstrated in intestinal crypts 

during the initial hyperproliferative phase, but conversely, was suppressed in senescent 

crypts. In this model, Wnt pathway activation was associated with MAPK-dependent, 

AKT-independent phosphorylation of serine 9 of GSK3β [47]. Wnt pathway activation 

was also demonstrated in VilCre;LSLBrafV637E mice, though in this model system, was only 

demonstrable in mSA-HGD and carcinoma and in a single mSA-LGD, but not in mSH or 

histologically normal intestine from BrafV637E mice. Furthermore, mutations in Wnt 

pathway genes were demonstrated in a significant number of murine BrafV637E carcinomas, 

though the most commonly mutated genes (Apc, Ctnn1b and Lrp1b) have not been linked 

mechanistically with the serrated pathway in human colon cancer [46]. In a further murine 

model of Braf-induced serrated neoplasia, activated oncogenic BRAF was demonstrated to 

lead to stem cell depletion in the intestine with conversion of ISC into TA cells. Whilst 

mutant-BRAF activation was associated with upregulation of DNA damage markers, other 

features of oncogene-induced senescence were not observed in this model. This BRAF-

driven stem cell depletion was however rescued (both in vitro and in vivo) by activated 

Wnt signalling. This model presents a somewhat different role for Wnt signalling in 

serrated neoplasia: namely a requirement for dual activation of both Wnt signalling and 

MAPK signalling to maintain ISC and hence tumour viability in BRAF-driven tumours 

and prevent clonal elimination [75]. By contrast, in Kras-induced murine serrated pathway 
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neoplasia, evidence for activated Wnt signalling has not been demonstrated. Wnt signalling 

is not detectable in Kras-induced murine serrated cancers, which do not exhibit Apc 

mutations, and demonstrate membranous β-catenin staining [66].  
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Figure 1-2 The Wnt signalling pathway2 

Diagrammatic overview of the Wnt signalling pathway. (a) In the absence of the Wnt ligand, a 
degradation complex exists, comprising Axin, APC, GSK3β and CKI. The two latter proteins are 
serine/threonine kinases, and phosphorylate β-catenin. Phosphorylated β-catenin is further 
modified by ubiquitination, which results in its targeting for degradation in the proteasomes. 
Consequently, β-catenin is not present in the nucleus to bind to the Tcf/Lef transcription factor. In 
the absence of β-catenin, Tcf associates with the transcription-repressor Groucho, with resultant 
transcription repression of Wnt target genes. (b) The Wnt ligand binds to the transmembrane Wnt 
receptor Frizzled and its co-receptor LRP. Binding of the Wnt ligand to Frizzled/LRP results in a 
conformational change, resulting in GSK3β- and CKI-mediated phosphorylation of LRP. 
Phosphorylated LRP recruits Axin, with resultant disruption of the Axin-APC-GSK3β-CKI 
degradation complex. In the absence of the Axin-APC-GSK3β-CKI degradation complex, β-catenin 
remains unmodified, and is not targeted for proteasomal degradation. β-catenin migrates to the 
nucleus, where it binds to the Tcf/Lef transcription factors to induce expression of Wnt target 
genes. Activation of Wnt target genes also requires the nuclear proteins Bcl9 and Pygopus.    

                                                
2 Figure and text adapted from Pecorino, L. Molecular Biology of Cancer: Mechanisms, Targets and 
Therapeutics 4e; Oxford; Oxford University Press; 2016; pp183-184 
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The contribution of Wnt signalling to human serrated pathway cancer is less clearly 

defined. Whilst Wnt pathway activation is present in 93% of colorectal cancers, APC and 

BRAF mutations are anticorrelated, but not mutually exclusive. Moreover, APC mutations 

are infrequent in serrated adenomas, and it was initially hypothesised that serrated pathway 

carcinogenesis did not involve Wnt signalling [2,40,76-79]. This early view was however 

refuted when subsequent studies demonstrated aberrant, nuclear localisation of β-catenin in 

serrated lesions. Nuclear β-catenin has been reported in both TSA and SSA/P. The 

majority of these studies report absent nuclear β-catenin staining in hyperplastic polyps, 

and positive nuclear β-catenin in SSA/P and TSA, though there is wide variation in the 

reported incidence of nuclear β-catenin localisation in these lesions [80-82]. Furthermore, 

nuclear β-catenin labelling is demonstrable more frequently in dysplastic compared to non-

dysplastic serrated lesions, implying a role for Wnt signalling in disease progression 

[19,83]. Indeed, in one study, nuclear β-catenin staining was demonstrated exclusively in 

SSA/P with dysplasia or carcinoma [84]. Nuclear β-catenin localisation in SSA/P has also 

been associated with BRAF mutation [81]. Nuclear β-catenin localisation in serrated 

lesions is typically not associated with mutations in CTNNB1, and BRAF-mutant cancers 

infrequently possess an APC mutation, implying that Wnt pathway activation in serrated 

pathway lesions arises in a mechanism distinct from that of cancers arising through the 

adenoma-carcinoma sequence [81,85]. Whilst the aforementioned studies are supportive of 

a role of Wnt signalling in serrated neoplasia, the literature on Wnt signalling in the 

serrated pathway remains conflicted, and a recent study demonstrated a very low incidence 

of β-catenin nuclear positivity in sporadic MSI-H colon cancers (which are proposed to 

arise through the serrated pathway) [86].   

The strong association of serrated pathway lesions with a CpG island methylator 

phenotype (CIMP) has led to exploration of epigenetic regulatory mechanisms of Wnt 

signalling in this pathway. Promoter hypermethylation of secreted frizzled related proteins 

(SFRPs) has been demonstrated to activate Wnt signalling in colorectal cancer, and is 

detectable in a significant proportion of colorectal cancers. Moreover SFRP methylation 

was demonstrated in aberrant crypt foci, which typically lack APC mutations, suggesting 

that this is an early event in colorectal carcinogenesis, though this study did not 

specifically address serrated pathway tumours [87]. More recent studies have examined 

promoter DNA methylation of Wnt regulators in the specific context of serrated neoplasia.    

Hypermethylation of APC promoter 1A has been reported in serrated polyps and associated 

with Wnt pathway activation, though interestingly APC promoter methylation has 

previously shown to be inversely correlated with BRAF mutation [76,88]. Promoter 
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methylation of the Wnt antagonists DKK1 and SFRP1 has been examined in a large cohort 

study of over 1000 colorectal cancers. Promoter methylation of DKK1 was strongly 

correlated with MSI and BRAFV600E mutation (common features of serrated cancers) 

whereas SFRP1 promoter methylation demonstrated an anti-correlation with MSI [89]. 

Promoter methylation of WNT5A is associated with silencing of its expression and Wnt 

pathway activation, and has also been reported in colorectal cancer [90]. WNT5A promoter 

methylation exhibits strong correlation with BRAFV600E mutation and MSI (both features of 

serrated pathway cancers) [91]. A further study examined promoter methylation of a 

number of Wnt regulators at various stages of the serrated neoplasia pathway, and 

compared these to traditional adenomas. This study also compared β-catenin staining in 

these lesions. Notably, whilst nuclear β-catenin positivity was demonstrated in serrated 

lesions, it was less marked than in traditional adenomas, though increased nuclear β-

catenin expression was associated with dysplasia and intramucosal carcinoma in serrated 

lesions. Promoter methylation of AXIN2, MCC and SFRP4 were detected more frequently 

in serrated lesions than traditional adenomas, and increasing methylation was associated 

with progression through dysplasia to intramucosal carcinoma. Both AXIN2 and MCC 

methylation correlated significantly with nuclear β-catenin positivity [92]. This is 

consistent with earlier reports, demonstrating significantly higher levels of promoter 

methylation of MCC and SFRP4 in serrated lesions compared to traditional adenomas 

[93,94]. AXIN2 demonstrated incremental increases in promoter methylation from SSA/P 

to intramucosal carcinoma, though intriguingly was significantly anticorrelated with BRAF 

mutation despite having previously been associated with MSI [92,95].   

In addition to epigenetic regulators of Wnt signalling, mutations in Wnt pathway genes 

have been reported in serrated colorectal cancers, and exhibit increasing frequency in 

serrated pathway cancers when compared to SSA/P and TSA [40,96]. A number of recent 

studies have linked Wnt pathway activation in serrated neoplasia to RNF43 mutations. A 

high frequency of RNF43 mutations has been reported in colorectal cancer, and these 

exhibit mutual exclusivity with APC mutations [97]. RNF43 is an E3 ubiquitin ligase 

which is a Wnt antagonist which negatively regulates frizzled receptor expression by 

ubiquitination [98]. Wild type RNF43 is an inhibitor of both canonical and non-canonical 

Wnt signalling. By contrast, mutant RNF43 loses its cell surface localisation and 

accumulates in the endoplasmic reticulum, leading to a failure of internalisation of Frizzled 

and thus promotes canonical Wnt signalling but inhibits non-canonical Wnt signalling, 

promoting tumourigenesis [99]. RNF43 has also been demonstrated to bind to TCF4 and 

sequester it to the nuclear membrane, with associated reduction in mRNA expression of its 
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targets (including AXIN2, TWIST, LGR5 and MMP7). Furthermore, functional studies of 

RNF43 mutants revealed that these prevent binding to TCF4, and impair its Wnt inhibitory 

function [100]. An association between RNF43 mutations and serrated pathway colon 

cancer was first described in the context of the rare hereditary serrated polyposis syndrome 

[51]. A subsequent study demonstrated RNF43 mutations in sporadic serrated lesions, with 

a reported frequency of 6% in SSA/P and 24% in TSA. By contrast, RNF43 mutations 

were not detected in hyperplastic polyps or traditional adenomas [101]. In a further 

independent study, similar rates of RNF43 mutations were described in sporadic serrated 

lesions: 10% in SSA/P, 28% in TSA and 29% in BRAF-mutant serrated carcinoma. 

Furthermore, once again an absence of RNF43 mutations was confirmed in tubulovillous 

adenomas [102]. Furthermore, a significant association between RNF43 mutations and 

both BRAF mutation and MLH1 methylation has been reported [103].    

1.2.4 Microsatellite instability 

During DNA replication, the DNA mismatch repair system is responsible for the 

recognition and correction of base-pair mismatch. Microsatellites are short (1-6bp) 

repeating DNA sequences distributed across the genome, and are consequently prone to 

replication errors. Microsatellite instability (MSI) represents a phenotype of genetic 

hypermutability and is driven by deficient mismatch repair activity. MSI is present in 

approximately 15% of colorectal cancers [104]. Several diagnostic panels have been 

described to diagnose MSI in colon cancer. Boland published a panel of five MSI loci in 

1998: BAT25, BAT26, D5S346, D2S13 and D17S250. Tumours were classified as either 

MSI-high (≥2 markers), MSI-low (1 MSI marker) or MSS (no instability) [105]. A further, 

modified panel of five markers (BAT25, BAT26, NR21, NR24 and NR27) was 

subsequently described, and included in the revised Bethesda guidelines [106]. This so-

called “pentaplex” panel was demonstrated to exhibit similar specificity and sensitivity for 

MSI detection except for MSI-L [107].  

Much of the original work on MSI focussed on Lynch syndrome (HNPCC or hereditary, 

non-polyposis colorectal cancer), a familial colon cancer syndrome caused by germline 

mutations in MMR proteins (MLH1, MSH2, MSH6 and PMS2) [108-110] though two of 

the three original descriptions published in 1993 were made in non-hereditary cancer 

specimens [111,112]. As only approximately 2% of colon cancers are attributable to 

HNPCC [110] it became apparent that the majority of MSI occurred sporadically. Sporadic 

MSI has been demonstrated to be associated with bialleic promoter-methylation (with 
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resultant loss of expression) of MLH1 and this was subsequently proposed to explain the 

close association with CIMP (CpG island methylator phenotype) [113-115]. Another 

defining characteristic of sporadic MSI is a high frequency of BRAFV600E mutations 

[39,116-118]. MSI-H tumours exhibit a low frequency of KRAS mutations and a low 

incidence of APC mutations, whereas MSI-L tumours exhibit a higher frequency of KRAS 

mutations [119]. Thus, MSI is correlated with various molecular features of serrated 

neoplasia. MSI was in fact reported relatively early to be associated with serrated 

colorectal neoplasms (predating much of the mechanistic data which explains the 

association of MSI and serrated pathway lesions). Serrated polyps were noted to be 

detected more commonly in the resected specimens of patients with MSI cancers than MSS 

cancers [120]. Tuppurainen et al. [121] examined MSI in both serrated and non-serrated 

colorectal carcinomas, and demonstrated more frequent MSI in serrated (45.2%) compared 

to non-serrated (8.2%) cancers. Furthermore, MSI was noted to increase in frequency from 

hyperplastic polyps (29%) to serrated adenomas (53%) [122]. Similarly, Hawkins et al. 

reported MSI in both hyperplastic polyps and serrated adenomas [120]. A number of other 

studies have examined the presence of MSI in serrated precursor lesions, but failed to 

confirm these findings. Hiyama et al. reported a low frequency of MSI in both serrated 

adenoma (5%) and serrated adenocarcinoma (10%) [123]. A similarly low incidence of 

MSI in serrated adenoma was reported by Sawyer et al. who reported an incidence of MSI 

of 5% in a cohort of serrated adenomas that included dysplastic lesions [124]. A larger and 

more contemporary series is supportive of a late development of MSI in the serrated 

pathway. Whilst MSI was demonstrated in 81% of serrated adenocarcinoma, MSI was not 

detected in hyperplastic polyps or serrated adenomas [125]. Furthermore, in a large cohort 

of serrated adenomas, loss of MLH1 was not seen in non-dysplastic SSA/P, but was 

detected in 75% of SSA/P with dysplasia or carcinoma [19]. 

The murine data largely mirror the in situ data with regards to the timing and molecular 

associations of MSI in serrated pathway neoplasia. BrafV637E-driven murine serrated 

hyperplastic lesions have been demonstrated to be MSS or MSI-L, whereas dysplastic 

serrated neoplastic lesions and carcinomas induced by murine BrafV637E were commonly 

MSI-H [46]. By contrast, KRAS-driven murine serrated cancers were predominantly MSI-

L or MSS, with only one tumour exhibiting MSI-H [66].  
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1.2.5 RAC1b overexpression 

An additional molecular feature of serrated lesions exhibiting BRAF mutation, (but to a 

much lesser extent in those exhibiting KRAS mutation) is overexpression of the RAC1 

splice variant RAC1b, which is present in approximately 81.8% of BRAF-mutant colon 

cancers (compared to 12.5% in KRAS-mutant tumours) [126]. Similarly, in papillary 

thyroid cancer, a strong association between BRAFV600E mutation and RAC1b over-

expression has been reported [127]. RAC1b has been demonstrated to promote cell cycle 

progression through activation of NF-κB [128,129]. Depletion of RAC1b in over-

expressing cell lines is associated with impaired proliferation and increased apoptosis 

[126]. RAC1b overexpression has been associated with poor prognosis in colon cancer 

[130]. The reported over-expression of RAC1b in BRAF-mutant tumours has a potential 

mechanistic link with the oncogene-induced senescence phenotype reported to contribute 

to this pathway of colorectal carcinogenesis. Overexpression of RAC1b in NCM460 

colonocytes transformed with BRAFV600E was demonstrated to antagonise BRAF-mediated 

proliferation arrest [131]. Furthermore, RAC1b overexpression has been linked 

mechanistically to Wnt pathway activation [132-134].  

1.3 DNA methylation  

1.3.1 Introduction 

Cytosine DNA methylation, by addition of a methyl group at the 5’ carbon position of the 

pyrimidine ring of cytosine, is a covalent modification of the DNA molecule, and it has 

been proposed since the 1970s that this modification constitutes an epigenetic mark that is 

heritable and influences gene regulation and cellular differentiation [135]. DNA 

methylation was originally described as a repressive mark.  Early in vitro experiments 

demonstrated that methylated DNA is transcriptionally inactive in Xenopus and 

mammalian systems, confirming a causative link between DNA methylation and gene 

silencing [136,137].  

DNA methylation is not uniform throughout the genome, and exhibits a bimodal 

distribution.  DNA methylation in mammals occurs predominantly at CpG dinucleotides, 

though non-CpG methylation does occur, particularly in the context of embryonic 

development, where it is enriched at gene bodies [138,139]. The mammalian genome 

contains short CpG-rich regions, defined as CpG islands (CGIs).  CpG islands have a DNA 

sequence of at least 500bp, a GC content of greater than 55% and an observed/expected 
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ratio of CpG dinucleotide content greater than 0.65. Whilst CpG islands comprise less than 

1% of genomic DNA, 72% of annotated gene promoters are associated with a CGI [140]. 

In somatic tissues, CGIs located at the TSS are predominantly unmethylated in contrast to 

CGIs located elsewhere in the genome [141]. There are exceptions to this however: for 

example, promoter CGI methylation is associated with X chromosome inactivation in 

females and genomic imprinting [142-144]. Unmethylated CGIs at the TSS are associated 

with active transcription, and are relatively resistant to DNA methylation. This resistance 

to DNA methylation is associated with engaged RNA-polymerase II [145]. Active 

promoter CGIs also demonstrate enrichment of transcription factor binding motifs, 

including Sp1, Nrf-1, E2F and ETS [146]. Furthermore, the chromatin at promoters with 

unmethylated CGIs exhibits a characteristic configuration of nucleosome-depleted regions 

(NDRs) at the TSS, which are marked by H3K4me3 and H2A.Z [147,148]. The 

localisation of H3K4me3 at unmethylated promoter CGIs has been shown to be directly 

linked to the relative protection of CGIs from DNA methylation, as the interaction of 

DNMT3L with H3 is inhibited by methylation of lysine 4 of H3 [149]. Unmethylated 

promoter CGIs are also bound by Cfp1. Depletion of the former results in reduced levels of 

H3K4me3 as it is a component of the Setd1 H3K4me3 methyltransferase complex 

[150,151]. 

By contrast, DNA methylation at promoter CpGs is considered a stable lock on 

transcription. DNA methylation results in the recruitment of methyl-binding domain 

proteins (MBD) in a sequence-independent fashion [152]. MBD binding to methylated 

DNA results in the recruitment of chromatin modifiers [153]. The chromatin landscape of 

methylated CpGs contrasts with that of unmethylated CpGs, and the former is associated 

with nucleosome occupancy, repressive histone modifications (deacetylated H3 and H3K9 

methylation) and transcription repression [154,155]. Both in cancer and embryonic 

development, promoter CGI methylation exhibits a preference for genes marked by 

H3K27me3 [156,157]. A direct interaction between H3K27me3 and DNA methylation has 

been proposed: namely that EZH2 (the catalyst for H3K27me3) directly recruits DNA 

methyltransferases [158].  

DNA methylation is not restricted to promoter CpGs, and the functions of DNA 

methylation at other genomic elements is increasingly understood. At gene bodies, 

methylation has traditionally been considered to silence the so-called repetitive elements 

(e.g. LINE-1, Alu elements etc.) [159]. Closer examination of DNA methylation at gene 

bodies has also revealed differences in DNA methylation between introns and exons. 
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Exons exhibit markedly higher methylation than introns, with an abrupt change at the 

intron/exon boundary. It has been proposed that this is supportive of a role for DNA 

methylation in splicing [160,161]. In contrast to promoter CGIs, gene body methylation 

has also been associated with increased gene expression [139,162]. Reestablishment of 

gene body methylation following treatment with 5-aza-2’-deoxycytidine has been 

demonstrated to be mediated by DNMT3B [163]. Furthermore, the targeting of DNMT3B 

to the gene bodies of transcribed genes has been confirmed by chromatin 

immunoprecipitation, and it has been demonstrated that this is mediated by H3K36me3 

[164]. Recently, the central role of DNMT3B in gene body methylation has been 

confirmed.  Dnmt3b knockout in mouse embryonic stem cells results in depletion of DNA 

methylation at a genome-wide level, with reductions in 5-methylcytosine at introns and 

exons. Furthermore DNMT3B binding has been demonstrated to correlate strongly with 

H3K36me3 abundance. Intragenic DNA methylation has been demonstrated to prevent 

aberrant transcription by preventing incorrect targeting of RNA polymerase II [165].  

Transcriptional enhancers are situated at a variable distance from promoters, are key 

regulators of expression and exhibit variable levels of DNA methylation [166]. Schmidl et 

al. [167] identified methylation-sensitive enhancers involved in lineage-determination in T 

cells, and a correlation between enhancer methylation and gene expression during 

haematopoiesis has been noted [168]. Aran et al. [169] characterised transcriptional 

enhancer methylation in both normal and cancer cells, noting upregulation of expression of 

genes associated with a hypomethylated enhancer, and downregulation of those with a 

hypermethylated enhancer. Furthermore, alterations in gene expression were more tightly 

related to enhancer than promoter methylation status. Whole genome analysis of HCT116 

DKO1 cells (which are null for both DNMT1 and DNMT3B) has demonstrated a paucity of 

reactivated promoters in comparison to WT HCT116 cells, but a large number of active 

enhancers located in gene bodies, which are highly methylated and frequently associated 

with the H3K4me1 mark in parental HCT116 cells. In DKO1 cells, expression of several 

hundred genes silenced in parental HCT116 was associated with hypomethylated intronic 

enhancers [170]. In sum, while the role of DNA methylation at enhancers might be more 

nuanced than at CpG islands, a substantial body of data indicates that enhancers are 

activated by hypomethylation.    
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1.3.2 The DNA methyltransferases 

In humans, three catalytically-active DNA methyltransferases enzymes have been 

characterised (DNMT1, DNMT3A and DNMT3B) in addition to a fourth, catalytically 

inactive enzyme, DNMT3L. A fifth protein, initially named DNMT2 is no longer 

considered a DNA methyltransferase. A novel DNA methyltransferase, DNMT3C, has also 

been described recently [171]. An overview of the DNA methyltransferase proteins and 

their respective isoforms is given in Figure 1-3.   

1.3.3 DNMT1 

DNMT1 was the first of the mammalian DNA methyltransferases to be described [172]. 

Mammalian DNMT1 preferentially methylates hemimethylated DNA [173]. DNMT1 

binds to proliferating cell nuclear antigen (PCNA) [174] and is localised to the replication 

fork during S phase and acts primarily as a maintenance methyltransferase [175]. DNMT1 

forms a complex with PCNA and UHRF1 (also called Np95) which mediates its 

recruitment to hemimethylated DNA during DNA replication [176]. DNMT1 has however, 

been demonstrated to able to maintain DNA methylation even when uncoupled from the 

DNA replication machinery [177]. Homozygous germline mutation of DNMT1 is 

embryonically lethal [178]. Consistent with this, knockout of DNMT1 in human embryonic 

stem cells results in global hypomethylation and cell death [179]. By contrast, Dnmt1-/- 

mouse embryonic stem cells are viable [180]. Furthermore, in both murine and human 

fibroblasts, DNMT1 knockout is associated with proliferation arrest and p53-dependent 

apoptosis [181,182]. DNMT1 depletion in mice results in chromosomal instability and has 

been demonstrated to induce tumours [183,184]. Paradoxically, suppression of DNMT1, 

both by genetic knockdown and treatment with 5-aza-2’-deoxycytidine has been shown to 

reduce tumour formation in a mouse model of colon cancer [185,186]. The role of DNMT1 

in aberrant promoter methylation will be discussed in a later section.  

1.3.4 DNMT2 

The human DNMT2 gene is located at chromosome 10p13, and encodes a protein of 384 

amino acids3. DNMT2, a homologue of the yeast pmt1p gene, exhibits many structural 

features of the other DNA methyltransferases, and was initially thought to represent a 

separate DNA methyltransferase [187]. Subsequently however, the yeast homologue of 

DNMT2, pmt1, was found not to exhibit demonstrable methyltransferase activity in vitro. 

                                                
3 https://www.ncbi.nlm.nih.gov/gene/1787 
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Furthermore, Dnmt2 knockout in mouse embryonic stem cells did not affect viability, and 

was required neither for de novo nor maintenance methylation [188]. Whole genome 

bisulfite sequencing has revealed that DNA methylation is absent in organisms whose only 

candidate DNMT is DNMT2, and triple knockout (Dnmt1, Dnmt3a and Dnmt3b) mouse 

embryonic stem cells which retain Dnmt2 exhibit an unmethylated genome [189]. Goll et 

al. [190] demonstrated that DNMT2 exhibits cytoplasmic rather than nuclear distribution 

(in sharp contrast to the other DNA methyltransferases) and that it is an RNA 

methyltransferase, which methylates tRNAAsp. Consistent with this revised understanding 

of its function, the gene has subsequently been renamed TRDMT1.  
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Figure 1-3 The DNA methyltransferase proteins 

Schematic diagram of the DNA methyltransferase family of proteins, demonstrating the conserved 
PWWP and PHD-like domains, and the carboxy-terminal methyltransferase catalytic domain. 
Splice isoforms are represented, together with their respective alternate splicing sites/truncations. 
Adapted from Choi et al. [191].   
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1.3.5 DNMT3A 

1.3.5.1 Introduction 

The existence of separate de novo DNA methyltransferases was postulated following the 

observation that Dnmt1-null embryonic stem cells maintained de novo methylation activity 

[192]. Subsequently, the DNMT3 family, comprising DNMT3A and DNMT3B, was 

identified and both members were demonstrated to exhibit cytosine-5 methyltransferase 

activity [193]. In vivo activity of both enzymes was also subsequently confirmed [194]. 

The human DNMT3A gene is located at position 2p23 and encodes a protein of 908 amino 

acids. Human DNMT3A exhibits 98% structural homology with murine DNMT3A. 

DNMT3A is a de novo methyltransferase which exhibits equal affinity for both 

hemimethylated and unmethylated DNA [193]. DNMT3A is detectable in most somatic 

tissues [195,196]. Dnmt3a-knockout mice are viable, but die in early infancy [197]. A 

number of splice variants of DNMT3A in both mouse and human have been described. 

Dnmt3a1 is expressed in somatic tissues. By comparison, Dnmt3a2 is abundant in mouse 

embryonic stem cells, but expressed at very low levels in somatic tissues, and it has been 

proposed that this reflects a specific role for this splice variant in the establishment of 

methylation during development [198]. In humans, a truncated isoform, DNMT3A2, is 

expressed from an alternative promoter in intron 6 of DNMT3A. DNMT3A2 is catalytically 

active, but does not possess the N-terminal 233 amino acids of the full-length protein. In 

contrast to full-length DNMT3A, DNMT3A2 localises to euchromatin. Furthermore, 

DNMT3A2 is highly expressed in embryonic stem cells, but by contrast is absent in most 

somatic tissues (with the exceptions of testis, ovary, spleen and thymus) [199]. 

DNMT3A knockout using the CRISPR/Cas9 system in human embryonic stem cells does 

not affect viability, and DNMT3A-/- HESCs retain pluripotency and differentiation ability. 

DNMT3A knockout is associated with a mild reduction in global methylation, though this 

is less pronounced than in combined DNMT3A and DNMT3B knockout (the latter will be 

discussed below in the context of DNMT3B). Analysis of endodermal cells derived from 

the DNMT3A-/- line reveals that these exhibit hypomethylated DMRs relative to wild-type 

endodermal cells, with enrichment for promoters and gene bodies: implying that DNMT3A 

is required for the de novo methylation of these features [179]. 
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1.3.5.2 DNMT3A in cancer 

Elevated expression of DNMT3A has been reported in cancer cell lines and primary 

human tumour tissue [195,196]. The oncogenic function of DNMT3A has been explored in 

several models. Antisense mediated knockdown of DNMT3A in a melanoma cell line does 

not affect proliferation, migration, invasion or colony-formation in vitro. However in the in 

vivo context, DNMT3A depletion is associated with reduced melanoma growth and 

metastasis [200]. Similarly, in gastric cancer, high DNMT3A expression is detected in 

tumour compared to paired normal tissue; furthermore high DNMT3A expression is 

associated with poor outcome [201]. Knockdown of DNMT3A in gastric cancer cell lines 

is associated with reduced proliferation, and conversely ectopic expression accelerates 

growth. The growth acceleration associated with DNMT3A overexpression is mediated by 

depletion of p18INK4C, consequent upon hypermethylation of its promoter. Furthermore, in 

human gastric cancer tissue, DNMT3A expression is significantly associated with 

downregulation of p18INK4C [202].    

Elevated DNMT3A expression has been reported in both murine and human colon cancer 

[203,204]. Conditional knockout of Dnmt3a in the Apcmin/+ model is associated with a 40% 

reduction in colonic tumour formation. Fabp-Cre results in mosaic recombination in the 

intestine. Interestingly genotyping of colonic tumours and microadenomas arising in Fabp-

Cre;Dnmt3a2lox/2lox;Apcmin/+ revealed only the active (2lox) Dnmt3a allele whereas the 

inactive (1lox) Dnmt3a was not detected, suggesting DNMT3A is required for tumour 

initiation. DNA methylation analysis of Cre+ and Cre- colonic mucosa was undertaken. 

Whilst overall a very small reduction in global methylation was noted in Cre+ animals, 

there was no difference in LINE-1 methylation, a surrogate of global methylation. By 

contrast, Cre+ animals exhibited promoter demethylation, and increased expression of 

tumour suppressors, including CDKN1C and TFF2 [204].  

There are conflicting data published on the effects of over-expression of DNMT3A on 

colorectal tumourigenesis. Linhart et al. [205] overexpressed DNMT3A in the Apcmin/+ 

model using a tetracycline-inducible Dnmt3a transgene, and reported no increase in tumour 

number. By contrast, a subsequent study revisited intestine-specific overexpression of 

DNMT3A using the A33Dnmt3a transgene. A small proportion of aged A33Dnmt3a mice 

developed sporadic intestinal adenomas, though there was a significant latency (>18 

months). Tumours from these mice exhibited upregulation of Wnt targets and promoter 

hypermethylation of the Wnt antagonists Sfrp1 and Sfrp5. The authors also crossed 
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A33Dnmt3a to the Apcmin/+ strain. A33Dnmt3a;Apcmin/+ developed significantly more (three-fold 

increase) macroscopic tumours compared to Apcmin/+ mice. Polyps from both 

A33Dnmt3a;Apcmin/+ and Apcmin/+ exhibited activated Wnt signalling as evidenced by nuclear 

β-catenin, though in A33Dnmt3a;Apcmin/+ mice, approximately a third of tumours did not 

exhibit Apc LOH. Expression analysis of A33Dnmt3a;Apcmin/+ mice tissues demonstrated 

upregulation of Wnt targets including AXIN2 and repression of the Wnt antagonist SFRP5, 

and this was associated with hypermethylation of its promoter. Furthermore, the authors 

demonstrated a correlation between DNMT3A overexpression and SFRP5 repression in 

human colorectal cancer samples [206].  

Together these data are supportive of an oncogenic function of DNMT3A. This role 

however appears to be context-dependent. In contrast to the oncogenic function described 

in the colon, DNMT3A has been demonstrated to exhibit a tumour suppressive role in the 

Ad-Cre;KrasG12D model of lung adenocarcinogenesis. Dnmt3a deletion in this model does 

not increase tumour number, but significantly increases tumour size. Furthermore, 

homozygous deletion of Dnmt3a in this model significantly shortens survival. This 

oncogenic effect of Dnmt3a deletion is associated with altered expression of genes 

involved in angiogenesis, cell adhesion and motility. Dnmt3a deletion was also associated 

with a loss of methylation at gene bodies [207]. In a follow-up study, the authors used 

whole-genome bisulfite sequencing to comprehensively assess the methylation changes 

consequent upon Dnmt3a deletion in Ad-Cre;KrasG12D tumours. In contrast to Ad-

Cre;KrasG12D tumours with wild-type Dnmt3a, which exhibited hypomethylation of lamin-

associated domains, Dnmt3a knockout induced global hypomethylation with loss of 

methylation at partially-methylated domains. Dnmt3a-null tumours exhibited a significant 

reduction in gene body and intergenic methylation. By contrast, Dnmt3a knockout was not 

associated with significant changes in promoter CpG methylation. Analysis of expression 

data from the same model demonstrated that hypomethylation of 5’ UTRs was associated 

with gene upregulation, whereas downregulated genes demonstrated hypomethylation in 

exons [208].    

Similarly, in leukaemia, DNMT3A has been associated with a tumour-suppressive role. 

DNMT3A mutations are detected in approximately 22.1% of patients with acute myeloid 

leukaemia, most commonly at amino acid R882. Furthermore, DNMT3A mutations are 

associated with reduced survival [209]. The R882H mutation results in significantly 

reduced DNA methyltransferase activity and an inability to form homotetramers. 

Furthermore, the mutant protein exerts a dominant negative effect on the wild-type protein. 
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AML samples with the R882H mutation exhibit focal DNA hypomethylation throughout 

the genome [210].   DNMT3A knockout in haematopoietic stem cells (HSPCs) results in 

significant methylation changes at DNA methylation canyons. Canyons marked by 

H3K4me3 demonstrate expansion, whilst those marked by H3K27me3 contract.  

Significantly, canyon-associated genes are significantly enriched for genes differentially 

expressed in human AML with and without DNMT3A mutations [211]. Furthermore, 

conditional knockout of DNMT3A in HSPCs impairs differentiation and is associated with 

both hypo- and hypermethylation events: the latter notably but somewhat paradoxically at 

CpG islands. Interestingly, hypomethylation in DNMT3A-null HSPCs was associated with 

activation of HSP multipotency genes [212]. A more recent study has suggested that 

hypomethylation driven by DNMT3AR882 is an initiating event in leukaemogenesis, 

whereas CpG hypermethylation is not associated with gene-silencing, and occurs as a 

response to, rather than drives cellular proliferation [213].   

1.3.6 DNMT3B 

1.3.6.1 Introduction 

The human DNMT3B gene is at position 20q11.21 and encodes a protein consisting of 853 

amino acid residues. Human DNMT3B exhibits 94% sequence homology with murine 

DNMT3B. Whilst DNMT3A and DNMT3B exhibit high sequence homology in their 

catalytic domains, they exhibit low sequence homology in the N-terminal variable domains 

[196].   

In mice, germline deletion of Dnmt3b is embryonically lethal, and combined Dnmt3a and 

Dnmt3b deletion prevents de novo methylation of proviral DNA by ES cells. Furthermore, 

DNMT3B methylates pericentric satellite regions, and may thus have a role in the 

maintenance of chromosomal stability [197]. Both DNMT3A and DNMT3B localise to 

pericentric heterochromatin in embryonic stem cells. Furthermore, this localisation is 

preserved in Dnmt1-null ES, implying that this localisation occurs independently of DNA 

methylation [214]. Targeting of DNMT3B to the pericentric chromatin has been 

demonstrated to be dependent on the N-terminal PWWP domain [215]. DNMT3B interacts 

with CENP-C, a constitutive centromere protein. Disruption of either DNMT3B or CENP-

C results in chromosomal segregation defects, and hypomethylation of pericentric repeats 

[216]. In humans, mutations in the DNMT3B gene are responsible for a rare autosomal 

recessive syndrome, termed ICF syndrome, which results in immunodeficiency, 

centromeric instability, and facial anomalies [197,217]. Whole genome bisulfite 
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sequencing of an ICF patient has demonstrated genome-wide global hypomethylation, with 

the most significant changes being observed at inactive heterochromatic regions, satellite 

repeats and transposons. Whilst the methylome in ICF is globally attenuated, there is 

relative sparing of transcriptionally active loci. Unexpectedly, hypermethylated DMRs 

were also identified in the ICF patient, particularly at loci marked by H3K4. It was 

hypothesised that this might be due to an impaired interaction between the mutant protein 

and DNMT3L [218].  

Loss of function experiments in embryonic stem cells and cancer cell lines have helped to 

clarify the functions of DNMT3B. Deletion of DNMT3B using the CRISPR/Cas9 genome 

editing system in human embryonic stem cells has demonstrated that DNMT3B-/- HESCs 

retain pluripotency and do not exhibit impaired differentiation. Overall, DNMT3B -/- cells 

exhibit only a very modest decrease in global methylation. Interestingly, DNMT3B 

depletion had a more marked effect on non-CpG methylation than DNMT3A depletion. By 

contrast, in double knockout cells (DNMT3A-/-;DNMT3B-/-) whilst there was a gradual loss 

of CpG methylation, non-CpG methylation was rapidly depleted. Approximately 96% of 

DMRs between wild-type and knockout lines lost methylation only in the double-knockout 

line, implying considerable functional redundancy between DNMT3A and DNMT3B. 

Those DMRs that did not exhibit functional redundancy were enriched for CpG islands 

[179].   Further insight into the function of DNMT3B has been gained from antisense-

mediated knockdown in the human embryonic carcinoma line NCCIT. DNMT3B siRNA 

knockdown was unexpectedly associated with a larger number of hypermethylated than 

hypomethylated DMRs. There was a significant enrichment for DNMT3B knockdown 

hypermethylation DMRs at gene bodies, 3’ UTRs and intergenic sequences. Loci gaining 

methylation upon DNMT3B knockdown overlapped with those losing methylation on 

knockdown of DNMT1 implying a role of the latter in establishing this hypermethylation. 

Consistent with the HESC data reviewed above, DNMT3B knockdown was associated 

with hypomethylation of non-CpG sites. Conversely, DNMT3L knockdown was associated 

with hypermethylation of non-CpG sites; implying that DNMT3L regulates non-CpG 

methylation by DNMT3B [219]. DNMT3B has been further implicated in gene-body 

methylation in transcribed genes. Selective binding of DNMT3B to the gene-bodies of 

transcribed genes has been demonstrated by ChIP, and this targeting is dependent on the 

H3K36me3 mark and requires an intact PWWP domain [164]. 

A number of splice isoforms of DNMT3B have been described, some of which lack or 

possess a truncated C-terminal catalytic domain. Some of these exhibit tissue-specific 
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expression patterns, and interestingly, DNMT3B3 which lacks the C-terminal catalytic 

domain is the one of the most widely expressed isoforms in adult somatic tissues [195]. 

Moreover, the most highly expressed DNMT3B isoforms in human cancer cell lines are 

DNMT3B2 and DNMT3B3 rather than DNMT3B1 [220]. Initially the function of 

DNMT3B splice isoforms was unclear, though studies (predominantly in a cancer context) 

have shed some light on their roles in the regulation and dysregulation of DNA 

methylation. Wang et al. [221] described the ΔDNMT3B family (ΔDNMT3B1-7) 

transcribed from an alternative promoter in intron 4, which are expressed at higher levels 

in tumour compared to normal tissues. Consistent with this relative overexpression in 

tumour tissue, ΔDNMT3B4 was strongly correlated with promoter hypermethylation of the 

tumour-suppressor RASSF1A. A further study has characterised over 20 aberrant DNMT3B 

isoforms in cancer cell lines from multiple tumour types, confirming these as a common 

feature of a variety of solid and haematological tumours [222]. Furthermore, these were 

confirmed to be predominantly nuclear rather than cytoplasmic in their distribution. 

Interestingly, functional studies with ectopic expression of one such isoform, DNMT3B7, 

in 293T cells have demonstrated that this results in an altered transcriptome, and targeted 

methylation analysis demonstrated that this was associated with altered methylation at the 

promoters of certain genes whose promoters exhibit methylation changes in cancer (CDH1, 

MAGEA3, SH2D1A, PLP2) [222]. More recent work has clarified the contribution of 

DNMT3B isoforms to de novo DNA methylation. A novel isoform, DNMT3B3Δ5, 

originally isolated from an embryonic carcinoma cell line, which is structurally related to 

DNMT3B3, is upregulated in pluripotent cells, and downregulated upon differentiation. 

Whilst expressed in fetal and adult brain, it is expressed at low levels in adult somatic 

tissues and furthermore is aberrantly expressed in certain cancers. Ectopic expression of 

DNMT3B3Δ5 in HCT-116 results in loss of DNA methylation at centromeric and 

pericentromeric repetitive elements, and is associated with increased clonogenic growth 

[223].  

A further study has characterised the effects of the DNMT3B splice variants DNMT3B3 

and DNMT3B4 on DNA methylation. Both DNMT3B3 and DNMT3B4 were 

demonstrated to bind to and thus modulate the catalytic function of DNMT3A and 

DNMT3B. Whilst itself lacking an intact catalytic domain, DNMT3B3 can modestly 

stimulate de novo methylation activity, however in the presence of DNMT3L, counteracts 

the stimulation effect of the latter, implying a degree of context dependency. It has been 

suggested that this might reflect a regulatory function of the DNMT3B3 isoform in the 

development context. DNMT3B4 by contrast, impairs the de novo methylating activity of 
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the DNMT3 family by binding to them and reducing their DNA-binding affinity [224]. An 

elegant study has further analysed the function of DNMT3B isoforms by reintroduction of 

particular isoforms to the HCT-116 derived cell lines 3BKO and DKO8, which have a 

homozygous deletion of DNMT3B (DKO8 also have a hypomorphic DNMT1 allele). 

Subsequent methylation analysis revealed that re-expression of DNMT3B isoforms results 

in restoration of methylation at specific CpG sites, (most of which were methylated in 

parental HCT-116 cells) with the most significant gains being at gene bodies, which were 

enriched for H3K36me3 (associated with active transcription). Interestingly, the 

catalytically-inactive DNMT3B3 isoform was also demonstrated to result in restoration of 

methylation: supporting the previously reviewed evidence that it can result in increased 

DNA methylating activity whilst itself catalytically-inactive. Furthermore, in the DNMT3A 

and DNMT3B null cell line 3ABDKO, only DNMT3B1 was able to restore methylation, 

implying that the observed effects of other DNMT3B isoforms may be mediated through 

recruitment of DNMT3A in a fashion similar to DNMT3L [225].             

1.3.6.2 DNMT3B in cancer 

In contrast to DNMT3A, mutations in DNMT3B have not been described in human cancer. 

DNMT3B is highly expressed in embryonic stem cells, but at very low levels in 

differentiated adult tissues (with the exception of adult testis) [193]. By contrast, DNMT3B 

is over-expressed in multiple tumour types [195]. The over-expression of DNMT3B in 

multiple tumour types has prompted many authors to explore an oncogenic function. 

DNMT3B knockdown has been demonstrated to have an anti-proliferative effect and 

induce apoptosis in cancer cell lines, but not untransformed cell lines [226]. Furthermore, 

in both transformed human bronchial epithelial cells and MEFs, DNMT3B was 

demonstrated to be required for soft agar colony growth, and antisense-mediated 

knockdown resulted in re-expression of tumour suppressor genes [227].  

A number of murine studies support an oncogenic function of DNMT3B in colon cancer. 

A transgenic mouse model with Cre-lox mediated conditional Dnmt3b deletion, was 

developed and crossed to the ApcMin/+ model [228]. Dnmt3b-null mice exhibited fewer 

macroscopic colon tumours than wild-type Dnmt3b controls, but Dnmt3b deletion did not 

affect the number of microadenomas in this model. The authors concluded that Dnmt3b 

knockout impaired the progression of microadenomas to macroscopic adenomas. In the 

converse experiment, transgenic mouse models with tetracycline-inducible Dnmt3a and 

Dnmt3b transgenes were developed and crossed to the well-characterised ApcMin/+ model 
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[229].  Whilst DNMT3A overexpression had no effect on tumour number, DNMT3B 

overexpression was associated with a doubling in the number of colon tumours in ApcMin/+ 

mice, and increased the average size of microadenomas. Furthermore, these effects on 

tumourigenesis were not seen in mice overexpressing DNMT3B3, a catalytically-inactive 

isoform of Dnmt3b, implying that the effect was methylation-dependent. DNMT3B 

overexpression resulted in loss of imprinting and re-expression of IGF2 due to 

hypermethylation of the H19-DMR, in addition to silencing of the tumour-suppressors 

SFRP2, SFRP4 and SFRP5. Whilst this paper did not explicitly address whether DNMT3B 

induces a CIMP-Phenotype, it did demonstrate that DNMT3B induces locus-specific 

promoter CpG island methylation, and associate this with a potential oncogenic function. 

Paradoxically, in contrast to these studies, silencing of DNMT3B due to its promoter 

hypermethylation has also been reported in both colon cancer cell lines and primary human 

colon cancers, and linked to an oncogenic function [230]. 

DNMT3B has also been demonstrated to have an oncogenic function in malignant 

melanoma. DNMT3B is overexpressed in human melanoma and DNMT3B knockdown 

impairs proliferation in human melanoma cell lines. Overexpression of DNMT3B is also 

associated with reduced survival in human melanoma.  Furthermore, in an in vivo 

melanoma model, conditional Dnmt3b knockout abrogates melanoma formation, and 

improves survival. Dnmt3b knockout results in hypomethylation of miR-196b, with 

consequent loss of RICTOR, which prevents activation of mTORC2 [231]. Interestingly, in 

this latter study, there was no association between DNMT3B expression and 

CDKN2A/INK4A promoter methylation in melanoma, despite an earlier report to the 

contrary [232].    

In contrast to an apparent oncogenic function of DNMT3B in melanoma and epithelial 

cancers, DNMT3B has been proposed to have a tumour suppressor function in the context 

of lymphoma. In a murine model of MYC-induced T cell lymphoma, Dnmt3b knockout 

has been demonstrated to accelerate lymphoma progression, and this was associated with 

hypomethylation and re-expression of GM128 (MENT), whose expression was similarly 

correlated with DNMT3B expression in human lymphoma [233]. Furthermore, the 

oncogenic function of DNMT3A in murine MYC-induced T cell lymphoma has been 

demonstrated to be mediated in part by suppression of DNMT3B [234]. Similarly, in the 

Eµ-Myc model of B-cell lymphoma, Dnmt3b has been demonstrated to be a 

haploinsufficient tumour suppressor gene [235]. However, in human diffuse large B-cell 

lymphoma, DNMT3B overexpression is an independent predictor of poor disease-free and 
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overall survival, which does not fit with a tumour-suppressive role [236]. There are also 

data suggesting a tumour-suppressive role of DNMT3B in leukaemia. In two murine 

models of leukaemia (Myc-Bcl2 and MLL-AF9), ectopic DNMT3B expression has been 

demonstrated to impair leukaemogenesis [237]. Furthermore, DNMT3B expression is 

reduced in leukaemic stem cells compared to haematopoietic stem cells and deletion of 

Dnmt3b in murine MLL-AF9 accelerates leukaemogenesis [238]. Similarly, in a murine 

model of CLL driven by deletion of Dnmt3a, synchronous Dnmt3b deletion accelerates 

tumourigenesis [239]. There is however, an apparent paradox, as high DNMT3B 

expression correlates with poor prognosis in acute myeloid leukaemia in humans 

[237,240,241].      

1.3.7 DNMT3L 

The human DNMT3L gene is located at 21q22.3 and encodes a 387 amino acid protein 

which exhibits structural similarities with DNMT3A and DNMT3B [242]. DNMT3L 

however lacks key catalytic domains on its C terminus, and does not exhibit DNA 

methyltransferase activity [243]. DNMT3L is virtually undetectable in adult tissues with 

the exception of testis, ovary and thymus [242]. Repression of DNMT3L in adult tissues is 

associated with promoter CpG hypermethylation [244]. DNMT3L is however highly 

expressed in embryonic stem cells and has been demonstrated to have an essential role in 

maternal imprinting [243,245].   

Whilst itself lacking DNA methyltransferase activity, DNMT3L is an important co-factor 

in the DNA methylation machinery, and has been demonstrated, by 

coimmunoprecipitation, to physically interact with DNMT3A and DNMT3B [245]. 

DNMT3L stimulates the activity of both DNMT3A and DNMT3B [246,247]. DNMT3L 

enhances the binding of S-adenosyl-L-methionine to DNMT3A2 resulting in a 

significantly increased catalytic activity [248]. In mouse embryonic stem cells, DNMT3L 

competes with DNMT3A and DNMT3B to form a complex with PRC2, promoting 

methylation at gene bodies, whilst impairing DNA methylation at bivalent promoters, 

allowing continued expression of developmental genes [249]. Targeted DNMT3L 

knockdown in an embryonic carcinoma cell line (NCCIT) results in hypermethylation of 

non-CpG sites supporting a role for DNMT3L in restricting non-CpG methylation by 

DNMT3A and DNMT3B [219]. DNMT3L is not over-expressed in tumours arising from 

somatic tissues, but is overexpressed in testicular germ cell tumours, in which DNMT3L 

knockdown inhibits growth and promotes apoptosis [250].   
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1.3.8 DNMT3C 

The most recently-described member of the DNA methyltransferase family is Dnmt3c.  

Dnmt3c maps 9kb downstream of Dnmt3b and had previously been considered a 

pseudogene. Like the other members of the DNMT3 family, DNMT3C possesses six 

catalytic methyltransferase motifs at its C-terminus, and an ADD domain at its N-terminus, 

which binds unmethylated H3K4. Unlike the other members of the DNMT3 family, it does 

not posess the PWWP domain, which recognises H3K36me3 and targets these proteins to 

gene bodies. It has been demonstrated to be a catalytically-active member of the DNMT3 

family and is responsible for methylation of evolutionarily-young retrotransposons in the 

male germline. Functional disruption in a murine model results in hypogonadism and male 

infertility. Whilst present in members of the orders Rodentia and Muroidea, Dnmt3c is 

absent in primates [171].  

1.4 DNA methylation in normal intestinal homeostasis and ageing 

As in embryonic development, DNA methylation has been demonstrated to be a crucial 

regulator of differentiation in self-renewing somatic tissues [251]. The mammalian 

intestine is a highly proliferative tissue with replacement of the epithelium every 3-5 days. 

In the murine intestine, small intestinal crypts produce approximately 25 cells/hour [252] 

and in the colon, around 16 cells/hour [253]. Inducible deletion of Dnmt1 in the murine 

intestine leads to crypt expansion and decreased differentiation (with increased expression 

of LGR5 and OLMF4) as a result of impaired repression of intestinal stem cell genes 

[254].  This is in contrast to other self-renewing somatic tissues, in which loss of DNMT1 

leads to failure of tissue self-renewal [251,255,256]. Furthermore, deletion of DNMT1 in 

human embryonic stem cells results in loss of viability [179].  

Moreover, there is an apparent paradox in the intestine, as deletion of Dnmt1 in ‘perinatal’ 

intestinal epithelium leads to global hypomethylation, loss of progenitors and failure of 

self-renewal [257,258]. It has subsequently been noted that DNMT3B is upregulated after 

Dnmt1 deletion in the adult mouse intestine, in contrast to ‘perinatal’ mouse intestine, 

where upregulation of DNMT3B is not seen in Dnmt1-null animals. Combined deletion of 

Dnmt1 and Dnmt3b in the murine intestine is lethal, causing hypomethylation, DNA 

damage and cell death [257-259]. Whole genome bisulfite sequencing has been used to 

map changes in DNA methylation dynamics in perinatal and adult murine colonic 

epithelium.  In both ‘perinatal’ and adult colon, global methylation levels are significantly 

lower in differentiated stem cells than in intestinal stem cells. Interestingly, there are more 
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DMRs during intestinal maturation than during differentiation. During maturation, there 

are gains of methylation at CGIs and loss of methylation at non-CGIs. Conditional 

knockout of Dnmt1 in adult intestinal stem cells leads to disruption of normal crypt 

homeostasis in both small intestine and colon [258]. The relative lack of DMRs detected 

during adult intestinal stem cell differentiation in this study is consistent with a previous 

report [260]. In this latter study, intestinal stem cell differentiation in the small intestine 

was associated with reduced expression of DNMT1, DNMT3A and DNMT3B, but 

globally, only a very modest decrease was seen in DNA methylation upon differentiation.  

Consistent with a role for DNA methylation in normal tissue homeostasis, DNA 

methylation changes in the intestine have been reported in association with ageing in 

healthy individuals, though the biological significance of these is unclear [113,261,262]. 

Renewed interest in the “epigenetic drift” associated with ageing as a putative risk factor 

for neoplastic transformation, has prompted more comprehensive analysis of the DNA 

methylation changes that accompany ageing in the mammalian intestine. Analysis of 

promoter CpG-island methylation at 3627 autosomal genes in murine intestine revealed 

significant DNA methylation changes associated with ageing, with 21% of genes 

exhibiting age-associated hypermethylation and 13% exhibiting hypomethylation. Of note, 

there was an apparent enrichment for polycomb targets in the hypermethylated genes. This 

study furthermore sought to compare age-associated methylation changes in human and 

murine intestine. This comparison was relatively limited by a lack of sequence 

conservation at promoter CpGs between mice and humans, but did reveal some 

commonality. In human colon, the degree of age-associated hypermethylation was 

markedly less pronounced with only 10% of autosomal genes demonstrating age-

associated hypermethylation, and 1% hypomethylation. Furthermore only 42% of 

conserved genes hypermethylated in aged human-colon were hypermethylated in murine 

intestine, and only 3% of conserved hypomethylated genes in aged human colon were 

hypomethylated in aged murine intestine [263]. A subsequent, much more limited study, 

has confirmed ageing-associated DNA hypomethylation in the intestine and colon of 

C57Bl/6J mice [264]. Reflecting the generalizability of ageing-associated DNA 

methylation, genome-wide DNA methylation has been demonstrated to be a robust 

biomarker of chronological age [265]. A panel of so-called “clock CpGs” has been 

proposed as a predictor of biological age across a diverse range of human tissues. Of 

relevance to the main subject matter of this thesis, this study reported that colon cancers 

with a BRAFV600E mutation exhibit “age acceleration”, though these data were subsequently 

retracted by the authors [266].   
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The significance of ageing-associated DNA methylation changes remains uncertain. Whilst 

it is recognised that DNA methylation patterns are tissue-specific, it is notable that there is 

a tendency for ageing-associated DNA changes to occur at developmental genes, bivalent 

chromatin domains, and polycomb target genes: mirroring the patterns seen in cancer [267-

269]. Furthermore, DNA methylation changes in the ageing colon have been analysed in 

the context of accepted risk factors for colorectal carcinoma. Aspirin and HRT use (which 

are generally accepted as reducing colorectal cancer risk) suppressed age-associated DNA 

hypermethylation, whereas the converse was true for smoking and obesity. Moreover, the 

methylation changes observed were more pronounced at those CpG sites which exhibited 

differential methylation in ageing and cancer as compared to those exhibiting differential 

methylation in ageing alone [270]. LINE-1 hypomethylation in the normal colonic mucosa 

of patients with colon cancer has also been proposed as a biomarker of both synchronous 

and metachronous neoplasm risk [271].   

1.5 DNA methylation in senescence 

Further interesting parallels are found in the senescence literature. Mammalian cells in 

vitro undergo a finite number of divisions before entering a stable proliferation arrest 

termed cellular senescence [272]. It is now recognised that senescent cells accumulate in 

both normal ageing mammalian tissues and tissues exhibiting ageing-associated pathology 

[273-277]. Furthermore, the accumulation of senescent cells in aged tissues has been 

proposed to contribute to neoplastic transformation [278]. It is therefore of considerable 

interest that senescent cells develop significant changes in DNA methylation, which mirror 

those seen in ageing and cancer.  

Senescent cells have been demonstrated to exhibit DNA hypomethylation and this has been 

associated with decreased expression of DNMT1, and increased expression of DNMT3B 

[279,280]. With the development of more sophisticated methods of DNA methylation 

analysis, a number of studies have expanded on these observations. Analysis of DNA 

methylation changes in mesenchymal stromal cells undergoing senescence using Human 

Methylation27 bead chip arrays identified specific CpG-sites that exhibited significant 

methylation changes in senescence, with enrichment for homeobox genes and genes 

involved in cellular differentiation [267]. A more recent study mapped the DNA 

methylome of replicative senescence at a genome-wide level.  The authors performed 

single-nucleotide bisulfite sequencing in proliferating and replicatively senescent 

fibroblasts.  They demonstrated that gains and losses of methylation in replicative 
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senescence exhibit many similarities to those seen in the cancer epigenome, with global 

hypomethylation, especially in association with lamin-associated domains, but small 

increases in methylation at CpG islands.  Furthermore, this study also reported that the 

methylation changes associated with replicative senescence were associated with both 

repression and relocalisation of DNMT1 and increased expression of DNMT3B. 

Interestingly, CpG islands exhibiting hypermethylation in replicative senescence included 

several “cell cycle genes”, repression of which is required for proliferation arrest, including 

histones, CCNA2, CENPA, MCM2 and TOPA2, implying that DNA methylation may play 

a role in establishing the stable proliferation arrest associated with replicative senescence 

[281]. A subsequent study has however cast doubt on this hypothesis, demonstrating that 

the DNA methylation changes that accompany cellular senescence may occur 

stochastically rather than contributing mechanistically as effectors of cellular senescence 

[282]. Mirroring the situation in ageing and cancer, senescence-associated DNA 

methylation changes are enriched in developmental genes such as homeobox genes, and 

senescence-associated hypomethylation is enriched at H3K9me3, H3K27me3 and 

polycomb group 2 target genes [283]. 

Perhaps more intriguingly, CpG islands that have been associated with a CpG island 

methylator phenotype in colorectal cancer (namely RUNX3, CACNA1G, SFRP2 and 

SOCS1) also showed hypermethylation in replicative senescence.  Significantly, the 

authors also demonstrated that when senescence bypass was initiated, that these abnormal 

methylation patterns were retained [281], an observation supported by a separate study 

published in the same year [283]. This has potentially significant implications for tumour 

development, as senescent cells that escape stable proliferation arrest may possess an 

abnormal methylome. 

1.6 DNA methylation in cancer 

Whilst cancer has traditionally been considered to arise as a result of genetic mutations, 

there has been increasing recognition that many cancers possess a dysregulated epigenome, 

and aberrations of DNA methylation are a significant feature of the cancer epigenome. 

Analysis of the temporal relationship of the DNA methylation changes accompanying 

carcinogenesis has revealed that different elements of the methylome become dysregulated 

at varying stages during the process of carcinogenesis. For example, in the context of colon 

cancer, whole genome analysis of paired normal colonic tissue, adenomas and carcinoma 

has revealed that hypomethylation accompanies the transformation from normal tissue to 
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adenoma, whilst the majority of hypermethylation events occur during the transition from 

adenoma to carcinoma [284]. Below the methylation changes associated with the cancer 

genome are discussed, together with their putative contributions to carcinogenesis.  

Hypomethylation is a common feature of the cancer epigenome [285,286]. Although 

initially characterised as a global hypomethylation, more recent studies employing more 

sophisticated methodology have mapped the distribution of cancer-associated 

hypomethylation at genomic features in more detail. Whole genome bisulfite sequencing of 

primary human colorectal cancer tissue and paired adjacent normal tissue has revealed that 

cancer-associated hypomethylation is concentrated at late-replicating lamin-associated 

domains, which are gene poor and contain repetitive sequences [287].  

Initially the significance of global hypomethylation in cancer remained undefined, but 

mounting evidence supports the ability of global hypomethylation to promote 

tumourigenesis. Dietary methyl deficiency in rats results in the development of liver 

tumours, and this is associated with hypomethylation of Hras and Kras oncogenes [288]. 

Moreover, in murine dichloroacetic acid and trichloroacetic acid-induced liver 

carcinogenesis, hypomethylation of the promoters of the proto-oncogenes c-Jun and c-Myc 

has been demonstrated and is associated with upregulation of their mRNA and protein 

products [289]. Mice with a hypomorphic Dnmt1 allele, which exhibit global 

hypomethylation, develop T-cell lymphoma between 4-8 months of age, and this is 

associated with increased chromosomal instability [184]. In a further study in this murine 

thymic lymphoma model, hypomethylation has been demonstrated to lead to activation of 

endogenous retroviral elements, which is associated with activation of oncogenic 

NOTCH1 [290].  Furthermore, Dnmt1-null mouse embryonic stem cells (which exhibit 

global hypomethylation) have been demonstrated to possess a “mutator phenotype” [291]. 

Hypomethylation may also promote tumourigenesis by triggering loss of imprinting [292].  

By contrast, the cancer epigenome is also characterised by hypermethylation of promoters, 

which are unmethylated in normal tissues, and this feature is amongst the most 

comprehensively characterised features of the cancer epigenome. The earliest report of 

promoter hypermethylation in cancer was in the calcitonin gene in small cell lung cancer 

[293]. Subsequently, aberrant promoter methylation of the oestrogen-receptor gene was 

demonstrated in breast cancer cells cultured in vitro, linking promoter DNA methylation to 

carcinogenesis [294]. A key paper characterised the silencing of the tumour-suppressor 

CDKN2A/INK4A by promoter CpG hypermethylation in both cancer cell lines and primary 
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human cancer samples, demonstrating this to be an alternative method of transcriptional 

silencing of tumour suppressors in cancer [295]. Subsequently the oncogenic function of 

promoter methylation has been extensively investigated. For example, promoter CpG 

methylation has been demonstrated to result in Wnt pathway activation in the context of 

colon cancer [87]. Similarly, promoter methylation of p14ARF and PTEN has been 

functionally linked to silencing of TP53 in breast cancer [296].  

Whilst the accepted dogma proposes a direct link between promoter CpG methylation and 

transcription repression, more recent evidence suggests that transcription repression may 

not be initiated by DNA methylation per se. Resilencing of p16INK4A (associated with 

H3K9 methylation) has been demonstrated in the absence of DNA methyltransferase 

activity [297]. Furthermore, reactivation of genes silenced by promoter methylation has 

been demonstrated following HDAC inhibition, without demonstrable DNA methylation 

changes at promoters [298,299]. Interestingly, reactivation of genes marked by promoter 

methylation following HDACi was transient when compared to treatment with 5-aza-2’-

deoxycytidine, suggesting that rather than acting as a “stable lock” on transcription, 

promoter DNA methylation acts as an epigenetic memory marker to maintain long-term 

gene-silencing [298].  

More recent work has characterised abnormal methylation at CpG shores in the cancer 

context. CpG shores immediately flank CpG islands and can lie up to 2kb distant to CpG 

islands. In normal tissue, up to 76% of tissue-specific DMRs are at CpG shores. 

Interestingly, in the context of colon cancer, a majority of cancer-associated DMRs are at 

CpG shores rather than promoters, and a significant enrichment is noted for cancer-

associated DMRs at loci that are considered tissue-specific DMRs [300]. Similarly in the 

context of reprogramming, DMRs associated with reprogramming are highly significantly 

enriched at CpG shores, and there is a significant overlap of reprogramming-associated 

hypomethylated DMRs with cancer-associated hypermethylated DMRs. Significantly, 

these overlapping DMRs are highly enriched for bivalent chromatin marks [301]. The 

ability of CpG shore methylation to silence oncogenes has been confirmed in breast cancer. 

In breast cancer cell lines, CAV1 expression is related to differential methylation at CpG 

shores but not its promoter CpG island, which is hypomethylated in all cell lines examined. 

Treatment of breast cancer cell lines with 5-aza-2’-deoxycytidine results in increased 

expression of CAV1, and this is associated with significant reduction in methylation at both 

the 5’ and 3’ CpG shore, but not with altered methylation of its promoter CpG island [302].    
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A further model postulates that CpG island hypermethylation in cancer may be a 

‘passenger event’. It has been demonstrated that many of the genes that undergo 

hypermethylation in cancer are transcriptionally-repressed in the corresponding normal 

tissues. Furthermore, many of the genes methylated in cancer are PRC targets in 

embryonic stem cells, expression of which determines lineage. It has been speculated that 

this might impair differentiation, and maintain cancer cells in ‘stem-like state’. This model 

proposes that promoter hypermethylation is a secondary ‘epigenetic reprogramming event’, 

rather than the primary driver of gene silencing per se [303].       

1.7 The CpG island methylator phenotype (CIMP) 

1.7.1 Introduction 

The most extensively characterised feature of the DNA methylome of colorectal cancer is 

the CpG island methylator phenotype (CIMP). The concept of CIMP was first proposed 18 

years ago [113]. In this original description, DNA methylation was examined at 30 CGIs 

methylated in colorectal cancer (termed MINT1-33) in addition to CDKN2A, THBS1, and 

MLH1 by methylated CpG amplification (MCA) in a panel of 50 primary human colorectal 

carcinomas and 15 adenoma samples.  Significantly, two specific patterns of DNA 

methylation in colorectal tumours were demonstrated, termed type A and type C 

methylation.  Type A loci were frequently methylated in all tumours, but also to a lesser 

extent in normal colonic tissue.  The degree of methylation in normal colonic tissue 

correlated with age and it was proposed that methylation of type A loci was age-specific.  

Seven of the clones examined were methylated only in tumours and not in normal tissue.  

These were termed type C loci (cancer specific).  The authors noted that a whilst all 

tumours examined exhibited high levels of methylation of type A loci, tumours could be 

divided into to subgroups based on the methylation of type C loci:  a subset exhibiting high 

levels of methylation of type C loci (greater than 3, mean 5.1) and a second subset 

exhibiting low levels of type C methylation (mean of 0.3 locus per tumour).  The term 

CIMP (CpG island methylator phenotype) was proposed to describe this subset of tumours 

exhibiting high levels of methylation of type C loci.  Notably, tumours identified as CIMP-

P exhibited high levels of methylation of the tumour suppressor CDKN2A/INK4A, 

suggesting a possible oncogenic function of CIMP, and a significant proportion exhibited 

methylation of MLH1, providing a mechanistic link to explain a previously noted 

relationship between CGI methylation and microsatellite instability in human colorectal 

carcinoma [304].  
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The concept of CIMP was initially not universally accepted, and several authors have 

questioned whether CIMP exists at all.  It was proposed that somatic hypermethylation 

events in colorectal cancer were stochastic and age-dependent [305]. A further study 

examined hypermethylation of the promoter regions of five genes (DAPK, MGMT, MLH1, 

p16INK4A, and p14ARF) in 106 colorectal cancers by methylation-specific PCR.  In this 

study, DNA methylation in colorectal cancers demonstrated continuous decreasing 

distribution rather than the binary CIMP/non-CIMP distribution noted in the original 

description of CIMP [113] leading to the affirmation that CIMP was a “statistical artefact” 

[306].  

Jean-Pierre Issa, whose lab first proposed CIMP, has suggested that much of the 

controversy surrounding CIMP is explicable on the basis of the classification system used 

to define it, and the use of highly sensitive, but non-quantitative assays to assess 

methylation [307]. In particular, the use of MSP based assays has been criticised due to 

their inability to discriminate between very high and very low levels of methylation.  This 

is significant, as low levels of promoter methylation at CIMP loci, including MLH1, 

CDKN2A, and MGMT have been demonstrated to have no effect on protein expression 

[308].  

1.7.2 CIMP classifications in human colorectal adenocarcinoma 

Since the original description of CIMP a considerable focus has been placed on optimising 

the classification systems used to define it.  Samowitz et al. [309] examined CIMP by 

methylation-specific PCR in a cohort of 864 tumours from North American patients, using 

a five marker panel adapted from the “classic panel” consisting of MLH1, MINT1, MINT2, 

MINT31 and CDKN2A. Using this classification system, 29.8% of patients were classified 

as CIMP high. The study confirmed a significant association with BRAFV600E mutation 

(independent of MSI status), proximal tumour location, and increasing age. MSS, CIMP 

high tumours were significantly associated with KRAS mutation, whereas MSI CIMP high 

tumours were significantly associated with wild-type KRAS. A new five marker panel for 

CIMP (CACNA1G, CDKN2A, CRABP1, MLH1 and NEUROG1) was examined by Ogino 

et al. in a panel of 460 colorectal cancers [310]. MGMT was also evaluated in this study in 

light of earlier inclusion in CIMP panels [305,306]. Notably, MGMT was found to have a 

low specificity and sensitivity for CIMP, and was excluded from the final panel by the 

authors. Once again, a clear bimodal distribution of CIMP-P and non-CIMP tumours was 

demonstrated, and a significant association demonstrated between CIMP and BRAFV600E 
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mutation, female sex, MSI and wild-type KRAS. In the same year, a stepwise screen of 195 

CGI methylation markers using the quantitative MethylLight assay in a cohort of 295 

primary human colorectal tumours was published [311].  Unsupervised cluster analysis 

confirmed the bimodal distribution of tumours into CIMP-P and CIMP-N categories as 

previously described [113]. A new five-marker panel, consisting of CACNA1G, IGF2, 

NEUROG1, RUNX3 and SOCS1, was proposed, which exhibited superior positive 

predictive value for CIMP-P than the “classic panel”.  Significantly, both studies 

confirmed the association between CIMP-P and microsatellite instability in addition to 

noting a tight association with BRAFV600E mutant tumours, and an anticorrelation with 

KRAS mutation. 

Whilst a bimodal distinction between CIMP-P and CIMP-N tumours is fundamental to the 

original classification system, subsequent studies have raised the interesting possibility of 

subclasses of CIMP in colorectal cancer. It has been demonstrated that colorectal cancers 

can be subclassified as CIMP-high (≥4/5 methylated promoters), CIMP-low (1-3/5 

methylated promoters) and CIMP-0 (0/5 methylated promoters) [312]. In contrast to 

CIMP-high (CIMP-H) tumours, CIMP-low (CIMP-L) tumours exhibited a strong male 

preponderance and incidence of KRAS mutation. Subsequent studies have supported this 

sub-classification of CIMP using different marker panels [313-316]. Interestingly, CIMP-L 

tumours exhibit hypermethylation of a subset of the genes that are hypermethylated in 

CIMP-H tumours rather than a separate group, implying some commonality in the 

mechanism [313]. The more commonly used CIMP panels are summarised in Table 1-3. 
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Table 1-3 Comparison of commonly employed CIMP panels  

A number of different panels have been proposed to describe CIMP in human colorectal 
carcinoma. Notably the panel employed influences the proportion of tumours defined as CIMP 
positive, and clinicopathological associations. 

Author/Year Assay  Gene panel CIMP 
Definition 

CIMP 
Incidence 

Clinicopathological 
associations 

Toyota et al. 
(1999) [113] 

MCA MINT1, MINT2, 
MINT12, 
MINT17, 
MINT25, 
MINT27, 
MINT31  

≥3/7 58% 
 

p16 methylation 
Proximal location 
MLH1 methylation 
MSI 
Proximal tumour 
location 

Hawkins et al. 
(2002) [317] 

MSP & 
BPCR 

MINT1, MINT2, 
MINT12, 
MINT31, 
CDKN2A 

≥2/5 18.9% Proximal location 
Female sex 
Older age 
WT TP53 
KRAS mutations 
MSI 

Samowitz et al. 
(2005) [309] 

MSP MINT1, MINT2, 
MINT31, 
CDKN2A, MLH1 

≥2/5 29.8% 
 

BRAFV600E mutation 
KRAS mutation 
Older age 
Increased stage 

Ogino et al. 
(2006) [310] 
 

MethyLight CACNA1G, 
CDKN2A, 
CRABP1, 
MLH1, 
NEUROG1 

≥4/5 17% Female sex 
MSI 
BRAF mutation 
WT KRAS 

Ogino et al. 
(2006) [318] 

MethyLight CACNA1G, 
CDKN2A, 
CRABP1, 
MLH1, 
NEUROG1 
 

CIMP-H 
≥4/5 
 
 
CIMP-L 
1-3/5 
 
CIMP-0 
0/5 
 

15.5% 
(CIMP-H) 
 
 
33.2% 
(CIMP-L) 
 
51.3% 
(CIMP-0) 

Female sex 
BRAF mutation 
 
 
Male sex 
KRAS mutation 

Weisenberger 
et al. (2006) 
[311] 
 

MethylLight CACNA1G, 
IGF2, 
NEUROG1, 
RUNX3, SOCS1  

≥3/5 18% Female sex 
Proximal location 
MSI 
BRAF mutation 

Ogino et al. 
(2007) [319] 

MethyLight CACNA1G, 
CDKN2A, 
CRABP1, IGF2, 
MLH1, 
NEUROG1, 
RUNX3, SOCS1 

CIMP-H 
≥6/8  
 
 
 
CIMP-L 
1-5/8 

15% 
(CIMP-H) 
 
 
 
38% 
(CIMP-L) 

Female sex 
MSI-H 
BRAF mutation 
 
 
Male sex 
MSS/MSI-L 
KRAS mutation 
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1.7.3 CIMP and the wider colorectal cancer epigenome 

By definition, CIMP clusters tumours on the basis of promoter methylation.  Whilst 

promoter methylation has historically been the most extensively characterised DNA 

methylation change in cancer, there is emerging evidence that aberrant DNA methylation 

is a feature at other genomic elements, and the extent to which CIMP represents a 

dysregulated DNA methylome is unclear. Genome-wide analysis of DNA methylation 

profiles of normal colon, CIMP and non-CIMP colorectal cancers has revealed that CIMP 

cancers exhibit global hypermethylation when compared to non-CIMP cancers. Whilst this 

hypermethylation is not limited to promoter CGIs, there is enrichment for CpG 

methylation, with 80% of CIMP-specific hypermethylation being at CpG islands. 

Interestingly, a significant proportion of CIMP-specific hypermethylated DMRs flank sites 

that are hypermethylated in all tumours. Furthermore, this spreading of hypermethylation 

associated with CIMP is predominantly unidirectional [320].      

Some studies have characterised the relationship between CIMP status and DNA 

methylation at other genomic features. Hypomethylation of repetitive elements, such as 

LINE-1 is a well-documented feature of colorectal cancer, is associated with poor survival, 

and may contribute to tumourigenesis by the activation of proto-oncogenes [321,322]. 

LINE-1 hypomethylation has been demonstrated to correlate inversely with CIMP status 

by a number of authors, suggesting that genome-wide hypomethylation and promoter 

CIMP are distinct epiphenomena in colorectal cancer [323,324].  

Exome sequencing of 16 colorectal tumours and corresponding normal colonic tissue has 

recently demonstrated that CIMP-H colon cancers frequently possess mutations in 

chromatin regulators. Mutations in 74 chromatin-regulating genes were identified, and 

significant enrichment for these mutations was noted in CIMP-H tumours. Enrichment for 

these mutations in CIMP-H tumours was also demonstrated in the larger TCGA colorectal 

cancer cohort. The most commonly mutated chromatin modifiers in this study were CHD7 

and CHD8. A significant association was noted between CHD7 and CHD8 mutations and 

CIMP-H tumours compared to CIMP-N tumours. CHD7 and CHD8 mutations were also 

significantly associated with MSI. Significantly, genes methylated in CIMP-P colorectal 

cancers were identified as CHD7 targets [325]. Another chromatin regulator, the histone 

deacetylase SIRT1, has also been implicated in CIMP. SIRT1 expression was examined in 

a cohort of 485 colorectal cancers, and a significant association noted with CIMP-H and 
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MSI [326]. Notably, SIRT1 expression did not correlate with global DNA methylation as 

assessed by LINE-1 methylation, suggesting a specificity to CGI methylation. 

1.7.4 The aetiology of CIMP in human colorectal adenocarcinoma 

One of the most interesting, and unresolved questions in the field is the mechanism 

responsible for the induction of CIMP in colorectal carcinoma. A significant number of 

putative associations and mechanisms have been described.  In the original paper 

describing CIMP, the authors speculated on potential drivers of the phenomenon: 

predicting a failure of normal homeostatic protection against de novo methylation either 

due to DNA-methyltransferase mutation or loss of a trans-activating factor [113]. Below, 

the potential drivers of CIMP are discussed. 

1.7.4.1 DNA methyltransferases 

The role of the DNA methyltransferase enzymes as potential modulators of the CIMP 

phenotype has been explored by a number of authors.  The literature is at best conflicted, 

and at times, contradictory. Early functional studies in the in vitro context demonstrated 

that ectopic expression of DNMT1 in primary human fibroblasts induced de novo 

methylation of CpG islands [327]. Subsequently, it was demonstrated that knockdown of 

DNMT1 alone was insufficient to repress promoter hypermethylation of CDKN2A/INK4A 

and TIMP3, and did not lead to re-expression [328]. It was subsequently proposed that 

DNMT1 and DNMT3B cooperate to maintain promoter methylation in cancer cells. It has 

been demonstrated in HCT116 that targeted knockout of DNMT1 or DNMT3B alone is 

insufficient to induce demethylation of the CDKN2A/INK4A promoter. Combined 

knockout of DNMT1 and DNMT3B however was associated with demethylation of the 

CDKN2A/INK4A promoter and expression of the WT allele [329]. This model is 

challenged however by a subsequent in vitro study in which re-expression of p16INK4A was 

demonstrated upon siRNA knockdown of DNMT1. Furthermore, DNMT1 but not 

DNMT3A or DNMT3B knockdown, enhanced the reactivation of tumour-suppressors (e.g. 

p16INK4A) following treatment with 5-aza-2’-deoxycytidine, implying DNMT1 alone is 

required to maintain aberrant CpG island hypermethylation in cancer cells [330].  

The primacy of DNMT1 in establishing aberrant CpG island hypermethylation in cancer 

cells has however further been challenged [331]. In this study DNMT1 RNAi was 

employed in HCT116 cells, demonstrating maintenance of promoter CpG island 

hypermethylation and gene-silencing (e.g. CDKN2A/INK4A) upon knockdown of DNMT1. 
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In an attempt to resolve this contradiction, a further study used a quantitative assay to 

assess de novo methylating activity at the CpG islands of TIMP3, O6-MGMT and MLH1 in 

HCT116, and provided further support for the dominance of DNMT1 in establishing 

aberrant CpG island hypermethylation in cancer cells [332].   

As previously discussed, suppression of DNMT1 has been shown to reduce tumour 

formation in the ApcMin/+ model, though the role of CpG island methylation was not 

formally examined in these studies. In a subsequent study, ApcMin/+;Dnmt1 hypomorphs 

were generated, and once again demonstrated to exhibit a significant reduction in intestinal 

polyp number and size compared to wild-type Dnmt1 controls. Furthermore, this reduction 

was shown to be directly proportional to the level of DNMT1 expression in the different 

Dnmt1 hypomorphs examined. Importantly, in this context, Dnmt1 hypomorphs exhibited 

lower levels of CpG island methylation both in normal intestinal mucosal tissue and polyps 

than wild-type Dnmt1 controls. Once again, this reduction in CpG methylation was shown 

to be directly proportional to the level of DNMT1 expression in the different Dnmt1 

hypomorphs examined, with no detectable CpG methylation > 1 PMR threshold in the 

intestinal mucosa of ApcMin/+;Dnmt1N/R mice [333].  

The role of DNMT3B in establishing CIMP has been explored in vitro. DNMT3B 

expression was examined in a panel of colon cancer cell lines, with no relationship 

demonstrated between DNMT3B overexpression and CIMP status. DNMT3B knockdown 

by RNAi in HCT116, (which expresses high levels of DNMT3B) led to reduced cell 

viability and upregulation of apoptosis markers. The authors examined whether this 

antiproliferative effect of DNMT3B knockdown might be due to altered DNA methylation, 

using Infinium 450K arrays. Overall there was no significant change in global DNA 

methylation in DNMT3B shRNA HCT116 cells compared to controls, and specifically no 

difference was noted in DNA methylation at CIMP loci [334].  

Steine et al. [335] comprehensively addressed the methylation changes induced by 

DNMT3B in the murine intestine. In this study, DNA methylation was examined by RRBS 

in ApcMin/+ mice with tetracycline-inducible DNMT3B overexpression. The authors 

confirmed a distinct subpopulation of promoter regions exhibiting hypermethylation in 

DNMT3B overexpressing tissue, and compared these to aberrant promoter methylation in 

human colon cancer [336]. A highly significant overlap was seen for genes methylated by 

DNMT3B in the mouse and those methylated in human colon cancer (84% of genes 

methylated in human colon cancer were also methylated in DNMT3B overexpressing 
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mice).  Moreover, DNMT3B appeared to be specifically inducing a “cancer-specific” 

methylation pattern, as 92% of genes unmethylated in colon cancer were also 

unmethylated in DNMT3B overexpressing mice.  Whilst CIMP per se was not 

comprehensively assessed in this paper, closer examination of the supplementary data 

reveals a distinct CIMP phenotype in the DNMT3B overexpressing mice: with 

hypermethylation of a number of loci previously proposed as CIMP markers (Cacna1g, 

Cdkn2a, Crabp1, Igf2, Neurog1, Socs1 and Timp3). Notably however, Mlh1 did not exhibit 

hypermethylation in DNMT3B overexpressing mouse colon.  

An early study examined the relationship between DNA methyltransferase enzyme 

expression and CIMP in a small cohort of 25 human colorectal cancers and paired normal 

colonic tissue, demonstrating no correlation between DNMT1, DNMT3A or DNMT3B 

expression and CIMP [337]. Two subsequent studies have however implicated aberrant 

DNMT3B expression and CIMP in primary human colorectal tumour samples. In a further 

study, CIMP was examined by pyrosequencing in a cohort of 765 colorectal carcinomas 

together with DNMT3B immunohistochemistry in the same cohort.  A significant 

association between DNMT3B expression and CIMP was noted, though the relationship 

between DNMT3B and methylation varied markedly from locus to locus [338].  

Subsequently, DNA methylation was examined at five CIMP loci (in addition to SFRP2 

and IGF2) in normal colonic mucosa, pre-neoplastic lesions and established carcinoma and 

correlated with DNMT3B expression assessed by immunohistochemistry.  Sequential 

increases in DNA methylation during neoplastic transformation were associated with 

upregulation of DNMT3B. DNMT3B expression correlated positively with methylation of 

some markers of CIMP (NEUROG1, CACNA1G and CDKN2A) but there was no 

significant correlation between DNMT3B expression and SOCS1, RUNX3 or MLH1 

methylation [339]. DNMT3B overexpression has also been correlated with CIMP in breast 

cancer [340]. 

1.7.4.2 IDH/TET 

Isocitrate dehydrogenase (IDH), a component of the Kreb cycle, catalyses the 

decarboxylation of isocitrate to α-ketoglutarate. IDH1 (R132) mutations have been shown 

to induce CIMP in glioblastoma [341]. Subsequently, IDH mutations have been identified 

in a number of other cancers, including acute myelogenous leukaemia, follicular and 

anaplastic thyroid carcinoma, and certain cartilaginous tumours [342-344]. Cancer-
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associated IDH1 mutations produce a so-called “onco-metabolite”, 2-hydroxyglutarate, 

which impairs the function of TET2 [345,346].  

The IDH-TET-CIMP pathway has been explored as a putative driver of CIMP in colorectal 

cancer. IDH1 mutations have been examined in a cohort of 180 colorectal cancers, 

identifying IDH1 mutations in 1% of tumours. This study did not clarify the histological 

subtype or cytogenetic profile of IDH1-mutant tumours [347]. IDH1 mutations have also 

been demonstrated in a small number of inflammatory bowel disease-associated cancers. 

R132C mutations were identified in IBD-cancers with low-grade tubulo-glandular 

histology. No IDH1 mutations were detected in the sporadic colorectal adenocarcinomas 

examined in this study [348]. IDH1 and IDH2 mutations have also been analysed in a 

cohort of 152 colorectal cancers with deficient mismatch repair [349]. As noted previously, 

sporadic dMMR colorectal cancers exhibited a close association with CIMP. No mutations 

in IDH1 or IDH2 were noted in this cohort of tumours. IDH mutations have been also been 

examined in 224 human colorectal cancers in the publically available Cancer Genome 

Atlas data. It was noted that these were uncommon: IDH1 mutations were found in 0.5% 

of cases, and IDH2 mutations in 1% of cases [350]. 

Whilst little evidence has been found for IDH mutations in colorectal cancer, epigenetic 

dysregulation of TET1 has been associated with CIMP. The expression of the TETs has 

been examined in human colon cancer cell lines, primary human tumour samples and in 

the publically-available Cancer Genome Atlas data, and correlated with CIMP status [350]. 

In colon cancer cell lines, TET1 expression was inversely related to CIMP status, and re-

expression was noted upon treatment with decitabine, suggesting promoter CpG 

methylation as a possible mechanism of TET1 silencing in colon cancer. Furthermore, 

TET1 expression was significantly lower in CIMP-P tumours compared to CIMP-N 

cancers, though in corresponding normal tissues, there was no difference in TET1 

expression between CIMP-P and CIMP-N cases. There was a significant association 

between BRAFV600E mutation and TET1 methylation in CIMP-P tumours. TET1 

methylation was also demonstrated in preneoplastic lesions, implying it may be an early 

event in colorectal tumourigenesis. Consistent with this observation, a number of other 

studies have reported altered expression of TETs in colorectal cancer. Downregulation of 

TET1, TET2 and TET3 in primary human colorectal cancer samples relative to normal 

colonic tissue has been demonstrated, though in this particular study, no formal analysis 

was made of a relationship with CIMP status [351]. Low levels of 5hmC and TET1 

expression in colorectal cancers compared to normal colonic tissue have also been reported 
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[352]. In this latter study, ectopic expression of TET1 inhibited colorectal cancer cell 

proliferation in vitro and in cell-line derived xenografts. TET1 reactivation was associated 

with promoter demethylation and re-expression of Wnt pathway inhibitors, including 

DKK3 and DKK4. In this study, no formal assessment of CIMP status was made, though 

the generalizability to CIMP is questionable: nuclear β-catenin (a surrogate for Wnt 

pathway activation) has previously been shown to be inversely correlated with CIMP-H in 

colorectal cancer, though CIMP-L cancers exhibited similar levels of nuclear β-catenin to 

CIMP-N cancers [324,353].  

Interestingly, it has recently been demonstrated that promoters marked by 5-

hydroxymethylcytosine in normal colon are inherently resistant to DNA methylation in 

tumours, and that global 5-hydroxymethylcytosine levels are reduced in colorectal tumours 

compared to normal colonic tissue. In the same study however, no difference in TET 

expression was noted between tumour and normal tissue, implying that aberrant levels of 

5hmC in colorectal cancers is not a result of TET silencing [354]. 

1.7.4.3 BRAF 

A consistently robust association with BRAFV600E mutation and CIMP has been noted 

[113,311,355-357]. Certain CIMP markers (MLH1-5’ region, MLH1-3’ region, p16INK4A, 

MINT1, MINT2, MINT31) have also been reported to be methylated more frequently in 

BRAFV600E-mutant tumours compared to other tumour subtypes [358]. A strong association 

between BRAF mutation and CIMP has also been reported in sessile serrated adenomas 

[37]. Increasing methylation of CIMP markers has also been demonstrated during the 

progression of the BRAFV600E-driven serrated adenoma pathway [359]. Whilst BRAF 

mutation is an early event in this pathway, CIMP develops more gradually with disease 

progression. In a more recent study in which the CIMP status of 106 BRAF-mutant 

precancerous colorectal lesions from 94 patients was examined, only 53.8% of lesions 

were CIMP positive [360]. One interpretation of these studies is that CIMP is selected for 

in parallel with, rather than arising directly as a result of, BRAFV600E mutation.  

Conflicting evidence has however been published on the ability of BRAFV600E to induce 

CIMP. Promoter methylation of MLH1 has been demonstrated in NCM460 transformed 

with activated BRAFV600E [361]. In a subsequent study however, stable expression of 

BRAFV600E in the CIMP-N colon cancer cell line, COLO 320DM, was found to be 

insufficient to induce a CIMP phenotype [362]. In vivo evidence for BRAFV600E mutation as 
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a direct driver of a CIMP-like phenotype was recently provided in a novel murine model of 

BrafV600E-mutant colon cancer, in which transgenic expression of mutant BRAFV600E in the 

murine intestine was demonstrated to result in tumour formation. Tumour development 

was associated with repression of p16INK4A by promoter hypermethylation which was 

associated with upregulation of DNMT3B at the mRNA and protein level [47]. 

BRAFV600E mutation has been demonstrated to cause widespread changes in the DNA 

methylation profile of melanoma cells. RNA interference (shRNA) was used to stably 

knockdown BRAFV600E in melanoma cells, and combined with MCA/CpG array to assay 

the effects on DNA methylation. Widespread changes in DNA methylation were 

demonstrated upon BRAFV600E knockdown, including both hyper- and hypomethylation 

events. Significantly, BRAFV600E knockdown caused a significant reduction in the 

expression of both DNMT1 and EZH2 [363]. Whilst this study did not assess CIMP per se, 

it adds weight to the evidence for the BRAFV600E oncogene as a mechanistic driver of 

altered DNA methylation in a cancer context.   

A recently-described model has proposed a mechanism by which BRAFV600E directly 

induces CIMP [364]. The authors performed an RNAi screen in the BRAFV600E-mutant 

colon cancer cell line RKO to identify mediators of MLH1 transcriptional silencing, 

identifying the transcriptional co-repressor MAFG, which was subsequently demonstrated 

by ChIP, to bind to the MLH1 promoter. MAFG was demonstrated to co-localise at the 

MLH1 promoter with DNMT3B, BACH1 and CHD8, and furthermore, targeted 

knockdown of MAFG decreased binding of these cofactors at the MLH1 promoter. Stable 

expression of BRAFV600E in primary foreskin fibroblasts increased MAFG protein 

expression, but did not alter MAFG mRNA levels. Significantly, MAFG was demonstrated 

to be a phosphorylation target of ERK1, and targeted disruption of BRAF/MEK/ERK 

signalling led to loss of binding of MAFG, BACH1, CHD8 and DNMT3B to the MLH1 

promoter. The authors have subsequently demonstrated the generalizability of this 

mechanism to other solid tumours [365]. The model proposed by which BRAFV600E might 

directly induce CIMP is summarised below. (Figure 1-4) 
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Figure 1-4 Proposed model by which BRAFV600E induces CIMP in colorectal cancer  

MAFG is a phosphorylation target of ERK1. Stable expression of BRAFV600E in primary foreskin 
fibroblasts results in ERK-induced MAFG phosphorylation, with a resultant increase in MAFG 
protein expression. Phosphorylated MAFG forms a complex with DNMT3B, BACH1 and CHD8, 
and co-localises at the MLH1 promoter, resulting in gene silencing.  Modified from Fang et al. [364]. 
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1.7.4.4 KRAS 

Mutant KRAS has been demonstrated to induce a methylator phenotype in vitro [366]. 

Initial reports on the association between KRAS mutation and CIMP in colorectal cancer 

were however conflicting. Shortly after the original description of CIMP was published, 

the same group reported frequent KRAS mutations in CIMP-P cancers [367]. A number of 

subsequent studies confirmed this association [317,368]. Some studies however have 

suggested the converse: proposing a correlation between wild-type KRAS and CIMP-P 

[310,311]. The principle reason for this apparent dichotomy is in the method used to 

classify CIMP. In studies in which CIMP tumours are sub-classified into CIMP-H and 

CIMP-L, an association has been noted between KRAS mutation and CIMP-L tumours 

[312,315,316,358]. Interestingly, in a murine model of Kras-driven serrated colon 

tumourigenesis, tumours were found to be CIMP negative [66].  

A mechanism by which mutant KRAS can induce a CIMP phenotype has recently been 

proposed [369]. The authors performed an RNAi screen in the KRASG13D-mutant DLD-1 

colon cancer cell line to identify mediators of INK4-ARF silencing, identifying the zinc 

finger DNA-binding protein ZNF304.  Knockdown of ZNF304 was noted to reverse 

transcriptional silencing of p14ARF, p15INK4B and p16INK4A. Binding of ZNF304 to the 

promoters of p14ARF, p15INK4B and p16INK4A was confirmed by ChIP, together with the co-

repressors KAP1, SETDB1 and DNMT1. Furthermore, shRNA-mediated knockdown of 

KRAS in DLD-1 cells was associated with reactivation of p14ARF, p15INK4B and p16INK4A, 

and reduced binding of ZNF304 complex at all three promoter sites. Mutant KRAS was 

demonstrated to upregulate ZNF304 through PRKD1 and USP28, with the former 

responsible for phosphorylation of USP28, which protects ZNF304 from proteolytic 

degradation. The model proposed is summarised below. (Figure 1-5) 
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Figure 1-5 Proposed model by which KRASG13D induces CIMP in colorectal cancer  

Mutant KRASG13D upregulates ZNF304 expression, through PRKD1 and USP28, with the former 
responsible for phosphorylation of USP28, which protects ZNF304 from proteolytic degradation. 
ZNF304 forms a complex with KAP1, SETDB1 and DNMT1, which localises to the p16INK4A 

promoter, and prevents expression. Modified from Serra et al. [369]. 
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1.7.4.5 “Hypermutator Phenotype” 

A subset of colorectal cancers exhibit a “hypermutator phenotype”. The Cancer Genome 

Atlas analysis has recently demonstrated a strong correlation between a “hypermutator 

phenotype”, CIMP-H and BRAFV600E mutation [314]. A subsequent analysis of a much 

larger cohort of colorectal cancers (n=4151 patients) has led to the classification of 

colorectal cancers into four consensus molecular subtypes (CMS1-4). Notably this 

classification system has confirmed an association between CIMP-H and a “hypermutator 

phenotype”. CMS1 (“MSI immune”) tumours exhibit MSI, BRAF mutations, a 

“hypermutator phenotype” and are CIMP-H [27]. It is not however clear whether or not 

hypermutation is a driver of, or consequent upon CIMP.  

1.7.4.6 CIMP: a marker of cell lineage? 

Much of the interest in CIMP relates to the dogma that hypermethylation of promoter CGIs 

has an oncogenic function through the silencing of tumour suppressors.  Whilst an 

attractive model, the significance of hypermethylation of CGIs in cancer is debated, and it 

remains unclear whether DNA methylation facilitates or reinforces stable transcription 

repression rather than directly causing it [370,371]. It has previously been suggested that 

cancer-associated methylation is a marker of cell lineage, rather than a driver of tumour 

progression, and arises in an “instructive manner” [372,373]. This has significant 

implications for the concept of CIMP, which has traditionally been associated with, and 

interpreted in, the context of an oncogenic phenomenon. In breast cancer, tumour 

methylation patterns reflect cell lineage [372]. The same group subsequently examined the 

generalizability of this model in a larger cohort of cancers from seven different tissue 

types. The authors demonstrated that genes that are hypermethylated in cancer are depleted 

of repetitive elements at their promoters and are repressed in the corresponding normal 

tissues [374]. This leads to the question of whether CIMP may in fact simply reflect the 

developmental origin of a particular subset of colon cancers, and might explain the 

tendency for CIMP-H and CIMP-L tumours to cluster with particular consensus-molecular 

subtypes of colon cancer [27].  

1.7.4.7 Chronic inflammation 

Chronic inflammatory stress is increasingly recognised as a driver of neoplasia [375]. 

Chronic inflammatory stress increases cellular reactive oxygen species (ROS), which both 

directly affect cellular processes, and promote inflammatory cell recruitment [376]. In 
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vitro, oxidative stress has been demonstrated to result in the recruitment of a complex 

including DNMT1, DNMT3B and PRC4 to damaged chromatin, with redeployment from 

GC-poor regions to GC-rich regions, including promoter CpG islands. In the same study, 

in a murine colitis model, recruitment of DNMT1 to chromatin was not demonstrated. 

Consistent with the in vitro data however, increased binding of PRC components (SIRT1 

and EZH2) to chromatin was demonstrated. Moreover, enrichment of EZH2 and DNMT1 

at the promoter CpG islands of a number of loci methylated in human cancer was 

demonstrated. Notably, this model provides one possible explanation for the apparently 

paradoxical findings of genome wide hypomethylation and promoter CGI 

hypermethylation in cancer [377].    

Ulcerative colitis is a chronic inflammatory condition of the colonic mucosa, which 

significantly increases the life-time risk of colorectal cancer. Upregulation of DNMT1 has 

been demonstrated in inflammatory-bowel disease associated cancers relative to sporadic 

colorectal cancers. Furthermore, in vitro treatment of colorectal cancer cell lines with 

interleukin-6 increases expression of both DNMT1 and DNMT3B, which is associated 

with gains of methylation at promoter CpG islands [378]. Similarly, in human intestinal 

epithelial cells cultured in vitro, IFN-γ has been demonstrated to increase levels of 5’-

methylcytodine, which was associated with upregulation of DNMT3B mRNA. Increased 

expression of both S-adenosylmethionine-synthetase and S-adenosylmethionine-hydrolase 

was also demonstrated in this cell culture model.  This latter finding was confirmed in vivo 

in DSS-induced colitis in mice, in which DSS treatment increases expression of both S-

adenosylmethionine-synthetase and S-adenosylmethionine-hydrolase [379].  

Genome-wide analysis of DNA methylation changes in aged, inflamed and tumour tissue 

from GPX1/2-KO mice (a murine model of inflammatory bowel disease driven 

carcinogenesis) has demonstrated inflammation-driven gains of methylation with 

enrichment for polycomb targets associated with frequent loss of H3K27me3 at these loci. 

Only very limited overlap was demonstrated between the gains of methylation seen in 

inflamed compared to aged intestinal tissues, suggesting that inflammation-induced 

methylation changes do not simply represent an accelerated ageing phenotype. By contrast, 

significant overlap was seen between the gains in methylation in tumours and inflamed 

tissue: with approximately 60% of tumour-specific DNA methylation changes being 

present in inflamed tissues, compared to 2% of aged tissues [380]. 
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An early study demonstrated hypermethylation of the CDKN2A/INK4A promoter in 

association with the development of dysplasia in ulcerative colitis [381]. A subsequent 

study reported higher levels of promoter CpG island hypermethylation in the dysplastic 

epithelium of ulcerative colitis (UC) patients compared to non-dysplastic epithelium in 

patients with ulcerative colitis, and “normal colon”. Furthermore, there is evidence for a 

“field effect”, with the “normal” colon from UC patients with high-grade dysplasia and 

cancer, exhibiting high levels of promoter CpG island hypermethylation. Intriguingly and 

in contrast to the murine data reviewed above, this apparent accelerated promoter CGI 

hypermethylation was shown to affect the so-called “type A” (age-associated) loci rather 

than “type C” (CIMP loci) [382]. Consistent with this, two studies have reported a 

significantly lower incidence of CIMP in colitis-associated cancer than sporadic tumours. 

Global DNA methylation however (estimated by assay of LINE-1 methylation) is 

significantly higher in colitis-associated cancer than sporadic colorectal cancer [383,384]. 

There is therefore somewhat of a discord between the mechanistic research linking chronic 

inflammation to promoter CpG island hypermethylation, and the reported DNA methylome 

of inflammation-associated human colorectal cancer, though it is feasible that other 

inflammation-independent factors involved in colitis-associated cancer may select against 

a CIMP phenotype.  

1.7.4.8 The microbiome   

John Cunningham virus (JCV) is a 5.22kb dsDNA polyomavirus which is related to 

SV40T and in common with the former, encodes T antigen (T-Ag), which is 

transformative in mammalian cells [385]. JCV DNA is detectable in the colonic mucosa of 

81.2% of normal individuals and JCV T-Ag sequences have been demonstrated in human 

colorectal carcinomas [385,386]. A number of studies have explored correlation between 

JCV and CIMP positivity in colorectal cancer. Analysis of JCV T-Ag expression by both 

IHC and PCR in a cohort of 100 sporadic colorectal carcinomas demonstrated a significant 

association between JCV T-Ag expression and promoter CpG methylation at genes now 

accepted as CIMP markers (p16INK4A, MLH1, RUNX3). Furthermore, the relationship 

between JCV and CIMP was stronger in those samples positive for JCV both by T-Ag IHC 

and detection of JCV DNA by PCR compared to those expressing JCV DNA alone [387]. 

An association between JCV T-Ag expression and CIMP positivity has also been reported 

in colorectal adenomas [388]. In a more recent study in a much larger cohort of colorectal 

cancer patients (n=766) JCV T-Ag expression was significantly associated on univariate 

analysis with TP53 mutation, CIN and LINE-1 hypomethylation, but inversely related to 
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CIMP positivity. On multivariate analysis however, there was no significant relationship 

between CIMP status and JCV T-Ag expression [389]. A lack of significant association 

between CIMP status and JCV T-Ag expression has also been reported in a further 

subsequent study [390].   

An association between CIMP and Fusobacterium species has also been described. 

Fusobacterium species are Gram-negative anaerobic commensals in the human oral cavity 

and gastrointestinal tract, which have recently been linked to colorectal carcinogenesis. 

Fusobacterium spp. DNA has been found to be enriched in primary human colorectal 

tumours, and in colorectal cancer metastases [391,392]. Fusobacterium spp. have 

previously been associated with a number of pathologies of the gastrointestinal tract, 

including inflammatory bowel disease (a well-established risk factor for colorectal cancer) 

and acute appendicitis, and is recognised to be a pro-inflammatory organism [393,394]. A 

number of studies have examined the relationship of Fusobacterium and CIMP in human 

colorectal cancer. A significant relationship between Fusobacterium spp. and CIMP 

positivity has been noted in a cohort of 149 colorectal cancers [395]. The relationship 

between CIMP status and Fusobacterium nucleatum has also been examined in pre-

neoplastic lesions, where a significant association was noted with CIMP-H [396]. A larger 

subsequent study examined the relationship between Fusobacterium nucleatum (as 

opposed to Pan-Fusobacterium) and a number of molecular features (including BRAF 

mutation, CIMP status and MSI status) in a large cohort of colorectal cancers. Whilst a 

significant relationship was noted between Fusobacterium nucleatum, CIMP-H and BRAF 

mutation on univariate analysis, on multivariate analysis, the relationship was not 

significant [397]. A number of subtle differences between the study designs may explain 

these apparently confliciting results.  Tahara et al.[395] examined pan-Fusobacterium 

whereas Mima et al. [397] examined specifically Fusobacterium nucleatum. Furthermore, 

Tahara et al. [395] compared CIMP-P (including CIMP-H and CIMP-L) to CIMP-N, 

whereas Mima et al. [397] grouped tumours into two cohorts: CIMP-H and CIMP-

L/CIMP-N.  
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1.7.4.9 CIMP in the wider cancer context 

Whilst originally described in colorectal cancer, CIMP has now been reported in a number 

of other tumour types [341,398-405]. A common feature of several of these studies is a 

significant degree of variation in the thresholds used to define CIMP positivity and a 

reliance on CIMP panels described in the colorectal cancer literature. The advent of large 

cohort studies such as the Cancer Genome Atlas project, which have generated large 

quantities of methylation data across a number of different cancer types, have realised the 

possibility of examining CIMP as a universal feature of human cancer.  

A recent integrative analysis of TCGA data on SCNAs, somatic mutations and DNA 

methylation data from twelve cancer subtypes has revealed some commonalities in tumour 

hypermethylation patterns. A candidate gene analysis of a panel of genes commonly 

hypermethylated in cancer was performed in this cohort. The most frequently 

hypermethylated genes were MGMT, GSTP1, MLH1 and CDKN2A [406]. A separate 

analysis of DNA methylomes from ten tumour types has revealed commonalities in 

hypermethylation events across tumour types. Across tumour types, hypermethylation 

events were noted to be enriched in developmental and morphogenesis pathways, and 

PRC2 target genes. Whilst overall, hypermethylation events were relatively depleted in cell 

cycle and DNA repair pathways, certain cell cycle genes including APC, CDKN2A and 

CDKN2B exhibited frequent hypermethylation across tumour types [407]. 

The existence of similarities in hypermethylation events across cancer types and the 

identification of CIMP-phenotypes in extra-colonic tumours have prompted analysis of 

CIMP as a “pan-cancer phenomenon”. Sánchez-Vega et al. [408] examined methylation 

data from 5,253 tumours across 15 cancer types from the cancer genome atlas and 

identified a panel of 89 DMR probes that reliably differentiate CIMP-positive from CIMP-

negative tumours across 12 of the 15 tumour types examined. A similar analysis of 

methylation data from The Cancer Genome Atlas data for five solid organ tumours 

(bladder, breast, colon, lung and stomach) has identified a different “cross-cancer CIMP 

signature” of 89 CGIs within 51 genes that identifies CIMP positive tumours irrespective 

of the tissue of origin (Table 1-4). 

Despite the apparent commonalities in methylation signatures, there were no somatic 

mutations that correlated with CIMP across all cancer types, though a previously described 

relationship between BRAF mutation and CIMP in colon cancer was confirmed [409].  
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Table 1-4 The “cross cancer CIMP signature” 

89 CGIs within this panel of 51 genes define a “cross-cancer CIMP signature”. Adapted from Moarri 
et al. [409] 

“Cross-cancer CIMP signature”  
 

LOC339524, GSTM1, CD1D, LMX1A, 
CACNA1E, NR5A2, WNT3A, GNG4, EMX1, 
CTNNA2, LRRTM1, DLX1, EVX2, HOXD13, 
GBX2, SYN2, HAND2, NBLA00301, EBF1, 
HIST1H2BB, HIST1H3C, HLA-DRB1, C6orf186, 
IKZF1, CDKN2A, HMX3, KNDC1, KLHL35, 
HOTAIR, SLC6A15, ALX1, RFX4, CLDN10, 
ADCY4, RIPK3, NID2, OTX2, OTX20S1, GSC, 
KIF26A, GREM1, SEC14L5, HS3ST3B1, 
IGF2BP1, HOOK2, NFIX, ZNF577, ZNF649, 
CPXM1, CDH22, CHRNA4 
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1.8 Summary, hypothesis and thesis aims 

Approximately 10-20% of human colorectal cancers are associated with activated 

BRAFV600E mutation, typically in absence of APC mutation and often associated with a 

CpG island methylator phenotype. To protect from cancer, normal intestinal epithelial cells 

are thought to respond to oncogenic BRAFV600E by activation of intrinsic p53- and p16-

dependent tumour-suppressor mechanisms, such as cellular senescence. Conversely, CIMP 

is thought to contribute to bypass of these tumour-suppressor mechanisms, e.g. via 

epigenetic silencing of tumour-suppressor genes, such as CDKN2A/INK4A. An emerging 

body of evidence proposes that DNMT3B is responsible for BRAFV600E-induced CIMP in 

human colorectal carcinoma, though the literature is conflicted and at times contradictory. 

In this thesis, the putative BRAFV600E-DNMT3B-CIMP pathway will be examined by 

multiple approaches. 

1.8.1 Hypothesis 

Activated oncogenic BRAFV600E induces the CpG island methylator phenotype in human 

colorectal adenocarcinoma through the de novo methyltransferase DNMT3B. 

1.8.2 Specific Aims 

The specific aims of this thesis are: 

• To characterise the DNA methylation changes induced by activated oncogenic 

BRAFV600E 

• To examine oncogenic cooperation between BRAFV600E and DNMT3B in both in vitro 

and in vivo model systems of BRAFV600E-mediated neoplasia 

• To analyse relationships between BRAFV600E, DNMT3B and CIMP in human 

colorectal adenocarcinoma. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Reagents  

Reagents used in this thesis are summarised in Table 2-1. 

Table 2-1 Summary of reagents 

Reagent Details Manufacturer Catalogue 
Number 

Agarose Molecular biology grade Sigma Aldrich A9539 
 

Ampicillin Plasmid selection antibiotic Sigma Aldrich 10835242001 
Blasticidin Nucleoside antibiotic Thermo Fisher A1113903 
BrdU 5-Bromo-2’-deoxyuridine Sigma Aldrich B5002 
β-napthoflavone Murine transgene induction 

agent 
Sigma Aldrich N3633 

Doxycyline hyclate 
 

>98% (HPLC) Sigma Aldrich D9891 

DNA ladder O’Gene RulerTM  DNA ladder 
mix 100-10,000 bp; 0.1µg/mL in 
10mM Tris-HCl (pH 7.6) 0.15% 
orange G, 0.03% xylene cyanol 
FF, 60% glycerol, 60mM 
EDTA10mM  
 

Fermentas SM1173 

DNA loading dye 6 x orange loading dye 
10mM Tris-HCl (pH 7.6) 0.15% 
orange G, 0.03% xylene cyanol 
FF, 60% glycerol, 60mM EDTA 
 

Fermentas RO631 

DMEM Dubelco’s Modified Eagle 
Medium 

Life Technologies 21969-035 

ECL Western Blotting 
Substrate 

ECL-horseradish peroxidase  Thermo Fisher 32106 

Ethanol  VWR Chemicals 20821.365 
Ethidium bromide 10mg/mL in H2O Sigma Aldrich E1510 
Fetal bovine serum Cell culture medium Life Technologies 10270 
Formalin 10% neutral buffered formalin Sigma Aldrich HT501128 
L-Glutamine L-Glutamine 200mM Life Technologies  
Lipofectamine 2000 Transfection reagent Life Technologies 11668-027 
Methanol  VWR Chemicals 20846.326 
Penicillin-Streptomycin 10,000 units/mL penicillin 

10,000 µg/mL streptomycin 
Thermo Fisher 15140-122 

Phosphate buffered 
saline (PBS) 

170mM NaCl 
3.3mM KCl 
1.8mM Na2HPO4 
10.6mM H2PO4 
 

BICR Central 
Services 

N/A 

Phosphate buffered 
saline with Tween 
(PBST) 
 

1 x PBS + 0.5% v/v Tween20 BICR Central 
Services 

N/A 

Polybrene 10mg/mL sterile Ultra Pure 
water 
 

Millipore TR-1003-g 

Puromycin Aminonucleoside antibiotic Thermo Fisher A1113803 
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Reagent Details Manufacturer Catalogue 

Number 
RPMI RPMI Medium 1640 Life Technologies 31870-025 
Sample buffer + 
dithiothreitol (DTT) 

62.5mM Tris HCl pH 6.8 
2% w/v SDS 
10% v/v glycerol 
0.1M DTT 
0.01% w/v bromophenol blue 
 

Prepared in 
house 

N/A 

Sucrose Murine placebo induction agent Sigma S7903 
SDS 10% sodium dodecyl sulphate BICR Central 

Services 
N/A 

Tamoxifen Murine transgene induction 
agent 

Sigma T5648 

Transfer buffer 50mM Tris, 40mM glycine, 
0.04% SDS, 20% methanol 

BICR Central 
Services 

N/A 

Tris-acetate-EDTA 
(TAE buffer) 

40mM Tris, 0.1% glacial acetic 
acid, 1mM EDTA 

BICR Central 
Services 

N/A 

Tris-buffered saline 10mM Tris-HCl, pH 7.4 
150mM NaCl 

BICR Central 
Services 

N/A 

Tris-EDTA 
(TE buffer) 

10mM Tris-HCl, pH 8.0  
1mM EDTA 

BICR Central 
Services 

N/A 

Trypsin 2.5% phenol red free Gibco 
 

15090-046 

Xylene C8H10 Thermo Fisher X5-1 
2-β-mercaptoethanol 99% molecular biology grade Sigma Aldrich M752 
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2.1.2 Antibodies  

Antibodies used in this thesis are summarised in Table 2-2. 

Table 2-2 Summary of antibodies 

Antigen Species Manufacturer Catalogue Assay Dilution  

Alexa-fluor488 goat Mouse  Life Technologies C10425 FACS 1:40 
α-goat-HRP Donkey Santa Cruz SC2020 WB  1:5000 
α-mouse-HRP Horse Cell Signalling 7076 WB  1:5000 
α-rabbit-HRP Goat Cell Signalling 7074 WB  1:5000 
β-actin Mouse  Sigma A1978 WB  1:200,000 
β-catenin Mouse BD Biosciences 610154 IHC 1:1200 
BRAF Mouse  Santa Cruz SC5284 WB  1:200 
BrdU Mouse BD Biosciences M0744 FACS  1:40 
Cyclin A Rabbit Santa Cruz SC751 WB 1:500 
Cyclin D1 Rabbit Dako M3642 IHC 1:50 
DNMT3B Rabbit Abcam AB79822 WB 1:1000 
DNMT3B Mouse Imgenex IMG184A WB (murine) 

IHC (murine) 
1:1000 
1:300 

DNMT3B Rabbit NEB M0232 WB 1:1000 
DNMT3B Rabbit Novus Biologicals 100-266 WB 1:1000 
DNMT3B Goat Santa Cruz SC10236 WB 1:500 
EZH2 Rabbit Cell Signalling 5246 WB 1:1000 
GAPDH Rabbit Cell Signalling 14C10 WB 1:2000 
Ki67 Rabbit Thermo Fisher RM9106 IHC 1:200 
MLH-1 Mouse Cell Signalling 3515 WB 1:1000 
γH2AX Rabbit Cell Signalling 9718 IHC 1:50 
IL1α Goat R&D Systems AF400 IHC 1:100 
p16INK4A Rabbit BD Biosciences BD51-

1352GR 
WB 1:1000 

p21WAF Rat CNiO Institute T3413 IHC 1:4 
p27KIP Rabbit Cell Signalling 2552s WB 1:1000 
ppRb (Ser807/811) Rabbit Cell Signalling 9308s WB 1:1000 
Sox9 Rabbit Millipore AB5535 IHC 1:700 
Total Rb Mouse Cell Signalling 9309s WB 1:1000 
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2.1.3 Enzymes and kits 

Enzymes and kits used in this thesis are summarised in Table 2-3. 

Table 2-3 Enzymes and kits 

Kit Purpose Manufacturer Catalogue 

DNA blood mini kit DNA extraction from adherent 
cells 

Qiagen 51104 

GoTaq® Flexi DNA 
polymerase 

PCR Promega M8305 

QIAquick gel extraction kit Gel extraction of plasmid DNA Qiagen 28704 
Qiashredder Columns RNA extraction Qiagen 79654 
Qubit RNA HS assay kit RNA quantification Thermo Fisher 

Scientific 
Q32852 

Qubit DNA HS assay kit DNA quantification Thermo Fisher 
Scientific 

Q32851 

Qubit protein assay kit Protein quantification Thermo Fisher 
Scientific 

Q33211 

Rapid DNA ligation kit DNA ligation for molecular 
cloning 

Sigma Aldrich 11635379001 

RNeasy Mini Kit RNA extraction Qiagen 74104 
 

2.1.4 Plasmids 

Plasmids used in this thesis are summarised in Table 2-4. Specific details related to 

plasmid utilisation are detailed in the text of the relevant chapters. 

Table 2-4 Summary of plasmids 

Plasmid Source 
HIV-CS-CG-puromycin Gift of Peeper Laboratory 
HIV-CS-CG-BRAFV600E-puromycin Gift of Peeper Laboratory 
HIV-CS-CG-blasticidin Gift of Peeper Laboratory 
HIV-CS-CG-BRAFV600E-blasticidin Gift of Peeper Laboratory 
lentiCRISPRv2-puromycin Addgene 
pLKO.1-puromycin GE LifeSciences/Dharmacon 
plKO.1-shDNMT3B685-puromycin GE LifeSciences/Dharmacon 
plKO.1-shDNMT3B686-puromycin GE LifeSciences/Dharmacon 
plKO.1-shDNMT3B687-puromycin GE LifeSciences/Dharmacon 
plKO.1-shDNMT3B688-puromycin GE LifeSciences/Dharmacon 
psPAX2 Addgene 
plpVSVG Invitrogen 
pcDNA3/Myc-DNMT3B1 Addgene 
pcDNA3/Myc-DNMT3B3 Addgene 
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2.1.5 Cell lines 

The cell lines used in this study together with their respective growth media requirements 

are summarised in Table 2-5. Cell line verification was performed by Mr William Clark in 

the sequencing facility at the Beatson Institute for Cancer Research, Glasgow. 

Table 2-5 Summary of cell lines 

Cell Line Description Base Culture Media Source 
3BKO HCT116-derived DNMT3B 

knockout line 
McCoy’s 5A medium 10% FBS 
 

Gift of Meehan 
Laboratory 

DLD1 Human colorectal 
adenocarcinoma 

DMEM 10% FBS 
 

ATCC 
CCL-221 

HEK293T/17 Highly-transfectable human 
kidney cells 

DMEM 10% FBS 
 

ATCC  
CRL-11268 

HCT116 Human colorectal 
adenocarcinoma 

DMEM 10% FBS 
 

ATCC 
CCL-247 

HT29 Human colorectal 
adenocarcinoma 

DMEM 10% FBS 
 

ATCC 
HTB-38 

IMR90 Human fetal lung fibroblasts DMEM 10% FBS 
 

ATCC 
CCL-186 

LS411N Human colorectal 
adenocarcinoma 

RPMI 1640 10% FBS 
 

ATCC  
CRL-2159 

RKO Human colorectal 
adenocarcinoma 

DMEM 10% FBS 
 

ATCC 
CRL-2577 

SW1417 Human colorectal 
adenocarcinoma 

Leibovitz L15 10% FBS 
 

ATCC 
CCL-238 

SW480 Human colorectal 
adenocarcinoma 

Leibovitz L15 10% FBS 
 

ATCC 
CCL-228 

 
2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Maintenance of cell lines 

Human colorectal cancer cell lines (3BKO, DLD1, HCT116, HT29, LS411N, RKO, 

SW1417 and SW480) were grown in their respective base culture media (as detailed 

above) supplemented with 2mM L-glutamine, 10 units/mL Penicillin G and 10µg/ml 

streptomycin. Cells were cultured in 10cm plates in a humidified atmosphere with 5% CO2 

at 37°C. Human fetal lung fibroblasts (IMR-90) were grown in DMEM supplemented with 

10% FBS, 2mM L-glutamine, 10 units/mL Penicillin G and 10µg/ml streptomycin. Cells 

were cultured in 10cm plates in a humidified atmosphere with 3% O2 and 5% CO2.  

Passaging of cells was performed at 70-80% confluency. Culture media were aspirated, 

and the cells lavaged twice with sterile phosphate-buffered saline to remove remaining 

traces of culture media. Trypsinisation was then performed with 1mL of 1% trypsin in 

phosphate-buffered EDTA solution for 3 minutes at 37°C. With cell detachment confirmed 
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by visual inspection with a microscope, the trypsin solution was neutralised by the addition 

of fresh culture media (supplemented with FBS) to the plate. Cells were then resuspended 

in culture media, passaged to fresh plates, and returned to the incubator.      

2.2.2 Lentivirus 

2.2.2.1 Transfection of HEK-293T lentiviral packaging cells 

12x106 HEK-293T cells were seeded in 25mL of culture medium to TC175 flasks 20 hours 

prior to transfection. Cells were approximately 70% confluent for transfection. 

Immediately prior to transfection, 13mL of culture medium was aspirated from flasks, and 

the cells returned to the incubator. Lipofectamine 2000 was selected as a transfection agent 

for all lentivirus production. 120µL of transfection agent were added dropwise to 1.5mL of 

sterile DMEM in a 15mL centrifuge tube, gently agitated and incubated for five minutes at 

room temperature. Concurrently, packaging plasmids (5µg plpVSVG and 8µg psPAX2) 

were combined with 20µg of vector genome in 1.5mL of sterile DMEM in a separate 

15mL centrifuge tube. Thereafter the DNA and transfection reagent solutions were 

combined, gently agitated and incubated for 20 minutes at room temperature. The 

transfection solution was then added to the prepared HEK-293T flasks to yield a total final 

transfection volume of 15mL. Following transfection, HEK-293T cells were returned to 

the incubator for six hours, following which the transfection solution was aspirated, and a 

fresh 15mL of culture medium added to the flask. For all transfections, a separate lentiviral 

green fluorescent protein (pLenti6-CMV-GFP-puromycin) control transfection was 

performed in parallel to confirm transfection efficiency. Transfection efficiency was 

assessed by visual inspection.  

2.2.2.2 Collection and concentration of lentivirus 

After a period of twenty hours following transfection, GFP controls were examined to 

confirm transfection efficiency. Lentiviral supernatant was then aspirated from transfected 

HEK-293T cells, reserved and stored at 4°C. A further 15mL of culture medium was added 

to the HEK-293T cells and returned to the incubator for a further twenty hours. The second 

lentiviral supernatant fraction was then combined with the first, centrifuged at 3000RPM in 

a table-top centrifuge, and filtered through a 0.45µM low-protein binding PVDF filter prior 

to concentration. Filtered viral supernatants were transferred to sterile 38.5mL 

polypropylene centrifuge tubes (Beckman 326823) and weights equalised by the addition 

of sterile PBS. Ultracentrifugation was performed at 47,000 x g in an SW-28 Beckman-
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Coulter ultracentrifuge for two hours at 10°C. Following centrifugation, the supernatant 

was discarded by gentle inversion, and the viral pellet resuspended in 100µL of sterile PBS 

overnight at 4°C, prior to being aliquoted and stored at -80°C. 

2.2.2.3 Lentiviral transduction for adherent cells 

The multiplicity of infection (MOI) for lentiviral preparations was calculated empirically 

by seeding cell lines to a 6-well plate twenty-four hours prior to transduction. Culture 

medium was then aspirated from each well, replaced with 1mL of fresh culture medium 

supplemented with polybrene at a final concentration of 8µg/mL, and the cells returned to 

the incubator for four hours prior to transduction. Concentrated lentivirus was then added 

to each well at 0, 1, 2, 4, 8 and 16µL/mL, and returned to the incubator for sixteen hours. 

Following transduction, the infection medium was removed from each well, and 

replenished with 2mL of fresh culture medium supplemented with the appropriate drug-

selection as determined by the construct design. The minimum volume of lentiviral 

construct required to yield 100% cell survival following drug-selection was then employed 

for all subsequent experiments.  All experiments involving lentivirus were performed in 

their entirety under drug selection.  

2.2.3 Cell cycle analysis by flow cytometry 

Cell cycle analysis by fluorescence-activated cell sorting (FACS) was performed by 

combined 5-bromo-2’-deoxyuridine (BrdU) and propidium iodide (PI) staining.   Cells 

were incubated with BrdU at a final concentration of 25µM for 4-24 hours, after which the 

culture medium was aspirated, the cells washed in PBS and trypsinised before being 

resuspended in culture medium. Following resuspension, cells were pelleted, washed in 

PBS and pelleted. Cell pellets were resuspended in 200µL of PBS at 4°C, and fixation 

achieved by the addition of 2mL of ice-cold ethanol prior to gentle vortexing, and storage 

at 4°C for a minimum of 12 hours prior to further analysis.  

Following fixation, cells were pelleted and resuspended in 1mL of PBS before the addition 

of 1mL of 4N HCl. Cells were then incubated for 15 minutes at room temperature, pelleted 

and the supernatant aspirated. Cells were then resuspended in 1mL of PBS, pelleted and 

resuspended in 1mL of PBT. The cells were then pelleted, before being resuspended in 

200µL of anti-BrdU antibody diluted 1:40 in PBT. Cells were incubated with primary 

antibody for one hour at room temperature, following which they were pelleted, washed 

with 1mL PBT and then pelleted before being resuspended in 200µL of Alexa-Fluor® 488 
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goat anti-mouse antibody, diluted 1:40 in PBT. Cells were incubated in the dark with 

secondary antibody at room temperature for one hour, following which they were pelleted, 

and resuspended in 1mL of PBS containing propidium iodide at a final concentration of 

10µg/mL and RNase A at a final concentration of 250µg/mL. FACS analysis was 

performed using the FACSCalibur analyser, and subsequent analysis performed using 

FlowJo software. 

2.2.4 Protein 

2.2.4.1 Preparation of protein lysates 

Protein lysates were prepared in 1x sample buffer (62.5mM Tris-HCl pH 6.8, 2% SDS, 

10% glycerol, 0.1M DTT, 0.01% bromophenol blue).  Media was aspirated from tissue 

culture plates, and the cells washed in 10mL of sterile PBS.  The PBS was then aspirated, 

and the cells scraped into boiled 1x sample buffer using a plastic scraper and transferred to 

an Eppendorf tube.  The contents were vortexed vigorously, aspirated through an 18-gauge 

needle, and boiled for five minutes at 100°C.  Lysates were then centrifuged for 5 minutes 

in a bench-top microcentrifuge at 12,000 x g, and flash-frozen in a dry-ice ethanol bath.  

Protein lysates were stored at -80°C.   

2.2.4.2 Quantification of protein lysates 

The protein concentration of lysates in 1 x sample buffer was determined using the Qubit® 

protein assay kit.  Pre-diluted BSA standards provided with the kit were used to calibrate 

the fluorometer prior to use, with the addition of 1µL of 1x sample buffer to each of the 

three protein standards.  Quantification was undertaken in triplicate for all samples, and a 

mean protein concentration calculated.   

2.2.4.3 SDS-PAGE electrophoresis 

Electrophoresis of proteins was undertaken using pre-cast SDS-PAGE gradient gels. 

Protein lysates were boiled, and 25µg of total protein loaded per well.  Sample volumes 

were equalised using 1x sample buffer.  Electrophoresis was undertaken using the Bio Rad 

Mini-PROTEAN® Tetra cell system.  Loaded gels were assembled in a Mini-PROTEAN® 

Tetra cell, which was filled with 1x SDS-PAGE running buffer (25mM Tris, 192mM 

glycine, 0.1% SDS, pH 8.3), and protein separation achieved by application of a constant 

current of 200 V.  The total electrophoresis time was varied depending on the molecular 

weight of the peptide of interest.   
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2.2.4.4 Western blotting 

Following electrophoresis, proteins were immobilised to polyvinylidene fluoride (PVDF).  

Prior to transfer, membranes were soaked in methanol for 30s with gentle agitation, rinsed 

with dH2O, and placed in cold 1x blotting buffer (25mM Tris pH 8.3, 192mM glycine, 

0.01% SDS, 20% methanol).  A transfer cassette was assembled, incorporating the gradient 

gel and PVDF membrane, and placed in a Mini Trans-Blot® tank containing 1x blotting 

buffer.  Protein transfer was achieved by application of a constant current of 100V, 350mA 

for 1 hour.     

2.2.4.5 Immunohistochemistry 

Immunohistochemistry was performed by the histology service at the Beatson Institute for 

Cancer Research, Glasgow. Following embedding in paraffin, 4µm sections were cut using 

a microtome. Sections were first dewaxed by immersion in xylene for ten minutes, 

followed by rehydration through serially graded ethanol solutions. Tissues were then 

washed in deionised water for 5 minutes prior to antigen retrieval. Antigen retrieval was 

achieved by immersion of sections in boiled 1x pH 6.0 sodium citrate antigen retrieval 

buffer for 25 minutes, and sections then allowed to cool for 30 minutes, prior to a single 

wash in Tris-buffered Tween. Endogenous peroxidases were then quenched by immersion 

in a solution of 2% (v/v) hydrogen peroxide in methanol for 15 minutes. Following 

quenching of endogenous peroxidases, samples were washed with Tris-buffered Tween. 

Samples were then blocked by immersion in Tris-buffered Tween 1% BSA for 30 minutes. 

Following blocking, sections were incubated at room temperature for 30 minutes with 

primary antibody prior to 2 washes in Tris-buffered Tween. Samples were then incubated 

with an appropriate HRP-linked secondary antibody for a further 30 minutes at room 

temperature prior to a further 2 washes in Tris-buffered Tween. Samples were then 

developed with 3,3’-diaminobenzidine tetrahydrochloride for 10 minutes, washed in 

deionised water for 1 minute, and counterstained for 7 minutes with Haematoxylin Z. 

Sections were then “blued” by submersion for 1 minute in Scott’s water, washed for a 

further 1 minute in deionised water then dehydrated through serially graded alcohols prior 

to mounting and coverslip application.      
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2.2.5 DNA 

2.2.5.1 DNA extraction from adherent cells 

Genomic DNA was isolated using the QiaAmp DNA blood mini kit (Qiagen) according to 

the manufacturer’s instructions.  The QiaAmp DNA blood mini kit allows silica-membrane 

based DNA purification. In summary, cells pellets were resuspended in 200µL of PBS, and 

treated with proteinase K. After addition of lysis buffer (buffer AL), samples were 

vortexed and incubated at 56°C for 10 minutes. DNA was then precipitated by the addition 

of 200µL of 100% ethanol. Following centrifugation, additional washing (buffer AW1 and 

buffer AW2) and centrifugation steps were performed. DNA was then eluted from the 

column using 200µL of buffer AE, and stored at 4°C prior to subsequent analysis. DNA 

quantification was performed using the Qubit DNA HS assay kit (Thermo Fisher 

Scientific).   

2.2.5.2 Diagnostic restriction digest 

For plasmid verification etc. diagnostic restriction digests were performed. Enzymes and 

appropriate buffers were selected based on plasmid design. 500ng of purified plasmid 

DNA was incubated with 1 unit of the appropriate restriction enzyme together with the 

supplied buffer and distilled water at 37°C for 1 hour prior to subsequent analysis by 

agarose gel electrophoresis.   

2.2.5.3 Agarose gel electrophoresis 

Electrophoresis of DNA was performed on agarose gels of pre-determined percentages 

dependent on the fragment size of interest. Typically 0.7 – 1.2% (w/v) gels were used. 

Electrophoresis-grade agarose was dissolved in TAE (Tris-Acetate-EDTA) buffer, and 

heated. Agarose-TAE solution was allowed to cool before the addition of ethidium 

bromide at a final concentration of 0.5µg/ml, and transferred to an electrophoresis tank. 

Appropriate volumes of 10X DNA loading dye were added to DNA samples to achieve a 

1X final concentration, and samples loaded to individual wells with the addition of a DNA 

ladder to the first well. Separation was achieved by the application of a constant current of 

100V. Following electrophoresis, DNA samples were visualised by UV transillumination.  
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2.2.5.4 PCR 

PCR was performed using the Promega GoTaq Flexi DNA Polymerase kit (Promega, 

Madison, Wisconsin, USA) according to the manufacturer’s instructions. Specific details 

of PCR primer design are outlined in the relevant sections of chapter 3. For PCR reactions, 

500ng of template DNA was combined with forward and reverse primers (final 

concentration 1µM), GoTaq® buffer (final concentration 1x), MgCl2 (final concentration 

1mM), PCR nucleotide mix (final concentration 0.2mM each dNTP), GoTaq® DNA 

polymerase (1.2 units) in nuclease-free water in sterile microcentrifuge tubes incubated on 

ice to a final reaction volume of 50 µL. Thermal cycling was performed using a BioRad 

DNA Engine Peltier thermal cycler using the settings specified in Table 2-6.  

Table 2-6 PCR settings 

Step Temperature Time Number of Cycles 
Initial denaturation 95°C 2 minutes 1 
Denaturation 95°C 30 seconds  

35 Annealing 60°C 30 seconds 
Extension 72°C 1 minute 
Final extension 72°C 5 minutes 1 
Soak 4°C Indefinite NA 
 
2.2.5.5 Molecular Cloning 

Specific details of DNMT3B CRISPR and ectopic DNMT3B expression plasmid design 

and cloning strategy are discussed in chapter 3 of this thesis. Subcloning of CRISPR 

sgRNAs and DNMT3B cDNAs into lentiCRISPRv2-puromycin and pLenti6-puromycin 

respectively was achieved by preparative digest of the individual vector plasmids with 

preselected restriction enzymes (according to the cloning strategy) overnight at 37°C with 

their respective buffer and distilled water. Digested plasmid DNA was then resolved by 

agarose gel electrophoresis, and the digested vector excised under UV guidance. The 

digested plasmid was purified using the QIAquick gel extraction kit, and eluted in 30µL of 

elution buffer. Ligation of inserts into digested vector plasmids was performed using the 

Rapid DNA Ligation Kit (Roche) according to the manufacturer’s instructions. Vector and 

insert DNAs were mixed and diluted in 1x DNA dilution buffer to a final volume of 10µL. 

Thereafter 10µL of T4 DNA ligation buffer was added to the reaction together with 1µL of 

T4 DNA ligase. After gentle mixing, ligations were incubated at room temperature for 5 

minutes, and then used to transform chemically-competent bacteria.         
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2.2.5.6 Transformation of chemically-competent bacteria 

Plasmid DNA was transformed into OneShot® Stbl3 chemically-competent Escherichia 

coli (Life Technologies) according to the manufacturer’s instructions. Bacteria were 

thawed on ice prior to the addition of 1µL of plasmid DNA and mixed by gentle agitation. 

Vials were incubated for 30 minutes on ice prior to heat-shocking at 42°C for 45 seconds. 

Thereafter, vials were placed on ice for 2 minutes, before the addition of 250µL of L-

Broth. Vials were then capped and incubated in a rotational incubator at 37°C for 1 hour at 

225 RPM. 25µL from any particular transformation was then spread onto L-Broth agar 

plates impregnated with the appropriate drug selection marker, followed by incubation 

overnight at 37°C. Individual colonies were picked, and submitted to the Beatson Institute 

for Cancer Research sequencing facility for “Mini-Prep”. Plasmid identify was then 

variously confirmed by diagnostic restriction digest or targeted sequencing. 

2.2.5.7 Whole genome bisulfite sequencing 

Whole genome bisulfite sequencing was performed by the Beijing Genomics Institute 

(BGI, Shenzhen, China). Following DNA quantification and assessment by agarose 

electrophoresis, genomic DNA was sent for bisulfite sequencing. Briefly, DNA was 

fragmented by sonication to a mean size of approximately 100-300bp, followed by “end-

blunting”: the addition of dA to the 3’-end and adapter ligation (the latter allows 

assessment of the efficiency of bisulfite conversion). Bisulfite-conversion was then 

performed using the Zymo EZ DNA methylation-Gold kit, which converts unmethylated 

cytosines to uracils. Bisulfite-treated DNA was then subjected to a PCR assay, whereby 

uracils are converted to thymidines. The PCR amplicons were then subject to 90bp paired-

end sequencing using an Illumina HiSeq-4000 machine. 

2.2.5.8 Processing and analysis of whole genome bisulfite sequencing data 

Initial alignment and analysis of bisulfite-sequencing data was performed by Mr Neil 

Robertson, a computational biologist in Professor Peter Adams’ lab at the Beatson Institute 

for Cancer Research, Glasgow. Whole genome bisulfite sequencing alignment data are 

summarised in Table 2-7 below. The analysis pipeline has been described previously, and 

is summarised below [281]. The quality of sequenced reads was first tested using FastQC 

(version 0.10.0). Thereafter, adapters and low-quality sequence tails were excluded using 

trim-galore (version 0.3.0). Alignment of sequence reads to UCSC (hg19) genome was 

performed using Bismark (version 0.10.1) based on the Bowtie2 aligner (version 2.1.0) 
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[410]. The methylation status of each aligned sequence tag was then inferred by 

comparison to the unconverted reference genome. Potential duplicate reads (defined as 

those reads for which both ends of a given fragment align to the same genomic position on 

the same strand) were then removed to control for PCR bias using Bismark (version 

0.10.1). Furthermore, the exclusion of reads with >3 methylated cytosines in a non-CpG 

context controlled for incomplete bisulfite-conversion. 

Methylated cytosines were then identified by aggregation of processed reads on a per CpG 

basis, followed by the collapsing of CpG dyads into a single score for the cytosine on the 

forward strand. Differentially-methylated CpGs were then identified using a two-tailed 

Fisher’s exact test. Only those CpGs with ≥10 reads within each condition tested were 

considered for statistical analysis. False-positives were controlled at a rate of 5% by means 

of FDR-correction of p-values using the Benjimini-Hochberg FDR function. 

Global percentage methylation was determined by division of the total number of 

methylated counts by the total number of methylated and unmethylated counts in the entire 

data set, followed by multiplication by 100 for each biological condition.    

Differentially-methylated regions (DMRs) were identified using 500bp sliding-windows. 

At each window, DMR significance was determined using Fisher’s exact test, together 

with a χ2 test of heterogeneity between biological replicates for each condition tested. 

Multi-sample correction was performed using the Benjimini-Hochberg FDR function, and 

DMRs defined as those windows with an FDR-corrected p-value <0.05 and non-significant 

heterogeneity between biological replicates (χ2 test p >0.05). Percentage methylation at any 

particular DMR was then calculated by division of the total number of methylated 

cytosines by the total number of methylated and unmethylated cytosines, multiplied by 

100. 

Genomic feature overlaps were calculated on a per-base pair basis between two data sets, 

and the genomic average expected overlap calculated using a permutation test. For 

composite methylation profiling, the midpoints of a series of regions of interest were taken 

and used as a base. The area around the midpoint of each feature was then split into 100bp 

windows spanning 2.5kb upstream and downstream of this central position. The average 

methylation proportion was then calculated for each window for every genomic feature. A 

global mean was then taken for each window across all features to aggregate a composite 

of the mean methylation per window across all probed genomic features. 
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Smoothened methylation plots were generated using the BSmooth algorithm from the 

bsseq package. Methylation levels were kernel-smoothed, and plotted against a range of 

DMR and annotated features in bed format [411]. 

Table 2-7 Whole genome bisulfite (WGBS) sequencing alignment data 

Alignment data for whole genome bisulfite sequencing (WGBS) performed in this thesis detailing 
the number of WGBS reads and CpG coverage per replicate. 

Sample Raw 
Sequence 
Reads 

Coverage Aligned Reads 
(% of raw 
sequence reads) 

Filtered 
Reads 

Final Reads 

PD28 
(Proliferating) 
Replicate 1 

280793198 
 

16.4x 230705384 (82.2%) 1444820 
 

229260564 
 

PD28 
(Proliferating) 
Replicate 2 

299999994 
 

17.5x 237707257 (79.2%) 
 

2129142 
 

235578115 
 

PD28 
Proliferating 
Replicate 3 

299999994 
 

17.5x 233404112 (77.8%) 
 

1908532 
 

231495580 
 

PD88 
(Replicative 
senescence) 
Replicate 1 

267705080 
 

15.6x 228482997 (85.3%) 
 

1791493 
 

226691504 
 

PD88 
(Replicative 
senescence) 
Replicate 2 

299999994 
 

17.5x 208002740 (69.3%) 
 

2136382 
 

205866358 
 

PD88 
(Replicative 
senescence) 
Replicate 3 

299999994 
 
 

17.5x 213082930 (71.0%) 
 

2144371 
 

210938559 
 

HIV-CS-CG-
puromycin 
(“vector”) 
Replicate 1 

268923920 
 

12.4x 222896869 (82.9%) 
 

1880745 
 

219058143 
 

HIV-CS-CG-
puromycin 
(“vector”) 
Replicate 2 

257233279 
 

12.3x 214388237 (83.3%) 
 

3716489 
 

210671748 
 

HIV-CS-CG-
BRAFV600E-
puromycin 
(“BRAF”) 
Replicate 1 

270308969 
 

12.5x 213657482 (79.0%) 
 

3332368 
 

210325114 
 

HIV-CS-CG-
BRAFV600E-
puromycin 
(“BRAF”) 
Replicate 2 

268940674 
 

12.3x 209259871 (77.8%) 
 

1880745 
 

207379126 
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2.2.6 RNA 

2.2.6.1 RNA extraction from adherent cells 

RNA was extracted from adherent cells using the RNeasy Mini Kit according to the 

manufacturer’s protocol. In summary, cell pellets were lysed on ice into buffer RLT 

supplemented with β-mercaptoethanol. Cell lysates were then homogenised by 

centrifugation in QiaShredder columns. RNA isolation was then performed using RNeasy 

mini kit columns, with residual DNA removed by on-column treatment with DNaseI. 

Following wash steps, RNA was eluted into RNase-free distilled water, and stored at -80°C 

prior to subsequent analysis. Prior to sequencing, RNA quantification was performed using 

the Qubit RNA HS assay kit, and qualitative assessment performed using the Agilent RNA 

ScreenTape assay according to the manufacturer’s instructions. 

2.2.6.2 RNA-sequencing 

RNA-sequencing was performed by Mr William Clark in the sequencing facility at the 

Beatson Institute for Cancer Research, Glasgow. RNA was prepared for sequencing using 

the TruSeq RNA sample preparation kit. RNA is first purified, fragmented and reverse 

transcribed to produce cDNA. Following the removal of any remaining RNA, single-

stranded cDNA is converted to double-stranded cDNA. Blunt-end DNA fragments are then 

generated. The subsequent addition of an “A” base to blunt ends prepares them for ligation 

to the sequencing adapters, which possess a “T” base overhang at the 3’ end, thus 

providing a complementary overhang for adapter ligation. Adapters possess sequencing 

primer hybridisation sites for single, paired-end and multiplex reads. PCR is then 

employed to selectively enrich for those DNA fragments in possession of an adapter 

molecule on both ends (12 cycles only to prevent skewed representation in the library) and 

then libraries validated using the Agilent DNA 1000 kit. Libraries were then sequenced 

using the Illumina GAIIX sequencer at the Beatson Institute for Cancer Research, 

Glasgow, with paired-end sequencing at a length of 36bp.  

2.2.6.3 Processing and analysis of RNA-sequencing data   

Initial alignment and analysis of RNA-sequencing data was performed by Mr Neil 

Robertson, a computational biologist in Professor Peter Adams’ laboratory. Alignment data 

are summarised in the tables below (Table 2-8, Table 2-9). Paired-end 36bp reads were 

aligned to the human genome (hg19) using a splicing-aware aligner (TopHat2) [412]. Only 

unique reads were retained. Reference splice junctions were provided by a reference 
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transcriptome (Ensembl build 73) and novel splicing junctions defined by the detection of 

reads that spanned exons not in the reference annotation. True read abundance at each 

transcript isoform was assessed using HTSeq (Python) before determination of differential 

expression using DESEQ2, from which differential expression and splicing can be derived 

[413]. Significance was determined using an FDR corrected p-value of <0.05. Heatmaps 

were created in R using the ggplots package. 

Table 2-8 RNA-sequencing alignment data (mapped reads) 
Sample Rep L-input Mapped 

Reads 
Percentage 
Mapped 

R-input Mapped 
Reads 

Percentage 
Mapped 

Vector/Vector 1 37229172 33687092 90.5 37225533 33390240 89.7 
Vector/Vector 2 38737372 35048504 90.5 38735310 34543858 89.2 
Vector/Vector 3 30163343 26909263 89.2 30166640 26103594 86.5 
DNMT3B Only 1 36661514 33251854 90.7 36660294 32726704 89.3 
DNMT3B Only 2 39174576 35380661 90.3 39173048 34892547 89.1 
DNMT3B Only 3 36178544 32629468 90.2 36175385 32315402 89.3 
BRAF Only 1 39271629 35322633 89.9 39268910 34938527 89 
BRAF Only 2 35072830 31633130 90.2 35070976 31281539 89.2 
BRAF Only 3 31744881 28609166 90.1 31743248 28302228 89.2 
BRAF/DNMT3B 1 32859073 29776592 90.6 32856761 29455321 89.6 
BRAF/DNMT3B 2 33450768 30059459 89.9 33458280 29119061 87 
BRAF/DNMT3B 3 39054674 35337104 90.5 39051964 34954629 89.5 

 

Table 2-9 RNA-sequencing alignment data (multiple alignments/discordant alignments) 
Sample Rep Pairs 

Aligned 
Multiple 
Alignments 

Multiple 
Alignments 
(%) 

Discordant-
Alignments 

Discordant 
Alignment 
(%) 

Concordant 
Rate (%) 

Vector/Vector 1 28096538 2433151 8.7 1222075 4.3 81.8 
Vector/Vector 2 27811183 2375467 8.5 1141686 4.1 79.7 
Vector/Vector 3 33328904 2884942 8.7 1445333 4.3 81.6 
DNMT3B Only 1 31819317 3185101 10 1609436 5.1 81.2 
DNMT3B Only 2 32957346 3188938 9.7 1583627 4.8 81 
DNMT3B Only 3 24765670 2376869 9.6 1245875 5 78 
BRAF Only 1 31223251 3160825 10.1 1515496 4.9 81 
BRAF Only 2 33261534 3402639 10.2 1670127 5 80.6 
BRAF Only 3 30772907 3099406 10.1 1483176 4.8 81 
BRAF/DNMT3B 1 33277059 2713880 8.2 1445246 4.3 81.1 
BRAF/DNMT3B 2 29808783 2496360 8.4 1270514 4.3 81.4 
BRAF/DNMT3B 3 26959783 2138070 7.9 1131557 4.2 81.4 

 

  



  77 

2.2.7 In vivo work 

2.2.7.1 Home Office project and personal licencing 

All experiments were carried out in accordance with the requirements of the UK Home 

Office guidelines under the auspices of Personal Licence I6C161323, and Project Licence 

70/8354.   

2.2.7.2 Colony maintenance and routine husbandry 

Routine husbandry of all colonies, including nutrition, hydration, setting up of matings, 

weaning and ear-notching for genotyping was undertaken by Biological Services 

technicians at the Beatson Institute for Cancer Research.   Mice were fed a standard diet 

with water ad libitum.   

2.2.7.3 Transgenic strains and alleles 

The following transgenic alleles were used in this thesis. The full transgenic allele name 

and abbreviation used hereafter in this thesis are detailed in Table 2-10. Specific details of 

the allele designs are discussed in chapter 6. 

Table 2-10 Summary of transgenic alleles 

Allele  Abbreviation Source 

Tg(Cyp1a1-cre/ERT)1Dwi AhCreErT Sansom Laboratory 
Tg(Vil-cre/ERT2)23Syr VilCreErT2 Sansom Laboratory 
Braftm1Cpri LSLBrafV600E Pritchard Laboratory 
B6;129S4-Dnmt3btm1Jae/Mmnc Dnmt3bfl/fl MMRRC4 
B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J R26-M2-rtTA Jackson Laboratory 
B6.Cg-Col1a1tm9(tet0-Dnmt3b_i1)Jae/J Col1a1-tetO-Dnmt3b1 Jackson Laboratory 
Apctm1Tno Apcfl/+ Sansom Laboratory 
 

2.2.7.4 Genotyping 

Routine genotyping was undertaken at weaning (6 weeks age).  Ear notches were obtained 

from mice by technical staff in the Beatson Institute for Cancer Research animal facility.  

Automated PCR genotyping of mouse strains was undertaken by Transnetyx.  

                                                
4 MMRRC = Mutant Mouse Resource and Research Centers (www.mmrrc.org) 



  78 

2.2.7.5 Tissue harvest 

Mice were culled at clinical endpoint by exposure to carbon dioxide gas in a rising 

concentration in accordance with the requirements of the Animals (Scientific Procedures) 

Act 1986.  Death was confirmed by confirmation of permanent cessation of the circulation 

and dislocation of the neck.  The skin was shaved and prepared with ethanol.  The 

abdomen was then opened through a midline laparotomy, and the abdominal viscera 

carefully inspected for evidence of tumour formation or metastatic disease.  The stomach 

was divided at the gastro-oesophageal junction, and the small intestine dissected from its 

mesentery from gastro-duodenal junction to the ileo-caecal junction.  The colon was 

separately dissected from its mesentery, and dissection continued to the pelvis where it was 

amputated at the anorectal junction.  Both the small intestine and colon were flushed with 

PBS, before being opened longitudinally in their entirety with iris scissors.  Following 

harvest of intestinal tissues, a full necropsy was undertaken to exclude other pathology.      

2.2.7.6 Tissue fixation and processing 

For tumour scoring and routine haematoxylin and eosin staining, tissues were fixed in 

Methacarn (60% Methanol, 30% chloroform, 10% glacial acetic acid) for 20 hours.  

Thereafter, the intestine and colon were wound into a “Swiss roll” in 10% neutral buffered 

formalin and processed for histology. For immunohistochemistry, the small intestine and 

colon were “pinned out” in a paraffin wax dish containing 10% neutral buffered formalin. 

After 24 hours, the intestine and colon were wound into a “Swiss roll” in 10% neutral 

buffered formalin, and processed for histological analysis by the histology service at the 

Beatson Institute for Cancer Research, Glasgow.  

2.2.8 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism (GraphPad Software Inc. La 

Jolla, California, USA) Details of statistical tests used in individual experiments are 

detailed in the respective figure legends. Statistical analysis of RNA-sequencing and whole 

genome bisulfite sequencing data was performed separately by Mr Neil Robertson, a 

computational biologist in Professor Peter Adams laboratory at the Beatson Institute for 

Cancer Research, Glasgow, and is described in more detail in the description of these 

methods above.  
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3 Validation of DNMT3B antibodies and development of 
constructs for ectopic expression and knockdown 

 
3.1 Rationale 

Any experiment in which antibodies to a particular protein are required mandates the 

validation of the specificity of these to the particular protein target in question. A central 

aim of this thesis was to examine the contribution of DNMT3B to the establishment of 

CIMP in the context of an activated BRAF oncogene.  An early priority was therefore the 

identification and validation of a panel of DNMT3B antibodies and other reagents for use 

in future experiments.   

3.2 Aims 

The specific aims of this chapter are: 

1. To validate a panel of DNMT3B antibodies for future in vitro and in vivo experimental 

work 

2. To develop lentiviral constructs to direct ectopic expression of DNMT3B in primary 

human cells for later in vitro functional experiments 

3. To develop knockdown strategies for DNMT3B for later loss of function experiments 

in colon cancer cell lines 
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3.3 Results 

3.3.1 Selection of DNMT3B antibodies and initial screening in HCT116 cells 

Based on previous studies published in the literature, a panel of five commercially-

available DNMT3B antibodies was selected for testing, and these are summarised in Table 

3-1. All candidate antibodies selected were reported to detect human DNMT3B by their 

respective manufacturers. For verification purposes, the human colon cancer cell line 

HCT116 was selected. HCT116 is a well-characterised cell line, and is documented to 

express DNMT3B [329]. In order to test whether candidate DNMT3B antibodies were able 

to detect a polypeptide of the correct size by western blot, whole cell protein lysates were 

produced from HCT116, separated by SDS-PAGE electrophoresis, and immobilised to 

PVDF. Western blotting was then undertaken with each candidate DNMT3B antibody. 

The predicted molecular weight of full length human DNMT3B is 95.75 kDa [222]. As 

outlined in the introduction to this thesis, multiple splice isoforms of DNMT3B have been 

described, which further complicates interpretation of the specificity of candidate 

antibodies. The molecular weights of several DNMT3B isoforms are summarised in Table 

3-2 overleaf. Notably, all but one of the antibodies tested detected a band in the correct 

molecular weight range for DNMT3B (Figure 3-1). Significantly, the only antibody that 

did not detect a protein band in the correct molecular weight range for full length 

DNMT3B was the mouse monoclonal antibody, IMG184A (clone 52A1018) produced by 

Imgenex/Novus Biologicals. This antibody is perhaps one of the most extensively used in 

the literature, and of particular note to the subject matter of this thesis, it is the antibody 

that has previously been used in studies linking DNMT3B expression to the CpG island 

methylator phenotype (CIMP) in human colorectal cancer [414,415]. As splice isoforms of 

DNMT3B have been characterised in cancer cell lines, it is formally possible that the lower 

polypeptide band detected by this antibody in HCT116 represents a truncated DNMT3B 

isoform [222]. Given the central role of this antibody in the published evidence linking 

DNMT3B to CIMP, it was carried forward, together with the other candidate antibodies, 

for further validation by means of ectopic expression and knockdown of DNMT3B. 
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Table 3-1 Summary of DNMT3B antibodies evaluated in this thesis 

Antibody Manufacturer Epitope Species Clonality 
SC10236 Santa Cruz 

Biotechnology 
Internal region of human DNMT3B Goat Polyclonal 

IMG184A Imgenex Bacterial expressed full length 
recombinant mouse DNMT3B 

Mouse Monoclonal 

NB100-266 Novus Biologicals Amino acids 4-101 of human 
DNMT3B 

Rabbit Polyclonal 

NEBM0232 New England 
Biosciences 

Synthetic peptide corresponding to 
the carboxy terminus of human 
DNMT3B 

Rabbit Polyclonal 

AB79822 Abcam Synthetic peptide corresponding to 
residues in human DNMT3B 

Rabbit Monoclonal 

   

 

 

Table 3-2 Predicted molecular weights of human DNMT3B isoforms5 

Isoform Length Predicted Molecular Weight (kDa) 

DNMT3B1 853 95.75 

DNMT3B2 833 93.41 

DNMT3B3 770 86.18 

DNMT3B4 724 80.85 

DNMT3B5 792 88.57 

DNMT3B6 845 94.69 

DNMT3B7 694 77.72 

DNMT3B8 728 81.31 

 

  

                                                
5 Data adapted from http://www.uniprot.org/uniprot/Q9UBC3 
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Figure 3-1 A panel of five putative DNMT3B antibodies was tested by Western blot in protein 
lysates produced from the colon cancer cell line HCT116 

Western blots of whole cell lysates from the colon cancer cell line HCT116 were prepared, 
separated by SDS-PAGE, immobilised to PVDF and probed with the candidate DNMT3B 
antibodies (a) NEBM0232, (b) SC10236, (c) NB100-266, (d) IMG184A and (e) AB79822. With the 
exception of IMG184A (clone 52A1018) all antibodies tested detected a polypeptide band in the 
correct molecular weight range for human DNMT3B. No other polypeptide bands in the molecular 
weight range for DNMT3B were detected in the full-length blots (n=3 biological replicates).  
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3.3.2 Development of lentiviral constructs for ectopic expression of 
DNMT3B 

For future functional in vitro experiments, and in order to provide a robust positive control 

for DNMT3B expression, expression plasmids for two isoforms of human DNMT3B 

(DNMT3B1 and DNMT3B3) were obtained from Addgene6, and sequence verified by Mr 

William Clark in the sequencing facility at the Beatson Institute for Cancer Research, 

Glasgow.  In these pcDNA3/Myc-DNMT3B1 and pcDNA3/Myc-DNMT3B3 plasmids, the 

cDNA for each DNMT3B isoform is cloned into the EcoRI and BamHI sites of a modified 

pcDNA3 vector, in which the multiple cloning site has been altered, with the inclusion of a 

Kozak consensus sequence, ATG start site and Myc epitope tag [416]. 

As future functional in vitro experiments and ectopic expression assays were to be 

performed in primary human fibroblasts in which simple transfection can be very difficult 

to achieve, the decision was made to subclone the DNMT3B1 and DNMT3B3 cDNAs into 

the lentiviral construct pLenti6-puromycin, in order to allow stable ectopic expression of 

DNMT3B.  As a result of the way in which the cDNAs had been cloned into pcDNA3/Myc 

vector, it was necessary to adopt a PCR-based cloning strategy, with the addition of 

restriction sites to yield compatible cohesive ends to allow subcloning into the unique XbaI 

and EcoRI restriction sites in the pLenti6-puromycin construct.  Primers were designed to 

include the Myc tag, with the addition of the restriction sites NheI and AvrII to the forward 

primer and MfeI to the reverse primer.  A plasmid map of pLenti6-puromycin and a 

schema of the PCR primer design is shown overleaf (Figure 3-2). Following ligation of the 

PCR product into the digested pLenti6-puromycin backbone, and plasmid purification, 

successful incorporation of the product to the vector was confirmed by diagnostic 

restriction digest (data not shown).  

  

                                                
6 pcDNA3/Myc-DNMT3B1 and pcDNA3/Myc-DNMT3B3 were gifts from Arthur Riggs (Addgene plasmids 
# 35522; 37546) 
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Figure 3-2 Cloning strategy for creation of lentivirus to direct ectopic expression of DNMT3B 
in subsequent experiments 

(a) Diagrammatic representation of DNMT3B plasmid with cloning sites EcoRI and BamHI 
identified. PCR forward and reverse primer design is demonstrated (restriction sites highlighted in 
bold red underline) (b) Plasmid map of pLenti6-puromycin into which DNMT3B1 and DNMT3B3 
were subcloned. 

  

MYC Tag DNMT3B1 

EcoRI BamHI 

Forward Primer 
GCGCGCTAGCCCTAGGACCATGGAGCAGAAGCTGATCTCAG 

Reverse Primer 
GCGCCAATTGCTATTCACATGCAAAGTAG 

 

(a) 

(b) 

pLenti6-puromycin
6962 bp
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With successful incorporation of the DNMT3B1 and DNMT3B3 cDNAs into pLenti6-

puromycin confirmed, lentivirus was produced as described previously (chapter 2; section 

2.2.2) and used to transduce primary human fibroblasts (IMR-90).  After 7 days, whole cell 

lysates were prepared from cells directed to express the empty vector or ectopic DNMT3B 

isoforms, separated by SDS-PAGE electrophoresis, and immobilised to PVDF. Western 

blotting was then undertaken with each candidate DNMT3B antibody in order to test their 

ability to detect ectopically expressed human DNMT3B. Three of the five antibodies tested 

(NEBM0232, SC10236, and NB100-266) clearly detected ectopically expressed human 

DNMT3B1 and DNMT3B3.  IMG184A and AB79822 detected identical polypeptide 

bands in both the empty vector and ectopic expression lanes, suggesting that they do not 

detect ectopically expressed human DNMT3B (Figure 3-3). 

As murine tissues were also to be analysed in later experiments, candidate DNMT3B 

antibodies were tested in protein lysates made from intestinal tissues from a genetically 

modified mouse model heterozygous for the tetracycline-inducible Dnmt3b allele (Col1a1-

tetO-Dnmt3b1) and tetracycline-responsive transactivator (R26-M2-rtTa) [229,417]. 

Protein lysates were also made from a control mouse heterozygous for the R6-M2-rtTa 

allele, and wild type for the Col1a1-tetO-Dnmt3b1 allele.  Lysates from both mice were 

prepared following two weeks of treatment with doxycycline in the drinking water at a 

concentration of 0.5mg/mL.  Only three of the candidate antibodies (IMG184A, NB100-

266 and SC10236) were tested in the murine intestinal tissues, as these were specifically 

identified by their respective manufacturers as detecting murine DNMT3B. Intriguingly, 

IMG184A, which did not detect ectopically expressed human DNMT3B, detected a strong 

signal in murine intestinal lysate ectopically expressing DNMT3B. Notably, the antigenic 

target for this antibody is cited in the product literature as bacterial-expressed full-length 

mouse DNMT3B.  This raised the possibility that this antibody detects murine DNMT3B 

but not human DNMT3B. This is particularly interesting given the significant structural 

homology reported between murine DNMT3B and human DNMT3B [196]. Both of the 

other candidate DNMT3B antibodies detected a polypeptide band of the correct molecular 

weight for DNMT3B in lysates expressing ectopic murine DNMT3B (Figure 3-4). 
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Figure 3-3 The ability of candidate DNMT3B antibodies to detect ectopically-expressed 
human DNMT3B by Western blot was assessed 

Western blot of whole cell lysates from IMR-90 human fetal lung fibroblasts one week following 
transduction with pLenti6-puromycin (“vector”), pLenti6-DNMT3B1-puromycin (“DNMT3B1”) or 
pLenti6-DNMT3B3-puromycin (“DNMT3B3”). Expression of DNMT3B is once again assessed using 
a panel of DNMT3B antibodies. Neither AB79822 nor IMG184A detect ectopically expressed 
human DNMT3B1 or DNMT3B3. By comparison, NB100-266, SC10236, and NEBM0232 all detect 
ectopically-expressed DNMT3B1 and DNMT3B3 (n=3 biological replicates). 
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Figure 3-4 The ability of candidate DNMT3B antibodies to detect ectopically-expressed 
murine DNMT3B1 by Western blot was assessed 

Western blot of whole cell lysates from murine intestine from mice heterozygous (“ectopic 
DNMT3B1”) or wild-type (“WT DNMT3B”) for the Col1a1-tetO-Dnmt3b1 transgene. Both mice were 
heterozygous for the R26-M2-rtTA transgene. Transgene induction was achieved by addition of 
doxycycline hyclate to the drinking water for fourteen days prior to tissue harvest. All three 
candidate DNMT3B antibodies detect peptide targets in the correct molecular weight range for 
murine DNMT3B1 (n=1 biological replicate).  
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3.3.3 Testing a panel of DNMT3B shRNA constructs 

For future loss-of-function experiments, and as an additional means of validating the 

specificity of DNMT3B antibodies, commercially-produced DNMT3B shRNAs (obtained 

from Dharmacon/GE Life Sciences) were tested. A pool of four shRNAs in the pLKO.1-

puromycin vector were obtained (pLKO.1-shDNMT3B685-688-puromycin). The details of 

each of the shRNA clones tested are summarised in Table 3-3 below, and their alignment 

to human DNMT3B is represented diagrammatically in Figure 3-5. Lentiviral transduction 

was again performed in HCT116 cells with both the empty vector (pLKO.1-puromycin) 

and each of the four lentiviral shRNA-DNMT3B constructs.  Cells were harvested 7 days 

following transduction for protein lysates, which were separated by SDS-PAGE 

electrophoresis, immobilised to PVDF and assessed by Western blotting for DNMT3B 

expression.  

Table 3-3 shRNA DNMT3B constructs tested in this thesis7 

Clone ID Target Sequence Intrinsic 
Score 

Adjusted 
Score 

TRCN0000035685 
(shDNMT3B685) 

GCCCGTGATAGCATCAAAGAA 5.625 4.500 

TRCN0000035686 
(shDNMT3B686) 

CCATGCAACGATCTCTCAAAT 13.200 9.240 

TRCN0000035687 
(shDNMT3B687) 

GCAGGCAGTAGGAAATTAGAA 5.625 3.938 

TRCN0000035688 
(shDNMT3B688) 

CCTGTCATTGTTTGATGGCAT 2.640 1.848 

 

In keeping with its inability to detect ectopically expressed human DNMT3B, IMG184A 

did not detect DNMT3B knockdown with any of the four shRNA constructs tested, 

reinforcing the argument that this antibody does not detect human DNMT3B by western 

blot.  More perplexingly, each of the remaining three antibodies tested (SC10236, NB100-

266 and NEBM0232) detected knockdown with different shRNA constructs, with no single 

shRNA construct demonstrating consistent knockdown with all antibodies.  The most 

likely explanation for this is that each antibody detects different isoforms of DNMT3B, 

which are knocked down to different degrees by each individual shRNA construct (Figure 

3-6).  

  

                                                
7 Target sequences, intrinsic and adjusted scores are obtained from Broad Institute Genetic Perturbation 
Platform (http://portals.broadinstitute.org/gpp/public/clone/) 
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Figure 3-5 Alignment of shRNAs to human DNMT3B 

Diagrammatic representation of the alignment of candidate DNMT3B shRNAs to the human 
DNMT3B gene. The shRNA sequences were aligned using the NIH basic local alignment tool 
(BLAST8), and diagrams created using SpliceCenter9.  

  
                                                
8 https://blast.ncbi.nlm.nih.gov/Blast.cgi 
9 http://projects.insilico.us/SpliceCenter/siRNACheck. 
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Figure 3-6 A panel of DNMT3B shRNAs were tested in HCT116 colon cancer cells 

Western blot of whole cell lysates of HCT116 one week following transduction with vector (pLKO.1) 
or DNMT3B shRNA lentivirus (pLKO.1-shDNMT3B-685-688).  Apparent knockdown of DNMT3B is 
seen with sh685 and sh686 using SC10236; whereas knockdown detected by NB100-266 is seen 
with sh687 by NB100-266 and sh686 by NEBM0232. By contrast, no apparent knockdown is noted 
with any shRNA when IMG184A is used to detect DNMT3B (n=1 biological replicate). 

 

 

  

SC10236

Ve
ct

or

sh
R

N
A 

68
5

sh
R

N
A 

68
6

sh
R

N
A 

68
7

sh
R

N
A 

68
8

52kDa

38kDa
β-Actin

IMG184A

225kDa

150kDa

76kDa

NEBM0232102kDa

NB100-266
102kDa

102kDa



  91 

3.3.4 Development and testing of a panel of CRISPR sgRNAs to human 
DNMT3B 

As inconsistent results were obtained with shRNA-mediated knockdown of DNMT3B, 

further methods of experimental DNMT3B depletion were sought. Advances in genome 

editing technology continue to be made, and one of the most significant in recent times is 

the development of the CRISPR/Cas9 system [418,419]. Design of DNMT3B CRISPR 

sgRNAs was dual purpose: firstly to allow stable knockdown of DNMT3B for future loss 

of function experiments, and secondly as a further validation tool for DNMT3B antibody 

specificity.   

A panel of four sgRNAs were selected and cloned into the lentiCRISPRv2-puromycin 

construct. In this lentiviral construct, the sgRNA and hSpCas9 are delivered 

simultaneously by a single plasmid.  Digestion of the plasmid with the restriction enzyme 

BsmBI removes a 2kb filler and allows subcloning of specific sgRNAs. A plasmid map is 

shown in Figure 3-7 [420]. The sgRNA sequences were designed using the Zhang lab 

CRISPR design tool10, with the exception of sgRNA4, which was modified from a 

previously published sequence [421]. All sgRNA oligonucleotides were designed with 

compatible cohesive ends to allow subcloning into lentiCRISPRv2-puromycin following 

digestion with BsmBI (Table 3-4). The alignment of each sgRNA to human DNMT3B is 

represented diagrammatically in Figure 3-8.  

Table 3-4 sgRNA sequences designed to CRISPR human DNMT3B 

Restriction site overhangs for cloning into lentiCRISPRv2-puromycin are in bold 

sgRNA Forward Sequence Reverse Sequence 
1 CACCGAGACTCGATCCTCGTCAACG AAACCGTTGACGAGGATCGAGTCTC 
2 CACCGAGAGTCGCGAGCTTGATCTT AAACAAGATCAAGCTCGCGACTCTC 
3 CACCGATGCTGTTGCCCGCCGTCTC AAACGAGACGGCGGGCAACAGCATC 
4 CACCGGAATTACTCACGCCCCAAGG AAACCCTTGGGGCGTGAGTAATTCC 
 

The annealed forward and reverse oligonucleotides were ligated into lentiCRISPRv2-

puromycin digested with BsmBI, and used to transform chemically competent bacteria.  

Following plasmid purification, sequence verification was undertaken by Mr William 

Clark at the sequencing facility at the Beatson Institute for Cancer Research to ensure 

incorporation of the desired sgRNA sequence to lentiCRISPRv2-puromycin (data not 

shown). 

                                                
10 http://crispr.mit.edu 
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Figure 3-7 Plasmid map of lentiCRISPRv2 

Plasmid map of the lentiCRISPRv2-puromycin vector designed by the Zhang lab, demonstrating 
the unique BsmBI restriction site that allows subcloning of CRISPR sgRNAs11.  

HCT116 cells were then transduced with either the lentiCRISPRv2-puromycin vector or 

lentiCRISPRv2-DNMT3B-sgRNA1-4-puromycin, drug-selected with puromycin, and after 

7 days, harvested for protein lysates.  Protein lysates were separated by SDS-PAGE, 

immobilised to PVDF and DNMT3B expression was tested by Western blot with candidate 

DNMT3B antibodies.  Efficient knockdown of DNMT3B was seen with sgRNAs 1, 2 and 

4, but not with sgRNA 3.  This knockdown was demonstrable only with SC10236 and not 

with the other antibodies tested (Figure 3-9). This raised the possibility that the polypeptide 

bands detected by NB100-266, NEBM0232, and IMG184A did not represent DNMT3B. 

This raised an obvious conflict both with the ectopic expression, and shRNA knockdown 

data, which together were suggestive of sensitivity and specificity of NB100-266 and 

NEBM0232 (but not IMG184A) for human DNMT3B. 

  

                                                
11 Figure from www.genome-engineering.org. 
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Figure 3-8 Alignment of DNMT3B CRISPR sgRNAs to human DNMT3B 

Diagrammatic representation of the alignment of candidate DNMT3B CRISPR sgRNAs to the 
human DNMT3B gene. The sgRNA sequences were aligned using the NIH basic local alignment 
tool (BLAST12), and diagrams created using SpliceCenter13.  

  

                                                
12 https://blast.ncbi.nlm.nih.gov/Blast.cgi 
13 http://projects.insilico.us/SpliceCenter/siRNACheck. 
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Figure 3-9 A panel of DNMT3B CRISPR sgRNAs in were tested in HCT116 

Western blot of whole cell lysates from HCT116 7 days following transduction with lentiCRISPRv2-
puromycin (“vector”) or lentiCRISPRv2-DNMT3B-sgRNA1-4-puromycin (“sgRNA1-4”) 
demonstrating specific knockdown of DNMT3B in HCT116 with sgRNAs 1,2 and 4. Knockdown is 
detected only with SC10236 and not NB100-266, NEBM0232 or IMG184A, implying that the 
polypeptide targets detected by these antibodies do not represent DNMT3B (n=1 biological 
replicate). 
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3.3.5 Testing a panel of DNMT3B antibodies in HCT116 WT and HCT116 
3BKO cells 

In order to address the apparently conflicting data generated by shRNA-mediated, and 

CRISPR-mediated knockdown respectively, and in an attempt to finally resolve the issue 

of DNMT3B antibody sensitivity and specificity, the HCT116-derived cell line “3BKO” 

which is null for DNMT3B, was obtained and authenticated using short tandem repeat 

DNA profiling analysis14 . In 3BKO cells, the carboxy-terminal catalytic domain is 

replaced by hygromycin- or neomycin-resistance genes [329]. The targeting construct used 

to disrupt DNMT3B in this cell line is summarised in Figure 3-10 below. Protein lysates 

were prepared from cultured HCT116 parental and HCT116 3BKO populations, separated 

by SDS-PAGE, immobilised to PVDF and tested with the panel of DNMT3B antibodies 

(Figure 3-11).  

 

  

 

Figure 3-10 Diagram of DNMT3B targeting construct used to generate 3BKO cells 

Diagram of the DNMT3B targeting construct used to generate 3BKO cells. Neomycin- or 
hygromycin-resistance genes (N/H) replace the catalytic domain. Numbered boxes represent 
exons. Roman numerals represent the conserved methyltransferase motifs targeted by this 
strategy. Adapted from Rhee et al.[422]. 

  

                                                
14 3BKO cells were a gift of Professor Richard Meehan 
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Figure 3-11 The specificity of DNMT3B antibodies was confirmed in HCT116 and HCT116 
3BKO cells  

A panel of DNMT3B antibodies was tested in HCT116 parental (“HCT116 WT”) and HCT116 3BKO 
cells. Only SC10236 detects polypeptide bands in parental HCT116 cell lysate that are not 
detectable in 3BKO cells (n=1 biological replicate).  
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Consistent with all of the earlier data presented in this chapter, IMG184A detected 

identical polypeptide bands in both HCT116 parental and 3BKO cell lysates. Similarly, 

AB79822 which does not detect ectopically-expressed human DNMT3B, also detected 

identical polypeptide bands in both parental and 3BKO cell lysates. Only SC10236 

detected polypeptide bands present in the WT HCT116 but not the 3BKO (Figure 3-11). 

Interestingly, two antibodies (NB100-266 and NEB M0232) which demonstrated an 

apparent knockdown with some of the DNMT3B shRNAs tested earlier in this chapter 

(Figure 3-6) detect identical polypeptide bands in both the WT and 3BKO HCT116.  

3.4 Discussion 

In this chapter, commercially-available DNMT3B antibodies have been validated by a 

number of methods.  The most significant finding is that the putative DNMT3B antibody 

IMG184A (clone 52A1018) detects murine DNMT3B but not human DNMT3B, which 

casts significant doubts on the validity of the conclusions of two independent studies which 

have linked DNMT3B and CIMP in human colorectal adenocarcinoma using this antibody 

[423,424].  The majority of the antibodies tested detect ectopically expressed human 

DNMT3B (NB100-266, SC10236, NB100-266). Furthermore, all three antibodies reported 

to detect murine DNMT3B (SC10236, IMG184A and NB100-266) were confirmed to 

detect ectopically expressed murine DNMT3B1. 

Interpretation of the data regarding the ability of the respective antibodies to detect 

endogenous DNMT3B are more challenging. The discrepancy between the shRNA 

knockdown, CRISPR knockdown and 3BKO data with regard to antibody specificity is 

clearly extremely difficult to reconcile. Given the design of the targeting construct used to 

generate 3BKO cells it would seem unlikely that the polypeptide targets detected by 

NEBM0232 and NB100-266 represent DNMT3B, as in these cells, exons 2-21 of 

DNMT3B are replaced by a neomycin or hygromycin resistance gene expressed from the 

endogenous DNMT3B promoter. Furthermore however, it seems inconceivable that 

shRNAs specifically designed to target DNMT3B would knockdown a polypeptide target 

other than DNMT3B that is detectable by two independently-designed DNMT3B 

antibodies. Given that the epitope for NEBM0232 corresponds to the carboxy terminus of 

DNMT3B, which exhibits structural homology with that of DNMT3A, the possibility that 

this antibody detects DNMT3A and not DNMT3B was considered. Cross-recognition of 

DNMT3A however would not explain the apparent knockdown demonstrated using 

NB100-266 in shRNA lysates, as the epitope for this antibody is in the N-terminal domain, 
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which does not exhibit the same degree of structural homology as the C-terminal catalytic 

domain [196]. Moreover, BLAST15 analysis of the shRNA sequences was performed and 

was not suggestive of DNMT3A targeting by any of the shRNAs tested.  

Most importantly, the antibody that can most robustly be concluded to detect human 

DNMT3B is SC10236. This antibody (which also detects murine DNMT3B) detects 

ectopically expressed DNMT3B, and exhibited consistent specificity for endogenous 

DNMT3B in shRNA and CRISPR knockdown and 3BKO cells. All subsequent human 

DNMT3B protein analysis presented in this thesis is performed using the SC10236 

antibody unless explicitly stated otherwise. All subsequent murine DNMT3B protein 

analysis presented in this thesis is performed using IMG184A unless stated otherwise. 

3.5 Summary 

1. AB79822 detects neither human DNMT3B nor murine DNMT3B. 

2. IMG184A detects murine DNMT3B but not human DNMT3B. 

3. SC10236 detects both murine DNMT3B and human DNMT3B. 

4. NB100-266 and NEBM0232 detect ectopically expressed human DNMT3B, but their 

reactivity with endogenous human DNMT3B cannot be unambiguously verified. 

5. Lentiviral constructs to direct ectopic expression of human DNMT3B1 and DNMT3B3 

in primary human cells have been developed and validated. 

6. Both shRNA and CRISPR sgRNA constructs have been designed and validated for 

later loss-of-function experiments.  

  

                                                
15 https://blast.ncbi.nlm.nih.gov/Blast.cgi 
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4 Whole genome bisulfite sequencing of the DNA 
methylation changes induced by activated oncogenic 
BRAFV600E 

4.1 Rationale 

As outlined in the introduction to this thesis, a consistent association has been noted 

between BRAFV600E mutation and a CpG island methylator phenotype in colorectal 

adenocarcinoma and precursor sessile serrated lesions [113,116,125,355,360,367,425]. The 

ability of the BRAFV600E oncogene to directly induce the CpG island methylator phenotype 

however remains controversial. Some features associated with CIMP (e.g. promoter CGI 

methylation of CDKN2A/INK4A) have been reported in both in vitro and in vivo model 

systems in association with BRAFV600E activation [47,426]. By comparison, stable 

expression of activated oncogenic BRAF in a CIMP-negative colon cancer cell line 

(COLO 320DM) has been demonstrated to be insufficient to induce a CpG island 

methylator phenotype: although this study used a relatively low-coverage methodology to 

assess CpG island methylation, which assesses only 1505 CpG sites (Illumina GoldenGate 

DNA methylation technology) [362]. Most recently, however a mechanism by which 

mutant-BRAFV600E might directly induce CIMP has been published [364,365]. The 

published evidence concerning the role of the BRAFV600E oncogene in inducing CIMP thus 

remains conflicted. Although activation of mutant-BRAF has been suggested to be an 

initiating event in human serrated colorectal cancer, there is a notable lack of an unbiased 

genome-wide study to examine the consequences of BRAFV600E activation on the DNA 

methylome of normal human cells [46,47]. 

An additional context in which to consider the methylation changes induced by an 

activated oncogenic BRAFV600E oncogene is that of the oncogene-induced senescence 

program, which is triggered by the activation of mutant-BRAFV600E in primary cells [30]. 

Genome wide DNA methylation analysis (by whole genome bisulfite sequencing) in 

primary cells that have undergone replicative senescence has revealed some striking 

parallels between the DNA methylation changes that accompany replicative senescence 

and those associated with cancer. One of the most interesting findings of the latter study 

was that replicatively-senescent primary cells develop focal gains in DNA methylation at 

CpG islands associated with the CpG island methylator phenotype (namely RUNX3, 

CACNA1G, SFRP2, SOCS1 and NEUROG1), and that such changes persist when such 

cells are immortalised and bypass senescence. Furthermore, these methylation changes 
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were associated with upregulation of the de novo methyltransferase DNMT3B, which has 

also been linked mechanistically and correlatively to CIMP [47,281,364,427,428]. 

A model by which aberrant cancer-associated methylation patterns, such as CIMP, might 

have their origins in the oncogene-induced senescence program is attractive, and is of 

particular relevance to the serrated pathway of colon cancer, which is tightly associated 

with the BRAFV600E mutation and thus CIMP, especially in light of the emerging in vivo 

and in situ evidence of a senescence-like tumour suppressor program in its pathogenesis 

reviewed in the introduction to this thesis.  

In this chapter therefore, the DNA methylation changes induced by activated oncogenic 

BRAFV600E will be characterised. 

4.2 Aims 

The specific aims of this chapter are: 

1. To develop an in vitro model of BRAFV600E-induced proliferation arrest. 

2. To compare the DNA methylation changes induced by an activated BRAFV600E 

oncogene to those previously described in replicative senescence. 

3. To assess whether activated mutant-BRAFV600E is sufficient to induce a CpG island 

methylator phenotype in primary cells. 
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4.3 Results 

4.3.1 Establishing a cellular model of BRAFV600E-induced proliferation arrest 

An in vitro model system was required in which to examine the DNA methylation changes 

induced by activated oncogenic BRAFV600E. BRAFV600E-induced oncogene-induced 

senescence has perhaps been most comprehensively characterised in melanocytes [30,429]. 

By contrast, the published data on DNA methylation changes in replicative senescence 

were in a human fetal lung fibroblast model system. To allow direct comparison therefore, 

the decision was made to utilise a similar human fetal lung fibroblast model (IMR-90) for 

these experiments. This approach was further justified in light of the fact that in the initial 

paper characterising BRAFV600E-induced senescence in melanocytes, physiological levels 

of BRAFV600E were demonstrated to induce senescence in human BJ fibroblasts; 

furthermore, previous studies have characterised RAF-induced senescence in fibroblasts 

[30,34]. 

In order to stably transduce primary human fetal lung fibroblasts to ectopically express 

activated oncogenic BRAFV600E, the lentiviral constructs HIV-CS-CG-BRAFV600E-

puromycin and its corresponding empty vector, HIV-CS-CG-puromycin were obtained 

from Prof Daniel Peeper’s laboratory. Plasmid identity was first verified by diagnostic 

restriction digest of both the BRAFV600E and empty vector plasmids. Single and double cut 

digests were performed with NheI, EcoRV and the two enzymes in combination. A single 

cut with NheI or EcoRV linearised the plasmids resolving a band of approximately 8.6kbp 

for the vector and 11kbp for the BRAFV600E plasmid. Double cut with NheI and EcoRV 

resolved two bands, corresponding to the insert and parental plasmid respectively (Figure 

4-1). 

IMR-90 at low passage number (PD<30) were transduced with HIV-CS-CG-BRAFV600E-

puromycin or the empty-vector plasmid. Twenty-four hours after transduction, cells were 

drug-selected with culture media supplemented with 1µg/mL puromycin. Whilst cells 

initially underwent a period of hyperproliferation, BRAFV600E transduced cells developed a 

mixed spindle-like and rounded morphology, did not require further passaging, and at 

seven days post-transduction appeared to have undergone proliferation arrest. Initial 

attempts to characterise this by means of immunocytochemistry for EDU or BrdU, or assay 

for senescence-associated β-galactosidase were unsuccessful, as multiple attempts to 

culture cells on glass coverslips were unsuccessful, due to cell detachment. The decision 

was made to assay the proliferation phenotype of these cells by Western blot for 
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established markers associated with cellular senescence. Whole cell lysates were prepared 

from tissue culture plates, separated by SDS-PAGE, immobilised to PVDF and assessed by 

Western blotting. As demonstrated in Figure 4-2, in comparison to proliferating (“vector”) 

controls, BRAFV600E-transduced fibroblasts demonstrated upregulation of the cell cycle 

inhibitors p16 and p27, and repression of cyclin A, and phosphorylated pRb (Ser807/811) 

relative to total pRb. In sum, BRAFV600E induces a proliferation arrest phenotype in IMR-

90 at the 7 day timepoint. As prolonged maintenance of these cells in culture could not be 

achieved, this phenotype is referred to hereafter as BRAF-induced proliferation arrest, as it 

cannot unambiguously be characterised as senescence.   
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Figure 4-1 Schematic diagrams and diagnostic restriction digests of HIV-CS-CG-Puromycin 
and HIV-CS-CG-BRAFV600E-Puromycin 

(a) Schematic diagrams of lentiviral plasmids used for transduction of IMR-90 human fetal lung 
fibroblasts. (b) Diagnostic restriction digests were performed in order to verify plasmid identity prior 
to transduction. A single cut with NheI or EcoRV linearised the plasmids resolving a band of 
approximately 8.6kbp for the vector and 11kbp for the BRAFV600E plasmid. Double cut with NheI 
and EcoRV resolved two bands, corresponding to the insert and parental plasmid respectively. 
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Figure 4-2 BRAFV600E induces a proliferation arrest phenotype in human fetal lung 
fibroblasts (IMR-90) 

Western blot of protein lysates from human fetal lung fibroblasts (IMR-90) transduced with 
lentivirus directing expression of BRAFV600E or the corresponding empty vector. Cells were 
harvested for protein lysates seven days following transduction. Whole cell lysates were separated 
by SDS-PAGE, immobilised to PVDF and assessed by Western blotting. Analysis of protein 
expression of cell-cycle regulators reveals a proliferation arrest phenotype associated with acute 
BRAFV600E  activation, with repression of cyclin A, and upregulation of p16 associated with 
dephosphorylation of pRb. Upregulation of the cell cycle inhibitor p27 was also demonstrated (n=3 
biological replicates). 
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4.3.2 Comparison of the DNA methylation changes in BRAF-induced 
proliferation arrest and replicative senescence 

In order to characterise the DNA methylation changes induced by activated oncogenic 

BRAFV600E, human fetal lung fibroblasts were once again transduced with HIV-CS-CG-

BRAFV600E-puromycin or the corresponding empty vector, drug-selected with puromycin, 

and harvested for DNA. Two independent biological replicates were performed for each 

condition. As detailed above, BRAFV600E-transduced IMR-90 were deemed to have 

undergone proliferation arrest at 7 days post-transduction, and were harvested at this 

timepoint. In order to minimise artefact generated by passaging, proliferating, “vector” 

controls were harvested at 3 days post transduction, to ensure that both “vector” and 

“BRAF” populations had undergone approximately equivalent population doublings. 

Genomic DNA was extracted from “vector” and BRAFV600E transduced populations using 

the Qiagen QiaAmp DNA blood mini kit according to the manufacturer’s protocol. Prior to 

whole genome bisulfite sequencing, DNA samples were quantified using the Qubit DNA 

assay, and measurement of OD at 260/280 was performed (data not shown). Furthermore, 

DNA samples were tested by agarose gel electrophoresis, to confirm isolation of genomic 

DNA (Figure 4-3).  

Whole genome bisulfite sequencing was performed by BGI, Shenzhen. A summary of the 

protocol is given in chapter 2. Data alignment and subsequent analysis was performed by 

Mr Neil Robertson, a computational biologist in the Adams’ lab at the Beatson Institute for 

Cancer Research, Glasgow.  For direct comparison of the DNA methylation changes in this 

BRAFV600E-induced proliferation arrest system with those previously reported in 

replicative senescence, whole-genome bisulfite sequencing data for replicative senescence 

and proliferating cells generated by Dr Hazel Cruickshanks, a previous post-doctoral 

researcher in the Adams’ lab were employed [281].  

Following initial alignment and processing of WGBS data, both independent replicates of 

“vector” control and BRAFV600E transformed populations were subject to principal 

component analysis. In comparison to replicative senescence, principal component analysis 

did not significantly separate the methylome of BRAFV600E-expressing cells and “vector” 

controls by cohort: with the first, second and third components accounting for 35.3%, 

32.6% and 31.9% of the cumulative variance respectively.  By comparison, the replicative 

senescence cohorts displayed high levels of divergence between cohorts on the first 

principal component (56.6% of cumulative variance). In sum, this indicates that in the 

comparison of “vector” control and BRAF conditions, replicates were not substantially 
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different based on BRAFV600E status, in comparison to proliferating and replicative 

senescence replicates, which clustered much more distinctly by cellular phenotype (Figure 

4-4).  

In order to characterise the global DNA methylation changes associated with activated 

oncogenic BRAFV600E, global CpG methylation was calculated at each CpG across both 

replicates for each condition. The same comparison was performed in replicatively 

senescent and proliferating controls. In the BRAFV600E population, 63.4% of CpGs were 

methylated in comparison to 63.14% of proliferating “vector controls”: corresponding to a 

0.26% increase in global methylation associated with an activated BRAFV600E oncogene. 

By comparison, in proliferating (PD28) IMR-90, 65.8% of CpGs were methylated, and in 

replicatively senescent (PD88) fibroblasts, 59.22% of CpGs were methylated, accounting 

for a 6.58% reduction in global methylation. Thus whilst activated mutant-BRAFV600E is 

associated with a global gain in methylation, the magnitude of this change is much more 

subtle than the reduction in CpG methylation associated with replicative senescence 

(Figure 4-5, Figure 4-6).     

In order to facilitate further dissection of the methylation changes accompanying 

BRAFV600E activation, and investigate the variance between these, and those accompanying 

replicative senescence, the genome was next divided into base-pair “windows” in order to 

define differentially-methylated regions (DMRs). The low coverage (10 reads per CpG) 

provided by WGBS makes accurate “calling” of the methylation status of any single CpG 

difficult as low numbers of reads can introduce constant scaling factors. The use of 

“windowing” increases the number of reads for any given region, with a resultant increase 

in the accuracy of methylation “calls”. Consistent with the observed modest increase in 

global CpG methylation associated with BRAFV600E in comparison to “vector” control 

cells, relative to the much larger contrast seen between replicatively senescent and 

proliferating populations, the number of DMRs associated with BRAFV600E activation was 

significantly lower than in replicative senescence: several thousand (BRAFV600E) compared 

to several million (RS). Furthermore, variation in the size of candidate DMRs from 50bp to 

1000bp did not significantly alter this vast difference in DMR number (Figure 4-7).     

The distribution of observed DMRs was next compared, by plotting the base-pair overlap 

of DMRs by genomic feature (Figure 4-8). Whilst the latter provides an impression of the 

distribution of DMRs across genomic features, it can provide a skewed picture due to the 

significant differences in size between particular genomic features. Thus, in order to obtain 
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a clearer impression of the relative distribution of differentially methylated regions with 

respect to individual genomic features, the observed-to-expected ratio for DMRs at 

individual genomic features was calculated and plotted. Overlaps were computed on a per 

base pair basis between two datasets (A and B). For every region within A the number of 

base pairs that were occupied by a region within B was computed. A permutation test was 

carried out to determine the background genomic average expected overlap. 1000 sets of 

regions with properties (length distribution and chromosome distribution) equal to those of 

set B were generated. Randomly generated regions of B were prevented from being 

generated within unsequenced regions of the genome (as defined by UCSC mapping and 

sequencing track—gap). The overlap of A and B was repeated for each randomly 

generated set of B to determine the average expected random overlap. Next, p-values were 

estimated empirically from the observed overlaps of the randomly generated sets16.  

Interestingly, although the total number of DMRs associated with BRAFV600E were 

relatively few in number, observed-to-expected plots revealed some interesting trends. The 

most significant relative enrichment of hypermethylated DMRs was at CpG islands, and 

the fold-overlap was in fact much greater than that observed in replicative senescence. 

Furthermore, there was a further enrichment of hypermethylated DMRs at CpG shores, and 

once again the fold-overlap at this feature was much greater than observed in replicative 

senescence. Interestingly, the most significant enrichment of hypomethylated DMRs was at 

enhancers. Hypomethylation of enhancers has recently been described in association with 

cancer-specific gene expression [169]. Thus whilst the overall methylation changes 

associated with activated BRAFV600E were very subtle, those observed did exhibit some 

interesting parallels with what one might consider a cancer methylation phenotype (Figure 

4-9).   

                                                
16 Overlap computation method from, Cruickshanks HA, McBryan T, Nelson DM, Van der Kraats ND, Shah 
PP, van Tuyn J, et al. Senescent cells harbour features of the cancer epigenome. Nat Cell Biol. 2013 Nov 
24;15(12):1495–506 
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Figure 4-3 Genomic DNA was isolated from IMR-90 human fetal lung fibroblasts transformed 
with HIV-CS-CG-puromycin or HIV-CS-CG-BRAFV600E-puromycin, and DNA methylation 
assessed by whole genome bisulfite sequencing. 

(a) Schema of experimental design. Human fetal lung fibroblasts transduced with lentiviral-directed 
ectopic expression of BRAFV600E or the corresponding empty vector. (b) Extraction of genomic DNA 
was confirmed by agarose gel electrophoresis prior to submission for whole genome bisulfite 
sequencing. 
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Figure 4-4 Principal-component analysis did not significantly separate the methylome of 
BRAFV600E-expressing cells compared to that of proliferating controls.  

Following initial alignment and processing of WGBS data, principal component analysis (PCA) was 
undertaken to compare the variance in methylation data between BRAFV600E and proliferating 
(vector) controls, and proliferating (PD28) and replicatively senescent (PD88) cells. (a) PCA did not 
significantly separate the methylome of BRAFV600E-expressing cells and “vector” controls by cohort: 
with the first, second and third components accounting for 35.3%, 32.6% and 31.9% of the 
cumulative variance respectively.  (b) By comparison, the replicative senescence cohorts displayed 
high levels of divergence between cohorts on the first principal component (56.6% of cumulative 
variance). In sum, this indicates that in the comparison of “vector” control and BRAF conditions, 
replicates were not substantially different based on BRAFV600E status, in comparison to proliferating 
and replicative senescence replicates, which clustered much more distinctly by cellular phenotype.  

(a) 

(b) 
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Figure 4-5 BRAFV600E evokes a modest increase in global methylation, compared to the 
profound hypomethylation associated with replicative senescence 

(a) Mean global percentage change in methylation was compared between BRAF-induced 
proliferation arrest and proliferating “vector” populations and replicatively-senescent fibroblasts and 
proliferating controls. A modest increase in global methylation of 0.26% is observed upon activation 
of BRAFV600E compared to a reduction of 6.58% in global methylation in replicative senescence 
(n=2 biological replicates; error bars represent SEM; unpaired t-test p=0.006). (b) Graphical 
representation of a representative region of chromosome 10 demonstrating the lack of substantial 
methylation changes induced by BRAFV600E compared to regions of marked hypomethylation 
associated with replicative senescence.  

  

Vector 

BRAF 

Proliferating 

Replicative 
Senescence 

% Change in 
methylation  

(Vector Vs BRAF) 

% Change in 
methylation  

(proliferating Vs 
replicative 

senescence) 

(a) 

(b) 

BRAF
V600E

Rep
lic

ati
ve

 S
en

es
ce

nce
-8

-6

-4

-2

0

2

M
ea

n 
gl

ob
al

 p
er

ce
nt

ag
e 

ch
an

ge
 in

 m
et

hy
la

tio
n



  111 

 

 

Figure 4-6 Smoothened scatterplots of CpG methylation changes in BRAFV600E-induced 
proliferation arrest and replicative senescence 

Smoothened scatter plots of percentage CpG methylation in 2kbp windows in (a) BRAFV600E-
induced proliferation arrest compared to proliferating “vector” controls and (b) replicatively 
senescent fibroblasts compared to proliferating controls. Colour intensity denotes the number of 
data points per pixel (red = highest density of points).  (a) Activated BRAFV600E induces very little 
demonstrable change in percentage CpG methylation relative to proliferating “vector” controls. (b) 
By comparison, in replicative senescence there is global loss of methylation (particularly mid-band 
methylation) relative to proliferating controls. 
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Figure 4-7 Comparison of number of differentially methylated regions (DMRs) by window 
size in BRAFV600E-induced proliferation arrest and replicative senescence 

Differentially methylated regions (DMRs) were called by dividing the genome into base-pair 
“windows”. Consistent with the observed modest increase in global CpG methylation associated 
with BRAFV600E in comparison to “vector” control cells, relative to the much larger contrast seen 
between replicatively senescent and proliferating populations, the number of DMRs associated with 
BRAFV600E activation is significantly lower than in replicative senescence. (a) Line graph and bar-
chart of DMR number by window size comparing vector and BRAFV600E populations. Even adjusting 
the window size, relatively few DMRs (several thousand) are identified between vector- and 
BRAFV600E-transduced IMR-90 (b) Line graph and bar-chart of DMR number by window size 
comparing proliferating and replicatively senescent populations. By comparison, several million 
DMRs are identified between proliferating cells and those that have undergone replicative 
senescence.  
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Figure 4-8 Overlap of DMRs at genomic features in BRAFV600E-induced proliferation arrest 
and replicative senescence 

Bar-charts of basepair overlap of DMRs at genomic features in (a) BRAFV600E-induced proliferation 
arrest and (b) replicative senescence.  Reflecting the significantly smaller number of DMRs 
associated with activated oncogenic BRAFV600E in comparison to replicative senescence, a 
correspondingly smaller DMR base-pair overlap across all genomic features is demonstrable in 
association with activated BRAFV600E compared with replicative senescence.  
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Figure 4-9 Comparison of observed to expected ratios of DMR overlap between BRAFV600E-
induced proliferation arrest and replicative senescence. 

Bar-charts of observed to expected DMR overlap by genomic feature in (a) BRAFV600E-induced 
proliferation arrest and (b) replicative senescence. Despite the numerical lack of DMRs associated 
with activated oncogenic BRAFV600E, these observed-to-expected plots revealed some interesting 
trends. The most notable relative enrichment of hypermethylated DMRs is at CpG islands, where 
the fold-overlap is greater than that observed in replicative senescence. Furthermore, there is 
further enrichment of hypermethylated DMRs at CpG shores, where again the fold-overlap is much 
greater than observed in replicative senescence. There is also marked enrichment of 
hypomethylated DMRs at enhancers associated with activated BRAFV600E.  
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4.3.3 Activated oncogenic BRAF downregulates expression of DNMT3B and 
does not induce a CpG island methylator phenotype 

Overall, compared to replicative senescence, activated oncogenic BRAFV600E induces only 

a very modest change in global methylation relative to proliferating “vector” controls. 

Despite this, as outlined above, in contrast to replicative senescence, activated oncogenic 

BRAFV600E appears to cause a small overall gain in global methylation, with relative 

enrichment of hypermethylated DMRs at CpG islands when assessed in an “observed to 

expected” manner. As CpG island hypermethylation is a defining feature of the CpG island 

methylator phenotype (CIMP), it was of interest to assess whether the modest gains in CpG 

island methylation detected by analysis of the WGBS data corresponded to a CIMP 

phenotype.  

As outlined in chapter 1, various marker panels have been proposed for the characterisation 

of CIMP positivity in colorectal adenocarcinoma. For this analysis, the CIMP panel 

described by Ogino et al. [310] was selected (CACNA1G, CDKN2A, CRABP1, MLH1 and 

NEUROG1). In order to assess CpG island methylation at these loci, individual methylated 

base-calls in proliferating “vector” cells and BRAFV600E-transformed cells at each “CIMP 

panel gene” were compared, and plotted as “smoothened methylation” plots. Notably, CpG 

island hypermethylation at CIMP genes was not observed in any of the five CIMP panel 

genes assessed when comparing BRAFV600E-expressing cells to proliferating controls, and 

no overlap was observed between the previously identified DMRs and the CpG islands of 

the aforementioned CIMP genes when examined by intersecting the previously identified 

DMRs with their respective promoter CpG island sites (Figure 4-10). Interestingly, this is 

in contrast to replicative senescence, in which hypermethylation of CpG island CpGs in 

certain “CIMP marker” genes (RUNX3, CACNA1G, SFRP2, SOCS1 and NEUROG1) has 

been described compared to proliferating controls [281].  

In replicative senescence, in addition to the observed gains in methylation at CpG islands 

traditionally associated with CIMP, increased DNMT3B expression was noted in senescent 

fibroblasts compared to proliferating controls. As a CIMP phenotype was not evident in 

association with BRAFV600E activation in this model system, and in view of the published 

evidence linking BRAFV600E, DNMT3B and CIMP, it was pertinent to examine the effects 

of acute BRAFV600E activation on DNMT3B expression. Whole cell lysates were prepared 

from proliferating “vector” and BRAFV600E-transformed controls, separated by SDS-

PAGE, immobilised to PVDF, and DNMT3B protein expression compared by Western 

blotting with a validated DNMT3B antibody. Significantly, and in keeping with the 
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observed lack of a CIMP-phenotype in this population, BRAFV600E-transduced cells 

exhibited marked repression of DNMT3B protein expression compared to proliferating 

“vector” controls (Figure 4-11).      
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Figure 4-10 BRAFV600E does not induce a CpG island methylator phenotype (CIMP) 

Smoothened methylation plots of CIMP panel genes [310] in vector and BRAFV600E-expressing 
cells. A CpG island methylator phenotype is not observed upon activation of BRAFV600E. Red and 
blue lines indicate the smoothened average percentage methylation at corresponding CpGs. 
Individual CpGs are indicated by black “ticks” along the x-axis. The TSS is marked by a black arrow 
(é). No significant change in CIMP gene promoter CpG island methylation is noted between 
BRAFV600E-expressing cells and proliferating controls. 
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Figure 4-11 Acute BRAFV600E activation in human fetal lung fibroblasts (IMR-90) 
downregulates protein expression of the de novo methyltransferase DNMT3B. 

Western blot of whole cell protein lysates from human fetal lung fibroblasts (IMR-90) transduced 
with lentivirus directing expression of BRAFV600E or the corresponding empty vector. Whole cell 
lysates were separated by SDS-PAGE, immobilised to PVDF and assessed by Western blotting for 
DNMT3B and BRAF. Consistent with the lack of a CIMP phenotype in human fetal lung fibroblasts 
transformed with activated oncogenic BRAFV600E, striking downregulation of protein expression of 
DNMT3B is observed upon activation of BRAFV600E (n=2 biological replicates). 
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4.4 Discussion 

In this chapter, whole genome bisulfite sequencing has been used to assess, at base-pair 

resolution, the DNA methylation changes associated with activated oncogenic BRAFV600E 

in primary human cells. These data are interpretable, and have been presented in two 

different but potentially interrelated contexts: namely oncogene-induced senescence and 

the CpG island methylator phenotype. Both the former and the latter are features associated 

with the serrated pathway of colorectal adenocarcinoma [46,47,116,430,431]. 

Significantly, in comparison to replicative senescence, BRAFV600E-induced proliferation 

arrest is associated with a much less dramatic change in global DNA methylation, and is 

associated with a very modest overall increase in CpG methylation. Despite the significant 

difference in the order of magnitude of observed DMRs associated with activated 

BRAFV600E when compared to replicative senescence (several million in replicative 

senescence compared to several thousand with activated BRAFV600E), a relative enrichment 

for CpG island CpGs is noted in the observed hypermethylated DMRs associated with 

BRAFV600E. Despite this, and in contrast to the previously published data in replicative 

senescence, specific analysis of these CpGs with respect to a recognised CIMP marker 

panel demonstrates that mutant-BRAFV600E does not induce a CpG island methylator 

phenotype in this in vitro model system. Furthermore, consistent with the observed lack of 

a CIMP phenotype in this cell population, and once again in direct contrast to replicative 

senescence, proliferation arrest induced by BRAFV600E is associated with repression of the 

de novo methyltransferase DNMT3B.   

These data must be interpreted with certain caveats: most of which are related to the model 

system in which these experiments were performed. A primary human fibroblast cell 

culture model system was selected in order to allow direct comparison of the DNA 

methylation changes induced by activated oncogenic BRAFV600E and those previously 

published in replicative senescence in the same model system. This system did however 

add an additional design constraint to the experiment, as IMR-90 transduced with 

BRAFV600E for periods of greater than seven days exhibited progressive apoptosis and 

detachment in culture dishes, and a viable population from which to allow significant 

quantities of DNA to be extracted for WGBS17 could not be achieved after the 7 day 

timepoint. Resultantly, the DNA methylome of BRAFV600E is assayed in the acute setting, 

                                                
17 >5µg genomic DNA were required for WGBS at the time these experiments were performed, although 
recent advances in single-cell sequencing technology mean that sequencing can be performed from as little as 
100ng of DNA. 
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in comparison both to the prolonged period in cell culture associated with the development 

of replicative senescence, and the prolonged period associated in vivo between the 

development of a pre-neoplastic lesion with an activated BRAFV600E oncogene (e.g. 

hyperplastic polyp or SSA/P) and the subsequent development of a CIMP-high cancer. It is 

therefore not possible to exclude the possibility that longer-term activation of BRAFV600E 

oncogene is associated with more profound changes in DNA methylation than have been 

characterised herein: although it is notable that in vivo, both CIMP and aberrant CpG 

island hypermethylation more generally are reported to develop progressively throughout 

the process of neoplastic transformation [45,125,360].  

By contrast, a potential strength of the use of fetal lung fibroblasts as a model system is the 

avoidance of potentially confounding variables introduced by examining DNA methylation 

changes induced by an oncogene in cancer cell lines, though notably, the data presented in 

this chapter would support the findings of a similar, albeit lower coverage, study 

performed by stable transfection of a colon cancer cell line with mutant-BRAFV600E, which 

similarly concluded that the latter was insufficient to induce CIMP [362].  

The model system employed also means that the observed DNMT3B repression 

demonstrable on acute BRAFV600E activation should also be interpreted with certain 

caveats. It has previously been reported that cells arrested in G0/G1 express lower levels of 

mRNA of both DNMT1 and DNMT3B [432]. Whilst the formal possibility that DNMT3B 

repression is a consequence of cell-cycle arrest and not acute BRAFV600E activation per se 

has not been specifically excluded here, some counterarguments to this alternative 

hypothesis can be raised. Firstly, it has previously been demonstrated that RAF activation 

arrests the cell cycle in G2/M phase rather than G1, where the reported nadir in DNMT3B 

mRNA expression is at its lowest [34,432]. Furthermore, in the context of the archetypal 

proliferation arrest phenotype, cellular senescence, it has been demonstrated that DNMT3B 

protein expression is in fact elevated [279,281].  

4.5 Summary 

1. In comparison to replicative senescence which is accompanied by significant CpG 

hypomethylation, BRAFV600E-induced proliferation arrest is associated with a modest 

overall gain in CpG methylation.  

2. In comparison to replicative senescence however, cells that have undergone BRAFV600E 

–induced proliferation arrest exhibit far fewer differentially methylated regions. 
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3. Hypermethylated differentially methylated regions in BRAFV600E-induced proliferation 

arrest show relative enrichment at CpG islands.  

4. Despite the apparent enrichment of hypermethylated DMRs at CpG islands associated 

with BRAFV600E; activation of this oncogene is insufficient to induce a CpG island 

methylator phenotype in primary cells. 

5. Acute BRAFV600E activation in primary cells represses DNMT3B expression, which 

may be consistent with the failure of the former to induce a CpG island methylator 

phenotype. 
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5 In vitro modelling of functional cooperation between 
BRAFV600E and DNMT3B  

 
5.1 Rationale 

In the previous chapter it was demonstrated that acute BRAFV600E activation in human fetal 

lung fibroblasts results in downregulation of DNMT3B at the protein level. This result 

contradicts previous studies, which have functionally linked DNMT3B and activated 

BRAFV600E. In a murine intestinal tumour model induced by activated oncogenic BrafV600E, 

DNMT3B expression is elevated at both the mRNA and protein level upon BrafV600E 

activation [47]. Furthermore in human colorectal adenocarcinoma, elevated DNMT3B 

expression has been demonstrated to correlate with CIMP-H, which itself has been closely 

associated with BRAFV600E mutation status [116,415]. Additionally, mutant-BRAFV600E has 

been proposed to directly mediate CIMP through DNMT3B [364]. DNMT3B has also been 

demonstrated to exhibit an oncogenic function in murine intestinal carcinogenesis, 

although these studies were not performed in the context of an activated Braf oncogene 

[205,433]. Considering the strength of the published data suggesting functional 

cooperation between activated mutant-BRAFV600E and DNMT3B, and as the repression of 

DNMT3B consequent upon acute BRAFV600E activation demonstrated in the previous 

chapter was limited to an in vitro model in primary human fetal lung fibroblasts, it is 

pertinent to investigate functional cooperation between BRAFV600E and DNMT3B. 

Moreover, as DNMT3B has previously been demonstrated to induce a CIMP-like 

phenotype in murine intestinal tumours, which exhibits significant commonality with the 

DNA methylation changes seen in human colorectal adenocarcinoma, this has the dual 

purpose of modelling a putative oncogenic function of CIMP in the context of an activated 

BRAF oncogene [434]. 

5.2 Aims 

The specific aims of this chapter are: 

(a) To develop an in vitro model system to assess functional cooperation between 

activated oncogenic BRAFV600E and DNMT3B. 

(b) To investigate the mechanism of functional cooperation between BRAFV600E and 

DNMT3B.  
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(c) To investigate the functional consequences of DNMT3B knockdown in colon 

cancer cell lines. 

5.3 Results 

5.3.1 Ectopic expression of DNMT3B suppresses BRAF-induced 
proliferation arrest 

In order to investigate the functional consequences of DNMT3B overexpression together 

with activated oncogenic BRAFV600E, an in vitro model system in primary human fetal lung 

fibroblasts (IMR-90) was employed. Cells were transformed with lentiviral constructs 

directing ectopic expression of BRAFV600E or DNMT3B. Lentiviral constructs for ectopic 

DNMT3B1 and DNMT3B3 were characterised in chapter 3 of this thesis, and were 

designed with a puromycin drug selection marker. The BRAFV600E ectopic expression 

plasmid used in the previous chapter also includes a puromycin drug selection marker. In 

order to allow simultaneous transduction of cells with dual-drug selection to confirm 

double-infection of the transduced cell population, a modified version of the HIV-CS-CG-

BRAFV600E-puromycin plasmid and its corresponding empty vector were obtained from the 

Peeper laboratory in which the puromycin resistance gene in the open reading frame is 

replaced by a blasticidin resistance gene. Four separate conditions were established in 

order to appropriately control the experimental design, and are summarised in Table 5-1 

below. 

Table 5-1 Experimental design for double transduction experiments 

Condition HIV-CS-CG-
Blasticidin 

HIV-CS-CG-
BRAFV600E-
blasticidin 

pLenti6-
puromycin 

pLenti6-
DNMT3B1-
puromycin 

“Double vector”  ✔  ✔  

“DNMT3B1 only” ✔   ✔ 

“BRAF only”  ✔ ✔  

“BRAF/DNMT3B1”  ✔  ✔ 
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Human fetal lung fibroblasts (IMR-90) at low passage number (PD<30) were first 

transduced with either pLenti6-puromycin or pLenti6-DNMT3B1-puromycin. Twenty-four 

hours after transduction, cells were drug-selected with culture media supplemented with 

1µg/mL puromycin. After passaging, a second transduction was performed with either 

HIV-CS-CG-blasticidin or HIV-CS-CG-BRAFV600E-blasticidin. Twenty-four hours after 

the second transduction, dual-drug selection was performed by exchange of the culture 

media for culture media supplemented with 1µg/mL puromycin and 5µg/mL blasticidin. 

Initial observations of the cells in culture suggested that combined BRAF/DNMT3B1 

transduction resulted in an altered BRAF phenotype. Cells transformed with both BRAF 

and DNMT3B1 did not develop the characteristic “spindle-like” morphology induced by 

activated oncogenic BRAF in the “BRAF-only” cells, and appeared to continue to 

proliferate (Figure 5-1). In order to fully characterise this apparent phenotypic difference, 

protein lysates were generated from cell populations at various time-points post 

transduction (3 days, 5 days, 7 days and 10 days) for analysis by western blot. Separately, 

cells were labelled with BrdU and propidium iodide at the same time-points for subsequent 

cell cycle analysis by FACS. “Double vector” and “DNMT3B1 only” cell populations, 

which were expected to be “proliferating controls” were assayed in the same fashion at a 

single time point 48 hours post-transduction, termed “time zero”.  

Efficient expression of both BRAF and DNMT3B1 was confirmed by western blot at all 

time-points assessed (Figure 5-2). When expressed on its own, activated mutant-

BRAFV600E induced a marked decrease in the percentage of cells in S-phase of the cell 

cycle, consistent with the previously described ability of this oncogene to induce 

proliferation arrest in primary cells [30,429]. The decline in cells in S-phase was 

accompanied by decreased abundance of cell cycle drivers: cyclin A, EZH2, and 

phosphorylated Rb relative to total Rb. Consistent with the observed phenotype discussed 

above, combined expression of ectopic DNMT3B1 with BRAFV600E increased the 

proportion of cells in S-phase at all time-points assayed: an effect also observed in the 

“DNMT3B only” control. In BRAFV600E/DNMT3B1 cells, this increase in S-phase cells 

was accompanied by increased expression of cyclin A, EZH2 and phosphorylated Rb; and 

at the 7 day time-point, a reduction in expression of the cell-cycle inhibitor, 

CDKN1B/p27KIP1 (Figure 5-2, Figure 5-3, Figure 5-4).     
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Figure 5-1 Clear morphological differences were noted upon combined ectopic expression 
of DNMT3B1 and BRAFV600E in human fetal lung fibroblasts compared to BRAFV600E alone 

Representative photographs of human fetal lung fibroblasts (IMR-90) seven days following 
transduction with (a) HIV-BRAFV600E-CS-CG-blasticidin + pLenti6-puromycin or (b) HIV-BRAFV600E-
CS-CG-blasticidin + pLenti6-DNMT3B1-puromycin. Cells transformed with activated oncogenic 
BRAFV600E and DNMT3B1 (b) did not acquire the same spindle-like morphology developed by 
those expressing BRAFV600E alone (a), and exhibited higher density, consistent with ongoing 
proliferation. Scale bar = 200µM; n=3 biological replicates. 
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Figure 5-2 Ectopic expression of DNMT3B1 antagonises BRAFV600E-induced proliferation 
arrest 

Western blot of whole cell lysates from human fetal lung fibroblasts (IMR-90) at “time zero”, 3, 5, 7 
and 10 days following transduction with (a) HIV-blasticidin + pLenti6-puromycin (b) HIV-blasticidin 
+ pLenti6-DNMT3B1-puromycin (c) HIV-BRAFV600E-blasticidin + pLenti6-puromycin or (d) HIV-
BRAFV600E-blasticidin + pLenti6-DNMT3B1-puromycin. At the seven day time-point, combined 
DNMT3B1 and BRAF expression resulted in increased expression of the proliferation markers 
cyclin A, EZH2, and phosphorylated Rb, and repression of the cell-cycle-inhibitor p27KIP/CDKN1B 
(n=3 biological replicates).  
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Figure 5-3 Ectopic DNMT3B1 expression impairs BRAFV600E-induced proliferation arrest 

BrdU FACS plots of human fetal lung fibroblasts (IMR-90) at “time zero”, 3, 5, 7 and 10 days post-
transduction with (1) HIV-blasticidin + pLenti6-puromycin (2) HIV-blasticidin + pLenti6-DNMT3B1-
puromycin (3) HIV-BRAFV600E-blasticidin + pLenti6-puromycin or (4) HIV-BRAFV600E-blasticidin + 
pLenti6-DNMT3B1-puromycin. When expressed on its own, BRAFV600E results in a marked 
decrease in the percentage of cells in S-phase. Combined DNMT3B1 and BRAF expression 
resulted in an impaired proliferation arrest phenotype at all time-points examined, with a greater 
percentage of cells in S-phase (n=1 biological replicate). 
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Figure 5-4 Ectopic DNMT3B1 expression impairs BRAFV600E-induced proliferation arrest 

Graphical representation of percentage of cells in S-phase at “time zero”, 3, 5, 7 and 10 days post-
transduction with (1) HIV-blasticidin + pLenti6-puromycin (2) HIV-blasticidin + pLenti6-DNMT3B1-
puromycin (3) HIV-BRAFV600E-blasticidin + pLenti6-puromycin or (4) HIV-BRAFV600E-blasticidin + 
pLenti6-DNMT3B1-puromycin. BrdU FACS analysis was undertaken to assay the percentage of 
cells in S-phase at “time zero”, 3, 5, 7 and 10 days post-transduction for each condition. When 
expressed on its own, BRAFV600E results in a marked decrease in the percentage of cells in S-
phase. Combined DNMT3B1 and BRAF expression resulted in an impaired proliferation arrest 
phenotype at all time-points examined, with a greater percentage of cells in S-phase (n=1 
biological replicate). 
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As highlighted in the introduction to this thesis, multiple splice isoforms of DNMT3B have 

been characterised, and importantly, some of these have been linked mechanistically to 

cancer despite lacking an intact catalytic domain [222,435]. DNMT3B3, is one such 

isoform deplete of an intact C-terminal catalytic domain. Whilst initially characterised as 

lacking catalytic activity, subsequent studies have suggested that this is an over-

simplification, and that DNMT3B3 may have a modest stimulatory effect on DNA 

methylation, by interaction with other DNA methyltransferases [220,224,225]. In view of 

the functional evidence linking truncated DNMT3B isoforms and cancer, it was pertinent 

to explore whether the observed antagonistic effect of DNMT3B1 upon the BRAFV600E-

induced proliferation arrest program was dependent on its catalytic domain. In view of the 

reported stimulatory effects of DNMT3B3 on DNA methylation, this experiment does not 

exclude the possibility of a DNA methylation-mediated mechanism, but does determine 

whether the catalytic domain is dispensable to the observed DNMT3B phenotype. In 

chapter 3, a lentivirus construct, pLenti6-DNMT3B3-puromycin, was developed to allow 

direction of this particular DNMT3B isoform in primary human cells. IMR-90 human fetal 

lung fibroblasts at low passage number (PD<30) were once again transformed with 

pLenti6-DNMT3B1-puromycin (DNMT3B1), pLenti6-DNMT3B3-puromycin 

(DNMT3B3) or the corresponding empty vector (pLenti6-puromycin).  Twenty-four hours 

after transduction, cells were drug-selected with culture media supplemented 1µg/mL 

puromycin. After passaging, a second transduction was performed with either HIV-CS-

CG-blasticidin or HIV-CS-CG-BRAFV600E-blasticidin. Twenty-four hours after the second 

transduction, dual-drug selection was performed by exchange of the culture media for 

culture media supplemented with 1µg/mL puromycin and 5µg/mL blasticidin.  

As the 7 day time-point was assessed to represent the most marked phenotypic dichotomy 

between “BRAF only” and “BRAF/DNMT3B1” cell populations in the earlier “time-

course” experiment, this time-point was selected for analysis. Whole cell lysates were 

prepared from each condition at 7 days post-transduction, separated by SDS-PAGE, and 

proliferation genes assessed by Western blot. BrdU FACS analysis was not performed in 

this experiment. Robust expression of BRAF, DNMT3B1 and DNMT3B3 was confirmed 

by Western blot. At the 7 day time-point, both “BRAF/DNMT3B1” and 

“BRAF/DNMT3B3” cells expressed higher levels of the proliferation markers cyclin A, 

EZH2, and phosphorylated Rb than “BRAF only” controls, suggesting that the antagonistic 

effect of DNMT3B on BRAFV600E-induced proliferation arrest is not dependent on the 

catalytic domain of the former (Figure 5-5).  



  130 

 

Figure 5-5 The antagonistic effects of DNMT3B on BRAF-induced proliferation arrest may 
not be related to its catalytic activity 

Western blot of whole cell lysates from human fetal lung fibroblasts (IMR-90) seven days following 
transduction with (1) HIV-blasticidin + pLenti6-puromycin (2) HIV-blasticidin + pLenti6-DNMT3B1-
puromycin (3) HIV-blasticidin + pLenti6-DNMT3B3-puromycin (4) HIV-BRAFV600E-blasticidin + 
pLenti6-puromycin (5) HIV-BRAFV600E-blasticidin + pLenti6-DNMT3B1-puromycin or (6) HIV-
BRAFV600E-blasticidin + pLenti6-DNMT3B3-puromycin. Combined DNMT3B1 and BRAF or 
DNMT3B3 and BRAF expression resulted in increased expression of the proliferation markers 
cyclin A, EZH2, and phosphorylated Rb, relative to BRAF alone (n=1 biological replicate).  
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5.3.2 RNA-sequencing 

In order to facilitate functional dissection of the mechanisms underlying the antagonistic 

effects of DNMT3B1 on BRAF-induced proliferation arrest, genome-wide expression 

analysis was performed on human fetal lung fibroblasts (IMR-90) transduced and drug-

selected in an identical fashion to that described in section 5.3.1 above. The decision was 

made only to examine DNMT3B1 in this experiment. Once again, the 7 day time-point was 

selected for analysis given the consistent phenotypic dichotomy observed at this time-point 

in the earlier “time-course”. Cells from each of the four previously described conditions 

(“double vector”, “DNMT3B1 only”, “BRAF only” and “BRAF/DNMT3B1”  (refer Table 

5-1) were harvested for RNA 7 days post-transduction in biological triplicate.  

Prior to RNA-sequencing, RNA integrity was assessed using the Agilent RNA ScreenTape 

assay (Figure 5-6). An assessment of RNA quality is summarised using the RNA integrity 

number (RIN), with an RIN>8 preferred prior to RNA-sequencing [436]. With RNA of 

sufficient quality for RNA-sequencing confirmed, RNA from each of the three biological 

replicates for all four conditions was submitted for RNA-sequencing by the Cancer-

Research UK sequencing facility at the Beatson Institute for Cancer Research. The RNA-

sequencing method has already been discussed in chapter 2. 

Processing and analysis of RNA-sequencing data was performed with Mr Neil Robertson, 

a computational biologist in Professor Peter Adams’ lab at the Beatson Institute for Cancer 

Research, Glasgow. (Alignment data are summarised in chapter 2). Prior to subsequent 

data analysis, principal component analysis was performed. This confirmed distinct 

clustering of the biological triplicates for each condition, whilst similarly confirming 

variation in each of the four conditions assessed (Figure 5-7).  

  



  132 

  

Figure 5-6 Agilent RNA ScreenTape assay for RNA integrity in samples submitted for RNA-
sequencing 

The Agilent RNA ScreenTape assay was undertaken to assess RNA integrity prior to RNA-
sequencing. V/V = “double vector”; V/3B = “DNMT3B1 Only”; BRAF/V = “BRAF only”; BRAF/3B = 
“BRAF+DNMT3B1. (a) An assessment of RNA quality is summarised using the RNA integrity 
number (RIN), with an RIN>8 preferred prior to RNA-sequencing. All samples had an RIN >8.      
(b) On the histograms, the first peak corresponds to the loading dye. The second peak at 18s 
corresponds to the small fragment of the ribosome. The third peak at 28s corresponds to the large 
subunit of the ribosome. Distinct peaks at 18s and 28s are indicative of high quality in tact RNA 
suitable for sequencing.  
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Figure 5-7 Principal component analysis of three independent replicates from each 
condition examined by RNA-sequencing was performed in order to assess inter-replicate 
variation 

Following initial alignment and processing of RNA-sequencing data, principal component analysis 
(PCA) was undertaken to compare the variance in the data between each of the four biological 
conditions examined (“double vector”; “DNMT3B1 only”; “BRAF only”; “BRAF+DNMT3B1”). PCA 
separates all four biological conditions distinctly, and each of the three replicates from each 
condition cluster closely, with the first, second and third principal components accounting for 29%, 
12.2% and 8.2% of the cumulative variance respectively (n=3 biological replicates). 
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In furtherance of an explanation for the apparent conflict between the data presented in 

chapter 4 demonstrating DNMT3B repression upon acute BRAFV600E expression, and the 

body of evidence in the literature suggesting the contrary, expression of the DNA 

methyltransferase enzymes and ten-eleven translocation enzymes (TETs) was explicitly 

examined in the RNA-seq data. Expression of these transcripts was first compared between 

“double vector” and “BRAF-only” controls, in order to characterise the effects of acute 

BRAFV600E activation on the “methylation machinery”. Perhaps surprisingly, given the 

relative lack of DNA methylation changes induced by acute BRAFV600E activation in IMR-

90 characterised by whole genome bisulfite sequencing in chapter 4, activated oncogenic 

BRAFV600E results in significant changes in the expression of both DNA 

methyltransferases and TETs. Compared to proliferating “double vector” controls, “BRAF-

only” cells exhibited a significant reduction in DNMT1 and TET1 expression, and a 

significant upregulation of DNMT3A, TET2 and TET3 expression. Interestingly, 

DNMT3B mRNA transcript expression was lower in “BRAF only” than “double vector” 

cells, though this did not reach statistical significance (Figure 5-8). Whilst this lends 

support to the argument that acute BRAFV600E activation does not upregulate DNMT3B it 

does not corroborate the protein expression data presented in chapter 4. One possible 

explanation for this is that the repression of DNMT3B upon BRAFV600E activation 

demonstrated in chapter 4 might be mediated by a post-translational mechanism.  

Given the marked changes in expression of the “methylation machinery” associated with 

BRAFV600E expression, it was pertinent to address whether ectopic DNMT3B1 expression 

significantly altered this transcriptome. Expression of each of these transcripts was 

compared between “BRAF only” and “BRAF-DNMT3B1” populations. Statistical 

significance was assessed using the CuffDiff method. Ectopic expression of DNMT3B1 

did not significantly alter the expression of the other DNA methyltransferases in 

BRAFV600E expressing cells, however both TET1 and TET3 expression was significantly 

higher in “DNMT3B1/BRAF” compared to “BRAF-only” cells (Figure 5-9). This latter 

result is interesting, but perhaps not surprising, given that both TET1 and TET3 are 

demethylases. Thus, this may simply represent a homeostatic compensatory mechanism in 

this cell population in an attempt to counter aberrant cytosine methylation induced by 

DNMT3B ectopic expression. 
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Figure 5-8 Expression changes in DNA methyltransferase and TET mRNA transcripts in 
BRAFV600E-expressing fibroblasts compared to proliferating controls 

Differential expression of the DNA methyltransferase enzymes and ten-eleven translocation 
enzymes (TETs) was explicitly examined in the RNA-sequencing data to investigate the effects of 
acute BRAF activation on expression of these transcripts. Bar-chart of Log2 FPKM mRNA 
expression of DNMT1, DNMT3A, DNMT3B, DNMT3L and TET1-3 in IMR-90 transformed with 
either (1) HIV-blasticidin and pLenti6-puromycin or (2) HIV-BRAFV600E-blasticidin and pLenti6-
puromycin. Activated oncogenic BRAFV600E results in repression of DNMT1 and TET1 expression, 
and increased expression of DNMT3A, TET2 and TET3. Whilst a trend to repression of DNMT3B is 
seen, this did not reach statistical significance. Statistical significance was assessed using the 
CuffDiff method. DNMT1 q=0.002, DNMT3A q=0.02, DNMT3B q=0.06, TET1 q=0.0001, TET2 
q=0.0001, TET3 q=0.0001 (error bars represent SEM; n=3 biological replicates). 
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Figure 5-9 Ectopic expression of DNMT3B1 does not significantly alter the expression of the 
other DNA methylation enzymes, but does alter expression of TET1 and TET3 

Differential expression of the DNA methyltransferase enzymes and ten-eleven translocation 
enzymes (TETs) was explicitly examined in the RNA-sequencing data to investigate the effects of 
combined BRAF/DNMT3B1 expression on the expression of these transcripts. Bar-chart of Log2 
FPKM mRNA expression of DNMT1, DNMT3A, DNMT3L and TET1-3 in IMR-90 transformed with 
either (1) HIV-BRAFV600E-blasticidin and pLenti6-puromycin or (2) HIV-BRAFV600E-blasticidin and 
pLenti6-DNMT3B1-puromycin. Both TET1 and TET3 expression is significantly increased upon 
ectopic DNMT3B1 expression. Statistical significance was assessed using the CuffDiff method: 
DNMT1 q=0.984, DNMT3A q=0.081, TET1 q=0.0003, TET2 q=0.933, TET3 q=0.0003 (error bars 
represent SEM; n=3 biological replicates).  

 

 

 

  

DNMT1

DNMT3A

DNMT3L
TET1

TET2
TET3

-6

-4

-2

0

2

4

6

Lo
g 2 

FP
K

M
 m

R
N

A
 e

xp
re

ss
io

n

HIV-BRAFV600E-blasticidin + pLenti6-puromycin

HIV-BRAFV600E-blasticidin + pLenti6-DNMT3B1-puromycin

* * ns ns ns ns 



  137 

Consistent with the clear separation of each condition by principal component analysis 

demonstrated above, further analysis of the RNA-seq data for each of the four conditions 

tested revealed four distinct transcriptomes, with combined DNMT3B1 and BRAFV600E 

expression resulting in both positive and negative reversal compared to BRAFV600E alone 

(Figure 5-10). Significantly changing genes were assessed using the CuffDiff method 

[413]. Combined DNMT3B1 and BRAFV600E expression resulted in significant 

upregulation of 4015, and downregulation of 1718 genes compared to “BRAF only” 

controls. By comparison, “DNMT3B1 only” resulted in the upregulation of 1443 and 

downregulation of 1245 genes compared to proliferating “double vector” controls (Figure 

5-11).  

Gene ontology analysis was next performed using gene set enrichment analysis (GSEA) 

software to identify gene signatures significantly changing between “BRAF only” and 

“BRAF/DNMT3B1” populations [437,438]. The twenty most positively- and negatively-

enriched gene ontologies are summarised in Table 5-2 and Table 5-3 respectively, together 

with the normalised enrichment scores (NES) and false-discovery rates (FDR). The latter is 

an estimate of the probability that a particular NES represents a false positive finding. The 

GSEA software instructions for use suggest that gene sets with an FDR <25% are the most 

likely to generate hypotheses18.  Interestingly, the GO-gene sets “cell division”, “cell-cycle 

G2/M phase transition”, and “cell cycle transition”, all demonstrated positive enrichment 

in “BRAF/DNMT3B1” compared to “BRAF-only” controls, consistent with the observed 

phenotype in these cells (Figure 5-12). Perhaps of relevance to the putative role of 

DNMT3B in intestinal carcinogenesis, the GO-gene set “intestinal cell differentiation” was 

also enriched in “BRAF/DNMT3B1” compared to “BRAF-only” cells. Gene-ontology 

analysis of those gene sets most down-regulated in “BRAF/DNMT3B1” cells compared to 

“BRAF-only” controls, revealed several gene sets of interest: notably “cytokine activity”, 

“chemokine activity” and “chemokine mediated signalling pathway”. Given the impaired 

proliferation-arrest phenotype associated with combined “BRAF/DNMT3B1” compared to 

“BRAF-only” cells, it was hypothesised that these altered gene sets might be associated 

with an altered senescence-associated proliferation phenotype, and this hypothesis is 

explored below.  

Given the positive enrichment for cell-cycle GO-gene sets in the GSEA analysis, and the 

observed proliferation differences characterised earlier between these two cell populations, 

expression of cell cycle genes and cell cycle inhibitors was compared between “BRAF-
                                                
18 http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html?_Interpreting_GSEA_Results 
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only” and “BRAF/DNMT3B1” populations. Consistent with the earlier data from the 

“time-course” experiment, “BRAF/DNMT3B1” cells expressed higher levels of cyclin A, 

cyclin D1, cyclin E, PCNA, E2F1 and CDK1. Surprisingly, expression of p21 (CDKN1A) 

was higher in “BRAF/DNMT3B1” cells than “BRAF-only” cells whereas the expression 

of other cell cycle inhibitors (CDKN2A, CDKN1B) was not significantly altered (Figure 

5-13). Interestingly, and in contrast to CDKN2A, CIMP-high has previously been 

anticorrelated with p21 repression in colorectal cancer [439]. 



  139 

  

 

 

Figure 5-10 Heatmap of gene expression signatures of each condition demonstrates 
significant transcriptome changes associated with combined BRAFV600E and DNMT3B1 
expression 

Column-clustered heatmap of significantly changing genes across each of the four biological 
conditions examined by RNA-sequencing (“double vector”; “DNMT3B1 only”; “BRAF only”; 
“BRAF+DNMT3B1”). Colour intensity represents row Z-score, where red = high expression, blue = 
low expression. Four distinct transcriptomes are clearly identifiable: combined DNMT3B1 and 
BRAFV600E expression results in both positive and negative reversal compared to BRAFV600E alone 
(n=3 biological replicates). 

 

HIV-CS-CG-blasticidin 

HIV-CS-CG-BRAFV600E-blasticidin 

pLenti6-puromycin 

pLenti6-DNMT3B1-puromycin 

+ 

+ 

- 

- 

- 

- 

+ 

+ 

+ 

+ 

- 

- + 

+ 

- 

- 



  140 

 

 

Figure 5-11 Analysis of total number of significantly changing genes comparing different 
conditions 

Bar-chart of number of significantly changing (>log2 fold1) genes assessed using CuffDiff 
comparing each of the four biological conditions tested (“double vector”; “DNMT3B1 only”; “BRAF 
only”; “BRAF+DNMT3B1”). Significantly upregulated genes are in red; significantly downregulated 
genes are in blue. Combined BRAFV600E and DNMT3B1 ectopic expression resulted in significant 
upregulation of 4015 and downregulation of 1718 genes compared to BRAFV600E ectopic 
expression alone (n=3 biological replicates).  
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Table 5-2 Most upregulated gene sets in “BRAF/DNMT3B1” cells compared to “BRAF-only” 
controls.  

ES = enrichment score, NES = normalised enrichment score, FDR q-value = false-discovery-rate 
adjusted p-value. 

 GO Gene Set Number of 
Genes 

ES NES FDR q-
value 

1 Cellular Glucuronidation 22 1.000 1.995 0.000 
2 Mitotic Nuclear Division 349 0.645 1.710 0.070 
3 Keratin Filament 92 0.691 1.697 0.073 
4 Chromosome Condensation 30 0.788 1.689 0.071 
5 Acetylcholine Receptor Activity 30 0.796 1.679 0.077 
6 Detection Of Chemical Stimulus Involved In 

Sensory Perception Of Taste 42 0.758 1.676 0.070 
7 Nuclear Transcribed mRNA Catabolic Process 

Nonsense Mediated Decay 118 0.667 1.675 0.062 
8 Multi Organism Metabolic Process 137 0.665 1.672 0.058 
9 Cell Division 449 0.626 1.665 0.062 
10 Cell Cycle G2/M Phase Transition 136 0.653 1.660 0.062 
11 Cell Cycle Phase Transition 251 0.628 1.649 0.077 
12 Protein Localization to Endoplasmic Reticulum 123 0.653 1.647 0.073 
13 Intestinal Epithelial Cell Differentiation 17 0.861 1.642 0.078 
14 Kinetochore 113 0.651 1.640 0.075 
15 Cytosolic Ribosome 109 0.657 1.637 0.076 
16 Midbody 129 0.645 1.626 0.095 
17 Sister Chromatid Cohesion 108 0.649 1.624 0.094 
18 Establishment of Protein Localization to 

Endoplasmic Reticulum 104 0.660 1.622 0.092 
19 RNA Catabolic Process 222 0.623 1.620 0.093 
20 Translational Initiation 143 0.639 1.619 0.090 
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Table 5-3 Most downregulated gene sets in “BRAF/DNMT3B1” cells compared to “BRAF-
only” controls.  

ES = enrichment score, NES = normalised enrichment score, FDR q-value = false-discovery-rate 
adjusted p-value. 

 GO Gene Set Number 
of Genes 

ES NES FDR q-
value 

1 Olfactory Receptor Activity 379 -0.864 -2.915 0.000 
2 Odorant Binding 83 -0.903 -2.698 0.000 
3 Positive Regulation of Peptidyl Serine 

Phosphorylation of STAT Protein 21 -0.962 -2.249 0.000 
4 Regulation of Peptidyl Serine Phosphorylation 

Of STAT Protein 21 -0.962 -2.198 0.000 
5 Protein Lipid Complex Remodeling 24 -0.900 -2.157 0.000 
6 Macromolecular Complex Remodeling 24 -0.900 -2.147 0.000 
7 Plasma Lipoprotein Particle Remodeling 24 -0.900 -2.131 0.001 
8 Epoxygenase P450 Pathway 18 -0.920 -2.071 0.002 
9 Flavonoid Metabolic Process 28 -0.829 -2.067 0.002 
10 Cytokine Activity 216 -0.624 -2.041 0.003 
11 Negative Regulation of Catecholamine 

Secretion 16 -0.924 -2.025 0.004 
12 Glutamate Receptor Activity 27 -0.819 -2.014 0.005 
13 Negative Regulation of Amine Transport 25 -0.823 -2.009 0.005 
14 Regulation of Circadian Sleep Wake Cycle 25 -0.805 -2.006 0.004 
15 Neuropeptide Signaling Pathway 93 -0.675 -1.987 0.008 
16 Chemokine Activity 48 -0.727 -1.973 0.009 
17 Chemokine Mediated Signaling Pathway 68 -0.683 -1.969 0.009 
18 Serotonin Receptor Signaling Pathway 18 -0.865 -1.952 0.012 
19 Startle Response 25 -0.788 -1.946 0.012 
20 High Density Lipoprotein Particle Remodeling 15 -0.896 -1.946 0.012 
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Figure 5-12 Expression changes induced by combined ectopic expression of DNMT3B1 and 
BRAFV600E demonstrate enrichment for cell cycle genes 

GSEA enrichment plots for the GO sets “Cell Cycle G2/M Phase Transition” and “Cell Cycle Phase 
Transition” created using GSEA. There is significant positive enrichment of cell cycle genes in cells 
with combined ectopic DNMT3B1/BRAFV600E expression compared to BRAF alone. 
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GO Cell Cycle Phase Transition 
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Figure 5-13 Combined ectopic expression of DNMT3B1 and BRAFV600E results in significant 
changes in cell cycle gene expression but to a lesser extent cell cycle inhibitor gene 
expression 

Cell-cycle transcript analysis was examined in the RNA-seq data comparing “BRAF only” and 
“BRAF/DNMT3B1”. Bar-chart of Log2 FPKM mRNA expression of (a) cell cycle genes and (b) cell 
cycle inhibitor genes in human fetal lung fibroblasts (IMR-90) transformed with either HIV-
BRAFV600E-blasticidin and pLenti6-puromycin or HIV-BRAFV600E-blasticidin and pLenti6-DNMT3B1-
puromycin. Statistical significance was assessed using CuffDiff, and statistically-significant 
changes are marked with an asterisk (*). Error bars represent SEM; n=3 biological replicates. 
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BRAF-mediated oncogene-induced senescence is associated with a senescence-associated 

secretory phenotype (SASP). Furthermore, the SASP has been demonstrated to reinforce 

proliferation arrest in a paracrine manner [440]. Given the importance of the SASP to the 

regulation of proliferation arrest associated with oncogene-induced senescence, it was 

pertinent to examine how DNMT3B1 ectopic expression might affect expression of SASP 

transcripts in BRAFV600E-expressing cells. Differential expression of SASP transcripts 

between “BRAF only” and “BRAF/DNMT3B1” populations was explicitly examined 

using a previously published SASP panel [441]. Consistent with the impaired proliferation-

arrest phenotype associated with combined DNMT3B1 and BRAFV600E expression 

compared to BRAFV600E alone, marked alterations in the SASP-secretome were observed 

between these two cell populations, suggestive of an impaired SASP associated with 

combined “BRAF/DNMT3B1” expression. “BRAF/DNMT3B1” cells exhibited lower 

expression of several key SASP components, including IL1α, IL1β, IL6, IL8, CSF3, 

MMP3 and MMP9, although whilst the general trend is for an impaired SASP secretome 

associated with combined “BRAF/DNMT3B1” expression, not all genes follow this trend 

(Figure 5-14). 

As outlined in the introduction to this thesis, Wnt pathway activation has been implicated 

in the progression of serrated pathway tumourigenesis [19,46,47]. Furthermore, Wnt 

signalling is also of central importance to the regulation of the oncogene-induced 

senescence program. Activated canonical Wnt signalling has been demonstrated to impair 

oncogene-induced senescence in several model systems [429,442]. Furthermore, ectopic 

DNMT3B1 expression in a murine intestinal tumour model has previously been 

demonstrated to result in promoter CpG methylation and transcription repression of the 

Wnt antagonists Sfrp2, Sfrp4 and Sfrp5 [205,434]. For these reasons, it was appropriate to 

examine whether combined BRAF/DNMT3B1 expression was associated with alterations 

in Wnt signalling. Interestingly, “BRAF/DNMT3B1” cells expressed significantly lower 

levels of the Wnt antagonists AXIN2 and SFRP2. Conversely, “BRAF/DNMT3B1” cells 

expressed higher levels of DKK1 and SFRP1. Furthermore, “BRAF/DNMT3B1” cells 

expressed higher levels of several Wnt target genes, including CCND1, CLDN1, SOX9, 

and MYC, suggesting that the net effect of DNMT3B1 was to accentuate Wnt signalling 

when combined with BRAFV600E (Figure 5-15).  
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Figure 5-14 Ectopic DNMT3B1 expression may impair the senescence-associated secretory 
phenotype associated with activated oncogenic BRAFV600E 

Column-clustered heatmap of SASP gene19 expression across all four conditions examined. Colour 
intensity represents row Z-score, where red = high expression, blue = low expression. Ectopic 
DNMT3B1 expression alters the SASP profile associated with BRAFV600E expression, with reduced 
expression of several SASP markers, including IL1α, IL1β, IL6, IL8, CSF3, MMP3 and MMP9, 
although whilst the general pattern is for an impaired SASP secretome associated with combined 
“BRAF/DNMT3B1” expression, not all genes follow this trend.  

                                                
19 The SASP panel for this analysis was sourced from Correia-Melo et al. [441]. For a full list of SASP genes, 
the reader is directed to Judith Campisi’s comprehensive review [443].   
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Figure 5-15 Combined ectopic expression of DNMT3B1 and BRAFV600E results in altered 
expression of Wnt regulators and Wnt target genes 

Wnt inhibitor and Wnt target gene expression was explicitly examined in the RNA-seq data 
comparing “BRAF only” and “BRAF/DNMT3B1”. Bar-chart of Log2 FPKM mRNA expression of (a) 
Wnt inhibitors and (b) Wnt target genes in human fetal lung fibroblasts (IMR-90) transformed with 
either HIV-BRAFV600E-blasticidin and pLenti6-puromycin or HIV-BRAFV600E-blasticidin and pLenti6-
DNMT3B1-puromycin. Statistical significance was assessed using CuffDiff, and statistically-
significant changes are marked with an asterisk (*). Axin2 q=0.011; DKK1 q=0.0003; SFRP1 
q=0.0003; SFRP2 q=0.0067; WIF1 q=1 Wnt5A q=0.247 CCND1 q=0.0003; CLDN1 q=0.0003; 
GSK3B  q=0.518; Myc q=0.0003; Sox9 q=0.0003; TCF4 q=0.08. Error bars represent SEM; n=3 
biological replicates. 
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Finally, given the correlative and mechanistic data linking BRAFV600E, DNMT3B and 

CIMP discussed earlier, it was relevant to examine whether a CIMP-like phenotype was 

observed upon acute BRAFV600E activation or combined “BRAFV600E/DNMT3B1” 

expression. Matched DNA methylation data were not generated in this experiment, 

however, as CIMP is associated with transcription repression, RNA-sequencing expression 

data were examined for changes in expression of CIMP target genes. In addition, the 

expression of MAFG, which has been proposed as a key driver of BRAFV600E-induced 

CIMP was examined [364]. For this analysis, CIMP target genes were defined using the 

Weisenberger panel, in addition to MLH1 and CDKN2A [116].  

Consistent with the observed lack of a CIMP-phenotype upon acute BRAFV600E activation 

characterised by whole genome bisulfite sequencing in chapter 4, BRAFV600E expression 

alone did not induce a “CIMP gene expression signature”. Indeed, conversely, expression 

of CACNA1G, IGF2, RUNX3 and CDKN2A were all increased upon BRAFV600E 

expression. Significantly however, MAFG expression was elevated upon acute BRAFV600E 

expression, and this was associated with a small but significant decrease in expression of 

MLH1 and SOCS1 (Figure 5-16a) In the model proposed by Fang et al. [364], MAFG 

mRNA expression did not change significantly upon acute BRAFV600E expression, and it 

was proposed that the observed increase in MAFG expression upon acute BRAFV600E 

resulted from post-translational modification of the protein. Nevertheless, these data would 

support an association between BRAFV600E activation and increased expression of MAFG. 

By contrast however, MLH1 and SOCS1 are the only “CIMP target genes” examined here 

that show transcription repression associated with acute BRAFV600E expression. By 

comparison, combined “BRAF/DNMT3B1” expression did not significantly alter the 

expression of MAFG or MLH1. Furthermore, with the exception of RUNX3, no CIMP 

target genes demonstrated significant transcription repression in “BRAF/DNMT3B1” 

compared to “BRAF-only” cells. Indeed, expression of SOCS1 and IGF2 was higher in 

“BRAF/DNMT3B1” than “BRAF only” cells (Figure 5-16b). Thus neither BRAFV600E 

alone nor combined “BRAF/DNMT3B1” induces a “CIMP gene expression signature”, 

and the pro-proliferative phenotype characterised in “BRAF/DNMT3B1” compared to 

“BRAF only” cells does not appear to be associated with the acquisition of a CIMP 

expression phenotype. 
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Figure 5-16 Neither “BRAFV600E alone” nor combined “BRAFV600E/DNMT3B1” ectopic 
expression induces a “CIMP expression signature” 

The expression of CIMP target genes was explicitly examined in the RNA-seq data comparing 
“BRAF only” and “BRAF/DNMT3B1”. (a) Acute BRAFV600E expression increases mRNA expression 
of MAFG, and represses MLH1 and SOCS1 expression, but this is not associated with silencing of 
other CIMP target genes. Indeed, conversely, expression of CACNA1G, CDKN2A, NEUROG1, 
RUNX3 and IGF2 increase significantly upon acute BRAFV600E activation. Statistical significance 
was assessed by CuffDiff. MAFG q=0.0001; MLH1 q=0.008; CACNA1G q=0.0001; CDKN2A 
q=0.01; RUNX3 q=0.0001; SOCS1 q=0.0001 ; IGF2 q=0.0001  (b) Combined “BRAF/DNMT3B1” 
expression does not alter expression of MAFG, or the CIMP target genes MLH1, CACNA1G, 
CDKN2A, though is associated with repression of RUNX3. Intriguingly however, combined 
“BRAF/DNMT3B1” expression increases the expression of SOCS1 and IGF2, which are also CIMP 
targets. Statistical significance was assessed using CuffDiff. MAFG q=0.3; MLH1 q=0.921; 
CACNA1G q=0.272; CDKN2A q=0.366; RUNX3 q=0.0003 ; SOCS1 q=0.0003; IGF2 q=0.0003. 
Error bars represent SEM; n=3 biological replicates. 
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5.3.3 DNMT3B expression in colon cancer cell lines is unrelated to CIMP or 
BRAF/KRAS mutational status 

Having demonstrated functional cooperation between activated oncogenic BRAFV600E and 

DNMT3B in a primary cell model, relationships between BRAFV600E, DNMT3B and 

CIMP were next investigated in a colon-cancer specific context. A panel of colon cancer 

cell lines were obtained to assess DNMT3B protein expression. In addition to BRAFV600E 

mutant colon cancer cell lines, a panel of BRAF wild-type colon cancer cell lines were 

tested in order to compare relative DNMT3B expression. The CIMP and BRAFV600E 

mutational status of these cell lines has previously been described [444].  The colon cancer 

cell lines employed in this study, together with their CIMP status and BRAF/KRAS 

mutational status are summarised in Table 5-4. 

Table 5-4 CIMP, BRAF- and KRAS-mutational status of colon cancer cell lines employed in 
this study 

Cell Line BRAF KRAS CIMP 

3BKO WT G13D NA 

HCT116 WT G13D + 

DLD-1 WT G13D + 

SW480 WT G12V - 

RKO V600E WT + 

HT-29 V600E WT + 

SW1417 V600E WT + 

LS411N V600E WT + 

 

Following cell line verification (performed by Mr William Clark, sequencing facility, 

Beatson Institute for Cancer Research, Glasgow) protein lysates were prepared from each 

cell line, separated by SDS-PAGE, immobilised to PVDF and Western blotting performed 

for DNMT3B with the validated DNMT3B antibody, SC10236 (Figure 5-17). DNMT3B 

expression was highest in HCT116 and SW480, which are both BRAF wild-type. Lower 

DNMT3B expression was detectable in DLD-1, RKO, HT-29, SW1417 and LS411N. 

Although Western blotting is only a semi-quantitative assay, there was no clear 

relationship between DNMT3B protein expression and CIMP status or BRAF mutation 

status. Of the BRAFV600E-mutant lines tested, the highest relative DNMT3B expression was 

in LS411N.   

   



  151 

 

Figure 5-17 DNMT3B expression in colon cancer cell lines is unrelated to BRAFV600E 
mutation or CIMP status 

Western blot for DNMT3B (using SC10236 antibody) in whole cell lysates from a panel of colon 
cancer cell lines annotated by CIMP and BRAFV600E mutation status. No clear relationship is 
observed between relative DNMT3B protein expression and CIMP or BRAFV600E mutation status 
(n=1 biological replicate). 
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5.3.4 Investigating the functional consequences of DNMT3B knockdown in 
a BRAF-mutant colon cancer cell line  

An anti-proliferative and pro-apoptotic phenotype induced by antisense-mediated 

DNMT3B knockdown has previously been characterised in the KRAS-mutant cell line 

HCT116 [334]. In order to investigate the functional consequences of DNMT3B 

knockdown in a BRAFV600E-mutant context, the colon cancer cell line LS411N was 

selected given its relatively high levels of DNMT3B protein expression compared to other 

BRAFV600E-mutant lines examined. In chapter 3, both shRNA and CRISPR knockdown 

systems for DNMT3B were characterised. As only one of the shRNAs tested in this thesis 

reliably knocked down DNMT3B when tested in HCT116, it was decided to adopt a 

CRISPR knockdown strategy for these experiments. 

LS411N cells were transduced with lentiCRISPRv2-puromycin vector (“vector”) 

lentiCRISPRv2-DNMT3B-sgRNA1-puromycin (“sgRNA1”) or lentiCRISPRv2-

DNMT3B-sgRNA4-puromycin (“sgRNA4”) constructs described in chapter 3. Following 

drug selection for 7 days with culture media supplemented with 1µg/mL puromycin, cells 

were harvested for protein lysates. Protein lysates were separated by SDS-PAGE, 

immobilised to PVDF and Western blotting performed for proliferation markers (cyclin A, 

ppRB) and the apoptosis marker cleaved PARP. Separately, cells were labelled with BrdU 

and propidium iodide for cell cycle analysis by FACS. 

In contrast to the converse ectopic expression experiments in primary cells, CRISPR-

mediated DNMT3B knockdown in LS411N did not significantly affect the proliferation 

phenotype of these cells. There was no appreciable difference in the expression of the 

proliferation markers cyclin A or ppRB with either DNMT3B sgRNA construct compared 

to “vector” controls (Figure 5-18). Similarly, cell cycle analysis by FACS revealed no 

significant difference in the proportion of cells in S-phase between “vector” and DNMT3B 

knockdown LS411N (Figure 5-19). 

Interestingly, despite the lack of a demonstrable anti-proliferative effect of DNMT3B 

knockdown, DNMT3B knockdown cells demonstrated upregulation of the apoptosis 

marker cleaved PARP relative to “vector” controls. (Figure 5-18).  
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Figure 5-18 DNMT3B CRISPR knockdown in LS411N does not alter proliferation gene 
protein levels, but may promote apoptosis 

Western blot of whole cell lysates from LS411N cells one week following transduction with 
LentiCRISPRv2-puromycin (“vector”) or LentiCRISPRv2-DNMT3B-sgRNA1/4-puromycin 
(“sgRNA1/4”). Whilst no change is observed in the proliferation markers, cyclin A or ppRb; the 
apoptosis marker, cleaved PARP demonstrates elevated expression at the protein level (n=2 
biological replicates). 
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Figure 5-19 DNMT3B knockdown in LS411N does not affect proliferation 

(a) BrdU FACS plots from LS411N one week following transduction with LentiCRISPRv2-
puromycin (vector) or LentiCRISPRv2-DNMT3B-sgRNA1/4-puromycin. (b) Graphical 
representation of percentage of cells in S-phase with and without DNMT3B knockdown as assayed 
by BrdU FACS. No significant change in proliferation is observed upon DNMT3B knockdown. Error 
bars represent SEM. ANOVA with Geisser-Greenhouse correction p=0.3; n=3 biological replicates. 
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A central question in this thesis is the role played by DNMT3B in establishing CIMP in the 

context of an activated BRAFV600E oncogene. In a recent paper which proposed a 

mechanism by which mutant-BRAFV600E directly induces CIMP it was reported that 

shRNA-mediated knockdown of DNMT3B is sufficient to restore expression of the “CIMP 

marker” MLH1 in colon cancer cell lines [364]. This result is difficult to reconcile with 

earlier data on the respective roles of DNMT3B and DNMT1 in promoter CpG island 

methylation in cancer [422,445]. Furthermore, in a murine model of colon cancer, 

DNMT3B ectopic expression does not result in aberrant promoter methylation of Mlh1, 

which Fang et al. [364] propose to be mediated by DNMT3B in their CIMP model [434]. 

Given these apparently contradictory data, it was relevant to readdress the consequences of 

DNMT3B knockdown and ectopic expression on MLH1 expression as a surrogate marker 

of CIMP.  

Whole cell lysates from LS411N transduced with the lentiCRISPRv2-puromycin vector 

(“vector”) lentiCRISPRv2-DNMT3B-sgRNA1-puromycin (“sgRNA1”) or 

lentiCRISPRv2-DNMT3B-sgRNA4-puromycin (“sgRNA4”) from the previous experiment 

were subjected to further Western blotting to assess expression of MLH1. DNMT3B 

knockdown had already been confirmed (Figure 5-18). In wild-type LS411N cells the 

MLH1 promoter is methylated, and expression of MLH1 is repressed, therefore HT-29 

lysate was included as a positive control [444]. CRISPR-mediated DNMT3B knockdown 

did not restore MLH1 expression in LS411N with either DNMT3B sgRNA (Figure 5-20a). 

In the converse experiment, HT-29 were transduced with pLenti6-puromycin (“vector”) or 

pLenti6-DNMT3B1-puromycin (“DNMT3B1”), and harvested for protein lysates 7 days 

following drug selection in puromycin-conditioned culture media. MLH1 expression was 

once again assessed by Western blot. Ectopic expression of DNMT3B1 did not lead to 

silencing of MLH1 in HT-29 (Figure 5-20b). It should be noted as a caveat that it has not 

been explicitly demonstrated in the present work that removal of MLH1 promoter 

methylation in LS411N will result in re-expression of MLH1, however studies in other cell 

lines would suggest that this is the case [364]. Furthermore, no formal assessment of 

MLH1 promoter methylation was performed in these experiments.       
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Figure 5-20 DNMT3B knockdown does not restore, and DNMT3B ectopic expression does 
not silence MLH1 expression in colon cancer cell lines 

(a) Western blot of whole cell lysates from LS411N colon cancer cells transduced with 
LentiCRISPRv2-puromycin (“vector”) or LentiCRISPRv2-DNMT3B-sgRNA1/4-puromycin 
(“sgRNA1/4”). DNMT3B knockdown is confirmed in Figure 5-18. HT-29 lysate is included as a 
positive control for MLH1. MLH1 expression is unchanged upon DNMT3B knockdown. (b) Western 
blot of whole cell lysates from HT-29 colon cancer cells one week following transduction with either 
pLenti6-puromycin (“vector”) or pLenti6-DNMT3B1-puromycin (“DNMT3B1). DNMT3B1 ectopic 
expression does not result in silencing of MLH1, a well-characterised “CIMP target gene” (n=2 
biological replicates).  
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5.4 Discussion 

In this chapter, functional interactions between BRAFV600E and DNMT3B have been 

examined in primary human cells and human colon cancer cell lines. It has been 

demonstrated that combined DNMT3B1 and BRAFV600E expression results in impairment 

of the proliferation arrest phenotype induced in primary cells by the latter. Furthermore, it 

has been demonstrated that this effect of DNMT3B1 on BRAFV600E-induced proliferation 

arrest may not be dependent on the catalytic domain of DNMT3B. This is particularly 

interesting, given the emerging body of data demonstrating expression of truncated 

DNMT3B isoforms in human cancer [222,225]. As the data presented herein are limited by 

the lack of paired DNA methylation data, and because as discussed earlier, DNMT3B3 

may in fact modulate DNA methylation, it cannot be concluded that this represents a DNA 

methylation-independent function of DNMT3B [224,225]. It does however imply that the 

catalytic domain may be dispensable to the observed impaired proliferation-arrest 

phenotype associated with combined DNMT3B and BRAF expression, however this could 

more accurately be assessed by repeating the experiment using PCR mutagenesis to 

generate a true “catalytically inactive” DNMT3B point-mutant. Interestingly however, 

whilst DNMT3B1 ectopic expression in a murine model of colon cancer has been 

demonstrated to promote intestinal tumourigenesis, the same effect was not observed with 

ectopic DNMT3B3 expression, though this study was performed in the Apcmin/+ model, and 

not in the context of an activated BrafV600E oncogene [205]. It could also be argued that 

DNMT3B2 might have been a more appropriate isoform to examine in these experiments 

than DNMT3B1, as previously published human cell-line data suggests that this is the 

predominant isoform expressed in human cancer cell lines [220].   

Further dissection of the mechanism by which DNMT3B1 impairs BRAFV600E-induced 

proliferation arrest was achieved by RNA-sequencing. Consistent with the observed pro-

proliferative phenotype, this demonstrated marked differences in the transcriptome of 

“BRAF/DNMT3B1” compared to “BRAF-only” populations with respect to cell cycle 

genes. Furthermore, this was supported by gene-ontology analysis. Intriguingly, combined 

“BRAF/DNMT3B1” expression has also been demonstrated to impair the SASP 

phenotype. This is particularly relevant given that the SASP has been demonstrated to 

reinforce the senescence program in certain contexts by promotion of proliferation arrest 

and immune clearance [440,446]. Furthermore, combined “BRAF/DNMT3B1” expression 

has also been demonstrated to alter the Wnt signalling pathway associated with BRAFV600E 

activation. This is a particularly interesting result given that activated Wnt signalling has 
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previously been demonstrated to impair oncogene-induced senescence [429,442,447]. 

Whilst the net effect of combined “BRAF/DNMT3B1” activation appears to be Wnt 

pathway activation (as demonstrated by upregulation of downstream Wnt targets including 

cyclin D1, Claudin-1, Myc and Sox9), the data with respect to Wnt regulators are more 

difficult to reconcile. Consistent with a previous report in a murine intestinal tumour 

model, DNMT3B1 has been demonstrated to decrease the expression of SFRP2. SFRP4 

and SFRP5 were not expressed in this cell population (IMR-90 human fetal lung 

fibroblasts), though have previously been demonstrated to be downregulated by ectopic 

DNMT3B expression in the murine intestine [205].  Similarly, AXIN2 has also been 

demonstrated to be repressed by ectopic DNMT3B expression in the present study, and is 

similarly recognised as a Wnt antagonist which has been implicated in the pathogenesis of 

colorectal cancer [448]. By contrast, combined BRAF/DNMT3B1 expression results in 

elevated expression of both SFRP1 and DKK1, which are both considered Wnt antagonists 

[449-451]. Paradoxically, SFRP1 has also been demonstrated to be a mediator of 

replicative senescence, and so it is somewhat counterintuitive that its expression should be 

elevated in “BRAF/DNMT3B1” cells compared to “BRAF-only” cells given the impaired 

proliferation arrest phenotype in the former [452]. Whilst these results are somewhat 

paradoxical, the central importance of the Wnt pathway to the pathogenesis of colorectal 

cancer justify further examination of the relationships between DNMT3B1 and Wnt 

signalling in an in vivo model system of BRAF-induced intestinal tumourigenesis, and this 

will be addressed in chapter 6.  

By contrast, examination of DNMT3B expression in colon cancer cell lines does not reveal 

an obvious relationship between BRAFV600E mutation status and DNMT3B expression or 

CIMP status. DNMT3B protein levels are lower in BRAFV600E-mutant cell lines than the 

RAS-mutant HCT116 and SW480 cell lines. Although cancer cell lines are a relatively 

limited and artificial model system, this apparent lack of correlation between DNMT3B 

expression and either CIMP status or BRAFV600E mutation does not fit particularly well 

with a model in which BRAF and DNMT3B cooperate to induce CIMP. Interestingly, this 

corroborates previously published data suggesting no relationship between CIMP status 

and DNMT3B expression in colon cancer cell lines [334].  

Furthermore, whilst ectopic DNMT3B1 expression impairs BRAFV600E-induced 

proliferation arrest, at least in a primary cell culture model, DNMT3B knockdown in 

BRAFV600E mutant cell line does not have an antiproliferative effect, though may promote 

apoptosis. This contrasts with previous loss-of-function (RNAi) experiments in the KRAS-
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mutant cell line HCT116, demonstrating an antiproliferative and pro-apoptotic effect 

associated with DNMT3B knockdown [334]. It is notable however that HCT116 have been 

demonstrated in this chapter (and indeed in the aforementioned study) to express very high 

levels of DNMT3B compared to other colon cancer cell lines, and so the previously-

reported antiproliferative effect in this cell line this may simply reflect a degree of 

“oncogene addiction”. Importantly however, in the murine Apcmin/+ model of colon cancer, 

Dnmt3b knockout has been demonstrated to reduce the number of macroscopic colonic 

adenomas.  Whilst this would be supportive of an oncogenic function for DNMT3B in 

colon cancer, the Apcmin/+ mouse is a model of the adenoma-carcinoma pathway, rather 

than the serrated pathway. It will therefore be appropriate to investigate the effects of 

Dnmt3b knockout in a murine model of BrafV600E-induced serrated pathway colon cancer, 

and this will be addressed in chapter 6 of this thesis.  

It is also noteworthy that DNMT3B knockdown in the BRAFV600E-mutant cell line LS411N 

did not reverse silencing of MLH1, and conversely, ectopic DNMT3B1 expression in the 

MLH1 proficient line HT-29 does not lead to MLH1 silencing. This directly contradicts 

some of the data presented by Fang et al. [364] in their recent paper proposing a 

mechanism by which BRAF directly mediates CIMP. The aforementioned study 

demonstrated increased MLH1 expression associated with DNMT3B knockdown, and 

indeed the RNAi screen used in this study to identify candidate drivers of CIMP was 

designed to identify drivers of MLH1 silencing. As DNMT3B represents the “final link” in 

the proposed mechanism of BRAF-induced CIMP, it is perhaps surprising that this result 

could not be reproduced. This may reflect differences in the sampling interval following 

DNMT3B knockdown, the choice of cell line, or the fact that MLH1 protein rather than 

mRNA levels were assayed in the present study. Furthermore, it should be noted as a 

caveat that no formal assessment of MLH1 promoter methylation was undertaken in the 

present work; nor has it been demonstrated that removal of methylation from the MLH1 

promoter in LS411N would result in its re-expression, however this can be inferred from 

previously published data [115]. Moreover, it is perhaps relevant to note that stable ectopic 

expression of DNMT3B in the murine intestine does not lead to Mlh1 promoter 

hypermethylation [205,434]. 
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5.5 Summary 

1. Ectopic expression of DNMT3B1 impairs the ability of activated oncogenic BRAFV600E 

to induce a robust proliferation arrest phenotype. 

2. This effect of ectopic DNMT3B1 expression may not be dependent on its catalytic 

domain. 

3. Ectopic DNMT3B1 expression in association with activated oncogenic BRAFV600E 

results in upregulation of cell cycle genes, including cyclin A, cyclin E, E2F1 and 

PCNA. 

4. The impaired proliferation arrest phenotype of combined BRAFV600E and DNMT3B1 

expression is associated with an altered SASP secretome. 

5. Ectopic DNMT3B1 expression in the context of activated mutant-BRAFV600E induces 

changes in the Wnt pathway activation associated with activation of the latter, with 

upregulation of Wnt targets including Myc, Cyclin D1, Claudin-1 and SOX9, and 

downregulation of the Wnt inhibitors, AXIN2 and SFRP2. 

6. The impaired proliferation arrest phenotype characterised in “BRAF/DNMT3B1” 

compared to “BRAF only” cells does not appear to be associated with the acquisition 

of a CIMP phenotype. 

7. In human colon cancer cell lines however, no clear relationship is demonstrable 

between DNMT3B protein expression and BRAFV600E mutation status or CIMP 

positivity. 

8. Knockdown of DNMT3B in a CIMP-positive colon cancer cell line does not alter 

proliferation but may promote apoptosis. 

9. Knockdown of DNMT3B in CIMP-positive BRAFV600E-mutant colon cancer cell line 

does not lead to reactivation of MLH1, which has previously reported to be silenced by 

CIMP.  

10. Ectopic expression of DNMT3B1 in an MLH1 proficient cell line does not lead to 

silencing of MLH1. 
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6 In vivo modelling of the oncogenic function of 
DNMT3B in murine models of BrafV600E-mediated 
serrated pathway intestinal carcinogenesis 

 
6.1 Rationale 

In the previous chapter it was demonstrated that ectopically expressed DNMT3B impairs 

the proliferation arrest phenotype induced in primary human cells by activated mutant-

BRAFV600E. This effect was associated with upregulation of cell cycle genes, an altered 

SASP secretome, and altered Wnt signalling. Previous studies have suggested an 

oncogenic function of DNMT3B in the Apcmin/+ mouse model of intestinal carcinogenesis, 

with ectopic DNMT3B expression promoting, and conditional knockout suppressing 

intestinal tumourigenesis [205,433]. Whilst DNMT3B expression has been linked 

mechanistically and correlatively to the induction of a CpG island methylator phenotype in 

association with BRAFV600E, and with disease progression in a murine model of serrated 

carcinogenesis; to date, no study has examined the effects of Dnmt3b manipulation in 

murine serrated carcinogenesis driven by an activated BrafV600E oncogene 

[46,47,364,427,453]. It was therefore pertinent to examine the effects of Dnmt3b 

manipulation in in vivo models of Braf-mediated “serrated pathway” intestinal 

carcinogenesis.  

6.2 Aims 

The specific aims of this chapter are: 

1. To investigate the effects of DNMT3B ectopic expression on BrafV600E-mutant 

intestinal carcinogenesis 

2. To investigate the effects of Dnmt3b knockout on BrafV600E-mutant intestinal 

carcinogenesis 

3. To determine whether DNMT3B maintains an oncogenic function in the context of 

activated Wnt signalling  
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6.3 Results 

6.3.1 Initial pilot of conditional Dnmt3b knockout in AhCreErT;LSLBrafV600E 
mice 

In order to develop an in vivo model to investigate the role of DNMT3B in BrafV600E-

mediated carcinogenesis, a Dnmt3b conditional knockout genetically-engineered mouse 

model (B6;129S4-Dnmt3btm1Jae/Mmnc) was obtained from the MMRRC20. In this model, 

loxP sites flank the catalytic domain of Dnmt3b (exons 16-19) on chromosome 2 [433]. 

Heterozygous Dnmt3btm1jae mice were interbred to produce a cohort of Dnmt3btm1jae 

flox/flox homozygotes (hereafter referred to as Dnmt3bfl/fl). Separately, the conditional 

Braftm1Cpri (hereafter referred to as LSLBrafV600E) mouse strain, was obtained. In this model, 

the expression of mutant-BRAFV600E is driven from its endogenous promoter by Cre 

recombinase. The transgenic allele is designed with an LSL-cassette inserted to intron 14 

of the Braf gene, comprising a mini cDNA encoding exons 15-18 of the Braf gene. 

Furthermore, at the 3’ end of the LSL-cassette, the endogenous exon 15 is modified to 

incorporate the T1799A mutation. The LSL-cassette contains three loxP sites. Cre 

recombination results in excision of the loxP sites, with resultant expression of mutant 

BrafV600E from its endogenous promoter [454,455]. Heterozygous LSLBrafV600E mice were 

crossed to the Tg(Cyp1a1-cre/ERT)1Dwi (hereafter referred to as AhCreErT) strain. In the 

latter system, tamoxifen- and β-napthoflavone-regulated Cre recombination is obtained in 

the stem cells and transit-amplifying cells of the murine gastrointestinal tract driven by the 

Cyp1A1 promoter [456,457]. As outlined in the introduction to this thesis, the resultant 

AhCreErT;LSLBrafV600E model has previously been reported to recapitulate the “serrated 

pathway” of colorectal carcinogenesis [47]. AhCreErT;LSLBrafV600E mice were crossed to 

Dnmt3bfl/fl  and the offspring interbed to generate AhCreErT;LSLBrafV600E+/-;Dnmt3bfl/fl 

cases, and AhCreErT;LSLBrafV600E+/-;Dnmt3bwt/wt controls.  

AhCreErT;LSLBrafV600E+/-;Dnmt3bfl/fl (n=5) and AhCreErT;LSLBrafV600E+/-;Dnmt3bwt/wt 

(n=7) mice were induced at 6 weeks of age by intraperitoneal injection of β-napthoflavone 

(80mg/kg) and tamoxifen (100mg/kg) for four consecutive days. Following induction, 

mice were closely monitored for clinical signs, including weight loss, abdominal swelling, 

hunching and pedal pallor (anaemia). Mice were sacrificed when they exhibited >20% 

weight loss, or exhibited two or more clinical signs of illness. Surprisingly, and in contrast 

to previous descriptions of these mice, mice in both case and control cohorts had to be 

                                                
20 MMRRC = Mutant Mouse Resource and Research Centers (www.mmrrc.org) 
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culled within 30 days of induction, and there was no statistically significant difference in 

survival between Dnmt3bwt/wt and Dnmt3bfl/fl controls (Figure 6-1). 

At post-mortem, the small intestine and colon appeared normal with no macroscopic 

tumours visible and this was confirmed by histology (data not shown). In sharp contrast, all 

mice exhibited significant gastric hypertrophy, due to the development of large tumours 

affecting the squamous-lined forestomach (Figure 6-2). The profound forestomach 

phenotype significantly impaired the potential of this model system to assess the effects of 

DNMT3B on BrafV600E-mediated intestinal carcinogenesis, and thus a different model 

system was sought.  
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Figure 6-1 Conditional knockout of Dnmt3b did not affect survival in an initial pilot cohort of 
AhCreErT;LSLBrafV600E+/- mice 

Kaplan-Meier curve comparing survival in AhCreErT;LSLBrafV600E+/-;Dnmt3bfl/fl cases and 
AhCreErT;LSLBrafV600E+/-;Dnmt3bwt/wt controls. AhCreErT;LSLBrafV600E+/-;Dnmt3bfl/fl (n=5) and 
AhCreErT;LSLBrafV600E+/-;Dnmt3bwt/wt (n=7) mice were induced at 6 weeks of age, and sacrificed at 
clinical end-point. All mice reached endpoint within 30 days of induction, and there was no 
statistically significant difference in survival between Dnmt3bwt/wt and Dnmt3bfl/fl controls. Log-rank 
(Mantel-Cox) test p=0.73. 
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Figure 6-2 AhCreErT;LSLBrafV600E+/- mice develop forestomach tumours  

AhCreErT;LSLBrafV600E+/-;Dnmt3bfl/fl (n=5) and AhCreErT;LSLBrafV600E+/-;Dnmt3bwt/wt (n=7) mice were 
induced at 6 weeks of age, and sacrificed at clinical end-point. Tumours of the squamous-lined 
forestomach develop rapidly in AhCreErT;LSLBrafV600E+/-  mice regardless of Dnmt3b genotype.  
(a) Representative images of the macroscopic appearances of the peritoneal cavity at post-mortem 
in Dnmt3bwt/wt and Dnmt3bfl/fl mice, demonstrating significant gastric hypertrophy due to tumour 
formation. (b) Representative images of macroscopic and microscopic appearances of a 
forestomach tumour from an AhCreErT;LSLBrafV600E mouse. 
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6.3.2 Ectopic DNMT3B expression accelerates intestinal carcinogenesis in 
VilCreERT2 LSLBrafV600E mice 

In order to circumvent the problems associated with the forestomach phenotype associated 

with the AhCreErT;LSLBrafV600E model system, AhCreErT was replaced by Tg(Vil-

cre/ERT2)23Syr  (hereafter termed VilCreErT2), in which Cre recombination is achieved 

almost exclusively in the small intestine and colon [458]. The rationale for this approach 

was strengthened by a study published during the course of this work in which the 

intestine-specific expression of BrafV637E (the murine homologue of BRAFV600E) in the 

murine intestine using the constitutive villin-Cre system was demonstrated to recapitulate 

features of serrated pathway colorectal carcinogenesis [46,459]. One potential 

disadvantage of use of the VilCreErT2 model system is the relatively long latency of the 

intestinal BrafV600E phenotype in this model system compared to AhCreErT2. Whilst 

AhCreErT2;LSLBrafV600E mice reportedly develop intestinal tumours 6 weeks after induction, 

VilCre;BrafV637E mice develop dysplastic lesions at 2-3 months and invasive carcinoma in 

some mice at 10 months [46,47].  

In chapter 5 it was demonstrated that combined DNMT3B1 and BRAFV600E expression in 

human fetal lung fibroblasts impaired the proliferation arrest phenotype normally 

associated with the activation of the latter in primary human cells. Furthermore, in a 

previously published study in AhCreErT;LSLBrafV600E mice, it was demonstrated that 

BRAFV600E expression in the murine intestine induces an initial period of 

hyperproliferation, followed by crypt senescence. Crypt senescence was however transient, 

and followed by the development of intestinal tumours, which were associated with 

silencing of p16Ink4a and upregulation of DNMT3B. It was therefore hypothesised that 

ectopic DNMT3B expression would accelerate intestinal tumourigenesis in 

VilCreErT2;LSLBrafV600E mice. In order to test this hypothesis, the B6.Cg-Col1a1tm9(tet0-

DNMT3b_i1)Jae/J (hereafter referred to as Col1a1-tetO-Dnmt3b1) and B6.Cg-

Gt(ROSA)26Sortm1(rtTA*M2)Jae/J (hereafter referred to as R26-M2-rtTA) transgenic alleles 

were obtained from the Jackson laboratory.   Col1a1-tetO-Dnmt3b1 has previously been 

demonstrated to direct ectopic, tetracycline-inducible DNMT3B1 expression in the murine 

intestine [205]. Doubly heterozygous R26-M2-rtTA;Col1a1-tetO-Dnmt3b1 mice were 

obtained and crossed to VilCreErT2;LSLBrafV600E+/- mice, and the offspring interbred to 

generate VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice. All 

alleles were maintained on an inbred C57BL/6 genetic background. Prior to comparison 

between these cohorts, intestinal DNMT3B ectopic expression was first confirmed in R26-

M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice by induction for two weeks with doxycycline, 
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with subsequent harvest for intestinal tissues for DNMT3B protein analysis by western blot 

and immunohistochemistry. Ectopic DNMT3B expression was demonstrable in both the 

small intestine and colon of R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice induced with 

doxycycline but not in Dnmt3b wild-type controls (Figure 6-3). 

VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- cases (n=13) were 

induced by a single intraperitoneal injection of 80mg/kg tamoxifen and 0.5mg/mL of 

doxycycline hyclate in 1% sucrose (administered ad libitum in the drinking water and 

changed three times weekly). Wild-type DNMT3B (i.e. endogenous expression) controls 

(n=26) for this experiment were either of the same genotype as cases (i.e. VilCreErT2; 

LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/-), or wild-type for either R26-

M2-rtTA or Col1a1-tetO-Dnmt3b1. Control mice were induced by a single intraperitoneal 

injection of 80mg/kg tamoxifen, but were administered 1% sucrose in the drinking water 

without the addition of doxycyline. As additional controls, “DNMT3B only” mice (n=31) 

were also generated. “DNMT3B only” controls were a mixture of VilCreErT2;R26-M2-

rtTA+/-;Col1a1-tetO-Dnmt3b1+/-, induced in the same fashion as cases and VilCreErT2; 

LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice, induced with 

doxycycline but not tamoxifen. Both “DNMT3B only” control genotypes were therefore 

“Braf wild type”. Mice were monitored for clinical signs of illness, including weight loss, 

hunching and pedal pallor (anaemia). Mice were sacrificed when they exhibited >20% 

weight loss, or exhibited two or more clinical signs of illness.  

Strikingly, combined ectopic DNMT3B1 expression together with activated BrafV600E in 

the murine intestine resulted in a marked decrease in overall survival compared to BrafV600E 

alone. Median post-survival induction in Dnmt3b wild-type mice was 489 days, compared 

to 289 in mice with ectopic DNMT3B1. “DNMT3B only” mice however, did not develop 

any clinical signs of illness up until 377 days following induction, and were culled at this 

timepoint (Figure 6-4). All but five (wild-type DNMT3B n=4; ectopic DNMT3B n=1) 

VilCreErT2;LSLBrafV600E+/- mice had developed intestinal tumours at clinical end-point. 

These were exclusively located in the small intestine, and no colonic tumours were 

identifiable in any mice examined. By comparison, and consistent with the lack of clinical 

signs of illness in this control cohort, no intestinal tumours were identified in “DNMT3B 

only” mice. Interestingly, and despite the marked acceleration of the BrafV600E phenotype 

induced by ectopic DNMT3B expression, no significant difference in total intestinal 

tumour number was demonstrable between wild-type DNMT3B controls and ectopic 

DNMT3B cases (Figure 6-5).   
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Figure 6-3 Intestinal DNMT3B ectopic expression was confirmed upon induction of the 
Col1a1-tetO-Dnmt3b1 transgene by doxycycline hyclate 

R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- cases and R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- 
controls were induced for two weeks by the addition of doxycycline hyclate (cases) or sucrose 
(controls) to the drinking water, with subsequent harvest for intestinal tissues for DNMT3B protein 
analysis by western blot and immunohistochemistry. (a) Western blot of whole cell lysate from 
small intestine (SI) and colon (Col) of R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- case and R26-M2-
rtTA+/-;Col1a1-tetO-Dnmt3b1-/- control. Ectopic expression of DNMT3B is demonstrated in both 
the small intestine and colon of the R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- case mouse upon 
induction with doxycyline hyclate, but not in the R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- control  
(n=1 biological replicate). (b) Representative immunohistochemistry images from small intestine of 
R26-M2-rtTa+/-;Col1a1-tetO-Dnmt3b1+/- case and  R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- 
control, demonstrating robust ectopic expression of DNMT3B upon transgene induction with 
doxycycline hyclate in R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- cases, but not in R26-M2-rtTA+/-
;Col1a1-tetO-Dnmt3b1-/- controls  (n=3 vs 3 biological replicates). 
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Figure 6-4 Intestinal ectopic DNMT3B1 expression significantly reduces survival in 
VilCreErT2;LSLBrafV600E mice.  

Kaplan-Meier curve comparing survival in VilCreErT2;LSLBrafV600E transgenic mice with and without 
intestinal DNMT3B1 ectopic expression. VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-
Dnmt3b1+/- cases (n=13) were induced by a single intraperitoneal injection of 80mg/kg tamoxifen 
and 0.5mg/mL of doxycycline hyclate in 1% sucrose. Wild-type DNMT3B controls (n=26) were 
induced by a single intraperitoneal injection of 80mg/kg tamoxifen, but were administered 1% 
sucrose in the drinking water without the addition of doxycyline. Wild-type DNMT3B controls were a 
mix of VilCreErT2; LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/-, VilCreErT2; 
LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- and VilCreErT2; LSLBrafV600E+/-;R26-M2-
rtTA-/-;Col1a1-tetO-Dnmt3b1+/-. Mice were sacrificed at clinical end-point. As additional controls, 
“DNMT3B only” mice (Col1a1-tetO-Dnmt3b1+/-; n=31) were induced. Median post-survival 
induction in wild-type DNMT3B mice was 489 days, compared to 289 in mice with ectopic 
DNMT3B1. “DNMT3B only” mice did not develop any clinical signs of illness up until 377 days 
following induction, at which timepoint they were culled with no evidence of intestinal tumour 
formation. Log-rank (Mantel-Cox) test p<0.0001. 
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Figure 6-5 Comparison of small intestinal tumour number in VilCreErT2;LSLBrafV600E mice with 
and without ectopic DNMT3B1 expression 

Bar-chart of small intestinal tumour number at clinical end-point in VilCreErT2;LSLBrafV600E+/- with 
wild-type (control) or ectopic (cases) DNMT3B1. No statistically significant difference in small 
intestinal tumour number is demonstrable in mice expressing ectopic DNMT3B (n=5) compared to 
wild-type DNMT3B controls (n=5). Error bars represent SEM. Mann Whitney test p=0.98 (ns). 

 

 

 

 

W
T D

NMT3B

Ect
opic 

DNMT3B
0

2

4

6

N
um

be
r 

of
 s

m
al

l i
nt

es
tin

al
 tu

m
ou

rs
WT DNMT3B

Ectopic DNMT3B

ns 



  171 

As ectopic DNMT3B1 expression accelerates carcinogenesis in VilCreErT2; LSLBrafV600E 

mice, but does not alter tumour number at clinical endpoint, it was relevant to further 

dissect aspects of carcinogenesis in this model. It has previously been reported that 

BrafV600E activation in the murine intestine induces transient crypt senescence at six-weeks 

post-induction [47]. In chapter 5, DNMT3B was demonstrated to impair the proliferation 

arrest induced by BRAFV600E in vitro, and so it was pertinent to address whether the 

acceleration induced by ectopic DNMT3B expression observed in this model was mediated 

by an impaired crypt senescence program. Wholemount intestinal sections from mice at 

clinical endpoint (n=3 ectopic DNMT3B and n=3 wild-type DNMT3B) were stained with 

several markers associated with a senescence phenotype: Ki67, p21, γH2AX, and IL1α. 

Interestingly, whilst scattered positivity for p21, γH2AX, and IL1α was demonstrable in 

the intestinal crypts (which have all individually been associated with a senescence 

phenotype), the crypts were highly proliferative, as demonstrated by strong, uniform 

staining for the proliferation marker Ki67. This phenotype was not altered in mice 

expressing ectopic DNMT3B (Figure 6-6). Similarly, tumours in VilCreErT2; LSLBrafV600E 

were highly proliferative as assessed by strong Ki67 positivity, which was also unaffected 

by ectopic DNMT3B expression. Interestingly, despite being highly proliferative, tumours 

from VilCreErT2; LSLBrafV600E mice exhibited strong staining for the cell-cycle repressor 

p21, though this was also unaffected by DNMT3B ectopic expression (Figure 6-7). It has 

previously been reported that both murine and human serrated lesions demonstrate p53 

positivity, and that this is correlated with disease progression [46,74]. The observed p21 

staining in the tumours of VilCreErT2; LSLBrafV600E mice may therefore represent p53 

pathway activation.    

As combined BRAFV600E and DNMT3B expression in vitro had been demonstrated to alter 

Wnt signalling in primary cells expressing BRAFV600E in the previous chapter, and given 

the central importance of this pathway to intestinal carcinogenesis, it was relevant to 

examine whether Wnt signalling was altered by ectopic DNMT3B expression in the 

murine intestine. Wholemount intestinal sections from VilCreErT2; LSLBrafV600E mice at 

clinical endpoint (n=3 ectopic DNMT3B and n=3 wild-type DNMT3B) were stained for 

the Wnt targets Sox9, Cyclin D1 and the Wnt effector, β-catenin. The crypts of VilCreErT2; 

LSLBrafV600E mice demonstrated exclusively membranous β-catenin staining, though did 

exhibit positivity for the Wnt targets Sox9 and Cyclin D1. This was unaffected by 

DNMT3B ectopic expression (Figure 6-8). By contrast, in tumours, there was more 

convincing evidence for Wnt pathway activation, with strong staining for Sox9 and Cyclin 
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D1, in association with nuclear and cytoplasmic β-catenin staining, though once again, this 

appeared to be independent of, and unaltered by DNMT3B ectopic expression (Figure 6-9).  
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Figure 6-6 Whilst some features of a “senescence phenotype” are observed in the intestinal 
crypts of VilCreErT2;LSLBrafV600E mice, they are highly proliferative and this is independent of 
DNMT3B expression status 

Representative immunohistochemistry images for Ki67, p21, γH2AX and IL1α in the small intestine 
of VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- (“Ectopic DNMT3B”) cases 
and VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- (“WT DNMT3B”) controls at 
clinical end-point. Intestinal crypts are highly proliferative, as identified by strong staining for Ki67. 
Scattered crypt positivity for p21 and γH2AX is however detectable as is positivity for the SASP 
marker Il1α.  No difference is observed between the crypt phenotype of wild-type or ectopic 
DNMT3B mice. Scale-bar = 200µM; n=3 vs 3 biological replicates. 
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Figure 6-7 Tumours of VilCreErT2;LSLBrafV600E mice are highly proliferative but exhibit 
prominent p21 staining, though this is independent of DNMT3B status 

Representative immunohistochemistry images for Ki67 and p21 in the small intestinal tumours of 
VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- (“Ectopic DNMT3B”) cases and 
VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- (“WT DNMT3B”) controls at 
clinical end-point. Both genotypes develop highly proliferative tumours, which paradoxically 
express high levels of p21. Scale-bar = 200µM; n=3 vs 3 biological replicates.  
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Figure 6-8 The crypts of VilCreErT2;LSLBrafV600E mice exhibit membranous β-catenin staining 
but demonstrate marked positivity for the Wnt targets Cyclin D1 and Sox9, though this is 
independent of DNMT3B expression status 

Representative immunohistochemistry images for Sox9, Cyclin D1 and β-catenin in in the small 
intestine of VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- (“Ectopic DNMT3B”) 
cases and VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- (“WT DNMT3B”) 
controls at clinical end-point. VilCreErT2;LSLBrafV600E mice exhibit membranous β-catenin staining in 
the crypts, though staining for the Wnt targets Cyclin D1 and Sox9 is demonstrable in the crypts. 
This is unaltered upon, and does not require ectopic DNMT3B expression. Scale-bar = 200µM; n=3 
vs 3 biological replicates.   
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Figure 6-9 Wnt pathway activation is demonstrable in the tumours of VilCreErT2;LSLBrafV600E 

mice but is not affected by DNMT3B ectopic expression 

Representative immunohistochemistry images for Sox9, Cyclin D1 and β-catenin in the small 
intestinal tumours of VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- (“Ectopic 
DNMT3B”) cases and VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1-/- (“WT 
DNMT3B”) controls at clinical end-point. Tumours from VilCreErT2;LSLBrafV600E mice demonstrate 
nuclear and cytoplasmic β-catenin staining, and strongly positive Sox9 and Cyclin D1 expression, 
though this is unaltered by, and does not require DNMT3B ectopic expression. Scale-bar = 200µM; 
n=3 vs 3 biological replicates.   
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6.3.3 Conditional intestine-specific knockout of Dnmt3b impairs intestinal 
carcinogenesis in VilCreERT2; LSLBrafV600E mice 

Given the striking acceleration of BrafV600E-mediated intestinal tumourigenesis associated 

with ectopic DNMT3B expression, the converse experiment was performed, with intestine-

specific deletion of Dnmt3b achieved using the Dnmt3bfl/fl transgenic allele described 

above.   VilCreErT2; LSLBrafV600E+/- mice were crossed to the Dnmt3bfl/fl strain, and the 

resultant offspring intercrossed to generate cohorts of VilCreErT2;LSLBrafV600E+/-

;Dnmt3bfl/fl cases, and VilCreErT2;LSLBrafV600E+/-;Dnmt3bwt/wt controls. As the Dnmt3bfl/fl 

allele was on a mixed (B6;129S4) genetic background, littermates were used as controls. 

Efficient Dnmt3b floxing was first confirmed by Western blotting of intestinal protein 

lysates from induced Dnmt3bfl/fl and Dnmt3bwt/wt mice (Figure 6-10). 

VilCreErT2;LSLBrafV600E+/-;Dnmt3bfl/fl cases (n=14), and VilCreErT2;LSLBrafV600E+/-

;Dnmt3bwt/wt controls (n=12) were induced by a single intraperitoneal injection of 80mg/kg 

tamoxifen, and monitored for clinical signs of illness, including weight loss, hunching and 

pedal pallor (anaemia). Mice were sacrificed when they exhibited >20% weight loss, or 

exhibited two or more clinical signs of illness.  

Significantly, and complementing the data generated in the converse experiment, combined 

Dnmt3b deletion together with activated BrafV600E in the murine intestine resulted in 

increased overall survival compared to BrafV600E alone. Median post-survival induction in 

Dnmt3b wild-type mice was 522.5 days, compared to 609 days in mice with intestine-

specific Dnmt3b deletion (Figure 6-11). Both VilCreErT2;LSLBrafV600E+/-;Dnmt3b fl/fl mice 

and VilCreErT2;LSLBrafV600E+/-;Dnmt3bwt/wt controls developed small intestinal but not 

colonic tumours. Mirroring the situation in the converse experiment however, Dnmt3b 

deletion did not significantly alter the total number of intestinal tumours in 

VilCreErT2;LSLBrafV600E+/- mice (Figure 6-12). As an additional control to ensure that this 

observed result was not influenced by the mixed genetic background of this strain, survival 

and total intestinal tumour number were compared between VilCreErT2;LSLBrafV600E+/-

;Dnmt3bwt/wt mice and VilCreErT2;LSLBrafV600E+/- controls (i.e. wild-type, “endogenous” 

Dnmt3b) from the ectopic expression experiment, which were on an inbred C57BL/6 

background. No significant difference in survival or total number of intestinal tumours was 

demonstrable between these two cohorts (median survival in C57BL/6 mice was 489 days 

compared to 522.5 in B6;129S4 mixed-background mice) implying that the survival 

advantage conferred by Dnmt3b deletion in VilCreErT2;LSLBrafV600E+/- mice was not 

influenced by the mixed genetic background of this strain (Figure 6-13).   
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Figure 6-10 Efficient Dnmt3b intestinal floxing was confirmed by Western blot 

Western blot of whole cell lysates from mouse intestine from a Dnmt3bfl/fl case and wild-type 
control. VilCreErT2;Dnmt3bfl/fl, and VilCreErT2;Dnmt3bwt/wt mice were induced by a single 
intraperitoneal injection of 80mg/kg tamoxifen and harvested for intestinal tissue for protein lysate. 
Protein lysates were separated by SDS-PAGE, blotted to PVDF, and probed for DNMT3B with 
IMG184A. Efficient knockdown of DNMT3B is demonstrated in the Dnmt3bfl/fl specimen (n=1 
biological replicate). 
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Figure 6-11 Dnmt3b knockout prolongs survival in VilCreErT2;LSLBrafV600E mice 

Kaplan-Meier curve comparing survival in VilCreErT2;LSLBrafV600E mice with wild-type or floxed 
Dnmt3b. VilCreErT2;LSLBrafV600E+/-;Dnmt3bfl/fl cases (n=14), and VilCreErT2;LSLBrafV600E+/-
;Dnmt3bwt/wt controls (n=12) were induced by a single intraperitoneal injection of 80mg/kg 
tamoxifen, and sacrificed at clinical end-point. A significant survival advantage is conferred by 
intestine-specific Dnmt3b deletion: median post-survival induction in Dnmt3b wild-type mice was 
522.5 days, compared to 609 days in mice with intestine-specific Dnmt3b deletion. Log-Rank 
(Mantel-Cox) test p=0.02. 
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Figure 6-12 Total small intestinal tumour number is unaltered in VilCreErT2;LSLBrafV600E mice 
upon deletion of Dnmt3b 

Bar-chart of small intestinal tumour number at clinical end-point in VilCreErT2;LSLBrafV600E;Dnmt3bfl/fl 
cases and VilCreErT2;LSLBrafV600E;Dnmt3bwt/wt controls.  The total number of small intestinal tumours 
does not differ significantly between cohorts. Error bars represent SEM. Mann Whitney test p=0.42; 
n=5 vs 5 biological replicates. 
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Figure 6-13 A mixed genetic background does not significantly alter survival or total 
intestinal tumour number in VilCreErT2;LSLBrafV600E mice 

Survival and total small intestinal tumour number were compared between VilCreErT2;LSLBrafV600E 

mice on inbred C57Bl6 and mixed B6;129S4 genetic backgrounds. (a) Kaplan-Meier curve 
comparing survival in VilCreErT2;LSLBrafV600E mice from an inbred C57BL/6 background (n=25) and 
mixed B6;129S4 (n=12) genetic background. No statistically-significant difference in survival is 
demonstrated: median survival in C57BL/6 mice was 489 days compared to 522.5 in B6;129S4 
mixed-background mice. Log Rank (Mantel Cox) test p=0.063. (b) Comparison of total small 
intestinal tumour number at clinical endpoint in VilCreErT2;LSLBrafV600E mice from an inbred C57BL/6 
background (n=5) and mixed B6;129S4 (n=5) genetic background. No statistically-significant 
difference in tumour number is observed. Error bars represent SEM; Mann Whitney test p=0.992. 
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6.3.4 The effects of DNMT3B on survival are abrogated in the context of 
activated Wnt signalling 

In chapter 5, it was demonstrated that ectopic DNMT3B1 expression in the context of 

activated oncogenic BRAFV600E alters the expression of several Wnt regulators and target 

genes. Furthermore, in the ApcMin/+ model, ectopic DNMT3B expression has been 

demonstrated to promote intestinal tumourigenesis associated with silencing of the secreted 

Wnt antagonists Sfrp2, Sfrp4 and Sfrp5 [205]. Furthermore, as demonstrated above, 

Dnmt3b knockout in VilCreErT2;LSLBrafV600E+/- mice delays the development of intestinal 

tumours in this model. In chapter 5 however, it was demonstrated that DNMT3B 

knockdown in a BRAFV600E-mutant colon cancer cell line, LS411N (which harbours an 

APC mutation and exhibits activated Wnt signalling) did not affect proliferation. As 

outlined in the introduction to this thesis, Wnt signalling is activated in both murine and 

human serrated neoplasia. It was therefore pertinent to address whether the apparent 

oncogenic function of DNMT3B in BrafV600E-mediated murine intestinal carcinogenesis 

was maintained in the context of activated Wnt signalling.  

To model the effects of activated Wnt signalling in BrafV600E–mediated intestinal 

carcinogenesis, additional mouse models were generated. The Apctm1Tno strain (hereafter 

referred to as Apcfl/wt) was obtained on an inbred C57BL/6 background from the Sansom 

laboratory. In this model, loxP sites are located within introns 13 and 14 of the Apc gene, 

and Cre recombination results in a frameshift mutation at codon 580, and results in a non-

functioning protein [460]. Heterozygous Apcfl/wt mice were crossed to 

VilCreErT2;LSLBrafV600E+/- mice to generate VilCreErT2;LSLBrafV600E+/-;Apcfl/wt cohorts.  

Survival was first compared between VilCreErT2;LSLBrafV600E+/- (n=17) and 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt  (n=34) cohorts. Mice were induced by a single 

intraperitoneal injection of 80mg/kg tamoxifen, and monitored for clinical signs of illness, 

including weight loss, hunching, rectal prolapse, and pedal pallor (anaemia). Mice were 

sacrificed when they exhibited >20% weight loss, or exhibited two or more clinical signs 

of illness. VilCreErT2;LSLBrafV600E+/-;Apcfl/wt  mice exhibited a drastically-accelerated 

intestinal tumour phenotype, reaching clinical endpoint at a median of 76 days post-

induction, compared to 498 days post-induction for VilCreErT2;LSLBrafV600E+/- controls 

(Figure 6-14). Consistent with this drastic acceleration of the BrafV600E model,  

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt  mice developed significantly more intestinal tumours, 

and unlike “BrafV600E-only” controls, developed tumours in both the small intestine and 

colon (Figure 6-15).  
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Figure 6-14 Activated Wnt signalling dramatically decreases survival in 
VilCreErT2;LSLBrafV600E mice 

Kaplan-Meier curve comparing survival in VilCreErT2;LSLBrafV600E and VilCreErT2;LSLBrafV600E;Apcfl/wt 
mice. VilCreErT2;LSLBrafV600E+/-;Apcfl/wt cases (n=17) and VilCreErT2;LSLBrafV600E+/- controls (n=34) 
were induced by a single intraperitoneal injection of 80mg/kg tamoxifen and harvested at clinical 
endpoint. A significant reduction in survival is seen in mice with the Apcfl/wt allele compared to those 
with wild-type Apc. Median post-induction survival in VilCreErT2;LSLBrafV600E+/-;Apcfl/wt mice was 76 
days compared to 498 days post-induction for VilCreErT2;LSLBrafV600E+/- controls. Log-rank (Mantel-
Cox) test p<0.0001. 
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Figure 6-15 Activated Wnt signalling significantly alters the phenotype of 
VilCreErT2;LSLBrafV600E mice 

Bar-charts comparing (a) total intestinal tumour number (b) small intestinal tumour number and (c) 
colonic tumour number at clinical endpoint in VilCreErT2;LSLBrafV600E;Apcfl/wt cases (n=5) and 
VilCreErT2;LSLBrafV600E controls (n=5). Error bars represent SEM. In comparison to 
VilCreErT2;LSLBRAFV600E;Apcwt/wt controls, VilCreErT2;LSLBRAFV600E;Apcfl/wt mice develop significantly 
more tumours overall (Mann Whitney test p=0.008); in the small intestine (Mann Whitney test 
p=0.023); and in the colon (Mann Whitney test  p=0.008).  
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In order to examine the effects of DNMT3B ectopic expression on BrafV600E-mediated 

serrated neoplasia in the context of activated Wnt signalling, VilCreErT2;LSLBrafV600E+/-

;Apcfl/wt mice were crossed to VilCreErT2; LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-

Dnmt3b1+/- cohorts, and the resultant offspring interbred to generate 

VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/-;Apcfl/wt mice 

(“cases”). Cases were induced by a single intraperitoneal injection of 80mg/kg tamoxifen 

and 0.5mg/mL of doxycycline hyclate in 1% sucrose (administered ad libitum in the 

drinking water and changed three times weekly). Control mice for this experiment were 

either the same genotype as cases (n=6), or wild-type for either the R26-M2-rtTA (n=18) or 

Col1a1-tetO-Dnmt3b1 (n=5) or both (n=4) alleles. All mice were on an inbred C57BL/6 

background. Controls were induced by a single intraperitoneal injection of 80mg/kg 

tamoxifen, but were administered 1% sucrose in the drinking water without the addition of 

doxycyline.  Following induction, mice were monitored for clinical signs of disease and 

sacrificed when they exhibited >20% weight loss, or exhibited two or more clinical signs 

of illness. Strikingly, and in notable contrast to VilCreErT2;LSLBrafV600E mice, ectopic 

DNMT3B expression did not significantly alter survival in VilCreErT2;LSLBrafV600E+/-

;Apcfl/wt mice. Median post-induction survival in case mice (i.e. ectopic DNMT3B) was 71 

days compared to 76 days in wild-type DNMT3B controls (Figure 6-16). Perhaps 

somewhat surprisingly however, VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-

tetO-Dnmt3b1+/-;Apcfl/wt cases developed significantly more tumours than Dnmt3b wild-

type controls, although whilst the total tumour burden was increased, the increase in 

tumour number was limited to the small intestine (Figure 6-17). 

In the converse experiment, VilCreErT2;LSLBrafV600E+/-;Apcfl/wt mice were crossed to 

VilCreErT2;LSLBrafV600E+/-;Dnmt3bfl/fl cohorts, and the resultant offspring interbred to 

produce VilCreErT2;LSLBrafV600E+/-;Apcfl/wt;Dnmt3bfl/fl cases (n=16) and 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt;Dnmt3Bwt/wt controls (n=9). As these mice were on a 

mixed genetic background, littermate controls were used. Cases and controls were induced 

by a single intraperitoneal injection of 80mg/kg tamoxifen, and monitored for clinical signs 

of illness. Mirroring the converse experiment above, Dnmt3b knockout did not alter 

survival in VilCreErT2;LSLBrafV600E+/-;Apcfl/wt mice. Median survival post-induction was 95 

days in Dnmt3bfl/fl mice compared to 92 days in Dnmt3bwt/wt controls (Figure 6-18). In 

contrast to the ectopic expression experiment however, Dnmt3b knockout did not 

significantly alter the number of intestinal tumours in VilCreErT2;LSLBrafV600E+/-;Apcfl/wt 

mice (Figure 6-19).  
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Figure 6-16 Ectopic expression of DNMT3B does not alter survival in 
VilCreErT2;LSLBrafV600E;Apcfl/wt mice 

Kaplan-Meier curve comparing survival in VilCreErT2;LSLBRAFV600E;Apcfl/wt mice with and without 
ectopically expressed DNMT3B. VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/-
;Apcfl/wt cases (n=30) and controls (n=33) were induced, and sacrificed at clinical endpoint. Control 
mice were either the same genotype as cases (n=6), or wild-type for either the R26-M2-rtTA (n=18) 
or Col1a1-tetO-Dnmt3b1 (n=5) or both (n=4) alleles. Cases were induced by a single 
intraperitoneal injection of 80mg/kg tamoxifen and 0.5mg/mL of doxycycline hyclate in 1% sucrose 
administered ad libitum in the drinking water.  Controls were induced by a single intraperitoneal 
injection of 80mg/kg tamoxifen, but were administered 1% sucrose in the drinking water without the 
addition of doxycyline. No significant difference is seen in survival between cohorts. Median post-
induction survival in case mice (i.e. ectopic DNMT3B) was 71 days compared to 76 days in wild-
type DNMT3B controls. Log-rank (Mantel-Cox) test p=0.84. 
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Figure 6-17 Ectopic DNMT3B expression increases the tumour burden in 
VilCreErT2;LSLBrafV600E;Apcfl/wt mice 

Bar-charts comparing (a) total intestinal tumour number (b) small intestinal tumour number and (c) 
colonic tumour number in VilCreErT2;LSLBrafV600E;Apcfl/wt with ectopic DNMT3B (cases; n=5) or wild-
type DNMT3B (controls; n=5) at clinical endpoint. Error bars represent SEM. In comparison to wild-
type DNMT3B controls, VilCreErT2;LSLBrafV600E;Apcfl/wt mice with ectopically-expressed DNMT3B 
develop significantly more intestinal tumours (Mann-Whitney test p=0.008), and small intestinal 
tumours (Mann-Whitney test p=0.008). Colonic tumour number is unaffected by ectopic DNMT3B 
expression (Mann-Whitney test p=0.134).  
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Figure 6-18 Dnmt3b knockout does not alter survival in VilCreErT2;LSLBrafV600E;Apcfl/wt mice 

Kaplan-Meier curve comparing survival between VilCreErT2;LSLBrafV600E;Apcfl/wt;Dnmt3bfl/fl cases 
(n=16) and VilCreErT2;LSLBrafV600E;Apcfl/wt;Dnmt3bwt/wt controls (n=9). Cases and controls were 
induced by a single intraperitoneal injection of 80mg/kg tamoxifen, and sacrificed at clinical 
endpoint. No significant difference is seen in survival between cohorts. Median survival post-
induction was 95 days in Dnmt3bfl/fl mice compared to 92 days in Dnmt3bwt/wt controls.  Log-rank 
(Mantel-Cox) test p=0.995. 
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Figure 6-19 Dnmt3b knockout does not alter tumour burden in VilCreErT2; LSLBrafV600E;Apcfl/wt 

mice 

Bar-charts comparing (a) total intestinal tumour number (b) small intestinal tumour number and (c) 
colonic tumour number between VilCreErT2;LSLBrafV600E;Apcfl/wt;Dnmt3bfl/fl cases (n=3) and 
VilCreErT2;LSLBrafV600E;Apcfl/wt;Dnmt3bwt/wt controls (n=3). Error bars represent SEM. Intestine-
specific Dnmt3b knockout does not significantly alter total, (Mann-Whitney test p=0.25) small 
intestinal, (Mann Whitney test p=0.7) or colonic (Mann Whitney test p=0.2) tumour number in 
VilCreErT2;LSLBRAFV600E;Apcfl/wt mice.  
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6.4 Discussion 

In this chapter, the effects of DNMT3B ectopic expression and Dnmt3b knockout have 

been examined in novel murine models of serrated pathway colon cancer driven by an 

activated BrafV600E oncogene. Significantly, ectopic DNMT3B expression in 

VilCreErT2;LSLBrafV600E+/- mice has been demonstrated to accelerate intestinal 

tumourigenesis associated with intestine-specific activation of this oncogene. This 

acceleration is however not associated with an increased tumour burden. Whilst this 

probably reflects consistency in the clinical criteria used to assess end-point in this model, 

it raises questions about the mechanism underlying the acceleration of the BrafV600E-

induced intestinal phenotype. It has previously been demonstrated that ectopic DNMT3B 

expression promotes tumourigenesis in the ApcMin/+ model. Interestingly, and in contrast to 

the data presented herein, this study did not examine the survival implications of ectopic 

DNMT3B in this model, but did demonstrate a significant increase in small intestinal and 

colonic tumour numbers in association with DNMT3B ectopic expression [205].  

As DNMT3B was demonstrated in the previous chapter to impair BRAF-induced 

proliferation arrest, and as a senescence-barrier has been implicated in serrated pathway 

carcinogenesis, intestinal sections from mice at clinical endpoint were examined for an 

altered proliferation phenotype in both intestinal crypts and tumours [47,48]. In contrast to 

the findings of Carragher et al. [47] and in agreement with Rad et al. [46] a crypt 

senescence phenotype was not observed in VilCreErT2;LSLBrafV600E+/- mice. The intestinal 

crypts of VilCreErT2;LSLBrafV600E+/- mice stained strongly and uniformly for the 

proliferation marker Ki67, and this was unaltered by ectopic DNMT3B expression. It is 

possible that the failure to observe a crypt senescence phenotype in the current model 

system is due to differences in the sampling protocol. Whilst mice in the present study 

were examined at clinical endpoint, Carragher et al. [47] reported crypt senescence at 6 

weeks post-induction. It may therefore be relevant to re-examine crypt proliferation at 

timepoints following induction in the VilCreErT2;LSLBrafV600E+/-  model. However, as the 

latency of this model is longer than that reported in the AhCreErT;LSLBrafV600E model, this 

would necessitate a time-course experiment. 

In chapter 5, the impaired proliferation arrest associated with combined expression of 

DNMT3B and mutant-BRAFV600E was demonstrated to be associated with altered Wnt 

pathway signalling. Wnt pathway activation has previously been demonstrated to impair 

the induction of oncogene-induced senescence [429,442,447]. Furthermore, activated Wnt 
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signalling is a feature of serrated pathway carcinogenesis, and is associated with neoplastic 

transformation [19,46,47,81]. Finally, DNMT3B has been demonstrated to reduce the 

expression of secreted Wnt antagonists in the ApcMin/+ model. There was therefore a strong 

rationale to examine whether the observed acceleration of BrafV600E-mediated intestinal 

tumourigenesis was associated with altered Wnt signalling. To an extent, the data 

presented herein are somewhat paradoxical. Whilst no DNMT3B-dependent differences in 

Wnt effector or target gene (Sox9, Cyclin D1 and β-catenin) expression were demonstrable 

in the crypts or tumours of VilCreErT2;LSLBrafV600E+/- mice, the acceleration of BrafV600E-

mediated intestinal tumourigenesis mediated by ectopic DNMT3B expression was 

abrogated in the context of combined BrafV600E and activated Wnt signalling in the 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt model. These somewhat paradoxical findings might be 

explained by the choice of Wnt targets examined by IHC. Cyclin D1 expression for 

example is increased by activated BRAFV600E, and indeed it has also been argued that it is 

not a direct target of Wnt signalling pathway [455,461].  

As Wnt pathway activation is associated with neoplastic transformation of sessile serrated 

lesions, it is possible to speculate that DNMT3B exerts a pro-tumourigenic stimulus at the 

earlier stages of neoplastic transformation, perhaps mediated in part by altered Wnt 

signalling, but that this pro-tumourigenic effect is then nullified upon activation of Wnt 

signalling, reflecting the primacy of this signalling pathway in intestinal tumourigenesis. 

Whilst by no means explicitly confirmed by these data, this model is perhaps supported by 

the loss-of-function experiments performed in murine serrated-pathway cancer models in 

this chapter. Mirroring the converse ectopic expression experiments described above, 

intestine-specific inactivation of Dnmt3b in VilCreErT2;LSLBrafV600E+/- mice significantly 

delayed intestinal tumourigenesis and increased survival. As in the ectopic expression 

mice, and once again contrary to the published data in the Apcmin/+ model, this survival 

advantage was not associated with a decreased tumour burden [433]. Strikingly however, 

the delayed intestinal tumourigenesis and survival advantage conferred by Dnmt3b 

inactivation in VilCreErT2;LSLBrafV600E+/- was not observed in the context of combined 

BrafV600E activation and Wnt signalling in the VilCreErT2;LSLBrafV600E+/-;Apcfl/wt model. 

Clearly, in order to further this hypothesis, additional experimental work would be 

required, and might include RNA-sequencing of intestinal crypts from 

VilCreErT2;LSLBrafV600E+/- mice with and without DNMT3B ectopic expression, coupled 

with reduced-representation bisulfite sequencing to determine whether the effect is 

methylation-dependent. DNMT3B ChIP-seq would also allow assessment of interactions 

between DNMT3B and Wnt pathway regulators and targets.  Functional experiments in 
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intestinal organoids derived from VilCreErT2;LSLBrafV600E+/-  by contrast would likely not 

help with dissection of this mechanism, as activated Wnt signalling is required to maintain 

intestinal organoids in culture [462].   

6.5 Summary 

1. Combined ectopic expression of DNMT3B and mutant-BRAFV600E in the mouse 

intestine significantly accelerates the tumourigenesis associated with activated 

BRAFV600E but does not alter the overall tumour burden. 

2. DNMT3B ectopic expression alone does not lead to intestinal tumourigenesis. 

3. A crypt-senescence phenotype is not observed in VilCreErT2;LSLBrafV600E mice, and 

DNMT3B ectopic expression does not affect the crypt proliferation phenotype. 

4. Intestine-specific knockout of Dnmt3b impairs intestinal tumourigenesis associated 

with activated oncogenic BRAFV600E and prolongs survival, but without significantly 

affecting the tumour burden. 

5. Intestinal carcinogenesis in VilCreErT2;LSLBrafV600E mice with activated Wnt signalling 

(modelled by crossing to the Apcfl/wt strain) significantly accelerates intestinal 

tumourigenesis induced by an activated BrafV600E oncogene. 

6. The effects of DNMT3B ectopic expression and Dnmt3b knockout on survival are lost 

when BrafV600E mutation is combined with activated Wnt signalling. 

7. Despite the abrogation of survival effect associated with activated Wnt signalling, 

ectopic DNMT3B expression increases the total tumour burden in 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt mice; though Dnmt3b knockout does not have the 

converse effect. 
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7 In silico analysis of relationships between BRAF, 
DNMT3B and CIMP in human colorectal 
adenocarcinoma 

7.1 Rationale 

In the previous chapters evidence has been presented that mutant-BRAFV600E represses 

DNMT3B expression and does not directly induce a CpG island methylator phenotype 

(CIMP). The data presented thusfar herein therefore do not fit with the multitude of 

correlative data reporting a tight association between BRAFV600E mutation and CIMP 

positivity, and effectively contradict the recently described model that proposes that 

activated oncogenic BRAFV600E directly induces the CpG island methylator phenotype, and 

that this may be directly modulated through DNMT3B [40,113,116,355,364]. 

Paradoxically however, DNMT3B ectopic expression has been demonstrated to exhibit an 

oncogenic function and/or pro-proliferative function in the context of an activated 

BRAFV600E oncogene in both in vitro and in vivo model systems. Furthermore, in colon 

cancer cell lines, no relationship could be demonstrated between DNMT3B expression and 

BRAFV600E mutation or CIMP positivity, and inactivation of DNMT3B in a CIMP positive 

cell line did not reverse gene-silencing characteristic of CIMP. Together, these data would 

be supportive of an oncogenic function for DNMT3B that is independent of CIMP. As the 

data presented thusfar are limited to the in vitro and in vivo contexts, it was pertinent to 

explore the relationships between BRAFV600E, DNMT3B and CIMP in human colorectal 

adenocarcinoma in order to resolve these apparent conflicts and/or shed new light on the 

oncogenic function of DNMT3B in human colorectal cancer.        

7.2 Aims 

The specific aims of this chapter are: 

1. To characterise alterations in DNMT3B in human colorectal adenocarcinoma. 

2. To investigate the relationship between BRAFV600E mutations and aberrant DNA 

methyltransferase expression in human colorectal adenocarcinoma. 

3. To investigate the relationship between BRAFV600E mutation and the CpG island 

methylator phenotype in human colorectal adenocarcinoma. 
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4. To investigate the relationship between aberrant DNA methyltransferase expression 

and the CpG island methylator phenotype in human colorectal adenocarcinoma. 

5. To investigate the prognostic implications of BRAFV600E mutation, CIMP status and 

DNMT3B overexpression on survival in human colorectal adenocarcinoma. 

7.3 Results 

7.3.1 DNMT3B expression is higher in tumours without the BRAFV600E 
mutation  

In order to investigate how DNMT3B is altered in human colorectal adenocarcinoma, 

recently-published TCGA data on human colorectal adenocarcinoma were first analysed 

for DNMT3B mutation using the cBioPortal21 platform in 633 patients [40,463,464]. 

Recurrent mutations of DNMT3A (most commonly at amino acid R882) have recently been 

described in acute myeloid leukaemia [209]. Surprisingly, given the wealth of data 

supporting an oncogenic function of DNMT3B in colorectal cancer, DNMT3B mutation 

was infrequent in human colorectal adenocarcinoma. Only 18 (2.84%) of colorectal 

adenocarcinomas in the TCGA cohort harboured a mutation in the DNMT3B gene (Figure 

7-1a). Furthermore, no “hot-spot” mutations were identified in the observed DNMT3B 

mutations, and no mutations associated with ICF syndrome (A766P and R840Q) were 

identified [465]. This contrasts sharply with DNMT3A mutations in the leukaemia context, 

and would favour these DNMT3B point mutations representing passenger rather than driver 

mutations (Table 7-1). Despite the relative paucity of DNMT3B mutations in the TCGA 

cohort, the relationship between BRAFV600E mutation was formally explored. BRAFV600E 

mutation data were extrapolated from the human colorectal adenocarcinoma TCGA data 

set. Paired BRAF and DNMT3B mutation data were available for 266 patients. No 

statistically significant relationship was demonstrable between BRAFV600E mutation and 

DNMT3B mutation (Fisher’s exact test p=0.625) (Figure 7-1b). 

  

                                                
21 http://www.cbioportal.org/index.do 
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Figure 7-1 DNMT3B is infrequently mutated in human colorectal adenocarcinoma and 
DNMT3B mutations do not overlap significantly with BRAFV600E mutation 

(a) Schematic diagram of the DNMT3B gene annotated with DNMT3B mutations. DNMT3B 
mutations in human colorectal adenocarcinoma were interrogated in the TCGA cohort using the 
cBioPortal cancer genomic analysis platform. Mutations in DNMT3B are detected in 18 (2.84%) of 
the sequenced tumours (n=633 patients; plot created using www.cbioportal.org) (b) Bar-chart of 
DNMT3B and BRAF mutation status in the TCGA human colorectal adenocarcinoma cohort. There 
is no significant relationship between BRAFV600E mutation and DNMT3B mutation in human 
colorectal adenocarcinoma (n=266 patients; Fisher’s exact test p=0.625). 
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Table 7-1 DNMT3B mutations in human colorectal adenocarcinoma (TCGA cohort) 

TCGA Sample ID Amino Acid Change Classification 

TCGA-CM-6162-01 V616M Missense 

TCGA-AZ-4315-01 R576Q Missense 

TCGA-G4-6309-01 Y188Tfs*4 Frame-shift deletion 

TCGA-AU-6004-01 L454Sfs*136 Frame-shift deletion 

TCGA-AA-3492-01 L454Sfs*136 Frame-shift deletion 

TCGA-AA-3986-01 R380* Nonsense 

TCGA-AA-3710-01 P44L Missense 

TCGA-AA-3818-01 R92W Missense 

TCGA-AG-3583-01 R92W Missense 

TCGA-AG-3892-01 A421T Missense 

TCGA-AG-A002-01 R299Q Missense 

TCGA-AG-A002-01 D33N Missense 

TCGA-A6-5666-01 R545C Missense 

TCGA-AZ-4315-01 R104* Nonsense 

TCGA-D5-6536-01 V719A Missense 

TCGA-D5-6924-01 R572S Missense 

TCGA-F4-6807-01 G179V Missense 

TCGA-F4-6809-01 P88L Missense 

TCGA-CL-5917-01 A612T Missense 
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Examination of expression data for DNMT3B from the TCGA colorectal cancer cohort 

was next performed. RNA-seq expression data for DNMT3B were available for 459 

tumour samples and 41 normal colon mucosa samples. DNMT3B mRNA FPKM 

expression data from both tumour and normal tissue was first tested for Gaussian 

distribution using both the D’agostino & Pearson omnibus and Shapiro-Wilk normality 

tests. Both approaches demonstrated that the DNMT3B mRNA data were not normally 

distributed. In order to compare expression between cohorts therefore, a non-parametric 

test was appropriate. A highly significant increase was demonstrated in median DNMT3B 

FPKM mRNA expression in tumour relative to normal tissue (Mann Whitney test 

p<0.0001) (Figure 7-2a). Furthermore, frequency distribution analysis revealed tight 

clustering of DNMT3B FPKM mRNA expression in normal colon tissue compared to 

much more dispersed expression in tumour samples (Figure 7-2b).  

Given the highly significant difference in DNMT3B expression observed between tumour 

and normal tissue, the relationship between BRAFV600E mutation and DNMT3B expression 

was next explored. Paired BRAF mutation data and DNMT3B expression data were 

available for 207 patients. Median-centred DNMT3B expression was first plotted against 

BRAF mutation status (V600E versus wild-type), revealing an apparent clustering of BRAF 

mutation and low DNMT3B expression (Figure 7-3a). Median DNMT3B expression was 

then explicitly compared between BRAFV600E mutant and BRAF wild-type tumours. 

Median DNMT3B expression was significantly higher in BRAF wild-type tumours than 

BRAFV600E mutant tumours (Mann Whitney test p=0.0002) (Figure 7-3b). 

Given the strong evidence reviewed earlier functionally linking BRAFV600E mutation and 

CIMP, and as DNMT3B expression was significantly lower in BRAFV600E than BRAF wild-

type tumour populations, it was relevant to examine how expression of other members of 

the “DNA methylation machinery” varied between these two cohorts. RNA-seq expression 

data were therefore compared for DNMT1, DNMT3A, DNMT3L, TET1, TET2 and TET3. 

Data were once again compared for 207 patients for whom paired expression data and 

BRAFV600E mutation data were available. Expression data were once again tested for 

normality using both the D’agostino & Pearson omnibus and Shapiro-Wilk normality tests. 

Both approaches demonstrated a lack of normal distribution in all data sets, necessitating 

non-parametric analysis. Surprisingly given the significant difference in DNMT3B 

expression observed between BRAFV600E mutant and BRAF wild-type tumours, no 

statistically significant difference in median expression of DNMT1, DNMT3A, DNMT3L, 

TET1 or TET3 was demonstrable between BRAFV600E mutant and BRAF wild-type tumours 



  198 

(Mann Whitney test DNMT1 p=0.1172; DNMT3A p=0.263; DNMT3L p=0.402; TET1 

p=0.479; TET3 p=0.627). By comparison, TET2 expression was significantly elevated in 

BRAFV600E mutant tumours relative to BRAF wild-type tumours (Mann Whitney test 

p=0.021) (Figure 7-4).  

Given the lack of absolute expression changes in DNMT1 and DNMT3A associated with 

BRAFV600E mutation, the ratio of DNMT3A and DNMT3B to DNMT1 expression was 

compared between BRAFV600E mutant and wild-type tumours. Interestingly, a significant 

reduction in the DNMT3B:DNMT1 ratio, DNMT3A:DNMT1 and DNMT3B:DNMT3A 

ratio was observed in BRAFV600E mutant tumours relative to wild-type tumours (Mann 

Whitney test DNMT3A:DNMT1 p=0.03; DNMT3B:DNMT1 p<0.0001; 

DNMT3B:DNMT3A  p=0.0013) (Figure 7-5). This is of particular interest given aberrant 

cell-cycle mediated expression of DNMTs has previously been described in cancer cell 

lines and postulated to be an alternative to individual DNMT overexpression as an 

explanation for the aberrant methylation demonstrated in cancer [432].   
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Figure 7-2 DNMT3B is frequently overexpressed in human colorectal adenocarcinoma 

(a) Boxplot of DNMT3B mRNA expression (FPKM) in human colorectal adenocarcinoma and 
corresponding normal colon tissues from the TCGA data set. RNA-seq expression data for 
DNMT3B were analysed for 459 tumour samples and 41 normal colon mucosa samples. 
Significantly higher DNMT3B expression is demonstrated in tumour tissue compared to normal 
tissue. Mann Whitney test p<0.0001. (b) Frequency distribution histogram of DNMT3B mRNA 
expression in 459 colorectal tumours and 41 normal colon mucosa samples from the TCGA data 
set confirming tight clustering of DNMT3B expression within the normal tissue category, compared 
to more dispersed mRNA expression in the tumour samples. 
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Figure 7-3 DNMT3B mRNA expression is higher in tumours with wild-type BRAF than in 
those with BRAFV600E mutation 

(a) Bar-chart of median centered log2 DNMT3B mRNA expression from 207 human colorectal 
adenocarcinoma samples from the TCGA cohort annotated with BRAF mutation status. BRAFV600E 
mutations cluster with low DNMT3B mRNA expression. (b) Boxplot of log2 DNMT3B FPKM mRNA 
expression and BRAFV600E mutation status from 207 human colorectal adenocarcinoma samples 
from the TCGA cohort. DNMT3B mRNA expression is significantly lower in BRAFV600E mutant 
samples compared to wild-type samples (Mann Whitney test p=0.0002). 
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Figure 7-4 Expression of TET2, but not DNMT1, DNMT3A, DNMT3L, TET1 or TET3 is 
significantly altered in BRAFV600E mutant tumours compared to BRAF wild-type tumours 

Boxplots of Log2 FPKM mRNA expression of DNMT1, DNMT3A, DNMT3L, TET1, TET2 and TET3 
in BRAF wild-type and BRAFV600E mutant tumour samples from the TCGA cohort of human 
colorectal adenocarcinoma (n=207 patients). The expression of TET2 is significantly higher in 
BRAFV600E mutant tumours than BRAF wild-type tumours. Mann-Whitney p=0.021. DNMT1, 
DNMT3A, DNMT3L TET1 and TET3 exhibit no significant difference in mean mRNA expression 
between BRAF wild-type and BRAFV600E mutant samples. Mann Whitney test for DNMT1= 0.1172; 
DNMT3A= 0.263; DNMT3L= 0.402; TET1= 0.479; TET3 = 0.627. 
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Figure 7-5 The stoichiometry of DNA methyltransferase expression is significantly altered in 
tumours harbouring an activated BRAFV600E mutation 

Boxplots of relative FPKM DNMT mRNA expression in BRAFV600E mutant tumours and BRAF wild-
type tumours from the TCGA cohort (n=207 patients). Whilst individual DNMT enzymes do not 
exhibit significant expression changes in BRAFV600E mutant tumours, the stoichiometry of DNA 
methyltransferase enzyme expression is significantly altered in BRAFV600E mutant tumours relative 
to BRAF wild-type tumours. The DNMT3A:DNMT1, DNMT3B:DNMT1 and DNMT3B:DNMT3A ratio 
are all significantly lower in BRAFV600E mutant tumours than BRAF wild-type tumours. Mann-
Whitney test DNMT3A:DNMT1 p=0.03; DNMT3B:DNMT1 p<0.0001; DNMT3B:DNMT3A  
p=0.0013. 
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7.3.2 BRAFV600E is neither necessary nor sufficient to induce CIMP in human 
colorectal adenocarcinoma 

In order to test the relationship between CIMP status and BRAFV600E mutation, it was 

necessary to define a CIMP positive cohort in the TCGA data set. This was performed by 

analysis of the Infinium 450K methylation array data available through the TCGA portal. 

A consensus on the definition of CIMP is hard to define, and as outlined in the introduction 

to this thesis, multiple CIMP panels have been proposed. The TCGA colorectal cancer 

study used a pragmatic unbiased approach to define CIMP patients by performing 

unsupervised clustering based on the most variable 1403 probes at promoters in the 

methylation array data [40]. Such an unbiased approach was felt to represent the most 

objective fashion in which to identify a CIMP positive cohort. A hierarchical clustered 

heatmap representing all variable (STD-dev >0.2) CpG island CpGs was generated from 

the 450K array data for 207 patients in the TCGA colon cancer cohort by Mr Neil 

Robertson, a computational biologist in the Adams’ lab at the Beatson Institute for Cancer 

research. As an additional validation of this approach, a second hierarchical clustered 

heatmap representing all variable (STD-dev >0.2) “CIMP panel gene” (combining the 

Ogino and Weisenberger panels) CpG island CpGs was generated, and demonstrated to 

identify the same cohort of patients as CIMP positive (Figure 7-6). Finally, CpG island 

mean beta methylation was compared between CIMP positive and CIMP negative patients, 

confirming that the cohort defined as CIMP positive exhibited the highest CpG island 

methylation (Figure 7-7). This strategy identified a cohort of 61 patients (29.5%) as CIMP 

positive. This is broadly within the range previously described in the literature 

[113,116,309,310,317]. 

With a cohort of CIMP positive patients defined, the relationship between BRAFV600E 

mutation and CIMP status was next examined. The association between BRAFV600E 

mutation and CIMP status was first examined by contingency. In keeping with previously 

published data, a highly significant association was demonstrated between BRAFV600E 

mutation and CIMP positivity (χ2 test p<0.0001). Despite this clear association, 67.2% 

(n=41) of CIMP-positive patients are BRAF wild-type, and 42.8% (n=20) of BRAFV600E 

mutant patients are CIMP-negative, implying that BRAFV600E is neither necessary nor 

sufficient to induce CIMP (Figure 7-8).    
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Figure 7-6 CIMP patients within the TCGA cohort were identified by unbiased analysis of 
450K methylation array data22 

Unsupervised clustering was performed to identify CIMP positive and CIMP negative cohorts by 
analysis of promoter CpG methylation data from the TCGA 450K array data (n=207 patients). 
Hierarchical clustered heatmaps of the DNA methylation β-values of (a) all variable (STD-dev >0.2) 
CpG island CpGs (b) all variable (STD-dev >0.2) CIMP-gene (CACNA1G, CDKN2A, CRABP1, 
MLH1, NEUROG1, IGF2, SOCS1, RUNX3) CpG islands in human colorectal adenocarcinoma from 
TCGA 450K array data. A cohort of CIMP positive patients can clearly be identified.  

 

                                                
22 Figure generated by Mr Neil Robertson, Beatson Institute for Cancer Research, Glasgow. 
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Figure 7-7 CpG island mean beta methylation is greater in CIMP positive than CIMP negative 
samples23 

CpG island mean beta methylation was compared in patients categorised as CIMP positive and 
CIMP negative in the TCGA colorectal cancer cohort (n=207 patients). Bar chart of mean CpG 
island beta methylation, demonstrating higher CpG island mean beta methylation in patients 
classified as CIMP positive compared to those classified as CIMP negative; confirming the validity 
of the use of this approach to identify a CIMP positive cohort. 

  

                                                
23 Figure generated by Mr Neil Robertson, Beatson Institute for Cancer Research Glasgow. 
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Figure 7-8 BRAFV600E is strongly associated with, but is neither necessary nor sufficient to 
induce CIMP 

The relationship between BRAFV600E mutation status and CIMP positivity was examined, and tested 
by contingency (n=207 patients). (a) Bar-chart of relationship between BRAF mutation status and 
CIMP positivity. 67.2% (n=41) of CIMP+ patients are BRAF wild-type, and 42.8% (n=20) of 
BRAFV600E mutant patients are CIMP-negative (χ2 test p<0.0001) (b) Venn diagram of BRAFV600E 
mutation and CIMP status in colorectal cancer patients from the TCGA data set. Only 57.14% 
(n=20) of BRAFV600E mutant patients are CIMP positive: thus BRAFV600E mutation alone is 
insufficient to induce CIMP. 
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7.3.3 DNMT3B mRNA expression is not related to CIMP positivity in human 
colorectal adenocarcinoma 

The relationship between DNMT3B expression and CIMP was next examined. As outlined 

in the introduction to this thesis, two papers have previously suggested a direct relationship 

between DNMT3B protein expression and CIMP positivity in human colorectal 

adenocarcinoma [427,428]. As the antibody used to assay DNMT3B in both of these 

studies (clone 52A1018) was demonstrated in chapter 3 of this thesis to detect murine but 

not human DNMT3B, the relationship between DNMT3B mRNA expression and CIMP 

status was examined in the TCGA data set. Paired expression data and CIMP data were 

available for 207 patients. 

Median DNMT3B FPKM mRNA expression was first compared between CIMP-positive 

and CIMP-negative tumours. Instead of being elevated in CIMP-positive tumours, median 

DNMT3B expression was in fact modestly, but significantly lower in CIMP-positive than 

CIMP-negative samples (Mann Whitney test p=0.001), and a frequency distribution 

histogram showed distinct clustering of DNMT3B expression between CIMP-positive and 

CIMP-negative tumours (Figure 7-9a, Figure 7-9b). To further explore the apparently 

inverse relationship between DNMT3B mRNA expression and CIMP status, DNMT3B 

FPKM mRNA expression levels for tumours were further clustered, and reanalysed with 

respect to CIMP status. Clustering of expression data into “DNMT3B over-expressing” 

(defined as any sample with a DNMT3B FPKM mRNA expression greater than the highest 

normal tissue DNMT3B FPKM mRNA expression value) and “DNMT3B unaltered” 

cohorts as well as clustering into centiles was performed. Clustering of DNMT3B 

expression into “over-expressing” and “unaltered” cohorts demonstrated an anticorrelation 

with CIMP (Fisher’s exact test p=0.037). Clustering of DNMT3B expression into two 

cohorts of (a) >75th centile and (b) <75th centile FPKM mRNA expression confirmed this 

anticorrelation with CIMP (Fisher’s exact test p=0.013) (Figure 7-9c, Figure 7-9d). 

Therefore, in all permutations, CIMP positivity is anticorrelated with DNMT3B 

expression. 

Given the apparent anticorrelation between DNMT3B expression and CIMP status, it was 

pertinent to examine how expression of other members of the “DNA methylation 

machinery” varied between these two cohorts. The mRNA expression data for DNMT1, 

DNMT3A, DNMT3L TET1, TET2 and TET3 were therefore examined in the CIMP-

positive and CIMP-negative cohorts. 
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Intriguingly, median FPKM mRNA expression of the other candidate de novo 

methyltransferase, DNMT3A, was also significantly lower in CIMP-positive compared to 

CIMP-negative tumours (Mann Whitney test p=0.0009) whereas DNMT1 and DNMT3L 

expression did not differ significantly between CIMP-positive and CIMP-negative cohorts 

(Mann Whitney test DNMT1 p=0.058; DNMT3L p=0.643). Notably, TET1 expression 

was significantly lower in CIMP-positive than CIMP-negative tumours (Mann Whitney 

test p=0.025). Interestingly, this corroborates a recent study, which associated aberrant 

TET1 methylation with CIMP positivity in human colorectal adenocarcinoma [350]. By 

comparison, expression of TET2 and TET3 was not significantly altered between CIMP-

positive and CIMP-negative cohorts (Mann Whitney test TET2 p=0.061; TET3 p=0.554) 

(Figure 7-10). 

As absolute expression of both candidate de novo DNA methyltransferase enzymes was 

lower in CIMP-positive compared to CIMP-negative tumours, the relative expression of 

the DNMTs was again assessed between cohorts. Interestingly, the DNMT3A:DNMT1 and 

DNMT3B:DNMT1 ratio was significantly lower in CIMP-positive compared to CIMP-

negative tumours (Mann Whitney test DNMT3A:DNMT1 p<0.0001; DNMT3B:DNMT1 

p<0.0001), mirroring the pattern associated with BRAFV600E mutation, which has 

previously been closely associated with CIMP-positivity (Figure 7-11). In contrast to the 

BRAFV600E data however, the DNMT3A:DNMT3B ratio is unaltered when CIMP-positive 

and CIMP-negative tumours are compared (Mann Whitney test p=0.326).  

Finally, the relationship between DNMT3B mutations and CIMP status was examined. 

Paired DNMT3B mutation and CIMP data were available for 207 patients. A Fisher’s exact 

test demonstrated no significant relationship (p=0.727) between CIMP-positivity and 

DNMT3B mutation (Figure 7-12).     
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Figure 7-9 DNMT3B mRNA expression is not related to CIMP positivity in human colorectal 
adenocarcinoma 

The relationship between DNMT3B mRNA expression and CIMP positivity in human colorectal 
adenocarcinoma was explored in the TCGA cohort (n=207 patients). (a) Boxplot of DNMT3B Log2 
FPKM mRNA expression in human colorectal carcinoma TCGA patients subdivided by CIMP 
status. CIMP negative patients have a higher mean DNMT3B mRNA expression than CIMP 
positive patients. (Mann Whitney test p=0.001) (b) Frequency distribution histogram of DNMT3B 
mRNA FPKM expression in CIMP positive and CIMP negative patients demonstrating lower 
DNMT3B expression in CIMP positive compared to CIMP negative patients (c) Venn diagram 
demonstrating overlap between CIMP positive and DNMT3B overexpressing (compared to normal 
tissue) patients. DNMT3B overexpression is demonstrably anticorrelated with CIMP (Fisher’s exact 
test p=0.037)  (d) Venn diagram demonstrating overlap between CIMP positive and DNMT3B 
mRNA expression >75th centile. DNMT3B overexpression is anticorrelated with CIMP (Fisher’s 
exact test p=0.013). 
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Figure 7-10 Both DNMT3A and TET1 expression is significantly lower in CIMP positive 
tumours than CIMP negative tumours  

The mRNA expression of DNMT1, DNMT3A, DNMT3L, TET1, TET2 and TET3 were compared 
between CIMP+ and CIMP- tumour samples from the TCGA colorectal human adenocarcinoma 
cohort (n=207 patients). Both DNMT3A and TET1 mRNA levels were significantly lower in CIMP+ 
than CIMP negative tumours (Mann Whitney test DNMT3A p=0.0009; TET1 p=0.025). By contrast, 
the mRNA expression of DNMT1, DNMT3L, TET1, TET2 and TET3 exhibited no statistically 
significant difference between CIMP+ and CIMP- samples. Mann Whitney test DNMT1 p=0.058; 
DNMT3L p=0.643; TET2 p=0.061; TET3 p=0.554. 
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Figure 7-11 DNMT3B:DNMT1 and DNMT3A:DNMT1 ratio is lower in CIMP positive patients 
than CIMP negative patients 

Boxplots of DNMT3A:DNMT1; DNMT3B:DNMT1 and DNMT3A:DNMT3B mRNA expression ratio in 
CIMP positive and CIMP negative patients. The ratio of DNMT3B:DNMT1 and DNMT3A:DNMT1 
mRNA expression is significantly lower in CIMP positive than CIMP negative tumours (Mann-
Whitney test DNMT3A:DNMT1 p<0.0001; DNMT3B:DNMT1 p<0.0001;). By contrast, the 
DNMT3A:DNMT3B ratio is unaltered between CIMP positive and CIMP negative tumours (Mann 
Whitney p=0.326). 
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Figure 7-12 DNMT3B mutation is not significantly linked to CIMP positivity in human 
colorectal adenocarcinoma 

The relationship between DNMT3B mutation and CIMP positivity was examined in the TCGA 
cohort (n=207 patients). Bar-chart of relationship between CIMP status and DNMT3B mutation 
status in the TCGA human colorectal adenocarcinoma cohort. There is no significant relationship 
between CIMP status and DNMT3B mutation status (Fisher’s exact test p=0.727). 
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7.3.4 DNMT3B is frequently amplified in human colorectal adenocarcinoma 

As neither DNMT3B mRNA expression nor mutation exhibited positive correlation with 

CIMP or BRAF mutational status, the relationship between these variables and DNMT3B 

gene copy number was explored. Interestingly, chromosome 20q (where the DNMT3B 

gene is located) was identified by the cancer genome atlas as a common site of gene 

amplification [40].  DNMT3B somatic copy number amplification (SCNA) was assessed 

using the GISTIC method. Copy number data were obtained from the TCGA portal, and 

analysed by Neil Robertson and Gintare Sendzikaite, computational biologists at the 

Beatson Institute for cancer research. In the TCGA copy number dataset an estimated copy 

number mean for particular genomic segments is specified and is log based (tumour 

intensity:normal intensity). Therefore an estimated copy number of zero is indicative of 

diploid copy number. By contrast, a segment mean of >0.2 is defined as an amplification 

[466]. Using this approach, DNMT3B copy number alterations were detectable in 67.4% of 

patients in the TCGA cohort. Strikingly, there was a very clear relationship between 

DNMT3B mRNA expression and DNMT3B amplification (Figure 7-13). To assess the 

significance of differences in DNMT3B expression between amplified and non-amplified 

DNMT3B patient samples, a t-test was performed on the normalised expression levels 

between the two groups, confirming a highly significant association between high 

DNMT3B expression and DNMT3B amplification (p=0.0026). 

The relationship between DNMT3B copy number and both CIMP status and BRAF 

mutation status was next assessed. Both CIMP and BRAF mutation status (as defined 

earlier) were plotted against DNMT3B relative copy number, revealing an anticorrelation 

between both CIMP and BRAFV600E mutation and DNMT3B copy number amplification 

(Figure 7-14a, Figure 7-14b). This result is perhaps not surprising for a number of reasons. 

Firstly, given the extremely strong relationship between DNMT3B mRNA expression and 

copy number amplification, it would have been surprising to see positive correlation 

between DNMT3B SCNA and BRAFV600E mutation status or CIMP positivity. Moreover, 

frequent SCNA is a feature of consensus-molecular subtype 2 (canonical) and 4 

(mesenchymal) colorectal cancer, which are typically CIMP-negative. By contrast, 

consensus-molecular subtypes 1 (“MSI immune”) and 3 (“metabolic”), which are 

characterised by a CIMP-phenotype, exhibit a low frequency of SCNA [27].      
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Figure 7-13 DNMT3B is frequently amplified in human colorectal adenocarcinoma and SCNA 
is associated with mRNA upregulation24 

Median centred log2 DNMT3B mRNA expression plot annotated by DNMT3B copy number status. 
DNMT3B somatic copy number amplification (SCNA) was assessed using the GISTIC method, and 
plotted together with DNMT3B log2 FPKM mRNA expression. A clear association is demonstrable 
between DNMT3B SCNA and high DNMT3B expression (n=215 patients; t-test p=0.0026). 

  

                                                
24 Figure generated by Mr Neil Robertson and Ms Gintare Sendzikaite, Beatson Institute for Cancer Research, 
Glasgow. 
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Figure 7-14 Both CIMP positivity and BRAFV600E mutation status are anticorrelated with 
DNMT3B SCNA in human colorectal adenocarcinoma25 

Segmentation mean plots of DNMT3B copy number annotated by (a) CIMP status and (b) BRAF 
mutational status. DNMT3B somatic copy number amplification (SCNA) was assessed using the 
GISTIC method. (a) A clear anticorrelation between CIMP-positivity and DNMT3B SCNA is 
demonstrable (permutation test p= 0.00078) (b) An anticorrelation between DNMT3B SCNA and 
BRAFV600E mutation is demonstrable (permutation test p=0.012).  

  

                                                
25 Figure generated by Mr Neil Robertson and Ms Gintare Sendzikaite, Beatson Institute for Cancer Research, 
Glasgow. 
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7.3.5 Neither DNMT3B expression, CIMP nor BRAF mutation correlate with 
survival in human colorectal adenocarcinoma 

Elevated DNMT3B expression has been shown to correlate with poor survival in malignant 

melanoma, renal cell carcinoma, oesophageal squamous cell carcinoma, testicular 

seminoma, and hepatocellular carcinoma [231,467-470]. One study has examined 

DNMT3B expression in colorectal cancer and found no correlation with DNMT3B 

expression and survival. As outlined previously however, this study used the 52A1018 

clone DNMT3B antibody which appears not to detect human DNMT3B [427]. In chapter 

6, in murine models of serrated pathway carcinogenesis, DNMT3B ectopic expression was 

demonstrated to reduce overall survival in a model driven by activated BrafV600E mutation 

and Dnmt3b knockout had the converse effect. Conversely, these effects on survival were 

abrogated in the context of activated Wnt signalling modelled by crossing the LSLBrafV600E 

allele to the Apcfl/wt  model. It was therefore relevant to assess the effects of DNMT3B 

expression on survival in human colorectal adenocarcinoma.   

The TCGA data set includes both overall survival and disease-free survival data for 

patients. These data were accessed using the cBioPortal platform [463,464]. Survival data 

were then integrated using individual TCGA sample IDs with the mRNA expression data 

analysed earlier. As DNMT3B mRNA expression had been demonstrated to be closely 

correlated to SCNA, these data were also correlated with survival. As median DNMT3B 

mRNA FPKM expression in the TCGA cohort is elevated in tumour tissue relative to 

normal tissue in 84% of samples, the decision was made to define elevated DNMT3B 

expression as DNMT3B mRNA FPKM >75th centile, an approach validated by a recent 

study in the context of melanoma [231]. Interestingly, neither elevated DNMT3B 

expression nor somatic copy number amplification are independently associated with 

overall or disease-specific survival in the TCGA cohort (Log Rank test overall survival by 

elevated DNMT3B mRNA expression p=0.16; disease-free survival by elevated DNMT3B 

mRNA expression p=0.88; overall survival by DNMT3B SCNA p=0.14, disease-free 

survival by DNMT3B SCNA p=0.87)  (Figure 7-15).         
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Figure 7-15 Neither DNMT3B SCNA nor mRNA expression correlate with overall or disease-
free survival in human colorectal adenocarcinoma 

The effects of DNMT3B mRNA expression and SCNA alteration were assessed in the TCGA 
cohort. (a) Kaplan-Meier curve of overall survival stratified by DNMT3B mRNA expression. 
DNMT3B overexpression does not affect overall survival. Log-Rank (Mantel-Cox) test p=0.16 (b) 
Kaplan-Meier curve of disease-free survival stratified by DNMT3B mRNA expression. DNMT3B 
overexpression does not affect disease-free survival. Log-Rank (Mantel-Cox) test p=0.88 (c) 
Kaplan-Meier curve of overall survival stratified by DNMT3B CNV status. DNMT3B SCNA does not 
affect survival. Log-Rank (Mantel-Cox) test p=0.14 (d) Kaplan-Meier curve of disease-free stratified 
by DNMT3B CNV status. DNMT3B SCNA does not affect disease-free survival. Log-Rank (Mantel-
Cox) test p=0.87. 
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The relationship between CIMP status and survival in human colorectal adenocarcinoma 

remains controversial. Several studies have associated CIMP with adverse clinical 

outcomes, though inconsistent and conflicting data have been published [319,355,471-

473]. A recent meta-analysis of the prognostic implications of CIMP in colon cancer 

included 19 separate studies and concluded that CIMP was independently associated with 

worse prognosis in human colorectal adenocarcinoma [474]. One of the fundamental 

problems in assessing the relationship of CIMP status to survival is the heterogeneity of the 

classification systems used to define CIMP positivity. A significant advantage of the 

approach taken to classify CIMP in the present study was the unbiased approach 

(compared to candidate gene approach often used to define CIMP) used to define a CIMP 

positive cohort. It was therefore of interest to compare survival between the CIMP-positive 

and CIMP-negative populations defined in the TCGA data. Overall survival and disease-

specific survival data were once again compared between CIMP-positive and CIMP-

negative patient cohorts. No independent significant difference in overall (Log-rank 

p=0.62) or disease-specific (Log-rank p=0.86) survival was demonstrable in CIMP-

positive compared to CIMP-negative patients (Figure 7-16). 

Finally, survival data were compared for BRAFV600E mutant and BRAF wild-type cohorts 

within the TCGA dataset. BRAFV600E mutation has previously been demonstrated to 

correlate with poorer survival in microsatellite stable but not microsatellite unstable 

cancers [355,475,476]. Microsatellite stability data were not analysed in the present study, 

which must be taken as a caveat to the interpretation of these data. Surprisingly, no 

significant difference in overall survival (Log-rank p=0.29) or disease-specific (Log-rank 

p=0.65) survival was demonstrable between BRAFV600E mutant and BRAF wild-type 

patients in the TCGA cohort (Figure 7-17).        
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Figure 7-16 CIMP is not an independent predictor of survival in human colorectal 
adenocarcinoma 

The effects of CIMP positivity on survival in human colorectal adenocarcinoma were assessed in 
the TCGA cohort. (a) Kaplan-Meier curve of overall survival stratified by CIMP status. CIMP-
positivity does not affect overall survival. Log-Rank (Mantel-Cox) test p=0.62  (b) Kaplan-Meier 
curve of disease-free survival stratified by CIMP status. CIMP positivity does not affect disease-free 
survival. Log-Rank (Mantel-Cox) test p=0.86. 
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Figure 7-17 BRAFV600E mutation status is not an independent predictor of survival in human 
colorectal adenocarcinoma 

The effects of BRAFV600E mutation on survival in human colorectal adenocarcinoma were assessed 
in the TCGA cohort. (a) Kaplan-Meier curve of overall survival stratified by BRAFV600E mutation 
status. BRAFV600E mutation does not affect overall survival. Log-rank (Mantel-Cox) p=0.29 (b) 
Kaplan-Meier curve of disease-free survival stratified by BRAFV600E mutation status. BRAFV600E 
mutation does not affect disease-free survival. Log-rank (Mantel-Cox) test p=0.65. 
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7.4 Discussion 

Together, the data presented in this chapter corroborate some of the earlier data presented 

in this thesis. Specifically they address a number of areas of conflict between the data 

presented thusfar herein and the published data regarding the relationships between 

DNMT3B, BRAF and CIMP in human colorectal adenocarcinoma. DNMT3B mutation has 

been demonstrated to be an infrequent event in human colorectal adenocarcinoma. 

Conversely, frequent upregulation of DNMT3B mRNA expression has been demonstrated 

in the majority of colorectal cancers, and has been demonstrated to be closely related to a 

high frequency of DNMT3B copy-number amplifications also observed in this cohort. 

Importantly, a clear and unambiguous inverse relationship has been demonstrated between 

BRAFV600E mutation and DNMT3B expression, which is supportive of the in vitro 

DNMT3B protein expression data presented in chapter 4. Furthermore, whilst BRAFV600E 

mutation has been confirmed to be statistically very closely associated with CIMP in this 

cohort, it is also clear that BRAFV600E mutation is neither necessary nor sufficient to induce 

CIMP in human colorectal adenocarcinoma. This is in keeping with the observed lack of a 

CpG island methylator phenotype upon acute BRAFV600E activation demonstrated in 

chapter 4. One caveat to these conclusions, is the method used to identify a CIMP positive 

cohort in this study. Specifically, rather than employing a ‘candidate gene’ approach as 

used in the widely-published CIMP panel studies, a non-biased hierarchical-based 

clustering approach has been used to identify a CIMP-positive cohort. The rationale for 

this is supported by the recent TCGA[40] analysis of human colorectal carcinoma, which 

employed a similar approach and it has been further demonstrated (Figure 7-6) that this 

approach identifies patients with hypermethylation of previously published “CIMP panel” 

genes. Furthermore, unlike several other studies, the present work did not subclassify 

CIMP patients into CIMP-high and CIMP-low. Taken together, these data cast doubt on 

the viability of a model which proposes a direct link between BRAFV600E mutation and 

CIMP mediated by DNMT3B as proposed by Fang et al. [364].  

Finally, despite an apparent pro-proliferative and oncogenic function of DNMT3B in the in 

vitro, and in vivo contexts respectively (at least in the absence of activated Wnt signalling), 

DNMT3B expression is not independently associated with disease-specific or overall 

survival in human colorectal adenocarcinoma. Similarly, neither CIMP-positivity nor 

BRAFV600E mutation have been demonstrated to affect disease-specific or overall survival 

in human colorectal adenocarcinoma. As discussed above, these latter two conclusions 

differ from some previously published studies. There are a number of possible 
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explanations for this. Firstly, the number of patients assessed in this study was relatively 

modest. Secondly, the survival data from TCGA are not yet “mature” (mean follow-up 

=31.25 months), and it is feasible that if repeated with more “mature” survival data, a 

survival impact of DNMT3B overexpression, CIMP-positivity or BRAFV600E mutation 

might be demonstrable. Furthermore, a negative prognostic impact of BRAFV600E mutation 

in particular has been demonstrated only in the context of MSS stage II and stage III 

tumours, but not in MSI positive tumours [477]. As the survival data in the present study 

were stratified neither for TNM stage nor MSI status, this nuanced effect of BRAFV600E on 

survival may have been missed.  

7.5 Summary 

1. DNMT3B is infrequently mutated in human colorectal adenocarcinoma, and no “hot-

spot” mutations are identified 

2. DNMT3B mutation is not significantly associated with BRAFV600E mutation or CIMP 

status. 

3. DNMT3B is highly overexpressed in human colorectal adenocarcinoma tissue 

compared to corresponding normal tissues. 

4. DNMT3B expression is significantly lower in tumours harbouring a BRAFV600E 

mutation relative to those with wild-type BRAF. 

5. The absolute expression of DNMT1, DNMT3A, DNMT3L, TET1 and TET3 does not 

significantly vary between BRAFV600E mutant and wild-type tumours, though TET2 

expression is higher in BRAFV600E mutant tumours than BRAF wild-type tumours. 

6. By comparison, the relative expression of DNMT enzymes is significantly altered in 

BRAFV600E mutant tumours compared to BRAF wild-type tumours, with significant 

reductions in the DNMT3A:DNMT1, DNMT3B:DNMT1 and DNMT3B:DNMT3A 

ratio. 

7. BRAFV600E mutation is strongly associated with but is neither necessary nor sufficient 

to induce CIMP. 
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8. DNMT3B, DNMT3A and TET1 expression is significantly lower in CIMP positive 

tumours than CIMP negative tumours.  

9. The DNMT3B:DNMT1 and DNMT3A:DNMT1 ratio are significantly lower in CIMP 

positive tumours than CIMP negative tumours, though the DNMT3A:DNMT3B ratio is 

unaltered. 

10. DNMT3B mutation is not significantly associated with CIMP status in human 

colorectal adenocarcinoma. 

11. DNMT3B copy number is frequently altered in human colorectal adenocarcinoma, but 

is not associated with CIMP status. 

12. Neither DNMT3B expression, CIMP status nor BRAFV600E mutation status individually 

correlate with disease-specific or overall survival in human colorectal adenocarcinoma. 
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8 Discussion 

8.1 Summary 

Approximately 10-20% of human colorectal cancers harbour a BRAFV600E mutation, which 

has been demonstrated to act as a founder mutation for an alternative serrated pathway of 

colorectal carcinogenesis [39-43,46,47]. Conversely, activating BRAFV600E mutations are 

detectable in 62-70% of hyperplastic colonic polyps: lesions traditionally considered to 

harbour no oncogenic potential [10,11]. Paradoxically, both in vitro and in vivo, activated 

oncogenic BRAFV600E induces a stable proliferation arrest: oncogene-induced senescence, 

an established tumour-suppressive mechanism [30,46,47,478].  Furthermore, the existence 

of an oncogene-induced senescence barrier in human serrated pathway carcinogenesis is 

supported by the published in situ data [48]. It is clear, therefore, that additional genetic 

and epigenetic events are required to promote neoplastic transformation in the serrated 

pathway, which if untreated (e.g. by endoscopic polypectomy) eventually culminates in the 

development of invasive carcinoma. The CpG island methylator phenotype (CIMP) is 

thought to promote tumourigenesis by bypass of tumour-suppressor mechanisms, such as 

silencing of CDKN2A/INK4A [47,48].  It has been recognised for some time that there is an 

extremely close relationship between BRAFV600E mutations and CIMP positivity in human 

colorectal cancer, and indeed disease progression is associated with progressive 

development of a CIMP phenotype [45,116,355,357,425]. Whilst this association was 

initially correlative, it has recently been proposed that BRAFV600E can directly induce 

CIMP through the de novo methyltransferase, DNMT3B [364]. Separately, elevated 

DNMT3B expression has previously been linked to the development of CIMP in both 

murine and human colorectal neoplasia [47,427,434,453]. Furthermore, DNMT3B has 

been demonstrated to have an oncogenic function in murine colon cancer [205,433].  

Thus, the emerging dogma is supportive of a model in which neoplastic transformation in 

BRAFV600E-mutant colorectal serrated lesions may be contributed to by the ability of this 

oncogene to induce a CpG island methylator phenotype, mediated by DNMT3B. There are 

however, several obvious paradoxes. Firstly, only a minority of colorectal lesions 

harbouring an activating BRAFV600E mutation eventually progress to invasive carcinoma. 

Secondly, CIMP develops gradually with serrated pathway progression [45]. Thirdly, as 

many as 40% of CIMP-high tumours do not harbour an activating BRAFV600E mutation, and 

finally, approximately 10% of patients with an activating BRAFV600E mutation are CIMP-

low or CIMP-negative [355]. Thus a simple, linear model by which BRAFV600E directly 
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induces CIMP cannot be fully reconciled with the disease biology. In this thesis therefore, 

the relationships between an activated BRAFV600E oncogene, DNMT3B and CIMP in 

colorectal cancer have been comprehensively explored by multiple approaches. 

In chapter 3, a panel of commercially-available DNMT3B antibodies was characterised 

and validated using a combination of ectopic DNMT3B expression, DNMT3B knockdown 

(using lentivirus encoded shRNAs and CRISPRs) and a DNMT3B-null cell line. 

Surprisingly, only one of the putative DNMT3B antibodies tested (SC10236) could 

confidently be determined to exhibit sensitivity and specificity for human DNMT3B, 

highlighting the importance of rigorous validation procedures prior to the use of antibodies 

for further experimental work. Intriguingly, and of fundamental importance to the subject 

matter of this thesis, IMG184A (52A1018) was demonstrated to react with murine but not 

human DNMT3B. Both published immunohistochemical studies linking DNMT3B 

expression to CIMP in human colorectal cancer were performed using this antibody, thus 

raising considerable questions about the validity of the conclusions made in these studies 

linking elevated DNMT3B expression and CIMP [427,453]. Whilst this might explain an 

apparent conflict with other studies which have demonstrated no relationship between 

DNMT3B mRNA expression and CIMP status in human colorectal cancer, it does not help 

to resolve the apparent conflict with data from murine models, which have demonstrated a 

clear relationship between DNMT3B expression and a CIMP-like phenotype 

[47,337,434,445].  

In chapter 4, experiments were designed to test the hypothesis that an activated BRAFV600E 

oncogene alone is sufficient to induce a CpG island methylator phenotype. A primary cell 

culture model was designed to characterise the DNA methylation changes induced by 

activated oncogenic BRAFV600E, at single base pair resolution using whole-genome 

bisulfite sequencing: to date the most comprehensive such assessment of the DNA 

methylation changes induced by an activated BRAFV600E oncogene. Furthermore, as 

expression of mutant-BRAFV600E in primary cells results in oncogene-induced senescence 

(OIS), and as the latter has been implicated as a critical tumour-suppressive barrier in 

serrated pathway colorectal cancer, it was pertinent to compare the methylation changes 

induced by mutant-BRAFV600E to those recently characterised in replicative senescence 

[30,47,281].  This was particularly relevant in light of a previous report of a CIMP-like 

phenotype in cells that have undergone replicative senescence, which was furthermore 

demonstrated to be associated with elevated DNMT3B expression [281]. Intriguingly, and 

unexpectedly, it was demonstrated that in comparison to replicative-senescence, 
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BRAFV600E-induced proliferation arrest results in only very modest changes in DNA 

methylation. In comparison to replicative senescence, which is associated with a 

significant overall global reduction in DNA methylation, BRAFV600E-induced proliferation 

arrest was associated with a small overall gain in DNA methylation. Interestingly however, 

the relatively small number of hypermethylated DMRs associated with mutant-BRAFV600E 

expression did demonstrate relative enrichment at CpG islands. Significantly, and in 

agreement with a more limited study by a previous group (who expressed mutant-

BRAFV600E in a CIMP-negative colon cancer cell line) however, it was demonstrated that 

despite an apparent enrichment for CpG island DMRs, stable expression of activated 

mutant-BRAFV600E is insufficient to induce CIMP in vitro [479]. Furthermore, and in 

keeping with the failure to induce a CIMP phenotype, it was also demonstrated that acute 

BRAFV600E activation represses the expression of DNMT3B. In combination therefore, 

these data do not support a linear BRAFV600E – DNMT3B – CIMP pathway, as has 

previously been proposed [364].  

As previous studies had linked elevated DNMT3B expression and BRAFV600E mutation in 

colorectal cancer, an in vitro model system was developed in chapter 5 in which to further 

examine the functional interactions between BRAFV600E and DNMT3B [47]. Remarkably, 

this demonstrated that combined expression of BRAFV600E and DNMT3B significantly 

impaired the ability of the former to induce a proliferation arrest phenotype, which was 

associated with increased expression of cell cycle drivers, including cyclin A, 

phosphorylated pRb and EZH2 [480]. Intriguingly, it was also demonstrated that this pro-

proliferative function of DNMT3B might not be dependent on its catalytic domain. This 

latter result is interesting in light of previous studies which have demonstrated expression 

of truncated DNMT3B isoforms in cancer [222,225].  

In order to further investigate the mechanism underlying the attenuated proliferation arrest 

phenotype driven by DNMT3B, expression-profiling was performed, comparing control, 

“DNMT3B only”, “BRAF-only” and “BRAF/DNMT3B” cell populations using RNA-

sequencing. Consistent with the observed pro-proliferative phenotype associated with 

combined BRAF/DNMT3B expression, this cell population exhibited significantly altered 

expression of cell cycle drivers (including cyclin A, cyclin D1, cyclin E, PCNA and E2F1). 

Interestingly, a recent meta-analysis has confirmed a relationship between elevated cyclin 

D1 expression and poor prognosis in human colorectal cancer [481]. A significant 

enrichment for cell cycle genes was also noted on GSEA gene-ontology analysis of those 

genes whose expression changed upon combined “BRAF/DNMT3B” expression compared 
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to “BRAF only”. Intriguingly, closer analysis of the RNA-sequencing data demonstrated 

that combined “BRAF/DNMT3B” expression also resulted in an impaired senescence-

associated secretory phenotype (SASP). This is particularly notable given that the SASP 

has been demonstrated to promote proliferation arrest and immune clearance: both tumour-

suppressive features of senescence [440,446]. Furthermore, combined “BRAF/DNMT3B” 

expression also resulted in significant changes in Wnt signalling, with “BRAF/DNMT3B” 

cells expressing higher levels of the Wnt targets Cyclin D1, Sox9, Claudin 1 and Myc, 

which have all previously been implicated in colorectal carcinogenesis [482-485]. 

Moreover, consistent with the observed phenotype in these cell culture experiments, 

activated Wnt signalling has been demonstrated to impair oncogene-induced senescence 

[429,442,447]. In summary, DNMT3B impairs, although does not completely bypass or 

prevent, the proliferation arrest phenotype induced by an activated BRAFV600E oncogene. 

In light of the observation that DNMT3B impairs the proliferation arrest phenotype 

induced by an activated BRAFV600E oncogene, and in view of the previously published 

murine data supportive of an oncogenic function of DNMT3B in murine models of colon 

cancer, in chapter 6, the oncogenic function of DNMT3B was explored in a number of 

murine models of serrated pathway carcinogenesis, driven by activated BrafV600E by 

generating mice with both BrafV600E mutation and ectopic or absent DNMT3B expression. 

Remarkably, ectopic DNMT3B expression in VilCreErT2;LSLBrafV600E+/- mice (a murine 

model of BRAFV600E-driven serrated pathway cancer) led to a significant reduction in 

overall survival. In contrast to previously published data in the ApcMin/+ model, this 

phenotypic acceleration was not associated with an increase in tumour number [205]. 

Moreover, in contrast to a previous report, an oncogene-induced senescence phenotype 

could not be characterised in this model system: though this may simply reflect differences 

in the sampling timepoint and protocol [47]. Furthermore, and in contrast to the in vitro 

data, ectopic DNMT3B expression did not noticeably alter the proliferation phenotype of 

intestinal crypts or tumours. Interestingly, whilst evidence of activated Wnt signalling was 

demonstrable in murine tumours driven by BrafV600E, there was not a demonstrable 

difference between “BRAF-only” and “BRAF-DNMT3B” mice in this regard. Intriguingly 

however, the acceleration of BRAF-mediated carcinogenesis associated with DNMT3B 

ectopic expression was abrogated when combined with activated Wnt signalling in the 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt model. Conversely, intestine-specific Dnmt3b knockout 

in a murine model of BrafV600E-mediated intestinal carcinogenesis, increased survival, and 

mirroring the converse experiment did not affect tumour number. In keeping with the 

ectopic expression experiments however, the survival advantage of Dnmt3b deletion was 



228 

immediately abrogated when combined with activated Wnt signalling. Whilst no 

demonstrable difference in Wnt signalling could be ascertained by immunohistochemistry 

between VilCreErT2;LSLBrafV600E+/- and VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-

;Col1a1-tetO-Dnmt3b1+/- mice, this is a rather limited fashion in which to assess Wnt 

signalling, which may fail to detect subtle differences. Overall, when considered in light of 

the in vitro RNA-sequencing data generated in chapter 5, and data from previous studies in 

murine intestinal tumour models demonstrating altered expression of SFRP proteins in 

association with DNMT3B ectopic expression, it is tempting to conclude that altered Wnt 

signalling may be a significant contributing mechanism underlying the effects of 

DNMT3B on survival in BRAFV600E-driven murine colorectal neoplasia [205]. Clearly, 

additional experiments would be required to further this hypothesis, and might include 

RNA-sequencing of intestinal crypts from VilCreErT2;LSLBrafV600E+/- and 

VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice, or 

intercrossing to a Wnt reporter transgene [486].  

Having established (at least in an in vitro model system) that mutant-BRAFV600E represses 

DNMT3B expression, and is insufficient to induce a CpG island methylator phenotype, but 

that together BRAFV600E and DNMT3B appear to exhibit oncogenic cooperation, it was 

appropriate to examine relationships between DNMT3B and BRAF in human colorectal 

cancer. Initial experiments in colon cancer cell lines in chapter 5 were supportive of the 

data generated in earlier chapters: failing to reveal a clear relationship between DNMT3B 

expression and BRAF mutation or CIMP status in colon cancer cell lines. Furthermore, 

whilst ectopic DNMT3B expression has been demonstrated to impair BRAFV600E-induced 

proliferation arrest, and accelerate murine intestinal tumourigenesis driven by an activated 

BrafV600E oncogene (at least in the absence of activated Wnt signalling), DNMT3B 

knockdown in a BRAFV600E-mutant colon cancer cell line (LS411N) did not demonstrably 

affect proliferation. Interestingly, LS411N harbours an APC mutation, and active Wnt 

signalling [487]. Thus to an extent, this in vitro result mirrors the data generated in the 

VilCreErT2;LSLBrafV600E+/-;Apcfl/wt model, and may add further weight to the proposed 

Wnt-status dependency of DNMT3B’s oncogenic function. Furthermore, in direct conflict 

with the model presented by Fang et al. [364], it was demonstrated that DNMT3B 

knockdown in a BRAFV600E-mutant cell line does not restore expression of the CIMP-target 

gene MLH1. Similarly, ectopic expression of DNMT3B in an MLH1 proficient, 

microsatellite stable cell line (HT-29) failed to induce silencing of MLH1: a key CIMP-

marker, and a proposed target of the BRAFV600E-mediated MAFG-BACH1-CHD8-

DNMT3B complex described by Fang et al. [364]. Significantly, the data presented in this 
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thesis are consistent with the previously published murine data, which did not demonstrate 

Mlh1 methylation in association with ectopic DNMT3B expression [205,434]. 

Taken together, the data summarised herein argue against a simple BRAF-DNMT3B-

CIMP pathway. As the data thusfar were limited to the in vitro and in vivo contexts, it was 

appropriate to further explore relationships between BRAF, DNMT3B and CIMP in human 

colorectal cancer. In chapter 7, the human colorectal adenocarcinoma Cancer Genome 

Atlas (TCGA) data was utilised to characterise these relationships. Significantly, whilst 

DNMT3B mutations were demonstrated to be very uncommon in human colorectal cancer, 

DNMT3B was demonstrated to be frequently overexpressed in colorectal cancer tissue 

relative to normal colonic tissue, consistent with a potential oncogenic function as 

characterised above and in previous studies [205,433]. Furthermore, DNMT3B copy 

number was demonstrated to be frequently amplified in colorectal cancer, and 

demonstrated a strong association with DNMT3B mRNA expression. 

Significantly, explicit examination of the relationship between BRAFV600E mutation and 

DNMT3B expression revealed a striking anticorrelation between BRAFV600E mutation and 

elevated DNMT3B expression in human colorectal cancer, consistent with the earlier in 

vitro data demonstrating repression of DNMT3B by activated BRAFV600E. As it had earlier 

been demonstrated that mutant-BRAFV600E expression alone is insufficient to induce CIMP, 

this hypothesis was examined in the TCGA data. Importantly, whilst a statistically 

significant overlap between BRAFV600E mutation and CIMP-positivity was evident, 

BRAFV600E was neither necessary nor sufficient to induce CIMP. Furthermore, DNMT3B 

mRNA expression was significantly lower in CIMP-positive than CIMP-negative tumours, 

and interestingly this was also the case for the other candidate de novo methyltransferase, 

DNMT3A. Intriguingly however, and consistent with a previous report, TET1 expression 

was lower in CIMP-positive than CIMP-negative tumours [350]. Finally, it was 

demonstrated that elevated DNMT3B expression does not independently predict overall or 

disease-free survival in human colorectal cancer. Interestingly, this is in keeping with the 

murine data in which the survival effects of Dnmt3b manipulation are abrogated upon 

activated Wnt signalling. Together these data might suggest that DNMT3B’s oncogenic 

function is most relevant at the earlier stages of neoplastic transformation, and is 

superseded by the progressive development of more powerful oncogenic stimuli (such as 

activated Wnt signalling) accompanying neoplastic transformation.      
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In summary, the data presented in this thesis directly challenge the current model of 

relationships between BRAF, DNMT3B and CIMP in human colorectal cancer, whereby 

DNMT3B contributes to CIMP in association with BRAFV600E mutation and, in the most 

extreme form of the model, that mutant-BRAFV600E drives CIMP via DNMT3B. By 

multiple approaches, it has been demonstrated that BRAFV600E mutation is associated with 

repression of DNMT3B and is neither necessary nor sufficient to induce CIMP. 

Furthermore, it has been demonstrated that whilst DNMT3B overexpression and somatic 

copy number amplification are common features of human colorectal cancer, that they are 

inversely correlated with CIMP. Conversely, ectopic DNMT3B expression results in 

impaired BRAFV600E-induced proliferation arrest, and promotes murine serrated pathway 

intestinal tumourigenesis driven by an activated BrafV600E oncogene. Thus, whilst 

BRAFV600E and DNMT3B both harbour oncogenic potential, they do not appear to 

cooperate to induce CIMP, and do not appear to cooperate frequently in human colorectal 

cancer by any mechanism. 

 
8.2 Further Work 

The data presented in this thesis do not support the existence of a linear BRAF-DNMT3B-

CIMP pathway, nor the hypothesis that DNMT3B directly induces CIMP. The data do 

however support a possible oncogenic function of DNMT3B in colorectal carcinoma, and 

further work should explore further the potential mechanisms underlying this putative 

oncogenic function. One potential mechanism that has been developed in the present work 

is an interaction between DNMT3B and the Wnt signalling pathway. Further experiments 

both in vitro and in vivo would allow further dissection of this relationship. It would be of 

interest to repeat the combined DNMT3B/BRAF ectopic experiments presented in chapter 

5 in the presence of small molecular inhibitor of Wnt to determine whether Wnt pathway 

inhibition abolishes the pro-proliferative phenotype associated with combined 

BRAF/DNMT3B ectopic expression. This relationship could also be explored in vivo by 

performing RNA-sequencing of intestinal crypts from VilCreErT2;LSLBrafV600E+/- and 

VilCreErT2;LSLBrafV600E+/-;R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice and 

specifically interrogating these data for Wnt pathway components. Furthermore, 

intercrossing R26-M2-rtTA+/-;Col1a1-tetO-Dnmt3b1+/- mice to a Wnt reporter transgene 

would allow direct assessment of whether DNMT3B ectopic expression alone is sufficient 

to activate the Wnt signalling pathway [486].  
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Whilst in this thesis, activated oncogenic BRAFV600E has not been demonstrated to induce 

a CpG island methylator phenotype (and this is supported by the later in situ data), there 

are certain caveats to this conclusion. Notably, the model used to assess the effects of 

activated mutant-BRAFV600E on DNA methylation was an in vitro primary human cell 

culture model system in fetal lung fibroblasts. Furthermore, the inability to maintain these 

cells in culture for a prolonged period meant that the effects of activated oncogenic 

BRAFV600E on DNA methylation were assayed in the “acute setting” rather than the 

prolonged period in vivo between the development of a pre-neoplastic lesion with an 

activating BRAFV600E mutation (e.g. hyperplastic polyp, SSA/P) and the subsequent 

development of a CIMP-high cancer. Furthermore, whilst ectopic BRAF expression was 

confirmed in vitro, downstream targets of its signalling pathway (to confirm MAPK 

pathway activation) were not formally assessed, though this could be addressed by the 

addition of phospho-ERK and phospho-MEK western blots. In order to resolve this 

limitation of the in vitro system, it would be of interest to assess the effects of activated 

oncogenic BRAFV600E on DNA methylation by undertaking whole-genome bisulfite 

sequencing of crypts (and/or tumours) isolated at an appropriate timepoint (e.g. >365 days 

post-induction) in VilCreErT2;LSLBrafV600E+/- mice and VilCreErT2;LSLBrafV600E-/- controls. 

This experiment would be more “physiological” than the in vitro model used in the present 

work, and would thus allow a more definitive conclusion to be drawn regarding the ability 

of activated oncogenic BRAFV600E to induce a CIMP phenotype.   
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