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ABSTRACT 

Solar sailing is the use of a thin and lightweight membrane to reflect sunlight 

and obtain a thrust force on the spacecraft. That is, a sailcraft has a potentially-

infinite specific impulse and, therefore, it is an attractive solution to reach 

mission goals otherwise not achievable, or very expensive in terms of propellant 

consumption. The recent scientific interest in near-Earth asteroids (NEAs) and the 

classification of some of those as potentially hazardous asteroids (PHAs) for the 

Earth stimulated the interest in their exploration. Specifically, a multiple NEA 

rendezvous mission is attractive for solar-sail technology demonstration as well as 

for improving our knowledge about NEAs. A preliminary result in a recent study 

showed the possibility to rendezvous three NEAs in less than ten years. According 

to the NASA’s NEA database, more than 12,000 asteroids are orbiting around the 

Earth and more than 1,000 of them are classified as PHA. Therefore, the selection 

of the candidates for a multiple-rendezvous mission is firstly a combinatorial 

problem, with more than a trillion of possible combinations with permutations of 

only three objects. Moreover, for each sequence, an optimal control problem 

should be solved to find a feasible solar-sail trajectory. This is a mixed 

combinatorial/optimisation problem, notoriously complex to tackle all at once. 

Considering the technology constraints of the DLR/ESA Gossamer roadmap, this 

thesis focuses on developing a methodology for the preliminary design of a mission 

to visit a number of NEAs through solar sailing. This is divided into three sequential 

steps. First, two methods to obtain a fast and reliable trajectory model for solar 

sailing are studied. In particular, a shape-based approach is developed which is 

specific to solar-sail trajectories. As such, the shape of the trajectory that 

connects two points in space is designed and the control needed by the sailcraft 
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to follow it is analytically retrieved. The second method exploits the homotopy 

and continuation theory to find solar-sail trajectories starting from classical low-

thrust ones. Subsequently, an algorithm to search through the possible sequences 

of asteroids is developed. Because of the combinatorial characteristic of the 

problem and the tree nature of the search space, two criteria are used to reduce 

the computational effort needed: (a) a reduced database of asteroids is used 

which contains objects interesting for planetary defence and human spaceflight; 

and (b) a local pruning is carried out at each branch of the tree search to discard 

those target asteroids that are less likely to be reached by the sailcraft 

considered. To reduce further the computational effort needed in this step, the 

shape-based approach for solar sailing is used to generate preliminary trajectories 

within the tree search. Lastly, two algorithms are developed which numerically 

optimise the resulting trajectories with a refined model and ephemerides. These 

are designed to work with minimum input required by the user. The shape-based 

approach developed in the first stage is used as an initial-guess solution for the 

optimisation. 

This study provides a set of feasible mission scenarios for informing the 

stakeholders on future mission options. In fact, it is shown that a large number of 

five-NEA rendezvous missions are feasible in a ten-year launch window, if a solar 

sail is used. Moreover, this study shows that the mission-related technology 

readiness level for the available solar-sail technology is larger than it was 

previously thought and that such a mission can be performed with current or at 

least near-term solar sail technology. Numerical examples are presented which 

show the ability of a solar sail both to perform challenging multiple NEA 

rendezvous and to change the mission en-route. 
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NOMENCLATURE 

The author attempted to use standard symbols and acronyms in use in 

Astrodynamics and Optimisation, giving alternatives wherever appropriate, and 

tried to be consistent throughout the document. Some symbols have duplicate 

meanings but the appropriate one should be clear from the context. The following 

notation will be used throughout the document. All scalar quantities will be 

represented by non-bold italic symbols. All vectors will be treated as column 

vectors and represented by bold italic symbols. Lastly, all matrices will be denoted 

by uppercase non-italic bold symbols. 

Acronyms 

3D = Three Dimensional 

ACO = Ant Colony Optimisation 

AMR = Area-to-Mass Ratio 

ANN = Artificial Neural Network 

ARRM = Asteroid Redirect Robotic Mission 

ARS = Adjusted R-Square 

ATOSS = Automated Trajectory Optimiser for Solar Sailing 

AU = Astronomical Unit, 149,597,870.691 km 

BFS = Breadth-First Search 

BS = Beam Search 

CNEOS = Center for Near Earth Object Studies 

CR3BP = Circular Restricted Three-Body Problem 

DFS = Depth-First Search 

DLR = Deutsches zentrum für Luftund Raumafhart e.V. (German 

Aerospace Centre) 

EMOID = Earth Minimum Orbit Intersection Distance, AU 

ESA = European Space Agency 
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EXP-TRIG = Exponential Trigonometric 

FB = Flyby 

FFS = Finite Fourier Series 

GA = Genetic Algorithm 

GO = Global Optimisation 

GTOC = Global Trajectory Optimisation Competition 

IAA = International Academy of Astronautics 

JPL = Jet Propulsion Laboratory 

KEP = Keplerian elements 

KKT = Karush-Kuhn-Tucker 

LCDB = Lightcurve Database 

LG = Legendre-Gauss 

LGL = Legendre-Gauss-Lobatto 

LGR = Legendre-Gauss-Radau 

LIN-TRIG = Linear Trigonometric 

LO = Local Optimisation 

LT = Low Thrust 

MEE = Modified Equinoctial Elements 

MTSP = Motorised Travel Salesman Problem 

NASA = National Aeronautics and Space Administration 

NC = Neurocontroller 

NEA = Near-Earth Asteroid 

NHATS = Near-Earth object Human space flight Accessible Target Study 

NLP = Nonlinear Programming 

OCC = Orbit Condition Code 

OCP = Optimal Control Problem 

ODE = Ordinary Differential Equation 

OT = Orbit Transfer 

PHA = Potentially-Hazardous Asteroid 

pMEE = Pseudo Modified Equinoctial Elements 

PDC = Planetary Defense Conference 

PSO = Particle Swarm Optimisation 

RV = Rendezvous 

SB =  Shape-Based 

SI = International System of Units 
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SRP = Solar Radiation Pressure 

SSE = Sum of Squares due to Error 

STO = Sequential Trajectory Optimiser 

TPBVP = Two-Point Boundary Value Problem 

TRL = Technology Readiness Level 

TSP = Travel Salesman Problem 

Symbols 

 A x  = Matrix of the dynamics 

A   = Sail area, 2m  

, , ,A B C D   =  Multiplication factors of the Hamiltonian expansion 

a   = Acceleration vector, 2mm s  

r
a   = Radial component of the acceleration, 2mm s  

t
a   = Transversal component of the acceleration, 2mm s  

a   =  Semimajor axis, AU 

c
a   = Solar-sail characteristic acceleration, 2mm s  

h
a   = Out-of-plane magnitude of the acceleration, 2mm s  

max
a   = Maximum low-thrust acceleration, 2mm s  

0 0
,

P
a b   = Out-of-plane shaping parameters for the exponential sinusoid 

approach 

, , , ,, ,a b c d e f g  = Shaping parameters for the inverse polynomial shape 

B   =  Magnetic field vector, T 

 b x  = Vector of the dynamics 

b   =  Identifier of a body 

c   = Vector of the path constraints 

c   = Speed of light in vacuum,  82.99792 10 m s  

, ,
I C S

c c c   = Inertial, cognitive and social weights 

ij
D   = Differentiation matrix 

E   =  Electric field vector, N C  

e   =  Eccentricity 



Nomenclature XXIV 

,F G   =  Pseudo modified equinoctial elements corresponding to f  and g  

f   = Equations of the dynamics 

SRP
f   = Force acting on the sail due to the SRP, N 

,SRP i
f   = Force acting on the sail due to the incident radiation, N 

,SRP r
f   = Force acting on the sail due to the reflected radiation, N 

f   = Generic continuous function 

,f g   =  In-plane modified equinoctial elements 

G   = Momentum vector (G G ), kgm s  

 g x   = Algebraic constraints 

( )k

best
g   = Best position vector of the entire swarm of iteration step k 

g   = Integral cost function 

0
g   =  Standard sea level acceleration due to gravity, 29.80665 m s   

H   = Hamiltonian 

H   = Reduced Hamiltonian 

,H K   = Pseudo modified equinoctial elements corresponding to h  and k  

ĥ   = Orbital angular momentum unit vector 

,h k   = Out-of-plane modified equinoctial elements 

  =  Reduced Planck’s constant, 
 341.05457 10 Js  

K   = Number of mesh intervals 

max
K   = Maximum number of iteration steps 


0 1 2
, , ,k k k   = In-plane shaping parameters for the exponential sinusoid approach 

I   =  Poynting vector, 2W m  

sp
I   =  Specific impulse, s 

i   =  Inclination, deg 

J   = Objective (cost) function 

j   = Phase number 

L   = Luminosity, W 

L   = Luminosity of the Sun,  263.8 10 W  

L   =  True longitude, rad 

b
L   =  List of available bodies in the database 
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,b i
L   =  List of bodies already encountered 

compl
L   =  List of complete sequences 

part
L   =  List of partial sequences 

tmp
L   =  List of temporary sequences 

ˆ
f

L   =  Lower boundary on 
f

L , rad 

j
  = Lagrange interpolating polynomial at j-th collocation point 

m  = Number of nonlinear equations of the shooting function 

0
m   = Total spacecraft mass, kg 

1
m   = Number of inequality constraints 

dry
m   = Spacecraft dry mass, kg 

rest
m   = Mass at rest, kg 

N̂   = Acceleration unit vector, 
  

T

r h
N N N  

N   = Number of objects in the database 

N   = Number of collocation points (CHAPTER 2) 

k
N   = Number of collocation points at k-th mesh interval 

max

seqN   = Maximum number of partial sequences to be used in the following 

leg within the sequence search algorithm 

n   = Number of optimisation variables 

rev
n   = Number of complete revolutions 


,

r
n n   = Number of Fourier terms in the FFS approach 

P  = Value of the Palermo scale 

P    =  Pseudo modified equinoctial element corresponding to p  

P   = Solar radiation pressure, 2μN m  (CHAPTER 2) 

 N
P   = N-th degree Legendre polynomial 

N

Q
P   = Number of Q-permutations of N elements 


P   = Solar radiation pressure at Earth distance, 24.56 N mμ  

p   = Vector of static parameters 

 ( )k

best
ip   = Best position vector of particle i at iteration step k 

p    =  Semilatus rectum, AU 



Nomenclature XXVI 

Q   = Number of distinct elements to be considered for the computation 

of the permutation 

2, ,q s   = Auxiliary variables 

r   = Cartesian position vector ( r r ), AU 

r̂   = Position unit vector 

 ( )k ir   = Position vector of particle i at iteration step k 


r   = Mean Sun-Earth distance, 1 AU 

a
r   = Radius of the apocentre, AU 

p
r   = Radius of the pericentre, AU 

 0,1r   = Random number between 0 and 1 

i
s   =  Partial sequence 

T   = Pseudo element corresponding to t  

T   = Effective temperature, K (CHAPTER 2) 

0 f
T   = Time of flight, s 


T   = Tisserand parameter related to Earth 

t   =  Time, s 

0
t   =  Launch date 

0
t   =  Selected launch date 

stay
t   =  Stay time at the object, s 

i
U   = Discretised control vector at i-th collocation point 

U   = Set of feasible controls 

U   = Quality code 

u   = Control vector 

î
u   = Direction of the incident radiation 

ˆ
r

u   = Direction of the reflected radiation 

u   = Radial velocity, km s  

u   = Low-thrust non-dimensional control 

v   = Velocity vector 

 ( )k iv   = Velocity vector of particle i at iteration step k 

v   = Transversal velocity, km s  



Nomenclature XXVII 

W   = Energy flux emitted by a star, 2W m  

W   = Energy flux emitted by the Sun, 21,368W m  

1 2
,W W   =  Weighting factors 

i
w   = Gauss quadrature weight 

X   = Discretised state 

x   = State vector 

x   = Vector of optimisation parameters 

y   = Set of free parameters,     , , ,
p fg p fg   

z   = Vector of the optimisation variables in the homotopic approach 

   = Sail cone angle, deg 

   = Desired sail cone angle, deg 

 
  = Desired optimal sail cone angle, deg 

   = Sail lightness number 

   = Shooting function 

   = Direction of vernal equinox (first point of Aries) 

a   = Semimajor axis variation, AU 

E   = Quantity of energy transferred, J 

p   = Momentum transported by a flux of photons, kgm s  

t   = Time interval, s 


f

t   = Value used to decrease the lower boundary on the final time, days 

v   = Velocity increment, km s  

   = Sail clock angle, deg 

r   = Position error of the spacecraft with respect to the target 

v   = Velocity error of the spacecraft with respect to the target 

   = Step size for the numerical continuation 

   = Longitude of pericentre variation, rad 

  =  Energy, J 

   = Homotopic parameter 

   = Angle between two consecutive sail attitudes, deg 

   = Efficiency coefficient 

̂   = In-plane transversal unit vector 

   = Spacecraft angular position in polar coordinates, deg 



Nomenclature XXVIII 

   = Angle between angular momenta of two orbits, deg 

   = Sail loading, 2g m  

   = Critical sail loading, 21.53 g m  

   = Costate vector 

  
1 2 3
, ,   = Shaping parameters for the linear-trigonometric and exponential 

shapes 


fg

 = Shaping parameter related to the in-plane modified equinoctial 

elements  


max

  = Wavelength of peak emission, μm 


p
  = Shaping parameter related to the semilatus rectum, AU 

   = Vector of the Lagrange multipliers associated with the path 

constraints 

   = Gravitational parameter of the Sun,  11 3 21.3271 10 km s  

   =  Permeability of the medium, 2N A  

   = Vector of the Lagrange multipliers associated with the boundary 

constraints 

   =  True anomaly, rad 

  = Stefan-Boltzmann constant,  8 2 45.670373 1 W m K0   

   = Transformed time 


max   = Maximum allowed torque, Nm 

   = Parameter related to the unperturbed relative velocity of an 

object with respect to the Earth 

   = Scaled value of the gauge term of the velocity 


fg

 = Phasing parameter related to the in-plane modified equinoctial 

elements, rad 


p
  = Phasing parameter related to the semilatus rectum, rad 

   = Terminal cost function 

   = Parameter dependent on the cone angle 

   = Vector of boundary conditions 

   =  Right ascension of the ascending node, rad 

   =  Argument of pericentre, rad 



Nomenclature XXIX 

   = Photon angular frequency, rad s  (CHAPTER 2) 

   = Longitude of pericentre, rad 

Subscripts 

0   = Initial value 

1  = First homotopic transformation 

2   = Second homotopic transformation 

0
b   =  Departing body 

f
b   =  Arriving body 

F   = Value dependent on the boundary conditions at the final time 

f   = Final value 

gauge   = Gauge term of the velocity 

I   = Value dependent on the boundary conditions at the initial time 

LT   = Low thrust 

LTSS   = Low-thrust to solar-sail homotopic transformation 

max   = Maximum 

min   = Minimum 

osc   = Osculating term of the velocity 

pSS   = Pseudo solar sail 

SS   = Solar sail 

tmp   =  Temporary value 

Superscripts 

( )   = Mesh number 

FB   = Flyby 

j   = Phase 

kep   = Keplerian elements 

mee   = Modified equinoctial elements 

m  = Number of constraints 

n   = Number of optimisation parameters 

OT   = Orbit transfer 

pol   = Polar coordinates 



Nomenclature XXX 

RV   = Rendezvous 

T   =  Transpose 

   = Optimal value 

Operators and other Notations 

     = Matrix 

    = List of elements 

  =  Euclidean L2 norm 

  =  First derivative with respect to time 

  =  Second derivative with respect to time 

   =  First derivative with respect to true longitude 

  = Value related to the target object 

ˆ   = Unit vector 

d   =  Total derivative 

   =  Partial derivative 

   =  Gradient 

 argmin   = Point within the domain in which the function is minimised 

 ln   =  Natural logarithm 

 mod ,   =  Remainder after division (modulo operator) 

    =  Order of magnitude 

   =  Cross product 

   =  Scalar product 

  = Equal by definition 

   = Empty set 

  =  Set of Real numbers 

 



 

CHAPTER 1.  

INTRODUCTION 

1.1. Solar-Sail Mission Design for Multiple NEA 

Rendezvous: An Overview 

The definition of an interplanetary trajectory is a core element of a space 

mission design, such as a multiple near-Earth asteroid (NEA) rendezvous mission. 

This shall take into consideration the mission goals, the propulsion system of the 

spacecraft, the amount of time available for the overall mission, the cost of the 

mission itself. From a flight dynamics point of view, the cost of a trajectory can 

be estimated through the total amount of v  needed, i.e. the amount of impulse 

that is needed to perform all the necessary manoeuvres. Due to the long journey 

and the usually high v  required, interplanetary missions are well suited to be 

carried out by means of electric propulsion. This system, in fact, enables the 

spacecraft to have a small, but continuous and highly efficient thrust for a long 

time [1]. Nonetheless, the total v  is limited by the maximum amount of 

propellant that can be carried on. Because of the amount of thrust generated, 

electric propulsion is commonly referred to as a low-thrust propulsion system. 

As opposite to the aforementioned low-thrust system (which will be referred 

to as classical low-thrust, in the remainder of this thesis), a solar sail is a large, 

lightweight and highly reflective membrane, deployed from the spacecraft, which 

propels it by reflecting the solar photons [2]. Therefore, a solar sail is an attractive 

solution for high-v  missions, because it does not need any propellant and the 

thrust is theoretically provided for an extended amount of time. Due to the small 

acceleration produced, solar sailing also falls into the low-thrust category. 
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Nevertheless, intrinsic differences in the available thrust distinguish a solar sail 

from a classical low-thrust system, as it will be shown in detail in Section 2.1. To 

date, several studies have been carried out to demonstrate the potential of solar-

sailing propulsion. However, the technology readiness level (TRL) of this kind of 

propulsion system still needs to be increased. For this reason, the purpose of the 

DLR/ESA Gossamer roadmap to solar sailing was to bring the solar-sail TRL to a 

“flight qualified” level1 [3]. 

Great effort has been dedicated to the study of NEAs because of their 

importance for scientific, technological, and planetary-defence reasons. 

Regarding the last, several NEAs pose a potential threat to our planet and are 

indeed classified as potentially hazardous asteroids (PHAs). A multiple NEA 

rendezvous with close-up observations of several objects can help the scientific 

community to improve the knowledge about the diversity of these objects and to 

support any future mitigation act. In fact, most of the information available to 

date are retrieved by means of Earth-based observations. Furthermore, a 

multiple-target mission is preferable to a single-rendezvous mission because of 

the reduced cost of each observation and the intrinsic lack of knowledge that 

makes the choice of a single asteroid difficult. Planning of such a mission, 

however, is challenging because of the large number of asteroids and the huge 

number of different ordered sequences of NEAs that can be chosen to visit. This 

is a combinatorial problem first, with more than a trillion of possible sequences 

with only three consecutive encounters, considering a database with more than 

12,000 objects2. Moreover, for both solar sail and classical low-thrust propulsion, 

space trajectories shall be optimised according to one or more objectives, such as 

mission time or v , and constraints, such as initial/final state or thrust 

constraints [4]. Because no closed-form solutions exist for the low-thrust 

optimisation problem, an optimal control problem (OCP) must be solved 

numerically for each leg of the multiple rendezvous to test the feasibility of the 

proposed sequence with the propulsion system used. Specifically, minimum-time 

solar-sail transfers are sought in this study. 

                                         
1 Data available online at http://sci.esa.int/sci-ft/50124-technology-readiness-level/ [retrieved 

11 September 2017]. 

2 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 
2015]. 

http://sci.esa.int/sci-ft/50124-technology-readiness-level/
https://cneos.jpl.nasa.gov/orbits/elements.html
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Currently, there are several optimisation techniques available and these can 

be grouped into three main categories [5, 6]: direct, indirect, and metaheuristic 

methods. A direct method involves the transcription of the OCP into a discrete 

nonlinear programming (NLP) problem, which can be solved by a parametric 

optimisation, once an initial-guess solution is given [7]. Usually, direct methods 

have a large radius of convergence, i.e. they are robust to inaccurate initial-guess 

solutions. On the other hand, indirect methods are usually more precise than 

direct methods, but their radius of convergence is generally smaller, so that it is 

harder to find an optimal solution if the initial guess is not good enough. Lastly, 

metaheuristic optimisation methods do not usually need any initial guess. In fact, 

they usually start with an initial random population that evolves towards the 

optimum by following a defined set of heuristic rules, which are generally inspired 

by the nature. The random initialisation of the population gives a statistical 

confidence about the optimality of the solution found. However, there is no 

mathematical guarantee of the optimality of a single solution. In addition to the 

three aforementioned categories, semi-analytical methods, specific to the 

trajectory optimisation problem, produce sub-optimal solutions and thus are 

commonly used in the preliminary trajectory design. These are based on designing 

the shape of the trajectory and retrieving the control needed a posteriori, without 

any optimisation needed [8]. These methods are very fast, although there is no 

proof of optimality and the shape of the trajectory shall be changed until the 

control needed is the one that can be achieved with the available propulsion 

system. Due to the advantage of providing results quickly, these can be used to 

generate an initial guess for a more precise optimisation technique, which can 

guarantee the optimality of the solution, if any [9]. 

To date, solar-sail trajectory optimisation has been mostly carried out through 

indirect optimisation techniques [10-12]. However, a direct approach can be 

helpful in a preliminary mission design phase, because of its larger radius of 

convergence with respect to an indirect method. Moreover, multi-body missions 

(such as multiple NEA rendezvous) require the problem to be divided into several 

phases, each one of which is characterised by different boundaries (i.e. a multi-

phase problem). In general, in a multi-phase problem, each phase can also be 

described by different dynamics (e.g. for interplanetary and close-approach 

phases) or control (e.g. hybrid propulsion system). This can be set up with little 

effort if a direct optimisation technique is used. On the contrary, a different 
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mathematical model shall be studied for each phase of the problem in the indirect 

method case. As previously stated, the drawback of the direct approach is the 

need of an initial guess. For this reason, a quick and reliable approximation of the 

trajectory, which can be used as an initial-guess solution for a direct optimisation 

method, can be obtained by means of a semi-analytical shape-based approach. 

Several shape-based approaches have been developed to date but all of them 

deal with classical low-thrust propelled spacecraft [8, 9, 13, 14]. A solar-sail 

trajectory is different from a classical low-thrust one because the magnitude and 

direction of the thrust given by a solar sail are strongly related. As an example, a 

solar sail in a Sun-centred trajectory cannot give a thrust only along the tangential 

direction, as this would imply that no part of the sail is actually facing the Sun 

(see Section 2.1.2 for a more detailed explanation). Nevertheless, most of the 

studies on the shape-based approach assume a full-tangential thrust. For this 

reason, a novel shape-based approach shall be developed, considering the 

constraints on the available solar-sail thrust [15]. 

1.2. Objectives 

As discussed in Section 1.1, the worldwide scientific community is currently 

investing resources in NEA studies. In fact, a number of missions to NEAs have 

been already designed. Nevertheless, a multiple NEA rendezvous mission can help 

the scientific community improving knowledge about these objects. A multiple-

target mission is more desirable than a single-rendezvous mission is, because of 

the reduced cost of the single observation and the more extensive science return. 

Moreover, within a multiple-target mission, it might be possible to change the 

targets in due course, if there is enough v  available. This can be useful if new 

interesting objects are discovered after launch. However, the large amount of 

possible sequences of objects that can be chosen to visit makes the optimal 

planning of such a mission very challenging. Moreover, a trajectory-optimisation 

problem must be numerically solved to obtain feasible trajectories with the 

chosen propulsion system. Regarding the propulsion system, a solar sail is more 

desirable than a classical low-thrust spacecraft because it does not need any 

propellant. In fact, a multiple rendezvous mission is, in principle, characterised 

by higher v  requirements than a single-target mission is. Moreover, a change in 
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the targets after launch can be, in principle, unfeasible by a classical low thrust 

because of the limited amount of propellant available. 

For the reasons above, the principal objective of this thesis is to develop a tool 

for the preliminary trajectory design of multiple NEA rendezvous missions through 

solar sailing. This will guarantee a step further in the DLR/ESA Gossamer roadmap 

to solar sailing [16]. In fact, such tool will give an estimate of the potential 

missions feasible with the chosen solar-sail technology. Among those missions, the 

most promising ones (in terms of mission duration, solar-sail performance, launch 

date, etc.) can be chosen to be further studied. 

In order to pursue the main goal of this thesis, a number of secondary 

objectives are set. These are: 

1) An algorithm must be developed to find potential sequences of objects to 

visit. Such algorithm shall produce a number of preliminary sequences to 

be further studied. 

2) The optimisation of all single NEA-to-NEA transfer trajectory would 

require an impractical amount of computational time. Therefore, a model 

should be developed to have a reliable and fast approximation of the 

trajectory produced by a solar sail. The shape-based approach is a good 

candidate to achieve this goal. However, all the SB approaches proposed 

in the literature have been derived for classical low-thrust propulsion 

systems and most of them are developed in a tangential-thrust 

approximation (Section 2.2.4). For this reason, a novel shape-based 

approach should be studied specifically for the solar-sail case. 

3) An optimisation strategy should be developed to test the feasibility (within 

the approximations considered) of the sequences found. Because this 

thesis deals with preliminary trajectory design, it is expected that many 

potential sequences of NEA encounters will be found. Therefore, an 

optimiser that can deal with several OCPs in an automatic way is 

preferable. 

4) Considering the current DLR/ESA technology for solar sailing as a 

reference [16], a solar sail with lower performances shall be considered. 

As it will be shown in detail in Section 2.1, a lower performance is 

obtained for either a smaller sail or a heavier spacecraft. Obtaining a large 

area-to-mass ratio (AMR) is one of the key challenges towards the 

development of solar-sailing technology [17, 18]. That is, finding multiple 
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NEA rendezvous missions feasible by a solar sail with lower performances 

does indeed increase the TRL related to solar sailing. 

1.3. Outline 

The structure of this thesis follows the secondary objectives 1) – 3) outlined in 

Section 1.2. Each one of those is discussed and analysed in a different chapter, 

thus building the solar-sail mission design for multiple NEA rendezvous from the 

ground up. 

CHAPTER 2 gives an overview of the building blocks needed for the mission 

design of multiple NEA rendezvous. A literature review on solar sailing, space-

trajectory optimisation techniques and near-Earth asteroids is provided. 

Specifically, the methods that will be used throughout this thesis to solve the low-

thrust OCP are described starting from their mathematical foundations. 

CHAPTER 3 deals with the preliminary design of solar-sail trajectories, which 

is of crucial importance for both the search for sequences of target objects and 

the subsequent optimisation phase. Two different methods are developed for 

having a fast and reliable description of solar-sail trajectories. The first method 

is a shape-based approach, which has been developed specifically for solar sailing. 

The second method investigates the homotopy theory for generating solar-sail 

trajectories starting from classical low-thrust ones. Advantages and drawbacks of 

both methods are discussed which make the two methods complementary 

depending on the purpose. 

CHAPTER 4 shows the algorithm implemented for the asteroid sequence search. 

First, the database of asteroids used is described and classifications are discussed 

which allow considering a reduced number of objects. The algorithm, which 

exploits the tree-like nature of the search space, is described in each of its 

building blocks. A local pruning of all the possible objects to visit, based on 

astrodynamics, is firstly performed to reduce the search space and thus decrease 

the computational effort needed by the algorithm. Subsequently, the shape-based 

approach for solar sailing is used to test the feasibility of the trajectory. Numerical 

test cases show that a significant number of sequences of NEAs exists for a wide 

range of launch dates, considering near-term solar-sail technology. 
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CHAPTER 5 describes the last step in the mission design, i.e. the optimisation. 

A direct-optimisation method is considered, which has been mainly chosen to 

guarantee versatility and robustness. Moreover, the preliminary trajectories found 

by means of the methods described in CHAPTER 3 are used as initial-guess 

solutions to initialise the direct-optimisation method. Several numerical test cases 

assess the performances of the developed approach. Moreover, an automated 

optimisation campaign demonstrates both the ability of the optimisation approach 

to find solutions in an automated way and the reliability of the sequences found 

by means of the asteroid sequence search. 

Lastly, CHAPTER 6 concludes this thesis and provides a summary of the findings. 

Furthermore, the current limitations of the presented work are discussed and 

proposed directions for future research are examined. 

A detailed description of the metaheuristic optimisation methods and some 

implementation details are provided in the appendix. 

 



 

CHAPTER 2.  

SURVEY OF THEORY AND METHODS 

This chapter provides a review of the literature needed to study the problem 

of preliminary trajectory design for multiple near-Earth asteroid rendezvous 

missions. The chapter starts with a brief introduction to the physics behind solar 

sailing and the challenges and advantages of this propulsion system. A survey 

about space trajectory optimisation follows which gives an overview of the main 

analytical and numerical optimisation tools used in the literature. Afterwards, the 

importance of near-Earth asteroids is outlined. 

2.1. Solar Sailing from the Ground Up 

2.1.1. Solar Radiation Pressure: From Maxwell to Einstein 

The Sun radiates energy in the entire electromagnetic spectrum, with a peak 

of emission in the visible spectrum at a wavelength   0 mμ.5 
max  [19, 20]. The 

possibility to exploit such radiation to propel an object was theorised by German 

astronomer Friedrich Johannes Kepler (1571-1630) by simply observing the 

position of a comet’s tail [2]. “Kepler observed in 1619 that a comet’s tail faces 

away from the Sun, and concluded that the cause was outward pressure due to 

sunlight – a force that might be harnessed with appropriately designed sails” [21]. 

Figure 2.1 shows the montage of the Halley’s Comet approaching the Sun in 1910. 

It is worth noting the comet’s tail facing always away from the Sun. 
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Fig. 2.1.  Montage of the Halley’s Comet approaching the Sun in 19101. 

 

A long time after Kepler, the idea of using the solar radiation as a propulsive force 

was recovered by Soviet scientists Konstantin Tsiolkowsky (1857-1935) and 

Friedrich Tsander (1887-1933), who hypothesised a possible exploitation of the 

solar radiation pressure (SRP) to propel a spacecraft, other than to generate 

energy [2]. It is important to clarify that the solar propulsion, as intended 

throughout this document, is referred exclusively to the propulsion due to the 

solar radiation pressure. Other spacecraft concepts have been proposed in the 

literature which exploit the solar wind [22, 23], which is a stream of charged 

particles that move away from the solar corona [19, 20]. However, the dynamic 

pressure at Earth distance from the Sun due to the solar wind is 3~10  times smaller 

than the SRP [24]. Therefore, the effect of the solar wind can be neglected if 

compared to that of the SRP. 

Either a quantum or an electromagnetic approach can be used to study the 

physics of the solar radiation [2]. In the following subsections, a brief description 

of both approaches is given to demonstrate that the light from the Sun exerts 

pressure on a body in space. As such, the value of the solar radiation pressure P  

at the Earth distance from the Sun is analytically retrieved. 

 

 

 

                                         
1 Image credits: Science Education Gateway (SEGway) at UC Berkley. Image available online at 

http://cse.ssl.berkeley.edu/SegwayEd/lessons/cometstale/images/halleys_montage.jpg 
[retrieved 07 July 2017]. 

http://cse.ssl.berkeley.edu/SegwayEd/lessons/cometstale/images/halleys_montage.jpg


2.1. Solar Sailing from the Ground Up  10 

Quantum approach. According to quantum and relativistic mechanics, the 

solar electromagnetic radiation can be considered as a flux of energetic 

elementary particles, called photons. The energy  of a photon with angular 

frequency   is given by the Planck formula [25] 

    (2.1) 

in which   341.05457 10 Js  is the reduced Planck’s constant. Moreover, from 

the mass-energy equivalence given by the special relativity, the energy of a 

moving body is given by 

  22 2 2 2

rest
m c G c   (2.2) 

in which rest
m  is the mass at rest of the body, G  is its momentum and c  is the 

speed of light in vacuum. Since a photon is massless, Eq. (2.2) can be rewritten as 

  Gc   (2.3) 

From Eqs. (2.1) and (2.3), the expression for the characteristic momentum of a 

photon is obtained as 

 
G

c
  (2.4) 

In order to compute the SRP, however, the momentum of a flux of photons must 

be considered. The Stefan law correlates the luminosity L  of a star at the 

distance r  from the observer with its effective temperature T  and, therefore, 

with the energy flux W  emitted by the star, as [19, 20] 

    2 4 24 4r T r WL   (2.5) 

in which 
  8 2 45.670373 10 W m K  is the Stefan-Boltzmann constant. In the 

case of the Sun, Eq. (2.5) gives the value of the energy flux 
W  that reaches the 

Earth, as 

 





  2

2
1,368W m

4
W

r

L
  (2.6) 



2.1. Solar Sailing from the Ground Up  11 

in which   263.8 10 WL  is the luminosity of the Sun [19, 20] and 
 1 AUr  is 

the mean Sun-Earth distance. Therefore, the energy flux at the distance r  from 

the Sun is 

 



 
  

 

2
r

W W
r

  (2.7) 

By definition, the energy flux is the quantity of energy   transferred through a 

surface A  in the time interval t : 

 





W
A t

  (2.8) 

From Eqs. (2.3) and (2.8), the momentum G  transported by a flux of photons is 

  
  

WA t
G

c c
  (2.9) 

Dividing Eq. (2.9) by the time interval t  and computing the limit, the Newton 

equation is retrieved, as 

 
 

 


0
lim
t

G

t

dG WA

dt c
  (2.10) 

From Eqs. (2.6) and (2.10), the SRP that an object at 1 AU from the Sun 

experiences is then retrieved as 

 


  24.56 mμN

W
P

c
  (2.11) 

From Eqs. (2.7) and (2.11), the pressure P  due to the solar radiation that an 

object at the distance r  from the Sun experiences is 

 



 
  

 

2
r

P P
r

  (2.12) 
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Electromagnetic approach. An electromagnetic wave is characterised by its 

velocity v  and its directional energy flux. The latter is represented by the 

Poynting vector 





E B
I , in which   is the permeability of the medium the wave 

is propagating into, whereas E  and B  are the electric and magnetic field 

vectors, respectively [26, 27]. The pressure P  exerted by an electromagnetic 

wave is 

 
I

P
v

  (2.13) 

In the case of the solar radiation, the magnitude of the Poynting vector at Earth’s 

distance from the Sun is 
 
I W . Moreover, the absolute value of the velocity of 

light in space is c . Therefore, the absolute value of the momentum vector has the 

same expression shown in Eq. (2.9). The value of the SRP is therefore retrieved 

following the same procedure described in the previous subsection for the 

quantum approach. “Hence in a medium in which waves are propagated there is 

a pressure in the direction normal to the waves, and numerically equal to the 

energy in unit of volume” [28]. Note that the direction normal to the waves is the 

direction along which the waves are propagated. 

2.1.2. Acceleration Model 

Section 2.1.1 demonstrated the existence of a solar radiation pressure that can 

be used to propel a spacecraft. Because of the small pressure due to sunlight [Eq. 

(2.11)], such spacecraft must have a large reflecting surface, relative to its mass, 

which will be referred to as sail throughout this thesis, to generate a large 

thrusting force. However, in order to have the expression of the propulsive 

acceleration that can be achieved by such sailcraft, some approximations shall be 

considered which are related to the geometrical and the optical properties of the 

sail. First, the sail is considered perfectly flat. That is, no wrinkles and 

deformations due, for instance, to the tensioning of the membrane are 

considered. Furthermore, a perfectly-reflecting sail membrane is considered, as 

shown in Fig. 2.2. Other acceleration models are considered in the literature, such 

as the optical acceleration model, in which the non-perfect reflectivity of the sail 

membrane is explicitly modelled [2, 10, 29]. 
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Fig. 2.2.  Sketch of a perfectly-reflecting flat solar sail. 

 

Considering the directions of the incident and reflected radiation î
u  and ˆ

r
u , the 

incident and reflected force ,SRP i
f  and ,SRP r

f  acting on the sail is given as 

 
 

 

  



 
 ,

,
ˆˆ ˆ

ˆˆ ˆ
SR

SRP i i

P r

i

r r

PA

PA

u N u

u N u

f

f
  (2.14) 

in which   ˆˆA u N  is the projected sail area along the direction û , whereas N̂  is 

the unit vector perpendicular to the sail plane. Because of the hypothesis of 

complete reflection of the incident radiation, it is    2 ˆ ˆˆ ˆ ˆ
i r i

u u u N N  and the 

total force SRP
f  acting on the sail is 

   
2

ˆ ˆˆ2
SRP i

PA u Nf N   (2.15) 

Define the orbital reference frame as  ̂ˆ,̂ ,r h , in which r̂  is the Sun-spacecraft 

unit vector, ĥ  is the direction of the orbital momentum and ̂  is the in-plane 

transversal direction, completing the right-handed reference frame. In such frame 

of reference, the attitude of the sailcraft can be described by either the normal 

unit vector N̂  or by the two angles   and  , which are referred to as cone and 

clock angle, respectively. The cone angle   is the angle between the incident 

radiation and the sail normal unit vector (Fig. 2.2), such that    ˆˆcos
i

u N . The 

N̂



ˆ
iu

ˆ
ru

A
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clock angle   is defined as the angle between the projection of N̂  on the  ̂,̂h  

plane and the ̂  axis. Therefore, the normal unit vector N̂  can be expressed, by 

means of the cone and clock angles, as 

 




 

 

   
   

    
      

cos

ˆ sin cos

sin sin

r

h

N

N

N

N   (2.16) 

Figure 2.3 gives a graphical view of the sail cone and clock angles defined, in the 

orbital reference frame, by Eq. (2.16). 

 

Fig. 2.3.  Graphical view of the normal unit vector in the orbital reference frame and the sail 
cone and clock angles. 

 

Considering the definition of the sail cone angle given by Eq. (2.16), Eq. (2.15) 

can be rewritten as 

  22 cos ˆ
SRP

PAf N   (2.17) 

From Eqs. (2.11), (2.12) and (2.17), and defining the sail loading   as the ratio 

between the total mass 0
m  of the sailcraft and the sail area A , the acceleration 

a  that the SRP exerts on the sailcraft is given by 

  

     

     
 


 

2 2

2 2

0

2
cos cosˆ ˆSRP

c

P r r

m r r
aN

f
a N   (2.18) 
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The term 
c

a  in Eq. (2.18) is called characteristic acceleration and is an index 

of the performances of the given sailcraft. In fact, the characteristic acceleration 

represents the magnitude of the acceleration given by the solar sail facing the Sun 

at the distance 


r r  from it. Conventionally, an efficiency coefficient   is 

introduced in the definition of the characteristic acceleration which considers the 

non-perfect reflectivity of the sail membrane. This value is usually   0.9  [2, 

16]. The expression for the characteristic acceleration is therefore given by 

 





2
c

a
P

  (2.19) 

An alternative, yet equivalent, performance index used in the literature is the sail 

lightness number  . Defining the critical sail loading   as the sail loading for 

which the acceleration given by the SRP equals the gravitational acceleration [2], 

the sail lightness number is given by 

 



 

 
2

c
a

r
  (2.20) 

in which   is the Sun’s gravitational parameter. 

From Eqs. (2.18) – (2.19) it is clear that, to have large accelerations, a solar 

sail should be large and lightweight, other than without wrinkles and as more 

reflective as possible. With the current solar-sail technology, characteristic 

accelerations of the order of fractions of 2mm s  are achievable [30, 31]. Because 

of the low and continuous thrust provided by the solar sail, the solar-sailing 

mission design involves solving an OCP, since no closed-form, analytical solutions 

exist for continuous low-thrust propelled spacecraft [32]. Furthermore, although 

solar-sail propulsion represents a particular form of low-thrust propulsion, a solar 

sail differs from a classical low-thrust propulsion because: (a) a solar sail cannot 

thrust towards the Sun, and (b) the magnitude of its acceleration is nonlinearly 

related to the thrust direction and it depends on the inverse of the square distance 

from the Sun [Eq. (2.18)]. On the other hand, classical low-thrust propulsion, at 

least in a preliminary design phase, does not usually have such restrictions on the 

thrust provided. A graphical representation of these differences is given in Fig. 

2.4. Assuming the sail at 1 AUr  from the Sun, the plot in Fig. 2.4 is drawn 
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considering a sail with a characteristic acceleration equal to the maximum 

acceleration 
max

a  provided by a classical low-thrust propulsion system. The thrust 

achievable with a solar sail lies on the blue line, whereas a classical low-thrust 

propulsion can usually thrust in any point inside the green circle. The plot in Fig. 

2.4 shows the acceleration vector a  due to the solar sail attitude with respect to 

the Sun. The radial and transversal components, namely 
r

a  and 
t

a , are also shown 

in the plot. 

 

Fig. 2.4.  Sketch (not to scale) of classical low-thrust vs solar-sail achievable accelerations. It 
is evident that the thrust given by the two propulsion systems is equal only if the sail 
is facing the Sun. 

2.1.3. Solar Sailing from the 1970s to the Present Day 

Despite the first ideas about solar sailing date as far as the 17th century, studies 

about this propulsion system started only recently, due to the technological 

advancements needed and the small immediate outcome of this technology [18]. 

One of the first practical demonstrations of the potential of solar propulsion was 

given in 1974. In that year, flying towards Mercury, NASA’s Mariner 10 spacecraft 

showed the possibility of an attitude control by means of solar propulsion. In fact, 


ac m x

a a
Solar-sail acceleration

Classical low-thrust 
acceleration

Solar sail

r 
= 

1
 A

U

a
r

a

t
a
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the mission controllers were able to control the spacecraft attitude by changing 

the orientation of the solar arrays with respect to the Sun1. However, we must 

wait until the beginning of the 21st century for the launch of the first solar sail, 

Cosmos-1. Unfortunately, Cosmos-1 was never able to fly because of a rocket 

failure2. To date, only three sailcraft have been successfully launched: IKAROS 

(JAXA, launched in 2010) [33, 34], NanoSail-D (NASA, launched in 2011) [35, 36], 

and LightSail-1 (The Planetary Society, launched in 2015) [37]. NASA’s NEA Scout 

[38, 39] is the next solar sail to be scheduled to fly and its launch is expected in 

mid-20183. Despite its predecessors, NEA Scout will be the first sailcraft to have 

objectives other than only demonstrate the solar-sailing physics and technology. 

Several studies on solar-sail missions have been carried out to date, exploiting the 

unique characteristic of a sailcraft to not need any propellant [40]. In fact, 

because of this, solar sailing is an appealing option for performing high-v  

missions [15], such as highly non-Keplerian orbits [41-43], which require 

continuous thrusting [30, 44]. Moreover, because of the potentially-unlimited v  

available, a solar-sail mission could cope with contingencies and enable a change 

in the mission targets, even after launch. This is particularly interesting for small-

body missions, because dozens of new objects are discovered on a daily basis (Fig. 

2.8 in Section 2.3). A classical, reaction-mass propulsion system is usually 

constrained by the total amount of propellant onboard and, therefore, such a 

change in the mission targets can be unattainable. For instance, studies have been 

conducted to extend the mission of JAXA’s Hayabusa-2 spacecraft but, because of 

the limited amount of xenon propellant left aboard, it has been found that the 

only available extension option is an asteroid flyby [45]. Because of its advantages, 

several studies have been carried out on the application of solar sails for 

interplanetary missions, in terms of orbital dynamics [46, 47], as well as system 

engineering [48, 49]. The DLR/ESA Gossamer roadmap to solar sailing is one of 

those studies and it was divided into steps of increasing complexity [3]. Its aim 

was to push the boundaries of the current European solar-sailing technology by 

firstly testing the deployment of a small solar sail in a low-Earth orbit [50] and 

then performing a multiple NEA rendezvous mission [16] as well as a sub-L1 space 

                                         
1 Data available online at https://science.nasa.gov/science-news/science-at-

nasa/2008/31jul_solarsails [retrieved 10 July 2017]. 

2 Data available online at http://sail.planetary.org/story-part-2.html [retrieved 10 July 2017]. 

3 Data available online at https://www.nasa.gov/content/nea-scout [retrieved 11 July 2017]. 

https://science.nasa.gov/science-news/science-at-nasa/2008/31jul_solarsails
https://science.nasa.gov/science-news/science-at-nasa/2008/31jul_solarsails
http://sail.planetary.org/story-part-2.html
https://www.nasa.gov/content/nea-scout
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weather mission [51] and a solar polar mission [52] with a larger sail. A multiple 

NEA rendezvous mission, which is the focus of this thesis, is attractive for solar-

sail technology demonstration as well as for improving our knowledge about NEAs 

(Section 2.3). 

2.2. Techniques for Space Trajectory Optimisation 

As discussed in Section 1.1, an optimal control problem must be solved to find 

a low-thrust trajectory and its control history. Solving an OCP involves finding the 

control history that minimises (or maximises) a given objective function, while 

satisfying some constraints. Without lack of generality, the problem of finding the 

minimum of a given objective function is considered in the remainder of this 

thesis. 

Considering the time t  as the independent variable, the dynamics can be 

expressed as 

        , , ,t t t tx f x u p   (2.21) 

in which x  is the state vector, u  is the control vector and p  is a vector of static 

parameters. The boundary constraints (also referred to as endpoint constraints) 

at the initial and final time are defined by 

      
min 0 0 max

, , ,,
ff

tt t tx x p     (2.22) 

Moreover, the solution should satisfy some path constraints of the form 

      
min max

, , ,t t tpc c x u c   (2.23) 

and bounds on the state and control variables, as 

 
 
 

  



 

min max

min max

t

tu u

x

u

x x
  (2.24) 

 

 



2.2. Techniques for Space Trajectory Optimisation  19 

The objective (or cost) function J  represents the quantity to be minimised and 

can be written in Bolza form as [32, 53, 54] 

            
0

0 0
, , , , , ,,

ft

f f t
t t g t t t dJ t ttx px x u p   (2.25) 

in which   is the terminal cost function and g  is the integral one, which considers 

the cost during the entire time history. In general, an optimal control problem is 

characterised by several connected phases. In this context, a phase is defined as 

a part of the OCP in which the mathematical description of the problem (i.e. 

dynamics, path and endpoint constraints, etc.) is the same. Therefore, in a multi-

phase problem, several phases are connected to each other through additional 

endpoint constraints (commonly referred to as linkage constraints). Nonetheless, 

without lack of generality, the single-phase problem will be considered in this 

section for the mathematical description of the OCP. For the ease of explanation, 

the vector of static parameters p  is also neglected in the remainder of this 

section. 

In the specific case of space-trajectory optimisation, the control variables are 

usually the components of the thrust vector (or the acceleration vector), whereas 

the constraints are usually given by the mission requirements (e.g. maximum 

mission duration, minimum relative distance and velocity of the spacecraft with 

respect to the target) and the propulsion system used (e.g. maximum amount of 

propellant available). The objective is usually to minimise the total mission 

duration, the fuel consumption or a combination of the two. A trajectory 

optimisation problem is a complex continuous OCP due to several reasons, as: (a) 

the dynamics are nonlinear; (b) there can be discontinuities in the state (e.g. 

impulsive manoeuvres due to the use of a high-thrust engine or a planetary flyby); 

(c) there can be discontinuities in the control; and (d) the initial and final states 

depend on the initial and final times. For these reasons, several numerical 

methods have been developed to solve optimal control problems and, in 

particular, space-trajectory OCPs [5, 6, 55-57]. Based on the way they span the 

search space, optimisation methods can be divided into local optimisation (LO) 

and global optimisation (GO) methods. LO methods are characterised by finding 

the set of variables that minimise the chosen cost function by searching a root of 

a set of necessary conditions (indirect method) or by a transcription of the 

problem via nonlinear programming (direct method). These methods need an 



2.2. Techniques for Space Trajectory Optimisation  20 

initial guess to start with and usually the optimal solution found is close to the 

initial guess. GO methods, on the other hand, use methods inspired by nature (e.g. 

the biological evolution of species) to optimise an initial (often random) 

population. Because the aim of this work is not to develop a new optimisation 

method, the most common optimisation methods are investigated. This choice has 

also been driven by the conspicuous literature publicly available on the subject. 

The optimisation methods considered for this work are classified as indirect, 

direct, and metaheuristic optimisation methods. Moreover, shape-based (SB) 

approaches, although do not formally find the optimal solution to an OCP, are also 

discussed because they are widely used to generate sub-optimal solutions to the 

trajectory design OCP. Other methods, which do not formally solve any trajectory-

optimisation problem, have been studied to find preliminary trajectories, by 

using, for instance, orbital averaging techniques [58], analytic curve-fitting 

functions [59], approximated dynamics [60, 61], or a decomposition of the 

trajectory into finite perturbative elements [62]. 

2.2.1. Indirect Methods 

Indirect (or Hamiltonian) methods are based on the calculus of variations to 

find the first-order necessary conditions for optimality of the OCP defined through 

Eqs. (2.21) - (2.25). First, define the Hamiltonian H  as 

     ,, , , , T Tt gx u p f cH       (2.26) 

in which  t  is the vector of the Lagrange multipliers associated with the 

dynamics of the system (referred to as costate or adjoint variables) and  t  is 

the vector of the Lagrange multipliers associated with the path constraints. The 

term g  is the integral cost function defined in Eq. (2.25). Without lack of 

generality, consider a single-phase problem with no path constraints and no static 

parameters. The dynamics of the costates are 

 
 

  
 

T

x

H
   (2.27) 

Defining U  as the set of feasible controls, the optimal control history is given by 

the Pontryagin’s minimum principle [63] 
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

  argmin
u

u H
U

  (2.28) 

The boundary constraints on the state are so that 
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The constraints on the initial and final values of the costates, which are commonly 

referred to as transversality conditions on the costates, are 
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in which   is the vector of costates associated with the boundary conditions  . 

Lastly, the constraints on the initial and final values of the Hamiltonian, which 

are commonly referred to as transversality conditions on the Hamiltonian, are 
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  (2.31) 

Eqs. (2.27) - (2.31) represent the first-order necessary conditions for optimality 

of the continuous-time optimal control problem at hand. For a thorough 

mathematical description of the calculus of variations and the steps needed to 

retrieve the first-order necessary conditions, the interested reader is referred to 

Pontryagin et al. [63], Hull [54] and the lectures given by Dr Anil Rao for the course 

of Optimal Control at the University of Florida during the Spring of 20121. 

Considering the necessary conditions for optimality, the original OCP can now 

be viewed as a two-point boundary value problem (TPBVP). The most common 

approach to solve a TPBVP is the shooting method. As such, the values of the 

Lagrange multipliers at one end of the time interval are guessed and the dynamics 

of both state [Eq. (2.21)] and costate [Eq. (2.27)] are propagated until the other 

                                         
1 Data available online at http://www.anilvrao.com/Optimal-Control-Videos.html [retrieved 13 

July 2017]. 

http://www.anilvrao.com/Optimal-Control-Videos.html
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end of the time interval. In fact, given the initial (or final) values of the state and 

the Lagrange multipliers, the control is analytically defined through Eq. (2.28). 

Hence, the reason for naming this optimisation method indirect. However, the 

values of the state and the Lagrange multipliers obtained after the propagation 

might not satisfy the transversality conditions defined by Eqs. (2.30) - (2.31). 

Therefore, the initial-guess values for the Lagrange multipliers are slightly 

modified and the dynamics are propagated again. This loop terminates when 

either the transversality conditions are satisfied within a set tolerance or some 

user-defined termination conditions are met (e.g. the maximum number of 

function evaluations is reached, the error on the transversality conditions did not 

change significantly during the last iterations, etc.). This method can be visualised 

as a cannon shooting at a target (thus the name shooting method). The optimal 

angle of the cannon, which guarantees the hit of the bull’s-eye, is unknown. 

Therefore, a first-guess value for such angle is chosen for a test shot. The angle is 

subsequently adjusted based on the position the cannonball hits the target [56]. 

 

Remarks. With the indirect shooting method, the optimal control is 

determined analytically and, therefore, the overall method is usually 

computationally fast. Moreover, the level of accuracy achieved by this method is 

high and an optimum is guaranteed, if a solution is found. However, such optimum 

is only local because the solution is usually close to the initial guess used. 

Moreover, this method is extremely sensitive to the initial-guess values considered 

for the Lagrange multipliers and finding a good initial guess (i.e. an initial guess 

that guarantees convergence of the method) is not trivial. In fact, the Lagrange 

multipliers are mathematical entities with no physical meaning. To date, several 

techniques have been developed to overcome the issue about the small 

convergence radius of indirect shooting methods. An example of this is the 

homotopic approach, which is probably the most common approach among the 

studies that involve indirect methods. The homotopy is defined as a function that 

continuously links two continuous functions from a topological space to another 

[64]. That is, the (unknown) solution to the OCP at hand can be sought by studying 

the (known) solution to a similar OCP. A numerical continuation can be used to 

change the solution of the similar OCP to the one of the original problem [65]. 

Therefore, the combined use of the homotopy with a numerical continuation 

technique can ease the difficulties of the indirect shooting method due to the lack 
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of physical meaning of the Lagrange multipliers. A detailed (yet not exhaustive) 

survey of the applications of the homotopy-continuation techniques used in solving 

space-trajectory OCPs is available in [66]. Typical issues that arise with the use of 

these techniques are related to the numerical continuation that might face 

problems in following the path that links the initial OCP to the original one. A 

possible workaround is then to combine several homotopies, as proposed in [67]. 

An additional disadvantage of the indirect shooting method is that changes in the 

terminal constraints or conditions (e.g. a change in the objective function) might 

require a fresh derivation of the analytical optimal control laws. Lastly, the 

derivation of the first-order optimality conditions [Eqs. (2.26) - (2.31)] requires 

the computation of analytical derivatives, which is not always an easy task and 

sometimes can be even impossible (e.g. if tabular data are involved). 

Due to the little computational effort needed, the first trajectory optimisation 

tools developed and used at NASA employ an indirect method to carry out 

preliminary mission design studies. These are VARITOP, SEPTOP, NEWSEP, and 

SAIL1 [68]. 

2.2.2. Direct Methods 

As opposed to indirect methods, direct methods discretise the continuous OCP 

and transcribe it into a nonlinear optimisation, or nonlinear programming (NLP) 

problem, which is a parameter optimisation problem. An NLP problem is defined 

as follows. Determine the vector of parameters 
  nx  that minimises the 

objective function  J x  subject to the algebraic constraints   mg x . The 

latter is composed of equality and inequality constraints, as 
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The first-order optimality conditions are given by the so-called Karush-Kuhn-

Tucker (KKT) conditions [69]. That is,   ,x   is a local minimum if the following 

conditions are verified. 

                                         
1 NASA’s LTTT Suite Optimization Tools. Data available online at 

https://spaceflightsystems.grc.nasa.gov/SSPO/ISPTProg/LTTT/ [retrieved 13 July 2017]. 

https://spaceflightsystems.grc.nasa.gov/SSPO/ISPTProg/LTTT/


2.2. Techniques for Space Trajectory Optimisation  24 

     



   
1

0
i i

m

i

J gx x   (2.33) 

 
 

 





 


  


1

1

0 ( 1, , )

0 ( 1, , )

i

i

g i m

g i m m

x

x
  (2.34) 

 
 







  


 

1

1

0 ( 1, , )

(0 1, , )

i i

i

i m

i m

g x
  (2.35) 

Eq. (2.33) represents the necessary condition for optimality, whereas Eqs. (2.34) 

and (2.35) are the so-called feasibility and complementarity conditions, 

respectively [70]. To date, several techniques and algorithms have been 

developed to solve nonlinear programming problems. For instance, some of the 

currently most used NLP solvers are IPOPT [71], SNOPT [72] and WORHP [73]. 

Direct methods can be divided into two families, whether only the control or 

both state and control are approximated (namely, control parametrisation and 

state and control parametrisation, respectively). The most common approach to 

the control parametrisation is the direct shooting method, whereas direct 

collocation is the most common approach in the family of state and control 

parametrisation. Because of the importance of both methods in space trajectory 

design, both are discussed in the following subsections. 

 

Direct Shooting Method. In the direct shooting method, the control is 

discretised at the chosen discretisation points, whereas the trajectory is obtained 

by propagating the initial state. That is, the direct shooting method is categorised 

as a control parametrisation method. One of the first applications of the direct 

shooting in space trajectory design is attributed to Sims and Flanagan [74] (thus 

the name Sims-Flanagan method). They proposed the use of the direct shooting 

method to generate first-guess trajectories for low-thrust transfers. A schematic 

of the trajectory structure is shown in Fig. 2.5. The trajectory is divided into 

control nodes, which are defined as the waypoints the spacecraft must pass by. 

Between each couple of control nodes, the trajectory is propagated forward from 

the former control node and backward from the latter. The two propagated 

trajectories shall meet somewhere in between the two waypoints in what is called 

match point. The trajectory is divided into segments and, in each segment, the 

continuous thrust is approximated by an impulsive v . This method can be 
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therefore extended to several control nodes (each control node can be, for 

instance, a planet or an asteroid). The task of the NLP solver is to find the 

direction and magnitude of all the impulsive v  so that the discontinuities in the 

state at the match points are below a set threshold (zero, ideally). A trajectory 

found by following this method can be used either as an initial-guess solution for 

a subsequent minimisation of the desired cost function or, on its own, as a 

trajectory for a preliminary mission design. The Sims-Flanagan method is at the 

base of NASA’s Mission Analysis Low Thrust Optimization (MALTO) software [75]. 

The Sims-Flanagan method has been the object of further studies that aimed to 

improve the quality of the solution. For instance, Yam et al. [76] introduced an 

adaptive time mesh through the use of the Sundman transformation [77]. As such, 

the NLP is characterised by a larger number of points when the dynamics are faster 

(i.e. in the neighbourhood of the pericentre, in the case of elliptic orbits), thus 

guaranteeing a uniform spatial distribution of the points. Furthermore, to improve 

the reliability of the trajectory approximation within the Sims-Flanagan method, 

Yam et al. replaced the impulsive v  with continuous low-thrust throughout the 

segment. Within each segment, both magnitude and direction of the thrust are 

constant [76]. 

The main advantage of the direct shooting method is the ease of 

implementation. The accuracy of the solution and the computational effort 

needed to find such solution might depend on the integration scheme employed 

for the propagation of the dynamics. For instance, Yam et al. [76] used a Taylor 

integration scheme [78] to contain the extra computational effort needed for 

considering a continuous low-thrust against an impulsive v  manoeuvre. The main 

disadvantages are in that a first-guess solution is needed for the NLP solver and 

the continuity conditions at the match points may result in computational issues 

[56]. Moreover, the longer the legs are to propagate, the more sensitive the 

method is to the unknown initial conditions. 
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Fig. 2.5.  Schematic of the trajectory structure with a direct shooting method [75] 
(Reproduced with permission of AIAA). 

 

Direct Collocation Method. In the direct collocation method, both state and 

control are parametrised over a set of discretisation points. Usually, these points 

are chosen as the roots of orthogonal polynomials (or their linear combination). 

Three sets of collocation points are mostly used in the literature and these are 

the Legendre-Gauss (LG), Legendre-Gauss-Lobatto (LGL), and Legendre-Gauss-

Radau (LGR) points [79]. Let us describe the LGR collocation method, since it is 

the one used throughout this thesis. The interested reader can find more 

information about the other two methods in [56, 79, 80]. The LGR points   lie on 

the half-open interval    1, 1  and are obtained as the roots of     



1

,
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P P  

in which  N
P  is the N -th degree Legendre polynomial defined, by means of the 

Rodrigues’ formula [77], as 
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In Eq. (2.36),   is obtained by means of an affine transformation from the time 

as [81] 
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The collocation points are usually preferred to the more intuitive equidistant 

discretisation points mainly to avoid the so-called Runge phenomenon [82]. This 

phenomenon arises when a polynomial approximation is used to describe a real 

function. In fact, if the order of the polynomial is increased to describe better the 

real function while using equidistant points, the approximation error near the 

boundaries increases. This does not happen if a set of collocation points is used. 

A graphical example of this is shown in Fig. 2.6, in which a Lagrange polynomial is 

used to approximate the function   41 1 25  over 25 points. Both equidistant and 

LGR points are used for the discretisation. The Runge phenomenon is clearly shown 

in the case the equidistant points are used. 

 

a) b) 

Fig. 2.6.  Lagrange polynomial approximation of the function   41 1 25  using (a) 25 

equidistant points and (b) 25 LGR points. 

 

Moreover, it can be demonstrated that the use of collocation points is more likely 

to guarantee an accurate approximation of a continuous function f . Such function 

can be, for instance, the dynamics shown in Eq. (2.21) or the integral cost function 
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shown in Eq. (2.25). The integral of a function f  can be approximated by means 

of the Gauss quadrature, as 
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b
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in which i
w  are suitable quadrature weights. Huntington [82] showed a spectral 

convergence (i.e. a convergence at an exponential rate) between the Gauss 

quadrature of Eq. (2.38) and the integral of f  as the order of the approximating 

polynomial increases. Thus, a relatively small number of collocation points are 

needed for the approximation. This is generally valid for relatively smooth 

functions [83, 84]. 

The use of Lagrange polynomials to approximate a continuous function is 

common in direct collocation methods. The main reason is that the approximating 

N -th degree Lagrange polynomial is equal to the function at the N  collocation 

points. Considering the LGR method, the state x  can be discretised, at the 

generic time    1, ,
i

i N , as 
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in which  j i
 is the Lagrange interpolating polynomial at the j -th LGR point, 

defined as 
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It can be demonstrated that the Lagrange interpolating polynomial is an 

orthogonal polynomial [82]. That is 
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Thus, the interpolating Lagrange polynomial has the property that, at each 

collocation point  i , Eq. (2.39) is so that     
i i

x X . 
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The discretised equations of the dynamics can be obtained by differentiating 

the state  
i

X  in Eq. (2.39), as 
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Therefore, a set of constraints is added to the NLP so that the continuous dynamics 

of Eq. (2.21) are equal to the discretised dynamics shown in Eq. (2.42) [79, 85]. 

That is, for all LGR points    1, ,
i

i N , the following dynamics constraints must 

be satisfied: 
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in which i
U  is the discretised control vector and 

ij
D  is the so-called differentiation 

matrix, defined as 
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The boundary constraints of Eq. (2.22) are therefore discretised as 
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Likewise, the path constraints of Eq. (2.23) are discretised as 
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Lastly, the objective function J  of Eq. (2.25) is approximated, over the LGR 

points, as [85] 
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in which 
j

w  are the LGR quadrature weights [86]. 

In case the time interval    1, 1  is divided into K  subintervals (commonly 

referred to as meshes), the NLP formulation of Eqs. (2.39) - (2.47) must be 
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rewritten accordingly [85]. In particular, a further endpoint constraint is added to 

ensure the continuity of the state between two consecutive meshes, as 
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in which k
N  is the number of LGR points in the k -th mesh and the superscript 

value in brackets represents the mesh number. Moreover, the cost function of Eq. 

(2.47) is rewritten as 
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The transcription of the continuous OCP into an NLP problem described so far 

is called p collocation method [85]. It is usually also referred to as a global 

orthogonal collocation method [56] because it uses only one function to 

approximate the entire time span (thus, the definition of global) over a set of 

collocation points that are derived from the roots of orthogonal polynomials or 

their combinations [87]. The main advantage of the p methods is the exponential 

convergence of the Lagrange interpolating polynomials that allows a reduced-

degree polynomial (thus, a reduced number of collocation points) to achieve the 

required accuracy. Because of their spectral convergence, these methods are also 

referred to as pseudospectral methods [56]. A different approach is the so-called 

h method (usually referred to as a local method) [85]. It consists of dividing the 

time interval   into several consecutive meshes. The order of the interpolating 

Lagrange polynomial (and, thus, the number of collocation points) is fixed among 

all meshes and decided a priori. Convergence is reached by increasing the number 

of meshes [7]. This method does not exploit the exponential convergence of the 

Lagrange polynomials and, therefore, needs more collocation points to achieve 

the same desired accuracy as the p method. However, this is true if the real 

function is smooth enough. If the real function changes abruptly, a single global 

polynomial may incur into issues in modelling the entire spectrum of such 

function. On the other hand, a local collocation method can isolate those time 

intervals in which the function is nonsmooth by adding more meshes and 

approximating the entire functions through several lower-order polynomials. 

Lastly, a hybrid method (namely, ph method) has been introduced which considers 

the advantages of both h and p methods. As described by Patterson et al. [85], a 
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ph method first exploits the spectral convergence of the Lagrange interpolant 

polynomials by increasing the order of it and then increases the number of meshes. 

New meshes are added in the neighbourhood of those times   in which the real 

function shows a non-smooth trend. As such, different-order interpolating 

Lagrange polynomials can be used within each mesh. This allows a decrease in the 

overall number of collocation points and thus the computational effort needed to 

solve the NLP at hand. The general-purpose optimal control software GPOPS-II1 is 

based on the hybrid ph collocation method and is characterised by several mesh 

refinement techniques that allow a better error estimation and, therefore, a 

smarter strategy to locate the collocation points and the meshes [88, 89]. The 

interested reader is referred to [85, 90-92] (and the references therein) for a more 

detailed explanation of the mesh refinements developed. A thorough 

mathematical description of the direct collocation methods and, in particular, the 

ph method developed within GPOPS-II, can be found in [79, 80, 83, 84, 88, 91, 93] 

(and the references therein). 

 

Remarks. The major advantages of the direct methods are: (a) convergence is 

generally robust to poor initial guesses; (b) easy to pass from one problem to a 

similar one without the need to re-derive the equations; (c) despite an initial guess 

is needed, this has a physical meaning, contrary to the case of the indirect 

methods. Moreover, they are straightforward to code and there is no necessity of 

being an expert on optimal control theory. On the other hand, state and control 

are known only at discrete points and the solution is usually in the neighbourhood 

of the initial guess. Despite the fact that direct methods are usually more robust 

to poor initial guesses than indirect methods [56], the choice of the initial guess 

plays an important role in the quality of the optimised solution [55]. Although this 

issue is not widely discussed in the literature, few works highlight the importance 

of a good initial guess even for direct-collocation methods. Porsa et al. [94] 

showed how the performances of the optimiser, in terms of both cost function and 

computational load, are sensitive to the choice of initial guess. The need of a good 

initial guess was critical for the convergence of the NLP solver in [95]. The 

influence of different problem formulations on the robustness of the direct-

collocation method was investigated in [96], in which it was shown that not all 

                                         
1 Data available online at http://www.gpops2.com/ [retrieved 21 July 2017]. 

http://www.gpops2.com/


2.2. Techniques for Space Trajectory Optimisation  32 

the choices of initial guess guaranteed convergence of the optimiser. In the same 

paper, it is discussed, for instance, that SNOPT never converged if a good initial 

guess was not available, whereas IPOPT was more likely to find a solution only if 

the mesh had few nodes. Moreover, Graham and Rao [97] developed an algorithm 

to generate the initial guess for a multi-revolution low-thrust transfer in order to 

help the convergence of the NLP solver. To do so, a set of optimal control sub-

problems needed to be solved to create the initial-guess solution. 

Even if a good initial guess is provided, issues can arise in the computation of 

the solution by a numerical optimiser [56]. A proper scaling of the problem [7], 

the differentiation algorithm used to compute the derivatives [98], and the way 

the continuous problem is discretised [79] are only three of the possible issues in 

the numerical optimisation. Moreover, different settings of the numerical 

optimiser can potentially lead to issues in the convergence of the NLP solver. In 

the adaptive mesh refinements described in [85, 92], for instance, the number of 

collocation points is explicitly dependent to the maximum/minimum allowed 

polynomial degree chosen for the discretisation. That is, different settings affect 

the number and location of the collocation points and this can impair the ability 

of the NLP solver to find a solution for the given formulation of the problem. 

Therefore, trajectory-optimisation problems are usually solved once at a time, 

allowing the user to tweak manually some settings, often in a trial-and-error 

fashion, in order to help the convergence of the solver or to get better results. 

2.2.3. Metaheuristic Optimisation Methods 

Metaheuristic optimisation methods are classified as GO methods [99] and are 

fundamentally different from the direct and indirect methods, which require an 

initial guess and generally find a solution in their neighbourhood (thus the 

classification of LO methods). In fact, metaheuristic optimisation methods 

combine a heuristic component with an “intelligent” search, which is designed to 

lead the method towards a solution beyond the neighbourhood of the initial guess 

[99]. Specifically, metaheuristic methods are often population-based methods, in 

which the initial population is chosen within the search space and evolved towards 

the optimum by following a defined set of rules. That is, there is no need of an 

initial guess and the optimality can be statistically assessed by running several 

times the same method on the same problem. Therefore, a solution found by 
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means of a metaheuristic optimisation method is more likely to be closer to the 

global optimum than a solution found by an LO method. In fact, the initial guess 

used for the LO method is not guaranteed, in general, to be in the neighbourhood 

of the global optimum. Several metaheuristic algorithms have been studied to 

date and the majority of them mimics the ability of nature to find an optimal 

solution (e.g. evolution of species, need for food, etc.) [100]. The most studied 

metaheuristic optimisation methods are: genetic algorithm (GA) [101], particle 

swarm optimisation (PSO) [102, 103], ant colony optimisation (ACO) [104-106], 

differential evolution [107], and simulated annealing [108]. Other algorithms have 

been developed, such as the Physarum solver that is inspired by the behaviour of 

the amoeboid organism Physarum Polycephalum [109]. Appendix A briefly 

describes GA and PSO, which are the two metaheuristic optimisation methods used 

to find some of the results shown in this thesis. 

In space-trajectory optimisation, metaheuristic algorithms are generally used 

when impulsive v  are considered, such as chemical thrusters used for launch or 

deep-space impulsive manoeuvres, or gravity assist at planets [110, 111]. In these 

cases, the dimensionality of the search space is limited by the number of 

optimisation variables; these can be, for instance, the launch date, the time of 

flight, the impulsive v  for the manoeuvre, etc. [102, 110]. In the case of 

continuous OCPs, such as low-thrust trajectory optimisation, metaheuristic 

algorithms are generally used in combination with other methods. For instance, 

metaheuristic algorithms can be used together with an indirect method to find the 

initial values of the adjoint variables that are otherwise difficult to guess [102, 

112], or can be used in combination with an orbit averaging technique to find the 

optimal control law for an orbit transfer [113]. Metaheuristic algorithms can be 

even used in combination with direct methods to find, for instance, the v  and 

the times of the impulsive manoeuvres within the Sims-Flanagan approach [114-

116]. In 2004, Dachwald [117, 118] developed InTrance, an algorithm that 

combines metaheuristic optimisation methods with artificial neural networks 

(ANNs) for the solution of space-trajectory OCPs. A description of InTrance is given 

in Appendix A.3. 

 

Remarks. As mentioned above, the main advantage of the metaheuristic 

optimisation methods is the absence of an initial guess. Furthermore, it is more 

likely to locate a global optimum with these methods than using LO methods. On 
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the other hand, the solution found by a GO method is considered globally optimal 

because the algorithm spanned the search space globally but there is no guarantee 

of optimality. Because of its heuristic characteristics, a GO method should be run 

more than once to have a statistical confidence about the global optimality of the 

solution [119]. From a purely algorithmically point of view, GO methods are 

generally easy to code and there is no need to derive any analytical condition. 

However, a numerical propagation of the dynamics is usually required which, 

together with the random initialisation of the population, may lead to a significant 

computational effort needed to solve an OCP by means of a metaheuristic 

optimisation method. Lastly, a metaheuristic optimisation algorithm is not usually 

able to localise optima accurately [57, 120]. Therefore, a solution found by means 

of a metaheuristic optimisation method might need a refinement through a second 

optimisation method, such as a direct or indirect approach, to reach the required 

level of accuracy. 

2.2.4. Shape-Based Approaches 

Unlike direct and indirect optimisation methods, which can be very expensive 

in terms of computational effort, an analytic method can be very helpful in the 

initial phases of the mission design. The key point of such approach is to design 

the shape of the trajectory that connects the initial and final desired states in 

Keplerian dynamics. This is done by defining a set of shaping functions that 

analytically describe the evolution of the state. Once the shape of the trajectory 

is available in a Cartesian reference frame, the acceleration a  needed to follow 

such trajectory is analytically retrieved by simply inverting the equations of 

motion, as 

 
3r

ra
r

  (2.50) 

The main advantage of the SB approach is in that the trajectory is described 

analytically as a whole, without any propagation or discretisation of the state. 

That is, the computation of the single trajectory is very fast. However, no explicit 

constraint on the thrust can be generally enforced and the thrust profile is 

retrieved a posteriori. For this reason, and because no optimisation is carried out, 

the output of the SB approach is a sub-optimal trajectory. Nonetheless, because 
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of the little computational effort needed, the trajectories found by means of this 

approach can be used for preliminary mission design as well as initial-guess 

solutions for higher fidelity optimisation methods. 

Several SB approaches have been proposed to date and all of them deal with 

classical low-thrust propulsion systems. These approaches differ one another for 

the sets of shaping functions used, the sets of elements chosen to describe the 

state and the approximations considered. Table 2.1 shows a compendium of some 

of the SB approaches proposed in the literature, highlighting their differences. 

The number of free parameters that appear in Table 2.1 refers to those 

parameters that can be tuned in order to change the shape of the trajectory while 

satisfying the boundary constraints on the state. In fact, some parameters are 

univocally defined by the boundary conditions on the state and, therefore, are not 

considered here as free parameters. For instance, in the case of the finite Fourier 

series (FFS) [14], the total number of parameters is  
 2 1

r
n n , in which r

n  and 


n  are the number of Fourier terms that can be chosen. However, Taheri and 

Abdelkhalik [14] showed that the first eight parameters are defined by the 

satisfaction of the boundary constraints on the state, leading to a number of free 

parameters equal to  
  2 1 8

r
n n . Note that, in most of the cases, a tangential 

thrust is assumed. Moreover, even though some of the existing SB approaches 

allow the possibility to constrain the thrust acceleration magnitude, none of them 

is able to deal with a constrained acceleration vector profile. Lastly, it is worth 

noting that a trade-off between the number of independent variables that 

describe the shape of the trajectory and the accuracy of the trajectory itself is an 

important point in the choice of the SB approach. 

For the sake of conciseness, the first three SB approaches listed in Table 2.1 

are briefly described here. The interested reader is referred to the literature 

referenced in Table 2.1 for a more detailed description of each approach. 

 

Exponential sinusoid. Petropoulos and Longuski [8] were the first to propose 

the idea of a SB approach, by introducing an exponential sinusoid shape for the 

in-plane motion and an additional force for the out-of-plane thrust. The in-plane 

motion is expressed in polar coordinates  ,r . Therefore, the radius r  can be 

described, as a function of the angular position   and with the approximation of 

tangential thrust, as 
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        
0 1 2
exp sinr k k k   (2.51) 

in which  0 1 2
, , ,k k k  are constant parameters that determine the shape of the in-

plane trajectory. By introducing the two additional parameters  0 0
,

P
a b , the out-

of-plane acceleration 
h

a  is expressed as 

 
  

  
 

0 02h

p

P

r
a a b

rr
  (2.52) 

in which 
p

r  is the radius at the pericentre. 

 

Pseudo-equinoctial. De Pascale and Vasile [9] followed the idea of Petropoulos 

and Longuski and proposed two different sets of shaping functions, the so-called 

linear-trigonometric and exponential shape, respectively. In both cases, the state 

vector is expressed in terms of modified equinoctial elements (MEE) [121, 122] 
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and     
kep T

a e ix  is the set of the conventional Keplerian elements. 

Both shapes are described as a function of the true longitude L  and with the 

approximation of tangential thrust. 
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The linear-trigonometric shape is given by 
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in which 
1
 is the shaping parameter associated to p , 

2
 is the shaping parameter 

associated to  ,f g , and 
3
 is the shaping parameter associated to  ,h k . The 

terms  , , , ,
I I I I I

p f g h k  and  , , , ,
F F F F F

p f g h k  depend on the boundary conditions of 

the problem at hand. 

The exponential shape is given by 
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In [9], De Pascale and Vasile showed that the exponential shape is more suited 

to describe the trajectory produced by a constant tangential thrust. On the other 

hand, the linear-trigonometric shape better describes the trajectory produced by 

a tangential thrust whose magnitude depends on the square distance from the 

Sun, such as the one produced by a solar electric propulsion system. 

 

Inverse polynomial. Wall and Conway [123] represented the in-plane shape of 

the trajectory through an inverse polynomial. Describing the trajectory in polar 

coordinates as a function of the angle  , the analytical expression of the radius 

is given by 

  
     


    2 3 4 5 6

1

a b c d e f g
r   (2.57) 
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in which the terms  , , , , ,a b c e f g  are the shaping parameters that depend on the 

boundary conditions on the state and d  is the parameter used to satisfy the time 

constraint. Also in this case, a tangential thrust is considered. With this 

approximation, Wall and Conway demonstrated that the shape of the trajectory 

is univocally defined if the launch date, arrival date and number of complete 

revolutions are set. Therefore, the only possibility to achieve a feasible trajectory 

through the inverse-polynomial method is to change the characteristics of the 

mission, if the acceleration needed to generate the shaped trajectory is beyond 

the capabilities of the available propulsion system. 

Table 2.1.  Compendium of shape-based approaches proposed in the literature. 

Method 

Boundary 

conditions 3D 

Explicit 

constraints on 

thrust 

Number of 

free 

parameters 

Hypotheses 

Position Velocity 

Exponential 

sinusoid [8, 124] 
Yes No Yes No 6 

Tangential 

thrust 

Pseudo-

equinoctial [9, 

125] 

Yes Yes Yes No 3 
Tangential 

thrust 

Inverse 

polynomial [123, 

126-128] 

Yes Yes Yes(a) No 0 
Tangential 

thrust 

Spherical [129-

131] 
Yes Yes Yes No 0 

Tangential 

thrust 

FFS [14, 132] Yes Yes No Yes(b) 2(nr+n+1)-8 
Tangential 

thrust 

FFS 3D [133] Yes Yes Yes Yes(c) 2(nr+n+1)-9 --- 

Hodographic 

[134, 135] 
Yes Yes Yes No Variable --- 

Polynomial [136] Yes Yes No No 0 
Tangential 

thrust 

Optimised 

Fourier series 

[137] 

Yes Yes No Yes(c) 2(nr+n+1) 
Circular 

orbits 

Generalised 

logarithmic 

spirals [138, 139] 

Yes No No Yes(d) 2 --- 

(a)Works only for small inclinations. 
(b)Only the magnitude of the acceleration is explicitly constrained. 
(c)An NLP problem is solved to satisfy the constraints on thrust. 
(d)Only the direction of the acceleration is explicitly constrained. 
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2.2.5. Solar-Sailing Trajectory Design 

Designing a trajectory for solar sailing is a crucial task to ensure the feasibility 

of the mission. Several studies have been carried out to exploit the characteristics 

of solar sails for interplanetary missions. To date, most of these studies focus on 

the use of an indirect method. Sauer [140] is one of the first to propose a study of 

an interplanetary trajectory by means of a sailcraft, considering an ideal solar sail 

model. After that work, there are several studies on trajectory optimisation 

through solar sailing that consider ideal [141, 142] and non-ideal sails [10, 143], 

missions to asteroids [12, 144] or a parametrisation of the control law [11, 145]. 

Using the Lagrange variational equations, Stolbunov et al. [146] investigated a 

locally-optimal control strategy for inclination change on a low-Earth orbit. A 

strategy is shown in [147] which exploits a blend of locally-optimal control laws 

for planet-centred solar-sail transfers and station-keeping manoeuvres. 

Considering a fixed sail cone angle, Tsu [148] and McInnes [2] proposed a 

logarithmic spiral trajectory for solar sailing. Despite being an analytical 

description of the trajectory, the main issue of this method is that a significant 

v  is needed at both the beginning and the end of the trajectory to allow the 

logarithmic spiral to match with the initial and final Keplerian orbits. For this 

reason, such a trajectory design is more suited to describe escape trajectories, 

for which the initial v  can be given by the launcher’s upper stage itself and the 

final state is not constrained. 

Since it does not need any propellant, solar sailing has been extensively studied 

for enabling highly non-Keplerian orbits [42], such as displaced geostationary 

orbits [149] or Earth pole sitters [41]. Wawrzyniak and Howell [150] presented an 

extensive survey of numerical techniques used for generating solar-sailing orbits 

in a multi-body environment. In particular, they showed that the shooting methods 

are the most common techniques for this kind of problems. In fact, if periodic 

orbits about the Earth-Moon Lagrangian points are studied, a natural orbit is easily 

computed and used as a reference solution for a shooting method. As such, the 

acceleration given by the sail is considered as a perturbation to the gravitational 

field and the shooting method needs to adjust slightly the reference orbit 

considering the added perturbation. 

It has been noted that most of the literature about trajectory optimisation 

through solar sailing deals with simplified models (e.g. two-dimensional approach 
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[10, 11, 151]) or single-phase problems. Regarding the latter, three of the few 

works on multi-phase solar-sail trajectories are: the ENEAS+ mission studies [15], 

the DLR/ESA Gossamer roadmap technology reference study presented by 

Dachwald et al. [16], and a Main Belt asteroid exploration mission [152]. In none 

of the cases, a systematic assessment of all possible asteroids to be visited in a 

multiple rendezvous mission has been carried out. The sequences of encounters 

have been in fact decided a priori and the trajectory optimisation phase (or the 

sailcraft design, in the case of [152]) is mainly discussed. Bando and Yamakawa 

[153] describe a NEA survey mission using solar-sailing technology. However, such 

study is focused on flybys only and two-dimensional dynamics are considered for 

the solar-sail motion. In the same paper, an inverse solar-sail trajectory problem 

is described, generalising what presented by McInnes [154] by considering a less-

performant solar sail. The method consists on deriving an analytic sail steering 

law that allows a solar-sail transfer between two planar circular heliocentric orbits 

with the same radii but different angular velocities. 

2.2.6. Target Selection 

The selection of targets for a multiple rendezvous mission is primarily a 

difficult combinatorial task. In the field of discrete and combinatorial 

optimisation, a typical problem of this kind is the travel salesman problem (TSP). 

The problem is described as follows: a salesman needs to visit a total of N  cities; 

within one tour, he must visit all the cities only once while travelling the shortest 

total distance. In the original formulation of the problem, the distance between 

two cities (i.e. the cost of each leg) is given and the problem is a purely 

combinatorial optimisation problem. A modified version of it is the so-called 

motorised travel salesman problem (MTSP) [155], in which the salesman is using a 

vehicle subject to specific dynamics, and can choose the path between two cities 

by deciding the continuous control law for the steering angle and the acceleration 

force of the vehicle. This problem is commonly referred to as hybrid optimal 

control problem, in which the combinatorial optimisation is mixed with the 

optimal control problem needed to solve the continuous dynamics. 

In space missions, the MTSP is further complicated by the fact that the target 

celestial objects (corresponding to cities) are not fixed points in space but they 

move on orbits and their state (position and velocity) is a function of time. The 
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target selection for a multiple rendezvous mission is one particular case of the 

more general problem of multi-phase space missions. In this case, the phases of 

the mission can be defined by the object encounters (e.g. space debris removal 

[156], planet gravity assist [157], or asteroid rendezvous/flyby [158-160]) or by 

the composition of the trajectory (i.e. sequences of coast/thrust arcs and 

impulsive manoeuvres [161]). The astrodynamics community has shown much 

interest in the optimisation and mission design of this kind of multi-phase space 

missions, such that, in 2005, the ESA’s Advanced Concepts Team challenged the 

worldwide community with the first Global Trajectory Optimisation Competition1 

(GTOC) [162]. Since then, nine editions of the competition have been completed 

with a constantly increasing participation. In the fourth GTOC problem, for 

instance, the challenge was to visit the largest possible number of asteroids with 

a classical low-thrust spacecraft within a given total mission duration [163]. In the 

majority of the solutions proposed [164], the problem was divided into two main 

steps: first looking for a sequence of encounters by means of impulsive thrust 

manoeuvres, then converting the high-thrust solutions found into classical low-

thrust trajectories. 

In general, multi-phase space missions are tackled by means of two-level 

approaches, which can be classified as sequential and integrated approaches. In 

the first case, the problem is divided into two sequential sub-problems, as is the 

case of the solutions of the fourth GTOC mentioned above. In the second case, 

the two levels are integrated within two nested loops, in which the sequence of 

events is guessed in the outer loop and the corresponding trajectory is sought in 

the inner loop [165]. In the majority of the cases, both approaches use ballistic 

Lambert arcs to model the trajectory. Moreover, an initial reduction of the search 

space is commonly performed at the beginning of any approach used. Such a 

reduction is usually based on astrodynamics considerations (e.g. nodal flybys 

[166], orbital element drift due to non-Keplerian forces [167]), mission 

requirements (e.g. manned mission [159], monitor asteroids in the inner Solar 

System [168]), or characteristics of the target objects (e.g. NEAs’ absolute 

magnitude [169], asteroid spectral type [158]). For instance, the database used in 

Di Carlo et al. [168] is made of 12 objects (which are Atira asteroids) and the 

search space is simplified by considering a planar trajectory and nodal flybys. 

                                         
1 Data available online at http://sophia.estec.esa.int/gtoc_portal/ [retrieved 25 August 2015]. 

http://sophia.estec.esa.int/gtoc_portal/
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To date, different methods have been proposed to deal with the selection of 

the sequence of events (i.e. the outer loop in the integrated approach or the first 

subproblem in the sequential approach). These can be classified into two main 

categories: tree search and heuristic search. In the following subsections, a brief 

overview of these two categories is given. For an extensive survey of search 

strategies, the interested reader is referred to [170] and the references therein. 

 

Tree search. For what concerns the first category, the search strategy can be 

visualised as a tree, in which each branch corresponds to a separate event, such 

as a trajectory to an asteroid. Starting from each branch, further branches are 

investigated and thus the length (commonly referred to as depth) of each branch 

of the tree is increased. The tree-like structure of this search strategy is 

schematically shown in Fig. 2.7. Two implementations of the tree search are 

commonly used: breadth-first search (BFS) and depth-first search (DFS) [171]. 

Within the BFS, all the branches at the current depth are searched before moving 

to the next depth, in which a further leg is added (in the case of multiple target 

missions). A modified version of the BFS is the so-called beam search (BS), which 

allows a pruning of the less promising branches before exploring the next leg. Such 

pruning can be based on the overall mission objective (e.g. mission time or 

propellant consumed) or on other criteria, such as an estimate of the cost of the 

transfer based on the orbital parameters [172, 173]. On the other hand, the DFS 

works by looking for a whole sequence of events at a time, thus exploring the tree 

by increasing the depth of the current branch until a stopping criterion is met 

(e.g. maximum mission time). Subsequently, the next branch is explored in the 

same way. 

The BS implementation of the tree search strategy is the most commonly used 

because it considers the possibility to prune the less promising branches and thus 

reduce the overall computational time. BS implementations have been used, for 

instance, by the JPL team [174] and the GlasgowJena+ team [175] for the fifth 

and eight GTOC, respectively.  



2.2. Techniques for Space Trajectory Optimisation  43 

 

Fig. 2.7.  Schematic of the tree search implementations [171] (Reproduced with permission of 
Springer). Dotted lines and circles indicate branches yet to be explored. Crossed 
circles refer to pruned branches. (a) Breadth-first search. (b) Depth-first search. (c) 
Beam search. 

 

Heuristic search. For what concerns the second category, the search strategy 

is carried out by means of metaheuristic optimisation methods. For instance, 

Chilan and Conway [165] proposed an integrated approach to design multi-phase 

space missions which uses a genetic algorithm and an NLP transcription. The 

approach consists of two nested loops: the integer combinatorial problem is 

handled within the outer loop by the GA, whereas the continuous dynamics 

optimisation is tackled within the inner loop by transcribing the problem into an 

NLP. A binary chromosome of fixed length is used within the GA so that the mission 

event sequence is easily described. Such sequence is then used within the inner 

loop to generate an optimal trajectory. An approximate solution, which is found 

by means of a separate GA, is used as an initial guess for the NLP solver. This 

approach guarantees an optimal solution at the cost of a significant computational 

time needed. A similar approach was used by Englander et al. [161] for the mission 

design of trajectories with impulsive manoeuvres only (i.e. multiple gravity assists 

and deep space manoeuvres). Other studies use ACO to generate the sequences of 

events. For instance, Stuart et al. [156, 158] used ACO to generate missions for 

space debris mitigation and for visiting Trojan asteroids, respectively. In both 

cases, ACO’s task was to find the optimal sequence by using pre-computed 

trajectories. Those trajectories were computed before the beginning of the search 

and stored in a library [176], which is a similar approach to what presented in 

[177] for the case of impulsive manoeuvres. ACO is also used in [106] to generate 

optimal multiple gravity assist trajectories in a two-dimensional space. Other 

studies can be found in the literature which use metaheuristic methods for the 

target selection, such as the Physarum solver used within the toolbox CAMELOT 

[166] or a blend of evolutionary programming and a tree search used within the 

toolbox EPIC [178]. 
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Remarks. Both the tree and the heuristic searches have advantages and 

drawbacks. For instance, the tree search is easy to implement and it can easily 

cope with changes in the mission, such as an increase in the total mission duration. 

Moreover, several different solutions are available at the end of the simulation so 

that the mission analyst can consider a number of potential mission scenarios to 

investigate in the next phase of study. On the other hand, a tree search is 

computationally expensive and the optimality of the final solutions can be 

affected by the pruning criteria used. In the case of the heuristic search, no 

explicit pruning criteria are used because the algorithm itself is prone to explore 

the most promising path. Thus, it is more likely that a heuristic search finds a good 

solution in less time than a tree search. Nevertheless, only one solution is returned 

by a heuristic search if a single-objective optimisation is considered. Moreover, 

because of the stochastic characteristic of the metaheuristic algorithms, a single 

run of the heuristic search may not be enough to locate a difficult sequence of 

events. 

In both cases, a good mathematical model for the continuous dynamics is 

needed to ensure the feasibility of the sequence found. If the model is not 

accurate enough, a subsequent optimisation with a higher-fidelity model might 

find the solution infeasible. For instance, the time needed to encounter the first 

object in a multiple rendezvous mission can be longer than the one found during 

the target selection and this can affect the phasing of the other objects in the 

sequence. 

2.3. Near-Earth Asteroids 

In the last decades, near-Earth asteroids received considerable attention for 

planetary defence, science, human spaceflight and technology demonstration. 

From a technological point of view, NASA considers NEAs as a bridge towards the 

human exploration of Mars [159]. A manned NEA mission offers similar challenges 

as a mission to the red planet (i.e. a relevant deep-space environment and a total 

mission duration similar to an Earth-Mars transit). On the other hand, the total 

mission duration and the required v  (and, therefore, the launch costs) are below 

those needed for a full Mars return mission. As reported in [159], however, for 

safety considerations, the asteroid selection for such a mission shall take into 
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account several characteristics of the target objects (e.g. size, composition, 

rotation rate, etc.). Based on the observations taken from Earth, the 

characterisation of NEAs discovered to date often suffers from uncertainties in 

their physical, chemical and orbital properties. Moreover, some NEAs are defined 

as potentially hazardous asteroids (PHAs) and, especially for planetary defence, 

an accurate characterisation of their properties is needed [179]. Sugimoto et al. 

[180] underlined this need for deflection purposes. Even if methods exist to deal 

with NEA composition uncertainties (e.g. evidence theory), Sugimoto showed how 

some deflection methods – the ones that have a strong interaction with the target 

object (e.g. nuclear interceptor, solar sublimation or kinetic impactor) – are 

affected by uncertainties about asteroid composition (i.e. porosity, surface 

materials, precise shape, etc.) more than others. Furthermore, not only the 

chemical, physical and mineralogical composition but also the rotation of these 

objects can have an important role in the success of a mission, for both deflection 

and sample-return missions. Miller et al. [181] gave an overview of the asteroid-

characterisation priorities for planetary defence, pointing out the possible issues 

derived by a deflection mission to badly-characterised objects. Several survey and 

mitigation programs have been established for the purpose of a better knowledge 

of NEA characteristics (NEOWISE [182], JPL/NASA Center for Near Earth Object 

Studies (CNEOS)1, and NEOShield [183] are just three examples) but most of them 

deal with ground-based observations. Thanks to these survey programs, more than 

15,000 NEAs have been discovered to date and this number is constantly 

increasing, as shown in Fig. 2.8. Specifically regarding Europe, Koschny and 

Drolshagen [184] showed the ongoing activities to mitigate the potential threat 

posed by NEAs. 

To date, few missions to small bodies have been successfully completed (e.g. 

NEAR [185],  Deep Impact [186], Hayabusa [187, 188], and Rosetta [189, 190]) and 

two spacecraft (OSIRIS-REx [191] and Hayabusa-2 [192]) are currently on their way 

to rendezvous two different NEAs (Bennu and 1999 JU3, respectively). The Asteroid 

Impact and Deflection Assessment (AIDA) mission aims to demonstrate the kinetic-

impact technique for asteroid deflection and consists of two spacecraft, the first 

of which is scheduled to be launched in late 2020 [193]. A further mission, the 

Asteroid Redirect Mission (ARM), was under study and was planned to capture and 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/ [retrieved 11 July 2017]. 

https://cneos.jpl.nasa.gov/
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redirect a small NEA into an orbit accessible to a human crew [194]. Even private 

companies recently began to direct their interest towards asteroid exploration. 

For instance, the American company Deep Space Industries aims to reach asteroids 

with the purpose of mining them and, ultimately, market in-space resources1 

[195]. 

Despite the number of surveys and mitigation programs, our knowledge about 

NEAs is still far from a robust and stable scheme of classification. As Grundmann 

et al. [196] state, “The current level of understanding is occasionally simplified 

into the phrase ‘If you’ve seen one asteroid, you’ve seen one asteroid’”. That is, 

more studies about these objects, possibly considering close-up observations and 

sample-return missions, are still needed. 

 

 

Fig. 2.8.  NEA discovery statistics2. 

 

 

                                         
1 Data available online at http://deepspaceindustries.com/ [retrieved 09 August 2017]. 

2 Chart generated online at https://cneos.jpl.nasa.gov/stats/totals.html [retrieved 11 July 
2017]. 

http://deepspaceindustries.com/
https://cneos.jpl.nasa.gov/stats/totals.html


 

CHAPTER 3.  

PRELIMINARY SOLAR-SAIL 

TRAJECTORY DESIGN 

This chapter introduces two methods developed to generate solar-sail 

trajectories quickly and reliably. The former is a shape-based approach, whereas 

the latter exploits a homotopy to link a low-thrust trajectory with a solar-sail one. 

For both methods, a mathematical formulation is given followed by the specific 

methodology. The performances of the shape-based approach for solar sailing as 

an initial-guess solution for GPOPS-II are assessed against a simpler thrust law. 

Regarding the second method, a number of case studies are shown to assess its 

performances against other established approaches. Both methods will be used to 

find initial-guess solutions for a local optimiser such as GPOPS-II. 

The content of this chapter was published in [197-200], for what concerns the 

shape-based approach, and in [66, 201], for what concerns the homotopic 

approach. 
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3.1. Shape-Based Approach for Solar Sailing 

The first method developed to find preliminary solar-sail trajectories is based 

on finding the functions that well describe the shape of the desired trajectory. As 

discussed in Section 2.2.4, the idea behind the shape-based approaches is to have 

a set of shaping functions that allows a fast and reliable, but approximated, 

description of the trajectory. This can be used in a preliminary mission design or 

as an initial-guess solution for a more detailed local optimiser. This section shows 

a new set of shaping functions developed for solar sailing and describes their 

practical use. Lastly, the performances of the proposed shape-based approach as 

an initial guess for the local optimiser GPOPS-II are shown in a set of case studies. 

3.1.1. Pseudo Modified Equinoctial Elements 

Because of the different constraints on the available thrust between a solar 

sail and a classical low-thrust system highlighted in Section 2.1.2, a set of shaping 

functions for solar sailing has been investigated. Numerical issues can arise if the 

state vector is expressed in terms of either Cartesian position and velocity or 

conventional Keplerian elements (KEP). In the first case, each component of the 

state shows a significant change in time that can undermine the stability of a 

numerical optimiser. On the other hand, if the conventional Keplerian elements 

are chosen to describe the state, singularities arise in the cases of circular or 

planar orbits, for which the line of apsides or the line of the nodes are not defined, 

respectively [77]. Therefore, the state vector is expressed in terms of MEE. As 

such, the instantaneous Cartesian position and velocity can be analytically 

retrieved by means of the following relations [7]: 
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in which 
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A trajectory in space can be described by a succession of points in time, each 

one of which lies on an instantaneous ellipse. Three infinities of ellipses exist that 

share the same Cartesian position but have different instantaneous velocity. That 

is, a trajectory described as a succession of ellipses is characterised by three 

degrees of freedom. Such characterisation is referred to as gauge freedom [202]. 

For each point in time, the osculating ellipse, which is “the two-body orbit the 

satellite would follow if the perturbing forces were suddenly removed at that 

instant” [203], is only one among all the possible choices. In particular, the 

osculating ellipse is that for which the instantaneous Cartesian velocity is exactly 

the one shown in Eq. (3.2). For this reason, the velocity described by Eq. (3.2) will 

be referred to as osculating velocity osc
v  throughout this document. 

Consider the true longitude L , instead of the time t , as the independent 

variable and denote with primes the derivatives with respect to it. Therefore, the 

time is now the sixth element of the state, as follows. 

   
T

p f g h k tx =   (3.4) 

Within this new representation, the instantaneous velocity v  at each point of 

the trajectory is described by 
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The velocity described in Eq. (3.5) is the sum between the osculating velocity 

osc
v  and a gauge term 

gauge
v , since the ellipses are, in the generic case, not 

osculating. Recall the equation of motion for the true longitude as [121] 
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Therefore, the osculating velocity is given by 
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From Eqs. (3.5) and (3.7), the gauge term of the velocity is given by 
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Fig. 3.1.  Representation of the trajectory (bold line) as a succession of points on instantaneous 
ellipses. The generic case for which the gauge term is non-zero is shown. 

 

Figure 3.1 shows a schematic representation of a trajectory described by a 

succession of points as part of instantaneous ellipses. In the generic case shown, 

the instantaneous ellipses are not osculating and the velocity is shown for a 

representative point as the sum of an osculating term and a gauge one. 

In the case of a shape-based approach, the trajectory is represented through 

a set of functions that design the shape of each element of the state as a function 

of the true longitude. Therefore, there is no a priori guarantee that the 

instantaneous ellipses are osculating. Hence, the MEE that describe the 

instantaneous state through the chosen set of shaping functions are referred to as 

pseudo modified equinoctial elements (pMEE) and are denoted by the capital 

letters. These elements correspond to the classical MEE when the gauge term of 

the velocity is zero.  
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3.1.2. Choice of the Shaping Functions 

To find a shape of the trajectory that can be achieved with the solar-sail thrust 

constraints, several shaping functions have been investigated over two test cases. 

The set of functions that are considered for the choice of the shaping functions to 

be used in the description of the solar-sail trajectory will be discussed together 

with the test cases. A coplanar approximation has been made, so that the out-of-

plane elements H  and K  are neglected. Moreover, the time is shaped through its 

derivative in L . Because of the coplanar approximation considered, an 

appropriate function to describe the derivative of time is  
osc

T t  [131]. From Eq. 

(3.6), the shaping function for the derivative of time can be rewritten explicitly 

as 
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Therefore, the formulation of the time as a function of the true longitude is 

computed as 

     
0

L

L
T L T l dl   (3.10) 

Each one of the three in-plane pMEE  , ,P F G  is studied separately as a function 

of the true longitude L . The shaping functions found for these three elements are 

compared with the linear-trigonometric shape presented in Ref. [9] and shown in 

Eq. (2.55). For each element, the MATLAB Curve Fitting toolbox [204] has been 

used to find the function that best fits the data points. Three parameters have 

been considered to determine the quality of the fit: 

a) Overlapping of the fitting curve with the data 

b) Sum of squares due to error (SSE) 

c) Adjusted R-square (ARS) 

To be a good fit, the value of SSE must be close to zero, whereas the value of 

ARS must be close to one. Therefore, the first decision about the goodness of the 

selected shaping function is driven by the values of both SSE and ARS given by the 

MATLAB Curve Fitting toolbox. Subsequently, the overlapping of the fitting curve 
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with the data, together with the trend given by the extrapolation of the evolution 

of the curve beyond the data range, is considered to assess the quality of the 

chosen shaping function. Obviously, this alone is not sufficient as it is not a 

quantitative parameter and is potentially subject to personal opinions. However, 

it helps providing a complete assessment as the SSE and ARS alone might be biased 

by fitting the data rather than the trend. 

 

Test case 1. In the first test case, the heliocentric trajectory of a sail with a 

constant cone angle of   35 deg  is numerically propagated for seven years, 

starting from the initial orbit stated in Eq. (3.11). 

 


   0
0.2 0 0 0 2 rad

Tkep rx   (3.11) 

The sailcraft considered in this test case has a characteristic acceleration 

 20.3 mm s
c

a . 

It has been noted that the evolution of the in-plane elements  , ,P F G , as a 

function of L , is characterised by a short-term periodical component and a secular 

variation. This is well illustrated in Fig. 3.2, which shows the evolution of  F L  

and  G L  for a solar-sail trajectory propagated for twenty years with a constant 

cone angle   35 deg . 

 

a)  b)  

Fig. 3.2.  Evolution of the in-plane pMEE F (a) and G (b) over true longitude under the effect 
of a constant sail angle. 
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Hence, a function that is the sum of a linear and a sinusoidal term well 

describes the evolution of the two in-plane elements F  and G  subject to the 

acceleration given by a solar sail. The linear-trigonometric shapes proposed in [9] 

are, therefore, good choices to describe the evolution of these elements. 

However, a modification of the formulation given in the reference paper has been 

considered to allow a better flexibility at describing the evolution of F  and G , 

yet without introducing too many free parameters that will significantly increase 

the computational effort needed to find them. Therefore, the solar-sailing shape 

(which is a linear-trigonometric shape) is 
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in which 
fg

 and 
fg

 are, respectively, the shaping and phasing parameters related 

to the in-plane elements F  and G . The terms  , , ,
I F I F

F F G G  depend on the 

boundary conditions of the problem at hand. 

Table 3.1 shows the statistical values used to measure the quality of the fit, 

whereas Fig. 3.3 shows the fits of the in-plane elements F  and G  through the 

solar-sailing shape and the ones from [9]. 

 

 

Fig. 3.3.  In-plane pMEE F and G over true longitude. 
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In the case of the semilatus rectum, the secular term prevails over the short-

term sinusoidal component. For this reason, the following set of functions have 

been considered as potential candidates: 

1. Linear-trigonometric (LIN-TRIG) shape presented in [9]. 

2. Exponential-trigonometric (EXP-TRIG) shape presented in [9]. 

3. Third-order Fourier expansion. 

4. Solar-sailing shape, which is an exponential-trigonometric shape of the 

form 

            0
exp sin

I F p p
P P L L LP L   (3.13) 

in which I
P  and F

P  depend on the initial and final conditions, 
p
 and 

p
 

are, respectively, the shaping and phasing parameters related to the 

semilatus rectum. 

It is worth mentioning that the exponential-trigonometric shape from [9], 

which has been considered in both case studies, is the simplified one, which does 

not consider the trigonometric term. In fact, the Curve Fitting toolbox was not 

able to satisfy the convergence requirements for the fit computation and stopped 

without finding any solution, in the case of the general exponential-trigonometric 

shape shown in [9]. 

Figure 3.4 shows the fit of the semilatus rectum P  against the true longitude 

L  through both the linear-trigonometric shape presented in [9] and the solar-

sailing shape of Eq. (3.13). The linear-trigonometric shape (dotted green line with 

asterisks) does not overlap exactly the data (solid blue line with circles). On the 

other hand, the solar-sailing shape (dashed red line with squares) fits well with 

the data points. The quantitative parameters SSE and ARS for both the shaping 

functions are shown in Table 3.1. 
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Fig. 3.4.  Semilatus rectum over true longitude. 

 

As for the in-plane elements F  and G , both the statistical values of the fit and 

the plot of the fitting curve against the data points show how the new set of solar-

sailing shaping functions better describes the solar-sail trajectory than the linear-

trigonometric functions presented in [9]. For what concerns the Fourier expansion, 

a third-order series is characterised by eight free parameters, which reduce to six 

if the initial and final conditions are considered. Moreover, the statistical results 

show that this function is not significantly better than the exponential-

trigonometric shape of Eq. (3.13). That is, the additional effort needed to find 

four free parameters more is not justified by better performances. Lastly, also 

the statistical results related to the exponential-trigonometric shape in [9] 

describe a fit that is worse than the one of the proposed shaping function. 
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Table 3.1.  Statistical values of the fits for the pMEE P, F, and G. 

Statistical 

values 
Shape-based approach P  F  G  

SSE 

LIN-TRIG shape in [9] 1.489 0.3972 0.3655 

EXP-TRIG shape in [9] 0.065 - - 

3rd order Fourier 0.049 - - 

Solar-sailing shape 0.004  44.5 10  
 43.9 10  

ARS 

LIN-TRIG shape in [9] 0.9891 0.6991 0.6679 

EXP-TRIG shape in [9] 0.9995 - - 

3rd order Fourier 0.9996 - - 

Solar-sailing shape 1.0000 0.9997 0.9996 

 

 

Test case 2. For the second test case, an Earth-Mars coplanar orbit transfer 

through a solar sail with characteristic acceleration of  21 mm s
c

a  is considered. 

The reference orbit is computed via an indirect optimisation approach, as in 

Mengali and Quarta [11]. The statistical values of the fits are shown in Table 3.2, 

whereas Fig. 3.5 shows the fits of the in-plane pMEE over true longitude for the 

solar-sailing shape and the linear-trigonometric shape in [9]. In this case, the third 

order Fourier expansion does show slightly better statistical results than the solar-

sailing shape. Nevertheless, such improvement still does not justify the extra 

effort needed to have six free parameters instead of two. 
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a)  

b)  

Fig. 3.5.  Earth-Mars coplanar orbit transfer. (a) Semilatus rectum and (b) in-plane elements 
F and G over true longitude. 
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Table 3.2.  Earth-Mars coplanar orbit transfer. Statistical values of the fits for the pMEE P, F, 
and G. 

Statistical 

values 
Shape-based approach P  F  G  

SSE 

LIN-TRIG shape in [9]  11.2 10  
 29.5 10  

 13.3 10  

EXP-TRIG shape in [9]  22.5 10  - - 

3rd order Fourier  31.9 10  - - 

Solar-sailing shape  38.9 10  
 21.7 10  

 32.7 10  

ARS 

LIN-TRIG shape in [9] 0.9880 0.9615 0.6512 

EXP-TRIG shape in [9] 0.9975 - - 

3rd order Fourier 0.9998 - - 

Solar-sailing shape 0.9991 0.9928 0.9972 

 

 

Fig. 3.6.  Earth-Mars coplanar orbit transfer. Sail cone angle over true longitude. 

 

Figure 3.5 shows that the fits are slightly worse than in the previous simple 

case. This happens around 1.5 radL , which is the value of the true longitude 

when the control shows a significant change, as shown in Fig. 3.6. Nevertheless, 

both the fits shown in Fig. 3.5 and the statistical values SSE and ARS shown in 

Table 3.2 demonstrate the overall quality of the chosen shaping functions. 

Therefore, from this test case, as well as from the previous one with a constant 

thrust, it is clear how the new set of shaping functions describes a solar-sail 

trajectory better than the linear-trigonometric shape used as a reference. 



3.1. Shape-Based Approach for Solar Sailing  59 

An extension to the three-dimensional (3D) space of the proposed shape-based 

approach for solar sailing has been studied by González [205]. 

3.1.3. Study of the Gauge Freedom 

The shaping functions chosen to describe the solar-sail trajectory are defined 

by a succession of non-osculating ellipses. To support this statement, the gauge 

term of the velocity shown in Eq. (3.8) is studied in detail. 

Since the derivative of the time is shaped through its osculating value, as shown 

in Eq. (3.9), the scaled velocity   introduced in Eq. (3.8) can be rewritten as 

 





d

dL

r x

x
   (3.14) 

Because of the planar approximation, the values of the out-of-plane elements 

are constant in L  and equal to the values related to the osculating orbit at the 

initial time, such as 
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 Substituting Eqs. (3.13), (3.12) and (3.15) within Eq. (3.14) and after some 

mathematical manipulations, the formulation of the scaled velocity is 
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Eq. (3.16) demonstrates that the gauge term of the velocity is not always null 

and, therefore, it cannot be neglected. As a consequence, the Cartesian velocity 

v  cannot be computed through Eq. (3.2) but it must be computed as the sum of 

the osculating and the gauge term, as shown in Eq. (3.5). 

Lastly, this demonstrates that the trajectory is described by a succession of 

pseudo modified equinoctial elements. 
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3.1.4. Boundary-Constraint Satisfaction 

From Eqs. (3.13), (3.12) and (3.15), recall the formulation of the shaping 

functions as 
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in which the values of  , , , , ,
I F I F I F

P P F F G G  depend on the desired initial and final 

state. The boundary conditions on initial and final Cartesian position and velocity 

to be satisfied are 

 

          

          
          

          

 

 







0 0 0 0 0 0 0

0 0 0 0 0 0 0

, , , , ,

, , , , ,

, , , , ,

, , , , ,

f f f f f f f

f f f f f f f

P L F L G L H L K L L

P L F L G L H L K L L

P L F L G L H L K L L

P L F L G L H L K L L

r r

r r

v v

v v

  (3.18) 

Since a planar approximation is considered, Eq. (3.18) describes a system of 

eight equations in the six unknowns  , , , , ,
I F I F I F

P P F F G G . Moreover, the shaping 

functions in Eq. (3.17) do not describe osculating MEE, as demonstrated in Section 

3.1.3. To solve this system, a two-step approach can be followed. 

First, the values of the pMEE at initial and final true longitude are set equal to 

the desired osculating ones. From Eq. (3.17), the first-guess values for 

 , , , , ,
I F I F I F

P P F F G G  are 



3.1. Shape-Based Approach for Solar Sailing  61 

 

 

 

 

 

 

 

 

 

 

 

 

 


  


  











  






 
 
  



  









  





  



 

0

0

0

0

0

0

0

0

0

sin

sin

sin

s

1
l

in

cos

c

1

os

n

1

I p p

p p

F

I

I fg fg

F I fg fg

I fg fg

F I

f f

f

f f

fg f

f

f

gf f

P L

L
P

L P

F

F F L L
L

G

p

p

L

f

f
L

g G L L

g

G
L L   (3.19) 

The values found by means of Eq. (3.19) are used as a first guess to solve Eq. 

(3.18). The modified version of the Levenberg-Marquardt algorithm implemented 

within the MINPACK subroutine lmdif1 is used for this purpose. Note that the values 

given by Eq. (3.19) are good first-guess values if the gauge term of the velocity is 

small enough with respect to the osculating velocity. That is, if  Lr . 

3.1.5. Shaped Trajectory and Control History Generation 

In the previous sections, the shaping functions proposed for solar sailing have 

been presented and discussed. Here, the procedure for the full generation of the 

shaped trajectory and the control history is presented (Algorithm 3.1). 

For a rendezvous problem, as the one considered in this case, the initial time 

0
t , as well as the identifiers of the departing and arriving bodies 0

b  and 
f

b , are 

given. That is, the initial/final desired state can be computed from the 

ephemerides of the target bodies, given also the time of flight 
0 f

T , as 

                                         
1 Data available online at http://www.netlib.no/netlib/minpack/lmdif.f [retrieved 23 November 

2014]. 

http://www.netlib.no/netlib/minpack/lmdif.f
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Since a planar approximation of the transfer trajectory is considered, the 

orbital plane of the arriving target body 
f

b  is projected onto the one of the 

departing target body 
0

b , as follows. 
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Only once the orbits of the two target bodies lie on the same plane, it is 

possible to compute the initial/final desired state in terms of MEE, following the 

definition given in Eq. (2.54). 
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in which    mod ,2 2
f f rev

L L n . 

Therefore, the set  , , , , ,
I F I F I F

P P F F G G  can be obtained through Eq. (3.18), once 

their first-guess values have been computed from Eq. (3.19). Given the values of 

the shaping and phasing parameters     , , ,
p fg p fg , the shaped trajectory and 

the evolution of time are obtained through Eqs. (3.17) and (3.10), respectively. 

After obtaining the Cartesian position and velocity through Eqs. (3.1) and (3.5), 

the Cartesian acceleration is obtained as 

 
d dL

dL dt

v
r =   (3.23) 

Substituting Eq. (3.23) into Eq. (2.50), the acceleration needed to follow the 

shaped trajectory is retrieved in the Cartesian frame. Lastly, the evolution of the 

cone angle   is analytically retrieved as 
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Note that the control given by the shape-based approach is only expressed in 

terms of the cone angle. That is, there is no control over the magnitude of the 

sail acceleration. Nevertheless, it is worth recalling that the magnitude and 

direction of the acceleration given by a solar sail are strictly related. Thus, there 

is only one degree of freedom in the choice of the sail acceleration, in the two-

dimensional case. 

Algorithm 3.1.  Shape-based approach for solar sailing. Procedure to generate the shaped 
trajectory and the control history. 

1: Given  0 0 0
, , ,

f f
b b t T , compute initial/final desired state in KEP [Eq. (3.20)] 

2: Project orbital plane of 
f

b  onto the one of 0
b  [Eq. (3.21)] 

3: Given rev
n , compute initial/final desired state in MEE [Eq. (3.22)] 

4: Compute first-guess values for  , , , , ,
I F I F I F

P P F F G G  [Eq. (3.19)] 

5: Compute exact values for  , , , , ,
I F I F I F

P P F F G G  by solving the nonlinear system 

of Eq. (3.18) 

6: Given     , , ,
p fg p fg , compute the shaping functions [Eq. (3.17)] and the 

evolution of the time [Eq. (3.10)] 

7: Compute Cartesian position and velocity [Eqs. (3.1) and (3.5)] 

8: Compute Cartesian acceleration [Eq. (3.23)] 

9: Retrieve the evolution of the cone angle   [Eq. (3.24)] 

 

3.1.6. Practical Use of the Shape-Based Approach for Solar 

Sailing 

As shown in Eq. (3.17), given initial and final state, the trajectory is defined 

by the four free parameters      , , ,
p fg p fg

y . The acceleration a  needed to 

follow the shape of the trajectory and defined by the shaping and phasing 

parameters is then analytically retrieved, as detailed in Algorithm 3.1. The control 

history is changed by tuning these parameters such that the constraints on the 

achievable thrust [Eq. (2.18)] are satisfied. To do so, the set of free parameters 
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y , together with the time of flight 
0 f

T  and the number of complete revolutions 

rev
n , are searched with the MATLAB built-in genetic algorithm (GA). Taking into 

account the heuristic nature of the genetic algorithm, a maximum of 3,000 

generations is allowed, resetting the population up to three times in case of stalls. 

Because the acceleration needed to follow the shaped trajectory is only 

retrieved a posteriori, a set of nonlinear constraints is implemented within the 

GA such that the shaped trajectory is as close as possible to a solar-sail trajectory. 

These are implemented as inequality constraints, since equality constraints 

reduce the degree of freedom of the problem and thus make it harder to solve, as 

discussed in [102]. The nonlinear constraints are set so that: 

a) The magnitude of the acceleration is the one that the selected sailcraft 

can provide. 

b) The acceleration is never directed towards the Sun. 

c) The time of flight 
0 f

T  is consistent with the shaped time  f
T L  given by 

Eq. (3.10). 

The latter is necessary to make the solution physical, because it is the only link 

between the time of flight and the shaped trajectory, as discussed in [9, 129]. In 

fact, the initial and final values of the true longitude depend on the absolute time, 

since a rendezvous problem is considered. The evolution of time given by Eq. 

(3.10) is not linked to the physical time evolution, unless the aforementioned 

nonlinear constraint c) is enforced. Note that such constraint can be solved by 

means of a Newton loop, as discussed in [129, 131]. However, a metaheuristic 

algorithm (which is the GA, in this case) needs to be used to find the values of the 

shaping and phasing parameters and the time of flight to know where the 

initial/final target objects are. Moreover, the two nonlinear constraints a) – b) 

must be enforced, despite what happens in the classical low-thrust case. 

Therefore, the explicit use of the constraint on the time of flight as nonlinear 

constraint for the GA has proven to be as effective as the use of the Newton loop. 

The objective function of the GA can be changed according to the application. 

In this work, two different objective functions are considered. When used within 

the sequence-search phase (CHAPTER 4), the shaping functions are found by 

minimising the time of flight. Note that the evaluation of the objective function 

by the GA is very fast, since the time of flight is one of the optimisation variables. 

Therefore, only the evaluation of the function of the constraints requires sensible 
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computational time. However, because the relation between magnitude and 

direction of the acceleration is not explicitly constrained, the shaped trajectory 

can differ from the one propagated by using the control history given by the shape-

based approach. In fact, recall that the acceleration needed to follow the shaped 

trajectory [Eq. (3.23)] is converted into the sail cone angle [Eq. (3.24)]. As such, 

the acceleration used to propagate the trajectory is that given by Eq. (2.18). For 

this reason, when the solution of the shape-based approach is used as an initial-

guess solution for the local optimiser, three different approaches can be chosen, 

as follows. 

1) Minimisation of the time of flight: shaped trajectory. In this case, the 

initial-guess trajectory is the shaped trajectory related to the minimum 

time of flight. This choice of initial guess has the advantage that the initial 

and final values of the state satisfy the end-point constraints. Moreover, 

the evaluation of such solution is very fast. The drawback is that state and 

control are not perfectly related. That is, the main task of the optimiser 

is to change both trajectory and control to satisfy the equations of motion 

(path constraint). 

2) Minimisation of the time of flight: propagated trajectory. Also in this case, 

the minimisation of the time of flight is considered. The initial-guess 

trajectory is the trajectory found by propagating the initial state with the 

acceleration given by the shape-based approach. The acceleration vector 

is interpolated with a constant piecewise law. This choice of initial guess 

has the advantage that state and control are perfectly consistent with 

each other. Moreover, the evaluation of such solution is very fast. The 

drawback of this choice is that the final state can differ from the desired 

one. That is, the main task of the optimiser is to change both state and 

control histories to find a feasible solution that satisfies the end-point 

constraints. 

3) Minimisation of the error on the final state. In this case, a different 

objective function can be used. That is, the objective function J  is chosen 

to minimise the error between the final state due to propagation and the 

final desired state. This objective function is shown in Eq. (3.25), in which 


1

1,000W  and 
2

10W  are two dimensionless weighting factors. These 

factors have been found after a trial-and-error process and have been 
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chosen with the purpose of weighting the error in position more than the 

one in velocity. Despite different weights would produce different 

solutions, the methodology would not change, and the final choice on the 

weights is therefore ultimately for the mission analyst. Moreover, position 

and velocity are scaled so that 

 1r  and   1. 

    
1 2f f f f

J W Wr r v v   (3.25) 

In Eq. (3.25), 
f

r  and 
f

v  are the Cartesian position and velocity of the 

target object at the final time 
f

t , respectively. On the other hand, the 

terms 
f

r  and 
f

v  are the final values of the Cartesian position and velocity 

of the propagated trajectory, respectively. 

 

Note that the shape-based approach described above, as well as the majority 

of shape-based approaches in the literature, deal with rendezvous problems. In 

fact, if the problem under consideration is an orbit transfer, this approach cannot 

be used as it is. Therefore, a different implementation of the shape-based 

approach is developed for orbit transfers. Specifically, in an orbit transfer 

problem, the spacecraft is not required to be in any specific point on the desired 

target orbit. Therefore, the number of complete revolutions and the time of flight 

are replaced by the final true longitude 
f

L  as the unknown of the GA. 

Consequently, the objective function for the GA to be minimised becomes the 

final value of the true longitude. Lastly, since 
0 f

T  is irrelevant, the third nonlinear 

constraint discussed above can be ignored. In conclusion, the implementation of 

the shape-based approach for an orbit transfer problem is characterised by one 

less nonlinear constraint and one less variable to be considered within the GA if 

compared to the rendezvous problem. The procedure for the full generation of 

the shaped trajectory and the control history in the case of an orbit transfer is 

shown in Algorithm 3.2. 
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Algorithm 3.2.  Shape-based approach for solar sailing. Procedure to generate the shaped 
trajectory and the control history in the case of an orbit transfer. 

1: Given  0 0
,b t , compute initial desired state in KEP [Eq. (3.20)] 

2: Given 
f

b , project its orbital plane onto the one of 0
b  [Eq. (3.21)] 

3: Given 
f

L , compute initial/final desired state in MEE [Eq. (3.22)] 

4: Compute first-guess values for  , , , , ,
I F I F I F

P P F F G G  [Eq. (3.19)] 

5: Compute exact values for  , , , , ,
I F I F I F

P P F F G G  by solving the nonlinear system 

of Eq. (3.18) 

6: Given     , , ,
p fg p fg , compute the shaping functions [Eq. (3.17)] and the 

evolution of the time [Eq. (3.10)] 

7: Compute Cartesian position and velocity [Eqs. (3.1) and (3.5)] 

8: Compute Cartesian acceleration [Eq. (3.23)] 

9: Retrieve the evolution of the cone angle   [Eq. (3.24)] 

 

3.1.7. Assessing the Performances of the Shape-Based 

Approach for Solar Sailing 

The two variants of the shape-based approach with the minimisation of the 

time of flight (points 1) – 2) of Section 3.1.6) were used to assess the performances 

of the shape-based approach for solar sailing. The performances of this method, 

in terms of success rate, are assessed by using it as an initial-guess solution for 

GPOPS-II for a number of numerical case studies. That is, GPOPS-II is run, for each 

test case, using each one of the two variants of the shape-based approach as an 

initial guess. The number of optimal solutions found by GPOPS-II, among all the 

cases tested, gives an estimate of the goodness of the trajectory and control 

approximation given by the shape-based approach for solar sailing. Moreover, a 

third method is used as a benchmark. In this third method, the initial-guess 

trajectory is the one given by a pseudo solar sail with a constant transversal thrust. 

A pseudo solar sail is defined here as a solar sail in which magnitude and direction 

of the thrust are not related, as 

  
  

 

2

ˆ
pSS c

r
a

r
a N   (3.26) 
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The trajectory starts at the initial set time and state and it is propagated for 

a defined time of flight. In the orbital reference frame, the acceleration is 

considered being always in the transversal direction, as 

  
     

 

2

0 1 0
T

pSS c

r
a

r
a   (3.27) 

The   sign in Eq. (3.27) represents a thrust directed either towards or opposite 

to the transversal unit vector ̂  and, therefore, an outward or inward spiral, 

respectively. Note that a perfectly-reflecting flat solar sail cannot produce the 

propulsive acceleration of Eq. (3.27) because the direction of such acceleration 

would be defined by   2 , whereas its magnitude by   0 . 

Regarding the numerical case studies, eleven single-leg rendezvous transfers 

are considered in which the chosen objects are part of the PHA-NHATS database 

used for the sequence-search phase (CHAPTER 4). Such database is made of PHAs 

and asteroids part of the Near-Earth Object Human Space Flight Accessible Target 

Study (NHATS) [206]. By definition, NHATS asteroids are targets possible to reach 

from the Earth in a short (less than two years) return mission with low total 

required v . PHAs, on the other hand, are in general characterised by higher v  

if reached from the Earth. For this reason, all the transfers considered in this study 

are so that the first object is either Earth or a NHATS asteroid and the second 

object is a PHA. 

Table 3.3 shows the main properties of the selected objects, whereas Table 

3.4 details the properties of the transfers for each case study. Table 3.3 shows 

that, among the chosen PHAs, seven are characterised by an eccentricity  0.2e  

and seven are characterised by an inclination  2 degi . The departing date and 

the time of flight for each rendezvous mission listed in Table 3.4 are taken from 

the results of the search for sequences described in CHAPTER 4. The time of flight 

is considered only if the transversal-thrust law is used as the initial guess. Both 

inwards and outwards spirals are considered for the transversal-thrust law, as 

shown in Eq. (3.27). Note that the ninth and tenth test cases study a transfer 

between the same couple of asteroids but with different departing times and 

times of flight (Table 3.4). 
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Table 3.3.  Properties of the objects considered for the single-leg rendezvous missions. 

Object , AUa  e  , degi  PHA NHATS 

Earth 1 0 0 no no 

2011 CG2 1.178 0.158 2.757 yes yes 

2005 TG50 0.923 0.135 2.402 no yes 

2015 JF11 1.073 0.111 5.400 yes no 

2012 KB4 1.093 0.061 6.328 no yes 

2008 EV5 0.958 0.084 7.437 yes yes 

2009 YF 0.936 0.121 1.523 no yes 

2002 AW 1.071 0.256 0.571 yes no 

2010 WR7 1.046 0.235 1.563 no yes 

1989 UQ 0.915 0.265 1.299 yes no 

2005 FG 1.122 0.213 3.882 no yes 

1999 AQ10 0.934 0.236 6.501 yes no 

2008 TX3 1.180 0.187 2.180 no yes 

2000 EA14 1.117 0.202 3.555 yes no 

2004 JN1 1.085 0.176 1.499 no yes 

2006 KV89 1.150 0.273 3.554 yes no 

2001 QE71 1.078 0.159 3.035 no yes 

2001 US16 1.356 0.253 1.905 yes no 

2015 EF7 1.209 0.225 3.570 no yes 

2000 QK130 1.181 0.262 4.722 yes no 

 

Table 3.4.  Case studies for the single-leg rendezvous missions. 

Case study 
Departing 

object 
Arrival object 

Departing 

date 

Time of 

flight, days 

1 Earth 2011 CG2 09 Jan 2029 690 

2 2005 TG50 2015 JF11 26 Jan 2035 718 

3 2012 KB4 2008 EV5 22 Feb 2031 647 

4 2009 YF 2002 AW 23 Aug 2035 607 

5 2010 WR7 1989 UQ 14 Jun 2024 640 

6 2005 FG 1999 AQ10 19 Nov 2027 711 

7 2008 TX3 2000 EA14 30 Aug 2028 740 

8 2004 JN1 2006 KV89 31 Mar 2035 896 

9 2001 QE71 2001 US16 06 Dec 2027 697 

10 2001 QE71 2001 US16 23 Oct 2027 728 

11 2015 EF7 2000 QK130 17 Apr 2026 531 
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An optimal solution to all the case studies shown in Table 3.4 has been sought 

by using GPOPS-II with the three different initial guesses discussed above. 

Moreover, the three NLP solvers available in GPOPS-II are used to test them in 

problems like those ones discussed in this document. An optimisation is defined 

successful when: a) the NLP solver returns a successful exit flag, b) a further mesh 

refinement performed by GPOPS-II will not improve the quality of the solution, 

and c) all the boundaries of time, state and control are verified through a post-

processing check. For the sake of conciseness, only the statistical results and the 

control profiles of a representative case study are shown here. Table 3.5 shows 

the number of successful cases for each initial guess used. On the other hand, 

Table 3.6 shows the number of successful cases for each initial guess and each 

NLP solver used. Figure 3.7a shows the control profile found by means of the 

shaped-trajectory variant of the shape-based approach for case study 9. The 

control profile of the optimised trajectory found by GPOPS-II with WORHP, for the 

same case study, is shown in Fig. 3.7b. 

Table 3.5.  Number of successful cases for each initial guess. 

Initial guess Number of successful cases 

Transversal-thrust law  5/11 (45%) 

Shape-based approach – propagated trajectory 10/11 (91%) 

Shape-based approach – shaped trajectory 11/11 (100%) 

 

Table 3.6.  Number of successful cases for each initial guess and NLP solver. 

Initial guess 
Number of successful cases 

IPOPT SNOPT WORHP 

Transversal-thrust law 3/11 (27%) 4/11 (36%) 4/11 (36%) 

Shape-based approach 

– propagated trajectory 
9/11 (82%) 9/11 (82%) 9/11 (82%) 

Shape-based approach 

– shaped trajectory 
9/11 (82%) 11/11 (100%) 11/11 (100%) 

 

The overall results show that the use of the shape-based approach as an initial-

guess solution helps the convergence of GPOPS-II as ten optimal solutions have 

been found out of the total number of eleven cases tested with the shape-based 
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guesses. In fact, an optimal solution has been found for all eleven cases tested 

with the shaped-trajectory variant of the shape-based algorithm. On the contrary, 

only five solutions have been found by using the trajectory obtained through the 

transversal-thrust law as the initial guess. This validates the shape-based approach 

developed for solar sailing. Moreover, the better performances shown by using the 

shape-based approach against the transversal-thrust law endorse its use as an 

initial guess for a high-fidelity direct-collocation optimisation method such as 

GPOPS-II. The overall statistical results are very similar between the two variants 

of the shape-based approach used, if no distinction among the NLP solvers is made 

(Table 3.5). If the number of successful test cases is investigated as a function of 

both the initial-guess method and the NLP solver used (Table 3.6), it can be seen 

that, overall, the shaped-trajectory variant of the shape-based approach works 

better than the propagated-trajectory variant. In fact, the statistical results show 

a 100% success rate for both SNOPT and WORHP. Nevertheless, Table 3.6 shows 

that both variants of the shape-based approach, as well as all the available NLP 

solvers, are robust enough to be used in the early stages of solar-sail trajectory 

design. 

 

a)  b)  

Fig. 3.7.  Shape-based approach (Case study 9). Control history found with (a) shape-based 
approach – shaped trajectory, and (b) GPOPS-II with NLP solver WORHP. 
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3.2. From Low Thrust to Solar Sailing: A Homotopic 

Approach 

An alternative method, with respect to the shape-based approach, has been 

developed to quickly find preliminary solar-sail trajectories. The idea behind it is 

to use a homotopic approach [64], together with a numerical continuation 

technique [65], to find the desired solar-sail trajectory starting from a classical 

low-thrust (LT) one. In fact, because of the differences in the control vector 

between a classical LT propulsion system and a solar sail (Section 2.1.2), a low-

thrust OCP can be easier to solve numerically than a solar sail one. 

The purpose of this section is to develop an efficient method to find a 

minimum-time solar-sail transfer, starting from a solution for a low-thrust 

minimum-time OCP, which can be easier to find or readily available. Given a 

constant-mass low-thrust solution of the minimum-time OCP, the homotopic 

transformation is introduced on the propulsive acceleration a . A constant-mass 

LT is considered because the optimal control law for a LT-propelled spacecraft is 

transformed to that of a propellantless solar sail. Moreover, finding a solution to 

the minimum-time LT OCP with no mass variation is even easier than a classical 

low-thrust OCP. As for the case of the shape-based approach for solar sailing 

described in Section 3.1, the approximation of planar transfers is considered here. 

Nevertheless, it has been demonstrated that, for small changes in the inclination, 

the planar transfers obtained by means of this method are good approximations 

of the 3D solar-sail solutions [66]. 

3.2.1. Mathematical Model 

Consider a polar inertial reference frame  ̂,̂r   in the ecliptic plane, as shown 

in Fig. 3.8. The state vector is 

    
Tpol r u vx   (3.28) 

in which r  is the radial distance of the spacecraft measured from the Sun, 

identifies the spacecraft angular position from a fixed axis in space (inertial), u  

and v  are the radial and transversal spacecraft velocities, respectively. In this 

case, the inertial axis, from which the angular position   is computed, is the 
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direction of the vernal equinox   (or first point of Aries) [203], as shown in Fig. 

3.8. Therefore, note that   can be actually related to the true longitude L . 

However,   will be used throughout this Section 3.2 to be consistent with the 

common notation used for polar coordinates. 

 

Fig. 3.8.  Polar inertial reference frame in the ecliptic plane. 

 

The equations of motion of a spacecraft under the action of gravity and a 

generic acceleration a  are [11] 

 
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  (3.29) 

Denoting with max
a  the low-thrust maximum acceleration and with   0,1u  

the non-dimensional control, the acceleration LT
a  given by a constant-mass low-

thrust system is 

 


  


 
   

 


co
,

s
,

sin
LT max

uaa   (3.30) 
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The cone angle   has the same meaning as in the solar-sail case, which is the 

angle between the direction of the acceleration and the radial direction  

(    ˆcos
LT

a r ). However, in the classical LT case,   can assume any value, as 

shown in Eq. (3.30). For the sake of clarity, recall the acceleration SS
a  given by a 

solar sail as 

 
  

 



  

   
  

 
  
 

2

2
cos

cos ,
s

,
2 2in

SS c

r
a

r
a   (3.31) 

 

Optimal control problem formulation. The optimal control problems are 

stated for both low-thrust and solar-sail cases [54]. The minimisation of the total 

transfer time is considered for rendezvous (RV), flyby (FB), and orbit transfer (OT) 

problems. Therefore, the objective function to be minimised is expressed as 

   
0 0f f

J T t t   (3.32) 

 From Eq. (3.32), it is clear that, in this case, the integral cost function is null 

[see Eq. (2.25)]. Moreover, no path constraints are considered. Therefore, the 

Hamiltonian defined in Eq. (2.26) becomes 

  T polxH    (3.33) 

in which the vector of the costates is defined as 


      
T

r u v
 . The time 

evolution of the costates is given by 

 
 
 
 

T

polx

H
     (3.34) 

The initial and final boundary conditions are derived for an orbit transfer, a 

flyby and a rendezvous problem, as follows [11, 207]. 
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The term 0
x  Eqs. (3.35) – (3.37) is the initial state of the departing object, 

whereas the terms  , , , ,
f f f f f

r u vx  are referred to the final state of the arrival 

object. The last scalar boundary condition in Eqs. (3.36) – (3.37) is the 

transversality condition on the Hamiltonian [Eq. (2.31)]. 

The optimal control laws for both low thrust and solar sail are derived by 

minimising of the Hamiltonian with respect to the control variables. Consider the 

first-order necessary condition for optimality and assume that no singular arcs 

occur. That is,      , 0,0
u v

 always. This hypothesis has been numerically 

verified a posteriori for all the cases tested. Considering the Pontryagin’s 

minimum principle, the optimal control law, in terms of the cone angle, is 

 


  argminH   (3.38) 
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For the case of a constant-mass low-thrust system, the optimal control law is what 

is usually referred to as a bang-bang thrust profile. That is,  1u  and the 

magnitude of the acceleration is the maximum available in all points of the 

trajectory. The optimal direction of the thrust can be expressed, as a function of 

the costates, as [102] 

 

       

 
 

   
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 
2 2 2 2

,cos sinu v

u v u v

  (3.39) 

in which       , . On the other hand, for the case of a solar sail, Eq. (3.38) 

becomes [2] 
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  (3.40) 

in which 
 

   
  
 2 2

, . It is worth noting that the optimal control law described 

by Eq. (3.40) is defined for any values of    ,
u v

. In fact, it can be demonstrated 

that 










0

0lim
v

, if   0
u

 , and 











 
0

l
2

im
v

, if   0
u

. 

3.2.2. Homotopy-Continuation Approach 

In this section, the use of the homotopy to link the shooting functions relative 

to the low-thrust and solar-sail OCPs is described. The shooting function for a 

single OCP is represented by the nonlinear function   : n mz , in which n  

represents the number of optimisation variables and m is the number of nonlinear 

scalar equations included in   [208]. The zeros of the shooting function represent 

the solution of the optimal control problem. For the OCPs at hand, such function 

is expressed as 

 ( )
f

z    (3.41) 

in which z  is the vector of the optimisation variables given by the initial values 

of the costates  0
t  and the time of flight 

0 f
T , as follows. 
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
  (3.42) 

Introducing the homotopic parameter     0,1  to link the solutions of the OCPs 

throughout the homotopy, the shooting function becomes    , : n mz . 

When   0 , the shooting function is the one relative to the classical low-thrust 

problem, whereas, when   1, the shooting function is the one relative to the 

solar-sail problem. 

Two linear homotopic transformations on the spacecraft acceleration are 

considered and the related homotopic parameters are referred to as 
1
 and 

2
, 

respectively. The first homotopic transformation is introduced as 

   
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s n
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i
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r
a u

r
a a   (3.43) 

The corresponding shooting function is 

  
1 1
( , ) 0z   (3.44) 

The relation in Eq. (3.43) links the low-thrust acceleration of Eq. (3.30) to the one 

that can be provided by a pseudo solar sail, given by Eq. (3.31) with 
maxc

a a . 

Here, the term pseudo solar sail is referred to the fact that no constraint on the 

thrust direction are enforced. That is, the pseudo-solar-sail solution of   1
,1 0z  

can be characterised by some points in the trajectory in which the acceleration is 

directed towards the Sun. Nevertheless, such solution is used as initial guess for 

the computation of the solar-sail OCP through a single-shooting approach. That is, 

the zeros of   1
,1 0z  are computed subject to the constraint 

 


 
  
 

,
2 2

. In 

all the numerical cases tested, the pseudo-solar-sail solution was always a good 

initial guess for the direct computation of the solar-sail solution. Therefore, a 

second homotopic transformation to link the solution of Eq. (3.44) with the solar-

sail OCP by continuously changing the boundaries on the cone angle, as shown in 

[209], was not necessary. 
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The second linear homotopic transformation is introduced as the desired 

characteristic acceleration can be different with respect to the corresponding 

low-thrust acceleration (i.e. 
maxc

a a ). This second transformation allows linking 

the initial solar-sail solution with  
,0 maxc c

a a a  to the final one, which is 

characterised by  
max,fc c

a a a , as 
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Note that the expression of the acceleration a  in Eq. (3.45) is the same as the 

one of a solar sail shown in Eq. (3.31), considering a modified characteristic 

acceleration given by 

     
2 ,0 2 ,

1
c c c f

a a a   (3.46) 

In this case, the corresponding shooting function is 

  
2 2
( , ) 0z   (3.47) 

 

Numerical continuation. For both homotopies, which are described in terms 

of the shooting functions of Eqs. (3.44) and (3.47), the zeros of the solar-sail 

shooting function can be computed by using numerical continuation, starting from 

the low-thrust solution LT
z  (Algorithm 3.3). This technique allows following the 

so-called zero-path of the homotopy (i.e. the locus of solutions ( , )z  of the system 

 ( , ) 0z ) by numerically changing the parameter  , starting from the solution 

at   0  until computing the final solution at   1. The numerical continuation 

used to solve the problem at hand is implemented in the form of discrete 

continuation [208, 210]. That is, the value of the parameter   is progressively 

increased and, at each step, the solution of an intermediate OCP is computed. 

Each intermediate solution is used as a starting point for the computation of the 

following problem until the solution of the desired problem is found. The 

continuation step size is determined as follows, starting by a defined initial value. 

If the solution of an intermediate problem is found, the algorithm doubles the step 

size to speed up the continuation process. On the contrary, if no solution is found 
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for the current intermediate problem, the step size is halved and the continuation 

iteration is run again with a decreased step size until convergence is reached. If 

the new step size is below a defined threshold 
min

, the algorithm terminates 

unsuccessfully. 

Algorithm 3.3.  Homotopy-continuation approach. 

1: Given  0 0
,t b , compute 

0

polx  

2: Given     0 0

T
T

LT LT f
t Tz  , initialise 

LT
z z  

3: Define     
min max

,, ,  s.t.    

4: While   1, Do 

5:     Solve      , ,
tmp

exitflag0z z  

6:     If  0exitflag , Then 

7:              

8:           2  

9:         If  
min , Then 

10:             Termination (Unsuccessful) 

11:         End If 

12:              

13:     Else 

14:         Update 
tmp

z z  

15:         If   1, Then 

16:               2  

17:                  

18:         Else 

19:             Termination (Successful) 

20:         End If 

21:     End If 

22: End Do 

 

Since the first homotopic transformation shown in Eq. (3.43) introduces some 

complexity in the OCP formulation discussed in Section 3.2.1, a close look at the 

transformed OCP formulation is given in the following subsection. On the contrary, 

the second homotopic transformation does not affect the OCP formulation, being 

the homotopy related to the value of the characteristic acceleration only. 
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Transformed optimal control problem formulation. The equations of motion 

that describe the evolution in time of the state of the spacecraft during the first 

homotopy are 
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The part of the Hamiltonian that depends only on the control variables u  and 

  is denoted by H  and expressed as 

         3 2sin cos cos sin cosT

LTSS
A B C DaH    (3.49) 

in which 
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Accordingly, the time evolution of the costates, shown in Eq. (3.34), becomes 
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The first-order optimality condition, shown in Eq. (3.38), becomes 
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in which 
 

  
 

tan
2

, thus   12tan ( ) . On the hypothesis that no singular arcs 

occur, the first-order optimality condition for u  leads to 
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It should be noted that no analytical solution exists for the roots of the sixth-order 

polynomial of Eq. (3.52), in the generic case in which both   0
u  and   0

v . 

Therefore, the optimal control can be only found by means of a numerical 

algorithm able to compute the optimal values *u  and  *
 that minimise H . That 

is, for each value of the non-dimensional control u  in Eq. (3.53), the real roots of 

the sixth-order polynomial of Eq. (3.52) are numerically computed. Therefore, the 

value of H  is evaluated for all the sets of solutions  ,u , retrieving the optimal 

control as 

       , argmin ,u uH   (3.54) 

3.2.3. Numerical Test Cases 

In this section, four numerical test cases are presented (Table 3.7). The first 

two test cases are considered to validate the proposed approach. As such, two 

planar circular-to-circular Earth-Mars orbit transfers are studied with different 

values of the sail characteristic acceleration. In these cases, the proposed 

homotopic approach is compared with both a conventional solution method, which 

is based on the use of a metaheuristic algorithm, and the results found in the 

literature. The last two test cases are considered to assess the performances of 

the proposed method in computing a solution to a planar rendezvous OCP. As such, 

two planar rendezvous transfers from Earth to asteroid (99942) Apophis are 

considered with different values of the sail characteristic acceleration. In these 
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last two test cases, the results found by means of the proposed homotopic 

approach are compared with those ones shown in [211]. 

Table 3.7.  Homotopic approach: numerical test cases. 

 2, mm s
c

a   Problem 

Test case 1 1 Earth-Mars orbit transfer 

Test case 2 0.1 Earth-Mars orbit transfer 

Test case 3 0.6 Earth-Apophis rendezvous 

Test case 4 0.12 Earth-Apophis rendezvous 

 

Table 3.8 shows the main properties, in terms of Keplerian elements, of both 

Mars and Apophis. Apophis orbit is considered coplanar with the ecliptic plane. 

This assumption is reasonable in a first approximation, being its inclination only 

3.3 deg [66]. The Earth orbit is considered circular with radius 

 1 AUr . 

Table 3.8.  Homotopic approach: Keplerian elements of the target objects on 14 Feb 2016. 
The inclination of both objects is assumed equal to zero. 

Object , AUa  e  , degi  , deg   , deg   , deg  

Mars1 1.52368 (0) (0) (0) (0) (0) 

(99942) Apophis2 0.92228 0.191 (0) 204.5 126.4 283.4 

 

The tolerances on the errors on the final state have been set to 1,000 km, for 

the position, and 0.1 m s , for both the radial and transversal velocities, as stated 

in [11]. These tolerances are the same for all the test cases considered in this 

section. It is also worth mentioning that a C++ implementation of the Bulirsch-

Stoer algorithm has been used to propagate the equations of motion more 

efficiently, with higher accuracy and lower computational effort than the 

conventional ordinary differential equation (ODE) solvers [212]. The absolute and 

relative tolerances for the propagator have both been set to 
810  [11]. All the 

simulations have been performed in MATLAB on a 3.4 GHz Core i7-3770 with 16 GB 

                                         
1 The orbit of Mars is assumed planar and circular. Moreover, only the semimajor axis is 

considered, being Mars used only for orbit-transfer problems. The value of the semimajor axis 
is the same as the one considered in [11]. 

2 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 
2015]. 

https://cneos.jpl.nasa.gov/orbits/elements.html
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of RAM, running Linux Ubuntu 14.04. In the next subsections, the four test cases 

are discussed in detail. 

 

Validation of the homotopic approach: Earth-Mars orbit transfer. The first 

two test cases have been considered for the purpose of (a) validating the novel 

method proposed for computing solar-sail OCPs and (b) comparing its 

performances with respect to a conventional GA method used to solve the same 

solar-sail OCPs. The objective function to be minimised within the GA is the 

Euclidean L2 norm of the shooting function (
1
( ,1)z  or 

2
( ,1)z , according to the 

specific test case). 

Twenty different sets of settings have been considered for the GA simulations, 

differing in the population size (Population =  50,100,150,200,500 ) and the 

maximum number of generations allowed (MaxGenerations = 

 500,1000,1500,2000 ). Because of the heuristic nature of the GA, each set of 

settings has been run 100 times and statistical values have been considered for 

the comparison. Moreover, the solutions from GA have been refined by means of 

a gradient-based method, which is implemented in the interior-point algorithm in 

the MATLAB function fmincon. The results for GA are expressed in terms of success 

rate of each set of settings, which is the percentage of runs (out of 100) that 

terminate with at least one feasible solution (a solution within the required 

tolerances). It has been noted that GA showed improved performances (in terms 

of both computational time and success rate) if the transversality condition (which 

is the last scalar boundary condition in Eqs. (3.35) – (3.37)) was not considered. 

From an analytical point of view, it can be demonstrated that the transversality 

condition is negligible, at least for what concerns the problems at hand [66, 102, 

103]. For these reasons and for the sake of consistency, the transversality 

condition on the Hamiltonian has been excluded in all the numerical cases 

considered throughout this section. Nevertheless, it has been verified a posteriori 

that the transversality condition was always verified. Because of the 

transversality-condition avoidance, Eqs. (3.44) and (3.47) reduce to an 

underdetermined system of nonlinear equations. That is, a least-square numerical 

solver [213] is needed to find the solutions of such system within the homotopic 

approach. However, it has been empirically verified that this approach is both 
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numerically stable and faster than (or, at least, as fast as) solving a square system, 

at least for the cases tested. 

The first test case is the planar circular-to-circular Earth-Mars orbit transfer 

described in [11]. The low-thrust maximum acceleration has been considered the 

same as the characteristic acceleration in the reference paper. That is, 

  2

max
1 mm s

c
a a . The results of both the homotopy approach and the GA are 

shown in Table 3.9. The first row of Table 3.9 shows the number of sets with a 

success rate above 90% (note that the homotopy can only be either successful or 

not successful, since it is a deterministic approach). For the GA, the computational 

time is the lowest average computational time among all the sets of settings with 

a success rate above 90%. In Table 3.9, the minimum and maximum values of the 

time of flight are shown for the GA. The result obtained through the homotopy 

approach is consistent with those obtained via the GA method. Moreover, the 

result found by means of the homotopic approach is in perfect agreement with 

what shown in [11] (i.e. 
0

407.7 days
f

T ). Only eight sets of settings of the GA 

out of twenty have a success rate above 90% and the homotopy method is 42% 

faster than the GA. 

Table 3.9.  Homotopic approach: homotopy and GA results comparison (Test case 1). 

 Homotopy GA 

Sets with success rate above 90% - 8/20 

Computational time, s 11 19 

0
, days

f
T  407.72  

407.69 (min) 

407.72 (max) 

 

Figure 3.9a shows the evolution of the cone angle over time during the first 

continuation, which is from low thrust (green thick dashed line) to pseudo solar 

sail (red thick continuous line), as shown in Eq. (3.43). All the intermediate 

solutions are represented by thin cyan lines. Figure 3.9b shows the comparison 

between the low-thrust (green dashed line) and the solar-sail (red continuous line) 

cone angle over time. Figures 3.10a and 3.10b show the low-thrust and solar-sail 

transfer trajectories, respectively. A plot of the acceleration vector along the 

transfer is also shown. Figure 3.11a shows the zero-path of the homotopy, as 
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defined in [201], whereas Fig. 3.11b shows the evolution of the continuation 

parameter during the first continuation. 

a)  b)  

Fig. 3.9.  Homotopic approach (Test case 1). Control history for coplanar circular-to-circular 
Earth-Mars orbit transfer (ac = 1 mm/s2). (a) Cone angle evolution during first 
continuation. (b) Low-thrust and solar-sail cone angle evolution. 

 

a)  b)  

Fig. 3.10.  Homotopic approach (Test case 1). Ecliptic plane view of the transfer trajectories 
for coplanar circular-to-circular Earth-Mars orbit transfer (ac = 1 mm/s2). (a) Low 
thrust. (b) Solar sail. 

 

a)  b)  

Fig. 3.11.  Homotopic approach (Test case 1). (a) Zero-path. (b) Evolution of . 
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A second scenario has been tested, considering the same problem but with a 

smaller solar-sail characteristic acceleration (i.e.  20.1 mm s
c

a ). That is, the 

second continuation, described in Eq. (3.45), can be applied to the solution of the 

previous test case. On the other hand, the optimisations through GA shall be 

repeated with the new value of the characteristic acceleration. Table 3.10  shows 

the comparison between the results of the homotopy approach and GA. The 

computational time shown for the homotopic approach is the one needed to find 

a solution to the second continuation only, starting from the solution of the first 

one found in the previous test case. Note that this scenario is purely of academic 

interest. In fact, it is unlikely that anybody would ever launch a seven-year solar-

sail mission to Mars. Nevertheless, this scenario is a good test bed for the second 

continuation, given the long flight time. 

Table 3.10.  Homotopic approach: homotopy and GA results comparison (Test case 2). 

 Homotopy GA 

Sets with success rate above 90% - 14/20 

Computational time, s 1 16 

0
, days

f
T  2661.51 

2661.34 (min) 

2661.43 (max) 

 

Figure 3.12a shows the evolution of the cone angle during the second 

continuation, in which the characteristic acceleration changes from 

 2

,0
1 mm s

c
a  to  2

,
0.1 mm s

fc
a . Figure 3.12b shows the planar circular-to-

circular Earth-Mars orbit-transfer trajectory through a solar sail with  

 20.1 mm s
c

a . As for Test case 1, the plots of the zero-path of the homotopy 

and the evolution of the continuation parameter are shown in Fig. 3.13. In this 

case, the continuation parameter needs to be halved several times when the 

solution of the intermediate problem is not found, as described in Algorithm 3.3. 

Nonetheless, despite the larger number of continuation steps with respect to Test 

case 1, the convergence of the algorithm is very fast, as shown in Table 3.10. 
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a)  
b)  

Fig. 3.12.  Homotopic approach (Test case 2). Coplanar circular-to-circular Earth-Mars orbit 
transfer (ac = 0.1 mm/s2). (a) Cone angle evolution. (b) Solar-sail transfer trajectory 
(ecliptic plane view). 

 

a)  b)  

Fig. 3.13.  Homotopic approach (Test case 2). (a) Zero-path. (b) Evolution of . 

 

Validation of the homotopic approach: Earth-Apophis rendezvous. The last 

two test cases aim to validate the proposed approach for more complex transfer 

scenarios. While keeping the hypothesis of planar transfers, the homotopic 

approach is now applied to solar-sail optimal transfers to rendezvous with an 

object onto an elliptic orbit. As shown in Table 3.7, the mission scenario consists 

in a solar-sail transfer from the Earth to rendezvous with the asteroid (99942) 

Apophis, as described in [211]. 

The spacecraft is injected directly into an interplanetary trajectory at Earth, 

with zero hyperbolic excess energy, on 27 July 2017, as in [211]. The only 

difference between the two cases tested is the value of the characteristic 

acceleration. In Test case 3, the value of the characteristic acceleration is 
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 20.6 mm s
c

a , which corresponds to a sail lightness number   0.1, whereas, 

in Test case 4,  20.12 mm s
c

a , which corresponds to   0.02  [Eq. (2.20)]. The 

two values correspond to the extreme values in the range of the sail lightness 

numbers considered in [211], for a solar-sail-only transfer. The initial solution of 

the low-thrust Earth-Apophis rendezvous OCP is computed by means of the PSO 

algorithm described in Appendix B.2, in the Hamiltonian formulation. The 

maximum acceleration considered for the low-thrust solution is  2

max
0.6 mm s .a  

Therefore, the first homotopy is used to find a solar-sail solution with 

 20.6 mm s
c

a  (Test case 3). Such solution is subsequently used to find the solar-

sail trajectory for Test case 4. The results of the two numerical cases presented 

in this section are summarised in Table 3.11, together with the results shown in 

[211]. As already discussed for Test case 2, the computational time shown in Table 

3.11 and related to Test case 4 is the one needed for the second continuation 

only, since the solution of the solar-sail OCP with  20.6 mm s
c

a  was already 

found in Test case 3. 

Table 3.11.  Optimal solar-sail rendezvous from Earth to (99942) Apophis (in brackets the 
values from [211]). 

 Test case 3 Test case 4 

2, mm s
c

a   0.6 0.12 

Computational time, s  28 1 

0
, days

f
T  457 (468) 1160 (1260) 

 

Figure 3.14 shows the optimal solar-sail transfer trajectories for both 

 20.6 mm s
c

a  and  20.12 mm s
c

a . Figure 3.15 shows the evolution of the cone 

angle during the second continuation. As shown in Table 3.11, the results are in 

good agreement with the ones presented in [211], considering that those solutions 

are computed for 3D transfers rather than planar transfers. Nevertheless, it has 

been shown that the planar solutions presented here can be used as first-guess 

solutions for a single-shooting approach to easily compute 3D transfers [66]. 

Furthermore, despite an increased complexity of the OCP to be solved, both Test 

cases 3 and 4 require a little computational time, comparable with the ones of 

the previous test cases, relative to circular-to-circular orbit transfers. 
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a)  b)  

Fig. 3.14.  Homotopic approach (Test cases 3 and 4). Ecliptic plane view of the solar-sail 
transfer trajectories for rendezvous from Earth to (99942) Apophis. (a) ac = 0.6 
mm/s2. (b) ac = 0.12 mm/s2. 

 

 

Fig. 3.15.  Homotopic approach (Test case 4). Cone angle evolution during the second 
continuation. 

 

The proposed homotopic approach allows computing optimal solar-sail 

trajectories for a wide range of characteristic accelerations, in a single and fast 

run. This is achieved by means of the continuation on the characteristic 

acceleration, in which intermediate solutions with 
 

 ,0 ,
,

cc c f
a a a  are computed 

at each successful iteration. Other approaches would usually require a single 

optimisation to be performed for each value of the characteristic acceleration, 

leading to a higher computational effort to obtain the entire family of solutions. 

Therefore, the homotopic approach presented here is particularly appealing for 

preliminary mission design. In fact, the early stages of a solar-sail mission planning 

are usually characterised by an uncertainty on the value of the sail characteristic 
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acceleration. For instance, in [16], the value of the characteristic acceleration is 

shown as a function of the sail size for the DLR/ESA Gossamer Roadmap. A 

preliminary mission is described in [16] which considers a characteristic 

acceleration  20.3 mm s
c

a and a sail size in the range between  
2

54 m  and 

 
2

65 m , depending on the bus mass taken into account. One of the improvements 

outlined in [16] is to find a solar-sail trajectory, within the same mission criteria, 

with a lower value of the characteristic acceleration. For instance, Fig. 3.16 shows 

a plot for the minimum time of flight 
0 f

T  as function of c
a  (computed by means 

of the second homotopic continuation) in the case of the Earth-Apophis planar 

rendezvous with characteristic acceleration bounded in   
20.12,0.6 mm s

c
a . A 

time of flight of about 660 days is needed if a sail with a characteristic 

acceleration  20.3 mm s
c

a  is considered. 

 

Fig. 3.16.  Minimum time of flight as a function of the characteristic acceleration for the 
coplanar Earth-Apophis case. 
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3.3. Discussion 

In this chapter, two different formulations for a fast solar-sail trajectory design 

have been presented in the coplanar approximation: the shape-based approach 

and the homotopic approach. The two formulations are conceptually very 

different. In fact, in the case of the shape-based approach, the trajectory is 

designed by means of predefined shaping functions and the control is analytically 

retrieved a posteriori. Since there is no explicit control on the acceleration 

history, a genetic algorithm is used to find the shape of the trajectory that best 

fits the acceleration feasible by the given spacecraft. The use of the genetic 

algorithm within the shape-based approach slightly slows down the overall method 

but allows a more automatic use of the method. In fact, the inputs required from 

the user are minimal. On the other hand, the homotopic approach exploits the 

Pontryagin’s minimum principle to find the (locally) optimal solution to the given 

solar-sail optimal control problem. This approach has been shown to be very 

accurate and fast. Moreover, the output of this method is already an optimal 

solution to the desired coplanar transfer. The drawback of this approach lies in 

the sensitivity of the indirect method. In fact, even though the use of the 

homotopy increases the convergence radius of the indirect method, the initial 

values of the continuation parameter   and its initial step size, as well as the 

maximum and minimum allowed step size, may still affect the convergence of the 

solution. Furthermore, the proposed method does not consider the computation 

of the low-thrust solution. That is, the effort needed to find such solution should 

be taken into account if an actual comparison between the computational efforts 

of the two presented approaches is required. On the contrary, the shape-based 

approach is a standalone method that does not need any pre-computed initial 

guess to start with. 

Because of the advantages and drawbacks of both methods, each approach is 

used for a different purpose, as it will be shown in the next chapters. The shape-

based approach is used when several preliminary solar-sail trajectories are 

needed, exploiting the little input needed from the user. On the contrary, the 

homotopic approach is used in the cases of more complex mission scenarios that 

do not require a large number of trajectories to be found. 

 



 

CHAPTER 4.  

ASTEROID SEQUENCE SEARCH 

This chapter describes the developed approach to find a set of sequences of 

asteroids for a multiple-NEA rendezvous mission through solar sailing. Finding a 

sequence of NEA to be visited is primarily a combinatorial problem because of the 

large amount of objects and the huge number of possible permutations between 

them, as pointed out in Section 4.1. Furthermore, for each transfer leg, an 

optimisation problem must be solved to assess the existence of a trajectory 

feasible by a solar sail. For these reasons, two subsets of the whole NEA database 

are introduced to reduce the amount of objects to deal with, as explained in detail 

in Section 4.1. Therefore, the sequence search algorithm, described in Section 

4.4, is characterised by a local pruning to reduce further the number of NEAs to 

test in each step of the tree-search algorithm, as detailed in Section 4.2. Lastly, 

the shape-based approach for solar sailing, described in Section 3.1, is used to 

have a reliable approximation of the solar-sail trajectory within a reasonable 

amount of time. 

The content of this chapter was published in [198, 214-216], except for Test 

cases 2-4 in Section 4.6.1. 
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4.1. Asteroid Database Selection 

The choice of target asteroids to be visited in a mission is a difficult task 

because it shall consider, among all, composition, scientific interest, orbital 

dynamics, and available launch window. NASA’s Near Earth Object Program listed 

12,840 NEAs on 08 August 20151 and this number is rapidly increasing. All those 

objects with an Earth minimum orbit intersection distance (EMOID)  0.05 AU and 

an absolute magnitude  22  (i.e. diameter 110 240 m , depending on the 

albedo2) are classified as PHAs. The problem of finding a sequence of encounters 

is firstly a combinatorial problem. In fact, more than a trillion of sequences of 

three objects can be found, if all the possible combinations with permutations are 

considered. Moreover, there seem to be no clear common priorities on the 

selection of NEAs in the scientific community. To reduce this huge amount of 

possible combinations, further classifications can be considered which consider 

the interest from an exploration point of view. Barbee et al. [206] introduced the 

Near-Earth Object Human Space Flight Accessible Target Study (NHATS) in which 

the objects are selected as those for which a four-impulse return mission can be 

found within a set of design parameters such as total v  required, total mission 

duration, stay time at the object, and launch date interval. Because the mission 

parameters for the trajectory computation can be set in several different ways, 

the list of NHATS asteroids is not univocally defined. 

To have a more useful and interesting database, a subset containing only PHAs 

and NHATS asteroids is, therefore, considered in this work. This database contains 

1,801 objects, 1,607 of which are PHAs. The criteria used to select the NHATS 

database are the following. 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 

2015]. 

2 Data available online at http://www.minorplanetcenter.net/iau/lists/Sizes.html [retrieved 08 
August 2015]. 

https://cneos.jpl.nasa.gov/orbits/elements.html
http://www.minorplanetcenter.net/iau/lists/Sizes.html
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 





















total  required 8 km s

total mission duration 450 days

stay time at the object 8 days
NHATS criteria: 

launch : 2015 2040

absolute magnitude 26

OCC 7

v

  (4.1) 

The term OCC in Eq. (4.1) is the Orbit Condition Code of a NEA’s orbit, which 

refers to the accuracy of the orbit determination. For a complete explanation of 

the above criteria, the interested reader is referred to the JPL/NASA NHATS 

website1. In the following, this subset will be referred to as the PHA-NHATS 

database. 

Boden et al. [159] studied the target selection for manned NEA exploration and 

realised that the NEA accessibility to date is limited due to uncertainties in the 

objects’ characterisation and the available technology. Nonetheless, they pointed 

out, “there might be more targets within the currently known NEA population” for 

a NEA sample return mission. “One reason is that the actual rotation rates of most 

NEAs are unknown”. A fast rotator, in fact, is not suitable for a sample return 

mission, either human or robotic. On the other hand, slow rotators can exist 

among those asteroids for which there currently is little knowledge about the 

rotation. Therefore, a second subset for a multiple NEA rendezvous mission can 

consider those objects with a large uncertainty on the rotation rate to improve 

our knowledge for better planning a future exploration mission. The asteroid 

lightcurve database (LCDB) is “a set of files generated from a database that 

includes information directly and indirectly obtained from observations made to 

determine the period and/or amplitude of asteroid lightcurves” [217]. The quality 

code U  provides the assessment of the quality of the period solutions within the 

LCDB. For this reason, a second subset is considered in this study, which considers 

PHAs and those NEAs in the LCDB with  2U . That is, all those objects for which 

the given value of the rotation rate is not reliable for a statistical analysis. Such 

second database contains 1,813 objects, 271 of which are NEAs in the LCDB with 

 2U 2. Note that, as for the PHA-NHATS database, all the 1,607 known PHAs are 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/nhats/intro.html [retrieved 08 August 

2015]. 

2 Data available online at http://www.minorplanet.info/lightcurvedatabase.html [retrieved 20 
February 2016]. 

https://cneos.jpl.nasa.gov/nhats/intro.html
http://www.minorplanet.info/lightcurvedatabase.html
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also considered as part of this second database. In the following, this subset will 

be referred to as the PHA-LCDB database. 

Table 4.1 shows the characteristics of the two databases considered in this 

work. 

Table 4.1.  Characteristics of the two reduced databases considered. 

Database PHAs NHATS LCDB Total 

PHA-NHATS database 1,607 204 8 1,801 

PHA-LCDB database 1,607 8 271 1,813 

 

A graphical comparison between the complete database and the PHA-NHATS 

database is given in Fig. 4.1, in which the heliocentric positions of all objects are 

plotted for both databases, at a given reference time. 

 

Fig. 4.1.  Heliocentric view of the positions of all known NEAs (small blue dots) and PHAs (large 
red dots) on 24 March 2017. (a) Complete database. (b) PHA-NHATS database. Bodies 
not to scale. 

 

It is worth noting that the two subsets considered in this study are very 

different from each other. Despite the fact of having a similar number of objects 

and being made mostly of PHAs, the PHA-NHATS database contains NHATS 

asteroids that are, by definition, easy to be reached from the Earth. Therefore, 

their orbital elements do not differ much from those of the Earth. In contrast, 

there is not such constraint on the LCDB objects considered in the PHA-LCDB 
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database. Such difference between the two databases can be visualised as follows. 

Define the Tisserand parameter related to the Earth as [218] 

 
 








 

21
2 cos

a er
T i

a r
  (4.2) 

in which the orbit of the Earth is considered circular. Perozzi et al. [169] proposed 

the use of the Tisserand parameter related to the Earth as an indication of the 

relative unperturbed velocity of an asteroid at close encounter with the Earth. To 

do so, the parameter   is defined as 

 
 3 T   (4.3) 

The negative value of the inverse normalised semimajor axis 


r a  can be plotted 

against 2 . Figure 4.2 shows the distribution of all NEAs in the complete database 

in the  
 2, r a  space. The Earth in such space is in the point  0, 1 . The dashed 

blue line has been obtained setting to zero both inclination and eccentricity in the 

computation of the Tisserand parameter, thus representing the circular limit of 

an orbit with the given value of the semimajor axis. That is, the portion of space 

on the left side of the circular limit represents a forbidden portion of space, being 

characterised by 2 0e . The Earth tangency condition is also plotted as a magenta 

solid line. It has been obtained setting to zero the inclination in Eq. (4.2). Such 

condition represents an orbit with a given semimajor axis being tangent with that 

of the Earth. Except for the trivial case in which the unknown orbit is exactly that 

of the Earth, the only other case in which the tangency condition is verified is 

when either the radius of pericentre 
p

r  or the radius of the apocentre a
r  is equal 

to the semimajor axis of the Earth. This condition univocally defines the geometry 

of the orbit on the ecliptic plane, as follows. 

 
 
 

 

 

    


   

1 if 

1 if 
p

a
r r a e a r

r r a e a r
  (4.4) 
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 
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a
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a

  (4.5) 
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Substituting Eq. (4.5) into Eq. (4.2) and considering  0i , the expression of 2  

for the tangency condition is given by 

      tangency
condition

2 3 2 2
r r

a a
  (4.6) 

Note that all the NEAs in the complete database have  0.5 AUa  and, therefore, 

Eq. (4.6) is defined for all the objects in the database. The distance along the 2  

axis of a NEA from the tangency condition provides an indication of the additional 

velocity needed for a planar rendezvous with the selected object. Such velocity 

should be added to the one needed for the apocentre/pericentre manoeuvre once 

the tangency condition is reached. Moreover, the quantity 


r a  on the y-axis is 

related to the asteroid orbital energy normalised with respect to that of the Earth. 

From Fig. 4.2, it is clear that the NHATS asteroids are easier to reach from the 

Earth, since their energy is close to the one of the Earth  
    1.2, 0.8r a  

and  2 0.1. On the other hand, the NEAs from LCDB with  2U  are spread 

over the allowed  
 2, r a  space. Therefore, finding feasible sequences of 

asteroids within the PHA-LCDB database is expected to be more difficult. 

 

 

Fig. 4.2.  Distribution of all NEAs in the (𝚼2, -r⨁/a) space. The two curves represent the circular 
limit and the Earth tangency condition. 
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From a purely combinatorial point of view, an order of magnitude for the 

complexity of the problem of finding a sequence of encounters can be given by 

considering the total number of possible sequences of  3, 4 and 5Q  objects 

without repetition, both from the original and the two reduced databases. The 

number of these Q -permutations of N  objects N

Q
P  (Table 4.2) is given by 

 
 




!

!

N

Q

N
P

N Q
  (4.7) 

Table 4.2.  Number of Q-permutations of N objects within the complete database and the 
reduced ones. 

Database N   3Q   4Q   5Q  

Complete database 12,840   122.1 10   162.7 10   203.5 10  

PHA-NHATS database 1,801  95.8 10   131.0 10   161.9 10  

PHA-LCDB database 1,813   95.9 10   131.1 10   161.9 10  

 

Such combinatorial problem can be easily visualised for the specific case of an 

asteroid sequence search. If all the objects in the considered database are used, 

the asteroid sequence search can be represented as a tree, as discussed in Section 

2.2.6 and schematically shown in Fig. 4.3. The BS implementation of the tree 

search is considered in this work (see Section 2.2.6). The implementation of BS 

has been chosen against DFS because it allows considering a maximum fixed 

number of partial sequences as starting point for the next leg. A drawback of this 

method is that complete sequences are available only at the end of the tree 

search. On the other hand, the DFS implementation allows having complete 

sequences already at the early stages of the tree-search run. However, branching 

criteria based on the quality of the sequences found cannot be defined in the DFS 

implementation. Figure 4.3 shows how the computational effort needed to find 

all the possible branches in the tree grows as more feasible transfers are found. 

The dotted red lines in the figure represent branches of the tree for which no 

feasible solution has been found. In order to reduce further the computational 

cost of the asteroid sequence search, a local pruning on the database is carried 

out at the beginning of each leg. A detailed description of it is given in the next 

Section 4.2. 
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Fig. 4.3.  Schematic of the tree search. 

4.2. Local Pruning on the Database 

A local pruning on the available NEA database is performed, based on 

astrodynamics. This has been carried out to work on a locally reduced database, 

for the reasons mentioned in Section 4.1. The local pruning is performed at the 

beginning of each leg of the sequence and it depends on the starting orbit of the 

respective leg, as it will be discussed in detail in Section 4.4. 

Four conditions for the local pruning of the database are used: the first three 

criteria are related to the in-plane trajectory, whereas the fourth takes into 

account the orientation of the orbital planes: 

i. The current spacecraft state is propagated, in an outward and inward 

spiral, for the maximum allowed time of flight 
0 ,maxf

T  considered within 

the trajectory model. A control law that maximises the semimajor axis 

change is considered for the propagation of the spacecraft state. To obtain 

the maximum and minimum semimajor axes, the locally-optimal law for 

changing the semimajor axis through solar sailing, described in [2], is 

used. The optimal sail cone and clock angles can be expressed as 

 

 
   

 






  



  



  


 
 


 

1

1 1

if  tan 1/ 2

tan 1/ 2 if  tan 1/ 2

0

  (4.8) 
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K1 feasible trajectories
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in which 

 





   


23 9 8tan
tan

4tan
  (4.9) 

The angle   in Eq. (4.9) represents the cone angle relative to the ideal 

direction of the thrust for the maximisation of the change of the desired 

orbital element. For the maximisation of the semimajor axis, such angle 

has the following expression [2]: 

 







1 cos
tan

sin

e

e
  (4.10) 

The maximum and minimum semimajor axes obtained are, then, the 

maximum and minimum semimajor axes that the solar sail can reach 

starting from the current state and traveling for the maximum available 

time of flight. All NEAs with a semimajor axis outside the available range 

are therefore excluded from the locally pruned database for the current 

leg. 

ii. Similarly to the preceding case, the trajectory is propagated by 

considering a control law that maximises the change of eccentricity and 

thus a maximum range of possible eccentricity variation is found. Only 

those NEAs with eccentricity inside the available range are included in the 

locally pruned database for the current leg. As in the preceding case, the 

optimal sail cone and clock angles are given by Eqs. (4.8) – (4.9). However, 

in this case, the angle   is given by the following relation [2]: 

 
 








 

 

2 cos cosec
tan cot

1 cos 1 cos

e e

e e
  (4.11) 

iii. Defining the longitude of pericentre as   , a transfer trajectory 

between two orbits (subscript 1 and 2) with a large     
1 2

m d ,o  

is more difficult to achieve as the eccentricities of the two orbits increase. 

This can be verified with the following test cases, in which two 200-day 

transfers are computed by means of a zero-full-revolution ballistic 

Lambert arc [77, 170, 219]. Keplerian elements of departing and arrival 
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orbits are the same in both cases except for the eccentricity, as shown in 

the following. 

      


    

0

TEST CASE 1

1 AU 0.1 0 0 0 0

1 AU 0.1 0 30 deg 0 180 deg

Tkep

Tkep

f

x

x

  (4.12) 

      


    

0

TEST CASE 2

1 AU 0.5 0 0 0 0

1 AU 0.5 0 30 deg 0 180 deg

Tkep

Tkep

f

x

x

  (4.13) 

Figure 4.4 shows the Lambert solution for both transfer trajectories. The 

difference in the required v  is highlighted in the figure: the required 

v  related to the second test case is more than three times larger than 

that of the first test case. 

For this reason, a threshold on the maximum variation of the longitude of 

pericentre has been considered for each object, taking into account the 

value of the eccentricity as follows. 

    
2

max
1 e   (4.14) 

By using this threshold, the arrival object is removed from the locally-

pruned database if at least one of the following conditions is not satisfied. 
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2 max,2 1 max,1

mod mod
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,2 ,2

,2 d ,2mo
  (4.15) 

In Fig. 4.5, two examples (not to scale) are sketched to give a graphical 

view of the pruning on the longitude of pericentre given by Eq. (4.15). 

Figure 4.5a shows a case in which Eq. (4.15) is satisfied and, in fact, the 

ranges of possible variation of   for the two objects overlap. On the other 

hand, in Fig. 4.5b, the orbit of the second object is more eccentric, so 

that the available range of variation of   is smaller and does not overlap 

with the one of the first object. In this second case, the first condition in 

Eq. (4.15) is not satisfied and the second object is, therefore, not part of 

the locally pruned database for the current leg. 
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a) b) 

Fig. 4.4.  Heliocentric view of the transfer trajectory. (a) Test case 1. (b) Test case 2. 

 

 

Fig. 4.5.  Graphical view (not to scale) of pruning on longitude of pericentre: ranges of possible 
variation of longitude of pericentre for two objects (a) overlap; (b) do not overlap. 

 

iv. Let us define   as the angle between the angular momenta of the two 

orbits, as 

   
1 2

ˆarccos ĥh   (4.16) 

Because a coplanar transfer is considered for the simplified trajectory 

description (Section 4.3), a maximum value of   is selected as the 

threshold to consider the second object to be part or not of the locally 

pruned database. This way, objects are not considered where a change of 

the inclination and/or the longitude of the ascending node would be too 

large in the 3D case. 
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4.3. Simplified Trajectory Model 

A simplified trajectory model is used to check the feasibility of the trajectory 

transfer from each object of the current leg to all the others in the locally pruned 

database. One possibility is to use a ballistic Lambert-arc approximation, in which 

the acceleration needed for the transfer is compared to the maximum 

acceleration that the solar sail can achieve, multiplied by a penalty factor1. 

However, a low-thrust trajectory differs from a ballistic Lambert arc and this 

difference increases with the time of flight. Furthermore, a solar sail performs 

best for trajectories with long flight times, due to the low but continuous 

acceleration. In order to obtain solutions that are more reliable from the sequence 

search and, therefore, decrease effort and time needed in the optimisation phase, 

the shape-based approach described in Section 3.1 has been used with the 

objective function 
0 f

J T . In fact, the timeline of the asteroid encounters is one 

of the fundamental output of the asteroid sequence search. The relative phasing 

between two consecutive encounters at the beginning of the transfer trajectory 

and the available transfer time are two essential characteristics of the sequence 

that can affect the feasibility of the overall multiple rendezvous mission. That is, 

it may be difficult to find a solar-sail solution for a sequence of asteroids and 

encounter dates found by means of the ballistic Lambert-arc approximation. On 

the other hand, the shape-based approach gives a better description of the 

trajectory. Therefore, the output of the asteroid sequence search (i.e. the 

sequence of asteroids and encounter epochs, which will be referred to as timed 

sequence) is more likely to describe a mission feasible by a solar sail if the shape-

based approach is used. The drawback of the shape-based approach, with respect 

to the use of Lambert arcs, is the use of the genetic algorithm that increases the 

computational time needed to find preliminary sequences. Nevertheless, the 

increased complexity of the transformation of Lambert arcs into solar-sail 

trajectories and, therefore, the little reliability of such trajectory model, with 

respect to solar sailing, justifies the increased computational time needed by the 

shape-based approach. Other methods are used in the literature for guessing the 

                                         
1 Peloni, A. and Ceriotti, M., “Solar Sailing Multiple NEO Rendezvous Mission: Preliminary 

Results”, First Stardust Global Virtual Workshop (SGVW-1) on Asteroids and Space Debris, 
University of Strathclyde, Glasgow, Scotland, UK, 6-9 May 2014. Presentation available online 
at https://www.youtube.com/watch?v=j-uxCvo09Hc [retrieved 06 June 2017]. 

https://www.youtube.com/watch?v=j-uxCvo09Hc
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v  needed for a low-thrust transfer which exploit, for instance, Edelbaum’s 

formulation [220] or a parametrisation of the trajectory [59]. These would be 

faster than the shape-based approach if used within the sequence search. 

However, as for the case of the Lambert-arc approximation, these methods do not 

consider the dynamics of a solar sail, which is more constrained than that of a 

classical low thrust. Lastly, a low-v  transfer is sought for classical low-thrust 

trajectories because of the limited amount of propellant onboard. For solar 

sailing, however, the amount of v  is not a good indicator for the feasibility of a 

transfer trajectory. 

4.4. Sequence Search Algorithm 

Figure 4.6 shows the flowchart of the process of searching for sequences, which 

is detailed in Algorithm 4.1. First, the selected database (i.e. the PHA-NHATS or 

the PHA-LCDB database, in this case) is locally pruned (details in Section 4.2) by 

taking into account that the sequence starts at Earth at a fixed time 0
t . This 

pruning allows the algorithm to consider a list of encounters 
,b tmp

L  that contains 

fewer objects at a time, avoiding spending time on objects that would be difficult 

to reach. Approximated solar-sail trajectories are found by means of the shape-

based approach, as discussed in Section 4.3. For all the trajectories found, the 

arrival NEAs are kept and considered as starting objects for the next iteration of 

the algorithm. This is carried out by updating the list 
part

L  that contains all the 

partial timed sequences found so far. Next, once the objects in the current pruned 

list 
,b tmp

L  have been considered for the trajectory calculation, the same process is 

carried out in a tree-search algorithm, starting from the arrival body of each of 

the temporary timed sequences i
s  found so far. When the total mission duration 

reaches the maximum allowed time (i.e. ten years, in the current scenario) or no 

feasible solar-sail trajectories are found, the current timed sequence is 

considered complete. Once all the temporary timed sequences are completed and 

the list of partial timed sequences is empty (i.e.  
part

L ), the algorithm stops. 

The computational time of the described sequence search increases as the 

number of feasible transfer trajectories increases due to the tree nature of the 

search itself (Fig. 4.3). Therefore, the possibility to reduce the number of partial 
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timed sequences considered at the beginning of each leg is added. Define 
max

seqN  as 

the maximum number of partial timed sequences to be used in the following leg 

within the sequence search algorithm. Once all the potential transfer trajectories 

have been studied for the current leg, the set 
tmp

L  of all the partial timed 

sequences found is rearranged so that these are sorted in ascending order with 

respect to the total mission time. This is done so that those timed sequences with 

fastest transfers have higher priority, since one of the goals of the sequence 

search is to find sequences with as many encounters as possible within a fixed 

mission time. Therefore, only the first 
max

seqN  timed sequences that are part of 
tmp

L  

are used for the next leg of the tree search. The discarded timed sequences are 

stored so that they can be used or analysed after the algorithm has stopped. 

Note that the only stochastic component of the sequence search algorithm is 

the GA used within the shape-based approach. Except this, the algorithm is fully 

deterministic. 

The code has been implemented using mixed MATLAB/C code, speeding up the 

computations where bottlenecks have been found in the MATLAB code (Appendix 

B.1). Moreover, the algorithm is parallelised for different launch dates, since each 

run assesses one specific launch date (Algorithm 4.1, Line 1). 

 

Fig. 4.6.  Sequence search flowchart. 
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Algorithm 4.1.  Sequence search algorithm. 

1: Given  0 0
,t b , initialise    0 0

T

part
L t b  

2: Local pruning on 
,b b tmp

L L  

3: For each object 
,j b tmp

b L , Do 

4:     Check the existence of a solar-sail trajectory 
0f

T  

5:     If a feasible trajectory exists, Then 

6:         
   

   
  

0 0 0 0f f stay

parpar t

j j

t

t T t T t
L L

b b
 

7:     End If 

8: End For 

9:  
compl

L   

10: While  
part

L , Do 

11:     For each partial timed sequence i
s , Do 

12:         Retrieve the last time of the timed sequence:   1,end
i

t s  

13:         Retrieve the list of the bodies already encountered:  
,

2,all
b i i

L s  

14:         
,

\
b b b i

L L L   

15:         Local pruning on 
,b b tmp

L L  

16:         For each object 
,j b tmp

b L , Do 

17:             Check the existence of a solar-sail trajectory 
0f

T  

18:             If a feasible trajectory exists, Then 

19:                 
   

   
  

0 0f f stay

tmp part

j j

t T t T t
L L

b b
 

20:             End If 

21:         End For 

22:         If  
tmp

L , Then 

23:              
compl compl i

L L s  

24:         End If 

25:     End For 

26:       ;
part tmp tmp

L L L  

27: End While 
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4.5. Application to Gossamer Mission 

The reference work of Dachwald et al. [16] showed a three-NEA rendezvous 

mission through solar sailing, considering a sailcraft with a characteristic 

acceleration  20.3 mm s
c

a  and a maximum mission duration of ten years. The 

sequence of encounters, according to the DLR/ESA Gossamer roadmap [16], should 

be made of at least three NEAs with a stay time in the order of a few days. The 

mission lifetime should be at most ten years. Moreover, the mission should respect 

the following criteria: 

a) At least one object should be a PHA. 

b) At least one object should be a potential target for future human 

exploration (i.e. it should be part of the temporary NHATS database). 

c) The last NEA should be a small object (i.e. absolute magnitude  25.5 ). 

Note that the reason for the last point was to demonstrate the feasibility of a solar 

sail as a gravity tractor [221, 222]. However, this point is not considered one of 

the main aims of such a mission but rather a secondary goal1. Therefore, a 

sequence of NEAs that satisfies the first two criteria but is characterised by the 

last object being larger than 50 m in diameter is still considered a good sequence. 

Because of the nature of the sequence search algorithm described in Section 

4.4, these criteria can only be verified a posteriori. Although there is no guarantee 

for meeting the above requirements, a large number of sequences are discovered. 

Therefore, the candidate sequences are chosen such to best fit criteria a) – c) and 

that are made of the largest number of encounters. 

Moreover, Dachwald et al. [16] proposed three further steps to be investigated 

in future works for improving the technical feasibility and for increasing the 

support of the scientific and planetary defence communities: 

i) Reduction of the total mission duration. 

ii) Reduction of the required characteristic acceleration. 

iii) Priority on PHAs within the target selection. 

A reduction in the total mission duration has not been explicitly considered in 

the current work. Nevertheless, within the asteroid sequence search, the timed 

sequences are sorted for total mission duration and, if the maximum allowed 

number of temporary sequences is exceeded, those with the longest mission 

                                         
1 Prof Bernd Dachwald, 03 October 2014. Personal communication. 
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duration are discarded. Moreover, sequences with more than three encounters 

have been found for the same maximum mission duration, as it will be shown in 

Section 4.6. 

A reduction of the required characteristic acceleration was addressed by 

considering a solar sail with a characteristic acceleration  

  20.1, 0.15, 0.2  mm s
c

a . Some results for the sequence search considering 

 20.3 mm s
c

a  will be shown as well for the sake of comparison. It is worth to 

underline that, in the ideal case of a perfectly-reflecting flat solar sail, the 

characteristic acceleration depends only on the area-to-mass ratio (AMR), as 

shown in Eq. (2.19). Therefore, a characteristic acceleration  20.2 mm s
c

a , 

instead of  20.3 mm s
c

a , leads to a reduction of the AMR from 233 m kg  to 

222 m kg . That is, either more payload is allowed on the same sail or the use of 

a smaller sail or a heavier structure is considered, with the result of lowering the 

technological challenges and thus increasing the mission-specific TRL of the 

available technology. According to the DLR/ESA Gossamer technology [3], such a 

reduction in the characteristic acceleration leads to a reduction in the sail size 

from about    
2 2

54 m  - 65 m  to about    
2 2

39 m  - 48 m . The interval of sail 

dimensions depends on the sailcraft bus adopted, as discussed in [16]. 

Finally, the solutions with at least one PHA are preferred to the others in the 

final sequence selection. 

4.6. Numerical Test Cases 

The methodology proposed has been applied to the two reduced databases 

described in Section 0. In the following subsections, the results of the sequence 

search for both databases are shown and discussed. 

4.6.1. PHA-NHATS Database 

The PHA-NHATS database introduced in Section 4.1 is used for the first set of 

test cases. Therefore, the output sequences are very likely to fulfil the 

requirements from the DLR/ESA Gossamer roadmap, as discussed in Section 4.5. 
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Starting from the departure date of the reference mission (which is 


0

28 November 2019t ), a systematic search of sequences has been carried out 

on a set of launch dates spanning about ten years with a step size of 90 days 

    0
28 November 2019, 06 October 2029t . This choice allows taking into 

account short- and long-term variations in the phasing between the asteroids. The 

four values of the sail characteristic acceleration discussed in Section 4.5 are 

considered to test different scenarios (namely, Test case 1 – 4, respectively). The 

characteristics of each test case are shown in Table 4.3. Moreover, the minimum 

allowed time of flight for each leg is the same in all test cases and is set to 


0 ,min

500 days
f

T . The number of preliminary sequences found for each value of 

the characteristic acceleration can be an indicator of the performances needed 

by a solar sail for this kind of mission. In the following subsections, the four cases 

tested are discussed and the results are shown. 

Table 4.3.  PHA-NHATS database: test cases for the sequence search algorithm. 

 2, mm s
c

a  0 ,max
, days

f
T  , days

stay
t  

max

seqN  

Test case 1 0.20 1,000 100 ∞ 

Test case 2 0.15 1,500 50 ∞ 

Test case 3 0.10 1,500 50 ∞ 

Test case 4 0.30 1,000 100 200 

 

 

Test case 1. For this test case, the pruning on the maximum number of 

considered sequences is not limited and, therefore, it is  
max

seqN  in Table 4.3. 

This search resulted in more than 4,800 unique sequences made of five 

encounters, of which at least one is a PHA. It is important to underline that all 

the sequences found within this study contain only NHATS asteroids and sometimes 

a PHA. Figure 4.7 shows the number of unique sequences found for each launch 

date. Here, the term unique sequence refers to the sequence of asteroids only, 

without considering the possible differences in time. Only those sequences with 

at least one PHA and at least four encounters are plotted. Note that more than 

400 unique sequences with five encounters and at least one PHA have been found 

for a single launch date (which is 
0

t 14 April 2028). If sequences with more than 
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four encounters and at least one PHA are considered, more than 1,000 unique 

sequences have been found for a single launch date (which is 
0

t 09 January 

2029). 

 

Fig. 4.7.  Number of unique sequences with at least one PHA and four encounters as a function 
of the launch date. PHA-NHATS database with ac = 0.2 mm/s2 (Test case 1). 

 

Figure 4.8 shows an example of the first three legs of all the timed sequences 

with five encounters and at least a PHA found for the launch date 
0

t 30 April 

2025. The graph shows the typical tree nature of the solution, as discussed in 

Section 0. Two different timed sequences are considered having a rendezvous with 

the same object when the arrival times differ by 40 days at most. For example, 

the object 2012 BB4 appears three times in the second leg but the rendezvous 

times differ by more than 100 days. Therefore, these are considered as three 

separate branches of the solution tree. The sequence characterised by the dashed 

red path (that is, the sequence Earth – 2000 SG344 – 2015 JD3 – 2012 KB4) is the first 

one of the fully-optimised sequences that will be shown in Section 5.4.3. 

Figure 4.8 shows how several timed sequences are partly repeated. This allows 

the target asteroids to be easily changed, even after launch, if needed. Moreover, 
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because a solar sail does not need any propellant, such a change is theoretically 

easier with a solar sail than with an electric propulsion system. 

Because of the tree nature of the sequence search and the need of a GA run to 

check the existence of each trajectory, the whole search has been carried out by 

running several parallel searches for the 41 launch dates over three different 

machines: a 3.4 GHz Core i7-3770, a 3.4 GHz Core i7-4770, and a 2.3 GHz Core 

AMD Opteron 6376. The first two machines have 16 GB of RAM and run Windows 

7. The third one is part of the University of Glasgow Computer Cluster Facility1, 

has up to 8 GB of RAM per core and runs CentOS 6. Considering only those 

simulations carried out on the latter, which is the slowest machine, the average 

computational time for each sequence search run is about 41.3 days, where each 

successful run of the shape-based approach took about 60 seconds on average. 

                                         
1 Data available online at http://www.gla.ac.uk/services/it/hpcc/ [retrieved 24 August 2015]. 

http://www.gla.ac.uk/services/it/hpcc/
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Fig. 4.8.  Tree graph of first three legs of all timed sequences with five encounters found for launch date t0 = 30 April 2025 (Test case 1). 
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Test case 2. For this test case, a maximum allowed time of flight 


0 ,max

1,500 days
f

T  has been considered within the trajectory model to account 

for the lower performances of the sailcraft. Such increased upper boundary on the 

allowed flight time potentially reduces the number of objects that can be visited 

by the chosen sailcraft within the maximum mission duration limit of ten years. In 

fact, if the stay time at each object (Algorithm 4.1) used in the previous test case 

is considered and the duration of each transfer leg is set to 
0 ,maxf

T , only two 

objects can be visited in ten years, as follows: 

      
0 ,max 0 ,max 0 ,min

3,200 days 10 years
f stay sf ftay

T t T t T   (4.17) 

However, if the stay time at each object is reduced to  50 days
stay

t , the 

possibility to visit a third object with a shorter time of flight is added, as follows: 

     
0 ,max 0 ,max 0 ,min

3,600 days
stay sf f tay f

T t T t T   (4.18) 

This is the reason for considering a stay time  50 days
stay

t  for this test case, as 

shown in Table 4.3. Nonetheless, the results are expected to show sequences 

made of fewer objects with respect to the previous Test case 1. In fact, Fig. 4.9 

shows that no sequences with five encounters are found. Nevertheless, this search 

resulted in more than 1,200 unique sequences made of four encounters, of which 

one is a PHA. If sequences with more than three encounters and at least one PHA 

are considered, more than 3,200 unique sequences have been found over the ten-

year time span considered. That is, these results show that a large number of 

three-NEA rendezvous missions still exists if a sailcraft with a characteristic 

acceleration that is half of the one in the reference paper [16] is considered. In 

fact, more than 40 unique three-NEA sequences exist for each launch date 

considered. 



4.6. Numerical Test Cases 114 

 

Fig. 4.9.  Number of unique sequences with at least one PHA and three encounters as a 
function of the launch date. PHA-NHATS database with ac = 0.15 mm/s2 (Test case 
2). 

 

Fig. 4.10.  Number of unique sequences with at least one PHA and three encounters as a 
function of the launch date. PHA-NHATS database with ac = 0.1 mm/s2 (Test case 3). 
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Test case 3. For this test case, the values of the maximum allowed time of 

flight and the stay time are chosen for the same reasons explained in the previous 

subsection for Test case 2. Figure 4.10 shows the results for this test case. In this 

case, the sail characteristic acceleration is too low to guarantee a significant 

number of sequences made of at least two NEAs and a PHA for each launch date 

considered. In fact, there are no such sequences for certain launch dates. 

 

Test case 4. This case has been studied to show the potential amount of 

sequences feasible if the characteristic acceleration of the DLR/ESA Gossamer 

roadmap is considered [16, 51, 52]. Moreover, because of the larger characteristic 

acceleration with respect to the previous test cases, a large amount of sequences 

is expected to be found. For these reasons, as well as to decrease the total 

computational time required, a reduced set of launch dates has been considered 

for Test case 4. Moreover, the algorithm for this test case has been set so that 


max

200seqN . That is, only the 200 timed sequences with the shortest time of flight 

are kept for the next leg. This significantly reduces the amount of sequences that 

will be found. Nevertheless, this search resulted in yet an extremely large number 

of feasible sequences. In fact, considering both the complete and the discarded 

(and thus incomplete) sequences, more than 20,000 unique sequences made of at 

least five encounters, of which one is a PHA, are found. Figure 4.11 shows the 

number of unique sequences found for each launch date. Only those sequences 

with one PHA and at least five encounters are plotted. Note that more than 600 

unique sequences with at least five encounters and one PHA have been found for 

each launch date considered. Moreover, more than 1,000 sequences with six 

encounters in less than ten years have been found as well. In fact, Fig. 4.11 shows 

that there are up to 229 unique sequences made of six NEAs, of which one is a 

PHA, for a single launch date (which is 
0

t 26 May 2020). 
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Fig. 4.11.  Number of unique sequences with at least one PHA and five encounters as a function 
of the launch date. PHA-NHATS database with ac = 0.3 mm/s2 (Test case 4). 

 

Note the peak of sequences found for 
0 0

t t 26 May 2020 (Fig. 4.11). An 

analysis of it might give an insight about the structure of the solution itself. Among 

the 2,188 sequences found for this launch date, 1,240 are characterised by the 

first two ordered encounters being 2011 CG2 and 2014 UN114. That is, more than 

half of the branches of the solution tree grow from the same bough. If the next 

depth of the tree is analysed, it can be seen that more than half of the solutions 

develop over three branches only. Figure 4.12 shows the first three depths of the 

solution tree for 
0

t . Specifically, it is shown that 1,490 sequences share the same 

first encounter, whereas only 698 sequences are characterised by a different one. 

The results found for 
0

t 11 May 2023, which is the launch date relative to the 

second peak shown in Fig. 4.11, are qualitatively similar. In fact, the two NEAs 

2011 CG2 and 2014 UN114 are again the two most recurrent objects in all the 

sequences found for that very launch date. In particular, 2011 CG2 is the second 

encounter after 2012 BB14 for about 400 sequences. On the contrary, among all 

the 1,039 unique sequences found for the first launch date (Fig. 4.11), 2011 CG2 

appears only 108 times in total. 
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Fig. 4.12.  Tree graph of the first three legs of all sequences with five encounters found for 
launch date t0 = 26 May 2020 (Test case 4). The number of sequences that share 
the same branch is shown above each of them. 

 

Further analysis is carried out on 
0

t  to study the repeatability of the solution. 

Specifically, two more runs of the sequence search are performed for 

 
0 0

2 dayst t . The run for  
0 0

2 dayst t  resulted in 1,949 unique sequences 

found with at least five encounters, one of which is a PHA. This is compatible with 

what found for 
0 0

t t . On the other hand, only 817 unique sequences were found 

for  
0 0

2 dayst t  which is a significantly smaller number. An analysis on the 

characteristics on the last run shows that there are no sequences for which the 

first two ordered encounters are 2011 CG2 and 2014 UN114. This explains the 

difference in the total number of sequences found. However, it is unlikely that a 

difference of two days in the launch date causes the loss of the phasing between 

the Earth and the two NEAs. Therefore, six runs of the sequence search are 

performed for the same launch date to investigate the repeatability of such 

solution. The results are shown in Fig. 4.13. It can be seen that five runs out of 

six resulted into a number of unique sequences comparable with that of 
0 0

t t  

shown in Fig. 4.11. In fact, the result of the second run is the only one in which 

no sequences are characterised by the first two encountered being 2011 CG2 and 

2014 UN114. A deeper analysis shows that the leg from the Earth to 2011 CG2 for 

the second run takes 956 days. On the contrary, all the other runs, for which the 

leg from 2011 CG2 to 2014 UN114 is found, show a time of flight for the first leg of 
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about 537 days. This means that two minima exist in the OCP solved by GA. If GA 

finds the local minimum 
0

956 days
f

T , the phasing between 2011 CG2 and 2014 

UN114 is lost and no solution exists. Note that this holds true for the problem 

formulation considered. It can be shown that a feasible solar-sail trajectory does 

indeed exist with 
0

=1,200 days
f

T  between the two objects. It is worth reminding, 

however, that the maximum allowed time of flight has been chosen as 


0 ,max

1,000 days
f

T  in the current study (Table 4.3). 

The discussion above highlighted an intrinsic characteristic of the tree search. 

That is, a whole set of solutions might not be shown in the results of the sequence 

search if no solutions are found for one branch or this is discarded by the BS 

algorithm. For instance, it has been shown that several local minima (within the 

chosen problem formulation) exist for one single leg. By using the genetic 

algorithm, there is a statistical confidence that the global minimum is found but 

there are rare cases in which this does not happen. In these cases, all the branches 

that grow from those legs will be affected. Nonetheless, the results of the 

sequence search showed that more than 600 unique sequences are found for each 

launch date. Therefore, there is a guarantee that at least the preliminary 

sequences shown exist. 

Lastly, from the results shown for this test case, it can be seen that the choice 

of sorting the partial sequences in ascending order with respect to the total 

mission duration produced good results, in terms of number of sequences with at 

least one PHA. Therefore, there is no need to add an explicit rule that analyses 

the objects in each partial sequence. If, however, one wants to weight more those 

sequences that already contain one or more objects of interest (e.g. PHAs), a 

different rule can be considered for ordering the sequences to keep for the next 

leg. A Pareto optimality rule, for instance, could be used to sort the partial 

sequences so that preference is given to those sequences with the shortest mission 

time and the largest number of PHAs. 
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Fig. 4.13.  Number of unique sequences with at least one PHA and five encounters for six runs 
on the sequence search for launch date t0 = 28 May 2020 (Test case 4). 

 

4.6.2. PHA-LCDB Database 

The PHA-LCDB database introduced in Section 4.1 has been chosen to test the 

reliability of the proposed approach on a more challenging mission scenario than 

transfers between NHATS asteroids. Because of this, the number of sequences 

found by the sequence search algorithm is expected to be significantly smaller 

than what found considering the PHA-NHATS database. 

For this test case, only one value of the characteristic acceleration is 

considered. That is,  20.2 mm s
c

a . The same set of departure dates considered 

in the case of the PHA-NHATS database and discussed in Section 4.6.1 is used in 

this case. A stay time of 50 days has been considered between two consecutive 

legs within the sequence search algorithm. A maximum time of flight of 1,000 days 

for each leg was allowed in the sequence search with the PHA-NHATS database, 

whereas a maximum one-leg time of flight of 1,500 days was chosen for this study. 

This choice has been driven by the fact that the single transfers are more 

challenging in the case of the PHA-LCDB database. 
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This search resulted in 589 unique sequences made of three encounters, of 

which at least one is a PHA. Figure 4.14 shows the number of unique sequences 

found for each departure date. Only those sequences with at least one PHA and 

at least three encounters are plotted. 

 

 

Fig. 4.14.  Number of unique sequences with at least one PHA and three encounters as a 
function of the launch date. PHA-LCDB database with ac = 0.2 mm/s2. 

 

4.7. Discussion 

In this chapter, a methodology to find sequences of encounters for multiple 

NEA rendezvous missions through solar sailing was presented and discussed. The 

sequence search algorithm is characterised by: (a) the use of the shape-based 

approach, presented in CHAPTER 3, to find approximated solar-sail trajectories, 

(b) a local pruning to reduce the computational effort needed, and (c) the use of 

two reduced databases of objects. Moreover, the proposed sequence search 

algorithm returns sequences of NEAs with preliminary epochs for the asteroid 

encounters, i.e. timed sequences. This provides a guideline for the next phase of 
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the mission design, which is the trajectory-optimisation phase, as it will be 

discussed in CHAPTER 5. 

The use of the PHA-NHATS database resulted in more than 4,800 unique 

sequences made of at least five asteroids (at least four NHATS asteroids and at 

least one PHA) within less than ten years of total mission duration. This is true if 

a solar sail with lower performances than the one considered in a previous 

reference study is taken into account. If, instead, the characteristic acceleration 

of the reference work is used, it has been shown that an extremely large number 

of feasible sequences of at least five NEAs, of which one is a PHA, does exist. 

However, a reduction of the characteristic acceleration was one of the future 

steps to be addressed in the DLR/ESA Gossamer roadmap, as a lower characteristic 

acceleration involves a smaller or heavier sail for the same spacecraft bus. 

Therefore, this study showed that the mission-related TRL for the available solar-

sail technology is larger than it was previously thought and that such a mission can 

be performed with current or at least near-term solar sail technology1. Moreover, 

it was shown that, at least for the PHA-NHATS database, a 5-NEA-rendezvous 

mission is always possible within ten years by means of a solar sail. 

The PHA-LCDB database was used to test the proposed asteroid sequence 

search on a different scenario. In fact, this second study was characterised by 

transfers that are more challenging than those of the previous study, which 

considered NHATS objects that, by definition, are targets easy to reach from the 

Earth. 

An additional advantage of the proposed sequence search algorithm is the 

generation of a set of several feasible timed sequences, rather than a single 

optimal one. This is of great help to the mission analysts or the decision makers 

in the choice of the best mission. In fact, a solution is defined optimal on the basis 

of the mathematical model and mission parameters (e.g. launch window, current 

objects of interest, etc.) considered. If there is a change in one of these 

parameters within a later phase of the mission design, the single “optimal” 

solution, which has been found in a preliminary mission design phase, can be 

worthless. 

                                         
1 Note that a sail characteristic acceleration ac = 0.2 mm/s2 is within the capability of current 

and near-term Gossamer sailcraft technology, according to [16, 31, 223]. Moreover, the 
technology developed at DLR for a controlled deployment of a Gossamer spacecraft is currently 
on TRL four approaching level five, according to [50]. 
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Finally, this study showed that, for each launch date, hundreds of accessible 

NEA target sequences exist even within the restricted database of targets. 

Therefore, it can be concluded that there are little to no constraints on the launch 

window for a multiple-NEA rendezvous mission, if a solar sail is involved. 

Moreover, solar sailing has the advantage of flexibility on the target asteroids. 

The targets do not have to be selected before launch and they can be changed en 

route if, for instance, scientific or commercial interest changes over the years of 

the mission or when a new target of particular interest appears. 

 



 

CHAPTER 5.  

SEQUENCE OPTIMISATION 

Once complete sequences of encounters for a multiple NEA rendezvous mission 

through solar sailing have been found, an optimisation problem must be solved to 

find 3D solar-sail trajectories. This chapter describes two optimisation approaches 

developed for finding multiple NEA rendezvous trajectories feasible by a solar sail. 

Both approaches employ the general-purpose optimal control software GPOPS-II, 

which uses a variable-order adaptive Radau collocation method, together with 

sparse nonlinear programming, as discussed in Section 2.2.2. 

Several numerical test cases are shown and discussed to: (a) test the reliability 

of the proposed algorithms, (b) test such algorithms in an environment 

characterised by minimal inputs from the user, and (c) demonstrate the 

capabilities and the versatility of the solar-sail propulsion system. 

The content of this chapter was published and/or presented in [31, 197-200, 

214-216]. 
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5.1. Problem Formulation 

Because of the nature of the problem we are dealing with, an optimisation 

algorithm able to solve both single- and multi-phase problems is needed. For what 

concerns the optimisation of solar-sail trajectories described in this chapter, a 

single-phase problem is defined as a transfer between a departure and a target 

object (celestial bodies); instead, a multi-phase problem is characterised by 

several consecutive transfer legs, starting and ending at an object. The transfer 

legs are connected through coasting arcs during which the spacecraft stays in 

proximity of the target object, and follows the same ballistic trajectory, as 

schematically shown in Fig. 5.1. Since the spacecraft is considered in a state of 

rendezvous with the object between two consecutive transfer legs, the coasting 

arc is not explicitly modelled. The multi-phase problem is formulated such that 

the state of the sailcraft at the times corresponding to the beginning and end of 

each phase matches with the state of the target object within a user-defined 

tolerance. 

 

Fig. 5.1.  Schematic of the multi-phase problem under consideration. 

 

Phase 1

Phase 2

Rendezvous with object 2

Rendezvous with object 3

Start

Coasting arc
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The dynamics within each phase is defined, in modified equinoctial elements, 

as [7] 

     Ax x a b x   (5.1) 

in which a  is the propulsive acceleration given by Eq. (2.18). The terms  A x  and 

 b x  that appear in Eq. (5.1) are, respectively, the matrix and vector of the 

dynamics expressed, in the orbital reference frame  ̂ˆ,̂ ,r h , as follows [7]: 
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   
  

   
   

2

0 0 0 0 0

T

q
p

p
b x   (5.3) 

The terms q  and 2s  are the auxiliary variables defined in Eq. (3.3). Note that 

both the state x  and the acceleration a  in Eqs. (5.1) - (5.3) are functions of the 

time but their explicit dependency on the time has been omitted for the sake of 

readability. 

The problem of finding the optimal control vector 


      r h

T

N N Nu  such 

that the total mission duration is minimised while fulfilling the dynamics 

constraints of Eq. (5.1) at any time, is solved via a direct collocation method [88]. 

This has been chosen against indirect methods because: 
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1. It is easier to deal with multi-phase problems. Furthermore, if the number 

of phases is not fixed, the problem should be reformulated each time the 

number of phases varies, if an indirect approach is used. 

2. Its convergence to an optimal solution is usually easier than with an 

indirect method, although the solution is less accurate. Nevertheless, very 

accurate solutions are not required at this stage of the mission design. 

3. Finding first guesses for the costates needed in the indirect method is 

usually difficult, since the costates do not have any physical meaning. On 

the other hand, an initial guess for the trajectory and the control history 

is usually easier to find. 

The control vector u  should be bounded so that  
   1, 1,

h
N N , whereas 

  0, 1
r

N  because of the inability of the solar sail to thrust towards the Sun. 

Moreover, a path constraint should be considered which enforces the control 

vector to be a unit vector. However, it has been noted that the NLP solvers can 

sometimes have difficulties in solving an OCP for which the optimal control lies 

exactly on the bounds. This is more likely to happen if a path constraint is set 

which enforces the magnitude of the control vector to be within certain limits1. 

Therefore, the bounds on each component of the control vector are set to be 

larger than one and no path constraint on the magnitude of the control vector is 

enforced. Nevertheless, the actual thrust unit vector considered within the 

dynamics is the normalised control vector, such as 

 ˆ u
N

u
  (5.4) 

In this way, there is one less constraint to be satisfied and the problem is 

numerically easier to solve. Note that the components of the normal unit vector 

are preferred to the sail clock and cone angles as a control vector. Because of 

their periodicity, in fact, the sail control angles can lead to numerical issues within 

direct optimisation methods. Additionally, a set of endpoint constraints must be 

satisfied in each phase j , such as 

                                         
1 Dr Anil V. Rao, February 2016. Personal communication. 
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in which r  and v  are, respectively, the position and velocity error of the 

spacecraft with respect to the target. 

Lastly, and again to help the numerical convergence of the optimiser, the 

problem is scaled so that 

 1r  and   1. Because all the considered target orbits 

are near the Earth, this scaling guarantees that the norm of the position vector is 

always   1r ; a characteristic acceleration  20.2 mm s
c

a  is scaled to 

 0.0337
c

a  in normalised units. Note that   1510
c

a r  if the SI units are 

used, whereas the scaled problem is so that   210
c

a r , which is more 

suitable for numerical optimisation. 

5.2. STO: Sequential Trajectory Optimiser 

The sequential trajectory optimiser (STO) is the first optimisation approach 

developed to find solutions to the multiple NEA rendezvous mission problem. The 

trajectory found through the coplanar shape-based approach described in Section 

3.1 is used as an initial-guess solution for the optimiser, which transforms it into 

a 3D trajectory. The general-purpose optimal control software GPOPS-II, together 

with the NLP solver SNOPT [72], is used within STO. Note that the interface for 

WORHP within GPOPS-II was not yet implemented at the time STO was developed 

and this is the reason for which WORHP has not been used within STO. 

An algorithm has been developed in MATLAB to find the optimal trajectory in 

terms of total mission duration, as shown in Fig. 5.2. Given the selected timed 

sequence (i.e. list of target objects and encounter epochs), the algorithm 

performs as follows. 

1) The algorithm automatically computes the initial guess for each leg 

separately by means of the shape-based approach with the objective 

function of Eq. (3.25), as described in Section 3.1.6. To avoid possible 

numerical problems in the optimisation phase that can affect the 

convergence of the optimiser, several initial-guess solutions are generated 
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for each leg. That is, the trajectory is propagated by considering both a 

constant control law between two points of the shaped function and a 

cubic spline interpolation of the control law. Moreover, two different 

stopping criteria are considered in the GA, so that four different initial-

guess solutions are generated for each leg. 

2) The algorithm optimises the 3D trajectory leg by leg. Each initial guess is 

optimised both without considering any further scaling method and by 

further scaling the problem through the automatic-guessUpdate choice 

provided by GPOPS-II [89]. Moreover, if no feasible or optimal solutions 

are found for the current leg, the default hp adaptive mesh refinement is 

changed so that the one developed by Liu et al. [92] is used for the whole 

optimisation. Within this optimisation phase, the solution of each leg is 

constrained to start at least two days after the arrival of the previous leg. 

In this way, the optimiser is forced to find a solution that guarantees a 

minimum time in the vicinity of the object for close-up observations. 

Moreover, a multi-phase optimisation, which would only be used to reduce 

the total mission duration, is not necessary. 

3) Finally, if at least one feasible solution is found in all the legs individually, 

the whole multi-phase trajectory is built by patching together all the 

single-phase solutions found. This can be used as an initial guess for a 

subsequent multi-phase optimisation, if the total mission duration needs 

to be further reduced. 
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Fig. 5.2.  Sequential trajectory optimiser algorithm. 

 

5.3. ATOSS: Automated Trajectory Optimiser for Solar 

Sailing 

The Automated Trajectory Optimiser for Solar Sailing (ATOSS) has been 

developed to find optimal solar-sail trajectories automatically and reliably. It has 

been developed as an upgrade of the sequential trajectory optimiser described in 

Section 5.2. ATOSS combines an initial-guess generator, which uses the shape-

based approach described in Section 3.1, with an optimisation strategy based on 

a two-stage approach. Such approach, described in detail in Section 5.3.2, first 

finds a solution to the OCP and then improves it by modifying the description of 

the problem. Moreover, ATOSS can find solutions of single-phase as well as multi-

phase problems. The general-purpose optimal control solver GPOPS-II is used to 

find the optimal solution to the solar-sail trajectory problem. Any of the NLP 

solvers implemented within GPOPS-II can be used. However, only SNOPT and 

WORHP [73] will be used in the test cases shown in Section 5.4, since those are 
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the two NLP solvers that perform better for the mission scenario under 

consideration (see Section 3.1.7). The hp adaptive mesh refinement developed by 

Liu et al. [92] is used in this work. Nevertheless, the mesh refinement method, as 

well as most of the GPOPS-II settings, can be easily chosen by the user through 

the ATOSS interface. 

ATOSS can function in two modes, depending on the availability of a timed 

sequence. This allows ATOSS to be easily interfaced with the sequence-search 

algorithm described in CHAPTER 4 and thus to have a standalone toolbox able to 

both look for preliminary sequences and optimise their trajectories, but also to 

work independently of it. In fact, the output of the sequence-search algorithm is 

compl
L , which is a list of timed sequences (Algorithm 4.1). In those cases for which 

only a sequence of objects is provided (i.e. a non-timed sequence), ATOSS will 

self-generate the preliminary timeline. This is generated considering the locally-

optimal control laws to maximise the rate of change of the orbital parameters, as 

described in [2]. In particular, the laws to change individually semimajor axis, 

eccentricity and inclination are implemented within ATOSS. For each transfer 

between two consecutive objects, the preliminary timeline considers the time of 

flight needed to achieve the desired change in one or more orbital elements. In 

this work, the allowed time of flight for each transfer leg is bounded between 500 

and 1,500 days. Moreover, a set stay time is added between two consecutive 

transfers (100 days, in this work). It is worth noting that Graham and Rao [97] 

showed that “the solutions to the minimum-time low-thrust optimal control 

problem […] have essentially the same number of revolutions as that of the initial 

guess”. Therefore, to improve ATOSS’ robustness in case of a non-timed sequence, 

the possibility to add an extra full revolution to the self-generated time of flight 

is considered. 

A description of both the initial-guess generator and the optimisation strategy 

implemented within ATOSS is given in the next subsections. 
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5.3.1. Initial-Guess Generator 

Three different methods can be used to generate an initial-guess solution for 

the optimiser, as follows. 

1) Shape-based approach: propagated trajectory. 

2) Shape-based approach: shaped trajectory. 

3) Transversal-thrust law. 

Note that the first two methods are two different variants of the shape-based 

approach, as discussed in Section 3.1.6. Because there is no reliable indicator on 

which one is best to serve as an initial guess for the subsequent numerical 

optimisation, both can be used to generate an initial-guess solution for the 

optimiser. Moreover, as discussed in Section 3.1.7, the performances of the two 

variants are comparable when they are used to generate an initial-guess solution 

for the solar-sail OCP. Lastly, the transversal-thrust law has been added to the 

initial-guess generator only to be used as a benchmark for the shape-based 

approach, as discussed in Section 3.1.7. 

If an initial-guess solution to the problem at hand is already available, ATOSS 

can use it to initialise the optimiser. For instance, the homotopy-continuation 

approach for solar sailing, described in Section 3.2, can be used to generate initial-

guess solutions for ATOSS. An example of this is shown in Section 5.4.5. 

5.3.2. Optimisation Strategy 

The optimisation strategy implemented within ATOSS consists of two 

sequential stages. Within the first stage, an initial solution for the multi-phase 

OCP is sought. In the second stage, a better solution, in terms of total mission 

duration, is computed by starting with the one found in the previous stage. 

The general idea of the first stage is to find a solution to the OCP by starting 

with simpler dynamics and eventually solve the problem with the full dynamics. 

That is, starting from the chosen initial guess, the OCP is solved in three sequential 

steps to help the convergence of the numerical optimiser. The solution of each 

step is used as a first guess for the following step. Here and in the remainder of 

this thesis, the term first guess is referred to as the solution used to initialise 

GPOPS-II. For instance, the optimal solution found for the coplanar solar-sail 

dynamics is used as the first-guess solution within GPOPS-II for solving the 
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following OCP that considers 3D dynamics, as shown in Fig. 5.3. The description 

of the first stage is given, for a single-phase problem, as follows (Fig. 5.3).  

1) Solve the single-phase OCP within a coplanar (2D) approximation, i.e. the 

plane of the orbit of the final target object is projected onto the one of 

the departing object, as shown in Eq. (3.21). The pseudo solar-sail model 

shown in Eq. (3.26) is considered for the description of the acceleration. 

2) Solve the single-phase optimisation problem by considering the solar-sail 

acceleration [Eq. (2.18)] within a coplanar approximation. 

3) Solve the single-phase optimisation problem by considering the 3D 

dynamics with the solar-sail acceleration of Eq. (2.18). 

 

Fig. 5.3.  Flowchart of single-phase ATOSS’ optimisation strategy for the first stage. 
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The boundaries on the initial and final time considered in the numerical 

formulation of each OCP shown in Fig. 5.3 depend on the first-guess solution. This 

is implemented so that it is possible to consider an upper limit to the time of flight 

of a single-phase problem. For what concerns a multi-phase problem, this 

implementation allows setting the boundaries on initial and final times of two 

consecutive phases so that the latter phase is not allowed to start before the end 

of the former. Nevertheless, it has been noted that very often the time of flight 

of the optimal solution found is the minimum allowed by the problem formulation. 

A reduction in the lower boundary on the final time by about 50-100 days often 

resulted in unsuccessful runs of the numerical optimiser. Therefore, once an 

optimal solution has been found for the 3D dynamics, the second stage of the 

optimisation strategy is used. 

In the second stage, ATOSS performs a discrete continuation on the lower 

boundary of the final time, using the previous solution as a first guess for GPOPS-

II (Fig. 5.4). A user-defined value 
f

t  is used to decrease the lower boundary on 

the final time (  20 days
f

t , in this work), whereas the boundaries on the initial 

time are related to the initial time of the first-guess solution. Such continuation 

is repeated until an unsuccessful run occurs. When an unsuccessful run occurs for 

the first time, the value 
f

t  is halved to try a smaller continuation step. If a 

solution is found with the new value of the step size, the continuation loop 

proceeds with this new value until another unsuccessful run occurs. Once the loop 

has stopped, the solution of the entire optimisation is the last optimal solution 

found. The loop can stop also when an optimal solution has been found if the time 

of flight is larger than the minimum one allowed. 

Note that, by using this continuation approach, more OCP problems are solved 

than using a substantially reduced lower boundary on the time of flight. 

Nevertheless, this approach significantly helps the convergence of the numerical 

optimiser. Moreover, the computational time needed for each successful run of 

the optimiser is usually small (varying between seconds and minutes). 
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Fig. 5.4.  Flowchart of both single- and multi-phase ATOSS’ optimisation strategy for the 
second stage. 
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patched together to build the multi-phase solution. That is, even if the solutions 

of all phases are optimal, there is no guarantee that the overall multi-phase 

solution is also optimal. On the contrary, the approach used within ATOSS 

guarantees the optimality of the entire multi-phase solution. This is in agreement 

with the Bellman’s principle of optimality, which states that “an optimal policy 

has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision” [224]. Once a solution for the complete multi-

phase problem has been found, the continuation on the lower boundaries on the 

final time is performed, as shown in Fig. 5.4. That is, the lower boundary on the 

final time of each phase is decreased by the selected value 
f

t . 

 

Fig. 5.5.  Flowchart of multi-phase ATOSS’ optimisation strategy for the first stage. 
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5.4. Numerical Test Cases 

Several numerical test cases are used to prove the ability of the two optimisers 

in finding 3D trajectories for multiple NEA rendezvous mission. Moreover, in 

Section 5.4.6, the performances of both optimisers are tested in an automatic 

optimisation campaign. All the simulations presented in this section were carried 

out on a 3.40 GHz Core i7-3770 with 16 GB of RAM and running Windows 7. Both 

NLP solvers SNOPT and WORHP are used and the results found with the one that 

performs better are shown. Moreover, STO has been developed before the 

interface for WORHP was implemented within GPOPS-II, thus the use of SNOPT in 

those test cases solved with STO. Note that, despite it will be shown that ATOSS 

statistically performs better than STO, there are cases in which the latter finds a 

better solution than the former. These are the cases for which STO has been 

chosen for the optimisation. 

Different scenarios for multiple NEA rendezvous missions, other than those 

discussed in this work, were published in [197, 198, 200, 214-216]. 

5.4.1. Circular-to-Circular Orbit Transfers: A Comparison with 

the Literature 

Quarta and Mengali [225] presented two planar circular-to-circular orbit 

transfers considering an ideal sail with a characteristic acceleration 

 20.03 mm s
c

a  . With such a small value of the characteristic acceleration, 

several complete revolutions are needed for the Earth-Mars and Earth-Venus 

transfers. This increases the possibility of failure of the numerical optimiser, since 

a larger number of revolutions might affect the numerical accuracy of the solver. 

As such, these are interesting test cases to validate ATOSS. The shaped-trajectory 

variant of the shape-based approach (No. 2) in Section 5.3.1) was used to generate 

the initial-guess solution and SNOPT was used as NLP solver. The boundaries on 
f

L  

for the GA were set as follows. A minimum-time transfer between two circular 

coplanar orbits is achieved by maximising the absolute value of the rate of change 

of the semimajor axis da dL , which can be expressed, by means of the Lagrange 

variational equations, as [2] 
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  


 
2

22
c sinosc

a r ada

dL
  (5.6) 

in which     arctan 1 2  is the cone angle that maximises the transversal 

acceleration [2]. Note that Eq. (5.6) has been derived in the approximation of 

circular osculating orbits during the transfer. This is an acceptable approximation 

because the transfer is between two circular orbits and the characteristic 

acceleration is very small. The lower boundary on 
f

L  is set as the value of true 

longitude ˆ
f

L  for which the change in semimajor axis a  is the desired one, such 

as 

   
0

ˆ
fL

L

da
a dL

dL
  (5.7) 

The upper boundary on 
f

L  is set so that  
 

ˆ ˆ, 2
f f f

L LL . 

ATOSS found a solution for both Earth-Mars and Earth-Venus orbit transfers 

which are equivalent to those shown in [225]. Specifically, the time of flight for 

the Earth-Venus transfer found by ATOSS is 3,837 days, which is similar to the 

3,844 days of the reference paper. The time of flight for the Earth-Mars transfer 

found by ATOSS is 8,773 days, which is again equivalent to the 8,800 days of the 

reference paper. The Earth-Venus and Earth-Mars optimal trajectories are shown 

in Fig. 5.6. 

 
a) 

 
b) 

Fig. 5.6.  Optimal orbit transfers in the heliocentric ecliptic reference frame. (a) Earth-Venus. 
(b) Earth-Mars. 
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5.4.2. Three-NEA Rendezvous Mission: A Comparison with the 

Literature 

Dachwald et al. [16] presented a 3-NEA rendezvous mission, considering a sail 

with a characteristic acceleration  20.3 mm s
c

a . The total mission duration, 

from launch until arrival to the final target body, is 9.16 years (which is 3,345 

days). In that work, the sail is injected directly into an interplanetary trajectory 

at Earth, with zero hyperbolic excess energy. Table 5.1 shows the properties of 

all the encountered bodies. Here and in the following test cases, the estimated 

sizes of the objects are calculated from the Minor Planet Center table of 

conversion from absolute magnitude to diameter, considering an albedo in the 

range 0.05 to 0.251. 

Table 5.1.  Properties of all the encounters of the sequence presented in [16]2. 

Object 2004 GU9 2001 QJ142 2006 QQ56 

Orbital type Apollo Apollo Aten 

Semimajor axis, AU 1.001 1.062 0.985 

Eccentricity 0.136 0.086 0.046 

Inclination, deg 13.650 3.103 2.796 

Absolute magnitude 21.2 23.7 25.9 

Estimated size, m 170-380 50-120 10-40 

EMOID, AU 0.0006 0.0094 0.0152 

PHA Yes No No 

NHATS No Yes No 

 

ATOSS has been used to find a solar-sail trajectory for the same list of 

encounter bodies to validate the proposed optimiser. ATOSS has been used 

considering both a timed and a non-timed sequence as an input. In the first case, 

the mission parameters of the reference work were used to produce the timed 

sequence needed by ATOSS. This has been done to check whether ATOSS can 

                                         
1 Data available online at http://www.minorplanetcenter.net/iau/lists/Sizes.html [retrieved 08 

August 2015]. 

2 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 
2015]. 

http://www.minorplanetcenter.net/iau/lists/Sizes.html
https://cneos.jpl.nasa.gov/orbits/elements.html
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reproduce and refine the trajectory of the reference work by starting from the 

same timed sequence. In the second case, instead, only the list of objects and the 

departing date from the reference work have been given as an input to ATOSS. 

This has been done to check whether ATOSS can find a similar solution to that 

shown in [16] without any external input. Since the objects in the non-timed 

sequence are NEAs, it has been chosen to consider only the time of flight given by 

the law to maximise the rate of change of the inclination to generate the 

preliminary timeline within ATOSS. In fact, Table 5.1 shows that the differences 

in semimajor axis and eccentricity are small for the objects under consideration, 

whereas there are significant differences in inclination. For both cases, the 

shaped-trajectory variant of the shape-based approach was used to generate the 

initial-guess solution and SNOPT was used as NLP solver. 

The features of the mission are described in Table 5.2 for the case of the timed 

sequence used as an input for ATOSS. Figure 5.7a shows the trajectory of the first 

leg from Ref. [16], whereas the corresponding trajectory found by ATOSS is shown 

in Fig. 5.7b. ATOSS found a solution for which the total mission duration is 8.46 

years (i.e. 3,090 days), which is almost a year less than that proposed in [16]. 

However, the time spent at the first object, which is also classified as a PHA, is 

the minimum allowed by the optimiser (i.e. two days). Even though this value of 

the stay time is in line with the mission requirements (see Section 4.5), more time 

might be needed at the object. If this is the case, a slower mission was found in 

the same optimisation run which is one of the intermediate results of the 

optimisation strategy shown in Fig. 5.4. The characteristics of this mission are 

shown in Table 5.3. In this case, the total mission duration is 8.82 years (i.e. 3,220 

days), spending 50 days at 2004 GU9. Such a mission is still approximately 120 days 

shorter than the reference one. Note that ATOSS gives the possibility to set the 

minimum allowed stay time at each object. Therefore, if a longer stay time at the 

object is needed, this can be set and a new optimisation run. 
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Table 5.2.  Mission parameters for the optimal 3-NEA rendezvous (values in brackets are those 
presented in [16] and used as timed sequence for ATOSS). 

Object Stay time, days  Start End Time of flight, days 

Earth ---  16 May 2020 

(28 Nov 2019) 

13 May 2023 

(13 Dec 2022) 

1093 

(1111) 

2004 GU9 
2 

(113)  15 May 2023 

(05 Apr 2023) 

28 Jan 2027 

(30 Jan 2027) 

1354 

(1396)  

2001 QJ142 
133 

(90)  10 Jun 2027 

(30 Apr 2027) 

31 Oct 2028 

(24 Jan 2029) 

509 

(635) 
2006 QQ56 --- 

 

Table 5.3.  Mission parameters for the optimal 3-NEA rendezvous, longer mission (values in 
brackets are those presented in [16] and used as timed sequence for ATOSS). 

Object Stay time, days  Start End Time of flight, days 

Earth ---  27 Mar 2020 

(28 Nov 2019) 

12 Feb 2023 

(13 Dec 2022) 

1053 

(1111) 

2004 GU9 
50 

(113)  03 Apr 2023 

(05 Apr 2023) 

30 Jan 2027 

(30 Jan 2027) 

1398 

(1396)  

2001 QJ142 
106 

(90)  16 May 2027 

(30 Apr 2027) 

19 Jan 2029 

(24 Jan 2029) 

614 

(635) 
2006 QQ56 --- 

 

 

 
a) 

 
b) 

Fig. 5.7.  Trajectory of the first leg from Earth to 2004 GU9. Heliocentric ecliptic reference 
frame. (a) Ref. [16] (Reproduced with permission of Springer). (b) ATOSS with timed 
sequence as an input. 
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In the second case, in which a non-timed sequence was used as an input, ATOSS 

found a solution by self-generating the preliminary timeline for the encounters. 

The total mission duration found by ATOSS is 8.83 years (i.e. 3,223 days), which is 

about 120 days less than that shown in [16]. Table 5.4 shows the characteristics 

of this mission together with the preliminary timeline self-generated by ATOSS. 

Note that the sailcraft spends more than 90 days at each object, which is a stay 

time equivalent to that shown in the reference paper. 

 

Table 5.4.  Mission parameters for the optimal 3-NEA rendezvous in the case of a non-timed 
sequence as an input (values in brackets are those self-generated by ATOSS). 

Object Stay time, days  Start End Time of flight, days 

Earth ---  04 Mar 2020 

(28 Nov 2019) 

24 Dec 2022 

(19 Dec 2022) 

1026 

(1117) 

2004 GU9 
99 

(100)  02 Apr 2023 

(29 Mar 2023) 

23 Oct 2026 

(12 Sep 2026) 

1300 

(1263)  

2001 QJ142 
111 

(100)  11 Feb 2027 

(21 Dec 2026) 

30 Dec 2028 

(04 May 2028) 

688 

(500) 
2006 QQ56 --- 

 

5.4.3. Multiple NEA Rendezvous Missions 

The test cases studied in this subsection aim to show some fully-optimised 

trajectories for a multiple NEA rendezvous mission. Because of the Gossamer 

requirements discussed in Section 4.5, a solar sail with a characteristic 

acceleration  20.2mm s
c

a  is considered throughout this subsection. Therefore, 

from the results of the sequence search shown in Section 4.6 with  20.2mm s
c

a

, two sequences have been selected as samples and fully optimised. The first 

sequence has been selected among all the sequences found with five encounters, 

of which one is a PHA and the last object is small, as from the mission 

requirements a) – c) in Section 4.5. This sequence is one of those found for the 

PHA-NHATS database. On the other hand, the second sequence has been chosen 

among the results of the PHA-LCDB database. This sequence has been chosen 

because it is characterised by the presence of two PHAs and all the target orbits 

are significantly more eccentric than the one of the Earth, despite it has only 

three encounters. 
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Sequence 1. The first sequence presented here contains five objects. All the 

objects in the selected sequence are part of the NHATS database used and the 

fourth, 2008 EV5, is also classified as a PHA. Table 5.5 shows the encountered 

bodies in the sequence. Note that, in Table 5.5, the change in inclination between 

two consecutive objects is always less than 5 deg, which is the threshold used for 

the coplanar approximation [Eq. (4.16)]. However, Table 5.5 shows that the 

inclination of the encounter’s orbits increases by moving from an object to the 

following, eventually reaching an inclination of about 10 deg for the last 

encounter. This result is significantly different respect to what could be found by 

following the sequence search method described in [197], in which a threshold of 

5 deg on the maximum inclination was considered within the pruning of the whole 

database. Therefore, this sequence could not have been found because the last 

three asteroids have an inclination larger than the 5 deg threshold. 

Table 5.5.  Properties of the encounters of sequence 11. 

Object 2000 SG344 2015 JD3 2012 KB4 2008 EV5 2014 MP 

Orbital type Aten Amor Amor Aten Amor 

Semimajor axis, AU 0.977 1.058 1.093 0.958 1.050 

Eccentricity 0.067 0.009 0.061 0.083 0.029 

Inclination, deg 0.111 2.730 6.328 7.437 9.563 

Absolute magnitude 24.7 25.6 25.3 20 26 

Estimated size, m 35-75 20-50 20-50 260-590 17-37 

EMOID, AU 0.0008 0.054 0.073 0.014 0.020 

PHA No No No Yes No 

NHATS Yes Yes Yes Yes Yes 

 

By following the optimisation steps described in Section 5.3, a multi-phase 

solution was found. ATOSS has been used with the NLP solver WORHP and the 

shaped-trajectory variant of the shape-based approach as the initial-guess 

solution. The parameters of the optimised mission are briefly described in Table 

5.6. The values in brackets are the results of the sequence search algorithm, which 

have been used as the timed sequence needed by ATOSS. Note that the stay time 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 

2015]. 

https://cneos.jpl.nasa.gov/orbits/elements.html
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in brackets is always equal to 100 days, since it is a fixed value, as specified in 

Section 4.6.1. The sail is injected directly into an interplanetary trajectory at 

Earth, with zero hyperbolic excess energy. The mission is completed in about 8.6 

years after departing from Earth on 05 December 2025. As shown in Table 5.6, the 

sail spends at least three months in the proximity of each object, giving sufficient 

time for close-up NEA observations. 

It is worth noting that the arrival at 2014 MP after 3,133 days is not necessarily 

the end of the mission. As long as the sailcraft remains flightworthy, the visit at 

2015 MP may well be followed by further legs to other NEAs. In fact, the duration 

of the mission is not constrained by the amount of propellant on board, as it 

usually happens when an electrical or chemical propulsion system is used. It only 

depends on the ageing of the systems aboard and the will to pay the flight 

operators a while longer for their effort. For instance, Pioneer 6 was designed to 

last about 6 months, after its launch on 16 December 1965. The last successful 

contact with it was made on 08 December 2000 – 35 years later. In 1997, three of 

its instruments still worked well1. 

Table 5.6.  Mission parameters for optimised sequence 1 (values in brackets are those found 
through the sequence search algorithm and used as a first guess for ATOSS). 

Object Stay time, days  Start End Time of flight, days 

Earth ---  05 Dec 2025 

(30 Apr 2025) 

18 Mar 2027 

(11 Mar 2027) 

468 

(680) 

2000 SG344 
93 

(100)  19 Jun 2027 

(19 Jun 2027) 

03 Nov 2028 

(31 Oct 2028) 

503 

(500)  

2015 JD3 
104 

(100)  16 Feb 2029 

(08 Feb 2029) 

22 Nov 2030 

(14 Nov 2030) 

644 

(644) 

2012 KB4 
94 

(100)  23 Feb 2031 

(22 Feb 2031) 

22 Nov 2032 

(30 Nov 2032) 

637 

(647) 

2008 EV5 
95 

(100)  25 Feb 2033 

(10 Mar 2033) 

04 Jul 2034 

(25 Nov 2034) 

493 

(625) 
2014 MP --- 

 

 

                                         
1 Data available online at https://www.nasa.gov/centers/ames/missions/archive/pioneer.html 

[retrieved 15 June 2017]. 

https://www.nasa.gov/centers/ames/missions/archive/pioneer.html
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The complete trajectory of the optimised sequence 1 is shown in Fig. 5.8. The 

stay times at the objects are highlighted against the interplanetary legs. The orbit 

of the Earth is also plotted. Plots of the control histories on each leg are in Fig. 

5.9. The three components of the acceleration vector in the orbital reference 

frame over time are shown, together with the magnitude of the acceleration over 

time. 

a)  

b)  

Fig. 5.8.  Heliocentric view of the 3D trajectory of optimised sequence 1: (a) ecliptic plane 
view; (b) 3D view. 
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a) b) 

c) d) 

e) 

 

Fig. 5.9.  Acceleration components history on each transfer leg of optimised sequence 1. 

 

It is worth noting that, despite the few spikes in the control history shown in 

the plots in Fig. 5.9, the results are feasible by a solar sail with currently-available 

technology. This can be demonstrated by studying both slew rate and angular 

acceleration of the sail required to follow the control histories shown in Fig. 5.9. 

Denoting the angle   as the angle between two consecutive attitudes [i.e. 

    



1

ˆ ˆarccos
i i

t tN N ], the sail slew rate   is defined as the rate of change 

of the sail attitude. Figure 5.10a shows the sail slew rate for the last leg of the 

current five-NEA sequence. This leg has been chosen because it is the one with 

the highest value of slew rate. Figure 5.10a shows that the sail slew rate is always 

   43 10  deg s. Studies on solar-sail attitude control in the literature show 

that a solar sail with a characteristic acceleration of  20.1 mm s
c

a  is able to 

perform a 35 deg manoeuvre in less than 3 hours [48, 226], thus with an average 

sail slew rate of   35 10  deg s . Moreover, Wie and Murphy [226] show that 
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the spike in the slew rate for a 35 deg yaw manoeuvre is 
max

0.03 deg s , which 

is higher than the maximum slew rate required during the whole mission described 

here. 

The angular acceleration needed to follow the control found through ATOSS 

shall also be investigated to verify the feasibility of such a mission from the 

attitude-control point of view. Figure 5.10b shows the angular acceleration for 

the last transfer leg of the first optimised sequence, obtained by time 

differentiation of the sail slew rate shown in Fig. 5.10a. It is possible to see a spike 

in the angular acceleration, related to the first pick in the slew rate, of 

  9 2 d2 0 eg s1 . For comparison, note that the maximum torque allowed for 

a Mars rendezvous mission in [227] (pp. 69-86) is set to   3

max
10  Nm . Because a 

solar sail with an area  
2

160 mA  and a total mass 
0

450 kgm  is considered in 

the aforementioned work, the equivalent maximum allowed angular acceleration 

is   8 2

max
6 1  deg s0 , considering a perfect square sail rotating around one of 

the principal axes of inertia on the sail plane. Such value is larger than the 

maximum sail angular acceleration needed to achieve the proposed transfers (Fig. 

5.10b). 

Because no explicit constraints have been set on either the sail slew rate or 

the angular acceleration within ATOSS, further optimisation may be needed if 

stricter constraints are required. 

a)  b)  

Fig. 5.10.  Sail slew rate (a) and sail angular acceleration (b) over time on the last leg of 
optimised sequence 1. 
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From a trajectory optimisation point of view, it is interesting to study the 

evolution of the total mission duration during the second stage of the optimisation 

strategy implemented within ATOSS. As detailed in Section 5.3.2, once the entire 

multi-phase 3D trajectory has been found, a discrete continuation on the lower 

boundary on the final time is carried out to find a solution with a lower total 

mission duration. Figure 5.11 shows the evolution of the total mission duration 

within ATOSS. The total cumulative computational time needed to find a solution 

is shown along the horizontal axis. Each point in the figure corresponds to a 

solution found by ATOSS in each intermediate step. The first point is related to 

the mission duration of the entire trajectory obtained by patching together the 

initial-guess trajectories for each transfer leg. Note that the significantly longer 

time related to the second point is due to ATOSS finding a 3D multi-phase 

trajectory starting from the solutions of the shape-based approach, which is the 

first stage of the optimisation strategy described in Section 5.3.2 and shown in 

Fig. 5.5. In conclusion, Fig. 5.11 demonstrates the importance of the continuation 

stage implemented within ATOSS, which decreases the total mission duration by 

10% respect to the value of the initial guess. In fact, a gain of 6% of total mission 

duration is achieved during the second stage of the optimisation strategy 

developed within ATOSS (i.e. between the last and the second point shown in Fig. 

5.11). 

Lastly, the end-to-end optimisation phase, as described in Section 5.3, needed 

about four hours of computational time. It is important to note, however, that 

this is the overall time required by ATOSS and it includes the time spent within 

the optimiser when the convergence was not achieved, other than the generation 

of the initial guesses. If the time spent by the optimiser to find the shown 

trajectory is considered alone, a total time of about half an hour is needed for the 

end-to-end optimisation of the entire multi-leg trajectory, as shown in Fig. 5.11. 
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Fig. 5.11.  Evolution of the total mission duration within ATOSS for optimised sequence 1. 

 

Sequence 2. The second sequence contains three objects. This sequence has 

been chosen among the others because it is characterised by the presence of two 

PHAs, 1989 UQ and 2002 RW25. The first object of the sequence, 2003 WT153, is 

part of the LCDB database with  2U . All the objects are Aten asteroids. That 

is, their semimajor axes are all less than one astronomical unit. Moreover, the 

orbits of all the encounters in the sequence are significantly more eccentric than 

the one of the Earth, as shown in Table 5.7. 
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Table 5.7.  Properties of the encounters of sequence 21. 

Object 2003 WT153 1989 UQ 2002 RW25 

Orbital type Aten Aten Aten 

Semimajor axis, AU 0.894 0.915 0.825 

Eccentricity 0.178 0.265 0.287 

Inclination, deg 0.371 1.299 1.327 

Absolute magnitude 28 19.4 18.8 

Estimated size, m 7-15 330-740 420-940 

EMOID, AU 0.002 0.014 0.016 

PHA No Yes Yes 

 

A multi-phase trajectory for the selected solar sail has been found by following 

the optimisation steps described in Section 5.2 and the mission is summarised in 

Table 5.8. The sailcraft needs 3,541 days (i.e. 9.7 years) to reach all asteroids in 

this sequence, after spending more than three months in the proximity of each. 

Figure 5.12 shows the two-dimensional projection of the complete 3D 

trajectory of the chosen sequence. Plots of single-leg trajectories and controls 

over time are not shown for the sake of brevity. 

Table 5.8.  Mission parameters for optimised sequence 2 (values in brackets are the ones found 
through the sequence search algorithm and used as an initial guess for STO). 

Object Stay time, days  Start End Time of flight, days 

Earth ---  24 Apr 2028 

(14 Apr 2028) 

18 Jul 2031 

(01 Oct 2031) 

1181 

(1265) 

2003 WT153 
134 

(50) 
 30 Nov 2031 

(20 Nov 2031) 

29 Jun 2034 

(19 Aug 2034) 

943 

(1003) 

1989 UQ 
110 

(50) 
 18 Oct 2034 

(08 Oct 2034) 

02 Jan 2038 

(19 Mar 2038) 

1173 

(1258) 
2002 RW25 --- 

 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 

2015]. 

https://cneos.jpl.nasa.gov/orbits/elements.html
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Fig. 5.12.  Heliocentric view of the complete three-dimensional trajectory of optimised 
sequence 2 (ecliptic plane view). 

 

The total v  needed for this mission is   52.1 km sv , which has been 

calculated as the integral of the acceleration over time. Despite such a high v  

is the result of a control law optimised for solar sailing, it is interesting to compare 

with an electric propulsion system. As such, consider the spacecraft used in the 

8th Global Trajectory Optimisation Competition (GTOC8) [175, 228]. This 

spacecraft is characterised by a total mass 
0

4,000 kgm , a dry mass 

 1,890 kg
dry

m  and a low-thrust engine with a specific impulse  5,000 s
sp
I . It is 

worth noting that both the specific impulse and the mass ratio 
0

0.47
dry

m m  

considered are very high performing and no spacecraft, to the best of the author’s 

knowledge, has similar performances to date. Recall the Tsiolkovsky rocket 

equation as [229] 

 
 

 


 
 


0
0
ln

sp

f

m
g

m
v I   (5.8) 

in which, in this case, the final mass 
f

m  is considered as the spacecraft dry mass 

dry
m . By using Eq. (5.8), the maximum v  available with such low-thrust system 
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is   37 km sv . On the other hand, to reach a v  as high as 52 km s , a 

spacecraft with the electric propulsion system considered in the GTOC8 should be 

characterised by a mass ratio as low as 
0

0.35
dry

m m , which is very low for the 

near-term electric-propulsion technology. For the above reasons, a multiple NEA 

rendezvous mission with a total   52 km sv  is not feasible by an electric 

propelled spacecraft, even if a high-performing propulsion system is considered. 

A solar sail, on the other hand, enables high-v  trajectories such as the one 

shown. 

5.4.4. Multiple NEA Sample Return Mission 

The optimised sequence 1 described in Section 5.4.3 has been considered to 

study the potential for a multiple NEA sample return mission. To do so, the last 

leg to 2014 MP has been removed and substituted with a return leg to the Earth. 

STO was used to compute the return leg to the Earth. The total mission duration 

is now 3,821 days (which is about 10.5 years), which is still compatible with the 

ten-year mission requirements described in Section 4.5. The return leg to the 

Earth is shown in Fig. 5.13, whereas Table 5.9 shows the updated mission 

parameters. 

It is worth noting that the sequence still contains 2008 EV5, which is classified 

as a PHA and was selected as one of the candidate targets for the Asteroid Redirect 

Robotic Mission (ARRM) by NASA [230]. Moreover, the stay time at 2008 EV5 is 

above 100 days, which is the longest of this sequence of asteroids. 

 

Fig. 5.13.  Heliocentric view of the 3D return leg to the Earth. 
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Table 5.9.  Mission parameters for the optimised sequence 1 with the last leg to the Earth. 

Object Stay time, days  Start End Time of flight, days 

Earth ---  
05 Dec 2025 18 Mar 2027 468 

2000 SG344 93 
 

19 Jun 2027 03 Nov 2028 503 

2015 JD3 104 
 

16 Feb 2029 22 Nov 2030 644 

2012 KB4 94 
 

23 Feb 2031 22 Nov 2032 637 

2008 EV5 116 
 

18 Mar 2033 22 May 2036 1161 

Earth ∞ 

 

5.4.5. Online Change of the Mission: Two Test Cases for the 

Planetary Defence 

Two test cases have been studied as possible mission scenarios in response to 

the mission exercises proposed by the planetary defence community. In both test 

cases, the sailcraft is considered already flying to its planned mission to several 

NEAs, when a PHA appears to gain interest over the worldwide community. 

Therefore, the mission control decides to reroute the sailcraft to rendezvous or 

flyby with such object. This will also demonstrate the target flexibility unique to 

solar sailing. In the following subsections, the two test cases are discussed in 

detail. 

 

Test Case 1: 2011 AG5. During the 3rd International Academy of Astronautics 

(IAA) Planetary Defense Conference (PDC) held in Flagstaff, AZ, USA in 2013, the 

asteroid 2011 AG5 was considered as one of the reference scenarios to conduct an 

exercise to respond to a hypothetical asteroid threat1. At the time of the 

conference, the asteroid had a probability of impact with the Earth of 1 in 500 

(i.e. 
 32 10 ) on 05 February 2040 [231], and the value of the object on the 

Palermo scale [232] was  1P , which indicates that the PHA merits careful 

                                         
1 Data available online at http://pdc.iaaweb.org/?q=content/2013-flagstaff [retrieved 15 June 

2017]. 

http://pdc.iaaweb.org/?q=content/2013-flagstaff
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monitoring. In fact, only two objects among all the ones studied in [232] had a 

value  1P . 

The first multiple NEA rendezvous mission discussed in Section 5.4.3 has been 

considered as the baseline for the current scenario. That is, in the hypothesis that 

the mission is flying as scheduled, the last leg to 2014 MP shown in Table 5.6 is 

replaced to a leg to the potentially-hazardous asteroid 2011 AG5. Note that, 

according to Chodas et al. [231], a deflection that will take place after 03 

February 2023 is about 50 times harder than before such date. Nevertheless, the 

rerouted sailcraft will inevitably reach the PHA after that date, since the entire 

baseline mission starts on 2025 (Table 5.6). The solar sail can easily change its 

route and reach 2011 AG5 before the potential predicted impact with the Earth, 

thus providing detailed updates on the asteroid and its course. Moreover, this will 

be performed at the only cost of the last asteroid not being visited as scheduled. 

However, if 2011 AG5 will not collide with the Earth and destroy the mission 

control centre, the sailcraft could be, in principle, still rerouted to its original 

mission. Table 5.10 shows the properties of 2011 AG5. 

Table 5.10.  Properties of 2011 AG5
1
. 

Object 2011 AG5 

Orbital type Apollo 

Semimajor axis, AU 1.431 

Eccentricity 0.390 

Inclination, deg 3.681 

Absolute magnitude 21.8 

Estimated size, m 110-240 

EMOID, AU 0.0002 

PHA Yes 

NHATS No 

 

To find the transfer leg to the new target, the homotopic approach to solar 

sailing, described in Section 3.2, has been used at first. Firstly, a constant-mass 

low-thrust transfer between 2008 EV5 and 2011 AG5 has been computed by means 

                                         
1 Data available online at https://cneos.jpl.nasa.gov/orbits/elements.html [retrieved 08 August 

2015]. 

https://cneos.jpl.nasa.gov/orbits/elements.html
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of the indirect optimisation approach. The time of flight and the initial values of 

the costates have been determined through the PSO algorithm described in 

Appendix B.2. For this scenario, the orbits of both objects are considered 

coplanar. That is, the orbital plane of 2011 AG5 has been rotated and projected 

onto the one of 2008 EV5, as described in Eq. (3.21). Moreover, the maximum 

acceleration given by the propulsion system has been set to  2

max
1 mm sa . 

Starting from the low-thrust solution, the homotopy-continuation approach has 

been used to find a coplanar solar-sail transfer with  20.2 mm s
c

a . Then, ATOSS 

has been used to find the final three-dimensional trajectory by first changing the 

orientation of the orbital plane and then changing its inclination. 

The total mission duration is now 4,398 days (i.e. about 12 years) and the 

sailcraft arrives at the final target object on 25 May 2037, about 3 years before 

the potential impact. Figure 5.14 shows the last transfer leg between 2008 EV5 

and 2011 AG5, whereas Table 5.11 shows the updated mission parameters. Note 

that the value of the stay time related to 2011 AG5 is the time interval between 

the rendezvous and the expected impact with the Earth. 

 

 

Fig. 5.14.  Heliocentric view of the 3D transfer leg between 2008 EV5 and 2011 AG5. 
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Table 5.11.  Mission parameters for optimised sequence 1 with the last leg to 2011 AG5. 

Object Stay time, days  Start End Time of flight, days 

Earth ---  
10 May 2025 26 Feb 2027 657 

2000 SG344 123 
 

29 Jun 2027 06 Sep 2028 436 

2015 JD3 164 
 

18 Feb 2029 24 Sep 2030 584 

2012 KB4 160 
 

04 Mar 2031 29 Sep 2032 576 

2008 EV5 7.5 
 

07 Oct 2032 25 May 2037 1691 

2011 AG5 987 

 

 

Test Case 2: 2017 PDC. A second test case is considered in this subsection 

which targets the fictitious PHA 2017 PDC. This has been introduced at the 5th IAA 

Planetary Defense Conference held in Tokyo, Japan on 20171. The full description 

of the 2017 PDC hypothetical asteroid impact scenario can be retrieved at the 

JPL/NASA Center for Near Earth Object Studies (CNEOS) website2. According to 

this scenario, the asteroid 2017 PDC is discovered on 06 March 2017 and, on the 

following day, a potential impact of this fictitious object with the Earth is 

expected to be on 21 July 2027. Two months after its discovery, the asteroid has 

a probability of impact with the Earth of 1 in 100 and, therefore, its value on the 

Palermo scale is  0.22P 3, which corresponds to “a situation more threatening 

than the background hazard” [232]. Table 5.12 shows the properties of the 

fictitious asteroid 2017 PDC. 

                                         
1 Data available online at http://pdc.iaaweb.org/?q=content/2017-tokyo [retrieved 16 June 

2017]. 

2 Data available online at https://cneos.jpl.nasa.gov/pd/cs/pdc17/ [retrieved 16 June 2017]. 

3 Value obtained according to [232], considering the properties of a standard NEA. 

http://pdc.iaaweb.org/?q=content/2017-tokyo
https://cneos.jpl.nasa.gov/pd/cs/pdc17/
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Table 5.12.  Properties of 2017 PDC1. 

Object 2017 PDC 

Orbital type Apollo 

Semimajor axis, AU 2.24 

Eccentricity 0.607 

Inclination, deg 6.297 

Absolute magnitude 21.9 

Estimated size, m 110-240 

EMOID, AU 0.0008 

PHA Yes 

NHATS No 

 

Note that, because of the expected date of impact, the first multiple NEA 

rendezvous mission discussed in Section 5.4.3 is not a good candidate as a baseline 

mission. Therefore, from the results of the same sequence search performed on 

the PHA-NHATS database and discussed in Section 4.6.1, a different sequence has 

been optimised and considered as a baseline mission for a leg to 2017 PDC. Table 

5.13 shows the mission parameters for this optimised sequence. 

Table 5.13.  Mission parameters for the baseline mission for the 2017 PDC test case. 

Object Stay time, days  Start End Time of flight, days 

Earth ---  
13 Aug 2020 26 Apr 2022 621 

2005 TG50 128 
 

02 Sep 2022 13 Jan 2024 498 

2015 JF11 104 
 

25 Apr 2024 10 Jun 2026 776 

2012 BB14 139 
 

28 Oct 2026 02 Aug 2028 644 

2014 YN --- 

 

                                         
1 Data available online at 

https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=all&sstr=2017+PDC [retrieved 
06 March 2017]. 

https://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=all&sstr=2017+PDC
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As for the previous test case, in the hypothesis that the mission is flying as 

scheduled, the sailcraft is rerouted, after the second transfer leg, to go towards 

2017 PDC. The same methodology applied to the previous test case has been used, 

starting from a low-thrust solution with  2

max
2 mm sa . Nevertheless, the orbit 

of 2017 PDC is significantly different from the one of the departing object because 

of the high eccentricity and the large semimajor axis. Moreover, the time 

constraint on the mission1 and the low characteristic acceleration of the sailcraft 

make this scenario very difficult to solve and no feasible transfer trajectories have 

been found to rendezvous 2017 PDC. In fact, a solar-sail transfer leg with 

 20.73 mm s
c

a  has been found which needs more than 2,000 days to be 

performed, considering the orbit of 2017 PDC coplanar with the one of 2011 JF11. 

That is, a sailcraft with a considerably larger characteristic acceleration than the 

one considered in this study would arrive at the target object on 21 August 2030, 

which is about three years after the predicted impact with the Earth. Figure 5.15 

shows the transfer leg together with the non-dimensional acceleration vector. 

 

 

Fig. 5.15.  Heliocentric view of the coplanar transfer between 2015 JF11 and 2017 PDC 
(ac = 0.73 mm/s2). 

                                         
1 After the second leg of the baseline mission, there are only three years left to reach 2017 PDC 

before the impact with the Earth, if any. 
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Even though the sailcraft rerouting has been proven inefficient for a 

rendezvous with 2017 PDC, the same (already flying) sailcraft can still be used to 

target 2017 PDC for a fast flyby. Such a mission gives an extra (free) opportunity 

to monitor the asteroid’s path before the expected impact, even after a potential 

deflection mission takes place. In fact, if a deflection mission was successful, the 

orbit of 2017 PDC would only be slightly different from the unperturbed one1. 

Therefore, the unperturbed orbit of the asteroid can be safely considered for the 

trajectory design. 

The initial-guess solution for ATOSS has been computed by means of the 

homotopy-continuation approach, starting from a low-thrust transfer with 

 2

max
0.2 mm sa . In this case, the final spacecraft velocity is left free, since a 

flyby is considered. The optimised 3D trajectory found by ATOSS is shown in Fig. 

5.16, whereas Table 5.14 shows the mission parameters of the updated sequence 

with the addition of the flyby to 2017 PDC. After a three-year journey, the sailcraft 

reaches 2017 PDC on 07 April 2027, which is about three months before the 

expected impact. Note that no stay time at 2017 PDC is considered, since the 

sailcraft reaches the asteroid for a fast flyby. 

Table 5.14.  Mission parameters for the baseline mission for the 2017 PDC test case with the 
last leg to 2017 PDC. 

Object Stay time, days  Start End Time of flight, days 

Earth ---  
13 Aug 2020 26 Apr 2022 621 

2005 TG50 128 
 

02 Sep 2022 13 Jan 2024 498 

2015 JF11 91 
 

13 Apr 2024 07 Apr 2027 1089 

2017 PDC --- 

 

                                         
1 At the end of the PDC 2017 exercise, it was shown that the orbit of 2017 PDC after the 

successful deflection mission was such that the asteroid would miss the Earth by about 1,000 
km. 
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Fig. 5.16.  Heliocentric view of the 3D transfer trajectory to flyby 2017 PDC. 

 

5.4.6. Automated Optimisation Campaign 

The last set of test cases aims to assess the performances of both STO and 

ATOSS as automated optimisers. To do so, all the 589 preliminary sequences with 

at least three encounters and at least one PHA found for the PHA-LCDB database 

shown in Section 4.6.2 are optimised by means of the two optimisers developed. 

Moreover, the performances of ATOSS are compared to those of the sequential 

trajectory optimiser. The number of optimal solutions found and the 

computational time needed for the entire automated optimisation campaign are 

the two parameters used for the performance test. For the entire optimisation 

campaign, the NLP solver SNOPT, together with the propagated-trajectory variant 

of the shape-based approach, is used within ATOSS. 

Once the initial settings are defined at the beginning of the optimisation 

campaign, all the simulations are carried out with the same settings and with no 

user intervention. Of course, it is likely that some of the results found can be 

improved by choosing ad hoc settings for each test case so that the optimisers are 

tuned for that specific scenario (see, for instance, the “no free lunch theorems 

for optimisation” [233]). Nevertheless, this is beyond the scope of this work, which 

aims to test the capability of the developed optimisers to find as many optimal 

solutions as possible automatically. Once solutions for all the test cases have been 

found, the user can choose the most interesting ones to be further optimised. 
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The results of the automated optimisation campaign are schematically shown 

in Table 5.15. STO found a solution for 343 sequences, which is 58% of the total 

number of sequences tested. On the other hand, ATOSS found fully-optimised 

solar-sail trajectories for 390 sequences, which is 66% of the total number of 

sequences tested. The sequences optimised through ATOSS are characterised by 

84 unique NEAs. Among them, there are 58 PHAs, 11 asteroids which are part of 

the NHATS database and 28 NEAs which are part of the LCDB with  2U . 

STO took less than a month looking for solutions to all the 589 sequences found, 

performing more than 20 optimisations per day on average. On the other hand, 

when ATOSS was used on the same machine, the entire automated optimisation 

campaign took less than six days of computational time. 

These results demonstrate the reliability of both STO and ATOSS as automated 

optimisers. Moreover, such results also demonstrate the reliability of the sequence 

search algorithm described in CHAPTER 4, since more than 50% of the preliminary 

sequences found are shown to be feasible. It is interesting to compare the quality 

of the solutions found by the two optimisers. An estimate of the quality of the 

solutions can be obtained by analysing the total mission durations found by the 

two optimisers. This is done only on those sequences (292) for which both 

optimisers found a solution. Two solutions are considered equivalent if the 

difference in their mission durations is within twenty days. An analysis of the 

numerical results showed that in 285 test cases (~98%) the solutions found by 

ATOSS are shorter than those found by STO. On the other hand, STO found a 

shorter solution than ATOSS in only one test case; the two optimisers found 

equivalent solutions in the remaining six test cases (~2%). From the comparison of 

the results found by means of the two optimisers developed, it can be seen that 

ATOSS outperforms the sequential trajectory optimiser in success rate, 

computational speed and quality of the solutions found. The better performances 

of ATOSS in terms of success rate and computational speed are likely due to the 

first stage of the optimisation strategy, which has been developed in purpose to 

help the numerical convergence of the NLP solver. The second stage of the 

optimisation strategy developed within ATOSS is the reason for the better 

solutions, in terms of quality, found by ATOSS in comparison with those found by 

STO. 
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Table 5.15.  Automated optimisation campaign results. 

Optimiser 
Number of 

solutions found 
Success rate Computational time 

STO 343 58% < 30 days 

ATOSS 390 66% < 6 days 

 

5.5. Discussion 

In this chapter, two optimisation tools have been presented which are 

developed to find solutions to the solar-sailing multiple NEA rendezvous OCP. Both 

optimisers have been developed with the main goal of being mostly automatic, 

thus requiring minimal input from the user. This is because, at this stage of the 

mission design, it is more important to have many candidate mission scenarios 

rather than finding very accurate solutions. 

A number of test cases demonstrated the capabilities of the two optimisers 

presented. A five-NEA rendezvous mission is shown to be feasible in less than ten 

years with a near-term solar sail, allowing at least three months in the vicinity of 

each encounter for close-up observations. A second test case showed a mission to 

rendezvous three objects on eccentric orbits. It was shown that such very mission 

would not be feasible with a near-term electric propulsion system because of the 

limited amount of propellant available. Furthermore, three more test cases 

showed the versatility of the solar-sail propulsion system, which allows changing 

the mission even after has started. The capability to change targets en-route 

allows a mission already in flight to respond to either extreme events such as a 

potential Earth impactor being discovered or changes in the commercial/scientific 

interest. Lastly, an automated optimisation campaign demonstrated the reliability 

of both optimisers to perform without any input from the user. This is a key 

feature of the developed optimisers, since very often the numerical optimisation 

is sensitive to the optimisation parameters. Nevertheless, ATOSS showed better 

performances, in terms of success rate, computational time needed and quality 

of the solutions found, than its counterpart does. This is understandable, being 

ATOSS an upgrade of the sequential trajectory optimiser. Lastly, ATOSS allows 

setting a minimum desired stay time at each target object. This feature can be 
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fundamental in the mission design of a multiple NEA rendezvous, for which a 

minimum time for close-up observation might be needed by the onboard 

instruments. 

All the numerical test cases discussed in this section not only demonstrated the 

capabilities of the two optimisers developed but also revealed the potential of 

solar sailing to achieve goals unattainable by a classical electric propulsion 

system. 

 



 

CHAPTER 6.  

CONCLUSIONS 

This thesis presented several techniques and methodologies for preliminary 

trajectory design of multiple near-Earth asteroid (NEA) rendezvous missions 

through solar sailing. This final chapter summarises the work carried out, the tools 

developed, and the main findings of this thesis. Known limitations are also 

discussed and directions for a possible future research are drawn. 

6.1. Summary of the Work 

In this thesis, the problem of preliminary mission design for solar-sail multiple 

NEA rendezvous is tackled. A NEA rendezvous with close-up observations is 

important to improve our knowledge about these objects. A multiple rendezvous 

is even a more attractive mission because of the large population of asteroids and 

the many uncertainties that still characterise them. This, however, introduces 

several difficulties in the mission design, such as the potentially-high v  needed. 

Furthermore, the rate of NEAs’ discovery and the dynamic change in the objects 

of interest make the en-route change of the target objects an appealing 

perspective. As it was shown for the case of the Hayabusa-2 extended mission, 

however, this is usually complicated by the amount of propellant available on 

board. For this reason, solar sailing is an attractive propulsion system since its 

thrust is entirely generated by reflecting sunlight and thus no onboard propellant 

is needed. As such, it is well suited for a multiple rendezvous mission. 

The principal objective of this thesis was to develop a tool for the preliminary 

trajectory design of multiple NEA rendezvous missions through solar sailing. In 

fact, not a single tool was built but several techniques, algorithms and tools were 
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developed. These can work independently or can be easily interfaced between 

themselves and thus be used as a larger standalone toolbox able to perform the 

required multiple-NEA rendezvous mission design from the selection of the 

sequence of asteroids to the full trajectory optimisation. 

The first step towards the achievement of this objective was the development 

of a mathematical model for the fast representation of a solar-sail trajectory. This 

is the cornerstone of the entire work as a fast and reliable trajectory model is 

needed for generating preliminary sequences of encounters as well as having an 

initial approximated trajectory. The shape-based approach was considered for the 

description of the trajectory because it is a semi-analytical approach and no 

complex and time-consuming optimal control problem (OCP) needs to be solved. 

In fact, this approach consists in designing the desired shape of the trajectory by 

means of a set of chosen equations. Thus, the acceleration that the spacecraft 

shall provide to follow the planned trajectory is analytically retrieved a posteriori. 

Because of the intrinsic differences between the thrust that can be produced by 

a classical low-thrust system and a solar sail, a new set of shaping functions was 

proposed for solar sailing. This was proven to give a reliable approximation of the 

solar-sail trajectory on a number of NEA-to-NEA transfers. A second method was 

developed which generates solar-sail trajectories starting from classical low-

thrust ones. A homotopy-continuation technique is the core of the method, which 

solves several OCPs by slightly changing the acceleration model. The advantages 

and drawbacks of both methods were discussed. It appeared that the shape-based 

approach is better suited for finding a large number of trajectories in an 

automated way, whereas the second method is more suited for complex 

trajectories (such as the fast flyby of the fictitious potentially hazardous asteroid 

2017 PDC). 

The second step towards the completion of this thesis’ goal was to develop an 

algorithm to look for possible sequences of NEAs to be visited in a multiple 

rendezvous mission. In fact, it was noted that all the solar-sailing multiple asteroid 

rendezvous missions studied in the literature lack an actual search for sequences 

and the NEAs to visit are mostly handpicked. Therefore, an algorithm was 

developed which exploits the tree-like search space given by all the possible 

sequences of objects. The reason behind this choice is that this is a preliminary 

mission design study and one of the expected outcomes is to provide a set of 

feasible mission scenarios for the stakeholders. A tree search provides the user 
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with a large number of possible mission scenarios that can be chosen on the basis 

of the current cost function (e.g. available launch date, some objects are 

currently more interesting than others, etc.). Nevertheless, a complete tree 

search over the whole database of known NEAs is computationally unmanageable. 

For this reason, a reduced database made of asteroids interesting for the 

planetary defence and for the human spaceflight was considered. This allowed a 

reduction of the search-space dimensionality by more than three orders of 

magnitude. Moreover, a local pruning of those branches of the tree that are more 

likely to be unfeasible by means of the chosen sailcraft was performed at the 

beginning of each transfer leg. This was carried out based on astrodynamics 

considerations, such as the maximum change of a selected orbital element that is 

feasible by the given propulsion system in the maximum allowed time. This 

enabled a significant reduction of the number of objects to be considered. Some 

heuristics (such as the minimum/maximum allowed transfer time) gives the user 

the possibility to shape the search for sequences to suit their requirements in 

terms, for instance, of computational effort or number of sequences returned. In 

fact, stricter pruning criteria involve a reduced branching of the tree of feasible 

sequences of NEA encounters. Lastly, the shape-based approach for solar sailing 

was used to provide the trajectory within the search for sequences without the 

need of solving an OCP for each transfer leg to be tested. Despite other models 

are available in the literature which are faster than the shape-based approach 

(e.g. ballistic Lambert arc), the trajectories generated with the shape-based 

approach are more reliable. That is, there is a high probability that the 

preliminary sequences found by means of the sequence search are feasible if 

optimised with a refined trajectory model. 

The third and last step towards the achievement of this thesis’ goal was to 

develop a strategy to optimise the chosen sequences of NEAs with a refined 

trajectory model. Since a shaped solar-sail trajectory was already available from 

the sequence search, it was chosen to use it as an initial-guess solution for a 

direct-transcription optimisation technique. Moreover, multi-phase problems are 

usually easy to be dealt with if a direct optimisation method is used. Two 

optimisation strategies were developed; namely the Sequential Trajectory 

Optimiser (STO) and the Automated Trajectory Optimiser for Solar Sailing (ATOSS). 

These focused on the automation of the optimisation itself. In fact, both strategies 

require minimal input from the user and, therefore, are well suited to solve a 
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large number of OCPs in an automated way. This is a valuable feature for a tool 

for preliminary mission analysis, since a large number of possible trajectories are 

usually evaluated in the preliminary phases of the mission design. Moreover, 

ATOSS allows setting a minimum desired stay time at each target asteroid. This 

feature can be fundamental in the mission design of a multiple NEA rendezvous, 

for which a minimum time for close-up observation might be needed by the 

onboard instruments. Several numerical test cases were carried out considering 

both single and multiple rendezvous with NEAs. Specifically, the three-NEA 

rendezvous presented by Dachwald et al. was reproduced, thus validating the 

proposed optimisation strategies. Moreover, an automated optimisation campaign 

was carried out which demonstrated the ability of the developed optimisers to 

work autonomously. In fact, more than 500 solar-sail multiple-NEA rendezvous 

OCPs were solved without any interaction with the user. This test case also 

assessed the validity of the preliminary sequences returned by the asteroid 

sequence search. 

In the following subsection, the major findings of this thesis are highlighted 

and briefly discussed. 

6.2. Summary of the Findings 

Solar sailing is a very attractive propulsion system, as it was highlighted in 

Section 2.1. Nonetheless, this technology is not ready yet to be used as a 

conventional spacecraft propulsion system. Many researchers are currently 

studying solar sailing to increase its technology readiness level (TRL). For this 

reason, all the solar-sailing missions that have already flown (e.g. IKAROS and 

NanoSail-D) were mainly technological demonstrators. On the other hand, one of 

the aims of this thesis was to look at the TRL-related problem from a different 

perspective. That is, scenarios with high mission-related TRL were sought for 

solar-sailing multiple NEA rendezvous. In fact, a sailcraft with lower performances 

than the one considered by Dachwald et al. in their reference mission was used 

throughout this thesis. In this case, lower performances are expressed in terms of 

a lower characteristic acceleration. As it was shown in Section 2.1, the 

characteristic acceleration is proportional to the sail area-to-mass ratio (AMR). 

Achieving a high AMR is one of the technological challenges that many of the 
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researchers on solar sailing are currently working on. This thesis showed that a 

large number of interesting mission scenarios exists for a solar sail with 

performances within the capabilities of current and near-term DLR/ESA Gossamer 

sailcraft technology. That is, the mission-related TRL for multiple NEA rendezvous 

through solar sailing was demonstrated to be larger than it was previously thought. 

The results from the sequence search algorithm showed that several sequences 

of target NEAs are possible for a wide window of launch dates. For instance, more 

than 200 different four-NEA mission scenarios were found for each launch date 

tested within a ten-year window. It is worth reminding that all the numerical test 

cases shown were computed by considering a maximum mission flight time of ten 

years. Such large variety of potential mission scenarios demonstrates that there 

are little to no constraints on the launch window for a multiple NEA rendezvous 

mission if a solar sail is considered. 

Lastly, the unique characteristic of solar sailing of being propellantless was 

exploited in two mission scenarios related to the planetary defence. In both cases, 

it was assumed that the sailcraft was flying its planned multiple rendezvous 

mission when a potential hazardous asteroid gained importance among the 

worldwide community because of its increasing threat. Therefore, it was 

considered to deviate the sailcraft route from its original path towards the new 

target. Obviously, such a new modified mission would not be able to substitute a 

mitigation mission but it would provide the planetary-defence community with 

additional useful information about the asteroid. These test cases (which currently 

constitute only academic exercises) demonstrated the versatility of the solar-sail 

propulsion system, which can accommodate a change in the mission even after 

the launch. This would be potentially very difficult for a spacecraft that uses a 

classical low-thrust propulsion system because of the limited amount of propellant 

on board. 
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6.3. Current Limitations and Future Research 

Despite the positive results shown in this thesis, the proposed research has also 

some known limitations. These might constitute a basis for a future study. In the 

following subsections, the current limitations are examined and proposed 

directions for a future research are outlined. 

6.3.1. Current Limitations 

The research presented in this thesis was aimed to address the problem of 

preliminary mission design. As such, some approximations were considered which 

allowed the development of the described tools and thus provided a full picture 

of the solar-sailing potential for this kind of mission. The current known limitations 

of this work can be divided into two main groups and are as follows. 

 

Dynamics. The sailcraft was considered as a mass point subject only to the 

gravitational pull of the Sun and the solar radiation pressure. The asteroids were 

treated as massless points on Keplerian orbits around the Sun. As such, the 

sailcraft was assumed rendezvousing a NEA when its state matched with the one 

of the target and the gravitational interaction between the two bodies was not 

modelled. As purely two-body dynamics were considered, no planetary gravity 

assists were taken into account. Moreover, the sailcraft was considered injected 

directly into interplanetary orbit at Earth, whereas a whole new set of solutions 

arises if the possibility of having a nonzero hyperbolic excess energy at Earth is 

introduced. 

 

Solar-sail model. The work of Dachwald et al. was used as a reference for a 

near-term multiple-NEA rendezvous mission feasible by a solar sail. As such, the 

same model for the acceleration generated by the sailcraft was used. A different 

and more detailed acceleration model might be used in a future research to refine 

the baseline tools developed here. Moreover, the attitude control of the 

spacecraft was not modelled and the solar sail was considered able to perform the 

required orbital manoeuvres instantaneously. Despite this is not realistic, it was 

shown that the trajectories found after the optimisation phase require an attitude 

control effort below the allowed values found in the literature. 
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6.3.2. Proposed Future Research 

Considering the current limitations of this work discussed in Section 6.3.1, 

directions for further studies can be followed. Therefore, lines for a future 

research are proposed here. These would further improve the tools developed for 

mission design of multiple-NEA rendezvous through solar sailing, as well as give 

the possibility to widen our knowledge about near-Earth asteroids and increase 

the worldwide interest on solar sailing. 

 

Proximity operations at the asteroids. A phase can be added between two 

consecutive transfer legs in which proximity operations at the encounter are 

investigated. This would need a model for the gravitational field of the asteroid 

as well so that both the close approach and the interaction between spacecraft 

and asteroid are analysed. Some studies have already been carried out for sailcraft 

hovering about large asteroids [234, 235] or deploying landers for in-situ 

characterisation [31, 223]. These might be considered as a good inception for the 

proposed work. 

 

Hyperbolic excess energy at Earth and gravity assist of the main bodies. 

The possibility to consider a hyperbolic excess energy at Earth within the asteroid 

sequence search adds three degrees of freedom to the entire search space 

(namely, the three components of the spacecraft velocity vector when leaving 

Earth). Other than increasing the computational effort needed to find interesting 

sequences of NEAs, this potentially widens the typology of feasible missions, 

allowing trajectories to more eccentric orbits. A parametric study on solar-sail 

orbit transfers with the inclusion of hyperbolic excess velocity at Earth showed an 

interesting relation between the optimal direction of the hyperbolic excess 

velocity vector and the Lagrange multipliers [144]. This might be used as a 

reference for the proposed research direction. Furthermore, also the possibility 

to use one or more gravity assists of the main bodies (e.g. Earth, Moon and Mars, 

in this case) increases the amount and typology of potential solar-sail missions for 

multiple NEA rendezvous. A study in this direction can start by looking at the broad 

literature available on multiple gravity assist trajectory planning. 
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Trajectory refinement. A third proposed direction for future study involves a 

refinement of the trajectory by considering, for instance, a different solar-sail 

force model or the interaction between attitude and orbital dynamics. A study in 

this direction was carried out by Borggräfe within the framework of the low-thrust 

trajectory optimisation software InTrance [227]. Furthermore, N-body dynamics 

can be considered for the transfer trajectories, using models such as the circular 

restricted three-body problem (CR3BP). As such, the gravitational influence of 

major bodies like the Earth can be examined. A potential approach to this problem 

is the use of a homotopy-continuation method, such as the one described in 

Section 3.2. A homotopic transformation can be defined to link the dynamics of 

the sailcraft in the two-body problem to the solar-sail dynamics in the CR3BP. 

 

Solar-sail trajectory indicator. Indicators to compute equivalent v  for low-

thrust cases, such as Edelbaum’s formulation for near-circular orbits [236], are 

used extensively in pruning the search space for the target selection of multiple-

target mission [220]. However, as discussed in Section 4.3, the amount of v  

needed for a transfer does not provide a good indication about the feasibility of 

such a trajectory by means of the sailcraft under consideration. Therefore, a solar-

sail trajectory indicator can be investigated which would be the reciprocal of the 

equivalent v  for low thrust. As such, this can be used in addition to the pruning 

criteria already developed within the sequence search, thus further reducing the 

computational effort needed to compute the shaped trajectories. 

 



 

APPENDIX A.  

METAHEURISTIC OPTIMISATION 

METHODS: A CLOSER LOOK 

This appendix presents a brief description of two of the most studied 

metaheuristic optimisation methods, which are the genetic algorithm and the 

particle swarm optimisation. In fact, these are the two metaheuristic optimisation 

methods used to find some of the results shown within this thesis. Lastly, InTrance 

is briefly presented. Although it has not been used in this work, InTrance is a 

promising algorithm for low-thrust trajectory optimisation. Therefore, the author 

considers worthwhile giving a brief review of it. 

A.1. Genetic Algorithm 

GA simulates the natural selection within the biological evolution of species, 

as described by Darwin’s theory. This is based on the “survival of the fittest” 

concept [101] (thus the term fitness function often used instead of cost or 

objective function). GA is a population-based algorithm in which each individual 

(the so-called chromosome) contains all the information about the optimisation 

variables. First, an initial population is randomly generated. To find the optimum 

of the desired function, an evolution process is applied on the current population 

(Fig. A.1). Such evolution process consists of the following steps [101]: 
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 Evaluation: the cost function associated with each chromosome is 

evaluated. 

 Selection: some of the chromosomes are randomly (yet with a probability 

depending on their cost function) selected for reproduction. 

 Crossover: the selected chromosomes (parents) cross over to form new 

offspring (children). 

 Mutation: the new offspring mutate with a set probability. 

After the reproduction (i.e. crossover and mutation) is completed for all the 

parents, the new population is formed and is ready to be evaluated again for a 

new iteration of the evolution process. The genetic algorithm stops when some 

stopping criteria are triggered (e.g. the cost function over the entire population 

is almost the same, the value of the cost function did not change over the last 

iterations, the maximum number of iterations is reached, etc.). 

 

 

Fig. A.1.  Schematic of the GA’s evolution process. 

 

EVALUATION SELECTION

CROSSOVERMUTATION
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A.2. Particle Swarm Optimisation 

PSO is a population-based optimisation method in which each individual (the 

so-called particle) is characterised by a position r  and a velocity v  in the space 

whose coordinates are the optimisation variables. The whole algorithm mimics a 

flock of birds looking for food. Each individual knows the place in which it found 

more food (which is the so-called cognitive factor) and the place in which the 

largest amount of food has been found so far by the entire flock (which is the so-

called social factor). Therefore, the next place in which the bird will look for food 

depends on its current position and velocity (which is the so-called inertial factor), 

as well as both the cognitive and the social factors, properly weighted. Figure A.2 

shows a schematic of the state (position and velocity) evolution implemented 

within PSO. If the time evolution is seen as a succession of steps 
max

1, ,k K , the 

state history of each particle  1, ,i N  is described by the position  ( )k ir  and 

velocity  ( )k iv  of each particle i  at each step k  [102]. At each step, the current 

historical best position of each particle  ( )k

best
ip  is evaluated as 

    ( ( )) argmin kk

best
i J ip   (A.1) 

Likewise, the current historical best position of the entire swarm ( )k

best
g  is evaluated 

as 

 ( ( )) argmink

b st

k

e
Jg   (A.2) 

The velocity vector is then updated for the next step 1k  as 

                 ( )( 1) ( ) ( ) (( ) )k k k k

I

k k

best bestC S
i c i c i i c ip gv v r r   (A.3) 

in which the terms I
c , C

c  and S
c  are the inertial, cognitive and social weights, 

respectively. These are defined as [102] 
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in which  1
0,1r ,  2

0,1r , and  3
0,1r  are three independent random numbers 

between 0 and 1. Note that different values of such weights can lead to different 

convergence rates of the optimiser and can even make the difference between a 

successful and an unsuccessful run of the PSO. Lastly, the position vector related 

to the next step 1k  is updated as 

        ( 1) ( ) ( 1)k k ki i ir r v   (A.5) 

 

Fig. A.2.  Schematic of position and velocity evolution implemented within PSO. The next 
position of each particle is influenced by the current velocity, the location of its 
current personal best solution pbest, and the location of the current best solution of 
the swarm gbest [237]. 
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A.3. InTrance 

InTrance (Intelligent Trajectory optimization using neurocontroller evolution) 

is implemented as the fusion between ANNs and metaheuristic optimisation 

methods, the so-called evolutionary neurocontroller (NC). ANNs are based on the 

way the information is processed within the animal nervous systems. This process 

is “massively parallel, analog, fault tolerant and adaptive” [117] and is a good 

approach to solve general learning problems. ANNs need to be trained on a training 

set of known exemplary input-output pairs. However, the optimisation of low-

thrust trajectories is a so-called delayed reinforcement-learning problem, 

because the result of the output is visible only at the end of the integration. For 

this kind of problems, usually no training sets are available and ANNs generally 

fail to find a solution. For this reason, a metaheuristic optimisation algorithm is 

used to test the solutions found by ANN. In particular, a GA is implemented within 

InTrance but any other metaheuristic optimisation method can be, in principle, 

used. GA is employed to tune the set of parameters π  (the so-called neurons) 

used by the NC. The evolution of the (random) initial parameters is ruled by the 

fitness function that weights the input parameters on the basis of the final 

trajectory, deciding which set of neurons are more promising for the optimal 

solution. A schematic of the method implemented within InTrance for solving a 

trajectory optimisation OCP is shown in Fig. A.3. For a more exhaustive 

explanation of the evolutionary neurocontroller method, the interested reader is 

referred to [117, 227]. 

InTrance is designed to automatically find low-thrust trajectories, exploiting 

the learning behaviour of ANNs and the evolutionary characteristics of GA. 

Therefore, it is a powerful tool to find preliminary solutions to missions 

challenging from a design point of view, such as the solar-sail mission designed to 

maximise the kinetic impact with the asteroid 2004 WR [238]. Nevertheless, one 

of the main drawbacks of InTrance is the computational effort needed to find a 

solution. In fact, the double loop formed by the GA and the propagation of the 

equations of motion shown in Fig. A.3 is intrinsically computationally expensive. 

This is not a big issue if few trajectories need to be evaluated. On the other hand, 

if a large number of trajectories are needed, the computational effort needed by 

InTrance to find all the solutions becomes unmanageable. 
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Fig. A.3.  Schematic of trajectory optimisation using the evolutionary neurocontroller 
implemented within InTrance [117]. 

 

 



 

APPENDIX B.  

IMPLEMENTATION DETAILS 

B.1. MATLAB and C: A Performances Study 

The asteroid sequence search described in CHAPTER 4 is mostly coded in 

MATLAB. The analytical ephemerides are coded in C and interfaced with MATLAB 

through MEX functions, as described in [170]. Because of the significant number 

of times the ephemerides are needed within the asteroid sequence search, this 

choice was straightforward for a first speedup of the entire sequence search. 

However, a further action was needed in the code implementation for an 

additional decrease in the computational effort needed. Therefore, a study was 

carried out to locate the bottlenecks within the algorithm implementation. That 

is, a test run of the asteroid sequence search, as described in Algorithm 4.1, was 

carried out by setting the maximum depth of the BS to one (i.e. only the first leg 

of the multiple rendezvous mission was sought). The MATLAB built-in function 

profile was used to profile the execution time of all the functions called. The 

entire run took about 3.5 hours, the majority of which spent to compute the 

shaping functions. Specifically, the function that computes the Cartesian 

acceleration [Eq. (3.23)] was called almost 500,000 times for an overall time of 

more than 6,600 s. That is, more than 50% of the overall runtime was spent in 

computing r . Therefore, the function related to Eq. (3.23), as well as the one 

that computes the velocity vector [Eq. (3.5)], was implemented in C and a new 

test run was carried out. This time, the entire run took about 96 minutes, which 

is less than 50% of the previous test. The MATLAB profile highlighted the function 

that computes the boundary conditions [Eq. (3.18)] as the one that took the 

longest computational time. In fact, being called within a Newton loop (i.e. the 
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MATLAB built-in function fsolve) inside a GA, this function was called almost 

17,000,000 times for a total time of about 1,350 s (which is the 23% of the overall 

runtime). A third test run was carried out with the C implementation of the 

boundary-condition function. This took about 71 minutes, the 61% of which spent 

inside the fsolve function. Therefore, the modified version of the Levenberg-

Marquardt algorithm implemented within the MINPACK C subroutine lmdif1 was 

used instead of the MATLAB counterpart fsolve. That is, the entire function that 

computes the nonlinear constraints for GA is now coded in C and interfaced with 

MATLAB through a MEX function. A last test run was carried out which took 13 

minutes in total. The combined MATLAB/C implementation was able to reduce by 

94% the computational effort needed by the original MATLAB code. A graphical 

view of the computational times for the four aforementioned test runs is shown 

in Fig. B.1. 

 

Fig. B.1.  Computational times needed for the computation of the first leg of the asteroid 
sequence search considering four different implementations of the shape-based 
approach. 

                                         
1 Data available online at http://www.netlib.no/netlib/minpack/lmdif.f [retrieved 23 November 

2014]. 

http://www.netlib.no/netlib/minpack/lmdif.f
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B.2. PPSO: Peloni Particle Swarm Optimiser 

Following the PSO algorithm presented by Pontani and Conway [102], PPSO has 

been implemented in MATLAB. It is freely available online at 

https://uk.mathworks.com/matlabcentral/fileexchange/58895-ppso under the 

BSD 2-Clause License. PPSO has been implemented to have a custom alternative 

to the MATLAB built-in functions for GA and PSO, which are ga and particleswarm, 

respectively. Therefore, no extra effort has been put to optimise the 

implementation and the algorithm itself. Moreover, at the time PPSO was firstly 

implemented, there was no MATLAB built-in function for the particle swarm 

optimisation.  

A number of numerical cases have been tested to assess the reliability of the 

PPSO implementation. PPSO does not explicitly handle nonlinear constraints and 

thus the test cases are chosen accordingly. Moreover, both a parallelised and a 

vectorised version of the algorithm are implemented within PPSO to have the 

possibility to reduce the total runtime needed. For the test cases presented here, 

the standard sequential non-vectorised version of the code is used. In the 

following subsections, the test cases are briefly described and the results shown. 

A.1.1. Test Case 1: Rastrigin’s Function 

Test case 1 is the Rastrigin’s function, which is the example used in the MATLAB 

User’s Guide [204] to show how to minimise a function with the GA. Two 

independent variables 1
x  and 2

x  are used for this test case. Thus, the objective 

function is 

            
1

2

2

2

1 22 1
, 20 10 cos 2 cos 2J x x xx xx   (B.1) 

and the known global minimum is       
1 2
, 0,0 0J x x J . The performances of 

PPSO are compared with those of the MATLAB built-in functions ga and 

particleswarm. Table B.1 shows the non-default settings considered. Because of 

the statistical convergence of the metaheuristic optimisation algorithms, each 

optimiser is run 100 times. The number of times the optimiser finds the optimum 

(which is, the success rate), within the set tolerance 
opt

, is the measure of the 

performances used for this test case. 

https://uk.mathworks.com/matlabcentral/fileexchange/58895-ppso
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Table B.1.  PPSO Test Case 1: Non-default settings. 

Setting Value 

Optimiser’s function tolerance 
810  

Maximum number of iterations 
max

K  500 

Population size 25 (PPSO and particleswarm), 100 (ga) 


opt

 
310  

 

The results of Test case 1 are shown in Table B.2. The average number of function 

evaluations among the successful runs only is used as an estimate of the 

optimisers’ speed. This is done to avoid external factors that might affect the 

results. However, it has been noted that the rankings based on the average 

number of function evaluations mirror those based on the cpu time. For what 

concerns the success rate, it can be seen that PPSO is the most reliable optimiser 

among those tested. Regarding the speed, PPSO rates second in the ranking. 

Table B.2.  PPSO Test Case 1: Results. 

Optimiser Success Rate Average Function Evaluations 

PPSO 100% 7014 

ga 78% 9427 

particleswarm 95% 3068 

 

A.1.2. Test Case 2: Simple Function of Two Variables 

Test case 2 is the example used in the MATLAB User’s Guide [204] to show how 

to minimise a function with the built-in function particleswarm. Two independent 

variables 1
x  and 2

x  are used for this test case. Thus, the objective function is 

      
1 22

2 2

1 1
, expJ x x x x x   (B.2) 

and the known global minimum is         
1 2
, 2 2,0 0.4289J x x J . The 

performances of PPSO are compared with those of the MATLAB built-in functions 

ga and particleswarm. Table B.3 shows the non-default settings considered. As in 

the previous case, each optimiser is run 100 times. 
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Table B.3.  PPSO Test Case 2: Non-default settings. 

Setting Value 

Optimiser’s function tolerance 
810  

Maximum number of iterations 
max

K  500 

Population size 30 (PPSO and particleswarm), 100 (ga) 


opt

 
310  

 

The results of Test case 2 are shown in Table B.4. For what concerns the success 

rate, it can be seen that PPSO is the most reliable optimiser among those tested. 

Regarding the speed, PPSO rates second in the ranking. 

Table B.4.  PPSO Test Case 2: Results. 

Optimiser Success Rate Average Function Evaluations 

PPSO 77% 4446 

ga 74% 7759 

particleswarm 10% 1607 

 

A.1.3. Test Case 3: CEC 2005 

Test case 3 aims to test the performances of PPSO against some of the test 

functions considered for the Congress on Evolutionary Computation (CEC) 2005 

[239]. The functions 1 – 6 and 8 – 14 are tested, considering the problem dimension 

10D . The interested reader is referred to [239] for a detailed description of the 

single functions. Each function is tested 25 times and the success rate is used as 

a performance index. Also in this case, PPSO is compared to ga and particleswarm. 

Moreover, the two versions of PSO that competed in CEC 2005 are used as a further 

comparison. These are: 519-PSO [240] and 620-PSO [241] (the names are those 

given by the congress organisers as unique identifiers). 

Table B.5 shows the results of Test case 3. Note that, on average, PPSO 

performs better than the two MATLAB built-in optimisers and in line with the 

results of the two PSO that took part in the competition. In fact, PPSO is able to 

find more solutions than 519-PSO and 620-PSO for more than one test function. 

Moreover, PPSO was coded using a standard implementation of the particle swarm 

theory, whereas both 519-PSO and 620-PSO were implemented with the purpose 

to improve the standard implementation of PSO. 
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Table B.5.  PPSO Test Case 3: Results. 

Function PPSO particleswarm ga 519-PSO 620-PSO 

1 96% 100% 100% 100% 100% 

2 100% 100% 96% 100% 100% 

3 0% 0% 0% 0% 100% 

4 92% 0% 0% 100% 0% 

5 100% 100% 0% 100% 80% 

6 4% 12% 0% 0% 100% 

8 0% 0% 0% 0% 100% 

9 0% 0% 8% 0% 0% 

10 0% 0% 0% 0% 0% 

11 0% 0% 0% 0% 76% 

12 16% 8% 0% 0% 0% 

13 0% 0% 0% 0% 0% 

14 0% 0% 0% 0% 88% 

 

A.1.4. Test Case 4: Optimal Two-Impulsive Transfer between 

Two Circular Orbits 

Test case 4 aims to test PPSO on a simple space-trajectory problem. This test 

case, which is the second example in [102], describes a two-impulsive transfer 

between two circular orbits. The goal is to find the impulsive thrust, in terms of 

magnitude and direction, such that the total v  is minimised. In this case, the 

optimal known solution is given by the Hohmann transfer. Therefore, a run is 

considered successful if the difference between the total v  found by the 

optimiser and the known optimal one is less than a set tolerance 
opt

. Defining   

as the ratio between arrival and departing radius, ten scenarios are considered 

with   2, ,11, as in the reference paper. For each scenario, both PPSO and ga 

are used and run 100 times. Table B.6 shows the non-default settings used for the 

two optimisers, whereas Table B.7 shows the results in terms of success rate and 

average function evaluations. 
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Table B.6.  PPSO Test Case 4: Non-default settings. 

Setting Value 

Optimiser’s function tolerance 
1010  

Maximum number of iterations 
max

K  500 

Population size 30 (PPSO), 100 (ga) 


opt

 
1010  

 

Table B.7.  PPSO Test Case 4: Results. 

  

PPSO ga 

Success 

Rate 

Average Function 

Evaluations 

Success 

Rate 

Average Function 

Evaluations 

2 100% 8,124 0% --- 

3 100% 8,179 0% --- 

4 100% 8,315 0% --- 

5 100% 8,536 3% 5,332 

6 100% 8,324 6% 5,329 

7 100% 8,719 7% 5,326 

8 100% 8,658 9% 5,325 

9 100% 9,018 9% 5,327 

10 100% 8,974 11% 5,335 

11 100% 8,883 13% 5,324 

 

A.1.5. Test Case 5: Bi-Impulsive Earth-Apophis Transfer 

In the last test case, the bi-impulsive Earth-Apophis transfer described in [110] 

is considered. Three values for the population size are considered for both PPSO 

and ga, as done in the reference paper. In this case, each optimiser is run 200 

times and a solution is considered optimal if the value of the objective function 

differs from the known optimum by at most 
opt

. A maximum number of function 

evaluations is allowed for each test, as shown in Table B.8. Table B.9 shows the 

results, in terms of success rate, compared with the three versions of PSO 

described in [110], namely PSOn05, PSOn07 and PSOn09 with   5,10,20n  

depending on the population size considered. Note that, if a population of 10 

particles is considered, PPSO performances are inferior to the others. For the case 
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of a population of 20 particles, the performances of PPSO are in line with the 

other optimisers. Lastly, the success rate of PPSO with a population size of 40 

particles is the best one. 

Table B.8.  PPSO Test Case 5: Non-default settings. 

Setting Value 

Maximum number of function 

evaluations 
10,000 

Population size 10, 20, 40 (PPSO), 100, 200, 400 (ga) 


opt

 
310  

 

Table B.9.  PPSO Test Case 5: Results. 

Optimiser Population Size Success Rate 

PPSO 10 25.5% 

PPSO 20 36% 

PPSO 40 62% 

ga 100 22% 

ga 200 44% 

ga 400 53% 

PSO505 10 35.5% 

PSO1005 20 34.5% 

PSO2005 40 41% 

PSO507 10 39.5% 

PSO1007 20 42.5% 

PSO2007 40 41% 

PSO509 10 43.5% 

PSO1009 20 38.5% 

PSO2009 40 42% 
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