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Abstract 
 
Infections due to Streptococcus pneumoniae (the pneumococcus) remain a substantial 

source of morbidity and mortality in both developing and developed countries despite a 

century of research and the development of effective therapeutic interventions (such as 

antibiotic therapy and vaccination). The ability of the pneumococcus to evade multiple 

classes of antibiotic through several genetically determined resistance mechanisms and its 

evasion of capsular polysaccharide based vaccines through serotype replacement and 

capsular switching, all reflect the extensive diversity and plasticity of the genome of this 

naturally transformable organism which can readily alter its genome in response to its 

environment and the pressures placed upon it in order to survive. 

The purpose of this thesis is to investigate this diversity from a genome sequence 

perspective and to relate these observations to pneumococcal molecular epidemiology in a 

region of high biodiversity, the pathogenesis of certain disease manifestations and assess 

for a possible bacterial genetic basis for the pneumococcal phenotypes of, “carriage” and, 

“invasion.”  

In order to do this, microarray comparative genomic hybridization (CGH) has been utilized 

to compare DNA from a variety of pneumococcal isolates chosen from 10 diverse 

serotypes and Multilocus Sequence Types and from clinically relevant serotypes and 

sequence types (particularly serotypes 3, 4 and 14 and sequence types ST9, ST246 and 

ST180)) against a reference, sequenced pneumococcal genome from an extensively 

investigated serotype 4 isolate – TIGR4.  

Microarray comparison of the transcriptional profiles of several isolates has also been 

undertaken to compare gene expression from isolates of serotype 1 (ST227 and ST306) 

and serotype 3 (ST180) related to particular disease states and exposure of a multi-resistant 

pneumococcus to an antimicrobial (clarithromycin) commonly used to treat pneumococcal 

pneumonia. 
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1 Introduction 

Infections due to Streptococcus pneumoniae (the pneumococcus) remain a substantial 

source of morbidity and mortality in both developing and developed countries despite a 

century of research and the development of therapeutic interventions such as multiple 

classes of antibiotics and vaccination. The World Health Organisation estimates that in 

developing countries 814,000 children under the age of five die annually from invasive 

pneumococcal diseases (Scott, 2007) with an estimated 1.6 million deaths affecting all ages 

globally (WHO, 2007).  

The ability of some isolates of S. pneumoniae to evade many antibiotic classes through 

several distinct genetically determined resistance mechanisms and pneumococcal evasion 

of capsular polysaccharide based vaccines through serotype replacement and capsular 

switching, along with the discovery of 91 distinct polysaccharide capsular types and over 

4000 Multi Locus Sequence Types (MLST) all reflect the extensive diversity and plasticity 

of the genome of this naturally transformable organism which can readily alter its genome 

to survive in response to its environment and the pressures placed upon it. 

The purpose of this thesis is to investigate this genomic diversity from a genomic sequence 

perspective using contemporary microarray and sequencing technology and to relate these 

findings to the epidemiology of invasive pneumococcal disease (IPD) and carriage with the 

intent of further understanding a genetic basis for pneumococcal disease pathogenesis and 

the response of pneumococci to specified currently available therapeutic options.  

1.1 Taxonomy of Streptococcus pneumoniae 

The taxonomy of Streptococcus pneumoniae (the pneumococcus) has undergone a 

dynamic process since separate initial descriptions in saliva by Pasteur (Pasteur, 1881) and 

as Micrococcus lanceolatus by Sternberg (Sternberg, 1881). For instance, in 1903 

Schottmuller described Streptococcus mucosus (Schottmuller, 1903) but  within a couple 

of years (Park et al., 1905, Collins, 1905) it was reclassified as a pneumococcus (a term 

used since 1886 (Fraenkel, 1886)) on the basis of its biochemistry and specific 

agglutination and agglutinin absorption tests despite its markedly different mucoid 

morphology on solid agar.  From 1926 the genus Diplococcus was used until 1974 when it 

changed to Streptococcus pneumoniae (Musher, 2005). More recently, it has become clear 
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that the species boundaries between S. pneumoniae and particularly Streptococcus mitis 

and Streptococcus oralis are not easily defined (Whatmore et al., 2000). 

Such a catalogue of reclassifications and disputed identification reflects the remarkable 

phenotypic diversity of the pneumococcus, which in turn reflects the substantial genomic 

and transcriptional diversity of the organism, resulting from a constellation of several 

interacting mechanisms – the investigation of which is the focus of this thesis. 

1.2 Phenotypic identification and characteristics o f 

Streptococcus pneumoniae 

Streptococcus pneumoniae is a Gram positive coccus which can be identified by its 

production of α-haemolysis on blood agar, bile solubility, inhibition by ethyl 

hydrocupereine (optochin) and catalase negativity (Musher, 2005). It is noteworthy that the 

Gram stain itself was developed by Christian Gram as a means to distinguish the 

pneumococcus from other pathogens in specimens taken from patients with lobar 

pneumonia (Gram, 1884).  One or more of these tests may be inconclusive and further 

phenotypic tests such as agglutination with anti-pneumococcal polysaccharide capsule 

antibodies or genotypic tests can be required to distinguish the isolate from closely related 

oral streptococci (Whatmore et al., 2000, Hanage et al., 2005) although even some of these 

tests may also be inconclusive in rare instances (Dowson, 2004).   

1.2.1.1 A History of Serotyping Streptococcus pneumoniae  

In 1909 Neufeld and Haendel raised antibodies to pneumococci in horses and donkeys, 

allowing serological identification (Neufeld and Handel, 1909). This was repeated with a 

second strain in 1910 (Neufeld and Handel, 1910). In 1913, A.R Dochez and L.J. Gillespie 

at the Rockefeller Institute in New York (Dochez and Gillespie, 1913) and Frederick Lister 

at the South African Institute for Medical Research in Johannesburg (Lister, 1913) 

published serologically based typing schemes for pneumococci. The Rockefeller Institute 

scheme described Types I, II, III and IV of which Types I, II and III were identified 

serologically and Type IV was a group for pneumococci found not to react with their three 

sera. There was overlap with Lister’s typing scheme as Type I corresponded to Lister’s 

Group C, Type II corresponded with Lister’s Group B and Type III corresponded to 

Lister’s Group E (Urquhart, 1921). Consequently the Lister scheme fell into disuse.  
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To complicate matters, the Rockefeller Institute Type II was found to be a heterogeneous 

group (Urquhart, 1921) and probably consisted of several different contemporary 

serotypes. It is likely that since Type 1 was homogeneous and since clinical descriptions of 

Type 1 associated disease patterns match those described for the contemporary serotype 1, 

that the Rockefeller Type 1 pneumococcus is equivalent to the modern serotype 1 

pneumococcus. 

Avery et al in 1917 at the Rockefeller Institute, proposed that Pneumococcus mucosus, 

described as, “larger, rounder, and less lanceolate than other types of pneumococcus,” and 

possessing, “a large distinct capsule,” which grew on blood agar with colonies which were, 

“moist, mucoid, and confluent” should become known as their Type III pneumococcus 

(Avery et al., 1917). This phenotypic description matches that seen for contemporary 

serotype 3 isolates although mucoid colonies can be seen in serotypes 1, 3, 6, 8, 18, 20, 23 

and 25 (Gransden et al., 1985). Avery et al addressed this in 1917 saying, 

 “For these reasons the identification of Type III pneumococcus by 
morphologic and cultural characteristics is not always absolute, and the 
diagnosis should be established by immunologic methods, when Type III 
serum is available (Avery et al., 1917).”  

However, it was not until 1934 when type III could be distinguished serologically from the 

phenotypically similar Type VIII (Finland and Sutliff, 1934) so only after 1934 is it fair to 

conclude that descriptions of the Type III pneumococcus are equivalent to the 

contemporary serotype 3 pneumococcus.  

Standardisation of the Rockefeller typing scheme in Great Britain is documented by Glynn 

and Digby (Glynn and Digby, 1923), who note that from 1920, diagnostic and treatment 

sera for use in Britain by the Medical Research Council was supplied by the Rockefeller 

Institute. Standardisation of antipneumococcal serum had been practiced at the Rockefeller 

Institute since 1917 (Cole and Moore, 1917).  

The Quellung technique for serotyping the pneumococcus became the preferred method for 

serotyping in 1932 (Neufeld and Etinger-Tulczynska, 1932) although first described in 

1902 (Neufeld, 1902). Between the end of World War II and the early 1980s there was 

little international agreement regarding pneumococcal nomenclature based on serotyping 

and the reasons for this are reviewed by Henrichsen (Henrichsen, 1999). The most recent 

serotype to be discovered was 6C in 2007 (Park et al., 2007) bringing the current total of 
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recognised serotypes to 91 and reinforcing observations by Waltman et al  (Waltman et al., 

1991) that there is often substantial diversity within serogroups.  

 

1.3 Genetic typing of Streptococcus pneumoniae   

Typing methodologies based on the pneumococcal genetic structure have been developed. 

These genetic typing schemes are reviewed below although it is worth noting that many 

early methods were only useful for examining genetic relatedness in temporally and 

geographically restricted studies (Robinson et al., 1998).  

The need for standardised molecular typing schemes has been due in part to the 

international spread of clones of multiply antibiotic resistant pneumococci (Hermans et al., 

1997b) and after the establishment of the Pneumococcal Molecular Epidemiology Network 

(PMEN) in 1997, guidelines for molecular typing surveillance were published (McGee et 

al., 2001a). It is becoming apparent though that, even with current technologies, 

 “the clearest picture of invasiveness and genetic relatedness can be viewed 
when typing methods are used collectively (Obert et al., 2007).”  

1.3.1.1  Pulsed Field Gel Electrophoresis (PFGE) 

PFGE was first described for the pneumococcus by Lefevre et al (Lefevre et al., 1993) and 

has been used in several studies to establish the genetic relatedness of pneumococcal 

isolates (Hermans et al., 1995, Obert et al., 2007, Porat et al., 2006, McGee et al., 2001b, 

Tsolia et al., 2002, Rossi et al., 1998, Watanabe et al., 2003, Hall et al., 1996). In general it 

consists of generating fragments of chromosomal DNA using the restriction enzyme SmaI 

and then separating them using gel electrophoresis. As experimental conditions are not 

always identical between studies, the comparison of results over time and between 

different laboratories is fraught with difficulties. It is labour intensive and does not lend 

itself well to computerised interpretation (Hermans et al., 1995).   Maiden et al  also 

propose that PFGE is better suited to investigating outbreaks as it is discriminatory enough 

to distinguish between strains circulating within a geographical area but is not 

discriminatory enough for long term epidemiological surveillance (Maiden et al., 1998).  

1.3.1.2  Restriction Fragment End Labelling (RFEL) 

RFEL was described by Van Steenbergen et al in 1995 (Van Steenbergen et al., 1995). 

Although similar to PFGE, smaller DNA fragments are produced by RFEL and 
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pneumococcus specific reference bands can be produced which aids computer assisted 

analysis of results (Hermans et al., 1995). It has been used to identify clones of antibiotic 

resistant pneumococci (Hermans et al., 1997b) as well as clustering within penicillin 

susceptible strains (Overweg et al., 2000a).  

1.3.1.3  Restriction Fragment Length Polymorphisms (RFLP) 

RFLP was an uncommon method used mainly in the 1990s as a means of assessing clonal 

relationships between similar isolates of the same serotype (Swiatlo et al., 1996, Robinson 

et al., 1998). Pneumococcal genomic DNA was digested with the restriction enzyme 

HindIII, separated by gel electrophoresis and pressure or vacuum transferred to a nylon 

membrane where hybridization of fragments with probes of a recognised pneumococcal 

gene (such as pspA) or an insertion sequence (such as IS1167) occurred. The resulting 

banding patterns are used to denote different subtypes. Often RFLP was used in 

combination with another method of investigating genetic relationships such as MLEE 

(Robinson et al., 1998) and penicillin binding protein gene fingerprinting (Hermans et al., 

1997b). 

1.3.1.4  Penicillin Binding Protein Gene Fingerprin ting 

The discovery that alleles for penicillin binding proteins (pbps) in the pneumococcus were 

heterogenous permitted their use in an early molecular typing scheme for the 

pneumococcus.  The genes for pbps 1A, 2B and 2X were amplified from genomic DNA by 

Polymerase Chain Reaction (PCR). The purified genes for pbps were then digested by 

restriction enzymes using methodologies similar to RFLP (Munoz et al., 1991, Hermans et 

al., 1997a, McGee et al., 2001b, Swiatlo et al., 1996, Kell et al., 1993, Coffey et al., 1991). 

Like many early typing schemes, although significant genomic diversity could be 

demonstrated, gel results were difficult to interpret, hard to standardise and therefore hard 

to reproduce by different laboratories. 

1.3.1.5  BOX fingerprinting 

BOX fingerprinting for pneumococci is a method which has been superseded by 

contemporary techniques. Essentially genomic DNA was digested by a restriction enzyme 

and separated by gel electrophoresis and hybridized against an oligonucleotide probe (a 

section of or the entire BOX repeat – a repetitive mosaic sequence comprised of boxA, 

boxB or boxC subunits found in the pneumococcal genome (Koeuth et al., 1995, Van 

Belkum et al., 1996) ). This allowed clustering of strains sharing identical fingerprints or 

banding patterns. BOX fingerprint clusters often did not correspond to clustering based on 
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serotyping (Hermans et al., 1995, Rodriquez-Barradas et al., 1997, McGee et al., 2001b, 

Mollerach et al., 2004) or RFLP results (Robinson et al., 1999). BOX fingerprinting has 

been used in combination with RFLP using the IS1167 sequence to determine IS1167-

boxA genotypes but it was concluded that,  

“markers such as IS1167 and boxA are not ideal for dealing with the large 
genotypic diversity seen in cross-sectional samples of pneumococci (Robinson 
et al., 2001).”  

It did have an  application in investigating pneumococcal outbreaks (Ertugrul et al., 1997). 

1.3.1.6  Multi Locus Enzyme Electrophoresis (MLEE) 

MLEE was developed in the mid 1980s  (Selander et al., 1986) and used extensively to 

investigate genetic diversity of the pneumococcus in the 1990s (Hall et al., 1996). This 

method detects variation within housekeeping enzymes and their differing electrophoretic 

mobilities (Feil et al., 2000a). It was used to demonstrate diversity of penicillin resistance 

genes (Kell et al., 1993), capsule (Sibold et al., 1992) and Immunoglobulin A1 protease 

(Lomholt, 1995) and often used in studies in combination with other methods such as 

RFLP (Robinson et al., 1998), PFGE (Hall et al., 1996) and penicillin binding protein gene 

fingerprinting (Coffey et al., 1991). However, MLEE can produce ambiguous results as it,  

“relies on the indirect assignment of alleles based on the electrophoretic 
mobility of enzymes, and indistinguishable mobility variants may be encoded 
by very different nucleotide sequences (Maiden et al., 1998).”   

It did, however, pave the way for Multi Locus Sequence Typing.  

1.3.1.7  Multi Locus Sequence Typing (MLST) 

The development of Multi Locus Sequence Typing (MLST) (Enright and Spratt, 1999b, 

Enright and Spratt, 1998) generated a genotyping method which sequences seven 

conserved housekeeping genes (aroE, gdh, gki, recP, spi, xpt, ddl) assigning each unique 

allele with a number, allowing relatedness between isolates to be identified with a 

numerical code and overall sequence type which is easily reproducible and  comparable 

between laboratories thereby providing unambiguous results which are electronically 

portable and suitable for global surveillance studies via the internet (Obert et al., 2007). It 

has been successfully automated (Jefferies et al., 2003).   
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The depositing of MLST sequence data in an internet based repository1 greatly enhances a 

global understanding of bacterial epidemiology and the development of software such as 

eBURST (electronic Based Upon Related Sequence Types) allows the construction of 

identifiable genetic lineages and clusters (Feil et al., 2004). The contributions of 

recombination and mutation to clonal divergence can also be assessed using this data (Feil 

et al., 2000b). 

MLST has a further advantage as it can be performed after PCR amplification of DNA  

extracted directly from clinical material or non-viable organisms and, unlike serotyping, 

can be performed on uncapsulated organisms (Hanage et al., 2005) which can both 

improve diagnostic yields and epidemiological surveillance (Maiden et al., 1998).  The 

advantages, disadvantages and clinical applications of MLST are reviewed by Sullivan et 

al (Sullivan et al., 2005). 

1.3.1.8  Multi Locus Variable Number of Tandem Repe at Analysis 

(MLVA) 

MLVA was proposed for use as a typing scheme for epidemiological studies by Koeck et 

al (Koeck et al., 2005). They used a set of 16 polymorphic tandem repeat sequences 

identified from published fully sequenced pneumococcal genomes from which 49 

genotypes of pneumococci were identified.  Although it was claimed to be cheaper and 

requiring less expertise than MLST, it has not competed well against the popularity of 

MLST.  

1.3.1.9  Multi Invasive Locus Sequence Typing (MILS T) 

Multi Virulence Sequence Typing is a further development of the MLST scheme which 

adds virulence genes to the housekeeping genes used in the profiling of bacteria. It has 

been used for typing Listeria monocytogenes with greater discriminatory power than 

MLST alone (Zhang et al., 2004). This typing scheme has been adapted for pneumococci 

by Obert et al, to form a scheme which they termed MILST (Obert et al., 2007) and which 

they propose not as a replacement for MLST but as an expansion of the scheme. 

1.3.1.10 Microarray Comparative Genomic Hybridizati on (CGH) 

One of the most utilised applications of microarray technology is to allow comparison of 

bacterial genomes and identify conserved regions and regions of diversity. The first 

                                                 
1 http://www.mlst.net {accessed 10th December 2008} 
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applications of this technology to examine the pneumococcal genome demonstrated that 

some genes such as hyaluronidase, neuraminidase A or neuraminidase B, autolysin or 

pneumolysin were highly conserved while sequence variation could be demonstrated for 

cell surface proteins such as pneumococcal surface protein C, other choline binding 

proteins and the trimethoprim resistance gene dihydrofolate  reductase (dhfr) (Hakenbeck 

et al., 2001). The absence of genes such as some capsular genes when comparing the R6 

and TIGR4 genomes resulted in an understanding that there were significant regions of 

diversity in the pneumococcal genome and attempts at identifying a set of “core” genes. 

This has also been possible for CGH studies of Enterococcus faecalis (Aakra et al., 2007) 

and Staphylococcus aureus (Lindsay et al., 2006). Cassone et al review examples of the 

application of CGH to the study of intra- and inter- species genomic diversity for 

Mycobacteria, Salmonella and Yersinia species (Cassone et al., 2007). 

Hollingshead and Briles observe that,  

“there is also valuable information to be gleaned from knowing the sequence of 
more than one genome within the same species. Additional genome sequence 
data for well-chosen strains will yield important clues to solving certain 
puzzles about the biochemical diversity, the virulence and pathogenesis range 
and/or the evolution of bacterial species (Hollingshead and Briles, 2001).”   

The CGH studies which follow in subsequent chapters are designed to enhance such 

understanding of the diversity of the pneumococcal genome by comparing clinically 

relevant pneumococcal isolates with the established sequenced pneumococcal genomes 

TIGR4 and R6 and also assess diversity in more recently sequenced pneumococcal 

genomes. 

1.3.1.11 Transcriptome Microarrays 

Rather than comparing gene sequences from genomic DNA, bacterial transcriptome 

microarrays assess the presence or absence of expression of genes by taking total 

messenger RNA expressed by the organism, under carefully controlled conditions, and 

synthesizing cDNA from the RNA by reverse transcription. The cDNA is then hybridized 

against the DNA sequences of the microarray. As such, they are, 

“a powerful tool to dissect regulatory networks (Rimini et al., 2000).” 

The first transcriptome  microarrays were for partial or full genomes (Escherichia coli 

(Richmond et al., 1999, Chuang et al., 1993) and Saccharomyces cerevisiae (De Risi et al., 

1997, Wodicka et al., 1997)).  
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De Saizieu et al, 1998 used the first pneumococcal transcript oligonucleotide microarray, 

which contained only 100 genes, to investigate gene expression during competence (De 

Saizieu et al., 1998). With regard to pneumococcal disease pathogenesis, microarrays have 

been employed in the investigation of the genetic basis of autolysis (Sublett et al., 2004), 

the genetic basis of capsule loss (Ogburn and Dowson, 2004), competence (Mascher et al., 

2003, De Saizieu et al., 1998, Peterson et al., 2004, Peterson et al., 2000, Rimini et al., 

2000), mechanisms of iron uptake (Ulijasz et al., 2004b), the vancomycin stress response 

(Sublett et al., 2004) and the transcriptional adaptation of pneumococci to various 

environmental changes (Pandya et al., 2005, Novak et al., 1999, Hendriksen et al., 2004). 

One potential limitation of this approach though is that microarrays can only detect genes 

which are on the array so whole pathways may not be represented if they involve novel 

genes.  

1.3.1.12 Genome Sequencing 

The first published whole genome sequences for bacteria began to appear in the mid-1990s 

beginning with that of Haemophilus influenzae in 1995 (Fleischmann et al., 1995). As 

early as 1991, partial sequences of a pneumococcal genome (located on SmaI and ApaI 

fragments) were used to construct a map of the genome (Gasc et al., 1991). 

Initial sequencing of regions of a pneumococcal genome (R6) with the aim of identifying 

potential drug targets (amino-acyl tRNA synthetase and ribosomal protein genes) are 

described by Baltz et al (Baltz et al., 1998). The first comparative analysis of a draft 

pneumococcal genome was published in 2001 where the draft genome of G54 (a serotype 

19F strain) was compared with the genome of Streptococcus pyogenes (Dopazo et al., 

2001).  Currently, according to the National Center for Biotechnology Information (NCBI) 

Genome Project2, there are six completely sequenced pneumococcal genomes with a 

further 14 in progress and a further 16 at an assembly stage. The list of genomes, “in 

progress,” includes the ATCC700669 serotype 23F isolate (used in Chapter 3) at the 

Wellcome Trust Sanger Institute but does not include the OXC141, INV104B or INV200 

isolates (used in Chapter 3) which have also been sequenced by conventional Sanger 

sequencing (using dideoxynucleotide sequence termination and capillary electrophoresis 

with fluorescent marker excitation by laser (Ryan et al., 2007, Metzker, 2005)) and are 

available from the Wellcome Trust Sanger Institute website3. Neither does it include the 

                                                 
2http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids

=12328  {accessed 17th November 2008} 
3http://www.sanger.ac.uk/Projects/S_pneumoniae/ {accessed 17th November 2008} 



  Chapter 2, 27 

sequencing of isolates 03-2672, 03-3038, 06-1370 (used in Chapter 10), nor 02-1198, 03-

4156, 03-4183, 07-2838, 99-4038 and 99-4039 (used in Chapters 6 and 10) which are 

being sequenced at the Wellcome Trust Sanger Institute using high-throughput 454 Life 

Sciences Corporation (Roche, USA) pyrosequencing methodologies (Margulies et al., 

2005) recently described in the sequencing of Salmonella typhi (Holt et al., 2008) and 

pneumococci (Hiller et al., 2007).   

Knowing the genome sequence of a pathogen doesn’t necessarily mean that knowledge 

regarding gene function is known although it can be inferred (Tang and Moxon, 2001). 

From these inferences, potential antimicrobial drug targets  (Brazas and Hancock, 2005) or 

vaccine candidate molecules (Wizemann et al., 2001) can be identified although sequence 

similarity should be combined with other evidence such as experimental data to assign 

function (Kaushik and Sehgal, 2008). Comparative genome analysis is useful for assigning 

function to unknown genes  as gene and protein homologs in different bacteria are likely to 

be functionally linked and have similar degrees of conservation within the same pathways 

(Martin et al., 2003b). 

Bacteria which show substantial diversity (even within the same serotype) have a gene 

repertoire which can be divided into a “core” genome comprising essential genes such as 

housekeeping genes, a “dispensable” genome and “strain specific genes” which may confer 

selective advantages such as adaptation to particular environments (Kaushik and Sehgal, 

2008, Fraser-Liggett, 2005). When an ST180 serotype 3 strain (0100993) was compared 

with TIGR4, a variety of chromosomal rearrangements and variations due to mobile 

genetic elements were discovered along with 17 novel genes not present in TIGR4 

(Oggioni et al, 2001). The first full comparison of pneumococcal genomes was published 

by Bruckner et al in 2004, who compared the TIGR4 and R6 genomes. They noted that the 

two genomes differed in size (2 versus 2.16Mb) and in approximately 10% of their gene 

content (Bruckner et al., 2004). R6 was noted to contain 69kb of genetic material not seen 

in TIGR4 and TIGR4 has 157kb of genetic material not seen in R6 (Bruckner et al., 2004). 

This is similar to the situation in non-typeable Haemophilus influenzae isolates where 

around 10% of the gene content of 10 isolates was identified as novel compared to the 

sequenced H. influenzae Rd KW20 genome with many of these unique genes non-

uniformly distributed in the genome (Shen et al., 2005). Shen et al, were later to describe 

58 novel genes from 8 pneumococcal isolates (serotypes 3, 6A, 9F, 11, 14, 18C, 19F and 

23F) which were not present in either the TIGR4 or R6 genomes (Shen et al., 2006a). 

Consequently, attempts have been made to try to identify a core pneumococcal genome 

(Hiller et al., 2007, Obert et al., 2006). It is becoming clear though that the sequence of a 
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single pneumococcal genome (e.g. TIGR4) and even of the multiple pneumococcal 

genomes becoming available (Hiller et al., 2007) may not adequately represent the full 

extent of genomic diversity of this bacteria. 

1.4 Pneumococcal Carriage 

Pneumococci predominantly colonise the human nasopharynx and in the vast majority of 

instances do not progress to cause invasive disease. In the first two years of life, 95% of 

children can be colonized with pneumococci  and 73% can carry at least two serotypes 

simultaneously (Obaro and Adegbola, 2002).  Nasopharyngeal colonization can begin as 

early as the day of birth. The duration of carriage for a particular serotype is commonly 2.5 

to 4.5 months and the duration of carriage decreases with each successive pneumococcal 

serotype. This duration of carriage is inversely correlated with age (Gray et al., 1980) as 

pneumococcal carriage declines as children grow older (Bogaert et al., 2004). 

Historical observations regarding the carrier state for Type I and Type III pneumococci are 

often different in the pre-antibiotic era when compared with modern times. Modern 

accounts tend to suggest that it is uncommon to find serotype 1 being carried by 

individuals (Brueggemann and Spratt, 2003, Brueggemann et al., 2003) and it has been 

claimed that, 

 “serotype 1 is almost never carried (Brueggemann et al., 2004),”  

It is erroneous to conclude that such a state cannot occur. Several historical accounts from 

the pre-antibiotic era make it clear that a healthy carrier state of Type I did and can occur 

in individuals in close contact with cases and for prolonged periods in those who had 

recovered from Type I associated lobar pneumonia without antibiotic therapy.  

Dochez and Avery in 1915 noted carriage of Type I pneumococci in 3 of 66 pneumococcal 

carriers (4.5%) who were, “normal individuals.” They were unable to assess Type III 

carriage rates due to a lack of Type III antisera (Dochez and Avery, 1915). Stillman in 

1917 noted that,  

“although pneumococcus is present in the mouths of about fifty percent of 
normal individuals, it is extremely rare to find pneumococcus of Type I in the 
normal mouth except in individuals who have been in intimate association with 
patients suffering from lobar pneumonia (Stillman, 1917).”  



  Chapter 2, 29 

This was a conclusion based on his earlier observation in 1916 that only 4 of 172 (2.3%) 

pneumococcal orophayrngeal carriers carried Type 1 and 44 of the 172 (26%) carried Type 

III. There was persistent carriage of Type III for over 3 months in some instances 

(Stillman, 1916) and Type I carriage of up to 90 days after recovery from pneumococal 

pneumonia (Dochez and Avery, 1915).  Meyer in 1920  demonstrated higher Type III 

carriage rates than for Type I which was not detected (Meyer, 1920). Strom in 1932 also 

documents a long period of Type I carriage for 73 days after recovery from pneumonia 

(Strom, 1932).  

Stillman in 1917 cultured 107 healthy household contacts of 28 patients admitted with 

Type I lobar pneumonia and found that 15% were Type I carriers (Stillman, 1917). Almost 

a third of cases gave rise to a carrier state in at least one of their immediate associates. For 

these healthy contacts, the average period of carriage was 25 days for Type I - undoubtedly 

providing a human reservoir for further infection. Avery et al, also in 1917, notes a Type I 

carriage rate of 13% in the contacts of cases of lobar pneumonia and only 0.33% in 

controls who had no contact with cases of lobar pneumonia and noted that the Type I 

carriers harboured it for 3 to 4 weeks (Avery et al., 1917). Similar differences between 

contacts and controls with regard to Type I carriage are documented in Glasgow in 1932 

(Christie, 1932). 

In a carriage study in 1919, using specimen collection methodology remarkably similar to 

the current World Health Organisation (WHO) standard method (O'Brien and Nohynek, 

2003), Sailer et al in Georgia, USA performed nasopharyngeal swabbing on 700 soldiers 

and detected a pneumococcal carriage rate of 16%. Of the carriers, 5.4% were Type I and 

4.5% were Type III. They observed that their carriage rates were influenced by recent 

outbreaks of measles and influenza (Sailer et al., 1919). There is also an association with 

higher pneumococcal carriage rates during times of epidemic upper respiratory tract 

infection (Gordon, 1921). Strom in 1932 documents the decline in serotype 1 carriage rates 

after a serotype 1 outbreak in a Norwegian orphanage in 1931 finding serotype 1 carriage 

rates of 33% at the height of the outbreak dropping to 16.9% 3 months later but being 

undetectable at all times in neighbouring orphanages unaffected by the outbreak (Strom, 

1932). The serotype 1 pneumococcal pneumonia outbreak at the State Hospital in 

Worcester, Massachusetts also noted a carriage rate of almost 10% (Smillie et al., 1938). 

Other risk factors for pneumococcal carriage are well recognised and include 

overcrowding (Hodges et al., 1946, DeMaria et al., 1980, Hoge et al., 1994), concurrent 

outbreaks of invasive pneumococcal disease and pneumonia (DeMaria et al., 1980, Dagan 
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et al., 2000, Hoge et al., 1994) and adults in close contact with children (Hendley et al., 

1975), ethnicity, family size, smoking and recent antibiotic use (Bogaert et al., 2004). 

Children are thought to be the most important reservoir for pneumococci (Leiberman et al., 

1999, Kyaw et al., 2002),  

Pneumococcal carriage rates vary substantially between studies and populations as 

demonstrated in the review by Bogaert et al (Bogaert et al., 2004). Hodges and MacLeod 

suggest that serotype 1 and serotype 3 carriage rates varied so much in early carriage 

studies, because of differences in the methodology for specimen processing. They 

compared several methods and mouse inoculation (favoured by the early Rockefeller 

Institute studies in New York) yielded higher recovery rates of serotype 1 and serotype 3 

pneumococci than direct plating of throat swabs onto blood agar (Hodges et al., 1946).  

The demonstration that different cultural methods affect the observed carriage rates could 

readily account for why serotype 1 carriage rates were apparently higher at the start of the 

20th century when mouse inoculation was common but which dropped in later years when 

most carriage study methodology involved variants of plating nasopharyngeal swabs onto 

blood agar (Hodges et al., 1946). Differences in the frequency of sampling and in the 

populations studied could also account for difference in carriage rates (Davies and 

Lockley, 1987). It is reasonable to conclude though that serotype 1 carriage does still occur 

in communities, that it does increase when numbers of cases of pneumococcal pneumonia 

due to serotype 1 increase in the community but that it may not be as readily detected by 

current standard methods as other serotypes such as serotype 3.  

The distribution of serotypes identified in the nasopharynx is usually wider than those 

causing IPD in the same population but varies substantially between human populations.  

In Europe and the USA the commonly seen serotypes found in carriage studies are 6B, 14, 

19F and 23F (Bogaert et al., 2004, Kyaw et al., 2002). This has a direct impact on the 

coverage of serotypes included in conjugate vaccines which can also vary substantially 

(Bogaert et al., 2004).  The prevalence of nasopharyngeal carriage is considerably higher 

in developing countries and the probability of exposure to a non-vaccine serotype 

considerably greater (Scott, 2007). 

The mechanism of colonisation is reviewed by Bogaert et al (Bogaert et al., 2004). 

Extracellular neuraminidase decreases viscosity of mucous on epithelial cell surfaces and 

exposes N-acetyl-glycosamine receptors which interact with pneumococcal surface-

associated proteins such as PsaA. Cytokines from the host epithelial cells result in 
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upregulation of platelet activating factor receptors. Pneumococcal cell wall phosphocholine 

attaches to these receptors. The choline binding protein CbpA binds to exposed sialic acid 

residues and lacto-N-neotreatose on the epithelial surface binding to the polymeric 

immunoglobulin receptor (pIgR) which facilitates transcytosis. Phase variation is also 

involved with transparent phase variants showing greater adherence than opaque variants.  

It is significant that pneumococcal conjugate vaccination but not pneumococcal 

polysaccharide vaccination has been shown to reduce carriage of vaccine included 

serotypes as well as IPD (O'Brien and Dagan, 2003). 

1.5 Manifestations of Pneumococcal Infection 

1.5.1.1.1 Acute Otitis Media 
Acute otitis media (AOM) is the commonest pneumococcal disease manifestation 

(Hausdorff et al., 2002) and is felt to be a major driving force in the establishment of 

antimicrobial resistant pneumococci (Hausdorff et al., 2002). This possibly relates to the 

frequent development of biofilms at this site promoting persistent infection and facilitating 

horizontal gene transfer (McEllistrem et al., 2007). 

In a multinational study, including several countries from the Americas and Europe, it was 

determined that serotypes 19F and 23F each comprised 13-25% of middle ear fluid 

isolates, 14 and 6B comprised 6-18% and 6A, 19A and 9V each comprised 5-10% despite 

differences in location. In children aged 6 months to 59 months, 60-70% of the causative 

serotypes are covered by the 7-valent pneumococcal conjugate vaccine (PCV-7) but in 

children less than 6 months old or over 5 years old this coverage drops to 40 to 50%. 

Serotypes 1, 3 and 5 are important causes of AOM in children under 6 months (Hausdorff 

et al., 2002).  In Southern Israel, serotypes 1, 3, 5, 18C, 19A and 19F were associated with 

the development of AOM (Shouval et al., 2006). Serotypes 6A, 6B, 15A and non-typeable 

pneumococci do not tend to cause AOM (Shouval et al., 2006). 

PCV-7 is effective at preventing acute otitis media (Eskola et al., 2001) although not 

recurrent otitis media (Veenhoven et al., 2003). 

1.5.1.1.2 Pneumonia 
The pneumococcus is the commonest bacterial pathogen to cause community acquired 

pneumonia (up to 35% of cases) in adults requiring hospitalisation (Moine et al., 1995). 

Predisposing factors for the development of pneumococcal pneumonia include advanced 

age, smoking, chronic obstructive pulmonary disease, cancer, HIV, diabetes, chronic heart 
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failure, alcohol abuse, liver disease, neurological disease, recent hospitalisation and 

previous pneumonia (Musher et al., 2000) 

Co-infection or recent infection with influenza has been recognised as an association with 

pneumococcal pneumonia since the 1918 influenza pandemic (McLelland, 1918) but has 

only recently been clearly demonstrated to result in 12%-30% of excess cases of 

pneumococcal pneumonia (Grabowska et al., 2006). 

The introduction of penicillin reduced mortality from pneumococcal pneumonia from 60% 

to 9% (Flippin et al., 1951). 

1.5.1.1.3 Pneumococcal Bloodstream Infections 
The importance of obtaining blood cultures during pneumococcal infections was 

recognised even in the early 20th century (McLelland, 1918). In 1938 it was recognised that 

a blood culture positivity rate of 20% could be found for patients hospitalised with 

pneumococcal pneumonia (Musher et al., 2000). Blood culture positivity rates are 

influenced by the severity of infection and level of bacteraemia, the culture method used 

(with closed automated systems being more sensitive) and whether there was prior 

administration of antibiotics or pneumococcal vaccination. The presence of pneumococci 

in the bloodstream can result from invasion at the site of colonisation (primary) or from 

invasion at the site of an established infection (secondary) (Musher, 2004).  Likewise, the 

detection of pneumococci in the bloodstream may be transient and inconsequential or form 

part of more significant and life-threatening manifestations of the systemic inflammatory 

response syndrome, severe sepsis or septic shock (Munford, 2005). 

1.5.1.1.4 Meningitis 
Meningitis, the infection of cerebrospinal fluid and the meningeal coverings of the brain, is 

one of the most serious manifestations of invasive pneumococcal disease. Pneumococci 

account for about 37% of all adult cases of acute bacterial meningitis (Durand et al., 1993). 

Even when treated appropriately with penicillin or a third generation cephalosporin (in 

penicillin susceptible cases) or vancomycin or chloramphenicol (for penicillin non-

susceptible cases), the case fatality rates can vary from 11 - 60% (Stanek and Mufson, 

1999).  Of those who survive, up to 54% develop neurological sequelae which may persist 

for a lifetime (Stanek and Mufson, 1999, Bohr et al., 1984). Recently, it has been 

determined that early co-administration of dexamethasone with antibiotics may reduce the 

severity of these neurological sequelae in adults (Van de Beek et al., 2004) as well as 

children (McIntyre et al., 1997). 
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In animal models, the infecting serotype appears to determine recognisable differences in 

cerebral histopathology with serotype 1 causing more cortical haemorrhage, serotype 3 

cortical necrosis and abscess formation and serotype 9V, subcortical abscess formation 

(Ostergaard et al., 2004). 

The pathogenesis of pneumococcal meningitis was reviewed extensively by Weber 

(Weber, 2004) and Koedal et al (Koedel et al., 2002) and involves the co-ordinated 

activities of several virulence factors including neuramindase A, IgA protease, 

hyaluronidase, capsule, pneumococcal surface protein A and C, pneumolysin, choline 

binding protein A, phase variation and autolysin. 

1.5.1.1.5 Conjunctivitis 
Pneumococcal conjunctivitis tends to manifest as outbreaks (Leighton et al., 2003, Martin 

et al., 2003a, Medeiros et al., 1998) although sporadic cases are recognised (Porat et al., 

2006). Serotype 3 and non-typeable pneumococci are associated with the development of 

acute conjunctivitis (Berron et al., 2005, Shouval et al., 2006). It is thought that non-

typeable pneumococci have a selective predisposition to cause acute conjunctivitis (Porat 

et al., 2006) in both outbreaks (Medeiros et al., 1998, Leighton et al., 2003, Martin et al., 

2003a) and sporadic cases (Shouval et al., 2006). It is therefore unfortunate that current 

vaccination strategies have no effect on non-typeable pneumococci (Porat et al., 2006, 

Martin et al., 2003a). 

1.5.1.1.6 Endocarditis 
Between 0.8-3.4% of patients with pneumococcal bacteraemia develop endocarditis 

(Lindberg and Fangel, 1999). There is an association with alcoholism (Bruyn et al., 1990) 

and a predilection for the aortic valve (Lindberg and Fangel, 1999, Bruyn et al., 1990). 

Affected valves can rapidly ulcerate and fail (Stewart and Flint, 1919). Embolic 

phenomena are common (Finland and Barnes, 1970), as are paravalvular abscesses (Bruyn 

et al., 1990). Even with appropriate antibiotic therapy, there is a fatal outcome in as high as 

40-50% of cases (Finland and Barnes, 1970, Bruyn et al., 1990) 

1.5.1.1.7  Cerebral Abscess 
Pneumococcal cerebral abscesses are uncommon but are associated with significant 

morbidity (40% of survivors are left with neurological deficits) and high mortality (a case 

fatality rate of 35% in one series) despite appropriate antibiotic therapy and surgery 

(Grigoriadis and Gold, 1997). Serotype 3 pneumococci have historically been associated 

with cerebral abscesses (Fincher, 1946, Anonymous, 1970, Colman and Hallas, 1983). 
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1.5.1.1.8  Pleural Empyema 
The epidemiology of pneumococcal pleural empyema was well documented by Glynn and 

Digby in 1923 for the Medical Research Council (Glynn and Digby, 1923). During the 

1920s serotype 1 related pneumococcal empyema was a common manifestation with a high 

mortality of up to 53% of serotype 1 related disease and 77% of all cases of pneumococcal 

empyema in one British series (Whittle, 1929). Serotype 3 related pneumococcal empyema 

was rare (6% of all cases of pneumococcal empyema) (Whittle, 1929). These observations 

suggest that the current increase in serotype 1 related paediatric pneumococcal empyema 

being experienced in the United Kingdom (Fletcher et al., 2006, Eastham et al., 2004) may 

not necessarily be a new phenomenon but may be the initial signs of the serotype 1 

pneumococcal population in this country reverting back to a previously high incidence. 

1.5.1.2  Genomic Diversity in Invasive Pneumococcal  Disease  

It is unwise to make generalisations regarding the global epidemiology of IPD precisely 

because of the extent of genomic diversity and the fact that different geographical regions 

(Hausdorff et al., 2001) and different human host populations within a geographical region 

(Hausdorff et al., 2001, Flannery et al., 2004, Greenwood, 1999) can demonstrate vastly 

different incidence of IPD, with different pneumococcal serotypes and sequence types 

contributing. In addition,  IPD is the result of the interaction between a dynamic population 

of bacteria and a dynamic human host population with changes over time being evident, 

especially in response to the use of antibiotics and vaccination policies (Kristinsson, 2008).  

However, the informed use of antibiotics and vaccination programme planning depends on 

knowledge of regional pneumococcal epidemiology. For this reason, several global and 

regional networks currently exist which record pneumococcal epidemiology and antibiotic 

resistance patterns such as the WHO Streptococcus pneumoniae Global Disease Burden 

project, the Pneumococcal Global Serotype Project, Global Alliance for Vaccines and 

Immunizations  Pneumococcal Vaccines Accelerated Development and Introduction Plan 

(GAVI PneumoADIP), Pneumococcal Molecular Epidemiology Network (PMEN), South 

Asian Pneumococcal Alliance (SAPNA),  Asian Network for Surveillance of Resistant 

Pathogens (ANSORP), The Network for Surveillance of Pneumococcal Disease in the East 

Africa Region (NETSPEAR) or the Pan American Health Organisation (PAHO). Likewise 

there are also national surveillance programmes throughout the world such as the Centres 

for Disease Control and Prevention (CDC) Active Bacterial Core Surveillance/Emerging 

Infections Program Network in the USA and the Health Protection Agency (HPA) and 

Health Protection Scotland (HPS) in the United Kingdom.  
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Different studies have associated different serotypes with IPD and the results of some of 

these studies are displayed below in Table 1-1. 

Serotype associated 
with IPD 

Country Reference 

1, 4, 14, 18C England (Brueggemann et al., 2003) 

1, 5, 7 England, USA, Papua New Guinea, 
Kenya, Canada and Iceland 

(Brueggemann et al., 2004) 

1, 4, 7F, 9V, 12F, 18C Sweden (Sandgren et al., 2004) 
1, 5, 12F Israel (Shouval et al., 2006) 

Table 1-1 Common pneumococcal serotypes associated with IPD in various countries. 
 

Most recently, the Pneumococcal Global Serotype Project identified the most common 

serotypes causing IPD in children under 5 years of age. This shows that 7 to 11 serotypes 

account for over 80% of disease in every region and that Asia and Africa share the top 8 

serotypes. Serotype 14 is most commonly isolated in all regions but in older children in 

Asia and Africa, serotype 1 was most common (O'Brien, 2008). This is compatible with 

earlier observations (Kyaw et al., 2002, Hausdorff et al., 2000a, Hausdorff et al., 2000b). 

In Scotland, at the start of the 21st century, the serogroups most commonly associated with 

IPD were 14, 9, 6, 19, 23, 8 and 4 (Kyaw et al., 2003) although enhanced surveillance has 

shown that this has changed between 2003 and 2006 (Lamb et al., 2008). Again using 

Scotland as an example, it appears that the number of MLST clones associated with IPD 

which circulate in a particular geographical region are limited and generally stable (Clarke 

et al., 2004b, Clarke et al., 2005, Clarke et al., 2004a, Jefferies et al., 2008)). This appears 

also to be true of antibiotic resistant clones as the number of such clones to be found in any 

individual country tends to be few (McGee et al., 2001a, Smith et al., 2006).  

1.6 Studies of the Genomic Diversity of Streptococc us 

pneumoniae 

Different species of bacteria demonstrate different degrees of genomic diversity. For 

instance, Helicobacter pylori (Alm et al., 1999, Bjorkholm et al., 2001) and 

Campylobacter jejuni show extensive genomic diversity (Dorrell et al., 2001) while 

Mycobacterium tuberculosis does not and appears to show a high level of genomic 

conservation (Behr et al., 1999). S. pneumoniae is an organism which exhibits a high 

degree of genomic diversity and natural populations appear to maintain a fluid state of 

genetic exchange in order to adapt to their environment. This section will document some 
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of the historical milestones which have aided understanding of this diversity of 

pneumococcal genomes, the mechanisms generating this diversity, the role of biofilms and 

regions of the pneumococcal genome which have been identified as being highly variable.   

1.6.1.1  Historical background 

In 1991 using restriction fragment digests of the pneumococcal strain R6 (an avirulent, 

serotype 2 unencapsulated strain derived from the strain D39 (Lanie et al., 2007)), Gasc et 

al estimated this pneumococcal genome to be between 2,240 and 2,270kbp (Gasc et al., 

1991). It wasn’t until 2001 that the fully sequenced genome for R6 was published (Hoskins 

et al., 2001). Also published in 2001, was the sequenced genome of an isolate termed 

TIGR4 (Tettelin et al., 2001), as it was a serotype 4 isolate being investigated by The 

Institute of Genomic Research (TIGR) which originated from the blood of a 30 year old 

man  in Kongsvinger, Norway during the 1990s (Mann et al., 2006, Orihuela et al., 2004b, 

Bruckner et al., 2004, Tettelin et al., 2001). Although investigation of natural variation of 

individual alleles was possible by PCR and sequencing (Whatmore and Dowson, 1999), 

comparison of entire genomes was expedited by the manufacture of DNA microarrays 

based on the R6 and TIGR4 genomes allowing direct comparisons between these genomes 

and those of other clinical isolates by using comparative genomic hybridization (Bruckner 

et al., 2004, Hakenbeck et al., 2001). 

Comparing the R6 and TIGR4 genomes was a milestone in realising the potential extent of 

diversity of pneumococcal genomes. The two genomes differ in size (R6 being 2Mb and 

TIGR4 being 2.16Mb and more similar to the other draft genomic sequence at that time for 

serotype 19F strain G54 which was 2.1Mb (Dopazo et al., 2001)). R6 and TIGR4 differ in 

around 10% of their genes (Bruckner et al., 2004). The R6 genome contains 69kb in six 

regions which are absent from TIGR4 and TIGR4 contains 157kb in twelve clusters which 

are absent from R6 (Bruckner et al., 2004).  Analysis of further genomes has identified 

many more genes which are not present in either R6 or TIGR4 genomes (Shen et al., 

2006a). As further isolates have been compared with R6 and TIGR4 genomes, it has 

become apparent that there are recognised regions of diversity within the pneumococcal 

genome (Bruckner et al., 2004, Embry et al., 2007, Obert et al., 2006, Shen et al., 2006a, 

Silva et al., 2006, Hakenbeck et al., 2001) and attempts have been made to try to elucidate 

whether there is a “core” genome required by the pneumococcus for either invasive disease 

or asymptomatic carriage (Obert et al., 2006). Often spurious conclusions are drawn since 

no apparent acknowledgement that host factors may be influencing invasive disease 

presentation is appreciated (Hiller et al., 2007, Obert et al., 2006). Such comparisons are, 
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however, compatible with a distributed genome hypothesis which states that pathogenic 

bacteria possess a “supragenome” or gene pool which is much larger than that of any 

single isolate and that a large set of “non-core” genes is accessed to generate genomic 

diversity (Hiller et al., 2007). These studies have also demonstrated that, in addition to 

allelic variation, the pneumococcal genome demonstrates intra-species genic variation 

which refers to the absence or presence of certain genes (Hiller et al., 2007).  

1.6.1.2  Mechanisms of Natural Diversity of the Pne umococcus 

1.6.1.2.1  Horizontal gene transfer and competence 
“Horizontal gene transfer, or the acquisition of exogenous genetic material and 
its subsequent stable incorporation into a recipient genome, has been, and 
continues to be, a central force that drives bacterial evolution (Joyce et al., 
2002).”  

Joyce et al also note that,  

“Gene transfer events have been revealed through analyses of genome 
sequences, which differ in guanine and cytosine (G+C) content and codon 
usage at chromosomal locations that have recently acquired foreign DNA 
(Joyce et al., 2002).”  

This acquisition of exogenous DNA by the pneumococcus depends on competence 

(Claverys, 2000), a state whereby DNA can be acquired from the extracellular environment 

during a short period in the pneumococcal growth cycle which is carefully controlled by 

the com operon of three genes (comC, comD and comE ) which encode competence 

stimulating peptide (CSP), histidine kinase and a response regulator. CSP is exported into 

the extracellular environment by comA and comB and when CSP reaches a critical 

concentration, comD is activated, phosphorylating comE and resulting in the upregulation 

of several genes involved in permitting competence (Whatmore et al., 1999). ComC and 

comD themselves have multiple alleles (Whatmore et al., 1999, Pozzi et al., 1996). 

The earliest descriptions of horizontal gene transfer in the pneumococcus related to the 

acquisition of penicillin resistance. Dowson et al in 1989 hypothesised that altered pbp2X 

genes arose from interspecies recombinational events with other species of streptococci 

(Dowson et al., 1989).  In 1991, Laible et al, demonstrated that pbp2X  had highly 

divergent regions likely resulting from interspecies recombinational events (Laible, 1991). 

Also in 1991, isolates of serogroup 19 and serogroup 23 were studied which had identical 

genes for pbp1A, pbp2A and pbp2X and it was concluded that these penicillin binding 

protein genes had been exchanged by horizontal gene transfer although the possibility of 
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horizontal exchange of capsular genes was not fully dismissed (Coffey et al., 1991). 

(Capsular switching as an example of horizontal gene transfer will be discussed below and 

the allelic diversity of pneumococcal surface proteins and other virulence factors will also 

be reviewed.) Further work published in 1993 found evidence of pbp2B gene transfer from 

Streptococcus mitis to the pneumococcus (Dowson et al., 1993) and that there was 

horizontal transfer of pbp2B from the pneumococcus to Streptococcus oralis (Coffey et al., 

1993) showing that the horizontal transfer of genes in pneumococci was a bilateral process. 

Further evidence of the extent of horizontal gene transfer was later seen when isolates of S. 

mitis were discovered which harboured pneumolysin and autolysin – virulence factors 

which were thought, until that time, to be specific to the pneumococcus (Whatmore et al., 

2000, Neeleman et al., 2004a, Neeleman et al., 2004b). Bruckner et al conclude that the 

high numbers of insertion elements evident in pneumococcal genomes and the high 

number of PTS systems suggests high flexibility in these genomes (Bruckner et al., 2004). 

This accumulated evidence demonstrates that several pneumococcal genes exhibit many 

polymorphic alleles, many of which are mosaic genes which have been generated by 

intragenic recombination (Maiden, 1998, Bruckner et al., 2004). Feil et al have estimated 

that in the pneumococcal genome, recombination generates new alleles at a frequency ten 

time higher than mutation and that a single nucleotide is fifty times more likely to change 

through recombination than mutation (Feil et al., 2000a). 

1.6.1.2.2  Capsular switching 
Capsular switching is a form of horizontal gene transfer whereby the capsular genes coding 

for one serotype are exchanged for those of a different serotype (Coffey et al., 1998a, 

Coffey et al., 1999, Ramirez and Tomasz, 1999, Coffey et al., 1991). It is thought that this 

occurs relatively frequently in mixed pneumococcal populations (Coffey et al., 1998a) 

which are often found in the nasopharynx. The capsular gene cassette, flanked by genes 

dexB and aliA, is found at the same chromosomal location for all pneumococcal serotypes 

except serotype 37 (Claverys, 2000). This cassette contains up to 19 genes, several of 

which are serotype specific (Claverys, 2000). The serotype 37 capsule is coded by a single 

gene, tts, located 820kb distant to the capsular gene locus (Llull et al., 1999, Llull et al., 

2000).  Recently it has been observed that not only can the capsular locus be transferred 

spontaneously but also the adjacent pbps (Figure 1-1) can also be involved in a 

spontaneous recombination event both in vitro (Trzcinski et al., 2004, Coffey et al., 1999) 

and in vivo (Brueggemann et al., 2007, Coffey et al., 1999). 
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Figure  1-1Schematic diagram of the pneumococcal genome.  

Adapted from (Brueggemann et al ., 2007) this identifies the location of the capsul ar locus 
and its flanking genes (aliA and dexB) in relation to pbps (pbp1A, pbp1B, pbp2A, pbp2B, 
pbp2X, pbp3)  and housekeeping genes used for determination of M LST sequence types 
(aroE, gdh, gki, recP, spi, xpt, ddl) . 
 

The net effect of this is that a pneumococcal isolate with a particular sequence type can 

exist as several different serotypes depending on which capsular genes it contains and 

expresses (Jefferies et al., 2004, Coffey et al., 1998b). The relationship between serotype 

and genome is complex and switching capsules can increase or decrease virulence (Kelly 

et al., 1994). Genetic factors other than just capsule influence virulence (Obert et al., 

2006). 

This is of significant concern as there is accumulating evidence that after the introduction 

of PCV-7 within a population, serotype switching allows pneumococcocal populations to 

gradually escape the effects of the limited valency vaccines by disposing of the capsular 

genes affected by vaccination and replacing them with serotypes which the vaccine does 

not cover (Brueggemann et al., 2007).  

1.6.1.2.3  Serotype replacement 
Serotype replacement is also driven by the introduction of pneumococcal conjugate 

vaccines. By targeting only a limited number of serotypes, it is observed that non-vaccine 
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related serotypes can replace serotypes covered by vaccines in the nasopharynx, permitting 

increased carriage and transmission of non-vaccine serotypes in the community and 

subsequently, invasive disease from non-vaccine serotypes (Spratt and Greenwood, 2000, 

Brueggemann et al., 2007). Unlike capsular switching (Ramirez and Tomasz, 1999), the 

genotype of these replacement serotypes maintain a sequence type in a relationship which 

is the same as that which was seen prior to vaccine introduction. Evidence for this is 

particularly dramatic for an increased incidence of serotype 1 related, complicated 

pneumonia in Utah, USA (Byington et al., 2005c), serotype 3 related otitis media 

(McEllistrem et al., 2007, McEllistrem et al., 2005) and 19A invasive disease in Alaska, 

USA (Singleton et al., 2007) and New York, USA (Pichichero and Casey, 2007).  

One beneficial effect of serotype replacement however, is a decreased incidence of 

penicillin resistance among pneumococci  after conjugate vaccine introduction due to their 

predominant serotypes being included in such vaccine formulations (Byington et al., 

2005c, Spratt and Greenwood, 2000).  Of greater concern though are manifestations of 

serotype replacement resulting in the emergence of multiply antibiotic resistant 

pneumococci of non-vaccine serotypes (Pichichero and Casey, 2007).  

1.6.1.2.4  Phase variation 
The pneumococcus exhibits phase variation whereby one isolate of the same serotype and 

MLST can exist in two distinct phenotypes (Bruckner et al., 2004, Weiser et al., 1994). 

These two forms, opaque and transparent, are most distinct when grown on translucent 

solid media (Weiser et al., 1994). Ring et al found that the transparent phenotype of phase 

variation increased the ability of pneumococci to cross the blood brain barrier by as much 

as six fold compared to the opaque phenotype (Ring et al., 1998). The transparent 

phenotype has more cell wall phosphorylcholine, less capsular polysaccharide and has 

different surface proteins than its opaque counterpart indicating diversity of associated cell 

surface components which may influence virulence (Ring et al., 1998, Weiser and Kapoor, 

1999). Higher rates of transformation occur in transparent variants compared to opaque so 

less capsular material (transparent) appears to enhance transformation (Weiser and Kapoor, 

1999). Opaque variants survive better than transparent in the bloodstream and appear more 

resistant to phagocytosis (Obaro and Adegbola, 2002).  Weiser et al conclude,  

“An isolate should be considered a mixed population of phenotypes which 
differ in amounts of capsular polysaccharide, teichoic acid and choline binding 
proteins (Weiser and Kapoor, 1999).”  
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1.6.1.2.5  Bacteriophages 
It is estimated that as many as 75% of clinical pneumococcal isolates contain temperate 

bacteriophages (Ramirez et al., 1999) of which four have been sequenced (Lopez and 

Garcia, 2004).  Bacteriophages have also been found commonly in nasopharyngeal 

carriage isolates (Sa-Leao et al., 2002). Lytic phages appear to contribute to natural 

transformation of the pneumococcus by expanding the reservoir of exogenous DNA 

available for incorporation into the pneumococcal genome (Lopez et al., 2000, Ramirez et 

al., 1999) and may also alter virulence by creating chimeric enzymes through 

recombination after excising DNA from genes (Lopez et al., 2000). 

1.6.1.2.6  Plasmids 
It is thought that plasmids are not a common means by which diversity is introduced into 

the pneumococcal genome (Bruckner et al., 2004). The role of conjugation in 

pneumococcal diversity is also unclear (Bruckner et al., 2004). However, the acquisition 

and loss of plasmids by pneumococci has been demonstrated as comparison of the genome 

of R6 with its progenitor strain D39, shows loss of its pDP1 plasmid (Lanie et al., 2007).    

1.6.1.2.7  The role of biofilms in propagating pneumococcal genomic diversity 
It is established that pneumococci form biofilms and that these contribute to certain disease 

manifestations such as otitis media (McEllistrem et al., 2007, Hall-Stoodley et al., 2006). 

DNA release and transformation are a part of the biofilm-related life cycle and readily 

occurs in many bacteria with released DNA stabilising the biofilm structure (Molin and 

Tolker-Nielsen, 2003).  Phase variation is also a feature of pneumococcal biofilms 

(McEllistrem et al., 2007). It is likely that such an environment conducive to horizontal 

gene transfer has a role in generating genomic diversity in pneumococcal populations in 

order to aid survival in changing environmental conditions (Boles et al., 2004). 

1.6.1.2.8  Regions of diversity in the pneumococcal genome 
Several groups have used microarray CGH to demonstrate regions of diversity in the 

pneumococcal genome using the TIGR4 genome as reference. Initial reports of these 

regions were by Hakenbeck et al who detected 10 clusters where hybridization signals 

indicated no hybridization in 20 diverse pneumococcal isolates from different serotypes 

and different geographical regions when hybridized against a serotype 4 strain (KNR.7/87) 

using an Affymetrix oligonucleotide array (Hakenbeck et al., 2001). These regions varied 

in size from 9kb to 37kb each (Hakenbeck et al., 2001).  
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In studies identifying regions of diversity in the TIGR4 genome (Silva et al., 2006, 

Bruckner et al., 2004, Embry et al., 2007), there has been no standardised definition of 

what should characterise such a region. This has resulted in some groups considering there 

to be 13 regions of diversity of 3.7kb to 40.3kb in size (Embry et al., 2007, Obert et al., 

2006) while others have considered regions of diversity to be as small as 1.7kb and so 

document 25 such regions (Silva et al., 2006). Several regions of diversity relate to genes 

which have an identified virulence function (Embry et al., 2007). 

Bruckner et al have also identified 6 regions of diversity within the R6 genome (Bruckner 

et al., 2004) and Shen et al, identified 58 novel sequences in clinical isolates not present in 

TIGR4 or R6, some of which were virulence associated (Shen et al., 2006a). 
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Region of 
Diversity 

Location in 
TIGR4 

Genome 

Size 
(kb) 

Encoded Virulence 
Determinants 

References 

RD 1 SP0067-0074 9.0 Zinc Metalloproteinase 
(ZmpC) 

(Silva et al., 2006, Bruckner 
et al., 2004) 

RD 2 SP0109-0115 5.8  (Silva et al., 2006, Bruckner 
et al., 2004) 

RD 3 SP0163-0168 5.6  (Silva et al., 2006, Bruckner 
et al., 2004, Obert et al., 

2006) 
RD 4 SP0346-0360 14.2 Capsular Polysaccharide 

synthesis operon 
(Silva et al., 2006, Bruckner 

et al., 2004) 
RD 5 SP0378-0380 3.3  (Silva et al., 2006) 
RD 6 SP0394-0397 5.4  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 7 SP0460-0468 12.6  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 8 SP0473-0478 7.1  (Silva et al., 2006) 
RD 9 SP0531-0544 5.6  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 10 SP0643-0648 11.0 RlrA pathogenicity islet (Silva et al., 2006) 
RD 11 SP0644-0666 8.0  (Silva et al., 2006) 
RD 12 SP0692-0700 4.4  (Silva et al., 2006, Obert et 

al., 2006) 
RD 13 SP0888-0891 1.7  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 14 SP0949-0954 7.9  (Silva et al., 2006) 
RD 15 SP1050-1065 11.9 Pneumococcal 

Pathogenicity Island 1 
(PPI1) 

(Silva et al., 2006, Bruckner 
et al., 2004, Obert et al., 

2006) 
RD 16 SP1129-1147 9.2  (Silva et al., 2006, Bruckner 

et al., 2004, Obert et al., 
2006) 

RD 17 SP1315-1352 33.7  (Silva et al., 2006, Bruckner 
et al., 2004, Obert et al., 

2006) 
RD 18 SP1433-1444 12.1  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 19 SP1612-1622 10.3  (Silva et al., 2006, Bruckner 

et al., 2004, Obert et al., 
2006) 

RD 20 SP1756-1773 34.8 PsrP-sec Y2A2 
pathogenicity island 

(Silva et al., 2006, Bruckner 
et al., 2004, Obert et al., 

2006) 
RD 21 SP1793-1799 5.3  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 22 SP1828-1830 3.2  (Silva et al., 2006) 
RD 23 SP1911-1918 3.2  (Silva et al., 2006) 
RD 24 SP1948-1955 9.4  (Silva et al., 2006, Bruckner 

et al., 2004) 
RD 25 SP2159-2166 5.3  (Silva et al., 2006, Bruckner 

et al., 2004, Obert et al., 
2006) 

Table 1-2 Regions of diversity in the TIGR4 genome,  size and putative virulence functions as 
determined by CGH in previous studies. 
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Region of 
Diversity 

Location in R6 
Genome 

Size 
(kb) 

Function Reference 

RD 1 spr0102 to spr0119 14.4 Arginine biosynthesis (Bruckner et al., 
2004) 

RD 2 spr0311 to spr0323 9.4 Capsule biosynthesis 
(equivalent to SP0347-0360) 

(Bruckner et al., 
2004) 

RD 3 spr0955 to spr0971 17.1 Macrolide efflux mefE related 
(equivalent to SP1054-1064) 

(Bruckner et al., 
2004) 

RD 4 spr1184 to spr1198 14.3 ABC transporter 
(equivalent to SP1309-1337) 

(Bruckner et al., 
2004) 

RD 5 spr1403 to spr1404 9.6 Cell wall anchor protein (Bruckner et al., 
2004) 

RD 6 spr1618 to spr1621 4.1 ABC transporter 
(equivalent to SP1796-1799) 

(Bruckner et al., 
2004) 

Table 1-3 Regions of Diversity in the R6 genome, si ze and putative virulence functions as 
determined by CGH. 

1.6.1.3  Genomic Diversity and Temporal Changes Ill ustrated by 

Emerging and Significant Serotype and MultiLocus 

Sequence Type Combinations 

It is clear that pneumococcal populations are dynamic and although there is much concern 

regarding how vaccination policies are altering these population structures, it is evident 

that noticeable changes in the population structures were occurring prior to the introduction 

of conjugate vaccines. This section will focus on a selection of serotype and MLST 

combinations which illustrate this dynamic diversity and which feature in later chapters.   

1.6.1.3.1 Serotype 1 
Figure 1-2 demonstrates the burden of disease caused by serotype 1 (Type I) pneumococci 

respectively in Glasgow from the 1920s until the 1980s. There is a marked decline in 

serotype 1 disease over the 20th century, even recognising that many of the original papers 

in the pre-antibiotic era include both patients who received anti-pneumococcal serum and 

those who did not in their datasets and that case definitions are not standardised. Figure 1-3 

illustrates declining numbers of reported cases of pneumonia in Glasgow during the 1950s  

and 1960s (which may be a product of the Clean Air Act passed in 1956, the use of 

antibiotics after MRC trials demonstrated their utility in 1951, the associated decline in 

cases of  pulmonary tuberculosis or a general recovery from the social and economic 

effects of World War II) which could be influencing the reported numbers of cases of 

serotype 1 associated lobar pneumonia from the 1950s but it is noteworthy that the same 

decline in serotype 1 reporting was seen in Edinburgh (Figure 1-4) and in Boston, USA 

(Figure 1-5) suggesting that a genuine decline in serotype 1 associated pneumococcal 

disease was occurring in the United Kingdom and the USA during the 1950s and 1960s. 
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Figure  1-2 Proportions of cases of hospitalised pneumococc al lobar pneumonia due to 
serotypes 1 and 3 documented in Glasgow over the 20 th Century. 

Data taken from (Grant, 1922, Christie, 1932, Grist  et al ., 1952, Smart, 1987, Cowan et al ., 
1932) 
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Figure  1-3 Annual number of cases of pneumonia (all types)  reported in Glasgow (1920-
1972).  

Data taken from Reports of the Medical Officer of H ealth, City of Glasgow 1920 to 1971. It is 
noteworthy that 1922, 1930, 1952, 1957 and 1970 wer e documented as years when there 
were recognised influenza epidemics in Glasgow.  
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Figure  1-4 Proportions of cases of hospitalised pneumococc al lobar pneumonia in 
Edinburgh due to serotypes 1 and 3 over the 20 th  Century. 

Records from Edinburgh reproduce the same dramatic fall in the proportion of cases of 
serotype 1 associated disease that was documented i n Glasgow during the 1950s and 1960s 
(Figure 1-2) and Boston, USA (Figure 1-4) and concu rrent rise in the proportion due to 
serotype 3.  

Data taken from (Morgan et al ., 1983, Calder et al ., 1970, Davidson, 1925, Alston and Stewart, 
1930) 
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Figure  1-5 Proportion of blood cultures growing pneumococc i at Boston City Hospital due 
to serotype 1 and serotype 3 (1935-1974). 

This also shows a dramatic fall in cases of serotyp e 1 associated disease during the 1950s 
and 1960s similar to that seen in Scotland but with out an associated rise in proportion of 
cases due to serotype 3 during the early 1970s. Dat a from (Finland and Barnes, 1977b). 
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It is clear from contemporary reports of IPD in both Scotland (Kirkham et al., 2006, Lamb 

et al., 2008, Diggle and Edwards, 2006) and England and Wales (George et al., 2006) as 

well as other European countries (Hausdorff, 2008, Hanquet et al., 2008) that cases due to 

serotype 1 are now increasing in incidence. Figure 1-6 documents this increase in Scotland 

since 1993.  
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Figure  1-6 Number of episodes of invasive serotype 1 assoc iated disease seen in Scotland.  

Data relates to episodes reported to the Scottish M eningococcal and Pneumococcal 
Reference Laboratory 1993-2006. 
 

Serotype 1 accounts for > 6% of IPD in many geographical regions, but it is not included 

in the PCV-7 (Hausdorff et al., 2000b) although it is included in a new 13 valent conjugate 

vaccine (Kieninger et al., 2008). Unlike Europe and the USA, it is one of the commonest 

serotypes causing IPD in children in selected studies from Africa and Asia (Hausdorff et 

al., 2000b) and Latin America (Coral et al., 2001). It is associated with very high odds 

ratios for invasiveness in children (Brueggemann et al., 2004). This serotype also has an 

association with causing outbreaks of IPD (Jefferies et al., 2007) and is more commonly 

cultured from blood than CSF (Hausdorff et al., 2000a). Serotype 1 has also been 

determined to have a low case fatality rate in Sweden (Sandgren et al., 2005, Berg et al., 

2006) and a lower relative risk of death in Denmark (Martens et al., 2004). 

 

 

 



  Chapter 2, 48 

 

Figure  1-7 MLST sequence types associated with serotype 1 capsule in Scotland causing 
invasive pneumococcal disease (2002-2006). 

1.6.1.3.1.1 ST227 

 
Within the serotype 1 related IPD cases in Scotland since 2002, there are several sequence 

types represented but predominantly ST227 and ST306 (Figure 1-7). The proportion due to 

ST227 has remained stable since 2002. It was the predominant, stable serotype 1 clone in 

the USA between 1993 and 2002 (Brueggemann and Spratt, 2003, Gonzalez et al., 2004). 

In the immediate period after PCV-7 introduction in Utah (pre 2003), ST227 accounted for 

all cases of serotype 1 related paediatric empyema (Byington et al., 2005c) but since 2003 

this has not been the case (Byington et al., 2008). ST 227 is associated with a low case 

fatality rate in Sweden (Sjostrom et al., 2006). 

1.6.1.3.1.2 ST306 

 
It is of some concern that the proportion of serotype 1 related IPD due to ST306 is 

increasing each year in Scotland (Lamb et al., 2008). This phenomenon was also 

documented 10 years ago in Sweden (Hedlund et al., 2003, Henriques Normark et al., 

2001). ST306 accounts for the majority of the current increase in serotype 1 IPD in 

Scotland (Lamb et al., 2008, Jefferies et al., 2008). It is possible that ST306 is a new clone 

which has entered the Scottish population but it is also possible that it is a clone that was 
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prevalent during the early 20th century, was lost from the Scottish pneumococcal 

population for whatever reason and is now returning, potentially because of a lack of herd 

immunity to it as people who may have been exposed to it and developed some immunity 

during the 1920s and 1930s come to the end of their lifespan. It is certainly clear that a 

proportion of elderly, non-vaccinated, patients in a Glasgow Geriatric Hospital had pre-

existing immunity to serotype 1 pneumococci (Thakker et al., 1998) presumably the result 

of exposure to it earlier in their lifetimes.  

ST306 has also recently emerged in Utah, USA as a common clone associated with 

paediatric empyema (Byington et al., 2008) although it is not clear whether this is a 

phenomenon associated with serotype replacement resulting from pressure produced by 

PCV-7 or whether it is solely a property of ST306 which allows it to expand rapidly in a 

population as it is known that ST306 harbours mutations in virulence factors which may 

alter its behaviour (Kirkham et al., 2006). ST306 is also the dominant serotype 1 clone 

found in some South Pacific islands and has been responsible for invasive disease 

outbreaks in 1999 and 2007 (Le Hello et al., 2008.). 

The association of ST306 with greater survival has also been documented in a mouse 

model of pneumonia and bacteraemia where ST306 was associated with  the production of 

less tumor necrosis factor when compared to other sequence types associated with invasive 

disease (Sandgren et al., 2005). ST 306 is also associated with a low case fatality rate in 

Sweden (Sjostrom et al., 2006) and,  unusually,  has been detected as a carriage associated 

isolate in Portugal (Nunes et al., 2007). 

1.6.1.3.2  Serotype 3 
Serotype 3 pneumococci have always been noted to have a distinctive phenotypic 

appearance with substantial mucoid capsule (Schottmuller, 1903) (or “slime layer” (Wood 

and Smith, 1949)). More recently it has been determined that duplications in the cap3A 

gene in the type 3 capsule locus are associated with high frequency phase variation (Waite 

et al., 2001). Properties of this polysaccharide capsule allow it to interact with Dendritic 

cell-specific ICAM 3 grabbing non-integrin (DC-SIGN) while most other pneumococcal 

serotypes do not (Koppel et al., 2005). Likewise, only serotype 3 pneumococci appear to 

have a gene called gadA which encodes a protein similar to human glutamate 

decarboxylase (Garcia and Lopez, 1995).  

Serotype 3 is a common cause of AOM (Hausdorff et al., 2000a, McEllistrem et al., 2007, 

Shouval et al., 2006) where biofilm formation may be important in its pathogenesis. It also 
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causes acute conjunctivitis and it is postulated that serotype 3 possesses virulence factors 

which predispose it to mucosal sites (Shouval et al., 2006).  

Serotype 3 is rarely carried by Israeli children (Shouval et al., 2006) although it is a 

serotype 3 associated MLST (ST180) which is most strongly associated with 

pneumococcal carriage by children in Oxfordshire (Brueggemann et al., 2003).  

In Sweden, greater severity of IPD and higher case fatality rates from IPD are due to 

serotype 3 disease when compared to all other serotypes (Sjostrom et al., 2006). Serotype 3 

associated IPD also has the highest relative risk of death in Denmark (Martens et al., 

2004). 

Globally, serotype 3 consistently comprises only 1-2% of IPD in young children 

(Hausdorff, 2007).  In a meta-analysis of serogroup specific odds ratios for invasiveness in 

children , serotype 3 was one of the least likely to cause IPD (Brueggemann et al., 2004). 

Paradoxically, it is often one of the commonest serotypes to cause IPD in adults and the 

elderly where it is associated with severe clinical manifestations and poor outcomes 

(Inverarity et al., 2008, Gransden et al., 1985). Figure 1-2 demonstrates the burden of 

disease caused by serotype 3 (Type III) pneumococci in Glasgow and Figure 1-4 from 

Edinburgh from the 1920s until the 1980s. The serotype 3 population does not appear to be 

increasing at present in Scotland (Lamb et al., 2008). There are many sequence types 

among serotype 3 isolates in Scotland but this serotype is predominantly comprised of 

ST180 as seen in Figure 1-8 and Figure 1-9. It is noteworthy that serotype 3 isolates of 

different genotypes may have different virulence in mice (Kelly et al., 1994, Ren et al., 

2003). Genes associated with virulence have been determined in serotype 3 pneumococci 

by means of signature-tagged mutagenesis (Lau et al., 2001). 
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Figure  1-8 MLST sequence types associated with serotype 3 capsule in Scotland causing 
invasive pneumococcal disease (2002-2006). 
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Figure  1-9 Relationships of MLST sequence types constructe d using eBURST version 3 4 of 
all isolates in the MLST database which express ser otype 3 capsule.  

Blue dots indicate STs which are founders of clones  from which single locus variants are 
demonstrated in black. Yellow dots indicate STs whi ch are subgroup founders. ST180 is the 
dominant founder clone of serotype 3. 
 

In countries where use of PCV-7 is more established, serotype 3 is increasing in incidence, 

which is likely to be a result of serotype replacement (Byington et al., 2008, Hicks et al., 

2007). 

1.6.1.3.2.1 ST180 

 
Serotype 3 ST180 has emerged since 2001 as a cause of paediatric pneumococcal 

empyema in Utah, USA (Byington et al., 2008)  and in Spain (Obando et al., 2008) and has 

also emerged as a non vaccine serotype in Alaska, USA causing IPD in adults and children 

(Miernyk et al., 2008) as well as paediatric empyema (Singleton et al., 2008). In addition, 

ST180 is a common sequence type associated with AOM (McEllistrem et al., 2005). 

ST180 is associated with the highest case fatality rate from IPD in Sweden (Sjostrom et al., 

                                                 
4 http://spneumoniae.mlst.net/eburst {accessed 20th December 2008} 
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2006). It has also been determined in children from Oxfordshire that ST180 rarely caused 

IPD but was highly associated with nasopharyngeal carriage (Brueggemann et al., 2003).  

The neuraminidase gene nanB appears to be present in all ST180 isolates while nanC is 

absent from all ST180 isolates (Pettigrew et al., 2006). 

1.6.1.3.3  Serotype 4 
Serotype 4 pneumococci are an important cause of IPD and can cause severe invasive 

disease in animal models (Sandgren et al., 2005) although in humans they have been 

associated with milder disease manifestations (Sjostrom et al., 2006). 

1.6.1.3.4  Serotype 14 
At the start of the 21st century, serotype 14 was the commonest serotype to cause IPD in 

children in the USA, Europe (including Scotland (Kyaw et al., 2003, Clarke et al., 2004c)) 

and Latin America and was still among the top five serotypes associated with paediatric 

IPD in Africa and Asia (Hausdorff et al., 2000b). It is more commonly cultured from blood 

than CSF (Hausdorff et al., 2000a) and is associated with an intermediate level of mortality 

(Henriques et al., 2000). Serotype 14 pneumococci also interact with the dendritic 

pathogen receptor DC-SIGN (Koppel et al., 2005). 

Serotype 14 has recently been identified by PCR as a cause of paediatric empyema in the 

United Kingdom from culture negative pleural fluid samples (Sheppard et al., 2008). 

Overuse of macrolide antibiotics has been cited as contributing to the spread of multiply 

resistant clones of serotype 14 pneumococci (including ST9) in Europe (Dias and Canica, 

2004). 

1.6.1.3.4.1 ST9 

In children from Oxfordshire, ST9 was mostly associated with causing IPD (Brueggemann 

et al., 2003). ST9 is almost 5 times more common in blood than it is in non-invasive sites 

(Amezaga et al., 2002) and has been associated with meningitis (Urwin et al., 1996). It is 

also associated with increased expression of a variant form of  glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) which may relate to its virulence (Cash et al., 1999). The ST9 

clone is associated with the M phenotype for macrolide resistance which is associated with 

the mefA gene but with a sequence more commonly associated with Streptococcus 

pyogenes (Amezaga et al., 2002). The PMEN clone, England 14-9, is a serotype 14, ST9 

clone which can be found in Scotland but here often has lower antimicrobial minimum 

inhibitory concentrations compared to the original clone suggesting some diversity within 

the clone (Smith et al., 2006).  
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1.6.1.3.5  Serotype 19A 
Serotype 19A is not prevented by PCV-7. In countries which introduced this vaccine into 

their paediatric schedule around the year 2000, such as the USA, there was later a 

noticeable increase in the incidence of serotype 19A related IPD (Kristinsson, 2008, 

Weatherholtz et al., 2008, Singleton et al., 2008, Carvalho et al., 2008, Pai et al., 2005, 

Hicks et al., 2007). To complicate matters there is evidence from countries which did not 

introduce the vaccine, such as Scotland and Germany, that serotype 19A was responsible 

for significant levels of IPD (Ruckinger et al., 2008, Lamb et al., 2008, Clarke et al., 

2004c) and that the incidence of serotype 19A IPD had also increased (Kristinsson, 2008, 

Hanquet et al., 2008, Byington et al., 2006). So it was not initially clear whether this had 

been an example of serotype replacement in response to the vaccine or the acquisition of a 

more virulent clone of serotype 19A. It is also apparent that serotype 19A can be found 

causing asymptomatic carriage (see Chapter 9). 

More perplexing was the discovery that the circulating serotype 19A population in the 

USA since the introduction of  PCV-7 was genetically diverse as shown in Figure 1-10 and 

Figure 1-11 (Pai et al., 2005). For instance, some isolates are resistant to multiple 

antibiotics while others are not (Brueggemann et al., 2007, Kristinsson, 2008, Pichichero 

and Casey, 2007, Singleton et al., 2007). More strikingly, Brueggemann et al  demonstrate 

that although some serotype 19A isolates are genotypically identical to strains circulating 

in the USA since the 1990s (and likely to have been selected by serotype replacement), 

there are others which clearly have evidence of having been produced as the result of 

capsular switching  (Figure 1-11) whereby the capsule is that of 19A while the genotype is 

identical to that of a serotype 4 clone (Brueggemann et al., 2007). They postulate that at 

least two vaccine escape capsular switch events have occurred. The main event resulted in 

a penicillin nonsusceptible serotype 19A with genotype ST695 which arose from 

recombination between a recipient serotype 4 ST695 and a donor serotype 19A ST199. 

This likely occurred around 2003 and resulted in clonal expansion through the Northeast 

USA because of its antibiotic resistance (Hanage et al., 2008, Pai et al., 2005). A second 

recombination event occurred between a donor serotype 19A ST2365 and a recipient 

serotype 4 ST247 (Brueggemann et al., 2007). There is also evidence from Utah that a 

serotype 19A of sequence type ST667 (which is more usually seen in serotypes 14 and 19) 

is causing IPD (Byington et al., 2008) and from Atlanta and Massachusetts that a serotype 

19A of sequence type ST320 (acquired from the serotype 19F multiply resistant PMEN 

clone Taiwan19F-14 ) accounts for a multiply antibiotic resistant clone which is resistant to 

penicillins, macrolides, clindamycin, tetracyclines, co-trimoxazole, cefuroxime and 

meropenem (Chancey et al., 2008, Carvalho et al., 2008, Hanage et al., 2008). In Alaska 
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though, the serotype 19A clone which has expanded is associated with ST 172 and has 

been associated with a fall in antibiotic resistance (Singleton et al., 2007). 

 

Figure  1-10 Relationships of MLST sequence types construct ed using eBURST version 3 5 of 
all isolates in the MLST database which express ser otype 19A capsule.  

Blue dots indicate STs which are founders of clones  from which single locus variants are 
demonstrated in black. Yellow dots indicate STs whi ch are subgroup founders. ST199 is the 
dominant founder clone of serotype 19A. There is su bstantially greater diversity within STs 
which express serotype 19A capsule than for serotyp e 1 or 3.  
 

                                                 
5 http://spneumoniae.mlst.net/eburst {accessed 20th December 2008} 
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Figure  1-11 Pie charts demonstrating the diversity of MLST  sequence types (clonal complex 
or CC) which express serotype 19A capsule before an d after pneumococcal conjugate 
vaccine introduction.  

Figure taken from Pai et al , 2005. This increase in diversity post conjugate v accine 
introduction has also been seen in other expanding non vaccine serotypes such as 3 and 7F 
(Byington, 2007). R indicates resistance to multipl e antimicrobials and r indicates 
intermediate resistance to penicillin using Clinica l and Laboratory Standards Institute (CLSI) 
criteria.  
 

Serotype 19A ST199 isolates are associated with pneumococcal haemolytic uraemic 

syndrome which is also increasing in incidence in the United Kingdom (Waters et al., 

2007).  

1.6.1.4  Genomic Diversity and Virulence Associated  Genes 

1.6.1.4.1 Antibiotic Resistance Genes 

1.6.1.4.1.1 Penicillin binding proteins (PBP) 

 
The discovery of several allelic variants for pbp2X, pbp2B and pbp1A of the six penicillin 

binding proteins was pivotal in understanding the phenomenon of horizontal gene transfer 
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between pneumococcal isolates and between the pneumococcus and other  streptococcal 

species (Hakenbeck et al., 1999). It has also been noted that when capsular switching 

occurs, that penicillin resistance genes may also be transferred at the same time 

(Brueggemann et al., 2007).  Diversity in the pbp2B gene can also influence diversity in 

the ddl housekeeping gene during interspecies recombinational exchanges (Enright and 

Spratt, 1999a). 

1.6.1.4.1.2 Macrolides 

 
Resistance to macrolide antibiotics such as clarithromycin occurs mainly by two 

mechanisms. The first is methylation by a 23s-rRNA dimethyltransferase which prevents 

macrolides from binding to the ribosome (Retsema and Fu, 2001), resulting in resistance to 

macrolides, lincosamides and streptogramins (the MLSB phenotype) (Jain and Danziger, 

2004). Several erythromycin ribosome methylase genes (erm genes) produce the MLSB 

phenotype (Jain and Danziger, 2004). The ermB gene predominates in pneumococci (Jain 

and Danziger, 2004) and is carried by transposons, allowing transmission of this gene to 

occur horizontally and clonally (Okitsu et al., 2005). The MLSB phenotype results in high 

levels of resistance to macrolides. 

The second mechanism is due to antibiotic efflux which can occur via two classes of pump 

– the ATP-binding-cassette (ABC) transporter superfamily and the major facilitator 

superfamily (MFS). The macrolide efflux pump (mefA) predominates in pneumococci and 

results in low to moderate resistance (the M phenotype with Minimum Inhibitory 

Concentrations of 1-64 mg/L) (Jain and Danziger, 2004, Hyde et al., 2001). The presence 

of the mefA gene in R6 and its absence in TIGR4 features in one region of diversity which 

is apparent when these sequenced genomes are compared (Bruckner et al., 2004). 

A third unique mechanism which developed rapidly in a patient with serotype 3 

pneumococcal pneumonia and which contributed to a fatal outcome,  resulted from an 

insertion of an 18bp tandem repeat in the L22 ribosomal protein and was described by 

Musher et al  (Musher et al., 2002). 

Macrolide resistance predominantly affects serogroups 6, 9, 14, 19 and 23 (Jacobs, 2002). 

In serotype 14, macrolide resistance is particularly associated with ST9 in Scotland (Clarke 

et al., 2004b).  
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1.6.1.4.1.3 Tetracyclines 

 
Six diverse alleles for the tet(M) gene which confers tetracycline resistance in the 

pneumococcus have been identified (Doherty et al., 2000). 

1.6.1.4.1.4 Trimethoprim 

 
Two main groups of mutations in the dihydrofolate reductase gene have been identified in 

pneumococcal isolates (Adrian, 1997). One of these mutations (Ile100-Leu) confers a 50 

fold increase in the 50% inhibitory dose (ID50) of trimethoprim (Adrian, 1997). 

1.6.1.4.2  Capsular genes 
Diversity of capsular genes and their expression is discussed earlier in section 1.6.1.2.2. 

1.6.1.4.3  Surface Proteins 

1.6.1.4.3.1 Neuraminidase  

 
The nanA gene is thought to be universally present in all pneumococcal strains (Pettigrew 

et al., 2006) while nanB was present in 96% of a series of isolates and nanC was present in 

only 51% of the same series (Pettigrew et al., 2006). NanA itself has substantial sequence 

diversity with three large regions of diversity – mosaic blocks A, C and D – and regions of 

insertions. Indeed, when comparing the R6 and TIGR4 genomes, it was noticed that the 

nanA gene in TIGR4 was smaller than that in R6 (Bruckner et al., 2004). Point mutations 

and frameshift mutations have also been recognised in the nanA sequence (Calum 

Johnston, University of Glasgow, personal communication). 

1.6.1.4.3.2 Choline Binding Proteins 

1.6.1.4.3.2.1 Pneumococcal Surface Protein A (PspA) 

 
PspA and PspC are choline binding proteins associated with virulence. There is particular 

interest in PspA as it is immunogenic and has potential use for a protein based vaccine 

(Mollerach et al., 2004, Heeg et al., 2007). The PspA genes are mosaic genes 

(Hollingshead et al., 2000) and PspA sequences can be classified into three main families 

by the variability in their alpha helices (Roche et al., 2003) although over 95% of strains 

belong to family 1 or family 2 (Roche et al., 2003, Coral et al., 2001, Mollerach et al., 

2004). Families 1 and  2 of PspA are over 50% divergent by sequence analysis (Ren et al., 

2003). Each family can be further subdivided into six clades (Hollingshead et al., 2000, 

Heeg et al., 2007).  
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1.6.1.4.3.2.2 Pneumococcal Surface Protein C (PspC) 

 
PspC is encoded by a heterogeneous group of mosaic genes (Brooks-Walter et al., 1999). 

It has a virulence role in adherence, invasion and evasion of complement (Kerr et al., 

2006) but as it is highly polymorphic (Iannelli et al., 2002), there is substantial strain to 

strain variation and this influences virulence (Kerr et al., 2006). Such sequence variation is 

noticeable when performing microarray DNA CGH experiments (Hakenbeck et al., 2001).    

1.6.1.4.3.2.3 Other Choline Binding Proteins (cbps) 

 
In their comparison of the R6 and TIGR4 genomes, Bruckner et al identified differences 

between the two for several other cbps (Bruckner et al., 2004). One of these, cpbG, has 

been noted to exist in a truncated form due to a TTTA repeat causing a frameshift and 

premature stop codon (Mann et al., 2006) although different clinical presentations can be 

associated with either form (Mann et al., 2006). 

1.6.1.4.4 Pneumolysin 
Genetic diversity in the structure of pneumolysin has recently been shown to be associated 

with different biological behaviour of the toxin (Jefferies et al., 2007, Kirkham et al., 

2006) indicating that genetic differences in the bacterial virulence genes could account for 

different disease manifestations. Sequence diversity in the pneumolysin gene has been 

recognised since 2005 (Hanage et al., 2005). 

1.6.1.4.5  Zinc Metalloproteinases 
The pneumococcus exhibits large proteases on its surface which are predominantly zinc 

metalloproteinases and early sequenced genomes showed there to be up to four per isolate 

(Chiavolini et al., 2003).  These are particularly important for invasive infections and 

virulence in serotype 4 pneumococci, none appear important for virulence in serotype 3 

pneumococci and only two are required for virulence in serotype 19F (Chiavolini et al., 

2003). Two of these have been characterised and show substantial genomic diversity – 

IgA1 protease and ZmpC. 

1.6.1.4.5.1 Immunoglobulin A1 protease 

 
This class of proteases allow the pneumococcus to evade host mucosal immunoglobulin 

which explains its substantial diversity as it is required to cleave structurally diverse 

substrates (Poulsen et al., 1998). Pneumococcal strains demonstrate variation in the 

number and sequence of repeat regions to facilitate this (Poulsen et al., 1998). There are 

also substantial sequence similarities between the pneumococcus and other species of 
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alpha haemolytic streptococci (Poulsen et al., 1998).  This high level of diversity can be 

seen in results of microarray DNA CGH experiments where failure to hybridize indicates 

substantial divergence from the probe on the microarray (Hakenbeck et al., 2001). 

1.6.1.4.5.2 Zinc metalloproteinase C (ZmpC)  

 
ZmpC specifically cleaves human matrix metalloproteinase 9 (MMP-9) (Oggioni et al., 

2003). It is absent from the R6 genome (Hoskins et al., 2001, Chiavolini et al., 2003). It 

has been determined to be present in 26% of isolates and has an association with 

pneumococcal isolates from patients with pneumonia (Chiavolini et al., 2003) and was not 

found in isolates from nasal or conjunctival swab isolates (Oggioni et al., 2003). It has 

therefore been suggested that it has a role in virulence and pathogenicity in the lung 

(Oggioni et al., 2003).  

1.6.1.4.6  Two-component signal transduction systems (TCSs) 
Two component systems allow pneumococci to respond to changes in their environment 

(Paterson et al., 2006). The two components are two proteins – a membrane associated 

sensor histidine kinase which on receipt of a specific stimulus phosphorylates an aspartate 

residue in a cytoplasmic cognate response regulator which invariably results in alteration 

of levels of gene transcription (Paterson et al., 2006). There are thirteen TCSs and one 

orphan response regulator described in the pneumococcus (Paterson et al., 2006, Standish 

et al., 2007). Allelic variation in these TCSs is recognised (Reichmann and Hakenbeck, 

2000). All thirteen TCSs have been sequenced and several are homologous with genes of 

other Gram positive bacteria (Lange et al., 1999).  For at least one of the TCSs, regulation 

of gene expression is strain dependent (Hendriksen et al., 2007, Blue and Mitchell, 2003). 

1.6.1.4.7  Pneumococcal pilus 
A pneumococcal pilus is encoded by the rlrA  islet (LeMieux et al., 2006), which includes 

genes for three pilus subunits (RrgA, RrgB and RrgC) and can be found in some but not all 

pneumococcal isolates (Paterson and Mitchell, 2006) where it has a role in adherence and 

may be involved in virulence (Barocchi et al., 2006, Gianfaldoni et al., 2007). Its presence 

is associated with serotypes 4, 6B, 9V and 14 while it has been documented as absent from 

serotypes 1, 7F, 8 and 12B and its presence appears to be a clonal property (Aguiar et al., 

2008, Moschioni et al., 2008, Basset et al., 2007) where it is particularly associated with 

ST156 and ST162 (Sjostrom et al., 2007). Sequencing of the rlrA  islets has identified three 

clade types with homology of 88-92% (Moschioni et al., 2008). Diversity of sequence in 

the gene SP0466 within the rlrA  islet resulting in false negative microarray CGH results 
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has been recently demonstrated (Sjostrom et al., 2007). A second pilus has also recently 

been described (Bagnoli et al., 2008). 

1.6.1.5  Why Sequence the Pneumococcal Genome? 

There are several practical applications resulting from investigating the diversity of 

pneumococcal genomes and their constituent genes, other than to merely catalogue species 

diversity. This can identify genes which may distinguish oral streptococci and so improve 

taxonomy (Hollingshead and Briles, 2001, Lan and Reeves, 2001). Additionally, highly 

variable genes may distinguish poor vaccine candidate genes from more conserved and 

useful ones (Hollingshead and Briles, 2001, Serruto et al., 2004) such as lytA (Whatmore 

and Dowson, 1999). The availability of genome sequence data facilitates the development 

of new technologies (Hinds et al., 2002b) which can be used to develop new diagnostic 

tests (Hinds et al., 2008) or improve antimicrobial drug discovery through the development 

of genomic expression profiling (Hollingshead and Briles, 2001) or the identification of 

novel virulence associated genes (Hollingshead and Briles, 2001, Fournier et al., 2007).  

1.6.1.6 Aims of the Work Described in this Thesis 

The aims of this work were to investigate: 

1. The genomic diversity of defined populations of clinically relevant Streptococcus 

pneumoniae by means of a comparative genomic hybridization approach using a 

validated contemporary PCR product microarray, PCR and genomic sequencing.  

2. Factors which may be causing genomic diversity such as heterogeneity of genes, 

gene deletions or insertion of genetic material.  

3. The influence that genomic diversity may have on phenotype.  

This was approached by: 

• Comparison of microarray CGH results with genome sequence data for 4 fully 

sequenced pneumococcal isolates. 

• Illustrating, using ten pneumococcal isolates of different serotypes and unrelated 

sequence types, where regions of the pneumococcal genome were variable. 
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• Illustrating differences in the extent of inter-serotype and intra-serotype genomic 

diversity by comparing five isolates of ST9 from different serotypes with five 

isolates of ST9 all of which were serotype 14. 

• Illustrating the extent of diversity within two clones of identical serotype and 

sequence type (serotype 3, ST180 and serotype 4, ST246.) 

• Investigating the degree of diversity which could be demonstrated in isolates 

retrieved from nosocomial outbreaks where isolates of the same serotype and 

sequence type (serotype 4, ST206 and serotype 1 ST227) were known to be linked 

epidemiologically. 

• Documenting sequence type diversity involved in pneumococcal carriage in a 

paediatric population from a geographical region of high biodiversity.    

The influence of genomic diversity on phenotype through the demonstration of microarray 

transcriptional profiles was investigated by: 

• Comparison of IPD related serotype 3, ST180 isolates with serotype 3, ST180 

isolates isolated from nasopharyngeal carriage to investigate whether there could be 

a genetic basis for the difference in “invasive” and “carriage” phenotype.  

• Identification of transcriptional profiles from different clinical disease conditions: 

1. serotype 1 (ST227 and ST306) isolates associated with parapneumonic 

complications of pneumonia. 

2. serotype 3 (ST180) isolates from cases of cerebral abscess and meningitis. 

• Demonstration of the transcriptional effects on a multiply antibiotic resistant 

pneumococcal isolate by a sub-therapeutic dose of clarithromycin. 
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2 Materials and Methods 

2.1 General Procedures 

2.1.1.1  Bacterial Strains and Growth Conditions 

Details of the strains used in microarray experiments are displayed in Appendix 1. These 

details include serotypes, Multilocus Sequence Types, antibiotic sensitivities, details of the 

body fluid from which isolates were identified and the age of the source patients. Isolates 

were obtained from the strain collections of the Scottish Meningococcal and Pneumococcal 

Reference Laboratory (SMPRL) and the University of Glasgow Pneumococcal Research 

Group. All strains were taken from frozen stocks and grown overnight at 37°C on 5% 

horse blood agar (Oxoid, United Kingdom) in preparation for the manufacture of fresh 

glycerol stocks.  

2.1.1.2  Glycerol Stock Manufacture and Culture Che cks 

Single colonies of test isolates grown overnight on 5% horse blood agar were inoculated 

with a sterile plastic loop into 10ml of Brain Heart Infusion broth (Oxoid, United 

Kingdom) and grown at 37°C in a water bath to an optical density of 0.6 at 600nm 

determined on a WPA biowave C08000 Cell Density Meter (WPA, United Kingdom). 1.2 

ml of sterile glycerol (Riedel-de-Haen®, Germany) was added to the remaining 9ml of 

culture and mixed. 1ml aliquots were then pipetted into cryotubes (Sarstedt, Germany) and 

stored at -80°C. The purity of glycerol stocks was assessed by growth of 10µl plated onto 

5% horse blood agar and incubated overnight at 37°C. 

2.1.1.3  Antibiotic Susceptibility Testing 

Antibiotic susceptibility were determined using disc susceptibility testing applying the 

Clinical and Laboratory Standards Institute (CLSI) methodology. Susceptibility to 

oxacillin, ampicillin, ciprofloxacin, clarithromycin and clindamycin were determined and 

these are documented in Appendix 1. 

Isolates which were collected as part of the paediatric pneumococcal carriage study in 

Bolivia (Chapter 9) and isolate South Africa 2507 (Chapter 12) had antibiotic Minimum 

Inhibitory Concentrations (MICs) determined using E-tests® (AB Biodisk, Sweden). MICs 

were determined for penicillin, erythromycin, vancomycin, chloramphenicol, tetracycline 

and co-trimoxazole and documented in Appendix 2. 
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2.1.1.4  Serotyping  

All serotyping of strains was performed at SMPRL using a coagglutination method (Smart, 

1986) utilising sera from Statens Serum Institut, Denmark. 

2.1.1.5  Nucleic Acid Extraction 

2.1.1.5.1 DNA Extraction for Microarray Analysis and Polymerase Chain 
Reaction 

From a pure frozen glycerol stock of the test pneumococcal isolate, 100µl was inoculated 

into 20mL Brain Heart Infusion and incubated at 37°C overnight.  Purity of this broth 

culture was assessed by streaking 10µl aseptically onto 5% horse blood agar (Oxoid, 

United Kingdom) and incubating this overnight at 37°C.  

The remaining culture was centrifuged  at  4000 revolutions per minute (rpm) for 15 

minutes (serotype 3 pneumococcal cultures required 30 minutes) at 4°C in a Sigma 

Laboratory centrifuge 4K15 (Philip Harris, United Kingdom). After decanting the 

supernatant, the pellet was resuspended in 1ml lysis buffer (consisting of 10µl 1M Tris pH 

8.0 (Ambion/Applied Biosystems, United Kingdom); 200µl 0.5M EDTA (Ambion/Applied 

Biosystems, United Kingdom); 50µl 10% Sodium Dodecyl Sulphate (SDS) 

(Ambion/Applied Biosystems, United Kingdom); 740µl double distilled water). The 

resulting solution was transferred to a sterile 1.5ml microcentrifuge tube (Greiner Bio One, 

Germany) and incubated at 37°C for 1 hour in a digital dry bath (Accublock™ Digital Dry 

Bath, Labnet International, Inc., United Kingdom). Proteinase K (Invitrogen, United 

Kingdom) was added to a final concentration of 100µg/ml (5µg per ml from a 20mg/ml 

frozen stock). The resulting solution was incubated in the digital dry bath at 50°C for 3 

hours. 

RNaseA (Sigma-Aldrich, United Kingdom) was added to a final concentration of 20µg/ml 

(i.e. 2µl per ml of a 10mg/ml stock which had been boiled to remove DNase activity) and 

incubated at 37°C for 30 minutes. An equal volume of phenol: chloroform: isoamylalcohol 

(25:24:1) (Sigma-Aldrich, United Kingdom) was added and mixed by inverting the tubes 

sharply several times then centrifuged at 13000 rpm for 3 minutes at room temperature 

(Eppendorf centrifuge 5417C, USA). The upper phase was removed without disturbing the 

lower phase and added to a fresh microcentrifuge tube. 0.2 volumes of 10M ammonium 

acetate (Fisher Scientific, United Kingdom) were added along with 600µl absolute ethanol 

(Fisher Scientific, United Kingdom). The tubes were then inverted gently then spun at 30 

minutes 13000 rpm to pellet the DNA. 
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The supernatant was carefully decanted and the remaining DNA pellet was air dried for 15-

20 minutes upside down on a paper towel then re-suspended in TE buffer (200 µl). Once 

re-suspended, the DNA was stored at -20°C.  The DNA was quantified on a Nanodrop ND-

1000 spectrophotometer (Agilent Technologies, United Kingdom). 

2.1.1.5.2 RNA Extraction for Microarray Analysis 
From a pure frozen glycerol stock of the test pneumococcal isolate, 100µl was inoculated 

into 15mL Brain Heart Infusion and incubated at 37°C until an optical density at 600nm of 

0.6 was reached.  Purity of this broth culture was assessed by streaking 10µl aseptically 

onto 5% horse blood agar and incubating this overnight at 37°C.  

10ml of broth culture was centrifuged at 5000 rpm at room temperature for 5 minutes in 15 

ml centrifuge tubes after which the supernatant was discarded and the pellet frozen 

immediately in liquid nitrogen. Frozen pellets were then stored at -80°C until RNA 

extractions for all the hybridizations in a particular experiment could be performed in 

parallel.  

Due to the possible action of RNases, it was considered essential to include a step early in 

the cell harvest and RNA extraction protocol which inactivates RNases (Conway and 

Schoolnik, 2003), thereby limiting bias in the transcript representation due to differential 

turnover rates of RNA. On comparing a liquid nitrogen freezing step with the addition of 

RNAprotect Bacteria Reagent (Qiagen, United Kingdom) freezing in liquid  nitrogen was 

not only more cost effective but  yielded higher concentrations of RNA which were of 

better quality. 

Fresh lysozyme TE buffer was made. For 1ml of lysozyme TE buffer, 10µl 1M Tris HCl 

pH8.0 (Ambion/Applied Biosystems, United Kingdom), 2µl of 0.5M EDTA pH8.0 

(Ambion/Applied Biosystems, United Kingdom) and 15mg of lysozyme  (Sigma-Aldrich, 

United Kingdom) were added to 1ml of nuclease free water (Ambion/Applied Biosystems, 

United Kingdom). 

To begin the extraction, 200µl of lysozyme TE Buffer (15 mg/ml) was added to the pellet, 

vortexed for 10 seconds using a rotamixer (Hook and Tucker Instruments, United 

Kingdom) and incubated at room temperature for 15 minutes with vortexing for 10 seconds 

every 2 minutes. 700µl of RLT Buffer from a Qiagen RNeasy Mini Kit (Qiagen RNeasy 

MINI KIT, Qiagen, United Kingdom) was added and vortexed for 10 seconds. 
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The resulting lysate was transferred to a sterile 1.5ml microcentrifuge tube (Greiner Bio 

One, Germany) containing 25-50mg of 100µm glass beads (Sigma-Aldrich, United 

Kingdom). Using a Hybaid Ribolyser (Hybaid, United Kingdom) set at speed 4, three runs 

of 20 seconds were used to facilitate the disruption of cells. The solution was then 

centrifuged at 13000 rpm (Eppendorf centrifuge 5417C, USA) for 10 seconds. The 

supernatant (approximately 900µl) was recovered to a new 1.5ml microcentrifuge tube 

(Greiner Bio One, Germany). 500µl of Ethanol 100% (Fisher Scientific, United Kingdom) 

was added and mixed without vortexing. 

700µl of this solution was added to the RNeasy Mini column (Qiagen- RNeasy MINI KIT, 

Qiagen, United Kingdom) and centrifuged at 13000 rpm for 30 seconds at room 

temperature (Eppendorf centrifuge 5417C, USA). The flow-through was discarded and the 

remaining 700µl added to the same RNeasy Mini column and centrifuged at 13000 rpm for 

30 seconds. 350µl of RW1 Buffer was added into the RNeasy Mini column (Qiagen- 

RNeasy MINI KIT, Qiagen, United Kingdom) and centrifuged at 13000 rpm for 5 minutes 

at room temperature. 

10µl DNase I stock solution was added to 70µl Buffer RDD (Qiagen RNase-Free DNase 

Set, Qiagen, United Kingdom) and this 80µl was pipetted directly onto the RNeasy Mini 

column silica-gel membrane, and placed on the benchtop at room temperature for 15 

minutes. 

350µl of Buffer RW1 was pipetted into the RNeasy column then centrifuged for 30 

seconds at 13000 rpm at room temperature and the flow through was discarded. A further 

700µl of RW1 Buffer was added into the RNeasy Mini column and centrifuged at 13000 

rpm for a further 30 seconds. The flow-through was again discarded and 500µl of RPE 

Buffer added into the RNeasy Mini column and centrifuged at 13000 rpm for 30 seconds. 

After discarding the flow through, an additional 500µl of RPE Buffer was added to the 

RNeasy Mini column and centrifuged at 13000 rpm for 2 minutes to dry the silica-gel 

membrane. 

To elute, the RNeasy Mini column was transferred to a new 1.5 ml collection tube. 50µl of 

nuclease free water (Ambion/Applied Biosystems, United Kingdom), was pipetted directly 

onto the silica-gel membrane  (30µl was added for serotype 3 pneumococcal RNA as the 

RNA yield was generally much lower than other serotypes). The tube was left to stand for 

3 minutes and then centrifuged for 1 minute at 13000 rpm. A 5µl aliquot was removed for 

quality assessment on an Agilent 2100 bioanalyser (Agilent Technologies, United 
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Kingdom) where an RNA integrity number above 9 was considered high enough quality 

for further use and quantification on a Nanodrop ND-1000 spectrophotometer (Agilent 

Technologies, United Kingdom) while the remaining stock of RNA was stored at -80°C 

until required.  

2.1.1.5.3 RNA Extraction for Quantitative Real Time Polymerase Chain Reaction 
(qRT-PCR) 

In addition to the steps above, a second treatment to remove DNA was performed by 

adding  1µl Ambion TURBO DNA-free™ (Ambion/Applied Biosystems, United 

Kingdom) after elution into nuclease free water (Ambion/Applied Biosystems, United 

Kingdom) prior to assessing the RNA quality. 

2.1.1.6  Polymerase Chain Reaction (PCR) 

PCR of genes to confirm their presence or absence in test genomes was performed on a 

Techegene thermal cycler (Bibby Scientific, United Kingdom). This was set to 2 minutes 

of denaturation at 94°C followed by 35 cycles of 94°C for 30 seconds, X°C for 30 seconds 

(where X was 2°C lower than the primer melting temperature) and 40 seconds at 72°C. 

The final extension was set for 2 minutes at 72°C and then the reaction was held at 4°C. 

The reaction volume was 25µl consisting of 0.15µl Go Taq® DNA polymerase (Promega, 

USA), 5µl of 5xBuffer (Promega, USA), 2µl of Magnesium Chloride (Promega, USA), 

0.5µl of 10mM dNTPs (Invitrogen, United Kingdom), 0.5µl forward primer, 0.5µl reverse 

primer, 1µl genomic DNA and 15.35µl PCR grade water. 

2.1.1.7  Gel Electrophoresis 

Prior to use in microarray experiments, the quality of genomic DNA was also assessed by 

gel electrophoresis using a 0.7% agarose gel (Agarose MP, Roche Diagnostics, Germany). 

PCR products were run on a 2% agarose gel to assess the product size using a 100 bp DNA 

ladder (Promega, USA). SYBR® safe (Invitrogen, United Kingdom) was used to 

demonstrate bands of DNA. 

2.2 Microarray Protocols 

2.2.1.1  DNA Comparative Genomic Hybridization (CGH ) 

DNA CGH experiments were all performed using a common reference design with TIGR4 

as the reference pneumococcal genome. Each experiment included fluorochome labelling 
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of DNA with a dye swap step so that for each test isolate of pneumococcal DNA 

(biological replicate), two microarrays were hybridized (technical replicates) – one with 

the test DNA labelled with fluorochrome Cy3 (GE Healthcare, United Kingdom) and one 

labelled with Cy5 (GE Healthcare, United Kingdom) (Churchill, 2002) as shown in Figure 

2-1. 

   

Figure  2-1 Results of microarray CGH dye swap experiments for isolate 06-1805 (ST227).  

In both microarrays illustrated above, DNA from the  test clinical isolate 06-1805 (used in 
Chapter 10) is competitively hybridized with DNA fr om the laboratory reference strain, 
TIGR4. On the left, the TIGR 4 genes are labelled w ith the fluorophore Cy3 and 06-1805 
genes are labelled with the fluorophore Cy5. This l abelling is reversed on the microarray on 
the right. When genes are present in TIGR4 but not the test clinical isolate they appear as 
red dots (left) or green dots (right). When genes a re present in 06-1805 but not the TIGR4 
genome they appear as green dots (left) and red dot s (right) – these genes are identifiable in 
the laboratory reference strain R6 but are absent f rom TIGR4. Where genes are present in 
both 06-1805 and TIGR4 there is competition to hybr idize on the array and the dots appear 
yellow. 
 
For each microarray, one Cy3 labelled DNA sample and one Cy5 labelled DNA sample 

were prepared by heating (for 5 minutes at 95°C) 5µg of DNA and 1µl of random primers 

(Invitrogen, United Kingdom) made up to 41.5µl with nuclease free water (Ambion/ 

Applied Biosciences, United Kingdom). This was then snap cooled on ice and briefly 

centrifuged. To each was added 5µl 10xREact 2 buffer (Invitrogen, United Kingdom), 1µl 

dNTPs (5mM dATP, 5mM dGTP, 5mM dTTP and 2mM dCTP), 1.5µl Cy3 or Cy5 dCTP 

(GE Healthcare, United Kingdom) and 1µl Large fragment DNA Polymerase I (Klenow)  

(3-9U/µl) (Invitrogen, United Kingdom) and the solution was incubated at 37°C in the dark 

for 90 minutes in a Techegene thermal cycler (Bibby Scientific, United Kingdom). 

Microarrays were prepared by soaking in a prehybridization solution preheated to 65°C 

(composed of 8.75ml 20xSSC (Ambion/Applied Biosciences, United Kingdom), 250µl 
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20% SDS (Ambion/Applied Biosciences, United Kingdom), 5ml (100mg/ml) Bovine 

Serum Albumin (Sigma-Aldrich, United Kingdom) and made up to 50ml of sterile double 

distilled water) for 20 minutes in a Coplin jar (Fisher Scientific, United Kingdom) and 

placed in a Techne Hybridizer HB-1D (Bibby Scientific, United Kingdom). Prehybridized 

arrays were rinsed in 400ml double distilled water for 1 minute and then in 400ml propan-

2-ol (VWR International, USA) for 1 minute. Each array was placed in a 50ml centrifuge 

tube and centrifuged at 1500 rpm for 5 minutes then stored in a dust free box until ready 

for hybridization. 

Cy3 and Cy5 labelled DNA samples were combined into a Qiagen Minelute purification 

column (Qiagen, United Kingdom). 500µl of Buffer PB was added and centrifuged at 

13000 rpm for 1 minute (Eppendorf centrifuge 5417C, USA). The flow through was 

discarded and 500µl of Buffer PE was added and centrifuged at 13000 rpm for 1 minute. 

Again the flowthrough was discarded then 250µl of Buffer PE was added to the same 

column and centrifuged at 13000 rpm for a minute. Flow through was discarded and then 

the column was spun again for 1 minute at 13000 rpm then placed in a fresh 1.5ml 

collection tube. 15.9µl of nuclease free water (Ambion/Applied Biosciences, United 

Kingdom) was added to the membrane and centrifuged for 1 minute at 13000 rpm to elute 

DNA for hybridization. 

14.9µl of the Cy3/Cy5 labelled DNA sample was added to 4.6µl of filtered 20xSSC and 

3.5µl of 2% SDS and the resulting solution heated for 2 minutes at 95°C in a Techegene 

thermal cycler (Bibby Scientific, United Kingdom). Lifter slips (Erie Scientific Company, 

USA) were placed on the pre-hybridized microarrays and the DNA solutions pipetted onto 

the bottom left corner to allow the solution to be drawn across the microarray by capillary 

action. Prepared microarrays were placed in a hybridization cassette, sealed and then 

submerged in a water bath at 65°C in a Techne Hybridiser HB-1D (Techne, USA) in the 

dark for 20 hours. 

After hybridization, arrays were transferred to a slide rack and washed with agitation in a 

pre-heated solution of 20ml 20xSSC, 1ml 20% SDS made up to 400ml with sterile double 

distilled water for 2 minutes and then transferred to a further solution of 1.2ml 20xSSC 

made up to 400ml with sterile double distilled water and washed with agitation for 4 

minutes. Microarrays were then placed in 50ml centrifuge tubes and dried by 

centrifugation at 1500 rpm for 5 minutes. The hybridized microarrays were then scanned 

using ScanArray Express ™ (Packard Biosciences Biochip Technologies, Perkin Elmer). 
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2.2.1.2  RNA Comparative Hybridization 

RNA expression experiments were also performed using a common reference design using 

TIGR4 RNA grown to midlog phase (Conway and Schoolnik, 2003). Unlike the DNA 

CGH experiments, 3 biological replicates of each test isolate RNA (i.e. three independent 

RNA extractions from different broth cultures) were hybridized against TIGR4 RNA (from 

the same batch of TIGR4 RNA) with only one technical replicate per biological replicate 

as required for statistical validity (Foster and Huber, 2002). The choice of using an RNA 

reference control grown to midlog phase was made as this is an established means of 

determining a baseline for gene expression. It is appreciated that this is not the only 

possible method and that alternatives such as using genomic DNA or a mixture of 

reference RNA from several sampling conditions have also been used (Conway and 

Schoolnik, 2003). 

For each microarray, one Cy3 labelled cDNA sample (2-10µg) and one Cy5 labelled 

cDNA sample (2-10µg) were prepared by heating for 10 minutes at 70°C with 1µl of 

random primers (Invitrogen, United Kingdom) and made up to 11µl with nuclease free 

water (Ambion/ Applied Biosciences, United Kingdom). This was then snap cooled on ice 

and briefly centrifuged. To each was added 5µl 5xFirst strand buffer (Invitrogen, United 

Kingdom), 2.5µl DTT (100mM), 2.3µl dNTPs (5mM dATP, 5mM dGTP, 5mM dTTP and 

2mM dCTP), 1.7µl Cy3 or Cy5 dCTP (GE Healthcare, United Kingdom) and 2.5µl 

SuperScript II (200U/µl) (Invitrogen, United Kingdom) and the solution was incubated at 

25°C in the dark for 10 minutes then 42°C for 90 minutes in a Techegene thermal cycler 

(Bibby Scientific, United Kingdom).  

Microarrays were prepared in an identical way to that described above in Section 2.2.1.1. 

Cy3 and Cy5 labelled DNA samples were combined into a Qiagen Minelute purification 

column (Qiagen, United Kingdom). 250µl of Buffer PB was initially added and 

centrifuged at 13000 rpm for 1 minute (Eppendorf centrifuge 5417C, USA). The rest of the 

procedure for preparing the hybridization solution, hybridizing the microarray and 

scanning is identical to that described in Section 2.2.1.1. 

2.2.1.3  Microarray Normalization for DNA Comparati ve Genomic 

Hybridization 

Tagged Image File Format (TIFF) images of the scanned microarrays created by 

ScanArray Express ™ (Packard Biosciences Biochip Technologies, Perkin Elmer) were 
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entered into Bluefuse for Microarrays 3.5 © with the Cy3 labelled image in Channel 1 and 

the Cy5 labelled image in Channel 2. The array gridmap files provided by the Bacterial 

Microarray Group at St George’s Hospital, University of London (BµG@S, United 

Kingdom) were utilised.   The post processing protocol was devised by Dr Jason Hinds of 

BµG@S and comprised of initial exclusion of unreliable results due to poor quality 

hybridizations with a confidence estimate of less than 0.1. Controls spots on the array were 

identified using an array gridmap GenePix Array List (GAL) file 

(SPv1_1_0_CGH_Gridmap.bcf) and data pertaining to control spot hybridizations was 

automatically removed from the analysis. To correct for spatial, intensity and dye related 

effects, normalization was performed using the option, “Global Lowess excluding all with 

text.” Confidence flags were set at their default settings. Replicates of each dye swap were 

combined by fusion. 

CGH was performed in Bluefuse for Microarrays 3.5© using a protocol devised by Dr 

Jason Hinds through the identification of a normal distribution of experimental variability 

and by identifying variability which was two standard deviations from the mean of this 

normal distribution for all the results for the TIGR4 and R6 genes represented on the 

microarray. Automated classification of regions of variability was performed by setting a 

ratio threshold for amplification as 1.0 and ratio threshold for deletion at -1.0 with the 

minimum number of clones included in the region in order for it to be classified as an 

amplification or a deletion set at 1. Dye swap processing was enabled. 

Data analysis was completed in Genespring GX 7.3.1 (Agilent Technologies, USA) again 

using protocols devised by Dr Jason Hinds. Output_fused_CGH files were imported into 

Genespring GX 7.3.1 and further normalization was performed after data transformation to 

account for dye swaps. This normalization was performed using the, “Per spot and divided 

by control channel,” protocol with a cross gene error model using the error model for one-

colour data. The error model was based on deviation from 1. The generation of gene lists 

using Genespring  GX 7.3.1 (Agilent Technologies, USA) was accomplished by importing 

the Bluefuse for Microarrays 3.5©  generated output_fused.xls files to create an 

experiment whereby the microarray dye swaps for each strain could be analysed using the, 

“Filter on data file,” option. To generate each gene list, a search was performed using the, 

“Type,” column employing the search criteria, “Column values must be not equal to NO 

CHANGE,” and “Value must appear in at least 1 of the selected columns.” The resulting 

gene list could be saved or exported into Microsoft Office Excel 2003, Microsoft®, United 

Kingdom for comparison with further strains. 
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2.2.1.4  Microarray Normalization for RNA Expressio n 

For RNA expression experiments, normalization was performed (again using protocols 

written by Dr Jason Hinds) by importing the Output_fused.xls files into Genespring GX 

7.3.1 (Agilent Technologies, USA) for the 3 biological replicates of each isolate. When 

TIGR4 cDNA was labelled with Cy3 an initial “dye swap” normalization step was used for 

RNA expression experiments. An additional, “Per gene,” normalization step was applied to 

specific samples (serotype 1 isolates) where the isolates being compared involved more 

than one MLST of S. pneumoniae to take into account clustering by MLST rather than by 

the clinical condition being investigated. 

Statistical analysis of RNA expression data generated by Genespring GX 7.3.1 (Agilent 

Technologies, USA) was performed using the statistical analysis (ANOVA) tool. This 

performs a 1-way parametric test without assuming variances are equal. The false 

discovery rate was set at 0.05 resulting in a false discovery rate of about 5% of genes. 

Multiple testing correction was performed using a Benjamini and Hochberg False 

Discovery Rate. No post hoc tests were used. 

The class prediction function on Genespring GX 7.3.1 (Agilent Technologies, USA) was 

used to generate lists of genes which were predictive of invasiveness, brain abscess or 

complicated pneumonia respectively, with a predictive strength calculation based on 

Fishers Exact Test. These lists were then imported into Microsoft Office Excel 2003, 

Microsoft®, United Kingdom for comparison. 

2.3 Gene Sequencing and Multi Locus Sequence Typing  

Gene sequencing and MLST of isolates (Enright and Spratt, 1998) was performed at the 

SMPRL using their protocols as outlined below.  

2.3.1 Gene Sequencing 

PCR products from reactions performed using primers noted in Appendix 3 (MWG 

Biotech AG, Germany) which were manufactured to generate the PCR products utilised in 

the manufacture of the microarray were used for sequencing. A semi automated PCR clean 

up (Clarke and Diggle, 2002) was performed using a RoboAmp liquid handling robot 

(MWG Biotech AG, Germany). Likewise, a sequence reaction using the RoboAmp 

thermocycler (MWG Biotech AG, Germany) with a semi automated sequence cleanup was 
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performed as per the published method (Clarke and Diggle, 2002). Sequencing was 

performed using a MegaBACE™ 1000 96-capillary sequencer (GE Healthcare, United 

Kingdom) and a published protocol (Jefferies et al., 2003).  

2.3.2 Multi Locus Sequence Typing 

MLST was performed using a previously published semi-automated protocol (Jefferies et 

al., 2003). The primers for the seven housekeeping genes used for MLST are listed below. 

Housekeeping Gene  Primer Sequence (5’ →3’) 

aroE forward GCC TTT GAG GCG ACA GC 

aroE reverse TGC AGT TCA (G/A)AA ACA T(A/T)T TCT AA 

gdh forward ATG GAG AAA CCA GC(G/A/T/C) AG(C/T) TT 

gdh reverse GCT TGA GGT CCC AT(G/A) CT(G/A/T/C) CC 

gki forward GGC ATT GGA ATG GGA TCA CC 

gki reverse TCT CCC GCA GCT GAC AC 

recP forward GCC AAC TCA GGT CAT CCA GG 

recP reverse TGC AAC CGT AGC ATT GTA AC 

spi forward TTA TTC CTC CTG ATT CTG TC 

spi reverse GTG ATT GGC CAG AAG CGG AA 

xpt forward TTA TTA GAA GAG CGC ATC CT 

xpt reverse AGA TCT GCC TCC TTA AAT AC 

ddl forward TGC (C/T)CA AGT TCC TTA TGT GG 

ddl reverse CAC TGG GT(G/A) AAA CC(A/T) GGC AT 

Table  2-1 Primer sequences used for MLST.  
 

2.4 Analysis of Genome Sequences Using the Artemis 

Comparison Tool 

The Artemis Comparison Tool (ACT) was developed as a means of visualising 

comparisons of complete genome sequences and their associated annotations (Carver et al., 

2005).  The genomes of the two microarray reference strains (TIGR4 and R6) were 

compared with the annotated sequences for fully sequenced pneumococcal genomes 

provided as EMBL files by Mr Nicholas Croucher, Wellcome Trust Sanger Institute using 
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the BLASTN algorithm from the web site DoubleACT which is hosted by the Health 

Protection Agency6. The resulting files were imported into ACT to allow comparison of 

either the TIGR4 or R6 genomes with other sequenced strains. These sequence 

comparisons could then be used to validate the microarray comparative genomic 

hybridizations using the same four test strains when hybridized competitively against 

TIGR4.  

2.5 Quantitative Real Time Polymerase Chain Reactio n 

2.5.1 cDNA Synthesis 

2µg of high quality RNA (RNA integrity number > 9 on Agilent 2100 Bioanalyser 

(Agilent Technologies, United Kingdom)) was mixed with 2µl Random Hexamers 

(Invitrogen™, United Kingdom) and 1 µl RNaseOUT™ (Invitrogen™, United Kingdom) 

and nuclease free water was added (Ambion/Applied Biosystems, United Kingdom) to a 

total volume of 17.5 µl. This was denatured at 70°C for 10 minutes in a Techegene thermal 

cycler (Bibby Scientific, United Kingdom), then put on ice. To each sample were added 

6µl of 5x First Strand Buffer (Invitrogen™, United Kingdom), 3µl of 0.1M DTT 

(Invitrogen™, United Kingdom), 1.5µl  of 10mM dNTP (Invitrogen™, United Kingdom) 

and  2µl of SuperScript® III (Invitrogen™, United Kingdom). The reaction was incubated 

at 42°C for 16 hours and then inactivated by heating to 70°C for 15 minutes. 1µl of E. coli 

RNase H (Invitrogen™, United Kingdom) was added and incubated at 37°C for 20 

minutes. The concentration of the resulting cDNA was quantified using a Nanodrop ND-

1000 spectrophotometer (Agilent Technologies, United Kingdom). 

 
2.5.2 Quantitative Real Time Polymerase Chain React ion Protocol 

Quantitative Real Time PCR was performed at SMPRL on a LightCycler® 480 (Roche, 

United Kingdom). Pneumococcal DNA gyrase subunit A (SP1219) was used as the 

reference gene and its expression compared to appropriate test genes for each experiment. 

TIGR4 cDNA was used as a positive control and negative controls were nuclease free 

water and the RNA sample from which cDNA was manufactured (non-reverse 

transcription negative control). Standard curves were constructed using cDNA at dilutions 

of 1:5, 1:50, 1:500, 1:5000 and 1:50,000. Primers were used at a concentration of 1µM and 

                                                 
6 http://www.hpa-bioinfotools.org.uk/pise/double_act.html# {accessed 17th November 2008} 
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the total reaction volume was 20µl (5µl cDNA, 10µl LightCycler® 480 SYBR Green I 

Master (Roche, United Kingdom), 3µl nuclease free water, 1µl forward primer and 1µl 

reverse primer). The protocol used consisted of a pre-incubation step for 5 minutes at 95°C 

and then 40 cycles of an amplification step consisting of 10 seconds at 95°C, 20 seconds at 

50°C and 30 seconds at 72°C. The melting curve cycle consisted of 5 seconds at 95°C, 1 

minute at 65°C followed by reaction termination at 72°C then cooling to 40°C for 10 

seconds. The results of the real time PCR experiments were analysed using the software Q-

gene (Muller et al., 2002) for assessment of relative expression levels for genes of interest. 

It is important to recognise though that qRT-PCR is a more quantitative method of 

comparing gene expression than by using microarrays which are semi-quantitative and so 

there can be notable differences in the level of gene expression detected by the two 

methods with microarrays often underestimating gene expression by two to ten fold 

(Conway and Schoolnik, 2003). The primers used for qRT-PCR experiments are displayed 

in Appendix 4. 

 



 

3 Microarray and Genome Sequencing 

Approaches to the Study of Pneumococcal 

Genomic Diversity 

3.1 What is a Microarray? 

A microarray consists of a series of, up to several thousand, nucleic acid targets attached to 

a solid substrate. Hybridization of fluorescently labelled DNA or cDNA probes from test 

genomes using methodology developed in the 1990s from Southern blotting and reverse 

Northern blotting (Guo et al., 1994) can allow assessment of the presence or sequence 

divergence of identifiable genes of interest or assessment of relative expression levels of 

genes (Bryant et al., 2004, Ye et al., 2001). There are two major classes of DNA 

microarrays – PCR product or “spotted” microarrays and oligonucleotide based 

microarrays (Ye et al., 2001, Hinds et al., 2002a, Bryant et al., 2004, Frieberg and 

Brunner, 2002). In general, “spotted” microarrays are better for detecting the presence or 

absence of entire genes and are more economical (Finkelstein et al., 2002) whereas 

oligonucleotide microrrays, which have a greater density of smaller probes, can detect 

sequence polymorphisms within a gene more readily (Bryant et al., 2004, De Saizieu et al., 

1998, Cassone et al., 2007). For “spotted” DNA microarrays, sequences corresponding to 

single open reading frames are preferable (Rimini et al., 2000).  

Several advancements in the last decade have driven the development of microarray 

technology. There has been a great expansion of techniques that have birthed methods for 

fluorescent tagging of DNA and fluorescence scanning. Techniques developed from on-

chip photolithography and inkjet and microjet deposition allow the accurate "spotting" or 

application of DNA to minute areas of solid substrate such as glass microscope slides 

(which are inert at high temperature, allow covalent binding of DNA to the glass surface, 

tolerate high ionic washes, have low background fluorescence and permit competitive 

hybridization) (Hinds et al., 2002a, Guo et al., 1994, Dharmadi and Gonzalez, 2004), 

membranes (which are larger and only permit single channel hybridizations) (Hinds et al., 

2002a) or microchips. This allows DNA hybridization to be performed against thousands 

of genes simultaneously (Hinds et al., 2002a, Kumar et al., 2005). Fears of bioterrorist 

attacks and biological warfare have motivated a drive to develop technology that can 

rapidly identify pathogens (Wilson et al., 2002, Pannucci et al., 2004, Hashsham et al., 

2004) and has stimulated the miniaturisation of existing technologies for genomic 
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identification for application and utilisation outwith a laboratory. The complete sequencing 

of bacterial genomes has also provided a backbone template of genes against which strains 

of the same or similar organisms can be compared allowing studies of genomic diversity 

and genotyping, refinement of taxonomy and a greatly increased understanding of 

pathogenesis since gene expression studies need no longer be performed in isolation but in 

the dynamic context of enzymatic pathways and the adaptation of the organism to a range 

of changes in environmental exposures (Bryant et al., 2004).  

A growing number of human parasites as well as bacterial, fungal and viral pathogens have 

been studied using microarray technology in addition to Streptococcus pneumoniae (De 

Saizieu et al., 1998, Peterson et al., 2000, McCluskey et al., 2002, Martin-Galiano et al., 

2004, McDaniel et al., 2004, Shen et al., 2006a, Orihuela et al., 2004b). In an attempt to 

standardize data produced from  different microarray platforms with different experimental 

designs, using different analysis methods, there exist guidelines as to the Minimum 

Information About a Microarray Experiment (MIAME) which should be accessible for any 

microarray generated dataset (Dharmadi and Gonzalez, 2004, Brazma et al., 2001). In 

order to be compliant with the MIAME guidelines, all microarray data pertaining to these 

experiments are stored in BµG@SBase, the microarray data repository for the Bacterial 

Microarray Group at St George’s Hospital (BµG@S), University of London. 

3.2 Applications of Microarrays  

3.2.1.1.1 Virulence studies 
In the pneumococcus, microarrays allowed a comprehensive analysis of the timing and 

extent of activation of known components of the competence cycle along with the 

identification of additional loci not previously recognised as being involved in 

pneumococcal competence (Peterson et al., 2000, Peterson et al., 2004, Dagkessamanskaia 

et al., 2004, De Saizieu et al., 1998, De Saizieu et al., 2000, Rimini et al., 2000, Mascher 

et al., 2006). The identification of genes involved in pneumococcal competence and 

transformation was also the subject of a recent study using genomic array footprinting 

(Burghout et al., 2007).  Orihuela et al have demonstrated different patterns of 

pneumococcal gene expression which occur when extracted from different anatomical 

locations in mice (Orihuela et al., 2004b). 

By comparing gene expression at different times in the growth of the pneumococcus, Ko et 

al (Ko et al., 2006), showed that the late log or early stationary phase is the most virulent 

phase of pneumococcal growth. A growth phase dependent switch in virulence gene 
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expression has also been described for Helicobacter pylori (Thompson et al., 2003). An 

advantage of the microarray approach to studying gene expression is that they eliminate 

bias generated by prior selection of genes to study which are believed to be involved in 

pathogenesis (Cassone et al., 2007). 

Microarrays based on the human genome have also been used to investigate the host 

response to pneumococcal virulence factors such as pneumolysin (McDaniel et al., 2004).  

In bacteria other than pneumococci, combining microarray CGH with Bayesian 

phylogenies has allowed the identification of non pathogenic, low pathogenicity and highly 

pathogenic clades of Yersinia enterocolitica  and a hypervirulent clade of Clostridium 

difficile by means of comparative phylogenomics (Howard et al., 2006, Stabler et al., 

2006).  Chizhikov et al have also used a oligonucleotide microarray to detect virulence 

factors in strains of Salmonella, Shigella and Escherichia coli (Chizhikov et al., 2001). 

3.2.1.1.2  Drug Discovery and Development 
As DNA CGH and RNA expression experiments can help identify putative gene functions, 

their roles in metabolic pathways or effects of regulatory systems, they are ideal for 

speeding up the process of identifying potential antimicrobial drug targets (Yin et al., 

2004, Galperin and Koonin, 1999) or identifying distinct patterns of gene expression in the 

presence of antimicrobials.  Bijlsma et al, (Bijlsma et al., 2007) and Burghout et al 

(Burghout et al., 2007) have recently used Genomic Array Footprinting (GAF) which 

combines random transposon mutagenesis and microarray technology to create a high 

throughput method of identifying essential genes in the pneumococcus which could be 

applied to aid identification of proteins to target for vaccine and antimicrobial drug 

development. 

3.2.1.1.3  Diagnostics 
It is possible to customise microarrays to address specific diagnostic issues (Kumar et al., 

2005). One such application would be to rapidly identify the presence of antimicrobial 

resistance genes (Cassone et al., 2006, Zhu et al., 2007, Grimm et al., 2004, Call et al., 

2003). With regard to the pneumococcus, there have been moves to develop a serotyping 

microarray although some of these prove unable to discriminate between serotypes, 

although they can discriminate between serogroups (Wang et al., 2007). Other serotyping 

microarrays, although more accurate (Hinds et al., 2008) cannot yet compete against the 

economy and rapidity of serotyping by co-agglutination.  Use of microarray technology to 

perform MLST has also proven to be unsuccessful because of unacceptably high 
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misidentifications at polymorphic loci (Swiderek et al., 2005, Vernet et al., 2004). This has 

led to the conclusion that microarrays should not be considered a substitute for classical 

typing techniques (Cassone et al., 2007). Microarrays are also being developed which can 

discriminate between pneumococcal and other respiratory bacterial and viral infections 

(Lin et al., 2007).  

Poor sensitivity and discriminatory power when identifying polymorphic loci, particularly 

when considering homologous sequences between bacterial species has limited the use of 

microarrays as a platform for the rapid, reliable identification of unknown organisms 

(Wilson et al., 2002), the simultaneous detection of multiple pathogens or discrimination 

of infection with closely related pathogens (Call, 2005, Palacios et al., 2007) although 

attempts are being made to resolve such issues (Call, 2005, Palacios et al., 2007, Liu et al., 

2004).  It has been estimated that hybridization will be successful if genetic dissimilarity 

between probe and target is less than 10-15% (Palacios et al., 2007). This is also 

influenced by the location of sequence dissimilarity as hybridization is less successful if 

polymorphisms are located centrally or throughout the probe sequence (Palacios et al., 

2007). Successful hybridization is also influenced less by mismatched GC rich fragments 

than by mismatched AT rich fragments (Palacios et al., 2007).  Microarrays are not well 

suited to enable a determination of pathogen viability or quantification of numbers of 

bacteria present such as would be required to estimate an infectious dose for a significant 

pathogen (Palacios et al., 2007).  

Cassone et al have suggested that to overcome inherent sensitivity limitations with 

microarrays, amplification of selected sequences could be performed but notes that 

introducing this bias may not be acceptable in a clinical setting (Cassone et al., 2007).  

There would likely need to be a PCR-independent, whole genome amplification to avoid 

such bias. For such reasons as these, DNA microarrays may not be destined to become the, 

“standard laboratory tool,” which some have previously suggested (Ye et al., 2001). 

3.3 Microarray Design 

The technology required for microarray manufacture and the methodology behind their 

manufacture are reviewed by several authors (Kumar et al., 2005, Dharmadi and Gonzalez, 

2004, Ye et al., 2001, Bryant et al., 2004, Hinds et al., 2002b, Hinds et al., 2002a, 

Finkelstein et al., 2002). 
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The SPv1.1 microarrays utilised in this work are manufactured by the Bacterial Microarray 

Group at St. George’s Hospital, University of London (BµG@S) as a PCR product 

microarray which harbours the genes of the entire TIGR4 genome (Tettelin et al., 2001) 

plus 117 genes from the R6 genome (Hoskins et al., 2001) all of which are represented in 

duplicate and attached to an aminosilane coated glass slide (Hinds et al., 2002a). The 

microarray manufacturing procedures for this pneumococcal microarray are described by 

Hinds et al (Hinds et al., 2002a, Hinds et al., 2002b) and are identical to those published 

for their Staphylococcus aureus (Witney et al., 2005) and Campylobacter jejuni (Dorrell et 

al., 2001) arrays albeit SPv1.1 utilises pneumococcal primers and PCR products.  

Optimised conditions relating to DNA or cDNA concentration used, temperature, buffer 

and salt concentrations are required for hybridization. Complementary hybridization 

between probe and target sequence results in stronger signal than between probe and 

mismatches, insertions or deletions (Kumar et al., 2005).       

3.4 Microarray Analysis Methods 

The fluorophores Cy3 and Cy5 have good photostability with a wide range of separation in 

their excitation (550nm for Cy3 and 649nm for Cy5) and emission spectra (570nm for Cy3 

and 670nm for Cy5). The emitted light wavelength allows visualisation of Cy3 as red and 

Cy5 as green (Kumar et al., 2005).  

DNA CGH and RNA expression experiments generate large amounts of complex data 

requiring tailored bioinformatics and biostatistical software, the use of which can have 

great impact on the interpretation of results (Kumar et al., 2005).  

In order to address systematic variables introduced into microarray experiments through 

their inherent experimental design such as slide batch heterogeneity, differences in spot 

morphology or different degrees of background signal, a process of data normalization is 

required to allow direct comparisons between microarrays (Kumar et al., 2005, Finkelstein 

et al., 2002).  For the purposes of this work, regressional normalization has been used by 

which a best fit slope is determined as a diagonal line on a scatter plot (Kumar et al., 2005, 

Dharmadi and Gonzalez, 2004). Normalization can be determined from this line by a 

variety of statistical methods in the software packages Bluefuse for Microarrays 3.5 © and 

Genespring GX 7.3.1 as illustrated below in Figure 3-1. 
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(A) (B) 

(C) 

 

 

Figure  3-1 Comparison of normalization methods for CGH of Sample 03-4183. 

Scatter plots A and B correspond to two separate dy e swap experiments for sample 03-
4183. In (A) the TIGR4 reference was labelled with Cy3 and in (B) the TIGR4 reference was 
labelled with Cy5. No normalization was performed u sing Bluefuse for Microarrays 3.5 © and 
Locally Weighted Scatterplot Smoothing (LOWESS) nor malization was performed for each 
in Genespring GX 7.3.1. For both there are signific ant “tail artefacts” resulting from low 
signal hybridizations and inclusion of signal from control spots. (C) was generated using 
the normalization procedure described in Chapter 2 whereby the merging of both dye 
swaps, removal of low signal artefacts and control spot artefacts and LOWESS 
normalization were performed in Bluefuse for Microa rrays 3.5 © with a further “Per spot- 
Divide by Control Channel” normalization step perfo rmed on this data in Genespring GX 
7.3.1 resulting in substantially fewer false positi ve results. 

 
The most appropriate normalization methodology for this work was determined by Dr 

Jason Hinds (BµG@S) and is described in Chapter 2.  Normalization can be performed 

within a slide to account for efficiency of dye incorporation and the presence of staining 

artefacts, between the two slides of a dye swap DNA CGH experiment or across slide 

replicates of RNA expression  experiments (Ye et al., 2001).  
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3.5 Microarray Validation Experiments 

3.5.1 Validation of DNA CGH 

A fully validated microarray should include evaluation of all of the probes on the 

microarray with all potential genomes to which they may be applied (Call, 2005). This 

validation has been performed for SPv1.1 by BµG@S (Hinds et al., 2002a). 

3.5.1.1 Determination of normalized log ratio cut o ff 

The normalized log ratio cutoff is a means of determining the presence or absence of genes 

from DNA CGH data and is generated by comparing the hybridization signal strength 

between the clinical isolate and TIGR4. In order to determine a cut off for these 

experiments a method by Obert et al was adapted (Obert et al., 2006).  This identified 

genes SP0278, SP0410, SP0458, SP0568, SP0764, SP1018, SP0104, SP1381, SP1799, 

SP1975 and SP2142 on the basis that they have no paralogs, the genes are >50kb apart and 

no one physiological process was oversampled.  The normalized log ratios for these genes 

as determined by Genespring GX 7.3.1 are displayed below in Table 3-1. PCR was 

performed for these genes on the six serotype 4, ST246 isolates which feature in Chapter 7. 

Gene Function  
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SP0104 hdl 
Hydrolase, haloacid dehalogenase-like 

family 1.072 1.04 1.338 0.964 0.986 0.95 

SP0278 pepS aminopeptidase 0.972 0.924 0.97 0.96 0.931 0.966 

SP0410 ext Exfoliative toxin, putative 0.815 1.029 1.037 No Hyb 1.898 1.036 

SP0458 dinP DNA-damage inducible protein P 1.125 0.951 0.825 0.988 1.1 1.037 

SP0568 valS valyl-tRNA synthetase 0.97 0.943 1.029 0.938 1.027 1.122 

SP0764 pyrDa Dihydroorotate dehydrogenase A 1.004 1.034 1.132 0.907 1.064 1.197 

SP1018 tdk thymidine kinase 1.237 1.027 0.959 1.056 1.126 0.976 

SP1381 abcT ABC transporter, ATP binding protein 0.873 0.887 0.859 0.775 0.817 0.795 

SP1799 str sugar-binding transcriptional regulator 0.374 0.49 0.425 0.246 0.233 0.278 

SP1975 spoJ spoIIIJ family protein 0.883 0.989 0.948 1.027 1.07 1.018 

SP2142 rok ROK family protein 0.896 0.991 0.97 1.002 0.982 1.012 

 

Table  3-1 Normalized log ratios determined by Genespring GX 7.3.1 for genes used to 
determine an appropriate cut-off value. 
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Figure  3-2 Comparison of microarray CGH result with PCR re sults from the ST246 
pneumococcal isolates used in Table 3-1.  

Yellow indicates that hybridization occurred on the  microarray or that a PCR product was 
obtained. Blue indicates that hybridization did not  occur on the microarray or that a PCR 
product was not obtained.   
 

On the basis of these investigations (excluding results for SP1799), a cutoff log ratio (fold 

change) of 2 was decided upon in order to have greater sensitivity by having low numbers 

of false negative hybridizations. Similar previous studies using this (Silva et al., 2006) and 

other (Obert et al., 2006) pneumococcal “spotted” arrays have used a cutoff log ratio of 

1.5. However, using this “tighter” cutoff, it was evident that it was not uncommon to find 

poor agreement between microarray and PCR results (Silva et al., 2006) for genes whose 

normalized log ratio was near the cutoff value. However, even with a less stringent cutoff, 

it is clear that, as illustrated by gene SP1799 above, that there will still be instances of 

discrepant results when determining the presence or absence of a gene by microarray CGH 

or PCR. Probable reasons relate to the choice of microarray used as Joyce et al elucidate, 

saying, 

“typically spotted DNA arrays are not sensitive enough to detect the variability 
in genes with a single or a limited nucleotide polymorphism (Joyce et al., 
2002).”  

False positive hybridizations, which could account for the result for SP0278 in isolate 03-

5339 can be the result of cross hybridization events which are more likely for genes with 

several alleles which could be homologous with other genes (Dorrell et al., 2001). 
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Occasionally false positive hybridizations may occur if a gene is absent but its adjacent 

genes are present (Dorrell et al., 2001).  

Microarray CGH may over-estimate genomic diversity if absence of hybridization is 

assumed to signify absence of a gene from a test isolate rather than diversity within its 

sequence. In addition a lack of hybridization can be observed where there is no sequence 

diversity between the PCR product and the microarray probe (see Chapter 7). Other groups 

have also documented this occurrence of false negative hybridization with rates as high as 

41% (Peplies et al., 2003). This may possibly be the result of folding of the DNA in the 

hybridization solution into a secondary structure incompatible with hybridization (Palacios 

et al., 2007, Peplies et al., 2003) or overlap of the microarray probe with a hypervariable 

region of the gene (Obert et al., 2006). Whatever the mechanism is, these false negative 

hybridizations call into question the accuracy of identifying regions of diversity in the 

pneumococcal genome using microarray CGH.  

3.5.1.2  Assessment of microarray hybridization acc uracy in a 

variable region 

Because of the unpredictable nature of false positive and false negative hybridizations for 

individual probes on microarrays, it is virtually impossible to determine a meaningful 

sensitivity and specificity for the overall test. Issues of false hybridization should be 

considered on an individual gene basis, particularly for known hypervariable genes. Obert 

et al consider this for the pneumococcal surface protein pspA when they realised that their 

microarray failed to hybridize for this gene in the majority of tested strains despite its 

successful amplification by PCR from the same strains (Obert et al., 2006). Hybridization 

results described in subsequent chapters are compatible with this observation.  

When the hypervariable genes which code for components of a pneumococcal pilus 

(SP0461-SP0468) were considered in serotype 1 isolates of ST227 and ST306, the SPv1.1 

microarray failed to detect any of them although the majority of them were present and 

detectable using PCR (Figure 3-3).  
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Figure  3-3 An investigation into the accuracy of hybridiza tion and diversity of genes coding 
for the pneumococcal pilus islet rlrA  investigated by PCR.  

Yellow indicates the presence of the gene in the is olate by PCR. Blue indicates absence of 
the gene by PCR. All these genes failed to hybridiz e on the SPv1.1 microarray. 
 

When the PCR products generated using the SP0464 primers were sequenced from the test 

isolates, they had 86-99% similarity to SP0464 present in TIGR4. SP0464 did not 

hybridize by CGH in the sequenced serotype 1 strain INV104B but again a product was 

detectable by PCR with a sequence which showed 93-96% similarity to the TIGR4 SP0464 

as determined by BLAST software7. Using the Artemis Comparison Tool (ACT) it can be 

seen that a gene with 94% similarity to SP0464 is identifiable in the INV104B genome 

(Figure 3-4) where it is identified as pmrA which is additional evidence to suggest that the 

disparity between hybridization results and PCR for these genes is genuine and due to false 

negative hybridization rather than false positive PCR.  

                                                 
7 http://blast.ncbi.nlm.nih.gov/Blast.cgi {accessed 8th January 2009} 
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Figure  3-4 Comparison of SP0464 in the TIGR4 and INV104B g enomes using the Artemis 
Comparison Tool (ACT).  

SP0464 in TIGR4 (top of figure) is highlighted demo nstrating 94% similarity (yellow 
triangles) to the pmrA  gene in INV104B (bottom of figure).   
 

This highlights that caution should be exercised in concluding that variable genes (such as 

the components of this pneumococcal pilus) are absent from particular serotypes when 

evidence is presented solely from hybridization based technology such as CGH or 

Southern blotting (Barocchi et al., 2006) or from PCR data pertaining to the whole pilus 

(Moschioni et al., 2008) rather than individual genes as noted above and by Bassett et al 

(Basset et al., 2007) as different methodologies can produce different results which can be 

misleading.   

3.5.1.3 Validation of RNA Common Reference Hybridiz ation 

Experimental Design  

The common reference design for RNA expression experiments requires that there is little 

variation in the nucleic acid used as the control which in these experiments is always 

TIGR4 RNA. Rather than use TIGR4 DNA for our comparator in RNA expression 

experiments, RNA was preferable albeit total RNA rather than purely mRNA (De Saizieu 

et al., 1998). However, being more variable, initial hybridizations using TIGR4 RNA 

hybridized against TIGR4 RNA were performed in order to gauge how much variability 

inadvertently could be introduced into the experiment and determine means by which 

control TIGR4 RNA variability could be kept to a minimum.   
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3.5.1.3.1  Variation observed in TIGR4 RNA extracted from cultures grown in 
different media batches 

 

Figure  3-5 Comparison of TIGR4 gene expression from RNA ex tracted after growth in 
different batches of BHI grown on different days.  

Both RNA extractions were performed on cultures gro wn to midlog optical density 0.6 at 
600nm demonstrating that batch to batch variation s ubstantially influences observable 
differences in gene expression with scatter evident  extending past the 2 fold cut off lines 
around the line of equal fluorescence passing throu gh the origin and which would have 
been considered as a significant difference in expr ession. 
 

Although an increase in expression extending past the chosen fold change cutoff may be 

due to the cumulative effect of many different promoters for one gene (Peterson et al., 

2004), this should not be the case when both the control and test isolates being hybridized 

are from the same genome and so it is legitimate to attribute the variation in Figure 3-5 

above to having been introduced by the experimental design. Similar findings were 

considered by Gmuender et al who noted greater variability in hybridization of cDNA 

manufactured from Haemophilus influenzae RNA extracted from different cultures than if 

RNA was extracted from the same culture. They noted about 61 transcripts (about 3% of 

genes on their Affymetrix oligonucleotide based array) to lie above or below a 2 fold 

change cut off when RNA was taken from different batches of culture and attributed this 

increased variation to different media batches, slightly different inoculum sizes or slightly 

different optical densities when cells were harvested (Gmuender et al., 2001). 
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3.5.1.3.2 Variation observed in TIGR4 RNA extracted from cultures grown using 
the same batch of media 

 

 

Figure  3-6 Comparison of TIGR4 gene expression from batche s of RNA extracted from 
culture using the same batch of BHI and grown on th e same day.  

Both RNA extractions were performed on cultures gro wn to midlog optical density 0.6 at 
600nm demonstrating substantially less variation in  gene expression than Figure 3-5 with 
expressed genes generally all lying well within the  lines of 2 fold cut off around the line of 
equal fluorescence passing through the origin.  
 

Based on these results, whenever gene expression experiments have been performed in this 

work, the control channel TIGR4 RNA is always taken, for each hybridization, from the 

same overall culture grown in the same batch of media, from which aliquots have been 

taken for RNA extraction. 
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3.6 Comparisons of Microarray DNA CGH results with 

Sequenced Pneumococcal Genomes 

3.6.1 Choice of Diverse Sequenced Strains 

Isolates considered here have undergone Sanger sequencing. Listed below in Table 3-2 are 

the respective serotypes, MLST and size of genome. They demonstrate diversity in each of 

these categories and are of significance with regard to work described in subsequent 

chapters of this thesis. Genes of the TIGR4 and R6 genomes form the reference genes on 

the microarray which have been used in these studies for comparative genomic 

hybridizations. ATCC700669 is the reference strain of the Spain 23F-1 Pneumococcal 

Molecular Epidemiology Network (PMEN) clone (Munoz et al., 1991) which is the same 

PMEN clone as isolate South Africa 2507 used in Chapter 11. OXC141 is a carriage 

serotype 3 isolate of ST180 which forms part of the comparison of invasive and carriage 

serotype 3, ST180 isolates described in Chapter 6. INV104B is of the same serotype and 

sequence type as some of the isolates associated with parapneumonic manifestations 

considered in Chapter 10 and INV200 features in Chapter 5 in a comparison of CGH data 

from serotype 14, ST9 isolates. 

Isolate Serotype MLST Genome Length (Bp) 
TIGR4 4 205 2160800 

R6 Non Typeable 128 2038400 
ATCC700669 23F 81 2220800 

OXC141 3 180 2036800 
INV104B 1 227 2140800 
INV200 14 9 2098400 

Table  3-2 Sanger sequenced isolates which have been compa red with microarray DNA CGH 
results. 
 

3.6.2 Comparison of Microarray DNA CGH results with  Genome 

Sequence Data 

3.6.2.1 Diversity of TIGR4 genes in test genomes 

Appendix 5 compares the TIGR4 genes identified as not hybridizing in at least one of the 

four test sequenced genomes with their presence or absence from the sequencing data. The 

Artemis Comparison Tool can be used to visualise these differences between the TIGR4 

reference genome and the test sequenced genomes. This is illustrated in Figure 3-7.  
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Figure  3-7 ACT comparison of the TIGR4 genome with the ATC C700669 genome.  

The red lines indicate the presence of homologous g enes in both sequences. This screen 
shot indicates that there are no homologs of the TI GR4 genes (top of figure) SP1615-1622 in 
the ATCC700669 genome (bottom of figure), consisten t with the microarray CGH results 
which indicated no hybridization of DNA from ATCC70 0669 to the probes for these genes. 
 

3.6.2.2  Regions of Diversity 

The regions of diversity described in Chapter 1, Table 1-2 were identified from microarray 

CGH studies. On identifying these regions in the sequenced genomes, it is clear that the 

full extent of these regions has not been realised using the microarray CGH method which 

often underestimates the size of the region of diversity.  
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Region of 
Diversity 

Size of Region 
identified by CGH 
(Silva et al ., 2006) 

Size of Region identified by Sequence Comparison 
(unpublished data from  Nicholas Croucher, 

Wellcome Trust Sanger Institute) 
RD 1 SP0067-0074 SP0066-0075 
RD 2 SP0109-0115 SP0107-0118 
RD 3 SP0163-0168 SP0161-0173 
RD 4 SP0346-0360 SP0342-0366 
RD 5 SP0378-0380 SP0378-0381 
RD 6 SP0394-0397 SP0390-0400 
RD 7 SP0460-0468 SP0459-0471 
RD 8 SP0473-0478 SP0471-0478 
RD 9 SP0531-0544 SP0529-0544 
RD 10 SP0643-0648 No diversity seen in ATCC700669, OXC141, INV104B 

or INV200 
RD 11 SP0644-0666 No diversity seen in ATCC700669, OXC141, INV104B 

or INV200 
RD 12 SP0692-0700 SP0690-0701 
RD 13 SP0888-0891 SP0866-0892 
RD 14 SP0949-0954 SP0948-0954 
RD 15 SP1050-1065 SP1045-1067 
RD 16 SP1129-1147 SP1128-1151 
RD 17 SP1315-1352 SP1306-1354 
RD 18 SP1433-1444 No diversity seen in ATCC700669, OXC141, INV104B 

or INV200 
RD 19 SP1612-1622 SP1610-1623 
RD 20 SP1756-1773 SP1754-1774 
RD 21 SP1793-1799 SP1790-1800 
RD 22 SP1828-1830 SP1827-1833 
RD 23 SP1911-1918 No diversity seen in ATCC700669, OXC141, INV104B 

or INV200 
RD 24 SP1948-1955 SP1946-1956 
RD 25 SP2159-2166 SP2158-2167 

Table  3-3 Comparison of size of regions of diversity iden tified by microarray CGH with the 
size of the same regions of diversity identified fr om sequence data. 
 

In addition, comparison of the sequences for ATCC700669, OXC141, INV104B and 

INV200 identifies a further 47 newly identified regions of sequence diversity.  These 

regions are: SP0020-0022, SP0027-0032, SP0054-0055, SP0079-0083, SP0137-0139, 

SP0141-0144, SP0267-0271, SP0338-0340, SP0376-0381, SP0390-0400, SP0489-0493, 

SP0502-0510, SP0517-0519, SP0529-0544, SP0566-0576, SP0737-0741, SP0783-0784, 

SP0794-0795, SP0825-0828, SP0873-0875, SP0881-0885, SP0866-0893, SP0906-0908, 

SP0938-0943, SP0948-0958, SP1008-1009, SP1018-1020, SP1035-1040, SP1153-1155, 

SP1173-1176, SP1212-1213, SP1291-1293, SP1356-1360, SP1466-1467, SP1546-1547, 

SP1563-1564, SP1706-1707, SP1739-1742, SP1782-1784, SP1827-1833, SP1848-1851, 

SP1885-1887, SP1903-1906, SP1984-1985, SP1988-1989, SP2092-2094, SP2135-2141 

(Nicholas Croucher, Wellcome Trust Sanger Institute, personal communication). 



  Chapter 3, 92 

3.6.2.3  Identification of R6 genes in test genomes   

The four sequenced genomes were compared to the R6 genome, and no new regions of 

diversity were identified other than those described by Bruckner et al (Bruckner et al., 

2004). The genome sequence data has an advantage over microarray CGH data in that it 

can definitively identify the absence of R6 genes. Although the R6 genes identified as 

present by microarray CGH were, in the majority of cases, correctly identified, the 

microarray approach generated a significant number of false negative hybridizations for R6 

genes and underestimated the number of R6 genes present in each genome. There were two 

false positive results in the microarray CGH results as spr0118 and spr0966 were 

incorrectly identified as present in isolate ATCC700699. The results of the microarray 

CGH dye swap experiments and the Sanger sequencing results are compared in Figure 3-8 

below. As CGH experiments were performed using TIGR4 and not R6 as the reference 

DNA, it is not possible to draw any conclusions about the non hybridization to the 

microarray probes as, for the R6 genes represented on the microarray, binding of test 

isolate DNA to the microarray probes is not competitive against reference R6 DNA in 

these instances. 
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spr0067 Conserved Hypothetical Protein                 

spr0104  Hypothetical Protein                 

spr0105  Transporter, truncation                 

spr0106  Transporter, truncation                  

spr0107  Hypothetical Protein                 

spr0108  Conserved Hypothetical Protein (similar to comB protein)                 

spr0111  Hypothetical Protein                 

spr0112  Hypothetical Protein                 

spr0113  Hypothetical Protein                 

spr0114 Hypothetical Protein                 

spr0115  Hypothetical Protein                 

spr0116  Hypothetical Protein                 

spr0117  Hypothetical Protein                 

spr0118  Hypothetical Protein                 

spr0119  Hypothetical Protein                 

spr0225  Hypothetical Protein                 

spr0320 Type 2 capsule locus cps2L                 

spr0321 Type 2 capsule locus cps2M                 

spr0322 dTDP-glucose-4,6-dehydratase cpsN                 

spr0323 dTDP-L-rhamnose synthase cpsO                 

spr0416 Hypothetical Protein                 

spr0491 Hypothetical Protein                 

spr0493 Conserved Hypothetical Protein                 

spr0703 Hypothetical Protein                 

spr0800 Hypothetical Protein                 

spr0955  Hypothetical Protein                 

spr0956  Hypothetical Protein                 

spr0957  Tn 5252, relaxase, truncation                 

spr0958  Tn 5252, relaxase, truncation                 

spr0959  Hypothetical Protein                 

spr0960 Similar to positive transcriptional regulator MutR                 

spr0966 Conserved Hypothetical Protein (Probable acid-CoA ligase)                 

spr0972 Conserved Hypothetical Protein                 

spr1042 Immunoglobulin A1 protease                 

spr1093 Conserved Hypothetical Protein                 

spr1114  Conserved Hypothetical Protein (Probable transcriptional regulator)                 

spr1179 Conserved Hypothetical Protein                 

spr1403 Hypothetical Protein                 

spr1404 Conserved Hypothetical Protein                 

spr1478 Hypothetical Protein                 

spr1549 Hypothetical Protein                 

spr1550 Conserved Hypothetical Protein (similar to MutR protein)                 

 

Figure  3-8 Comparison of microarray CGH results for R6 gen es with genome sequence data 
for the same genes.  

Red indicates the presence of an R6 gene, identifie d by either method. Blue indicates the 
absence of the gene from sequence data.  
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3.6.3 Genomic Diversity Identified by Genome Sequen ce Data 

Alone 

To illustrate how genomic diversity may be identified from pneumococcal genome 

sequence data alone using ACT and impact on the understanding of virulence, two 

examples of diversity affecting known virulence factors in these isolates are considered – 

serotype 2 capsule genes and IgA1 protease. 

3.6.3.1.1 Serotype 2 capsule genes 
As R6 is an avirulent, non-capsulated laboratory strain derived from a serotype 2 strain, 

called D39, it is not surprising that remnants of the serotype 2 capsule locus remain in the 

R6 genome (Lanie et al., 2007). It is of interest that four of the serotype 2 capsule genes 

(cps2L, cps2M, cpsN and cpsO) are identifiable in the genomes of INV104B and 

ATCC700669 (neither of which are serotype 2) with 94-95% homology to the R6 versions 

of the genes suggesting that they may have been introduced by horizontal gene transfer or 

are fulfilling a function other than solely capsule polysaccharide synthesis. All four of 

these genes are involved in dTDP-rhamnose biosynthesis. This is illustrated below by ACT 

in Figure 3-9.  
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Figure  3-9  ACT comparison of the spr0320-spr0323 genes in  OXC141 (A), ATCC700669 (B) 
and INV200 (C).  

The R6 genome is displayed at the top of each figur e and the test genome is displayed 
beneath. In (A) the genes spr0320-spr0323 are absen t in OXC141 but present in both 
ATCC700669 (B) and INV104B (C) with a high degree o f homology to their counterparts in 
R6 (identified by the yellow bands). 
 

 
A. ACT comparison of R6 and OXC141 genomes at regio n spr0320-spr0323. 
 

 
B.  ACT comparison of R6 and ATCC700669 genomes at region spr0320-spr0323. 
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C. ACT comparison of R6 and INV200 genomes at regio n spr0320-spr0323. 

3.6.3.2  IgA1 protease 

A further interesting finding was the presence of the R6 gene spr1042 in all four of the test 

sequences. This is significant as it codes for IgA1 protease which is noted in Chapter 1 as a 

divergent gene in the pneumococcal genome allowing evasion of host mucosal 

immunoglobulin. Its homolog in TIGR4 is SP0071 which has been identified as a virulence 

factor required in a mouse  pneumonia model  (Hava and Camilli, 2002). Interestingly, the 

TIGR4 allele for this gene is absent from all these four sequenced strains using Sanger 

sequencing and does not hybridize from any of the test strains to the probe for SP0071 on 

the microarray, which is not surprising given its absence from their genomes.  

Nevertheless all four strains have a gene for IgA1 protease but CGH comparisons made 

solely against the genome of TIGR4 as a reference genome could easily lead to the 

erroneous conclusion that these strains lack IgA1 protease and cast doubt over whether it 

genuinely is required for virulence. This highlights the fact that making assumptions about 

the presence or absence of genes based on comparisons with only one allele of a gene from 

a single reference genome produces a skewed understanding of “core” gene content in 

bacteria with such a high degree of genomic diversity as the pneumococcus. The absence 

of the reference genome allele of a gene does not necessarily equate with the absence of 

the gene per se as other alleles may be represented.    
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3.6.4 Using Pneumococcal Genome Sequences to Identi fy Gene 

Insertions 

One significant limitation of a microarray CGH approach to understanding genomic 

diversity is that a microarray cannot identify genes in a genome if there are no probes for 

these genes represented on the microarray. Consequently, the microarray used for this 

work cannot identify additional pneumococcal genes which are not present in the TIGR4 

genome or the R6 genome. It is clearly the case that the pool of genes which the 

pneumococcus can host is greater than those present in the TIGR4 and R6 genomes and, 

through transmissible genetic elements and horizontal gene transfer, the pool is not even 

limited by current bacterial species boundaries (Hakenbeck et al., 2001). Knowledge of the 

full test genome sequence and the ability to compare this with other pneumococcal genome 

sequences does allow the identification of regions of genetic material which have been 

inserted into the genome. Such inserted sequences can then be analysed to predict open 

reading frames in silico with software such as GLIMMER (Gene Locator and Interpolated 

Markov ModelER) (Delcher et al., 1999). Identification of putative functions for these 

genes can be performed using software such as BLAST (Basic Local Alignment Search 

Tool) (Altschul et al., 1990) by comparing known sequences in pneumococci and other 

bacteria in silico (Parkhill, 2002).  

Of the four test sequenced genomes utilised in this chapter, only two (ATCC700669 and 

OXC141) are considered here with regard to the additional genetic material which they 

harbour as they have been sufficiently annotated to identify the putative functions of these 

inserted genes in most cases. In ATCC700669, 202 additional genes were identified in the 

genome when compared to TIGR4 using ACT (Appendix 6) and for OXC141, 123 

additional genes were identified using ACT (Appendix 7).  

In both these genomes, large regions of inserted genetic material appear to relate to the 

integration of genes of bacteriophage origin.  

3.6.4.1  Genetic Material in the ATCC700669 Genome in addition to 

that seen in the TIGR4 genome  

The full list of additional genes identified in the ATCC700669 genome is listed in 

Appendix 6. There is evidence of genetic insertion through bacteriophage integration and 

through transposon activity. A region of 49 genes inserted between the homologs of the 
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TIGR4 genes SP1563 and SP1564 appears to have originated from a bacteriophage and is 

illustrated below using ACT (Figure 3-10). 

 

Figure  3-10: Comparison of gene insertions not present in the TIGR4 genome but present in 
the ATCC700669 genome using ACT.  

This illustrates the absence in TIGR4 of some of th e 49 genes present in ATCC700669 
(bottom of figure) which appear inserted between th e homologs of the TIGR4 genes (top of 
figure) SP1563 and SP1564. 
 

Also of interest is a region inserted between the homologs of SP1806 and SP1807 which 

codes for components of a pneumococcal phosphotransferase (PTS) system (The diversity 

of pneumococcal genes coding for PTS systems is considered more in Chapter 6). This can 

also be easily visualised in ACT (Figure 3-11). 
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Figure  3-11 Comparison of PTS system genes in the TIGR4 ge nome with the ATCC700669 
genome using ACT.  

This illustrates the absence of some of the PTS sys tem genes present in ATCC700669 
(bottom of figure) which appear inserted between th e homologs of the TIGR4 genes (top of 
figure) SP1806 and SP1807. 
 

Of greater clinical significance is the finding of genes in the ATCC700669 genome 

involved in tetracycline resistance (SPN23F13050) and chloramphenicol resistance 

(SPN23F12590) as ATCC700669 is resistant to multiple classes of antimicrobial (Munoz 

et al., 1991). 

3.6.4.2  Genetic Material in the OXC141 Genome in a ddition to that 

seen in the TIGR4 genome  

As the OXC141 genome is smaller than that of TIGR4, it was expected that there would be 

less additional genetic material than that identified in the much larger ATCC700669 

genome. On comparing the TIGR4 and OXC141 genomes, it is evident that between the 

OXC141 homologs of the TIGR4 genes SP0019 and SP0020, a sizeable amount of DNA 

has been inserted. This region has recently been found to code for a pneumococcal 

prophage called phiOXC (Dr Patricia Romero, University of Glasgow, personal 

communication). Genes identified by ACT as present in OXC141 but not in TIGR4 are 

displayed in Appendix 7. 
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Figure  3-12 Comparison using ACT of the TIGR4 genome with the OXC141 genome using 
ACT demonstrating the insertion site of the phiOXC prophage.  

This comprises 43 additional genes in the OXC141 ge nome (bottom of figure) which do not 
appear in the TIGR4 genome (top of figure). These g enes are inserted between the OXC141 
homologs of the TIGR4 genes SP0019 and SP0020. 
 

3.7 Discussion 

3.7.1 Advantages and Disadvantages of a Genome Sequ encing 

Approach to mapping Genomic Diversity compared to 

microarray based CGH investigations 

Full genome sequencing clearly has advantages over microarray based CGH in terms of 

the data it generates and its sensitivity and accuracy. It is not without its own hurdles 

though, some of which will now be considered. Although costs are falling, it has 

traditionally been expensive and time consuming to sequence a genome, requiring 

significant capital investment for sequencing hardware and bioinformatics support (Ryan et 

al., 2007). The difficulties of correctly assembling fragments of the genome sequence (and 

the consequent need for specialist bioinformatics support) should not be underestimated, 



  Chapter 3, 101 

particularly given the fact that pneumococcal genomes often exhibit runs of repeat 

sequences such as BOX and RUP. 

It has been calculated that aiming for a US$1000 genome sequencing technology requires a 

104 fold reduction in cost per base and a 103 fold increase in the number of bases read per 

second (Ryan et al., 2007). When starting this study of pneumococcal genomic diversity in 

2005, such costs and the absence of access to a suitable technological platform on which to 

perform genomic sequencing meant that this was not a practical option for considering the 

genomes of several diverse isolates, particularly as a dye swap CGH experiment of a single 

pneumococcal isolate could be performed for £200 and still provide unique, albeit less 

accurate, insights into the genomic diversity of pneumococcal populations. Over the course 

of these investigations, access to sequencing technology has improved and the costs 

involved have decreased which has allowed a selection of the isolates used in the course of 

this work to be sequenced by 454 sequencing at the Wellcome Trust Sanger Institute, 

although these are still in the process of being assembled. 

It is expected that in the future, whole genome sequencing will become the gold standard 

for investigations of the genomic diversity of pneumococci but, until then, microarray 

based CGH of pneumococcal genomes is an acceptable (and less expensive) option. This 

allows the investigation of a wider range of isolates while the microarray platform can also 

be used to gain new insights into the diversity of expression of pneumococcal genes as 

well as investigating the diversity of their presence. For these reasons, the majority of the 

genomic comparisons performed in this work have been performed using a microarray 

based approach. 

Although full genome sequencing demonstrates advantages over microarray CGH, it is 

worth re-iterating the observation of Parkhill who warns that,  

“All but the most simple annotation is an interpretation of the sequence, and is 
thus subject to error and misinterpretation (Parkhill, 2002).” 

It is also worth re-iterating that although genetic differences can be identified in silico 

between genomes, functional studies are still required to demonstrate the effects of these 

genes to truly establish a role for them in the pathogenesis of pneumococcal disease or 

carriage (Moscoso et al., 2005). Neverthless, these tools, which are in a rapid phase of 

development and improvement are, particularly when used in combination, establishing a 

much more informed understanding of the scale and dynamicity of genomic diversity in 

the pneumococcus and how that relates to its diverse disease presentations.  
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3.7.2 The Distributed Genome Hypothesis and a Pneum ococcal 

Supragenome 

These comparisons of pneumococcal isolates, by full genome sequencing or microarray 

CGH, suggest that any individual isolate of pneumococcus contains only a fraction of the 

possible combination of pneumococcal genes. There is a greater pool of genes represented 

by the wider global pneumococcal population (the pneumococcal supragenome) from 

which it can draw upon, under suitable conditions, to adapt to its environment, such as 

occurs during the phenomenon of capsular switching described in Chapter 1.  Sequencing 

of such non-essential regions of the genome can greatly enhance understanding of the 

functions of such genes and identify potential roles in virulence or the generation of 

antigenic diversity (Mavroidi et al., 2004, Bentley et al., 2006, Bagnoli et al., 2008). For 

instance, a small change in sequence such as a single polymorphism in the rhamnosyl 

transferase gene, wciP, can alter capsule expression from that of serotype 6A to serotype 

6B (Mavroidi et al., 2004).  

Gaining an understanding of both the combination of genes present in clinical 

pneumococcal isolates and their allelic forms, may therefore improve understanding of 

pneumococcal disease pathogenesis and provide potential targets for therapeutic 

intervention or disease prevention. Observed redundancy in a bacterial genome is not 

unique to pneumococci but is also documented in many other bacteria such as Escherichia 

coli and Mycoplasma genitalium  while in bacteria such as Bacillus anthracis there is very 

little diversity (Fraser-Liggett, 2005). Such observations and evidence of genomic diversity 

resulting from horizontal gene transfer have resulted in a “distributed genome” hypothesis 

for such bacteria where virulence traits are acquired by horizontal gene transfer to benefit 

the bacterial population as a whole rather than an individual organism (Ehrlich et al., 

2008).   

3.7.3 Microarray Limitations 

Before considering the results of the microarray experiments in subsequent chapters, it is 

worth reiterating some of the limitations of this technique and their potential influence on 

the interpretation of results.  

Microarrays can only detect complementary sequences of the genes which are represented 

on them during their manufacture. 
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Microarrays tell us nothing about the location of genes in the genome although this may 

influence hybridization if a probe for a deleted gene is flanked by probes for two genes 

which remain present and may result in false positive hybridization. False positive 

hybridizations probably occur infrequently and may also result from cross hybridization by 

homologous genes. 

The absence of hybridization on a microarray is not synonymous with absence of a gene 

from the test genome but requires further investigation by PCR and sequencing. The 

presence of a PCR product of appropriate size may be due to a divergent gene, possibly 

containing single nucleotide polymorphisms, or the gene has the correct sequence but has 

formed a secondary structure in solution which prevents its hybridization. Determining 

whether a gene is absent is particularly difficult if the gene is known to be hypervariable 

and lack of hybridization may be due to the presence of an entirely novel sequence not 

represented on the microarray.  

Microarrays cannot detect multiple copies of genes but the presence of multiple copies in 

an expression experiment may cause an apparent “increase” in expression.  

 
 



 

4 Genomic Diversity Observed in Phenotypically 

Diverse Pneumococcal Isolates 

4.1 Choice of Diverse Pneumococcal Isolates 

Identified regions of diversity in the TIGR4 genome and those of other pneumococcal 

strains are outlined in Chapter 1 and 3. These have included strains from the USA (Shen et 

al., 2006a, Silva et al., 2006, Hakenbeck et al., 2001), United Kingdom (Silva et al., 2006, 

Joyce et al., 2002), South Africa (Silva et al., 2006, Bruckner et al., 2004, Hakenbeck et 

al., 2001), Norway (Silva et al., 2006), Germany (Bruckner et al., 2004, Hakenbeck et al., 

2001), Papua New Guinea (Bruckner et al., 2004, Hakenbeck et al., 2001), Hungary 

(Bruckner et al., 2004, Hakenbeck et al., 2001, Joyce et al., 2002), Switzerland (Bruckner 

et al., 2004, Hakenbeck et al., 2001), France (Bruckner et al., 2004, Hakenbeck et al., 

2001), Finland (Bruckner et al., 2004, Hakenbeck et al., 2001, Joyce et al., 2002), Taiwan 

(Joyce et al., 2002) and Spain (Bruckner et al., 2004, Hakenbeck et al., 2001, Joyce et al., 

2002) and have often included Pneumococcal Molecular Epidemiology Network (PMEN) 

clones (Bruckner et al., 2004, Silva et al., 2006, Hakenbeck et al., 2001) which are of 

significance both because they are of public health concern due to antimicrobial resistance 

but also because they are examples of successful clones of pneumococci which 

demonstrate a selection advantage that has enabled their international spread (McGee et 

al., 2001a).  

In 2001, Hakenbeck et al suggested,  

“Using a large number and a wide spectrum of genetically different strains, one 
could expect a gradual variability among the pneumococcal population, since 
despite the recognition of clonal spread, population analysis suggested a freely 
recombining structure characteristic of transformable organisms (Hakenbeck et 
al., 2001).”  

This conclusion was based on data published by Hall et al who had demonstrated that the 

pneumococcus has an epidemic population structure (Hall et al., 1996). 

This study has chosen 10 isolates for DNA CGH analysis and comparison as preliminary 

work before focusing on diversity within particular clonal complexes and clinical 

conditions. The isolates were chosen to represent isolates from different countries (United 

Kingdom, USA, South Africa and Bolivia) which included PMEN clones to represent 

isolates of different serotypes and of multilocus sequence types which had epidemic 
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potential but which were unrelated to each other. The absence of relationship between the 

sequence types was determined using eBURST software (Feil et al., 2004) as the algorithm 

it uses, based on the MLST allelic profiles, is more accurate at determining relationships 

within clonal complexes than software which generates phylogenetic trees. This is because 

frequent horizontal gene transfer in the pneumococcus has been noted to affect the 

construction of phylogenetic trees using housekeeping genes (Feil and Spratt, 2001). 

Isolate Serotype  MLST Background Details 
BAA-659 6A ST376 American Type Culture Collection (ATCC) accession 

number for the PMEN clone N. Carolina 6A-23. The clinical 
background for the isolate is not known. 

BAA-340 14 ST67 ATCC accession number for the PMEN clone 
Tennessee14-18 (Gherardi et al., 2000). The clinical 
background for the isolate is not known but the clone has 
also been detected causing IPD in Scotland (Smith et al., 
2006).  

05-1271 20 ST568 Blood culture isolate from a 12 year old girl in 2005 from 
Paisley, United Kingdom. 

ATCC700904 19A ST41 ATCC700904 is the accession number for the PMEN 
clone South Africa 19A-13. Used in CGH experiments by 
Silva et al as PMEN13 (Silva et al., 2006). The clinical 
background for the isolate is unknown. 

BAA-660 35B ST377 ATCC accession number for the PMEN clone Utah 35B-24. 
The clinical background for the isolate is not known but 
this clone has been detected in 2000 as a cause of IPD in 
Scotland (Smith et al., 2006). 

05-2565 12F ST218 Blood stream isolate from a 79 year old man in Glasgow, 
United Kingdom cultured in 2005. 

05-1821 9V ST156 Blood stream isolate from a 63 year old woman from Ayr, 
United Kingdom cultured in 2005. 

OXC141 3 ST180 Carriage isolate from an individual from Oxford. It has 
been sequenced at the Wellcome Trust Sanger Institute. 

ATCC51916 23F ST37 ATCC accession number for the PMEN clone Tennessee 
23F-4. Identified in 1991 from a patient with meningitis who 
did not respond to treatment with a cephalosporin 
(McDougal et al., 1995, Sloas et al., 1992). This clone has 
also been detected as an infrequent cause of IPD in 
Scotland (Smith et al., 2006) 

07-2839 9A ST239 Isolated from the nasopharynx of a 9 year old girl in 2007 
with chronic otitis media from Trinidad, Bolivia. 

Table  4-1 Details of isolates of diverse serotype and MLS T used in microarray DNA CGH 
experiments. 
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4.2 Microarray Results 

 

Figure  4-1 Whole pneumococcal genome view of the DNA CGH r esults for the 10 chosen 
isolates of diverse sequence type generated by Gene spring GX 7.3.1.  

Each horizontal bar represents a genome and each ve rtical coloured bar within these 
represents a gene. Shades of yellow indicate hybrid ization by both TIGR4 and the test strain 
DNA. Shades of blue indicate hybridization by TIGR4  DNA alone. Shades of red indicate 
hybridization by the test isolate DNA alone and gre y indicates no hybridization by either 
TIGR4 DNA or the test strain DNA. It is clear that these hybridization patterns show few 
similarities between the 10 isolates. 
 

4.3 Discussion  

4.3.1 Regions of Diversity in the TIGR4 and R6 Geno mes 

Differences between the test isolate genomes and the TIGR4 genome are illustrated in 

Appendix 8. Of the R6 genes represented on the microarray which do not feature in the 

TIGR4 genome it was possible to identify from the hybridization patterns for the 10 test 

isolates all six regions of diversity described by Bruckner et al (Bruckner et al., 2004). 

This is illustrated in Appendix 9. For instance, the entire region spr0102 to spr0119 was 

present in strains ATCC700904 and 07-2839 but appeared almost entirely lacking 

hybridization for strain 05-1271. The other test isolates demonstrated many different 

combinations of hybridization or absent hybridization for these genes.  
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For the region spr0311 to spr0323, only genes from the smaller cluster spr0320 to spr0323 

were found to hybridize. Again this could be the entire section (ATCC51916 and 05-1271) 

or only smaller sections (07-2839, ATCC700904 and BAA-659) or there could be a total 

lack of hybridization for the entire region (BAA-340, BAA-660, 05-2565, 05-1821 and 

OXC141).  

Similar variable hybridization was seen at the regions of diversity spr0955 to spr0971, 

spr1403 to spr1404 and spr1618 to spr1621. Only isolate 07-2839 showed hybridization of 

any genes within the region of diversity spr1184 to spr1198.  

In isolate ATCC700904 there appears to be a small region of diversity at spr1549 to 

spr1550 with hybridization occurring at these probes for this isolate alone.  Both these 

genes code for hypothetical proteins although spr1550 has sequence similarity to a MutR 

protein. Spr1549 is 393bp in size and spr1550 is 852bp in size. These were noted as highly 

variable genes coding for a putative regulatory protein by Bruckner et al (Bruckner et al., 

2004). 

For these regions of diversity in the R6 genome, it would be of interest to perform CGH of 

DNA from the test strains against R6 DNA as competitive hybridization should then be 

seen for those genes highlighted in red above in Appendix 9. 

Comparative hybridization of TIGR4 DNA against test isolate DNA has elucidated 4 

regions of diversity which do not feature in the list of regions of diversity based on the 

TIGR4 genome identified by Silva et al (Silva et al., 2006) which are shown in Chapter 1 

Table 1-2. The first is a 6.3kb region from SP0303 to SP0311 which mainly relates to 

components of a cellobiose phosphotransferase system. This region features as cluster 2 

identified by Bruckner et al (Bruckner et al., 2004). A second region of 5.7kb from 

SP0726 to SP0730 was identified in isolate ATCC700904 which showed no hybridization, 

despite hybridizing well for all other strains (Figure 4-2) This was unexpected as the 

isolate ATCC700904 features in the work of Silva et al where it was named PMEN13 and 

this region was not identified despite using the same isolate on the same version of 

microarray with similar hybridization methodologies (Silva et al., 2006). This can be 

explained as the data analysis methods chosen (such as the normalization methods) are 

different between the two studies. Several genes within this region (SP0726, SP0728 and 

SP0729) have been associated with virulence in a serotype 4 mouse bacteraemic 

pneumonia model (Hava and Camilli, 2002). 
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Figure  4-2 Demonstration of a new region of diversity (SP0 726 – SP0731) in the TIGR4 
genome using Genespring GX 7.3.1.  

Each coloured bar represents a consecutive gene in the TIGR4 genome. Shades of yellow 
and orange indicate that hybridization occurred wit h DNA from both TIGR4 and the test 
isolate while shades of blue indicate no hybridizat ion occurred with DNA from the test strain 
but unopposed hybridization by TIGR4 DNA had occurr ed. 
 

A third shorter region of 5.1kb relates to a putative Type II restriction endonuclease which 

was identified as cluster 9 by Bruckner et al (Bruckner et al., 2004). It was also identified 

as present in serotype 6A isolates from cases of invasive pneumococcal disease but not 

serotypes 6B or 14 by Obert et al (Obert et al., 2006) and was not identified by Silva et al 

which again is likely to be due to the different data analysis methods utilised as Silva et al 

had also studied isolate BAA-659 which was named PMEN23 in their analysis (Silva et 

al., 2006).  

The fourth region of diversity identified by this study which was not identified by Silva et 

al is a 2.9kb region found between SP2180 and SP2183 which was identified as not 

hybridizing in isolate 07-2839 from Bolivia.  This is illustrated in Figure 4-3 below.
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Figure  4-3 Demonstration of a new region of diversity (SP2 180 – SP2183) in the TIGR4 
genome using Genespring GX 7.3.1.  

Each coloured bar represents a consecutive gene in the TIGR4 genome. Shades of yellow 
and orange indicate that hybridization occurred wit h DNA from both TIGR4 and the test 
isolate while shades of blue indicate no hybridizat ion occurred with DNA from the test strain 
but unopposed hybridization by TIGR4 DNA had occurr ed. 
 

The gene SP2179 falling immediately before this region was identified by Bruckner et al 

as a highly variable gene related to insertion sequence IS1380. The genes SP2180 and 

SP2181 have been previously identified as pseudogenes, particularly as SP2180 is 

interrupted by the IS1380 Spn1 element. However, gene expression studies to be described 

later in Chapter 10 using serotype 3 and serotype 1 pneumococci show SP2180, SP2182 

and SP2183 to be expressed in both TIGR4 and the test isolates while SP2181 was not 

expressed in any of these expression experiments. SP2181 was expressed though by the 

strain South Africa 2507 but only in response to the addition of subtherapeutic 

clarithromycin (Chapter 11). Evidence of their expression under certain conditions does 

suggest that these genes may be functional. 

Bruckner et al identified some regions which were not present in some of their battery of  

international test strains but were evident in TIGR4 and R6 (Bruckner et al., 2004). 

SP0505 to SP0508 is such a region. However, this region appears to be present in all the 10 
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strains tested in this chapter.  Bruckner et al also identify the region SP1309 - SP1337 as a, 

“hot spot,” for recombination (Bruckner et al., 2004). These results also concur with this 

observation as this is a region of substantial diversity between strains as illustrated below 

in Figure 4-4. This region is within a slightly larger region of diversity extending from 

SP1309 - SP1347 which is part of the region of diversity 17 described by Silva et al and 

clusters 9 and 10 described by Bruckner et al (Bruckner et al., 2004). 

 

Figure  4-4 Demonstration of a, “hot spot,” for recombinati on events (SP1309 - SP1337) in 
the TIGR4 genome using Genespring GX 7.3.1.  

Each coloured bar represents a consecutive gene in the TIGR4 genome. Shades of yellow 
and orange indicate that hybridization occurred wit h DNA from both TIGR4 and the test 
isolate while shades of blue indicate no hybridizat ion occurred with DNA from the test strain 
but unopposed hybridization by TIGR4 DNA had occurr ed. 
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4.3.2 Diversity at Particular Genetic Loci 

4.3.2.1 Genes with variable homologs 

Bruckner et al, identified several genes in the TIGR4 and R6 genomes which demonstrated 

highly variable homologs (Bruckner et al., 2004). These are illustrated in Table 4-2 along 

with results from the CGH of the above 10 isolates. These results suggest that either there 

is less variability within the genes of these test isolates or that cross hybridization has 

occurred between variable homologs and probes on this microarray or that the “spotted” 

microarray constructed by BµG@S identifies fewer variable genes than the oligonucleotide 

microarray used by Bruckner et al (Bruckner et al., 2004).  



  Chapter 4, 112 

 
Gene Putative Function Hybridization Result in this  Study 

SP0071 Zinc metalloproteinase C N 
SP0147 Hypothetical protein P 
SP0257 Hypothetical protein V 
SP0298 Hypothetical protein V 
SP0328 IS1380 V 
SP0332 Hypothetical protein P 
SP0378  P 
SP0379  V 
SP0380  P 
SP0432 IS1167 P 
SP0495 IS1380 V 
SP0642 IS66 P 
SP0643 IS66 P 
SP0644 IS66 V 
SP0666 Hypothetical protein P 
SP0714 IS1380 V 
SP0813 IS30 P 
SP0814 IS30 P 
SP0826 Hypothetical protein V 
SP0836 IS1167 P 
SP0949 IS1515 V 
SP1015 IS1167 P 
SP1188 Hypothetical protein V 
SP1189 Hypothetical protein V 
SP1262 IS1167 P 
SP1292 SAP domain protein P 
SP1352 IS1380 P 
SP1418 IS1380 P 
SP1439 IS1380 V 
SP1444 IS1380 P 
SP1503 IS1380 V 
SP1582 IS1167 P 
SP1595 IS1380 V 
SP1639 IS1167 P 
SP1692 IS1167 P 
SP1772 Cell Wall Anchor Protein V 
SP1927 IS1381 P 
SP2093 Hypothetical protein P 
SP2179 IS1380 V 
Spr0041 IS1178 Not represented on SPv1.1 microarray 
Spr0042 IS1178 Not represented on SPv1.1 microarray 
Spr0703 Putative sortase V 
Spr0986 IS1167 truncated Not represented on SPv1.1 microarray 
Spr0987 IS1167 truncated Not represented on SPv1.1 microarray 
Spr0988 IS1167 truncated Not represented on SPv1.1 microarray 
Spr1093 Hypothetical protein N 
Spr1403 Cell Wall Anchor Protein V 
Spr1484 Hypothetical protein V 
Spr1536 Neuraminidase A Not represented on SPv1.1 microarray 
Spr1549 Putative regulatory protein V 
Spr1550 Putative regulatory protein V 
Spr1675 IS1167 Not represented on SPv1.1 microarray 
Spr1676 IS1167 Not represented on SPv1.1 microarray 
Spr1716 IS1167 Not represented on SPv1.1 microarray 

Table  4-2 Highly variable genes with multiple homologs co mpared with CGH results.   

P = gene hybridized with all test strains; N = gene  hybridized with none of the test strains;  

V = gene variably hybridizing in test strains. 
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4.3.2.2 Diversity of zinc metalloproteinases SP1154 , SP0664 and 

SP0071  

In 1998, Poulsen et al identified a high degree of diversity of immunoglobulin A1 (IgA1) 

protease genes (SP1154) within the pneumococcus and other closely related streptococcal 

species (Poulsen et al., 1998). This was due to repeat structures which varied in number 

and sequence which was thought to be related to immunogenicity and recognition of 

antigenic diversity (Poulsen et al., 1998). IgA1 protease is a zinc metalloproteinase (zmp) 

and it has subsequently been documented that the pneumococcus has three zmps and that 

the other two, ZmpB (SP0664) and ZmpC (SP0071), show much sequence diversity also 

(Oggioni et al., 2003, Chiavolini et al., 2003). Whether these genes are absent, present or 

duplicated in the pneumococcal genome is also variable. SP0071 is absent from the R6 

genome while SP1154 occurs twice in the genome of the sequenced strain G54 (Oggioni et 

al., 2003). R6 and other pneumococcal genomes do still have a functional IgA1 protease 

despite SP0071 being absent as discussed in Chapter 3. Chiavolini et al identified 

significant sequence diversity of SP1154 between isolates of serotypes 2, 4, 6, 19F and 23F 

and of SP0664 for serotypes 4 and 23F (Chiavolini et al., 2003). The results above 

demonstrate diversity as to whether hybridization occurred or not for SP1154 and SP0071. 

Where hybridization did not occur could be the result of the gene being absent or it could 

be present but with such a degree of sequence diversity that it does not hybridize to the 

probe sequence on the microarray which is based on the gene sequence in TIGR4. IgA1 

protease is believed to be present in all pneumococcal strains and serotypes (De Paolis et 

al., 2007). Oggioni et al also suggest that the presence of SP0071 may relate to either 

serotype or the body fluid of origin of the isolate. From a variety of clinical isolates they 

find SP0071 in serotypes 4, 6, 8, 9 and 19F. Over 50% (6/11) of sputum isolates had a 

zmpC homolog and only 1 CSF isolate. The CGH data from this study demonstrated 

hybridization of SP0071 only from DNA from a serotype 23F isolate with no hybridization 

from serotypes 3, 6A, 9A, 9V, 12F, 14, 20 or 35B which suggests that the relationship 

between presence of SP0071 with serotype is not as straight forward as proposed by 

Oggioni et al (Oggioni et al., 2003). The issue of a possible relationship between body 

fluid of origin and presence of SP0071 could not be considered with this series of isolates 

as the clinical background for the majority of PMEN clones used is not known. This will 

be considered subsequently using CGH data from more adequately catalogued clinical 

isolates. 
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4.3.2.3 Diversity of SP1051 and Pneumococcal Pathog enicity 

Island 1  

SP1051 is a virulence associated gene present within the pneumococcal pathogenicity 

island 1 which by PCR has been found to be absent from isolates of serotype 1, 6B, 17 and 

35F (Brown et al., 2004). These serotypes did not feature in our chosen isolates for this 

study of diverse isolates and the CGH results for these isolates showed SP1051 to be 

present in all 10 test strains, consistent with the results of Brown et al (Brown et al., 2004). 

4.3.2.4 Diversity of Pneumococcal Pilus Genes 

The region of diversity at SP0460 to SP0470 is related to a pneumococcal pilus (SP0461-

SP0468) and to diversity of choline binding proteins. The whole region was present in 3 of 

the isolates examined (serotypes 6A, 35B and 9A) and the region SP0460 to SP0468 failed 

to hybridize in its entirety for the other 7 isolates tested. This is consistent with the 

observations of Bruckner et al at this region (Bruckner et al., 2004) and Sjostrom et al, 

who did not identify any consistent relationship between the presence or absence of this 

region by CGH and serotypes 9V, 19F or 14 (Sjostrom et al., 2006). 

4.3.2.5 Diversity of Choline binding proteins 

It has been observed that choline binding protein A (SP2190) which is necessary for cell 

invasion is not expressed in 25% of clinical strains (Orihuela et al., 2003). A lack of 

hybridization was not identified for any of the tested isolates for SP2190 so, if this gene 

were not to be expressed in these isolates, it would not be due to its absence in the genome 

of the isolate. 

4.3.2.6 Diversity of Neuraminidase Genes 

Recently it has been described that the presence of neuraminidase C (nanC, SP1326) in 

clinical isolates is more variable than is the case for neuraminidase A or B (Pettigrew et al., 

2006). In the isolates examined here 40% showed nanC to be present which is close to the 

51% of isolates where it was identified by Pettigrew et al (Pettigrew et al., 2006). Again 

though, this phenomenon will be better investigated using a series of clinical isolates where 

the background to the isolates is more fully known. 
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4.4 Conclusions 

These DNA CGH results relating to diverse isolates demonstrate substantial genomic 

diversity for pneumococcal isolates of diverse multilocus sequence types and serotypes and 

are consistent with the results of similar previous studies. In fact this work has shown such 

diversity to be greater than previously considered in CGH studies with two new regions of 

diversity identified. If a wider range of diverse isolates were assessed, it is probable that 

more new regions of diversity would be identified. It does appear though that identification 

of these regions is dependant on the data analysis methods which are chosen.  These results 

also highlight a need for greater consensus as to what does and what does not comprise a 

region of diversity in the pneumococcal genome. Associations between CGH results and 

individual serotypes, sequence types and the clinical background of strains will be better 

achieved by more focussed studies of banks of particular sequence types and serotypes 

where the clinical background to strains has been adequately documented. 

 
 



 

5 Genomic Diversity in a Multilocus Sequence 

Type Associated with Invasive Pneumococcal 

Disease (IPD) 

5.1 Serotype 14 and ST9: associations with IPD 

The significance of the ST9 clonal complex is reviewed in Chapter 1, along with its 

association with serotype 14 pneumococci. These studies of DNA CGH from 10 ST9 

isolates were planned to assess whether genomic diversity could be identified within a 

clonal complex and also to compare the degree of diversity within isolates of the same 

serotype within that clonal complex compared to isolates of different serotypes within the 

clonal complex.  

5.2 Choice of Isolates 

Details of the 10 chosen ST9 isolates are outlined in Appendix 1. Nine of these were from 

the strain collection at SMPRL and were chosen to try to maximise observations on 

diversity by taking isolates from different years, with different antibiotic sensitivity 

profiles, source cultures from different body fluids, sourced from different geographical 

regions in Scotland and from different ages of patients. Even so, only one isolate originated 

from a cerebrospinal fluid specimen (01-5710). Five isolates were chosen of serotype 14 to 

assess whether overall genomic diversity is different in phenotypically similar isolates 

within a clonal complex. These five included four isolates from Scotland (00-1724, 01-

5710, 02-2445 and 04-1870) and the Sanger sequenced strain INV200 which represents the 

PMEN clone England 14-9 (Hall et al., 1996) – a clone which also infrequently causes IPD 

in Scotland (Smith et al., 2006).  All 5 isolates are resistant to erythromycin consistent with 

previous observations that 95% of ST9 isolates in Scotland are erythromycin resistant 

(Clarke et al., 2004b) usually resulting from expression of the mefA gene and macrolide 

efflux – the M phenotype (Amezaga et al., 2002). The five isolates which were not of 

serotype 14 were of serotypes 8 (03-2105), 18 (02-1309), 19A (03-1051), 19F (04-1548) 

and 23F (04-1168). 
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5.3 Microarray Results 

 

Figure  5-1 Comparison of diversity within genomes of serot ype 14 associated ST9 isolates 
and non serotype 14 ST9 isolates using Genespring G X 7.3.1.  

Shades of yellow and orange indicate that hybridiza tion occurred with DNA from both TIGR4 
and the test isolate while shades of blue indicate no hybridization occurred with DNA from 
the test strain but unopposed hybridization by TIGR 4 DNA had occurred. Grey indicates that 
neither hybridization of TIGR4 or test isolate DNA occurred or the hybridization 
fluorescence was of such low intensity that it was excluded from analysis. Red indicates 
unopposed hybridization of test isolate DNA to prob es representing genes from the R6 
genome. The five serotype 14 isolates demonstrate l ess diversity than the five ST9 isolates 
of different serotypes. The list of genes from the TGR4 genome which are present or non-
hybridizing in the ST9 strains are displayed in App endix 10 and the list of genes from the R6 
genome which are also present or non-hybridizing in  the ST9 strains are in Appendix 11. 
 

5.4 Discussion 

5.4.1 Overall diversity in ST9 

It has been recognised that serotype 14 strains of different genetic backgrounds have 

different propensities to cause pneumonia in mice and these differences are attributed to 

virulence factors other than the capsule (Mizrachi-Nebenzahl et al., 2004). These CGH 

studies of ST9 pneumococci (and a subgroup of serotype 14, ST9 pneumococci) allow 
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some investigation as to what some of these genetic differences between phenotypically 

identical (serotype 14) pneumococci may be and whether they relate to known virulence 

determinants.  

Obert et al have performed CGH studies on serotype 14 pneumococcal isolates (12 were 

from cases of IPD and 8 were from asymptomatic nasopharyngeal carriage) of unknown 

sequence type. They have correlated the presence of certain genes with either an invasive 

or carriage phenotype for serotype 14 (Obert et al., 2006). As all the serotype 14 isolates 

used in this study of ST9 isolates have an invasive phenotype, it is possible to assess 

whether the CGH results obtained fit with the phenotype expected from the results of Obert 

et al. Unfortunately, the majority of the genes identified by Obert et al as present only in 

serotype 14 isolates with the carriage phenotype can be found in the genomes of the ST9 

serotype 14 isolates with invasive phenotypes. These misclassified genes are SP0029, 

SP0093, SP0096-SP0098, SP0117, SP0141, SP0173-SP0182, SP0186, SP0205, SP0256, 

SP0259, SP0288, SP0328, SP0336, SP0343, SP0398-SP0399, SP0495, SP0531-SP0532, 

SP0584, SP0617, SP0711, SP0714, SP0738-SP0740, SP0826, SP0875-SP0876, SP0877, 

SP0907, SP0949, SP1019, SP1065, SP1154, SP1172, SP1773, SP1175, SP1185, SP1198, 

SP1251, SP1307, SP1308, SP1337, SP1348-SP1349, SP1351-1352, SP1366, SP1418, 

SP1439, SP1441, SP1503, SP1595, SP1642, SP1672-SP1673, SP1677, SP1693, SP1719, 

SP1722, SP1902, SP1947, SP2003, SP2005, SP2158-SP2166, SP2179. It is likely that the 

results of Obert et al have been seriously confounded by not assessing a diverse enough 

sample of serotype 14 isolates from different clonal complexes or by assessing too small a 

sample of isolates.  

Some of the genes identified by Obert et al in serotype 14 pneumococci as present only in 

isolates of invasive phenotype also appeared in the invasive serotype 14 ST9 isolates used 

in this chapter (shown in Appendix 10) but not ST9 isolates which were not serotype 14. 

These genes were SP0389-SP0397, SP0536, SP0540-SP0542, SP0607-SP0608, SP0627-

SP0628, SP0691-SP0700, SP0982, SP1126, SP1315-SP1321, SP1324, SP1326-SP1331, 

SP1556, SP1612-SP1613, SP1679, SP1740, SP1741, SP1755-SP1759, SP1810, SP1911, 

SP2140 and SP2232. It is possible then that these genuinely are only associated with an 

invasive phenotype. 

Some of the genes associated with carriage in serotype 14 are not seen in these invasive 

ST9 CGH results.  These genes are SP1062-SP1064, SP1147, SP1334, SP1335, SP1338, 

SP1340-SP1345, SP1350 and SP1622. However as CGH was not performed on carriage 

ST9 isolates the validity of this association cannot be assessed from this data. 
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5.4.1.1 Macrolide Resistance 

Pneumococcal genomic diversity within the ST9 complex has been alluded to before with 

regard to the antibiotic resistance genes which can be found in isolates from Scotland 

belonging to this clone (Amezaga et al., 2002). This is particularly the case regarding 

macrolide efflux. Bruckner et al associate the region of diversity SP0163 to SP0171 with 

macrolide efflux (particularly SP0168) and so it is not surprising that this has been a 

variable region detected by CGH in these ST9 isolates. SP0168 appeared not to hybridize 

in any of the isolates regardless of whether there was a macrolide resistant or sensitive 

phenotype. SP1110, another gene associated with a macrolide efflux pump function, 

appears to be present in all the isolates. The lack of hybridization of SP0168 could be due 

to the absence of the gene or presence of a divergent sequence which could potentially be 

altering its function as well as its ability to hybridize to the microarray probe.  

Unfortunately the macrolide resistance gene mefA is not represented among the probes on 

the SPv1.1 microarray and so it has not been possible to assess for the presence of this 

gene by microarray CGH. A mefA sequence has been associated with a transposon 

Tn1207.1 in pneumococci (Santagati et al., 2000) and a macrolide efflux genetic assembly 

(MEGA) has also been described in pneumococci on a chromosomal insertion element 

which has more than four different insertion sites in the pneumococcal genome (Gay and 

Stephens, 2001). Macrolide resistance in pneumococci is also conferred by the ermB gene 

which is carried on transposons Tn1545 (Clewell et al., 1995, Courvalin and Carlier, 

1987), Tn917 (McDougal et al., 1998) or Tn3872 (McDougal et al., 1998). These represent 

a potentially sizeable source of genetic diversity in the ST9 complex, with a direct effect 

on phenotype, which cannot be detected by CGH using the SPv1.1 microarray. 

5.4.1.2 Glyceraldehyde-3-phosphate dehydrogenase (G APDH) 

Proteomic analysis has determined that there is an increase in expression of GAPDH in M 

phenotype pneumococci (Cash et al., 1999). Cash et al, identified three different forms of 

GAPDH. The TIGR4 genome contains two genes which code for GAPDH – SP1119 and 

SP2012. Both genes were identified by CGH as present in all five of the serotype 14, ST9 

isolates tested. Microarray based expression studies of these isolates may help to elucidate 

the potential role of these two genes in the increased generation of GAPDH in M 

phenotype pneumococci.    
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5.4.2 Regions of Diversity in the TIGR4 and R6 geno mes 

The CGH results of the ST9 isolates have demonstrated a region of diversity within the 

isolate 04-1548 where hybridization of a 1.7kb region encompassing the TIGR4 genes 

SP1933 to SP1936 does not occur. This region has not been previously identified in the 

CGH studies of Bruckner et al (Bruckner et al., 2004) (who did not perform CGH on any 

serotype 14 isolates) or Silva et al (Silva et al., 2006) or Obert et al (Obert et al., 2006) 

(both of whom included several serotype 14 isolates in their experiments).  SP1933, 

SP1934 and SP1935 code for hypothetical proteins and SP1936 codes for a putative Type 

II restriction modification system regulatory protein. This is illustrated below.   

 

Figure  5-2 Location of a new region of diversity SP1933 – SP1936 identified in isolate 04-
1548. 
 

5.4.3 Diversity at Particular Genetic Loci 

For illustrative purposes, the diversity observed at various regions known to be variable 

will be considered. 
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5.4.3.1 Genes with variable homologs 

The presence or absence of hybridization for forty five genes identified by Bruckner et al 

(Table 4-2) as being highly variable in the TIGR4 and R6 genome could be assessed using 

the SPv1.1 microarray. When all 10 isolates of serotypes 8, 18, 14, 19A, 19F and 23F were 

considered, twenty seven genes (60%) were identified as having variable hybridization but 

if only serotype 14 isolates were considered this fell to only 5 genes (11%) having variable 

hybridization which demonstrates that there is substantially less diversity within isolates of 

the same serotype within a MLST clonal complex than between isolates of different 

serotypes of the same sequence type.   

5.4.3.2 Diversity of zinc metalloproteinases SP0664 , SP0071 and 

SP1154 

The diversity of zinc metalloproteinases was discussed in Chapter 4. The CGH of ST9 

isolates has allowed investigation of how much diversity occurs within a clonal complex. 

SP0071 (IgA1 protease) could not be identified by hybridization in the genomes of any of 

the tested ST9 isolates (although hybridization by TIGR4 DNA occurred in all the CGH 

experiments). The R6 gene coding for IgA1 protease, spr1042, was present only in the 

ST9, serotype 8 isolate 03-2105 which suggests that the other strains may have unique 

gene sequences which fulfil this function. As these isolates are from predominantly blood 

cultures with only one isolate from cerebrospinal fluid, it is possible to conclude that 

SP0071 may be infrequently found in blood or CSF isolates which is compatible with the 

observation of Oggioni et al (Oggioni et al., 2003). SP0664 was identified as present in all 

the ST9 isolates while SP1154 was variably present or not hybridizing in the test ST9 

isolates. 

5.4.3.3 Diversity of SP1051 and Pneumococcal Pathog enicity 

Island 1  

As was the case with the CGH results of isolates of diverse serotype and sequence type 

(Chapter 4), these results of ST9 pneumococci from serotypes 8, 14, 18, 19A, 19F and 23F 

demonstrated that SP1051 was present in all the tested isolates which is again consistent 

with the findings of Brown et al (Brown et al., 2004). 

5.4.3.4 Diversity of Pneumococcal Pilus genes 

The rrgC gene (SP0464) has been used as a marker for the presence or absence of a 

pneumococcal pilus (Basset et al., 2007) where it has been identified as present in less than 
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10% of serotype 14 isolates (Basset et al., 2007). In the CGH studies of Sjostrom et al 

which focussed particularly on the rlrA pilus islet (SP0461-SP0468) and which included 

three serotype 14 strains (two which were ST156 and one which was ST709), rrgC 

(SP0464) was present in both ST156 isolates but noted as absent in the ST709, serotype 14 

isolate (Sjostrom et al., 2006). In this series of ST9 isolates, we identified rrgC (SP0464) 

only in isolate 04-1548 (which is serotype 19F) and it failed to hybridize in any of the 

serotype 14 isolates consistent with the findings of Basset et al  (Basset et al., 2007). 

5.4.3.5 Diversity of Choline binding proteins 

As was the case with the isolates in Chapter 4, a lack of hybridization was not identified 

for any of the tested ST9 isolates for choline binding protein A (SP2190) so, if this gene 

were not to be expressed in these isolates as was found in 25% of clinical pneumococcal 

isolates by Orihuela et al (Orihuela et al., 2003), it would not be due to its absence from 

the genome of the isolate. 

5.4.3.6 Diversity of Neuraminidase Genes 

In the isolates examined here 80% showed nanC (SP1326) to be present. It was present in 

all the serotype 14 isolates but did not hybridize in isolates which were serotype 19A and 

23F.  Pettigrew et al  have made an association between the presence of nanC and CSF 

isolates (Pettigrew et al., 2006). These CGH results are compatable with this association as 

nanC was identified in the CSF isolate which was tested (01-5710). 

 



 

6 Genomic Diversity within a Multilocus Sequence 

Type Accounting for Invasive Pneumococcal 

Disease and Carriage 

6.1 A Review of the Associations of Serotype 3 and 

ST180 with Pneumococcal Carriage or Invasive 

Disease 

The dichotomy that serotype 3 pneumococci can cause disease with a high associated 

mortality in some individuals while being harmlessly carried in the nasopharynx of others 

has been recognised since the early 20th century (Blake, 1931). An association between 

serotype 3 pneumococci causing disease more commonly in the elderly than in children is 

also an established observation (Blake, 1931, Cecil et al., 1927) which remains true in 

several countries (Inostroza et al., 2001, Rahav et al., 1997, Shapiro and Austrian, 1994, 

Kyaw et al., 2003, Bescos et al., 2003, Martin and Brett, 1996). In children from 

Oxfordshire, a serotype 3 associated clone (ST180) had an odds ratio of invasiveness of 

only 0.1 and so was more associated with asymptomatic carriage (Brueggemann et al., 

2003) although it is inappropriate to extrapolate this finding into an adult population as the 

relative risk of invasive disease due to serotype 3 increases over middle age (Scott et al., 

1996). According to the MLST database8 although predominantly serotype 3 associated, 

ST180 has also been associated with a serotype 19F capsule in Germany and non-typeable 

isolates in South Korea.  

The ability to identify genes present in pathogenic invasive bacteria which are not present 

in asymptomatically carried commensals or define the genetic relationships between 

virulent and non-virulent clones of bacteria (in order to identify potential targets for 

therapeutic intervention) has long been a goal of bacterial comparative genomics 

(Hollingshead and Briles, 2001, Joyce et al., 2002). Molecular typing such as IS1167-boxA 

genotype fingerprinting demonstrated that carriage isolates belonged to patterns unique to 

carriage suggesting that clones associated with carriage may be distinguished from those 

associated with invasion (Robinson et al., 2001). It has also been suggested that more 

virulent clones of invasive pneumococci tend to have evolved from less virulent clones 

associated with carriage (Robinson et al., 2002). 

                                                 
8 http://spneumoniae.mlst.net/ {accessed 6th December 2008} 
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In this chapter, the DNA of serotype 3, ST180 carriage and invasive disease associated 

isolates was used in microarray CGH experiments to investigate whether any genes are 

consistently present in carriage associated isolates and not invasive isolates or vice versa. 

An assessment is then made as to whether the patterns of gene expression under 

predetermined conditions for these isolates can be used to determine associations between 

carriage and invasive associated isolates. 

6.2 Serotype 3 ST180 Isolates Analysed by Microarra y 

CGH 

Details of the isolates used in these CGH experiments are tabulated below: 

Isolate Phenotype Clinical Details 
OXC141 Carriage Isolate from a carriage study in Oxford, United Kingdom. 
03-4183 Carriage Isolate from a carriage study from The Netherlands. 
03-4185 Carriage Isolate from a carriage study from The Netherlands. 
03-4155 Carriage Isolate from a carriage study from The Netherlands. 
03-4156 Carriage Isolate from a carriage study from The Netherlands. 
07-2838 Carriage Nasopharyngeal swab isolate obtained from a 9 year old girl in 

Trinidad, Bolivia during June 2007. 
99-4038 Invasive Blood culture isolate from a 31 year old man from Dundee, 

United Kingdom with meningitis.  
99-4039 Invasive Cerebrospinal fluid isolate from same 31 year old man from 

Dundee, United Kingdom with meningitis taken on same day as 
99-4038. 

00-3946 Invasive Cerebral pus isolate from a 60 year old man from Edinburgh, 
United Kingdom. 

06-1705 Invasive Cerebral pus isolate from a 15 year old girl from Glasgow, 
United Kingdom. 

02-1198 Invasive Umbilical cord blood isolate from a neonate who died within 
hours of delivery in Glasgow, United Kingdom. This isolate is 
named P49 in the paper by Silva et al (Silva et al., 2006). N.b. 
Maternal and neonatal death within hours of delivery as a 
consequence of fulminant infection due to pneumococcal 
endometritis is a recognised albeit exceedingly uncommon 
event (Gransden et al., 1985). 

Table  6-1 Background to serotype 3, ST180 isolates used i n the microarray CGH 
experiments. 



  Chapter 6, 125 

6.3 DNA CGH Comparison of Carriage and Invasive 

Isolates of ST180 

Gene lists generated from these CGH experiments are displayed in Appendix 12 (TIGR4 

genes) and Appendix 13 (R6 genes). Figure 6-1 is generated by Genespring GX 7.3.1. and 

indicates that two distinct patterns of hybridization occur with these isolates. Figure 6-2 

focuses on the region SP2159-SP2166 coding for a phosphotransferase system - the 

presence or non-hybridizing of these genes divides the ST180 isolates into two distinct 

hybridization patterns. 

 

Figure  6-1 Comparison of diversity within genomes of serot ype 3 associated ST180 invasive 
and carriage associated isolates using Genespring G X 7.3.1.  

Each coloured bar represents a gene and these are a ligned consecutively. Yellow indicates 
hybridization of DNA from both TIGR4 and the test s train. Blue indicates hybridization of 
DNA from TIGR4 but not the test strain and red indi cates unopposed hybridization of test 
strain DNA to probes from the R6 genome. The names and countries of origin of the isolates 
are marked. 
 



  Chapter 6, 126 

 

Figure  6-2 Serotype 3, ST180 microarray CGH results demons trating the presence of the 
genes SP2159 to SP2166 (which code for phosphotrans ferase system genes) in the Dutch 
isolate 03-4156 and the Bolivian isolate 07-2838 wh ich both have a carriage phenotype.  

Each bar represents a pneumococcal gene. Yellow ind icates hybridization of DNA from both 
TIGR4 and the test isolates. Blue indicates hybridi zation of DNA from TIGR4 but not the test 
isolate. 
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6.4 RNA Expression Differences in Carriage and Inva sive 

Isolates of ST180  

6.4.1 Microarray results 

Genes 
Upregulated in 

IPD 

Normalized 
Expression 

Level in 
Carriage 
Isolates 

Normalized 
Expression 

Level in 
Invasive 
Isolates Function 

SP0576 0.9 22.9 Transcription antiterminator Lict 
SP0640 1.0 4.5 Hypothetical protein 

SP0877 1.0 4.0 
Phosphotransferase system, fructose specific 
IIABC components 

SP0875 1.0 3.3 Lactose phosphotransferase system repressor 
SP0876 1.1 3.1 1-phosphofructokinase, putative 

SP0358 1.0 2.7 
Capsular polysaccharide biosynthesis protein 
Cps4J 

SP0357 1.1 2.4 UDP-N-acetylglucosamine-2-epimerase 

SP0248 1.0 2.3 
Phosphotransferase system sugar-specific 
EIIA component 

Genes 
Downregulated 

in IPD 

Normalized 
Expression 

Level in 
Carriage 
Isolates 

Normalized 
Expression 

Level in 
Invasive 
Isolates Function 

SP0110 0.5 0.1 
ABC transporter membrane-spanning 
permease - amino acid transport 

SP0111 0.7 0.2 
Amino acid ABC transporter, ATP-binding 
protein, putative 

SP0046 0.9 0.4 Amidophosphoribosyl transferase 
SP1503 1.2 0.5 IS1380-Spn1, transposase 
SP1418 1.3 0.5 IS1380-Spn1, transposase 
SP1337 1.3 0.6 IS1380-Spn1, transposase 

SP0050 1.6 0.6 
Phosphoribosylaminoimidazolecarboxamide 
formyltransferase 

Table  6-2 Genes identified by Genespring GX 7.3.1. whose expression detected by 
microarray are either significantly upregulated or downregulated in invasive pneumococcal 
disease.  

(P<0.05 with Benjamini and Hochberg correction appl ied for multiple testing). 
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Gene 

Predictive 
Strength 

for 
Invasive 
Disease Function 

SP0877 27.0 Fructose specific-phosphotransferase system IIBC component 
SP0875 23.8 Lactose phosphotransferase system repressor 
SP1474 20.9 Glycyl-tRNA synthetase beta chain 
SP1592 16.6 Conserved domain protein 
SP0830 16.6 Hypothetical protein 
SP0066 16.1 Aldose-1-epimerase (mutarotase) 
SP1097 14.9 Similar to GTP pyrophosphokinase 
SP0876 14.7 Fructose-1-phosphate kinase 
SP0833 14.7 Hypothetical protein 
SP0831 14.7 Purine nucleoside phosphorylase (inosine phosphorylase) 
SP1100 14.6 Phosphate acetyltransferase 
SP0629 14.1 Conserved hypothetical protein 
SP0828 12.8 Ribose-5-phosphate epimerase 
SP0829 12.8 Phosphodeoxyribomutase 
SP1701 12.7 Phospho-2-dehydro-3-deoxyheptonate aldolase 
SP2014 12.7 IS630-Spn1, transposase Orf2 
SP2096 12.7 Peptidase, M20/M25/M40 family 
SP1563 12.7 Pyridine nucleotide-disulphide oxidoreductase family protein 
SP0782 12.6 Conserved hypothetical protein 
SP0712 12.0 Lactate oxidase, truncation 
SP1417 12.0 Choline binding protein 
SP2066 11.6 Threonine synthase 
SP2192 11.6 Histidine kinase 
SP0631 11.4 50S Ribosomal protein L1 
SP0605 11.4 Fructose-bisphosphate aldolase 
SP1523 11.4 SWF/SNF family ATP-dependent RNA helicase 

SP0110 11.2 
ABC transporter membrane-spanning permease - amino acid 
transport 

SP1988 11.1 Immunity protein, putative 
SP0834 11.1 Haemolysin-related protein 
SP1193 11.1 Galactose-6-phosphate isomerase, LacA subunit 
SP2002 11.1 Conserved hypothetical protein 
SP1192 11.0 Galactose-6-phosphate isomerase LacB subunit 
SP0715 10.9 Lactate oxidase 

SP1099 10.9 
Ribosomal large subunit pseudouridine synthase, RluD 
subfamily 

SP0015 10.9 IS630-Spn1, transposase Orf1 
SP0445 10.9 Acetolactate synthase large subunit 
SP1098 10.9 Conserved hypothetical protein 
SP1591 10.9 Proline dipeptidase 
SP1337 10.8 IS1380-Spn1, transposase 
SP0438 10.8 Glutamyl tRNA-Gln amidotransferase, subunit C 

Table  6-3 Predictive strengths of the top 40 genes whose expression is more associated 
with IPD than carriage in serotype 3 ST180 isolates  when grown to midlog at 37°C in BHI.  

Results generated using Genespring GX 7.3.1. gene p redictor function. 
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6.4.2 Quantitative Real Time PCR results 

The gene SP0110 which codes for a hypothetical protein and is identified as essential for 

virulence in a mouse pneumonia model (Hava and Camilli, 2002) was identified by 

Genespring GX 7.3.1. as significantly downregulated in invasive isolates (Table 6-2) and 

as being predictive of a serotype 3, ST180 isolate being invasive rather than carried 

asymptomatically (Table 6-3). However, in Appendix 12 SP0110 does not hybridize in all 

invasive or in all carriage isolates indicating either sequence divergence or absence of the 

gene. This seemingly contradictory phenomenon was investigated by qRT-PCR. No PCR 

product was generated for isolate 06-1705 confirming the CGH result. When the 

expression of SP0110 by 00-3946 (invasive phenotype) was compared to that by OXC141 

(carriage phenotype), it was seen (Figure 6-3) that it was less expressed in the invasive 

isolate but this difference in expression did not reach statistical significance (p=0.547).  
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Figure  6-3 qRT-PCR results comparing expression of SP0110 in the invasive isolate 00-3946 
and the carriage isolate OXC141.  

The mean normalized expression was calculated using  Q-gene (Muller et al ., 2002) from 3 
replicates and the standard error of the means show n as error bars. Statistical comparison 
was made using an unpaired t-test (Muller et al ., 2002). 
 

From this it can be concluded that the process of normalization which was used to pool 

expression data into the categories “invasive” and “carriage” has introduced artefacts in the 

results. Consequently, the genes identified by Genespring GX 7.3.1. as predictive of 
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invasive disease should not be considered to be predictive without further confirmation 

using further qRT-PCR experiments to compare expression levels for the other genes 

identified in Table 6-3. 

6.5 Discussion 

6.5.1 Overall genomic diversity in Serotype 3 ST180  isolates  

The CGH experimental data demonstrates that within serotype 3, ST180 there is much 

similarity in the genomic content of the isolates despite coming from different patients, 

with different disease causing or carriage manifestations and from different countries. 

PFGE performed on serotype 3 isolates from cases of meningitis from Poland also 

demonstrated very little diversity within serotype 3 (Skoczynska and Hryniewicz, 2003).  

It has been proposed by Obert et al that there is a core pneumococcal genome and that this 

includes genes such as SP0043-SP0056, SP0241-0242, SP0314, SP0663-0667, SP0730, 

SP0965, SP1002, SP1128, SP1204, SP1466, SP1469, SP1869-72, SP1923, SP1937, 

SP2141-SP2146 and SP2239. This was determined by CGH studies of serotype 6A, 6B 

and 14 (Obert et al., 2006). The CGH results from these studies of serotype 3 isolates are 

compatible with the hypothesis of Obert et al as all of these genes hybridize from serotype 

3 isolates with no variability seen.  

Whereas substantial similarity is seen in the CGH results from isolates from Western 

Europe, there is greater diversity in isolate 07-2838 from Bolivia suggesting again that 

geographical location has had an influence on the genomic diversity of pneumococci (see 

Chapter 4 and 9). In 07-2838 there are distinctive hybridization patterns, as SP1335 (a 

hypothetical protein of 138 bp) and SP1336 (a Type II DNA modification 

methyltransferase of 1224 bp) are present whereas no hybridization is seen for them in any 

of the European isolates. Likewise SP1339-SP1341 (coding for hypothetical proteins and 

an ABC transporter ATP binding protein) do not hybridize in 07-2838 but are present in all 

tested European isolates. 

Some of the genes identified by CGH as not hybridizing have been found to be essential 

for virulence in serotype 4 pneumococci in a mouse pneumonia model by signature tagged 

mutagenesis (Hava and Camilli, 2002). Similar identification of genes essential for 

virulence has been documented for serotype 3 pneumococci by signature tagged 

mutagenesis (Lau et al., 2001) but the gene designations used in the study are not 
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comparable with either the TIGR4 or R6 genome nomenclature and so comparison of the 

results by Lau et al and the CGH data observed here is not easily done.   

It appears that the serotype 3 ST180 genome can be subdivided into two further 

subcategories based on the hybridization or absence of hybridization of the regions 

SP0473-SP0478 (present in the two carriage associated isolates 03-4156 and 07-2838 but 

not hybridizing in any of the others) and SP2159 to SP2166 (again present in the two 

carriage associated isolates 03-4156 and 07-2838 but not hybridizing in any of the others).  

The functions of these genes are shown in Table 6-4 Serotype 3 pneumococci are also 

proficient at acquiring exogenous DNA. Shen et al, noted that a serotype 3 strain (BS71 

ST180) had the greatest number of novel sequences which were not found in either the 

TIGR4 or R6 genomes (Shen et al., 2006a).  

Gene Function Size (bp) 
SP0473 ROK family protein, xylose repressor protein 1224 
SP0474 PTS system, cellobiose-specific IIC component 1323 
SP0475 Hypothetical protein 1941 
SP0476 PTS, lactose specific IIA component 345 
SP0477 6-phospho-beta-galactosidase 1413 
SP0478 PTS, lactose specific IIBC components 1679 
SP2159 Fucolectin related protein 3117 
SP2160 Hypothetical protein 2295 
SP2161 PTS system sugar specific EII component 801 
SP2162 PTS system sugar specific EII component 774 
SP2163 PTS system IIB component 471 
SP2164 PTS system IIA component 432 
SP2165 Fucose FucU protein 444 
SP2166 L-fuculose phosphate aldolase 639 

Table  6-4 Genes from the two regions SP0473-SP0478 and SP 2159-SP2166 which code for 
components of phosphotransferase systems and which are variably present in the genomes 
of serotype 3, ST180 isolates. 
 

6.5.2 A Carriage Genotype versus an Invasive Genoty pe for ST180 

The ecological niche of invasive pneumococci, at some point prior to invasion, is to be 

carried asymptomatically no matter how brief is that time period of carriage (Robinson et 

al., 2001). Consequently, comparing the gene complement of pneumococci from invasive 

disease with those of carriage is difficult as, although it is relatively easy to identify those 

with an “invasive” phenotype from growth at normally sterile sites, there will always be 

uncertainty as to whether those cultured from nasopharyngeal “carriage” are truly 

commensal or are in a transient pre-invasive state or are a mixed population of the two 

states. 
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It has therefore proven difficult to definitively find robust associations between genotypes 

which are more associated with “invasion” than they are with “carriage” as the gene 

complement of “carriage” isolates may be similar or identical to those of the “invasive” 

phenotype when assessed by CGH if they happen to be present being carried but in a pre-

invasive state. It is no surprise then to see that serotypes and genotypes which are found in 

the carrier state can also be identified in instances of invasive disease and vice versa 

(Muller-Graf et al., 1999). It may be true that some serotypes which cause invasive disease 

are rarely found in carriage studies (for example, serotypes 1 and 5) (Scott et al., 1996). 

This is perhaps due to a very short carrier state prior to invasion or as an artefact resulting 

from the methodology of the carriage study (Hodges et al., 1946, Davies and Lockley, 

1987, Smith et al., 1993). There are many clear instances when such serotypes have been 

identified in carriers and so it is not the case that they are never carried (Chapter 1). 

Claiming strict relationships between genotypes and “carriage” or “invasive” phenotypes is 

unwise as associations  with “carriage” found in one study often may be found in disease 

causing “invasive” isolates in another (Robinson et al., 2001) as has been shown by 

comparing CGH of “invasive” serotype 14 isolates with genes and regions of diversity 

thought only to be related to a “carriage” phenotype (Obert et al., 2006) (Chapter 5). 

Indeed none of the associations of regions of diversity associated with “carriage” or 

“invasive” phenotypes proposed by Obert et al (Obert et al., 2006) hold true for these 

serotype 3 isolates as the regions are either present or non-hybridizing or variably present 

or non-hybridizing in both “invasive” and “carriage” phenotypes. 

Rather than considering the phenotypes “carriage” and “invasion” as a direct consequence 

of the gene complement of bacteria, which invariably fails to make a robust association by 

any single method (Obert et al., 2007), it is more helpful to think in terms of probability of 

“carriage” or “invasion.” This can be done through calculating odds ratios of a genotype 

being associated with a particular phenotype (Brueggemann et al., 2003). Such an 

approach allows for the influences of gene expression differences and post-translational 

effects and, perhaps more importantly, the influences of host immunity and susceptibility 

to infection (Inostroza et al., 2001).  

There is evidence to suggest that for serotype 3 pneumococci, the sequence of the cap3A 

gene may rapidly change with the introduction of 11-239 bp duplications which result in a 

phenotype which lacks capsule while spontaneous reversion to the wild type gene returns 

the capsule expression (Waite et al., 2001). Point mutations and deletions also occur in the 

serotype 3 capsular gene cps3D resulting in different phase variation phenotypes within a 

serotype 3 population (McEllistrem et al., 2007). Transition between such genotypes 
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occurs in a biofilm environment (Waite et al., 2001, McEllistrem et al., 2007). The PCR 

product “spotted” microarray would not differentiate between the wild type cap3A or 

cps3D genes and their mutant genes as the serotype 3 capsular genes are not represented on 

this array which consists of genes from TIGR4 and R6 genomes which are not serotype 3. 

Consequently this microarray cannot differentiate  differences in the very genes which may 

be involved in changing an invasive phenotype to a biofilm associated carriage phenotype 

(Waite et al., 2001) particularly as the variants of cps3D also alter transcription and post-

transcriptional events in the serotype 3 biofilm (McEllistrem et al., 2007). However, this 

alternating gene phenomenon is unlikely to be the entire explanation for the recognised 

association of ST180 with carriage in children and invasive disease in adults which is 

likely also to include an age related change in host immunity. 

The region SP2159-SP2166 is a recognised region of diversity (Silva et al., 2006, Bruckner 

et al., 2004, Obert et al., 2006) and its presence in the pneumococcal genome has been 

associated with invasive disease in serotype 6A isolates and associated with carriage in 

serotype 14 isolates (Obert et al., 2006).  In these CGH investigations of serotype 3 ST180 

isolates hybridization of the region SP2159-SP2166 only occurs in isolates 03-4256 and 

07-2838 which are both carriage isolates. However a much larger sample size of carriage 

and invasive isolates of serotype 3 ST180 isolates would be required to see whether the 

presence of this region is genuinely only present in carriage isolates. 

Obert et al also suggest that a region of diversity from SP1755-SP1772 is required for 

bloodstream entry in mice (Obert et al., 2006). However in none of the serotype 3 invasive 

or carriage isolates did the region SP1758-SP1772 hybridize suggesting that it may not be 

essential for invasion in this serotype.  

Our observations are similar to those of Lindsay et al, who, using a very similar design of 

microarray based on Staphylococcus aureus genomes, demonstrated that there was no 

association between gene complement and invasive disease and that, 

 “gene combinations necessary for invasive disease may also be necessary for 
nasal colonisation and that community-acquired invasive disease is strongly 
dependent on host factors (Lindsay et al., 2006).”  

6.5.2.1 Genomic Differences in Phosphotransferase ( PTS) 

Systems  

It is significant that the regions SP0473-SP0478 and SP2159-SP2166 relate to genes 

associated with phosphotransferase systems (PTS) which are within known regions of 
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diversity (Bruckner et al., 2004, Silva et al., 2006, Obert et al., 2006). These genes are 

involved in the metabolism of lactose which involves the metabolism of fuculose (Table 6-

5). Therefore, it was anticipated that this may result in differential metabolism of sugars 

between the two subcategories of ST180 isolate (Figures 6-1 and 6-2) which is discussed 

and demonstrated below. 

ST180 Genes involved in 
Lactose metabolism Gene Function 

SP0474  PTS system, cellobiose-specific IIC component 

SP0064  PTS system, IIA component 

SP0305  Cellobiose phosphotransferase system IIB component 

SP0308  Cellobiose phosphotransferase system IIA component 

SP0310  Cellobiose phosphotransferase system IIC component 

SP0321  PTS system IIA component 

SP0323  PTS system IIB component 

SP0324  PTS system IIC component 

SP0325  PTS system IID component 

SP0476  PTS system, lactose-specific IIA component 

SP0478  PTS system, lactose-specific IIBC component 

SP0577  PTS system, beta-glucosides-specific IIABC components 

SP0645  PTS system IIA component, putative 

SP0647  PTS system IIC component, putative 

SP1684  PTS system IIBC components 

SP2036  PTS system IIA component 

SP2037  PTS system IIB component 

SP2038  Ascorbate-specific PTS system enzyme IIC 

SP2161  PTS system IID component 

SP2162  PTS system IIC component 

SP2163  PTS system IIB component 

SP2164  PTS system IIA component 

SP1185  PTS system, lactose-specific IIBC components 

Table  6-5 Genes identified by Genespring GX 7.3.1. which are involved in lactose 
metabolism. 

6.5.2.1.1 Phenotypic Differences in Sugar Metabolism  
In order to assess whether there were differences in sugar metabolism in ST180 isolates 

with different complements of PTS system genes, three representative isolates were 

chosen. 07-2838 and 03-4156 both have the genes SP0473-SP0478 and SP2159-SP2166 

while 03-4183 does not hybridize at these regions. Rapid ID 32 Strep API (BioMerieux®, 

France) strips were set up for the three isolates under identical conditions, cultured together 

for the same duration and developed and read concurrently. Figure 6-4 demonstrates the 

result. 
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Figure  6-4 Rapid ID 32 Strep API results for three of the carriage associated ST180 isolates 
(07-2838, 03-4283 and 03-4156) for which microarray  CGH demonstrated differences in the 
complement of PTS associated genes.  

Minor differences in results were seen for metaboli sm of sucrose (SAC), D-trehalose (TRE) 
and D-lactose (LAC).   
 

Although the assessment and comparison of colour change using the API system is crude 

and subjective it does suggest a difference in the metabolism of lactose for isolate 03-4183 

compared to 03-4156 and 07-2838 which was predicted by the differences in gene content.  

Figure 6-5 below demonstrates sugar metabolism pathways with the CGH results for all 

the ST180 isolates superimposed and the gene expression profiles for these genes are 

displayed in Figure 6-6. 
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Figure  6-5 Results of Serotype 3 ST180 CGH studies superim posed onto sugar metabolism 
pathways which relate to phosphotransferase system genes.  

In this figure generated by Genespring GX7.3.1, eac h coloured bar represents one of the 
ST180 isolates. Shades of yellow indicate the prese nce of genes in the pathway and shades 
of blue indicate lack of hybridization for genes in  the pathway. 
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Figure  6-6 Results of Serotype 3 ST180 gene expression stu dies superimposed onto sugar 
metabolism pathways which relate to phosphotransfer ase system genes.  

In this figure generated by Genespring GX7.3.1 each  coloured bar represents one of the 
ST180 isolates. Shades of yellow indicate the expre ssion of genes in the pathway at a 
baseline level, shades of red and orange indicate u pregulation of the genes and shades of 
blue indicate downregulation for genes in the pathw ay. 
 

Figure 6-5 demonstrates that the ST180s lack genes for mannitol metabolism which 

correlates with the negative result for mannitol (MAN) metabolism in all the API strips. 

(The finding that two of the isolates were expressing such genes in Figure 6-6 is spurious 

and suggests that there has been cross hybridization with this probe by cDNA 

manufactured from RNA generated by another gene). 

It is also possible to see differences in sucrose metabolism which correlate with the API 

results. Below in Figure 6-7 are compared the expression levels of SP1722 (which is 

specific to sucrose metabolism) generated by Genespring GX 7.3.1 for the ST180 isolates. 

It demonstrates that the expression of this gene is significantly downregulated in all the 
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isolates except 03-4156 which maintains a baseline level of expression. This is compatable 

with the API (SAC) result in Figure 6-4 where sucrose (D-saccharose) metabolism was 

positive (yellow) in isolate 03-4156 but negative (red-orange) in the other isolates. 

   

Figure  6-7 Screen view of Genespring GX 7.3.1 demonstratin g the maintenance of baseline 
expression of SP1722 in isolate 03-4156.  

Expression of this gene is downregulated in all oth er tested ST180 isolates. 
 

A similar difference in the expression of genes for trehalose correlated with the API results 

in Figure 6-4. SP1884 is involved in trehalose metabolism and is downregulated in 03-

4183 compared to 03-4156 as seen in Figure 6-8. This is compatible with the results in 

Figure 6-4 which show that trehalose metabolism is positive in 03-4156 but negative in 03-

4183. 
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Figure  6-8 Screen view of Genespring GX 7.3.1 demonstratin g that the expression of SP1884 
which is involved in trehalose metabolism.  

In isolate 03-4183 expression of SP1884 is markedly  less than that of isolate 03-4156 which 
correlates with a difference in API result for treh alose (TRE) metabolism by API testing 
(Figure 6-4). It is also noteworthy that the above results suggest increased expression of 
SP1884 and trehalose metabolism in blood (99-4038) compared to cerebrospinal fluid (99-
4039) from the same case of meningitis (Chapter 10) . 
 

Correlations between microarray CGH results for sugar metabolism genes which show 

diversity and sugar metabolism results observed by API testing have also been consistently 

documented by Aakra et al when comparing Enterococcus faecalis strains (Aakra et al., 

2007). In pneumococci, Oggioni et al have noted that genomic variation in the PTS 

systems does influence sugar fermentation (Oggioni et al., 2008).  

It may be that these subtle differences in sugar metabolism  in vitro have a relationship to 

the transitioning serotype 3 capsule genes and their expression and are in some way 

involved in the phase variation noted above although unravelling whether there is such a 

relationship is beyond the scope of this thesis.  

 
 



 

7 Genomic Diversity in Isolates of the Same 

Serotype and Multilocus Sequence Type Related 

to Clinical Manifestation and Outcome 

7.1 Background 

Serotype 4 pneumococci are an important cause of invasive pneumococcal disease (IPD) in 

humans and can cause severe invasive disease in animal models (Sandgren et al., 2005). 

Factors in addition to the pneumococcal capsule (a major virulence factor which 

determines the serotype) contribute to disease outcome (Mizrachi-Nebenzahl et al., 2004) 

and clonal properties other than serotype influence ability to cause invasive disease 

(Sandgren et al., 2005, Kerr et al., 2006).  

Some virulence associated genes, such as nanC, may not be uniformly distributed within a 

single sequence type (Pettigrew et al., 2006) and within a sequence type, a virulence 

associated gene can demonstrate sequence diversity which may alter its function (Kirkham 

et al., 2006). The pneumococcus has many genes which are highly variable with multiple 

known alleles such as the pneumococcal surface protein PspA (Roche et al., 2003) but 

even within the housekeeping genes which are the basis of the MLST scheme and which 

are considered to be much more conserved, divergent sequences have been identified 

(Diggle and Clarke, 2005).  With this high degree of variation in the pneumococcal 

genome, it was anticipated that sequence differences, such as point mutations or insertions 

resulting in frame shifts, may be identifiable which may be contributing to different 

clinical presentations.  

It is known that bacteriophages are sources of DNA which, when integrated into bacterial 

genomes, result in greater genomic diversity. Exogenous DNA from bacteriophages can 

code for virulence associated proteins such as the lytic activity of the Pal enzyme 

belonging to the pneumococcal phage Dp-1(Lopez et al., 2000). Fully functional lysogenic 

phages, defective phages and remnant prophages are widespread amongst pneumococcal 

isolates of different serotypes and different geographical origins (Gindreau et al., 2000, 

Ramirez et al., 1999). It has been stated that the role of conjugative transposons and 

bacteriophage needs to be addressed in a clinical setting (Lopez, 2006).  
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It was decided to investigate a series of IPD cases caused by the same serotype and 

sequence type (serotype 4, ST246). Six isolates from patients of similar age, gender, racial 

background and geographical location were chosen for analysis. Their clinical 

manifestations were reviewed and the isolates used to perform microarray CGH, look for 

evidence of bacteriophage carriage and thereby assess whether genomic diversity within 

the ST246 clone was identifiable which might have contributed to the varied disease 

presentations.  Isolate 06-1803 was primarily used because of the unusual clinical 

presentation of the source patient and five isolates were chosen of the same serotype and 

sequence type which originated from patients of similar characteristics using a database 

held at SMPRL. 

7.2 Epidemiological details for Serotype 4 ST246 Te st 

Isolates 

Isolate 
Year of 

Isolation 
Age of 
Patient  

Sex of 
Patient  Location Racial Origin  

Isolate 
Source  Serotype  MLST 

03-5339 2003 37 Male 
North East 
Glasgow Caucasian 

Blood 
culture 4 ST246 

04-1342 2004 53 Male 
North East 
Glasgow Caucasian 

Blood 
culture 4 ST246 

04-2239 2004 42 Male 
North East 
Glasgow Caucasian 

Blood 
culture 4 ST246 

05-1109 2005 56 Male 
North East 
Glasgow Caucasian 

Blood 
culture 4 ST246 

06-1803 2006 49 Male 
West 

Glasgow Caucasian 
Blood 
culture 4 ST246 

06-1898 2006 64 Male 
North East 
Glasgow Caucasian 

Blood 
culture 4 ST246 

Table  7-1 Basic epidemiological information about the sou rce patients from which serotype 
4, ST246 isolates were received. 
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7.3 Clinical Manifestations and Outcomes for Seroty pe 4 

ST246 Test Isolates 

Isolate Clinical History 

03-5339 
Diagnosed with bacteraemic pneumonia which did not require intensive care. Antibiotic 
therapy was not documented. 

04-1342 

Diagnosed with an acute confusional state and bacteraemic lobar pneumonia. 
Experienced severe sepsis during first 24 hours of admission. Gradually improved on 
intravenous amoxycillin. 

04-2239 

Presented with pneumonia and septic shock which required immediate intensive care 
management. Initially treated with intravenous ceftriaxone, clarithromycin, inotropes and 
recombinant activated protein C. Required intensive care management for over a month 
but survived. 

05-1109 
Diagnosed with bacteraemic pneumonia which did not require intensive care. Patient 
had an uneventful recovery on intravenous amoxycillin. 

06-1803 

Presented with concurrent pneumococcal meningitis, pneumonia and aortic valve 
endocarditis. Required emergency aortic valve replacement on day 2 of admission. 
Failed to settle on intravenous ceftriaxone and gentamicin (despite being a penicillin 
susceptible isolate in vitro). Still failed to settle after addition of intravenous vancomycin 
and developed an aortic root abscess. Finally recovered after 3 months of treatment with 
daptomycin. 

06-1898 
Presented with bacteraemic pneumonia and renal impairment. Patient responded to 
intravenous ceftriaxone and recovered uneventfully. 

Table  7-2 Brief clinical histories of the cases from whic h serotype 4, ST246 isolates were 
received.  

 

7.4 Bacteriophage induction 

Bacteriophage induction for the six clinical isolates was performed by Dr Patricia Romero 

using the following methodology. Isolates were grown at 37°C until an optical density at 

600nm of between 0.1-0.25 was reached. Mitomycin C was added to a final concentration 

of 100 ng/ml to induce the release of lysogenic bacteriophages. 200 µl of each culture 

(before and after the addition of mitomycin C) were added to wells of a 96-well plate in 

triplicate. Growth was monitored by optical density at 600nm in a plate reader (Fluostar 

OPTIMA, BMG LABTECH, Germany). Bacteriophage induction identified a 

bacteriophage only in isolate 05-1109. 

7.5 Microarray DNA CGH Results 

DNA microarray CGH was performed using the protocols outlined in Chapter 2. One large 

region of diversity from SP1129-SP1146 was evident and is magnified in Figure 7-1. In 

total, 46 gene loci where diversity was evident were identified by CGH (Figure 7-2). 

 



  Chapter 7, 143 

 
 

Figure  7-1 DNA CGH results for serotype 4, ST246 isolates.   

This figure is produced by Genespring GX 7.3.1. The  genes from the TIGR4 and R6 genomes 
featured on the microarray are illustrated as horiz ontal bars consisting of vertical lines 
representing consecutive genes. Yellow lines indica te where competitive hybridization has 
occurred. Red lines indicate where R6 genes are pre sent and hybridizing in the test isolate 
but are absent from TIGR4. Blue lines indicate gene s which are present and hybridizing in 
TIGR4 but not hybridizing with the test isolates. G rey lines indicate that the fluorescence 
intensity of the hybridization has not been high en ough to reach a threshold set on Bluefuse 
for Microarrays 3.5 © to filter out low quality hyb ridizations. The region of diversity between 
SP1129 –SP1146 is magnified. 
 

PCR (utilising the primers used to design the probes (Appendix 3) attached to the 

microarray (MWG Biotech AG, Germany)) demonstrated absence of the gene at 12 of 

these loci (Figure 7-2) and suggested that sequence divergence may account for detection 

of product at the other loci.  
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Clinical Isolates 

Gene loci Gene Function 

Associated 
with Virulence 

in Murine 
Pneumonia 

Model 04
-2

23
9 

03
-5

33
9 

04
-1

34
2 

06
-1

80
3 

05
-1

10
9 

06
-1

89
8 

SP0031                  

SP0068                  

SP0111                  

SP0165                  

SP0309                  

SP0514                  

SP0532                 

SP0570                  

SP0573                  

SP0949 IS1515, transposase, authentic frameshift No             

SP1129  integrase/recombinase, phage integrase family No             

SP1130  transcriptional regulator No             

SP1131  transcriptional regulator, putative No             

SP1132                  

SP1134                  

SP1135                  

SP1136  conserved domain protein No             

SP1137                  

SP1138                 

SP1139                  

SP1140  hypothetical protein No             

SP1141  hypothetical protein No             

SP1142                  

SP1143                  

SP1144                  

SP1145  hypothetical protein No             

SP1158                  

SP1181                  

SP1189  hypothetical protein No             

SP1254                  

SP1342                  

SP1343                  

SP1350                  

SP1353                  

SP1696                  

SP1718                  

SP1770 glycosyl transferase, family 8 Yes             

SP1793                  

SP1794  hypothetical protein No             

SP1796 ABC transporter, substrate-binding protein No             

SP1797                  

SP1799                  

SP1839                  

SP1895                  

SP1896                  
SP1897                  
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Figure  7-2 PCR validation results for genes where are leas t one of the 6 ST246 isolates did 
not hybridize on the microarray. 

Yellow indicates the presence of a PCR product of t he same size as that in the TIGR4 
genome (using the primers utilised in the manufactu re of the microarray displayed in 
Appendix 3) while blue indicates the absence of a p roduct. Where genes have been 
identified as absent (blue) their putative function  is noted and whether they have been 
identified as virulence factors in the development of pneumonia in a mouse model (Hava 
and Camilli, 2002).   
 

Five of the absent genes were absent in all 6 clinical isolates while 7 were strain dependent 

and could be absent or present in the ST246 clinical isolates. 

Isolate 06-1803 demonstrated the greatest number of putative gene deletions, several of 

which were identified as absent solely in this isolate.  

We chose three genes (SP1130, SP1136 and SP1342) where DNA in test isolates did not 

hybridize on the microarray but had demonstrable products using PCR and we sequenced 

the PCR products. This identified single nucleotide polymorphisms (SNPs) in several 

isolates when the sequenced genes were compared with their TIGR4 sequence using 

National Center for Biotechnology Information (NCBI) Basic Local Alignment Search 

Tool (BLAST) software. The genetic diversity of SP1130 is illustrated in Figure 7-3. 

 

Figure  7-3 Genomic diversity of the transcriptional regula tor gene SP1130.  

The presence or absence of gene SP1130 in the 6 cli nical ST246 serotype 4 isolates was 
determined using PCR and compared with results usin g microarray CGH where no 
hybridization occurred for this gene in any of the test isolates. Blue indicates where the 
gene was absent by PCR and yellow indicates that a product was detected which was the 
same size as the product from TIGR4. Single nucleot ide polymorphisms (SNPs) were 
identified in the sequenced PCR product when compar ed to the TIGR4 sequence for isolates 
04-1342 and 05-1109. The locations of some of these  SNPs are identified in red boxes for 
part of the PCR product from isolate 04-1342. 
 



  Chapter 7, 146 

7.6 Discussion 

This investigation has demonstrated genetic diversity within clinical isolates of a single 

clonal complex (ST246) associated with one serotype (serotype 4) from patients with 

matched epidemiological characteristics using a PCR product microarray as a screening 

investigation. These DNA CGH results were validated using PCR. This work also assessed 

whether there may be additional integrated genetic material by bacteriophage induction. 

A bacteriophage was identified only in isolate 05-1109 which had integrated 32-34kb of 

genetic material. This burden of genetic material represents a source of genomic diversity 

which would otherwise have remained undetected by microarray CGH analysis. This again 

highlights one of the limitations of microarray DNA CGH as it can only identify the 

presence of genes which feature in the reference genomes which were used to construct the 

probes on the microarray. Consequently, it may not detect additional genes acquired by 

horizontal gene transfer from other bacterial species or from bacteriophages, the 

acquisition of which may affect gene expression and subsequently the bacterial phenotype 

and disease presentation.  

It has previously been recognised that the TIGR4 genome demonstrates evidence of a 

bacteriophage remnant in a 10.5kb cluster of 19 contiguous open reading frames (from 

SP1129 to SP1147) that is absent from the genome of R6 (Obregon et al., 2003). This 

corresponds exactly with the only significant region of diversity between these clinical 

isolates and TIGR4.  This region of diversity has been previously identified (Silva et al., 

2006) but the presence of genes in this region has previously been associated with a 

noninvasive phenotype when described before in serotype 6B isolates (Obert et al., 2006). 

This investigation of serotype 4 isolates from patients with bacteraemic pneumonia and 

other IPD manifestations suggests that if there really is an association with a noninvasive 

phenotype this association may be serotype specific. 

The identification of some of the genes in the SP1129-SP1147 region in some isolates 

suggests that these isolates or their ancestors had carried a bacteriophage. Bacteriophages 

may therefore have a significant role in the generation of genomic diversity in the 

pneumococcus. For these isolates, it appears that genomic diversity (with a possible 

consequence being diversity of clinical manifestations) has arisen more as a result of 

acquiring additional genetic content rather than deletion of genetic material when 

compared to another serotype 4 strain (TIGR4) as deletion of individual genes within these 

isolates does not appear to be common when compared to the TIGR4 genome. It is 
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possible that the unique combination of gene deletions in isolate 06-1803 may have 

contributed to the unusual clinical presentation with simultaneous pneumonia, meningitis 

and endocarditis.  

While considering the pathogenesis of pneumococcal endocarditis, Bruckner et al have 

identified SP1772, a gene coding for a cell wall anchor protein, as homologous to a platelet 

binding glycoprotein in Streptococcus gordonii (Bruckner et al., 2004) and Takamatsu et 

al have considered it important in the causation of endocarditis (Takamatsu et al., 2004). 

Our results do concur with this hypothesis as SP1772 did hybridize in all the test clinical 

strains, suggesting that all had the genetic potential to result in endocarditis if this 

hypothesis is correct. Only isolate 06-1803 however came from a patient with endocarditis, 

which suggests that there may be other pneumococcal genetic involvement required for the 

development of endocarditis or, perhaps more likely, a requirement for a particular host 

susceptibility such as underlying valvular pathology. It is noteworthy that in the CGH 

analysis performed by Bruckner et al, SP1772 appears absent from several of the serotypes 

analysed particularly serotype 3 (Bruckner et al., 2004). Our results from other DNA CGH 

experiments have also demonstrated an absence of hybridization for SP1772 in all serotype 

3 isolates tested but also in serotype 23F (04-1168 and ATCC51916), serotype 6A 

(BAA659), serotype 14 (BAA340), serotype 20 (05-1271), serotype 35B (BAA660), 

serotype 12F (05-2565) and serotype 9V (05-1821). But before it can be concluded that the 

absence of SP1772 may preclude the development of endocarditis, it should be 

acknowledged that several case series of pneumococcal endocarditis from the mid-20th 

century (Austrian, 1957, Straus and Hamburger, 1966, Finland and Barnes, 1970) 

demonstrate that serogroups 3, 6, 14 and 20 can indeed cause endocarditis. As genetic 

analysis of these historical isolates is not possible, there is no conclusive proof of a 

pneumococcus without SP1772 being associated with endocarditis but given the universal 

lack of hybridization of SP1772 in all serotype 3 isolates analysed so far by CGH, a claim 

that possession of SP1772 is necessary to cause endocarditis is hard to support. Likewise, 

the glycosyl transferase SP1770, which was identified by signature tagged mutagenesis as 

being essential for virulence in a murine pneumonia model (Hava and Camilli, 2002) does 

not appear to be necessary in the pathogenesis of bacteraemic pneumococcal pneumonia in 

humans. 

These results also highlight the impact that sequence diversity can have on how microarray 

DNA CGH results are interpreted. The results show that even small mutations in gene 

sequence may affect hybridization on our microarray which was evident when there was 

failure to hybridize genes which contained occasional SNPs in the test DNA compared to 
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its probe. Shen et al have also demonstrated that several pneumococcal genes contain 

numerous point mutations and small indels (Shen et al., 2006a). Detection of SNPs using 

microarray technology has been possible in the human genome project (Wang et al., 1998) 

but in order to do this with higher specificity for pneumococcal genomes, a new 

customised microarray would be required using an oligonucleotide probe approach rather 

than a PCR product probe (Kumar et al., 2005, Palacios et al., 2007, Dorrell et al., 2005). 

This approach would be less successful at detecting larger genes due to the shorter nature 

of the probes employed (Palacios et al., 2007). This has led to the conclusion that,  

“given the uncertainties about the extent of naturally occurring genetic 
polymorphisms in pathogen gene pools, the most practical hybridization-based 
detectors will probably rely on longer probes that are less sensitive to 
unexpected genetic polymorphism and that also provide greater analytic 
sensitivity compared with shorter oligonucleotide probes (Call, 2005).”  

Silva et al note that isolates of the same serotype and sequence type can behave very 

differently in vivo in animal hosts. These observations on human cases due to the same 

serotype and sequence type with very different clinical courses agree with this observation.  

Figure 7-4 below demonstrates that ST246 is a single locus variant of ST899 and a double 

locus variant of ST2365 and ST695. These serotype 4 related sequence types have been 

associated with capsular switching and acquisition of a serotype 19A capsule as a 

conjugate vaccine escape mutation (Brueggemann et al., 2007). Although it has not yet 

been seen, it would seem likely that such a closely related sequence type (ST246), which is 

of obvious virulence in humans, has the potential to switch capsules with serotype 19A to 

escape vaccine pressure but maintain the virulence associated with the ST246 clonal 

complex (Sandgren et al., 2004).  
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Figure  7-4 Demonstration of the relationship of ST246 to o ther closely related sequence 
types using e-BURST version 3 and the MLST database . 

Adapted from Brueggemann et al (Brueggemann et al ., 2007). ST247 is found to be a 
founder clonal complex and ST246, ST899 and ST695 a re co-founders. Sequence types 
highlighted in red have been found to have undergon e capsular switching in recent years 
and have acquired and express the serotype 19A caps ule. 
 
 



 

8 Genomic Diversity in Nosocomial Outbreaks of 

Pneumococcal Disease 

8.1 Pneumococcal Outbreaks – Definition and Feature s 

According to Health Protection Agency draft guidelines, a cluster or outbreak of 

pneumococcal disease is defined as, 

“two or more cases of serious pneumococcal infection (confirmed or probable) 
reported from a closed setting within a four-week period.” 

Nosocomial outbreaks of IPD, although not common, are well described. Perhaps the first 

description of such a hospital acquired outbreak of pneumococcal pneumonia was at an 

asylum in 1903 (Sinigar, 1903). These outbreaks are associated with significant 

preventable morbidity and mortality particularly in elderly (Hansmann et al., 2006, 

Thakker et al., 1998, Bain et al., 1990, Millar et al., 1994, Cartmill and Panigrahi, 1992, 

Dawson et al., 1992, Fiore et al., 1998, Mandigers et al., 1994, Bresnitz et al., 2001, Kludt 

et al., 1997, Gleich et al., 2000, Bescos et al., 2003, Tan et al., 2003, Weiss et al., 2001, 

Quick et al., 1993, Barnes et al., 1995, Gould et al., 1987, Nuorti et al., 1998, Gillespie et 

al., 1997) and paediatric populations (Gupta et al., 2007, Medeiros et al., 1998, Leighton et 

al., 2003, Craig et al., 1999, Cherian et al., 1994, Schroder and Cooper, 1930, O'Brien et 

al., 2000, Strom, 1932, Melamed et al., 2002, Radetsky et al., 1981, Gilman and Anderson, 

1938, Dagan et al., 2000). Remarkably there is, as yet, no consensus as how best to prevent 

or manage them although in 2007 a Health Protection Agency working group issued draft 

interim guidelines for consultation in the United Kingdom.  

Particular serogroups have a predilection for causing outbreaks (Table 8-1) possibly due to 

a genetic factor which has resulted in increased transmissibility. This is unlikely to be due 

solely to capsular properties as, “non-typeable,” uncapsulated pneumococci can also cause 

outbreaks – particularly of conjunctivitis. Virtually all possible presentations of 

pneumococcal disease have been associated with outbreaks as shown in Table 8-2. 
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Pneumococcal 
Serogroup 

Associated with 
Outbreaks  

 
References 

Serogroup 1 (Thakker et al., 1998, Gupta et al., 2007, Musher et al., 1997, Gilman and 
Anderson, 1938, Smeall, 1931, Park and Chickering, 1919, Gratten et al., 
1993, Mercat et al., 1991, DeMaria et al., 1980, Mackenzie et al., 1940, 

Leimkugel et al., 2005, Yaro et al., 2006, O'Brien et al., 2000, Strom, 1932, 
Dagan et al., 2000, Proulx et al., 2002) 

Serogroup 2 (Smillie et al., 1938) 
Serogroup 3 (Bescos et al., 2003) 
Serogroup 4 (Hansmann et al., 2006, Gleich et al., 2000, Bain et al., 1990, Clarke et al., 

2004a, Crum et al., 2003) 
Serogroup 5 (Schroder and Cooper, 1930, Melamed et al., 2002) 
Serogroup 6 (Cartmill and Panigrahi, 1992, Dawson et al., 1992, Radetsky et al., 1981) 
Serogroup 8 (Birtles et al., 2005, Berk et al., 1985) 
Serogroup 9 (Anonymous, 1992, Millar et al., 1994, Mandigers et al., 1994, Gillespie et al., 

1997, Crum et al., 2003) 
Serogroup 12 (Hoge et al., 1994, Jorgensen et al., 2005, Cherian et al., 1994) 
Serogroup 14 (Craig et al., 1999, Fiore et al., 1998, Bresnitz et al., 2001, Tan et al., 2003, 

Medeiros et al., 1998) 
Serogroup 19 (Clarke et al., 2004a, Quick et al., 1993) 
Serogroup 23 (Carter et al., 2005, Barnes et al., 1995, Weiss et al., 2001, Fry et al., 2005, 

Gould et al., 1987, Nuorti et al., 1998) 
Non-Typeable (Hennink et al., 2006, Martin et al., 2003a, Feingold, 2003, Leighton et al., 

2003, Crum et al., 2004, Carvalho et al., 2003, Buck et al., 2006, Ertugrul et 
al., 1997) 

Table  8-1 Pneumococcal serogroups which can cause disease  outbreaks. 
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Pneumococcal 
Manifestation 
Observed in 
Outbreaks 

 
References 

Asymptomatic 
Carriage 

(Jorgensen et al., 2005, Gillespie et al., 1997, Mackenzie et al., 1940, 
Hoge et al., 1994, Musher et al., 1997, Bescos et al., 2003, Carter et al., 

2005, Nuorti et al., 1998, Radetsky et al., 1981, Quick et al., 1993, 
Barnes et al., 1995) 

Pneumonia (Jorgensen et al., 2005, Gillespie et al., 1997, Mackenzie et al., 1940, 
Lamb and Brannin, 1919, Anonymous, 1992, Smillie et al., 1938, 

Schroder and Cooper, 1930, Hoge et al., 1994, DeMaria et al., 1980, 
Mercat et al., 1991, Millar et al., 1994, O'Brien et al., 2000, Cartmill and 
Panigrahi, 1992, Dawson et al., 1992, Proulx et al., 2002, Musher et al., 

1997, Fiore et al., 1998, Mandigers et al., 1994, Gratten et al., 1993, 
Strom, 1932, Hirsch and McKinney, 1919, Tan et al., 2003, Gilman and 
Anderson, 1938, Park and Chickering, 1919, Bescos et al., 2003, Gleich 
et al., 2000, Kludt et al., 1997, Bain et al., 1990, Hansmann et al., 2006, 

Dagan et al., 2000, Subramanian et al., 2003, Carter et al., 2005, De 
Galan et al., 1999, Nuorti et al., 1998, Bresnitz et al., 2001, Thakker et 

al., 1998, Gupta et al., 2007, Weiss et al., 2001, Quick et al., 1993, Fry et 
al., 2005, Crum et al., 2003, Berk et al., 1985, Gould et al., 1987) 

Empyema (Jorgensen et al., 2005, Smillie et al., 1938, DeMaria et al., 1980, O'Brien 
et al., 2000, Gupta et al., 2007) 

Meningitis (Jorgensen et al., 2005, Craig et al., 1999, Yaro et al., 2006, Leimkugel et 
al., 2005, Birtles et al., 2005, Hoge et al., 1994, DeMaria et al., 1980, 

Melamed et al., 2002, Radetsky et al., 1981) 
Blood Stream Infection (Jorgensen et al., 2005, Cherian et al., 1994, Tan et al., 2003, Bescos et 

al., 2003, Gleich et al., 2000, Kludt et al., 1997, Hansmann et al., 2006, 
Dagan et al., 2000, Carter et al., 2005, Bresnitz et al., 2001) 

Otitis Media (Gilman and Anderson, 1938, Dagan et al., 2000) 
Conjunctivitis (Feingold, 2003, Leighton et al., 2003, Martin et al., 2003a, Hennink et 

al., 2006, Cherian et al., 1994, Crum et al., 2004, Carvalho et al., 2003, 
Buck et al., 2006, Medeiros et al., 1998, Ertugrul et al., 1997) 

Septic Arthritis (Jorgensen et al., 2005, DeMaria et al., 1980) 
Cellulitis (Jorgensen et al., 2005) 

Peritonitis (Malloch, 1922) 
 

Table  8-2 Presentation of pneumococcal disease or carriag e associated with outbreaks. 
 

8.2 Pneumococcal Typing Methods and Limitations in 

Outbreak Investigations  

8.2.1 Serotyping 

Serotyping, although usually performed in a reference laboratory, is an important test 

which can help to rapidly identify links between epidemiologically connected cases of 

pneumococcal disease and clarify the composition of outbreak clusters. It does however 

have limitations when the cases are due to uncapsulated pneumococci which are “non-

typeable” by serotyping. In such cases, molecular methods can be more significant in 

identifying or refuting links between cases.   
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8.2.2 Molecular typing 

Molecular typing methodologies are reviewed in Chapter 1. Several of these have been 

used to investigate relationships between isolates collected in outbreak situations including 

PFGE (Nuorti et al., 1998, Carter et al., 2005, Subramanian et al., 2003, Martin et al., 

2003a, Craig et al., 1999, Bescos et al., 2003, Barnes et al., 1995), PBP Gene 

fingerprinting (Gillespie et al., 1997, Barnes et al., 1995), Ribotyping (Cherian et al., 1994, 

Dagan et al., 2000), RFEL (De Galan et al., 1999), BOX-PCR (Ertugrul et al., 1997), 

Random Amplified Polymorphic DNA analysis (RAPD) (Melamed et al., 2002) 

fluorescence-based Amplified Fragment Length Polymorphism analysis 

(fbAFLP)(Hennink et al., 2006) and MLST (Birtles et al., 2005, Leimkugel et al., 2005, 

Clarke et al., 2004a, Yaro et al., 2006, Martin et al., 2003a) although several publications 

describing pneumococcal outbreaks predate the development of these methods. This 

chapter features the first description of microarray technology being utilised in the 

molecular typing of pneumococcal outbreak associated isolates and thereby the first to 

consider the clonal nature of such isolates at the level of the whole pneumococcal genome. 

8.3 Background to Chosen Outbreaks 

8.3.1 Serogroup 1 ST227 

The significance of serogroup 1 pneumococci to the contemporary global epidemiology of 

this organism is reviewed in Chapter 1.  

It was possible to identify isolates from two patients involved in a historical serogroup 1 

related outbreak from a care of the elderly ward in Glasgow in 1996 (Thakker et al., 1998). 

These isolates were stored frozen at SMPRL. This allowed us to revisit the microbiology 

of the outbreak investigation with the benefit of MLST and microarray technology. Neither 

isolate was from the index case who had presented with an aggressive pneumonia and died 

within 24 hours of the onset of symptoms. Both isolates were from direct contacts of the 

index patient though. These secondary cases had developed bacteraemic pneumonia and 

the stored isolates had been obtained from blood cultures. One of these secondary cases 

also died within 24 hours of the onset of symptoms and the other died within 3 days of the 

onset of symptoms.   

MLST of the two serogroup 1 isolates showed them to both be ST227. This itself is of 

significance as this outbreak predates the start of the expansion of the ST306 clone in 
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Scotland and is compatible with the hypothesis that ST227 was the dominant serogroup 1 

clone in Scotland in the 1990s.  

8.3.2 Serogroup 4 ST206 

This outbreak occurred in 2002 in a care of the elderly ward in a hospital in the West of 

Scotland and affected four patients aged between 79 and 98. All the cases developed 

bacteraemic pneumonia and all succumbed to their infections. Isolates were available 

stored frozen at SMPRL from blood cultures for all four cases. Serotyping found all the 

isolates to be serogroup 4. These isolates had previously had MLST and all were ST206, a 

finding which has previously been used to illustrate the utility of MLST in outbreak 

investigations (Clarke et al., 2004a). 

Serogroup 4 pneumococci appear to have a particular association with outbreaks in elderly 

care facilities (Gleich et al., 2000, Hansmann et al., 2006, Clarke et al., 2004a, Bain et al., 

1990, Kludt et al., 1997).  

8.4 Microarray CGH analysis of Outbreak Isolates 

Unlike the microarray investigations so far which have been directed at identifying 

diversity in the pneumococcal genome, this chapter is focussed on assessing whether 

outbreak clinical isolates can be shown to be clonal. Hackenbeck et al, demonstrated that 

there is less diversity in isolates of the same PMEN clone than from different 

pneumococcal serogroups (Hakenbeck et al., 2001). Isolates which are epidemiologically 

related in an outbreak setting are likely to be clonal, usually from a point source or index 

case. However, as the pneumococcus readily undergoes genetic recombination, the 

circulating population of pneumococci which do not form part of the outbreak may no 

longer demonstrate as clonal a population structure as the outbreak strains, allowing a 

distinction between the two populations to be made. CGH performed on a PCR product 

microarray should therefore be able to distinguish outbreak strains from those which are 

not related.  

Microarrays have previously been used during outbreak investigations of rotavirus 

(Chizhikov, 2002), viral haemorrhagic fever (Palacios et al., 2007), Streptococcus 

pyogenes (Smoot et al., 2002) and Campylobacter jejuni (Leonard et al., 2003) but this has 

been their first use in the investigation of outbreak related invasive pneumococcal disease. 

The investigation using outbreak related strains of Streptococcus pyogenes and 
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Campylobacter jejuni also utilized a PCR product “spotted” microarray which was able to 

successfully discriminate strains belonging to separate outbreaks whereas the rotavirus and 

viral haemorrhagic fever studies used oligonucleotide microarrays. 

For these studies, genomic DNA was prepared and DNA CGH hybridizations and analysis 

was performed using the protocols in Chapter 2 with TIGR4 DNA as the reference 

genome. Dye swap experiments were performed for each isolate. 

8.4.1 CGH Results from Serogroup 1 Outbreak 

 

Figure  8-1 Comparison of CGH results for serotype 1 outbre ak associated isolates.  

Genes are represented consecutively by Genespring G X 7.3.1 from left to right by a 
coloured line. Yellow indicates that competitive hy bridization occurred with both DNA from 
the test isolate and TIGR4. Blue lines indicate tha t DNA from TIGR4 hybridized but DNA 
from the test isolate did not. Grey lines indicate that either no hybridization occurred or that 
the fluorescence intensity of the hybridization tha t did occur was too low to pass the 
threshold value in Bluefuse for Microarrays 3.5 © t o be included in the analysis. Red lines 
indicate that no DNA from TIGR4 hybridized but DNA from the test isolate hybridized – 
usually to probes from the R6 genome but occasional ly because of false negative 
hybridization of TIGR4 DNA to a TIGR4 gene. Red arr ows indicate the two outbreak related 
serogroup 1, ST227 isolates which can be easily dis tinguished from isolates of other 
serogroups which have been sequenced at the Wellcom e Sanger Institute (Chapter 3) but 
which are not easily distinguished from other serog roup 1 isolates (Chapter 10).  
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Serotype 1 Outbreak  Serotype 1 Outbreak 

96-5891 96-5892  96-5891 96-5892 
SP0067  SP0067     spr0105  
SP0068  SP0068   spr0111  spr0111  
SP0069  SP0069   spr0112  spr0112  
SP0070  SP0070   spr0113  spr0113  
SP0071  SP0071   spr0114  spr0114  
SP0072     spr0115  spr0115  

  SP0074   spr0116  spr0116  
SP0076     spr0117  spr0117  
SP0080     spr0118  spr0118  
SP0093     spr0119  spr0119  
SP0110  SP0110   spr0225    
SP0111  SP0111     spr0317  
SP0112  SP0112   spr0320  spr0320  
SP0113  SP0113   spr0321  spr0321  

  SP0124   spr0322  spr0322  
SP0126     spr0323  spr0323  
SP0244       spr0957  

  SP0308   spr0958  spr0958  
SP0350  SP0350     spr0959  
SP0351  SP0351   spr0962    
SP0352  SP0352   spr0965    
SP0353       spr0972  
SP0354  SP0354   spr1403  spr1403  
SP0355  SP0355   spr1404  spr1404  

  SP0356   spr1550  spr1550  
SP0357  SP0357   spr1618  spr1618  
SP0358  SP0358   spr1619  spr1619  
SP0359  SP0359   spr1620  spr1620  
SP0360  SP0360   spr1621  spr1621  
SP0452     spr1818    
SP0460  SP0460     
SP0461  SP0461     
SP0462  SP0462     
SP0463  SP0463     
SP0464  SP0464     
SP0465  SP0465     
SP0466  SP0466     
SP0467  SP0467     
SP0468  SP0468     
SP0509       
SP0535       
SP0548       
SP0560       

  SP0569     
SP0570       
SP0574       
SP0696       

  SP0773     
SP1036       
SP1037       
SP1047  SP1047     
SP1048  SP1048     

  SP1049     
SP1050  SP1050     
SP1051  SP1051     
SP1052  SP1052     
SP1053  SP1053     
SP1054  SP1054     
SP1055  SP1055     
SP1056  SP1056     
SP1057  SP1057     
SP1059  SP1059     
SP1060  SP1060     
SP1061  SP1061     
SP1062  SP1062     
SP1063  SP1063     
SP1064  SP1064     

  SP1143     
SP1144  SP1144     
SP1145  SP1145     

  SP1146     
  SP1188     
  SP1189     

SP1221  SP1221     
SP1222  SP1222     
SP1304       
SP1318       
SP1336       
SP1439       
SP1503       
SP1615  SP1615     
SP1616  SP1616     
SP1617  SP1617     
SP1618  SP1618     
SP1619  SP1619     
SP1620  SP1620     
SP1621  SP1621     
SP1622  SP1622     
SP1791       
SP1796  SP1796     
SP1797  SP1797     
SP1798  SP1798     
SP1799  SP1799     

  SP1819     
  SP1835     
  SP1866     

SP1948  SP1948     
SP1949  SP1949     
SP1950  SP1950     
SP1951  SP1951     
SP1952  SP1952     
SP1953  SP1953     
SP1954  SP1954     
SP1955       

 

Figure  8-2 Genelists created from CGH analysis of dye swap  experiments for serotype 1, 
ST227 isolates 96-5891 and 96-5892.  
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The list of genes from the TIGR4 genome which were identified as not hybridizing to the 
array in one or both isolates is on the left and th e list of genes from the R6 genome which 
did not hybridize is on the right. Where results ha ve been highlighted in colour, PCR of the 
gene was performed using the primers displayed in A ppendix 3 used to make the PCR 
probe for that gene on the microarray (MWG Biotech AG, Germany). Yellow indicates that a 
PCR product of the correct size could be identified  by PCR and gel electrophoresis. Blue 
indicates that no PCR product was identified. 

 

8.4.2 Discussion of CGH Results for Serogroup 1 Out break 

These results again demonstrate some limitations of performing CGH on this “spotted” 

microarray particularly if trying to use the results as a “typing” tool (see also Chapter 3). In 

some cases when the array identified genes which had not hybridized, PCR corroborated 

with the array adding confidence to the conclusion that the genes were truly absent from 

the test genome (highlighted blue in Figure 8-2). However, in a substantial number of 

instances, PCR identified the gene as present in both isolates 96-5891 and 96-5892 

(highlighted yellow in Figure 8-2) indicating that false negative hybridization for these 

genes had occurred in the microarray dye swap experiments. Possible reasons for this are 

identified and discussed in Chapter 3.  

Many of these false negative hybridizations are occurring within known regions of 

diversity in the pneumococcal genome (Table 1-2) which suggests that the lack of 

hybridization may be due to the presence of the genes in the test genome having such a 

dissimilar sequence to that in TIGR4 that hybridization does not occur with the probe on 

the microarray. This issue of poor sensitivity does not necessarily mean that microarray 

based DNA CGH could not be used to group outbreak isolates into a cluster as it can 

readily distinguish between serogroups but the discrimination between ST227 and ST306 

(which are part of the same clonal complex within serogroup 1 and are double locus 

variants as demonstrated in Figure 8-3) is poorer and may not be sufficient to distinguish a 

hybridization pattern specific to outbreak related isolates for this serogroup.  
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Figure  8-3 Relationships of MLST sequence types constructe d using eBURST version 3 9 of 
all isolates in the MLST database which express ser otype 1 capsule.  

Blue dots indicate STs which are founders of clones  from which single locus variants are 
demonstrated in black. Yellow dots indicate STs whi ch are subgroup founders. ST306 is a 
founder clone with ST227 a subgroup founder which i s a double locus variant of ST306. 
 

                                                 
9 http://spneumoniae.mlst.net/eburst {accessed 20th December 2008} 
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8.4.3 CGH Results from Serogroup 4 Outbreak 

 

Figure  8-4 Comparison of CGH results for serotype 4 outbre ak isolates.  

Genes are represented by Genespring GX 7.3.1 consec utively from left to right by a 
coloured line. Yellow indicates that competitive hy bridization occurred with both DNA from 
the test isolate and TIGR4 hybridizing. Blue lines indicate that DNA from TIGR4 hybridized 
but DNA from the test isolate did not. Grey lines i ndicate that either no hybridization 
occurred or that the fluorescence intensity of the hybridization that did occur was too low to 
pass the threshold value in Bluefuse for Microarray s 3.5 ©  to be included in the analysis. 
Red lines indicate that no DNA from TIGR4 hybridize d but DNA from the test isolate 
hybridized to probes from the R6 genome. Red arrows  indicate the four serogroup 4, ST206 
isolates which can be easily distinguished from the  ST246, serogroup 4 isolates tested 
(Chapter 7) and isolates of other serogroups which have been sequenced at the Wellcome 
Trust Sanger Institute (Chapter 3).  
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Serotype 4 ST206 Outbreak 

02-1471 02-1317 02-1358 02-1359 

    SP0059    
SP0076      SP0076  

  SP0113      
SP0114        
SP0115  SP0115  SP0115  SP0115  
SP0116        

  SP0132      
    SP0191    
      SP0304  

SP0431        
    SP0452    
    SP0512    

SP0548        
SP0600        

    SP0683    
SP0815        

  SP0906  SP0906    
  SP0908      
    SP1058    
  SP1579      
    SP1866    
      SP1921  

spr0104  spr0104  spr0104  spr0104  
spr0105  spr0105  spr0105  spr0105  

  spr0107      
spr0112  spr0112  spr0112  spr0112  
spr0113  spr0113  spr0113  spr0113  
spr0114  spr0114  spr0114  spr0114  
spr0115  spr0115  spr0115  spr0115  
spr0116  spr0116  spr0116  spr0116  
spr0117  spr0117  spr0117  spr0117  
spr0118  spr0118  spr0118  spr0118  
spr0119  spr0119  spr0119  spr0119  
spr0587        

      spr0960  
      spr1550  

spr1191        
spr1193        

 

Figure  8-5 Genelists created from CGH analysis of dye swap  experiments for serogroup 4, 
ST206 isolates.  

The list of genes from the TIGR4 genome which were identified as not hybridizing to the 
array in one or both isolates is placed at the top of the list and genes from the R6 genome 
which did not hybridize are below these. Where resu lts have been highlighted in colour, 
PCR of the gene was performed using the primers dis played in Appendix 3 used to make 
the PCR probe for that gene on the microarray. Yell ow indicates that a PCR product of the 
correct size could be identified by gel electrophor esis. Blue indicates that no PCR product 
was identified. 
 



  Chapter 8, 161 

8.4.4 Discussion of CGH Results from the Serogroup 4 Outbreak 

Compared to the results using serogroup 1 isolates, the serogroup 4 ST206 isolates could 

be readily distinguished from other serogroup 4 isolates and those of other serogroups by 

their hybridization pattern. In addition, far fewer genes were identified as having 

discrepant hybridization results between the four outbreak isolates.  

This CGH experiment also demonstrated an unforeseen benefit of having more than one 

pneumococcal genome represented on the microarray as the gene complement of the test 

isolates was very similar to that of TIGR4 (ST205) as they are part of the same clonal 

complex and are only single locus variants of each other as determined by eBURST 

(Figure 8-6). Consequently, the majority of genes showed no differences in hybridization 

between test isolate genomes and the TIGR4 control genome. Differences were however 

apparent between the complement of R6 related genes present in the test isolates.  

 

 

Figure  8-6 e-BURST version 3.0 representation of serogroup  4 related MLST clonal 
complexes.  

This identifies the outbreak strain ST206 as a sing le locus variant of TIGR4 ST205 with both 
lying in the same clonal complex. ST246 lies within  a completely different clonal complex. 
Blue dots indicate that an ST is the probable found er of a clonal complex and yellow dots 
indicate a probable subgroup founder. 
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8.5 Discussion 

8.5.1 Possible role for Microarrays in Public Healt h Outbreak 

Investigations 

The results of both these outbreak investigations suggest that this microarray shows good 

discrimination between pneumococcal isolates of different serogroups and between isolates 

of different clonal complexes within a serogroup but it is not sensitive enough to 

demonstrate whether outbreak related isolates are identical in terms of genetic content. 

Undoubtedly such a high degree of resolution would give useful insights into how quickly 

pneumococcal genomes mutate and diverge from their “parent” genome in vivo during the 

direct human to human transmission usually implicated in pneumococcal outbreaks.  

However this high degree of resolution would not necessarily be required for the 

microarray to be a useful tool to link pneumococcal isolates cultured from proven cases, 

suspected cases and asymptomatic carriers during an outbreak investigation and 

discriminate whether they form an outbreak related cluster or not. Even so, it does not offer 

any significant advantage over MLST for this purpose and should not be considered a 

replacement for MLST where such facilities exist. A further practical consideration to 

address regards a comparison of costs for a microarray based investigation compared to an 

MLST based one. Leaving aside capital costs and labour costs, the cost for a complete 

microarray CGH dye swap experiment is £200 which compares poorly with £30 for MLST 

of an isolate (Mathew Diggle, SMPRL, personal communication). 

8.5.2 Genomic Diversity of Chosen Outbreak Related Strains 

The CGH results for these outbreak isolates also further demonstrate diversity within 

pneumococcal genomes. The serogroup 4, ST206 isolate CGH results all demonstrate the 

presence of genes from the region of diversity within the R6 genome between spr0102 and 

spr0119 which was first described by Bruckner et al (Bruckner et al., 2004) and relates to 

arginine biosynthesis although PCR results for these genes suggest many of these to be 

false positive hybridizations and the genes to be absent by PCR. The other five regions of 

diversity in the R6 genome described by Bruckner et al appear to be present by CGH 

hybridization in the serogroup 4, ST206 genomes. The serogroup 1, ST227 genomes 

appear to contain genes from 5 of the 6 regions of diversity in the R6 genome while having 

greater diversity of genes identifiable in the TIGR4 genome. 



 

9 Genomic Diversity in a Paediatric Carriage 

Population in the Bolivian Amazon 

9.1 Background 

9.1.1 Reasons for this Study 

In order to investigate the genomic diversity of a defined carriage population of 

pneumococci, it was decided to perform a nasopharyngeal carriage study in a paediatric 

population as access to isolates from existing carriage studies was not possible. Rather than 

re-examine pneumococcal carriage in a population where the serotypes and sequence types 

were already well documented, an opportunity was available to integrate this study of 

pneumococcal carriage into a newly established programme for the prevention of hearing 

impairment in the Beni region of Bolivia where a substantial amount of acquired deafness 

in children is due to the sequelae of acute otitis media or bacterial meningitis (at least 39% 

of deafness in children in Beni, Bolivia results from the sequelae of bacterial meningitis 

(Santana-Hernandez, 2006)). Both otitis media and meningitis commonly have a 

pneumococcal aetiology and are potentially preventable using a pneumococcal conjugate 

vaccine as has been the case in Brazil (Brandileone et al., 2003).  Consequently the project 

had the dual aims of providing paediatric carriage isolates of pneumococci for further 

investigations of their genomic diversity and of eliciting some basic epidemiological data 

regarding pneumococcal carriage (in  a region where none existed) with a view to enabling 

more informed planning of strategies to prevent morbidity and mortality associated with 

pneumococcal disease.  The mortality rate from pneumococcal meningitis is 47% in 

Salvador, Brazil (Ko et al., 2000), 37% in under five year olds in Guatemala (Asturias et 

al., 2003) and 33% in Paraguayan children (Lovera and Arbo, 2005), a substantial amount 

of which may be preventable by vaccination.   

9.1.2 Association of Pneumococcal Carriage and Acut e Otitis 

Media 

Pneumococcal carriage can be as high as 90% in healthy children under the age of three in 

developing countries (Obaro and Adegbola, 2002). Pneumococci account for 35-40% of 

cases of acute otitis media (Echaniz-Aviles, 2001). It is estimated that pneumococcal otitis 

media affects 70% of children at some time and 5-10% of these develop sequelae such as 
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chronic otitis media with effusion, mucosal granulation, mastoiditis, ossicular erosion and 

fixation or cholesteatoma (Echaniz-Aviles, 2001). Commenting on the chronic sequelae of 

acute otitis media in Latin America, Garcia et al make the observation that,  

“Chronic otitis and hearing loss are common in developing countries, and 
reduction of this morbidity would be an important public health contribution. 
Further research is warranted (Garcia et al., 2006).” 

Identification of pneumococci being carried in the nasopharynx can be used for surrogate 

identification of strains responsible for otitis media without having to resort to tympanic 

aspiration (Harper, 1999). The antimicrobial susceptibility patterns of nasopharyngeal 

isolates usually reflect the antibiotic susceptibility rates of invasive isolates taken during 

the same time period and usually demonstrate the same serotypes although the rank order 

of serotypes may differ between carriage and invasive disease with a smaller subset of 

serotypes responsible for invasive disease (Kellner et al., 1998). 

It has been determined that nasopharyngeal carriage of pneumococci results in higher rates 

of onset of otitis media than those seen in non carriers (Leach et al., 1994, Faden et al., 

1997). There is some suggestion that there are also racial differences in the incidence of 

pneumococcal otitis media (Klein, 1981).  

Once established, acute otitis media can then result in higher rates of pneumococcal 

nasopharyngeal carriage resulting from impaired local immunity and resulting in a vicious 

cycle of carriage and disease (Garcia-Rodriguez and Martinez, 2002).   

9.1.3 Issues regarding Pneumococcal conjugate vacci nation in 

Latin America for the prevention of otitis media an d carriage 

It is known that pneumococcal conjugate vaccination (PCV) has many benefits and 

included among them are a reduction of nasopharyngeal carriage (O'Brien and Dagan, 

2003, Obaro and Adegbola, 2002) (which is not achieved by pneumococcal polysaccharide 

vaccines), promotion of herd immunity (O'Brien and Dagan, 2003, Obaro and Adegbola, 

2002) and a reduction in episodes of pneumococcal and non pneumococcal acute otitis 

media, reduction in cases of recurrent otitis media and in numbers of tympanic tube 

insertions (Arguedas et al., 2005, Echaniz-Aviles, 2001).  These results although mainly 

observed in developed countries of Europe and North America have been replicated in 

some developing countries (Obaro and Adegbola, 2002, Laval et al., 2003). 
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A working group of the Pan American Health Organisation (PAHO) and the Pneumococcal 

Vaccines Accelerated Development and Introduction Plan (PneumoADIP) of the Global 

Alliance for Vaccines and Immunization (GAVI) has determined that countries in Latin 

America should,  

“strive to introduce the pneumococcal (conjugate) vaccine when it becomes 
affordable (Garcia et al., 2006).”  

Bolivia is eligible for GAVI vaccine fund support (Scott, 2007). The World Health 

Organization (WHO) also advocates implementation of pneumococcal conjugate vaccine 

as a priority in developing countries as part of its Global Action Plan for the Prevention 

and Control of Pneumonia (Greenwood, 2008).  As of August 2008, PCV has  not been 

utilised in Bolivia (Anonymous, 2008) although their current paediatric vaccination 

schedule comprises BCG, Polio, components of a pentavalent vaccine (Diphtheria, 

Tetanus, Pertussis, Hepatitis B, Haemophilus influenzae B), Measles Mumps and Rubella 

(MMR) and Yellow Fever (PAHO, 2007). Vaccine coverage is around 84% (PAHO, 

2007).  

However, due to the serotype constitution of the 7 valent pneumococcal conjugate vaccine 

(PCV-7) coverage of the serotypes causing IPD is less in Latin America than in other 

regions of the world (Hausdorff et al., 2000a). This poorer PCV-7 coverage demonstrates a 

further need to elucidate regional pneumococcal epidemiology, particularly in developing 

countries (Camargos et al., 2006).  The success of PCV-7 in Africa and the USA,  

“poses a challenge to public health physicians throughout the world to quantify 
the burden of pneumococcal disease in their region and estimate the potential 
benefits of PCV use (Scott, 2007).”  

9.1.4 Pneumococcal surveillance in Latin America 

Surveillance of IPD has been performed in Latin America through a co-ordinated 

programme of the PAHO Special Program for Vaccines and Immunization (SVI) and 

Regional System for Vaccines (SIREVA) which was initiated in 1993 (Di Fabio et al., 

1997). Isolates from blood, cerebrospinal, pleural, peritoneal or synovial fluid from cases 

aged less than 5 years with a diagnosis of pneumococcal meningitis, bacteraemia without a 

focus, septic arthritis, peritonitis or the WHO clinical criteria for pneumonia are reportable 

(Di Fabio et al., 1997) although it is recognised that IPD is frequently under-reported in 

young children even in developed countries (Hausdorff et al., 2000a). Initially limited to 

Argentina, Brazil, Chile, Colombia, Mexico and Uruguay, the surveillance was extended in 
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1998 to several other countries in the region including Bolivia (Garcia et al., 2006) with 

laboratory support from an international external quality assurance program from the 

National Centre for Streptococcus in Edmonton, Canada (Lovgren et al., 2007).   

The results of this surveillance demonstrate that the serotype distribution causing IPD 

appears to have been stable since 1993, albeit with minor regional differences (Garcia et 

al., 2006) but that antibiotic resistance is increasing (Di Fabio et al., 1997, Garcia et al., 

2006, Kertesz et al., 1998, Di Fabio et al., 2001). Molecular typing is not currently a 

feature of this surveillance although some smaller scale molecular typing studies have been 

performed in a handful of countries particularly regarding penicillin resistant pneumococci 

(Tomasz et al., 1998).  The common serotypes causing IPD in Latin America are serotypes 

14, 6A, 6B, 5, 1, 23F, 19F, 18C, 19A, 9V, 7F, 3, 9N and 4 (Di Fabio et al., 2001). Little is 

known about pneumococcal carriage in the region. 

9.1.5 Location of Study 

Bolivia is the poorest country in Latin America (Santana-Hernandez, 2006) and 64% of the 

population do not have sufficient income to cover basic needs (PAHO, 2007). The highest 

percentage of deaths from pneumonia (15-20%)  in the under five age group in the whole 

of Latin America (Fuchs et al., 2005) is found in Bolivia. Bolivian children also have the 

highest probability of dying before age five in the whole of Latin America (Fuchs et al., 

2005). They also have the highest infant mortality rate of around 54 per 1000 live births 

(Fuchs et al., 2005, PAHO, 2007) and Bolivia has the highest maternal mortality in Latin 

America at 230 per 100,000 live births (Santana-Hernandez, 2006, PAHO, 2007). Beni 

region lies in the Eastern lowlands of Bolivia and is home to a dispersed population of 

around 407,000 people of which around 90,000 live in Trinidad, the provincial capital 

(Santana-Hernandez, 2006). Bordering the Beni region to the West lies the Tropical Andes 

region which is the greatest region of biodiversity in the world10 with many unique species 

of animals and plants, although it is not known how this affects the diversity of prokaryotic 

life in the region.   

                                                 
10 http://www.biodiversityhotspots.org/xp/hotspots/andes/Pages/default.aspx {accessed 11th 

October 2008} 
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Figure  9-1 Map of Bolivia. 11 

This demonstrates the locations of Trinidad and Ben i within the Beni Region (red arrows).   
 

In February 2007, the Beni region of Bolivia experienced the worst flooding in 25 years 

with extensive displacement of the population of Trinidad many of whom were temporarily 

housed in refugee camps until flood waters abated. Swabbing for this study began in May 

2007 soon after these camps had been closed as people had been able to return home and 

children returned to school.  

9.2 Materials and Methods 

The project involved collaboration between Fundacion Totai (a health charity in Trinidad, 

Bolivia), Laboratorios Altstadt (a private clinical laboratory, Trinidad, Bolivia), SMPRL at 

Stobhill General Hospital, Glasgow, United Kingdom and the Faculty of Biological and 

Life Sciences, University of Glasgow, Glasgow, United Kingdom. 

                                                 
11 www.boliviangeographic.com/boliviamap.htm {accessed 11th October 2008} 
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9.2.1 Specimen Collection, Storage and Transportati on 

The design of this carriage study was constructed in accordance with the standard method 

of the WHO working group (O'Brien and Nohynek, 2003) and an earlier method devised 

for a Latin American context12. Dacron polyester tipped swabs (Medical Wire and 

Equipment, UK) were couriered from the United Kingdom for nasopharyngeal swabbing 

as was Skim Milk Tryptone Glucose Glycerin (STGG) broth media (O'Brien et al., 2001) 

which had been manufactured, sterilized and quality controlled as 1ml aliquots at SMPRL 

in cryotubes (Sarstedt AG & Co., Germany) to use as a short term transport and storage 

media at -20°C.  

Microbiological media is not readily available in Bolivia so 5% horse blood agar (E & O 

Media Services Limited, United Kingdom) was couriered from the United Kingdom as 

were optochin discs (Oxoid, United Kingdom) and Transwabs (TSCswabs, United 

Kingdom). The use of 5% horse blood rather than blood agar with gentamicin (Converse 

and Dillon, 1977), colistin-nalidixic acid or colistin-oxolinic acid was a necessary 

deviation from the published standard method (O'Brien and Nohynek, 2003).  

Nasopharyngeal swabs were taken by an experienced otolaryngologist (Dr Santana-

Hernandez). If nasopharyngeal swabbing was not tolerated or not possible in younger 

children, oropharyngeal swabs were performed. The tips of the Dacron polyester swabs 

were then cut off and stored in STGG and either plated onto 5% horse blood agar on the 

same day or stored at -20°C until they could be cultured. After plating out and culturing the 

naso- or oropharyngeal secretions, alpha haemolytic colonies were subcultured onto 5% 

horse blood agar for optochin sensitivity testing. Optochin sensitive alpha haemolytic 

organisms were presumed to be pneumococci. Incubation was performed at 37°C in a 

carbon dioxide enriched atmosphere using candle jars at Laboratorios Altstadt, Trinidad, 

Bolivia.  

Pure cultures of presumed pneumococci were stored at room temperature on Transwabs 

(TSCswabs, United Kingdom) until ready for transportation abroad. At this point they were 

subcultured onto 5% horse blood agar to obtain fresh pure cultures which were then 

inoculated onto new Transwabs for international transportation by air (Inverarity et al., 

2007).  

                                                 
12 http://www.paho.org/spanish/ad/ths/ev/LABS-manual-vigilancia-serotipos.pdf {accessed 10th 

October 2008} 
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Facilities for serotyping in Latin America are sparse (Camargos et al., 2006). Although 

serotyping and antimicrobial susceptibility testing is possible in La Paz at Laboratorio 

Nacional de Referencia en Bacteriologia Clinica, MLST is not possible in Bolivia. 

Arranging international transportation of the pure isolates was fraught with difficulties. 

Transportation was eventually co-ordinated by a cargo and logistics company Inbolpack 

S.R.L., Bolivia to the Reference Laboratory for Meningococci, Madrid, Spain who kindly 

then redirected the isolates from Spain to SMPRL using the courier company Fedex. 

Transportation of isolates from Trinidad, Bolivia to Glasgow, United Kingdom took 42 

days on Transwabs under conditions which were not environmentally controlled. 

Blood agar with neomycin (Oxoid, United Kingdom) was used at SMPRL to resuscitate 

pneumococci by culturing isolates received on Transwabs for 48 hours under anaerobic 

conditions. Isolates which had survived transportation were further subcultured on 5% 

horse blood agar and stored at -80° on Protect beads (TSC Ltd, United Kingdom).  

9.2.2 Epidemiological Data Collection and Analysis 

In May and June 2007, 601 children were assessed as part of the Programa De Prevencion 

Del Deficit Auditivo En Beni and had nasopharyngeal or oropharyngeal swabs taken 

during this process after informed consent from a parent or guardian. This was performed 

at nine educational institutions (six in Trinidad, Beni and three in Riberalta, Beni). Basic 

epidemiological data was also collected regarding the child’s age, gender, location, number 

of people living in their house (particularly other inhabitants under two years of age or 

aged two to five), whether they lived with a person who smoked and whether they had 

received penicillin in the previous 30 days. 

Statistical analysis of epidemiological data was performed by Mr Paul Johnson at the 

Robertson Centre for Biostatistics, University of Glasgow using R version 2.6.0 for 

Windows. 

9.2.3 Ethical Considerations 

Ethical approval for this study was received in the United Kingdom via the NHS Research 

Ethics Committee approval process (REC Ref 06/S0704/6) from the North Glasgow 

University Hospitals NHS Division East Office Research Ethics Committee and in Bolivia 

from the Colegio Medico De Bolivia Filial Beni.  
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9.3 Results 

9.3.1 Epidemiological Data 

202 carriers of optochin sensitive, alpha haemolytic organisms were identified 

demonstrating a carriage rate of 34%. Characteristics of the carriers compared to non-

carriers were investigated by Mr Paul Johnson, Robertson Centre for Statistics, University 

of Glasgow using Odds Ratios of carriage and univariate and multivariate models. These 

results are displayed below in Table 9-1.  

Carrier status, N (%) Odds ratio (95% CI) 
Characteristics   Negative 

(N=399) 
Positive 
(N=202) 

  Univariate 
models 

Multivariate 
model 

Age in Trinidad 
(N=493) 

0-5 
6+ 

38 (64.4%) 
275 (63.4%) 

21 (35.6%) 
159 (36.6%) 

  1.0 
0.6 (0.3, 1.1) 

1.0 
0.7 (0.4, 1.3) 

Age in Riberalta 
(N=107) 

0-5 
6+ 

26 (96.3%) 
59 (73.8%) 

1 (3.7%) 
21 (26.2%) 

  1.0 
9.3 (1.2, 72.5) 

1.0 
9.4 (1.2, 76.9) 

Gender Female 
Male 

182 (73.4%) 
217 (61.5%) 

66 (26.6%) 
136 (38.5%) 

  1.0 
1.7 (1.1, 2.4) 

1.0 
1.6 (1.1, 2.4) 

Household size 2-5 
6-9 
10+ 

95 (66.9%) 
165 (65.0%) 
93 (62.8%) 

47 (33.1%) 
89 (35.0%) 
55 (37.2%) 

  
1.0 

1.1 (0.7, 1.8) 
1.0 (0.6, 1.7) 

  

Children aged 2-5 
at home 

Yes 
No 

154 (62.1%) 
205 (68.1%) 

94 (37.9%) 
96 (31.9%) 

  1.0 
0.8 (0.6, 1.1) 

  

Children aged < 2 
at home 

Yes 
No 

130 (64.4%) 
229 (66.0%) 

72 (35.6%) 
118 (34.0%) 

  1.0 
1.1 (0.7, 1.5) 

  

Live with a 
smoker 

Yes 
No 

163 (65.2%) 
195 (65.9%) 

87 (34.8%) 
101 (34.1%) 

  1.0 
1.0 (0.7, 1.4) 

  

Residence Riberalta 
Trinidad 

85 (79.4%) 
313 (63.5%) 

22 (20.6%) 
180 (36.5%) 

  1.0 
1.9 (0.8, 4.5) 

 1.0 
15.2 (1.6, 146.3) 

Table  9-1 Odds ratios for pneumococcal carriage risk fact ors estimated from univariate and 
multivariate models.  

In both univariate and multivariate models the clus tering of samples within schools was 
accounted for by fitting a mixed effects logistic r egression model with random intercepts. 
The multivariate model was selected by backwards de letion of fixed effects that did not 
significantly improve the model based on a likeliho od ratio test. The final model contained 
fixed effects of age, gender and residence and an i nteraction between age and residence. 
Odds ratios are expressed with 95% confidence inter vals in brackets. 
 

9.3.2 Antibiotic Resistance 

Of the 202 isolates identified as optochin sensitive and alpha haemolytic in Bolivia, only 

54 were viable when they arrived in Glasgow after delays in transit ex vivo in sub-optimal 
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conditions. Of these 54 isolates, very little antimicrobial resistance was detected as shown 

in Table 9-2 below. Further details regarding these isolates are displayed in Appendix 2. 

Antimicrobial 
Agent 

Number of Fully 
Sensitive 
Isolates 

Number of 
Intermediately 

Sensitive 
Isolates 

Number of 
Resistant 
Isolates 

% Sensitivity 

Penicillin 50 4 0 92% 
Erythromycin 53 1 0 98% 
Vancomycin 54 0 0 100% 

Chloramphenicol 54 0 0 100% 
Tetracycline 52 0 2 96% 

Cotrimoxazole 46 8 0 85% 

 

Table  9-2 Antibiotic sensitivity for the 54 optochin sens itive Bolivian isolates.  
 

Of the 4 isolates with intermediate sensitivity to penicillin which were found, 2 were 

serotype 17F (ST2973 and ST3267), 1 was serotype 24F (ST 3770) and 1 was non-

typeable. The non typeable isolate also had intermediate sensitivity to erythromycin, 

cotrimoxazole and was resistant to tetracycline. The MLST of this non-typeable isolate 

also proved to be atypical with only one known allele being identifiable. The optochin 

sensitivity of the isolate was subsequently reviewed and found to be smaller (18mm) when 

grown in a carbon dioxide enriched atmosphere compared to air (25mm) leading to the 

conclusion that this isolate taxonomically was a Streptococcus pseudopneumoniae rather 

than a pneumococcus according to the definition suggested by Keith and Murdoch (Keith 

and Murdoch, 2008).  

The highest rate of antibiotic non-susceptibility was to cotrimoxazole which showed 

intermediate sensitivity in 8 isolates (serotypes 23A (ST2974), 24F (ST3770), 34 

(ST1902), 4 (ST332), 6B (ST4015) 16F (ST3771), 16A (ST4016).  

9.3.3 Serotyping of Bolivian Isolates 

The results of serotyping the 53 surviving pneumococcal isolates are illustrated as a pie 

chart in Figure 9-2 below. 
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Figure  9-2 Serotype distribution of 53 Bolivian pneumococc al carriage isolates. 
 

9.3.4 MLST of Bolivian Isolates 

The majority of the pneumococcal isolates recovered had new, unique MLST profiles. 

Details of the MLST profiles for the 32 newly discovered sequence types in Bolivia are 

displayed in Table 9-3. 
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Number 
of 

isolates  
Sequence 

Type aroe gdh gki recP spi xpt ddl 
1 2973 13 5 4 1 8 14 7 
3 2974 1 8 2 9 6 4 6 
1 2975 2 5 4 1 6 1 1 
1 2976 16 5 9 8 8 14 7 
1 3267 7 5 4 1 6 25 7 
1 3429 7 5 62 5 6 4 14 
1 3430 12 5 5 5 6 3 5 
1 3431 12 5 87 1 6 1 8 
1 3432 7 17 4 16 6 7 17 
1 3509 8 5 1 5 8 14 7 
1 3534 2 16 89 1 10 79 28 
1 3535 16 10 4 32 6 14 6 
1 3536 7 13 4 6 3 6 8 
1 3537 15 17 4 16 6 26 8 
1 3538 7 25 4 5 15 20 18 
1 3539 7 5 62 16 6 79 14 
1 3540 1 5 5 5 6 3 5 
1 3767 5 5 1 5 8 6 7 
1 3768 15 5 5 5 1 1 14 
1 3769 1 5 4 18 32 48 8 
2 3770 7 5 8 6 6 37 8 
1 3771 15 5 9 5 6 3 6 
1 3852 16 10 4 1 6 14 5 
1 3853 1 10 4 5 15 20 18 
1 3854 2 16 4 1 10 79 28 
1 3855 25 17 4 16 6 96 17 
1 3856 7 5 4 5 6 37 1 
1 3857 12 5 2 16 6 37 1 
1 3858 21 33 62 1 10 28 15 
2 4015 7 47 1 2 51 1 14 
1 4016 7 47 1 2 51 7 14 

Table  9-3 MLST profiles for the newly discovered sequence  types currently unique to 
carriage isolates from Bolivia.  
 

Of the sequence types which were already defined and identifiable on the pneumococcal 

MLST database, the previously documented serotype and geographical associations are 

entered in Table 9-4.  
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MLST 
Associated 
Serotype(s) Associated Locations 

Disease 
Phenotype  

923 13 The Gambia Not known 

180 3 

Begium, Brazil, Canada, Denmark, Germany, Italy, 
Poland, Portugal, South Korea, Spain, Sweden, 

Taiwan, The Netherlands, UK, USA. 

Carriage 
and 

Invasive 

191 7F 

Brazil, Denmark, Italy, Finland, Germany, Hungary, 
Norway, Poland, Sweden, Switzerland, The 

Netherlands, UK, Uruguay, 

Carriage 
and 

Invasive 
239 6, 9V, 20 Hungary, Poland, UK Invasive 

280 9V Brazil, Vietnam 

Carriage 
and 

Invasive 
332 20 Norway Invasive 
387 23F Brazil, Vietnam Invasive 

404 8 Brazil, Italy, Poland, UK 

Carriage 
and 

Invasive 
776 23F Argentina Invasive 

1150 6A France, Portugal 

Carriage 
and 

Invasive 
1902 34 USA Not known 
1989 3 Germany Invasive 
2440 6A UK Invasive 
2880 19A Brazil Invasive 

Table  9-4 Serotype and geographical associations of seque nce types identified in Bolivia, 
which have also been identified in other regions 13. 
 

9.4 Discussion 

It has been said that molecular epidemiological studies of pneumococcal populations in 

Latin America are few due to the high costs and logistical difficulties encountered in the 

region (Tomasz et al., 1998, Castanheira et al., 2003). This has also been the conclusion of 

those involved in this study. The unpredictable infrastructure which resulted in prolonged 

delays of these specimens in transit has undoubtedly influenced these results since about 

75% of isolates did not survive international transportation. Nevertheless although this has 

introduced a selection bias into our sample, this does not appear to have limited the 

observed extent of genomic and phenotypic diversity which may actually now be under-

represented in this remaining collection of isolates. This introduction of bias should be 

considered when interpreting these results. It is also worth considering that these results 

from children may not necessarily be extrapolated to an adult population (Borer et al., 

2001). 

                                                 
13 http://spneumoniae.mlst.net/ {accessed 9th December 2008} 
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9.4.1 Epidemiological Data 

It is well known that pneumococcal carriage is highest in the under two age group. In 

Papua New Guinea, carriage rates as high as 60% have been observed in neonates with 

carriage of the same serotype ranging from 5 to 290 days (Gratten et al., 1986). In Latin 

America, pneumococcal carriage in pre-school children can also reach 60%, falling to 35% 

in primary school age children and reaching 25% in high school aged children (Echaniz-

Aviles, 2001). The majority of the children who were swabbed fall into the primary school 

age category and so our finding of a carriage rate of 34% is entirely compatible with this 

previous observation. Although we did not swab adults, it is recognised that pneumococcal 

carriage in adults without young children is only around 6% whereas the carriage rate in 

adults with young children is as high as 18-30% (Echaniz-Aviles, 2001). It has also been 

postulated that pneumococcal transmission tends to be between young siblings and peers 

rather than from adults to children (Lloyd-Evans et al., 1996). It is difficult to account for 

the higher odds of carriage among boys identified by this study although it may relate to 

different behaviour or standards of personal hygiene. 

In a study of pneumococcal carriage in a Brazilian urban slum, Reis et al recently found no 

association between the number of household members (used as an indicator of 

overcrowding) and pneumococcal carriage. This was a surprise finding as overcrowding 

has been considered to be a risk factor for pneumococcal carriage. This study in Trinidad 

and Riberalta also found no association between number of household members and 

pneumococcal carriage, despite some very densely populated dwellings (some children 

living with up to 30 people) resulting from population displacement from flooding. It is 

possible that overcrowding aids transmission when carriage rates are low and that a 

threshold may be reached over which it is less of an influence because the density of 

pneumococcal carriage is already high. However, Reis et al did identify school attendance 

as an independent risk factor for pneumococcal carriage (Reis et al., 2008). All the 

children which we swabbed attended school or kindergarten which might be influencing 

the carriage rate seen in this study. It has not been possible to adequately account for the 

higher odds of carriage in older children from Riberalta and this requires further 

consideration. 

9.4.2 Implications for Otitis Media 

Serotypes 1, 3, 5, 12F, 19A and 19F are associated with otitis media (Shouval et al., 2006). 

These serotypes are also frequently responsible for IPD in Latin America and 
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unsurprisingly some of these featured in the nasopharyngeal isolates of this study.  It is 

also unsurprising, that given this combination of factors, otitis media is a significant 

manifestation of pneumococcal disease in Beni. Two of the children who carried 

pneumococci and whose isolates survived transportation had ear infections. Isolate 07-

2827 (serotype 13, ST923) was associated with acute otitis media. Isolate 07-2839 

(serotype 9A, ST239) was associated with chronic otitis media (see Chapter 4). 

It has been proposed that early age of infection and multiplicity of bacterial types may 

contribute to prolonged bacterial carriage and to Eustachian tube damage resulting in otitis 

media (Leach et al., 1994, Faden et al., 1997). The results of this study in Bolivia are 

consistent with this proposition. 

Although PCV-7 prevents otitis media due to vaccine included serotypes, there is evidence 

that there is poorer activity against serotype 19F which can persist in middle ear fluid 

(Regelmann, 2005). That observation and the finding of serotype 19F in this collection of 

carriage isolates suggests PCV-7 may not prove very effective in preventing otitis media in 

Beni. 

9.4.3 Antibiotic Resistance 

One striking observation regarding this Bolivian pneumococcal strain collection is the low 

level of antimicrobial non-susceptibility. It is possible that this has resulted from a survival 

advantage with antimicrobial susceptible pneumococci able to survive for longer ex vivo, 

although such a phenomenon has not previously been described. Another plausible 

explanation may relate to the relative geographical inaccessibility of Trinidad and 

Riberalta compared to other Bolivian towns as it is only in the last decade that Trinidad has 

had a main road connecting it to larger cities while Riberalta remains accessible mainly by 

the air. These may be barriers to substantial mixing of pneumococcal populations, which 

may so far have prevented the introduction of antimicrobial resistant clones of 

pneumococci. 

There is some published data relating to antimicrobial resistance among pneumococci 

causing invasive disease in Bolivia. From 2000-2003 from surveillance of a small sample 

of IPD isolates (n=45) penicillin resistance was as high as 31%, erythromycin resistance 

was 13%, chloramphenicol resistance was 13% and cotrimoxazole resistance was 22% 

(Anonymous, 2004). This is compatible with surveillance of IPD isolates from other Latin 

American countries as penicillin resistance in IPD isolates varies from 2% in Brazil to 
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21.1% in Mexico (Camargos et al., 2006). In Peru it has been seen that the penicillin 

resistance rate is higher (42.9%) in IPD isolates than pneumococcal carriage isolates 

(15.1%) (Cullotta et al., 2002) so this could explain the difference in antimicrobial non-

susceptibility demonstrable in our carriage isolates compared to higher rates from IPD 

isolates assessed as part of national surveillance. 

Regional differences within countries affecting antimicrobial non-susceptibility rates are 

well recognised and have been observed in Brazil (Reis et al., 2008) and Chile (Inostroza 

et al., 1998). This may also be a factor influencing our results. Bolivia is a country of vast 

contrasts. The capital, La Paz, where the national clinical microbiology reference 

laboratory is located is on the Andean Highland Plateau while Beni is in the lowland 

Amazonian basin. These contrasting geographical locations are mirrored by climatic 

differences and ethnic differences in the human population all of which may be influencing 

the pneumococcal population structure.   In Vietnam for instance, higher levels of 

penicillin resistance in pneumococci are associated with living in urban rather than rural 

settings (Quagliarello et al., 2003, Parry et al., 2000) which may be the case in Bolivia as 

Trinidad and Riberalta which are not large towns. (The population of Trinidad is around 

90,000 unlike the capital city, La Paz, with a population of around 1,600,000.) 

In this collection of strains from Bolivia, the antimicrobial with the highest rates of non-

susceptibility was cotrimoxazole. This has been observed in other Latin American 

countries (Reis et al., 2008, Tomasz et al., 1998). Interestingly, serotype 6B is associated 

with cotrimoxazole resistance in Brazil (Brandileone et al., 1998), Colombia (Vela et al., 

2001, Castaneda et al., 1998) and Mexico (Echaniz-Aviles et al., 1998) but of the eight 

cotrimoxazole non-susceptible isolates in this Bolivian collection, only one was serotype 

6B. 

Our results are comparable with the situation in other Latin American countries in the 

1980s and early 1990s. When pneumococcal carriage isolates were investigated in 

Uruguay in the 1980s, intermediate resistance to penicillin was seldom observed but 37.2% 

were resistant to cotrimioxazole (Mogdasy et al., 1992). Again cotrimoxazole resistance in 

carriage isolates  in Colombian children from 1993-94 was 40% but little erythromycin or 

chloramphenicol resistance was detectable (Leal and Castaneda, 1997). In Brazil from 

1988-92, resistance to cotrimoxazole affected 30% of isolates but had been only 1% pre 

1988 (Sessegolo et al., 1994). Cotrimoxazole resistance remained high in Brazil during the 

1990s (Rey et al., 2002a, Rey et al., 2002b, Mendonca-Souza et al., 2004) and is also high 

in Peru at 56.9% (Cullotta et al., 2002). It is possible that socioeconomic factors in Beni, 
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poor access to antimicrobials, antimicrobial prescribing practices or geographical 

inaccessibility until the late 1990s have resulted in a pneumococcal population which more 

readily mirrors that of other Latin American countries twenty years ago rather than 

currently.  

We observed a low rate of penicillin non-susceptibility. It is noteworthy that surveillance 

in the Brazilian provinces that neighbour Beni demonstrates higher rates of penicillin 

nonsusceptibility. In North Brazil from 1993-96 pneumococcal penicillin non-

susceptibility was 15.8%, in Central West Brazil it was 16.9% and in South Brazil it was 

9.5% (Brandileone et al., 1998). Much penicillin non-susceptibility in Latin America is due 

now to a serotype 14 which has been seen in Argentina (Rossi et al., 1998, Albarracin Orio 

et al., 2008), Uruguay (Coffey et al., 1999) and Colombia (Vela et al., 2001). We however 

did not see penicillin non-susceptibility affecting serotype 14 pneumococci. 

In this study, macrolide resistance was rare and this has often been the case for 

pneumococci in Latin America (Tomasz et al., 1998). Erythromycin resistance in non-

typeable isolates has been seen in Brazil where it was due to the MLSB phenotype 

(Mendonca-Souza et al., 2004). 

Levels of pneumococcal penicillin resistance in Latin America are increasing (Camargos et 

al., 2006). Four PMEN clones have accounted for much of this resistance – Spain 23F-1, 

Spain 6B-2, Spain 9V-3 and Czech Republic 14-10 (Camargos et al., 2006, Wolf et al., 2000, 

Castanheira et al., 2003, Vela et al., 2001). Recently the England 14-9 clone has resulted in 

clonal expansion of macrolide resistance in Brazil (Mendonca-Souza et al., 2004) along 

with the clones Taiwan23F-15 and Colombia5-19 in Colombia (Tamayo et al., 1999, 

Gamboa et al., 2002), Mexico (Echaniz-Aviles et al., 2008, Gamboa et al., 2002) , Brazil 

and Guatemala (Gamboa et al., 2002). 

It has been proposed that there is an apparent inverse relationship between the level of 

penicillin resistance and genetic diversity in Latin American pneumococci (Tomasz et al., 

1998). As penicillin resistance becomes more prevalent it is usually due to particular 

clones which begin to dominate the pneumococcal population, reducing its diversity. Our 

results are compatible with this as, being at a stage where no antimicrobial resistant clones 

appear to be found in the pneumococcal population in Beni, there is substantial genomic 

and phenotypic diversity. However, Beni is an exception when compared to other Latin 

American regions and it is likely that clonal expansion of antimicrobial non-susceptible 

pneumococci may soon affect the region.  
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9.4.4 New MLST Profiles 

Of the countries in Latin America which have been able to perform MLST on 

pneumococcal isolates, it is not uncommon to find several sequence types which are 

unique to an individual country. A search of the S. pneumoniae MLST database 

demonstrates that currently Argentina has identified 21 unique sequence types, Chile has 2 

unique sequence types, Columbia has 12 unique sequence types and Uruguay has 18 

unique sequence types. Nevertheless, given that there were 3768 known individual 

sequence types in October 2008, the proportion of previously undescribed sequence types 

to known sequence types in the study of this relatively small collection of pneumococcal 

isolates is staggering, albeit not unique.  Reis et al, 2008 found 11 novel sequence types in 

carriage isolates from a Brazilian slum (Reis et al., 2008) and  Zemlickova et al, found that 

35 of 60 sequence types from IPD isolates from various Latin American countries had new 

MLST profiles (Zemlickova et al., 2005). Four of these accounted for 40% of the isolates 

showing significant geographical spread of particular clones within Latin America which 

were not seen in other regions of the world (Zemlickova et al., 2005). 

It has been noted before that individual housekeeping genes are about ten times more likely 

to evolve by recombination than by mutation (Feil et al., 2000b).  In keeping with this, 

most of the new sequence types identified in this study were new combinations of existing 

genes while the number of previously unidentified genes were substantially fewer. 

The new sequence types which are identified in this study add to the understanding of 

pneumococcal population dynamics. ST 3540 is newly identified as a subgroup founder in 

a clonal complex where ST2883 is the existing founder. ST3430 and ST3540 are single 

locus variants of each other and ST776 is a double locus variant of ST3540. Consequently 

these three Bolivian associated sequence types (ST776, ST3430 and ST3540) all appear as 

part of the same serotype 23F associated clonal complex while ST2974 does not (Figure 9-

3). 
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Figure  9-3 New Sequence Types associated with serotype 23F  which provide new insight 
into their relationship within a clonal complex.  

New sequence types discovered in this study are ind icated by red arrows. 
 

The association of ST3770 (serotypes 7C and 24F) and ST2974 (serotypes 23A, 23F and 

38) each with multiple capsular types suggests that they are readily influenced by capsular 

switching even although there is no vaccine pressure to promote this.    

Without virulence studies of these isolates in animal models or MLST surveillance of IPD 

isolates in Bolivia, it is unknown what the disease causing potential of these new sequence 

types may be. It is also feasible to propose that since there is such a degree of previously 

undescribed variation in the relatively stable housekeeping genes utilised in the MLST 

scheme that there will be even greater diversity in hypervariable genes in these isolates 

which merits further investigation.  

9.4.5 New Insights into Existing Clonal Complexes 

Where pre-existing sequence types could be identified in this Bolivian pneumococcal 

strain collection, some further insights into the existing pneumococcal clonal complexes is 

possible although the relative absence of MLST data from Latin America can be limiting. 
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Zemlickova et al, performed MLST on 185 IPD isolates from preschoolers in 5 Latin 

American countries (Zemlickova et al., 2005). Their study focussed on serotypes 1, 3, 5, 

6B, 7F, 14 and 23F. The greatest genetic diversity was identifiable in serotypes 6B, 14 and 

23F. In our series serotype 23F is very diverse with several different STs represented as 

has been shown in Figure 9-3 above. The association of ST776 with serotype 23F by 

Zemlickov et al was also seen in one of the Bolivian isolates (Zemlickova et al., 2005).  

Zemlickova et al also identified ST191 as a common Latin American sequence type found 

in all 5 countries assessed which was associated with serotype 7F (Zemlickova et al., 

2005). This association was also seen with the finding of a serotype 7F, ST191 isolate in 

the Bolivian strain collection. ST191 was also identifiable in Argentina in a penicillin 

susceptible non typeable isolate (Albarracin Orio et al., 2008). 

ST1902 is relatively commonly seen in the Bolivian strain collection and although mainly 

associated with serotype 34, one isolate was of serotype 38. ST239 is a new association 

with serotype 9A seen in this study. 

A further MLST study of pneumococcal carriage isolates was recently published from 

Brazil. However, none of the carriage sequence types seen in the slums of Salvador in 

Brazil apart from ST180 (Reis et al., 2008) are seen in Beni despite many of the same 

serotypes being seen. As reviewed in Chapter 1 and investigated further in Chapters 6 and 

10, ST180 is a relatively common sequence type seen internationally associated with 

serotype 3 in studies of both carriage and invasive pneumocoocal isolates and so it is not a 

surprise to find it also in Bolivia. 

What was surprising was to find ST180 existing concurrently with ST1989 in the 

nasopharynx of the same child while both genotypes expressed the same phenotype as 

serotype 3 mucoid isolates and were thereby indistinguishable by any method other than 

molecular typing. Multiple sequence types within a serotype at the same point in time have 

not been described before in the same individual. Carriage of dual or triple serotypes 

concurrently has been documented before (Gratten et al., 1989, Charalambous et al., 2008, 

Sa-Leao et al., 2002) but molecular analysis demonstrated homogeneous patterns of the 

same genotype within each serotype (Sa-Leao et al., 2002). Likewise, carriage of multiple 

sequence types at the same time has been demonstrated but it has not been clear if these 

isolates were from the same serotype (Oriyo et al., 2006). Serotype switching of a single 

nasopharyngeal carriage associated RFEL type has also been demonstrated over time in an 

individual but not of different RFEL patterns within the same serotype at the same time in 
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a single individual (Sluijter et al., 1998). Demonstrating this phenomenon again with other 

serotypes may be possible if multiple colony picks were used for MLST – although this 

would significantly increase the cost of such molecular epidemiological studies. However, 

it has been recently argued that single colony picks are currently acceptable for such 

studies (Charalambous et al., 2008). Demonstrating co-existent sequence types within the 

same clonal complex of the same serotype within an individual from a serotype known to 

readily cause biofilms, greatly adds to our understanding of how conditions occur in vivo 

in the human host to promote genetic exchange. 

From our experience with typing this small strain collection from Bolivia though, we 

would strongly urge caution in extrapolating associations of clonal complexes with 

invasion or carriage phenotypes calculated from very different pneumococcal and host 

populations (Brueggemann et al., 2003) into geographical regions where both serotype 

distribution and MLST composition of the pneumococcal population are very different. 

9.4.6 Common Serotypes and STs which comprise them 

The serotypes which occurred most frequently in this Bolivian strain collection were 

serotypes 6A, 9A, 34, 23F, 10A, 19A and 38. Often these were associated with novel 

sequence types. By using eBURST software and the existing pneumococcal MLST 

database it is possible to see whether these new sequence types add to understanding of 

pneumococcal clonal complexes. This was the case with serotype 23F as seen in Figure 9-

3. However, for the other common serotypes the Bolivian sequence types associated with 

them did not link to any of the currently known clonal complexes known to be associated 

with such serotypes. This is illustrated below for serotype 38. 



  Chapter 9, 183 

   

Figure  9-4 e-BURST version 3 14 diagram of serotype 38 pneumococci.  

New sequence types from Bolivia are highlighted by red arrows but these do not feature as 
being closely related to any known clonal complexes .  
 

9.4.7 Serotype Distributions in Latin America and B olivia 

The coverage of pneumococcal serotypes included in vaccines is usually assessed using 

data from surveillance of isolates obtained from cases of invasive disease as these are of 

greater immediate risk to health than the more diverse carriage isolates. However, carriage 

isolates provide a greater pool to allow capsular switching to occur and serotype 

replacement of vaccine escape serotypes to become more prevalent which limits the 

effectiveness of the vaccine in the long term. Regarding the risk of serotype replacement, 

the prevalence of nasopharyngeal carriage in developing countries is considerably higher 

than developed countries and so the probability of exposure to a non vaccine serotype is 

greater  which facilitates serotype replacement. It should also be appreciated that serotype 

distribution in younger children < 6 months or 6-29 months may be different which could 

affect estimates of vaccine coverage depending on the age of the study population which 

was surveyed (Scott, 2007).  

                                                 
14 http://spneumoniae.mlst.net/eburst {accessed 20th December 2008} 
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9.4.7.1 Invasive Pneumococcal Disease Serotype Dist ribution 

IPD surveillance data from Bolivia is available from 2000-200315 and is displayed below in 

Figure 9-5. 
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Figure  9-5 Distribution of pneumococcal serotypes causing invasive disease in Bolivia 
(n=45) from 2000-2003. 
 

 

 

                                                 
15 http://espanol.geocities.com/bacterioinlasa/patresp.htm {accessed 9th December 2008} 
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This serotype distribution is similar to that seen previously in Bolivia (Anonymous, 2004) 

and elsewhere in Latin America. Common serotypes causing IPD from SIREVA 

surveillance in Latin America are serotypes 14, 5, 1, 6A/B, 23F, 7F, 9V, 19F, 18C, 19A 

and 9N (Camargos et al., 2006). This distribution is reproducible in country and city 

specific studies of IPD in Latin America although there are inevitably minor changes in the 

rank order as evident in Table 9-5 below. 

Country IPD Serotype Distribution Years of 
Study 

Reference 

Argentina 14, 5, 6B, 1, 18C, 19F, 9V, 12F, 4, 23F, 7F, 6A, 
33F, 9A, 3, 23B, 15, 7B, 20 and 7C 

2000-2005 (Tregnaghi et 
al., 2006b, 

Tregnaghi et 
al., 2006a) 

Argentina 14, 5, 1, 6B, 7F, 19A, 9V, 23F, 19F and 18C 1993-2003 (Vescina et 
al., 2006) 

Brazil 1, 6B, 18C, 14, 5, 3, 6A, 23F, 19F and 38 1977-1988 (Taunay et al., 
1990) 

Brazil 14, 6B, 23F, 5, 19F, 6A, 1 and 4 1988-1992 (Sessegolo et 
al., 1994) 

Brazil 14, 3, 6B, 19F, 6A, 23F, 18C, 4, 8, 10A, 9N and 7F 1995-1999 (Reis et al., 
2002) 

Brazil 1, 5, 6A, 6B, 9V, 14, 18C, 19F and 23F 1977-2000 (Brandileone 
et al., 2003) 

Chile 1, 14, 5, 6B 1989-1993 (Levine et al., 
1998) 

Colombia 1, 4, 5, 6B, 8, 14, 19A, 19F and 23F 2006-2007 (Benavides et 
al., 2008) 

Mexico 23F, 19F, 6B, 14, 19A, 6A and 9V 1996-2006 (Echaniz-
Aviles et al., 

2008) 
Mexico 23F, 6B, 14, 19A, 6A, 9V, 19F, 11A, 15A, 2, 10A, 

18C, 42, 16 and 22F 
1992-1993 (Echaniz-

Aviles et al., 
1995) 

Table  9-5 Serotypes accounting for IPD in various Latin A merican countries over 3 decades. 
 

There is evidence that the regional pattern of serotype distribution causing IPD in Latin 

America is different from other parts of the world.  Serotype 1 and 5 are among prevalent 

causes of IPD in Latin America and are less evident elsewhere (Di Fabio et al., 2001, 

Hausdorff et al., 2001, Kertesz et al., 1998). In Brazil serotypes 1, 5 and 18C are 

particularly associated with meningitis (Brandileone et al., 2003). This has implications for 

vaccine coverage when vaccine included serotypes are determined by epidemiology from 

North America and Western Europe. Serotypes 1 and 5 are absent from our carriage study 

in keeping with the view that they are only carried for short periods (Laval et al., 2006) 

and are more invasive (Smith et al., 1993) than other serotypes. Invasive potential does not 

always equate with disease severity though and it is serotypes 6, 23F, 7F, 8 and 35B which 

are associated with fatal outcomes from IPD in Colombia (Rios et al., 1999).  
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9.4.7.2 Carriage Serotype Distributions in Latin Am erica 

Studies of carriage serotypes in Latin America are not as common as those for IPD 

isolates. The results of recent examples are summarised in Table 9-6 below. 

Country Carriage Serotype Distribution Years of 
Study 

Reference 

Brazil 14, 6B, 6A, 19F, 10A, 23F and 18C 2000-2001 (Laval et al., 
2006) 

Brazil 19F, 6A, 23F, 18C, 34, 23B, 11A, 19A, 16F, 22F, 
14, 16B, 10A, 21, 15B, 29 and 3 

2000-2001 (Reis et al., 
2008) 

Peru 23F, 6A, 6B, 15B, NT, 19F, 14, 34, 23B, 9V, 19A, 
21, 4, 10A, 11A, 16F, 17F, 24F, 35F and 38 

2000 (Cullotta et al., 
2002) 

Venezuela 23F, 6A, 15B, 6B and 19F 2004-2005 (Rivera-
Olivero et al., 

2007) 

Table  9-6 Serotypes associated with pneumococcal carriage  in various Latin American 
countries. 
 

The distribution of serotypes represented by these recent carriage studies show great 

similarity to that of the Bolivian carriage isolates and there is greater similarity than there 

is of the Bolivian carriage isolate serotypes with the serotype distribution of IPD isolates of 

other Latin American countries (Table 9-5).  There is also greater similarity between the 

carriage serotypes in Bolivia and otitis media associated serotypes in Costa Rica (serotypes 

19F, 6B, 9V, 16F, 14, 23F, 3 and 6A) than there tends to be with IPD isolates (Arguedas et 

al., 2005). 

This is all in keeping with previous observations that the diversity of nasopharyngeal 

carriage isolates tends to be greater than that of IPD isolates (Robinson et al., 2001, Takala 

et al., 1996).  

9.4.7.3 Emerging Serotypes and Bolivia 

Many serotypes which are being recognised in other parts of the world and often associated 

with serotype replacement in response to conjugate vaccination are identifiable in this 

small collection of carriage strains from vaccine naïve children in Bolivia. Serotype 38 is 

an emerging serotype which can cause fatal meningitis (Baker et al., 2005). Serotype 7F is 

an emerging serotype in the USA (Byington et al., 2008) and possibly a colonizing 

serotype of short duration. Serotypes 3 (McEllistrem et al., 2007, McEllistrem et al., 

2005), 6B (Carlisle et al., 2001, Syrogiannopoulos et al., 2001, Gherardi et al., 2003)  and 

19A (Singleton et al., 2007, Pichichero and Casey, 2007) are emerging serotypes and 

feature in the carriage population in Beni where we have identified entirely novel sequence 
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types  associated with serotype 19A. 19A is not included in 7, 9 or 11 valent PCVs 

(Camargos et al., 2006) but is included in a new 13 valent PCV (Kieninger et al., 2008).  

9.4.8 Implications for Conjugate Vaccine Implementa tion 

The introduction of conjugate vaccination against Haemophilus influenzae B has had a 

significant positive impact on Haemophilus meningitis in Latin America (Laval et al., 

2003) and so there are hopes that pneumococcal conjugate vaccination will have similar 

benefits. It is recognised that PCV-7 vaccine coverage in Latin America is poorer than that 

seen for USA and Europe, Africa and Oceania and this relates to the greater diversity of 

pneumococcal serotypes causing IPD in Latin America (particularly serotypes 1 and 5) 

(Hausdorff et al., 2000a). The coverage of carriage serotypes is even less than that for IPD 

isolates (Laval et al., 2006). 

It is estimated that PCV-7 (which is active against serotypes 4, 6B, 9V, 14, 18C, 19F and 

23F) covers 65% of invasive serotypes in Argentina, Brazil, Chile, Colombia, Mexico and 

Uruguay (Garcia et al., 2006, Di Fabio et al., 2001). But more regional surveillance 

studies, such as have been performed in Brazil, have estimated coverage ranging from 58% 

to as low as 36% (Camargos et al., 2006, Laval et al., 2006, Reis et al., 2008, Brandileone 

et al., 2003).  Based on this data from Bolivia, PCV-7 will only cover 18% of carriage 

serotypes. This could theoretically rise to 28% coverage taking into account cross 

reactivity against the non-vaccine serotype 6A. Carriage of 6B and 19F can be reduced by 

9 valent vaccine (Mbelle et al, 1999) and an 11 valent PCV has been under trial in 

Argentina and Chile (Laval et al, 2003). However, increasing the valency of the vaccine 

and introducing cover against serotypes 1, 5 and 7F only increases the coverage in Beni to 

20% (30% if considering cross reactivity with 6A).  A new 13 valent PCV covering 

serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F (Kieninger et al., 2008) is 

likely to be the most useful of the PCVs if introduced in Bolivia. 

There will undoubtedly be many health benefits to the introduction of PCV if it becomes 

affordable in Bolivia. However, in Beni, the low coverage of the PCV-7 vaccine included 

serotypes and the high frequency of serotypes associated with serotype replacement and 

capsular switching along with emerging serotypes would suggest that the usefulness of the  

PCV-7 vaccine may be shorter lived than has been the case in North America and Western 

Europe. 
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9.4.9 Implications for Protein Vaccines 

If the high rate of new MLST sequence types and the finding of new regions of diversity 

by microarray CGH in Bolivian carriage isolates (Chapters 4 and 6) is an indicator of 

substantial, as yet unrecognised, genomic diversity in the pneumococcal genome of the 

isolates from Bolivia then this has implications for other genes coding for proposed protein 

vaccine candidates. For instance, pneumococcal surface protein A is such a vaccine 

candidate but the gene which codes for it is already known to show substantial variation in 

pneumococci from Argentina (Mollerach et al., 2004) and Columbia (Coral et al., 2001). If 

the diversity of such genes was also assessed in these Bolivian isolates there may be 

evidence for even greater diversity than was known before. 

9.5 Conclusions 

In conclusion, this paediatric carriage study from the Beni region of Bolivia demonstrates 

not just substantial phenotypic (serotype) diversity but dramatic genomic diversity in this 

region known for great biodiversity. This has enormous implications for the introduction 

and design of conjugate vaccines which, although suitable for North America and Western 

Europe, have much less utility in Latin America. We agree with Levine et al that there 

remains a need for ongoing bacteriological surveillance in the region (Levine et al., 2006). 

 



 

10  Genomic Diversity and Gene Expression in 

Specific Invasive Pneumococcal Disease 

Manifestations 

10.1 Background 

Since the 1990s it has been realised that pneumococcal virulence is a function of both 

expression of capsular genes and the genotype of the pneumococcus involved (Kelly et al., 

1994). In the initial phase of lung infection, phenotypic variants of the pneumococcal 

capsule have been identified by Hammerschmidt et al (Hammerschmidt et al., 2005) where 

the ability to adhere to epithelial cells was enhanced by limited or no capsule expression. 

The ability to survive in different host environments may relate to phase variation and its 

effect on capsule and surface protein expression (Allegrucci and Sauer, 2008). 

Attempts to understand the role of genes other than capsular genes in virulence often 

focussed on individual genes in an arbitrary in vitro environment or a particular in vivo 

animal model. Genome sequencing of the pneumococcus then allowed a rapid expansion 

of genes identified as having a potential role in virulence and an understanding that 

virulence genes (microbial specific factors that contribute to the survival and growth of a 

pathogen in vivo (Hava et al., 2003)) could be identified,  

“specifically in nasopharyngeal colonization or bacterial sepsis or meningitis, 
depending on the screening tools used (Hollingshead and Briles, 2001).”  

These tools were to include signature tagged mutagenesis in animal models (Hava and 

Camilli, 2002, Hava et al., 2003, Polissi et al., 1998, Lau et al., 2001), microarray studies 

(Orihuela et al., 2004b), genomic array fingerprinting (which combines microarray and 

random transposon mutagenesis approaches) (Bootsma et al., 2007), differential 

fluorescence induction (Marra et al., 2002) or in silico sequence comparisons of 

orthologous genes (Hiller et al., 2007). Such studies have lead to a conclusion that there 

are host tissue specific and serotype specific virulence factors often relating to 

transcriptional regulation (Hava et al., 2003). This suggests that focusing on serotypes 

biased towards colonization or invasion may identify key genes involved in virulence 

(Hava et al., 2003).  Such an approach using microarrays has been termed “pathotyping” or 

detecting the presence of groups of several associated virulence factors which may 

constitute a fundamental attribute of the physiology or pathogenicity of a bacteria (Cassone 
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et al., 2007, Stabler et al., 2006, Korczak et al., 2005, Bekal et al., 2003, Pannucci et al., 

2004) or disease state (Ehrlich et al., 2008). 

With regard to pneumococi, in 1998 a study by Polissi et al found evidence that there were 

virulence factors specific for causing pneumonia which were not required to cause 

septicaemia in mice (Polissi et al., 1998). Using serotype 2 (D39 Xen 7) and serotype 4 

(TIGR4) RNA extracted directly from laboratory infected mouse blood, rabbit CSF and 

tissue culture with Detroit pharyngeal epithelial cells, Orihuela et al demonstrated 

differences in expression could be identified for certain genes for these different 

environments which represented invasive sites and carriage respectively (Orihuela et al., 

2004b). Extrapolation of these results to human disease is hampered by the potential 

confounding introduced by the species differences of the two animal models used and 

difficulties comparing the expression results from in vivo animal models with in vitro 

results from tissue culture. Using genomic subtraction followed by dot blot screening 

rather than a microarray approach, Pettigrew et al, identified two pneumococcal genes 

more frequently associated with middle ear infections than bloodstream infections, 

meningitis or carriage (Pettigrew and Fennie, 2005). 

This chapter outlines an approach taken using a DNA “spotted” microarray to investigate 

its utility in elucidating, through identifying differences in gene complement and gene 

expression, the pathogenesis of serotype 1 associated pneumococcal empyema, serotype 3 

associated pneumococcal meningitis and serotype 3 associated cerebral abscesses.  

10.2 Serotype 1 Bacteraemic Pneumococcal Pneumonia 

with Parapneumonic Complications 

10.2.1 Background 

There has been a substantial recent increase in the incidence of pneumococcal pneumonia 

complicated by necrotizing pneumonia, parapneumonic effusions or empyema, particularly 

affecting children and occurring in developed (Byington et al., 2005c, Obando et al., 2006, 

Calbo and Garau, 2005, Rees and Spencer, 1997, Fletcher et al., 2006, Blanc et al., 2007, 

Lin et al., 2006, Thumerelle et al., 2005, Obando et al., 2008, Eastham et al., 2004) and 

developing countries (Kanungo and Rajalakshmi, 2001). This is in contrast to dramatic 

declines in the incidence of pneumococcal empyema during the mid-twentieth century 

(Finland and Barnes, 1978, Nowak, 1939, Weese et al., 1973, Bartlett et al., 1974, 
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Bechamps et al., 1970, Clagett, 1973, Chonmaitree and Powell, 1983, Taryle et al., 1978) 

and the high incidence at the start of the twentieth century (Glynn and Digby, 1923) which 

are reviewed in Chapter 1. About 10% of cases of pneumococcal pneumonia can be 

complicated by empyema in children (Kerem et al., 1994). Cases of haemolytic uraemic 

syndrome are also described as complications of pneumococcal pneumonia with empyema 

(Lee et al., 2006). The clinical manifestations and molecular epidemiological studies of 

these conditions have been particularly well described in the USA (Tan et al., 2002, 

Byington et al., 2002, Gonzalez et al., 2004, Byington et al., 2006, Hardie et al., 1996), 

England (Eltringham et al., 2003, Eastham et al., 2004, Fletcher et al., 2006, Ramphul et 

al., 2006) and Taiwan (Hsieh et al., 2004, Lin et al., 2006, Shen et al., 2006b). In its 

severest form it may result in spontaneous discharge through the thoracic wall (empyema 

necessitates) (Freeman et al., 2004) but in most cases drainage requires some form of 

surgical intervention (Hardie et al., 1996). Paediatric empyema can also be a manifestation 

within a serotype 1 outbreak (Gupta et al., 2007).  

The majority of cases in the USA and England are caused by Streptococcus pneumoniae 

serotype 1 (Byington et al., 2006, Eastham et al., 2004, Ramphul et al., 2006, Fletcher et 

al., 2006, Byington et al., 2002). In addition to serotype 1, serotypes 3, 14, 19A, 5, 6B, 9V, 

23F and 4 have been identified as causes of pneumococcal empyema in the United 

Kingdom (Sheppard et al., 2008, Eltringham et al., 2003, Ramphul et al., 2006, Eastham et 

al., 2002). Serogroups 14, 9, 6, 19, 18, 12 and 29 have been associated with empyema in 

Utah, USA (Byington et al., 2002, Byington et al., 2005a). In France, serotypes 1, 3, 5, 6B, 

7F, 9V, 14, 18C, 19A and 23F have been observed (Bekri et al., 2007) and in Spain 

serotypes 1, 5, 3, 14, 19A, 7F, 6A and 9V have been identified (Obando et al., 2008). 

Serotypes 3 and 19A have also been identified as vaccine escape serotypes causing 

empyema in the USA (Byington et al., 2006, Byington, 2007, Byington et al., 2005a). 

In a comparable case series from Taiwan, cases were predominantly caused by S. 

pneumoniae serotype 14 and serotype 1 did not feature at all (Hsieh et al., 2004). 

Similarly, preliminary results from other Asian countries (China, Indonesia, Korea, 

Taiwan, Thailand and Vietnam) suggested that serotypes 14 and 19 were commoner than 

serotype 1 from pleural fluid cultures (Kilgore et al., 2006) indicating geographical 

variations in the epidemiology of pneumococcal empyema.  

In Scotland, S. pneumoniae serotype 1 accounts for 14% of all IPD (Diggle and Edwards, 

2006) which includes cases of complicated pneumococcal pneumonia. An increase in 

incidence in paediatric empyema has also been documented in Scotland although the 
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molecular epidemiology of the pneumococcal component of this has not yet been 

elucidated (Roxburgh et al., 2008, Roxburgh and Youngson, 2007). 

Unpublished data from England and Wales demonstrate that a mixed population of 

serotype 1 pneumococci (ST227 and ST306) are responsible for cases of pneumococcal 

empyema (Robert George, Health Protection Agency, personal communication) and data 

from Spain (ST228, ST306, ST304 and ST2373) also shows diversity in the empyema 

causing serotype 1 isolates (Obando et al., 2006, Brueggemann et al., 2006, Obando et al., 

2008).  In the USA, until 2003, cases were predominantly ST227 (Gonzalez et al., 2004, 

Byington, 2007, Byington et al., 2005c, Byington et al., 2005b, Brueggemann et al., 2003) 

but since 2003 serotype 1 associated sequence types have included ST306, ST304 and 

ST2126 (Byington et al., 2008). The population dynamics of serotype 1 pneumococci 

causing invasive disease do suggest that it can change rapidly within a geographical region 

(Lamb et al., 2008, Hedlund et al., 2003, Henriques Normark et al., 2001) and between 

geographical regions resulting in a diverse global population (Brueggemann et al., 2003). 

It is noteworthy that genetic variation in the structure of pneumolysin (a pneumococcal 

virulence factor) from clinical isolates of ST306 serotype 1 S. pneumoniae has recently 

been shown to be associated with different biological behaviour of the toxin (Kirkham et 

al., 2006), indicating that genetic differences in the bacteria could account for different 

disease manifestations with this serotype and sequence type.  

Several non-culture molecular (Eltringham et al., 2003, Le Monnier et al., 2006, Lahti et 

al., 2006, Saglani et al., 2005, Eastham et al., 2002, Menezes-Martins et al., 2005, Poulter 

et al., 2005) and antigen based methods (Ploton et al., 2006, Boersma et al., 1993, Le 

Monnier et al., 2006, Porcel et al., 2007) have been used to investigate the cause of culture 

negative parapneumonic effusion and empyema and molecular techniques may be more 

useful in surveillance than culture (Sheppard et al., 2008) as pneumococci can be cultured 

from less than 5-16% of pleural fluid specimens (Kilgore et al., 2006, Obando et al., 

2006).   

Substantial concern exists because the pneumococcal conjugate vaccine (PCV-7) presently 

licensed for children, Prevnar® (Wyeth Pharmaceuticals, USA), and introduced into the 

childhood vaccination schedule in the United Kingdom in 2006 does not prevent invasive 

diseases due to serotype 1 S. pneumoniae (Fletcher et al., 2006). 
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In this series of experiments representative isolates stored at SMPRL which could be 

identified as originating from patients with parapneumonic complications of bacteraemic 

pneumococcal pneumonia were used. Their MLST data was reviewed and the isolates were 

utilised in microarray experiments using DNA CGH and RNA expression approaches. 

Serotype 1 isolates from patients with bacteraemic pneumonia without parapneumonic 

complications were identified for use as controls to establish baseline expression levels for 

genes which were differentially expressed in cases with parapneumonic complications.  

10.2.2 Choice of Isolates for Microarray Studies 

Seventeen patients from six hospitals in Central Scotland who had undergone 

pleurocentesis and who grew serotype 1 pneumococci from an invasive site were identified 

from the database at SMPRL. Of these seventeen cases, four were aged under eighteen 

years. MLST results showed 12/17 (71%) were ST306 and 5/17 (29%) were ST227. From 

these, five isolates were chosen from patients who had documented empyema or effusion 

complicating bacteraemic pneumonia and two separate isolates (one each of ST306 and 

ST227) were identified from the database from patients with bacteraemic pneumonia 

without parapneumonic complications to act as controls. Details of these isolates are 

outlined below in Table 10-1. 
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Isolate tested 
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-2

67
2 
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-2

22
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80
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73
9 

05
-1

51
9 

06
-1

37
0 

MLST ST306 ST227 ST306 ST227 ST227 ST306 ST306 

Patient Age 

(Years) 26 51 33 70 7 36 4 

Parapneumonic 

complication None None Empyema Effusion Empyema Effusion Effusion 

Source of 

Bacteria Blood Blood 

Pleural 

Pus Blood Blood Blood Blood 

Table  10-1 Details of isolates used in microarray experim ents in Chapter 10.  

All 7 isolates were used in DNA CGH dye swap experi ments. 5 isolates were used in RNA 
expression experiments (06-1805 and 05-1519 were no t used). 
 

10.2.3 DNA CGH Experiments 

The results of the microarray DNA CGH experiments for serotype 1 isolates are displayed 

in Appendix 14 and Appendix 15. 

10.2.4 RNA Expression Experiments 
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10.2.4.1 Microarray Results 

TIGR4 Genes Upregulated in Parapneumonic Complicati ons 

TIGR4 
Gene 

Expression 
Level in 
Controls 

Expression 
Level in 
Cases Gene Function 

SP0044 1.0 3.9 
Phosphoribosylaminoimidazole-
succinocarboxamide synthetase 

SP0045 0.9 5.5 Phosphoribosylformylglycinamide synthetase 
SP0046 1.0 7.2 Amidophosphoribosyl transferase 

SP0047 0.9 6.4 
Phosphoribosylformylglycinamide cyclo-ligase;  

Phosphoribosylaminoimidazole synthetase 

SP0048 1.0 6.2 
Phosphoribosylglycinamide formyltransferase;  
5'-phosphoribosylglycinamide transformylase 1 

SP0049 1.0 5.7 
vanZ protein, putative;  Teicoplanin resistance 

protein 

SP0050 1.0 5.5 
Phosphoribosylaminoimidazolecarboxamide 

formyltransferase 

SP0051 1.0 4.2 
Phosphoribosylamine--glycine ligase;  

Phosphoribosylglycinamide synthetase 

SP0053 1.0 3.2 
Phosphoribosylaminoimidazole carboxylase, 

catalytic subunit 

SP0054 1.0 4.5 

Phosphoribosylaminoimidazole carboxylase, 
ATPase subunit;  Phosphoribosyl glucinamide 

formyltransferase 
SP0073 1.0 2.2 Conserved hypothetical protein 

SP0287 1.0 3.0 
Xanthine/uracil permease family protein;  

Conserved hypothetical protein 
SP0288 1.0 2.4 Conserved hypothetical protein 

SP0645 0.9 2.0 

PTS system IIA component, putative;  
Phosphotransferase system sugar-specific EII 

component 
SP1229 1.0 2.7 Formate--tetrahydrofolate ligase 
SP1326 0.9 5.1 Neuraminidase, putative 
SP1327 1.0 5.2 Conserved hypothetical protein 
SP1328 0.9 3.3 Sodium:solute symporter family protein 

SP1526 0.9 2.8 
ABC transporter, ATP-binding protein authentic 

frameshift 

SP1527 0.9 2.8 
ABC transporter substrate-binding protein - 

oligopeptide transport 
SP1587 1.0 2.8 Oxalate:Formate Antiporter 

TIGR4 Genes Downregulated in Parapneumonic Complica tions 

TIGR4 
Gene 

Expression 
Level in 
Controls 

Expression 
Level in 
Cases Gene Function 

SP1884 1.2 0.4 

Trehalose PTS system, IIABC components;  
Phosphotransferase system, trehalose-specific 

IIBC component 
SP2148 0.9 0.2 Arginine deiminase 
SP2150 0.9 0.2 Ornithine transcarbamoylase 
SP2151 1.0 0.2 Carbamate kinase 

SP2152 0.9 0.2 
Conserved hypothetical integral membrane 

protein 

SP2153 0.9 0.2 
Peptidase, M20/M25/M40 family;  Conserved 

hypothetical protein 

Table  10-2 Genes which are significantly up or down-regul ated when isolates are grown to 
midlog under standardised conditions. 

p<0.05 determined using ANOVA 1 way test with Benja mini and Hochberg corrections. False 
discovery rate set at 0.05 on data filtered to demo nstrate greater than two fold differences 
from the line of equality (where fluorescence inten sity of control and test channels are 
equal). Data was also initially normalized by seque nce type to take account of clustering 
effects due to MLST. Controls were isolates 03-2672  and 04-2225 as these were not 
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associated with parapneumonic complications. Cases were all other isolates with 
parapneumonic complications. Genes highlighted in r ed have been associated with 
virulence in a serotype 4 mouse model of pneumonia (Hava and Camilli, 2002). 
 

TIGR4 
Gene 

Predictive 
Strength Gene Function 

SP0045 6.64 Phosphoribosylformylglycinamide synthetase 
SP0046 7.94 Amidophosphoribosyl transferase 
SP0047 6.64 Phosphoribosylaminoimidazole synthetase 

SP0048 5.74 
Phosphoribosylglycinamide formyltransferase;  5'-

phosphoribosylglycinamide transformylase 1 
SP0049 7.17 VanZ protein, putative;  Teicoplanin resistance protein 

SP0051 9.55 
Phosphoribosylamine--glycine ligase;  Phosphoribosylglycinamide 

synthetase 
SP0053 6.59 Phosphoribosylaminoimidazole carboxylase, catalytic subunit 
SP0054 6.64 Phosphoribosyl glucinamide formyltransferase 
SP0097 5.74 Conserved domain protein;  Hypothetical protein 
SP0239 7.23 Conserved hypothetical protein 

SP0287 6.64 
Xanthine/uracil permease family protein;  Conserved hypothetical 

protein 

SP0834 5.74 
Hemolysin-related protein;  Conserved hypothetical protein, 

truncation 
SP0853 5.74 Hypothetical protein 
SP0937 5.74 Conserved hypothetical protein 

SP1069 6.64 
Conserved hypothetical protein;  ABC transporter substrate-

binding protein - unknown substrate 
SP1229 7.17 Formate--tetrahydrofolate ligase 
SP1316 9.18 V-type sodium ATP synthase, subunit B 
SP1486 7.23 Degenerate transposase (orf1) 
SP1524 6.64 Aminotransferase, class II 
SP1587 6.64 Oxalate:Formate Antiporter 
SP1965 6.04 Hypothetical protein 
SP1978 6.64 Diaminopimelate decarboxylase 
SP1979 9.55 Pur operon repressor;  Activator of purine biosynthetic genes 
SP1988 5.74 Immunity protein, putative;  Conserved hypothetical protein 
SP2125 6.64 Conserved hypothetical protein 

SP2145 7.23 
Antigen, cell wall surface anchor family;  Conserved hypothetical 

protein 
SP2151 6.64 Carbamate kinase 
SP2152 6.64 Conserved hypothetical integral membrane protein 
SP2153 6.64 Peptidase, M20/M25/M40 family;  Conserved hypothetical protein 
SP2156 7.23 SPFH domain/Band 7 family;  Conserved hypothetical protein 

Table  10-3 Genes identified as being associated with the occurrence of parapneumonic 
complications when grown to midlog in Brain Heart I nfusion.  

Highlighted genes have been associated with virulen ce in a serotype 4 mouse model of 
pneumonia (Hava and Camilli, 2002). 
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10.2.4.2 Quantitative RT-PCR Results 
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Figure  10-1 Comparison of the Mean Expression Levels for g enes SP0054, SP0045 and 
SP2153 by qRT-PCR. 

Mean Expression Levels and standard errors were cal culated from 3 experimental replicates 
for control isolate (03-2672) from serotype 1, ST30 6 associated bacteraemic pneumonia 
without parapneumonic complications and test isolat e (06-1370) from serotype 1, ST306 
associated paediatric empyema.  

  

10.2.5 Discussion Regarding a Genetic Basis for 

Pneumococcal Parapneumonic Complications 

Cases of complicated pneumococcal pneumonia in Scotland result from a mixed 

population of serotype 1 S. pneumoniae (ST227 and ST306) similar to the situation being 

seen in other European countries and the USA.  

Although only two sequence types of S. pneumoniae appear to be involved in Scotland, 

CGH analysis, using microarrays, indicates substantial variation in genes among test 

isolates of ST227 and ST306 at regions other than the conserved housekeeping genes used 

in the MLST typing system. 

Analysis of bacterial RNA expressed under standardized, predetermined growth conditions 

shows there to be variation in the regulation of pneumococcal genes which could account 

for differences in virulence and the clinical presentation and progression of these 

infections. Using site directed mutagenesis, many of these genes have been shown to code 
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for virulence factors and have a role in causing pneumonia in a murine model (Hava and 

Camilli, 2002). However, the growth conditions used in these experiments to grow S. 

pneumoniae for RNA extraction may not accurately mimic those found in the pleural 

cavity (Byington et al., 2002) where other genes may undergo  expression and regulation. 

It is of note that the pleural environment also varies with cases requiring a decortication 

drainage procedure more likely to have substantially raised lactate dehydrogenase levels 

(Tan et al., 2002, Himelman and Callen, 1986).   

However, these experiments do suggest that no single virulence factor will account for the 

increased virulence in serotype 1 pneumococci causing complicated pneumonia but rather 

this may be due to a constellation of virulence factors being up and down regulated in the 

pleural cavity. In keeping with this hypothesis is the fact that penicillin resistance alone 

does not affect the outcome of paediatric pneumococcal empyema (Paganini et al., 2001, 

Hardie et al., 1998). Indeed, subtherapeutic antibiotic levels of susceptible and 

nonsusceptible antimicrobials in the pleural space (Saglani et al., 2005, Giachetto et al., 

2004) may be contributing to the patterns of expression of virulence genes in empyema 

formation (Byington et al., 2002) (see Chapter 12). 

Recently in Taiwan, microarray technology has been used to assess the effect of zinc 

metalloproteinase B mutations in S. pneumoniae isolates causing cases of complicated 

pneumonia (Hsieh et al., 2008). These expression studies were performed with 

pneumococcal cultures at early log phase (OD600nm of 0.2) with serotype 14 isolates of 

ST46 and a single locus variant (SLV) of ST328 and the media used for culture was not 

disclosed. They chose to compare the gene expression of a pleural fluid isolate from a child 

with pneumococcal empyema (serotype 14, ST46) and a blood culture isolate from a child 

with bacteraemic necrotizing pneumococcal pneumonia with empyema (serotype 14, 

ST46) with a “control” blood culture isolate from a child with uncomplicated bacteraemic 

pneumonia (serotype 14, SLV of ST328). This comparison resulted in the identification of 

only two genes with a two fold increase in gene expression – SP0664 (zinc 

metalloprotease) and SP1572 (nonheme iron-containing ferritin).  

Neither of these genes appeared in the list of differentially expressed genes identified in 

this comparison of serotype 1 isolates. This should not be too surprising as this study has 

used a different serotype, ensured that “control” isolates are matched for sequence type and 

grown cultures in a defined medium (BHI broth) to mid-logarithmic rather than early-

logarithmic phase – all of which will affect which genes are expressed at the point of RNA 

extraction and which genes are identified during analysis of microarray results. It is not 
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surprising either that genes identified as associated with virulence may not actually be 

required in all cases of invasive disease (Blomberg et al., 2007). 

A significant shortcoming in the use of the microrray to study pneumococcal virulence is 

its inability to identify genes other than those from the sequenced genomes for TIGR4 and 

R6. If an increase in virulence in serotype 1 pneumococci has occurred due to the recent 

acquisition of genes from other bacteria or bacteriophages, microarray analysis will not be 

able to detect the presence of such genes. By detecting variation (and the absence) of 

several genes coding for virulence factors in test isolates as illustrated in Appendix 14 and 

Appendix 15, it may be postulated that these virulence factors do not play a significant role 

in the development of cases of complicated pneumonia. Included amongst these are genes 

which code for the first pneumococcal pilus to be described which does not appear to be 

expressed by any of the serotype 1 isolates analysed on the array. These genes are absent 

from two serotype 1 ST306 strains associated with parapneumonic complications (06-1370 

and 03-3038) which are being sequenced using 454 technology at the Sanger Institute 

(Nicholas Croucher, Wellcome Trust Sanger Institute, personal communication). However, 

the genes for a recently described second pneumococcal pilus (Bagnoli et al., 2008) 

identified in the fully sequenced serotype 1, ST227 strain INV104B which are not present 

in TIGR4 (and not identifiable by microarray DNA CGH) are present in the ST306 isolates 

06-1370, 03-3038 and 03-2672 from preliminary 454 sequencing at the Sanger Institute 

(Nicholas Croucher, Wellcome Trust Sanger Institute, personal communication), consistent 

with the findings of Bagnoli et al, who identified this pilus in serotype 1 ST227 and ST306 

isolates. This pilus is involved in adherence to cells of the respiratory tract and so may play 

a role in the development of bacteraemic pneumonia and parapneumonic complications 

although this requires further investigation.  

Given the concentrations of DNA or RNA (minimum 2µg per 25µl reaction per array) 

required from test isolates it is unlikely that this microarray analysis could be performed 

directly on nucleic acid extracted from clinical samples but would require initial culture of 

the organism or a nucleic acid amplification step which may introduce unacceptable 

confounding of results. This is unfortunate as the majority of pleural fluid cultures from 

cases of complicated pneumonia are negative due to prior administration of antibiotics 

(Byington et al., 2002, Eltringham et al., 2003). It may be possible to design a suitable 

microarray to identify isolates likely to result in parapneumonic complications using the 

genes identified here but using a more sensitive platform such as an oligonucleotide 

microarray. Such microarrays are already being used to investigate host responses to 
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respiratory infections  and have been designed and used for typing and detecting clinically 

relevant virulence determinants in Staphylococcus aureus isolates (Spence et al., 2008). 

It is possible using the gene predictor function of Genespring GX 7.3.1 to, in silico, create 

a list of genes implicated in causing parapneumonic complications (Table 10-3). It has 

been suggested that the presence, by microarray hybridization, of a region SP1050 to 

SP1053 is associated with highly virulent serotype 1 isolates (Harvey et al., 2007). 

However, our CGH results demonstrate a lack of hybridization for this region and these 

genes do not feature in the list of those thought to be predictive of parapneumonic 

complications.  

Such complications may resolve without invasive interventions or may require traditional 

management approaches of thoracocentesis by tube drainage or open surgery (Meyerovitch 

et al., 1985). There is some suggestion that surgery is more likely to be required for 

serotype 14 pneumococci while tube drainage is more likely to be sufficient alone for 

serotype 1 (Tan et al., 2000). Less invasive strategies are now being utilized (Playfor et al., 

1997) and microarray analysis of bacterial gene expression could allow more rapid 

identification of patients at greater risk of empyema or parapneumonic effusion, if these 

predicted genes are being expressed. Patients infected with isolates expressing these genes 

may potentially benefit from earlier treatment with intra-pleural administration of 

fibrinolytic agents (Rosen et al., 1993, Playfor et al., 1997, Thomson et al., 2002, 

Handman and Reuman, 1993, Sahn, 2007, Kornecki and Sivan, 1997, De Benedictis et al., 

2000, Kothandapani et al., 2006, Campbell, 1995, Hawkins et al., 2004, Hamm and Light, 

1997, Feola et al., 2003) or thoracoscopic decortication  (Playfor et al., 1997, Sahn, 2007, 

Kercher et al., 2000, Stovroff et al., 1995, Gates et al., 2004, Wong et al., 2005, Hawkins 

et al., 2004, Hamm and Light, 1997, Schultz et al., 2004) potentially improving clinical 

outcome and reducing hospital length of stay (Thomson et al., 2002, Hoff et al., 1991, 

Wong et al., 2005, Sahn, 2007).  

The recent introduction of Prevnar® (Wyeth Pharmaceuticals, USA), into the United 

Kingdom paediatric vaccination schedule may actually facilitate an even greater increase 

in incidence of invasive serotype 1 associated disease by providing a niche for its clonal 

expansion by removing competition from other serotypes. Serotype 1 should be included in 

future pneumococcal conjugate vaccine formulations (Hanquet et al., 2008) such as the 13 

valent PCV currently under trial (Kieninger et al., 2008). 
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Orihuela et al, demonstrated that the purine synthetic genes SP0045-SP0055 were 

significantly upregulated in mouse blood (Orihuela et al., 2004b). Although 

bioluminescent imaging was performed on these mice before exanguination, it was not 

disclosed whether there were parapneumonic complications evident. It is likely that 

pneumonia was present as the mice had been infected intratracheally. This is important to 

establish as our data suggests that the upregulation of the purine synthetic genes is not 

simply a response to their presence in the bloodstream.   

Although the majority of isolates which we used for microarray experiments had originated 

from bloodstream infections, one isolate 03-3038 had been grown from pleural pus.  In 

addition, our analysis considered gene expression of two control isolates grown from the 

blood cultures of two cases of bacteraemic pneumonia without parapenumonic 

complications from which we established a baseline gene expression for comparison with 

isolates from bacteraemic pneumonia cases with parapneumonic complications. This 

should remove any potential influence of the bloodstream source of isolates on gene 

expression leaving us to conclude that the genes which we identify as being differentially 

expressed are due solely to changes which are associated with the presence of 

parapneumonic complications.  

It is also noteworthy that the expression of the purine synthesis gene SP0044 is noted to be 

temperature dependent, being upregulated above 37°C but downregulated below 37°C 

(Pandya et al., 2005). As patients with empyema often have prolonged, persisting fevers 

this may be an important survival response by pneumococci to adapt to thermal changes in 

the host environment. 

Alternatively, the change in expression of these purine synthesis genes may not relate 

directly to the parapneumonic complications but be part of a nonspecific stress response. 

SP0044 and SP0045 have been found to be downregulated in response to vancomycin 

stress (Haas et al., 2005). It has not been possible to fully review the antibiotic therapy to 

which these isolates had been exposed in the past although it is known that the patients 

infected with 03-3038 and 03-2672 did not receive vancomycin. Likewise these isolates 

have been subcultured and stored frozen in glycerol stocks prior to culture for RNA 

extraction and so it is unlikely that any preceding antibiotic therapy in the source patient 

would be influencing these results unless treatment has resulted in a stable mutation.      
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10.3 Pneumococcal Meningitis 

10.3.1 Serotype 3 Association with Meningitis 

Serotype 3 is the commonest serotype recovered from cases of meningitis in Poland 

(Skoczynska and Hryniewicz, 2003) and was recently described as accounting for 18% of 

adult cases of pneumococcal meningitis in Sweden (Sjostrom et al., 2006) although in the 

1980s it was the commonest serotype associated with pneumococcal meningitis there 

(Burman et al., 1986). It was also the commonest serotype to be recovered from 

cerebrospinal fluid in Boston, USA from 1935 to 1972 (Finland and Barnes, 1977a). The 

proposal by Orihuela et al that serotype 3 does not readily enter the bloodstream or CSF 

because of a large amount of capsule based on a murine model of infection (Orihuela et al., 

2003) is incompatible with these epidemiological observations in human populations. It is 

not often that studies have documented which sequence types are present in serotype 3 

meningitis associated isolates. However, ST180 serotype 3 is strongly associated with 

development of meningitis rather than carriage in a Brazilian slum (Reis et al., 2008) 

although the authors do recognise that this association may be more a feature of the 

serotype 3 capsule than the genotype (Reis et al., 2008). 

Adjunctive treatments which may disrupt inflammatory cascades as additional treatment 

strategies (while being treated with appropriate antibiotics) are sought and agents which 

inhibit CSF cytokines, matrix metalloproteinases and reactive oxygen species show 

promise (Davis and Greenlee, 2003). Identification of new potential targets for such 

adjunctive strategies may bring significant breakthroughs.    

10.3.2 Serotype 3 ST180 DNA CGH Hybridizations 

The results of microarray DNA CGH experiments relating to the isolates 99-4038 and 99-

4039 are displayed compared to all other CGH tested ST180 isolates in Figure 6-1 and in 

Figure 10-2 below. 
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Figure  10-2 CGH comparisons of isolates 99-4038 (cultured from blood) and 99-4039 
(cultured from CSF). 

Isolates are cultured from specimens taken from the  same patient taken on the same day 
and comparison is generated by Genespring GX 7.3.1.  Each individual coloured bar 
represents a single gene from the TIGR4 or R6 genom es. Shades of yellow and orange 
indicate competitive hybridization of DNA from both  TIGR4 and the test isolates. Blue 
indicates absence of hybridization for DNA from the  test isolate but hybridization by TIGR4 
DNA. Red indicates hybridization of test DNA to pro bes from the R6 genome. 
 

As both isolates were harvested from the same patient on the same day, the discrepant 

hybridization results between the two isolates for 39 genes was a surprise and a concern. 

PCR (using TIGR4 as the positive control and PCR grade water as the negative control) 

was performed for these discrepant genes and a product was obtained for both isolates in 

each case, indicating that the discrepancies were due to insensitivity of the microarray 

hybridization rather than differences in the genomes of the isolates.  PCR performed at a 

further 20 genes which did not hybridize for either isolate on the array indicated a product 

of identical size to that in TIGR4 at all 20 loci which again highlights the lack of 

sensitivity for DNA hybridizations and limited ability of the microarray to accurately 

detect true differences in the genetic complement of pneumococcal genomes, as was 

discussed in Chapter 3.  
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Array DNA CGH Result PCR Result 
Gene 99-4038 99-4039 99-4038 99-4039 

SP0068         

SP0069         

SP0074         

SP0115         

SP0166         

SP0168         

SP0352         

SP0355         

SP0467         

SP0575         

SP0697         

SP1060         

SP1064         

SP1132         

SP1141         

SP1144         

SP1318         

SP1323         

SP1342         

SP1762         

SP1763         

SP1765         

SP1766         

SP1770         

SP1771         

SP1948         

SP2164         

Figure  10-3 Comparison of microarray DNA CGH results for i solates 99-4038 and 99-4039 
with PCR results for the same genes using DNA from the same isolates. 

Blue indicates an absence of hybridization whereas yellow indicates hybridization in the 
CGH experiments and the generation of a PCR product  of identical size to that in TIGR4 in 
the PCR experiments.  
 

Although the PCR results highlighted the frequency of false negative hybridizations, there 

were never any discrepancies in the PCR results for the same gene between the two 

isolates from blood and CSF.  Based on the combination of results from DNA 

hybridizations and PCR validation of discrepant results, it was concluded that a significant 

difference in the gene complement of the two isolates in terms of gene deletions was 

unlikely although the possibility of single nucleotide polymorphisms or insertions of 

genetic material could not be discounted.  To investigate this further, both isolates are 

undergoing 454 sequencing at the Wellcome Trust Sanger Institute. 
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10.3.3 Serotype 3 ST180 RNA Expression Experiments 

Gene 

Normalized 
Intensity 
Ratio in 
Blood 

Normalized 
Intensity 
Ratio in 

CSF Function 
Upregulated in CSF 

SP2075 1.1 5.3 ABC transporter, ATP-binding/permease protein 
SP2073 1 4.6 ABC transporter, ATP-binding/permease protein 
SP0231 0.9 3.8 Adenylate kinase (ATP-AMP transphosphorylase) 
SP1869 1.1 3 Iron-compound ABC transporter, permease protein 

SP1872 1 2.8 
Iron-compound ABC transporter, iron-compound-

binding protein 

SP0054 0.9 2.8 
Phosphoribosylaminoimidazole carboxylase, ATPase 

subunit 
SP1871 1 2.8 Iron-compound ABC transporter, ATP-binding protein 
SP2074 1 2.3 Degenerate transposase 

SP0507 1 2.2 
Type I restriction enzyme EcoKI specificity protein (S 

protein) 
SP1659 1 2.1 Isoleucyl-tRNA synthetase 
SP2072 1 2.1 Glutamine amidotransferase, class-I 

Downregulated in CSF 
SP2215 1 0.1 30S Ribosomal protein S2 
SP2214 1 0.1 Translation elongation factor Ts 
SP0496 0.9 0.1 Na/Pi cotransporter II-related protein 
SP0488 1 0.1 Conserved hypothetical protein 

SP0577 0.9 0.1 
PTS system, beta-glucosides-specific IIABC 

components 
SP0578 1.1 0.1 6-phospho-beta-glucosidase 

SP1572 1.1 0.1 
DNA binding protein starved cells-like peroxide 

resistance protein 
SP0800 1 0.2 Hypothetical protein 
SP0517 1 0.2 Class I heat-shock protein (molecular chaperone) 
SP0487 1 0.2 Hypothetical protein 
SP1626 1.1 0.2 30S Ribosomal protein S15 
SP1215 0.9 0.2 Formate-nitrate transporter 
SP0489 1 0.2 PAP2 family protein 
SP0631 1 0.2 50S Ribosomal protein L1 
SP0490 1 0.2 Hypothetical protein 
SP1293 1.2 0.2 50S Ribosomal protein L19 
SP0630 1.1 0.2 50S Ribosomal protein L11 
SP0492 1 0.2 Hypothetical protein 
SP0373 1 0.3 Conserved hypothetical protein 
SP0649 0.9 0.3  
SP1472 1 0.3 Oxidoreductase, putative 
SP1184 0.9 0.3 6-phospho-beta-galactosidase 
SP2106 1 0.3 Glycogen phosphorylase family protein 
SP0107 1 0.3 LysM domain protein 

SP0493 1 0.3 
DNA-directed RNA polymerase, delta subunit, 

putative 
SP1027 1 0.3 Conserved hypothetical protein 
SP0564 0.9 0.3 Hypothetical protein 
SP1185 1 0.3 PTS system, lactose-specific IIBC component 
SP1471 1 0.3 Oxidoreductase, putative 
SP1739 1 0.4 KH domain protein 
SP1449 1 0.4 C3-degrading proteinase 
SP1786 1 0.4 Conserved hypothetical protein 
SP2226 0.9 0.4 Conserved hypothetical protein 
SP2216 1 0.4 General stress protein GSP-781 
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SP2058 1 0.4 Queuine tRNA-ribosyltransferase 
SP0058 1 0.4 Transcriptional regulator, GntR family 
SP2063 1.1 0.4 Conserved hypothetical protein 
SP0457 1 0.4 Bacitracin resistance protein 

SP1674 1 0.4 
Phosphosugar-binding transcriptional regulator, 

putative 
SP1975 1 0.4 SpoIIIJ family protein 
SP1470 0.9 0.5 Thiamine biosynthesis protein ApbE, putative 

SP0375 1 0.5 
6-phosphogluconate dehydrogenase, 

decarboxylating 
SP0376 1 0.5 DNA-binding response regulator 
SP1111 1 0.5 Conserved hypothetical protein 
SP0247 1 0.5 Transcriptional regulator 
SP2057 1 0.5 Hypothetical protein 
SP2150 1 0.5 Ornithine transcarbamoylase 

Table  10-4 Comparison of Normalized Expression Ratios of genes differentially expressed 
when expression levels in CSF are compared to blood . 

Results are for isolates of serotype 3, ST180 cultu red from the same patient on the same 
day using a one tailed ANOVA with significance set at P<0.05 and the Benjamini and 
Hochberg correction used for multiple testing. The expression levels in blood are 
normalized against themselves to generate a baselin e for comparison with expression 
levels in CSF. Genes highlighted in red have been a ssociated with virulence in a serotype 4 
mouse pneumococcal pneumonia model (Hava and Camill i, 2002). 
 

Gene Fold Change in CSF (Orihuela et al ., 2004b) Fold Change in CSF 
(This study) 

SP0517 -3.1 -5.0 
SP1975 -2.2 -2.5 
SP1572 -2.4 -11.0 
SP2058 -3.1 -2.5 
SP0488 -2.9 -10.0 
SP0800 +2.1 -5.0 

Table  10-5 Comparison of the fold change differences in e xpression for genes identified as 
being downregulated in CSF in this study with resul ts from similar work by Orihuela et al 
(Orihuela et al ., 2004b). 
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Gene Fold Change in Blood 
(Orihuela et al ., 2004b) 

Expression in CSF 
compared to blood  

(This study) 

SP0457 +2.5 Downregulated 
SP0054 +6.9 Upregulated 
SP0231 -3.8 Upregulated 
SP1572 -8.4 Downregulated 
SP0630 -4.7 Downregulated 
SP0631 -5.0 Downregulated 
SP1626 -3.5 Downregulated 
SP2073 +2.2 Upregulated 
SP0107 +2.7 Downregulated 

SP0488 -4.7 Downregulated 
SP0800 +4.5 Downregulated 
SP2063 +4.9 Downregulated 

Table  10-6 Comparison of results for genes identified as significantly up or down regulated 
in CSF with their fold change levels as detected in  mouse blood by Orihuela et al (Orihuela 
et al ., 2004b).  

+ indicates upregulation while – indicates downregu lation. 
 

10.3.4 Discussion regarding Serotype 3 Associated 

Pneumococcal Meningitis 

10.3.4.1 Phenotypic variants within Serotype 3 

In the serotype 3 pneumococcus, it has been elucidated that mutations in the genome can 

result in phenotypic variants generated in response to a change in the host environment 

(particularly within a biofilm environment). These are likely to have an adaptational 

advantage for survival in a more hostile environment. Until recently, only one such 

mechanism had been described – phase variation. But now non phase variable colony 

variants which are generated in response to an environmental change have also been 

described (Allegrucci and Sauer, 2008, Allegrucci and Sauer, 2007). 

10.3.4.1.1 Phase Variants 
The phenomenon of phase variation is described in Chapter 1. The transparent phenotype 

has more cell wall phosphorylcholine, less capsular polysaccharide and has different 

surface proteins compared to the opaque phenotype (Ring et al., 1998, Weiser and Kapoor, 

1999). Although they did not assess any serotype 3 isolates, Ring et al found that the 

transparent phenotype resulted in increased invasion of pneumococci across the blood 

brain barrier by as much as 6 fold compared to opaque phenotype (Ring et al., 1998) 

whereas opaque variants survive better than transparent in the bloodstream and are integral 
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to invasive infection (Overweg et al., 2000b). Higher rates of transformation occur in 

transparent variants compared to opaque so it seems that less capsule (transparent 

phenotype) enhances transformation (Weiser and Kapoor, 1999). It has been proposed that 

the change in cell surface components which occurs in phase variation (Overweg et al., 

2000b) is important for pathogenicity (Bruckner et al., 2004). The reversible nature of the 

capsular mutations which account for these phase variants in serotype 3 is considered in 

Chapter 6. 

10.3.4.1.2  Non revertible variants 
In addition to phase variation, serotype 3 pneumococci also generate mucoid and non-

mucoid variants by a different mechanism entirely (a large deletion in the cps3DSU 

capsule operon) (Allegrucci and Sauer, 2008). This occurs at high frequency and unlike 

phase variants, these are not revertible (Allegrucci and Sauer, 2008). It has also been 

demonstrated that hydrogen peroxide plays a role in their emergence (Allegrucci and 

Sauer, 2008). Hydrogen peroxide is also known to be mutagenic in several other 

pneumococcal serotypes, triggering frameshifts resulting from the reversible gain and loss 

of single bases, deletions resulting from recombination and substitutions of guanine 

residues – the net result of which can change the pneumococcal phenotype as has been 

shown by spontaneous mutation to optochin resistance (Pericone et al., 2002, Battig and 

Muhlemann, 2007) or rifampicin resistance (Battig and Muhlemann, 2007). 

These mutants which are unable to revert to wild type serotype 3 capsule expression may 

be at a disadvantage in blood stream infections but it is plausible, although unproven, that 

they have enhanced ability to penetrate CSF by crossing the blood brain barrier or have a 

survival advantage in the CSF. It is established that the production of hydrogen peroxide 

by pneumococci is implicated in the pathogenesis of pneumococcal meningitis where it 

contributes to neuronal apoptosis (Braun et al., 2002), causes ciliary stasis of ependymal 

cells (Hirst et al., 2000), vasodilation and subsequent increased cranial pressure (Hoffman 

et al., 2007). If hydrogen peroxide is a stimulus to mutation and the generation of non-

revertible phenotypic variants it may, in the same microenvironment create an altered 

phenotype able to cross the blood brain barrier by a paracellular route (Koedel et al., 2002) 

precisely in a region whose integrity has been compromised by simultaneous hydrogen 

peroxide induced vasodilation. This would challenge current beliefs that pneumococci 

cross the blood brain barrier by a transcellular route (Koedel et al., 2002). Intriguingly, a 

gene which codes for a protein thought to be a peroxide resistance protein or non-heme 

iron-containing ferritin (SP1572) is downregulated in CSF compared to blood suggesting a 

need for peroxide resistance in blood but not once past the blood brain barrier – a finding 
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also documented by Orihuela et al (Orihuela et al., 2004b).  The ability to generate non-

revertible phenotypic variants is not unique to serotype 3 but Allegrucci et al also have 

observed this in serogroup 19 pneumococci (Allegrucci and Sauer, 2008) which could 

explain why some serotypes are more prone to cause meningitis and is entirely compatible 

with epidemiological observations that serotype 19F is associated with causing meningitis 

with a high associated mortality (Skoczynska and Hryniewicz, 2003, Burman et al., 1986, 

Reis et al., 2002, Urwin et al., 1996). 

10.3.4.2 Choline binding protein A 

It has been shown that choline binding protein A (CbpA or SP2190) is necessary for 

pneumococci to cross the blood brain barrier (Ring et al., 1998, Orihuela et al., 2004a, 

Orihuela et al., 2003) by binding to the human polymeric immunoglobulin receptor (pIgR) 

and crossing the capillary endothelium by transcytosis (Koedel et al., 2002). This is related 

to a transparent phase variant phenotype as the transparent phase variant expresses greater 

amounts of CbpA (Ring et al., 1998).  When grown in BHI broth as planktonic cultures, 

CbpA is expressed in both isolates from blood and CSF at low levels but the fact that it is 

found to be expressed is compatible with the above hypothesis. Interestingly, Orihuela et al 

did not identify a difference in expression of SP2190 in blood or CSF using serotype 2 

(D39 Xen 7) and serotype 4 (TIGR4) pneumococci using microarray experiments either 

even when bacteria were harvested straight from rabbit CSF (Orihuela et al., 2004b). 

10.3.4.3 The role of iron 

At the start of this chapter it was noted that transcriptional regulators often play a role in 

virulence. SP0376 is such a gene. Its homolog in R6 nomenclature is spr0336 but it is also 

known as RitR (Repressor of Iron Transport) or the orphan response regulator and is one of 

the pneumococcal two component systems which can sense changes in the environment 

and elicit a transcriptional response (Paterson et al., 2006).   

RitR has been identified as having a role in iron transport in the pneumococcus (Ulijasz et 

al., 2004a). Expression of RitR represses iron uptake in vitro by downregulating an iron 

carrier protein piuA (Ulijasz et al., 2004a). Intriguingly, there is a relationship between iron 

and hydrogen peroxide as iron catalyses the production of deleterious oxygen free radicals 

from hydrogen peroxide by means of the Fenton reaction (Ulijasz et al., 2004a, Pericone et 

al., 2003). Consequently, the pneumococcus will decrease iron concentrations in the 

presence of hydrogen peroxide. The results above suggest that SP0376 (RitR) is 

downregulated in the CSF while two of the genes which it regulates SP1869 (Iron-
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compound ABC transporter, permease protein) and SP1872 (Iron-compound ABC 

transporter, iron-compound-binding protein) are upregulated in the CSF as shown in Figure 

10-4.  

 

Figure  10-4 Comparison of the significant differences in e xpression of SP0376 and SP1872 
in isolates 99-4038 (blood origin) and 99-4039 (CSF  origin) 

This figure is generated by Genespring GX 7.3.1. Th e white lines indicate the 
downregulation of SP0376 in the CSF isolate and upr egulation of SP1872 in the CSF isolate. 
 

These differences in gene expression were also investigated by RT-PCR as demonstrated 

below in Figure 10-5. 
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Figure  10-5 qRT-PCR results relating to gene expression of  SP0376 (RitR ) in blood and CSF 
isolates and the upregulation of SP1869 and SP1872 in a CSF isolate compared to a blood 
isolate.  

P values for the difference in mean normalized expr ession between blood and CSF isolates 
were calculated using an unpaired t-test calculated  by Q-gene software (Muller et al ., 2002) 
and were for SP0376 (p = 0.121), SP1869 (p = 0.005)  and SP1872 (p = 0.014). Error bars 
indicate standard errors of the mean normalized exp ression calculated by Q-gene.  
 

It was unexpected that the difference in mean normalized expression for SP0376 (RitR) 

when tested by qRT-PCR did not reach statistical significance whereas the differences in 

expression of the two genes which SP0376 regulates (SP1869 and SP1872) were 

significantly different by both microarray and qRT-PCR approaches. This still suggests 

that in this case of human meningitis, a non revertible mutation or an environmental factor 

may have affected the expression of RitR so that expression levels are higher in the blood 

than the CSF with a consequent increase in iron uptake in CSF compared to blood. This 

may be a response to the bloodstream environment being rich in bound iron but the 

potential interplay with hydrogen peroxide cannot be ignored. If, as proposed above, the 

pneumococcus generates hydrogen peroxide locally at the blood/endothelial surface after 

binding via choline binding protein A, the effects of this may be the generation of stable 
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non revertible mutations and a compromised blood brain barrier resulting from local 

vasodilation and/or neuronal apotosis at the same site. It is entirely plausible that, within 

the blood, at this region of local hydrogen peroxide release, iron concentrations are being 

regulated by RitR to remain low locally to aid survival of the pneumococcus by preventing 

the Fenton reaction.  Such a critical role may also explain why neither RitR nor the iron 

compound ABC transporters SP1869-SP1872 are located in a known region of diversity in 

the pneumococcal genome (Silva et al., 2006). 

SP1871 (another iron compound ABC transporter) also appeared to be upregulated in CSF. 

Pandya et al found that SP1871 is significantly affected by temperature changes being 

upregulated at 29°C, 33°C and 40°C when compared to 37°C. It was one of only 8 genes 

upregulated at 40°C (Pandya et al., 2005). Both hypothermia or hyperthermia and body 

temperature dysregulation may be a host response to intracranial pathology including 

infection and so the temperature related upregulation of this gene may be important for the 

survival of the pneumococcus within the CSF once it has passed the blood brain barrier, 

established infection and is responding to further changes in the host environment.  

10.4 Pneumococcal Cerebral Abscess 

10.4.1 Background 

Pneumococcal cerebral abscesses  are uncommon but are associated with significant 

morbidity (40% of survivors are left with neurological deficits) and high mortality (case 

fatality rate of 35% in one series) despite appropriate antibiotic therapy and surgery 

(Grigoriadis and Gold, 1997). Serotype 3 pneumococci have historically been associated 

with cerebral abscesses (Fincher, 1946, Anonymous, 1970, Colman and Hallas, 1983) and 

in a rat experimental meningitis model, serotype 3 pneumococcal infections have a 

preponderance to cause cortical necrosis and abscess formation whereas serotype 1 

infections are more associated with cortical haemorrhage and not abscess formation 

(Ostergaard et al., 2004). 

The MLST records of pneumococcal isolates grown from cerebral abscess pus in Scotland 

were identified and serotype 3 isolates chosen in order to perform microarray DNA CGH 

and RNA expression experiments to identify virulence associated genes in order to gain 

further understanding of the pathogenesis of this condition. 
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10.4.2 Serotype and MLST distribution of Cerebral A bscess 

Associated Pneumococci in Scotland 

Serotype 3
34%

Serotype 4
22%

Serotype 10A
11%

Serotype 12F
11%

Serotype 19F
11%

Serotype 22F
11%

 

Figure  10-6 Distribution of pneumococcal serotypes associa ted with cerebral abscesses in 
Scotland 1993-2007 (n=9). 
 

ST162
11%

ST180
34%

ST218
11%

ST246
11%

ST899
11%

Unknown
22%

 

Figure  10-7 Distribution of pneumococcal MLSTs associated with cerebral abscesses in 
Scotland 1993-2007 (n=9). 
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10.4.3 Serotype 3 ST180 DNA CGH Hybridizations 

Microarray CGH was performed on two cerebral abscess associated isolates (00-3946 and 

06-1705).  These results feature in Figure 6-1 in Chapter 6.  

10.4.4 RNA Expression of Serotype 3 ST180 Cerebral 

Abscess Associated Isolates 

RNA was extracted and utilised in microarray expression experiments according to the 

procedures outlined in Chapter 2. Data analysis in Genespring GX 7.3.1, involved 

normalizing the invasive serotype 3, ST180 related data from Figure 6-1 into two 

categories of cerebral abscess or non-cerebral abscess related isolates and the gene 

expression levels in these two merged categories were compared (Table 10-7). The gene 

prediction function of Genespring GX 7.3.1 was used to generate a list of 30 genes whose 

expression was associated with the presence of a cerebral abscess. 

Gene 

Normalized 
Intensity 
Ratio in 

non 
cerebral 
abscess 
ST180s 

Normalized 
Intensity 
Ratio in 
Cerebral 
abscess 
ST180s Gene Function 

Upregulated in cerebral abscess 
spr0957 1.3 102.3 SpR6: Tn5252, relaxase, truncation 

SP0110 0.9 6.0 
ABC transporter membrane-spanning 

permease - amino acid transport 

SP0111 1.1 3.1 
ABC transporter ATP-binding protein - 

amino acid transport 
Downregulated in cerebral abscess 

SP1185 0.9 0.3 
PTS system, lactose-specific IIBC 

component 

SP0577 1.2 0.3 
PTS system, beta-glucosides-specific IIABC 

components 
SP1686 1.1 0.5 Oxidoreductase, Gfo/Idh/MocA family 
SP1688 1.1 0.5 ABC transporter, permease protein 

 

Table  10-7 Genes identified by Genespring GX 7.3.1. as up regulated or downregulated  in 
cerebral abscess associated serotype 3 ST180 isolat es compared to non cerebral abscess 
related serotype 3 ST180 isolates.  
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Gene 
Predictive Strength for 

Cerebral Abscess Function 

SP0877 27.0 
Fructose specific-phosphotransferase system 

IIBC component 
SP1474 20.9 Glycyl-tRNA synthetase beta chain 
SP1592 16.6 Conserved domain protein 
SP0830 16.6 Hypothetical protein 
SP0066 16.1 Aldose-1-epimerase (mutarotase) 
SP1097 14.9 Conserved hypothetical protein 

SP0831 14.7 
Purine nucleoside phosphorylase (inosine 

phosphorylase) 
SP0876 14.7 Fructose-1-phosphate kinase 
SP0833 14.7 Hypothetical protein 
SP1100 14.6 Phosphate acetyltransferase 
SP0834 14.4 Hemolysin-related protein 
SP0629 14.1 Conserved hypothetical protein 
SP0829 12.8 Phosphopentomutase 
SP0828 12.8 Ribose 5-phosphate isomerase 

SP1563 12.7 
Pyridine nucleotide-disulphide oxidoreductase 

family protein 
SP1701 12.7 Phospho-2-dehydro-3-deoxyheptonate aldolase 
SP2096 12.7 Peptidase, M20/M25/M40 family 
SP1192 11.4 Galactose-6-phosphate isomerase, LacB subunit 
SP1193 11.4 Galactose-6-phosphate isomerase LacA subunit 

SP0110 10.7 
ABC transporter membrane-spanning permease 

- amino acid transport 
SP0782 9.6 Conserved hypothetical protein 
SP0605 5.9 Fructose-bisphosphate aldolase 
SP2192 5.9 Sensor histidine kinase 

SP0445 5.5 
Acetolactate synthase, large subunit, 

biosynthetic type 
SP2002 5.4 Conserved hypothetical protein 
SP0015 5.1 IS630-Spn1, transposase Orf1 
SP1591 4.7 Proline dipeptidase 
SP1988 4.6 Conserved hypothetical protein 
SP1417 4.3 Choline binding protein 
SP0438 4.3 Glutamyl tRNA-Gln amidotransferase, subunit C 

Table  10-8 Genes identified by Genespring GX 7.3.1. as pr edictive of a cerebral abscess 
associated phenotype when compared to non cerebral abscess related serotype 3 ST180 
isolates.  
 

10.4.5 Discussion regarding pneumococcal cerebral 

abscesses 

This is the first case series of pneumococcal cerebral abscesses to be described from 

Scotland and the first to investigate which sequence types are implicated. These results are 

consistent with historical case reports and animal model experiments which demonstrate 

serotype 3 pneumococci as being associated with cerebral abscess formation. Only the 

cases caused by serotype 4 and 19F were preventable using the PCV-7 conjugate vaccine 
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formulation with 78% of cases not preventable, highlighting a need for alternative 

prevention strategies or conjugate vaccination with higher valency vaccines. 

Such alternative strategies would benefit greatly from further understanding of the genetic 

basis of the pathogenesis of this condition. Microarray CGH experiments demonstrate that 

the cerebral abscess associated serotype 3 isolates show much genomic diversity at 14 

known regions of diversity when compared to the fully sequenced serotype 4 

pneumococcal isolate, TIGR4 (shown in Appendix 12). When compared to each other, 

there is much less genetic diversity between the serotype 3 cerebral abscess isolates despite 

their origins from different patients, in different parts of Scotland and occurring six years 

apart.  Consequently, development of a preventive strategy which focused on utilising 

these conserved genes or their transcripts could be successful in preventing up to a third of 

cases.  

However, caution is required in interpreting these results as the RT-PCR experiment 

described in Chapter 6 comparing the gene expression of SP0110 in the cerebral abscess 

associated isolate (00-3946) and non cerebral abscess related isolate (OXC141) 

demonstrated that there was no significant difference in their gene expression by that 

method and that the results generated by Genespring GX 7.3.1 were likely spurious 

resulting from the normalization procedure used to merge the expression data into two 

categories.  This highlights the need for independent confirmation of data generated from 

microarray gene expression experiments and the dangers of indiscriminately applying in 

silico results to clinical cases (Chuaqui et al., 2002).   

10.5 Overall Discussion Regarding Gene Associations  

with Invasive Pneumococcal Disease Manifestations 

This series of investigations using microarray technology to investigate the potential 

influence that genomic diversity has on determining disease manifestations of IPD 

demonstrated several factors which require consideration when interpreting the results.  

One basic assumption from this approach has been that the disease manifestation relates 

solely to the genotype and consequent phenotype of the pneumococcus and it does not 

consider host factors to be contributing. This clearly is not the case as pathology is the 

result of an interplay between host and pathogen and the 50 to 100 fold higher incidence of 

IPD in immunocompromised human hosts with HIV (Flannery et al., 2006) compared to 
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the non-HIV infected population or the effect of patient age on the distribution of serotypes 

causing IPD (Inostroza et al., 2001), demonstrates that host factors do contribute to the 

incidence and manifestations of IPD.  

A further assumption has been that microarray technology is a suitable platform by which 

to accurately compare pneumococcal genomes. The results of DNA based CGH in this 

chapter are similar to those in previous chapters in that they indicate that lack of 

hybridization of a gene cannot be assumed to mean that the gene is absent from the 

genome as lack of hybridization is often due to the gene being present (as demonstrated by 

PCR) but in a form which is not complementary to the TIGR4 sequence based probe on the 

microarray. This level of insensitivity makes interpretation of the significance of lack of 

hybridization impossible without further validation by PCR and/or genome sequencing and 

so the microarray CGH approach using this “spotted” PCR product microarray alone can 

only at best be regarded as a screening tool to allow a focus on particular regions where 

genes may show sequence diversity when compared to the TIGR4 genome.  

This is not to say that the microarray does not have a role in the investigation of 

pathogenesis as the above studies using the microarray to analyse RNA expression have 

shown. By this approach, significant insights into potential mechanisms of disease for 

pneumococcal meningitis and empyema have been possible which can now be utilised to 

develop new diagnostic tests, develop possible pharmacological therapies or target 

therapeutic interventions. Nevertheless, significant caution is required when extrapolating 

in silico results to a wider population as has been demonstrated with our investigations into 

cerebral abscess pathogenesis where genes could be identified as significant which clearly 

are not when investigated by another method (qRT-PCR). This is likely to be the end result 

of a series of factors such as poorly chosen “control” isolates, study of too small a number 

of isolates and over-dependance on statistical procedures to merge a diverse bacterial 

population into two categorical variables of cerebral abscesses being present or absent. 

This has introduced confounding such as that produced by high expression of a gene (e.g. 

SP0110) in one isolate when the gene is not actually present in all isolates of that category 

which may suggest overall significance but biologically cannot be significant if it is not 

actually present in the genome of some cases.  

These results do highlight other issues relating more generally to experimental design 

when investigating pneumococcal pathogenesis as they add to a growing body of evidence 

that suggests that with clinical isolates, source tissue or body fluid may influence gene 

expression and the overall results of an investigation (Ogunniyi et al., 2007, Orihuela et 
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al., 2004a) and so documentation of the details of the source isolate should be regarded as 

essential. There are also implications regarding choice of media for in vitro cultures as 

arbitrarily chosen in vitro conditions may not be representative of in vivo conditions and 

alterations in culture conditions do affect virulence gene expression in many bacterial 

species (Pandya et al., 2005). Pneumococci, even when in pure culture grown from a single 

colony, may not be homogeneous populations but, as stated by Weiser et al,  

“an isolate should be considered a mixed population of phenotypes which 
differ in amounts of capsular polysaccharide, teichoic acid and choline binding 
proteins (Weiser and Kapoor, 1999).”  

As early as 1981, Andersson et al saw that pneumococcal isolates cultured from different 

body sites had different abilities to colonise the nasopharynx and cause invasive disease in 

a mouse model but were unable at that time to determine a genetic basis for such different 

behaviour (Andersson et al., 1981).  

Ideally, investigations of pneumococcal gene expression would be most representative if 

performed from specimens taken directly from a human patient. Apart from ethical 

considerations such as informed consent, which would need to be broached in advance of 

an individual falling ill from an incapacitating severe manifestation of IPD such as 

meningitis and the confounding effects of antimicrobial therapy which would be unethical 

to withhold, there are technical difficulties in obtaining sufficient quantities of bacterial 

RNA directly from blood separated from host human RNA (Shaw and Morrow, 2003) 

although this has been possible on occasion in mice (Orihuela et al., 2004b).   

The recent description of non revertible colony variants resulting from stable point 

mutations triggered by local hydrogen peroxide (Allegrucci and Sauer, 2008) together with 

existing understanding of the reversible serotype 3 capsular mutations found in opaque and 

transparent phase variants (Waite et al., 2001, McEllistrem et al., 2007) is of significance 

if these results are due to biofilm-derived, non revertible colony variants from different 

body sites whose particular phenotypes have been selected for adaptation to different host 

environments. Determining this is likely to be beyond the resolving capacity of a “spotted” 

microarray approach though, particularly when the genes which are most likely to be 

involved (the serotype 3 capsular genes) are not represented by probes on this microarray. 

King et al, compared gene expression of opaque and transparent phenotypes of serotype 

6A and 6B strains on a “spotted” microarray though and identified 24 genes which were 

significantly differentially expressed between the two phenotypes (King et al., 2004). Of 

these 24 genes, only SP2150 (ornithine carbomyltransferase) appears in our comparison of 
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serotype 3 isolates 99-4038 and 99-4039 suggesting that the differences we see in 

expression of blood and CSF isolates are not due to phase variation. Although the genes 

involved in phase variation may differ between serotypes and isolates (King et al., 2004), a 

non revertible mutation triggered by hydrogen peroxide rather than phase variation fits 

more with the current body of evidence implicating hydrogen peroxide in the pathogenesis 

of cerebral damage and the control of iron metabolism in limiting the toxicity of hydrogen 

peroxide to the pneumococcus. Given the substantial number of permutations of minor 

point mutations now documented in the house-keeping genes (chosen as they were not 

thought to vary substantially) employed in the MLST scheme, it seems rational that point 

mutations in other essential genes will be occurring with the potential to alter virulence. 

The observation of this occurrence affecting pneumolysin (Jefferies et al., 2007, Kirkham 

et al., 2006), is further supporting evidence to corroborate this hypothesis.  Significantly, 

preliminary data from 454 sequencing of these two strains identifies 31 SNPs which are 

present in 99-4039 compared to 99-4038 (Nicholas Croucher, Wellcome Trust Sanger 

Institute). Although none of these occur in the serotype 3 capsular genes or ritR, three of 

these are of substantial interest as they occur within the open reading frames of 

transcriptional regulators. CcpA and LysR (SP0927) are affected by transpositions and 

interestingly a deletion is present in the CSF associated ArgR gene. Although no 

significant differences in expression for these genes were noted in our analysis using the 

current parameters, there may still be an undetected, biologically significant, differential 

expression of these mutant genes in blood and CSF sufficient to cause downstream effects 

which may alter the expression of ritR or genes coding for iron binding and this requires 

further investigation. 

Finally, it has been proposed that for any particular pneumococcal isolate it will,  

“probably carry only the particular subsets of genes that permit them to cause 
the distinct forms of disease associated with each strain (Orihuela et al., 
2003).” 

 If that is so, then it should be possible to identify core sets of genes associated with 

different disease manifestations such as we have attempted to generate using the 

Genespring GX 7.3.1 gene predictor tool. By comparing such lists, when generated from a 

large enough sample of relevant isolates, it may be possible to infer whether a particular 

isolate has the potential for more than one disease manifestation and identify core subsets 

of genes which could be targeted for therapeutic interventions. 

 



 

11   Diversity of Pneumococcal Gene Expression in 

Response to an Antibiotic 

11.1 Physicochemical Properties of Clarithromycin 

Clarithromycin is a 14-membered macrolide antibiotic which is structurally related to 

erythromycin through substitution at the 6th carbon atom of the erythronolide ring with a 

methoxy group (Hardy et al., 1992, Hardy et al., 1988) as shown in Figure 11-1. Unlike 

erythromycin it is acid stable and undergoes hepatic metabolism to a compound with 

antimicrobial activity – 14hydroxyclarithromycin (Hardy et al., 1992). It has 55% 

bioavailability in its oral form (Jain and Danziger, 2004) and reaches peak tissue 

concentrations 4 hours after oral administration (Hardy et al., 1992) being excreted via 

urine and bile (Jain and Danziger, 2004). The serum half life is approximately 5 hours 

(Jain and Danziger, 2004). Tissue (particularly lung and nasal tissue) concentrations are 

higher than those in blood which accounts for its effectiveness against a range of 

respiratory bacterial pathogens (Hardy et al., 1992, Jain and Danziger, 2004).  It also 

penetrates well intracellularly into alveolar macrophages (Jain and Danziger, 2004). 

 

Figure  11-1 Structure of clarithromycin. 

Figure is adapted from (Hardy et al ., 1992)) with the methoxy group which differentiat es 
clarithromycin from erythromycin circled in red. 
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11.2 Mechanism of Action of Clarithromycin 

Like all macrolides, clarithromycin exerts its antibacterial action by preventing protein 

synthesis. It does this by binding reversibly to 23S ribosomal RNA in the 50S subunit of 

bacterial ribosomes (Jain and Danziger, 2004). Two theories exist as to how protein 

synthesis is disrupted. The first is that peptidyl transfer reactions are inhibited resulting in 

incomplete peptide chains detaching from the ribosome. The second is that dissociation of 

peptidyl-tRNA from the ribosome is stimulated, resulting in immature proteins (Jain and 

Danziger, 2004). Clarithromycin is classed as a bacteriostatic antibiotic but it has been 

shown to be bactericidal against the pneumococcus (Jain and Danziger, 2004).  

11.3 Resistance Mechanisms associated with 

Clarithromycin 

The diverse mechanisms of macrolide resistance are outlined in Chapter 1.  

11.4 Putative Effects of Clarithromycin at Subthera peutic 

Concentrations 

11.4.1 Anti-inflammatory and Immunomodulatory Effec ts 

Shinkai et al define immunomodulation as,  

“the activity of suppressing the prolonged activation of the inflammatory and 
immune system that can lead to adverse effects on the host; but without 
globally affecting the innate immune responses as would be seen with an 
immunosuppressive agent (Shinkai et al., 2005).” 

For instance, in a murine model of pneumococcal pneumonia, a macrolide (HMR 3004) 

has been shown to inhibit interleukin 6 and nitric oxide synthesis (Chu, 1999). 

In their review Shinkai et al also note that,  

“macrolides have been reported to regulate prolonged or hyperinflammation by 
effects on cellular immunity, suppressing the production of pro-inflammatory 
cytokines and reactive oxygen species, blocking the activation of nuclear 
transcription factors, inhibiting neutrophil activation and mobilization, 
accelerating neutrophil apoptosis and improving mucus clearance (Shinkai et 
al., 2005).  
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Tsai and Standiford review the mechanisms of action of macrolides on pleural 

inflammation, respiratory tract infection, airways inflammation, pulmonary fibrosis and 

immune mediated lung diseases (Tsai and Standiford, 2004). Because of these effects,  

clarithromycin has an established role in the management of diffuse panbronchiolitis and 

cystic fibrosis because of its immunomodulatory effects rather than antibacterial effects 

(Amsden, 2005, Shinkai et al., 2005).  

11.4.2 Anti-neoplastic Effects 

Clarithromycin increases the production of interferon-γ and interleukin 4 by T-cells 

resulting in a decrease in tumour growth in a murine model of primary lung cancer. It also 

enhances CD8+ T-cell cytotoxicity and Natural Killer cell activity (Tsai and Standiford, 

2004, Hamada et al., 2000). The net result of the actions has been demonstrated as 

reduction in primary tumour size and reduction in lung metastases and increased tumour 

apotosis (Tsai and Standiford, 2004). A further effect of clarithromycin on tumours is to 

affect the formation of blood vessels (Yatsunami et al., 1999). The clinical application of 

this was to demonstrate a survival benefit in patients with advanced non-small cell lung 

cancer in patients receiving clarithromycin (Mikasa et al., 1997). 

11.4.3 Transcriptional modulation 

At concentrations below its Minimum Inhibitory Concentrations (MIC), the macrolide 

antibiotic erythromycin has been shown to influence the transcription of 5-10% of bacterial 

genes in Salmonella typhimurium which, despite altering gene expression in some cases by 

10-100 fold, had little effect on growth (Goh et al., 2002). Interestingly at concentrations 

above the MIC, few transcriptional changes occurred. Clarithromycin also alters gene 

transcription at sub therapeutic concentrations in S. typhimurium (Tsui et al., 2004). By 

demonstrating this phenomenon of hormesis (a different response to a molecule at low 

concentration (transcriptional regulation) compared to higher concentration (growth 

inhibition), Tsui et al postulate that,  

“subinhibitory concentrations identify responses that more accurately reflect 
antibiotic mode of action and … these effects might represent the “natural” role 
of antibiotics, since in the environment the concentrations of these molecules 
rarely attain inhibitory levels (Tsui et al., 2004).” 
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11.4.4 Disruption of Quorum Sensing 

Although not demonstrated in the pneumococcus, macrolide antibiotics have the ability to 

alter bacterial cell to cell signalling (quorum sensing) within colonies of Pseudomonas 

aeruginosa resulting in the regulation of virulence factors which may account for improved 

clinical outcomes when macrolides are administered to patients with cystic fibrosis and 

bronchiectasis colonised with biofilms of P. aeruginosa against which macrolides have no 

conventional anti-bacterial activity (Tateda et al., 2004). As pneumococci may also form 

biofilms, it is reasonable to postulate that macrolides may have a role in affecting the 

quorum sensing between pneumococci. 

Tsui et al after demonstrating effects of subtherapeutic macrolide antibiotics on S. 

typhimurium suggest (Tsui et al., 2004): 

“The transmission of signals from ribosome to RNA polymerase due to 
subinhibitory macrolides could involve the release of small amounts of 
incomplete polypeptides, interference with ribosome assembly, induction of 
translation errors, or possibly interactions of small molecules with RNA. The 
sequelae of all these events may be low-level stress responses that act through 
one of the many bacterial sigma factors to activate or repress specific sets of 
transcripts. These changes might also result in compensating effects on the 
transcription of nodes of linked metabolic networks.” 

11.4.5 Effects on Virulence Factors 

It has been established that macrolide antibiotics reduce the production of the 

pneumococcal virulence factor pneumolysin when administered in concentrations both 

above and below their established breakpoint concentrations and it is postulated that this 

may account for their beneficial clinical effects even when administered to patients with 

pneumonia infected with macrolide resistant strains of S. pneumoniae (Anderson et al., 

2007, Fukuda et al., 2006).   

11.5 Role of Clarithromycin in the Management of IP D 

Unlike the USA, macrolide monotherapy is only recommended for the treatment of 

community acquired pneumonia (CAP) in the United Kingdom in patients who have failed 

to respond to a course of amoxicillin with non severe CAP although dual therapy of a 

macrolide with amoxicillin is preferred in this circumstance. A macrolide may be used as 

an alternative to amoxicillin for oral therapy in non-severe CAP where there is evidence of 
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penicillin hypersensitivity. Erythromycin or clarithromycin may be used intravenously in 

combination with ampicillin or benzylpenicillin when oral therapy is contraindicated in 

non severe CAP or in combination with a beta lactamase stable antibiotic like co-

amoxyclav or a second or third generation cephalosporin (BTS, 2001). 

There is no role for macrolide antibiotics in the management of pneumococcal meningitis 

nor are they advised in the empiric treatment of otitis media, empyema or cerebral abscess 

(Gilbert et al., 2008).  

11.6 Experimental Design to Assess Pneumococcal Gen e 

Expression in the Presence of Subtherapeutic 

Clarithromycin Concentrations  

11.6.1 Growth of Strain South Africa 2507 for RNA E xtraction 

Three 50ml aliquots of fresh BHI broth taken from the same batch were each inoculated 

with 500µl of a freshly thawed glycerol stock of strain South Africa 2507 (total viable 

count = log10 8.392 CFU/ml). These were incubated in a water bath at 37°C and the optical 

density monitored until it reached midlog (Optical Density = 0.6 at 600nm).  

At this point, 10ml of each of the three cultures was removed and centrifuged at 5000 rpm 

at room temperature. The supernatant was decanted and the pellet immediately frozen in 

liquid nitrogen and stored at -80°C prior to RNA extraction.  

The remaining culture was split into paired 18ml aliquots. From one of each pair, 

clarithromycin was added to a final concentration of 5mg/L while no changes were made 

to its corresponding culture and both samples were returned to the water bath to incubate at 

37°C.  After 15 minutes (when the cultures were still in the logarithmic growth phase as 

shown in Figure 11-4), 10ml of culture from each pair was extracted, centrifuged and 

frozen in liquid nitrogen as above.  

11.6.2 RNA Extraction from Strain South Africa 2507   

This was performed according to the protocols described in Chapter 2. The quality of the 

RNA was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, United 
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Kingdom) which identified all samples as having an RNA Integrity Number between 9.8 

and 10.  

11.6.3 Microarray Comparative Genomic Hybridization  

Analysis 

Three separate RNA preparations were used for each microarray hybridization experiment 

from each of 3 categories: Strain South Africa 2507 at midlog prior to the addition of 

clarithromycin versus TIGR4 at midlog, Strain South Africa 2507 15 minutes after 

reaching midlog but with the addition of clarithromycin 5mg/L versus TIGR4 at midlog 

and Strain South Africa 2507 15 minutes after reaching midlog without the addition of 

clarithromycin versus TIGR4 at midlog. 

Hybridization and data analysis was performed according to protocols in Chapter 2. 

11.6.4 Quantitative RT-PCR Validation of Microarray  Data 

Using the three biological replicates of RNA prepared above at midlog and then in the 

presence and absence of clarithromycin 15 minutes after midlog, cDNA was synthesised 

according to the protocol in Chapter 2. cDNA concentrations were measured using a 

NanoDrop® ND-1000 spectrophotometer (NanoDrop® Technologies, USA) and the 

cDNA was then used in a qRT-PCR reaction using SYBR® Green in a Roche 

Lightcycler® 480 (Roche Applied Science, United Kingdom).  The expression of three 

genes (whose expression was identified on the microarray as being altered in the presence 

of 5mg/L clarithromycin (SP0740, SP0800 and SP1631)) was examined by qRT-PCR 

(Figure 11-5). The primer sequences used were those used in the manufacture of the PCR 

product amplicons utilised in the manufacture of the microarray displayed in Appendix 3. 

The expression of the genes pneumolysin and ErmB was also investigated using qRT-PCR 

(Figure 11-6). TIGR4 and GyrA RNA were used as a positive control and negative 

controls were nucleic acid free water (no cDNA negative control) and the original RNA 

(no reverse transcription control). Standard curves were constructed and qRT-PCR reaction 

efficiencies were calculated using Microsoft Office Excel 2003 (Microsoft®, United 

Kingdom) and comparison of the mean normalized gene expressions in the presence and 

absence of 5mg/L clarithromycin at the same time point was calculated using Q Gene 

(Muller et al., 2002). 
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11.7 Strain South Africa 2507 

11.7.1 Antibiotic sensitivities 

The antibiotic sensitivities of South Africa 2507 have previously been determined and 

published for erythromycin (MIC>256mg/L), clarithromycin (MIC>256mg/L) and 

ceftriaxone (MIC = 0.5mg/L)(Anderson et al., 2007). 

11.7.2 Calculation of Clarithromycin Minimum Inhibi tory 

Concentration (MIC) 

Calculation of a MIC for clarithromycin for isolate South Africa 2507 was performed 

initially using a clarithromycin E-test (AB Biodisk, Sweden) with confluent colonies of 

South Africa 2507 grown on Mueller Hinton agar with 5% horse blood (E&O Laboratories 

Limited, United Kingdom) using TIGR4 as a control pneumococcal isolate with known 

sensitivity to clarithromycin. This demonstrated an MIC of clarithromycin for isolate South 

Africa 2507 of >256mg/L while the MIC for clarithromycin for TIGR4 was 0.125mg/L. 

To further assess the MIC of clarithromycin for South Africa 2507, the agar dilution 

method of the British Society of Chemotherapy (Andrews, 2001) was adapted to allow 

assessment of the growth of South Africa 2507 in the presence of 512mg/L and 1024mg/L 

clarithromycin using TIGR4 as a control isolate sensitive to clarithromycin. This 

determined a clarithromycin MIC of 1024mg/L for South Africa 2507 (Figure 11-2). 
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Figure  11-2 Growth of isolate South Africa 2507 to determi ne MIC to clarithromycin. 

Isolates grown on IsoSensitest Agar (Oxoid Limited,  United Kingdom) with 5% horse blood 
(E&O Laboratories Limited, United Kingdom) containi ng 512 mg/L clarithromycin (Sigma-
Aldrich®, United Kingdom) on the left and 1024 mg/L  clarithromycin (Sigma-Aldrich®, 
United Kingdom) on the right. South Africa 2507 col onies are clearly visible in the presence 
on 512 mg/L clarithromycin while there are no TIGR4  colonies. There were no colonies of 
either South Africa 2507 or TIGR4 in the presence o f clarithromycin 1024 mg/L indicating a 
clarithromycin MIC for South Africa 2507 of 1024 mg /L.  
 

11.7.3 Growth Curves for Strain South Africa 2507 i n Brain 

Heart Infusion  

Isolate South Africa 2507 was grown in BHI broth in order to demonstrate a growth curve 

and determine when cultures would reach their midlog growth phase for the addition of 

clarithromycin 5mg/L. Cultures were grown in triplicate.  
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Figure  11-3 Growth curve of isolate South Africa 2507 when  grown in Brain Heart Infusion 
broth.  

Optical densities were determined using a WPA Biowa ve C08000 Cell Density Meter set at 
600nm. The curve is constructed using the mean opti cal density calculated from 3 separate 
cultures with error bars demonstrating standard err ors of the mean optical density.  
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Figure  11-4 Comparison of the growth of South Africa 2507 in Brain Heart Infusion broth 
without clarithromycin added and the influence of a dding clarithromycin. 

Clarithromycin was added to a final concentration o f 5mg/L when the culture reached an 
optic density of 0.6 at 600nm. The mean of three da ta points are shown with error bars 
indicating standard errors where these were signifi cant enough to be illustrated. In the 
presence of clarithromycin, there was initially con tinued growth of the isolate, then growth 
inhibition and lysis for several hours.  
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11.7.4 Typing of Strain South Africa 2507 

Strain South Africa 2507 has previously been determined as serotype 23F and by BOX-

PCR fingerprinting, it is related to the multiply antibiotic resistant pneumococcal 

Pneumococcal Molecular Epidemiology Network (PMEN) clone Spain23F-1 (Anderson et 

al., 2007). MLST performed at SMPRL found it to be ST81. 

11.8 Microarray results 

The list of genes identified by Genespring GX 7.3.1 (Agilent Technologies, USA) as 

significantly up or downregulated are displayed in Appendix 16 (Bonferonni multiple 

testing correction used) and Appendix 17 (Benjamini and Hochberg multiple testing 

correction used). 
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11.9 Quantitative Real Time PCR results 
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Figure  11-5 Mean Normalized Expression Levels identified b y qRT-PCR for genes SP0740, 
SP0800 and SP1631. 

Expression was measured at 15 minutes after midlog in the presence and absence of 
clarithromycin 5mg/L as calculated by Q-Gene softwa re with standard errors marked. P 
values were calculated using a one-tailed t-test an d were 0.0002, 0.0006 and 0.0002 for 
SP0740, SP0800 and SP1631 respectively. 
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Figure  11-6 Mean Normalized Expression Levels identified b y qRT-PCR for genes ErmB  and 
pneumolysin (PLY). 

Expression was measured at 15 minutes after midlog in the presence and absence of 
clarithromycin 5mg/L as calculated by Q-Gene with s tandard errors marked. P values were 
calculated using a one-tailed t-test and were 0.02 and 0.03 for ErmB  and pneumolysin 
respectively. 
 

11.10 Discussion 

This series of experiments utilised the SPv1.1 pneumococcal microarray as a tool to 

examine pneumococcal gene expression and investigate the effect of subtherapeutic, sub-

MIC clarithromycin on a multiresistant pneumococcus (South Africa 2507). This 

highlights the power of this technology when applied to the field of drug discovery as it 

has an enormous ability to elucidate the mechanisms of action of antimicrobial agents 
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under predetermined conditions, potentially identifying new targets for antimicrobials, 

enhancing understanding of resistance mechanisms and aiding in the understanding of the 

function of, as yet, uncharacterised genes (Shaw et al., 2003). It also allows observation of 

changes at non target genes or pathways which would have been missed using single gene 

studies and technologies (Shaw et al., 2003). 

In order to achieve this goal, experimental design is of fundamental importance. This 

required standardisation of every step with the growth of bacteria in parallel in three 

replicates under identical conditions from the same batch of media and then performing 

RNA extractions and microarray hybridizations in parallel under identical conditions so as 

to reduce variation produced by experimental noise rather than gene expression. This 

included maintaining broth culture at 37°C for as long as possible when removing aliquots 

for RNA extraction and optical density measurements as temperature change can affect 

pneumococcal gene expression (Pandya et al., 2005). The benefit of such an approach is 

also highlighted by Gmuender et al  in their investigation of the effects of novobiocin and 

ciprofloxacin on the transcriptome of Haemophilus influenzae (Gmuender et al., 2001). 

Our finding that sampling gene expression from our control culture (without 

clarithromycin added) at 15 minutes after reaching midlog with the expression at midlog 

and demonstrating little, if any, change (Figure 11-7) suggests that there have been no 

significant artefacts of stress responses introduced as result of the manipulation of cultures 

and the process of splitting them at midlog (Conway and Schoolnik, 2003). 
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Figure  11-7 Comparison of strain South Africa 2507 gene ex pression demonstrated by 
microarray at midlog and 15 minutes later growing i n the presence and absence of 
subtherapeutic clarithromycin (5mg/L).  

Genes which were significantly up or down regulated  (P<0.05) were identified using 
Genespring GX 7.3.1 (Agilent Technologies, USA) usi ng a one way ANOVA test with a false 
discovery rate set at 0.05 and Bonferonni multiple testing correction used. Normalized 
expression levels at 15 minutes after midlog are co lour coded by Genespring GX 7.3.1 
according to the spectrum of colours on the left of  the diagram with red indicating 
significant up-regulation when compared to baseline  (expression level at 15 minutes after 
midlog with no clarithromycin added) and blue indic ating significant down-regulation 
compared to this baseline. Comparison of the expres sion levels of these differentially 
expressed genes at this baseline versus expression at midlog (prior to exposure to 
clarithromycin) demonstrates no significant differe nce in expression indicating that the 
changes in expression seen in the presence of 5mg/L  of clarithromycin are due to the 
presence of clarithromycin and are not influenced b y the more advanced timepoint in the 
logarithmic growth phase of the bacteria. Genes are  identified using the TIGR4 
nomenclature. 
 

The choice of antibiotic concentration (5mg/L clarithromycin) had been predetermined to 

be compatible with previous studies using the South Africa 2507 strain at subtherapeutic 

concentrations (Anderson et al., 2007). There is no consensus regarding the best 

concentration of antimicrobial to use for such mechanism of action determining 

transcriptional experiments. Gmuender et al advocated using a concentration around that of 

the MIC (Gmuender et al., 2001). Hutter et al performed gene expression profiling using a 

B. subtilis spotted microarray with 37 antimicrobials including clarithromycin (Hutter et 

al., 2004). They found that the antimicrobial concentration was crucial for determining the 
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mechanism of action in microarray expression experiments and that subinhibitory 

concentrations were best. They also suggested that after one hour of treatment with 

antimicrobial, the optical density at 600nm of the treated culture should not exceed 15% 

less than that of its control. Shaw et al recommend using low doses and early time points to 

reduce effects of secondary inhibition by downstream targets (Shaw et al., 2003) for their 

work with E. coli. At concentrations below its MIC, erythromycin has been shown to 

influence the transcription of 5-10% of bacterial genes in S. typhimurium which, despite 

altering gene expression in some cases by 10-100 fold, had little effect on growth (Goh et 

al., 2002). Interestingly at concentrations above the MIC, few transcriptional changes 

occurred. Freiberg et al also make a point of predetermining treatment time and antibiotic 

dose (Freiberg et al., 2004).  Brazas and Hancock point out that although most studies 

suggest using subinhibitory concentrations of antimicrobial and early time points to rule 

out the complicating effects of secondary targets this may restrict the discovery of effects 

that contribute to the mechanism of action by nature of them being downstream effects 

(Brazas and Hancock, 2005). They advocate testing multiple agents under multiple 

conditions to elucidate direct from indirect effects (Brazas and Hancock, 2005). It is 

important to appreciate that transcript levels do not reflect all regulatory processes in a cell 

as they cannot demonstrate the effects of post-transcriptional modification of proteins 

(Frieberg and Brunner, 2002) and so a proteomic approach (Bandow et al., 2003) is also 

beneficial although more laborious (Freiberg et al., 2004).   

In this study, it has been possible to analyse our results by ANOVA using Bonferonni 

multiple testing correction to identify a stringent set of genes whose expression have been 

altered by the presence of clarithromycin, (Appendix 16). The majority of these are 

involved in amino acid synthesis (valine, leucine, isoleucine, glycine, serine, threonine, 

lysine, phenylalanine, tyrosine and tryptophan).  

When the ANOVA analysis is performed using the less stringent Benjamini and Hochberg 

multiple testing correction (Appendix 17) a larger number of significant genes is 

generated, which gives a broader insight into the multiple effects on the transcriptome. The 

functions of these genes include ribsosomal proteins, aminoacyl t-RNA synthetases, 

translation factors as well as amino acid biosynthesis. This is significant as these are all 

required for fully functioning ribosomes (Jenni and Ban, 2003). It is of particular interest 

that the genes for ribosomal proteins L4 and L23 are significantly upregulated in the 

presence of subtherapeutic clarithromycin as these proteins are fundamental to the escape 

of nascent polypeptides from the ribosomal exit tunnel with L23 mediating the interaction 

of such polypeptides with cytosolic chaperones and protein targeting factors with L4 
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known to be a site targeted by macrolide antibiotics (Jenni and Ban, 2003). L23 is involved 

in protein translation and folding. Mutations of L23 result in the accumulation of misfolded 

proteins which can be lethal to bacteria (Kramer et al., 2002). In addition, L23 is also 

implicated in the recruitment of the signal recognition particle for the targeting of secretory 

and transmembrane proteins (Keenan et al., 2001).  The ribosomal proteins L6, L14 and 

L7/L12  are also significantly upregulated and these have been identified as part of the 

structure of a translation factor binding centre in the polypeptide exit channel (Ban et al., 

1999). Consequently, the upregulation of these genes is consistent with an adaptational 

response to counter a reduction in function of the ribosome when targeted even by 

subtherapeutic levels of clarithromycin.  The upregulation of ribosomal proteins and 

aminoacyl t-RNA synthetases in response to exposure to the macrolide erythromycin has 

also been documented in cultures of H. influenzae (Evers et al., 2001). 

Several of the genes identified by the ANOVA analysis using the Benjamini and Hochberg 

multiple testing correction (Appendix 17) have been identified as virulence factors in a 

murine model of serotype 4 pneumococcal pneumonia (Hava and Camilli, 2002). These 

genes are SP0385, SP0445, SP0622, SP0645, SP0766, SP0797, SP0807, SP0856, SP0943, 

SP0979, SP0986, SP1032, SP1112, SP1115, SP1154, SP1175, SP1378, SP1591, SP1633, 

SP1715, SP1780, SP1815, SP1891, SP1970, SP2098, SP2175, SP2176 and SP2239.  

As noted above, transcriptional profiling using microarrays has been performed for a 

variety of micro-organisms with the majority of studies performed on B. subtilis and E. coli 

(Frieberg and Brunner, 2002, Freiberg et al., 2004). Such studies allow the generation of 

large databases of expression profiles of the mechanism of action of known antimicrobials 

against which agents with unknown mechanisms of action can be compared (Hutter et al., 

2004, Sabina et al., 2003, Shaw and Morrow, 2003, Freiberg et al., 2005, Freiberg et al., 

2004). There is however a dearth of data relating to transcriptional profiling of the effects 

of antimicrobial agents on pneumococci (Freiberg et al., 2004).  

It has been demonstrated that pneumococci respond to antibiotic stress (from 

aminoglycosides and fluoroquinolones but not erythromycin or tetracycline) by activating 

their competence regulatory cascade and increasing their rate of genetic exchange 

(Prudhomme et al., 2006). It is also noteworthy that this study did not see any effect of 

clarithromycin on the expression of genes involved in competence. This may have been a 

result of the time point chosen being too early or too late to see the activation of 

competence genes, as it is characteristically a short lived effect, but the result is compatible 

with the observation by Prudhomme et al that erythromycin had no effect on competence 
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(Prudhomme et al., 2006). This antibiotic effect on competence has not been profiled using 

microarrays although they have been used to profile the effect of competence stimulating 

peptide (CSP) on pneumococci (Peterson et al., 2004) and CSP itself has been shown to 

have antibacterial activity (Oggioni et al., 2004). Only two microarray based studies have 

been published which look directly at the transcriptional profile changes of pneumococci 

directly in response to antimicrobials – the effects of puromycin, tetracycline, 

chloramphenicol and erythromycin on R6 gene expression (Ng et al., 2003) and the effects 

of vancomycin on TIGR4 gene expression (Haas et al., 2005). 

Ng et al performed microarray gene expression studies of Streptococcus pneumoniae with 

different classes of translation inhibiting antibiotics at sublethal concentrations (Ng et al., 

2003). Although their experimental methodology differed in many respects to those used 

here, as they utilised an Affymetrix array based on the genome of the non virulent 

pneumococcus R6 and exposed their cultures to 10 minutes of four different classes of 

translation inhibiting antibiotics (puromycin, tetracycline, chloramphenicol and 

erythromycin), our results with clarithromycin are remarkably similar to those obtained 

with the structurally similar erythromycin. Both studies identified altered regulation of 

genes from the following functional categories: ribosomal proteins (80% congruence 

between studies), aminoacyl tRNA synthetases (100% congruence), translation factors 

(50% congruence) and amino acid biosynthesis (58% congruence). The table below 

outlines the similarities between the results from both studies and compares the degree and 

direction of the change in gene expression.  
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Functional 

category and 
gene 

R6 Gene 
Nomenclature  

TIGR4 Gene 
Nomenclature  

Relative Fold 
Change when 
exposed to 10 

minutes of 
sublethal 

erythromycin 
(Ng et al, 2003) 

Relative Fold 
Change when 
exposed to 15 

minutes of 
5mg/L 

clarithromycin. 

Ribosomal 
Proteins 

    

rpsD spr0078 SP0085 1.9 4.1 
rpsJ spr0187 SP0208 1.4 1.8 
rplC spr0188 SP0209 1.5 2.2 
rplD spr0189 SP0210 1.6 2.0 
rplW spr0190 SP0211 1.6 2.4 
rpsS spr0192 SP0213 1.7 2.2 
rplV spr0194 SP0214 1.8 1.8 
rplP spr0196 SP0216 1.7 2.6 

rpmC spr0197 SP0217 1.7 2.1 
rplX spr0200 SP0220 1.9 2.0 
rplE spr0201 SP0221 1.7 1.9 
rplF spr0204 SP0225 1.7 2.3 
rplR spr0205 SP0226 1.6 2.1 
rpsP spr0682 SP0775 1.4 1.6 
rplJ spr1212 SP1355 1 2.4 
rpsR spr1394 SP1539 2.3 1.9 

Aminoacyl 
tRNA 

synthetases 

    

serS spr0372 SP0411 -1.9 -3.8 
valS spr0492 SP0568 -3.0 -4.2 
pheS spr0507 SP0579 -13.2 -5.0 
pheT spr0509 SP0581 -2.7 -4.9 
glyS spr1328 SP1474 -2.2 -6.1 
glyQ spr1329 SP1475 -2.5 -6.4 
thrS spr1472 SP1631 -2.3 -6.8 
ileS spr1502 SP1659 -3.6 -4.5 
tyrS spr1910 SP2100 -2.2 -1.9 
hisS spr1931 SP2121 -2.2 -2.9 

Translation 
Factors 

    

infC spr0861 SP0959 1.4 1.8 
Amino Acid 

Biosynthesis 
    

aspC spr0035 SP0035 -1.8 -1.4 
ilvE spr0758 SP0856 -3.1 -4.3 
asd spr0918 SP1013 -3.0 -3.4 

dapA spr0919 SP1014 -2.1 -2.1 
gdhA spr1181 SP1306 -3.1 -4.4 
metA spr1434 SP1576 -2.1 -2.7 
trpC spr1634 SP1814 -2.2 -4.1 
trpD spr1635 SP1815 -2.4 -5.4 
ilvD spr1935 SP2126 -2.5 -2.0 

Table  11-1 Comparison of the effects of sublethal erythro mycin and clarithromycin on 
pneumococcal gene expression. 
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These similarities suggest there to be a signature pattern of gene expression for 

erythromycin and clarithromycin as they are structurally similar 14-membered macrolide 

antibiotics. Ye et al note that different classes of compound often generate such a 

characteristic signature of expression (Ye et al., 2001). Expression profiles generated by 

different antibiotic classes often differ significantly from each other (Freiberg et al., 2004, 

Goh et al., 2002) but subtle differences can occur within subclasses of the same 

antimicrobial class (Gmuender et al., 2001). Also, different classes of compound acting on 

the same target gene do not always have the same effect (Brazas and Hancock, 2005). 

Interestingly, whereas Ng et al identified increased amounts of purine biosynthesis in 

response to all four translation inhibitor classes, particularly affecting the pur gene cluster, 

the only gene from this cluster to be influenced by clarithromycin in South Africa 2507 

was purB where the effect of clarithromycin was to downregulate expression whereas Ng 

et al found it to be upregulated (Ng et al., 2003). Likewise we did not see any effect of 

clarithromycin on the putative PurR regulator (spr1793) which had been demonstrated by 

Ng et al with erythromycin (Ng et al., 2003), suggesting subtle differences in the 

influences of different antibiotics from the same class of translation inhibitor. Ng et al 

demonstrated that when sublethal erythromycin influences gene expression in R6, the 

relative fold change increases with increasing doses of erythromycin.  A relationship 

between degree of gene expression determined by microarray and dose of antibiotic is also 

documented by Shaw et al in E. coli to a range of antibiotic classes at a range of doses 

(Shaw et al., 2003). As only one dose of clarithromycin was used here, it is imposible to 

comment as to whether this result is reproducible with clarithromycin although it would 

seem plausible. 

In addition to ribosomal effects and translational effect, clarithromycin unexpectedly was 

found to have effects on the cell membrane in B. subtilis (Brazas and Hancock, 2005, 

Hutter et al., 2004). The effects of erythromycin on the B. subtilis transcriptome at several 

time points have been documented by Lin et al with similar effects to this study on 

ribosomal proteins (Lin et al., 2005). 

The genes which feature on our microarray are predominantly taken from the TIGR4 

genome. As the TIGR4 isolate is not resistant to macrolide antibiotics, neither the ermB 

gene nor the mefA macrolide resistance genes feature on the array. This is an unfortunate 

limitation of the array as no comment can be made as to the influence of subtherapeutic 

clarithromycin on the expression levels of these genes in isolate South Africa 2507 by this 

method. However, by RT-PCR it was possible to demonstrate the upregulation of the ermB 
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and pneumolysin genes (Figure 11-6). The TIGR4 genome sequence does contain two 

genes which code for putative macrolide efflux proteins – SP1110 and SP0168. SP1110 

lies in a region of diversity associated with macrolide efflux by Bruckner et al (Bruckner et 

al., 2004). SP1110 is downregulated in the presence of subtherapeutic clarithromycin 

possibly as survival of the bacteria is not threatened. Expression of SP1110 may be 

activated to aid survival in an environment where high levels of macrolide compounds are 

present. The addition of clarithromycin to cultures at 5mg/L does not appear to influence 

expression of SP0168. It is clear though that subtherapeutic clarithromycin rapidly alters 

the expression of a constellation of genes in the pneumococcus and not just antibiotic 

resistance associated genes. This is consistent with the other known effects that 

clarithromycin has as an immunomodulatory agent (Shinkai et al., 2005, Tsai and 

Standiford, 2004), on suppressing chronic pulmonary inflammation (Chu, 1999), on 

pneumococcal virulence factors (Speer et al., 2003, Anderson et al., 2007, Fukuda et al., 

2006) as well as on transcriptional modulation (Tsui et al., 2004).  It is also clear that 

antibiotics do not have single, straight forward targets or effects on bacteria (Brazas and 

Hancock, 2005, Shaw and Morrow, 2003) and that our understanding of their effects in 

vivo is likely to be far too simplistic. Rather than considering antibiotics acting on single 

targets, it may be more accurate to regard them as having effects on interconnected 

networks (Watts and Strogatz, 1998, Conway and Schoolnik, 2003) as has been proposed 

by Tsui et al (Tsui et al., 2004) which may explain how seemingly unconnected pathways 

respond to a single antimicrobial agent. Such a perspective may more readily explain the 

“natural” role of antimicrobial compounds produced by micro-organisms at low 

concentrations in the environment (Tsui et al., 2004).  This should not come as a surprise 

as it is recognised that subinhibitory antibiotic concentrations have many effects on some 

bacteria such as disordered growth and altered virulence (Gemmell and Lorian, 1996) 

which are not as evident at therapeutic concentrations, demonstrating the biphasic adaptive 

response known as hormesis (Calabrese and Baldwin, 2002). 

There are risks to drawing too many conclusions though from this limited two-condition 

experimental strategy. These results should be placed in an appropriate biological context 

with corroborating physiological, biochemical and genetic experiments (Conway and 

Schoolnik, 2003). It would be revealing to expand this work to include further time points 

and antimicrobial concentrations, different growth media and also different pneumococcal 

strains (Frieberg and Brunner, 2002). Demonstrating in vivo transcriptional responses will 

be a significant step forward rather than drawing conclusions from exponentially growing 

planktonic laboratory cultures (Conway and Schoolnik, 2003). This has been attempted for 

Vibrio cholerae with rice water stool from patients with cholera (Merrell et al., 2002) and 
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in tissue cultures of epithelial and endothelial cell lines for Neisseria meningitidis (Dietrich 

et al., 2003) but appropriate reproducible strategies have yet to be devised for invasive 

pneumococcal infections. 

 



 

12  Concluding Thoughts 

Despite the limitations of a CGH approach to genome comparisons due to low sensitivity 

of hybridization and the realisation that high levels of false negative hybridizations to 

microarray probes (relating to hypervariable genes) made interpretation of the absence of 

hybridization unreliable without confirmatory PCR and sequencing, such a CGH approach 

has allowed documentation of pneumococcal genomic diversity. Further work using this 

approach, although more expensive, would be better suited to oligonucleotide Affymetrix 

type arrays since they are able to discriminate single nucleotide polymorphisms and would 

have fewer false negative hybridizations for hypervariable genes.  

In a series of 10 isolates of unrelated serotype and MLSTs, previously undescribed regions 

of diversity in the pneumococcal genome were discovered. By focusing on isolates of one 

MLST (ST9), it has been possible to demonstrate less diversity among isolates of the same 

serotype (serotype 14) than multiple serotypes of the same MLST. Focusing further on 

isolates matched by serotype and MLST and clinical manifestation it has been possible to 

show a role that bacteriophages have in generating genomic diversity and to suggest a role 

that single nucleotide polymorphisms may play in influencing disease manifestations. 

These studies are compatible with the proposal that pneumococcal populations share and 

can tap into a “supragenome” which is larger than any genome held by a single isolate. 

Despite, this high level of genomic diversity at a population level it has also been possible 

to demonstrate a more clonal structure of pneumococcal populations in the early stages of 

transmission within an outbreak situation when there has been less time for the many 

mechanisms which generate diversity to have influenced the pneumococcal genome. 

By assessing transcriptional profiles from standardized and reproducible culture and 

extraction processes, it has been possible to identify genes which are associated with 

disease phenotypes in serotype 1 associated pneumococcal pneumonia with 

parapneumonic complications and pneumococcal cerebral abscesses. In addition it has 

been possible to identify apparently stable genomic differences between serotype 3 isolates 

from blood and cerebrospinal fluid (CSF) from the same patient and identify differential 

expression of iron transport proteins in the two body fluids and relate different sugar 

metabolism pathways in serotype 3 isolates to the presence and expression level or absence 

of phosphotransferase system genes. Such findings may be important in further 

understanding the pathogenesis of pneumococcal meningitis or provide a point for 

therapeutic intervention to prevent invasion into CSF.   



  Chapter 12, 242 

Through collecting nasophayngeal isolates from children in a geographical region of 

substantial biodiversity, 32 new and currently unique MLST profiles have been discovered 

along with the, previously undescribed, co-incident dual carriage of two different sequence 

types of the same serotype, providing new insights (when CGH was performed) into the 

genomic diversity of the pneumococcus and the facilitation that a shared ecological niche 

and shared serotype may have in gene transfer.   

By investigating the effect of a subtherapeutic antibiotic (clarithromycin) on the gene 

expression of a pneumococcal isolate new insights have been gained into the diversity of 

genes which respond to an antibiotic rich environment providing insights into how the 

pneumococcus both responds to this threat to survival and may communicate this response 

to other pneumococci and allowing a greater understanding of why subtherapeutic 

antibiotics may have many other clinical effects other than simply bacterial killing. 

Such a high degree of genomic diversity in the pneumococcus has undoubtedly contributed 

to its success as a frequent paediatric nasopharyngeal commensal and a global pathogen 

(which continues to cause severe manifestations such as pneumonia, meningitis and otitis 

media) as such diversity benefits the population of bacteria to increase survival in the face 

of the stresses of a range of host environments and therapeutic interventions.  Therefore, 

these studies of the pneumococcal “supragenome” demonstrate that multiple forces have 

shaped its evolution such as gene loss/genome reduction, genome rearrangement and 

acquisition of genetic material through horizontal gene transfer (Fraser-Liggett, 2005) 

resulting in a dynamic organism and placing it as one of the commonest and most 

successful pathogens known to man.  
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Appendix 1: Streptococcus pneumoniae isolates 

used in microarray experiments 

 

Appendix 1 

Details of isolates used on for microarray CGH expe riments including source body fluid of 
isolate, age of source, antibiotic sensitivities, s erotypes and MLST. R = Resistant, S = 
Sensitive, I = intermediate, NT = Not tested, B = B lood culture, C = CSF culture, P = Pleural 
Fluid culture, U = Unknown. 
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Appendix 2: Antibiotic Sensitivities and Typing of 

Streptococcus pneumoniae  isolates from Bolivia. 

Antibiotic Sensitivity 

Isolate Serotype  MLST 
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07-2801 17F 2973 0.125 0.16 3 0.125 0.19 0.75 
07-2802 21 3852 0.023 0.047 3 0.125 0.125 0.75 
07-2803 11A 280 0.016 0.032 3 0.125 0.19 0.75 
07-2804 4 3767 0.016 0.032 3 0.125 0.25 0.75 
07-2805 34 1902 0.023 0.032 2 0.19 0.5 0.75 
07-2806 23A 2974 0.012 0.032 3 0.5 0.25 0.5 
07-2807 19A 2975 0.032 0.032 4 0.125 0.25 0.75 
07-2808 38 2974 0.003 0.047 3 0.5 0.25 0.75 
07-2809 19F 2976 0.016 0.023 3 0.19 0.19 0.5 
07-2810 23A 2974 0.016 0.047 3 0.75 0.25 0.75 
07-2811 34 1902 0.016 0.023 1.5 0.094 0.19 0.75 
07-2812 24F 3770 0.016 0.016 2 2 0.19 0.75 
07-2813 14 387 0.19 0.016 2 0.064 0.125 0.75 
07-2814 6A 3853 0.023 0.047 3 0.5 0.38 0.75 
07-2815 34 1902 0.016 0.032 2 0.25 0.125 0.75 
07-2816 16F 3768 0.012 0.016 2 0.25 0.19 0.75 
07-2817 6A 1150 0.047 0.016 1.5 0.125 0.19 0.75 
07-2818 8 404 0.012 0.047 2 0.125 0.25 0.38 
07-2819 4 332 0.016 0.016 3 1.5 1.5 0.38 
07-2820 38 3534 0.008 0.023 2 0.125 0.125 0.38 
07-2821 23F 776 0.016 0.047 2 0.094 0.25 0.75 
07-2822 6A 2440 0.016 0.023 2 0.38 0.19 0.75 
07-2823 19A 2880 0.032 0.016 1 0.25 0.125 0.75 
07-2824 34 1902 0.016 0.047 2 1.5 0.19 0.5 
07-2825 4 3509 0.016 0.016 1.5 0.125 0.19 0.75 
07-2826 7F 191 0.008 0.016 2 0.064 0.19 0.75 
07-2827 13 923 0.016 0.047 1.5 0.125 0.19 0.5 
07-2828 10A 3535 0.012 0.047 3 0.25 0.25 0.75 
07-2829 23B 3536 0.125 0.016 1.5 0.5 0.25 0.5 
07-2830 38 1902 0.016 0.032 2 0.125 0.25 0.38 
07-2831 6B 4015 0.047 0.032 2 2 0.19 0.5 
07-2832 6B 4015 0.023 0.032 1.5 0.38 0.25 0.5 
07-2833 9A 3537 0.023 0.016 2 0.094 0.25 0.5 
07-2834 12A 3538 0.012 0.032 2 0.38 0.25 0.75 
07-2835 16F 3771 0.012 0.047 2 1 0.19 0.75 
07-2836 10A 3539 0.016 0.032 1.5 0.125 0.25 0.75 
07-2837 16A 4016 0.064 0.032 1.5 1.5 0.25 0.38 
07-2838 3 180/1989 0.008 0.032 3 0.094 0.75 0.75 
07-2839 9A 239 0.023 0.032 2 0.125 0.25 0.5 
07-2840 7C 3769 0.012 0.032 1.5 0.125 0.19 0.75 
07-2841 23F 3540 0.023 0.032 1.5 0.25 0.25 0.75 
07-2843 13 784 0.023 0.032 2 0.125 0.25 0.75 
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Isolate Serotype  MLST Antibiotic Sensitivity  
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07-2844 6A 3854 0.012 0.047 3 0.125 0.25 0.75 
07-2845 9A 3855 0.064 0.032 2 0.125 0.25 0.75 
07-2846 6A 3856 0.008 0.032 2 0.38 0.19 0.75 
07-2847 24F 3770 0.064 0.032 1.5 0.25 0.125 0.5 
07-2848 21 3857 0.016 0.064 2 0.094 0.25 0.5 
07-2849 17F 3267 0.064 0.047 2 0.094 0.125 0.75 
07-2850 19A 3858 0.016 0.032 2 0.094 0.125 0.5 
07-2851 10A 3429 0.016 0.047 3 0.125 0.25 0.75 
07-2852 23F 3430 0.023 0.032 3 0.25 0.38 0.5 
07-2853 35F 3431 0.016 0.023 2 0.094 16 0.5 
07-2854 11A 3432 0.008 0.047 3 0.125 0.25 0.75 

Appendix 2 

Antibiotic sensitivities and Typing of 53 Nasophary ngeal pneumococcal isolates retrieved 
from school children in the Beni region of Bolivia.  Minimum Inhibitory Concentrations for 
stated antibiotics are documented as tested by E-te st and should be interpreted as fully 
sensitive, intermediate sensitivity or resistant us ing the following criteria set by the 
manufacturers AB Biodisk (Sweden): 

Antibiotic Sensitive MIC Intermediate 
Sensitivity MIC 

Resistant MIC 

Penicillin <0.06 0.12 - 1 >2 

Erythromycin <1 2 >4 

Chloramphenicol <4 Not Applicable >8 

Co-trimoxazole <0.5 1 - 2 >4 

Tetracycline <2 4 >8 

Vancomycin <1   
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Appendix 3 

Primer Sequence Primer Sequence 
SP0031_f TACTCTCCATGCCTTACTCGGT SP0031_r TTGATTAACCTGACTGCACAGG 

SP0067_f CTGGAGCAGTTTTGACAAATGA SP0067_r GCCACAAATTCTCCTTTGATTC 

SP0068_f GGAGTGCCTTTCCAACTTCTAA SP0068_r CATAGTGACCAGATTTCCCGTT 

SP0069_f TCAGAGGAATTGGCTGGTAGAT SP0069_r AGTACCAGTGTGGTCCGACTTT 

SP0072_f ATGCAGATTGCAGGAATCATCT SP0072_r TCAAATCAACATTTTCTGTGGG 

SP0074_f CAGGAGAGTTTTACCGTCCATC SP0074_r ATTGCGTTCCTGTGGATCTAGT 

SP0104_f TGGAACCCTCGTTGATAGTTCT SP0104_r AGATCTGCTTGCTCTCCAAATC 

SP0111_f GATGATGAAACGGTCGAGTACA SP0111_r CGATAATGACTGTTTTCCCCTC 

SP0113_f GGTTTGGACACATCAGTTGCTA SP0113_r GCTCCTATCTGATGCGCTATTT 

SP0115_f AGATGATGTATCTTGATGGGGG SP0115_r ATATGCGATTGCTCCACCTAGT 

SP0165_f GTTCGGTAGGTGCCAGTAATGT SP0165_r TTGCTTTACGCAATCCTACCTC 

SP0166_f CTTCAACAATTTTCCCCAAAAG SP0166_r ATAACCTGCTGCTCATTCACCT 

SP0168_f TCATTCGCATCATTTTTACAGG SP0168_r ACCAAGAAGTTGATGTGGAGGT 

SP0278_f GAATTGGCACATCTAATCGTGA SP0278_r AAGTGACATAACCATCTGCACG 

SP0309_f AGATTGAACAACAACGTCGAGA SP0309_r TGGGGAAAATAATAATAGGCGA 

SP0350_f TTGATTCAGAAGGTCCGGTTAT SP0350_r GCCATCTAACTCCGTCTTCATC 

SP0352_f GAATATCGTTTCTTCAGACGGC SP0352_r CAAAGCCAAACAATCTTTTTCC 

SP0355_f TATGTTACATGGTGCAACGGAT SP0355_r GATTCCGCAAATTTTTCAAGAG 

SP0356_f GGAATTGGGAATTTAGTTGCTG SP0356_r AACGGCTAATCCATAACACCAC 

SP0410_f TTTTAGATACGTTGCCGGTTCT SP0410_r CTGTGATAATGGTTGGGAAGGT 

SP0458_f ACAAGTCTGTGGGACTCCAGAT SP0458_r GAGCAAGACTTTTTCGTTTGGT 

SP0461_f AATTTCCACTTGAGTTCCCTGA SP0461_r AAGGCAATCGTCAAAAAGTGAT 

SP0462_f CTGGGACATACACCTTGACAGA SP0462_r ATTCAATCGCTTTCCGTTTTTA 

SP0463_f AGAATGACTGAAGGTTTGGCAT SP0463_r ATTACAAATTCTGCCCCAGCTA 

SP0464_f TGGAGAACTATCAGGAGGTGGT SP0464_r TTTCATGACTTTGAACATTGCC 

SP0465_f ACCATTTTTATCAGCATCCCTTT SP0465_r ATGGATGGTGAATCAGAAAGAAA 

SP0466_f CGAGTGGAATCAAATCAACAAA SP0466_r TGCTGCAATAAATTCTTCCTCA 

SP0467_f GAAAAAGAAAGGCGTCTCAGAA SP0467_r GTCGATTACGATACACGCGATA 

SP0468_f CGGAGGGATATGAGGTCAATTA SP0468_r TAAACGTGCTAGCTTCCACAAA 

SP0509_f AGTTCTTGACCCAAAACTTGGA SP0509_r AACTCCAACACGACCATTTTCT 

SP0514_f GCAGGTTCTTGTTCGATTCTTC SP0514_r CAAACAACAAGACCACCTGAGA 

SP0532_f TATGGATACTGAAATGCTTGCG SP0532_r AGTCCCAATTTATCACCAACCA 

SP0568_f TGTCAAAATCGAAAAACGTGTC SP0568_r ACCCAGAAGAAGATGATGTCGT 

SP0570_f GATTTTCCTAGAGAAGCCGTGA SP0570_r TATTCTTTTCCGTTGCCATCTT 

SP0573_f CAAGGAGGTGACTCTTATGGCT SP0573_r CAAGAAAAACTCACTATCCCCA 

SP0574_f GCTCTCAGTTCGAGGAGATGTT SP0574_r ACGACCTTCAACTCCTTATCCA 

SP0575_f TCGTGAAAAGGTAATCGGCTAT SP0575_r TATGAATCCGACCTGCATACTG 

SP0697_f GCGGTGAATTAAAGAGAATTGG SP0697_r GGCTCACATGAATGAATTGAAA 

SP0740_f CAGAAGAGAGGCAGTCGAATTT SP0740_r CAAATCATAAAGCCAGTCGTCA 

SP0764_f AGAAGAGGTCAAAAACTCAGCG SP0764_r TTGATAAAAGGCGTGAACATTG 

SP0800_f GAATTAAACCAGCAGCTTCCTC SP0800_r CAAAGGCAAGAGCAGTTGATAA 

SP0949_f AGCTCATTATGACCCTCCGTTA SP0949_r GTTTTCTGCGGTTACGATAAGG 

SP1018_f AGCAAGGAAAAGGTGTTGTGAT SP1018_r ATCTGGATCTGTTCTCCATCGT 

SP1048_f TATGGAATGCTAAGCCGGATAC SP1048_r TTCCATTGTATTTCCTTGTTGG 

SP1049_f GTGGAGTGTTGCTACAACGAAA SP1049_r GGATTTTTATTGTCAAAATTGCCT 

SP1053_f AGATGTGAAAGCTCAACGTCAA SP1053_r TTGAAGGAATCTTTTCCTCCCT 

SP1059_f GAAAATTTGGAATTGTCGGAAG SP1059_r AATGGCAAGTGCTACTATGTGC 

SP1060_f GGCCGATATGAAAAATAAATACG SP1060_r GCCAAACAATTTAAAGCGTGAT 

SP1063_f TGATCAATTAAGGCACAAATCG SP1063_r AGGGATTTAACTGACCAATCCA 

SP1064_f ACCCAAATATCGTCGTCAAATC SP1064_r TATTTCGCCAGTAAACGGATCT 

SP1129_f AATCAAAAAGAATGGCCAAAGA SP1129_r TTATTGATGCTGATAACACCGC 

SP1130_f CATGGCGACTCTATGGAAAAAT SP1130_r AAACAATTTCTGAAGGTGCGAT 
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SP1131_f TAAAGAAAACAAGATGCGTGGA SP1131_r TGCCTTTGCTTGAGTTTTGTTA 

SP1132_f GCTACAACCCTTGATAACTGGG SP1132_r ACACATCTGACGGACGATAGAA 

SP1134_f GAACGAGCAACAGGCTACTTTT SP1134_r GGTACTGCTCCAACTCCTCACT 

SP1135_f TTAGCGAAGAAAATGGCCTAAG SP1135_r CATTGCCTCCTCAAACTTCTCT 

SP1136_f GATGAGGTAATGGCTGAAATCC SP1136_r CCAATCTTCATAGCTGGTAGGC 

SP1137_f CCTATTGTGAACAATGCCAAGA SP1137_r AATACGGCTATAATTCCGCTCA 

SP1138_f GGTTAGTTTGCCACACTTGGTT SP1138_r ACACTTTTCATGGGGTGAGAAA 

SP1139_f TGATGGAGAAAGGCTTTGTTTT SP1139_r TGAATTGCTCCATGTCAATTTC 

SP1140_f AGACAAAGCATGTCAAAAAGCA SP1140_r ACTTCCTCAATTTCCAACCTCA 

SP1141_f TGACTTAGGGGAATTTTTCCAA SP1141_r TATTTCCGTTTCATCCTCGTTT 

SP1142_f CTCAAGTGGTATTTCATGCGAG SP1142_r ATAATATCCGCTGACAAGCTCC 

SP1143_f TTGAGTTGTTAAGCCAACATGG SP1143_r GGGTGTTTTCTGTGTCCTTTTC 

SP1144_f GAGGAGATGAGCGGTGTTAGTC SP1144_r AACCTGCTCATGCTCTAATGGT 

SP1145_f TTTTAATAGCGCCCGAAAATTA SP1145_r ACTGATGATACTTGCTCTGCGA 

SP1158_f GAAATTGATTTGATTGTCCTGA SP1158_r CATGAAAAAGAAAACAATAGCAA 

SP1181_f TTATCACCTCGTTTCCTACTACT SP1181_r TTGTTTTTGTATTTGAATGATGAGC 

SP1189_f TTGTTTTGAATGTTGATGGGAA SP1189_r AGGACCAAGATTGAAACGAAAA 

SP1254_f AGCCAAAGAACGTAAGCGTAAC SP1254_r AGAATGCTTCAATTTCTGGGTT 

SP1323_f AGCTGTTTCCCAAGAAGAATTG SP1323_r TTTGCATCATTTTCCTTGATTG 

SP1336_f AGTGCTTGGGATTTTGTGAGAT SP1336_r TCTGGTGTCATACAAGGAATCG 

SP1342_f GTATTCTGGGTTGGTCAGCAAT SP1342_r TCCGTTATTATCATGTTCAGCG 

SP1343_f GGACGGGTTTTGTTAGACACTC SP1343_r ATTTGTTTAACGCCTTTCCTGA 

SP1350_f GCGTTATTATAAGCTCCCCAAA SP1350_r CAAATAAATAGCCCCATCCTCA 

SP1353_f CCAGTCTTTGAGAGCGATAAGC SP1353_r AAAACAAAAATCCTGCCAAAGA 

SP1381_f GTCAGTATCATTTCACCCAGCA SP1381_r ACTGTCTTCCCTTTTTGTGCAT 

SP1696_f TCAAAAAGAAACGAGGACTCTCA SP1696_r TTTTTGCTTCCTTCTTTTGGAA 

SP1718_f TGTTGTCTGAAACTATTAGCCTTTT SP1718_r TTTGAGTAACTCCTTTTTCCTCG 

SP1762_f TCCGTTTTTGATGTTATGCAAG SP1762_r TTGATGCATTCGTTCAGGATAC 

SP1763_f GATTCAATCCTTGGCAGTTAGC SP1763_r TCAAACAAAACAAAAAGCATGG 

SP1765_f ATTGGGGAGAAAAATGGAAGTT SP1765_r CAGCTCCTCAGAACAATCACAC 

SP1766_f CTTCAATGCTGGTGTTCTCTTG SP1766_r CCCACCAAACTTCTCTTAGACG 

SP1770_f TATTGCGTCAGAGTGGTTTTTG SP1770_r CATGCTCCATCTCACAACTAGC 

SP1771_f TTATGTGACCTTTGTGGACTCG SP1771_r AATCCATTCATTTGGAAAATCG 

SP1793_f TTACTGCTAGCTGTGCGTCTTC SP1793_r AGCGCATCTGCTAAAGAATACC 

SP1794_f TTGGAGGAACTGATGAAGAACA SP1794_r CTCCCCTTTGTAAGCTCTCTCA 

SP1796_f ATGGGCACATTTACTCATTTCC SP1796_r TATTTTGCACAGATTGGAGTGG 

SP1797_f TGCTCGTAAAAGAATTGGGAAT SP1797_r TACAAGTTGCAATGGTTCCAAG 

SP1799_f CGTCAGGAATTCCCTTTGTTAG SP1799_r ATCAAACAAAATACGAACCGCT 

SP1839_f ACCCTTTATACCATGTTGGTGC SP1839_r TAGACGATTTCCCTGAACCTGT 

SP1895_f GGATCGGTTCTGATTTTAGTGC SP1895_r GAAGTCATTCCAGAACCAAAGG 

SP1896_f TTCCCAGCTGTTTTATCTGGTT SP1896_r GCATAACCGAATTGGTTGTTTT 

SP1897_f GCTATACCGATGTTATCGGAGC SP1897_r TTGACCATGCCTTGTTTATCAC 

SP1948_f TCAAACGAAAAATTTTGTGGAAA SP1948_r TAATAGGAGTAGGCGTCCAACG 

SP1949_f ACAGATGGTGCTGACCCTAGAT SP1949_r TTTTTCTTGTTGTCTTTGCCAC 

SP1975_f GGCTGTGTCAATGTCGATAAAA SP1975_r ACACTAGCTGGTGAGAAGAGGG 

SP2142_f GGTATGAGGCGCTTAGCTCTTA SP2142_r ACCGTGTATTCTTCGTAGGCAT 

SP2164_f GCAGAAATGTTTGTTGGTGAGA SP2164_r CCGTGACAAAGCCACATTATTA 

 

 

Appendix 3 Primer sequences used in the manufacture  of the S. pneumoniae  microarray 
SPv1.1 and used for confirmatory PCR. Forward prime rs are on the left and reverse primers 
are on the right of the table. 
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Appendix 4 

Gene Sequence (5'-3') 
SP0045 f AGTTGTGGACAAGGATGTC 
SP0045 r CAAAGGTACCAGACATGGA 
SP0054 f CACCGCAACAATATCCTGTCTA 
SP0054 r GCATGGAGTTTGATGACTGGTA 
SP0110 f TTGGTTTTCAAGATAGGGCTGT 
SP0110 r TTCGTTTTTGCTGCTCTTCATA 
SP0314 f TTACAATGGCGATTTGAGTCAC 
SP0314 r CCCAAACTCCTTGTTTAGCATC 
SP0376 f CCTCTCCATGGCTCTTC 
SP0376 r CATCAAGCTTGCTCCGTA 
SP0740 f CAGAAGAGAGGCAGTCGAATTT 
SP0740 r CAAATCATAAAGCCAGTCGTCA 
SP0800 f GAATTAAACCAGCAGCTTCCTC 
SP0800 r CAAAGGCAAGAGCAGTTGATAA 
SP1342 f GTATTCTGGGTTGGTCAGCAAT 
SP1342 r TCCGTTATTATCATGTTCAGCG 
SP1343 f GGACGGGTTTTGTTAGACACTC 
SP1343 r ATTTGTTTAACGCCTTTCCTGA 
SP1350 f GCGTTATTATAAGCTCCCCAAA 
SP1350 r CAAATAAATAGCCCCATCCTCA 
SP1631 f ATTCGAATCTGGCGTAACAACT 
SP1631 r GACGATAGATAGTCAAACCGCC 
SP1869 f CTTTCCATCGGCTAGTCT 
SP1869 r TGCGACCATGAGTTTGG 
SP1872 f GACCTAGTGGGAACTGTC 
SP1872 r CACCGATGGCAAGGGTA 
SP2153 f GCTACCATTCTTGCTCCT 
SP2153 r GGCTTCGGCATAAATATCC 
SP1923f TGCAGAGCGTCCTTTGGTC 
SP1923r CTCTTACTCGTGGTTTCCAACTTGA 
SP1219f TATGGGGTTTGTCTGGGGTC 
SP1219r GCGCGAGCTCTTCCTGATGT 
ErmBf GAAAAGGTACTCAACCAAATA 
ErmBr AGTAACGGTACTTAAATTGTTTAC 

Appendix 4 

Primer sequences used for qRT-PCR experiments. 
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Appendix 5 
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Appendix 5 

Comparison of microarray DNA CGH results with genom e sequence data.  

Blue indicates absence of hybridization of the gene  while yellow indicates a positive 
hybridization by DNA from the test isolate. In the sequencing results, blue indicates the 
absence of the gene and yellow indicates the presen ce of the gene. Genes are identifiable 
using the TIGR4 genome nomenclature. Where these ge nes are indicated in red, they have 
been identified by signature tagged mutagenesis in a murine pneumonia model as being 
required for virulence (Hava and Camilli, 2002).   
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Appendix 6 

 
Gene Function 

SPN23F00250 Putative Phage Integrase (pseudogene) 
SPN23F00260 Putative type 1 Restriction Enzyme Related Protein 
SPN23F00280 Putative Phage Protein 
SPN23F00290 Plasmid Stabilisation System Protein 
SPN23F00300 Putative Uncharacterized Protein  
SPN23F00310 Putative Phage DNA Binding Protein 
SPN23F00320 Putative Uncharacterized Protein  
SPN23F00330 Putative DNA Binding Protein 
SPN23F00340 Putative Uncharacterized Protein  
SPN23F00350 Putative Uncharacterized Protein  
SPN23F00360 Putative Peptidoglycan Hydrolytic Amidase (pseudogene) 
SPN23F00370 Putative Membrane Protein 
SPN23F00380 Putative DNA Binding Protein 
SPN23F00710 Putative ATP/GTP Binding Protein 
SPN23F00830 Conserved Hypothetical Protein 
SPN23F00840 Putative Uncharacterized Protein  
SPN23F00850 Conserved Hypothetical Protein 
SPN23F00860 Putative Gene Fragment 
SPN23F01260 Putative Membrane Protein 
SPN23F01270 Putative Membrane Protein 
SPN23F01840 Regulatory Protein (Orthologue of SP0189 in TIGR4) 

SPN23F03210 
Capsule Biosynthesis Tyrosine Protein Kinase (Orthologue of 

SPD_0318 in D39) 

SPN23F03220 
Undecaprenylphosphate glucosephosphotransferase (Orthologue of 

SPD_0319 in D39) 
SPN23F03230 Putative Rhamnosyl Transferase (Orthologue of SPD_0320 in D39) 

SPN23F03250 
Oligosaccharide Repeat Unit Polymerase Unit wzy (Orthologue of 

SPD_0323 in D39) 
SPN23F03260 Putative Glycosyltransferase WchA 
SPN23F03270 Putative Glycosyltransferase WchW 

SPN23F03280 
Capsule Biosynthesis Repeating Unit Flippase (Orthologue of 

SPD_0325 in D39) 
SPN23F03290 Putative Glycerol Phosphotransferase WchX 
SPN23F03300 Putative Glycerol-2-Phosphate Dehydrogenase WchY 
SPN23F03310 Putative Nucleotidyl Transferase WchZ 
SPN23F03320 Putative Phosphotransferase 

SPN23F03330 
Glucose-1-Phosphate Thymidyl Transferase (Orthologue of 

SPD_0328 in D39) 

SPN23F03340 
dTDP-4-keto-6-deoxyglucose-3,5-epimerase RmlC (Orthologue of 

SPD_0329 in D39) 

SPN23F03350 
dTDP-glucose-4,6-dehydratase RmlB (Orthologue of SPD_0330 in 

D39) 

SPN23F03360 
dTDP-4-dehydrorhamnose reductase RmlD (Orthologue of SPD_0331 

in D39) 
SPN23F03370 Putative Transposase 
SPN23F06010 Putative Pneumococcal Surface Protein 
SPN23F06180 Putative Uncharacterized Protein  
SPN23F07060 Putative Uncharacterized Protein  

SPN23F07070 
ABC-type Antimicrobial Peptide Transporter, Permease Component, 

Putative 
SPN23F07080 Putative ABC Transporter ATP-binding Protein 
SPN23F07090 Putative Exported Protein 
SPN23F09740 Tn5252 orf10 protein (Orthologue of SPD_0934 in D39)  
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SPN23F09750 Tn5252 orf9 protein (Orthologue of SPD_0935 in D39) 
SPN23F09780 Tn5252 Relaxase 
SPN23F09800  Putative Lantibiotic Modifying Enzyme 
SPN23F09840 Putative Membrane Protein 
SPN23F09850 Putative Membrane Protein 
SPN23F10590 Zinc Metalloproteinase ZmpD (Orthologue of SPD_0577 in D39) 
SPN23F12240 Putative Phosphosugar-Binding Transcriptional Regulator 
SPN23F12250 Putative Membrane Protein 
SPN23F12270 Putative IS861 Transposase Orf1 
SPN23F12410 Integrase 
SPN23F12420 Conserved Hypothetical Protein 
SPN23F12430 Relaxase (Orthologue of SP1056 in TIGR4) 
SPN23F12440 Putative Mobilisation Protein (Orthologue of SP1055 in TIGR4) 
SPN23F12450 Putative Mobilisation Protein (Orthologue of SP1054 in TIGR4) 
SPN23F12460 Putative Uncharacterized Protein  
SPN23F12470 Putative DNA Helicase II, UvrD 
SPN23F12480 Hypothetical Protein 
SPN23F12490 Putative Uncharacterized Protein  
SPN23F12500 Putative Uncharacterized Protein  
SPN23F12510 Putative NTPase Protein 
SPN23F12520 Hypothetical Protein 
SPN23F12530 Putative Phosphoserine Phosphatase 
SPN23F12540 Hypothetical Protein 
SPN23F12550 Hypothetical Protein 
SPN23F12560 Hypothetical Protein 
SPN23F12570 Putative Uncharacterized Protein  
SPN23F12580 Replication Protein 
SPN23F12590 Putative Chloramphenicol Acetyltransferase 
SPN23F12600 Putative Uncharacterized Protein  
SPN23F12610 Putative Uncharacterized Protein  
SPN23F12620 Zeta Toxin 
SPN23F12630 Putative Epsilon Antitoxin (Orthologue of SP1050 in TIGR4) 
SPN23F12640 Putative Uncharacterized Protein  
SPN23F12650 Putative Uncharacterized Protein  
SPN23F12660 Putative Uncharacterized Protein  
SPN23F12670 Putative Uncharacterized Protein  
SPN23F12680 Putative Uncharacterized Protein  
SPN23F12690 Putative Lantibiotic Transport/Processing ATP Binding Protein 
SPN23F12700 Putative Lantibiotic Synthetase 
SPN23F12701 Putative Lantibiotic Precursor 
SPN23F12710 Putative Lantibiotic ABC Transporter 
SPN23F12720 Putative Lantibiotic ABC Transporter 
SPN23F12730 Putative Lantibiotic ABC Transporter 
SPN23F12740 Putative Membrane Protein 
SPN23F12750 Transcriptional Regulator 
SPN23F12760 Putative Membrane Protein 
SPN23F12770 Putative Uncharacterized Protein  
SPN23F12780 Putative Conjugative Transposon DNA Recombination Protein 
SPN23F12790 Putative Group II Intron Reverse Transcriptase/Maturase 
SPN23F12820 Putative Uncharacterized Protein  
SPN23F12830 Putative Uncharacterized Protein  
SPN23F12840 Putative Conjugal Transfer Protein 
SPN23F12850 Putative Conjugal Transfer Protein 
SPN23F12860 Putative Uncharacterized Protein  
SPN23F12870 Putative Uncharacterized Protein  
SPN23F12880 Putative Uncharacterized Protein  
SPN23F12890 Putative Conjugal Transfer Protein TraG 
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SPN23F12900 Putative Uncharacterized Protein  
SPN23F12910 Putative Uncharacterized Protein  
SPN23F12920 Conserved Hypothetical Protein 
SPN23F12930 Conserved Hypothetical Protein 
SPN23F12940 Conjugative Transposon Protein 
SPN23F12950 Conjugative Transposon Protein 
SPN23F12960 Conjugative Transposon FtsK/SpoIIIE-family protein 
SPN23F12970 Putative Conjugative Transposon Replication Initiation Factor 
SPN23F12980 Conjugative Transposon Protein 
SPN23F12990 Conjugative Transposon Protein 
SPN23F13000 Putative Conjugative Transposon Membrane Protein 
SPN23F13030 Putative Cell Wall Hydrolase 
SPN23F13040 Putative Conjugative Transposon Exported Protein 
SPN23F13050 Conjugative Transposon Tetracycline Resistance Protein 
SPN23F13060 Putative Conjugative Transposon Regulatory Protein 
SPN23F13061 Putative Uncharacterized Protein  
SPN23F13070 Putative Conjugative Transposon Regulatory Protein 
SPN23F13080 Excisionase 
SPN23F13090 Putative Integrase 
SPN23F13160 Putative Replication Initiator Protein 
SPN23F13170 Putative Uncharacterized Protein  
SPN23F14470 Putative Transposase 
SPN23F14540 Putative IS1239 Putative Transposase 
SPN23F15110 Putative Collagen-like Surface Anchored Protein 
SPN23F15120 Putative Mga-like Regulatory Protein (Ortholog of SPD_1377 in D39) 
SPN23F15300 Antiholin 
SPN23F15310 Holin 
SPN23F15320 Putatuve Uncharacterized Prophage Protein 
SPN23F15330 Phage Structural Protein 
SPN23F15340 Putative Platelet Binding Phage Protein 
SPN23F15350 Phage Tail Protein 
SPN23F15360 Putative Phage Minor Tail Protein 
SPN23F15370 Putative Phage Gp15 Protein 
SPN23F15380 Hypothetical Phage Protein 
SPN23F15390 Hypothetical Phage Protein 
SPN23F15400 Hypothetical Phage Protein 
SPN23F15410 Hypothetical Phage Protein 
SPN23F15420 Hypothetical Phage Protein 
SPN23F15430 Hypothetical Phage Protein 
SPN23F15440 Hypothetical Phage Protein 
SPN23F15450 Putative Phage Capsid Protein 
SPN23F15460 Putative Phage Scaffolding Protein 
SPN23F15470 Minor Capsid Protein 
SPN23F15490 Putative Minor Capsid Protein 
SPN23F15500 Putative Phage Terminase Large Subunit 
SPN23F15510 Hypothetical Phage Protein 
SPN23F15520 Putative Phage Protein 
SPN23F15530 Putative Phage Protein 
SPN23F15540 Putative Phage Protein 
SPN23F15550 Hypothetical Phage Protein 
SPN23F15560 Hypothetical Phage Protein 
SPN23F15570 Putative Phage Protein 
SPN23F15580 Putative Phage Protein 
SPN23F15590 Hypothetical Phage Protein 
SPN23F15600 Putative Phage Protein 
SPN23F15610 Putative Phage Protein 
SPN23F15620 Putative Phage Holliday Junction Resolvase 
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SPN23F15630 Phage Protein 
SPN23F15640 Phage Protein 
SPN23F15650 Phage Protein 
SPN23F15660 Putative Phage Protein 
SPN23F15670 Putative DNA Methylase 
SPN23F15680 Putative Single Strand DNA-binding protein 
SPN23F15700 Putative Phage Protein 
SPN23F15710 Phage Single Strand DNA Binding Protein 
SPN23F15720 Putative Phage Protein 
SPN23F15730 Putative Phage Protein 
SPN23F15740 Putative Phage Protein 
SPN23F15750 Hypothetical Phage Protein 
SPN23F15760 Putative Phage DNA Binding Protein 
SPN23F15770 Putative DNA Binding Protein 
SPN23F15780 Hypothetical Phage Protein 
SPN23F15790 Phage Protein 
SPN23F15800 Phage Integrase 
SPN23F17430 Site Specific Recombinase 
SPN23F17440 Hypothetical Protein 
SPN23F17450 Putative Membrane Protein 
SPN23F17460 Conserved Hypothetical Protein 
SPN23F17760 Putative Glycosyl Transferase 
SPN23F17960 Putative Otitis Media Associated p41 
SPN23F17970 Conserved Hypothetical Protein 
SPN23F17980 Putative ATPase 
SPN23F18180 Putative Membrane Protein 
SPN23F18190 Conserved Hypothetical Protein 
SPN23F18200 Putative Choline Sulfatase 
SPN23F18210 Sugar Phosphotransferase System (PTS) IIC Component 

SPN23F18220 
Putative Lactose/Cellobiose-specific Phosphotransferase System 

(PTS) IIA Component 

SPN23F18230 
Sugar Phosphotransferase System (PTS) Lactose/Cellobiose-specific 

Family IIB Component 
SPN23F18240 Conserved Hypothetical Protein 
SPN23F18250 Sugar Phosphotransferase (PTS) IIC Component 
SPN23F18260 Putative ROK Family Repressor Protein 
SPN23F18640 Putative Restriction Enzyme 
SPN23F18650 Putative DNA Modification Methylase 
SPN23F18990 ABC Transporter ATP-Binding Protein 
SPN23F19000 Transport System Permease Protein 
SPN23F19010 Putative Substrate Binding Protein 
SPN23F19700 Conserved Domain Protein 
SPN23F19710 Putative Uncharacterized Protein  
SPN23F20090 Putative Exported Protein 
SPN23F21700 IS1381 Transposase 
SPN23F21701 IS1381 Transposase 

Appendix 6 

Genes identified by ACT as present in the ATCC70066 9 genome but not present in the 
TIGR4 genome. 
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Appendix 7 

 
Gene Function 

SPNOXC00180 Unknown Function 
SPNOXC00190 Unknown Function 
SPNOXC00200 Unknown Function (Orthologue of SPN23F00280) 
SPNOXC00210 Unknown Function (Orthologue of SPN23F15770) 
SPNOXC00220 Unknown Function 
SPNOXC00230 Unknown Function 
SPNOXC00240 Unknown Function 
SPNOXC00250 Unknown Function 
SPNOXC00260 Unknown Function 
SPNOXC00270 Unknown Function 
SPNOXC00280 Unknown Function 
SPNOXC00290 Unknown Function 
SPNOXC00300 Unknown Function 
SPNOXC00310 Unknown Function 
SPNOXC00320 Unknown Function 
SPNOXC00330 DNA Replication Protein (Orthologue of SP1137 in TIGR4) 
SPNOXC00340 Unknown Function 
SPNOXC00350 Unknown Function 
SPNOXC00360 Unknown Function (Orthologue of SPN23F15600) 
SPNOXC00370 Unknown Function 
SPNOXC00380 Transcriptional Activator 
SPNOXC00390 Site Specific Recombinase 
SPNOXC00400 Unknown Function 
SPNOXC00410 Unknown Function 
SPNOXC00420 Unknown Function 
SPNOXC00430 Unknown Function 
SPNOXC00440 Unknown Function 
SPNOXC00450 Unknown Function 
SPNOXC00460 Capsid Protein 
SPNOXC00470 Unknown Function 
SPNOXC00480 Unknown Function 
SPNOXC00490 Unknown Function 
SPNOXC00500 Unknown Function 
SPNOXC00510 Unknown Function 
SPNOXC00520 Tail Protein 
SPNOXC00530 Unknown Function 
SPNOXC00540 Unknown Function 
SPNOXC00550 Unknown Function 
SPNOXC00560 Unknown Function 
SPNOXC00570 Unknown Function 
SPNOXC00580 Unknown Function 
SPNOXC00590 Unknown Function 
SPNOXC00600 Unknown Function (Orthologue of SPN23F15310) 
SPNOXC01370 Unknown Function 
SPNOXC01440 Hypothetical Protein 
SPNOXC01480 Conserved Hypothetical 
SPNOXC01500 Unknown Function (Orthologue of SPD_0114 in D39) 
SPNOXC01510 Unknown Function (Orthologue of SPD_0115 in D39) 
SPNOXC01520 Unknown Function (Orthologue of SPD_0117 in D39) 
SPNOXC01530 Unknown Function 
SPNOXC01540 Unknown Function 
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SPNOXC01550 Unknown Function (Orthologue of SPD_0119 in D39) 
SPNOXC01560 Unknown Function (Orthologue of SPD_0120 in D39) 
SPNOXC01570 Unknown Function  
SPNOXC01580 Unknown Function (Orthologue of SPD_0122 in D39) 
SPNOXC01590 Putative Membrane Protein (Orthologue of SPN23F01260) 
SPNOXC01600 Putative Membrane Protein (Orthologue of SPN23F01270) 

SPNOXC01610 
Hypothetical Protein (Orthologue of SPN23F01280, SPD_2086 

in D39 and SP0116 in TIGR4) 
SPNOXC01850 Hypothetical Protein (Orthologue of SPN23F01520) 

SPNOXC02670 
Putative AraC-family Transcriptional Regulator (Orthologue of 

SPN23F02341, SPD_0228 in D39) 
SPNOXC03530 Putative IS630-Spn 1 Transposase (Pseudogene) 
SPNOXC03570 Tyrosine kinase Wzc 
SPNOXC03580 IS1548 Transposase 
SPNOXC03590 UDP-glucose-6-dehydrogenase Ugd 
SPNOXC03600  Serotype 3 Capsule Synthase 

SPNOXC04440 
Putative Uncharacterised Protein (Orthologue of 

SPN23F04330 and SPD_2116 in D39) 
SPNOXC04780 Putative Membrane Protein 

SPNOXC05230 
Putative Uncharacterised Protein (Orthologue of 

SPN23F05150 and SPD_0495 in D39) 
SPNOXC05350 Putative IS1239 Transposase 

SPNOXC05460 
Putative Transposase (Orthologue of SPN23F05390, 

SPD_0520 in D39 and SP2301 in TIGR4) 
SPNOXC05760 IS1381 Transposase orfA 
SPNOXC05770 IS1381 Transposase orfB 

SPNOXC05790 
50S Ribosomal Protein L11 (Orthologue of SPN23F05690 and 

SPD_0550 in D39) 

SPNOXC05810 
Putative Uncharacterized Protein (Orthologue of 

SPN23F05710 and SP2306 in TIGR4) 

SPNOXC06450 
Putative L-lactate Oxidase-Related Protein (Orthologue of 
SPN23F06370, SPD_0619 in D39 and SP0712 in TIGR4) 

SPNOXC07350 
Putative Transposase (Orthologue of SPN23F07370, SP2472 

in TIGR4) 
SPNOXC08130 Putative Uncharacterized Protein 

SPNOXC08970 
Putative Uncharacterized Protein (Orthologue of 

SPN23F09220, SPD_0883 in D39 and SP0997 in TIGR4) 

SPNOXC09530 
Tn5252 orf10 Protein (Orthologue of SPN23F09740, 

SPD_0934 in D39 and SP1054 in TIGR4) 

SPNOXC09550 
Tn5252 relaxase (Orthologue of SPN23F09780, SPD_2181 in 

D39 and SP1056 in TIGR4) 
SPNOXC09560 D-Ala D-Ala Ligase A 
SPNOXC09570 Enolase 
SPNOXC09580 Branched Chain Amino Acid Aminotransferase 
SPNOXC09590  Transketolase 
SPNOXC09600 Transketolase 
SPNOXC09610 Acetylornithine Aminotransferase 
SPNOXC09620 Nucleoside Diphosphate Kinase 
SPNOXC09630 2-Isopropylmalate Synthetase 
SPNOXC09640 Unknown Function 
SPNOXC09650 Unknown Function 
SPNOXC09660 Phosphonopyruvate decarboxylase 
SPNOXC09670 tRNA Synthetase 
SPNOXC09680 Unknown Function 
SPNOXC09690 Unknown Function 
SPNOXC09700 Unknown Function 
SPNOXC09730 ABC Transporter 
SPNOXC09740 Unknown Function 
SPNOXC09750 Site Specific Recombinase 
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SPNOXC09760 Unknown Function 
SPNOXC09770 Unknown Function 
SPNOXC10350 Putative IS630-Spn 1 Transposase 
SPNOXC10920 Ion Channel Transport Protein 
SPNOXC11710 Conserved Hypothetical Protein 
SPNOXC11720 Putative Uncharacterized Protein 
SPNOXC12560 Putative ABC Transporter ATP-binding protein 
SPNOXC15800 Putative Transposase 
SPNOXC15810 Putative Membrane Protein (Orthologue of SPN23F18180) 
SPNOXC15820 Conserved Hypothetical Protein (Orthologue of SPN23F18190) 
SPNOXC15830 Putative Choline Sulfatase (Orthologue of SPN23F18200) 

SPNOXC15840 
Sugar Phosphotransferase System (PTS) IIC Component 

(Orthologue of SPN23F18210) 

SPNOXC15850 
Putative Lactose/Cellobiose-specific Phosphotransferase 

System (PTS) IIA Component 

SPNOXC15860 
Sugar Phosphotransferase System (PTS), Lactose/Cellobiose-

specific family IIB Component 
SPNOXC15870 Conserved Hypothetical Protein (Orthologue of SPN23F18240) 

SPNOXC15880 

Sugar Phosphotransferase System (PTS), IIC component 
(Orthologue of SPN23F18250, SPD_0424 in D39 and SP0474 

in TIGR4) 
SPNOXC16750 Transcriptional Regulator 
SPNOXC16760 Unknown Function 
SPNOXC16770 Unknown Function 

SPNOXC17150 
Putative Secreted Protein (Orthologue of SPN23F19690, 

SPD_1746 in D39 and SP1947 in TIGR4) 

SPNOXC18280 
Degenerate Transposase (Orthologue of SPN23F20990, 

SPD_2259 in D39 and SP2459 in TIGR4) 
SPNOXC19050 Glycosyl hydrolase 
SPNOXC19070 Unknown Function 
SPNOXC19100 ABC Transporter Permease 
SPNOXC19110 ABC Transporter 

Appendix 7 

Genes identified by ACT as present in the OXC141 ge nome but not present in the TIGR4 
genome. 
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Appendix 8 List of genes from the TIGR4 genome whic h are present or non hybridizing in 10 
strains of diverse serotype and diverse MLST from d iverse geographical regions.  

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions of 
differential hybridization between the test strains  and TIGR4. Yellow indicates hybridization 
by both TIGR4 DNA and the test strain DNA. Blue ind icates the absence of hybridization by 
test strain DNA and unopposed hybridization by TIGR 4 DNA. Genes whose names appear in 
white have been identified as required for virulenc e in a mouse bacteraemic pneumonia 
model (Hava and Camilli, 2002). 
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Appendix 9 

 
Appendix 9 List of genes from the R6 genome which a re present or non hybridizing in 10 
strains of diverse serotype and diverse MLST from d iverse geographical regions. 

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions where genes 
present in both the test isolates and the R6 genome  have hybridized. Red indicates 
hybridization by the test strain DNA.  
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Appendix 10 List of genes from the TIGR4 genome whi ch are present or non hybridizing in 
10 ST9 strains. 

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions of 
differential hybridisation between the test strains  and TIGR4. Yellow indicates hybridisation 
by both TIGR4 DNA and the test strain DNA. Blue ind icates the absence of hybridization by 
test strain DNA and unopposed hybridization by TIGR 4 DNA. Genes whose names appear in 
white have been identified as required for virulenc e in a mouse bacteraemic pneumonia 
model (Hava and Camilli, 2002). 
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 Appendix 11 

 
Appendix 11 List of genes from the R6 genome which are present or non hybridizing in 10 
ST9 strains. 

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions where genes 
present in both the test isolates and the R6 genome  have hybridized. Red indicates 
hybridization by the test strain DNA.  
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Appendix 12 List of genes from TIGR4 genome which a re present or non hybridizing in 10 
strains of serotype 3, ST180. 

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions of 
differential hybridization between the test strains  and TIGR4. Yellow indicates hybridization 
by DNA from both TIGR4 and the test strain. Blue in dicates hybridization of DNA from TIGR4 
and not the test strain. Genes highlighted in white  have been identified as essential for 
virulence in a mouse pneumonia model (Hava and Cami lli, 2002).   
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 Appendix 13 

 
Appendix 13 List of genes from the R6 genome which are present or non hybridizing in 10 
strains of serotype 3, ST180. 

Gene lists generated by Genespring GX 7.3.1.  Red i ndicates genes from the R6 genome 
which are found in the test strains but are not pre sent in TIGR4. 
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Appendix 14 
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Appendix 14 List of genes from TIGR4 genome which a re present or non hybridizing in 
serotype 1 isolates.  

Gene lists generated by Genespring GX 7.3.1 for eac h strain indicating regions of 
differential hybridization between the test strains  and TIGR4. Yellow indicates hybridization 
by DNA from both TIGR4 and the test strain. Blue in dicates hybridization of DNA from TIGR4 
and not the test strain. Genes highlighted in white  have been identified as essential for 
virulence in a mouse pneumonia model (Hava and Cami lli, 2002) 
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Appendix 15 

 
Appendix 15 List of genes from the R6 genome which are present or non hybridizing in 
serotype 1 strains.  

Gene lists generated by Genespring GX 7.3.1. Result s of Microarray CGH serotype 1 
isolates. Red indicates genes from the R6 genome wh ich are found in the test strains but 
are not present in TIGR4. 
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Appendix 16 

Gene 
P-
value 

No 
Clarithromycin 
Normalised 
Expression 
Level 

Post 
Clarithromycin 
Normalised 
Expression 
Level 

Common 
Name Putative Function 

Downregulated 
SP1128 0.0080 0.994 0.062 eno phosphopyruvate hydratase 
SP0499 0.0031 1.022 0.101 pgk phosphoglycerate kinase 
SP0565 0.0152 0.988 0.133 SP_0565 hypothetical protein 
SP1631 0.0004 1.021 0.151 thrS threonyl-tRNA synthetase 

SP0605 0.0010 1.018 0.154 fba 
fructose-bisphosphate 
aldolase 

SP1475 0.0069 1.050 0.163 glyQ 
glycyl-tRNA synthetase 
subunit alpha 

SP1474 0.0455 1.021 0.167 glyS 
glycyl-tRNA synthetase 
subunit beta 

SP0580 0.0312 1.027 0.185 SP_0580 
acetyltransferase, GNAT 
family 

SP0581 0.0129 0.950 0.193 pheT 
phenylalanyl-tRNA 
synthetase subunit beta 

SP1445 0.0045 0.971 0.194 guaA 

bifunctional GMP 
synthase/glutamine 
amidotransferase protein 

SP1298 0.0182 1.021 0.207 SP_1298 DHH subfamily 1 protein 
SP1659 0.0069 0.992 0.222 ileS isoleucyl-tRNA synthetase 

SP1960 0.0179 0.973 0.222 rpoC 
DNA-directed RNA 
polymerase subunit beta' 

SP0745 0.0016 0.998 0.224 upp 
uracil 
phosphoribosyltransferase 

SP1306 0.0459 1.009 0.227 gdhA glutamate dehydrogenase 

SP1961 0.0497 0.959 0.230 rpoB 
DNA-directed RNA 
polymerase subunit beta 

SP1220 0.0184 1.016 0.233 ldh L-lactate dehydrogenase 
SP0568 0.0239 0.985 0.236 valS valyl-tRNA synthetase 

SP0856 0.0094 1.038 0.240 ilvE 
branched-chain amino acid 
aminotransferase 

SP1630 0.0420 1.035 0.246 SP_1630 hypothetical protein 
SP1907 0.0286 1.023 0.256 groES co-chaperonin GroES 
SP0857 0.0219 1.027 0.266 SP_0857  
SP1476 0.0110 1.013 0.269 SP_1476 hypothetical protein 
SP1477 0.0089 1.031 0.273 SP_1477 hypothetical protein 
SP0411 0.0329 1.061 0.278 serS seryl-tRNA synthetase 
SP0400 0.0176 0.990 0.283 tig trigger factor 
SP0623 0.0276 1.041 0.288 pepV dipeptidase PepV 
SP1384 0.0216 1.001 0.292 SP_1384 hypothetical protein 

SP1013 0.0008 0.990 0.294 asd 
aspartate-semialdehyde 
dehydrogenase 

SP0797 0.0151 1.008 0.297 pepN aminopeptidase N 
SP0281 0.0012 0.989 0.302 pepC aminopeptidase C 

SP2230 0.0023 1.003 0.307 
ABC-
NBD 

ABC transporter, ATP-binding 
protein 

SP0823 0.0152 1.017 0.327 glnP 
amino acid ABC transporter, 
permease protein 

SP1655 0.0199 1.007 0.335 gpmA phosphoglyceromutase 
SP1291 0.0444 1.013 0.343 SP_1291 Cof family protein 
SP2121 0.0488 1.010 0.348 hisS histidyl-tRNA synthetase 
SP1290 0.0078 1.000 0.355 SP_1290 hypothetical protein 
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SP1576 0.0281 0.998 0.365 metA 
homoserine O-
succinyltransferase 

SP1279 0.0111 1.012 0.365 nth endonuclease III 
SP1845 0.0357 0.996 0.365 exoA exodeoxyribonuclease 

SP1891 0.0018 0.994 0.366 amiA 

oligopeptide ABC transporter, 
oligopeptide-binding protein 
AmiA 

SP1647 0.0023 0.998 0.367 pepO endopeptidase O 
SP1008 0.0038 0.990 0.389 pepT peptidase T 
SP1296 0.0045 1.000 0.395 SP_1296 hypothetical protein 
SP1574 0.0166 0.975 0.402 tpiA triosephosphate isomerase 
SP1575 0.0014 0.992 0.403 SP_1575 hypothetical protein 

SP0436 0.0273 1.001 0.411 gatB 
aspartyl/glutamyl-tRNA 
amidotransferase subunit B 

SP1470 0.0485 0.995 0.413 apbE 
thiamine biosynthesis protein 
ApbE, putative 

SP1781 0.0196 1.009 0.429 SP_1781 hypothetical protein 
SP1743 0.0390 0.966 0.436 SP_1743 hypothetical protein 

SP0438 0.0386 1.032 0.442 gatC 
aspartyl/glutamyl-tRNA 
amidotransferase subunit C 

SP1591 0.0298 1.010 0.442 pepQ proline dipeptidase 
SP0788 0.0320 0.978 0.462 metG methionyl-tRNA synthetase 
SP1413 0.0054 1.001 0.466 hprK HPr kinase/phosphorylase 

SP2176 0.0252 1.002 0.473 dltA 
D-alanine--D-alanyl carrier 
protein ligase 

SP1985 0.0399 1.004 0.498 ksgA 
dimethyladenosine 
transferase 

Upregulated 

SP1734 0.0157 1.013 2.071 sunL 
rRNA methyltransferase 
RsmB 

SP0217 0.0340 1.013 2.118 rpmC 50S ribosomal protein L29 
SP1667 0.0468 1.002 2.155 ftsA cell division protein FtsA 
SP0218 0.0198 0.982 2.212 rpsQ 30S ribosomal protein S17 

SP0807 0.0006 0.997 2.218 ezrA 
septation ring formation 
regulator EzrA 

SP1968 0.0103 1.005 2.237 coaD 
phosphopantetheine 
adenylyltransferase 

SP1540 0.0222 1.008 2.240 ssbA 
single-strand DNA-binding 
protein 

SP1739 0.0096 1.001 2.369 SP_1739 hypothetical protein 

SP1115 0.0138 1.027 2.406 rggD 
transcriptional regulator 
MutR, putative 

SP1602 0.0250 1.035 2.474 phnA phnA protein 
SP1264 0.0051 1.016 2.622 SP_1264 hypothetical protein 
SP0215 0.0328 1.019 2.711 rpsC 30S ribosomal protein S3 
SP1362 0.0308 0.964 2.956 mecA adaptor protein 
SP0740 0.0018 1.002 3.077 SP_0740 MutT/nudix family protein 
SP0026 0.0279 0.960 3.421 SP_0026 hypothetical protein 
SP0742 0.0134 1.048 4.889 SP_0742 hypothetical protein 
SP0800 0.0009 1.002 10.524 SP_0800 hypothetical protein 

Appendix 16 Genes present in strain South Africa 25 07 identified as differentially expressed 
15 minutes after midlog when growing in BHI broth i n the presence and absence of 
clarithromycin 5mg/L (Bonferonni correction).  

The genes which are significantly up or down regula ted (P<0.05) were identified using 
Genespring GX 7.3.1 (Agilent Technologies, USA) usi ng a one way ANOVA  t-test with a 
false discovery rate set at 0.05 and using Bonferon ni multiple testing correction. Expression 
differences of less than 2 fold difference were exc luded. The P values resulting from the t-
test comparing expression in the presence and absen ce of clarithromycin for each gene and 
the putative functions of the genes are noted. Gene s involved in amino acid synthesis are 
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highlighted green, transcriptional regulators in or ange and ribosomal proteins are 
highlighted in yellow. 
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Appendix 17 

Gene P-value  

No 
Clarithromycin 
Normalised 
Expression 
Level 

Post 
Clarithromycin 
Normalised 
Expression 
Level 

Common 
Name Putative Function 

Downregulated 
SP1128 0.0004 0.994 0.062 eno phosphopyruvate hydratase 
SP0499 0.0002 1.022 0.101 pgk phosphoglycerate kinase 
SP0565 0.0004 0.988 0.133 SP0565 hypothetical protein 
SP1631 0.0002 1.021 0.151 thrS threonyl-tRNA synthetase 
SP0605 0.0002 1.018 0.154 fba fructose-bisphosphate aldolase 

SP1475 0.0003 1.050 0.163 glyQ 
glycyl-tRNA synthetase subunit 
alpha 

SP1474 0.0007 1.021 0.167 glyS 
glycyl-tRNA synthetase subunit 
beta 

SP0567 0.0037 0.932 0.167 SP0567 hypothetical protein 

SP0445 0.0046 1.044 0.168 ilvB 
acetolactate synthase catalytic 
subunit 

SP1583 0.0016 0.998 0.185 entB isochorismatase family protein 
SP0580 0.0005 1.027 0.185 SP0580 acetyltransferase, GNAT family 

SP1815 0.0007 1.034 0.190 trpD 
anthranilate 
phosphoribosyltransferase 

SP0581 0.0004 0.950 0.193 pheT 
phenylalanyl-tRNA synthetase 
subunit beta 

SP1445 0.0003 0.971 0.194 guaA 

bifunctional GMP 
synthase/glutamine 
amidotransferase protein 

SP1142 0.0297 0.994 0.198 SP1142 hypothetical protein 

SP0579 0.0085 1.000 0.199 pheS 
phenylalanyl-tRNA synthetase 
subunit alpha 

SP1812 0.0363 1.000 0.202 trpB tryptophan synthase subunit beta 
SP1584 0.0024 1.023 0.202 codY transcriptional repressor CodY 

SP1057 0.0287 0.976 0.205 SP1057 
transcriptional regulator PlcR, 
putative 

SP1298 0.0005 1.021 0.207 SP1298 DHH subfamily 1 protein 

SP0875 0.0415 0.986 0.218 fruR 
lactose phosphotransferase 
system repressor 

SP0409 0.0324 1.146 0.219 mip hypothetical protein 
SP1489 0.0037 1.021 0.219 tuf elongation factor Tu 
SpR6-0323 0.0103 1.084 0.222 cpsO  
SP1659 0.0003 0.992 0.222 ileS isoleucyl-tRNA synthetase 

SP1960 0.0005 0.973 0.222 rpoC 
DNA-directed RNA polymerase 
subunit beta' 

SP0745 0.0002 0.998 0.224 upp uracil phosphoribosyltransferase 
SP1651 0.0032 1.028 0.226 tpx thiol peroxidase 
SP1306 0.0007 1.009 0.227 gdhA glutamate dehydrogenase 
SP1473 0.0009 0.958 0.228 SP1473 hypothetical protein 

SP1961 0.0007 0.959 0.230 rpoB 
DNA-directed RNA polymerase 
subunit beta 

SP0159 0.0339 1.442 0.231 SP0159 hypothetical protein 
SP1753 0.0044 1.014 0.232 dctA  
SP1220 0.0005 1.016 0.233 ldh L-lactate dehydrogenase 
SP2239 0.0075 0.981 0.235 SP2239 serine protease 
SP0568 0.0005 0.985 0.236 valS valyl-tRNA synthetase 

SP0856 0.0004 1.038 0.240 ilvE 
branched-chain amino acid 
aminotransferase 
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SP1814 0.0100 1.002 0.244 trpC 
indole-3-glycerol-phosphate 
synthase 

SP1630 0.0006 1.035 0.246 SP1630 hypothetical protein 

SP1811 0.0475 0.987 0.250 trpA 
tryptophan synthase subunit 
alpha 

SP1907 0.0005 1.023 0.256 groES co-chaperonin GroES 
SP1578 0.0239 0.854 0.259 SP1578 methyltransferase, putative 
SP0857 0.0005 1.027 0.266 SP0857  
SP1476 0.0004 1.013 0.269 SP1476 hypothetical protein 
SP0328 0.0113 1.000 0.271 SP0328 IS1380-Spn1 transposase 

SP1499 0.0020 1.001 0.272 bta 
bacterocin transport accessory 
protein 

SP1477 0.0004 1.031 0.273 SP1477 hypothetical protein 
SP0411 0.0005 1.061 0.278 serS seryl-tRNA synthetase 
SP2240 0.0021 1.053 0.279 spo0J spspoJ protein 

SP0507 0.0011 0.944 0.279 hsdS 
type I restriction-modification 
system, S subunit, putative 

SP0400 0.0005 0.990 0.283 tig trigger factor 

SP2026 0.0059 1.021 0.287 adhE 
alcohol dehydrogenase, iron-
containing 

SP0623 0.0005 1.041 0.288 pepV dipeptidase PepV 
SP1906 0.0109 0.888 0.290 groEL chaperonin GroEL 
SP1384 0.0005 1.001 0.292 SP1384 hypothetical protein 

SP1013 0.0002 0.990 0.294 asd 
aspartate-semialdehyde 
dehydrogenase 

SP0797 0.0004 1.008 0.297 pepN aminopeptidase N 
SP1064 0.0071 1.090 0.297 SP1064 transposase, IS200 family 
SP0281 0.0002 0.989 0.302 pepC aminopeptidase C 

SP2230 0.0002 1.003 0.307 
ABC-
NBD 

ABC transporter, ATP-binding 
protein 

SP0746 0.0013 0.996 0.308 clpP 
ATP-dependent Clp protease 
proteolytic subunit 

SP0766 0.0120 0.990 0.318 sodA 
superoxide dismutase, 
manganese-dependent 

SP1813 0.0210 1.087 0.321 trpF 
N-(5'-phosphoribosyl)anthranilate 
isomerase 

SP0622 0.0058 1.015 0.326 nrd nitroreductase family protein 
SP1498 0.0009 1.058 0.327 pgm phosphoglucomutase 

SP0823 0.0004 1.017 0.327 glnP 
amino acid ABC transporter, 
permease protein 

SP0501 0.0059 1.044 0.332 glnR 
transcriptional regulator, MerR 
family 

SP1577 0.0024 0.962 0.335 apt 
adenine 
phosphoribosyltransferase 

SP1655 0.0005 1.007 0.335 gpmA phosphoglyceromutase 
SP1027 0.0033 1.048 0.338 SP1027 hypothetical protein 
SP0459 0.0066 1.073 0.338 pfl formate acetyltransferase 
SP1291 0.0007 1.013 0.343 SP1291 Cof family protein 
SP1280 0.0058 0.999 0.344 SP1280 hypothetical protein 
SP0502 0.0115 1.061 0.344 glnA glutamine synthetase, type I 
SP0858 0.0038 0.993 0.346 SP0858 hypothetical protein 
SP2121 0.0007 1.010 0.348 hisS histidyl-tRNA synthetase 
SP1290 0.0004 1.000 0.355 SP1290 hypothetical protein 
SP0055 0.0040 0.999 0.358 SP0055 hypothetical protein 

SP1576 0.0005 0.998 0.365 metA 
homoserine O-
succinyltransferase 

SP1279 0.0004 1.012 0.365 nth endonuclease III 
SP1845 0.0006 0.996 0.365 exoA exodeoxyribonuclease 
SP1891 0.0002 0.994 0.366 amiA oligopeptide ABC transporter, 



342 

oligopeptide-binding protein AmiA 

SP1647 0.0002 0.998 0.367 pepO endopeptidase O 

SP1412 0.0009 0.961 0.375 lgt 
prolipoprotein diacylglyceryl 
transferase 

SP1780 0.0049 1.001 0.376 pepF oligoendopeptidase F, putative 

SP0798 0.0058 0.996 0.376 ciaR 
DNA-binding response regulator 
CiaR 

SP1177 0.0011 1.001 0.378 ptsH phosphocarrier protein HPr 

SP2206 0.0053 0.954 0.378 SP2206 
ribosomal subunit interface 
protein 

SP1714 0.0428 1.035 0.382 SP1714 
transcriptional regulator, GntR 
family 

SP1145 0.0364 1.181 0.382 SP1145 hypothetical protein 
SP1246 0.0221 0.946 0.385 SP1246 Cof family protein 
SP0340 0.0321 0.998 0.385 luxS S-ribosylhomocysteinase 
SP1130 0.0180 0.994 0.387 SP1130 transcriptional regulator 
SP1008 0.0003 0.990 0.389 pepT peptidase T 
SP1154 0.0136 0.945 0.395 SP1154 immunoglobulin A1 protease 
SP1296 0.0003 1.000 0.395 SP1296 hypothetical protein 

SP0176 0.0052 0.999 0.395 ribA 

3,4-dihydroxy-2-butanone 4-
phosphate synthase/GTP 
cyclohydrolase II 

SP1574 0.0005 0.975 0.402 tpiA triosephosphate isomerase 
SP1295 0.0118 1.105 0.403 crcB crcB protein 
SP1575 0.0002 0.992 0.403 SP1575 hypothetical protein 
SP0730 0.0012 0.985 0.403 spxB pyruvate oxidase 

SP0408 0.0147 0.910 0.406 dagA 
sodium:alanine symporter family 
protein 

SP0204 0.0074 0.999 0.407 SP0204 acetyltransferase, GNAT family 
SP0713 0.0051 0.989 0.410 lysS lysyl-tRNA synthetase 

SP0436 0.0005 1.001 0.411 gatB 
aspartyl/glutamyl-tRNA 
amidotransferase subunit B 

SP1470 0.0007 0.995 0.413 apbE 
thiamine biosynthesis protein 
ApbE, putative 

SP0799 0.0016 1.009 0.416 ciaH sensor histidine kinase CiaH 

SP1715 0.0128 0.969 0.420 
ABC-
NBD 

ABC transporter, ATP-binding 
protein 

SP1415 0.0116 0.964 0.421 nagB 
glucosamine-6-phosphate 
isomerase 

SP1176 0.0037 1.012 0.426 ptsI 
phosphoenolpyruvate-protein 
phosphotransferase 

SP1781 0.0005 1.009 0.429 SP1781 hypothetical protein 
SP0385 0.0123 0.998 0.436 SP0385 hypothetical protein 
SP1743 0.0006 0.966 0.436 SP1743 hypothetical protein 
SP2125 0.0366 0.981 0.437 SP2125 hypothetical protein 
SP0816 0.0066 1.002 0.437 SP0816 hypothetical protein 

SP0437 0.0333 0.902 0.440 gatA 
aspartyl/glutamyl-tRNA 
amidotransferase subunit A 

SP1069 0.0036 0.990 0.440 
ABC-
SBP hypothetical protein 

SP0438 0.0006 1.032 0.442 gatC 
aspartyl/glutamyl-tRNA 
amidotransferase subunit C 

SP1591 0.0005 1.010 0.442 pepQ proline dipeptidase 

SP1243 0.0022 0.965 0.449 zwf 
glucose-6-phosphate 1-
dehydrogenase 

SP2175 0.0041 1.026 0.449 dltB dltB protein 
SP1014 0.0092 0.940 0.451 dapA dihydrodipicolinate synthase 

SP0867 0.0089 0.998 0.453 
ABC-
NBD 

ABC transporter, ATP-binding 
protein 

SP0516 0.0062 0.961 0.455 grpE heat shock protein GrpE 
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SP1970 0.0009 1.019 0.457 asnA asparagine synthetase AsnA 
SP1505 0.0008 0.966 0.457 SP1505 membrane protein 
SP0056 0.0040 0.954 0.460 purB adenylosuccinate lyase 
SP0788 0.0005 0.978 0.462 metG methionyl-tRNA synthetase 
SP2069 0.0021 1.008 0.465 gltX glutamyl-tRNA synthetase 
SP1413 0.0003 1.001 0.466 hprK HPr kinase/phosphorylase 
SP0828 0.0099 1.025 0.470 rpiA ribose-5-phosphate isomerase A 

SP0824 0.0280 1.000 0.470 glnQ 
amino acid ABC transporter, ATP-
binding protein 

SP0869 0.0367 1.082 0.470 SP0869 aminotransferase, class-V 
SP2058 0.0037 0.961 0.471 tgt queuine tRNA-ribosyltransferase 
SP1112 0.0012 1.011 0.471 SP1112 degV family protein 
SP1633 0.0096 1.006 0.471 rr01 DNA-binding response regulator 

SP1221 0.0025 1.000 0.471 spnII 
type II restriction endonuclease, 
putative 

SP0688 0.0033 1.027 0.472 murD 
UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate synthetase 

SP2176 0.0005 1.002 0.473 dltA 
D-alanine--D-alanyl carrier protein 
ligase 

SP0173 0.0053 1.000 0.475 mutL DNA mismatch repair protein 
SP1471 0.0160 1.013 0.475 SP1471 oxidoreductase, putative 
SP0979 0.0103 0.997 0.476 pepB oligoendopeptidase F 
SP0981 0.0020 0.985 0.477 prsA foldase protein PrsA 
SP1378 0.0007 0.984 0.478 SP1378 hypothetical protein 
SP0784 0.0059 0.989 0.479 gor glutathione reductase 

SP0205 0.0234 0.996 0.483 nrdG 

anaerobic ribonucleoside-
triphosphate reductase activating 
protein 

SP1175 0.0110 1.019 0.485 phtA hypothetical protein 

SP1244 0.0011 1.002 0.490 ftsY 
signal recognition particle-docking 
protein FtsY 

SP1985 0.0006 1.004 0.498 ksgA dimethyladenosine transferase 
SP0682 0.0165 1.083 0.498 SP0682 hypothetical protein 
SP1247 0.0007 1.013 0.500 smc hypothetical protein 

SP1068 0.0018 1.032 0.503 ppc 
phosphoenolpyruvate 
carboxylase 

SP0868 0.0218 1.068 0.508 SP0868 hypothetical protein 
SP1693 0.0203 1.090 0.514 nanA  
SP2126 0.0187 1.052 0.515 ilvD dihydroxy-acid dehydratase 

SP1887 0.0172 1.111 0.519 amiF 
oligopeptide ABC transporter, 
ATP-binding protein AmiF 

Upregulated 
SP1422 0.0207 0.916 1.859 SP1422 hypothetical protein 
SP0210 0.0089 0.939 1.915 rplD 50S ribosomal protein L4 
SP0224 0.0017 0.970 1.948 rpsH 30S ribosomal protein S8 

SP1035 0.0045 0.956 1.954 
ABC-
NBD 

iron-compound ABC transporter, 
ATP-binding protein 

SP0984 0.0027 0.963 1.960 gpmB 
phosphoglycerate mutase family 
protein 

SP1356 0.0025 0.989 1.989 trzA chlorohydrolase 

SP0739 0.0008 0.976 2.000 mta 
transcriptional regulator, MerR 
family 

SP1105 0.0018 0.980 2.025 rplU 50S ribosomal protein L21 
SP0220 0.0123 1.000 2.026 rplX 50S ribosomal protein L24 
SP0004 0.0007 0.987 2.030 SP0004 translation-associated GTPase 

SP0974 0.0146 0.997 2.032 secG 
preprotein translocase subunit 
SecG 

SP0943 0.0059 0.971 2.040 gidA 
tRNA (uracil-5-)-
methyltransferase Gid 
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SP0991 0.0007 0.982 2.049 pfs 

5'-methylthioadenosine/S-
adenosylhomocysteine 
nucleosidase 

SP1734 0.0004 1.013 2.071 sunL rRNA methyltransferase RsmB 

SP2008 0.0088 0.958 2.080 secE 
preprotein translocase subunit 
SecE 

SP1083 0.0016 1.020 2.084 SP1083 hypothetical protein 
SP0209 0.0016 0.963 2.098 rplC 50S ribosomal protein L3 
SP0226 0.0017 0.996 2.098 rplR 50S ribosomal protein L18 
SP1198 0.0145 0.992 2.106 SP1198 hypothetical protein 

SP1992 0.0159 1.002 2.113 SP1992 
cell wall surface anchor family 
protein 

SP0217 0.0006 1.013 2.118 rpmC 50S ribosomal protein L29 

SpR6-0464 0.0263 0.996 2.119 hk13 
sensor histidine kinase BlpH, 
putative 

SP2000 0.0339 1.014 2.122 rr11 DNA-binding response regulator 
SP1926 0.0321 0.900 2.132 SP1926 hypothetical protein 

SP0779 0.0037 1.013 2.139 trmD 
tRNA (guanine-N(1)-)-
methyltransferase 

SP0002 0.0008 0.997 2.147 dnaN DNA polymerase III subunit beta 
SP0191 0.0311 0.995 2.150 SP0191 hypothetical protein 
SP1667 0.0007 1.002 2.155 ftsA cell division protein FtsA 
SP1643 0.0292 0.997 2.164 SP1643 hypothetical protein 

SP1034 0.0159 0.999 2.168 
ABC-
MSP 

iron-compound ABC transporter, 
permease protein 

SP1084 0.0036 1.011 2.182 map methionine aminopeptidase 

SP0613 0.0048 1.046 2.185 SP0613 
metallo-beta-lactamase 
superfamily protein 

SP0227 0.0037 1.019 2.194 rpsE 30S ribosomal protein S5 
SP1429 0.0464 1.065 2.197 SP1429 peptidase, U32 family 
SP0213 0.0011 1.016 2.200 rpsS 30S ribosomal protein S19 
SP0218 0.0005 0.982 2.212 rpsQ 30S ribosomal protein S17 

SP0807 0.0002 0.997 2.218 ezrA 
septation ring formation regulator 
EzrA 

SP1170 0.0333 0.992 2.224 SP1170 hypothetical protein 

SP1081 0.0021 0.990 2.229 murZ 
UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

SP1427 0.0364 1.094 2.230 SP1427 peptidase, U32 family 
SP1541 0.0044 1.003 2.237 rpsF 30S ribosomal protein S6 
SP0225 0.0032 0.981 2.237 rplF 50S ribosomal protein L6 

SP1968 0.0004 1.005 2.237 coaD 
phosphopantetheine 
adenylyltransferase 

SP1540 0.0005 1.008 2.240 ssbA single-strand DNA-binding protein 
SP0231 0.0076 1.001 2.241 adk adenylate kinase 
SP0964 0.0263 0.917 2.255 pyrD dihydroorotate dehydrogenase 1B 

SP0419 0.0442 0.934 2.273 fabK 
enoyl-(acyl-carrier-protein) 
reductase 

SP2214 0.0028 0.964 2.274 tsf elongation factor Ts 
SP0211 0.0020 0.933 2.277 rplW 50S ribosomal protein L23 
SP0219 0.0166 0.999 2.281 rplN 50S ribosomal protein L14 
SP2152 0.0091 0.968 2.294 SP2152 hypothetical protein 
SP0380 0.0411 1.058 2.301 SP0380 hypothetical protein 
SP2156 0.0027 1.048 2.303 SP2156 SPFH domain/Band 7 family 

SP1032 0.0319 0.999 2.326 
ABC-
SBP 

iron-compound ABC transporter, 
iron compound-binding protein 

SP1354 0.0108 1.028 2.333 rplL 50S ribosomal protein L7/L12 
SP0992 0.0067 0.997 2.334 SP0992 hypothetical protein 
SP1293 0.0081 1.003 2.362 rplS 50S ribosomal protein L19 
SP1601 0.0010 0.993 2.365 SP1601 hypothetical protein 
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SP1739 0.0004 1.001 2.369 SP1739 hypothetical protein 
SP0650 0.0010 0.989 2.378 SP0650 hypothetical protein 
SP0741 0.0030 1.023 2.378 SP0741 hypothetical protein 

SP1115 0.0004 1.027 2.406 rggD 
transcriptional regulator MutR, 
putative 

SP1600 0.0022 1.033 2.456 SP1600 hypothetical protein 
SP1666 0.0036 0.995 2.463 ftsZ cell division protein FtsZ 
SP2116 0.0179 0.993 2.471 SP2116 hypothetical protein 

SP1033 0.0261 1.000 2.471 
ABC-
MSP 

iron-compound ABC transporter, 
permease protein 

SP1602 0.0005 1.035 2.474 phnA phnA protein 
SP0212 0.0431 0.996 2.493 rplB 50S ribosomal protein L2 
SP0024 0.0091 0.974 2.511 SP0024 hypothetical protein 
SP1355 0.0010 1.053 2.527 rplJ 50S ribosomal protein L10 

SP2007 0.0008 0.950 2.539 nusG 
transcription antitermination 
protein NusG 

SP2215 0.0008 1.002 2.553 rpsB 30S ribosomal protein S2 
SP0783 0.0037 1.055 2.565 bioY hypothetical protein 
SP0986 0.0122 0.998 2.566 SP0986 hypothetical protein 
SP0216 0.0037 0.999 2.568 rplP 50S ribosomal protein L16 
SP1208 0.0016 1.027 2.576 udK uridine kinase 

SP0185 0.0061 0.999 2.586 corA 
magnesium transporter, CorA 
family 

SP0969 0.0051 0.991 2.609 era GTP-binding protein Era 
SP1264 0.0003 1.016 2.622 SP1264 hypothetical protein 
SP0215 0.0005 1.019 2.711 rpsC 30S ribosomal protein S3 

SP0420 0.0332 0.917 2.744 fabD 
acyl-carrier-protein S-
malonyltransferase 

SP0645 0.0101 0.987 2.750 PTS-EII 
PTS system IIA component, 
putative 

SP0025 0.0085 0.988 2.781 SP0025 hypothetical protein 
SP0817 0.0447 1.000 2.795 SP0817 MutT/nudix family protein 

SP0111 0.0345 1.084 2.808 
ABC-
NBD 

amino acid ABC transporter, ATP-
binding protein, putative 

SP1586 0.0037 1.031 2.886 SP1586 
ATP-dependent RNA helicase, 
putative 

SP1171 0.0058 0.977 2.940 SP1171 
hydrolase, haloacid 
dehalogenase-like family 

SP2117 0.0220 1.043 2.944 SP2117 hypothetical protein 
SP1922 0.0017 1.076 2.948 SP1922 hypothetical protein 
SP1362 0.0005 0.964 2.956 mecA adaptor protein 

SP2062 0.0089 0.904 2.994 marR 
transcriptional regulator, MarR 
family 

SP0740 0.0002 1.002 3.077 SP0740 MutT/nudix family protein 
SP0430 0.0033 0.998 3.107 SP0430 hypothetical protein 

SP1821 0.0156 1.000 3.283 ccpA 
sugar-binding transcriptional 
regulator, LacI family 

SP0423 0.0263 0.846 3.313 accB 
acetyl-CoA carboxylase biotin 
carboxyl carrier protein subunit 

SP0421 0.0418 0.928 3.358 fabG 
3-ketoacyl-(acyl-carrier-protein) 
reductase 

SP1197 0.0037 0.976 3.397 SP1197 hypothetical protein 
SP0026 0.0005 0.960 3.421 SP0026 hypothetical protein 

SP0427 0.0200 0.844 3.464 accA 
acetyl-CoA carboxylase subunit 
alpha 

SP0426 0.0261 0.933 3.676 accD 
acetyl-CoA carboxylase subunit 
beta 

SP0424 0.0269 0.889 3.721 fabZ 
(3R)-hydroxymyristoyl-(acyl 
carrier protein) dehydratase 
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SP0425 0.0304 0.909 3.793 accC 
acetyl-CoA carboxylase biotin 
carboxylase subunit 

SP2098 0.0056 1.005 3.816 SP2098 membrane protein 

SP0422 0.0292 0.885 3.935 fabF 
3-oxoacyl-(acyl carrier protein) 
synthase II 

SP0085 0.0017 0.983 4.016 rpsD 30S ribosomal protein S4 

SP2003 0.0162 0.999 4.164 
ABC-
NBD 

ABC transporter, ATP-binding 
protein 

SP0742 0.0004 1.048 4.889 SP0742 hypothetical protein 
SP2216 0.0040 1.011 4.997 gSP781 secreted 45 kd protein 
SP0800 0.0002 1.002 10.524 SP0800 hypothetical protein 
SP2063 0.0087 0.932 15.672 SP2063 LysM domain-containing protein 
SP0107 0.0008 1.088 34.684 SP0107 LysM domain protein 

Appendix 17 Genes present in strain South Africa 25 07 which are identified as differentially 
expressed 15 minutes after midlog when growing in B HI broth in the presence and absence 
of clarithromycin 5mg/L (Benjamini and Hochberg cor rection).  

The genes which are significantly up or down regula ted (P<0.05) were identified using 
Genespring GX 7.3.1 (Agilent Technologies, USA) usi ng a one way ANOVA  t-test with a 
false discovery rate set at 0.05 and Benjamini and Hochberg multiple testing correction 
used. Expression differences with less than 2 fold differences were excluded. The P values 
resulting from the t-test comparing expression in t he presence and absence of 
clarithromycin for each gene and the putative funct ions of the genes are noted. Genes 
involved in amino acid synthesis are highlighted gr een, transcriptional regulators in orange 
and ribosomal proteins are highlighted in yellow. G enes highlighted in red have been 
identified as part of the pneumococcal stress respo nse to vancomycin (Haas et al ., 2005). 

 
 
 

 
 


