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Abstract 

The renin angiotensin system (RAS), a homeostatic system involved in blood pressure and 

volume control, is implicated in the pathology of several risk factors for ischaemic stroke. 

Mounting evidence now suggests that the RAS may play a role in the pathophysiology of 

ischaemic stroke. This is thought to be due to an imbalance between the classical RAS 

axis, Angiotensin converting enzyme/Angiotensin II/Angiotensin II receptor type I 

(ACE/Ang II/AT1R), and the counter-regulatory RAS axis, Angiotensin converting 

enzyme 2/Angiotensin-(1-7)/Mas receptor [ACE2/Ang-(1-7)/MasR]. The counter-

regulatory axis has been shown to provide neuroprotection in ischaemic stroke animal 

models. Therefore, the studies conducted in this thesis aimed to test the neuroprotective 

potential of Ang-(1-7) as a post-stroke therapy following transient focal cerebral 

ischaemia. Furthermore, experiments were conducted to test a potential synergistic effect 

between MasR and alternative Ang II receptor, Angiotensin II receptor type II (AT2R), 

agonism following stroke.   

Aim 1: To optimise the experimental model of stroke and carry out exploratory 

therapeutic studies with an ACE2 activator following stroke. 

The intraluminal filament model of transient middle cerebral artery occlusion (MCAO) 

allows for investigation of reperfusion following stroke; however, the model leads to 

considerable variability in lesion size thereby limiting data interpretation particularly in 

therapeutic studies. Therefore, there is a need to address confounding variables and 

determine methods to predict final infarct outcome. Additionally, counter-regulatory RAS 

targeting therapies have been primarily studied in ischaemic stroke through 

intracerebroventricular (ICV) administration, which is not a recommended route of 

administration for clinical use. Consequently, we aimed to optimise the animal model used 

and RAS targeting therapies. We show that following permanent MCAO, Wistar rats 

display significantly larger lesion volumes with less variability than Sprague Dawley 

animals. Importantly, the use of Laser Doppler Flowmetry did not successfully predict 

final infarct volume. Finally, systemic administration of diminazene aceturate (DIZE; 

ACE2 activator) did not reduce final infarct volume following transient MCAO. For future 

studies, we decided to use Wistar rats, ICV route of administration and acute magnetic 

resonance imaging (MRI) to confirm successful occlusion of the MCA. 
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Aim 2: To determine the effects of Ang-(1-7) and/or Compound 21 (C21) on the 

extent of tissue salvage following transient focal cerebral ischaemia.    

We investigated the impact of Ang-(1-7) and/or C21 (AT2R agonist) on the extent of tissue 

salvage following reperfusion. Acute MRI angiography was carried out during MCAO to 

confirm successful MCAO and to assess baseline lesion volume. At day 7 following 

reperfusion, MRI-T2 was carried out to determine final infarct volume thereby allowing us 

to longitudinally assess the change in lesion volume. We demonstrate that prior to therapy 

there was substantial variability in baseline lesion volume across the treatment groups. 

When normalising the data to initial lesion for each animal, Ang-(1-7) along with 

reperfusion significantly increased tissue salvage compared to vehicle animals with no 

effect on blood pressure. C21 and combination group [Ang-(1-7) +C21] however, did not 

induce a therapeutic effect. Additionally, neurological score was comparable amongst 

groups. Gene expression experiments confirmed that there is an imbalance of the RAS 

following stroke as AT2R was upregulated and MasR downregulated at day 7 following 

MCAO. Ang-(1-7) did not influence inflammatory gene expression markers; however, it 

significantly attenuated the increase of NADPH oxidase type 1 (NOX1) seen in the control 

animals, possibly promoting a neurogenesis effect at the time point assessed. 

Aim 3: To determine the impact of Ang-(1-7) on blood brain barrier (BBB) 

breakdown and microglia activation following transient focal cerebral ischaemia. 

Evidence from the literature suggests that Ang-(1-7) induces an anti-inflammatory effect 

particularly at acute stages of injury (24 hrs and 72 hrs) following transient MCAO. 

Accordingly, we hypothesised that post-stroke Ang-(1-7) therapy exerts a therapeutic 

effect by attenuating BBB breakdown and microglia activation and inflammatory profile at 

24 hrs following MCAO. Using T1 contrast enhanced MRI we demonstrated that Ang-(1-7) 

did not alter BBB breakdown at 24 hrs and that BBB disruption was highly variable 

amongst animals. Ang-(1-7) treatment did not alter infarct volume at 24 hrs post MCAO 

compared to control and there were no differences in neurological outcome. There was no 

influence of Ang-(1-7) treatment on microglia number and activation within the peri-

infarct and homotopic contralateral regions. Moreover, gene expression showed that pro-

inflammatory markers were upregulated following MCAO with no effect of Ang-(1-7) on 

these markers. Interestingly, RAS receptor components were comparable to Sham animals, 

indicating that the RAS follows a biphasic pattern and does not promote injury at 24 hrs 

following transient MCAO in the filament model. 
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Aim 4: To determine whether Ang-(1-7) acts on the cerebrovasculature to improve 

CBF following transient focal cerebral ischaemia. 

Results from the previous studies raised the question whether Ang-(1-7) post stroke 

therapy enhances cerebral blood flow (CBF) at hyper-acute stages of injury after 90 min 

MCAO. The effects of Ang-(1-7) intravenous infusion at start of reperfusion and for a 

period of 90 min on cortical CBF were studied with Laser Speckle Contrast Imaging 

(LSCI). LSCI allowed changes in cortical perfusion to be assessed with a high temporal 

resolution across the entire cortical surface of the brain. Regions of interest were 

determined based on perfusion thresholds during MCAO and post-reperfusion treatment 

was assessed. Ang-(1-7) significantly attenuated the increase in CBF within the 

contralateral hemisphere compared to control animals. However, therapy did not alter CBF 

within the ischaemic hemisphere. Furthermore, Ang-(1-7) did not alter mean arterial blood 

pressure (MABP), which was maintained within normal ranges for both treatment groups, 

nor did it influence the occurrence of peri-infarct depolarisations. The Ang-(1-7) effect 

observed in this study could be the outcome of “steal phenomena” reversal, therefore, 

preventing CBF shift towards the non-ischaemic side. 

Conclusion     

This thesis conducted novel studies that demonstrate that central administration of Ang-(1-

7) following transient MCAO induces a mild to moderate neuroprotective effect where it 

increases tissue salvage. Conversely, Ang-(1-7) did not prevent BBB breakdown or exert 

an anti-inflammatory effect at the microglia level. These experiments highlight the 

neuroprotective potential of selective MasR agonists in the ischaemic stroke context. 
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Chapter 1  

1.1 Stroke 

Stroke is a complex and devastating neurological disorder characterised by a vascular 

induced injury to the central nervous system arising from more than 150 known aetiologies 

(Chen et al., 2012). The World Health Organisation describes stroke as a vascular 

condition that quickly leads to clinical signs of cerebral dysfunction due to focal or global 

injury and with symptoms lasting for at least 24 hrs or death. Conversely, cerebrovascular 

accidents in which the symptoms are prevalent for less than 24 hrs are deemed as transient 

ischaemic attacks (Saver et al. 2008; Sacco et al. 2013). The exact definition of stroke is 

under extensive debate as it encompasses a wide range of cerebrovascular disorders. For 

this reason, the American Heart Association/American Stroke Association published a 

report on updated stroke definitions where these are categorised depending on stroke type, 

location and duration (Sacco et al., 2013).  

There are two types of stroke, haemorrhagic and ischaemic (Chen et al., 2012). 

Haemorrhagic stroke constitutes up to 15% of all strokes and is subdivided into 

subarachnoid haemorrhage (SAH) and intracranial haemorrhage (ICH) (Chen et al., 2012). 

SAH occurs due to the rupture of a cerebral vessel causing haemorrhage within the 

subarachnoid space whereas ICH is associated with brain parenchyma bleeding (Dupont et 

al., 2010; Elliott and Smith, 2010). Ischaemic stroke accounts for 85% of all strokes and is 

classified as an occlusion of a cerebral blood vessel, resulting in the blockage of cerebral 

blood flow (CBF). The condition occurs suddenly and is characterised by the rapid onset of 

symptoms such as aphasia, hemiparesis, ataxia, visual field deficit, hemisensory 

impairment and facial droop.  

1.1.1 Epidemiology 

Currently, stroke is the second leading cause of death in the world and fourth in the UK 

(Stroke Association, 2017). It is estimated that in the UK alone, more than 152,000 people 

will suffer from the condition and stroke accounts forapproximately 40,000 deaths a year 

(Stroke Association, 2017). Although the mortality rates in the UK have decreased by 46% 

in 20 years (1990-2010), there has been a steep increase in stroke survivor numbers, now 

consisting of a 1.2 million population (Stroke Association 2017). In terms of disability, 

stroke is the leading condition in the UK. Over 50% of survivors are left permanently 

disabled whereas two thirds of all surviving patients display visual and speech, limb 
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movement, swallowing as well as bladder and bowel control complications (Adamson et 

al., 2004; Stroke Association, 2017). Additionally, recent reports indicate that stroke 

survivors are at higher risk of developing dementia in the longer term, particularly the 

younger patient population (Corraini et al., 2017). Consequently, stroke outcome 

management accounts for approximately £8.9 billion of tax payer costs and 5% of total 

NHS expenditure, a concerning health and socio-economic burden (Adamson et al., 2004; 

Saka et al., 2009). 

1.1.2 Risk factors 

Stroke is a multifactorial condition and can arise from several risk factors that are 

classified as non-modifiable, modifiable and potentially modifiable (Khare, 2016). Table 

1-1 provides an overview of the most common risk factors within these categories. 

Table 1-1 Stroke risk factors. Adapted from (Go et al., 2014; Khare, 2016) 

Non-Modifiable Potentially Modifiable/Modifiable 

Age Hypertension Psychological stress 

Sex Cardiac disease Diet 

Race Diabetes Mellitus Physical inactivity 

Family history Obesity Drug abuse 

Genetics Dyslipidaemia Current smoking 

 

Non-modifiable risk factors comprise age, sex, race and family history/genetics. Of all 

these, age is the most well documented factor, with risk for a stroke doubling every 10 

years after the age of 55 (Sacco et al., 1997). Although stroke may be considered a 

condition primarily occurring in elderly individuals, the number of strokes in people aged 

between 20 and 64 has increased by 25% worldwide in a decade (Feigin et al., 2014). In 

terms of sex differences, males have a higher incidence; however, after menopause, the 

incidence in females increases drastically due to a decline in oestrogen levels (Appelros et 

al., 2009). Furthermore, black people are twice as likely to have a stroke at a younger age 
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and black men over the age of 85 are mostly affected when compared to Mexican and non-

Hispanic whites (Khare 2016). 

A study carried out across 22 countries identified that there are ten crucial risk potentially 

modifiable/modifiable factors associated with 90% of stroke risk (O’Donnell et al., 2010). 

These risk factors include hypertension, current smoking, waist to hip ratio, diet risk score, 

lack of regular physical activity, diabetes mellitus, alcohol intake, psychosocial stress and 

depression, cardiac causes and ratio of apolipoproteins B and A1 (O’Donnell et al., 2010). 

Of all these conditions, hypertension is the single most important risk factor for ischaemic 

stroke, inducing a relative risk of approximately 4-fold when systolic blood pressure is 

over 160 mmHg and/or diastolic blood pressure above 95 mmHg (Khare 2016; Sacco et al. 

1997). In addition, the relationship between high blood pressure and stroke is considered 

linear and independent of other risk factors (Goldstein et al., 2006). Currently, 

hypertension is responsible for 54% of all stroke cases and treating the condition is an 

effective strategy to prevent stroke occurrence (Chalmers et al., 2003; Stroke Association, 

2017).  

1.2 Ischaemic stroke 

Ischaemic stroke results from an occlusion of a cerebral blood vessel, typically arteries, 

due to the presence of a thrombus or embolus, resulting in the blockage of blood flow to 

the brain (Figure 1-1) (Deb et al., 2010). There are several ways in which ischaemic stroke 

may occur; therefore, subclassification methods were developed with Trial of Org10172 in 

Acute Stroke Treatment (TOAST) being the most widely used method. TOAST divides 

strokes into large artery, cardioembolic, small-vessel occlusion, stroke of other determined 

causes and stroke of undetermined aetiology (Adams and Biller, 2015).  

Large artery occlusions are usually characterised by the formation of lipid laden 

atherosclerotic plaques in the inner vessel wall due to pre-existent conditions such as 

hypercholesterolaemia, hypertension or diabetes (Luitse et al., 2012). These co-morbidities 

cause endothelial cell damage and predispose the vessel to the generation of atherosclerotic 

plaques that may diminish or completely obstruct blood flow (Figure 1-1). It often occurs 

in the bifurcations of the common carotid arteries, along the middle cerebral artery (MCA) 

and at the origin of the vertebral arteries (Derdeyn, 2007; Rovira et al., 2005) and 

represents approximately 50% of all ischaemic strokes (Staals et al., 2014). This type of 
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stroke may also occur due to the rupture of the atherosclerotic plaques, forming a thrombus 

that may travel through the circulation reaching a cerebral vessel (Rapp et al., 2003).  

Cardioembolic stroke is characterised by cerebral vessel occlusion due to blood clots. The 

blood clots, or emboli, are typically formed in the heart as a result of atrial fibrillation. In 

turn, these will travel in the circulation leading to cerebral vessel occlusion, accounting for 

18-25% of all stroke cases (Olsson and Halperin, 2005). This type of stroke usually occurs 

in multiple arteries and has the worst clinical prognosis (Arboix, 2015). In addition, small 

vessel or lacunar strokes account for one quarter of all ischaemic strokes. These take place 

in the microcirculation due to lipohyalinotic alterations in the vessel wall or 

microatheromas (Arboix and Martí-Vilalta, 2009). Lacunar occlusions are typically located 

deeply in cerebral vessels such as the corona radiata, internal capsule and MCA supplied 

branches. Patients with this type of stroke are identified by the classical lacunar syndrome, 

which consists of motor symptoms, sensory, sensorimotor, ataxic hemiparesis or 

dysarthria-clumsy hand and display lower functional disability when compared to the other 

types (Arboix et al., 2005). Other less common causes of stroke include vasospasms due to 

SAH, cerebral vasculitis and coagulopathies (Ferro, Massaro and Mas, 2010). 

 

Figure 1-1 Ischaemic stroke illustration. Coronal brain section displaying the cerebral 
vasculature. The left middle cerebral artery is occluded due to the presence of an atherosclerotic 
plaque and blood clot obstructing blood flow. Grey area illustrates ischaemic damage due to 
cessation of blood supply and subsequent cell death. Figure adapted from strokecenter.org. 
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1.2.1 Cerebral blood flow and ischaemic stroke 

Although the brain represents 2% of overall body weight, it is estimated that it receives 15-

20% of total cardiac output (Heiss et al., 2011). As a result of an intense metabolic 

demand, the brain relies on CBF being maintained at critical levels despite variations in 

mean arterial blood pressures (MABP). Normal CBF in humans is approximately 50-60 

mL/100g/min (Ellenbogen et al., 2012; Hossmann and Traystman, 2008). The effective 

cerebral perfusion pressure (CPP) is the difference between the systemic MABP and 

intracranial pressure (ICP) and is regulated by a number of factors. The arterial blood 

partial pressure of carbon dioxide (PaCO2) is a critical regulator of cerebral vessels where 

it is a potent vasodilator (Shardlow and Jackson, 2008). Cerebral blood vessels possess a 

unique property where they have the ability to autoregulate (passively dilate or constrict) in 

response to fluctuations in systemic blood pressure and CPP thereby maintaining CBF 

within normal levels. If CPP fluctuates within a range of 60-150 mmHg, the brain has the 

capacity to maintain a relatively constant CBF. However, if CPP drops below this critical 

threshold then autoregulatory capacity is lost and CBF will then become linearly dependent 

on changes in MABP (Figure 1-2). Consequently, when CPP is below the autoregulation 

limit, cerebral ischaemia occurs (Hossmann and Traystman, 2008). In addition, following 

cerebral ischaemia the cerebral vessels lose their ability to autoregulate and therefore CBF 

follows a linear relationship with CPP (Figure 1-2) (Dirnagl and Pulsinelli, 1990). 

 

Figure 1-2 Relationship between CBF and CPP. When CPP fluctuates between 60-150 mmHg, 
CBF is maintaned at normal levels through autoregulation. If CPP is below or above that limit, it will 
become linearly dependent on mean arterial blood pressure. During ischaemia, autoregulation is 
lost and therefore CBF is linearly dependent on CPP. 
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During ischaemic stroke, CBF reduces across the vascular territory of the occluded vessel 

at differing levels. In the early 70s, Symon and colleagues identified that following 

cerebral ischaemia in baboons, CBF progressively decreased among three separate brain 

compartments that were later defined as irreversibly damaged (ischaemic core), tissue at 

risk of infarction (ischaemic penumbra) and hypoperfused tissue not at risk (benign 

oligaemia) (Symon et al., 1974). 

1.2.1.1 The ischaemic penumbra: the therapeutic target 

Critical CBF thresholds were first identified in non-human primates where it was observed 

that the area directly affected by the occluded vessels comprises the ischaemic core of 

irreversibly damaged tissue. In the ischaemic core, CBF is less than 6 mL/100g/min 

(Astrup et al., 1981); therefore, this area undergoes energy failure and irreversible cellular 

necrosis within minutes of stroke onset. In humans, position emission tomography studies 

identify the ischaemic core as tissue with a flow less than 12 mL/100g/min (Heiss, 2000).  

Surrounding the ischaemic core is an area of brain tissue referred to as the ischaemic 

penumbra. The ischaemic penumbra was first identified in 1981 by Astrup and colleagues 

and described as: 

“areas with less severe ischaemia with electrical failure but sustained energy metabolism 

(…) with the possible potential for recovery”, (Astrup et al., 1981). 

Therefore, the ischaemic penumbra is a region of non-functioning but viable tissue. This 

concept was then expanded with the aid of imaging techniques where it was seen that the 

penumbral tissue consists of metabolically active tissue with reduced CBF yet increased 

oxygen extraction fraction (OEF, the fraction of oxygen extracted from arterial blood) and 

maintained oxygen consumption (CMRO2) (Baron et al., 2008). CBF within the ischaemic 

penumbra ranges between 8-22 mL/100g/min in non-human primates and 12-22 

mL/100g/min in humans (Astrup et al., 1977; Ford et al., 2012; Heiss, 1983, 2000). There 

are varying functional thresholds within the penumbra region, which means that there are 

different levels of possible neuronal recovery. For instance, in non-human primates, mild 

paresis is observed at 22 mL/100g/min whereas complete paralysis is seen at 8 

mL/100g/min (Jones et al., 1981). Plus, spontaneous neuronal activity is abolished at 18 

mL/100g/min and evoked potentials are prevented between 15-20 mL/100g/min CBF 
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(Branston et al., 1974; Heiss and Rosner, 1983). Therefore, at certain levels of CBF deficit, 

neurons are functionally inactive; however, structurally viable and possibly salvageable. 

Perfusion within the penumbra is maintained by collateral blood supply. These include 

primary collaterals that form the arterial segments of the circle of Willis and secondary 

collaterals that include the ophthalmic artery and leptomeningeal vessels (Liebeskind 

2003). Still, these cells have limited energy supply and if adequate blood supply is not 

provided, in time, the tissue becomes part of the core (Dirnagl et al., 1999). The 

characteristics of the penumbra led to the conclusion that this area provides a potential 

therapeutic opportunity to limit infarct size and progression (Figure 1-3). Consequently, 

the scientific community has been committed to the development of adjuvant 

neuroprotective drugs that could prevent penumbral cell death prior to and following 

reperfusion. 

Benign oligaemia is characterised by CBF thresholds of above 22 mL/100g/min in both 

non-human primates and humans (Heiss, 2000). Here, tissue is characterised by reduced 

CBF but increased OEF and normal CMRO2, therefore, CPP is fairly maintained due to 

autoregulatory compensation mechanisms (Lee et al., 2005). Oligaemic tissue is not 

usually at risk of infarction; however, if hypoxia persists and secondary events such as 

hypotension or hyperglycaemia take place, it may force this area to become at risk (Lee et 

al., 2005). 

 

Figure 1-3 Cerebral blood flow compartments following cerebral ischaemia. A) CBF 
compartments after stroke onset. Irreversibly damaged (ischaemic core; black), tissue at risk of 
infarction (ischaemic penumbra; red) and hypoperfused tissue not at risk (benign oligaemia; blue). 
B) Ischaemic core evolution. If reperfusion is not established or a neuroprotective agent 
administered, penumbral tissue eventually becomes part of the infarct, increasing neuronal 
damage. 

 

 

 



9 

 

1.2.2 Pathobiology overview: from hypoxia to infarct 

Ischaemic stroke is characterised by a substantial loss of glucose and oxygen delivery to 

the highly metabolic brain. Lack of adequate CBF delivery quickly triggers a 

pathophysiological cascade involving multiple mechanisms: bioenergetic failure, 

excitotoxicity, peri-infarct depolarisations, oxidative stress, blood brain barrier (BBB) 

breakdown, inflammatory responses and apoptosis (Brouns and De Deyn, 2009). 

Collectively these events are known as the “ischaemic cascade”, a process that starts 

minutes after stroke onset and that lasts for several days, even when reperfusion is 

established. In fact, reperfusion alone results in secondary damages characterised by 

enhanced oxidative stress, inflammation and BBB disruption (Brouns and De Deyn, 2009). 

The components of the ischaemic cascade occur at different time points following the 

initiation of ischaemia with the collective end point resulting in cell death (Figure 1-4). 

 

Figure 1-4 The ischaemic cascade. Injury starts with bioenergetic failure followed by 
excitotoxicity, oxidative stress and peri-infarct depolarisations. At later stages, inflammation and 
apoptosis take places with subsequent BBB breakdown. Figure adapted from Brouns & De Deyn 
2009. 
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1.2.2.1 Energy failure and excitotoxicity 

A normally functional brain is dependent on energy in the form of adenine triphosphate 

(ATP) primarily produced in the mitochondria (Sanderson et al., 2013). During ischaemia, 

glucose and oxygen cessation results in mitochondria failure and ATP production 

depletion, impairing ion transport pump maintenance. This results in depolarisation and 

excitatory amino acid release into the pre-synaptic space, particularly glutamate (Dirnagl et 

al. 1999). Glutamate extracellular accumulation is then further exacerbated by loss of 

energy dependent reuptake within astrocytes, triggering excitotoxicity (Dirnagl et al. 

1999). Excessive glutamate overwhelmingly activates N-methyl-D-aspartate (NMDA) and 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In turn, 

intracellular Ca2+ and Na+ disproportionately accumulate in brain cells, triggering oxidative 

stress, cytotoxic oedema and necrosis (Dirnagl et al., 1999; Lipton, 1999).  

1.2.2.2 Peri-infarct depolarisations 

In healthy brain tissue, slowly propagating depolarisations take place across the cerebral 

cortex, a phenomena termed cortical spreading depolarisations (CSD) (Leão, 1944). These 

are triggered when a strong stimulus depolarises a certain volume of brain tissue, 

approximately 1 mm3 in rats (Ayata and Lauritzen, 2015; Matsuura and Bureš, 1971). CSD 

are characterised by an intense depolarisation of both neurons and glial cells and 

subsequent rise in metabolic demand to restore ionic gradients (Ayata and Lauritzen, 

2015). In a healthy brain, CSDs do not induce cell death and are well tolerated (Matsuura 

and Bureš, 1971; Nedergaard and Hansen, 1988). However, during cerebral ischaemia, 

CSD like depolarisations occur in the penumbral cells and are termed peri-infarct 

depolarisations (PIDs) (Hossmann, 1996).  

PIDs are characterised by repetitive propagating depolarisations across the whole 

hemisphere, typically travelling at 3 mm/min and are associated with accelerated cerebral 

infarction (Hossmann, 1996). PIDs arise spontaneously within the ischaemic penumbra and 

are triggered by cells within the ischaemic core (Ayata and Lauritzen, 2015). In the latter, 

neuronal cells are undergoing permanent anoxic depolarisation, resulting in exacerbated 

extracellular release of glutamate and K+. This ionic imbalance propagates to surrounding 

penumbral cells inducing depolarisation (Ayata and Lauritzen, 2015). On the contrary to 

cells within the ischaemic core, penumbral cells can repolarise; however, the mismatch 

between metabolic demands to support repolarisation and CBF delivery, further exhausts 

the limited ATP supply and potentiates cell death (Back et al., 1996). PIDs are crucial 
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elements of ischaemic stroke pathology as these exacerbate hypoperfusion. Plus, the PID 

number and duration correlate with infarct progression in several animal models and in 

humans (Dohmen et al., 2007; Fabricius et al., 2006; Mies et al., 1993; Shin et al., 2006). 

1.2.2.3 Oxidative and nitrosative stress 

Oxidative and nitrosative stress is characterised by the overwhelming generation of free 

radicals that surpass endogenous scavenger actions, resulting in cellular damage. There are 

several sources of free radical formation including Ca2+ overload, inflammation and 

reperfusion injury (Lakhan et al., 2009). Intracellular Ca2+ overload, triggers the activation 

of endonucleases, proteases and lipases (Crack and Taylor, 2005), which degrade cellular 

integrity components such as actin and laminin (Ankarcrona et al., 1995; Furukawa et al., 

1997). In addition, Ca2+ overload activates phospholipase A2 (PLA2) and cyclooxygenase 

(COX), which generate reactive oxygen species (ROS) leading to lipid peroxidation and 

cellular damage (Jovin et al., 2008; Mattson et al., 2000). As a result of ROS formation, 

mitochondria become disrupted and leaky resulting in free radical burst, accentuating 

oxidative stress (Kristián and Siesjö, 1998). ROS are a main source of tissue damage by 

directly inducing cell death and their main source are NADPH oxidases (NOX), 

membrane-bound enzyme complex composed of membrane and cytosolic subunits 

(Girouard et al., 2009). In the brain, there are 3 main types: NOX1, NOX2 and NOX4. 

NOX1 is expressed in human brain tissue and in microglia (Cheret et al., 2008; Infanger et 

al., 2006), NOX2, or phagocytic NOX, is an inducible isoform localised in intracellular 

phagosomes and microglia (Cheret et al., 2008) whereas NOX4 is expressed in cortical 

neurons and capillaries after ischaemia (Vallet et al., 2005). NOX2 is the most crucial ROS 

generator during cerebral ischaemic injury (Girouard et al., 2009).  

Another crucial player in free radical generation is nitric oxide (NO), a water soluble 

radical produced by nitric oxide synthase (NOS) on L-arginine (Iadecola, 1997). There are 

three types of NOS: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS 

(eNOS) (Iadecola, 1997). During ischaemia, Ca2+ overload activates NOS generating NO 

which then reacts with superoxide to form a potent reactive nitrogen species, peroxynitrite 

(Iadecola, 1997). During ischaemia, nNOS and eNOS become quickly upregulated 

whereas the increased iNOS expression is delayed by 6-12 hrs after stroke onset and 

primarily associated with reperfusion injury (Iadecola, 1997; Lakhan et al., 2009).  
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1.2.2.4 Post-ischaemic inflammatory response  

Inflammatory responses are triggered within hours of ischaemia onset and are part of a 

secondary phase of injury. During hypoxia, intracellular Ca2+ and free radicals activate a 

series of pro-inflammatory transcription factors such as nuclear factor kappa beta (NF-B), 

which in turn stimulate the production of cytokines, chemokines and adhesion molecules 

that stimulate leukocyte infiltration (Moskowitz et al., 2010). Following the initiation of 

reperfusion, a robust inflammatory response takes place by permitting inflammatory cells 

to flow into the injury site. In turn, these inflammatory mediators contribute to cell death, 

BBB disruption and leukocyte infiltration in a temporal manner (Figure 1-5) (Benakis et 

al., 2015). Microglia and infiltrating leukocytes play a crucial role in exacerbating cell 

damage by releasing ROS, pro-inflammatory cytokines [i.e interleukin 1 beta (IL-1& 

interleukin 6 (IL-6)], iNOS and matrix metalloproteinase 9 (MMP9) as well as enhancing 

cyclooxygenase 2 (COX-2) expression and NF-B activation (Lakhan et al., 2009; Liu et 

al., 1994; Schilling et al., 2009; Suzuki et al., 1999).  

Resident microglial cells are the first cells to respond to ischaemic insult by changing from 

a ramified (resting) phenotype to an active amoeboid shape (Kettenmann et al., 2011). 

Activated microglia in the brain can be identified by ionised calcium binding adapter 

molecules (IBA1) and it has been shown that they are present within the peri-infarct region 

from as early as 3.5 hrs post-stroke whereas in the ischaemic core they typically appear 

from around 24 hrs post injury (Ito et al., 2001). In addition to microglia activation, 

inflammatory cells such as neutrophils, macrophages and lymphocytes accumulate within 

the injured site. Several chemokines and receptors are involved in leukocyte recruitment 

with interleukin 8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and regulated on 

activation normal T cell expressed and secreted (RANTES) receiving particular focus (Deb 

et al., 2010). IL-8 activates C-X-C motif chemokine receptor 2 (CXCR2) stimulating 

neutrophil chemotaxis (Jickling et al., 2015; Kostulas et al., 1999). MCP-1 activates C-C 

motif chemokine receptor 2 (CCR2) leading to macrophage infiltration (Dimitrijevic et al., 

2007) whereas RANTES mediates its effects through C-C motif chemokine receptor 5 

(CCR5) acting as a powerful leukocyte activator, particularly T cells (Deb et al., 2010; 

Terao et al., 2008).  
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Figure 1-5 Spatio-temporal profile of microglia and leukocytes in infarct and peri infarct 
regions following transient middle cerebral artery occlusion (MCAO). In the infarct area 
(outlined in red), neutrophils are the first leukocytes to arrive to injury site with subsequent 
infiltration of M2 microglia/macrophages. In peri-infarct regions (outlined in pink), microglia are the 
first cells to become activated followed by neutrophil and macrophage infiltration. M2 type 
microglia/macrophage are concentrated within the infarct from 1-5 days post MCAO and then shift 
towards a M1 phenotype from 5-14 days post injury. In the peri-infarct, M1 phenotype is primarily 
present at 3-7 days and then becoming M2 type at 7-14 days. Figure adapted from Benakis et al., 
2015. 

 

Neutrophils are the first leukocytes to reach the ischaemic area and are detected from 1 to 7 

days post stroke (Figure 1-5) (Huang et al., 2006). These are followed by macrophage 

infiltration, which are highly present across injured areas between 3-7 days after insult. As 

dying neurons activate macrophages, these become morphologically undistinguishable 

from microglia, and are referred to as microglia/macrophage. Microglia/macrophages are 

suggested to exert a dual role in ischaemic stroke (Benakis et al., 2015). Initially these cells 

induce neurotoxic effects through the production of ROS, IL-1 and IL-6 cytokine release 

(Rothwell et al., 1997) whereas at later stages microglia/macrophages are neuroprotective 

by phagocytosing excitotoxins and releasing neurotropic factors including transforming 

growth factor 1 (TGF-1) and interleukin 10 (IL-10) (Iadecola and Anrather, 2011). 

These two alternating states are defined as M1 profile for pro-inflammatory and M2 for an 

anti-inflammatory and exhibit a specific gene expression profile (Table 1-2) (Hu et al., 

2012). M1 phenotype is first observed in the peri-infarct region from day 3 whereas from 

day 5 onwards it is widely expressed in the infarct core. On the other hand, M2 type is 

highly expressed within the core between 1-5 days (Figure 1-5) (Benakis et al., 2015). 

Finally, lymphocytes can enter the infarcted brain in the later phases of cerebral ischaemia 
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between 3 to 7 days post strokeand peak no earlier than 5 days post stroke (Grønberg et al., 

2013). 

Table 1-2 Simplified list of microglia/macrophage M1 and M2 type specific genes 

M1 type genes M2 type genes References 

 Cluster 

differentiation 86 

(CD86) 

 Cluster 

differentiation 32 

(CD32) 

 Cluster 

differentiation 11b 

(CD11b) 

 C-C chemokine 

receptor 7 (CCR7) 

 IL-1 

 IL-6 

 iNOS 

 Ym1/2 

 TGF-1 

 C-C motif 

chemokine 22 

(CCL22) 

 IL-10 

 Arginase 1 

(Arg1) 

 Cluster 

differentiation 

163 (CD163) 

 Cluster 

differentiation 

206 (CD206) 

Hu et al. 

2012;  

Cherry et al. 

2014;  

Durafourt et 

al. 2012. 

 

 

1.2.2.5 Blood brain barrier disruption 

The BBB is a continuous and impermeable membrane that prevents the entry of potential 

harmful substances into the brain. The basic structure of the BBB consists of a capillary 

network where endothelial cells lack fenestrations and contain tight junction proteins 

(TJPs) (Lo et al., 2003). TJPs along with adherens junctions form a circumferential zipper-

like structure between endothelial cells, limiting hydrophilic molecule passage. The 

preservation of the TJ is governed by three essential transmembrane proteins: claudins, 

occludin and junction adhesion molecules which are linked to the actin cytoskeleton 

through cytoplasmic zona occludens (ZO) proteins: ZO-1, ZO-2 and ZO-3 (Yang and 

Rosenberg, 2011). At present, it is widely recognised that the BBB is also formed by 

surrounding pericytes, perivascular astrocytes, neurons, extracellular matrix, microglia and 

oligodendrocytes and together, these components form the neurovascular unit (NVU) (del 

Zoppo, 2010).  

Following stroke, the NVU becomes disrupted and TJP disassemble, allowing leakage of 

blood components into the brain parenchyma, a process named vasogenic oedema (Lo et 
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al., 2003). The effects of vasogenic oedema are overwhelming as it increases ICP, raising 

the risk of vascular compression, herniation and hemisphere displacement (Dirnagl et al., 

1999). One of the initial events that results in damage to the BBB is the marked rise in 

oxidative stress that occurs resulting in the release of proteases and lipases that damage 

extracellular matrix and cytoskeletal components (Brouns and De Deyn, 2009). Following 

reperfusion, BBB breakdown is thought to occur in a biphasic pattern and to be the 

outcome of inflammation, oxidative stress and angiogenesis (Sandoval and Witt, 2008). 

Early BBB opening is suggested to occur between 3 to 6 hrs reperfusion and followed by 

BBB closing at approximately 15 to 24 hrs post reperfusion. After, the secondary phase of 

BBB breakdown takes place at around 48 to 72 hrs post stroke onset (Belayev et al., 1996; 

Pillai et al., 2009; Rosenberg et al., 1998; Veltkamp et al., 2005). The final phase of BBB 

disruption correlates with increased vasogenic oedema and greater tissue damage by 

allowing free leukocyte flow into the brain parenchyma and extravasation of red blood 

cells, resulting in haemorrhagic transformation (HT) (Mergenthaler et al., 2004).  

1.2.2.6 Cell death after ischaemia 

In the ischaemic brain, cell death occurs in a heterogeneous fashion. In the core, cell death 

occurs through necrosis, a rapid event that takes place within few minutes of stroke onset 

(Dirnagl et al., 1999). In these cells, the overwhelming Ca2+ and H2O influx induces 

cytotoxic oedema and nuclear chromatin condensation takes place. Subsequently, nuclear, 

organelle and plasma membrane become disrupted, releasing intracellular content (Dirnagl 

et al., 1999). In the penumbra, cell death tends to occur through apoptosis, an organised 

energy dependent form of cell death that starts hours after injury, lasts for several days and 

contributes towards infarct expansion (Love, 2003; Mergenthaler et al., 2004). Apoptosis is 

associated with the upregulation of aspartate-specific cysteine proteases named caspases, 

particularly through the release of cytochrome C from the mitochondria (Love, 2003). 

These will cleave structural proteins leading to cytoplasm shrinkage, cell fragmentation, 

chromatin condensation and cell fragmentation (Love 2003). The main difference between 

necrosis and apoptosis is that in the former, dying cells will release glutamate and toxins 

that affect the surrounding cells whereas apoptosis leads to marginal inflammation and 

genetic content release. Both cell processes may occur in ischaemic cells and are 

dependent on degree of ischaemia, Ca2+ concentration and cellular microenvironment 

(Brouns and De Deyn, 2009; Unal-Cevik et al., 2004).  
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1.2.3 Current therapies and challenges 

The first goal in ischaemic stroke treatment is to restore blood flow to the ischaemic brain. 

At the moment, intravenous (IV) alteplase stroke therapy or recombinant tissue 

plasminogen activator (rt-PA) is the only non-surgical treatment available and it works by 

lysing the clot obstructing the vessel following IV administration (Roth, 2011). 

Recanalization and consequent reperfusion of ischaemic brain is associated with reduced 

neurological deficit and mortality (Rha and Saver, 2007). Nonetheless, IV rt-PA has 

various limitations, for instance, the efficacy and safety of treatment is restricted to patients 

assessed within 4.5 hours of symptom onset and is mostly effective when administered 

within 90 min of symptom start (Emberson et al., 2014). Unfortunately, IV rt-PA may lead 

to serious complications including symptomatic intracranial haemorrhage, systemic 

bleeding and orolingual oedema (Tawil and Muir, 2017). Thus, this therapy is clinically 

challenging since it depends on a short therapeutic time window and balancing the benefit 

to risk (Figure 1-6). These limitations result in small eligibility numbers, which at the 

moment comprise 20% of patients (Figure 1-6) (Tawil and Muir, 2017). In addition, IV rt-

PA therapy frequently fails to induce successful vessel recanalization, especially in patients 

with proximal large artery occlusion (Bhatia et al., 2010).  

In order to target patients who are not eligible for or did not benefit from IV rt-PA, intra-

arterial therapy and mechanical removal of the obstructing clot are a current line of therapy 

(Tawil and Muir, 2017). In 2015, five separate randomised controlled clinical trials tested 

the efficacy of stent retrievers for recanalization of proximal vessel occlusion compared to 

IV rt-PA or standard care. The results in these trials showed that mechanical endovascular 

thrombectomy significantly improved functional outcome after 90 days follow up 

(Berkhemer et al., 2015; Campbell et al., 2015; Goyal et al., 2015; Jovin et al., 2015; Saver 

et al., 2015). In particular, in the MR CLEAN trial, patients subjected to endovascular 

therapy within 6 hrs of symptom onset displayed improved modified Rankin Scale scores, 

smaller infarct volumes and lower final National Institutes of Health Stroke Scale (NIHSS) 

values (Berkhemer et al., 2015). Still, the efficacy of these options is equally time-

dependent and relies on the expertise and efficiency of clinical centres (Tawil and Muir, 

2017).  

Although reperfusion is the main clinical outcome, reperfusion alone may exacerbate tissue 

salvage through reperfusion injury (Pan et al., 2007). CBF reestablishment leads to 

exacerbated inflammatory response that promotes hypoperfusion, cerebral oedema, HT and 

neuronal cell death (Pan et al., 2007). In fact, many patients treated with both thrombolysis 
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and thrombectomy procedures exhibit a phenomenon termed hyperintense acute 

reperfusion marker (HARM), characterised by blood vessel permeability in the meninges 

over the area of the stroke. This phenomenon is associated with worse clinical outcome as 

well as HT (Kassner et al., 2009; Kidwell et al., 2008; Kohrmann et al., 2012; Renú et al., 

2015). Since alteplase administration is the treatment of choice and endovascular therapy is 

becoming increasingly used (Tawil and Muir, 2017), it is crucial to identify a potential 

adjuvant therapy with the capacity to limit injury following reperfusion.  

 

Figure 1-6 Indications and contraindications for thrombolysis (rt-PA) treatment in clinic 
stroke. BP: blood pressure; CT: computerised tomography; IV: intravenous; NIHSS: National 
Institutes of Health Stroke Scale. Figure adapted from Tawil & Muir, 2017. 
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1.2.4 Imaging the ischaemic brain 

Imaging has become a critical component of stroke diagnosis with computed tomography 

(CT) being the most widely used technique clinically and the use of magnetic resonance 

imaging (MRI) in a research setting being increasingly used. MRI provides a more 

versatile technique that offers better image quality; however, CT remains the standard tool 

for initial diagnostics due to its wider availability and cost. These techniques are 

particularly useful in ruling out IHC and SAH to select patients for thrombolysis therapy 

(Muir and Macrae, 2016). Plus, these imaging techniques are of extreme relevance to 

detect alterations in ischaemic lesions and identify patients that will most likely benefit 

from therapy (Muir and Macrae, 2016). Although CT techniques are still the gold standard 

in clinic, these show lack of sensitivity in detecting early ischaemic lesions particularly 

between 6-12 hrs post stroke (Baird and Warach, 1998). On the other hand, MRI offers 

higher anatomical resolution capable of detecting pathological processes and organ 

function, arterial occlusion or stenosis in the circle of Willis. Consequently, MRI is a 

highly useful technique in the stroke context, being widely used in clinical and pre-clinical 

studies (Muir and Macrae, 2016). 

1.2.4.1 Diffusion weighted imaging  

Diffusion weighted imaging (DWI) is a sensitive MRI technique for detection of acute 

ischaemic lesions. The signal is based on the Brownian motion of protons or H2O in 

biological tissues (Moseley, Cohen, et al., 1990). Under normal conditions extracellular 

water molecules diffuse relatively freely; however, following stroke, ATP depletion 

triggers an influx of extracellular Na+ and Cl- into the cell accompanied by H2O 

accumulation, causing cytotoxic oedema (Liang et al., 2007). Cytotoxic oedema restricts 

extracellular H2O diffusion, increasing the diffusion constant and DWI signal (Moseley, 

Cohen, et al., 1990). The decrease in H2O diffusion can be quantified by calculating the 

apparent diffusion coefficient (ADC), allowing a quantitative measure of diffusion within a 

voxel. Higher ADC values represent areas of high diffusion whereas a decrease in ADC 

values is a result of H2O diffusion restriction (Moseley, Cohen, et al., 1990). The latter is 

translated into a hyperintense signal on DWI scans and a hypointense signal on the ADC 

image. DWI can detect early ischaemic damage within minutes of ischaemic stroke onset 

in both animal models of stroke and in humans (Moseley, Kucharczyk, et al., 1990; Rother 

et al., 1996; Yoneda et al., 1999). Furthermore, it is reported to consist of a reliable 

quantification of immediate irreversible ischaemic damage (Baird and Warach, 1998). 
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DWI is also useful in the context of penumbra volume determination. Along with DWI, 

Perfusion Weighted imaging (PWI) can be carried out to detect the area of hypoperfusion. 

Following stroke, if the hypoperfused tissue region is larger than the DWI lesion then this 

can be used as an approximation of the ischaemic penumbra. Consequently, when 

overlaying the CBF map and DWI, there is a brain region which is hypoperfused but not 

irreversibly damaged, named DWI/PWI mismatch and representing the ischaemic 

penumbra (Schlaug et al., 1999).  

1.2.4.2 MRI-T2 weighted imaging 

T2-weighted imaging can be used to detect vasogenic oedema characterised by 

accumulation of extracellular fluid due to BBB breakdown. In comparison to normal 

tissue, infarcted tissue has a longer T2 relaxation time. As a result, damaged cells will 

present higher signal intensity on T2-weighted scans (Baird and Warach, 1998). T2 fails to 

detect injury 2-3 hrs after stroke; therefore, it cannot be used to assess early ischaemia 

severity (Moseley, Kucharczyk, et al., 1990). However, it has been shown to reliably detect 

infarcted tissue during acute and subacute phases from 7 hrs after stroke (Boisvert et al., 

1990; Loubinoux et al., 1997). At 24 hrs following stroke onset, the water content in the 

parenchyma increases resulting in a hyperintense signal on T2 weighted imaging and 

therefore this increases sensitivity for infarct detection by up to 90% (Yuh et al., 1991). 

During subacute phases, between 24 hrs and 14 days, vasogenic oedema results in better 

definition of the infarct. As brain swelling and therefore vasogenic oedema begins to 

resolve around 7 to 10 days post stroke onset, T2 MRI fogging occurs as a result of 

inflammatory cell infiltration and lesion resolution, yet, T2 weighted imaging has been 

shown to provide adequate infarct detection sensitivity (Ricci et al., 1999).  

1.2.5 Animal models of focal cerebral ischaemia 

Ischaemic stroke is primarily studied in animal models by permanently or transiently 

occluding the MCA. Over the decades, several stroke models have been developed with 

two main purposes: to understand the pathological mechanisms underlying the condition 

and most importantly, to develop new therapies (Macrae, 2011). Human ischaemic stroke 

is incredibly diverse in terms of causes and localisation. Conversely, animal models 

provide a controllable, reproducible and standardised approach to study focal cerebral 

ischaemia, allowing a greater understanding of the molecular, physiological and 

biochemical brain alterations that cannot be detected in humans due to its invasive nature 
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(Fluri et al., 2015; McCabe et al., 2017). In fact, current pharmacological and imaging 

interventions used in clinic are the outcome of animal model studies. For instance, rt-tPA 

was first identified as a treatment option in a rabbit model and the usefulness of DWI 

studied in cats (Moseley, Kucharczyk, et al., 1990; Zivin et al., 1985). Since then, over 

1000 agents have been tested in animals of stroke and reported to be neuroprotective 

(O’Collins et al., 2006); however, the compounds reaching clinical trials failed to show an 

improved outcome when compared to placebo (Henninger et al., 2010). Potential reasons 

for this translation failure have been extensively addressed, leading to the formation of The 

Stroke Therapy Academic Industry Roundtable (STAIR), which provides best practice 

guidelines to improve preclinical study quality (Fisher et al., 2009).  

The majority of stroke studies are performed in rodents, primarily rats, as these are of 

lower cost, are more ethically accepted compared to larger species and allow access to 

transgenic techniques. In addition, rodents have a similar cerebral vasculature to that 

observed in humans and are relatively homogeneous amongst strains (Fluri et al., 2015). In 

human ischaemic stroke, the most commonly affected vessel is the MCA (Bogousslavsky 

et al., 1988), thus, a wide range of middle cerebral artery occlusion (MCAO) models have 

been developed, including the embolic, electrocoagulation, endothelin-1 (ET-1) and 

filament MCAO models (Longa et al., 1989; Macrae et al., 1993; Sharkey, 1993; Tamura 

et al., 1981). The choice of animal model is dependent on the drug being studied and its 

reported mechanism of action, with models of transient focal ischaemia being the most 

suitable models to examine potential anti-inflammatory agents. The most commonly used 

are the ET-1 induced and the filament model (Macrae, 2011).  

1.2.5.1 Endothelin-1 induced MCAO model 

This model was first developed in the rat and is based on the application of the potent 

vasoconstrictor ET-1 within the MCA territory (Macrae et al., 1993). It can be applied on 

the cortical surface of the exposed MCA or applied directly on the MCA through 

intracerebral injection leading to a highly reproducible infarct that covers all cortical layers 

(Fuxe et al., 1997; Macrae et al., 1993; Sharkey, 1993). Once administered, ET-1 will 

induce potent dose-dependent vasoconstriction that results in an initial CBF deficit of up to 

50% (Biernaskie et al., 2001). After this steep reduction, reperfusion gradually occurs over 

a number of hours (Macrae, 2011). This model may be an adequate approach to replicate 

rt-PA administration in the clinic since reperfusion also occurs gradually after therapy 

(Sutherland et al., 2016). Advantages of this model include the possibility to visually 
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confirm ischaemia and adjust ET-1 doses accordingly, low mortality and the fact that it is 

less invasive in terms of surgical preparation (Fluri et al., 2015; Macrae, 2011). 

Disadvantages include variability in ET-1 potency and stability as well as the fact that ET-

1 receptors are present in neurons and astrocytes (Fluri et al., 2015; Macrae, 2011). Once 

ET-1 receptors are activated, astrocytosis and axonal spouting may take place, impairing 

result interpretation (Fluri et al., 2015). In addition, ischaemia is reported to develop 

slowly after ET-1 injection, therefore, this model is considered by some as an unsuitable 

approach to replicate human stroke (Schirrmacher et al., 2016). 

1.2.5.2 Intraluminal filament MCAO model 

The intraluminal filament model is the most widely used model in rodents and is 

characterised by the insertion of a flexible monofilament into the internal carotid artery 

(ICA) until it occludes the MCA (Macrae, 2011). One of its advantages is that it can be 

used to study permanent ischaemia by leaving the filament in place or transient ischaemia 

by removing the filament and allowing reperfusion. In the latter, the most common 

ischaemic duration periods are 60, 90 and 120 min (Fluri et al., 2015; Garcia et al., 1995). 

This model allows you to precisely control ischaemia duration, is relatively non-invasive 

as it does not require craniotomy and it is characterised by large infarcts (Macrae, 2011). 

Disadvantages include reproducibility and mortality issues. For instance, blocking the 

MCA should induce both cortical and striatal injuries; however, it is common for some 

animals to exhibit striatal infarcts only, possibly as a result of inadequate vessel occlusion 

(Macrae, 2011). Plus, the fact that this is a closed skull model, enhanced cerebral oedema 

is present between 24-48 hrs post injury and mortality rates can go up to 42% (Macrae, 

2011).  

Since the majority of thromboembolic strokes occur within the MCA territory, this model 

is considered suitable to directly replicate the condition; however, in humans, vessel 

occlusion is often incomplete and partial spontaneous reperfusion usually occurs due to 

thrombus degradation (Zanette et al., 1995). In the filament model, reperfusion occurs 

suddenly and for this reason, this model may be deemed unsuitable to test future stroke 

therapies (Hossmann, 2012). Nonetheless, the success in thrombectomy therapies within 

the clinic has given new light to the use of this set up. Transient MCAO with the filament 

model and thrombectomy surgery lead to abrupt reperfusion and induce a similar CBF 

post-ischaemic profile (Sutherland et al., 2016). Therefore, the filament model is now 
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considered the most suitable model for studying potential adjunctive therapies that can be 

given alongside thrombectomy (Sutherland et al., 2016). 

1.3 The Renin Angiotensin System: from homeostasis to 
cardiovascular disease 

The Renin Angiotensin System (RAS) is a crucial component of homeostatic control of 

blood pressure, tissue perfusion, extracellular volume and electrolytes in vertebrates 

(Skeggs et al., 1976). However, its pathological activation is implicated in the development 

and progression of cardiovascular disease (CVD) by inducing excessive vasoconstriction, 

inflammation, oxidative stress, cell growth and hypertrophy (Dzau, 2001). RAS 

overactivation mediates injury in multiple ischaemic stroke risk factors such as 

hypertension, myocardial infarction and atherosclerosis (Dzau, 2001). As a result, RAS 

blockers including angiotensin converting enzyme (ACE) inhibitors and angiotensin II 

receptor type 1 (AT1R) blockers (ARBs) have revolutionised the treatment of CVD and 

shown to decrease stroke incidence in hypertensive patients (Griendling et al., 1996; 

Thone-Reineke et al., 2006). The impact of RAS overactivation in ischaemic stroke 

pathology alone is not well understood; however, increasing evidence from animal models 

suggest that the RAS is not only implicated in injury but may also provide a therapeutic 

target (Culman et al., 2002; Walther et al., 2002). 

1.3.1 Brief historical perspective on the RAS 

The RAS was first discovered more than 100 years ago by Tigerstedt & Bergman 

following the observation that renal cortex extracts, which they named renin, promoted 

hypertension in a rabbit model (Tigerstedt and Bergman, 1898). The link between these 

extracts and hypertension was later observed in an ischaemic model of renal injury, in 

which a pressor substrate was shown to be released following injury (Goldblatt et al., 

1934). It was then identified that apart from renin, a short-lived pressor protein, 

angiotensinogen, was released and served as its substrate. The outcome of this enzymatic 

reaction was demonstrated to be angiotensin (Ang), initially named as hypertensin and 

angiotonin by two different research groups (Braun-Menendez et al., 1940; Page and 

Helmer, 1940). Following the discovery of Ang it was then shown to be expressed in the 

blood plasma in two distinct isoforms, angiotensin I (Ang I) and angiotensin II (Ang II) 

(Skeggs et al., 1954). The former was demonstrated to be an inactive decapeptide that is 

converted to the main effector Ang II through the cleavage activity of ACE at the histidyl-
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leucine from the C terminus (Skeggs et al., 1954; Skeggs, Lentz, et al., 1956). Since its 

initial discovery, new RAS components have been identified and this line of research is 

ongoing. 

1.3.2 The Classical RAS 

Under normal physiological conditions, the classical circulating RAS is triggered by 

multiple stimuli. These include alterations in blood pressure detected at the levels of the 

renal afferent arteriole, changes in NaCl delivery to the macula densa of the distal tubule 

and 1 adrenergic receptor nerve stimulation (Reid, 1985). The classical RAS axis is 

initiated with the release of renin, a single chain aspartyl protein and rate-limiting enzyme, 

from the juxtaglomerular apparatus of the kidney (Reid, 1985). Renin cleaves the leucine 

and valine amino acids on angiotensinogen, a -2 glycoprotein constitutively produced and 

released from the liver (Deschepper, 1994). The product of this enzymatic activity is Ang 

I, which is cleaved in plasma and pulmonary circulation by ACE (Corvol et al., 1995; 

Skeggs, Kahn, et al., 1956). ACE is a carboxypeptidase and the main enzyme responsible 

for the conversion of Ang I to the potent vasoconstrictor Ang II (Skeggs, Kahn, et al., 

1956). Apart from its role in generating Ang II, ACE has the ability to hydrolyse 

bradykinin, inhibiting its vasodilatory actions (Yang et al., 1970). There are two forms of 

ACE, somatic and germinal, the former is expressed ubiquitously whereas the latter is 

predominantly found in testes (Turner and Hooper, 2002). Once generated, Ang II binds to 

G coupled protein receptors (GPCRs), AT1R and angiotensin II receptor type II (AT2R); 

however, it predominantly exerts its effects through the AT1R (Mehta and Griendling, 

2007). Together these components form the classical arm of RAS defined as the ACE/Ang 

II/AT1R axis (Figure 1-7).  

 

Figure 1-7 The classical RAS. Under physiological conditions, the circulating RAS is triggered 
and renin released from the juxtaglomerular apparatus. Renin will then cleave angiotensinogen, 
which is released from liver; to from Ang I. Ang I is converted by ACE in the circulation and lungs to 
form Ang II, the main effector. Ang II will exert its effects by primarily binding to AT1R. 
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1.3.3 The Extended RAS 

Advances in the field have demonstrated that the RAS is far more complex than initially 

thought. Distinct Ang II receptors and signal transduction pathways have been 

characterised, new biologically active peptides and enzymes identified as well as new 

pathways for peptide generation (Figure 1-8) (Paul et al., 2006). In addition, it is now 

accepted that the RAS is ubiquitously expressed and produced as a local/tissue system 

independent from circulation recruitment and present in several organs, including the brain 

(Paul et al., 2006).  

The discovery of new components and local tissue RAS has changed the conventional 

conception of the RAS. For instance, it is now understood that renin is released as an 

inactive pre-prohormone, where the pre-segment acts as signal peptide destined to direct 

the prohormone for secretion. The prorenin binds to the pro-renin receptor (PRR) present 

on the cell membrane and the pro-segment is removed to generate active renin (Nguyen et 

al., 2002; Nguyen and Muller, 2010). This step is crucial in tissue RAS as it provides a 

mechanism to locally generate renin (Paul et al., 2006). Once Ang II is formed through the 

classical pathway described above, it will be metabolised by several enzymes such as 

aminopeptidase A, which converts Ang II to Ang III, the latter stimulating vasopressin 

release in the brain (Zini et al., 1996). Subsequently Ang III is metabolised by 

aminopeptidase N to form Ang IV, a ligand for the angiotensin type IV receptor (AT4R), 

involved in memory processing (McKinley et al., 2003; Swanson et al., 1992). Most 

importantly, Ang II can be metabolised by angiotensin converting enzyme 2 (ACE2), a 

novel zinc metalloproteinase discovered in 2000 (Donoghue et al., 2000). ACE2 is an 805 

amino acid sequence type 1 membrane-bound glycoprotein encoded on the X chromosome, 

presents a molecular weight of 120kDa and shares 42% homology with the catalytic 

domain ofsomatic ACE (Donoghue et al., 2000; Tipnis et al., 2000). Initially it was shown 

that ACE2 hydrolysed Ang I to form angiotensin-(1-9) (Ang-(1-9)); however, further 

studies showed that ACE2 has a 400-fold higher catalytic efficiency for Ang II rather than 

Ang I (Donoghue et al., 2000; Vickers et al., 2002).  

Ang II is the main substrate for ACE2 and the most important product is angiotensin-(1-7) 

[Ang-(1-7)], a biological active heptapeptide (Santos et al., 2003; Vickers et al., 2002). 

Ang-(1-7) can be formed through various pathways, for example, Ang (1-9) can be 

converted by ACE and neprilysin (NEP) forming Ang-(1-7) (Donoghue et al., 2000; 

Vickers et al., 2002). Moreover, Ang-(1-7) can be formed by the direct actions of NEP, 
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thimet oligopeptidase (TOP) and prolyl endopeptidases (PEP) on Ang I (Figure 1-8) 

(Gironacci et al., 2014; Welches et al., 1991; Yamamoto et al., 1992). Ang-(1-7) is also 

degraded by ACE to produce Ang-(1-5) (Figure 1-8) (Chappell et al., 1998). Further 

research has identified that Ang-(1-7) specifically activates the Mas receptor (MasR) and 

its biological effects antagonise the classical ACE/Ang II/AT1R (Sampaio et al. 2007; 

Santos et al. 2003). This led to the identification of a new arm of the RAS, the counter-

regulatory RAS axis: ACE2/Ang-(1-7)/MasR axis (Donoghue et al., 2000; Santos et al., 

2003; Vickers et al., 2002).  

 

Figure 1-8 The extended RAS. Ang II is generated by the classical pathway and will bind to two 
receptors, AT1R and AT2R. Ang II is cleaved by aminopeptidase A generating Ang III, which is then 
metabolised by aminopeptidase N forming Ang IV, a ligand for AT4R. In addition, Ang II is 
metabolised by ACE2 producing the heptapeptide Ang-(1-7), a ligand for MasR. Other Ang-(1-7) 
pathways include direct actions of NEP, TOP and PEP on Ang I. Moreover, Ang I can be 
metabolised by ACE2 generating Ang-(1-9), which is then cleaved by ACE and NEP to produce 
Ang-(1-7). Once formed, Ang-(1-7) will be degraded by ACE to form Ang-(1-5). 
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1.3.4 ACE/Ang II/AT1R: the detrimental axis in cardiovascular 
disease 

Studies conducted in stroke risk factors, primarily hypertension, have provided valuable 

information regarding the involvement of the RAS in CVD pathology, setting the premise 

that the RAS may be implicated in ischaemic stroke. As research continues within the 

stroke field in clarifying this hypothesis, it is plausible to assume that some of the effects 

induced in peripheral CVDs may overlap with the stroke setting. Therefore, this section 

will outline findings in peripheral CVDs that support a rationale for RAS targeting in 

cerebral ischaemia. 

Under normal conditions, Ang II is primarily generated by ACE and its plasma levels 

range between 41.8 – 61.7 pg/mL in healthy humans and 53.0 – 141.6 pg/mL in 

anaesthetised male rats (Huang et al., 1989; Vilas-Boas et al., 2009). Once formed, Ang II 

will exhibit a half-life of 30 sec in the circulation and 15 min in tissues (van Kats et al., 

1997). Physiologically, Ang II leads to vasoconstriction; aldosterone release from adrenal 

glands, NaCl reabsorption and K+ excretion, vasopressin secretion from the pituitary gland 

and increased sympathetic activity (Reid, 1985). During CVD; however, the RAS is 

overactive leading to exacerbated formation of Ang II. In turn, Ang II through the AT1R 

will mediate the pathophysiology of several conditions including hypertension, 

atherosclerosis, and myocardial infarction by stimulating vasoconstriction, oxidative stress, 

inflammation, cellular growth, migration and hypertrophy (Mehta and Griendling, 2007; 

Touyz and Schiffrin, 2000). For this reason, ACE inhibitors such as ramipril and ARBs, 

the latter referred to as “sartans” are successfully used to treat hypertension (Menard and 

Patchett, 2001). Conversely, AT2R activation is believed to counteract the detrimental 

effects of the ACE/Ang II/AT1R axis inducing vasodilation, anti-oxidative, anti-

inflammatory and anti-proliferative effects (Schmieder et al., 2007).   
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1.3.4.1 The Angiotensin II receptor type I  

The AT1R is a GPCR composed of a 359 amino acid protein with approximately 40kDa 

molecular weight (Mehta and Griendling, 2007). In humans, the AT1R gene is mapped to 

chromosome 3 whereas in rodents it is present as two isoforms, AT1a and AT1b, which are 

mapped on chromosome 17 and 2, respectively (Mehta and Griendling, 2007). These 

isoforms are not distinguishable pharmacologically; instead, they exhibit different tissue 

distribution. AT1a is mostly expressed in rat cardiovascular tissues and in the cerebrum and 

cerebellum whereas AT1b is predominantly found in the adrenal and pituitary glands 

(Kakar et al., 1992; Kitami et al., 1992). Once activated, AT1Rs are quickly desensitised 

(10 min after activation), a process characterised by ligand-receptor uncoupling, receptor 

endocytosis and total receptor number downregulation (Griendling et al., 1987; Guo et al., 

2001). The mechanisms by which AT1R acts involve multiple G-protein-dependent and G 

protein-independent signalling pathways and are well characterised in the periphery 

(Mehta and Griendling, 2007). 

The classical GPCR signalling, involves Gq/11, Gq12/13 and Gy coupling to AT1R, 

resulting in phospholipase C (PLC), phospholipase A2 (PLA2) and phospholipase D (PLD) 

activation (Ushio-Fukai et al., 1998). PLC quickly triggers the formation of inositol-1,4,5-

triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to its receptor in the sarcoplasmic 

reticulum increasing intracellular Ca2+ concentration and resulting in vasoconstriction 

(Kanaide et al., 2003), whereas DAG activates protein kinase C (PKC), leading to 

vasoconstriction, cell proliferation and oxidative stress by directly activating NOX 

(Kanaide et al., 2003; Vallega et al., 1988). PLD activation results in the generation of 

choline and phosphatidic acid, the latter is then converted to DAG (Lassègue et al., 1993). 

Activation of PLA2 stimulates the release of arachidonic acid from the phospholipid cell 

membrane in vascular smooth muscle cells. Arachidonic acid is processed by COX-2 and 

lipoxygenases to generate prostaglandins (PG) and leukotrienes (LT), which are implicated 

in vasoconstriction, inflammation and oxidative stress (Figure 1-9) (Griendling et al., 

1996).   

G-protein independent pathways include NOX, mitogen-activated protein kinases 

(MAPKs) such as extracellular-signal-related kinase 1/2 (ERK1/2), p38 MAPK and c-Jun 

NH2-terminal kinase (JNK) as well as non-receptor tyrosine kinases (NRTKs) including 

the Src, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) and 

the focal adhesion kinase (FAK) pathways (Mehta and Griendling, 2007). Furthermore, 
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Ang II can trigger receptor tyrosine kinase (RTK) activation such as endothelial growth 

factor receptor (EGFR) and platelet derived growth factor (PDGF), inducing cellular 

remodelling (Mehta and Griendling, 2007). Ang II activates NOX1 and NOX4 in the 

vascular cell membrane, generating ROS and potentiating oxidative stress (Lassègue et al., 

2001). ROS signalling then activates a series of signalling molecules and transcription 

factors such as NF-B and activator protein 1 (AP-1), promoting apoptosis and the 

expression of inflammatory mediators (Sen and Packer, 1996). Ang II induced activation 

of p38 MAPK, Src and EGFR is ROS-sensitive and once triggered will mediate cell 

proliferation, hypertrophy, migration, fibrosis and inflammation (Mehta and Griendling, 

2007). Moreover, Ang II induced ERK1/2, JNK and p38 MAPK activation leads to cell 

proliferation, inflammation and fibrosis (Figure 1-9) (Mehta and Griendling, 2007).   

 

Figure 1-9 The Angiotensin II receptor type I signalling. AT1R activation through Ang II leads to 
a wide range of effects including vasoconstriction, oxidative stress, inflammation, proliferation, 
migration and fibrosis. AT1R activates PLC, PLA2 and PLD, receptor tyrosine kinases (RTKs), non-
receptor tyrosine kinases (NRTKs) and MAPKs. PLC leads to IP3 and DAG formation. IP3 increases 
intracellular Ca2+ whereas DAG activates PKC. PKC and AT1R activate NOX generating ROS, 
which will trigger NRTKs and MAPKs. PLA2 stimulates the production of PG and LT. 

 

 



29 

 

1.3.4.2 The Angiotensin II receptor type II  

The AT2R is a GPCR composed of a 363 amino acid peptide with a 41kDa molecular 

weight. AT2R is 34% identical to AT1R and is expressed as one subtype only in both 

humans and rodents, sharing 92% homology (Griendling et al., 1996). The AT2R is 

encoded on the X chromosome and although primarily activated by Ang II, other RAS 

components have shown to have affinity for this receptor and suggested to pose as possible 

ligands. The order of affinity is as follows: Ang II>Ang III>Ang IV>Ang-(1-7) (Bosnyak 

et al., 2011). Moreover, several agonists have been developed such as CGP42112A and 

Compound 21 (C21), a promising selective non-peptide and orally active AT2R 

agonist(Wan et al., 2004). These compounds are currently being tested as possible 

therapeutic CVD strategies whereas receptor antagonists include PD123319 (Matavelli and 

Siragy, 2015; Steckelings et al., 2012). AT2R is predominantly expressed in foetal tissues 

(Millan et al., 1991; Shanmugam et al., 1996; Tsutsumi and Saavedra, 1991a) and unlike 

other GPCRs, it does not undergo desensitisation or internalisation (Turu et al., 2006). 

Instead, receptor activation induces a sustained response whilst possessing constitutive 

activity independent of ligand binding (Miura et al., 2005). 

In CVD, AT2Rs are suggested to be involved in three main pathways: NO-cyclic guanosine 

monophosphate (cGMP) system regulation, PLA2 release stimulation and activation of 

phosphatases (Nouet and Nahmias, 2000). These effects are G-protein-independent and 

dependent (Hansen et al., 2000). In endothelial cells, AT2R activates eNOS stimulating the 

production of NO, which will then act on guanylyl cyclase to produce cGMP and induce 

vasorelaxation (Ritter et al., 2002). Similarly, NO induced vasodilation can be triggered 

through AT2R interaction with bradykinin receptor 2 (B2R) by forming AT2R:B2R 

complexes (Abadir et al., 2006). AT2R activation also leads to PLA2 stimulation inducing 

the generation of epoxyeicosatrienoic acids, promoting vasodilation (Arima et al., 1997). 

Furthermore, AT2R signalling is implicated in SHR2 domain-containing tyrosine 

phosphatase (SHP-1), protein phosphatase 2 (PP2A) and MAP kinase phosphatase (MKP-

1) activation (Nouet and Nahmias, 2000). PP2A and MKP-1 directly inhibit MAPK 

(ERK1/2), stimulating apoptotic mechanisms whereas SHP-1 inhibits NOX and ERK1/2, 

diminishing ROS generation and inflammation (Figure 1-10) (Rompe et al., 2010; Wu et 

al., 2004).  
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Figure 1-10 The proposed signalling at the Angiotensin II receptor type II. The AT2R is 
suggested to counteract the detrimental effects of AT1R by activating SHP-1, PP2A and MKP-1. 
These will then inhibit AT1R induced activation of NOX and ERK1/2. AT2R is thought to trigger NO 
formation through eNOS and by interacting with B2R to enhance NO formation. Additionally, it is 
suggested to activate PLA2, possibly inducing vasodilation. Altogether, AT2R signalling is proposed 
to induce vasodilatory, anti-inflammatory, anti-oxidative and anti-proliferative effects in CVD. Image 
also depicts the site of action for ARBs and ACE inhibitors (ACEi) as well as AT2R agonists, Ang II, 
CGP42112A & C21, and antagonist, PD123319. 

 

1.3.5 ACE2/Ang-(1-7)/MasR: the counter-regulatory axis 

In 1988, Santos and colleagues discovered Ang-(1-7), a biologically active heptapeptide 

(Santos et al., 1988) generated by the actions of ACE2 on Ang II as well as alternative 

pathways as described in section 1.3.3. The biological activity of Ang-(1-7) was observed 

in the rat hypothalamo-neurohypophysial system in vitro as it stimulated vasopressin 

release and in in vivo where it triggered a hypotensive and bradycardic response following 

medulla oblongata stimulation (Campagnole-Santos et al., 1989; Schianove et al., 1988). 

Under physiological conditions, Ang-(1-7) circulating levels range between 17.1–25.5 

pg/mL in humans and are approximately 4 pg/mL in rats (Ocaranza et al., 2006; Vilas-

Boas et al., 2009). Ang-(1-7) has a half-life of approximately 30 min following 

subcutaneous (SC) and IV injections in humans (Kono et al., 1986; Petty et al., 2009). In 

rodents, the half-life of Ang-(1-7) is very short and reported to be 10 sec following IV 

administration (Yamada et al., 1998). It is important to note that Ang-(1-7) measurements 

are often performed using antibody-based immunoassays. As a result, cross-reactivity with 
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other RAS peptides may occur. Additionally, Ang-(1-7) is quickly degraded by ACE and 

the detected concentration in tissue samples may not necessarily be accurate. 

Ang-(1-7) is suggested to act as the main counter-regulatory mediator of the RAS by 

inducing vasodilation, anti-proliferative, anti-inflammatory, anti-oxidative effects (Iusuf et 

al., 2008). For this reason ACE2 activators have been used in preclinical studies such as 

diminazene aceturate (DIZE) and regarded as a potential antihypertensive drug (Gjymishka 

et al., 2010). Ang-(1-7) is suggested to directly act as an antagonist on the AT1R and the 

AT1A and to mediate part of its effects by activating the AT2R (Clark et al., 2001; 

Gironacci et al., 1999; Roks et al., 1999; Walters et al., 2005). Most recently it was 

discovered that Ang-(1-7) is a selective agonist for the orphan Mas proto-oncogene (Kd 

=0.83 nmol/L) (Santos et al., 2003). 

1.3.5.1 The Mas receptor  

The MasR is a GPCR composed of 325 amino acid peptide encoded in the distal half of 

chromosome 6q (Rabin et al., 1987; Young et al., 1986). It was initially characterised as a 

proto-oncogene involved in tumorigenesis and inaccurately suggested to be an Ang II and 

Ang III receptor (Young et al. 1986; Jackson et al. 1988); however, it is now established as 

a selective receptor for Ang-(1-7) (Santos et al., 2003). The MasR gene is present in 

humans, rats and mice, sharing a 97% homology between rodents, and it is ubiquitously 

expressed with highest concentration in the brain (Metzger et al., 1995; Young et al., 

1988). Ang-(1-7) promotes MasR internalisation and endocytosis through a clathrin-

mediated pathway 10 min post stimuli (Gironacci et al., 2011). Currently, Ang-(1-7) is the 

main agonist tested in experimental studies whereas A779 is a potent receptor antagonist 

(Santos et al., 1994). Additionally, specific MasR agonists include AVE 0991 (Santos and 

Ferreira, 2006).   

In CVD, the MasR is suggested to act as an AT1R antagonist by forming heterodimers and 

inhibiting Ang II induced vasoconstriction (Kostenis et al., 2005). Nonetheless, MasR 

activation alone induces vasodilation by stimulating NO production through the protein 

kinase B (PKB) pathway (Sampaio et al., 2007). Plus, MasR-induced NO production is 

exacerbated by B2K interactions, promoting the NO-cGMP signalling pathway (Gironacci 

et al.,2004). MasR also stimulates PLA2 and PG generation, contributing towards 

vasodilation, prevents NOX activation and directly inhibits NF-B activation (Albrecht, 

2007; Meng et al., 2014; Tallant et al., 2005). MasR signalling outcome includes the 
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enhancement of SH2-containing tyrosine phosphatase (SHP-2), which then inhibits 

MAPKs (p38 MAPK, ERK1/2 and JNK), diminishing inflammation, oxidative stress, 

proliferative and cell growth mechanisms (Figure 1-11) (Mercure et al., 2008; Su et al., 

2006).  

 

Figure 1-11 The proposed signalling at the Mas receptor. The MasR is suggested to counteract 
the detrimental effects of AT1R by activating SHP-2, which will inhibit AT1R induced activation of 
ERK1/2, JNK, p38 MAPK. In addition, MasR directly inhibits NOX and AT1R activation. MasR is 
suggested to trigger NO formation through eNOS and by interacting with B2R to enhance NO 
formation. Moreover, MasR is thought to activate PLA2, possibly inducing vasodilation. Altogether, 
MasR signalling is proposed to induce vasodilatory, anti-inflammatory, anti-oxidative and anti-
proliferative effects in CVD. Image also depicts the site of action for ACE2 activator, DIZE, as well 
as MasR agonists, Ang-(1-7) & AVE0991, and antagonist, A779. 

 

1.3.6 Peripheral RAS and stroke incidence 

Given that RAS is highly implicated in CVD pathology and antagonising the RAS is the 

standard care for hypertension, focus has shifted towards its therapeutic effects in 

ischaemic stroke. For this purpose, several clinical trials have been performed where ARBs 

and ACE inhibitors were tested as possible stroke preventive therapies in hypertensive 

patients. The LIFE trial assessed whether losartan reduced cardiovascular disease and 

mortality (Dahlöf et al., 2002). In this study, patients were either administered losartan or 

atenolol-based antihypertensive therapy for a minimum period of 4 years where it was 
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found that losartan treatment resulted in an approximately 25% decrease in fatal or non-

fatal stroke risk compared to atenolol (Dahlöf et al., 2002). The ACCESS study was then 

conducted to examine the safety of blood pressure (BP) reduction as an early therapy for 

stroke. Although the trial had to be ceased prematurely, the authors identified that 

hypotension induced by candesartan cilexetil lowered mortality and vascular event 

incidence compared to placebo (Schrader et al., 2003). Similarly, in the MOSES trial, 

hypertensive stroke patients treated with eprosartan showed decreased mortality and 

cerebrovascular events when compared to nitrendipine (calcium channel blocker) 

(Schrader et al., 2005) while the TRANSCEND trial reported that telmisartan therapy in 

patients intolerant to ACE inhibitors led to a mild attenuation in stroke incidence compared 

to placebo (Yusuf et al., 2008a). 

Conversely, several studies failed to detect a benefit in preventing stroke incidence with 

ARBs. Stroke patients randomised to either telmisartan or placebo therapy showed no 

differences in terms of stroke incidence after 2.5 years follow up (Yusuf et al., 2008b). 

Moreover, when testing BP lowering in ischaemic or haemorrhagic stroke, candesartan did 

not induce any beneficial effects (Sandset et al., 2011). Similarly, when testing the ACE 

inhibitor captopril in hypertensive patients, it was found that the risk of fatal and non-fatal 

stroke was more common in the captopril-treated group than placebo (Hansson et al., 

1999). To date, clinical trials have focused on BP lowering strategies as a means to prevent 

stroke incidence in hypertensive patients. The clinical trials outlined suggest that the RAS 

may be implicated in stroke injury; however, there is still limited information regarding the 

role of the RAS in ischaemic stroke pathology and independently of risk factors. 

1.4 Brain RAS and ischaemic stroke 

The brain RAS was initially proposed in 1971 upon the discovery that RAS components 

were present within the brain parenchyma in dogs (Ganten et al., 1971). RAS peptides do 

not cross the BBB, therefore, RAS activity depends on local synthesis rather than uptake 

from blood (Schelling et al., 1976). At the same time, the existence of circumventricular 

organs (CVOs), brain regions that lack BBB and are involved in BP, sodium and water 

regulation; provide a crossing point between peripheral and central RAS (McKinley et al., 

2003; Wright and Harding, 2013). In the past decade, emerging in vivo studies have 

hypothesised that the RAS is implicated in ischaemic stroke independent of BP-induced 

effects, providing a possible strategy that not only targets risk factors but stroke pathology 

itself and defining the brain RAS as a therapeutic target. 
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1.4.1 Brain RAS expression 

The existence of a brain RAS depends on locally produced renin and this has been the 

subject of extensive debate. Renin mRNA is poorly expressed in the brain and its site of 

production is not clearly defined however, there is evidence that renin mRNA is expressed 

in astrocytes and neurons (Dzau et al., 1986). On the contrary to the periphery, brain renin 

expression takes place intracellularly as a non-secreted shorter isoform lacking the signal 

peptide in its preprorenin sequence (Morimoto et al., 2002). Nevertheless, recent studies 

postulate that brain renin is actually the outcome of trapped renin and that Ang II is taken 

from the blood instead of being locally synthesised (van Thiel et al., 2017), contradicting 

the existence of a local brain RAS.  

In addition to renin, other RAS components have been described in the brain. Ang I, Ang 

II and Ang-(1-7) were detected in plasma, CSF and brain parenchyma using 

radioimmunoassays (Chappell et al., 1987). Ang-(1-7), in particular, is an endogenous 

constituent of the brain and its presence is separate from circulating plasma Ang-(1-7) 

(Chappell et al., 1989). Angiotensinogen is constitutively secreted by astrocytes and also 

expressed in neurons to a lesser extent (Intebi et al., 1990; Thomas and Sernia, 1988; Yang 

et al., 1999). ACE is expressed across the brain parenchyma, choroid plexus and it is 

maximally concentrated within the CVOs (Saavedra & Chevillard 1982; Turner & Hooper 

2002). Similarly, ACE2 is widely expressed in the brain and present in arterial and 

endothelial cells (Hamming et al., 2004), neuronal cell body cytoplasm (Doobay et al., 

2007) and cerebellar and medullary astrocytes (Gallagher et al., 2006).  

The AT1R is ubiquitously expressed in the brain and predominantly found within the 

CVOs (Allen et al., 1998, 1999; Lenkei et al., 1997; McKinley et al., 2003). Likewise, the 

AT2R is present in various brain regions including the hypothalamus, cerebellum, 

subfornical organ, brainstem and thalamus (Allen et al., 1999; Lenkei et al., 1997). Both 

AT1R and AT2R are expressed in dopaminergic neurons, astrocytes and microglia in 

human, non-human primate, rats and mice as well as in cerebral microvessels and cerebral 

arteries (Garrido-Gil et al. 2013; Rodriguez-Pallares et al. 2008; Speth & Harik 1985; 

Tsutsumi & Saavedra 1991b). Regarding MasR expression, this receptor is highly present 

in the rat’s cortex and hippocampus as well as cardiovascular regulatory centres (Becker et 

al., 2007; Young et al., 1988). It is maximally expressed within neurons and selectively 

present in brain endothelial cells when compared to peripherally derived endothelial cells 
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(Becker et al., 2007; Kumar et al., 1996). Furthermore, MasR is present in astrocytes and 

cultured rat microglia (Guo et al., 2010; Lu et al., 2013; Regenhardt et al., 2013). 

1.4.2 Ang II and ischaemic stroke 

Until recently, it was unclear whether brain RAS expression was changed after ischaemic 

stroke; however, it is now established that following injury, the ACE/AngII/AT1R axis is 

enhanced. In normotensive rats, Ang II protein expression is increased within the ventral 

cortex, hypothalamus and rostral ventrolateral medulla (RVLM) compared to non-stroke 

animals whereas AT1R protein levels are decreased in the ventral cortex but enhanced in 

the RVLM, the latter a central nervous system (CNS) centre known to influence peripheral 

BP (Chang et al., 2014; Kagiyama et al., 2003). In addition, ACE mRNA levels were 

enhanced in the MCA after MCAO, suggesting an exacerbated production of Ang II to 

promote injury (Stenman and Edvinsson, 2004). 

Studies conducted in knockout (KO) mice have helped elucidate the involvement of the 

classical RAS axis in stroke. AT1R KO mice subjected to permanent MCAO have a larger 

penumbra volume and improved CBF within the core and penumbra (Walther et al., 2002). 

Not surprisingly, mice overexpressing angiotensinogen were shown to have a smaller 

volume of penumbra volume, enhanced ATP depletion and decreased perfusion within the 

core and penumbra compared to WT (Walther et al., 2002). Plus, mice carrying human 

renin and angiotensinogen genes display exacerbated infarcts 24 hrs post MCAO with 

aggravated neurological deficit (Inaba et al., 2009). The role of Ang II in isolated cerebral 

vessels following focal cerebral ischaemia has also been investigated. Ang II treatment of 

isolated MCAs obtained 48 hrs post MCAO, enhances AT1R induced contractile response 

when compared to sham animals (Stenman and Edvinsson, 2004). When taken together, 

these studies suggest that the classical brain RAS plays a role in the pathogenesis of 

neuronal injury following stroke. In support of this, serum samples obtained 24 hrs after 

stroke onset in patients indicate that Ang II levels negatively correlates with stroke severity 

as defined by NIHSS (Mogi et al., 2014).   

The AT2R has also shown to be altered after cerebral ischaemia. After focal cerebral 

ischaemia, AT2Rs are upregulated in the rat brain, primarily within the cortical penumbral 

regions and hippocampus (Makino et al., 1996; Zhu et al., 2000). This indicates a possible 

role in ischaemic lesion progression; however, it is necessary to clarify whether it is a 

detrimental or cytoprotective effect. For example, after transient MCAO in normotensive 
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animals, AT1R expression either decreases or remains unaltered whereas Ang II and AT2R 

mRNA and protein levels are enhanced (Kagiyama et al., 2003; Makino et al., 1996; Zhu et 

al., 2000). Therefore, it has been suggested that following reperfusion, the AT2R may 

mimic actions of the AT1R instead of providing cytoprotection(Kagiyama et al., 2003; 

Makino et al., 1996; Zhu et al., 2000). KO studies; however, indicate thatthe AT2R is in 

fact cytoprotective since KO mice exhibit larger ischaemic lesions compared to WT after 

MCAO (Iwai et al., 2004).  

1.4.2.1 AT1R targeting  

The mechanisms by which Ang II exerts its detrimental effects have been widely 

investigated in animal models by testing ARBs (Figure 1-12). The first study conducted in 

normotensive animals was performed by Dai and colleagues (Dai et al., 1999). There, 

irbesartan administered 5 days prior to transient MCAO at a non-hypotensive dose 

improved neurological outcome, an effect associated with a reduction in pro-apoptotic 

proteins expression, c-Fos and c-Jun, in the ipsilateral cortex (Dai et al., 1999). 

Disappointingly, the authors did not assess the effect on final infarct volume; however, the 

results provided a promising line of research with subsequent studies showing that 

candesartan as an IV bolus after transient MCAO decreased infarct volume and oedema 

whilst improving neurological deficit (Fagan et al., 2006; Mecca et al., 2009). The 

underlying neuroprotective effects of ARBs are suggested to be due to an anti-

inflammatory and anti-oxidative effect since ARBs attenuate apoptosis TUNEL marker 

and diminish active microglia/macrophages within the parietal cortex at 3 and 7 days post 

transient MCAO (Lou et al., 2004). Similarly, in mice, valsartan treatment prior to MCAO 

was shown to attenuated superoxide production and mRNA expression of MCP-1 within 

the ipsilateral hemisphere (Li et al., 2008) whereas candesartan pre-treatment diminished 

oxidative damage within the ischaemic penumbra (Liu et al., 2008). The impact of Ang II 

is extended to BBB breakdown exacerbation since olmesartan therapy for a period of 7 

days post MCAO reduces Ang II and MMP9 levels within the ipsilateral hemisphere, 

decreasing cerebral oedema and BBB breakdown (Figure 1-12) (Hosomi et al., 2005).  

Other reported ARB induced effects include vasodilation and angiogenesis. In 

normotensive animals, candesartan IV therapy as a single pre- or post-treatment dose as 

well as chronic dose following transient MCAO significantly attenuated infarct volume in 

all groups, an outcome attributed to enhanced CBF (Engelhorn et al., 2004). Similarly, in 

spontaneously hypertensive rats (SHR), candesartan treatment prior to MCAO decreased 
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brain AT1R levels and attenuated the CBF deficit irrespective of BP alterations (Nishimura 

et al., 2000). The authors proposed that ARBs normalised autoregulation after MCAO, a 

conclusion subsequently confirmed with chronic SC candesartan administration prior to 

permanent MCAO and distal MCAO. The authors demonstrated that chronic treatment 

with candesartan prior to MCAO decreased infarct volume by preventing MCA media 

thickness remodelling and enhancing CBF within the penumbral areas (Ito et al., 2002). 

Other possible underlying mechanisms include enhanced neurogenesis and angiogenesis. 

ARBs increase vascular endothelial growth factor (VEGF), brain derived neurotrophic 

factor (BDNF) levels within the peri-infarct in both normotensive and SHR animals 

(Alhusban et al., 2013; Ishrat et al., 2015; Krikov et al., 2008). 

 

Figure 1-12 The proposed AT1R induced outcome during ischaemic stroke. In the brain, 
angiotensinogen is produced by astrocytes whereas the production of renin is unclear. 
Angiotensinogen will lead to Ang I through renin. Ang I will then be cleaved by ACE possibly in the 
CVOs or choroid plexus. Ang II will then activate ubiquitous receptor AT1R leading to apoptosis, 
neuroinflammation, BBB disruption, oxidative stress, vasoconstriction, impaired autoregulation, 
remodelling and anti-angiogenic effects during cerebral injury. 
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1.4.2.2 AT2R targeting  

It is proposed that the neuroprotective mechanisms induced by ARBs might be due to a 

preferable action of Ang II on the AT2R (Faure et al., 2008). Plus, the fact that these 

receptors are upregulated during cerebral ischaemia particularly in the peri-infarct region 

of the cortex supports this hypothesis (Makino et al., 1996; Zhu et al., 2000).  

Initial studies testing AT2R agonists were conducted in hypertensive animals using the 

specific AT2R agonists, GCP42112 or C21 (Table 1-3). In conscious SHR rats, central 

treatment with CGP42112 before and after ET-1 induced MCAO attenuated lesion volume 

and improved motor function, independent of BP alterations (McCarthy et al., 2009). The 

underlying mechanism was suggested to be the result of increased AT2R expression and 

decrease of superoxide within the infarcted cortex (McCarthy et al., 2009). Similarly, when 

CGP42112 was given centrally following MCAO, there was an improved motor function 

and reduced infarct volume (McCarthy et al., 2012). The improvement in outcome was 

associated to a reduction in caspase-3 positive apoptotic cells and increase in microglia 

activity within the peri-infarct area (McCarthy et al., 2012). The authors then conducted a 

follow up study testing C21 as a pre and post therapy in the same MCAO protocol 

(McCarthy et al., 2014). C21 attenuated infarct growth and enhanced motor function 

without BP induced effects 3 days post ET-1 induced MCAO. The underlying mechanism 

was attributed to increased neuronal survival and microglia activation, reportedly secreting 

anti-inflammatory mediator BDNF (McCarthy et al., 2014). In addition, myography studies 

performed in basilar arteries concluded that C21 induced vasodilatory effects could have 

contributed to enhanced CBF (Table 1-3) (McCarthy et al., 2014). These findings were 

supported by in vitro data where CGP42112 attenuated cell death in primary cortical 

neurons following oxygen deprivation challenge (OGD) (Lee et al., 2012).  

In normotensive rats, C21 was given centrally as both a pre- and post-treatment following 

ET-1 induced MCAO (Joseph et al., 2014). After 3 days of recovery, C21 decreased infarct 

volume and improved neurological score, an effect attributed to a decrease in iNOS and 

CCR2 mRNA expression in the ipsilateral cortex (Joseph et al., 2014). In transient MCAO, 

intraperitoneal (IP) C21 post treatment for a period of 24 hrs or 7 days was equally 

neuroprotective (Alhusban et al., 2015). There, C21 upregulated anti-inflammatory 

cytokine IL-10 whilst decreasing nitrosative markers nitrotyrosine and iNOS within the 

ipsilateral hemisphere. Moreover, eNOS and AT2R levels were upregulated whereas AT1R 

expression was decreased (Alhusban et al., 2015). Similarly, in a recent study, CGP42112 
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treatment  induced a neuroprotective effect due to decreased IL-1 expression and 

enhanced IL-10, providing further evidence for an anti-inflammatory mechanism (Ma and 

Yin, 2016).  

The proposed anti-apoptotic, anti-inflammatory and anti-oxidative theory was also detected 

in mice studies. AT2R agonism after transient MCAO attenuated infarct lesion possibly 

due to an enhancement in cell viability (Lee et al., 2012) whereas in permanent MCAO, 

C21 treatment induced an anti-inflammatory and anti-oxidative effect by diminishing 

MCP-1, TNF- and superoxide expression whilst improving BBB integrity (Min et al., 

2014). Most recently, AT2R agonism was shown to promote neurogenesis and 

angiogenesis by augmenting VEGF and BDNF in peri-infarct regions in both permanent 

and transient MCAO models (Alhusban et al., 2015; Mateos et al., 2016; Schwengel et al., 

2016). Together, these reports place AT2R agonism as a potential therapy in ischaemic 

stroke particularly by preventing oxidative stress and inflammation following reperfusion 

(Table 1-3). Still, there is a lack of understanding of the effects of C21 in infarct volume 

following transient MCAO models in normotensive rats. 

1.4.3 Ang-(1-7) and ischaemic stroke 

Similar to the classical axis, counter-regulatory ACE2/Ang-(1-7)/Mas axis expression is 

altered after cerebral ischaemia. Lu and colleagues demonstrated that following permanent 

MCAO, Ang-(1-7) levels in serum and cerebral cortex protein levels are enhanced as early 

as 6 hrs following injury and remain elevated for at least 48 hrs(Lu et al., 2013). In 

addition, MasR mRNA in the cerebral cortex is upregulated from 6 to 48 hrs reaching a 

peak at 24 hrs post ischaemic insult (Lu et al., 2013). ACE2 protein and mRNA levels 

were also shown to be increased at 6 hrs followinginjury, peaking at 12 hrs MCAO and 

subsequently decreasing to the point where at 48 hrs after MCAO the levels were 

comparable to sham (Lu et al., 2013). In transient MCAO, MasR protein and mRNA levels 

are upregulated after 3 days reperfusion and enhanced for at least 7 days whereas Ang-(1-

7) protein expression initially decreases at day 1 post-reperfusion and then rises over time 

in the RVLM (Chang et al., 2014). Similarly, in their study, Chang and colleagues showed 

that ACE2 levels were equally increased within the RVLM (Chang et al., 2014).  

ACE2 expression seems to be important in the clinical setting. Patients who suffered a 

cardioembolism exhibit higher ACE2 serum levels with its expression correlating with 

diminished injury severity according to the NIHSS (Mogi et al., 2014). Concomitantly, 
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transgenic mice overexpressing ACE2 display smaller infarct sizes compared to human 

renin and angiotensinogen double transgenic mice, an effect that is partially reversed by 

the MasR antagonist, A779 (Chen et al., 2014). In in vitro brain slices obtained from mice 

overexpressing ACE2 and subjected to OGD, there was reduced cell death and swelling, an 

effect also inhibited by A779 (J Zheng et al., 2014). Current evidence indicates that 

similarly to the ACE/Ang II/AT1R and the alternative receptor AT2R, the ACE2/Ang-(1-

7)/Mas axis expression is altered after stroke. For this reason, it has been hypothesised that 

when enhancing the endogenous counter-regulatory axis after stroke injury, particularly 

through Ang-(1-7), neuroprotection may be induced.  

1.4.3.1 MasR targeting 

The effect of Ang-(1-7) and MasR activation has received recent focus and become a 

promising target in ischaemic stroke (Table 1-4). In 2011, Mecca and colleagues 

performed the first experiment examining treatment effects in infarct volume in 

normotensive rats (Mecca et al., 2011). In their study, Ang-(1-7) was administered 

centrally as a pre- and post-treatment in an ET-1 induced MCAO model. After 3 days 

recovery, Ang-(1-7) improved motor function, neurological score and diminished infarct 

volume by over 50% without impacting BP, an effect reversed by A779 (Mecca et al., 

2011). The authors also examined the effect of DIZE, a proposed ACE2 activator, and 

again demonstrated a reduced infarct volume with the effects of DIZE being abolished 

with the MasR antagonist, A779 (Mecca et al., 2011). The authors attributed the 

underlying mechanism to a decrease in iNOS levels within the ipsilateral hemisphere, 

therefore, providing the first line of evidence for a possible anti-inflammatory and anti-

oxidative mechanism (Mecca et al., 2011). Subsequently, other studies confirmed this 

hypothesis. In Sprague-Dawley rats, central administration of Ang-(1-7) starting 7 days 

prior to ET-1 induced MCAO decreased infarct volume and led to a reduction in iNOS in 

ipsilateral cortex at 24 hrs post stroke onset, an effect reversed by A779 (Regenhardt et al., 

2013). In addition, treatment reduced mRNA levels for leukocyte chemokine CXCL12 at 6 

hrs post stroke onset and pro-inflammatory mediators IL-1, IL-6, CD11b at 24 hrs post 

stroke, confirming an anti-inflammatory role (Regenhardt et al., 2013). These findings 

were further reinforced in permanent MCAO studies where central Ang-(1-7) infusion 

through MasR activation, reduced infarct volume and improved neurological function an 

effect associated with reduced malondialdehyde and superoxide dismutase, NF-B activity 

and COX-2 in the peri-infarct as well as TNF- and IL-1able 1-4)Jiang et al., .  
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The anti-inflammatory effect is highly attributed to a direct action on microglia. The MasR 

is expressed in cultured rat microglia and when subjected to Ang-(1-7) treatment in basal 

conditions, the cytokine profile shifts from pro-inflammatory to anti-inflammatory by 

stimulating IL-10 levels and attenuating IL-1, TNF- and CD11b as well as NF-B 

activation (Liu et al., 2016). Similarly, in in vivo studies, Regenhardt and colleagues 

support this hypothesis where they observed reduced levels of M1 type markers iNOS and 

CD11b within the ipsilateral hemisphere following MCAO (Regenhardt et al., 2013). 

Furthermore, in stroke prone spontaneously hypertensive rats (SHRSP), Ang-(1-7) 

administration for 6 weeks increased survival in animals whilst diminishing activated 

microglia number within the striatum (Regenhardt et al., 2014). More recently, it was 

shown that older animals overexpressing ACE2 have reduced infarct volume and tissue 

swelling following MCAO, an outcome prevented by A779. ACE2 led to reduced NOX2 

expression in the brain, an effect again ablated by A779 (Zheng et al. 2014). Equally to 

AT2R agonism, the anti-inflammatory/anti-oxidative effect of Ang-(1-7) is a fairly well-

established mechanism. Yet, these studies have primarily assessed Ang-(1-7)/MasR effects 

in acute stages of injury as a pre and post-therapy and in ET-1 induced MCAO models.  

The vasodilatory effects of Ang-(1-7) in the brain are less well defined; however, there are 

indications that Ang-(1-7) may enhance NO levels within the brain and possibly enhance 

CBF after stroke. For instance, central infusion of Ang-(1-7)  following MCAO improved 

neurological score whilst stimulating the expression of NO, bradykinin and its receptors 

B2R and B1R in the core and penumbra (Lu et al., 2008; Zhang et al., 2008). Although 

infarct volume effects were not assessed in these studies, the outcome observed placed 

Ang-(1-7) and MasR as possible vasodilators. Furthermore, mice overexpressing ACE2 

present enhanced NO within the peri-infarct and diminished NOX, which supports both a 

MasR induced anti-oxidative and vasodilatory effect (Chen et al., 2014). Recently, Ang-(1-

7) infusion for a period of 4 weeks and prior to permanent MCAO was shown to enhance 

brain capillary density and improve penumbral CBF through a MasR dependently derived 

eNOS mechanism, thus, placing Ang-(1-7)/MasR signalling as a possible target to enhance 

CBF following stroke (Jiang et al., 2014). Nonetheless, these effects are controversial since 

Mecca et al. reported that Ang-(1-7) 7 days prior to stroke did not affect blood flow after 

ET-1 transient MCAO (Table 1-4) (Mecca et al., 2011). 
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Table 1-3 Rat studies assessing the therapeutic potential of AT2R agonists in ischaemic stroke models. BP: blood pressure; CBF: cerebral blood flow; ET-1: 
endothelin-1; ICV: intracerebroventricular; IP: intraperitoneal; MCAO: middle cerebral artery occlusion; NO: nitric oxide; NS: neurological score; SHR: spontaneously 
hypertensive rat. Table adapted from Arroja et al., 2016. 
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Table 1-4 Rat studies assessing the therapeutic potential of Ang-(1-7) in ischaemic stroke models. BP: blood pressure; CBF: cerebral blood flow; ET-1: 
endothelin-1; ICV: intracerebroventricular; MCAO: middle cerebral artery occlusion; NO: nitric oxide; NS: neurological score. Table adapted from Arroja et al., 2016. 
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1.4.4 Summary 

Ischaemic stroke is a heterogeneous condition and a major contributor towards mortality 

and morbidity in the UK. Currently, rt-PA and thrombectomy are the only available 

therapies and these work by inducing vessel recanalization with the aim to reperfuse the 

parenchyma. Despite significant efforts from the scientific community, there is a lack of 

adjuvant neuroprotective agents that could aid the prevention of cerebral damage following 

rt-PA and/or thrombectomy treatment.  

The RAS is widely implicated in CVD and is a major therapeutic target for hypertension, a 

major stroke risk factor. Studies in CVD have helped elucidate the mechanisms in which 

RAS induces injury through the ACE/Ang II/AT1R axis. Additionally, it has allowed the 

identification of the AT2R and the counter-regulatory axis ACE2/Ang-(1-7)/MasR, which 

are thought to serve as an endogenous mechanism to counteract injury. Increasing evidence 

place the RAS as a locally synthesised system in the brain and a potential mediator in 

ischaemic stroke injury via the classical axis, independently from risk factors. A few 

studies have assessed the effects of the ACE2/Ang-(1-7)/MasR axis in normotensive 

animals and shown to induce vasodilatory, anti-inflammatory, anti-oxidative and pro-

angiogenic effects. The main proposed mechanism mediated via the MasR is thought to be 

anti-inflammatory effects by direct targeting of the microglia; however, these have been 

mainly assessed by mRNA analysis and in in vitro experiments. Moreover, the experiments 

have been primarily performed in ET-1 MCAO induced models, as a pre- and post-

treatment, assessed at acute stages of injury only and by one research group only. 

Similarly, AT2R agonism is suggested to induce similar effects to those observed in MasR 

activation, yet, a potential synergistic effect between these two receptors has not been 

established. Increasing evidence supports the neuroprotective role of the ACE2/Ang-(1-

7)/MasR axis and AT2R activation following experimental stroke as single therapies. As a 

result, we aim to study the neuroprotective effect of the counter-regulatory axis following 

ischaemic stroke as a potential thrombectomy adjuvant therapy using the transient filament 

MCAO model. In addition, this thesis will examine the underlying mechanisms of the 

counter-regulatory axis and study a possible synergistic effect with AT2R agonism. 
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1.5 Thesis aims 

1. To optimise the experimental model of stroke and carry out exploratory therapeutic 

studies with an ACE2 activator following stroke. 

2. To determine the effects of Ang-(1-7) and/or Compound 21 on the extent of tissue 

salvage following transient focal cerebral ischaemia.  

3. To determine the impact of Ang-(1-7) on BBB breakdown and microglia activation 

following transient focal cerebral ischaemia. 

4. To study the effects of Ang-(1-7) on CBF profile following transient focal cerebral 

ischaemia.
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Chapter 2: Methods and Materials 
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Chapter 2  

2.1 Legislation 

All studies were carried out under a UK Home Office Project License and in accordance 

with the Animals (Scientific Procedures) Act, 1986: Project License P643E898D8 and 

Personal license number 70/22456. Experiments were performed either under protocol 

number 2 (focal cerebral ischaemia lesions; non-recovery experiments; severity limit: 

unclassified) or protocol number 3 (focal cerebral ischaemic lesions; recovery experiments; 

severity limit: substantial). Experiments were reported in accordance with the ARRIVE 

(Animal Research; Reporting in vivo Experiments; https://www.nc3rs.org.uk/arrive-

guidelines) and National Centre for the Replacement, Refinement and Reduction of 

Animals in Research (NC3R’s) guidelines. Unless otherwise stated, Mariana Arroja 

performed all the experimental procedures. 

2.2 Animals 

Adult male Sprague Dawley or Wistar rats were obtained from Charles River Laboratories 

(Kent, UK) and housed in the Veterinary Research Facility (VRF), University of Glasgow. 

Rats were housed in groups of 3 to 4 in a plexiglassbox containing sawdust, nesting 

material and cardboard tubes. Animals were maintained ina controlled environment with a 

12:12 hour light/dark cycle, room temperature maintained between 15-25°C and rat chow 

food and water were available ad libitum. Upon arrival to VRF, animals were allowed to 

acclimatise to the new animal facility for 7 days prior to any surgical procedures to allow 

animals to overcome transportation induced stress (Capdevila et al., 2007). Prior to 

experimental procedures, all animals were randomly assigned to surgery day and treatment 

group using an online randomisation generator (www.random.org). In addition, the 

surgeon (MA) was blinded to treatment allocation, except in Chapter 6.  

2.3 Aseptic technique 

All surgical procedures were conducted under aseptic techniqueas detailed in our local 

Project License appendix. Surgical surfaces were disinfected with 70% ethanol (Sigma, 

UK) and autoclaved drapes positioned on the work area where the sterilised surgical 

instruments, swabs and cotton buds were placed. During surgery, instruments were further 

disinfected using chlorhexidine gluconate (Hydrex®, Ecolab, UK) and cleaned with sterile 

saline (sodium chloride 0.9% w/v, Baxter, UK). Prior to surgery, all animals were 

http://www.random.org/
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transferred to a separate shaving area within the laboratory where the incision areas were 

quickly shaved using electric clippers (Wella, Germany) and disinfected with 

chlorhexidine gluconate. All surgical material used (swabs, cotton buds; etc.) were 

autoclaved and packaged under sterile conditions and Doccol intraluminal filaments 

(Doccol Corporation, USA) were disinfected with 70% ethanol and cleaned with sterile 

saline for a period of 10 min prior to use. The surgeon (MA) was equipped with autoclaved 

surgical gowns and sterile gloves, which were changed following each surgical procedure. 

2.4 Analgesia 

Local anaesthetic, ropivacaine (10 mg/mL; Naropin, GSK, UK) was administered SC at 

surgical incision sites at a dose of 2 mg/kg. For recovery surgery, rats were administered 

buprenorphine hydrochloride (Vetergesic, Ceva Animal Health Ltd, Amersham, UK) at a 

dose of 0.03 mg/kg SC prior to anaesthetic recovery. In Chapter 3, where osmotic pumps 

were implanted prior to stroke surgery, carprofen (Rimadyl, Pfizer, UK) was administered 

SC at 5 mg/kg at incision site. 

When rats are under anaesthesia, they lack corneal reflex, therefore, this may lead to eye 

damage when performing experiments for long periods of time, particularly during 

stereotaxic surgery were the microscope light is directly placed above the head. To prevent 

discomfort upon recovery, Viscotears® liquid gel (Novartis, UK) containing polyacrylic 

acid as an active ingredient, was applied to the animal’s eyes at start of surgery.  

2.5 Anaesthetic procedures 

2.5.1 Induction 

For all experiments, rats were weighted and then transferred to an anaesthetic gas chamber 

for anaesthesia induction. Induction was carried out with 5% isoflurane (Baxter Healthcare 

Ltd, UK) delivered in a 30:70% oxygen-nitrous oxide mixture, respectively. To ensure that 

animals were adequately anaesthetised, breathing rate was closely monitored and the pedal 

withdrawal reflex assessed by tightly squeezing the hindpaw and observing whether a 

withdrawal reaction was evoked. Animals were then subjected to either surgical 

tracheotomy or oral intubation for anaesthesia maintenance throughout surgical 

experimentation depending on experimental outline.  
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2.5.2 Maintenance 

2.5.2.1 Surgical intubation 

In Chapter 3 in non-recovery experiments, rats underwent surgical tracheotomy. Following 

induction, anaesthesia was maintained with a facemask delivering 2-3% isoflurane in a 

30:70% O2-N2O mixture. A ventral incision was made through the skin and fascia of the 

neck using sharp ended scissors (World Precision Instruments, UK) and the underlying 

sternomastoid and sternohyoid musclessplit by blunt dissection using blunt ended scissors 

(World Precision Instruments, UK). The sternohyoid muscle was separated by blunt 

dissection to expose the trachea and the surrounding connective tissue carefully cleared. 

Two 2-0 sutures (SofsilkTM, Covidien Ltd, UK) were placed under the trachea at the 

proximal and distal ends of the trachea and loosely tied. Tension was applied on both 

threads to maintain the trachea in a straight position andwith the use of microscissors 

(Braun Medical Ltd, UK) a horizontal incision was made between the tracheal cartilage. A 

breathing tube (Linton Instrumentation, UK) was carefully inserted into the trachea and 

advanced towards the bronchi for up to 2 cm, thereby guaranteeing that there was no 

airway obstruction or damage. The ventilation tube was then quickly connected to the 

ventilator (Ugo Basile, Linton Instrumentation, UK) where the stroke volume was set to 

approximately 3 mL at a frequency of 48-50 strokes per minute. To secure the ventilation 

tube in place, the two sutures were tightly tied around the trachea overlying the breathing 

tube. 

2.5.2.2 Recovery experiments 

Endotracheal oral intubation was carried out in all recovery surgeries to ensure better 

control of anaesthesia and to aid post-surgical recovery. Following induction, a 2-0 silk 

thread (SofsilkTM, Covidien Ltd, UK) was placed around the superior incisors and the 

animal suspended vertically on the corkboard in the supine position. To aid visualisation of 

the vocal chords, the tongue was retracted to the side of the mouth, any mucous cleared 

from the oral cavity and a fibre optic light (Schott, USA) was illuminated over the neck. A 

guide wire (Figure 2-1A) was inserted through the intubation catheter (MillPledge 

Veterinary, UK) (Figure 2-1B) and advanced into the trachea. After, the guide wire was 

quickly removed and intubation confirmed by verifying breathing condensation. The 

ventilator was then connected to the intubation catheter, delivering ~2.5% isoflurane 

mixture at a 2.5-3 mL stroke volume and 61 strokes per minute frequency. To secure the 



50 

 

intubation tube in place, a stitch using a 4-0 silk suture (SofsilkTM, Covidien Ltd, UK) was 

performed around the breathing cannula and upper lip. 

 

Figure 2-1 Endotracheal oral intubation kit. A) Guide wire consisting of a blunt malleable wire 
used to guide the intubation tube towards the trachea. B) Intubation catheter introduced in the 
animal’ airways consisting of a 45 mm in length guide wire. 

 

2.6 Vessel cannulation 

During non-recovery experiments, MABP and blood gases [pH, partial pressure of oxygen 

(PaO2) & PaCO2] were monitored via the femoral artery. For studies where IV drug 

administration was carried out, the femoral vein was cannulated. Rats were placed in a 

supine position and the inner thigh shaved and disinfected with chlorhexidine gluconate. A 

surgical incision (~1.5 cm) was performed in the inguinal area to expose the femoral artery 

and vein.  Blunt dissection was carried out to clear the connective tissue surrounding the 

vessels for cannulation. Care was taken to ensure the saphenous nerve that runs along the 

femoral artery was carefully separated from the vessel.   

For each vessel, a folded 4-0 silk thread (SofsilkTM, Covidien Ltd, UK) was placed under 

the vessel and cut at the folded region to create two threads. One of the sutures was placed 

at the distal end near the abductor leg muscle and a tight knot performed. The other suture 

was placed at the proximal end towards the heart and a loose knot done. Both suture ends 

were used to apply tension in the vessels by taping them to the corkboard, preventing 

bleeding at time of cannula insertion. A small incision was made in the vessel with 

microscissors at the distal end and fine tipped right angled forceps (Braun Medical Ltd, 

UK) were inserted into the hole to open the vessel and allow insertion of a polythene 

catheter (external diameter 0.96 mm; internal diameter 0.58 mm) (Smiths Medical 
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International Ltd, UK) filled with 1% heparinised saline (1000 units/mL) (Wockhardt UK 

Ltd, UK) and attached to a 1 mL syringe (BD PlastipakTM, UK).  The polythene catheter 

was advanced 1-2 cm into the vessel with the aid of curved micro dissecting watchmaker 

forceps (Braun Medical Ltd, UK) before obstruction was felt. Blood was withdrawn into 

the cannula to confirm correct cannula placement before the tension on both proximal and 

distal ties was removed. The cannula was secured in place by tying each thread around the 

cannula. Ties were cut short and the incision area sutured using 4-0 sutures. MABP was 

recorded by connecting the catheter to a pressure transducer, previously flushed with 

heparinised salineand connected to a monitoring system (Biopac, Acknowledge Software, 

Biopac Systems, UK). 

2.7 Osmotic Pumps 

2.7.1 Principle and preparation 

In this thesis, ALZET® osmotic pumps (ALZET®, Cupertino, USA) were used as a means 

for drug delivery in Chapters 3, 4 and 5. ALZET pumps are composed of an impermeable 

reservoir, osmotic layer, semipermeable membrane and a flow moderator (Figure 2-2). The 

principle of drug delivery is dependable on pump implantation in the animal. The tissue 

environment where the pump is implanted will create an osmotic reaction towards the 

osmotic layer, meaning that the H2O present in the tissue will flow into the osmotic layer 

through the semipermeable membrane, causing a compression of the impermeable 

reservoir. The compression of the reservoir containing the drug will cause drug solution 

release from the pump to tissue through the flow moderator. ALZET® pumps deliver 

drugs at different volumes and rates, which are predefined by the manufacturer and 

dependent upon the permeability of the semipermeable membrane (Theeuwes and Yum, 

1976). In this thesis, two different models of osmotic pumps were used. 
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Figure 2-2 Osmotic pump drug delivery mechanism. Drug to be delivered is injected into the 
impermeable reservoir, which is surrounded by an osmotic layer. H2O present in the tissue will 
cross into the pump through the semi-permeable membrane creating pressure within the reservoir 
and causing the release of the drug. Adapted from Theeuwes & Yum, 1976. 

 

In Chapter 3, ALZET® pump Model 2ML1 was used for SC delivery (infusion rate: 10 L 

per hour for 7 days, reservoir capacity of 2000 L) (Figure 2-3A). In Chapters 4 & 5, 

Model 2001 was used for intracerebroventricular (ICV) delivery (infusion rate: 1.0 L per 

hour for 7 days, reservoir volume of 200 L; Figure 2-3B). For Model 2001, vinyl tubing 

connected to a magnetic resonance compatible ICV cannula (PlasticsOne®, Virginia, 

USA) was attached to the flow moderator.   

 

Figure 2-3 Osmotic pumps used in experiments. A) Subcutaneous delivery - Model 2ML1: 10 

L per hour for 7 days, with a reservoir capacity of 2000 L, length of 5.1 cm and diameter of 1.4 

cm B) Intracerebroventricular delivery – Model 2001: 1.0 L per hour for 7 days with a reservoir 

volume of 200 L, length of 3.0 cm and diameter of 0.7 cm. 
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Prior to osmotic pump preparation, the mass of drug infusion was calculated in order to 

determine drug dilutions to completely fill the pump. The following equation was used: 

 

 k0: mass delivery rate (g/hr) 

 Q: drug volume delivery rate (L/hr) 

 Cd: concentration of the drug in vehicle solution (g/L) 

Osmotic pumps were filled with a blunt tipped needle to prevent air bubbles and the flow 

moderator fully inserted in the pump. All osmotic pumps were prepared 24 hrs prior to 

usage and left in a water bath at 37ºC overnight to prime them for immediate drug delivery. 

To confirm drug delivery, all pumps were weighed before insertion and again at the end of 

the experiment after pump removal. 

2.7.2 Implantation 

2.7.2.1 Subcutaneous  

Anaesthesia was induced with 5% isoflurane and rats were then placed on a facemask (2.5- 

3% isoflurane mixture) for surgical implantation. The fur was shaved in the back area 

posterior to scapulae and cleaned with chlorehexidine gluconate. A horizontal incision was 

performed in the mid-scapular area exposing the underlying fat and connective tissue. 

Blunt dissection was performed in the incision in order to create a SC pocket to place the 

pump. Once the pocket was of adequate size, the osmotic pump (Model 2ML1) was 

inserted and lesions sutured with 4-0 silk sutures. The animal was allowed to recover from 

anaesthesia and returned to its’ home cage. 

2.7.2.2 Intracerebroventricular 

Anaesthesia was induced with 5% isoflurane and rats orally intubated as described in 

section 1.5.2. Rats were then placed in a stereotaxic frame (Kopft Instruments, CA, USA) 

and the head was secured in place using ear and tooth bars to prevent movement. After 

local anaesthetic administration, a midline incision was made on the scalp with a scalpel 

blade (Swann Morton®, UK) and the underlying fascia cleared to visualise the coronal and 
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sagittal sutures on the skull surface. Bregma was identified and a stereotaxic needle 

(Hamilton Company, Nevada, USA) aligned at its level. The right lateral ventricle 

coordinates for the ICV cannula were 1.6 mm lateral and 0.9 mm posterior according to the 

Atlas of Paxinos& Watson (Paxinos and Watson, 1997). This position was identified and 

marked with a pen, this way serving as a guideline to drill the skull in the right lateral 

ventricle area. 

A burr hole was drilled on the skull using a dental drill (NSK Volvere max, Nakanshishi 

Inc., Japan) until the pial vessels were observed. The stereotaxic needle was used to 

correctly identify the right lateral ventricle in the brain surface. At this point, a SC pocket 

was created posteriorly to the scapulae with blunt scissors. The osmotic pump and part of 

the connecting tubing attached to the ICV cannula were inserted into the SC pocket. After, 

gel superglue (Superglue power flex gel, Henkel Limited, UK) was placed around the burr 

hole and with the use of straight forceps, the ICV cannula was inserted into the lateral 

ventricle and gentle pressure was applied for 3 min to allow the glue to set (Figure 2-4). To 

prevent cannula displacement during animal movement, the holding top piece of the 

cannula was removed with the aid of a heated scalpel blade.  The incision on the head was 

then sutured with 4-0 thread and the animal removed from the stereotaxic frame and 

transferred to the operating board for further procedures. 

 

Figure 2-4 Intracerebroventricular cannula implantation. Rats were placed in a Koft Stereotaxic 
frame and the head secured with ear and tooth bars. An incision was performed on the scalp to 
expose the skull and connective tissue cleared. Bregma was identified and used as a guide to 
define the right lateral ventricle with the coordinates 1.6 mm lateral and 0.9 mm posterior. A burr 
hole was performed in the right lateral ventricle area, the osmotic pump and vinyl tubing placed in 
the SC pocket posteriorly to the scapulae and the ICV cannula glued onto the right cerebral 
ventricle. 
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2.8 Middle Cerebral Artery Occlusion 

The intraluminal filament model was used to induce left MCAO as firstly outlined by 

Koizumi and colleagues (Koizumi et al., 1986), modified by Longa et al. (Longa et al., 

1989) and further altered in-house to minimise vessel damage. Microsurgery was carried 

out with the aid of a light operating microscope (Zeiss, Germany). A midline incision was 

performed with sharp scissors between the jaw and the manubrium and the submandibular 

glands identified. Blunt dissection was carried out in the middle of the glands to expose the 

sternohyoid muscle overlying the trachea. Blunt dissection was then performed in the 

intersection between the sternohyoid and sternocleidomastoid muscles to expose the 

omohyoid muscle overlying the carotid sheath, which was gently dissected. Retractors 

were placed at the level of the omohyoid and sternohyoid muscles as well as the 

sternocleidomastoid muscle to clearly visualise the common carotid artery (CCA). The fat 

and connective tissue surrounding the CCA was carefully dissected with the use of curved 

and straight forceps to isolate the vessel. The CCA was gently separated from the adjacent 

vagus nerve through blunt dissection and a folded 4-0 thread placed under it. The thread 

was cut at the folded zone to originate two different threads, one placed distally and the 

other proximally towards the heart. After, the vessel was tied off at the proximal side and a 

loose knot performed at the distal end. Curved and straight forceps were used to carry on 

with blunt dissection to expose the external carotid artery (ECA), occipital artery (OA), 

ICA and pterygopalatine artery (PA). A 4-0 thread was placed under the ECA and OA and 

tension applied by taping the threads to the corkboard. Two 4-0 threads were placed under 

the ICA in which one was used to tie a loose knot and apply tension at the ICA level and 

the other advanced to reach the PA/ICA bifurcation. The latter was pulled between the 

PA/ICA bifurcation and placed around the PA to exert tension, preventing the intraluminal 

filament from going towards the PA (Figure 2-5A). 

Once all the vessels were carefully isolated, an arteriotomy was performed at the CCA 

level with microscissors, just before the ECA & ICA bifurcation. A Doccol intraluminal 

filament of 0.39 mm or 0.41 mm tip diameter (403934PK10 or 404134PK10; Doccol 

Corporation, MA, USA) bent at 22 mm length was inserted through the ICA until it 

reached the origin of the MCA (Figure 2-5B). The filament was advanced approximately 2 

cm and MCAO confirmed once resistance was felt. After the filament was correctly 

placed, the loose ties around the ICA and CCA were tightly tied to secure the filament in 

place and the tension applied in the vessels released. To prevent the tissues from drying 

out, sterile saline was applied in the neck area. 
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Figure 2-5 Intraluminal filament MCAO model. A) Vessel isolation during surgery; B) 
Intraluminal filament occlusion of the MCA. During surgery 4-0 sutures were placed around the 
common carotid artery (CCA), external carotid artery (ECA), occipital artery (OA) and internal 
carotid artery (ICA). Vessels were isolated to facilitate filament insertion. A Doccol filament was 
inserted through the CCA passing the ICA, the origin of the posterior cerebral artery (PCA) and the 
PA until it reached the origin of the MCA just before the anterior cerebral artery (ACA). This method 
of MCAO can be transient or permanent by either removing or leaving the filament in place, 
respectively. Figure B was adapted from Rami et al. 2008. 
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2.8.1 Reperfusion 

Following 90 min MCAO, tension was applied to the ECA, ICA, OA and PA. The knots 

performed at the CCA and ICA were untied with the use of thin tipped forceps. The 

filament was gently pulled back to allow MCA reperfusion and the wound at the CCA 

sealed with curved diathermy forceps (Eschmann Equipment, Lancing, UK). At this step, 

care was taken to guarantee that the forceps were moist during electrocoagulation to 

prevent vessel rupture. After the vessel was adequately sealed, all ties were removed and 

the thread occluding the CCA at the proximal end untied to allow full reperfusion. The 

neck area was cleaned with sterile saline, isoflurane levels decreased to 1% and the midline 

incision sutured with 4-0 sutures. 

2.8.2 Post-operative care 

Once all incisions were sutured, approximately 1-5 mL of sterile saline were administered 

SC to aid recovery and prevent dehydration. Buprenorphine, a partial opioid agonist, was 

also injected SC at a dose of 0.03 mg/kg to alleviate post-operative pain. Isoflurane and 

NO2 were switched off and O2 increased to 100% to maximise recovery from anaesthesia. 

Once the animals started showing signs of withdrawal reflex, the intubation tube was 

removed and the rats placed on a face mask at 100% O2 until fully conscious. Rats were 

single housed in the recovery room in individual cages lined with absorbent pads until 

sacrificed. During the recovery period animals were fed food pellets, which were softened 

in water and supplemented with Complan (Nutricia, UK). Furthermore, water and dry 

pellets were provided ad libitum. Rats were weighed every day and carefully monitored by 

technical staff and the Named Veterinary Officer (NVO). If the animal’s weight dropped 

below 25% of initial body weight or showed any other issues of concern, the Named 

Animal Care and Welfare Officer and/or NVO were informed to assess the animal’s 

condition and to make a decision regarding its continuation in the study. 
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2.9 Magnetic Resonance Imaging 

All imaging was performed in a Bruker Pharmascan 7T/30 cm magnet system (Bruker, 

Ettlingen, Germany) with a gradient coil of 121 mm internal diameter, 400 mT/m and a 

birdcage resonator of 72 mm. Prior to all imaging sequences, a pilot scan sequence was 

performed to ensure correct geometry and brain location. MRI scans were conducted at 

GEMRIC facilities and MRI scans carried out by trained staff: Mr James Mullin, Mrs 

Lindsay Gallagher, Dr Christopher McCabe and Dr Lisa Roy.  

Rats were transferred to the MRI scanner and placed in the prone position in a specialised 

rat Perspex cradle where the head was restrained by ear and tooth bars and a phased array 

rat brain surface coil placed above the head. Animals scanned during MCAO were 

ventilated via oral intubation whereas rats scanned during recovery were ventilated with a 

face mask during MRI scanning. A rectal probe was inserted and a temperature regulated 

jacket placed around the animal to maintain and regulate body temperature at a 

physiological range of 37 ± 0.5ºC.  

2.9.1 Diffusion-Weighted Imaging  

2.9.1.1 Technical parameters 

In Chapter 4, early ischaemic lesion was assessed at 30 and 60 min MCAO by DWI. A 4-

shot Spin-Echo planar imaging DWI scan was conducted to generate images across 8 

coronal slices with a thickness of 1.5 mm and a resolution of 260 m. For all DWI scans, 

the sequence was performed for approximately 3 min under the following parameters: 

effective echo time (TE) = 22.9 ms, repetition time (TR) = 4,000 ms, matrix size = 96 × 96 

and field of view (FOV) = 25 × 25 mm. The gradient strengths, B values, were obtained in 

three directions of x, y, z and the B values were between 0 and 1,000 sec/mm2. For all 8 

coronal brain sections, ADC maps (mm2/sec) were generated in Paravision v5 software 

(Bruker, Ettlingen, Germany). ADC maps were then analysed by following an established 

imaging protocol with Image J software (https://imagej.nih.gov/ij/). 
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2.9.1.2 Threshold assessment and analysis 

For each ADC map generated, histograms were obtained for all slices in both ipsilateral 

and contralateral hemispheres. After, the number of pixels for each ADC value ranging 

from 0 to 2×10-3mm2/sec at 30 min and 60 min ischaemia following MCAO surgery were 

calculated. It was previously established in our group that abnormal ADC values following 

MCAO range between 0.01-0.58×10-3mm2/sec (Baskerville et al., 2016; Reid et al., 2012) 

with the reported threshold being used to outline early ischaemic lesion. The number of 

pixels per ADC value for 30 min and 60 min MCAO data were plotted, confirming that 

abnormal ADC values in the ipsilateral hemisphere are within 0.01-0.58×10-3mm2/sec 

(Figure 2-6A&B). Once the reported threshold was validated, it was used for all ADC 

maps in this thesis. Figure 2-7 displays a processed ADC map prior to the application of 

the selected threshold (Figure 2-7A) and after the application of the threshold (Figure 2-

7B). The brain areas highlighted by the ADC threshold were obtained for each coronal 

slice, summed and multiplied by slice thickness of 1.5 mm to obtain an early lesion volume 

for each animal. 
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Figure 2-6 ADC value profile at 30 min and 60 min MCAO. A) ADC profile at 30 min MCAO; B) 
ADC profile at 60 min MCAO. The mean number of image pixels, within a range of ADC values, is 

expressed as ×10-3mm2/sec for 48 rats. The vertical line depicted in each graph is set at the ADC 
value of 0.58×10-3mm2/sec, the suggested threshold to detect abnormal ADC values in the 
ipsilateral hemisphere. In both 30 min and 60 min MCAO, there is an increase in ADC values in the 
ipsilateral hemisphere compared to the contralateral hemisphere below and at the threshold 
defined. Therefore, confirming that to detect ischaemic lesion in ADC maps, a threshold of 0.01 to 

0.58 mm-3mm2/sec should be used. 
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Figure 2-7 ADC map prior to and post threshold processing. A) ADC maps at 60 min MCAO across 8 coronal levels prior to threshold processing. ADC 
values ranging between 0.0-2.0×10-3 mm2/sec as set by the scale. B) Respective ADC maps across 8 coronal levels following threshold processing. Threshold 

was set at ADC values of 0.01-0.58×10-3 mm2/sec, highlighing early ischaemia lesion depicted in white. ADC values are expressed as ×10-3 mm2/sec. 
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2.9.2 RARE T2 weighted Imaging 

In Chapters 3, 4 and 5 infarct volume was assessed using a rapid acquisition with refocused 

echoes (RARE) T2 weighted sequence at either 24 hrs; 72 hrs or 7 days post MCAO.  

2.9.2.1 Technical parameters 

T2- weighted imaging was carried out using a RARE sequence with the following 

paramaters: 16 contiguous coronal slices, slice thickness of 0.75 mm and an in-plane 

resolution of 98 m, effective TE:  100 ms, TR: 6,000 ms, matrix size: 256× 256 and FOV:  

25 × 25 mm. 

2.9.2.2 Image processing and analysis 

T2 weighted images were analysed using ImageJ software. Hyperintense regions, excluding 

cerebral ventricles, were manually delineated across the 16 slices in mm2 to define the 

infarct (Figure 2-8). The infarct areas were summed and multiplied by the slice thickness, 

0.75 mm, to obtain the final volume. The ipsilateral and contralateral hemispheres were 

also delineated and hemipshere volumes calculated. Final infarct volume was corrected to 

oedema and compression of the contralateral hemisphere using the Gerriets equation 

(Gerriets et al. 2004) defined by the following formulas:  

 Infarct volume corrected to oedema 

 

 Compression factor  

 



63 

 

 Final infarct volume 

 

 

Figure 2-8 Representative RARE T2 weighted images depicting final infarct volume. Infarct 
was identified as hyperintense regions across the 16 coronal slices in the ipsilateral hemisphere. 
Image J was used to delineate the hemisphere volumes and the infarcted tissue, the latter 
delineated in white. After, infarct volume was corrected for both oedema and contralateral 
compression using Gerriets equation (Gerriets et al. 2004). The animal represented was subjected 
to 90 min MCAO and 72 hrs reperfusion at time of assessment. 
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2.9.3 Magnetic Resonance Angiography  

2.9.3.1 Technical parameters 

Magnetic resonance angiography (MRA) weighted sequences were carried out to confirm 

MCAO and/or successful reperfusion. The MRA sequence was a FLASH based sequence 

with the following parameters: 50 contiguous coronal slices, slice thickness of 0.4 mm, 

effective TE: 3.8 ms, TR: 15 ms, matrix size: 256×256, FOV: 4×4 mm  and a spatial 

resolution of 156 m. 

2.9.3.2 MCAO and reperfusion assessment 

MRA was used as a tool to assess left MCA occlusion and/or reperfusion during and 

following MCAO. The left and right MCAs were identified as the hyperintense regions 

running along the coronal sections as indicated in orange (Figure 2-9). Following MCAO, 

the left MCA was missing due to vessel occlusion whereas flow could clearly be visualised 

in the right MCA (Figure 2-9A). Upon reperfusion, a clear hyperintense signal can be seen 

on both MCAs (Figure 2-9B).  

 

Figure 2-9 MRA across the MCA territory during and post MCAO. A) MRA at 60 min MCAO; 
B) MRA at 7 days reperfusion. During MCAO, the left MCA is occluded with the intraluminal 
filament, thus, it is not visualised along the coronal sections on the left side. Conversely, the right 
MCA is clearly detected and displayed as hyperintense regions in white along the coronal sections. 
These images indicate successful MCAO. During reperfusion, both left and right MCAs are clearly 
visualised along the coronal sections, indicating successful reperfusion. Orange arrows outline the 
location of left and right MCAs depicted in white. 
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2.10 Plethysmography blood pressure measurement 

Conscious tail-cuff BP measurements were carried out in recovery studies (Chapters 3 and 

4) to determine the effect of therapy on systolic BP. The method used is a non-invasive 

technique that enables BP measurement without anaesthetising the animals (Evans et al., 

1994).  

A week prior to BP measurements, animals were handled and acclimatised to the set up to 

prevent stress during measurements. On the day of BP assessment, an insulated heat box 

(dimensions 37 × 35 × 40 cm) was heated with the use of a lamp and a hairdryer (Boots, 

UK) to 38°C. The animal was then placed in the previously warmed box for a period of 10 

min to induce maximal vasodilation of tail arteries and aid BP value detection. Once the 

animals exhibited little movement and a strong pink colour in their ears, they were deemed 

sufficiently warm and ready for BP determination. Rats were placed on the bench top and 

wrapped in a cloth towel, except the tail, and gently held. A tail cuff made of inflatable 

latex tube was tightly placed at the proximal end of the rat’s tail and the piezoceramic 

transducer introduced on the distal end (Figure 2-10). A few measurements were 

performed to familiarise the animal with the procedure and once the rat was stable, the 

latex within the cuff was inflated with an air cylinder until the pressure applied matched 

the pressure in the tail artery. The signal obtained was recorded by the piezoceramic 

transducer and converted in the monitoring system, connected to a laptop (Dell, UK), into 

systolic BP in mmHg. Once the value was obtained, the cuff was deflated to release 

pressure and the procedure repeated until 10 individual BP measurements were acquired.  

After, animals were returned to their cages and rewarded with Cheerios (Nestlé®, UK). 

The mean and standard deviation (S.D.) of the 10 individual values were calculated for 

each animal and shown as systolic BP. 
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Figure 2-10 Plethysmography systolic BP measurement. A tail cuff containing inflatable latex 
tubing and a piezoceramic transducer were placed around the rat’s tail. The latex within the tail cuff 
was inflated until the pressure exerted matched the pressure within the tail vessels. This was then 
detected by the transducer and translated via a monitoring system into systolic BP. The procedure 
was repeated until 10 individual BP values were obtained for each animal. 

 

 

2.11 Neurological Score 

A neurological score was performed on all animals prior and post-MCAO using an 18 

point neurological score as previously described (Garcia et al., 1995). This score has been 

widely used and shown to successfully correlate with the volume and size of the infarct 

(Garcia et al., 1995, 2013). The test assesses the rats’ performance in 6 distinct and 

individual assessments with a maximum score of 3 each adding up to 18 points and a total 

minimum score of 3. The assessments evaluate and score spontaneous activity, symmetry 

of movement, forelimb symmetry, body proprioception, response to vibrissae touch and 

climbing. Table 2-1 outlines the protocol followed to evaluate neurological score. The left 

MCA was occluded in all studies in this thesis and therefore the right side is considered 

impaired.  
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Table 2-1 The 18 point neurological Score. The Garcia neurological score is comprised of 6 distinct tests, scored to a maximum of 3 points. The higher the functional 
outcome, the closer the value is to 18 and vice versa. The table was adapted from Garcia et al., 1995. 

 
 

Test Score 
0 1 2 3 

Spontaneous activity 
(in cage for 5 min) 

No movement Barely moves Moves but does not 
approach at least three 
sides of the cage 

Moves and 
approaches at least 
three sides of cage 

Symmetry of 
movements (four 
limbs) 

Contralateral side:  
No movement 

Contralateral side: 
Slight movement 

Contralateral side: 
Moves slower; general 
movement still forward 

Symmetrical outreach 

Symmetry of 
forelimbs 
(outstretching while 
held by tail) 

Contralateral side:  
No outreach 

Contralateral side: 
Attempts to outreach 
but unsuccessfully 

Contralateral side: 
Moves and outreaches 
less than left side 

Symmetrical outreach 

 
Reaction to touch on 
either side of trunk 

N/A Contralateral side:  
No response 

Contralateral side: 
Weak response 

Symmetrical 
response 

Reaction to vibrissae 
touch 

N/A Contralateral side:  
No response 

Contralateral side: 
Weak response 

Symmetrical 
response 

Climbing wall of wire 
cage 

N/A Fails to climb Contralateral side: 
Displays weak grip 

Normal climbing 
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2.11.1 Spontaneous activity 

Each animal was moved into a clean cage and its behaviour observed for 5 min. A healthy 

animal will quickly explore the cage and approach all four walls of the cage as well as try 

to explore beyond the cage walls. Therefore, animals that exhibited this behaviour were 

given a score of 3. A score of 2 was attributed to animals that were moving in the cage but 

did not approach at least 3 cage walls. A score of 1 was given to animals that moved in the 

cage but did not approach any walls nor explored the environment. A score of 0 was 

attributed to rats that did not move at all during the 5 min inside the cage. 

2.11.2 Symmetry of movement in the four limbs 

Symmetry of the limbs was evaluated by placing the rat on a bench top or on the floor and 

observing the animal while walking. Animals showing complete symmetry of the four 

limbs were given a score of 3. Rats showing that the right limbs were splaying towards the 

side or moving slower than the left limb, yet exhibiting relatively forward movement, were 

scored 2. A score of 1 was given to animals that showed slight right limb movement and 

sideways movement towards the left. A score of 0 was given to animals that showed no 

right limb movement leading to circling behaviour. 

2.11.3 Forelimb symmetry 

Rats were held by the tail and placed near the bench top edge. The animals’ ability to 

outreach to the bench top was assessed whilst the hindlimbs were kept in the air. A score of 

3 was attributed to rats that showed no preference of the right or left limb to outreach to the 

edge of the bench, this way, displaying full forelimb symmetry. A score of 2 was attributed 

to animals showing that the right limb outreached to the bench edge fewer times than the 

left limb and it often missed touching the bench top when compared to the left side. A 

score of 1 was given to animals that still attempted to outreach to the bench top with the 

right limb; however, it was often left hanging. A score of 0 was attributed to rats that 

showed no movement in the right limb, which assumed a retracted position when 

compared to the left limb. 

 



69 

 

2.11.4 Body proprioception 

This test was performed once the animals were not moving or exploring and distracted to 

movement. Without the rat seeing, a pen or pencil was used to touch either side of the 

trunk and the reaction assessed. A score of 3 was attributed to animals that showed a 

symmetrical response to trunk touch on either side by turning their heads and showing a 

startled response upon stimulus. A score of 2 was given to rats exhibiting a weaker 

response on the right side and a score of 1 if the animal did not respond to stimuli at all. 

2.11.5 Response to vibrissae touch 

A pencil or pen was used to brush against the rat’s vibrissae on both the left and right 

sides. In healthy animals, brushing a pen on both sides of vibrissae will elicit the animal to 

turn its head towards the stimuli or try to avoid the pencil, leading to a score of 3. 

However, animals with neurological deficit will show a weaker reaction to vibrissae touch 

on the right side and thus, will fall within a score of 2, or not show any response to 

vibrissae touch at all, which leads to a score of 1. 

2.11.6 Climbing 

Animals were gripped from the base of the tail and placed onto a wire grid. Animals were 

given a score of 3 if they successfully climbed to the top of the grid - displaying similar 

forelimb symmetry and a relatively forward movement. A score of 2 was attributed to 

animals that attempted to climb but showed a weaker grip of the right side, displaying a 

sideward movement. A score of 1 was attributed to animals that failed to climb or tried to 

climb but did not reach halfway of the wire grid. 
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2.12 Brain tissue processing 

2.12.1 Snap freezing 

At the end of the experiment, animals were anaesthetised with 5% isoflurane in a 30:70% 

O2-NO2 mixture. Once the animal was deemed as deeply anaesthetised, it was killed by 

Schedule 1 procedures and the brain carefully removed. The cerebellum and 

bulbusolfactorus were discarded followed by brain tissue sectioning where the contralateral 

and ipsilateral hemispheres were separated and further sectioned into core and peri-infarct 

regions with the aid of RARE T2 imaging. The tissue sectioned was placed in an individual 

Eppendorf tubes and quickly snap frozen in liquid nitrogen, to maintain integrity of RNA, 

and stored at -80oC until further use. 

2.12.2 Perfusion fixation 

To assess protein levels with immunohistochemistry and perform histological 

examinations, animals were subjected to transcardial perfusion fixation with 4% 

paraformaldehyde [(PAM; 4% in 50 mM phosphate buffer; 500 mL), Sigma Aldrich, UK]. 

Rats were deeply anaesthetised with 5% isoflurane and transferred to a tray containing 

absorbent pads and anaesthesia continued on a facemask delivering 3% isoflurane. An 

incision was made in the abdominal wall just underneath the rib cage with the use of large 

blunt scissors followed by a cut in the diaphragm and rib cage, exposing the pleural cavity. 

The heart was cleared from connective tissue and the sternum retracted with the aid of a 

hemostatforcep to clearly visualise the chest cavity. The heart was gripped with hemostat 

forceps a blunt ended 16-gauge needle, directly connected to a perfusion fixation set up, 

was inserted at the base of the heart through the left ventricle into the aorta. Once the 

needle was correctly placed, the needle was clamped to secure in aorta and the right atrium 

cut with sharp scissors to allow blood drainage. The animal was perfused with 1% heparin 

(1000 units/mL heparin; 0.9% saline, 1L) dissolved in 250 mL saline at a pressure of ~120 

mmHg. Once the blood was completely cleared from the circulation, animals were 

perfused with 250 mL of 4% PAM at the same pressure as saline infusion. Correct PAM 

perfusion was confirmed by spontaneous fixation tremors and body stiffness. After, rats 

were decapitated and the heads immersed in 4% PAM for 24 hrs. Brains were removed 

from the skull and left in 4% PAM for another 24 hrs and then in 70% ethanol until 

paraffin embedding processes were performed. 
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2.12.2.1 Paraffin embedding and sectioning 

Tissue was transferred to an automatic processor (Tissue-Tek VIP, Miles Scientific) and 

subjected to a series of washes in ethanol to dehydrate the tissue and xylene, which acts as 

a clearing reagent. Brains were placed in paraffin wax for a total of 6 hrs at 60°C to create 

a paraffin block. The whole process takes 15 hrs to be completed and is described in Table 

2-2. For sectioning, paraffin embedded brains were placed on a wooden block and cut at 5 

m sections with the use of a microtome across 8 cerebral coronal levels (Figure 2-11). 

Two to three 5 m sections were mounted onto poly-l-lysine coated glass slides, three 

slides per coronal level. Sections were allowed to dry and stored in a slide storage box until 

use.  

Table 2-2 Paraffin embedding tissue processing. Brains were dehydrated with alcohol for a 
period of 6 hrs followed by xylene clearing reagent immersion for 3 hrs to then be placed in paraffin 
for 6 hrs. 

 

Stage Reagent Immersion period 

1 70% Alcohol 1 hour 

2 95% Alcohol 1 hour 

3 95% Alcohol 1 hour 

4 100% Alcohol 1 hour 

5 100% Alcohol 1 hour 

6 100% Alcohol 1 hour 

7 Xylene 1 hour 

8 Xylene 1 hour 

9 Xylene 1 hour 

10 Paraffin 2 hours 

11 Paraffin 2 hours 

12 Paraffin 2 hours 
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Figure 2-11 The eight coronal levels covering the territory of the MCA. The diagram shows the 8 pre-defined coronal levels and respective distance from bregma, 
where positive values represent anterior and negative values posterior to bregma. Brain tissue was collected at these levels for histological assessments. The figures 
were obtained from the stereotaxic atlas of Paxinos & Watson (Paxinos and Watson, 1997). 
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2.13 Histological analysis 

2.13.1 Haematoxylin and Eosin histological staining 

Haematoxylin and eosin (H&E) staining technique was used to identify the infarct core and 

peri-infarct areas to then outline where immunohistochemistry analysis would be 

performed. Plus, it was used to confirm the quality of the paraffin embedding and 

sectioning processes. 

Brain sections from coronal levels 3 to 5 were selected as these represent the infarct extent 

across all animals. The sections were stained with H&E (Sugipath, UK) and used to outline 

infarct core and peri-infarct regions (Table 2-3). Slides were placed in a metal rack and 

submerged in 100% Histoclear (National Diagnostics, USA, Atlanta) for a period of 15 

min with regular agitation. Sections were then rehydrated through a sequence of alcohols: 

100% for 6 min, 90% for 3 min and 70% alcohol for 3 min (Sigma Aldrich, UK). After, 

slides were placed in running water for a period of 4 min and subsequently stained with 

haematoxylin for 2 min. To remove excess staining and differentiate the slides, sections 

were submerged in acid alcohol for a few seconds (2-3 dips) and returned to running water 

for 5 min before being transferred to Scott’s Tap Water Substitute (Sigma Aldrich, UK) for 

2 min (blueing). Sections were returned to running water for 2 min and dehydrated by 

being immersed in 70% alcohol for 2 min and 90% alcohol for 2 min. Thereafter, slides 

were stained with alcoholic eosin (95%) for 2 min. The final steps included three washes in 

absolute alcohol for 4 min each to then be placed in 100% Histoclear three times for 4 min 

each. Coverslips were then mounted on the sections with the use of DPX mounting 

medium (Sigma Aldrich, UK). 
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Table 2-3 H&E staining procedure for paraffin embedded sections. 

Stage Solution Time (min) 

1 Histoclear 1 5 

2 Histoclear 2 5 

3 Histoclear 3 5 

4 Absolute Alcohol 1 3 

5 Absolute Alcohol 2 3 

6 90% Alcohol 3 

7 70% Alcohol 3 

8 Wash in running water 4 

9 Haematoxylin  2 

10 Wash in running water 5 

11 Differentiate in Acid Alcohol A few dips only 

12 Wash in running water 5 

13 Scott’s Tap Water Substitute 2 

14 Wash in running water 2 

15 70% Alcohol 2 

16 90% Alcohol 2 

17 Alcoholic Eosin (95%) 2 

18 Absolute Alcohol 1 4 

19 Absolute Alcohol 2 4 

20 Absolute Alcohol 3 4 

21 Histoclear 1 4 

22 Histoclear 2 4 

23 Histoclear 3 4 



75 

 

2.13.1.1 Identification of the peri-infarct border 

H&E sections were analysed under a light microscope at 20x and 40x magnification to 

outline the core and peri-infarct ipsilateral regions at coronal levels 3, 4 and 5. Once the 

infarct area was outlined with the help of T2-weighted imaging, 3 distinct regions of 

interest (ROIs) were established in the peri-infarct area per coronal level to serve as 

guidance for immunohistochemical analysis (Figure 2-12). 

 

Figure 2-12 Region of interest determination in coronal levels 3, 4 and 5. H&E was used as a 
tool to identify the infarct (black) across animals in coronal levels 3, 4 and 5 with the help of T2-
wheighed imaging (displayed on the right in white). Once the infarct was identified, the peri-infarct 
zone and corresponding contralateral areas were evaluated and three independent ROIs (red) 
determined in each hemisphere to serve as guidance for immunohistochemical analysis. 

 

To accurately determine the peri-infarct region, morphological characteristics of cells were 

compared. Healthy cells were identified due to the presence of well-defined cytoplasmic 

structures and large round nuclei (Figure 2-13A). Ischaemic neurons were identified due to 

the presence of shrunken pyknotic nuclei, an eosinophilic cytoplasm and triangular shape. 

Moreover, in these cells, surrounding neuropil was disrupted and shown to be unstained 

(Figure 2-13B). On the other hand, the peri-infarct zone was outlined by identifying 

regions that showed both cell phenotypes (Figure 2-13C). 
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Figure 2-13 H&E peri-infarct region determination. A) Healthy tissue. Cells presenting well-
defined cytoplasmic structures and large round nuclei. B) Ischaemic tissue. Cells displaying dark 
stained triangular neurons and pale stained neuropil. C) Peri-infarct region. Cells displaying 
normal morphology characterised by well-defined round nuclei (highlighted in black) as well as 

ischaemic cells as observed in Figure B. Scale bar represents 50M. 
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2.13.2 IBA1 immunohistochemistry labelling 

Adjacent sections used for H&E staining were selected to perform immunostaining for 

ionized calcium-binding adapter molecule 1 (IBA1) positive microglia labelling. To dewax 

and rehydrate, sections were submerged in 100% histoclear for 15 min and then washed in 

100% ethanol for 10 min, 90% ethanol for 5 min, 70% ethanol for 5 min and finally rinsed 

in cold running tap water for ~5 min. Extreme care was taken to not allow the sections to 

dry out between washes to prevent non-specific antibody binding. Heat induced antigen 

retrieval was achieved by placing the sections into a pressure cooker containing an antigen 

retrieval solution (sodium citrate buffer (pH 6.0)) for 4 min after which slides were left in 

running cold water for 10 min. After, sections were washed twice in Tris Buffered Saline-T 

(TBS dissolved in 0.025% Triton x-100; Sigma-Aldrich, UK) for 5 min each. A 

hydrophobic pen (Dako pen; Agilent, UK) was used to draw a ring around each section on 

the slide and blocking solution [TBS containing 10% normal goat serum (Vector 

Laboratories Ltd, UK) and 1% bovine serum albumin (BSA) (Vector Laboratories Ltd, 

UK)] applied for 2 hrs at room temperature in a humidified chamber. Blocking buffer was 

then removed and IBA1 primary antibody (Catalog #: ab139590, Abcam, UK) diluted in 

1:250 TBS with 1% BSA was applied to the sections and incubated overnight at 4°C. The 

following day, samples were rinsed in TBS-T twice for 5 min each and the secondary 

antibody [goat anti-chicken IgY (Catalog #: A-11039; ThermoFisher, UK)] diluted in 

1:500 TBS with 1% BSA was added to the sections and incubated at room temperature for 

1 hr in a dark room. Slides were rinsed in TBS three times for 5 min each time and 

mounted using Vectashield medium containing 4’,6-diamidino-2-phenylindole (DAPI) 

(Vector Laboratories Ltd, UK). The coverslips were applied and secured in place with 

varnish to seal the slides, which were allowed to dry and stored at 4°C until image 

analysis. 

2.13.2.1 Microglia quantification 

The three ROIs previously outlined with H&E in the peri-infarct tissue and corresponding 

contralateral areas were used as guidance for IBA1+ microglia assessment. Within each 

coronal section, ROIs were imaged at 40x using a light microscope (Leica Biosystems, 

UK), attached to a charge-coupled device (CCD) camera and a laptop, and captured using 

QCapture Pro 6 (QImaging, Surrey, Canada). A negative control (without primary 

antibody) was run to verify nonspecific secondary antibody binding, confirming specificity 

(Figure 14A). IBA1+ microglia were then manually counted and summed to provide total 



78 

 

microglia count across each coronal level in the peri-infarct and corresponding 

contralateral region using Image J Software. In addition, cells in the peri-infarct were 

classified into resting or activated through morphological assessment. Resting microglia 

are small cells with little perinuclear cytoplasm and multiple thin ramifying processes 

branched in various directions. Activated microglia present large soma and thickened and 

retracted processes (Kettenmann et al., 2011) (Figure 2-14B). In addition, activated 

microglia can be identified by a giant, amoeboid shape and proposed to be in a phagocytic 

state (Kettenmann et al., 2011) (Figure 2-15C). Data were expressed as cell number per 

mm2 tissue across the 3 coronal levels and activated microglia phenotype expressed as % 

of total microglia number. Figure 2-15 shows representative images of IBA1 microglia 

staining in peri-infarct, contralateral and infarct areas. 

 

Figure 2-14 Secondary antibody specificity and microglia phenotype. A) Negative control 
(without primary antibody). Image shows that secondary antibody selected did not induce non-
specific binding. B) Microglia phenotype. Image shows an example of activated microglia (larger 
cell body and shorter, thicker processes) and resting microglia (smaller cell bodies and longer, 

thinner, ramifying processes). Scale bar is set as 50m. 

 

 

Figure 2-15 Immunohistochemical IBA1+ microglia staining. Representative images of IBA1 
microglia staining (red) at 7 days post 90 min MCAO in the contralateral region (A), peri-infarct 

regions (B) and the infarct core (C). Scale bar is set in white and = 50m. 
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2.14 RNA extraction 

Total RNA was extracted using miRNeasy Mini-kit as outlined by manufacturer (Qiagen, 

Hilden, Germany). For disruption and homogenisation, 50 mg of brain tissue was placed in 

sterile polystyrene bijoux (ThermoFisher, UK) and 700 L of Qiazol (Qiagen, Hilden, 

Germany) quickly added. The sample was lysed using a tissue homogenizer (Qiagen, UK) 

programmed at 5000 rpm for 20 secs. Each homogenate was individually transferred to an 

RNAse free tube and 140 L of chloroform added to divide the sample into aqueous and 

organic phases. Samples were left to settle for 5 min at room temperature and centrifuged 

for a period of 15 min at 12000g at 4°C. The aqueous upper phase containing RNA was 

carefully collected, this way preventing the pipetting of organic phases, and transferred to 

new collection tubes where 525 μL of anhydrous ethanol (Sigma-Aldrich, UK) was added 

and thoroughly mixed. Each sample was transferred into an RNeasy Mini spin column and 

centrifuged at 8000g at room temperature to bind the RNA to the column membrane. In 

order to wash away phenol and other contaminants, 350 L Buffer RWT was added to the 

column and centrifuged for 15 sec at 8000g, this step was performed twice. Columns were 

transferred to a new collection tube and then washed with 500 L of Buffer RPE for 15 sec 

at 8000g in the first wash and for 2 min at 8000g for the second wash. Before eluting the 

purified RNA, columns were again transferred to a new collection tube and the samples 

centrifuged at full speed for 1 min to ensure that the mini column membrane was 

completely dry. Finally, the columns were transferred to an RNAse free tube and 50 L of 

RNase-free H2O was added to the column and centrifuged at 8000g for 1min to elute the 

purified RNA. 

2.14.1 DNAse I treatment 

All samples were subjected to DNAse I treatment to efficiently digest genomic DNA 

during RNA purification as suggested by the manufacturer (Qiagen, Hilden, Germany). 

Briefly, between the 350 L Buffer RWT washes, 80 L of DNase I (10 L) dissolved in 

Buffer RDD (70 L) was pipetted into the RNeasy Mini column membrane and left to act 

for 15 min. After this step, 350 L of Buffer RWT was again added to the column and the 

protocol proceeded as described above.  
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2.14.2 RNA purity determination 

RNA concentrations [ng/L] were measured using a NanodropTM ND-1000 

Spectrophotometer and v3.1.0 NanoDrop-1000 software (ThermoScientific, 

Loughborough, UK). The instrument works by applying a light source through a pulsed 

xenon flash lamp to the sample. The light generated is detected and measured with a 

spectrometer, which utilises a linear CCD array to analyse the sample. To quantify nucleic 

acids, the instrument uses a modified Beer-Lambert equation taking into account extinction 

coefficients with the following calculation: 

 

 c: Nucleic acid [ ] (ng/mL) 

 A: absorbance (A) 

 : wavelength dependent extinction coefficient (ng-cm/mL) 

 b: path length (cm) 

 
The accepted extinction coefficients were as follows: 

 Double stranded DNA: 50 ng-cm//L 

 Single stranded DNA: 33 ng-cm//L 

 RNA: 40 ng-cm//L 

 

To assess purity, absorbance ratios at 260/280 nm and 260/30 nm were evaluated. Samples 

with a 260/280 nm ratio ranging between 1.8 and 2.0 were considered pure. Samples with a 

ratio lower than 1.8 were considered contaminated as it indicates the presence of phenol, 

protein or genomic DNA. Samples with a 230/260 nm ratio ranging between 1.0 and 2.0 

were considered pure. RNA concentrations were obtained as duplicates and averaged for 

each sample. Purified RNA was stored at -80°C until complementary DNA (cDNA) 

synthesis. 
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2.15 Complementary deoxyribonucleic acid synthesis 

cDNA was generated from total tissue extracted mRNA by reverse transcription 

polymerase chain reaction (RT-PCR) using TaqMan® Reverse Transcription Kit as 

suggested by the manufacturer (Applied Biosystems, UK). This procedure was 

performedto allow gene expression assessment via qRT-PCR. All procedures were 

performed on ice and a negative control reaction containing RNAse-free H2O prepared.   

For each sample, 16 L Mastermix solution was made up containing 1x PCR buffer, 5. 

mM MgCl2, 2 mM deoxyribonucleotide triphosphate (dNTP) mix (0.5 mM each), 2.5 M 

random hexamers, 0.4 U/L RNAse inhibitor, 1.25 U/L Multiscribe reverse transcriptase 

and RNAse-free H2O (3.7 L). The Mastermix was added to a 96 well plate (Applied 

Biosystems, UK) placed on ice. Stock RNA was defrosted and diluted in RNAse-free H2O 

to yield 1 g of RNA in 4 L. The RNA was then added to the Mastermix to generate a 

total volume of 20 L per sample. The 96 well plate was quickly vortexed and centrifuged 

at 300g for 30 sec before being placed in the PCR block to start RT-PCR under the cycling 

conditions described in Table 2-4. Once RT-PCR was completed, the cDNA was left in the 

PCR block at 4°C for up to 60 min and stored at -20°C until use.  

Table 2-4 RT-PCR cycling conditions. 

Temperature (°C) Duration (min) Outcome 

25 10 Annealing 

48 30 Reverse transcription 

95 5 Reverse transcriptase 
inactivation 

4 60 Storage 
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2.16 Taqman® quantitative real-time polymerase chain 
reaction  

Quantitative real-time polymerase chain reaction (qRT-PCR) is a sensitive technique that 

allows the amplification and quantification of a specific DNA sequence by using the PCR 

principle and a thermocycler that captures fluorescence. In qRT-PCR, the 5’-3’ 

exonuclease properties of DNA polymerase are used to cleave target probes and detect the 

amplification of the gene of interest (Arya et al., 2005). The technique is based on the 

fluorescence resonance energy transfer (FRET) principle and uses TaqMan probes, non-

extendable fluorogenic target sequences, containing a fluorescent reporter dye at the 5’end 

and a quencher dye at the 3’end. Once the cDNA is denatured, the primer and TaqMan 

probe anneal to the sequence. During elongation, the probe is cleaved by the DNA 

polymerase leading to FRET and the fluorescence emitted absorbed by the quenching dye 

(Figure 2-16A). During amplification processes, dye molecules are further cleaved, 

increasing fluorescence intensity, which is detected by a thermocycler (Arya et al., 2005) 

(Figure 2-16B). Gene expression is quantified by assessing the cyclic threshold (Ct) value 

defined as the fractional PCR cycle number at which the fluorescence is greater than the 

established threshold defined by the instrument; the greater the Ct value, the lower the 

gene expression. 

 

Figure 2-16 The qPCR principle. A) TaqMan probe and primer annealing; B) Elongation and 
fluorescence detection. Following cDNA denaturation, the primer and TaqMan probe will anneal 
to the sequence. During elongation, the TaqMan probe is cleaved by DNA polymerase leading to 
the release of a reporter fluorophore, which is absorbed by the quencher dye and detected by the 
thermocycler. Image adapted from Arya et al., 2005. 
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2.16.1 Gene expression reaction 

Procedures were performed on ice and the reactions carried out according to the 

manufacturer’s instructions in a 384 well plate and in technical duplicates for each gene of 

interest. qRT-PCR was performed using inventoried FAM labelled fluorescent Taqman® 

assay probes, which span an exon junction (m1 type) or lie within a single exon (s1 and g1 

types) and are described in Table 2-5 and 2-6. Unless otherwise stated, all materials were 

obtained from ThermoFisher Scientific, UK.   

A reaction mixture of 10 L was prepared for each sample containing 5 L of Taqman® 

Universal MasterMix II, 0.5 L of Taqman probe 20x, 3 L of RNAse-free H2O and 1.5 

L of cDNA. For each probe a negative water control was tested. Once the reaction 

volumes were prepared, samples were centrifuged at maximum speed for 2 min to 

guarantee that there were no air bubbles that could interfere with qRT-PCR procedures. 

The 384 well plates were placed in a QuantStudio 12K Flex PCR System and samples 

incubated in the following cyclic conditions: 95ºC for 10 min to allow enzyme activation, 

40 cycles at 95ºC for 15 sec to denature cDNA and 60ºC for 1 min for primer and probe 

annealing as well as primer extension.  

In this thesis, a panel of genes of reference were run for each experiment to assess which 

gene was most stable between experimental conditions and thus, suitable to use as an 

internal control (Table 2-5). For mechanistic studies, Taqman® probes were run for Sham 

and transient MCAO peri-infarct brain samples and tested for RAS components, 

inflammatory and oxidative stress mediators’ gene expression (Table 2-6).   

Table 2-5 List of genes of reference examined. FAM labelled Taqman® probe assays used in 
experimental procedures. 

Gene name Gene symbol Assay ID Refseq Gene 

Beta-Actin Actb Rn00667869_m1 NM_031144.3 

Beta-2-microglobulin B2m Rn00560865_m1 NM_012512.2 

Glyceraldehyde 3-
phosphate dehydrogenase 

 
Gapdh Rn01775763_g1 NM_017008.4 

Hypoxanyhine-guanine 
phosphoribosyltransferase 

 
Hprt1 

Rn01527840_m1 NM_0012583.2 

Ubiquitin C Ubc Rn01789812_g1 NM_017314.1 
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Table 2-6 List of genes of interest examined. FAM labelled Taqman® probe assays used in 
experimental procedures. 

Gene name Gene symbol Assay ID Refseq Gene 

Angiotensin converting enzyme Ace Rn00561094_m1 NM_012544.1 

Angiotensin converting enzyme 
2 

Ace2 Rn01416293_m1 NM_001012006.1 

Arginase 1 Arg1 Rn00691090_m1 NM_017134.3 

Angiotensin II receptor type 1a Atgr1a Rn02758772_s1 NM_030985.4 

Angiotensin II receptor type 2 Atgr2r Rn00560677_s1 NM_012494.3 

C-C motif chemokine 22 Ccl22 Rn01536591_m1 NM_057203.1 

C-C motif chemokine receptor 2 Ccr2 Rn01637698_s1 NM_021866.1 

C-C motif chemokine receptor 5 Ccr5 Rn00588629_m1 NM_053960.3 

C-C motif chemokine receptor 7 Ccr7 Rn01465443_m1 NM_199489.4 

Cluster differentiation 11b or 
integrin subunit alpha M 

Itgam Rn00709342_m1 NM_012711.1 

Cluster differentiation 163 CD163 Rn01492519_m1 NM_01107887.1 

Cluster differentiation 86 CD86 Rn00571654_m1 NM_020081.1 

Cyclooxygenase-2 or 
prostaglandin-endoperoxide 
synthase 2 

 Ptgs2 Rn01483828_m1 NM_017232.3 

Interleukin 10 Il10 Rn99999012_m1 NM_012854.2 

Interleukin 1 Il1b Rn00580432_m1 NM_031512.2 

Interleukin 6 Il6 Rn01410330_m1 NM_012589.2 

Nitric oxide synthase 2 Nos2 Rn00561646_m1 NM_012611.3 

Mas receptor Mas1 Rn00562673_s1 NM_012757.2 

Metallopeptidase inhibitor 1 Timp1 Rn00587558_m1 NM_053819.1 

Matrix metalloproteinase 9 Mmp9 Rn00579162_m1 NM_031055.1 

Nuclear factor B p105 subunit Nfkb1 Rn01399572_m1 NM_001276711.1 

NADPH oxidase I Nox1 Rn00586652_m1 NM_053683.1 

NADPH oxidase 2 Nox2 Rn00576710_m1 NM_023965.1 

Transforming growth factor 1 Tgfb1 Rn00572010_m1 NM_021578.2 

Vascular endothelial growth 
factor A 

Vegfa Rn01511602_m1 NM_001110333.2 

Vascular endothelial growth 
factor receptor 2 or kinase insert 
domain receptor 

Kdr Rn00564986_m1 NM_013062.1 
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2.16.2 Gene of reference optimisation 

To guarantee the quality and reliability of the experiments, the expression of a gene of 

interest is compared to the expression of a gene of reference. The choice of gene of 

reference is usually based on a gene that is expressed at a constant level in all experimental 

conditions (Arya et al., 2005). All cDNA samples were run to determine adequate internal 

control, this way allowing correcting for variability related to starting RNA quantity and 

quality, cDNA efficiency and PCR amplification. Ct values for hypoxanyhine-guanine 

phosphoribosyltransferase (Hrpt1), glyceraldehyde 3-phosphate dehydrogenase (Gapdh), 

beta-actin (Actb), beta-2-microglobulin (B2m) and ubiquitin C (Ubc) genes were compared 

between groups. In Chapter 4 the gene of reference Ubc was selected whereas in Chapter 5 

Hrpt1 was deemed as suitable. 

2.16.2.1 Peri-infarct tissue obtained 7 days post 90 min MCAO 

In Chapter 4, Ubc was deemed the most suitable reference gene due to comparable Ct 

values amongst groups and the lowest S.D. [Sham: 27.2±0.59; MCAO-Vehicle (artificial 

cerebrospinal fluid (aCSF)): 26.55±0.52; MCAO-Ang-(1-7): 26.92±0.49, P>0.05] (Figure 

2-17A). There were no differences between groups for Hrpt1; Gapdh and Actb; however, 

these displayed higher S.D. amongst groups compared to Ubc (Figure 2-17B:D). B2m 

showed statistically significant Ct values between groups and excluded as a potential 

internal control (Figure 2-17E). 

 

2.16.2.2 Peri-infarct tissue obtained 24 hrs post 90 min MCAO 

In Chapter 5, Hrpt1 was deemed as the most suitable reference gene due to no significant 

differences and comparable S.D. between groups [Sham: 27.22 ± 0.3; MCAO-Vehicle 

(aCSF):26.91 ± 0.47; MCAO-Ang-(1-7): 26.71 ± 0.32; P>0.05] (Figure 2-18A). ANOVA’s 

Bartlett’s test indicated that S.D. was statistically different between groups for Gapdh 

(P=0.02) and therefore, its use was overruled (Figure 2-18B). Actb, B2m and Ubc showed 

statistical differences amongst groups and were deemed as inadequate reference genes 

(Figures 2-18C:E). 
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Figure 2-17 Reference gene candidates assessed in peri-infarct regions at 7 days post 
MCAO. A) Ubc; B) Hrpt1; C) Gapdh; D) Actb and E) B2m. Data from individual animals are 
presented as cyclic threshold (Ct) values. Horizontal bar represents mean. Data were analysed 
using one-way ANOVA with Tukey’s post-hoc test, P<0.05 was deemed as significant. *P<0.05 
compared to Sham. 
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Figure 2-18 Reference gene candidates assessed in peri-infarct regions at 24 hrs post 
MCAO. A) Hrpt1; B) Gapdh; C) Actb; D) B2m and E) Ubc. Data from individual animals are 
presented as cyclic threshold (Ct) values. Horizontal bar represents mean. Data were analysed 
using one-way ANOVA with Tukey’s post-hoc test, P<0.05 was deemed as significant. *P<0.05 
compared to Sham. 
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2.16.3 qRT-PCR analysis 

There are two methods to investigate qRT-PCR data, the absolute quantification method 

and the relative quantification method. The former is a useful analytical method when 

wanting to determine the starting copy number whereas the latter method is used to 

compare expression levels to a control sample. The relative quantification method does not 

require standard curves from serial dilutions of template in each experiment and the most 

common form of analysis follows the Livak method (Livak and Schmittgen, 2001). The 

Livak method presents the data in 2-Ct where Ct is the difference between gene of 

interest and gene of reference and Ct the difference between the average Ct of a 

treatment group and the average Ct for the healthy tissue group, the latter conventionally 

set as 0 (Schmittgen & Livak, 2008). When expressing the data as 2-Ct, Ct values 

obtained from the exponential curve are being converted to the linear form. Although there 

are some reports that indicate the data is normally distributed in the linear form (Livak and 

Schmittgen, 2001; Schmittgen and Livak, 2008), Ct values measure the number of cycles 

required to detect the gene of interest. Therefore, the first assumption is that Ct values are 

normally distributed. In addition, when converting data to the linear form, the results are 

often skewed presenting exaggerated error bars – an indication of non-normality. All 

statistics were performed in Ct format throughout our studies and presented as such. 

Data were presented as a scatter plot in the Ct format. Since Ct values indicate opposite 

expression directions, meaning that the higher the Ct the lower the expression of the gene 

and vice-versa, data was calculated in -Ct so that the values show the correct trend of 

expression using the following formula: 
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2.17 Data presentation and statistical analysis 

Data are shown as mean ± S.D. or median ± interquartile range (IQR) where applicable. 

Infarct volume (mm3), % infarct volume change, systolic BP (mmHg), IBA1+ microglia 

number/phenotype and qRT-PCR data were compared using unpaired Student’s t-test (2 

groups). If normality failed, data were compared using non-parametric Mann-Whitney (2 

groups) or Kruskal-Wallis (more than 2 groups) test. Data compared within groups were 

analysed using paired Student’s t test. Neurological score was compared using non-

parametric Kruskal-Wallis or Mann-Whitney test. Correlations were performed using 

Pearson correlation coefficient (r) or Spearman correlation where normality failed. For data 

acquired over time, the summary measure of area under the curve (AUC) was determined 

for each animal and group means compared with unpaired Student’s t-test. It is described 

by Matthews et al. (1990) that the summary measures of repeated data measurements is an 

adequate method to statistically analyse serially acquired data as it uses the entire data time 

to summarise an individual response (Matthews et al., 1990).  

In Chapters 4, 5 and 6 a power calculation was performed to determine the minimum 

required group size for in vivo experiments. For all power calculations, a power of 80% 

and significance level of 5% was used. The means and S.D. selected were based on 

previous studies. All data was presented as a scatter-plot and analysed using Graphpad 

Prism 5 software (GraphPad Software, California, UK). P<0.05 was deemed as significant.
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Chapter 3  

3.1 Introduction 

In this Chapter, experiments were conducted to optimise the performance of permanent 

and transient MCAO in rats. The objective was to tackle experimental challenges observed 

in animal models of stroke as well as optimise drug delivery methods. A first study was 

performed to assess the most suitable rat strain to use in future therapeutic studies. In 

addition, a second study was conducted to determine whether systemic therapy delivery is 

suitable to target the brain RAS following transient MCAO. Simultaneously, Laser 

Doppler Flowmetry (LDF) was examined as a potential infarct outcome prediction tool to 

use in subsequent studies.  

In humans, 70% of all infarcts occur  in the territory of the MCA and its branches 

(Bogousslavsky et al., 1988). For this reason, MCAO models are widely used to study 

ischaemic stroke in the preclinical setting. The intraluminal filament model is suitable to 

performed mechanistic studies and is widely  used to assess therapeutic effects on final 

infarct volume outcome (Macrae, 1992). One of the advantages of this model is that it 

induces a focal infarction within the MCA territory in rats, mimicking human ischaemic 

stroke (Garcia et al., 1995). Another advantage is that it allows the studying of permanent 

MCAO and transient MCAO as the filament may be left in place in the MCA or removed, 

respectively. In particular, transient MCAO is of clinical relevance since the primary 

objective of stroke treatment is to recanalise the occluded vessel by administering alteplase 

or through endovascular thrombectomy procedures. The latter is becoming a widely used 

method due to its extended therapeutic window and effectiveness in treating proximal 

occlusions (Tawil and Muir, 2017). Similar to endovascular thrombectomy, the 

intraluminal filament transient MCAO model induces sudden reperfusion and therefore is a 

suitable model to investigate adjuvant neuroprotective agents (Sutherland et al., 2016).  

Nonetheless, the intraluminal filament model presents some challenges. MCAO leads to 

high lesion volume variability, which tends to present a bimodal form where animals 

exhibit either striatal or striato-cortical lesions. This influences how data are interpreted, 

especially when analysis requires a normal data distribution to test the effect of a 

neuroprotective agent. This variability accounts for the unsuccessful rates in 

neuroprotective strategy development. Therefore, contributing factors must be taken into 

account before conducting neuroprotective studies as outlined by the STAIR guidelines 
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((STAIR), 1999; Howells et al., 2010). One of the contributing variables is the rat strain 

selected. There are several rat strains used in experimental stroke with the Sprague-Dawley 

strain being the most used (Spratt et al., 2006). Sprague-Dawley rats are reported to induce 

the most variable results as these animals have differing MCA anatomy whereas Wistar 

rats are suggested to lead to lower variability as a result of smaller vessel diameter (Fox et 

al., 1993; Kim et al., 2009; Spratt et al., 2006; Ström et al., 2013). Yet, these reports are 

controversial since other studies suggest the opposite trend (Markgraf et al., 1993; 

Walberer et al., 2006), thus, further clarification is required. 

Infarct volume outcome prediction tools are one way to tackle model derived infarct 

variability. LDF is extensively used in preclinical stroke to confirm MCAO and ensure 

adequate reperfusion following filament retrieval (Ansari et al., 2011; Reith et al., 1994). 

Due to inter- and intra-vascular variability amongst rats and the filament displacement 

probability during MCAO, LDF use is highly recommended by the STAIR guidelines 

((STAIR), 1999). LDF works by measuring the microvascular blood perfusion and 

determining red blood cell movement within an area of interest (Fredriksson et al., 2007). 

A single frequency of infrared light is applied over the cortical surface with the use of a 

probe. The light is scattered by moving cells, resulting in a frequency shift proportional to 

red cell velocity, providing an arbitrary perfusion unit (AU) of relative cerebral blood flow 

(rCBF) (Dirnagl et al., 1989; Fredriksson et al., 2007). LDF is also reported to successfully 

predict final infarct volume when measuring CBF within the MCAO territory (Riva et al., 

2012; Soriano et al., 1997). For this reason, LDF will be evaluated as a potential tool to 

predict final infarct outcome and accurately assess the impact of therapy. 

The main outcome of this thesis is to study the therapeutic potential of the counter 

regulatory RAS axis following ischaemic stroke. MasR, AT2R agonists and ACE2 

activators are suggested to induce a therapeutic effect in animal models of stroke when 

administered ICV (Joseph et al., 2014; Mecca et al., 2011). Still, ICV administration is 

highly invasive, may increase the risk of local or systemic infections as well as enhance 

ICP (Kateb and Heiss, 2013). The brain RAS is separated from the circulating RAS 

through the BBB, which restricts peripherally derived RAS circulation within the brain 

(Schelling et al., 1976). Consequently, the brain depends on locally produced RAS 

mediators to exert its physiological and pharmacological properties. Nonetheless, the 

existence of CVOs, brain regions lacking BBB, sparked debates on a peripheral RAS 

interaction with the brain (Deschepper et al., 1986; van Thiel et al., 2017) and the 

possibility to therapeutically target the brain systemically.  
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DIZE is a drug safely and widely used to treat animal trypanosomiasis (Kuriakose and 

Uzonna, 2014). In addition to treating trypanosomiasis, DIZE has ACE2 activating 

properties, stimulating the conversion of Ang II into counter-regulatory peptide Ang-(1-7) 

(Gjymishka et al., 2010). DIZE is most effective when administrated SC and shown to be 

safe at doses of 50 mg/kg/day (Raether et al., 1974). Accordingly, its cytoprotective 

properties have been tested and confirmed in animal models of cardiac ischaemia, 

pulmonary hypertension, subtotal nephrectomy and abdominal aortic aneurysms when 

administered SC at 15 mg/kg/day or 30 mg/kg/day doses (Qi et al., 2013; Rigatto et al., 

2013; Thatcher et al., 2014; Velkoska et al., 2015). In an ischaemic stroke model, DIZE 

ICV therapy starting 4 days prior to ET-1 induced MCAO significantly decreased infarcted 

grey area and improved neurological outcome at 3 days post injury (Mecca et al., 2011); 

however, its systemically induced neuroprotection has not yet been tested. On the contrary 

to Ang-(1-7), which has a half-life of approximately 10 sec, DIZE has a half-life of 

approximately 5 hrs (Miller et al., 2005; Yamada et al., 1998). Moreover, there is extensive 

toxicology knowledge regarding DIZE and high SC doses have been shown to be effective 

and safe in rats. Therefore, this drug was selected to test systemic brain RAS targeting by 

examining its effects on infarct volume following stroke. 

3.1.1 Aims 

Study 1: To determine variability in infarct volume following permanent MCAO in 

different rat strains. 

Study 2: To determine the effect of systemic administration of the ACE2 activator (DIZE) 

on infarct volume following transient MCAO. 
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3.2 Materials and methods 

Study 1: To determine variability in infarct volume 
following permanent MCAO in different strains of rat. 

3.2.1 Randomisation, blinding and exclusion 

A total of 20 adult male rats weighing between 315-395g were used, 10 Wistar and 10 

Sprague Dawley. Animals were randomly assigned to surgery day using an online 

randomisation generator (www.random.org). Animals that failed to show visual indications 

of infarct on 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) stained sections or that died 

during surgery were excluded. An independent researcher was responsible for collecting 

the rats on day of surgery and the surgeon was blinded to strain. 

3.2.2 Animal preparation and surgical procedures 

Wistar (n=9) and Sprague-Dawley (n=8) rats obtained from Charles River were 

anaesthetised and surgically intubated (Chapter 2.5.2). Throughout the experiment, 

isoflurane levels were maintained at 2.5% in a 30:70% O2-N2O mixture. The femoral 

artery was cannulated (Chapter 2.6) to record MABP and measure PaO2, PaCO2 and pH 

prior to and 1, 2, 3 and 4 hrs post-permanent MCAO. Temperature was monitored through 

a rectal probe and maintained at 37±0.5ºC. Permanent MCAO was induced as previously 

described (Chapter 2.8). A silicone coated Doccol filament was advanced along the 

internal carotid artery until the MCA was blocked. The filament was secured in place and 

MCAO was carried out for a period of 4 hrs. Animals were then deeply anaesthetised with 

5% isoflurane, killed by Schedule 1 procedure and decapitated for whole brain removal.  

3.2.3 Infarct volume determination 

Whole brain tissue was quickly placed in a container at -20ºC for a period of 20 min prior 

to coronal section slicing. Brains were then placed in a rat brain matrix (World Precision 

Instruments, UK) and microtome blades (Feather, Japan) used to obtain 6 sections of 2 mm 

thickness. TTC was used to stain viable brain tissue and determine the infarct. TTC is a 

colourless and water-soluble salt that in the presence of functioning mitochondria is 

oxidised to a lipid soluble bright red formazan by dehydrogenases (Zille et al., 2012). In 

undamaged tissue, TTC stains a deep red whereas infarcted tissueareas display a white 

colour (Figure 3-1). TTC (Sigma-Aldrich, Switzerland) was made up to a 2% (w/v) 

http://www.random.org/
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solution dissolved in phosphate buffered saline pre-warmed to 37ºC. Coronal sections were 

placed in the 2% TTC solution and left to stain for 15 min until formazan products were 

visually formed. Fully stained sections were then removed from 2% TTC and placed in 4% 

PAM to be fixed overnight prior to imaging.  

 

Figure 3-1 Representative image of TTC staining following 4 hrs of permanent MCAO. Image 
depicts coronal level three with red areas representing viable cerebral tissue and the areas 
delineated in white depicting the infarcted tissue. 

 
 

TTC stained sections were imaged with the use of a digital camera (Canon, UK) and a 

graticule (Imaging Research Inc., Canada) for calibration. Total infarct volume was 

determined by manually delineating the infarct present on all coronal slices, on both sides, 

using Image J software. For each coronal slice, the infarct area was measured on both faces 

of the slice, averaged and summed. Infarct volume was determined by summing the infarct 

areas and then multiplying by the slice thickness, 2 mm. Infarct volume was not corrected 

for hemisphere oedema since at the particular time point chosen (4 hrs post  permanent 

MCAO) there was no significant brain oedema present as previously reported (Slivka et 

al., 1995). 

3.2.4 Statistical analysis 

Physiological parameters were compared between rat strains using AUC and the means 

analysed with unpaired Student’s t-test or Mann-Whitney test where normality failed. 

Infarct volume was compared using unpaired Student’s t-test. Data were expressed as 

mean ± S.D. and considered statistically significant when P<0.05. Infarct volume data were 

shown as a scatterplot with the mean indicated in a horizontal bar. All brain images show 

the median animal for each group. 
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Study 2: To determine the effect of systemic 
administration of the ACE2 activator (DIZE) on infarct 
volume following transient MCAO 

3.2.5 Blinding, randomisation and exclusions 

Animals were assigned to treatment using a random list generator (www.random.org). Rats 

were given a number and randomly allocated to receive either Vehicle [distilled water 

(dH2O)]; DIZE (15 mg/kg/day) or DIZE (30 mg/kg/day). The randomisation schedule was 

kept with 2 colleagues not involved with the study. Four days prior to MCAO, drug was 

prepared by an independent investigator. Thoroughout the experiment, surgeon (MA) was 

blinded to treatment allocation, with treatment schedule being disclosed following infarct 

volume analysis. Rats that died before the end of experimental protocol or showed no signs 

of infarction on MRI-T2 images were excluded from analysis.  

3.2.6 Animals and surgical procedures 

A total of 24 male Wistar rats weighing between 295-345g and purchased from Charles 

River were used in this study; Vehicle (dH2O) n=9;  DIZE (15 mg/kg/day) n=7; or DIZE 

(30  mg/kg/day) n=8. All animals were subjected to MCAO for a period of 90 min 

followed by 3 days reperfusion. Rats were treated SC with distilled water (dH2O) or DIZE 

(15 mg/kg/day or 30 mg/kg/day) via osmotic pump infusion for a period of 7 days starting 

4 days prior to MCAO. Osmotic pumps (ALZET, Model 2ML1) were implanted as 

described in Chapter 2.7.2. All animals underwent conscious systolic BP measurement and 

Garcia neurological score prior to therapy and MCAO and at 3 days post MCAO (Chapter 

2.7 & Chapter 2.8, respectively). On day of surgery, rats were anaesthetised with 5% 

isoflurane and orally intubated (Chapter 2.5.2). Once the animal was stable, isoflurane 

levels were maintained at 2.5% delivering a continuous dose of 30:70% O2-N2O mixtures. 

MCAO was induced for a period of 90 min, as previously described in detail (Chapter 2.8). 

After 90 min ischaemia, the filament was slowly removed for initiation of reperfusion and 

rats were recovered for a period of 3 days (Chapter 2.8.1 and Chapter 2.8.2). 

 

http://www.random.org/
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3.2.7 Laser Doppler Flowmetry  

Laser Doppler Flowmetry (LDF) was used to confirm successful MCAO/reperfusion and 

investigated as a prediction tool to evaluate final infarct volume. A multi-channel 

microvascular perfusion monitor OxyFlo 2000TM (Oxford Optronix, Oxford, UK) 

connected to an OxyFlo probe (needle shaped, 10 mm length and 1 mm diameter) (Figure 

3-2A) was used to measure rCBF during MCAO and post reperfusion. 

The scalp was shaved using electric hair clippers and the animal quickly placed in the 

stereotaxic frame to place the LDF probe over the appropriate region of the skull. The rat’s 

head was secured with tooth and ear bars and viscotears applied in the animal’s eyes to 

prevent drying. An incision was performed in the skin overlying the skull with the use of a 

scalpel and the underlying fascia gently cleared to expose the skull surface and the left 

ridge. To prevent skull bleeding, pressure was applied with the use of a cotton bud. If 

excessive bleeding from the scalp continued persistently, 10% perchloric acid dissolved in 

dH2O (Sigma Aldrich, UK) was applied with a cotton bud to stop the bleeding and then 

cleared with sterile saline. CBF was measured within the MCA territory at 1.3 mm 

posterior and 4.0 mm lateral from bregma (Soriano et al., 1997). Bregma was identified 

and served as a guide to position the stereotaxic needle over the area of interest, outlined 

with a marker pen. Next, a burr hole was drilled through the skull to reduce the bone 

thickness in the area of interest, to maximise the LDF signal. A probe holder of 10 mm 

diameter (Oxford Optronix Ltd, Oxford, UK) (Figure 3-2B) was glued around the area of 

interest with extreme care. Conductive electrode gel (Electrode gel, Biopac Systems, UK) 

was applied with a syringe in the measurement area to aid signal detection. The animal was 

then removed from the stereotaxic frame and placed on a modified corkboard, with the 

LDF probe inserted through the corkboard and placed in the probe holder glued to the 

skull. The laser was then turned on to start measuring CBF in the MCA territory. 

Following 90 min of MCAO, the filament was removed and successful reperfusion 

confirmed by an increase in LDF signal for a period of 5 min. The laser was then turned 

off and the probe and probe holder removed. Figure 3-2C shows a representative image of 

an animal subjected to LDF imaging. 
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Figure 3-2 The Laser Doppler Flowmetry set up. A) LDF probe needle (10 mm length and 1 
mm diameter); B) LDF probe connected to the probe holder used to measure CBF in the MCA 
territory. C) Representative image of an animal subjected to LDF imaging. 

 

3.2.7.1 LDF analysis 

Data were analysed using Acknowledge Biopac software (Biopac Systems Inc, USA). LDF 

values were obtained for a period of 100 min (6000 sec) and presented as raw data to 

examine the real time changes in LDF for each individual animal.  

To assess mean LDF signal across the treatment groups, data were presented as mean 

percentage (%) change in LDF compared to the 2 min baseline prior to MCAO. To 

compare % rCBF decrease at MCAO between groups, data were presented as % signal 

change at MCAO (filament insertion) - from 1 min baseline to 1 min MCAO - for each 

individual animal. Similarly, % rCBF change at reperfusion (upon filament removal) - 

from 90 min MCAO to 1 min reperfusion - was shown for all animals and compared 

between groups. Changes in rCBF during MCAO were calculated as % signal change from 

1 min to 90 min MCAO. 
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3.2.8 Magnetic Resonance Imaging  

Three days post reperfusion, rats were anaesthetised, transferred to the MRI scanner and 

placed in a rat cradle where the head was restrained with ear and tooth bars. Once a pilot 

sequence had been obtained to ensure correct geometry, a RARE T2 weighted sequence 

was performedas outlined in Chapter 2.9.2. Following MRI scanning, animals were 

anaesthetised with 5% isoflurane and Schedule 1 procedures performed. Final infarct size 

was calculated by manually delineating hyperintense regions on T2-weighted images as 

described in Chapter 2.9.2 and data corrected for hemispheric swelling.  

3.2.9 Statistical analysis 

Infarct volume and systolic BP were compared between groups using one-way ANOVA. 

Neurological score was analysed using Kruskal-Wallis test and presented as median ± 

IQR. % rCBF change at the time of MCAO and reperfusion as well as during MCAO were 

analysed between groups using one-way ANOVA or Kruskal-Wallis test where normality 

failed. Correlations between LDF data and final infarct volume were analysed using 

Pearson correlation or Spearman non-parametric correlation where normality failed. Data 

were expressed as mean ± S.D. and considered statistically significant when P<0.05. 

Graphs are presented as a scatterplot with the mean or median indicated as a horizontal bar. 

All brain images show the median animal for each group. 
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3.3 Results 

Study 1: To determine variability in infarct volume 
following permanent MCAO in different strains of rat. 

3.3.1 Mortality and exclusions 

There was no mortality in this experiment. In terms of exclusions, two Sprague-Dawley 

rats and one Wistar rat were excluded due to lack of infarct on TTC stained sections at 4 

hrs post-permanent MCAO. 

3.3.2 Wistar rats exhibited significantly larger ischaemic lesions 
than Sprague-Dawley animals 

Wistar rats showed significantly larger lesions when compared to Sprague-Dawley animals 

[215.9±84.5mm3 vs 107.9±107.9mm3 (P=0.04)], (Figure 3-3A). In both groups, infarct 

volume displayed high variability ranging between 115.4 - 397.9mm3 in Wistar and 26.7- 

299.2mm3 in Sprague-Dawley rats. However, Sprague-Dawley rats exhibited a tendency to 

generate smaller infarcts as three animals had small subcortical infarcts of 32.5mm3, 

32.7mm3 and 26.7mm3. Figure 3-3B illustrates infarct volume spatial distribution in the 

representative median animal for each group. 

3.3.3 No differences in physiological parameters between strains 

Physiological parameters were measured and maintained within physiological range across 

groups (Figure 3-4). There were no differences in MABP between groups during the 

course of the experiment with a trend for MABP to decrease from 2 hrs post-MCAO until 

the end of the experiment (P>0.05) (Figure 3-4A). Temperature, pH and PaCO2 were 

maintained within range for all rats without differences between groups (P>0.05) (Figures 

3-4B:D). For all animals, PaO2 was higher than reference ranges (80-100mmHg), 

explained by the continuous administration of 30:70 ratio of O2 and N2O.  Sprague-Dawley 

animals exhibited slightly higher values than Wistar; however, Mann Whitney analysis of 

AUC means showed no differences between groups (P>0.05), highlighted by a substantial 

variability particularly observed in the Sprague-Dawley group (Figure 3-4E).  
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Figure 3-3 Infarct volume data at 4 hrs permanent MCAO. A) Infarct lesion comparison 
between Sprague-Dawley (n=8) and Wistar rats (n=9). Lesions were significantly smaller in 
Sprague-Dawley animals when compared to Wistar rats (P=0.04). B) Spatial distribution of 
infarct size between groups. Images depict the median animal in the Sprague-Dawley and Wistar 
strain groups across 6 coronal sections. For each animal, the infarct is highlighted in white. Data 
were analysed using unpaired Student’s t test, P<0.05 was considered statistically significant. 
Horizontal bar represents the mean. 

A) 

B) 
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Figure 3-4 Physiological variables during 4 hrs permanent MCAO. A) MABP (mmHg); B) 
Temperature (ºC); C) pH; D) PaCO2 (mmHg); E) PaO2 (mmHg). There were no differences 
between groups for all physiological parameters. Data depict values for Sprague Dawley (n=8) and 
Wistar rats (n=9). Data were analysed using AUC and means compared using unpaired Student’s t 
test for Figures A-D and non parametric Mann-Whitney test for Figure E, P<0.05 was considered 
statistically significant. Data are expressed as mean ± S.D. Reference values for each 
physiological parameter are shown in the figure. 
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Study 2: To determine the effect of systemic 
administration of the ACE2 activator (DIZE) on infarct 
volume following transient MCAO 

3.3.4 Mortality and exclusions 

A total of 24 animals were used in this study of which 4 died during recovery: one DIZE 

(30 mg/kg/day), one DIZE (15 mg/kg/day) and two Vehicle (dH2O) treated rats, leading to 

a 16.6% study mortality. In addition, one animal in DIZE (15 mg/kg/day) died during 

surgery. A total of 19 animals were included in this study: 7 Vehicle (dH2O), 5 DIZE (15 

mg/kg/day) and 7 DIZE (30 mg/kg/day). 

3.3.5 DIZE treatment does not influence systolic BP 

There were no differences in conscious systolic BP measurements before and after 90 min 

MCAO between groups (P>0.05) (Figure 3-5A&B). Prior to MCAO and therapy, systolic 

BP values ranged between 81 mmHg and 194 mmHg, thus, some animals had substantially 

higher BP than what is expected in normotensive rats (80-120 mmHg). In the Vehicle 

(dH2O) group, two animals had a BP of 149 mmHg & 178 mmHg. Similarly, in DIZE (15 

mg/kg/day) group, one rat had 160 mmHg while in DIZE (30 mg/kg/day) one animal had a 

BP of 143 mmHg and another 194 mmHg (Figure 3-5A). At day 3 post transient MCAO, 

systolic BP was not different between treatment groups (P>0.05) with BP values ranging 

between 92 mmHg to 197 mmHg (Figure 3-5B). The animals exhibiting high BP were 

visibly stressed during measurements, indicating the need to acclimatise rats to the set up 

for longer periods of time. In addition, systolic BP change from pre to post MCAO showed 

that therapy did not influence BP (P>0.05) (Figure 3-5C). 
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Figure 3-5 Systolic BP. A) 4 days prior to 90 min MCAO and treatment; B) 3 days post 90 min 
MCAO and 7 days of treatment; C) Systolic BP change between pre to post 90 min MCAO 
(absolute values). No differences in systolic BP between groups prior to and post 90 min MCAO 
with therapy (P>0.05). Therapy did not influence systolic BP between pre and post MCAO 
(P>0.05). Data depicts values for Vehicle (dH2O; n=7), DIZE (15 mg/kg/day; n=5) and DIZE (30 
mg/kg/day; n=7). Data were analysed using one-way ANOVA, P<0.05 was considered statistically 
significant. Horizontal bar represents the mean. 

 

3.3.6 DIZE treatment does not impact neurological score 

An 18-point neurological score was performed 4 days prior to and 3 days post transient 

MCAO. Before MCAO, all animals scored a maximum 18 points (Figure 3-6A). As 

expected, MCAO induced a decrease in neurological score in all groups, confirming 

neurological deficit in all animals included (Figure 3-6B). DIZE treatment did not 

influence neurological deficit between groups (P>0.05). However, compared to vehicle 

animals, DIZE treated rats showed a trend to display enhanced neurological deficit.  
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Figure 3-6 Neurological score. A) 4 days prior to 90 min MCAO and treatment; B) 3 days 
post 90 min MCAO and 7 days of treatment. There were no differences in neurological score 
between groups prior to and post 90 min MCAO with therapy. Data depict values for Vehicle 
(dH2O; n=7), DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=7). Data were analysed using 
Kruskal-Wallis test, P<0.05 was considered statistically significant. Horizontal bar represents the 
median. 

 

3.3.7 DIZE treatment has no effect on infarct volume 

DIZE SC infusion at 15 mg/kg/day and 30 mg/kg/day doses had not effect on final infarct 

volume at 3 days post MCAO compared to control animals (P>0.05) (Figure 3-7). MCAO 

induced small lesions particularly in three animals in the Vehicle (dH2O) group, suggesting 

that these animals had partial MCA occlusions. Similarly, there was high variability in 

lesion sizes observed in DIZE treated groups; however, these groups showed a trend to 

increase final infarct compared to control. Figure 3-8 shows the spatial distribution of final 

infarct for the median animal in each treatment group. 
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Figure 3-7 Final infarct volume 72 hrs post 90 min MCAO. Infarct lesions at 72 hrs post 90 min 
MCAO were comparable between groups (P>0.05). Data depict values for Vehicle (dH2O; n=7), 
DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=7). Data were analysed using one-way 
ANOVA, P<0.05 was considered statistically significant. Horizontal bar represents the mean. 
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Figure 3-8 Spatial distribution of infarct tissue for Vehicle (dH2O), DIZE (15 mg/kg/day) and DIZE (30 mg/kg/day) treated animals at 72 hrs post 90 min 
MCAO. Coronal sections represent the median animal for each treatment group. Infarct is highlighted in white, blue and purple for Vehicle (dH2O), DIZE (15 mg/kg/day) 
and DIZE (30 mg/kg/day), respectively. 
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3.3.8 Laser Doppler Flowmetry 

As a result of a technical error, LDF data were not obtained for 3 animals in this study, one 

in Vehicle (dH2O) and two in DIZE (30 mg/kg/day) groups. At MCAO, rCBF decreased in 

all animals, which indicates successful MCAO. Following filament removal (reperfusion), 

mean rCBF increased for all groups, suggesting successful CBF re-establishment (Figure 

3-9). Interestingly, during the course of LDF monitoring, DIZE treated animals showed a 

slight trend to present exacerbated % rCBF deficit during MCAO when compared to the 

vehicle group. There was high variability in LDF readings throughout experiments and the 

extent of rCBF change at time of MCAO and reperfusion amongst animals. Figure 3-10 

shows a representative image of successful LDF measurements for Vehicle (dH2O), DIZE 

(15 mg/kg/day) and DIZE (30 mg/kg/day) treatment groups.  

 

Figure 3-9 % rCBF change during LDF assessments per treatment group. MCAO successfully 
decreased mean rCBF for all groups and reperfusion increased mean rCBF after filament removal. 
Data are presented as mean LDF values normalised to 2 min baseline (prior to MCAO, 100%) for 
Vehicle (dH2O; n=6), DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=5). Data are expressed 
as mean ± S.D. over the course of 100 min. 
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Figure 3-10 Representative image of successful LDF traces. A) Vehicle (dH2O); B) DIZE (15 
mg/kg/day) and C) DIZE (30 mg/kg/day) treated groups. Data are expressed as arbitrary units 
(AU) over 100 min expressed in seconds (sec). The horizontal dotted line represents 90 min 
MCAO. 

 

3.3.8.1 LDF reliably detects MCAO but not reperfusion extent 

LDF successfully detected a drop in % rCBF at the time of MCAO for all rats included in 

the study, with no statistical differences amongst groups; Vehicle (dH2O): -60.9±13.4%, 

DIZE (15 mg/kg/day): -40.1±18.3%, DIZE (30 mg/kg/day): -56.2±15.5% (Figure 3-11A).  

Overall, reperfusion increased mean % rCBF for all groups, Vehicle (dH2O): 

185.2±113.3%, DIZE (15 mg/kg/day): 76.5±45.7%, DIZE (30 mg/kg/day): 191.9±225.0%. 

However, in some animals, rCBF change at reperfusion was relatively small (25.0% in 

DIZE 15 mg/kg/day or 26.9% in DIZE 30 mg/kg/day groups) (Figure 3-11B). Plus, in the 

DIZE (30 mg/kg/day) group, one animal displayed a decrease of 14.9% rCBF at time of 

reperfusion; yet, this rat had a subcortical lesion of 82.2mm3 and survived the whole 
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experiment, suggesting successful reperfusion (Figure 3-12). Therefore, these results 

indicate that LDF does not reliably detect reperfusion extent.  

 

Figure 3-11 % rCBF change at MCAO and at reperfusion.A) % rCBF change at time of MCAO 
compared to baseline. B) % rCBF change at time of reperfusion compared to 90 min MCAO. 
LDF successfully detected a decrease in rCBF at time of MCAO for all animals but not at 
reperfusion. There were no differences between groups in the extent of % rCBF at MCAO and/or 
reperfusion for Vehicle (dH2O; n=6), DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=5). 
Data were analysed using one-way ANOVA for Figure A and Kruskal-Wallis test for Figure B, 
P<0.05 was considered statistically different. Horizontal bar represents the mean. 

 

 

Figure 3-12 Representative LDF trace that detected afailure of reperfusion onset. LDF failed 
to detect reperfusion onset, exhibiting a 14.9% decrease in rCBF after filament removal in the 
animal presented. The rat survived the experiment and displayed a final infarct volume of 82.2mm3. 
MRI-T2 image shows a representative figure of the final infarct in coronal level 4 at 3 days post 90 
min MCAO. Data are expressed in arbitrary units (AU) over time in seconds (sec). The horizontal 
dotted line represents 90 min MCAO. 
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3.3.8.2 % rCBF change at MCAO or at reperfusion does not predict final 
infarct volume  

To study whether the level of ischaemia or reperfusion detected by LDF could predict final 

infarct outcome, the % change in CBF at MCAO and at reperfusion were correlated with 

final infarct for each treatment group. LDF change at MCAO did not correlate with final 

infarct; Vehicle (dH2O): r=-0.24 (P=0.65), DIZE (15 mg/kg/day): r=-0.63 (P=0.25), DIZE 

(30 mg/kg/day): r=-0.31 (P=0.61) (Figure 3-13A). Similarly, at reperfusion, the extent of 

% rCBF increase did not correlate with final infarct volume; Vehicle (dH2O): r=0.49 

(P=0.36), DIZE (15 mg/kg/day): r=0.7 (P=0.23), DIZE (30 mg/kg/day): r=-0.4 (P=0.5), 

(Figure 3-13B).  

 

Figure 3-13 Correlation between % rCBF change at MCAO/reperfusion and final infarct 
volume. A) % rCBF decrease at MCAO vs infarct volume (mm3) LDF data did not correlate with 
final infarct for each group (P>0.05). B) % rCBF change at reperfusion vs infarct volume (mm3). 
LDF data did not correlate with final infarct for each group (P>0.05). Graphs show values for 
Vehicle (dH2O; n=6), DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=5) treatment groups. 
The vertical dotted line marks 0% rCBF change. Data were analysing using Pearson parametric 
correlation for Figure A and Spearman non-parametric correlation for Figure B, P<0.05 was 
considered statistically significant. 
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3.3.8.3 % rCBF change during MCAO does not predict infarct volume 

Throughout the experiments, it was noticed that there was a recovery in perfusion signal 

during MCAO for all groups; Vehicle (dH2O): 147.4±180.4%, DIZE (15 mg/kg/day): 

38.2±25.3%, DIZE (30 mg/kg/day): 83.1±76.5% (Figure 3-14A). An increase in rCBF 

over time could be an indication of early reperfusion or collateral supply recruitment and 

therefore, smaller lesions. When correlating % rCBF change during MCAO with final 

infarct volume, improving flow during MCAO did not predict smaller lesions; Vehicle 

(dH2O): r=-0.2 (P=0.71), DIZE (15 mg/kg/day): r=-0.4 (P=0.52), DIZE (30 mg/kg/day): 

r=-0.5 (P=0.45), (Figure 3-14B). Figure 3-15C illustrates the LDF traces for the median 

animals in the Vehicle (dH2O), DIZE (15 mg/kg/day) and DIZE (30 mg/kg/day) groups. 

The animals displayed ischaemic lesions of 20.2mm3, 122.9mm3and 132.3mm3, 

respectively. 

 

Figure 3-14 % rCBF change during MCAO and correlation with final infarct volume. A) % 
rCBF change during MCAO; B) Correlation between % rCBF change during MCAO and 
infarct volume (mm3). % rCBF increase during MCAO did not differ amongst groups (P>0.05). 
Additionally, data did not correlate with final infarct for each group (P>0.05). Graphs show values 
for Vehicle (dH2O; n=6), DIZE (15 mg/kg/day; n=5) and DIZE (30 mg/kg/day; n=5) treatment 
groups. The vertical dotted line marks 0% rCBF change. Data were analysed using Kruskal-Wallis 
non-parametric test for Figure A and non-parametric Spearman correlation for Figure B, P<0.05 
was considered statistically significant. 
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Figure 3-15 Representative LDF traces displaying % rCBF changes during MCAO. A) Vehicle 
(dH2O); B) DIZE (15 mg/kg/day) and C) DIZE (30 mg/kg/day). Corresponding MRI-T2 image 
represents infarct volume in coronal level 4 for each animal. Data are expressed as arbitrary units 
(AU) over time in seconds (sec). LDF traces correspond to the median animal in each group. The 
horizontal dotted line represents 90 min MCAO. 
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3.3.8.4 LDF predicts haemorrhage following MCAO 

In the present study, 3 rats died overnight due to SAH. In these animals, it was noticed that 

following filament removal to induce reperfusion, there was an abrupt decrease in LDF 

signal (Figure 3-16). For all animals, the filament was readjusted during MCAO. In two 

out of the three animals, the filament was readjusted following a steep increase in rCBF 

during MCAO, a possible indication of partial occlusion (Figure 16A & C). In another rat, 

the filament was readjusted to ensure correct positioning (Figure 16B), which may have led 

to accidentally induced SAH. These data show that LDF predicts haemorrhage. 

 

Figure 3-16 Representative LDF traces for SAH mortality cohort. A) Vehicle (dH2O); B) DIZE 
(15 mg/kg/day) and C) DIZE (30 mg/kg/day). In all SAH mortality animals, the filament was 
adjusted during MCAO (highlighted in red) and at time of reperfusion, LDF traces steeply 
decreased without recovery, an indication of haemorrhage. Data are expressed in arbitrary units 
(AU) over time in seconds (sec). The horizontal dotted line represents 90 min MCAO. 
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3.4 Discussion 

Infarct size variability is a problem that burdens the entire experimental stroke field as it 

leads to a higher number of animals needed to obtain a suitable statistical power. The 

intraluminal filament MCAO is the most widely used animal model. Despite being 

considered less invasive than other models as it does not require craniotomy, it leads to 

variable ischaemic lesions. Several factors account for the variability of ischaemic lesions 

such as rat strain. In our study, lesion volume outcome was compared between Wistar and 

Sprague-Dawley rats where it was observed that Wistar rats displayed significantly larger 

and less variable lesions than Sprague-Dawley rats following 4 hrs permanent MCAO. In 

this thesis, the main outcome is to study the potential of RAS counter-regulatory axis 

enhancement as an adjuvant therapy along with reperfusion in ischaemic stroke. Following 

the determination of the most suitable rat strain to be used, Study 2 had the objective to 

optimise the performance of transient MCAO. Moreover, it investigated the potential of 

systemic drug delivery to target the brain RAS and the use of LDF as a possible infarct 

volume prediction method for future experiments. Systemic administration of the ACE2 

activator, DIZE, did not significantly alter infarct volume, neurological outcome or systolic 

BP. In addition, it was determined that LDF is an unreliable and challenging technique 

unable to predict infarct volume from the severity of the initial ischaemic insult.  

3.4.1 Wistar rats showed significantly larger lesions following 4 
hrs permanent MCAO than Sprague-Dawley animals 

Wistar rats subjected to 4 hrs permanent MCAO displayed significantly larger ischaemic 

lesions than Sprague-Dawley animals. To guarantee that the infarct volumes obtained were 

due to MCA occlusion only, MABP and blood gases were assessed prior to and during 

MCAO as these factors may impact collateral blood vessel vasodilation or constriction 

(Anderson and Meyer, 2002; Browning et al., 1997; Shin et al., 2008). Temperature was 

also monitored and maintained to prevent hypothermia, which is neuroprotective in 

ischaemic stroke (van der Worp et al., 2007). Isoflurane delivered by mechanical 

ventilation allows the adjustment of anaesthetic levels, providing some control over 

physiological parameters that could interfere with infarct development (Zausinger et al., 

2002). Consequently, MABP, pH, PaCO2 and temperature were maintained stably amongst 

groups with no significant differences between strains over the course of the experiment. 

Conversely, for all animals, PaO2 levels remained higher than the normal range (100 

mmHg) due to the continuous administration of 70:30% N2O-O2 mixtures. Sprague-
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Dawley animals showed a trend to exhibit higher PaO2 values than Wistar rats; however, 

there were no significant differences between groups.  

Wistar rats are reported to offer larger and less variable ischaemic lesions compared to 

Sprague-Dawley rats  (Kim et al., 2009; Ström et al., 2013). Wistar rats have thinner and 

underdeveloped posterior communicating arteries when compared to Sprague-Dawley rats, 

thus, Wistar animals may be more susceptible to injury (Kim et al., 2009). Moreover, 

Sprague-Dawley rats display at least 6 distinct MCA branching patterns. From a total of 

263 Sprague-Dawley rats obtained from the same supplier, 17% presented atypical MCA 

branching (Fox et al., 1993). This suggests that MCAO extent may be diminished due to 

atypical provision of CBF to the injured site, justifying enhanced infarct variability in this 

strain (Fox et al., 1993). One could argue that the choice of animal model may have 

influenced the results obtained. The permanent model was selected in this study as it does 

not add an extra variable in terms of reperfusion, which could impact result interpretation. 

Plus, it was a means to demonstrate that successful MCAO was induced in my hands. 

Nonetheless, the observations in the study are supported by experiments conducted in 

transient MCAO. Following 90 min, 2 hrs or 4 hrs MCAO with 24 hrs reperfusion, Wistar 

rats present greater and less variable cerebral damage as well as lower mortality rates 

compared to Sprague-Dawley rats (Aspey et al., 2000; Walberer et al., 2006).   

Conversely, Walberer and colleagues identified that following 24 hrs permanent MCAO, 

Sprague-Dawley rats developed significantly larger ischaemic lesion volumes compared to 

Wistar animals (Walberer et al., 2006). Several factors could be implicated in the 

differences observed such as stroke severity and infarct volume measurement method. 

However, the choice of rat vendor is the most likely contributing factor for the discrepancy 

observed. Animal supplier is a known contributing factor for infarct volume variability 

amongst strains (Oliff et al., 1995). In our study, animals were obtained from Charles River 

whereas in Walberer’s study rats were purchased from Harlan. When comparing Sprague-

Dawley ischaemic injury susceptibility in animals obtained from Harlan or Charles River 

Laboratories, Harlan animals presented significantly greater CBF reduction and functional 

deficit following permanent MCAO compared to Charles River rats (Nikolova et al., 

2014). Therefore, supporting the decreased severity observed in Sprague-Dawleys in our 

study. Despite a possible vendor related genetic variability, interstrain differences are 

equally seen when purchasing rats from the same supplier. Following global cerebral 

ischaemia in rats obtained from Charles River, Wistar animals were highly predisposed to 
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severe neuronal damage whereas Sprague-Dawleys exhibited partial damage only (Fuzik et 

al., 2013), further supporting the findings in our study. 

The debate around rat strains led to a meta-analysis conducted in 2013 with the aim to 

investigate the factors influencing infarct outcome variability. There, 346 articles were 

examined and it was concluded that the Wistar rat strain and silicone coated intraluminal 

filament induce the lowest infarct volume variability and mortality (Ström et al., 2013). 

Most recently, Rewell & Howells concluded that when compared to Wistar Kyoto rats, 

sample size calculations using Sprague-Dawleys lead to extensively higher cohort numbers 

due to lesion variability (Rewell and Howells, 2017). Therefore, the authors deemed the 

Sprague-Dawley rat strain suboptimum for intraluminal filament MCAO model 

experiments.  

3.4.2 DIZE treatment does not influence infarct volume, 
neurological score or systolic BP following transient MCAO 

DIZE administered SC for a period of 7 days, starting 4 days prior to MCAO, had no 

significant impact on ischaemic lesion volume, neurological score or systolic BP compared 

to Vehicle (dH2O). This suggests that systemic administration may not be sufficient to 

target the brain RAS and induce a neuroprotective effect following MCAO and therefore 

implies that ICV administration may be the most adequate delivery method as previously 

observed (Mecca et al., 2011). Our study had various protocol differences compared to 

Mecca’s study. First, the rat strain selected was Wistar opposed to Sprague-Dawley. 

Second, the animal model used was the intraluminal filament method instead of ET-1-

induced MCAO. The pathological mechanisms could differ between models. For instance, 

the filament model is suitable to replicate thrombectomy strategies whereas the ET-1 

induced MCAO may replicate alteplase treatment due to progressive reperfusion induction 

rather than an abrupt CBF reestablishment (Sutherland et al., 2016). Third, in Mecca’s 

study, final infarct was examined with TTC staining whereas in our studies, MRI-T2 was 

selected as the method of infarct determination at 72 hrs. TTC reliably detects infarct areas 

at 24 hrs post MCAO. After this point, inflammatory cells begin to infiltrate the damaged 

area with their mitochondria being also stained with TTC (Liszczak et al., 1984). 

Consequently, aside from differences in the route of administration between the studies, 

factors such as rat strain and stroke model could be implicated in the discrepancies 

observed. 
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DIZE induces a hypotensive effect following systemic and ICV administration in 

hypertension and ischaemic stroke studies (Gjymishka et al., 2010; Mecca et al., 2011). 

This outcome is attributed to an increase in ACE2 activity and subsequent Ang-(1-7) 

generation (Gjymishka et al., 2010; Mecca et al., 2011).  However, in our study, treatment 

did not alter systolic BP compared to control animals. Several animals exhibited a systolic 

BP above the normal range (80-120 mmHg) before and after MCAO and were visibly 

stressed during measurements. Concomitantly, a possible hypotensive effect might have 

been masked, indicating that the acclimatisation period should be extended in future.  

DIZE SC therapy at 15 mg/kg/day and 30 mg/kg/day doses for a period of 7 days were 

selected in these studies. Previously, 15 mg/kg/day SC DIZE attenuated inflammatory 

responses in rat models of myocardial infarction, subtotal nephrectomy and pulmonary 

hypertension (Qi et al., 2013; Rigatto et al., 2013; Velkoska et al., 2015). Simultaneously, 

30 mg/kg/day dose was safely administered in a Ang II induced mice model of abdominal 

aortic aneurysms (Thatcher et al., 2014). To examine a dose response effect and to 

guarantee delivery across the CVOs, higher doses of 15 mg/kg/day and 30 mg/kg/day 

DIZE were selected. Interestingly, DIZE treatment showed a trend to worsen infarct 

volume and neurological outcome when compared to control rats. In fact, treated animals 

were visibly worse during post-operative recovery, exhibiting higher levels of porphyrin 

and less movement. In female rats, DIZE therapy exerts a negative impact on reproductive 

performance, possibly inducing a toxic effect (Oguejiofor et al., 2010). Therefore, it is 

plausible that DIZE might have caused off target effects in our experiments. Nevertheless, 

the results obtained suggest that systemic brain RAS targeting may not be sufficient to 

induce drug circulation in the brain and mediate a neuroprotective effect. In addition, DIZE 

was shown to be unsuitable due to its negative impact in animal wellbeing. In future 

experiments, the therapeutic potential of the counter-regulatory RAS axis will be studied 

via an ICV delivery route using a RAS receptor agonist treatment. 

Most recently, DIZE was tested as a post stroke therapy administered IP at 4 hrs, 1 day and 

2 days after ET-1 induced MCAO in a series of daily doses ranging from 0.75 to 15 mg/kg. 

Infarct volume was determined 3 days post MCAO and it was concluded that 0.75, 2.5 and 

7.5 mg/kg DIZE significantly attenuated infarct volume whereas 15 mg/kg had no effect 

(Bennion et al., 2015). This follow up experiment emphasises that the dose selected was 

suboptimal to induce an effect in the brain whilst highlighting that according to the results 

obtained in this Chapter, ICV administration was a suitable method to be selected. 
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3.4.3 LDF reliably detects MCAO only but not reperfusion extent 

LDF is a reference tool in experimental stroke to confirm proper filament placement. 

During MCAO, there is no visual control of occlusion, thus, partial occlusions, SAH or the 

displacement of the filament are often undetected, with the latter leading to early 

reperfusion (Schmid-Elsaesser et al., 1998). Accordingly, LDF has been indicated as a 

reliable technique when conducted continuously to confirm occlusion and is recommended 

by the STAIR guidelines ((STAIR), 1999; Dirnagl et al., 1989). 

In our study, LDF successfully detected perfusion deficit in the MCA territory upon 

filament insertion in all included animals. Although LDF does not allow discernment 

between full and partial MCAO, it was shown to reliably confirm a reduction in perfusion 

deficit at MCAO start. A recent study investigated LDF as a standardising method to be 

conducted during the intraluminal filament model in rats. There, 4 different surgeons with 

various levels of experience conducted MCAO surgery with or without LDF aid. LDF use 

decreased the coefficient of variance in terms of infarct size by helping identify the 

presence or absence of an occlusion (Taninishi et al., 2015), and thus validating the 

accuracy in MCAO detection at the time of filament placement. In contrast, LDF did not 

reliably detect reperfusion extent. At time of filament removal, LDF detected a small CBF 

increase or reperfusion failure in some animals. Yet, these rats presented mid-sized infarcts 

opposed to large lesions, an indication of successful reperfusion. This could be a reflection 

of probe movement during the experiment or the presence of a haematoma in the area 

assessed; possibly caused by the probe tip. Moreover, it could be an indication that 

reperfusion occurred in brain areas that could not be detected by the LDF probe. Also, 

these animals could have had a surge in reperfusion during anaesthetic recovery and 

subsequent increase in BP. Similarly to our study, an experiment conductedin embolic 

stroke models showed that LDF successfully detected MCAO; however, it did not reliably 

detect reperfusion following tPA treatment (Henninger et al., 2009). There, it was observed 

that LDF failed to detect reperfusion in some animals, which developed small infarcts; 

therefore, supporting our conclusions.   

3.4.4 LDF predicts haemorrhage 

In our study, 3 animals died overnight due to SAH. It was noticed that in these rats, the 

filament had been readjusted during MCAO due to CBF increase or to guarantee the 

filament was adequately secured. SAH occurrence was characterised by a sudden decrease 
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in rCBF following filament retrieval as previously identified (Hungerhuber et al., 2006; 

Woitzik and Schilling, 2002). In the MCA filament model, silicone coated filaments cause 

SAH in 8% of all animals opposed to 30% induced by non-coated filaments (Schmid-

Elsaesser et al., 1998). Although Doccol filaments are less likely to induce SAH than non-

coated filaments, it was noticed that when adjusting the filament, the likelihood of 

haemorrhage increases. This shows that following first time insertion, the vessels become 

sensitive to rupture and one must carefully evaluate whether to readjust the filament or not 

under the circumstances described above. 

3.4.5 LDF does not predict final infarct following transient MCAO 

To examine whether LDF changes could predict final infarct volume, rCBF change at 

MCAO and at reperfusion were correlated with MRI-T2 data. LDF was shown to be an 

unsuitable tool to predict final infarct outcome and tackle the lesion variability observed in 

this animal model. Yet, previous studies contradict our findings where LDF at time of 

MCAO, successfully predicted infarct volume (Riva et al., 2012; Soriano et al., 1997). In 

Soriano et al’s study, the 3-vessel model was used, which is substantially more severe than 

the one used in our experiment. By occluding 3 vessels or more, collateral blood supply 

recruitment becomes impaired, diminishing cortical CBF during ischaemia and offering an 

enhanced and less variable assessment of perfusion deficit (Soriano et al., 1997). 

Accordingly, we show that quickly after filament positioning, there was a recovery in CBF 

during MCAO of various extents amongst animals (Figure 3-14). This gradual increase 

could signify that the filament was not occluding the vessel completely causing early 

reperfusion. However, when correlating the extent of rCBF increase during MCAO with 

final infarct outcome, LDF did not predict smaller lesions. The increase in rCBF is likely 

due to the recruitment of MCA collaterals through the anterior cerebral artery (ACA) and 

the leptomeningeal anastomoses (Liebeskind, 2003; Riva et al., 2012; Woitzik and 

Schilling, 2002).  

Collateral vessel recruitment and grade differs amongst individuals in spatial and temporal 

terms (Liebeskind, 2005). This cannot be reliably detected by LDF as the technique 

provides a single point measurement only; therefore, collateral recruitment and LDF probe 

location may have interfered with result interpretation. Moreover, Riva and colleagues 

showed that following 60 min MCAO in Wistar rats, CBF deficit within the penumbra 

correlates with final infarct (Riva et al. 2012). There, LDF values were obtained at 2 mm 

anterior and 2 mm lateral coordinates from bregma (Riva et al., 2012) whereas the 
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coordinates used in our study were 1.3 mm posterior and 4.0 mm lateral from bregma. It 

could also be argued that the probe position was not optimal, as it could have been placed 

within penumbral tissue in some animals yet within the core in others using the same 

stereotaxic coordinates. 

The extent of % rCBF change during MCAO and reperfusion was highly variable amongst 

animals and technically challenging to perform. For instance, rats have a cortical thickness 

of approximately 2 mm whilst LDF has a sample volume of approximately 1 mm3 and 1 

mm depth only (Zilles 1985). To ensure adequate signal in this LDF set up, the rats’ skull 

has to be drilled until the pial vessels are visualised; thus, drilling differences amongst 

animals has the potential to impact LDF signal and result reliability. In addition, absolute 

flow values are dependent on probe placement and position, with minor changes resulting 

in significant alterations in CBF recording (Dirnagl et al., 1989). As a result, slight changes 

in probe holder positioning due to poor probe holder attachment might have influenced the 

extent of perfusion detection. These variables reflect the technical issues that arise when 

performing LDF in this set up. Therefore, MRI will be used in future to reliably detect 

early ischaemic lesion and final infarct volume using DWI and a MRI-T2 sequence, 

respectively, and MRA will be used to confirm successful MCAO and MCA reperfusion. 

3.4.6 Summary 

In this Chapter, Wistar rats were selected as the most suitable strain for the performance of 

in vivo studies due to the generation of mid-large lesions with lower variability compared 

to Sprague-Dawley rats following permanent MCAO. DIZE SC administration as a pre and 

post-MCAO therapy failed to induce a neuroprotective effect following transient MCAO. 

Instead, DIZE treatment showed a trend to exacerbate ischaemic lesion when compared to 

Vehicle (dH2O) following 7 days of treatment. The results indicate that systemic DIZE 

treatment are not optimal to study the therapeutic potential of the counter-regulatory RAS 

axis following MCAO. LDF successfully detected rCBF reduction at MCAO and predicted 

haemorrhage; however, it failed to detect reperfusion extent and it did not predict final 

infarct outcome. LDF proved to be an unreliable method to tackle infarct variability in this 

animal model. Accordingly, the next Chapters will evaluate the therapeutic potential of the 

counter-regulatory RAS axis in ischaemic stroke as an ICV therapy with RAS receptor 

agonists. To tackle infarct volume variability derived from the intraluminal filament 

model, MRI scanning will be performed to confirm MCAO/reperfusion as well as 

determine initial and final infarct lesion to study the extent of treatment effects. 
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C21 on the extent of tissue salvage 
following transient MCAO 
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Chapter 4  

4.1 Introduction 

The experiments in this Chapter were designed to assess the therapeutic potential of Ang-

(1-7) (MasR agonist) and C21 (AT2R agonist), either alone or in combination as a potential 

synergistic therapy following transient MCAO. The primary outcome of this study was to 

assess the impact of treatment on the extent of cerebral tissue salvage following 

reperfusion. 

Acute ischaemic stroke is a highly disabling condition resulting from the abrupt loss of 

CBF, leading to neuronal cell death and consequent physical disability (Dirnagl et al., 

1999). Currently, the only non-surgical treatment available is alteplase, which acts to lyse 

the clot/thrombus obstructing the vessel, inducing a transitory reperfusion (Tawil and 

Muir, 2017). However, alteplase has various limitations, for instance, the efficacy and 

safety of treatment is restricted to patients within 4.5 hours of symptom onset and it may 

lead to intracranial haemorrhage (Tawil and Muir, 2017). In addition, it often fails to 

effectively recanalise large vessel occlusions (Tawil and Muir, 2017). In recent years, 

mechanical thrombectomy has been shown to be an effective strategy in ischaemic stroke, 

particularly in large vessel occlusion patients, and with an extended therapeutic window of 

6 hrs from symptom onset (Mayank Goyal et al., 2015). This strategy works by 

mechanically retrieving the obstructing clot/thrombus, inducing an abrupt cerebral 

reperfusion as opposed to the slower restoration of cerebral perfusion achieved by the 

thrombolytic action of alteplase. Although reperfusion reestablishment to the occluded 

vessel is the first line of treatment, it may also exacerbate injury by stimulating leukocyte 

recruitment, inflammation, oxidative stress and BBB breakdown (Horsch et al., 2015; Pan 

et al., 2007; Warach and Latour, 2004). Thus, this new line of therapy has reinvigorated the 

development of neuroprotective adjuvant therapies that could reduce infarct volume 

progression after reperfusion injury.  

The RAS, an endocrine system involved in homeostatic control of blood pressure is linked 

to the pathology of cardiovascular conditions (e.g. hypertension and myocardial infarction) 

through an over activation of the ACE/Ang II/AT1R axis(Dzau, 2001). In ischaemic stroke, 

the ACE/Ang II/AT1R is also suggested to be over-activated in the brain and thought to 

exacerbate cerebral injury by promoting vasoconstriction, oxidative stress and 

inflammation (Walther et al., 2002). Accordingly, several experiments have tested the 

neuroprotective properties of ARBs in experimental stroke where these were shown to 
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reduce the extent of tissue damage and degree of behavioural impairment (Krikov et al., 

2008; Liu et al., 2008; Lou et al., 2004), confirming the involvement of the RAS in 

cerebral pathology. Interestingly, the neuroprotective effects induced by ARBs are 

proposed to be due to an enhancement of the counter-regulatory RAS axis, ACE2/Ang-(1-

7)/MasR, as well as a preferred activation of the Ang II alternative receptor, AT2R. In the 

brain, the AT2R is mainly expressed in foetal tissues; however, following cerebral 

ischaemia it is upregulated in penumbral regions (Iwai et al., 2004). Similarly, MasR, is 

upregulated in the brain and serum following MCAO, peaking at 24 hrs post injury and 

remaining highly expressed at 3 and 7 days post MCAO in rats (Lu et al., 2013). These 

findings have placed the counter-regulatory axis and the AT2R as possible therapeutic 

strategies in cerebral injury. 

AT2R activation in experimental stroke has been shown to reduce infarct volume following 

transient MCAO in both normotensive and SHRs (Joseph et al., 2014; McCarthy et al., 

2009, 2012). In normotensive animals, C21, a highly selective non-peptide AT2R agonist, 

reduced infarct volume when administered as a post IP therapy following intraluminal 

filament transient MCAO. The underlying effect was attributed to an enhanced expression 

of anti-inflammatory cytokine IL-10 and decreased protein levels of iNOS (Alhusban et al. 

2015). The proposed anti-inflammatory effect was further observed in an ET-1 induced 

MCAO model where C21 administered via ICV infusion as a pre- and post-therapy 

decreased infarct volume compared to controls at 72 hrs post injury (Joseph et al., 2014). 

The outcome was attributed to a reduction in cerebral pro-inflammatory markers iNOS and 

CCR2, a macrophage chemotaxic receptor (Joseph et al., 2014). 

Similarly, Ang-(1-7) induced MasR activation counteracts the ACE/Ang II/AT1R axis by 

promoting an anti-inflammatory effect (Jiang et al., 2012; Liu et al., 2016; Mecca et al., 

2011; Regenhardt et al., 2013). When administering Ang-(1-7) ICV 3 days prior to and 4 

days post ET-1 induced MCAO, Ang-(1-7) attenuated infarct size and neurological deficit, 

a result suggested to be due to a reduction in iNOS (Mecca et al., 2011). Furthermore, in 

permanent MCAO models, Ang-(1-7) treatment reduced infarct volume due to a NF-B 

suppression and subsequent inhibition of pro-inflammatory markers IL-1β, IL-6 and COX-

2, therefore, exerting an anti-inflammatory effect (Jiang et al. 2012). It is further 

hypothesised that Ang-(1-7) exerts its effects by directly acting on MasR present on 

microglia and modulating microglia/macrophage cytokine profile from an M1 

(inflammatory) to an M2 (anti-inflammatory) type (Liu et al., 2016; Regenhardt et al., 

2013). For instance, in in vitro experiments, Ang-(1-7) treatment on cultured microglia 
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attenuated NF-B activation, IL-1β and proliferating microglia/macrophage marker CD11b 

expression at basal levels whilst enhancing IL-10 (Liu et al., 2016). In in vivo studies, Ang-

(1-7) pre- and post-treatment in ET-1 induced MCAO, downregulated the gene expression 

of pro-inflammatory M1 markers IL-6 and CD11b in the ipsilateral cortex 24 hrs post 

injury (Regenhardt et al., 2013), emphasising its potential anti-inflammatory actions.  

Given the similarity of activation outcome, increasing evidence postulates that MasR and 

AT2R receptors may dimerise and act synergistically. For instance, in ischaemic stroke, 

PD123319, a AT2R antagonist, blocked the cerebroprotective effects induced by Ang-(1-7) 

following transient MCAO whereas C21-induced neuroprotection was reversed when 

administered in combination with MasR antagonist, A779 (Joseph et al., 2014; Mecca et 

al., 2011). On the contrary, experiments postulate that MasR and AT2R could act as two 

independent protective pathways. In permanent MCAO, Ang-(1-7)-induced infarct size 

decrease was overturned by MasR antagonist, A779, but not when administered in 

combination with AT2R antagonist, PD123319 (Jiang et al., 2012). Additionally, in KO 

mice, AT2R agonism generates a vasodilatory effect in aortic rings in MasR-KO (Lemos et 

al., 2005) whereas in AT2R-KO mice, Ang-(1-7) exerted an hypotensive effect (Gembardt 

et al., 2012). Therefore, there is a need to further elucidate the functional implications of 

simultaneous MasR and AT2R agonism in the context of ischaemic stroke. 

The majority of studies testing the neuroprotective potential of Ang-(1-7) and C21 in 

transient MCAO have been performed by using the ET-1 induced MCAO model, which 

induces a gradual reperfusion as opposed to the abrupt reperfusion observed following 

mechanical thrombectomy procedures (Sutherland et al., 2016). In addition, therapy effects 

on infarct volume have been primarily assessed as a pre and post stroke treatment, 

particularly for Ang-(1-7). In the clinic, it is challenging to anticipate when a patient will 

suffer a stroke. Therefore, there is a need to study the neuroprotective potential of these 

therapies in models that replicate thrombectomy procedures and as a post-injury therapy 

administered during subacute/chronic stages of cerebral injury. Importantly, the synergistic 

neuroprotective potential of MasR and AT2R agonism as a single or combination therapy 

following focal cerebral ischaemia in subacute/chronic stages of injury is yet to be 

determined. Consequently, this study aims to assess the neuroprotective potential of Ang-

(1-7) and/or C21 as a post-stroke therapy for a period of 7 days following transient MCAO.  
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4.1.1 Study Aims 

 Primary outcome: To determine the effect of post-stroke central administration of 

Ang-(1-7) and/or C21 on the extent of tissue salvage following 90 min MCAO with 

7 days reperfusion. 

 To determine the effects of Ang-(1-7) and/or C21 on blood pressure and functional 

outcome following 90 min MCAO. 

 To dissect potential underlying mechanisms via gene expression assessment of 

RAS components, leukocyte chemokine receptors, microglia/macrophage 

phenotype and oxidative stress marker gene expression in ipsilateral peri-infarct 

regions.  

 To qualitatively evaluate microglia total cell count and activated cells in the peri-

infarct regions following treatment. 
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4.2 Methods 

4.2.1 Sample size calculation 

Sample size was assessed using power analysis programme G*Power (version 4.1, 

Germany). An “a priori” power analysis was performed for F test ANOVA, fixed effects, 

one-way. Using data from previous in house studies assessing final infarct volume 

following 90 min MCAO with 7 days reperfusion (mean infarct volume of 170mm3 and a 

S.D. of 67mm3). Ang-(1-7) administered as an ICV infusion was previously demonstrated 

to induce a 50% reduction in % compared to control (Mecca et al., 2011). Similarly, ICV 

C21 infusion leads to approximately 50% reduction infarct size compared to vehicle 

groups (Joseph et al., 2014). Therefore in order to detect an effect size of 50% reduction in 

infarct volume, a minimum n number of 11 for each group with a type I error rate () of 

0.05 and power of 0.80 was demonstrated to be necessary.  

4.2.2 Drug treatment dosage 

Ang-(1-7) ICV infusion dose of 1.1 nmol per 1L/hr dissolved inartificial cerebrospinal 

fluid(aCSF) was selected based on permanent MCAO and ET-1 induced MCAO studies 

(Mecca et al., 2011; Jiang et al., 2012; Jiang et al., 2014; Regendhardt et al., 2013). C21 

was shown to successfully decrease infarct volume in ET-1 induced MCAO models at a 

dose of 7.5 ng/hr in normotensive rats (Joseph et al., 2014) and at 50 ng/hr in hypertensive 

animals (McCarthy et al., 2014). Since higher doses of C21 are suggested to interact with 

AT1R; a 7.5 ng/hr dose was selected as recommended by Vicore Pharma®.  

All animals were treated ICV for a period of 7 days with treatment starting immediately 

following reperfusion with the use of ALZET osmotic pumps delivering treatment at a rate 

of 1L/hr (ALZET®, Model 2001), dissolved in aCSF (ALZET®, CA, USA). Treatment 

groups were as follows: Vehicle [(aCSF); L/hr; n=13)], Ang-(1–7) (1.1 nmol; L/hr; 

n=13), C21 (0.0075 g/hr; L/hr; n=12), Ang-(1-7) + C21 (1.1 nmol Ang-(1-7) + 0.0075 

g/hr of C21; L/hr; n=11). Ang-(1-7) was purchased from Bachem® (Bachem, 

Bubendorf, Switzerland) and C21 was kindly supplied by Vicore Pharma®. One day prior 

to the experiment, osmotic pumps containing allocated treatment were made up and left in 

a water bath at 37ºC until surgery, in order to prime for drug delivery. 
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4.2.3 Randomisation and blinding 

Rats were assigned a number and randomly allocated to treatment groups through a list 

randomiser (www.random.org) and prior to study commencement. Investigators, including 

MA, were blinded to treatment group throughout the experimental study. Treatment 

schedule was kept by a colleague within the department who was responsible for drug 

preparation. Systolic BP and neurological score were performed by a blinded independent 

investigator prior to and post MCAO. Data analysis was performed under a blind fashion 

by two independent investigators. Once all analysis and assessments were conducted, 

treatment codes were revealed.  

4.2.4 Animals, surgical procedures and recovery 

Male Wistar rats (n=102; 300-380g) obtained from Charles River Laboratories were 

subjected to 90 min MCAO followed by 7 days reperfusion using the intraluminal filament 

model. One day prior to MCAO, conscious systolic BP was measured (following 7 days 

acclimatisation period) and neurological score carried out for each rat as previously 

described (Chapter 2.10 - 11). Neurological score was carried out again at day 3 and 7 

reperfusion whereas systolic BP was measured at day 7. On day of surgery, rats were 

anaesthetised with 5% isoflurane and orally intubated for anaesthesia maintenance at 2-

2.5% isoflurane in a 30:70% O2-NO2 mixture (Chapter 2.5). Local anaesthetic (Norapin®; 

1mg/kg) was administered SC in all incision sites. After, animals were placed in a Kopf 

stereotaxic frame for ICV osmotic pump cannula implantation in the right cerebral lateral 

ventricle (Chapter 2.7.2). The animals were then moved to a corkboard and MCAO 

surgerycarried out (Chapter 2.8). The filament size selected was based on individual 

animal weight and according to Doccol Corporation guidelines. Following 90 min MCAO, 

the filament was removed, all the incisions sutured and the animal allowed recovering for a 

period of 7 days. Recovery and post-operative procedures were carried out as defined in 

Chapter 2.8.1 and 2.8.2, respectively.  

4.2.4.1 Sham procedures 

Sham treated animals were anaesthesised as outlined above. A burr hole was drilled in the 

skull and the cannula inserted into the cerebral ventricle and then quickly removed. MCAO 

surgery was performed; however, the Doccol filament was introduced into the vessel 

without occluding the MCA. Anaesthesia was maintained for the same period of time as 

MCAO animals. Recovery protocol procedeed as described for a period of 7 days.  

http://www.random.org/
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4.2.5 MRI scanning protocol 

At the start of MCAO rats were immediately transferred to the MRI scanner and placed in 

a rat cradle where the head was restrained with tooth and ear bars and the surface coil 

placed above the head. The intubation tube was reconnected and a rectal probe along with 

a homeothermic blanket placed on the animal to maintain anaesthesia and regulate body 

temperature. Three distinct scans were performed during MCAO: DWI, MRA and RARE 

T2 weighted MRI (Chapter 2.9). DWI was performed at 30 and 60 min MCAO and ADC 

maps generated to detect initial MCAO lesion prior to therapy. MRA was conducted to 

confirm successful MCAO and correct ICV cannula placement confirmed using RARE T2 

weighted MRI.  

The imaging protocol was then repeated following 7 days of reperfusion and recovery. 

Rats were initially anaesthesised, placed in the scanner and anaesthesia maintained using a 

facemask. Final infarct volume was determined by a RARE T2 weighted MRI. MRA was 

performed to confirm reperfusion of the left MCA. At the end of the MRI scanning, rats 

were killed and brains removed for either molecular or immunohistochemical assessments 

(Chapter 2.12:16). Figure 4-1 provides an overview of the experimental protocol 

conducted. 

4.2.5.1 MRI data analysis 

Data analysis for DWI and T2 MRI scanning was performed as described in detail in 

Chapter 2. Initial ischaemic lesion at 30 and 60 min MCAO was assessed by generating 

ADC maps (using Paravision v5 software) for each of the 8 coronal slices images obtained 

following DWI scanning. ADC maps were processed using ImageJ and initial lesion 

volume was calculated by applying a threshold between 0.01 and 0.58×10-3mm2/sec 

(Chapter 2.9.1). RARE T2 scans were used to determine final infarct volume at 7 days post 

90 min MCAO. Image J was used to delineate hypertintense regions across the 16 coronal 

sections in order to calculate infarct area on each slice. Contralateral and ipsilateral 

hemisphere volumes were also calculated across the 16 coronal slices (Chapter 2.9.2).  
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4.2.6 Post-mortem assessments 

Total RNA was extracted from peri-infarct ipsilateral brain regions for sham (n=7), 

MCAO-aCSF (n=9) and MCAO-Ang-(1-7) (n=9) treated animals (Chapter 2.14) and 

cDNA generated from the total extracted RNA by RT-PCR (Chapter 2.15). qRT-PCR was 

performed and the genes outlined in Chapter 2.16.1 assessed. Results were analysed by 

taking the means of the technical duplicates and then normalising to theinternal control 

selected, UBC. Data analysis was conducted as described in Chapter 2.16.3. 

Vehicle (aCSF) (n=2), Ang-(1-7) (n=2), C21 (n=2) and Ang-(1-7) + C21 (n=2) treated 

animals were subjected to perfusion fixation and paraffin embedding/sectioning (Chapter 

2.12.2). To identify the peri-infarct, core and contralateral regions, histological analysis 

was carried out (Chapter 2.13.1). Briefly, brain sections from coronal levels 3 to 5, which 

correspond to the core of the MCA territory, were selected and stained with H&E and 

analysed under light microscopy at 40x. Adjacent sections were then selected and 

immunohistochemistry for microglia marker IBA1 was conducted (Chapter 2.13.2). Three 

distinct ROIs were defined within the peri-infarct area on each level and a homotopic ROI 

within the contralateral hemispherewas chosen as a control non-ischaemic area. Sections 

were imaged at 40x under fluorescent microscopy. IBA1+ microglia werecounted using 

Image J and expressed as number/mm2 in peri-infarct and contralateral regions across the 3 

coronal levels selected. In addition, cells were differentiated into activated and resting, % 

activated microglia were presented as % from total cell count for each animal.  
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4.2.7 Exclusion criteria 

The exclusion criteria were applied at the end of the study by three independent researchers 

that were blind to treatment allocation. Before the start of the study exclusion criteria was 

established and animals excluded if presenting the following characteristics:  

 Left MCA not fully occluded at 60 min MCAO or not fully reperfused at day 7 as 

identified by MRA.  

 Cannula for drug delivery not within the cerebral ventricle at day 7 as shown by 

MRI-T2. 

  ICH of the MCA at day 7 reperfusion as shown by MRI-T2.  

 Animals that died or were sacrificed prior to 7 days recovery. 

4.2.8 Statistical analysis 

Ischaemic lesion at 30 min, 60 min MCAO and final infarct at 7 days post MCAO were 

compared between treatment groups using one-way ANOVA. To determine treatment 

effects, percentage (%) and absolute change in ischaemic lesion from 60 min MCAO and 7 

days post MCAO were calculated and compared between groups using one-way ANOVA 

with Tukey’s posthoc test. Systolic BP data were compared using one-way ANOVA. 

Neurological score data were compared between groups using the non-parametric Kruskal-

Wallis test. Absolute ischaemic lesion change from 60 min MCAO to 7 days reperfusion 

within groups was analysing using paired Student’s t test.  

Gene expression data were compared between Sham, MCAO-Vehicle (aCSF) and MCAO-

Ang-(1-7) groups using one-way ANOVA and shown as -Ct normalised to Ubc. For 

immunohistochemistry data, total IBA1+ microglia number and % activated cells were 

presented for peri-infarct ipsilateral and homotopic contralateral hemisphere regions. 

Statistical tests were not performed for IBA1 immunohistochemitry data, representing 

qualitative data.  

Data were presented as mean ± S.D or median ± IQR. Data were shown as a scatterplot 

and a p value of <0.05 was deemed statistically significant.  
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Figure 4-1 Diagram detailing experimental protocol. Prior to MCAO, systolic BP and neurological score were carried out. On day of surgery, MCAO was induced 
and ICV cannula implanted into the right lateral ventricle. Animal was then placed in the MRI scanner and DWI, MRA and T2 weighted scans conducted. After 90 min 
MCAO, reperfusion and treatment started for a period of 7 days. Animals were allowed to recover for 7 days and neurological score and systolic BP assessed. MRI-T2 
weighted and MRA scans were performed at day 7 and brain samples collected for post mortem analysis. 
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4.3 Results 

4.3.1 Mortality and surgical death 

Out of 102 animals used in this study, a total of 22 rats died or were euthanised during 7 

days of recovery (Table 4-1). From these animals, 15 rats died spontaneously: 2 Vehicle 

(aCSF), 4 Ang-(1-7), 7 C21 and 2 Ang-(1-7) + C21 treated rats. Plus, 7 animals were 

euthanised due to breathing difficulties or weight loss below 25% of initial body weight: 4 

Vehicle (aCSF), 1 C21 and 2 Ang-(1-7) + C21 treated animals (Table 4-1). Overall, this 

study had a mortality rate of 21.5%, with the C21 group presenting highest mortality 

within groups (Table 4-1). During surgical procedures, 12 animals died due to 

experimental error and were not included in mortality rates: 2 Vehicle (aCSF), 3 Ang-(1-

7), 2 C21 and 5 Ang-(1-7) + C21 treated rats (Table 4-1). 

Table 4-1 Study mortality and surgical death per treatment group. 

 Vehicle  

N=25 

 

Ang-(1-7) 

N=26 

C21 

N=26 

C21 + Ang-(1-7) 

N=24 

Total N 

 

 Total animals 

per group 

25 26 27 24 102 

Spontaneous 

death  

2 4 7 2 15 

Euthanised 4 0 1 2 7 

Mortality 6 4 8 4 22 

Surgical 

death   

2 3 2 5 12 

% mortality 

per group 

24% 15% 30% 17%  

 

4.3.2 Exclusions 

In this study, 68 rats survived the experiment of which 49 were included for analysis: 13 

Vehicle (aCSF); 13 Ang-(1-7); 12 C21 and 11 Ang-(1-7) + C21 treated animals. Following 

inspection of the MRI-T2 scan, 8 rats did not have the ICV cannula placed in the cerebral 

ventricle and were excluded: 3 Vehicle (aCSF), 3 Ang-(1-7), 1 C21 and 1 combination 

treated rats (Table 4-2), (Figure 4-2A). In total, 7 rats demonstrated partial MCAO at 60 

min MCAO following inspection of the MRA scan: 1 Vehicle (aCSF), 2 Ang-(1-7), 3 C21 

and 2 Ang-(1-7) + C21 rats (Table 4-2), (Figure 4-2B). MRA performed at day 7 

reperfusion indicated that all animals were reperfused adequately. Moreover, MRI-T2 

revealed that 2 animals had ICH and one animal showed signs of ventricular enlargement 
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at day 7 reperfusion, indicating infection caused by the presence of the cannula (Table 4-

2), (Figure 4-2C). 

Table 4-2 Exclusion criteria and excluded animals per treatment group. 

 Vehicle  Ang-(1-7) C21 C21 + Ang-(1-7) Total N 

 

Surviving 

animals 

17 19 17 15 68 

Cannula not in 

place 

3 3 1 1 8 

Partial MCAO 1 2 3 2 7 

MCA not 

reperfused at day 

7 

0 0 0 0 0 

Haemorrhage 

present at day 7 

0 1 0 1 2 

Signs of infection 

at day 7 

0 0 1 0 1 

Total exclusions 4 6 5 4 19 

 

 

Figure 4-2 Representative images of excluded animals per treatment group. A) Cannula 
displacement. MRI-T2 at 7 days post MCAO displaying cannula displacement in the rightlateral 
cerebral ventricle. B) Partial occlusions. MRA at 60 min MCAO showing indications of partial 
occlusion of the left MCA. C) ICH and infection. MRI-T2 at 7 days post MCAO indicating ICH of the 
MCA outlined in green and animal with ventricular infection. 
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4.3.3 Ischaemic lesion evolution during MCAO 

4.3.3.1 Variability in baseline lesion volume prior to treatment 

MCAO was induced for 90 min and DWI scanning performed at 30 min and 60 min 

MCAO to examine ischaemic lesion volume evolution prior to treatment. At 30 min 

MCAO (prior to therapy), all animals exhibited an ischaemic lesion comparable between 

treatment destined groups; Vehicle (aCSF): 141.8±55.3mm3; Ang-(1-7): 145.9±57.4mm3; 

C21: 106±36.3mm3 and Ang-(1-7) + C21: 104.3±45.6mm3 (P>0.05), (Figure 4-3A).  

At 60 min MCAO (prior to therapy), lesion volumes were not significantly different 

between treatment destined groups; however, there was a trend for C21 destined rats to 

start with smaller lesions compared to the Ang-(1-7) group (P=0.07). Lesion volumes were 

as follows; Vehicle (aCSF): 171.8±50.8mm3; Ang-(1-7): 187.1±67.7mm3; C21: 

131.1±41.5mm3 and Ang-(1-7) + C21: 133.9±63.2mm3 (P>0.05), (Figure 4-3B). Data 

indicate that prior to therapy; ADC ischaemic lesions at 30 min and 60 min MCAO are 

variable within and between groups as indicated by high S.D.  

4.3.3.2 MCAO duration increases lesion size  

MCAO duration prior to therapy increased ischaemic lesion volume within treatment 

destined groups for Vehicle (aCSF) (141.8±55.3mm3 vs 171.8±50.8mm3); Ang-(1-7) 

(145.9±57.4mm3 vs 187.1±67.7mm3); C21 (106.0±36.3mm3 vs 131.1±41.5mm3); Ang-(1-

7) + C21 (104.3±45.6mm3 vs 133.9±63.2mm3), (Figure 4-4). Figure 4-4 emphasises the 

variability in ischaemic lesion evolution amongst and between groups prior to therapy.  
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Figure 4-3 Ischaemic lesion during MCAO and prior to therapy. A) 30 min MCAO; B) 60 min MCAO. Lesion volume did not differ between groups at 30 min or 60 
min MCAO. Data depicts ADC lesion volume (mm3) for Vehicle (aCSF) (n=13), Ang-(1-7) (n=13), C21 (n=12) and Ang-(1-7) + C21 (n=11) treatment destined animals. 
Data were analysed using one-way ANOVA, P<0.05 was considered statistically significant. Horizontal bars represent the mean. 
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Figure 4-4 Ischaemic lesion evolution within treatment destined groups during MCAO. Data 
indicate that during ischaemia, ADC lesion increased from 30 min to 60 min MCAO for Vehicle 
(aCSF) (n=13), Ang-(1-7) (n=13), C21 (n=12) and Ang-(1-7) + C21 (n=11) destined rats. Figure 
depicts lesion (mm3) evolution for each individual animal per group, highlighting lesion variability 
prior to therapy. Data are presented as ADC lesion volume (mm3) for each individual animal. 
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4.3.4 Final infarct volume 7 days post MCAO 

4.3.4.1 Inter-rater assessment of reproducibility 

MRI-T2 weighted imaging was performed at day 7 to assess final infarct volume and 

analysed by delineating hyperintense infarct areas. Assessment of reproducibility in 

delineating infarct volume was carried out by two independent investigators and analysed 

using parametric Pearson correlation and Bland-Altman plot (Figure 4-5). Data showed 

that Subject 1 (most experienced) and Subject 2 (least experienced) analyses significantly 

correlated (r=0.98, P<0.0001), (Figure 4-5A). Moreover, Bland-Altman analysis indicated 

an acceptable final infarct volume analysis agreement with a bias of 8.3mm3 (Subject 1 

scored a higher infarct volume on an average of 8.3mm3 than Subject 2) and limits of 

agreement between -12.3 and 29.0mm3. Subject 1 consistently scored higher volumes in 

comparison to Subject 2 as demonstrated by increased values falling on the positive axis 

(Figure 4-5B). The average of the two analyses was used to determine final infarct volume 

for each animal. 

 

Figure 4-5 Inter-rater variability in infarct volume measurement 7 days post 90 min MCAO. 
A) Correlation between Subject 1 and Subject 2 analysis. Infarct volume measurements from 
both Subjects 1 and 2 significantly correlated (r=0.98; P<0.0001). B) Bland-Altman analysis 
displaying difference and average in infarct analysis between Subjects. Analysis agreement 
had a bias of 8.3mm3 and limits of agreement were between -12.3 and 29.0mm3, marked in the 
figure. Data were analysed using Peason parametric correlation coefficient, P<0.05 was 
considered statistically significant. 
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4.3.4.2 Treatment does not impact final infarct volume at 7 days post MCAO 

There were no significant differences in final infarct volume at day 7 between treatment 

groups; Vehicle (aCSF): 130.6±50.7mm3, Ang-(1-7): 111.3±47.4mm3; C21: 

91.7±40.6mm3 and Ang-(1-7) + C21: 85.9±48.4mm3 (P>0.05), (Figure 4-6). 

  
 
 
Figure 4-6 Final infarct volume at 7 days post 90 min MCAO. Final infarct was comparable 
amongst groups following 7 days reperfusion with therapy (P>0.05). Data indicates final infarct 
(mm3) for Vehicle (aCSF; n=13), Ang-(1-7) (n=13), C21 (n=12) and Ang-(1-7) + C21 (n=11) treated 
animals. Data were analysed using one-way ANOVA, P<0.05 was considered statistically 
significant. Horizontal bars represent the mean. 

 

4.3.5 Impact of treatment on the extent of tissue salvage following 
reperfusion 

4.3.5.1 Reperfusion with and without therapy significantly decreases lesion 
volume  

Reperfusion resulted in a significant decrease in lesion size from 60 min MCAO to 7 days 

post MCAO with or without therapy in all groups. Vehicle (aCSF): 171.8±50.8mm3 to 

130.6±50.7mm3 (P<0.0001), (Figure 4-7A); Ang-(1-7): 187.1±67.7mm3 to 111.3±47.4mm3 

(P<0.0001), (Figure 4-7B); C21: 131.1±41.5mm3 to 91.7±40.6mm3 (P<0.0001), (Figure 4-

7C), and Ang-(1-7) + C21: 133.9±63.2mm3 to 85.9±48.4mm3 (P<0.0001), (Figure 4-7D). 

To determine therapy effects and account for variability in baseline lesion volume (60 min) 

prior to treatment, the change in lesion volume was assessed for each individual animal. 
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Figure 4-7 Ischaemic lesion evolution from 60 min MCAO to 7 days post 90 min MCAO 
within treatment groups. A) Vehicle (aCSF); B) Ang-(1-7); C) C21 and D) Ang-(1-7) + C21. 
Reperfusion with and without treatment significantly attenuated ischaemic lesion volume from 60 
min MCAO to 7 days post MCAO for all groups (P<0.0001). Data indicates ischaemic lesion (mm3) 
evolution for Vehicle (aCSF; n=13), Ang-(1-7) (n=13), C21 (n=12) and Ang-(1-7) + C21 (n=11) 
treated animals. Data were analysed using paired Student’s t test. ***P<0.0001. 
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4.3.5.2 Ang-(1-7) with reperfusion increases tissue salvage 7 days post 
MCAO 

When normalising data to lesion size at 60 min MCAO for each animal, Ang-(1-7) 

infusion with reperfusion for 7 days significantly decreased ischaemic lesion volume to a 

greater extent than aCSF alone [41.2±10.2% vs 24.5±14.1% reduction, (P=0.01)], (Figure 

4-8A). Likewise, Ang-(1-7) + C21 showed a trend to attenuate lesion volume when 

compared to aCSF alone, however, it did not reach significance [38.5±12.9% vs 

24.5±14.1%, (P=0.052)]. On the other hand, C21 showed no difference in ischaemic lesion 

progression compared to Vehicle (aCSF) [32.6±15.2% vs 24.5±14.1% reduction, 

(P=0.368)], (Figure 4-8A).  

Data were also presented as absolute change in ischaemic lesion from 60 min MCAO to 7 

days reperfusion (Figure 4-8B). Results show that Ang-(1-7) infusion with reperfusion 

significantly decreased absolute ischaemic lesion volume compared to aCSF 

[41.2±23.6mm3 vs 75.8±28.4mm3 reduction, (P=0.0023)], C21 [39.4±16.3mm3 vs 

75.8±28.4mm3reduction, (P=0.0016)] and Ang-(1-7) + C21 [48.0±22.1mm3 vs 

75.8±28.4mm3reduction, (P=0.0016)] treated groups. C21 treatment did not differ from 

combination group (P>0.05). Additionally, C21 and combination groups did not differ 

from Vehicle (aCSF) group (P>0.05), (Figure 4-8B). 

Figures 4-9 to 12 show ADC map at 60 min and corresponding MRI-T2 scan at 7 days for 

the median animal in the Vehicle (aCSF), Ang-(1-7), C21 and Ang-(1-7) + C21 treatment 

groups determined from Figure 4-8A, respectively.  
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Figure 4-8 Ischaemic lesion evolution from 60 min MCAO to 7 days post 90 min MCAO following therapy. A) % ischaemic lesion change; B) Absolute 
ischaemic lesion change. Ang-(1-7) treatment along with reperfusion significantly decreased % lesion volume from 60 min MCAO compared to Vehicle (aCSF). In 
addition, Ang-(1-7) treatment significantly decreased absolute lesion volume (mm3) from 60 min MCAO compared to Vehicle (aCSF) (P<0.01), C21 (P<0.01) and Ang-
(1-7) + C21 (P<0.05). Data depicts % or absolute (mm3) lesion volume change for Vehicle (aCSF) (n=13), Ang-(1-7) (n=13), C21 (n=12) and Ang-(1-7) + C21 (n=11) 
treated animals. Data were analysed using one-way ANOVA with Tukey’s post hoc analysis, P<0.05 was considered statistically significant. Horizontal bars represent 
the mean. *P<0.05; **P<0.01. 
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Figure 4-9 Representative image of ischaemic lesion evolution between 60 min MCAO to 7 days post 90 min MCAO for Vehicle (aCSF) treated median 
animal. Top images depict the ADC ischaemic lesion, highlighted in white, at 60 min MCAO prior to therapy across 8 coronal levels on the top. The bottom images 
show the corresponding MRI-T2 final infarct at 7 days post 90 min MCAO, highlighted in white. 
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Figure 4-10 Representative image of ischaemic lesion evolution between 60 min MCAO to 7 days post 90 min MCAO for Ang-(1-7) treated median animal.  
Images show ADC ischaemic lesion, highlighted in white, at 60 min MCAO prior to therapy across 8 coronal levels on the top. The bottom images show the 
corresponding MRI-T2 final infarct at 7 days post 90 min MCAO, highlighted in red. 
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Figure 4-11 Representative image of ischaemic lesion evolution between 60 min MCAO to 7 days post 90 min MCAO for C21 treated median animal.  
Images show ADC ischaemic lesion, highlighted in white, at 60 min MCAO prior to therapy across 8 coronal levels on the top. The bottom images show the 
corresponding MRI-T2 final infarct at 7 days post 90 min MCAO, highlighted in blue. 



146 

 

 

Figure 4-12 Representative image of ischaemic lesion evolution between 60 min MCAO to 7 days post 90 min MCAO for Ang-(1-7) + C21 treated median 
animal. Images show ADC ischaemic lesion, highlighted in white, at 60 min MCAO prior to therapy across 8 coronal levels on the top. The bottom images show the 
corresponding MRI-T2 final infarct at 7 days post 90 min MCAO, highlighted in green. 
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4.3.6 Treatment does not have any effect on systolic blood 
pressure. 

Prior to MCAO and treatment, systolic BP was comparable amongst groups (P>0.05), 

(Figure 4-13A). Similarly, at day 7 post MCAO with treatment, BP was not significantly 

different between groups; Vehicle (aCSF): 129±23mmHg; Ang-(1-7): 118±21mmHg, C21: 

114±27mmHg, Ang-(1-7) + C21: 125±27mmHg (P>0.05), (Figure 4-13B). BP change 

from pre to post MCAO did not differ amongst groups; Vehicle (aCSF): 15.20±25mmHg, 

Ang-(1-7): 15.58±25mmHg, C21: 8.427±22mmHg, Ang-(1-7) + C21: 12.13±33mmHg 

(P>0.05), Figure 4-13C). At day 7, BP could not be obtained for two animals, one in 

Vehicle (aCSF) and one in C21 treated groups due to the rats being highly stressed during 

measurements.  

4.3.7 Treatment does not improve neurological function 

Neurological score was assessed prior to MCAO and at 3 and 7 days post-MCAO. Prior to 

MCAO, all animals scored a maximum of 18 points and were therefore, included in the 

study (Figure 4-14A). Day 3 post MCAO, neurological score decreased for all rats, 

indicating a neurological deficit induced by MCAO; however, data were not significantly 

different between groups: Vehicle (aCSF), 11.0 (IQR: 10.0; 12.5); Ang-(1-7), 12.0 (IQR: 

10.5; 12.5); C21, 11.0 (IQR: 10.3; 12.0); Ang-(1-7) + C21, 11.0 (IQR: 10.0; 11.0); 

(P>0.05), (Figure 4-14B). At day 7 post MCAO, there was an improvement in neurological 

score for all groups but no statistically differences observed between groups: Vehicle 

(aCSF), 14.00 (IQR: 11; 15); Ang-(1-7), 15 (IQR: 14; 15); C21, 14 (IQR: 12.3; 15.8); Ang-

(1-7) + C21, 14 (IQR: 12; 15); (P>0.05), (Figure 4-14C).  
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Figure 4-13 Systolic BP. A) Systolic BP prior to MCAO and therapy; B) Systolic BP 7 days 
post MCAO with therapy; C) Systolic BP absolute change from pre MCAO to 7 days post 
MCAO with therapy. There were no differences in systolic BP prior to MCAO or post MCAO with 
therapy between groups (P>0.05). In addition, BP change over time was comparable amongst 
treatment groups (P>0.05). Data depicts BP values for Vehicle (aCSF; n=13-12), Ang-(1-7) (n=13), 
C21 (n=12-11) and Ang-(1-7) + C21 (n=11) treated animals. Data were analysed using one-way 
ANOVA, P<0.05 was considered statistically significant. Horizontal bars represent the mean. 
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Figure 4-14 Neurological score. A) Prior to MCAO and therapy; B) 3 days post MCAO with 
therapy; C) 7 days post MCAO with therapy. All animals scored a maximum of 18 prior to MCAO 
and therapy. There were no significant differences in neurological between groups at 3 and 7 days 
post MCAO with therapy (P>0.05). Data depicts values forVehicle (aCSF; n=13), Ang-(1-7) (n=13), 
C21 (n=12) and Ang-(1-7) + C21 (n=11) treated animals. Data were analysed using non-parametric 
Kruskal-Wallis test, P<0.05 was considered statistically significant. Horizontal bars represent the 
mean. 
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4.4 Quantitative Real Time PCR 

At day 7 following 90 min MCAO brain tissue from the peri-infarct region from Sham 

(n=7), MCAO-aCSF (n=9) and MCAO-Ang-(1-7) (n=9) treated animals were analysed for 

gene expression. Ubc was the most stable reference gene and selected for data 

normalisation (Chapter 2.16.2).  

4.4.1 MCAO significantly decreases Mas1 expression at 7 days 
reperfusion 

To investigate potential alterations in classical and counter-regulatory axis components, 

gene expression for RAS receptors AT1A (Agtr1a), AT2R (Atgr2) MasR (Mas1) and 

enzymes ACE (Ace) and ACE2 (Ace2) were assessed. Moreover, B2R (Bdkrb2) gene 

expression was evaluated due to reports that Ang-(1-7)’s effects may be partly mediated by 

B2R signalling (Lu et al., 2008). 

Following 90 min MCAO and 7 days reperfusion, the expression of Atgr1a was 

comparable to sham treatment and not significantly different between vehicle and Ang-(1-

7) treated rats (Figure 4-15A), (P>0.05). Conversely, Atgr2 levels were significantly 

increased in control treated rats following MCAO when compared to Sham [-4.5±1.6 vs -

8.0±1.4 (P=0.002)], (Figure 4-15B) while Ang-(1-7) showed a trend to attenuate this 

increase (-6.4±2.1), (Figure 4-15B).  Interestingly, Mas1 significantly decreased following 

MCAO in both Vehicle (aCSF) and Ang-(1-7) treated groups compared to Sham [-4.4±1.0 

vs -2.7±0.8 (P=0.02); -4.2±1.5 vs -2.7±0.8 (P=0.046); respectively], (Figure 4-15C). 

Ace and Ace2 expression was similar to Sham levels following MCAO in both Vehicle and 

Ang-(1-7) treated groups (P>0.05), (Figure 4-15D&E). Similarly, Bdkrb2 expression was 

comparable to Sham animals following MCAO (P>0.05), (Figure 4-15F). 
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Figure 4-15 RAS components and B2R gene expression 7 days post 90 min MCAO. A) 
Atgr1a; B) Atgr2r; C) Mas1; D) Ace; E) Ace2 and F) Bdkrb2. MCAO significantly upregulates 
Atgr2r in Vehicle (aCSF) treated animals only compared to Sham (P>0.05). Mas1 is significantly 
downregulated following MCAO in both Vehicle (aCSF) and Ang-(1-7) treated animals compared to 
Sham (P>0.05). There were no differences between groups for Atgr1a, Ace, Ace2 and 

Bdkrb2levels. Data were presented as -Ct normalised to Ubc for Sham (n=7); Vehicle (aCSF) 
(n=9) and Ang-(1-7) (n=9) treated animals in peri-infarct regions. Data were analysed using one-
way ANOVA with Tukey’s post-hoc test, P<0.05 was considered statistically significant. Horizontal 
bars represent the mean. *P<0.05; **P<0.01 compared to Sham. 
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4.4.2 Ptgs2 and Nfkb1 levels are unchanged following treatment 

COX-2 (Ptgs2) was comparable to Sham levels following MCAO (P>0.05), (Figure 4-

16A). Moreover, there were no differences between treatment groups for NF-B 

(Nfkbfollowing MCAO (P>0.05), (Figure 4-16B). 

 

Figure 4-16 COX-2 and NF-B gene expression 7 days post 90 min MCAO. A) Ptgs2; B) 
Nfkb1. MCAO does not impact Ptgs2 or Nfkb1 expression at 7 days post MCAO in peri-infarct 

regions compared to Sham. Data were presented as -Ct normalised to Ubc for Sham (n=7); 
Vehicle (aCSF) (n=9) and Ang-(1-7) (n=9) treated animals in peri-infarct regions. Data were 
analysed using one-way ANOVA, P<0.05 was considered statistically significant. Horizontal bars 
represent the mean. 
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4.4.3 Ang-(1-7) significantly attenuates Nox1 expression when 
compared to Vehicle (aCSF) treated animals 

Nox1 expression was significantly decreased in Vehicle (aCSF) treated animals following 

MCAO when compared to Sham group [-7.8±1.0 vs -6.5±0.6 (P=0.04)]. In contrast, Ang-

(1-7) treatment attenuated this decrease with levels similar to that observed in sham rats [-

6.6±1.2 vs -7.8±1.0 (P=0.04)], (Figure 4-17A). Nox2 levels were unchanged between 

groups (P>0.05), (Figure 4-17B). 

 

Figure 4-17 NOX type 1 and 2 gene expression 7 days post 90 min MCAO. A) Nox1; B) Nox2. 
MCAO-Vehicle (aCSF) significantly downregulated Nox1 expression compared Sham (P<0.05) 
whereas MCAO-Ang-(1-7) treatment significantly upregulated Nox1 expression compared to 
MCAO-Vehicle therapy (P<0.05). MCAO did not alter Nox2 expression compared to Sham 

(P>0.05). Data were presented as -Ct normalised to Ubc for Sham (n=7); Vehicle (aCSF; n=9) 
and Ang-(1-7) (n=9) treated animals in peri-infarct regions. Data were analysed using one-way 
ANOVA with Tukey’s post-hoc test, P<0.05 was considered statistically significant. Horizontal bars 
represent the mean. *P<0.05 compared to Sham; #P<0.05 compared to MCAO-Vehicle (aCSF). 
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4.4.4 Ccr5 expression is increased following transient MCAO 

The expression of Cxcr2 and Ccr2 were unchanged in both vehicle and Ang-(1-7) treated 

rats following transient MCAO when compared to sham rats (P>0.05), (Figures 4-

18A&B). In contrast, Ccr5, was shown to be significantly increased following MCAO in 

both Vehicle (aCSF) and Ang-(1-7) treatment groups when compared to Sham [-0.6±0.9 vs 

-2.3±0.8 (P=0.0009); -0.7±0.7 vs -2.3±0.8 (P=0.001), respectively], (Figure 4-18C). 

 

 

Figure 4-18 Chemokine receptor gene expression 7 days post 90 min MCAO. A) Cxcr2; B) 
Ccr2; C) Ccr5. MCAO did not alter Cxcr2 or Ccr2 expression compared to Sham animals (P>0.05). 
On the other hand, MCAO significantly upregulated Ccr5 in both Vehicle (aCSF) and Ang-(1-7) 

treated animals compared to Sham (P<0.01). Data were presented as -Ct normalised to Ubc for 
Sham (n=7); Vehicle (aCSF; n=9) and Ang-(1-7) (n=9) treated animals in peri-infarct regions. Data 
were analysed using one-way ANOVA with Tukey’s post-hoc test, P<0.05 was considered 
statistically significant. Horizontal bars represent the mean.  **P<0.01, ***P<0.001 compared to 
Sham. 
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4.4.5 Treatment does not impact M1 type profile marker mRNA 
expression 

Gene expression for M1 type markers CD86 (CD86), CD11b (Itgam), IL-1(Il1b), IL-6 

(Il6), CCR7 (Ccr7) and iNOS (Nos2) were examined in peri-infarct regions in all samples. 

CD86 levels was significantly increased following 90 min MCAO in both vehicle and 

Ang-(1-7) treated rats compared to Sham animals [-1.7±1.2 vs -5.1±1.1 (P<0.001); -

2.1±1.4 vs -5.1±1.1 (P<0.001); respectively] (Figure 1-19A). Similarly, Itgam was 

upregulated following MCAO in both vehicle and Ang-(1-7) treated groups when 

compared to Sham rats [-0.6±1.3 vs -4.1±0.8 (P<0.01); -1.3±1.3 vs -4.1±0.8 (P<0.01); 

respectively], (Figure 4-19B). Ccr7, Il6 and Il1b were unchanged following MCAO and 

Ang-(1-7) treatment had no effect (P>0.05), (Figure 4-19C, D, E). In contrast, Nos2 

expression was undetected in both Sham and MCAO peri-infarct brain tissue. 

4.4.6 Treatment does not impact M2 type profile marker mRNA 
expression 

Gene expression for M2 type markers Arg1 (Arg1), CD163 (CD163), CCL22 (Ccl22), 

TGF-1 (Tgfb1) and IL-10 (Il10) were examined in peri-infarct regions in all samples. 

Arg1, CD163 and Ccl22 levels were unchanged following MCAO in both vehicle and 

Ang-(1-7) treated rats when compared to sham treated rats (P>0.05), (Figure 4-20A, B, C) 

whereas Il10 was not detected in peri-infarct regions in all rats. Tgfbexpression was 

significantly increased in Vehicle (aCSF) treated rats following 90 min MCAO compared 

to Sham [1.7±1.3 vs -0.3±0.6 (P<0.05)], (Figure 4-20D). In contrast, there was a trend for 

Ang-(1-7) treated group to attenuate Tgfblevels (Figure 4-20D). 
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Figure 4-19 M1 type microglia/macrophage markers 7 days post 90 min MCAO. A) CD86; B) 

Itgam; B) Ccr7; C) Il6 and D) Il1b MCAO significantly upregulates CD86 and Itgam compared to 
Sham treated animals (P<0.01). MCAO does not alter Ccr7, Il6 or Il1b compared to Sham animals. 

Data were presented as -Ct normalised to Ubc for Sham (n=7); Vehicle (aCSF; n=9) and Ang-(1-
7) (n=9) treated animals in peri-infarct regions. Data were analysed using one-way ANOVA with 
Tukey’s post-hoc test, P<0.05 was considered statistically significant. Horizontal bars represent the 
mean. **P<0.01 compared to Sham. 
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Figure 4-20 M2 type microglia/macrophage markers 7 days post 90 min MCAO. A) Arg1; B) 

CD163; C) Ccl22 and D) Tgfb1MCAO-Vehicle (aCSF) group significantly upregulated Tgfb1 
compared to Sham treated animals (P<0.01). MCAO did not alter Arg1, CD163 or Ccl22 compared 

to Sham animals. Data were presented as -Ct normalised to Ubc for Sham (n=7); Vehicle (aCSF; 
n=9) and Ang-(1-7) (n=9) treated animals in peri-infarct regions. Data were analysed using one-
way ANOVA with Tukey’s post-hoc test, P<0.05 was considered statistically significant. Horizontal 
bars represent the mean. *P<0.05 compared to Sham. 
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4.4.7 Assessment of IBA1+ microglia 

Immunohistochemistry was performed across coronal levels 3, 4 and 5 for Vehicle (aCSF) 

n=2), Ang-(1-7) (n=2), C21 (n=2) and Ang-(1-7) + C21 (n=2) treated groups. This data set 

provides a qualitative assessment of total IBA1+ microglia per group. 

Mean total IBA1+ microglia number did not show an indication of Ang-(1-7) induced 

effects compared to other groups; Vehicle (aCSF): 259.0±1.5 n/mm2, Ang-(1-7): 

260.0±79.4 n/mm2, C21: 260.0±79.4 n/mm2and Ang-(1-7) + C21: 225.7±33.8 n/mm2 

treated animals (Figure 4-21A). Similarly, mean total IBA1+ microglia number in the 

homotopic region of the contralateral hemisphere did not indicate a trend for an Ang-(1-7) 

induced effect compared to other groups; Vehicle (aCSF): 141.4±29.4 n/mm2, Ang-(1-7): 

163.3±4.4 n/mm2, C21: 132.1±7.4 n/mm2, Ang-(1-7) + C21: 151.8±64.7 n/mm2 (Figure 

4-21B). Results indicate higher numbers of total stained cells in the peri-infarct area 

compared to the homotopic contralateral region. 

When assessing % activated IBA1+ microglia from total numbers, values were comparable 

amongst groups in the peri-infarct area; Vehicle (aCSF): 95.2±1.1%, Ang-(1-7): 

96.5±2.2%, C21: 99.2±0.4%, Ang-(1-7) + C21: 99.2±1.2% (Figure 4-22A). Similarly, % 

activated IBA1+ in the homotopic contralateral region did not suggest an Ang-(1-7) 

induced effect compared to other groups; Vehicle (aCSF): 82.4±6.8%, Ang-(1-7): 

77.2±8.4%, C21: 85.4±11.4%, Ang-(1-7) + C21: 78.3±5.4% (Figure 4-22B). Moreover, 

immunohistochemistry showed that at 7 days reperfusion, IBA1+ microglia are mainly 

present within the ischaemic core and exhibiting an amoeboid/active phenotype (Figures 4-

23 to 24). 
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Figure 4-21 Total IBA1+ microglia number in peri-infarct and contralateral regions 7 days 
post 90 min MCAO. A) Peri-infarct region; B) Homotopic contralateral region. Data shows 
total microglia number per mm2 brain area for Vehicle (aCSF; n=2), Ang-(1-7) (n=2), C21 (n=2) and 
Ang-(1-7) + C21 (n=2) treated animals. Horizontal bar represents the mean. 

 

 

Figure 4-22 % activated microglia in peri-infarct and contralateral regions 7 days post 90 
min MCAO. A) Peri-infarct region; B) Homotopic contralateral regions. % activated cells from 
total number for Vehicle (aCSF; n=2), Ang-(1-7) (n=2), C21 (n=2), Ang-(1-7) (n=2) treated animals. 
Horizontal bar represents the mean. 
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Figure 4-23 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for Vehicle (aCSF) treated animal. Peri-infarct regions were defined with 
the aid of histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (grey) and three ROIs were defined for imaging and IBA1+ cell count 
in peri-infarct and homotopic contralateral areas (red squares). IBA1+ microglia staining (highlighed in red) across coronal levels 3, 4 and 5 indicate that active microglia 

are mainly concentrated in infarct areas. Scale is set at 50M per white bar. 
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Figure 4-24 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for Ang-(1-7) treated animal. Peri-infarct regions were defined with the aid 
of histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (higlighted in pink) and three ROIs were defined for imaging and IBA1+ cell 
count in peri-infarct and homotopic contralateral areas (red squares). IBA1+ microglia staining (highlighed in red) across coronal levels 3, 4 and 5 indicate that active 

microglia are mainly concentrated in infarct areas. Scale is set at 50M per white bar. 
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Figure 4-25 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for C21 treated animal. Peri-infarct regions were defined with the aid of 
histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (higlighted in blue) and three ROIs were defined for imaging and IBA1+cell 
count in peri-infarct and homotopic contralateral areas (red squares). IBA1+ microglia staining (highlighed in red) across coronal levels 3, 4 and 5 indicate that active 

microglia are mainly concentrated in infarct areas. Scale is set at 50M per white bar. 
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Figure 4-26 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for Ang-(1-7) + C21 treated animal. Peri-infarct regions were defined with 
the aid of histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (higlighted in green) and three ROIs were defined for imaging and 
IBA1+cell count in peri-infarct and homotopic contralateral areas (red squares). IBA1+ microglia staining (highlighed in red) across coronal levels 3, 4 and 5 indicate that 

active microglia are mainly concentrated in infarct areas. Scale is set at 50M per white bar. 
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4.5 Discussion 

This is the first study to investigate the impact of Ang-(1-7) and/or C21 on the extent of 

tissue salvage following 90 min MCAO and 7 days reperfusion with treatment. We have 

demonstrated that Ang-(1-7) treatment increases tissue salvage following transient MCAO 

when compared to vehicle treatment; however, C21 or combination therapy had no effect.  

This effect was not a result of changes in BP over the time course. These experiments had 

strict exclusion criteria and with the help of MRI, it was possible to confirm that all 

animals had correct ICV cannula placement and that the MCA was successfully occluded 

during ischaemia with complete MCA reperfusion following filament removal. 

4.5.1 Ischaemic lesions are variable during MCAO and prior to 
therapy 

The use of DWI-MRI immediately following MCAO allowed us to determine the initial 

ischaemic lesion during MCAO and prior to reperfusion and treatment in all groups. As 

expected, the acute ADC lesion volume increased between 30 and 60 min MCAO prior to 

reperfusion and treatment. Although MRA confirmed successful MCAO, considerable 

variability in the baseline lesion volume prior to reperfusion and treatment was observed, 

an outcome widely detected within experimental stroke. This variability is likely due to 

inter-animal variability in collateral vessel supply. Specifically, leptomeningeal 

anastomoses variances between MCA and ACA or posterior cerebral artery collateral 

anastomoses may lead to enhanced or diminished collateral blood supply to the ischaemic 

brain by providing retrograde blood flow to the MCA territory – distal from occlusion 

(Cuccione et al. 2016). In support of this, differences in the extent of collateral supply in 

humans have been shown to influence ischaemic stroke outcome (Liebeskind, 2014). For 

instance, poor collateral grade leads to exacerbated stroke severity at 3 to 5 days post 

recanalization in stroke patients (Bang et al., 2007). In addition, in the Solitaire flow 

restoration device versus the Merci Retriever (SWIFT) trial, patients with enhanced 

collateral supply were associated with reduced ischaemic damage prior to therapy (Saver et 

al., 2012).  

In our study, anaesthetic levels and ventilator stroke volume and rate were the same for all 

animals during MCAO. However, for the purpose of animal welfare during recovery, the 

femoral artery was not cannulated, which meant that MABP, PaCO2, PaO2 and pH levels 

were not monitored during MCAO surgery. This is relevant since mild rises in BP enhance 

cerebral tissue oxygenation and collateral blood flow in the core and penumbral areas 
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during MCAO whereas low PaCO2 levels and pH promote infarction (Anderson and 

Meyer, 2002; Browning et al., 1997; Shin et al., 2008). Importantly, in the present study, 

animals were moved between the MRI scanner and surgical bench, and vice versa, which 

altered body temperature. Animals were maintained within the 37±0.5ºC range by 

performing the transfer as quickly as possible; however, cooling in small animals is 

neuroprotective and this may have been a contributing factor to lesion variability (van der 

Worp et al., 2007). By carrying out acute imaging during MCAO, it allowed us to 

overcome this variability and to assess the change in lesion volume following reperfusion 

with or without treatment in individual animals. 

4.5.2 Reperfusion results in tissue salvage 

MRI-T2 analysis of infarct requires manual delineation of the hyperintense signal, thus, 

introducing an element of variability due to the subjective nature of delineating the infarct. 

As a result, two blinded independent investigators assessed final infarct volume. Inter-rater 

assessments showed successful reproducibility and the mean infarct volume for the two 

analyses was used for study outcome evaluation.  

For all groups, reperfusion with and without treatment significantly decreased lesion 

volume by day 7 compared to 60 min MCAO. These findings are in agreement with 

thrombectomy trials in which, early initiation of reperfusion alone or in combination with 

IV alteplase improves functional outcome in ischaemic stroke patients (Berkhemer et al., 

2015; Campbell et al., 2015; M Goyal et al., 2015; Jovin et al., 2015; Saver et al., 2015). 

One of the concerns of abrupt reperfusion restoration is that a rise in ipsilateral CBF above 

metabolic demand might lead to reperfusion injury or “cerebral hyperperfusion syndrome”. 

This syndrome is characterised by exacerbated brain injury caused by BBB breakdown, 

impaired autoregulation and enhanced inflammatory responses (Ogasawara et al., 2003). 

One other concern is the development of HT, which is thought to be caused by enhanced 

reperfusion in areas of pronounced perfusion deficit (Fiehler et al., 2005). Our data, 

however, depicts that following transient MCAO in Wistar rats; reperfusion alone does not 

exacerbate injury or cerebral haemorrhage at 7 days post MCAO, since from all surviving 

animals; ICH was only present in two animals, confirming the protective nature of 

reperfusion alone.  

The extent of tissue salvage following reperfusion differed amongst animals. In vehicle 

treated animals, lesion volume decrease ranged from 42% to 1% from initial lesion and, as 
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mentioned above, differences in collateral grade amongst animals are a probable 

contributing factor. In the clinic, robust collateral supply is associated with successful 

recanalization, greater reperfusion and better clinical outcome (Liebeskind et al., 2014; 

Saver et al., 2012). Therefore, the extent of collateral grade is likely to influence the degree 

of reperfusion and subsequent infarct volume outcome. In addition, secondary injury 

mechanisms are another possible contributor. Rats subjected to 90 min MCAO display 

maximal injury from 48 to 72 hrs reperfusion that then reduces at 7 and 14 days post stroke 

onset (Neumann-Haefelin et al., 2000; Rewell et al., 2017). These findings are further 

confirmed with our neurological score data, which show that at 3 days post MCAO rats 

had substantial neurological impairment that then improved at 7 days post MCAO for all 

groups. Although reperfusion is beneficial in the longer term, secondary injury 

mechanisms such as BBB disruption may impact infarct outcome amongst animals (Pillai 

et al., 2013).  

Interestingly, when comparing data at day 7 only, there were no differences in final infarct 

volume between treatment groups. Previous studies in the ET-1 induced MCAO model 

showed that Ang-(1-7) and C21 administered ICV as a pre and post stroke onset therapy 

led to a 50% reduction in final infarct when assessed at end-points (Joseph et al., 2014; 

Mecca et al., 2011; Regenhardt et al., 2013). Our experiment; however, suggests that any 

potential action induced by drug therapy is of mild to moderate effect and likely masked by 

the variability in initial lesion sizes. In turn, this may lead to false positive results by an 

overestimation of effect sizes or treatment effects could also be undetected (Leithner et al., 

2015). Therefore, early ADC imaging has been considered a crucial tool to avoid type I 

and type II errors in neuroprotective studies and experimental stroke study quality 

(Leithner et al., 2015). Accordingly, the treatment effects on final infarct volume were 

examined by normalising the data to each animals own respective baseline lesion volume 

at 60 min MCAO.   

4.5.3 Ang-(1-7) treatment with reperfusion increases tissue 
salvage possibly through NOX1 expression 

When normalising data to initial lesion, Ang-(1-7) treatment along with reperfusion 

significantly attenuated lesion progression at day 7 when compared to Vehicle (aCSF). 

Similarly, absolute change in infarct volume between 60 min MCAO and 7 days recovery 

showed that Ang-(1-7) treatment alone significantly decreased ischaemic lesion compared 

to all other groups. This study shows for the first time that Ang-(1-7) treatment for a period 
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of 7 days during reperfusion has the potential to attenuate ischaemic lesion progression 

without impacting systolic BP. These results go in accordance with ET-1 induced MCAO 

studies where Ang-(1-7) treatment as a pre and/or post therapy was shown to be 

neuroprotective (Regenhardt et al. 2013; Mecca et al. 2011). One of the objectives of this 

study was to assess potential mechanistic effects underlying the outcome observed. In 

particular, this study focused on the Ang-(1-7) induced anti-inflammatory/anti-oxidative 

mechanism hypothesis which is widely reported in the literature (Jiang et al., 2012, 2013; 

Mecca et al., 2011; Regenhardt et al., 2013). Our study indicates that COX-2 or NF-B 

mRNA levels were not significantly altered by Ang-(1-7) as previously reported (Jiang et 

al., 2012; Liu et al., 2016). Similarly, when assessing leukocyte chemokine receptors and 

microglia/macrophage markers, Ang-(1-7) did not significantly affect gene expression 

levels at day 7 compared to Vehicle (aCSF).  

In the brain, the RAS classical axis activates NOX1 and NOX2 isoforms, which are 

involved in the pathology of cerebral ischaemia (Garrido and Griendling, 2009; Zhang et 

al., 2016). Specifically, Ang II induces an inward Ca2+ current in neurons due to NOX2-

derived ROS and stimulates superoxide in cerebral arteries through NOX1 (Wang et al. 

2006; Sun et al. 2005; Jackman et al. 2009; Kahles et al. 2010). Our data shows that 

phagocytic NOX2, the main mediator in neuroinflammation-derived superoxide production 

(Girouard et al. 2009), was expressed at Sham levels without Ang-(1-7) treatment effects 

observed. Interestingly, gene expression results indicate that Ang-(1-7) treatment might 

exert its mechanisms by targeting NOX1. In peri-infarct brain regions, NOX1 mRNA 

levels were decreased in Vehicle (aCSF) treated rats when compared to sham brain tissue; 

however, this decrease was significantly attenuated in Ang-(1-7) treated rats. NOXs are the 

major source of ROS and important mediators in oxidative stress, a known mechanism of 

injury following stroke (Lipton 1999; Gursoy-Ozdemir et al. 2004). Yet, aside from its 

involvement in cellular injury, reports suggest that ROS might have a role in CNS cellular 

maintenance, particularly in cellular growth and neurological synaptic plasticity (Knapp 

and Klann, 2002; Suzukawa et al., 2000; Tsatmali et al., 2005). Therefore, by preventing 

NOX downregulation post-stroke, Ang-(1-7) could mediate therapeutic effects. Still, the 

cellular locus at which Ang-(1-7) may be acting is yet to be defined. 

KO studies have investigated the impact of NOX1 following MCAO, in which it was 

observed that NOX1-KO mice have larger infarcts compared to wild type (WT) animals 

(Choi et al., 2015). Additionally, NOX1-KO mice subjected to MCAO and treated with 

Ang II, displayed lower levels of ROS yet extensively larger infarct volumes when 
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compared to WT mice (Jackman et al., 2009). As a result, NOX1 might be neuroprotective 

in the context of cerebral injury. The mechanism behind this protective effect is not well 

understood; however, research indicates that it may be a ROS derived neurogenesis effect. 

In embryonic rat cortical cells, ROS intracellular accumulation is associated with cellular 

differentiation into neurons (Tsatmali et al., 2005) whereas in PC12, an immortalised 

neuronal cell line, neuronal differentiation through nerve growth factor is dependent on 

ROS concentration (Suzukawa et al., 2000). One could postulate that Ang-(1-7) enhances 

neurogenesis and homeostatic maintenance through NOX1 derived ROS and thus, 

improved ischaemic lesion by day 7.  

A caveat in the present study is the lack of protein assessments and the small number of 

samples collected for immunohistochemical analysis. Therefore, it is not possible to 

conclude whether Ang-(1-7) might be promoting neurogenesis by targeting NOX1. 

Immunohistochemical co-localisation analysis of NOX1 and proliferating cell nuclear 

antigen antibodies in the peri-infarct region would have been a suitable approach to test the 

neurogenesis hypothesis (Sierra et al., 2011). 

4.5.3.1 Central Ang-(1-7) infusion does not modify brain RAS components  

AT1A receptor mRNA expression was not altered at day 7 following MCAO in peri-infarct 

brain tissue. The same outcome was verified in ET-1 induced MCAO, where AT1R gene 

expression was comparable to Sham rats following 72 hrs reperfusion (Mecca et al., 2011). 

Similarly, ACE gene expression did not change following MCAO in peri-infarct regions. 

These results propose that at day 7 following 90 min MCAO, the classical axis within the 

brain is not altered and that its detrimental effects might be temporally dependent. For 

instance, a recent study showed that following permanent MCAO, AT1A gene expression 

was upregulated at 24 hrs injury only (Wakayama et al., 2017). Therefore, it is plausible 

that in normotensive animals, Ang II and AT1R may exert its detrimental effects in MCAO 

injury at an earlier stage (e.g. 24 hrs) rather than at subacute/chronic phases. However, to 

confirm ACE/Ang II/AT1R over activation at the time point evaluated, brain Ang II and 

AT1R protein levels would have to be assessed following MCAO and compared to Sham in 

the model used.  

AT2R mRNA levels were significantly increased following MCAO in the present study. 

Previous reports have shown that following MCAO, AT2R mRNA levels increase at 24 hrs 

and 72 hrs with our data indicating that at day 7 this upregulation persists (Kagiyama et al., 
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2003; Makino et al., 1996; Zhu et al., 2000). Interestingly, ACE2 was compared to Sham as 

reported in ET-1 induced MCAO models at 72 hrs post stroke onset (Mecca et al. 2011) 

whereas MCAO significantly decreased MasR expression in peri-infarct regions. It has 

been previously suggested that both ACE2 and MasR (mRNA and protein levels) are 

upregulated following 120 min MCAO at day 7 in the RVLM (Chang et al. 2014). In our 

studies, brain tissue obtained for mRNA analysis was excised from the cortical region 

corresponding to the peri-infarct; thus, counter-regulatory RAS expression in other CNS 

areas such as the medulla was not assessed. Nonetheless, our results indicate that in the 

model used, AT2R and MasR have a time-dependent role following cerebral ischaemia 

within the peri-infarct areas. Therefore, MasR agonism possibly exerts its maximal 

cytoprotective effects at acute/subacute whilst AT2R agonism may provide neuroprotection 

at a subacute/chronic phase of injury. This could justify why neuroprotection was observed 

for MasR agonism but not with AT2R agonism in our study.  

In addition, a preceding study postulated that Ang-(1-7)’s protective effects may be partly 

mediated by B2R signalling, thereby enhancing a vasodilatory effect (Lu et al., 2008). 

Following transient MCAO, Ang-(1-7) ICV post treatment enhances the expression of B2R 

and up to 72 hrs post stroke onset (Lu et al., 2008). However, in the present study, B2R 

mRNA levels were expressed to Sham levels without Ang-(1-7) treatment effects, thus, the 

effect observed is unlikely due to bradykinin signalling exacerbation.   

4.5.3.2 Ang-(1-7) does not alter microglia/macrophage and leukocyte 
infiltration markers following MCAO 

Following 7 days reperfusion with treatment, Ang-(1-7) did not alter pro-inflammatory 

mediators or microglia/macrophage M1/M2 mRNA profile. The brain tissue samples used 

to examine gene expression do not discern cell specific cytokine profile; still, these results 

provide an indication that at this time point, Ang-(1-7) does not exert a 

microglia/macrophage induced anti-inflammatory effect. Ang-(1-7) reaches its maximum 

cerebral tissue concentration at 24 hrs post-transient MCAO (Lu et al. 2013), thus, possibly 

exerting a microglia-derived anti-inflammatory effect at an earlier time point in injury as 

previously reported (Regenhardt et al., 2013). Simultaneously, inflammatory gene 

expression for COX-2, NF-B, NOX2, IL-6, IL-1 were expressed at Sham levels in 

MCAO groups while IL-10 and iNOS were undetected in all samples.  

The balance between M1/M2 microglia/macrophage phenotype is dynamic after ischaemic 

stroke and the underlying mechanisms are not well understood (Cotrina et al., 2017; Ritzel 
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et al., 2015). It is proposed that following transient MCAO and at day 7, these cells express 

a M1 phenotype (Hu et al., 2012). Our data supports this hypothesis since M1 type markers 

CD86 and CD11b were upregulated following MCAO. This indicates that in the peri-

infarct, microglia/macrophages are active and involved in antigen presenting to T cells as 

suggested by CD11b and CD86, respectively (Taylor and Sansing, 2013). M2 phenotype is 

reported to occur up to 5 days post MCAO and then shift towards a M1 phenotype (Hu et 

al., 2012). From all the M2 markers studied, TGF- only was upregulated 7 days 

following MCAO, without Ang-(1-7) induced effects. Microglia are major sources of 

TGF- in the brain (Welser-Alves and Milner, 2013) and once released it will contribute 

towards tissue regeneration as well as T regulatory (Treg) cell development, hence cellular 

repair (Iadecola and Anrather, 2011; Liesz et al., 2009). Together, the data obtained 

indicates that Ang-(1-7) therapy did not influence microglia/macrophage cytokine profile. 

To obtain a qualitative assessment of treatment effects on microglia numbers and 

phenotype within the peri-infarct, IBA1+ microglia were evaluated. Following 90 min 

MCAO with 7 days reperfusion, AT1R blockers decrease infarct volume due to a decrease 

in microglia activation in the ipsilateral hemisphere (Lou et al., 2004). In the present study, 

IBA1+ immunostaining indicated that MasR agonism through Ang-(1-7) therapy did not 

influence microglia activation or total number in the peri-infarct region. This emphasises 

that Ang-(1-7) does not act at the microglia level at this time point. It was also observed 

that IBA1+ cells numbers were enhanced in ipsilateral peri-infarct regions compared to the 

contralateral side and mostly concentrated within the infarct core for all groups. In the 

infarct region, all IBA1+ cells exhibited an amoeboid/active form; suggesting that repair 

mechanisms are taking place by clearing cellular debris (Denes et al., 2007).  

Ang-(1-7) does not mediate its effects via leukocyte recruitment at day 7. Neutrophils peak 

between 1 and 3 days post MCAO with numbers subsequently declining by day 7, whereas 

macrophages levels peak between day 3 and 7 (Grønberg et al., 2013). Our data shows that 

CXCR2 and CCR2, neutrophil and macrophage chemokine receptors, were unchanged 

following MCAO when compared to Sham without treatment effects. Conversely, CCR5 

was significantly upregulated following MCAO without Ang-(1-7) induced effects. CCR5 

is expressed in T cells, astrocytes, microglia and neurons (Westmoreland et al., 2002). T 

cells are reported to infiltrate infarcted brain 3 to 7 days post injury and peak no earlier 

than 5 days post MCAO (Grønberg et al., 2013), which justifies the increase in CCR5 gene 

expression. The role of this receptor in ischaemic stroke is not well understood; however, 

KO studies indicate that 7 days following MCAO, CCR5-KO mice have larger infarcts 
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than WT mice (Sorce et al., 2010), proposing a role in cellular repair possibly through Treg 

cell recruitment and activation (Li et al., 2017).  

4.5.4 AT2R receptor agonism and combined AT2R/MasR agonism 
has no effect on tissue salvage 

AT2R agonism did not attenuate ischaemic lesion progression following 7 days MCAO. 

One possibility for the effect observed is that the dose selected might not have been at a 

therapeutic level. C21 elicits AT1R specific effects at higher doses (Gao, Zhang et al. 

2011), thus, the dose used in our study, 7.5 ng/hr, was selected as recommended by Vicore 

Pharma®. Supportively, Joseph et al. used the same C21 dose as this study; yet, in their 

experiment, the effects on infarct volume were assessed in a single 2 mm coronal brain 

section from each rat by TTC staining whereas in the present study we assessed the entire 

rostral-caudal extent of damage. Conversely, McCarthy et al., observed a neuroprotective 

effect when testing 50 ng/hr C21 dose ICV in SHRs following MCAO but not at lower 

doses (McCarthy et al., 2014), highlighting that higher doses might be needed in future 

studies. 

Similarly to our study, C21 treatment for 4 days post-MCAO did not impact infarct volume 

when compared to control groups (Schwengel et al., 2016). Instead, C21 treatment 

decreased mortality between groups (Schwengel et al., 2016) whereas in the present study, 

C21 treated rats exhibited the highest mortality out of all groups. Furthermore, in 

Schwengel’s experiment, neurological score was significantly improved at 1, 2 and 4 days 

post transient MCAO, an effect not observed in our experiment. The improvement in NS 

was associated with an upregulation of BDNF gene and protein expression within the 

ipsilateral hemisphere, which possibly led to an anti-apoptotic effect in penumbral regions 

(Schwengel et al., 2016). The authors did not perform acute MRI to assess the baseline 

lesion volume; therefore, it could be possible that in the model used, C21 might have 

induced a mild effect on infarct progression at 4 days reperfusion. It is important to note 

that in Schwengel’s experiment, studies were conducted in mice and C21 administered IP 

(Schwengel et al., 2016); therefore, this method of administration may be more suitable 

and effective than the one used in our study.    

AT2R activation could have a neuroprotective effect at later stages of injury as evidenced 

by an upregulation of AT2R gene expression in peri-infarct regions following 7 days 

reperfusion. A recent study examined the neuroprotective potential of C21 treatment 
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following transient MCAO for a period of 3 weeks (Bennion et al., 2017). There, it was 

shown that C21 therapy attenuated infarct volume when compared to control animals 

(Bennion et al., 2017), thus, confirming this hypothesis. It is suggested that C21 post stroke 

treatment IP might impact infarct volume by enhancing angiogenesis via the eNOS/NO 

pathway following 90 min MCAO (Alhusban et al., 2015). The angiogenic hypothesis was 

further examined in a chronic intraluminal permanent MCAO model in which C21 was 

administered as a post therapy for 21 days and shown to improve neurological function, an 

outcome associated with an upregulation of VEGF protein and gene expression levels in 

the ipsilateral hemisphere (Mateos et al., 2016).  

Interestingly, a combination of C21 and Ang-(1-7) had no effect on tissue salvage or 

neurological outcome in the present study. When examining % ischaemic lesion change 

between 60 min MCAO and 7 days recovery, the combination group showed a trend to 

improve infarct evolution; however, absolute lesion change suggested that combination 

therapy did not impact infarct progression. This indicates that at 7 days post 90 min 

MCAO, simultaneous AT2R and MasR receptor agonism does not act synergistically to 

enhance neuroprotection as initially hypothesised. One of the limitations of Ang-(1-7) 

treatment is that it is a short 7 amino acid peptide and once in circulation it has a half-life 

of  approximately 10 sec (Yamada et al., 1998). Although Ang-(1-7) has high selectivity 

for MasR (Santos et al., 2003), its short half-life impacts its actions, which might justify 

why only a mild to moderate effect was observed. Conversely, C21 has a K(i) value of 0.4 

nmol/L for the AT2R, displaying high selectivity, and an estimated half-life of 4 hrs in rats 

(Wan et al., 2004), therefore, suggesting that its actions were prolonged in the combination 

group compared to Ang-(1-7). MasR agonists are being developed and these include AVE 

0991, a non-peptide compound, high selective for the MasR and orally active(Santos and 

Ferreira, 2006). AVE 0991 is thought to have higher efficacy and a longer half-life than 

Ang-(1-7) (Santos and Ferreira, 2006); nevertheless, its effects only recently started being 

tested in the context of ischaemic stroke and so far were unsuccessful (Lee et al., 2015). 
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4.5.4.1 Treatment did not impact neurological score 

In this study, there were no differences in neurological score at 3 and 7 days post 90 min 

MCAO between groups. Ang-(1-7) induced a mild effect on tissue salvage at day 7, which 

was detected when normalising data to initial lesion at 60 min MCAO. When assessing 

infarct volume at day 7, treatment effects were not detected due to infarct volume 

variability, therefore, it would be unlikely to see any functional improvement between 

groups. At the same time, the Garcia score might have not been a sensitive test to detect 

subtle changes induced by therapy. The 18 point score is an easy and simple test to detect 

function but is of a highly subjective nature (Schaar et al., 2010). Instead, behavioural 

assessments could have been a better approach.  

Sensorimotor tests such as the adhesive removal test are reported to detect functional 

impairments up to 11 weeks following cerebral ischaemia, displaying high sensitivity to 

sensory neglect in small cerebral lesions (Zarruk et al., 2011). Other tests include the 

passive avoidance test which is a highly sensitive cognitive test, detecting impairment up 

to 7 weeks following MCAO by examining avoidance learning and shown to successfully 

correlate with size of lesion. Moreover, the beam walking test, which assesses motor 

coordination provides good sensitivity after MCAO (Zarruk et al., 2011). In future, these 

tests could be selected to study functional outcome. 
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4.5.5 Summary 

Ang-(1-7) ICV treatment along with reperfusion for 7 days post MCAO significantly 

increased tissue salvage when normalising data to initial lesion without impacting BP. 

Ang-(1-7) has a short half-life which might have contributed to a mild to moderate effect 

that was not detected when assessing data at day 7. The results obtained suggest that 

selective MasR agonists may provide neuroprotection along with reperfusion following 

thrombectomy. On the other hand, C21 alone and in combination with Ang-(1-7) did not 

show a significant impact in lesion growth at 7 days reperfusion.  

Following MCAO, neurological score was shown to decrease for all animals at day 3 and 

subsequently improve by day 7. As predicted, and as a result of comparable infarct lesions 

at day 7, there were no differences in neurological score between groups. However, it must 

be noted that the score used for functional assessment was not sensitive enough to detect 

potential Ang-(1-7)-induced alterations. Instead, it provided an overall indication of animal 

condition. In future, behavioural examinations such as the adhesive removal test should be 

used as these provide a more sensitive evaluation of deficit.  

The mechanism of action underlying the actions of Ang-(1-7) was assessed via gene 

expression assays. Although a conclusion could not be drawn from mRNA level only, 

Ang-(1-7) may have a role in oxidative stress by attenuating the decrease in NOX1 levels 

seen with vehicle treatment and possibly impacting neurogenesis. In normotensive rats, 

MCAO does not induce an imbalance in AT1A gene expression; however, AT2R was 

upregulated and MasR gene expression significantly decreased following injury. MasR 

activation possibly exerts its neuroprotective effects at an earlier stage in injury whereas 

AT2R agonism might act at a subacute/chronic level. In terms of treatment effects induced 

by Ang-(1-7) in gene expression, there were no differences in RAS components, 

chemokine leukocyte receptors, pro-inflammatory and anti-inflammatory markers 

compared to Vehicle (aCSF).  

In conclusion, Ang-(1-7) treatment along with reperfusion following MCAO for a period 

of 7 days attenuates cerebral infarct progression possibly by acting on oxidative stress 

levels or inflammatory responses at an earlier time point. To elucidate potential underlying 

mechanisms that could explain the neuroprotection observed, Ang-(1-7) treatment will be 

examined at an acute stage of injury in the subsequent study. 
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Chapter 5: The effects of Ang-(1-7) on BBB 
breakdown and microglia activation 
following transient MCAO 
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Chapter 5  

In Chapter 4, Ang-(1-7) significantly increased tissue salvage following reperfusion, a 

mechanism independent of inflammatory responses. Literature reports often attribute Ang-

(1-7)’s neuroprotective effect to a direct anti-inflammatory mechanism on 

microglia/macrophages (Liu et al., 2016; Regenhardt et al., 2013). In turn, microglia 

activation is implicated in BBB disruption by generating ROS and pro-inflammatory 

cytokine release (Yenari et al., 2006). Therefore, Ang-(1-7) may act to maintain integrity 

of the BBB via an inhibition of microglia activation. This study was designed to determine 

the effects of Ang-(1-7) post stroke therapy on BBB breakdown, infarct volume, 

microglia/macrophage activation and pro- and anti-inflammatory gene expression 

following 90 min MCAO and 24 hrs reperfusion.  

5.1 Introduction 

The BBB is a specialised structurethat separates the CNS from the periphery and consists 

of endothelial cells anastomosed to one another through TJPs. The endothelial cells in the 

BBB are surrounded by astrocytes, pericytes, neurons and basement membranes, 

ultimately forming the NVU, and providing functional and structural support to the BBB 

(Yang & Rosenberg 2011; Zlokovic 2008). After ischaemic stroke, the BBB becomes 

disrupted, allowing intravascular proteins to enter the brain parenchyma as well as 

inflammatory cells. In turn, this causes brain vasogenic oedema, increases the risk of HT 

and contributes towards morbidity and mortality (Chapouly et al., 2015; Haley and 

Lawrence, 2017).  

In the clinic, many patients exhibit a phenomenon termed HARM, characterised by blood 

vessel permeability in the meninges over the area of the stroke and associated with worse 

clinical outcome (Kohrmann et al. 2012). This is of extreme importance as thrombolysis 

treatment is reported to induce BBB breakdown and lead towards the development of 

HARM and HT (Kassner et al., 2009; Kidwell et al., 2008; Lakhan et al., 2013). Likewise, 

patients subjected to thrombectomy and presenting signs of BBB leakage, are equally 

associated with poorer clinical outcomeand HT (Renú et al., 2015). Since alteplase 

administration is the treatment of choice and endovascular therapy is becoming 

increasingly used, it is crucial to identify a potential adjuvant therapy with the capacity to 

limit BBB breakdown injury.  
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In rodents, BBB breakdown is proposed to occur in a biphasic manner following 

reperfusion onset; yet, there is no agreement on when the BBB opens and closes. Evidence 

from experimental studies suggests that the early opening of the BBB occurs between 3 to 

6 hrs following reperfusion. Following this, the barrier closes again at approximately 15 to 

24 hrs post reperfusion and by 48 to 72 hrs post reperfusion BBB breakdown is maximal 

(Belayev et al., 1996; Pillai et al., 2009; Rosenberg et al., 1998; Veltkamp et al., 2005). 

Nevertheless, the biphasic pattern of BBB opening is controversial as MRI studies indicate 

that BBB breakdown is a continuous, long-lasting mechanism and evident for at least 5 

weeks post injury (Strbian et al. 2008; Nagel et al. 2008; Lin et al. 2008). For this reason, 

the dynamics of BBB breakdown require further understanding as it could help determine 

optimal time points for neuroprotective therapy administration. 

BBB breakdown derives from an interplay of mechanisms such as inflammation, oxidative 

stress and angiogenesis within the NVU (Sandoval and Witt, 2008). In particular, 

metalloproteinases (MMPs) are widely implicated in BBB breakdown by degrading 

components of the extracellular matrix and TJPs. For instance, metalloproteinase 2 

(MMP2) is involved in the initial disruption at 3 hrs post MCAO whereas MMP9 promotes 

BBB breakdown between 24-72 hrs post stroke onset (Rosell et al., 2006; Rosenberg et al., 

1998; Sandoval and Witt, 2008; Yang et al., 2007). At later stages, BBB disruption is also 

mediated by ROS, leukocyte extravasation and pro-inflammatory mediators including 

COX-2 and iNOS(da Fonseca et al., 2014). In addition, at this stage, the angiogenic 

mediator, vascular endothelial growth factor A (VEGFA) is thought to enhance BBB 

leakage by activating vascular endothelial growth factor receptor 2 (VEGFR-2) present on 

endothelial cells (Valable et al., 2005; Zhang et al., 2000). Together, these reports highlight 

the complexity of the mechanisms underlying BBB breakdown following stroke. 

In recent years, the role of microglia in contributing towards the integrity of the NVU has 

received particular focus. Following stroke onset, these cells are quickly activated, 

recruited into the injured site and thought to exacerbate injury (da Fonseca et al., 2014). 

Supporting evidence suggest that following LPS-induced rat microglia activation, activated 

cells disrupt TJPs by stimulating NOX and subsequently ROS in a BBB disruption model 

(Sumi et al., 2010). Similarly, in vitro, studies have shown that microglia enhance barrier 

leakage by producing pro-inflammatory cytokines and ROS, an outcome reversed by 

minocycline and apocycin therapy (Yenari et al., 2006). In in vivo models, rats subjected to 

MCAO and minocycline treatment showed reduced BBB breakdown, a result suggested to 

be due to microglia phenotype modulation, promoting M2 profile (Yang et al., 2015). 
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Conversely, a recent study demonstrated that microglial cells rapidly aggregate around 

injured capillaries and mediate prompt resealing of the leaked barrier (Lou et al., 2016), 

proposing a protective role. 

Ang-(1-7) is widely reported to modulate microglia/macrophage phenotype at 24 hrs and 

72 hrs post stroke onset in normotensive rats as well as in in vitro models (Liu et al., 2016; 

Mecca et al., 2011; Regenhardt et al., 2013). In microglial cell cultures, Ang-(1-7) 

treatment prevented the upregulation of IL-6, IL-1 and NF-B activation whilst 

stimulating the generation of anti-inflammatory cytokine, IL-10 (Liu et al., 2016). 

Furthermore, Ang-(1-7) treatment attenuated iNOS and CD11b gene expression in 

normotensive rats following stroke, indicating that treatment inhibits 

microglia/macrophage activation and modulates M1/M2 phenotype (Regenhardt et al., 

2013). Accordingly, these reports place Ang-(1-7) as a possible neuroprotective drug by 

potentially modulating microglia phenotype and indirectly targeting the BBB. 

In experimental stroke, literature points towards a detrimental role of the classical RAS in 

BBB breakdown. In rat brain capillary endothelial cells subjected to 6 hrs oxygen glucose 

deprivation and 24 hrs reoxygenation, candesartan therapy reversed BBB disruption 

without impacting TJP expression or oxidative stress (So et al., 2015). The pre-treatment 

effects of candesartan were then tested in normotensive rats subjected to 60 min MCAO 

followed by 24 hrs reperfusion. The authors showed that at this time point, MCAO led to 

an exacerbated BBB breakdown with candesartan preventing disruption (Panahpour, 

Nekooeian, et al., 2014). A follow up experiment was then conducted testing the ACE 

inhibitor, enalapril as a post-stroke therapy. There, enalapril decreased BBB permeability 

due to an antioxidant effectin the same MCAO protocol (Panahpour, Dehghani, et al., 

2014). Moreover, in embolic MCAO, Wistar rats subjected to candesartan and t-PA 

combination therapy displayed reduced HT, an outcome associated to decreased NF-B 

activity (Ishrat et al., 2013). These findings implicate the classical axis in BBB injury; 

highlighting a potential therapeutic effect of the counter-regulatory axis.  

Recently, the effect of Ang-(1-7) on BBB breakdown was tested in an animal model of 

stroke. A dose response curve for Ang-(1-7) was carried out in rats at 24 hrs following 

transient MCAO and the authors demonstrated a reduction in BBB breakdown at a dose of 

0.5 pmol/hr and 5 pmol/hr (Wu et al., 2015). The outcome observed was attributed to drug 

induced TJP preservation through MMP9 expression downregulation and enhancement of 

metallopeptidase inhibitor 1 (TIMP1) levels (Wu et al., 2015). In neuroprotective studies, 
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Ang-(1-7) has been shown to attenuate infarct progression when administered ICV at a 

dose of 1.1 nmol/hr following 24 hrs, 48 hrs, 72 hrs post MCAO onset as well as 7 days as 

seen in Chapter 4 (Jiang et al., 2012, 2014; Mecca et al., 2011; Regenhardt et al., 2013). 

One could hypothesise that the underlying mechanism involves BBB preservation. Yet, the 

effect of Ang-(1-7) in BBB disruption at a dose of 1.1 nmol/hr has not been tested as a 

post-stroke therapy following 90 min MCAO and examined with MRI.  

In Chapter 4, Ang-(1-7) along with reperfusion increased tissue salvage compared to 

vehicle treated rats. Mechanistic data showed that Ang-(1-7) did not influence RAS, pro- 

and anti-inflammatory or microglia/macrophage M1/M2 phenotype marker gene 

expression and qualitative IBA1 positive microglia cell count at day 7 post reperfusion. 

Currently, there is evidence that implicates the involvement of the RAS in BBB damage, 

inflammation and microglia/macrophage activation at acute stages of cerebral injury. As a 

result, this study hypothesised that Ang-(1-7) exerts its neuroprotective effects by 

attenuating BBB disruption at 24 hrs post MCAO via a direct anti-inflammatory effect on 

microglia in the peri-infarct.  

5.1.1 Study aims: 

- Primary outcome: To evaluate the effects of post stroke Ang-(1-7) treatment on 

BBB breakdown following transient focal cerebral ischaemia. 

- To investigate the effects of Ang-(1-7) on infarct volume following transient focal 

cerebral ischaemia. 

- To determine the impact of Ang-(1-7) treatment on inflammatory gene expression 

and microglia activation in peri-infarct regions.  
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5.2 Methods 

5.2.1 Sample size calculation 

Sample size was assessed using power analysis programme G*Power (version 4.1, 

Germany). An “a priori” power analysis was performed for a t test between two 

independent means. Using data from the previous study, MCAO with reperfusion induces 

an infarct volume of 130.6mm3 with a S.D. ( of 50.7mm3. Ang-(1-7) administered as an 

ICV infusion was reported to induce approximately 50% reduction in infarcted tissue at 24 

hrs post stroke onset (Regenhardt et al., 2013). To detect an effect size of 50% reduction in 

infarct volume, a minimum n number of 9 for each group with a type I error rate () of 

0.05 and power of 0.80 was obtained.  

5.2.2 Randomisation and blinding 

Prior to study commencement, rats were assigned a number and randomly allocated to 

either Vehicle (aCSF; L/hr) or Ang-(1-7) (1.1 nmol; L/hr) treatment groups via a list 

randomiser (www.random.org). Investigators were blinded to treatment group throughout 

the experimental study. Treatment schedule was kept by a colleague within the department 

who was responsible for drug preparation one day prior to the experiment. One day prior to 

90 min MCAO and at 24 hrs post MCAO, an 18 point neurological score was performed 

for each rat as previously described (Chapter 2.11). Data analysis was performed by the 

investigator blinded to treatment group. Once all analysis and assessments were performed, 

the treatment codes were revealed.  

5.2.3 Animals and surgical procedures 

Male Wistar rats (n=33; 311-342g) were subjected to 90 min cerebral ischaemia and ICV 

treatment via osmotic pump (ALZET®, Model 2001) of Vehicle (aCSF) or Ang-(1-7) at 

start of reperfusion for 24 hrs. Experimental procedures and recovery were carried out as 

outlined in Chapter 2 and 4. In this study, 4-0 nylon silicone coated tip monofilament 

(403934PK10 or 404134PK10; Doccol Corporation, MA, USA) were used to occlude the 

MCA. For sham animals, surgery was performed as outlined; however, the filament was 

not introduced into the vessel to occlude the MCA.  
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5.2.3.1 Tail vein cannulation  

After 24 hrs reperfusion, rats were subjected to MRI imaging and gadolinium-

diethylenetriamine penta-acetic acid (Gd-DTPA, Magnevist®, Bayer, UK) contrast agent 

IV injection for BBB breakdown assessment. Animals were anaesthetised in an induction 

chamber with 5% isoflurane and then placed on a facemask at 3% isoflurane in a 70:30% 

N2O/O2 mixture. The tail vein was heated with a heating lamp to vasodilate the vessels, 

this way aiding vessel visualisation. Once the veins were easily identified, a 26 gauge × 19 

mm cannula (MillPledge Veterinary, UK) was used to cannulate the dorsal vein starting at 

the distal end. Successful cannulation was confirmed by blood sample withdrawal through 

the cannula. The cannula was then secured in place using super glue to prevent cannula 

displacement when transferring to the MRI scanner. The cannula was attached to an MR 

compatible syringe connected to tubing to allow contrast agent administration to be carried 

out while the rat is in the MRI scanner and during scanning. 

5.2.4 MRI scanning protocol 

The rat was placed in the cradle and the head restrained with ear and tooth bars and the 

surface coil placed above the head. Anaesthesia set at 3% isoflurane mixture was 

administered via facemask. Temperature was monitored with a rectal probe and controlled 

with an homeothermic blanket.  

MRA was carried out to confirm left MCA reperfusion and MRI-T2 performed to then 

assess infarct outcome. For these two scans, data was analysed and corrected to oedema 

and hemispheric compression as described in detail in Chapter 2. To quantify BBB 

breakdown, MRI-T1 weighted imaging was carried out prior to and post Gd-DTPA tail vein 

injection at 5, 10, 15, 20, 25 and 30 min from injection start. The sequence used was a 

RARE T1 with the following parameters: 8 coronal slices with a slice thickness of 1.5 mm, 

effective TE=13.5 ms, TR=800 ms and matrix size=256 × 256 with a FOV= 30 × 30 mm 

resulting in a plane resolution of 117M.  
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5.2.4.1 MRI-T1 image analysis  

RARE-T1 imaging analysis was conducted using Matlab (MathWorks Ltd, UK). MRI data 

was exported in DICOM format to be processed by an in-house developed Matlab code 

written by Dr Antoine Vallatos.  

Gd-DTPA uptake was determined in % signal change contrast-enhanced images for each 

time point post Gd-DTPA injection. % signal change maps were generated by subtracting 

MRI-T1 images before and after Gd-DTPA injection and normalising to pre-contrast MRI-

T1 scan. The following equation was carried out, where M represents image: 

 

To calculate Gd-DTPA brain volume uptake in signal change maps, a series of ROIs were 

manually selected on the dataset to generate a range of masks: 

1. A “noise” region situated outside the animal position was selected to calculate 

signal-to-noise ratio (SNR), therefore, removing variability that may have been 

caused by movement or scanning conditions (Figure 5-1A). 

2. The “whole brain” region was outlined on the MRI-T1 data prior to Gd-DTPA 

injection to remove background noise (Figure 5-1B). 

3. To avoid false positives from Gd-DTPA leakage outside the brain or in the surgery 

site where the ICV cannula was inserted, a “half brain/ipsilateral” region of interest 

was also selected on the T1 data prior to Gd-DTPA injection. In this experiment, a 

MRI phantom scan was not applied, thus, when selecting the half brain region, 

extreme care was taken to not include the base of the brain regions, which are 

usually detected in signal change maps caused by signal decay (Figure 5-1C). 

4. Cerebral ventricles were outlined with the guidance of MRI-T2 images (Figure 5-

1D) and excluded from analysis. 
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Figure 5-1 MRI-T1 image analysis protocol. A) Noise mask outline B) Whole brain ROI C) Half 
brain/ipsilateral ROI. Images A, B, C were performed on MRI-T1 data prior to Gd-DTPA injection. 
D) Cerebral ventricle ROI. MRI-T2 scans were used to outline the cerebral ventricles. 

Once all the ROIs had been performed, the “half brain/ipsilateral” masks were applied on 

the post Gd-DTPA scans and pixels intercepting the cerebral ventricles removed from the 

image. The SNR and % noise were calculated by carrying out the following formulas, 

where M is defined as noise standard deviation of the magnitude image as previously 

described (Gudbjartsson and Patz, 1995): 

 

After, % noise to signal change maps were generated and investigated to identify noise 

contribution within all images. It was observed that for all rats, noise contribution was 

approximately above 2% and below 5% for all image pixels within the brain (Figure 5-

2A). As a result, % signal change maps were generated for each time point post Gd-DTPA 

injection (Figure 5-2B) and a 25% threshold, five times higher than noise contribution 

(<5%), was arbitrarily set to quantify Gd-DPTA volume uptake in all post injection scans.  

To determine Gd-DTPA uptake volume (mm3) within the ipsilateral hemisphere, a binary 

mask was generated. Values below the established threshold were set as 0 and values 

above the threshold set as 1 (Figure 5-2C). The voxels defined as 1 were counted and 

multiplied by the voxel dimensions to obtain the overall Gd-DTPA uptake brain volume 

(mm3) for each of the 6-time point scans. After, a final Gd-DTPA uptake volume was 

obtained by averaging the volumes determined in each 6-time point % signal change map. 
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Figure 5-2 MRI-T1 % signal change map assessment. A) % noise to signal change map. 
Image shows the noise contribution in signal change in a representative brain scan slice. It was 
observed that for all scanning images, noise was above 2% and below 5% for the majority of 
pixels. A threshold of 25%, five times higher the noise contribution (<5%) was defined to determine 
Gd-DTPA uptake in ipsilateral hemisphere across. B) % Signal change map prior to threshold 
assessment. Gd-DTPA uptake in the ipsilateral hemisphere at 5 min, 10 min, 15 min, 20 min, 25 
min and 30 min post Gd-DTPA injection across 8 coronal levels. C) % Signal change map at 25% 
threshold. Representative image of Gd-DTPA uptake signal change in ipsilateral hemisphere 
defined at 25% threshold and at 20 min post Gd-DTPA injection across 8 coronal levels. Scale is 
defined from 0 to 1, where 0 represents voxels below threshold and 1 represents voxel values 
above the threshold (identified in white) and used to calculate Gd-DTPA uptake brain volume 
(mm3). 



185 

 

5.2.5 Brain tissue processing 

At the end of the MRI scanning, animals were removed from the MRI cradle and deeply 

anaesthetised for brain removal. For 14 rats (7 animals in each group), cerebral tissue was 

quickly sectioned into contralateral and ipsilateral sides and further divided into core and 

penumbra, snap frozen in liquid nitrogen and placed in -80oC for gene expression. The 

remaining 10 animals (5 in each group) were perfusion fixed for histological assessment 

and IBA1+ microglia analysis carried out as defined in Chapter 2.  

5.2.6 Exclusion criteria 

The exclusion criteria were applied at the end of the study by two independent researchers 

that were blind to treatment allocation. Animals were excluded if presenting the following 

characteristics: 

 Cannula not adequately placed in the cerebral ventricle at 24 hrs reperfusion as 

identified by MRI-T2. 

 MCA not adequately reperfused at 24 hrs reperfusion as shown by MRA 

 ICH at the MCA origin at 24 hrs reperfusion as shown by MRI-T2. 

 Animals that died or were sacrificed prior to study completion. 
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5.2.7 Statistical analysis 

Hemisphere volumes were compared within groups using paired Student’s t-test. Infarct 

volume and Gd-DTPA uptake were compared across treatment groups using unpaired 

Student’s t-test. Infarct volume intra-rater variability was assessed using parametric 

Pearson correlation and Bland-Altman analysis. Neurological score was compared using 

non parametric Mann-Whitney test. 

Gene expression data were compared between Sham, MCAO-Vehicle(aCSF) and MCAO-

Ang-(1-7) groups using one-way ANOVA with Tukey’s post hoc test andshown as -Ct 

normalised to Hrpt1.  

Total IBA1+ microglia expressed as n°/mm2 and % activated microglia from total cell 

number were compared between MCAO-Vehicle(aCSF) and MCAO-Ang-(1-7) treated 

groups in peri-infarct and homotopic contralateral regions using unpaired Student’s t-test. 

Total microglia count and % activated microglia were compared within groups using 

paired Student’s t-test.  

Data are presented as mean ± S.D or median ± IQR. A p value of <0.05 was deemed 

statistically significant. 
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5.3 Results 

5.3.1 Mortality and exclusions 

A total of 33 animals were used in these experiments, where two in the Vehicle (aCSF) 

group died overnight, leading to a study mortality of 6.1%.  

MRI-T2 showed that 3 animals did not have the ICV cannula correctly placed [1 in the 

Vehicle (aCSF) and 2 in the Ang-(1-7) treated groups] and were therefore, excluded from 

this study. All animals demonstrated reperfusion of the MCA at 24 hrs post 90 min MCAO 

as determined by MRA and a total of 28 animals were included for infarct volume and 

neurological score analysis, 13 in the Vehicle (aCSF) and 15 in the Ang-(1-7) treated 

groups. For BBB breakdown assessment, 5 animals were excluded from analysis, 1 in the 

Vehicle (aCSF) and 4 in the Ang-(1-7) treated groups, as contrast agent injection was 

unsuccessful during tail vein injections. As a result, Gd-DTPA uptake was assessed in 12 

rats in the Vehicle (aCSF) and 11 in the Ang-(1-7) groups.  

5.3.2 Neurological Score 

In this study, DWI or MRA were not conducted during MCAO. Consequently, 

investigators were blinded to initial lesion size and whether MCA was fully occluded. All 

animals with indications of neurological deficit at 24 hrs were included in this study. 

Garcia score shows that all animals had neurological impairment in both Vehicle (aCSF) 

and Ang-(1-7) treatment groups (Figure 5-3).  

5.3.2.1 Ang-(1-7) does not affect neurological score 

Data did not statistically differ between treatment groups, with Ang-(1-7) not influencing 

neurological outcome when compared to Vehicle (aCSF) treated animals (P>0.05). The 

median score for the Ang-(1-7) treated group was 11 (IQR: 10.0; 15.0). Similarly, Vehicle 

(aCSF) animals scored a median value of 13 (IQR: 10.50; 14.50), (Figure 5-3).  
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Figure 5-3 Neurological Score 24 hrs post 90 min MCAO. Neurological score at 24 hrs for 
Vehicle (aCSF) (n=13) and Ang-(1-7) (n=15) treated animals. There were no significant differences 
in neurological score between groups (P>0.05). Data were analysed with non-parametric Mann-
Whitney test; P<0.05 was deemed as significant. Horizontal bar represents the median. 

 

5.3.3 Hemisphere swelling 

MRI-T2 image analysis indicated that at 24 hrs post MCAO, ipsilateral hemisphere volume 

was significantly larger than contralateral hemisphere for both Vehicle (aCSF) 

[720.4±40.6mm3 vs 653.7±35.8mm3 (P<0.001)] and Ang-(1-7) [745.3±54.9mm3 vs 

665.4±39.1mm3 (P<0.001)] treated groups (Figure 5-4A&B). These results indicate 

significant brain oedema at this time point following transient MCAO.   

5.3.3.1 Ang-(1-7) does not affect % hemispheric swelling 

The % of ipsilateral hemisphere swelling was calculated as a measure of vasogenic 

oedema. When assessing % hemisphere swelling between groups, Ang-(1-7) treatment did 

not impact % hemisphere swelling with values being comparable to Vehicle (aCSF) group 

[12.2±7.7% vs 10.6±10.1% (P>0.05)], (Figure 5-4C).  
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Figure 5-4 Hemispheric swelling 24 hrs post 90 min MCAO. A) Hemispheric volume for Vehicle (aCSF) treated animals; B) Hemispheric volume for Ang-(1-7) 
treated animals and C) % hemispheric swelling between groups. At 24 hrs post MCAO, ipsilateral hemisphere was significantly larger than the contralateral 
hemisphere for both Vehicle (aCSF) (P=0.002) and Ang-(1-7) (P<0.001) treated animals. Data indicates that there were no differences between Vehicle (aCSF) and 
Ang-(1-7) treated animals regarding % hemisphere swelling at 24 hrs post MCAO (P>0.05). Data depicts values for Vehicle (aCSF) (n=13) and Ang-(1-7) (n=15) 
treated animals. Figures A & B were analysed using paired Student’s t test and Figure C analysed with unpaired Student’s t test; *P<0.05 was deemed as significant. 
Horizontal bar represents the mean. **P<0.01; ***P<0.001. 
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5.3.4 Infarct volume 

5.3.4.1 Ang-(1-7) does not change infarct outcome at 24 hrs reperfusion 

Infarct volume was analysed blind to treatment groups and independently analysed on two 

separate occasions to assess intra-rater reproducibility (r= 0.99; P<0.0001), (Figure 5-5A). 

Bland-Altman assessments indicated that both analyses had a bias of -2.8mm3 and a S.D of 

15.5mm3 with limits of agreement at -33.1mm3 and 27.6mm3 ranges (Figure 5-5B). The 

average of both analyses was taken as the final volume for each animal and corrected to 

hemisphere volume.  

 

Figure 5-5 Intra-rater variability in infarct volume measurement 24 hrs post 90 min MCAO. A) 
Correlation between infarct volume analyses. Infarct volume was blindly assessed two 
independent times for each animal. Pearson correlation indicates that both analyses significantly 
correlate with a Pearson r of 0.99 (P<0.0001). B) Bland-Altman analysis displaying difference 
and average in infarct analyses. Both infarct volume analyses had a bias of -2.8mm3 and a S.D. 
of 15.5mm3 with limits of agreement at -33.1mm3and 27.6mm3 ranges. Horizontal lines represent 
limits of agreements and the intersection of x and yaxis at 0,0 coordinates. 
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At 24 hrs post 90 min MCAO, Ang-(1-7) treatment did not change infarct volume when 

compared to the control group. Infarct volume was 136.4±91.4mm3 for Vehicle (aCSF) 

and 147.6±92.7mm3 for Ang-(1-7) treated groups (P>0.05), (Figure 5-6). Two animals in 

both groups exhibited extremely small lesions, below 33mm3, and this could be an 

indication that these animals had partial occlusions. Figure 5-7 illustrates the median 

animal for each treatment group. 

 

Figure 5-6 Infarct volume 24 hrs post 90 min MCAO. Infarct volume was not significantly 
different between groups (P>0.05). Data indicates infarct volume (mm3) for Vehicle (aCSF; n=13), 
Ang-(1-7) (n=15) treated animals. Data were analysed using unpaired Student’s t test; *P<0.05 was 
deemed as significant. Horizontal bar represents the mean. 
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Figure 5-7 Infarct volume distribution for Vehicle (aCSF) and Ang-(1-7) treated median animals. Images show MRI-T2 delineated infarct at 24 hrs post 90 min 
MCAO highlighted across 8 coronal levels. The top sequence illustrates the median animal in the Vehicle (aCSF) treated group highlighted in white whereas the bottom 
sequence shows the infarct size in the median animal in the Ang-(1-7) treated group highlighted in red. 
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5.3.5 Blood brain barrier breakdown assessment 

The impact of Ang-(1-7) treatment on the extent of BBB breakdown at 24 hrs post 90 min 

MCAO was assessed by carrying out MRI-T1-weighted sequences prior to and post- Gd-

DTPA contrast agent IV injection at 5, 10, 15, 20, 25 and 30 min from injection start. The 

Gd-DTPA uptake volume determined at the 6 time points post injection was averaged to 

establish final Gd-DTPA cerebral uptake volume within the ipsilateral hemisphere.  

5.3.5.1 Ang-(1-7) does not affect Gd-DTPA enhancement 24 hrs post tMCAO 

Ang-(1-7) did not alter total Gd-DTPA uptake volume in the ipsilateral hemisphere when 

compared to Vehicle (aCSF) [19.7±8.7mm3 vs 19.4±7.7mm3 (P>0.05)], (Figure 5-8A). 

Total Gd-DTPA uptake volume was more variable in the Vehicle group, where 3 rats had 

very little uptake while 1 animal had an uptake of approximately 66mm3, highlighting that 

at 24 hrs reperfusion there is considerable variability in the extent of BBB breakdown. 

The extent of Gd-DTPA uptake was expressed as a % of the respective infarct areas. 

Similarly, Ang-(1-7) treatment did not influence Gd-DTPA enhancement in infarct areas 

compared to Vehicle (aCSF) treatment [16.8±23.0% vs 19.0±22.3% (P>0.05)], (Figure 5-

8B). Together, these results suggest that Ang-(1-7) has no effect on BBB breakdown 24 hrs 

post MCAO. Figure 5-9 and 5-10 show a representative image of Gd-DTPA enhancement 

in infarct areas for the median animal in Vehicle (aCSF) and Ang-(1-7) groups, 

respectively.  
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Figure 5-8 Gd-DTPA enhancement 24 hrs post 90 min MCAO. A) Total ipsilateral hemisphere Gd-DTPA volume uptake (mm3) and B) Gd-DTPA volume 
uptake expressed as % of infarct volume (%). Ang-(1-7) treatment does not influence total Gd-DTPA volume or % uptake in infarct areas at 24 hrs post 90 min 
MCAO (P>0.05). Data depicts values for Vehicle (aCSF) (n=12) and Ang-(1-7) (n=11) treated animals. Data were analysed using unpaired Student’s t test; P<0.05 was 
deemed as significant. Horizontal bar represents the mean. 
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Figure 5-9 Gd-DTPA enhancement in Vehicle (aCSF) treated median animal. A) MRI-T2 delineated infarct at 24 hrs post 90 min MCAO. Images show infarct 
volume across 8 coronal levels, highlighted in white. B) MRI-T1 signal change map. % signal change map from pre to 30 min post Gd-DTPA injection. Images show 
Gd-DTPA enhancement across 8 coronal levels and the scale is set from 0 to 100% of Gd-DTPA enhancement. The Gd-DTPA enhancement observed in the 
contralateral hemisphere is due to ICV cannula placement. C) MRI-T1 signal change map at 25% threshold assessment. Gd-DTPA enhancement at 25% threshold 
within the infarct areas as determined by MRI-T2. Gd-DTPA uptake is highlighted in white and the scale bar defined from 0 to 1, where the voxels defined as 1 were 
counted and multiplied by the voxel dimensions to obtain the overall Gd-DTPA uptake brain volume. 
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Figure 5-10 Gd-DTPA enhancement in Ang-(1-7) treated median animal. A) MRI-T2 delineated infarct at 24 hrs post 90 min MCAO. Images show infarct volume 
across 8 coronal levels, highlighted in red. B) MRI-T1 signal change map. Figures show % signal change map from pre to 30 min post Gd-DTPA injection prior to 
image processing as defined in the methods. Images show Gd-DTPA enhancement across 8 coronal levels andthe scale is set from 0 to 100% Gd-DTPA 
enhancement. The Gd-DTPA enhancement observed in the contralateral hemisphere is due to ICV cannula placement. C) MRI-T1 signal change map at 25% 
threshold assessment. Gd-DTPA enhancement at 25% threshold within the infarct areas as determined by MRI-T2. Gd-DTPA uptake is highlighted in white and scale 
bar is defined from 0 to 1, where the voxels defined as 1 were counted and multiplied by the voxel dimensions to obtain the overall Gd-DTPA uptake brain volume. 
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5.4 IBA1+ microglia assessment 

Immunohistochemistry was performed across coronal levels 3, 4 and 5 for Vehicle (aCSF, 

n=5) and Ang-(1-7) (n=5) treated groups as defined in Chapter 2. Peri-infarct regions and 

ischaemic area were defined with the aid of H&E staining where 3 ROIs were outlined in 

the peri-infarct area in ipsilateral and homotopic contralateral hemispheres. IBA1+ 

microglia were counted in each of the 3 ROIs per coronal section and averaged. Data were 

expressed in n/mm2 taking into account cell count within each coronal level. In addition, 

cells were differentiated into resting or activated (Chapter 2) and presented as % activated 

microglia from total cell count. 

5.4.1 Ang-(1-7) does not influence microglia levels in peri-infarct 
and contralateral regions compared to Vehicle (aCSF) 

Total microglial numbers were similar between Ang-(1-7) and Vehicle (aCSF) treated 

groups in peri infarct regions [106.1±36.3 n/mm2 vs 111.1±45.4 n/mm2 (P>0.05)], 

(Figure 5-11A). Similarly, in the homotopic contralateral region, Ang-(1-7) treatment did 

not influence total microglia count when compared to Vehicle (aCSF) [129.0±20.3 n/mm2 

vs 130.6±29.3 n/mm2 (P>0.05)], (Figure 5-11B).  

Treatment did not alter % activated microglia in the peri-infarct region when compared to 

the Vehicle (aCSF) group [86.2±30.8% vs 93.0±11.7% (P>0.05)], (Figure 5-12A). 

Similarly, % activated microglia was comparable between groups in the homotopic 

contralateral hemisphere [62.2±2.9% vs 68.3±24.1% (P>0.05)], (Figure 5-12B). Together, 

this data suggests that Ang-(1-7) does not alter total microglia count or cell activation at 24 

hrs post MCAO. 

Data also indicates that cell numbers were similar in the peri-infarct and homotopic 

contralateral hemisphere within groups. Although microglia were not counted in the 

infarct, it was observed that IBA1+ cells were rarely observed in this area. Figure 5-13 and 

5-14 show a representative image of IBA1+ microglia staining within the peri-infarct, 

contralateral and ischaemic core. Images represent IBA1+ positive staining across the three 

assessed coronal levels for the median animal in the Vehicle (aCSF) and Ang-(1-7) treated 

group, respectively.  
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Figure 5-11 Total microglia in peri-infarct and contralateral regions 24 hrs post 90 min 

MCAO. A) Peri-infarct region; B) Homotopic contralateral region. Total microglia n/mm2 were 
comparable between Vehicle (aCSF) and Ang-(1-7) treated groups (P>0.05) in both peri-infarct and 
homotopic contralateral regions. Data shows total cell number per mm2 brain area for Vehicle 
(aCSF; n=5) and Ang-(1-7) (n=5) treated animals. Data were analysed with unpaired Student’s t 
test; P<0.05 was deemed as significant. Horizontal bar represents the mean. 

 

 

 

Figure 5-12 % activated microglia in peri-infarct and contralateral regions 24 hrs post 90 min 
MCAO. A) Peri-infarct region; B) Homotopic contralateral region. % activated cells from total 
number were comparable between treatment groups in both peri-infarct and homotopic 
contralateral regions (P>0.05). Data shows % activated microglia from total number for Vehicle 
(aCSF; n=5) and Ang-(1-7) (n=5) treated animals. Data were analysed with unpaired Student’s t 
test; P<0.05 was deemed as significant. Horizontal bar represents the mean. 
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Figure 5-13 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for Vehicle (aCSF) treated animal. Peri-infarct regions were defined with 
the aid of histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (grey) and three ROIs were defined for imaging and IBA1+ cell count 
in peri-infarct and homotopic contralateral areas (red squares). IBA1+ microglia immunohistochemistry staining (highlighed in red) across coronal levels 3, 4 and 5. 

Scale is set at 50M per white bar. 
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Figure 5-14 IBA1+ microglia staining in peri-infarct, contralateral and infarct regions for Ang-(1-7) treated animal. Peri-infarct regions were defined with the aid 
of histology analysis as defined in Paxinos and Watson coronal levels. Infarct was outlined (pink) and three ROIs were defined for imaging and IBA1+ cell count in peri-
infarct and homotopic contralateral areas (red squares). IBA1+ microglia immunohistochemistry staining (highlighed in red) across coronal levels 3, 4 and 5. Scale is set 

at 50M per white bar. 
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5.4.2 Total microglia count is comparable between peri infarct 
and contralateral regions within groups at 24 hrs 

In the prior section, it was observed that microglia numbers were similar between peri-

infarct and contralateral regions. To confirm that the model successfully increased 

activated microglia within the peri-infarct in comparison to the homotopic contralateral 

region, values were compared within each group.  

In the Vehicle (aCSF) animals, total microglia cell count was comparable between peri-

infarct and homotopic contralateral regions [111.1±45.44 n/mm2 vs 130.6±29.28 n/mm2 

(P>0.05), respectively], (Figure 5-15A). The peri-infarct region exhibited significantly 

higher % of activated microglia [92.97±11.74% vs 62.20±2.89% (P<0.01), respectively] 

(Figure 5-15B). Similarly, in the Ang-(1-7) group, total microglia count were comparable 

between regions [106.1±36.27 n/mm2  vs 129.0±20.27 n/mm2 (P>0.05)], (Figure 5-16A). 

The peri-infarct exhibited significantly higher levels of % activated microglia compared to 

the contralateral region [86.23±30.79% vs 68.28±24.07%; (P<0.01)], (Figure 5-16B). 

These results indicate that although total cell count was comparable within peri-infarct and 

homotopic regions, MCAO successfully led to an increase in % of activated cells within 

the peri-infarct compared to homotopic contralateral regions for both groups.  
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Figure 5-15 IBA1+ microglia assessment within Vehicle (aCSF) treated group. A) Total cell 

count; B) % activated cells. Total microglia n/mm2 was comparable in peri-infarct and 
contralateral regions (P>0.05). % activated cells were significantly higher in the peri-infarct region 
compared to the contralateral side (P<0.01). Data were expressed as total nº/mm2 or % of total cell 
count. Data were analysed with paired Student’s t test; P<0.05 was deemed as significant. 
Horizontal bar represents the mean. 

 
Figure 5-16 IBA1+ microglia assessment within Ang-(1-7) treated group. A) Total cell count; 

B) % activated cells. Total microglia n/mm2 were comparable in peri-infarct and contralateral 
regions (P>0.05). % activated cells were significantly higher in the peri-infarct region compared to 
the contralateral side (P<0.01). Data were expressed as total nº/mm2 or % of total cell count. Data 
were analysed with paired Student’s t test; P<0.05 was deemed as significant. Horizontal bar 
represents the mean. 
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5.5 Quantitative Real Time PCR 

Following 24 hrs reperfusion, peri-infarct ipsilateral brain regions for Sham (n=6), MCAO-

aCSF (n=7) and MCAO-Ang-(1-7) (n=7) treated animals were assessed for gene 

expression. Hrpt1 was selected as internal control for data normalisation as described in 

detail in Chapter 2.  

5.5.1 MCAO did not affect RAS or Bdkrb2 expression 

Following 24 hrs post 90 min MCAO, Atgr1a, Atgr2r, Mas1, Ace, Ace2 and Bdkrb2 levels 

were comparable to Sham tissue, P>0.05 (Figure 6-17A:F).   

5.5.2 MCAO significantly increased Mmp9 and Timp1 expression 

Mmp9 expression was significantly higher in MCAO-aCSF group when compared to Sham 

tissue [-3.1±1.6 vs -5.8±2.0 (P<0.05)], (Figure 5-18A). MCAO-Ang-(1-7) showed a trend 

to significantly upregulate Mmp9 expression when compared to Sham, however, this was 

not statistically significant [-3.3±1.9 vs -5.8±2.0 (P=0.056)], (Figure 5-18A). Treatment 

did not change Mmp9 expression following MCAO.  

Timp1 was significantly upregulated following MCAO in both Vehicle (aCSF) and Ang-

(1-7) treated animals compared to Sham; 2.1±2.5 vs -3.3±0.6 (P<0.001) and 3.1±1.9 vs -

3.3±0.6 (P<0.001), respectively (Figure 5-18B). The relative expression of Timp1 was 

higher than Mmp9 at this time point, perhaps explaining the low levels of brain Gd-DTPA 

uptake after 90 min MCAO. Supportively, the average Ct values for Timp1 were 25.0 and 

23.6 for Vehicle and Ang-(1-7) treated groups whereas Mmp9 Ct values were 30.2 and 

30.0, respectively. 
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Figure 5-17 RAS components and B2R gene expression 24 hrs post 90 min MCAO. A) Atgr1a; 
B) Atgr2; C) Mas1; D) Ace; E) Ace2 and F) Bdkrb2. MCAO did not alter RAS mediators or B2R 
gene expression in both Vehicle (aCSF) and Ang-(1-7) treated animals compared to Sham 

(P>0.05). Data were presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle 
(aCSF;n=7) and MCAO-Ang-(1-7) (n=7) treated animals in peri-infarct regions. Data were analysed 
with one-way ANOVA; P<0.05 was deemed as significant. Horizontal bar represents the mean. 
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Figure 5-18 MMP9 and TIMP1 gene expression 24 hrs post 90 min MCAO. A) Mmp9 and B) Timp1. MCAO significantly upregulated Mmp9 in MCAO-aCSF group 
compared to Sham (P<0.01). MCAO-Ang-(1-7) animals showed a trend to significantly upregulate Mmp9 compared to Sham (P=0.056). There were no statistical 
differences between MCAO-Vehicle and MCAO-Ang-(1-7) groups. MCAO significantly upregulated Timp1 expression compared to Sham in both Vehicle (aCSF) 

(P<0.001) and Ang-(1-7) (P<0.001) treated groups. Data were presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle (aCSF;n=7) and MCAO-Ang-(1-
7) (n=7) treated animals in peri-infarct regions. Data were analysed with one-way ANOVA with Tukey’s post-hoc test; P<0.05 was deemed as significant. *P<0.05; 
***P<0.001 compared to Sham. Horizontal bar represents the mean. 
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5.5.2.1 Ang-(1-7) treatment did not impact Vegfa or Kdr expression 

VEGFA (Vegfa) and VEGFR-2 (Kdr) levels were comparable between groups, P>0.05 

(Figure 5-19A&B).  

 

Figure 5-19 VEGFA and VEGFR-2 gene expression 24 hrs post 90 min MCAO. A) Vegfa and 
B) Kdr. MCAO did not alter Vegfa or Kdr expression when compared to Sham (P>0.05). Data were 

presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle (aCSF; n=7) and MCAO-
Ang-(1-7) (n=7) treated animals in peri-infarct regions. Data were analysed with one-way ANOVA; 
P<0.05 was deemed as significant. Horizontal bar represents the mean. 

5.5.3 MCAO significantly increased Ptgs2 but not Nfkb1 

MCAO in Vehicle (aCSF) and Ang-(1-7) treated groups significantly upregulated Ptgs2 

expression compared to Sham tissue; 0.7±1.7 vs -1.8±1.1 (P<0.05) and 1.4±1.8 vs -1.8±1.1 

(P<0.05), respectively (Figure 5-20A). Conversely, Nfkb1 levels ware comparable to Sham 

levels between groups (P>0.05), (Figure 5-20B).  
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Figure 5-20 COX-2 and NF-B gene expression 24 hrs post 90 min MCAO. A) Ptgs2 and B) 
Nfkb1. MCAO significantly upregulated Ptgs2 expression when compared to Sham (P<0.05). 
Conversely, Nfkb1 levels were comparable amongst groups (P>0.05). Data were presented as -

Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle (aCSF; n=7) and MCAO-Ang-(1-7) (n=7) 
treated animals in peri-infarct regions. Data were analysed with one-way ANOVA with Tukey’s 
post-hoc test; P<0.05 was deemed as significant. Horizontal bar represents the mean. *P<0.05; 
**P<0.01 compared to Sham. 

5.5.4 MCAO significantly upregulated Cxcr2, Ccr2 and Ccr5 

Cxcr2 was significantly upregulated in MCAO-Vehicle (aCSF) and MCAO-Ang-(1-7) 

when compared to Sham animals in peri-infarct regions: -5.0±2.3 vs -8.8±1.2 (P=0.002) 

and -6.0±1.6 vs -8.8±1.2 (P=0.02), respectively (Figure 5-21A). Similarly, MCAO 

significantly upregulated Ccr2 in Vehicle and Ang-(1-7) treated groups compared to Sham: 

-3.2±2.2 vs -6.2±0.8 (P=0.01) and -3.0±1.8 vs -6.3±0.8 (P=0.009), respectively (Figure 5-

21B). Ccr5 levels significantly increased following MCAO-Vehicle (aCSF) compared to 

Sham, -1.24±0.50 vs -2.12±0.76 (P=0.04). MCAO-Ang-(1-7) treated rats showed a trend to 

prevent the increase in Ccr5 expression as seen in MCAO-Vehicle animals. MCAO-Ang-

(1-7) Ccr5 values were not significantly different from Sham (P=0.64) or MCAO-Vehicle 

rats (P=0.17), (Figure 5-21C). 
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Figure 5-21 Chemokine receptor expression 24 hrs post 90 min MCAO. A) Cxcr2; B) Ccr2 
and C) Ccr5. MCAO significantly upregulated Cxcr2 and Ccr2 expression compared to Sham 
animals (P<0.05). MCAO significantly upregulated Ccr5 in MCAO-aCSF group compared to sham 
(P<0.05) whereas MCAO-Ang-(1-7) was not significantly different from Sham or MCAO-Vehicle 

(aCSF) (P>0.05). Data were presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle 
(aCSF; n=7) and MCAO-Ang-(1-7) (n=7) treated animals in peri-infarct regions. Data were 
analysed with one-way ANOVA with Tukey’s post-hoc test; P<0.05 was deemed as significant. 
Horizontal bar represents the mean. *P<0.05 compared to Sham. 

5.5.5 MCAO does not impact Nox1 or Nox2 expression 

Nox1 and Nox2 gene expression were comparable to Sham levels between groups 

(P>0.05), (Figure 5-22A&B). 
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Figure 5-22 NOX type 1 and type 2 gene expression 24 hrs post 90 min MCAO. A) Nox1; B) 
Nox2. Data shows that MCAO did not alter Nox1 or Nox2 compared to Sham (P>0.05). Data were 

presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle (aCSF; n=7) and MCAO-
Ang-(1-7) (n=7) treated animals in peri-infarct regions. Horizontal bar represents the mean. Data 
were analysed with one-way ANOVA; P<0.05 was deemed as significant. 

 

5.5.6 MCAO increased M1 type microglia/macrophage profile 
expression 

MCAO significantly upregulated CD86 levels compared to Sham; -3.2±1.5 vs -5.6±0.8 and 

-3.3±1.6 vs -5.6±0.8 (P<0.001) in Vehicle and Ang-(1-7) treated rats, respectively (Figure 

5-23A). Similarly, MCAO significantly increased Itgam [-0.3±0.8 vs -3.2±0.7 and -0.8±0.7 

vs -3.2±0.7 (P<0.001)] (Figure 5-23B), Il6 [-3.8±2.6 vs -8.7±0.9 and -3.2±1.7 vs -8.7±0.9 

(P<0.001)] (Figure 5-23C), Il1b-4.89±1.95 vs -7.62±0.60 (P=0.002) and -4.91±1.82 vs -

7.62±0.60 (P<0.001)] (Figure 5-23D), Nos2 [-4.9±2.8 vs -10.4±1.1 and -4.8±1.8 vs -

10.4±1.1 (P<0.001)] (Figure 5-23E), in both vehicle and Ang-(1-7) treated groups 

compared to sham, respectively. Ang-(1-7) did not change the gene expression of M1 type 

markers compared to MCAO-aCSF (Figures 5-23A:E). 

Ccr7 showed a trend to increase following MCAO, however, it was most predominant in 

Ang-(1-7) treated animals being statistically different when compared to Sham [-5.2±1.9 

vs -7.7±1.0 (P<0.05)], (Figure 5-23F). MCAO-Vehicle values did not differ from Sham or 

Ang-(1-7) treated groups (P>0.05).  
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Figure 5-23 M1 type microglia/macrophage markers 24 hrs post 90 min MCAO. A) CD86; B) 

Itgam; C) Il6; D) Il1b E) Nos2 and F) Ccr7. MCAO significantly upregulated the expression of 
CD86, Itgam, Il6, Il1b and Nos2 compared to Sham (P<0.05) with no differences between MCAO 
treatment groups (P>0.05). Ccr7 was significantly upregulated in MCAO-Ang-(1-7) treatment group 
compared to Sham. MCAO-Vehicle (aCSF) Ccr7 values did not significantly differ from Sham or 

MCAO-Ang-(1-7) groups (P>0.05). Data were presented as -Ct normalised to Hrpt1 for Sham 
(n=6); MCAO-Vehicle (aCSF;n=7) and MCAO-Ang-(1-7) (n=7) treated animals in peri-infarct 
regions. Data were analysed with one-way ANOVA with Tukey’s post-hoc test; P<0.05 was 
deemed as significant. Horizontal bar represents the mean. *P<0.05; **P<0.01; ***P<0.001 
compared to Sham. 
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5.5.7 MCAO increased M2 microglia/macrophage markers, Ccl22 
and Tgfb1 but not Arg1 or CD163 

M2 surface markers Arg1 and CD163 were comparable to Sham following MCAO (Figure 

5-24A&B). Conversely, MCAO significantly increased the expression of Ccl22 [-5.3±1.9 

vs -8.3±0.7 and -5.5±2.1 vs -8.3±0.7 (P<0.05)] and Tgfb11.5±1.2 vs -0.2±0.8 (P<0.05) 

and 1.8±1.0 vs -0.2±0.8, (P<0.001)] when compared to Sham animals in control and Ang-

(1-7) animals, respectively (Figure 5-24C&D). Il10 was not detected in peri-infarct 

samples.  

 
Figure 5-24 M2 type microglia/macrophage markers 24 hrs post 90 min MCAO. A) Arg1; B) 
Cd163; C) Ccl22 and D) Tgfb1. MCAO significantly upregulated the expression of Ccl22 and 
Tgfb1 compared to Sham (P<0.05). Conversely, Arg1 and CD163 levels were comparable between 

groups (P>0.05). Data were presented as -Ct normalised to Hrpt1 for Sham (n=6); MCAO-Vehicle 
(aCSF;n=7) and MCAO-Ang-(1-7) (n=7) treated animals in peri-infarct regions. Data were analysed 
with one-way ANOVA with Tukey’s post-hoc test; P<0.05 was deemed as significant. Horizontal 
bar represents the mean. *P<0.05; **P<0.01; ***P<0.001 compared to Sham. 
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5.6 Discussion 

This study was designed to examine the potential impact of Ang-(1-7) on BBB breakdown, 

infarct volume; microglia number/activation and gene expression at 24 hrs post 90 min 

MCAO. The time point selected represents a stage where the BBB is transitioning from a 

closed to open state and the final infarct has not yet matured (Pillai et al. 2013; Neumann-

Haefelin et al. 2000). Results indicate that at 24 hrs post MCAO, Ang-(1-7) treatment does 

not improve BBB breakdown, infarct volume, microglia number, activation or pro and 

anti-inflammatory gene expression markers when compared to Vehicle (aCSF) treated 

animals.  

5.6.1 Ang-(1-7) does not affect BBB breakdown and vasogenic 
oedema 24 hrs post MCAO 

 

For the first time, the effects of Ang-(1-7) on BBB breakdown at 24 hrs post MCAO were 

evaluated with contrast enhanced MRI. Moreover, MRI-T2 and MRA were used to confirm 

that the ICV cannula was adequately placed in the ventricle and that all animals were 

reperfused at 24 hrs. Results show that at 24 hrs following transient focal cerebral 

ischaemia, central Ang-(1-7) treatment does not influence total Gd-DTPA enhancement 

volume across the ipsilateral hemisphere. Similarly, % Gd-DTPA extravasation per infarct 

volume was comparable to the Vehicle (aCSF) group, indicating that treatment had no 

effect on BBB breakdown at this time point. MRI-T2 analysis successfully identified that at 

the time point assessed; vasogenic oedema is present within the ipsilateral hemisphere as 

hemispheric volume was significantly higher when compared to contralateral side. Still, 

when comparing hemispheric swelling between groups, data showed no differences 

induced by therapy. These results highlight that Ang-(1-7) does not act by preventing BBB 

disruption or vasogenic oedema in our hands.  

The “classical axis” of the RAS has been implicated in BBB disruption pathology 

following stroke in in vitro models as well as in vivo assessments following MCAO in 

normotensive rats (Panahpour, Nekooeian, et al. 2014; So et al. 2015; Panahpour, 

Dehghani, et al. 2014); therefore, setting the premise that the counter-regulatory axis might 

offer a protective effect. Ang-(1-7) was previously tested in a normotensive MCAO rat 

model where it was shown that treatment decreased Evans Blue (EB) extravasation 24 hrs 

post 90 min MCAO. The outcome observed was attributed to a reduction of MMP9 and 

enhancement of TIMP1 gene and protein expression, which promoted claudin-5 and ZO-1 
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preservation (Wu et al., 2015). In Wu’s study, Ang-(1-7) was tested at 5 different doses 

(0.005 pmol/hr; 0.005 pmol/hr; 0.05 pmol/hr; 0.5 pmol/hr; 5 pmol/hr) with the authors 

identifying that Ang-(1-7) prevented BBB disruption at higher doses only (0.5 pmol/hr and 

5 pmol/hr) and subsequently proposing a dose dependent effect on BBB preservation (Wu 

et al., 2015). In our study, Ang-(1-7) was administered at a dose of 1.1 nmol/hr, which is 

substantially higher than the doses used beforehand. Therefore, in future, lower doses 

might be more effective. Additionally, Wu’s study did not evaluate the extent of infarct 

volume damage; thus, the results obtained could not be associated with a treatment-

induced effect in the ischaemic damage, contrarily to our experiment. 

MRI was chosen as the method of assessing BBB breakdown as it is the most commonly 

used technique to study BBB disruption in both preclinical and clinical studies (Wunder et 

al., 2012). Alternatively, Wu et al. selected EB extravasation as a method of assessing 

integrity of the BBB (Wu et al., 2015). Although EB extravasation is a simple and widely 

used method, it has the disadvantage of potentially overestimating BBB breakdown as it 

presents reversible binding kinetics to serum albumin and also binds to other plasma 

proteins and tissues (Connelly et al. 2015). Conversely, Gd-DTPA does not bind to 

albumin and induces a differential extravasation pattern to that observed in EB staining, 

perhaps explaining the contradicting results. Yet, studies using Gadofluorine M, a new 

contrast agent formulation with strong binding properties to albumin, identified that 

following stroke; Gadofluorine M leads to highly sensitive signal enhancement within 24 

hrs and an extravasation pattern similar to that observed in EB assessment (Stoll et al., 

2009). One could postulate that the absence of Gd-DTPA signal enhancement does not 

necessarily mean that BBB breakdown is not occurring but rather that Gd-DTPA might not 

be sensitive enough to detect subtle changes.  

Gd-DTPA contrast enhancement technique was shown to be quite challenging as contrast 

administration failed in 5 rats, which meant that more animals were required to have a 

sufficient sample size. Furthermore, several factors influence Gd-DTPA distribution 

amongst rats including vessel permeability, surface area, blood flow as well as 

intravascular and extracellular-extravascular volume fractions (Kassner and Merali, 2015). 

Physiological parameters were not assessed during imaging or included in BBB breakdown 

analysis; therefore, one could assume that these variables might have influenced Gd-DTPA 

extravasation amongst rats. Alternatively, dynamic contrast enhanced MRI (DCE-MRI) 

takes into account these factors and provides a sensitive method to detect subtle MRI-T1 

contrast enhancement changes when compared to contrast-enhanced T1 alone (Heye et al., 



214 

 

2014). In DCE-MRI, multiple sampling times are obtained characterising the enhancement 

over time, this way, allowing mapping of spatial BBB breakdown throughout the brain. To 

do so, compartmental models are used to define the contrast exchange between blood 

plasma and tissue extracellular compartment (Heye et al., 2014; Kassner and Merali, 

2015). This type of assessment has been shown to consistently detect BBB breakdown in a 

sensitive manner in both preclinical and clinical studies 24 hrs post MCAO (Lin et al., 

2002; Merali et al., 2017), providing a suitable alternative method to use in future.  

It is important to note that this proof of principle study was conducted in young, healthy 

male rats. As mRNA data indicates, RAS components were expressed to Sham levels, 

suggesting that the RAS may not be implicated in cerebral injury at 24 hrs and justifying 

the results obtained. It is possible, however, that in co-morbidity animal models, counter-

regulatory axis targeting may be beneficial in preventing BBB injury. For instance, 

SHRSPs subjected to salt loading or Ang II with candesartan treatment, showed that 

treatment prevented BBB impairment and superoxide generation (Kim-Mitsuyama et al., 

2005). Additionally, in Dahl salt-sensitive rats, olmesartan therapy reduced BBB 

breakdown in the hippocampus by attenuating Ang II levels and preserving TJPs (Pelisch 

et al., 2011). As a result, in comorbid models, counter-regulatory targeting therapies may 

provide an enhanced benefit rather than what is seen in normotensive models. 

5.6.1.1 BBB breakdown displays a variable pattern at 24 hrs reperfusion  

Gd-DTPA uptake at 24 hrs displayed a variable pattern amongst animals. In some rats, 

contrast enhancement was remotely present in areas of infarct whereas in others, it was 

identified in over 70% of the ischaemic area. These results imply that at this time point, the 

BBB is at a transient point of disruption. This suggests a biphasic BBB pattern rather than 

a continuous disruption as previously hypothesised (Belayev et al., 1996; Pillai et al., 2009; 

Rosenberg et al., 1998; Veltkamp et al., 2005). The transient pattern of BBB disruption at 

24 hrs post stroke is not well characterised. However, it is postulated that this mechanism 

is an outcome of claudin-5 and occludin protein expression decrease in the endothelial 

cells yet present in astrocytes surrounding the vasculature, justifying this temporary closure 

(Yang et al., 2007). In addition, TJPs are suggested to reassemble due to a reversal in ROS 

mediated injury (Meyer et al., 2001). Supportively, qPCR results showed that in peri-

infarct regions, NOX1 and NOX2 mRNA levels were comparable to Sham levels. There is 

no consensus regarding the time point at which the BBB is at its maximum disruption, with 

literature proposing that it might occur between 48 hrs and 72 hrs reperfusion (Belayev et 
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al., 1996; Pillai et al., 2009; Rosenberg et al., 1998; Veltkamp et al., 2005). Since at 24 hrs 

BBB opening was shown to vary amongst animals, the time point selected may not have 

been optimal to examine the treatment effect of Ang-(1-7) on BBB breakdown. 

Longitudinal experiments investigating the impact of Ang-(1-7) on BBB disruption should 

be performed to identify the appropriate time at which maximal barrier disruption occurs 

and whether this is influenced by treatment. 

Although our findings indicate that BBB disruption is variable at the point assessed, 

vasogenic oedema was present and detected by differences in hemispheric volumes. It 

could be argued that oedema is the outcome of the first phase of BBB opening (Rosenberg 

et al., 1998). At the same time, following 90 min MCAO, the expression of TJPs in 

Fluorescein Isothiocyanate (FITC)-albumin leakage regions are unaltered at 24 hrs 

reperfusion, yet, structural alterations take place in the vascular endothelium causing 

swelling and oedema (Krueger et al., 2017). Therefore, in some animals, it is likely that 

structural endothelial cell changes are occurring and allowing free flow of water molecules 

into the brain; however, the TJP integrity might not allow the extravasation of Gd-DTPA.  

5.6.1.2 MCAO upregulates MMP9 and TIMP1 gene expression with no Ang-
(1-7) induced effects 

To dissect potential undetected effects, the expression for markers involved in BBB 

disruption were assessed with qPCR. MMP9 mRNA levels were upregulated following 

MCAO compared to Sham whereas MCAO-Ang-(1-7) rats indicated a trend to increase 

MMP9, nearly reaching significance. In turn, MMP9 may be acting to disrupt the BBB, 

explaining why disruption was observed in all animals even if at low levels in some. 

Indeed, MMP9 is of special relevance in BBB disruption since stroke patients with 

increased serum MMP9 levels demonstrate exacerbated DWI lesion growth and higher risk 

of developing HT (Inzitari et al., 2013; Rosell et al., 2005), highlighting its involvement in 

BBB breakdown in preclinical and clinical studies. Ang-(1-7) was previously suggested to 

decrease MMP9 mRNA and protein expression following 90 min MCAO with 24 hrs 

reperfusion (Wu et al., 2015). Our data, however, contradicts previous findings and further 

emphasises that therapy does not alter BBB breakdown at the time point examined. 

MMP9 is regulated by TIMP1 by non-covalent binding in the MMP catalytic domains 

(Turner and Sharp, 2016). In our study, TIMP1 mRNA expression was significantly 

increased following MCAO and contrarily to Wu’s study (Wu et al., 2015); we 

demonstrate no Ang-(1-7) therapy induced effects. Interestingly, the relative expression of 
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TIMP1 was substantially higher than MMP9 in brain samples, perhaps explaining the 

decrease in BBB breakdown at this time point. In fact, MMP9/TIMP1 ratio, favouring 

MMP9 expression, positively correlates with brain damage following cerebral ischaemia in 

preclinical and clinical assessments (Li et al., 2013; Piccardi et al., 2015), thus, increases in 

TIMP1 could protect MMP9-derived ECM and TJP degradation. The protective role of 

TIMP1 in BBB breakdown has been extensively studied. TIMP1-KO mice display 

enhanced MMP9 protein expression compared to WT, which was associated with BBB 

disruption (Fujimoto et al., 2008). On the contrary, mice overexpressing TIMP1 had 

reduced MMP9 levels, an effect linked to attenuated infarct volume and ameliorated BBB 

leakage (Tejima et al., 2009). These results place MMP9 as a main mediator in barrier 

disruption that is possibly being reversed by TIMP1. To confirm these effects, MMP9 and 

TIMP1 protein levels through Western Blot or immunohistochemistry should be assessed 

within the peri-infarct regions as well as TJP protein levels to confirm 

preservation/degradation. At the same time, complementary experiments such as 

gelatinzymography could be performed to study MMP9/TIMP1 induced ECM and TJP 

degrading activity in cultured brain cells (Toth et al., 2012). 

Other BBB breakdown markers studied were VEGFA and VEGFR-2. VEGFA is a potent 

growth factor involved in BBB breakdown in the early phases of injury through VEGFR-2 

activation (Bates et al., 2002). The role of VEGFA in mediating stroke injury is well 

described, with its inhibition at 24 hrs reperfusion attenuating BBB disruption following 

stroke (Zhang et al., 2017). In permanent MCAO, Ang-(1-7) therapy was shown to alter 

VEGF expression at 24 hrs post stroke onset (Jiang et al., 2014); however, in the present 

study, VEGFA and VEGFR-2 mRNA expression levels were comparable to Sham animals 

in MCAO groups. VEGFA and VEGFR-2 proteins are highly present 3 days post injury in 

the lesion site (Lennmyr et al., 1998),  thus, VEGFA could be mainly involved in the 

subsequent BBB opening between 48-72 hrs, where there is a dramatic increase in 

permeability (Pillai et al., 2013).  

5.6.1.3 Ang-(1-7) does not alter inflammation, oxidative stress or leukocyte 
infiltration markers 

In ET-induced MCAO models, Ang-(1-7) therapy is suggested to induce an anti-

inflammatory effect at 24 hrs and 72 hrs post stroke onset by attenuating iNOS mRNA and 

protein expression in the ipsilateral hemisphere (Mecca et al., 2011; Regenhardt et al., 

2013). In addition, in permanent MCAO, Ang-(1-7) treatment decreased COX-2 protein 

levels in peri-infarct tissue at 24 hrs post injury start (Jiang et al., 2012). iNOS and COX-2 
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enzymes are thought to interact with one another as COX-2-positive neurons are present in 

close proximity to iNOS positive neutrophils (Nogawa et al., 1998). This in turn, 

stimulates an increase in ROS and toxic prostanoids promoting BBB breakdown (Nogawa 

et al., 1998). The mRNA levels for both these mediators were upregulated following 

MCAO in peri-infarct regions, highlighting its involvement in injury. However, compared 

to vehicle treated group, Ang-(1-7) treatment did not change iNOS and COX-2 gene 

expression at 24 hrs post stroke onset. 

Ang-(1-7) is also suggested to decrease phosphorylated IB- and NF-B p65 protein 

levels as well as attenuate NF-B mRNA and protein levels in microglia cultures (Jiang et 

al., 2012; Liu et al., 2016). Following MCAO, NF-B mRNA levels were comparable to 

Sham animals. Yet, the expression of iNOS, COX-2, IL-6, and MMP9 were upregulated 

following MCAO and these are dependent on NF-B activation (Harari and Liao, 2010). 

Ang-(1-7) did not alter NF-B, IL-6, MMP9, COX-2 or iNOS; therefore, suggesting that 

Ang-(1-7) does not induce an anti-inflammatory effect in the animal model used and as a 

post-stroke onset therapy. Simultaneously, the method used to study therapy effects on NF-

B levels may not have been appropriate. In future studies, Western Blot or 

immunohistochemistry analysis of NF-B components such as p50, p52 and RelB subunits 

should be assessed as well as protein signalling pathway components.  

We then assessed NOX1 and NOX2 mRNA levels since Ang II is suggested to enhance 

oxidative stress in the brain through these mediators (Wang et al. 2006; Sun et al. 2005; 

Jackman et al. 2009; Kahles et al. 2010). NOX1 and NOX2 enzymes are main mediators of 

vascular damage and shown to contribute towards BBB breakdown (Chen et al., 2011; 

Gray and Jandeleit-Dahm, 2015). Specifically, when inhibiting NOX with apocynin or by 

genetic ablation, the severity of BBB disruption is reduced (Chen et al., 2009). In the 

present study, NOX1 and NOX2 were expressed at Sham levels at 24 hrs following 

transient MCAO, possibly an indication of reduced oxidative stress and thereby explaining 

the biphasic BBB pattern at 24 hrs (Meyer et al., 2001). Interestingly, Ang-(1-7) did not 

change NOX1 or NOX2 mRNA expression, contrarily to what was observed at day 7 post 

transient MCAO in Chapter 4. These results further emphasise that at 24 hrs reperfusion, 

Ang-(1-7) post stroke therapy does not alter inflammatory or oxidative stress markers.  

The effects of Ang-(1-7) on leukocyte chemokine receptors CXCR2, CCR2 and CCR5 

were also studied. CXCR2 mediates neutrophil extravasation and is implicated in BBB 



218 

 

breakdown by increasing the permeability of endothelial cell monolayers cells 

(Gelderblom et al., 2012). CCR2 regulates the mobilisation of monocytes from bone 

marrow to inflammatory sites and its expression in astrocytes and endothelial cells is 

directly implicated in BBB breakdown by inducing TJP phosphorylation (Chu et al., 2014; 

Dimitrijevic et al., 2006). Moreover, CCR5 was recently suggested to stimulate Treg cell 

chemotaxis following stroke leading to Treg-induced BBB preservation (Li et al., 2017). In 

the present study, MCAO significantly increased the expression of CCR2, CXCR2 and 

CCR5 at 24 hrs post injury. Ang-(1-7) treatment did not significantly alter leukocyte 

chemokine receptor mRNA expression compared to vehicle treated animals; however, it 

showed a trend to prevent the increase in CCR5 expression as seen in the control group. 

The role of CCR5 in BBB breakdown is currently not well understood and a potential Ang-

(1-7) effect on this receptor should be studied. Nonetheless, these results postulate that 

Ang-(1-7) does not influence leukocyte infiltration. 

5.6.2 Ang-(1-7) does not impact infarct volume, neurological 
score or RAS mediators 

In normotensive rats, the ischaemic lesion following reperfusion has been shown to peak at 

2 days and subsequently decrease by day 7 (Neumann-Haefelin et al., 2000); therefore, at 

24 hrs post MCAO, the infarct volume may not have fully matured. Ang-(1-7) is proposed 

to act at this stage of injury by decreasing infarct volume following ET-1 induced MCAO 

(Regenhardt et al., 2013). Our results, however, contradict previous findings as infarct 

volume and neurological score were comparable to Vehicle (aCSF). DWI-MRI was not 

performed during MCAO; thus, it was not possible to normalise final ischaemic lesion to 

initial lesion as we did in the previous Chapter. Ang-(1-7) could be exerting a mild 

neuroprotective effect that is not detected due to lesion variability during MCAO, similar 

to what was seen in Chapter 4. Furthermore, MRA was not performed during MCAO and 

therefore variability due to partial occlusions may play a role in the present study. 

Neurological score was used as a tool to examine whether rats should be included in this 

experiment and indeed, all animals exhibited neurological deficit at 24 hrs. However, Ang-

(1-7) failed to induce a therapeutic effect in neurological score similar to what was 

observed in Chapter 4.  

Interestingly, at 24 hrs post injury onset, MCAO alone did not induce any alterations in 

RAS components’ gene expression, emphasising that the RAS may not be implicated in 

cerebral injury at this time point. Consequently, it is plausible that the RAS might be 



219 

 

implicated in injury at 48-72 hrs post stroke onset once injury reaches its hiatus. Contrary 

to our findings, MasR and ACE2 mRNA levels were previously shown to be upregulated 

24 hrs following stroke onset in a permanent MCAO model (Lu et al., 2013). One could 

postulate that MasR and ACE2 are implicated in models of persistent hypoxia at 24 hrs but 

not in reperfusion injury. In addition, B2R mRNA levels were similar to Sham, indicating 

that at 24 hrs post MCAO, Ang-(1-7) does not stimulate B2R expression and subsequent 

vasodilation, as previously suggested (Lu et al., 2008).  

5.6.3 Ang-(1-7) does not affect IBA1+ microglia or M1/M2 
microglia/macrophage mRNA profile 

Ang-(1-7) is reported to act on microglia/macrophages in experimental stroke models (Liu 

et al., 2016; Mecca et al., 2011; Regenhardt et al., 2013, 2014). Firstly, MasR is expressed 

in microglia and secondly, Ang-(1-7) treatment is thought to modulate 

microglia/macrophage inflammatory gene and protein expression (Liu et al. 2016; 

Regenhardt et al. 2013). Equally, Ang-(1-7) therapy prevented LPS-induced NO induction 

in primary glial cultures (Regenhardt et al., 2013), supporting this hypothesis. In the 

present study, IBA1+ microglia total numbers did not differ between Ang-(1-7) and 

Vehicle (aCSF) treatment in peri-infarct and the homotopic contralateral regions. 

Similarly, the % of activated microglia in both peri-infarct and contralateral regions were 

comparable between groups.  

To confirm the validity of the model used, IBA1+ microglia numbers/activation were 

compared within groups. Total IBA1+ cell numbers were similar in peri-infarct and 

contralateral regions in both groups; however, MCAO increased % activated microglia in 

the peri-infarct region compared to the homotopic contralateral side. Therefore, confirming 

that transient focal cerebral ischaemia alone resulted in a significant activation of microglia 

within the peri-infarct region. Previous studies have shown that following 90 min MCAO, 

IBA1+ microglia appear in the peri-infarct regions as early as 3.5 hrs hours post-

reperfusion and peak at 7 days (Ito et al., 2001). Thus, indicating that microglia numbers 

are not maximal at 24 hrs. In addition, in the ischaemic core, IBA1+ microglia were 

scarcely present. Microglia degenerate 12 hrs after reperfusion with active IBA1+ cells 

then infiltrating the core after 24 hrs and peaking at 4 and 7 days post-reperfusion (Ito et 

al., 2001). We show that at early stages of microglia infiltration Ang-(1-7) does not alter 

IBA1+ cell number or activation. Similarly, at day 7 when microglia levels reach its hiatus, 

there were no indications of Ang-(1-7) induced effects (Chapter 4).  
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Microglia/macrophage M1 and M2 type mRNA markers were similar between MCAO 

groups. Previous findings demonstrated that Ang-(1-7) attenuated CD11b and iNOS 

mRNA at 24 hrs following ET-1 induced MCAO (Regenhardt et al., 2013). Our results 

show that all M1 type markers CD11b, CD86, IL-1, IL-6, CCR7 and iNOS mRNA levels 

were upregulated following MCAO with Ang-(1-7) having no effect on expression. In 

Regenhardt’s study, Ang-(1-7) was administered as a pre and post therapy for a total of 7 

days in the ET-1 induced MCAO model, whereas in our protocol, Ang-(1-7) was 

administered for 24 hrs only and tested in the intraluminal filament MCAO model. Once 

could postulate that due to its short half-life, Ang-(1-7) might act in a cumulative manner 

at the MasR level and that 24 hr treatment duration might not have been sufficient to 

observe an effect in our model. Furthermore, in in vitro assessments, Ang-(1-7) 

administration on microglia cultures for either 6 or 12 hrs at 100 nM decreased microglial 

expression of IL-1 and TNF- whilst upregulating IL-10 levels (Liu et al., 2016). 

However, in our study, IL-10 mRNA expression was undetected in all groups whereas IL-

1 and IL-6 were upregulated in both Vehicle and Ang-(1-7) treated rats following MCAO.  

M2 specific cell surface markers, Arg1 and CD163 (Cherry et al., 2014), were comparable 

to Sham levels following MCAO with no Ang-(1-7) induced effects. Interestingly, M2 

markers TGF- and CCL22 were upregulated following MCAO in the peri-infarct regions 

and again with Ang-(1-7) treatment having no effect on mRNA levels. The TGF- 

signalling pathway is implicated in the regulation of BBB functional integrity and TJP 

expression by decreasing endothelial cell permeability (Dohgu et al., 2004; Ronaldson et 

al., 2009). Conversely, the role of CCL22 in BBB disruption and ischaemic injury is not 

well understood; however, it might be involved in repair. For instance, in human ischaemic 

brains, CCL22 protein levels were shown to be decreased in the infarcted tissue 

vasculature and this reduction was associated with enhanced neurological severity (García-

Berrocoso et al., 2014). Together these results strongly suggest that Ang-(1-7) post stroke 

therapy for 24 hrs does not interfere with microglia number, phenotype or inflammatory 

profile whilst highlighting a complex interplay of injury/repair mechanisms.  
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5.7 Summary 

This study shows for the first time that Ang-(1-7) treatment as a post stroke therapy for 24 

hrs does not influence BBB breakdown, final infarct volume, microglia number and 

activation and pro- or anti-inflammatory mRNA gene expression. BBB breakdown was 

quantified following Gd-DTPA contrast agent administration with MRI-T1. Here, some 

animals presented high levels of Gd-DTPA enhancement within the infarct regions 

whereas others showed scarce Gd-DTPA leakage. These findings suggest that at 24 hrs, the 

BBB is in a transient phase of opening, implying that BBB breakdown follows a biphasic 

pattern in rats. Ang-(1-7) did not alter BBB breakdown following 24 hrs reperfusion or the 

expression of BBB breakdown markers MMP9, TIMP1, VEGFA or VEGFR-2. Moreover, 

infarct volume was comparable between Ang-(1-7) and Vehicle (aCSF) treated groups, an 

outcome further evidenced by neurological score. Ang-(1-7) did not alter gene expression 

for leukocyte extravasation or pro-inflammatory mechanisms, although these were 

upregulated following injury. Ang-(1-7) did not influence IBA1+ microglia total cell count 

or influence cellular phenotype in peri-infarct and contralateral regions. Interestingly, RAS 

mediator mRNA levels were comparable to Sham, indicating that RAS may not be 

implicated in injury at this stage in normotensive rats and possibly explaining the results 

obtained. 

In conclusion, this study provides robust evidence that Ang-(1-7) does not attenuate BBB 

breakdown, infarct volume, and microglia phenotype nor pro- anti-inflammatory gene 

expression at 24 hrs in normotensive rats. At the same time, our results highlight a 

complex interplay of mediators potentially acting to simultaneously promote and reverse 

injury following stroke and at the time point selected.  
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Chapter 6  

6.1 Introduction 

In Chapter 4, Ang-(1-7) significantly increased tissue salvage following reperfusion when 

compared to vehicle treatment. In Chapter 5, Ang-(1-7) had noeffect on BBB breakdown, 

infarct volume or microglia number/activation at 24hrs post stroke onset. To further 

elucidate a possible underlying mechanism, this study was designed to determine whether 

Ang-(1-7) treatment has any direct effect on the cerebrovasculature following transient 

MCAO.  

The CNS is dependent on appropriate delivery of glucose and oxygen, which relies on 

CBF being maintained at critical levels, approximately 55-60 mL/100g/min in healthy 

humans (Ellenbogen et al., 2012). Following MCAO, cerebral perfusion is severely 

reduced within the ischaemic core resulting in irreversible cell death within minutes. The 

ischaemic core is surrounded by the ischaemic penumbra, a region of reduced blood flow 

where electrical activity is impaired yet ion homeostasis and metabolic activity 

maintaineddue to collateral vessel supply (Heiss, 2000). In humans, it was determined that 

the CBF threshold for the ischaemic penumbra is between 12-22 mL/100g/min whereas 

values below represent the ischaemic core. On the other hand, when CBF is above 22 

mL/100g/min but less than 55-60 mL/100g/min the brain is placed in a state of benign 

oligaemia, which is in a less severe hypoperfused state and not at risk of infarction (Heiss, 

2000). 

Once reperfusion is established after cerebral ischaemia, damaged tissue undergoes post-

ischaemic hyperperfusion which is then quickly followed by post-ischaemic 

hypoperfusion, possibly due to capillary narrowing, plugging and loss of arteriolar 

reactivity (Attwell et al., 2010; Hauck et al., 2004; Leffler et al., 1989). Therapeutic 

strategies with the ability to reverse ongoing hypoperfusion following reperfusion therefore 

have the potential to be protective in stroke (Sutherland et al., 2011). This assumption is 

further supported by clinical studies where better functioning collaterals are associated 

with greater reperfusion following thrombectomy and subsequent reduction in ischaemic 

lesions (Liebeskind, 2014).  

One other important mechanism thought to be implicated in ischaemic injury is CSD 

(Hartings et al., 2003; Mies et al., 1993). This phenomenon is associated with a loss of 
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electrical and ionic homeostasis in neurons and astrocytes, resulting in cortical excitatory 

mechanisms (Kramer et al., 2016). In healthy tissue, CSD is compensated by a neuronal 

hyperaemic response; however, following focal cerebral ischaemia this effect cannot be 

achieved promoting further ischaemia, a phenomenon termed PID (Lauritzen et al., 1990; 

Windmuller et al., 2005). PIDs have been mostly studied during MCAO; with frequency 

and duration within peri-infarct areas being associated with exacerbated infarct size 

(Hartings et al., 2003; Mies et al., 1993). Similarly, following reperfusion, PIDs have been 

shown to occur particularly after 2 hrs of reperfusion onset, potentiating injury (Hartings et 

al., 2006).  

Vasodilation is one of the most widely reported effects induced by Ang-(1-7) in the 

vasculature and has been observed in canine coronary arteries (Brosnihan et al., 1996; 

Feterik et al., 2000), porcine coronary endothelium (Gorelik et al., 1998), rabbit arterioles 

(Ren et al., 2002), rat MCAs (Durand et al., 2010) and vascular coronary beds (Moraes et 

al., 2017). In addition, Ang-(1-7) is suggested to modulate systemic and regional blood 

flow in rats, improving regional haemodynamics within the brain (Sampaio et al., 2003). 

Following ischaemic stroke, there are few studies assessing the direct cerebrovascular 

effects of Ang-(1-7) and these contain contradicting results. A study conducted in 2011 

showed that in ET-1-induced MCAO, Ang-(1-7) ICV administration as a pre and post 

treatment did not improve cerebral perfusion during MCAO when compared to Vehicle 

treated rats (Mecca et al., 2011). Conversely, in Wistar rats, 4 weeks of Ang-(1-7) ICV pre-

treatment followed by permanent MCAO improved perfusion in peri-infarct regions 1 hr 

and 24 hrs post stroke onset (Jiang et al., 2014). Accordingly, there is a need to evaluate 

the acute impact of Ang-(1-7) administration on cerebral perfusion. 

Laser Speckle Contrast Imaging (LSCI) has become a widely used tool to study cortical 

CBF after focal cerebral ischaemia (Armitage et al., 2010; Liu et al., 2017; Strong et al., 

2006; Winship et al., 2014). LSCI is used to monitor perfusion within the cortical surface 

and with a high temporal and spatial resolution (Dunn, 2012). The technique uses the 

speckle phenomenon, consisting of an interference pattern generated by light 

scattered/reflected from an area of interest. In this method, a laser is applied onto the 

cerebral cortex and as it comes into contact with moving particles such as red blood cells, 

the speckle pattern becomes blurred (Dunn, 2012; Wood et al., 2016). The patterns within 

each image pixel are detected by a CCD camera attached to the laser, allowing to map 

temporal and spatial cortical CBF alterations (Dunn, 2012; Dunn et al., 2001; Strong et al., 
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2006). Due to its ability to detect CBF alteration in near-real time, LSCI is also a useful 

method to reliably study PIDs during and following MCAO (Paul et al., 2005). 

Reports have emphasised the need to assess the effects of potential neuroprotective 

strategies on CBF within the preclinical setting before proceeding to clinical trials 

(Sutherland et al., 2011). Accordingly, this study aims to examine the impact of acute 

administration of Ang-(1-7) on the dynamic changes in cortical perfusion following 

reperfusion after MCAO.  

6.1.1 Aims: 

 To determine the effect of acute systemic infusion of Ang-(1-7)/Vehicle on cortical 

perfusion immediately following initiation of reperfusion after MCAO.  

 To determine whether Ang-(1-7) treatment influences the occurrence of PIDs 

during reperfusion. 
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6.2 Methods and materials 

6.2.1 Sample size calculation 

Power calculations were performed using the power analysis programme G*Power 

(version 4.1, Germany). An “a priori” power analysis was performed for t test: difference 

between two independent means (unpaired Student’s t test) to assess Ang-(1-7) treatment 

impact and Vehicle (dH2O) on cortical perfusion. Ang-(1-7) ICV infusion was shown to 

induce a 10% improvement in perfusion when compared to Vehicle treated animals in the 

peri-infarct region 1 hr after MCAO (Jiang et al., 2014). We have conducted pilot 

experiments using LSCI where we have analysed the perfusion in different ROIs.  Within 

the hypoperfused territory (CBF between 43-75% of normal) at 1 hr following MCAO, 

perfusion mean values were 68.6 and S.D. was 4 in perfusion units (PU). Using these data, 

a p value of 0.05 and setting power at 80%, a total sample size of 10 was determined (n of 

5 per group) to detect changes in perfusion of at least 10% between groups. 

6.2.2 Animals and surgical procedures 

In this study, 18 male Wistar rats (310-353g) were used and subjected to 90 min MCAO 

and 90 min reperfusion. Rats were initially anaesthetised with 5% isoflurane delivered in a 

30:70% O2-NO2 mixture ratio as described in Chapter 2.5.1 and aseptic technique carried 

out as outlined in Chapter 2.3. Rats were then orally intubated and mechanically ventilated 

at 3-4 mL stroke volume and 56-58 strokes per min delivering 2.5% isoflurane. To reduce 

tracheal secretions that could obstruct the intubation tube during the experiment, atropine 

sulphatewas administered SC (0.05 mg/kg; Martindale Pharmaceuticals, UK) prior to 

surgery and local anaesthetic, ropivacaine (Norapin®), administered SC at incision sites. 

6.2.2.1 Physiological monitoring and drug delivery  

All animals were subjected to physiological monitoring of MABP and blood gases (pH, 

PaO2 and PaCO2) through a cannula inserted in the left femoral artery. Drug delivery and 

-chloralose administration were performed in the left and right femoral veins, 

respectively. The left femoral artery, left femoral vein and right femoral vein were 

cannulated as described in Chapter 2.6. Rectal temperature was monitored and regulated 

with the aid of an electric blanket. 
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6.2.2.2 Skull Thinning                                                                                                                                             

Following blood vessel cannulation, rats were transferred to a stereotaxic frame for skull 

thinning procedures. The head was secured in place with the use of ear and tooth bars 

tightly adjusted to prevent movement. A midline incision was performed in the skull with a 

scalpel and the underlying connective tissue cleared to visualise the skull surface. To 

enhance the FOV and prevent drilling obstruction, four 4.0 threads were sutured onto each 

side of the incision and tension applied to prevent the skin from interfering with the 

drilling. A dental drill (NSK Volvere max, Nakanshishi Inc., Japan) was then used to thin 

the skull surface by applying continuous vertical strokes across the scalp surface. The 

procedure was carried out until the pial vessels were visualised and the skull surface 

uniformly thinned. Throughout the procedure, dH2O was regularly used to regulate the 

skull temperature, preventing vessel damage due to heat, and to clean the bone dust 

produced. Scalp and muscle bleeding was ceased by applying pressure with a sterilised 

cotton bud. In cases where bleeding was persistent, 10% perchloric acid (Sigma Aldrich, 

UK) was applied to the scalp with a cotton bud and then thoroughly cleaned with dH2O. 

6.2.2.3 MCAO and reperfusion 

Following skull thinning procedures, rats were removed from the stereotaxic frame and 

placed onto the corkboard for MCAO procedures as described in Chapter 2.8. A modified 

4-0 nylon silicone coated tip monofilament (404134PK10; Doccol Corporation, MA, USA) 

was used to occlude the MCA for a period of 90 min. To allow reperfusion to be induced 

whilst the animal was subjected to LSCI, a small 5.0 suture was tied and glued at the end 

of the Doccol filament and gently placed outside the incision site just before the forelimbs. 

After 90 min MCAO, the 5.0 suture attached to the monofilament occluding the MCA, was 

gently pulled back with the aid of clamping forceps. Animals were allowed to reperfuse for 

90 min and then sacrificed via Schedule 1 procedures.   

6.2.3 -chloralose 

Isoflurane was selected as the anaesthetic of choice to perform surgical procedures as it 

provides adequate anaesthetic levels, which are easily controllable. Although isoflurane 

has been deemed by some researchers as a suitable anaesthetic to be used in 

cerebrovascular studies (Franceschini et al., 2010; Masamoto et al., 2006), it is suggested 

to dose dependently induce cerebral vasodilation, enhance vascular reactivity and alter 

autoregulation (Iida et al., 1998; Sicard et al., 2003). On the other hand,  -chloralose is 
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not a suitable anaesthetic to induce anaesthesia; however, it has been found to preserve 

cerebral autoregulation and decrease arterial CO2 sensitivity and is, therefore, the 

anaesthetic of choice to study CBF dynamics (Masamoto and Kanno, 2012; Ueki et al., 

1992). Accordingly, at MCAO start and prior to LSCI, anaesthesia was switched from 

isoflurane to -chloralose and animals allowed to stabilise prior to imaging. -chloralose 

was prepared fresh by dissolving 250 mg of -chloralose (Sigma-Aldrich, UK) in 25 mL 

of dH2O. The solution was stirred and heated to 75ºC to dissolve. Once fully dissolved, the 

solution was kept at 58ºC in a water bath until administration.  

-chloralose dose was selected based on previous reports (Haensel et al., 2015). An initial 

IV -chloralose bolus of 80 mg/kg at near body temperature was administered with the use 

of a 5 mL syringe (2.8 mL in a 350g rat) and slowly injected into the right femoral vein to 

prevent a steep drop in MABP. Once MABP started decreasing, isoflurane concentration 

levels were reduced to 1.5%. Immediately after the IV bolus, -chloralose was 

administered as a 40 mg/kg/hr infusion (1.4 mL/hr in a 350g rat). MABP was closely 

monitored as well as the response to hindlimb pinch to ensure adequate anaesthesia and to 

determine at what point isoflurane levels should be turned off. Once MABP started to 

decrease, isoflurane was gradually switched off. Animals were allowed to stabilise for a 

period of 60 min prior to CBF assessments. During the full duration of the LSCI protocol, 

animals were ventilated with 30:70% an O2-NO2 mixture and anaesthesia maintained at a 

continuous infusion of 40 mg/kg/hr -chloralose. 

6.2.4 Ang-(1-7) dose selection 

In this experiment, treatment could not be infused ICV as it would compromise LSCI. For 

this reason, IV administration was selected as the treatment method. Ang-(1-7) has a short 

half-life and to guarantee treatment delivery in cerebral vessels, a dose 5 times higher than 

the one used in ICV studies was selected: 5 nmol/hr Ang-(1-7) infusion dissolved in dH2O. 

Treatment was administered IV as a continuous infusion at near body temperature in the 

left femoral vein for 90 min beginning immediately following reperfusion. The Ang-(1-

7)/Vehicle IV delivery rate was the same as the infusion rate set for -chloralose IV 

infusion according to animal weight (1.4 mL/hr in a 350g rat). Control animals were 

subjected to dH2O infusion only.  
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6.2.5 Laser speckle contrast imaging 

6.2.5.1 System 

LSCI was carried out using a PeriCam PSI System (Perimed, Sweden) with a solid-state 

laser diode of 785 nm for blood perfusion measurements and at a FOV of 1.4 cm width and 

1.4 cm height. The laser beam was spread over a rectangular surface by a diffuser and 

placed 10 cm distance from the skull surface providing a measurement area of 5.9 × 5.9 cm 

(Figure 6-1A).  Speckle patterns were generated from the backscattered light from the laser 

beam illumination and recorded through a 1388 × 1038 pixel CCD camera inside the 

PeriCam PSI head at a frame rate of 10 images per second (50 Hz mains frequency). 

Dynamic changes in CBF speckle patterns were acquired at 1 image per 5 seconds 

(average of 50 images) at a spatial resolution of 0.02 mm (Figure 6-1B). In addition, a 

monochrome intensity image was generated from the total amount of reflected light 

(Figure 6-1C).  

 

Figure 6-1 The LSCI system. A) Animal subjected to LSCI. Rats were placed in a stereotaxic 
frame and head secured with tooth and ear bars. The skull previously thinned is exposed by 
retracting overlying skin with the aid of 4.0 sutures sutured onto incision edges and taped onto the 
frame. The LSCI camera was placed 10 cm from the skull surface, Johnson & Johnson oil applied 
on the brain surface and imaging started. B) Representative image of dynamic change in CBF 
speckle patterns. Cortical perfusion map prior to MCAO displaying the superior sagittal sinus. 
Colour scale is set from 0 to 300 PU, where red represents increased perfusion. C) Monochrome 
intensity image. Cortical surface image displaying the amount of reflected light in the scalp. 
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6.2.5.2 Imaging protocol  

Following skull thinning and MCAO onset, animals were placed on a stereotaxic frame 

and the head secured in place with the use of ear and tooth bars. The skull was exposed 

with the aid of four separate 4-0 threads sutured onto the edges of the skin incision and 

taped onto the stereotaxic frame to enhance FOV. To prevent skull drying, which could 

impact reliability of results, Johnson & Johnson oil (Johnson & Johnson, USA) was 

applied on the skull surface and left in place during the whole experiment. Imaging started 

at 60 min MCAO and was carried out for 2 hrs. Following 90 min MCAO, the filament 

was retracted in order to induce reperfusion of the MCA and IV Ang-(1-7)/Vehicle 

treatment started for a period of 90 min.  

6.2.5.3 Imaging analysis 

Once the imaging protocol was completed, raw speckle images were obtained for each rat 

and processed in PU using PIMSoft, a PeriCam PSI dedicated Software (Perimed, 

Sweden). In this study, we were interested in assessing the impact of Ang-(1-7) on 

perfusion in the contralateral hemisphere as well as the ischaemic core, ischaemic 

penumbra and oligaemic/perfused areas in the ipsilateral hemisphere during reperfusion. 

The first step in image analysis consisted in the determination of the ipsilateral ROIs and to 

do so, thresholds were establishedon mean perfusion values within the contralateral 

hemisphereduring MCAO. A ROI was outlined on the contralateral hemisphere and a 

mean perfusion value (PU) was calculated from the images recorded during MCAO for a 

period of 15 min. From this mean perfusion value, a set of thresholds were applied to 

define the ischaemic core (<43% of contralateral perfusion), ischaemic penumbra (43-75% 

of contralateral perfusion) and oligaemic/perfused tissue (76%-100%) during MCAO 

(McLeod et al., 2015; Shen et al., 2003). These ROIs were then used to assess changes in 

perfusion over time. Figure 6-2 shows a representative image of the ROIs outlined in each 

rat. The superior sagittal sinus was excluded from analysis. 

The second step in image analysis consisted in the determination of a baseline mean 

perfusion value for each individual ROI by averaging the images recorded during MCAO 

for a period of 15 min. The perfusion signal was then normalised to the mean signal during 

MCAO within the respective ROI’s allowing us to calculate the % change in perfusion 

following reperfusion with or without treatment. 
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To identify PID occurrence during reperfusion for each animal, the cerebral perfusion 

videos obtained during LSCI were analysed and fast hyperaemic responses in the peri-

infarct region were counted. 

 

Figure 6-2 Determination of ROIs for cortical perfusion analysis. Mean PU values obtained in 
the contralateral hemisphere between 75-90 min MCAOwere used to apply thresholds across the 
ipsilateral hemisphere. Ischaemic core was set as 0-43% of mean PU in contralateral hemisphere 
during MCAO. Ischaemic penumbra was set as 44-75% of mean PU in contralateral hemisphere 
during MCAO. Oligaemic/perfused region was set as 76-100% of mean PU in contralateral 
hemisphere during MCAO. Colour scale is set as 0 to 300 PU for the top image. 
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6.2.6 Randomisation, blinding and exclusions 

Animals were randomly assigned to surgery day using an online randomisation plan 

generator (www.random.org). Surgeon (MA) was not blinded to treatment assignment.  

Rats displaying the following characteristics were excluded:  

 Failure to completely reperfuse the entire cortical surfaceupon filament retrieval.  

 SAH 

 Animals that did not exhibit evidence of cortical perfusion deficit.  

 Persistent muscle, skin and scalp bleeding impairing cortical cerebral perfusion 

measurement. 

6.2.7 Statistics 

Physiological parameters pH, PaO2, PaCO2, temperature were analysed using repeated 

measures two-way ANOVA followed by Sidak’s test to correct for multiple comparisons 

with time and treatment as factors.  

MABP and cerebral perfusion within the contralateral hemisphere, ischaemic core, 

ischaemic penumbra and oligaemic/perfused areas in the ipsilateral hemisphere were 

presented as a time course, starting at baseline (MCAO) and finishing at 90 min 

reperfusion. Differences between treatment groups in MABP and perfusion dynamics were 

analysed by assessing the summary measure of AUC during reperfusion and the means 

compared using unpaired Student t-test. PIDs were counted during the reperfusion period 

and analysed between groups using unpaired Student t-test. Data were presented as mean ± 

S.D. and p<0.05 deemed as statistically significant. 

Descriptive perfusion alterations for all ROIs within groups were shown as mean PU ± 

S.D. Statistics were not conducted for this data set. 

 

http://www.random.org/
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6.3 Results 

6.3.1 Exclusions 

A total of 18 male Wistar rats were used in this study and 7 were excluded: 4 in Vehicle 

(dH2O) and 3 in the Ang-(1-7) treatment groups. Two animals in the Ang-(1-7) and three 

in the Vehicle (dH2O) treatment groups failed to completely reperfuse the entire cortical 

surface upon filament removal. From these animals, one in each group showed signs of 

haemorrhage seen as darker patches in the perfusion map within the ipsilateral hemisphere. 

In addition, one rat in Ang-(1-7) group showed signs of partial occlusion due to lack of 

cortical perfusion deficit during MCAO. One Vehicle (dH2O) treated rat had to be 

excluded due to excessive bleeding originating from the skull and adjacent muscles/skin, 

which caused frequent imaging obstruction and influenced the reliability of the values 

obtained.  Overall, 11 animals were included, 5 in Vehicle (dH2O) and 6 in Ang-(1-7). 

Figure 6-3 shows all excluded animals in Vehicle (dH2O) and Ang-(1-7) treated groups.  

6.3.2 Physiological parameters 

Physiological parameters pH, PaCO2, PaO2 were measured and recorded during isoflurane 

and α-chloralose anaesthesia. Parameteres were maintained within physiological range 

with the exception of PaO2, which was higher throughout experimental procedures due to 

mechanical ventilation with 30% O2. Prior to stroke surgery, all physiological parameters 

were maintained stable between groups with no statistical differences at this time point 

(P>0.05), (Table 6-1).   

At MCAO baseline and just prior to reperfusion, blood pH and arterial PaCO2 were 

maintained within range. Rectal temperature was slightly lower for both treatment groups 

and the most challenging parameter to maintain stable as rats had to be frequently moved 

between surgical corkboard and stereotaxic frame for surgical procedures. There were no 

statistical differences between physiological parameters between groups during MCAO 

(P>0.05), (Table 6-1). During reperfusion, all physiological values were set within range 

between groups, to the exception of PaO2, with no statistical differences (P>0.05), (Table 

6-1).  
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A)  
 

Vehicle(dH2O) 
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Figure 6-3 Excluded animals. A) Vehicle (dH2O) group. Three animals failed to complelety reperfuse the entire cortical surface upon filament retrieval. One other rat 
was excluded due to persistent bleeding originating from the skull and adjacent muscles and skin, often interfering with imaging particularly in the contralateral 
hemisphere. B) Ang-(1-7) group. Two animals failed to completely reperfuse the entire cortical surface upon filament retrieval. One other rat was excluded due to 
partial MCAO, indicated by lack of perfusion deficit in the ipsilateral hemisphere during MCAO. Arrows indicate haemorrhage in animals within Vehicle (dH2O) and Ang-
(1-7) treated groups. Colour scale is set from 0 to 300 PU. A representative image of cerebral perfusion dynamics at baseline, reperfusion and every 30 min post 
reperfusion is shown for each animal. 

B)  
 

Ang-(1-7) 
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Table 6-1 Physiological parameteres: pH, PaO2, PaCO2 and temperature prior to MCAO, at 
baseline and 1 hr reperfusion. Blood pH and PaCO2 were maintained within the normal 
physiological range for Vehicle (dH2O) and Ang-(1-7) treated groups thoroughout the experiment. 
PaO2 was above range in all experiments due to mechanical ventilation. Temperature was slightly 
below range 36.5°C for both groups at baseline due to animal movement between frames. There 
were no statistical differences between groups at all-time points. Data were analysed using 
repeated measures two-way ANOVA; P<0.05 was deemed as significant. Data are expressed as 
mean ± S.D. 

 

 

 Vehicle (dH2O) Ang-(1-7) 

 
 
 
 

Prior to MCAO 
surgery 

 
Blood pH 

7.4±0.1 7.4±0.03 

 
Arterial PaO2 

(mmHg) 136.8±36.5 120.0±19.0 

 
Arterial PaCO2 

(mmHg) 

 

 
 

43.5±7.2 

 
 

41.8±2.9 

 
Temperature 
(°C) 36.6±0.6 36.7±0.4 

 
 
 

MCAO  
(Baseline prior 

to therapy) 

 
Blood pH 

 
 

7.4±0.1 

 
 

7.4±0.1 
 
Arterial PaO2 

(mmHg) 
 

147.1±17.6 
 

169.3±36.2 

 
Arterial PaCO2 

(mmHg) 

 
36.6±6.0 42.3±5.5 

 
Temperature 
(°C) 36.2±0.6 36.3±1.0 

 
 
 
 

Reperfusion 
(1 hr) 

 
Blood pH 

7.4±0.01 7.4±0.1 

 
Arterial PaO2 

(mmHg) 
 

135.8±29.6 

 
 

151.4±57.8 

 
Arterial PaCO2 

(mmHg) 

 
42.2±3.9 

 
44.4±5.0 

 
Temperature 
(°C) 36.8±0.2 37.1±0.7 
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6.3.2.1 Mean arterial blood pressure 

MABP values (mmHg) during MCAO and following reperfusion with MABP maintained 

within normal levels throughout (80-120mmHg) (Figure 6-4). Prior to reperfusion, MABP 

was 101.2±10.8 mmHg in Vehicle (dH2O) and 100.7±16.9 mmHg in Ang-(1-7) treated 

groups. Comparison of mean group AUC values showed that there were no differences 

between groups in MABP during MCAO (P>0.05) and reperfusion with treatment 

(P>0.05).  

Figure 6-4 Mean arterial blood pressure. During baseline (MCAO), MABP was stable between 
groups with values being maintained within healthy ranges (80-120 mmHg). Following reperfusion 
and treatment, MABP values were maintained within range for all rats with no significant 
differences between treatment groups (P>0.05). Data displays values for Vehicle (dH2O; n=5) and 
Ang-(1-7) (n=6). Data were analysed with mean AUC comparisons followed by unpaired Student’s t 
test; *P<0.05 was deemed as significant. Data are expressed as mean ± S.D. 
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6.3.3 Cerebral perfusion following stroke 

MCAO successfully decreased perfusion in the ipsilateral hemisphere when compared to 

contralateral hemisphere. Results are presented as mean PU obtained for Vehicle (dH2O) 

(Figure 6-5A) and Ang-(1-7) (Figure 6-5B) treated animals for all ROIs.  

Following 90 min MCAO, the filament was removed from the MCA to start reperfusion. In 

Vehicle rats, there was a trend for perfusion to increase in the contralateral hemisphere 

over the course of 90 min reperfusion by 15.3±13.5 PU. Conversely, the Ang-(1-7) treated 

group, perfusion values showed fluctuations, with a small indication to decrease overtime 

by 13.4±14.8 PU. Reperfusion start caused an increase in perfusion in both treatment 

groups in the ipsilateral hemisphere. In Vehicle treated animals, reperfusion induced a 

97.5±25.6 PU increase inperfusion within the ischaemic core, 72.6±34.0 PU increase 

within the ischaemic penumbra and 15.4±34.7 PU rise in oligaemic/perfused ROI. In Ang-

(1-7) treated animals, reperfusion resulted in a 110.2±34.6 PU increase within the 

ischaemic core, 40.9±26.6 PU in the ischaemic penumbra and 4.8±15.9 PU in 

oligaemic/perfused region. Reperfusion resulted in a marked increase in perfusion within 

the ischaemic core, penumbra and oligaemic/perfused ROIs in both groups, particularly 

within the first 15 min after reperfusion. After 20 min of reperfusion there was a general 

trend for perfusion to decrease over time in both groups. Figure 6-6 shows a representative 

image of an animal within each group at baseline, reperfusion and every 30 min post 

reperfusion. Images display the decrease in perfusion in ipsilateral hemisphere compared to 

the contralateral side over time.  
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Figure 6-5 Cerebral perfusion change during the experimental protocol. A) Vehicle (dH2O) treated animals. During baseline (MCAO) perfusion was higher in the 
contralateral hemisphere compared to the ipsilateral hemisphere. Following reperfusion, there was a trend for perfusion to increase over time in the contralateral 
hemisphere. Reperfusion start induced a steep increase in perfusion within the ischaemic core, ischaemic penumbra and oligaemic/perfused region peaking at 15 min 
post reperfusion and subsequently decreasing for the following 75 min of imaging. B) Ang-(1-7) treated animals. During baseline, perfusion values were higher in the 
contralateral hemisphere compared to the ipsilateral hemisphere. Following reperfusion, perfusion valuesfluctuated in the contralateral hemisphere and showed a trend 
to decrease. Reperfusion start induced a steep increase in perfusion within the ischaemic core, hypoperfused area and oligemic region with values peaking at 20 min 
post reperfusion in the ischaemic core and ischaemic penumbra. Perfusion subsequently decreased for the following 70 min of imaging in these two areas. In the 
oligaemic/perfused region, perfusion values peaked at 10 min post reperfusion and thendecreased over time. Data are expressed as mean± S.D.in PU for Vehicle 
(dH2O; n=5) and Ang-(1-7) (n=6) treated rats. 
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Figure 6-6 Representative images of cortical cerebral perfusion dynamics over time per treatment group. Top and bottom figures display cerebral perfusion 
dynamics for Vehicle (dH2O) and Ang-(1-7) treated groups at MCAO, reperfusion and every 30 min post reperfusion start, respectively. For each animal, there was a 
gradual decrease in cortical perfusion within the ipsilateral side when compared to the contralateral hemisphere after reperfusion onset. 
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6.3.4 Ang-(1-7) treatment significantly decreases perfusion in the 
contralateral hemisphere 

Following reperfusion there was a trend for perfusion to increase in the contralateral 

hemisphere over the 90 min time course, whereas Ang-(1-7) treated rats showed a trend to 

decrease contralateral perfusion. In Vehicle treated rats, perfusion increased by 11.7±8.1% 

whereas Ang-(1-7) treatment induced a 4.5±10.4% reduction between 0-90 min 

reperfusion. Comparison of mean group AUC values showed that Ang-(1-7) treatment 

significantly decreased cortical perfusion compared to Vehicle (P=0.02), (Figure 6-7). 

Figure 6-8 displays a representative image of perfusion dynamics in the contralateral 

hemisphere for the median rat in each treatment group. Since data were evaluated as 

perfusion change from baseline for all animals, baseline images were subtracted from the 

whole data set to confirm the trend observed (Figure 6-8). 

Figure 6-7 Contralateral hemisphere perfusion % change from baseline. Following 
reperfusion, Vehicle (dH2O) animals showed a trend to increase perfusion during 90 min 
reperfusion whereas Ang-(1-7) treated animals showed a trend to attenuate it. Ang-(1-7) treatment 
induced a significant change in contralateral hemisphere perfusion compared to Vehicle (dH2O) 
(P=0.02). Data displays values for Vehicle (dH2O; n=5) and Ang-(1-7) (n=6) treated animals. Data 
were analysed with mean AUC comparisons followed by unpaired Student’s t test; *P<0.05 was 
deemed as significant. Data are expressed as mean ± S.D. % from baseline. 
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Figure 6-8 Contralateral hemisphere perfusion dynamics normalised to baseline. Top and bottom figures display contralateral perfusion dynamics for the median 
animals in the Vehicle (dH2O) and Ang-(1-7) treated groups at MCAO, reperfusion and every 30 min post reperfusion start, respectively. Image pixels within baseline 
(MCAO) were subtracted from all images obtained during reperfusion. Vehicle (dH2O) treated rat displays an increase in perfusion in the contralateral hemisphere 
during 90 min reperfusion (contralateral ROI outlined in white). On the other hand, Ang-(1-7) treated animal displays a decrease in perfusion within contralateral 
hemisphere when normalised to MCAO. Colour scale ranges from -300 to 300 PU, where red represents increased perfusion and blue represents decreased perfusion 
from baseline (MCAO). 
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6.3.5 Ang-(1-7) treatment does not influence perfusion in the 
ipsilateral hemisphere 

In the ischaemic core, reperfusion led to a steep increase in perfusion in Vehicle (dH2O) 

and Ang-(1-7) treated groups, 157.2±62.4% and 174.1±62.4% from start to 5 min 

reperfusion, respectively (Figure 6-9). Ang-(1-7) treatment showed a trend to enhance 

perfusion compared to the control group, however, comparison of mean group AUC values 

indicated that differences were not significant when compared to the Vehicle group 

(P>0.05), (Figure 6-9). Both groups displayed high variability in perfusion extent. For the 

Ang-(1-7) group, 3 rats showed higher perfusion changes than the remaining group cohort 

whereas in the Vehicle group, values were fairly consistent with the exception of one 

animal. 

 

Figure 6-9 Ischaemic core perfusion % change from baseline. Following reperfusion, there was 
a steep increase in perfusion within Vehicle (dH2O) and Ang-(1-7) treated animals and followed by 
perfusion attenuation overtime. Ang-(1-7) did not significantly alter perfusion within the ischaemic 
core compared to control group (P>0.05). Data displays values for Vehicle (dH2O; n=5) and Ang-
(1-7) (n=6) treated animals. Data were analysed with mean AUC comparisons followed by unpaired 
Student’s t test; *P<0.05 was deemed as significant. Data are expressed as mean ± S.D. % from 
baseline. 
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In the ischaemic penumbra, reperfusion led to a cerebral perfusion increase in Vehicle and 

Ang-(1-7) treated groups, 87.8±47.7% and 62.5±17.5% from start to 5 min reperfusion, 

respectively (Figure 6-10). During the course of reperfusion, Ang-(1-7) did not influence 

perfusion when compared to Vehicle as determined by comparison of mean group AUC 

values (P>0.05), (Figure 6-10).  

 
Figure 6-10 Ischaemic penumbra perfusion % change from baseline. Following reperfusion, 
there was an increase in perfusion within Vehicle (dH2O) and Ang-(1-7) treated animals and 
followed by perfusion attenuation over time. Treatment had no impact in perfusion within the 
ischaemic penumbra compared to control animals (P>0.05). Data displays values for Vehicle 
(dH2O; n=5) and Ang-(1-7) (n=6) treated animals. Data were analysed with mean AUC 
comparisons followed by unpaired Student’s t test; *P<0.05 was deemed as significant. Data are 
expressed as mean ± S.D. % from baseline. 

 

In the oligaemic/perfused region, reperfusion led to a slight increase in perfusion in 

Vehicle (dH2O) and Ang-(1-7) treated groups, 19.9±19.9% and 15.0±8.4% from start to 5 

min reperfusion, respectively (Figure 6-11). Comparison of mean group AUC values 

showed that Ang-(1-7) treatment did not differ from vehicle treated animals over 90 min 

reperfusion (P>0.05), (Figure 6-11), further confirming that Ang-(1-7) does not enhance 

perfusion within the ipsilateral hemisphere. 
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Figure 6-11 Oligaemic/perfused area perfusion % change from baseline. Following 
reperfusion, there was a slight increase in perfusion within Vehicle (dH2O) and Ang-(1-7) treated 
animals, peaking at 15 min and 10 min, respectively. Treatment did not influence cerebral perfusion 
within the oligaemic/perfused area during reperfusion (P>0.05). Data displays values for Vehicle 
(dH2O; n=5) and Ang-(1-7) (n=6) treated animals. Data were analysed with mean AUC 
comparisons followed by unpaired Student’s t test; *P<0.05 was deemed as significant. Data are 
expressed as mean ± S.D. % from baseline. 

 

6.3.6 Peri-infarct depolarisations 

PIDs were quantified across ipsilateral and contralateral hemispheres. PIDs were detected 

in 1 out of 5 rats for Vehicle group and 3 out of 6 rats for Ang-1-7. There were no 

significant differences in the frequency of PIDs between groups [0.5±0.55 vs 0.2±0.5 

(P>0.05)], (Figure 6-12). PIDs occurred a few seconds after reperfusion onset and were not 

evident afterwards. 
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Figure 6-12 Peri-infarct depolarisation frequency during reperfusion. PIDs were detected in 
four animals just after reperfusion onset, one in control group and three in Ang-(1-7) treated rats. 
Treatment did not influence PIDs occurrence during reperfusion (P>0.05). Data were analysed 
using unpaired Student t test; *P<0.05 was deemed as significant. Horizontal bar represents the 
mean. 

 

6.4 Discussion 

This study was designed to examine the potential impact of Ang-(1-7) in improving 

cortical perfusion in ipsilateral and contralateral hemispheres during 90 min reperfusion 

following MCAO. Ang-(1-7) therapy at 5 nmol/hr IV infusion had no significant effect on 

cerebral perfusion within the ischaemic core, ischaemic penumbra and oligaemic/perfused 

tissue. In contrast, within the contralateral hemisphere, there was a significant decrease in 

cerebral perfusion in Ang-(1-7) treated animals. Moreover, treatment did not diminish PID 

frequency during reperfusion or impact MABP during the course of the experiment. To our 

knowledge, this experiment shows for the first time cortical surface perfusion dynamics 

during MCAO and following reperfusion with LSCI technique whilst testing Ang-(1-7) 

therapy.  

For several years MRI and CT have been conducted aiming to identify thresholds to 

successfully defined core from penumbra in both clinical and preclinical settings (Albers et 

al., 2006; An et al., 2015; Davis et al., 2008; Reid et al., 2012). However, these have 

proven to be a challenge due to inconsistencies regarding choice of imaging techniques and 

selection of perfusion and mismatch parameters (Davis et al., 2008). In MRI-DWI 

assessments, ADC abnormal thresholds comprising the ischaemic core represent ADC 
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pixels <43% of mean contralateral CBF at 1 hr, 3 hrs and 4 hrs MCAO (Meng et al., 2004; 

Robertson et al., 2015; Shen et al., 2003). On the other hand, following MCAO in male 

Wistar rats, perfusion CT performed at 90 min ischaemia identified that the ischaemic core 

represented <55% of mean contralateral CBF whereas the penumbra was accurately 

predicted at a <75% threshold (McLeod et al., 2015). To study the impact of Ang-(1-7) in 

ischaemic core, penumbra and oligaemic/perfused regions, the ischaemic core threshold 

<43% of contralateral CBF was selected as it was consistently observed in 3 studies. The 

penumbra was defined between 44-75% of perfusion as defined by McLeod et al whereas 

oligaemic/perfused areas were arbitrarily set as 76-100%. 

In this study, 5 out of 7 rats were excluded due to incomplete cortical surface reperfusion 

upon filament retrieval. Several factors could be implicated in this event such as poor 

collateral blood supply or “no-reflow” mechanisms, the latter characterised by 

inflammatory cell recruitment and microvessel lumen obstruction (Burrows et al., 2015; 

Liebeskind et al., 2014; Saver et al., 2012). In turn, delays in cortical perfusion lead to 

prolonged ischaemia and likely contribute towards lesion evolution. This observation 

supports Chapter 4 findings, where it was seen that reperfusion alone exerts differential 

levels on infarct volume progression. Furthermore, it explains why LDF could not detect 

reperfusion in all animals in Chapter 3. Although inhomogeneous reperfusion is an 

interesting phenomenon in itself, reperfusion onset took place at different rates in these 

animals and to account for this variability, animals were excluded from analysis.  

For all included animals, cortical cerebral perfusion was successfully measured with no 

significant alterations in pH, PaCO2, PaO2 or temperature between treatment groups with 

changes in physiological parameters being quickly corrected to the advised range. Body 

temperature was difficult to maintain stably amongst animals due to frequent movement 

between corkboard and stereotaxic frame to perform surgical procedures and imaging. A 

drop in temperature is suggested to decrease perfusion in pigs (Ehrlich et al., 2002) and it 

is possible that temperature alterations might have affected cerebral perfusion 

measurements in our study.  
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6.4.1 Ang-(1-7) does not alter MABP 

MABP was continuously measured and maintained at stable levels throughout imaging, 

without treatment effects. Moreover, MABP fluctuations did not influence cerebral 

haemodynamics during reperfusion, thereby indicating that -chloralose was an adequate 

anaesthetic for CBF experiments, as previously indicated (Haensel, 2015). A caveat with 

the use of -chloralose is that this compound cannot be dissolved in small volumes 

otherwise it precipitates; therefore, larger volumes had to be administered in the animals. 

The recommended IV volumes to be administered in rats are typically 5 mL/kg bolus (1.75 

mL in a 350g rat) and 4 mL/kg/hr infusion (1.4 mL/hr in a 350g rat) (Diehl et al., 2001). 

However, in our study, an IV bolus of 2.8 mL and infusion volume of 2.8 mL/hr (-

chloralose and therapy) was administered to a 350g rat. Nonetheless, animal welfare 

guidelines also suggest that a 12 mL/hr IV infusion is well tolerated in rats, consisting of a 

substantially larger volume than the one administered in our studies (Workman et al., 

2010). Plus, in the present study, the animals were continuously monitored during the 

experiment and at no point were there indications of negative physiological consequences 

as highlighted by the stable MABP values.    

In this study, Ang-(1-7) IV infusion therapy did not influence MABP. Yet, Ang-(1-7) 

might have vasodepressor or vasoconstrictive properties depending on the animal model 

and dose studied. For example, Ang-(1-7) infusion increased MABP when administered 

SC at a dose of 24 g/kg/hr in a model of subtotal nephrectomy (Velkoska et al., 2015) 

whereas Ang-(1-7) IV infusion at 0.3 nmol/hr did not influence MABP in conscious rats 

(Walters et al., 2005). Similarly, direct Ang-(1-7) stimulation in the dorsal medulla caused 

a hypotensive response (Campagnole-Santos et al., 1989), a mechanism further supported 

in Mas-KO mouse studies, which exhibited elevated BP when compared to WT animals 

(Xu et al., 2008). However, in a more recent study, Mas-KO mice showed comparable 

MABP to WT (Botelho-Santos et al., 2012).  

It is fair to deduct that the effect of Ang-(1-7) on MABP is controversial and possibly due 

to the use of different anaesthetics between studies. The majority of anaesthetics induce 

MABP fluctuations that could influence result interpretation with isoflurane and 

chloralose-urethane being considered the most suitable anaesthetics for cardiovascular 

studies (Bencze et al., 2013; Fitzner Toft et al., 2006). Moreover, to account for the short 

half-life and the differing route of administration from previous Chapters, the Ang-(1-7) 

dose used in the present study: 5 nmol/hr, was arbitrarily selected as 5 times higher than 
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the one used in ICV experiments. Therefore, Ang-(1-7) may modulate MABP at higher 

doses as seen in Velkoska’s experiment (Velkoska et al., 2015) but not at smaller doses as 

observed in our study. This goes in agreement with the results observed in conscious 

systolic BP measurements in Chapter 4 and previous reports in stroke studies in both 

normotensive and SHR animals (Jiang et al., 2013; Mecca et al., 2011; Regenhardt et al., 

2013). 

6.4.2 Contralateral hemisphere perfusion is significantly lower in 
Ang-(1-7) treated animals 

A surprising feature in the results was that contralateral perfusion increased over time in 

the Vehicle (dH2O) group and showed a slight trend to decrease in Ang-(1-7) treated 

animals, displaying a statistical difference between groups. In the contralateral hemisphere 

one would expect perfusion values to remain fairly stable over time following stroke 

(Harston et al., 2017; Hartmann, 2010). Therefore, the possibility that the effect observed 

might be a false positive or a reflection of alterations in PaCO2 over time that failed to be 

detected, cannot be excluded.  

Increasing reports claim and demonstrate that the vast majority of conclusions within 

biomedical research are false, likely due to the small n numbers used (Button et al., 2013; 

Ioannidis, 2005). Although both groups met the n number criteria set in the power 

calculation; the lower the power in a study, the less likely a statistical effect actually 

reflects a real effect (Ioannidis, 2005). Conversely, when an experiment with small n 

numbers identifies a true effect, it is probable that the effect provided is exaggerated, an 

effect inflation referred to as “winner’s curse” (Ioannidis, 2008; Ioannidis et al., 2011). The 

statistical observation must be examined with caution and follow up studies should be 

performed to confirm the reproducibility of these results.  

If the effect is indeed physiological, it could be the outcome of “steal phenomena” reversal. 

The “steal phenomena” is characterised by a shift in blood flow to non-ischaemic areas and 

is associated with worsened neurological outcome in patients (Alexandrov et al., 2007). A 

CBF shift towards the contralateral hemisphere via the anterior communicating artery 

could diminish perfusion within the ipsilateral hemisphere and promote injury. 

Concomitantly, revascularisation in cervical carotid stenosis patients leads to perfusion 

enhancement in the contralateral hemisphere with the degree of perfusion correlating with 

the grade of stenosis (Sadato et al., 2017). As a result, Ang-(1-7) could be acting to prevent 
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contralateral CBF shifting and, as a consequence, ipsilateral injury in the longer term. To 

confirm this hypothesis, further studies need to be performed to understand the 

physiological impact and underlying mechanisms. 

6.4.3 Ang-(1-7) does not alter ipsilateral hemisphere perfusion 

Throughout the imaging period, Ang-(1-7) did not improve perfusion within the ischaemic 

core, ischaemic penumbra or oligaemic/perfused area. The role of Ang-(1-7) in improving 

ipsilateral cerebral perfusion is somewhat controversial with these results strengthening the 

hypothesis that at lower doses, Ang-(1-7) has no effect. In stroke, Ang-(1-7)’s effects have 

been studied as an ICV delivery and with the use of LDF techniques; which allow a 

measure of perfusion in a limited area within the MCA territory (Jiang et al., 2014; Mecca 

et al., 2011). In our study, LSCI provided a sensitive near real-time mapping of cortical 

surface vasculature during reperfusion and was therefore, a reliable semi-quantitative 

measure of cerebral perfusion across the cortical surface. Importantly, the animal models, 

drug administration method and time of CBF dynamics assessment used in previous 

studies were substantially different from the methodology used in our study (Jiang et al., 

2014; Mecca et al., 2011). For instance, in Mecca’s study, Ang-(1-7) was administered as a 

3 day pre-therapy in the ET-1 induced MCAO model and the impact of treatment on CBF 

was evaluated prior to and 1 hr post ET-1 injection (Mecca et al. 2011). In Jiang’s study, 

studies were performed in the permanent MCAO model, Ang-(1-7) therapy administered 

for 4 weeks prior to injury and CBF dynamics were studied at MCAO onset as well as 1 hr 

and 24 hrs post stroke onset (Jiang et al. 2014). Consequently, the present study is the first 

experiment to evaluate the effects of Ang-(1-7) on CBF as a post stroke therapy, in a 

transient MCAO model, at reperfusion and with LSCI. 

In the ischaemic core there was a trend for Ang-(1-7) to improve perfusion in comparison 

to Vehicle (dH2O); however, the differences were not statistically different. Out of 6 

animals in the Ang-(1-7) group, 3 showed higher levels of perfusion upon filament 

retrieval whereas in the control group, only 1 animal displayed perfusion increase to a 

similar extent. This variability in perfusion within the ischaemic core might reflect 

differences in reperfusion alone, possibly due to larger ischaemic lesions. For instance, 

patients that develop post-ischaemic hyperperfusion in infarcted areas display increased 

bioenergetic depletion, confirmed by greater ADC coefficients (Kidwell et al., 2001). 

Accordingly, it is plausible that animals with increased perfusion in this region developed 

exacerbated ischaemic lesions. Contrarily, the results could be an indication that these 
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particular animals had better functioning collateral supply than the remaining cohort as 

seen in the clinic and thus, enhanced tissue salvage (Bhaskar et al., 2017). To confirm this, 

lesion volumes would have to be assessed; however, this was not performed in our study, 

representing a study limitation. 

The impact of Ang-(1-7) in human brain CBF has not yet been evaluated, however, 

experiments conducted in human brain vascular smooth muscle cell cultures suggest that 

0.1 M Ang-(1-7) treatment inhibits cell migration, proliferation and apoptosis (Bihl et al., 

2015). Furthermore, Ang-(1-7) administration in isolated canine MCA and femoral arteries 

induced vascular relaxation in arterial rings with intact endothelium, an outcome observed 

at higher doses only (Feterik et al., 2000). Similarly, topical application of Ang-(1-7) in 

pial arterioles in anaesthetised pigs induced a modest vasodilation at high doses (Meng and 

Busija, 1993). Although the studies described were conducted in normoxic conditions, the 

results set the premise that Ang-(1-7) treatment could have the potential to enhance CBF 

following cerebral injury.  

There are several factors that could have contributed towards the neutral effect seen within 

the ipsilateral hemisphere in the present study. Firstly, the experiments conducted by Meng 

& Busija and Feterik et al suggest that Ang-(1-7) treatment leads to a cerebral vasodilatory 

effect when administered directly and at higher doses only (Feterik et al., 2000; Meng and 

Busija, 1993). Consequently, a 5 nmol/hr IV infusion dose through the femoral vein may 

not have been sufficient to enhance CBF in the compromised ipsilateral hemisphere.  

Secondly, the animal model used and treatment schedule may present contributing factors. 

In in vivo models, Ang-(1-7) pre-treatment for 48 hrs (1.1 nmol/hr ICV) did not influence 

ipsilateral perfusion at MCAO and at 24 hrs permanent MCAO when compared to vehicle 

(Jiang et al., 2012). However, in a follow up study, Ang-(1-7) pre-treatment for 4 weeks 

increased CBF in the peripheral region at 1 hr and 24 hrs permanent MCAO, an effect 

attributed to an improvement in NO production and VEGF protein levels (Jiang et al., 

2014). The results observed suggest that Ang-(1-7) acts in a cumulative manner and longer 

treatment schedules are necessary to observe a cerebrovascular effect in the penumbral 

region. Additionally, Ang-(1-7) possibly enhances perfusion in permanent models; 

however, in transient MCAO models, reperfusion alone may transcend an Ang-(1-7) 

induced vascular outcome. In accordance, following ET-1 induced MCAO, CBF was 

shown to transiently increase over 60 min in the ipsilateral hemisphere; however, Ang-(1-

7) 1.1 nmol/hr ICV treatment did not influence haemodynamics or vessel diameter 
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compared to vehicle therapy in normotensive rats (Mecca et al., 2011), supporting this 

hypothesis. 

Finally, Ang-(1-7) could produce a cerebrovascular effect at later stages of injury. 

Following transient MCAO, Ang-(1-7) ICV post stroke therapy upregulated bradykinin 

expression in ischaemic tissue at 6 hrs and 48 hrs after reperfusion at moderate and higher 

doses (100 pmol/hr and 10 nmol/hr) (Lu et al., 2008). Plus, Ang-(1-7) at 10 nmol/hr  ICV 

treatment stimulated NO levels from 3 to 72 hrs reperfusion (Zhang et al., 2008). Both 

bradykinin and NO are potent vasodilatory mediators; therefore, Ang-(1-7) could incite 

vasodilation from 3 hrs post reperfusion start.  Overall, Ang-(1-7) did not influence cortical 

cerebral perfusion in the ipsilateral hemisphere following 90 min MCAO, yet, it is 

plausible that Ang-(1-7) might enhance ipsilateral CBF when administered locally, at high 

doses and at later stages of injury. It is also important to note that, in the present study, 

perfusion assessments represent an outcome of both arterial and venous flow. Therefore, 

the impact of therapy in influencing cerebral vascular dynamics within individual vessels 

and in the subcortical vasculature was not addressed. In future, myography experiments in 

cerebral vessels (e.g MCA) following MCAO, could be a suitable experiment to confirm 

the results obtained. 

6.4.3.1 Ipsilateral perfusion does not recover to contralateral levels 

Reperfusion following 90 min MCAO resulted in an initial period of hyperperfusion, 

lasting for 15 min in Vehicle and 20 min in Ang-(1-7) treated animals within the ischaemic 

core and the ischaemic penumbra. Conversely, in the oligaemic/perfused region, 

hyperperfusion was evident for 10 min in the Ang-(1-7) group and for 15 min in control 

animals. This initial period of hyperperfusion was then followed by hypoperfusion across 

the ipsilateral hemisphere until the end of the experiment. Perfusion values in the 

ipsilateral side remained below contralateral values during the hypoperfusion phase, 

suggesting that during 90 min reperfusion, the brain is still at risk of further hypoxic injury.  

The underlying mechanism behind hyperperfusion is not well understood; however, 

accumulation of acid metabolites, ROS and CO2 during MCAO are thought to lead to 

abnormal vasodilation in the ischaemic area (Jackman & Iadecola 2015). Although this 

mechanism is a hallmark of efficient reperfusion after MCAO and confirmation that MCA 

reperfusion was successful, it could also be a contributor towards stroke progression (Pan 

et al., 2007; Sage et al., 1984). For example, in rats, post-ischaemic hyperperfusion was 
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associated with larger cortical infarcts and shown to mediate MCA remodelling due to 

vascular oxidative stress and inflammation (Onetti et al., 2015; Pérez-Asensio et al., 2010), 

hence its possible role in infarct progression.  

Similarly, the causes underlying hypoperfusion require further evaluation. One hypothesis 

includes vessel obstruction and increase in vascular resistance mediated by endothelial and 

glial cell swelling (Hossmann and Lechtape-Grüter, 1971). Other studies indicate that 

hypoperfusion is caused by vessel constriction, vasospasm, oedema and the “no reflow” 

phenomena (Kunz & Iadecola 2009; Ames et al. 1968). Other possible causes include 

pericyte constriction during and following MCAO (Hall et al., 2014) as well as MCA 

myogenic tone and reactivity impairment, thus, promoting vessel resistance (Ahnstedt et 

al., 2016; Cipolla et al., 1997, 2014).  

Ang-(1-7) did not influence cerebral perfusion during hyper- or hypoperfusion phases. 

However, the findings in this study highlight the neuroprotective potential of CBF 

enhancing therapies when administered at acute stages of reperfusion onset and during the 

hypoperfusion phase. 

6.4.4 Ang-(1-7) does not interfere with PID frequency 

Until now, the study of therapy impact on PIDs has been compromised by the lack of 

methods that provided sufficient spatial and temporal sampling(Strong et al., 2006). LSCI 

is a suitable technique to tackle these changes and was shown to successfully identify PIDs 

frequency across the cortical surface during MCAO and reperfusion. In this study, Ang-(1-

7) at the dose selected did not interfere with PID number during reperfusion.  

PIDs follow a biphasic pattern and are reported to occur during MCAO and between 2 to 

12 hrs after reperfusion (Hartings et al., 2003). PIDs were shown to initiate no earlier than 

2 hrs after reperfusion and to induce a detrimental effect that correlated with final infarct at 

24 hrs (Hartings et al., 2006). In our study, PIDs occurred in 4 out of 11 animals, 1 in 

control and 3 in Ang-(1-7) treated rats and these took place just after reperfusion 

reestablishment. Our study implies that during 90 min reperfusion, the biphasic pattern of 

PID has not yet started as previously suggested (Hartings et al., 2006). 
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6.4.5 Summary 

This study assessed for the first time the impact of Ang-(1-7) 5 nmol/hr IV infusion in 

cortical perfusion after stroke with LSCI. Ang-(1-7) therapy delivered on reperfusion did 

not improve perfusion within the ischaemic core, ischaemic penumbra and 

oligaemic/perfusion regions across the ipsilateral hemisphere. Treatment did not alter 

MABP, PaCO2, PaO2, pH and temperature compared to control with -chloralose showing 

to be a suitable anaesthetic for CBF imaging. Moreover, Ang-(1-7) did not influence the 

occurrence of PIDs, which tended to occur just after reperfusion onset.   

Interestingly, Ang-(1-7) prevented perfusion increase in the contralateral hemisphere 

compared to control animals. It could be hypothesised that these results are the outcome of 

PaCO2 variations that were not detected at later stages of reperfusion and represent a false 

positive. However, if the mechanism in indeed physiological, it is an indication that Ang-

(1-7) may prevent “steal phenomena” towards the contralateral hemisphere. Conversely, 

Ang-(1-7) did not alter cerebral haemodynamics in the ipsilateral hemisphere. It is possible 

that 90 min treatment at the dose selected was not sufficient to induce an effect, with 

literature suggesting that Ang-(1-7) induces vasodilatory effects when administered 

locally, at high doses, for extensive therapeutic schedules and when studied in permanent 

MCAO models (Jiang et al., 2014; Feterik, 2000).  

In conclusion, this study provides robust evidence that Ang-(1-7) IV treatment at 5 nmol/hr 

dose does not influence ipsilateral cortical cerebral perfusion, PID frequency or MABP at 

the dose selected for 90 min reperfusion following MCAO. At the same time, Ang-(1-7) 

may be acting to prevent “steal phenomena” towards the contralateral hemisphere. Follow 

up studies need to be performed to confirm the reproducibility of the effect observed. 
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Chapter 7  

In this Chapter, an overall summary of study findings will be provided where study 

limitations will be addressed and possible future studies outlined. Firstly, the restraints and 

directions of preclinical neuroprotective studies in normotensive animal models will be 

discussed. 

7.1 Animal models of ischaemic stroke 

In preclinical stroke, over 1000 compounds have been reported to provide neuroprotection 

in animal models; however, apart from alteplase, all the interventions reaching clinical 

trials have failed to be effective (Henninger et al., 2010; O’Collins et al., 2006). The major 

translational roadblocks are attributed to experimental design as well as animal model 

limitations (Macleod et al., 2008; Rewell and Howells, 2017). In an attempt to minimise 

cofounding variables from interfering with study interpretation, we ensured that 

appropriate experimental design was carried out for instance the use of randomisation and 

blinding and acute imaging as recommended within the STAIR guidelines ((STAIR), 

1999). In addition, ensuring good animal welfare during and after stroke surgery was taken 

into account according to the recommendations in the recently published IMPROVE 

(Ischaemia Models: Procedural Refinements of in Vivo Experiments) guidelines (Percie du 

Sert et al., 2017).  

For neuroprotective studies (Chapters 4-6), sample size calculations were performed to 

determine adequate animal numbers to detect a therapeutic effect. Sample size calculations 

were not conducted in Chapter 3 since these experiments consisted of pilot studies to 

assess methodologies to use in subsequent neuroprotective assessments. All studies were 

randomised according to a random list generator (www.random.org) and an independent 

investigator kept the allocation schedule. Blinding was carried out for all drug studies 

where an independent investigator not involved in the study was responsible for preparing 

the appropriate drug or vehicle according to the allocation schedule. Data analysis was also 

conducted in a blinded manner by ensuring that experiments were coded in an unbiased 

manner. In Chapter 6, the author was responsible for drug infusion calculations, which had 

to be corrected for animal weight on day of surgery, and was not blinded to therapy. To 

account to this potential source of bias, treatment was disclosed and prepared at the time of 

reperfusion and administered by an independent investigator. In addition, blood gases were 

closely monitored and data analysed twice by the author and a blinded researcher.  

http://www.random.org)/
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It is important to note that experiments carried out in rodents cannot directly replicate 

clinical stroke. Rats have a lissencephalic brain with different neuroanatomical and 

functional structure to that observed in humans, which have a large gyrencephalic brain 

(Figure 7-1) (Sommer, 2017). White matter represents 60% of brain tissue in humans 

whereas in rats only 15% (Krafft et al., 2012). Since white matter damage is an important 

factor implicated in stroke prognosis in all major stroke subtypes; rodents experiments 

pose a challenge in terms of accurate modelling (Ahmad et al., 2015). Additionally, 

rodents have the ability to rapidly recover from ischaemic insult on the contrary to humans, 

limiting behavioural and neurological deficit assessments (Sommer, 2017). Nevertheless, 

rodents present a similar cerebrovascular anatomy to that observed in humans with both 

species having a circle of Willis. In addition, rodents provide a cheap, standardised and 

reproducible approach to study the pathophysiological mechanisms of ischaemic damage 

and the impact of potential therapeutic interventions (Fluri et al., 2015; McCabe et al., 

2017).  

 

Figure 7-1 Structural and anatomical differences between human (A) and rat (B) brains. 3D-
polarised light imaging illustrating connectivity, colour sphere represents the direction of fibers. 
Figure adapted and obtained from Sommers et al, 2017. 
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One important consideration in preclinical stroke is the selection of the most adequate 

model of focal cerebral ischaemia. In this thesis the intraluminal filament model was 

selected as it mimics human stroke localisation and allows to investigate the impact of 

reperfusion on outcome (Garcia et al., 1995; Kumar et al., 2016). In the clinic, spontaneous 

reperfusion occurs up to 17% of stroke patients in the first hours after stroke onset whereas 

the intraluminal filament model induces an abrupt reperfusion (Kassem-Moussa and 

Graffagnino, 2002). Although the animal model selected does not accurately represent the 

entire stroke population, it induces sudden and abrupt reperfusion that closely mimics 

mechanical thrombectomy procedures (Sutherland et al., 2016), which are primarily 

performed in patients with proximal large vessel occlusion of the anterior circulation 

and/or non-responsive to alteplase (Tawil and Muir, 2017). The validity of the model used 

was further confirmed in Chapter 4 where reperfusion alone improved outcome, a result 

equally observed in the clinic in large artery occlusion patients subjected to thrombectomy 

(Dargazanli et al., 2017). 

The studies presented within this dissertation highlight the importance of selecting the 

most adequate rat strain and study methods for neuroprotective studies. A major drawback 

of the intraluminal filament model and the use of normotensive animals is infarct volume 

variability. In Chapter 3 we showed that in comparison to Wistar rats, Sprague-Dawley rats 

exhibited enhanced variability, thereby limiting the validity of using this strain for 

neuroprotective studies (Figure 3-3) (Rewell and Howells, 2017; Ström et al., 2013). 

STAIR guidelines recommend the use of LDF to confirm successful MCAO and suggest a 

minimum of 60% CBF reduction for inclusion criteria ((STAIR), 1999). In addition, 

several groups use LDF as a means to predict infarct volume variability or study CBF 

(Soriano et al. 1997; McCabe et al. 2017). We have demonstrated that LDF is a 

challenging method that does not correlate with final infarct volume nor adequately detect 

the extent of reperfusion (Figure 3-13). The use of LDF provided evidence of accidental 

SAH with the filament model, however; in general, the technique adds an extra variable 

and negatively impacts animal recovery while providing limited information. Instead, MRI 

techniques provided an accurate and reliable tool of outcome assessment and allowed the 

establishment of strict exclusion criteria. DWI during MCAO was useful to determine the 

starting lesion and allowed us to use each animal as its own control in order to examine the 

impact of therapy on infarct volume (McCabe et al., 2017). MRI-T2 allowed us to confirm 

successful ICV placement of cannula and MRA confirmed adequate MCAO and MCA 

reperfusion.  
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Although a strict methodological and design criterion was employed in the studies outlined 

in this thesis, DWI data during MCAO emphasised the variability in ischaemic lesion 

volume in Wistar rats prior to therapy and reperfusion (Figure 4-4). Additionally, LSCI 

showed that several animals exhibited variability in the extent of cortical reperfusion 

following removal of the filament, which improved over time at different rates (Figure 7-

3). This brings attention to the extent of MCAO and subsequent variability in reperfusion 

in normotensive rats and its impact on data interpretation, especially when assessing 

therapeutic interventions. With respect to reperfusion, it is challenging to determine which 

animals display inhomogeneous cortical reperfusion and the reasons for this are still poorly 

understood. This means that these rats are usually included in study cohorts introducing a 

variable that may greatly impact outcome interpretation. Contrary to normotensive 

animals, hypertensive rats exhibit larger infarcts and smaller collaterals with diminished 

vasodilator capacity, which limits infarct variability (McCabe et al. 2009; Reid et al. 2012). 

However, hypertensive rats present significantly less penumbral volumes that influence the 

chance to detect a drug effect (Rewell and Howells, 2017). For this reason, proof of 

principle studies are recommended to be conducted in normotensive rats prior to the 

addition of a co-morbidity such as hypertension ((STAIR), 1999). This thesis demonstrates 

that in order to accurately determine efficacy of therapeutic interventions, the use of acute 

imaging to confirm baseline lesion volume and confirmation of successful MCAO and/or 

MCA reperfusion greatly enhances the statistical power of studies and avoids type II 

errors. In turn, this emphasises the need for robust collaborations amongst the stroke field 

for improved experimental reproducibility. 

7.2 Counter-regulatory axis as an ischaemic stroke target 

This thesis aimed to examine the therapeutic potential of the counter regulatory axis of the 

RAS, ACE2/Ang-(1-7)/MasR, in ischaemic stroke. Due to the reported beneficial effects 

induced by MasR and AT2R agonism following cerebral ischaemia (Chapter 1), this first 

therapeutic study examined the effects of MasR, AT2R and combined MasR and AT2R 

agonism in a model of transient focal cerebral ischaemia. We showed that reperfusion 

along with Ang-(1-7) ICV infusion further prevented lesion growth expansion at 7 days 

when compared to baseline lesion volume (60 min MCAO) whereas C21 (AT2R agonist) 

or combination therapy did not induce any additional therapeutic effects when compared to 

vehicle treatment. In addition, therapy did not influence systolic BP or neurological 

outcome at days 3 and 7 for any group. This study establishes that at day 7 following 

reperfusion, MasR and AT2R agonism do not act synergistically to prevent ischaemic 
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lesion growth at the doses administered; however, MasR agonism alone may confer some 

additional protection in combination with reperfusion. 

Interestingly, the neuroprotective effect of Ang-(1-7) could only be detected when taking 

into account the initial baseline lesion since there were no differences between groups at 

day 7. This suggests that following abrupt reperfusion, central infusion of Ang-(1-7) 

treatment leads to a mild to moderate effect at the dose selected, in contrast to the large 

effect sizes observed in previous published studies at 24 hrs and 72 hrs, albeit using 

different models of focal cerebral ischaemia (Mecca et al., 2011; Regenhardt et al., 2013). 

Our experiments also confirm that the RAS is imbalanced after cerebral injury since AT2R 

mRNA was upregulated and MasR downregulated at 7 days post MCAO. Interestingly, the 

classical RAS axis mediators ACE and AT1R were not altered, confirming that transient 

MCAO enhances AT2R expression only (Kagiyama et al., 2003; Zhu et al., 2000). Whilst 

Ang-(1-7) is reported to act at the microglial level by influencing its phenotype or 

diminishing NF-B and COX-2 activity (Liu et al., 2016; Regenhardt et al., 2013); our 

mRNA data implies that Ang-(1-7) does not induce an anti-inflammatory effect. Instead, 

Ang-(1-7) could exert its effect by promoting neurogenesis through NOX1 expression.  

A drawback in this study was the lack of protein assessment. Brains were collected for 

immunohistochemistry assessment at the end of the study, which meant that n numbers 

were low for a quantitative assessment of protein levels for microglia activation. Plus, 

NOX1 was not examined in terms of protein and for this reason it was not possible to 

conclude whether Ang-(1-7) might be inducing its effects by enhancing NOX1. It is 

common practice to use mRNA levels as a way to correlate with protein levels; however, 

relative abundance of protein may not be proportional to relative mRNA expression. In 

mammals, mRNAs are produced at lower rates than protein with mRNAs displaying a half-

life of up to 7 hrs compared to 46 hrs for proteins (Vogel and Marcotte, 2012). To confirm 

the proposed mechanism, NOX1 protein levels would have to be examined and colocalised 

with a proliferation marker such as proliferating cell nuclear antigen, which is reported to 

label neuroprogenitor cells (Sierra et al., 2011).   

Next, we hypothesised that MasR targeting induces its therapeutic effect in a biphasic 

pattern and at earlier stages of injury. Ang-(1-7) was administered as central infusion 

immediately following stroke for 24 hrs and its effects on BBB breakdown and infarct 

volume evaluated. Although vasogenic oedema was present, an indication of BBB 

breakdown, the BBB at this time point was at a transient state with some animals 
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presenting high Gd-DTPA extravasation and others minimal uptake. Not surprisingly, 

Ang-(1-7) did not alter hemispheric swelling or BBB breakdown. In addition, final infarct 

volume was comparable to vehicle animals and no differences in neurological outcome 

were observed at this time point. This reinforces the suggestion that Ang-(1-7) induces a 

mild effect that cannot be detected when analysing data at end points only. Mechanistic 

data performed at 24 hrs confirmed that Ang-(1-7) does not influence microglia number or 

activation nor affect gene expression levels for the markers assessed. However, an 

interesting finding was that at 24 hrs, RAS mediator gene expression was comparable to 

sham following MCAO, emphasising the biphasic nature of the RAS in cerebral injury and 

implying that the RAS may not be implicated in injury at this time point. 

Overall, Chapters 4 & 5 demonstrate that Ang-(1-7) does not induce an anti-inflammatory 

effects, contrary to previous reports (Jiang et al., 2012; Mecca et al., 2011; Regenhardt et 

al., 2013). In an attempt to study the effects of Ang-(1-7) on microglia/macrophage 

phenotype, M1 and M2 type markers were selected and gene expression examined. The 

presence of multiple activation phenotypes for microglia is a relatively recent concept and 

there is no consensus regarding specific mediators for both M1 and M2 profiling 

(Ransohoff, 2016). Plus, as described above, gene expression may not provide an accurate 

measurement for microglia phenotype. Methods that are more accurate include flow 

cytometry where peri-infarct homogenates are subjected to M1/M2 marker antibody 

staining and protein levels quantified. Furthermore, NF-B mRNA levels in the peri-infarct 

tissue was shown to be comparable to sham in both Chapter 4 & 5; to confirm NF-B 

activation and expression as well as therapy impact, nuclear translocation assays and 

signalling pathway investigation at protein levels would have to be assessed.  

Finally, in Chapter 6, the effects of Ang-(1-7) on CBF at a hyperacute stage of injury were 

assessed with LSCI. The role of Ang-(1-7) on the cerebrovasculature is controversial and 

until now examined with LDF, which provides a limited spatial assessment of CBF (Jiang 

et al., 2014; Mecca et al., 2011). We examined CBF across the entire cortical surface and 

demonstrated that IV infusion of Ang-(1-7) immediately following reperfusion did not 

influence CBF within the ipsilateral hemisphere; however, it prevented CBF enhancement 

in the contralateral hemisphere without influencing MABP or PIDs. This effect could be 

the outcome of “steal phenomena” reversal by Ang-(1-7), thus, preventing CBF shift from 

the ipsilateral side. There was a large variability in the results obtained, particularly in the 

ipsilateral hemisphere. Subsequent power calculations indicate that to detect a drug effect 

of at least 10% in the ischaemic penumbra and in the model used an n=11 per group would 
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be required. Consequently, follow up experiments should be performed to confirm study 

reproducibility. 

One of the major limitations in the studies performed was that drugs had to be 

administered ICV. This method is not a recommended route of administration in the clinic 

as it impairs the ability to administer sustainable long-term therapies. Additionally, central 

treatment was technically challenging and resulted in cannula misplacement in several 

animals, which had to be excluded. C21 is a highly selective AT2R agonist with a 4 hr half-

life and shown to induce therapeutic effects when administered IP (Alhusban et al., 2015; 

Wan et al., 2004). Conversely, Ang-(1-7) has a half-life of 10 sec in the circulation and is 

hydrophilic (Iusuf et al., 2008; Trask and Ferrario, 2007), thus, to maximise Ang-(1-7)’s 

therapeutic potential, drugs were administered centrally. Furthermore, Chapter 3 studies 

provided an indication that RAS targeting via peripheral administration may not be suitable 

to perform proof of principle experiments in ischaemic stroke, hence the method selected. 

It has been reported that RAS mediators do not cross the BBB, thus, the brain relies on 

locally produced peptides (Schelling et al., 1976). Interestingly, recent evidence now 

proposes that the brain RAS does not exist and the presence of RAS peptides is actually the 

outcome of trapped mediators from the circulation (Sigmund et al., 2017), setting the 

premise of new peripheral routes to target the brain RAS after stroke. A study conducted 

this year verified that an Ang II vaccine administered SC, reduced infarct volume after 

permanent MCAO (Wakayama et al., 2017), highlighting the neuroprotective potential of 

systemic RAS targeting. In Chapter 6, Ang-(1-7) was administered as an IV infusion to 

allow successful LSCI whilst maximising the activation of MasR present on cerebral 

endothelial cells (Becker et al., 2007; Kumar et al., 1996). The fact that Ang-(1-7) induced 

an effect on CBF supports the hypothesis that in future, Ang-(1-7) systemic therapy may 

also be adequate in ischaemic stroke. In the clinic, Ang-(1-7) was recently tested SC at 20 

mg/kg/day in phase II metastatic sarcoma trials and proven to be well tolerated (Savage et 

al., 2016). Plus, a phase I clinical trial is being conducted testing the effects of IV Ang-(1-

7) infusion of up to 20 ng/kg/min in human hypertension and expected to be completed in 

2018 (clinicaltrials.gov). These scientific advances may help direct future steps in stroke 

studies; still, the peptide’s short half-life poses a therapeutic challenge that must be taken 

into account. To tackle this limitation, an alternative includes novel cyclic Ang-(1-7) 

analogues, which are resistant to human ACE and consist in a stable, long-lasting and 

possibly suitable approach to use in future (Wester et al., 2017).  
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7.3 Future studies 

Despite the efforts to elucidate the underlying mechanisms responsible for the 

neuroprotection observed in Chapter 4, these remain mostly elusive. Since Ang-(1-7) 

induced a mild to moderate neuroprotective effect in this thesis, it is crucial to perform IV 

dose response experiments to confirm the effect observed and test treatment feasibility in 

the stroke setting. Once the neuroprotective effect has been demonstrated through 

alternative methods of administration and at a more efficient extent, further studies should 

then be conducted. 

In Chapter 4, we showed that Ang-(1-7) alone decreased infarct volume progression from 

60 min MCAO to 7 days reperfusion. However, C21 and combination therapy did not exert 

a neuroprotective effect, suggesting that both MasR and AT2R agonism does not 

synergistically decrease infarct volume. To understand the implications of receptor 

antagonism in infarct volume outcome in the model used, MasR antagonist, A779, and 

AT2R antagonist, PD123319, cohorts should be studied in future.  In addition, to examine 

whether Ang-(1-7)-mediated neuroprotection is dependent on both MasR and AT2R 

activation in the model used, receptor antagonists should be administered along with Ang-

(1-7) in subsequent experiments.  

The experiments in Chapter 6 propose that Ang-(1-7) IV administration influences CBF 

profile to some extent, therefore, it could hypothetically preserve the penumbra. An 

important study to be conducted is the effect of Ang-(1-7) on the extent of penumbra 

salvage using DWI/PWI mismatch. In the clinic, penumbra determination with DWI/PWI 

mismatch has proven to be effective in determining patients who most likely benefit from 

alteplase and thrombectomy procedures (Albers et al., 2006; Wheeler et al., 2013), 

therefore, it is likely that in future, DWI/PWI mismatch will become part of standard 

eligibility criteria. Consequently, mismatch studies are crucial to evaluate the efficacy of a 

neuroprotective agent and its translation from preclinical to clinical studies (Fisher et al., 

2009).  

The results in this thesis emphasise that the effects of Ang-(1-7) may be time dependent 

and of various aetiologies. A logical study to perform would be the effect of Ang-(1-7) on 

BBB breakdown at 72 hrs post stroke when the BBB is maximally permeable and 

inflammatory mechanisms at its hiatus (Sandoval and Witt, 2008). In addition, Ang-(1-7) 

is thought to prevent lesion growth in permanent MCAO by stimulating angiogenesis via 
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the eNOS/NO and VEGF pathways (Jiang et al., 2014), thus, its role in angiogenesis at 

later stages of injury could be assessed in transient models. Interestingly, central treatment 

with C21 failed to induce a neuroprotective effect, yet, this compound is implicated in 

neuroprotection following ischaemic stroke when administered IP (Alhusban et al., 2015; 

Joseph et al., 2014; Lee et al., 2012; Schwengel et al., 2016). Our mRNA data implies that 

the AT2R may be involved in injury at 7 days post reperfusion; therefore, AT2R targeting 

may be potentially beneficial at later stages of injury. Accordingly, in permanent MCAO 

studies, C21 induces an angiogenic effect following 21 days therapy whereas in transient 

MCAO, 3 week C21 treatment diminishes infarct volume (Bennion et al., 2017; Mateos et 

al., 2016), supporting this hypothesis. By performing time course experiments, one would 

be able to evaluate at what time points MasR and/or AT2R targeting following stroke could 

be most beneficial. 

In vivo experiments should be supported with in vitro examinations. As mentioned in 

Chapter 1, AT1R signalling is detrimental through a variety of processes involving the 

activation of G-protein dependent and independent pathways. While these signalling 

pathways are well described in peripheral CVD, there is limited information in neuronal 

cells. Similarly, the signalling pathways underlying AT2R or MasR activation are scarcely 

known in ischaemic stroke. Previous studies conducted by our lab have demonstrated that 

in smooth muscle cells, MasR inhibits ERK1/2 (McKinney et al., 2015); however, it is yet 

to be established whether in neuronal cells, MasR leads to SHP-2 activation and effectively 

inhibits MAPKs or NOX as outlined in Chapter 1. Equally, whether AT2R agonism leads 

to MPK-1, SHP-1 and PP2A activation should be assessed. To do so, primary neuronal 

cells would be subjected to OGD challenge and treatment upon reoxygenation. After, 

signalling pathways would be assessed in cell lysates using protein arrays such as PathScan 

Antibody Array from Cell Signalling Technology, which allows a simultaneously and 

quantitative measurement of at least 30 phosphorylated proteins (Kopf et al., 2005). 

Finally, the use of normotensive young male animals is relevant in the context of proof of 

principle studies; however, these do not reflect the stroke population in clinic, which often 

exhibit a spectrum of co-morbidities (Fisher et al., 2009). The author of this thesis (MA) 

collaborated in a follow up study where Ang-(1-7) and A779 (MasR antagonist) were 

tested in the same experimental protocol in SHRSPs (unpublished data). Ang-(1-7) failed 

to induce a neuroprotective effect; however, MasR antagonism exacerbated injury. This 

further emphasises that Ang-(1-7) at the dose administered may not be optimal whilst 

stressing the therapeutic potential of specific MasR agonists in both normotensive and 
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hypertensive settings. Nonetheless, the effects of Ang-(1-7) in females, diabetic and older 

rats are yet to be studied. In particular, sex is thought to highly influence RAS expression. 

Testosterone is suggested to stimulate the “classical axis” whilst oestrogen promotes AT2R 

expression and counter-regulatory RAS axis activity (Sullivan 2008; Silva-Antonialli et al. 

2004; Sampson et al. 2008; Sullivan et al. 2015). Plus, female rats subjected to 

ovariectomy display enhanced AT1R brain expression and diminished AT2R levels, hence, 

a possible involvement in the elderly population (Rodriguez-Perez et al., 2010). The 

therapeutic potential of the counter-regulatory RAS axis should be evaluated in these 

settings before proceeding to larger animals.  

7.4 Conclusions 

This thesis conducted novel studies examining the therapeutic potential of the counter-

regulatory axis of the RAS following transient MCAO using acute imaging techniques. We 

demonstrated that the RAS is implicated in cerebral injury in a biphasic pattern with MasR 

agonism as a post stroke therapy inducing a mild to moderate neuroprotective effect at 7 

days reperfusion. Our studies indicate that Ang-(1-7) did not exert its effect via an anti-

inflammatory mechanism nor prevented BBB breakdown at 24 hrs reperfusion. Instead, we 

hypothesise that Ang-(1-7) may exert its effects by enhancing neurogenesis through NOX1 

enhancement and/or CBF modulation after stroke onset. Although this thesis provides 

encouraging findings, the underlying mechanism is still elusive and further investigations 

should be conducted. In particular, the therapeutic potential of selective MasR agonists as 

adjuvant systemic therapies should be assessed. This thesis strongly emphasises the 

importance of adequate methodologies when performing neuroprotective studies, which 

should be closely considered in future experiments.  
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