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Abstract

Many people regard infertility as an unsuitable condition in which to run

cross-over designs. Because if treatments are successful, then some women will

become pregnant in the first period of treatment and if they become pregnant in

the first period they are very unlikely to be treated in the second period. If data

from only one period are available, then it will not be possible to perform the

within-patient comparison. Hence, it could be argued, such designs are inherently

unsuitable since they have a built-in tendency to produce missing data. To sum

up this point of view, cross-over designs in infertility are likely to produce fewer

data than one would wish and should be avoided.

We see things differently, however. Suppose a parallel design is employed.

If a couple is entered onto a parallel group design in infertility, they will have

been allocated to one or the other treatment only. If the woman fails to achieve

pregnancy, having been given that treatment, what could then be more natural

than to offer the couple the chance of trying another? If another treatment is

tried, then will it not be appropriate to record the outcome? Hence, in the worst

case one will have all the data one would have from a parallel group trial but

in practice one is likely to have more. How can more data be worse than less?

Thus, to sum up our point of view, a cross-over trial is likely to produce more

data than one would otherwise have had and should be encouraged.
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A debate along these lines has been running for some years now (6; 24; 27; 52;

64; 74; 75; 94), with some promoting and occasionally running cross-over trials

and others criticising them for doing so. In this thesis we use the logistic random

effects model to illustrate that the message that the crossover design should be

avoided is not the correct one. Rather, when using the crossover design one

should be sure to analyze it correctly.

The study has found that treatment estimates obtained by allowing women to

get pregnant twice has lower standard errors than treatment estimates obtained

by conducting the realistic infertility trials. In the scenario involving no period

effects the two treatment estimates are not biased. In the scenario involving pe-

riod effect, the standard errors of the treatment estimate obtained in the realistic

data increases rapidly, while the standard errors of treatment estimate obtained

by allowing women to get pregnant twice are not dissimilar from the standard

errors obtained in the scenario involving no period effect.

There is nothing wrong in conducting crossover designs in infertility provided

appropriate statistical methods are employed. With the infertility crossover data

set we can obtain not only conditional treatment estimates but also marginal

estimates. Whereas in the parallel design we can only obtain marginal estimates.

The study has found that if the treatment say β̂, can be obtained using parallel

design data set, then surely, β̂ can be obtained using the crossover design data

set, but not vice versa. Moreover the treatment estimate β̂ obtained using the

crossover data set will be more consistent than the treatment estimate obtained

using the parallel design. We recommend that crossover designs be used in in-

fertility trials because it will surely benefit couples as couples will be have the

opportunity to try both treatments.
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Chapter 1

Introduction

1.1 Infertility

A woman is said to be infertile if she is unable to conceive while a man is

infertile if he is unable to impregnate. A couple is said to be infertile if either

a woman or a man is infertile. There are two types of infertility; primary and

secondary infertility. Primary infertility is when the couples have never had

a child while secondary infertility means that the couples have children but a

medical, emotional or physical condition is currently making conception difficult

or not possible. Infertility may also refer to the state of a woman who is unable

to carry a pregnancy to full term. Pregnancy is the result of a complex chain of

events. In order for a woman to get pregnant: Firstly, a woman must release an

egg from one of her ovaries (ovulation). This egg must go through a fallopian

tube and enter the uterus (womb). Secondly a man’s sperm must penetrate and

fertilize the egg along the way. The fertilized egg must attach to the inside of the

uterus (101; 102). In order to understand how pregnancy occurs we need to have

a basic understanding of the female reproductive system, which is illustrated in
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Fig 1.1 below. More details on the female reproductive system can be found in

(10) and (89).

Figure 1.1. Female reproductive system

A woman does not become pregnant immediately after having sex. Fig 1.2

illustrates the process of ovulation.

Figure 1.2. Illustrates the process of ovulation

A woman has two ovaries, and each month an egg is released from one of

them (102). This process is called ovulation, and it occurs approximately 14
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Figure 1.3. illustrates the process of fertilization

days before the onset of the next menstrual period [(12), (81)]. Evidence as to

how long after ovulation the human ovum can be fertilized agree on a maximum

duration of 48 hours (12). In order for pregnancy to begin, the egg must first

be fertilized by sperm, and then it must successfully implant in the lining of the

uterus (102). Sperm can fertilize the egg at any time as it travels from the ovary

to the uterus. Sperm can also wait several days in the fallopian tubes for an egg

to be released. Fig 1.3 illustrates the process of fertilization.

When a man and a woman have sex, the man ejaculates his sperm into the

woman’s vagina. The sperm then swim up through the uterus and into the fal-

lopian tubes (see top diagram). If the sperm meets the egg in the fallopian tube

fertilization can occur. For pregnancy to begin the fertilized egg must success-

fully implant in the uterus. If implantation is not successful, the woman passes

the fertilized egg during menstruation. Any interference that occurs during this

fertilization process may cause infertility.
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1.2 Prevalence of infertility

Exact figures about the prevalence of infertility are difficult to determine. The

best approximations are those which are derived from specific research studies

and the numbers of childless marriages. The latter is not in itself regarded as a

precise indicator as it is known that some 5% of the world’s married population

make a conscious decision to remain childless (76). It is apparent, however that

somewhere between 1 in 10 and 1 in 6 couples experience problems with their

fertility (49; 66). According to the National Center for Health Statistics of the

Centers for Disease Control and Prevention (20) about 12 percent of women

(7.3 million) in the United States aged 15 − 44 had difficulty getting pregnant.

Also, according to the two recent retrospective studies conducted in Aberdeen

[(95; 96)], 14.1% of women had experienced difficulties in the past in becoming

pregnant.

1.3 Causes of infertility

Factors such as age, stress, poor diet, athletic training, being overweight or

underweight, tobacco smoking, alcohol, sexually transmitted diseases (STDs)

and health problems that cause hormonal changes contribute considerably to

fertility problems in women. [(11),(14), (15),(64)] . For a man to be fertile he

must be able to produce an adequate amount of normal sperm. The sperm must

be able to fertilize the woman’s egg. Conditions that interfere with this process

can cause infertility in men. Sometimes a man is born with the problems that

affect his sperm. Other times problems start later in life due to illness or injury.

For example, cystic fibrosis often causes infertility in men .
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1.4 Infertility diagnosis

The cause of a couple’s infertility can be diagnosed by doing a complete fertil-

ity evaluation. This process usually begins with physical exams and health and

sexual histories. If there are no obvious problems, like poorly timed intercourse

or absence of ovulation, tests will be needed. For a man, sperm examination and

sperm count is commonly done. The number, shape, and movement of the sperm

is examined microscopically in the laboratory. Sometimes doctors also suggest

testing the level of a man’s hormones. For a woman, the first step in testing is

to find out if she is ovulating each month. A woman can track her ovulation at

home by: (i) recording changes in her morning body temperature (basal body

temperature) for several months, (ii) recording the texture of her cervical mucus

for several months, (iii) using a home ovulation test kit (available at drug or

grocery stores). Doctors can also check if a woman is ovulating by doing blood

tests and an ultrasound of the ovaries.

1.5 Infertility treatment

There are various treatments for infertility depending what the problem is.

Doctors recommend specific treatments for infertility based on test results, how

long the couple has been trying to get pregnant, the age of both the man and

woman, the overall health of the partners and preference of the partners. In-

trauterine insemination (IUI) is the commonest type of treatment for infertility

and is known by most people as artificial insemination. Several reviews article

((4), (13), (18), (22), (24), (39), (40), (64), (68), (70), (103)) have discussed and

compared intrauterine insemination (IUI) with other treatments.
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There is evidence from randomized trials to support the use of tamoxifen

citrate (16), clomiphene citrate (16; 47) and anastrozole (86) in women with

anovulatory infertility, though current best evidence suggests ovulation induc-

tion with gonadotrophins is an effective treatment for women with anovulatory

infertility (86). Currently there is no clear evidence of using any medication to

enhance male fertility (55).

1.6 Assisted reproductive technology

Assisted reproductive technology (ART ) is a general term referring to meth-

ods used to achieve conception by artificial means. Assisted reproductive tech-

nology (ART ) involves removing eggs from a woman’s body, mixing them with

sperm in the laboratory and putting the embryos back into a woman’s body.

Success rates vary and depend on many factors. Some things that affect the suc-

cess rate of assisted reproductive technology (ART ) include age of the partners,

reason for infertility, clinic, type of ART, if the egg is fresh or frozen, and if the

embryo is fresh or frozen. The U.S. Centers for Disease Prevention (CDC) (21)

collected success rates on ART for some fertility clinics. According to (21), the

average percentage of ART cycles that led to a healthy baby were as follows:

37.3% in women under the age of 35, 30.2% in women aged between 35 and 37,

20.2% in women aged between 37 and 40, and 11.0% in women aged between

41 and 42. Other methods of ART include Invitro fertilization (IV F ), Zygote

intrafallopian transfer (ZIFT ) or Tubal Embryo Transfer, Gamete intrafallop-

ian transfer (GIFT) and Intracytoplasmic sperm injection (ICSI). The most

common complication of ART is multiple fetuses. But this is a problem that

can be prevented or minimized in several different ways. The rapid development
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in assisted reproduction technology (ART) has provided infertile couples with a

variety of therapeutic options to achieve pregnancy (74).

1.7 Infertility designs

Two common and competing designs are available for assisted reproduction

technology (ART), the crossover design and the parallel design. Crossover de-

signs are trials in which patients are allocated to sequences of treatment with

the purpose of studying differences between individual treatments (17; 84). A

number of possible designs are available for the crossover studies. Under one

design a patient may initially be randomized to one treatment, subsequently al-

ternating treatment on each cycle. Alternatively, patients may initially receive

one treatment for several cycles before switching to another treatment. Besides

cross-over trials, there exists a parallel design. In a parallel design, a group of

randomly selected subjects receives one treatment, whereas a second group re-

ceives a different treatment until the outcome of interest occurs or the trial is

concluded.

1.8 Advantages of crossover designs

The crossover design to study the differences in treatments yields a more

efficient comparison of treatments than a parallel design. Subjects act as their

own controls, so the comparisons are usually based on within-patient variability

(which is usually less than the between-subject variability). For given power and

precision crossover designs require a smaller sample size Senn (84).
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1.9 Disadvantages of crossover designs

Despite the appeal of having each subject serve as his/her own control, crossover

studies have substantial weaknesses, as well. The potential problem in crossover

design is that carryover effects may bias the direct treatment effects. Carryover

effect is defined as the effect of the treatment from the previous time period on

the response at the current time period. It occurs when the effect of a treatment

given in the first time period persists into the second period and distorts the

effect of the second treatment (84). The incorporation of washout period in the

design can diminish the impact of carryover effects. A wash-out period is a period

in a trial during which the effect of a treatment given previously is believed to

disappear. The carry over effect should not be mistaken for the period effect.

A period effect is one that occurs in a given period, irrespective of the order

in which treatments are given. A carry-over effect has its origin in a preceding

treatment and is thus order-dependent (84).

Another disadvantage of the crossover design is to do with censoring. Cen-

soring can be a problem in crossover designs if a patient drops out of the trial

during the first treatment period. If a Patient drops out of the trial during the first

treatment period, then the other treatment will have no chance to demonstrate its

effectiveness in the second period. In addition, the likelihood of becoming preg-

nant may not be constant from one period to the next because women who fail to

conceive in the first period may have a lower probability of success in the second

period. Consequently, by pooling the data obtained over the two study periods,

a larger estimate of the effect of treatment is obtained than that with a paral-

lel design trial (52). Also mentioned in the literature in regard to the crossover

designs, is the problem of inconvenience to patients since patients are required
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to submit to a number of treatments and the total time they spend under ob-

servation will be longer. It should also be mentioned that this particular feature

can sometimes be turned to advantage in that it may be of interest for patient

to have the opportunity to try out a number of treatments for himself/herself in

order to gain personal experience of their effects (84).

1.10 Attitudes adopted towards carry-over and

period effects?

A previously recommended method of analysing cross-over designs was to

test for carryover, and if this was significant to discard the data from the second

period and analyse only the data from the first period as if from a parallel group

trial Grizzle (41). Senn et al. (85) do not recommend pre-testing of carryover

effects. In his article, Freeman (34) showed that this method of pre-testing carry

over leads to biased answers, as is generally the case when the choice between

two analyses depends on the the result of a preliminary hypothesis test. In his

book Senn (84) argued that the use of the crossover design is effectively built on

the assumption that there is minimal carryover of the effect of a treatment into

the next period. Following this philosophy, rather than testing for carryover, in

this dissertation we will proceed as if there were no carryover. We will include

parameters for period and estimate treatment and period effects simultaneously:

that is to say, estimate treatment in the presence of period effects and vice versa.
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1.11 Crossover design in Infertility trials

The commonest of crossover designs is the AB : BA crossover design in which

approximately half of the patients are first given treatment A and on a subsequent

occasion treatment B whereas the rest of the patients are first given treatment B

and on a subsequent occasion treatment A. In the standard AB : BA crossover

design setup, for every participant there must be two observations: observation

due to treatment A and observation due to treatment B. In this standard set

up, patients act as their own control. This standard crossover design represents

a special situation where there is not a separate comparison group. Also, since

the same subject receives both treatments, there is no possibility of covariate

imbalance. Contrast this with a parallel group design where some subjects get

the first treatment and different subjects get the second treatment. The standard

AB : BA crossover design (here and after will be called complete crossover design)

has the advantage of achieving the same level of precision as the parallel design

trial, but with half the number of patients because each patient contributes two

observations (one for each treatment). In the complete crossover design, between-

subject variation (which is inherent in a parallel design) is avoided because the

comparison of the two treatments occurs in the same patient. It is the difference

in outcomes within each patient that is the key observation, and these differences

are pooled and analyzed at the conclusion of the design. When pregnancy is

the outcome, patients who conceive in the first period are withdrawn from the

study and do not receive treatment in the second period. Therefore, the essential

within-subject comparison of the responses to the two treatments does not occur.

Censored patients do not provide information on the treatment they were not ex-

posed to, thereby not permitting the within patient comparison. However, in the

medical research setting, a crossover design offers several practical advantages.
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First, with a crossover design, all couples will be exposed to both treatments,

thus couples will be motivated to participate and to complete the entire trial.

Moreover, more couples will become pregnant in a crossover-design trial than in

a parallel-design trial (24; 64) because all couples are offered the most effective

treatment for half of the treatment period (This point is also illustrated analyti-

cally in page 21).

Since 1993, an extended and sometimes heated debate has been conducted on

the place of the crossover design in infertility trials. Daya (27) opened the debate

by stating that, in his opinion, the crossover design has no place in infertility

trials. Khan et al. (52) published the results of a meta-analysis comparing

the two designs, and concluded that within the existing literature there is an

overestimation of treatment effect in crossover trials compared with parallel trials.

However, the method used by Khan (52), was criticized by many statisticians

including te Velde (94), who later re-analyzed the data. In re-analyzing the data,

te Velde concluded that the over estimation found by Khan (52) is statistically

insignificant. Ananth and Rhoads (6) also criticized the method used by Khan

(52), claiming that the statistical method is inappropriate. Olive (75) agreed

that the crossover design will overestimate the treatment effects but suggested

that this may be due to inadequate statistical analysis. Cohlen (24), Norman

(74) and McDonnell (64) conducted a series of simulations to try to answer this

controversy.

Both crossover and parallel design had been extensively used in infertility tri-

als [(24),(23), (33), (39), (40), (43), (48), (51), (65), (70), (103)]. In cases where

parallel design was employed [(33), (39), (43), (65)], the statistical methods used

for analysis was appropriate. On the other hand in the articles where crossover de-

signs were employed [(24), (40), (51), (70), (103)], we feel that statistical method
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used is inappropriate for a cross over design.

In assisted reproduction technology (ART), women are allowed to conceive

only once. If a woman gets pregnant, the women is dropped from the trial. This

dissertation aims to investigate what actually is lost by not allowing women to

conceive twice. That is to say, what are we losing by moving from the com-

plete crossover design to the incomplete crossover design? Is having some of the

outcomes in the second period missing as good (may be worse) as having no

outcomes in the second period? i.e., is parallel design better (worse) than the

crossover design in infertility trials. We will illustrate how data set from the cross

over design in infertility trials is analyzed.

1.12 Motivation

We are motivated by the fact that even though crossover designs are exten-

sively used in infertility (24; 40; 48; 103), there are still some statisticians who feel

that the use of crossover design in infertility trials is inappropriate (27; 29; 45).

The critics of the use of crossover design in infertility trials, including Daya (27),

are concerned that women who become pregnant after the first treatment period

will leave the study. This will mean that data may not be available for within

patient comparison if crossover designs is used and pregnancy is the outcome

measure. We agree with them that the second outcome will be missing in the

event that the woman gets pregnant in the first period. It is surprising when they

put parallel design before the crossover trial with some outcomes in the second

period missing. This incomplete crossover has more information than the paral-

lel design. The question is if you were to choose between one set of data where

women are exposed to either A or B (parallel), and the other set of data where
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some women are exposed to both A and B, some are exposed to A only, and some

are exposed to B only, which data will you choose? We tend to believe that most

people will prefer the latter than the former, for the obvious reason that you are

told more of what is happening in a woman, with respect to the two treatments,

in the latter than in the former. Daya’s comments seem strange in view that as

statisticians, we will prefer to have more information than less. The crossover

design in the medical setup, will surely have some missing information on those

women who get pregnant on the first period, but will contain all the information

that is contained in the parallel design. So, the question is why in this scenario

do other statisticians like Daya opt for the data with less information.

Consider the complete crossover design data set in Table 1.1 below;

A B O B A O
0 0 n1 0 0 n5

0 1 n2 0 1 n6

1 0 n3 1 0 n7

1 1 n4 1 1 n8

Table 1.1. Complete crossover design data set

Note that this is a theoretical situation only. In practice some of the data

would be missing. It is clear that given the complete crossover data sets, one can

easily predict what would have happened if an infertility crossover design was

conducted. Basically, one can easily obtain the data set in Table 1.2 below;



1.12. MOTIVATION 14

A B O B A O
0 0 n1 0 0 n5

0 1 n2 0 1 n6

1 * n3 1 * n7

1 * n4 1 * n8

Table 1.2. infertility crossover design data set

Similarly given the incomplete crossover data sets, we can easily predict what

would have happened if the parallel design was followed. That is we can easily

get the data set in Table 1.3 below;

A B O B A O
0 * n1 0 * n5

0 * n2 0 * n6

1 * n3 1 * n7

1 * n4 1 * n8

Table 1.3. Parallel design data set

We were motivated by the way these three data sets look. Using Table 1.1,

Table1.2 and Table 1.3, we expect the preference of the data sets to be in the

following order: complete crossover data sets, followed by incomplete crossover

data sets and finally parallel design. Of course Table 1.1 is a theoretical option

only. To our surprise some statisticians prefer the data set in Table 1.3 more

than the data set in Table 1.2.

Over the past decade, the crossover design has gained popularity and is being

recommended for infertility research by many investigators [(24), (23),(64), (70),

(74),(103)]. In this section we will look at some of the articles where crossover

design has been used or recommended in assisted reproduction technology (ART).

We will begin by looking at the article by Zreik et al. (103).
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1.13 Review of Zreik’s Paper

In this section we will look at data from Zreik (103) based on a crossover

study to compare two methods of timing ovulation; Luteinizing hormone urine

test (LH monitoring) and transvaginal ultrasonography. Luteinizing hormone

urine test (LH) detects a rise in lutenizing hormone. Such a rise, or surge,

signals the ovary to release the egg. This at-home test is often used by women

to help predict ovulation. On the other hand, transvaginal ultrasonography is a

a painless, harmless test that uses sound waves to produce images of the organs

and structures of the body on a screen.

1.13.1 Trial Setup

The trial took place in September 1994 at the Yale Reproductive Medicine

Center, New Haven, Connecticut, USA. Initially, 61 infertile couples agreed to

participate, but later seven couples were excluded from the analysis for fail-

ure to return or for declining crossover during the study after randomization.

Thirty-two patients with unexplained infertility or mild endometriosis, 15 pa-

tients with anovulation, and 7 patients with mild male factor infertility were

enrolled. Anovulation is absence of ovulation when it would be normally ex-

pected.

The mean age of the women was 33 years with the youngest being 24 years

and the oldest being 41 years. Patients underwent a complete infertility eval-

uation. Unexplained infertility was defined as normal findings in the infertility

evaluation and included normal laparoscopic findings or minimal endometriosis.

Direct laparoscopic visualization with or without biopsy of suspicious lesions was
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used to confirm endometriosis.

Patients were randomized by the use of a computer generated random number

table; the assignment was not known to the treating physician or the patient until

consent was obtained. The patients were randomized to either group 1 or group

2. Patients randomized to group 1 began with protocol A, whereas patients ran-

domized to group 2 began with protocol B. In protocol A, Luteinizing hormone

urine test was used to time ovulation. Urinary LH levels were determined daily

with the use of commercial kits (ovuQuick, Quidel, San Diego, CA), starting on

day 10 of the cycle and discarding the first morning void. When urinary LH was

detected, intrauterine inseminations (IUI) were performed daily for the next 2

days. In protocol B, ultrasound monitoring of folliculogenesis, starting on day

10 of the cycle, was performed until a leading follicle of ≥ 18mm was noted, at

which human chronic gonadotropin (hCG) of 10, 000 IU was given intramuscu-

larly and intrauterine inseminations (IUI) were performed daily for the next 2

days. If no pregnancy occurred, the couple crossed over to the alternative proto-

col for the next cycle, with couples having at most four cycles. For each couple

, the number of LH and hCG treatments and pregnancy status were recorded.

Pregnancy rate per cycle was calculated as the ratio of the number of couples

pregnant to the number of cycles in a protocol. Fisher’s exact test was used

to compare the pregnancy rates per cycle between the two protocols in each of

the three diagnostic groups (unexplained infertility, male factor infertility, and

anovulatory infertility).
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1.13.2 Results and Data analysis

The couples contributed 142 cycles of which one was excluded because of

failure of compliance by a patient randomized to urinary LH monitoring. Six

couples conceived. The data from each individual cycle in the three different

groups (male factor, anovulation, and unexplained infertility) are tabulated in

Table 1.4 below (103):

Cycle no Protocol Unexplained Anovulation Male factor Total

1 hCG 1
18

0
8

1
2

2
28

LH 1
13

0
7

0
5

1
25

2 hCG 0
10

0
5

0
4

0
19

LH 1
15

0
5

0
1

1
21

3 hCG 0
8

0
3

0
0

0
11

LH 1
9

0
3

0
3

1
15

4 hCG 0
8

0
3

0
3

0
14

LH 1
5

0
3

0
0

1
8

Total 5
86

0
37

1
18

6
141

Table 1.4. Pregnancies obtained in each cycle with the two protocols

The first thing that (103) did was to stratify the data according to the infertil-

ity status and test if there is any association between the protocol and pregnancy

(i.e.. they adjusted for the infertility status). The number of couples conceived

(not conceived) under each infertility status was recorded. The 2× 2 tables were

constructed for each infertility case as shown below:
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LH hCG
Pregnant 0 1

Not Pregnant 9 8

Table 1.5. Male Factor Infertility

LH hCG
Pregnant 0 0

Not Pregnant 18 19

Table 1.6. Anovulation Infertility

LH hCG
Pregnant 4 1

Not Pregnant 38 43

Table 1.7. Unexplained Infertility

Fisher’s exact test was used to test if there is any association between the

outcome and the protocol. The authors found no statistically significant differ-

ences between the two protocols. However we take issue with their method of

calculation. Fisher’s exact test is valid only if say N patients were randomly al-

located to one treatment groups (hCG)and M patients to the other (LH). That

is to say that, Fisher’s Exact test was going to be the appropriate measure if say

from Table 1.5, nine patients were randomly allocated to LH protocol and the

other nine patients were randomly allocated to the hCG protocol. Thus Fisher’s

Exact test is valid in parallel design, not in cross over design.

1.14 Review of Cohlen’s Paper

In their article Cohlen and his group considered a hypothetical population

of subfertile couples. The population was divided into 2 equal groups and was
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assigned to either treatment A or treatment B. After randomization, each group

received either treatment A or treatment B continuously (parallel design) or

alternated between the treatment modalities (crossover design). Each couple was

offered a maximum of n = 6 treatment cycles. It was assumed that there is no

carry over effects, no period effect, and no dropouts. Couples dropout if and

only if they are pregnant. The expectations were used to estimate the per cycle

probability of conception. The objective was to determine whether a crossover

design results in a different estimate of treatment effect compared with a parallel

design.

Table 1.8 below shows the number of couples who would have become pregnant

after each treatment cycle in either parallel or crossover design trial. The total

number of all couples is 2m = 2000.

Table 1.8. Expected number of pregnant couples, pregnancy rate per cycle, and
odds ratio after each treatment cycle when a homogenous population of 2000
couples participates in a parallel or crossover design trial

Let pA be the probability of conception under treatment A, and let 1−pA = qA

be the probability of failing to conceive under treatmentA. Similarly we can define

pB and qB. If the population is homogenous, we immediately observe that, under

parallel design, we can easily deduce the following (i) the expected proportion of

women pregnant at the end of the trial is
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1− qn
A+qn

B

2
qA = 1− pA, qB = 1− pB

(ii) the expected total number of cycles involved under A, at the end of the trial

is given by the expression

TA = m ∗ [
∑n

i=1 q
i−1
A ]

(iii) if p̂A is the ratio of the expected number of pregnancies to the expected total

follow up time (no of cycles) as in (23), then p̂A = pA.

Similarly, it can be shown that in the crossover designs, the expected propor-

tion of women pregnant undergoing treatment A is

pA(1 + qB)
∑n

2
i=1(qAqB)i−1

and the expected proportion of women pregnant undergoing treatment B is

pB(1 + qA)
∑n

2
i=1(qAqB)i−1.

While the expected number of cycles under treatment A is given by

m ∗ (1 + qB)
∑n

2
−1

i=0 (qAqB)i

and the expected number of cycles under treatment B is given by

m ∗ (1 + qA)
∑n

2
−1

i=0 (qAqB)i

In addition

p̂A =
pA(1+qB)

Pn
2
i=1(qAqB)i−1

(1+qB)
Pn

2−1

i=0 (qAqB)i
=

pA
Pn

2
i=1(qAqB)i−1

Pn
2
i=1(qAqB)i−1

= pA
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and

p̂B =
pB(1+qA)

Pn
2
i=1(qAqB)i−1

(1+qA)
Pn

2−1

i=0 (qAqB)i
=

pB
Pn

2
i=1(qAqB)i−1

Pn
2
i=1(qAqB)i−1

= pB.

Clearly, the estimates above are unbiased.

Under this method, it is clearly observed that, the expected number of preg-

nancies in the crossover trial is greater or equal to the number of pregnancies in

the parallel trial since,

4 = (1− q
n
2
A q

n
2
B )− (1− qn

A+qn
B

2
)

= 1
2
(q

n
2
A − q

n
2
B )2 ≥ 0.

The equality holds if and only if the two treatments are equivalent.

We will show that in the most effective treatment, crossover design produce

more pregnancies than parallel design. While in the least effective treatment

the situation is reversed. Suppose B is the most effective treatment, while A is

the least effective treatment. Under crossover design, the proportion of women

pregnant due to treatment B is given by

[

n
2∑

i=1

[qi−1
B pBq

i
A + qi−1

B pBq
i−1
A ] (1.1)

while under parallel design, the expected proportion of women pregnant due to

treatment B is

1− qn
B (1.2)

We will prove by induction on n (n even number). We will show that it holds for
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n = 2. For n = 2, (1.1) becomes

pBqA + pB. (1.3)

While (1.2) becomes

1− q2
B = (1− qB)(1 + qB) = pB + pBqB. (1.4)

Clearly (1.3)>(1.4), since qA > qB.

Now we assume that (1.1)>(1.2), for any integer n = 2, 4, 6...2x. We will show

that (1.1) > (1.2), for n = 2x+ 2. But for n = 2x+ 2, (1.1) becomes

x+1∑
i=1

pBq
i−1
B qi−1

A (1 + qA) =
x∑

i=1

pBq
i−1
B qi−1

A (1 + qA) + pBq
x
Bq

x
A(1 + qA) (1.5)

while (1.2) becomes

1− q2x+2
B = (1− qB)

2x+2∑
i=1

qi−1
B = pB

2x∑
i=1

qi−1
B + pBq

2x
B (1 + qB) (1.6)

clearly (1.5) > (1.6), since qA > qB. Thus by induction we have proved that (1.1)

is always greater than (1.2). Hence, in the most effective treatment, the expected

number of pregnancies under crossover is greater than the expected number of

pregnancies under parallel design (which was to be proved).

Similarly it can be shown that in the least effective treatment, the expected

number of pregnancies under parallel is greater than the expected number of

pregnancies under crossover design.

Hence we can immediately get Cohlen’s results as follows: In their article

Cohlen and his group began with pA = 0.1 and pB = 0.2. The sample size is
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2000. Each couple was offered a maximum of six treatments. Thus the estimated

per cycle probability of pregnancy for treatment A is given by

p̂A = 1−0.96
P6

k=1 0.9i−1 = 0.468559
4.68559

= 0.1 = pA.

Similarly it could be verified that p̂B = pB = 0.2.

Under a crossover trial

p̂A =
[
P3

n=1[qn−1
A pAqn

B+qn−1
A pAqn−1

B ]

[
(1−q3

A
q3
B

)(1+qB)

1−qAqB
]

= 0.402912
4.02912

= 0.1 = pA.

Similarly, p̂B = pB = 0.2

However crossover results in more pregnancies

2000 ∗ [pA(1 + qB) + pB(1 + qA)] ∗
P3

i=1(qAqB)i−1

2
= 1254

pregnancies compared to

2000 ∗ (1− 0.96+0.86

2
) = 1206

pregnancies in the parallel design. This difference is due to the different designs

and not to overestimation of the treatment effect. Crossover designs will produce

more pregnancies than parallel designs simply because couples are exposed to

both treatments for half of the time of trial. Crossover design results in more

pregnancies with the most effective treatment (1000∗pB(1+qA)∗
∑3

i=1(qAqB)i−1 =

851 versus 1000 ∗ (1− q6
B) = 738) and a fewer pregnancies with the least effective

treatment (1000 ∗ pA(1 + qB) ∗
∑3

i=1(qAqB)i−1 = 403 versus 1000(1− q6
A) = 469).

In analyzing the data, Cohlen (23) estimated the treatment (protocol) effect

by the pregnancy rate per cycle, which is defined as the number of couples preg-

nant divided by the number of cycles in a trial. This measure pays more attention
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to the couples who stayed longer in the trial. The couples who stayed longer in

the trial contributes more information to this kind of measure as compared to

the couples who conceived in early stages of the trial. Clearly this may not be

the correct measure of treatment effect. As an example consider a scenario where

11 couples goes under an assisted reproduction technology, with couples having

at most ten cycles. Suppose ten couples conceived in the first period, and the re-

maining one couple did not conceive at the end of the trial. Thus the contributed

number of cycles is 20 and the number of pregnancies is 10, hence the pregnancy

rate per cycle is 10
20

= 0.5. This clearly does not tell us that almost all couples

conceived in the first period. For this population of 11 couples a pregnancy rate

of anything in the neighborhood of 0.99 will be more plausible than 0.5. We

really have an issue with this kind of measure. But the measure is not bad for

descriptive statistics.

1.15 Review of Mcdonnell’s Paper

McDonnell’s aim was to see if the design structure and/or the presence of

carryover effects lead to a bias in the statistical analysis, leading to possible

under/overestimation of treatments effects. The probability of conception was

assumed to be logistic and only depends on age and treatment applied.

The authors used a simulation approach to follow the progress of two theoret-

ical cohorts entering into a trial comparing IUI = 0 and IV F = 1. The progress

of the two cohorts was simulated under both the parallel and crossover designs.

In the parallel arm, couples initially are assigned randomly to one treatment,

staying with that treatment until leaving the trial. In the crossover arm, couples

are initially assigned to one treatment, switching treatments in subsequent cycles.
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Each couple was offered a maximum of six treatment cycles. The following four

assumptions were considered.

(i) no couples dropped out (no censoring) and the treatment had no effect

on the following cycle (no carryover effect); (ii) no censoring but there was a

carryover effect; (iii) couples could be censored, but there was no carryover effect;

and (iv) both censoring and carry over effects were present.

Under no-carryover and no-censoring scenarios, the per cycle probability of

pregnancy is

p1(age, treat) = exp(µ(age,treat))
1+exp(µ(age,treat))

.

In the carryover scenarios, the per cycle probability of pregnancy is

p2(age, treat, ptreat) = exp(µ(age,treat)−ln(1.5)×ptreat
1+exp(µ(age,treat)−ln(1.5)×ptreat

.

In scenarios involving censoring, the probability of censoring was

p3(treat) = exp(η(treat))
1+exp(η(treat))

.

where

η(treat) = −3.073850 + 1.361340× treat

µ(age, treat) = −0.321865− 6.146251× age+ 0.330317× treat

And

ptreat = 1, if the previous treatment applied was IV F , otherwise ptreat = 0.

Also for any probability of conception pi, {i = 1, 2, 3} we define qi = 1− pi.
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The age of the female patient was randomly generated using the formula

Age = 25× 1.6U

where U is a random variable uniformly distributed on [0,1]. We will like point out

that the purpose of this section is to reproduce the author’s results analytically

(or to estimate the results analytically). The cumulative distribution of age will

be

G(age) = P (Age < age) = P (25(1.6)U < age) = P (U <
ln age

25

ln 1.6
) =

ln age
25

ln 1.6

Hence the probability distribution of age is given by

f(age) = d(G(age))
dage

= 1
age ln 1.6

, for 24 < age < 40, and zero elsewhere.

Thus the median age is given

M = 25 ∗ 1.60.5 = 31.62278

Hence their population consists of women with ages between 25 and 40 only, with

relatively more younger women than older women. A situation not dissimilar to

that seen in practice.

Using the assumptions from (64), under no carryover effects and no censoring,

we should expect the proportions of couples achieving pregnancy under parallel

design and crossover design to be

40∫
25

1− {q1(age, 0)q1(age, 1)}6

2
f(age)dage (1.7)
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and
40∫

25

1− {q1(age, 0)q1(age, 1)}3f(age)dage. (1.8)

respectively.

Under a parallel design, for the carryover scenario, we should expect the

proportions of couples achieving pregnancy due to IUI and IV F to be

40∫
25

[p1(age, 0)
6∑

n=1

q2(age, 0, 0)n−1f(age)]dage (1.9)

and

40∫
25

[p1(age, 1) + p2(age, 1, 1)q1(age, 1)
5∑

n=1

q2(age, 1, 1)n−1f(age)]dage (1.10)

respectively.

Similarly, under the crossover design, the proportion of women achieving preg-

nancy due to IUI and IV F are

∫ 40

25
[p1(age, 0) +

q1(age, 0)q2(age, 1, 0)p2(age, 0)
∑2

n=1{q2(age, 0, 1)q2(age, 1, 0)}n−1]f(age)dage

+

40∫
25

[q1(age, 1)p2(age, 0, 1)
3∑

n=1

{q2(age, 0, 1)q2(age, 1, 0)}n−1f(age)]dage (1.11)

and

∫ 40

25
p1(age, 1) +

q1(age, 1)q2(age, 0, 1)p2(age, 1, 0)
∑2

n=1{q2(age, 1, 0)q2(age, 0, 1)}n−1f9age)dage

+

40∫
25

q1(age, 0)p2(age, 1, 0)
3∑

n=1

{q2(age, 1, 0)q2(age, 0, 1)}n−1f(age)dage (1.12)
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respectively.

If we consider the censoring scenario, under parallel design the proportion of

women achieving pregnancy due to IUI and IV F are

40∫
25

p1(age, 0)
6∑

n=1

{q1(age, 0)q3(0)}n−1)f(age)dage (1.13)

and
40∫

25

p1(age, 1)
6∑

n=1

{q1(age, 1)q3(1)}n−1)f(age)dage (1.14)

respectively.

Similarly, under the crossover design, the proportion of women achieving preg-

nancy due to IUI and IV F are

∫ 40

25
p1(age, 0)

∑3
n=1{q1(age, 0)q3(0)q1(age, 1)q3(1)}n−1)f(age)dage

+

40∫
25

p1(age, 0)q1(age, 1)q3(1)
3∑

n=1

{q1(age, 0)q3(0)q1(age, 1)q3(1)}n−1)f(age)dage

(1.15)

and

∫ 40

25
p1(age, 1)

∑3
n=1{q1(age, 0)q3(0)q1(age, 1)q3(1)}n−1)f(age)dage

+

40∫
25

p1(age, 1)q1(age, 0)q3(0)
3∑

n=1

{q1(age, 0)q3(0)q1(age, 1)q3(1)}n−1)f(age)dage

(1.16)

respectively.

Finally if we consider the scenario involving both censoring and carryover

effect, we observe that under parallel design, the proportion of women achieving

pregnancy due to IUI is the same as in the scenario where we have censoring
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only. Whereas the proportion of women achieving pregnancy under IV F is

40∫
25

[p1(age, 1) + q1(age, 1)q3(1)p2(age, 1, 1)
5∑

n=1

{q2(age, 1, 1)q3(1)}n−1f(age)]dage

(1.17)

In the crossover arm, the proportion of women achieving pregnancy due to IUI

and IV F are

∫ 40

25
p1(age, 0) +

q1(age, 0)q3(0)q2(age, 1, 0)q3(1)p2(age, 0, 1)
∑2

n=1{q2(age, 0, 1)q2(age, 1, 0)q3(0)q3(1)}n−1

+

40∫
25

q1(age, 1)q3(1)p2(age, 0, 1)
3∑

n=1

{q2(age, 0, 1)q2(age, 1, 0)q3(0)q3(1)}n−1f(age)dage

(1.18)

and

∫ 40

25
p1(age, 1) +

q1(age, 1)q3(1)q2(age, 0, 1)q3(0)p2(age, 1, 0)
∑2

n=1{q2(age, 1, 0)q2(age, 0, 1)q3(1)q3(0)}n−1

+

40∫
25

q1(age, 0)q3(0)p2(age, 1, 0)
3∑

n=1

{q2(age, 1, 0)q2(age, 0, 1)q3(1)q3(1)}n−1f(age)dage

(1.19)

Equations 1.7,1.8, 1.9,...,1.19 can be used to reproduce or estimate the results

obtained by the authors.

1.15.1 Results

Table 1.9 below shows the simulation results obtained by McDonnell (64).

The results obtained by evaluating expressions 1.7−1.117 are shown in brackets.
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censoring carryover state parallel crossover
no no pregnant 49.6 (49.8) 50.4 (50.1)
no yes pregnant 48.0 (47.9) 48.5 (48.6)
yes no pregnant 40.4 (40.4) 40.8 (40.8)
yes yes pregnant 39.3 (39.1) 39.6 (39.6)

Table 1.9. Proportion of patients (as percentage) achieving pregnancy or drop-
ping out under each of the four baseline scenarios

The crossover design results in an increase in the pregnancy rate, as expected

from expressions above. This increase remains small under other assumptions.

Mcdonnell’s results agree with our theoretical results. But we have a problem

with the model used by these authors. The authors made a very strong assump-

tion of independence of cycles within a couple. This strikes us as being bizarre

since outcomes from the same subject are expected to be correlated. The as-

sumption of independence of cycles within a patient, makes the likelihoods of the

two designs to be the same.

1.16 Overview of later chapters

In the remaining chapters of this dissertation, Chapter 2 provides some back-

ground on the statistical methods used for modeling binary outcomes, reviews

standard logistic and mixed effects logistic regression and their corresponding

parameter estimation including the Hermite quadrature method. Chapter 3 de-

scribes how to estimate the parameters in the crossover design and how to com-

pare estimates obtained from crossover design to estimate obtained from the

parallel design. Chapter 4 will discuss how in practice the crossover trials should
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be analyzed using the current available statistical packages. Finally we discuss

our findings in chapter 5.



Chapter 2

Mixed-Effects Regression Model

for Binary Outcomes

This chapter introduces and defines the mixed-effects regression model that is

used throughout the dissertation. We begin by discussing the mixed-effects logis-

tic regression for longitudinal (clustered) binary data. A full maximum marginal

likelihood solution is illustrated for the parameter estimation. In this solution,

the quadrature method is used to numerically integrate over the distribution of

the random-effects.

2.1 Overview

Logistic regression is like linear regression described in Neter et al. (72) in

that it is a method for modeling the effect of predictor variables on a response

variable. The difference is that the response variable is binary; e.g. dead or alive,

disease or non-diseased, exposed or unexposed, pregnant or not pregnant.

32
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Usually, binary data result from a nonlinear relationship between the proba-

bility of success p = p(x) and the covariates x associated with the binary outcome.

A fixed change in the covariate x often has less impact when the probability of

success p is near 0 or 1 than when p is near 0.5. In the assisted reproduction tech-

nology (ART), suppose that the probability p(x) of enrolling in the ART course

of treatments depends on the annual family income x. An increase of £36, 000

in annual income would have less effect when x = £500, 000 (for which p(x) is

near 1) than when x = £50, 000.

In practice, nonlinear relationships between p and x are often monotonic, with

p increasing continuously or p decreasing continuously as x increases. The most

important curve with this kind of behavior is the logistic curve, described more

extensively in Agresti (1). It is used in many areas such as health care research

and biomedical studies (9).

Logistic regression is a widely accepted technique for describing the relation-

ship between a categorical outcome and a set of explanatory variables. The

response variable is usually dichotomous or binary, but it may be polytomous,

that is, have more than two response levels. These multiple-level response vari-

ables can be nominally or ordinally scaled. To provide a statistical foundation

for mixed effects generalization of the logistic regression model, we now present

an overview of the standard logistic regression model when the response is di-

chotomous.



2.2. LOGISTIC MODEL 34

2.2 Logistic Model

To formulate the logistic model, let pi represent the probability of a positive

outcome (i.e., Yi = 1) for the ith individual. The probability of a negative

outcome (i.e., Yi = 0) is then 1 − pi. Denote the set of covariates as xi =

(1, xi1, ..., xip), where β = (β0, β1, ..., βp)
′ is a (p+ 1)× 1 vector of corresponding

regression coefficients. Then the logistic regression model has the form

log
pi

1− pi

= x′iβ, (2.1)

where the expression on the left-hand side is referred to as the logit or log-odds

of a 1 response. The logit transformation linearizes the relationship between p(x)

and the covariates x. It is also worth mentioning that the log-odds for a 1 response

takes on values −∞ ≤ logitp(x) ≤ ∞. In logistic regression, the logit is called the

link function because it maps the (0, 1) range of probabilities unto the (−∞,∞)

range of linear predictors. There are alternative models for dichotomous response

variables (e.g. the probit regression model). One reason for the popularity of the

logit model is that the coefficients have a simple interpretation in terms of the

odds ratios. The odds of a 1 response is

pi

1− pi

= exp(x′iβ). (2.2)

Note that the relationship between the odds and the predictor variable x is non-

linear.
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The logit model 2.1, can be rewritten in terms of the probability of a 1 re-

sponse, such that

pi =
exp(x′iβ)

1 + exp(x′iβ)
=

1

1 + exp(−x′iβ)
= Ψ(−x′iβ), (2.3)

where Ψ(.) is the logistic cumulative distribution function, namely

Ψ(z) =
1

1 + exp(−z)
, (2.4)

which implies that 0 ≤ p(x) ≤ 1; also a nonlinear function of the predictors.

More details regarding the logistic regression can be found in Agresti (1) and

Neter et al. (72).

2.2.1 Interpretation of parameters

The quantity β0 in equation 2.1 is the log odds of a positive outcome for an

individual with a set of covariates xi = 0. The parameter βp is the increment in

the log odds for a unit change in xp holding all other covariates constant. The

quantity exp(βp) is an odds ratio for the regressors, namely the ratio of the odds

of a positive response for a unit change in x. For more understanding on the

interpretation of the parameters in the logistic regression model, Allison (5) and

Stokes et al. (92) are strongly recommended.

As we know from Agresti (1) that the 95% Wald confidence interval for a

given regression parameter is

β̂ ± z0.975 × se(β̂).

We would like to find a comparable confidence interval for the estimated odds
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ratios. In particular suppose that we want a confidence interval for the esti-

mated odds ratio exp(βp). The 95% Wald confidence interval for the odds ratio

is computed as

exp(βp ± z0.975 × se(βp)).

That is, we compute the 95% Wald confidence interval for βp and exponentiate

the result.

2.2.2 Model Assumptions

If the dichotomous random variable Y represents the outcome from an in-

dividual subject then (i) the Y values are independent and take on values of

either 0 or 1. (ii) The variable Y has a binomial distribution with n = 1

and p(x) = exp(x′β)
1+exp(x′β)

= 1
1+exp(−x′β)

. Therefore E(Y |x) = p(x) = exp(x′β)
1+exp(x′β)

=

1
1+exp(−x′β)

and V ar(Y |x) = p(x)(1 − p(x)). That is, the conditional distribu-

tion of the response variable Y follows a binomial distribution with probability

given by the conditional mean p(x). (iii) The conditional mean is modeled as

p(x) = exp(x′β)
1+exp(x′β)

= 1
1+exp(−x′β)

. (iv) The x are measured without error.

In summary, the conditional mean of the regression equation must be for-

mulated to be bounded between 0 and 1. The logistic model has this property

and the parameters in the logistic model have a natural interpretation in terms

of the odds ratio. Also the binomial, not the normal (as in linear regression),

distribution describes the distribution of the errors and will be the statistical dis-

tribution upon which the analysis is based. The principles that guide an analysis

using linear regression in Neter et al. (72) will also guide us in logistic regression.
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2.2.3 Maximum Likelihood for Logistic Regression

Just as in simple linear regression, the data will be a sample of say m in-

dependent observations. In the case of p predictor variables, the data are given

by

(x1, Y1), (x2, Y2), ...(xm, Ym),

where Yi represents the value of the dichotomous response variable and xi =

(xi1, ..., xip) is the value of the predictor variables for the ith subject. Furthermore,

assume that the response variable has been coded as 0 or 1, representing the

absence (0) or the presence (1) of the event, respectively.

In simple linear regression it was assumed in Neter et al. (72) that

E(Y |X) = β0 + β1X,

and used least-squares to estimate the parameters (β0, β1, σ
2) that minimized the

sum of squares

∑
(Yi − β0 − β1X)2.

For many reasons, this will not work for logistic regression. In the model 2.1

with Yi ∼ Binomial(1, pi(x)), we no longer have a direct connection between Yi

and xiβ (which is why we need a link function). The estimation method that is

most commonly used is maximum likelihood to obtain parameter estimates. The

function for the conditional probability

Pr(Yi = 1|x) =
exp(x′iβ)

1 + exp(x′iβ)
= Ψ(−x′iβ), (2.5)
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implies that

Pr(Yi = 0|x) =
1

1 + exp(x′iβ)
= 1−Ψ(−x′iβ). (2.6)

Thus, for those pairs (xi, Yi) where Yi = 1 the contribution to the likelihood

function is Ψ(−x′iβ), and for those pairs (xi, Yi) where Yi = 0 the contribution to

the likelihood function is 1−Ψ(−x′iβ). A general way for describing the likelihood

for a single observation is

Pr(Yi) = ΨYi [1−Ψ]1−Yi . (2.7)

To see why, note that when Yi = 1 the result is

Ψ1[1−Ψ]0 = Ψ

and when Yi = 0 the result is

Ψ0[1−Ψ]1−0 = 1−Ψ.

Because the observations are assumed to be independent, following Hogg and

Craig (46), the likelihood function for a sample of m independent observations is

obtained as the product of the individual terms for each observation or

L =
m∏

i=1

ΨYi [1−Ψ]1−Yi . (2.8)

It is easier to manipulate the log of the likelihood function

logL =
m∑

i=1

[YilogΨi + (1− Yi)log(1−Ψi)]. (2.9)
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If we choose the values of the parameters that maximize the log of the likelihood

those same values will also maximize the likelihood. To obtain the likelihood

estimates, we therefore have to take the partial derivatives of logL with respect

β, set the derivatives equal to zero and solve for β. Differentiating the log likeli-

hood function 2.9 with respect to β yields the first derivatives for the maximum

likelihood (ML) solution:

∂logL

∂β
=

m∑
i=1

(Yi −Ψi)xi = 0. (2.10)

This result is due to the fact that for the logistic distribution ∂Ψ(.) = Ψ(.)(1 −

Ψ(.)). Note that

∂logL
∂β

=

(
∂logL
∂β0

∂logL
∂β1

. . . ∂logL
∂βp

)

is a vector. In the simple case of a linear effect, for one predictor variable there

are two parameters to estimate, β0 and β1. The two resulting equations from

equation 2.10 are

∂logL
∂β0

=
∑m

i=1(Yi −Ψi) = 0

and

∂logL
∂β1

=
∑m

i=1(Yi −Ψi)xi = 0.

These are not linear in the parameters. Hence iterative methods are required

to solve them (1; 44). The Newton-Raphson method is an iterative method

for solving nonlinear equations. To implement the Newton-Raphson method we

require the second partial derivatives of log likelihood function 2.9. The second
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partial derivatives are obtained as

∂2logL

∂β∂β′
= −

m∑
i=1

Ψ(1−Ψi)xix
′
i. (2.11)

Note that ∂2logL
∂β∂β′

is a matrix called the Hessian matrix. In the Newton-Raphson

method, provisional estimates for the vector of parameters β on iteration ı are

improved by

βı+1 = βı −
∂logL

∂βı

(
∂2logL

∂βı∂β′ı
)−1. (2.12)

This iterations continue until the changes in the parameter estimates and/or

likelihood value are sufficiently small. At this point the solution is said to have

converged, and the large-sample variance-covariance matrix of the maximum like-

lihood estimator is then obtained as the negative inverse of the matrix of sec-

ond derivatives. Standard errors of the parameter estimates are obtained as the

square root values of the diagonal entries of this (negative inverse) matrix. The

maximum likelihood estimates and their accompanying standard errors can be

used to compute asymptotic z−statistics (i.e., Wald statistics) or construct con-

fidence intervals. More discussion regarding this maximum likelihood estimation

procedure and iterative algorithm can be found in (1; 19; 28; 44) and (63).

2.2.4 Goodness of fit

Once the model has been applied, we need to assess how well it fits the data,

or how close the model predicted values are to the corresponding values. Test

statistics that assess fit in this manner are known as goodness-of-fit statistics.

They address the difference between observed and predicted values, or their ra-

tio, in some appropriate manner. Departures of the predicted proportions from
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the observed proportions should be essentially random. The test statistics have

approximate chi-square distributions when the sample size is sufficiently large.

Two traditional goodness-of-fit tests are the Pearson chi-square and the likelihood

ratio chi-square, also known as the deviance.

2.2.5 Statistical software

Several procedures in the statistical software can be used to perform logistic

regression, including the LOGISTIC procedure, the CATMOD procedure, and

the GENMOD procedure in SAS c©. The LOGISTIC procedure is designed

primarily for logistic regression analysis and it provides useful information such as

odds ratio estimates and model diagnosis. The CATMOD procedure is a general

procedure designed to fit models to functions of categorical response variables.

PROC GEMOD is a procedure for analyzing generalized linear models, of

which logistic is a simple case. Other statistical software which are capable of

performing logistic regression include MathCad c©, R c©, and S-plus c©. In this

section, attention is focused, with the help of an example, on the use of the

MathCad c© software and on the use of the PROC LOGISTIC procedure in

SAS c© to perform logistic regression.

2.3 Example

The following example, from Antinori (8) is based on a study to investigate

if higher pregnancy rates may be achieved by increasing the number of embryos

transferred. The success of IV F depends on three major factors: embryo quality,

the number of embryos transferred and uterine receptivity. Some authors have
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claimed that higher pregnancy rates may be achieved by increasing the number

of embryos transferred, while others have found no such linear correlation and

recommend that the number of embryos transferred be reduced to two or three

to decrease the possibility of multiple implantation.

To investigate these assertions, Antinori (8) compared two groups of patients

who failed at least three previous IV F attempts: Group A consists of 89 patients

and group B consists of 92 patients. Patients in group A received at least four

embryos while patients in group B received up to three embryos. The two groups

were similar in age, the duration of infertility, the number of previous IV F at-

tempts and the indication for IV F . Embryo quality was similar for both groups.

The resulting number of clinical pregnancies reached 46 in group A and 26 in

group B.

We will illustrate on how to analyze this using the logistic model defined

above. We employ the model

logit(pij) = β0 + β1embryo.

The variable embryo takes the value 1 if patient receive at least four embryos

and is 0 otherwise. The quantity β0 is the log odds of pregnancy for patients who

received up to three embryos. Since patients who received up to three embryos

are described by the intercept, this group is known as the reference cell in this

model. The parameter β1 is the increment in log odds for patients who received

at least four embryos. Table 2.1 displays the probabilities and odds predicted by

this model.

We can calculate the odds ratio for patients who received at least four embryos

versus patients who received at most three embryos by forming the corresponding

ratio of the odds of pregnancy namely, eβ0+β1

eβ0
= eβ1 . Thus we can obtain odds
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Embryo pij Odds of pregnancy

< 4 eβ0

1+eβ0
eβ0

≥ 4 eβ0+β1

1+eβ0+β1
eβ0+β1

Table 2.1. Model-Predicted Probabilities and Odds

as functions of the model in logistic regression.

To employ the maximum likelihood estimation procedure illustrated above,

we will need to construct the likelihood for the data in Table 2.1. From Table

2.1, we can immediately get the contributions to the log likelihood as follows:

Patients who received at most three embryos contribute to the log likelihood;

L1(β0, β1) = 26 ln( 1
1+e−β0

) + 66 ln( 1
1+eβ0

),

while patients who received at least four embryos with contribute

L2(β0, β1) = 46 ln( 1
1+e−β0−β1

) + 43 ln( 1
1+eβ0+β1

).

The total log-likelihood is given by

L(β0, β1) = L1(β0, β1) + L2(β0, β1) (2.13)

2.3.1 Analysis using MathCad c©

The following MathCad c© code will maximize L(β0, β1) and produce the max-

imum likelihood estimates (MLE) of β0, and β1,.

ORIGIN:= 1

L(β0, β1) := L1(β0, β1) + L2(β0, β1)
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β0 := 0.9 β1 := 1

Maximize(L, β0, β1)

The first step ORIGIN:=1 confirms that any counting done must begin at 1.

By default, MathCad c© begins counting at 0. The second step defines the function

to be maximized, which is the log likelihood L(β0, β1). The third step defines the

starting values of the parameters to be estimated. MathCad c© is not sensitive

to the choice of the starting values. However in chapter 4 we will illustrated

how in general the starting values can be estimated. The Maximize command

will produce the maximum likelihood estimates (MLE) of the defined function.

Mathcad c© uses a variety of optimization techniques. If the problem is linear,

the Linear method is applied. If Quadratic, the Quadratic method is used (if the

Solving and Optimization Extension Pack is installed). If the problem calls for

a nonlinear solver, Mathcad c© uses the Conjugate Gradient solver; if that fails

to converge, the Levenberg-Marquardt solver; if that too fails, the Quasi-Newton

solver. These methods use different algorithms to determine the curvature and

direction in which the search is to proceed.

Although Mathcad c© automatically determines the kind of problem you are

solving and attempts appropriate solving algorithms until one of the methods

converges, you can right-click the function and choose a specific method from the

menu if necessary.

The output from this analysis is as follows

When optimizing a function of more than one parameter, Mathcad c© will
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return a vector of results. The first element in this vector corresponds to the first

variable after the function name in the call to MAXIMIZE, and so on. Thus

β̂0 = −0.932 and β̂1 = 0.999

We estimated the variance-covariance matrix from the observed Fisher infor-

mation (46). The observed Fisher information of the data set is given by:

I(β0, β1) =

 ∂2L
∂β2

0

∂2L
∂β0∂β1

∂2L
∂β0∂β1

∂2L
∂β2

1

 (2.14)

.

The approximate variances and covariances are found, respectively, in the

matrix

{−I(β0, β1)}−1 ≈

 a11 a12

a21 a22

 (2.15)

,

where a11 = var(β0), a12 = a21 = cov(β0, β1), and a22 = var(β1).

The following MathCad c© code will yield the approximate variance-covariance

matrix.

I(β0, β1) :=

 ∂2L
∂β2

0

∂2L
∂β0∂β1

∂2L
∂β0∂β1

∂2L
∂β2

1



{−I(−0.932, 0.999)}−1

The output for the variance-covariance matrix is as follows:
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Thus the estimated standard errors for β̂0 and β̂1 are
√

0.054 = 0.232 and
√

0.099 = 0.315 respectively.

2.3.2 Analysis using SAS c©

We will illustrate how the above example can be analyzed using Proc Lo-

gistic from SAS c©. The LOGISTIC procedure was designed specifically to fit

logistic regression models. The response variable and the explanatory variables

are specified in the MODEL statement, and it fits the model via maximum likeli-

hood estimation illustrated above. PROC LOGISTIC produces the parameter

estimates, their standard errors, and statistics to assess model fit. The following

SAS c© code creates the data set and invokes PROC LOGISTIC.

data embryo;

input embryo pregnancy count @@;

0 0 66 0 1 26

1 0 43 1 1 46

;

run;

proc logistic descending;

freq count;

model pregnancy=embryo / scale=none aggregate;

run;

The variable pregnancy takes the value 1 if the subject is conceived and is 0

otherwise. By default, PROC LOGISTIC orders the response variable values

alphanumerically so that, for these data, it bases its model on the probability
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of the smallest value, Pr(pregnancy = 0), which is the probability of no con-

ception. The DESCENDING option in the PROC LOGISTIC statement

requests that the response value ordering be reversed. For these data, this means

that PROC LOGISTIC will model probability of conception. The SCALE

option produces goodness-of-fit statistics; the AGGREGATE option requests

that PROC LOGISTIC treat each unique combination of the explanatory vari-

able as a distinct group in computing the goodness of fit statistics.

Table 2.2. Analysis of Maximum Likelihood Estimates: Antinori data

Table 2.2 lists the estimated model parameters, their standard errors, Wald

chi-square tests, and p − values. A Wald test is a statistic that takes the form

of the squared valve ratio for the estimate to its standard error; it follows an

approximately chi-square distribution when the sample size is sufficiently large

Phillips (79). The variable embryo is significant compared to a significance level

of 0.05, with a Wald statistic of 16.1864. The model equation can be written as

follows:

logit(pij) = −0.932 + 0.999embryo

Table 2.3 lists the parameter interpretations, and Table 2.4 displays the predicted

logits and odds of coronary disease.

The odds ratio is exp(β1) = exp(0.990) = 2.72. Patients who received more
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Parameter Estimate Standard Error Interpretation
β0 −0.9316 0.2315 log odds of pregnancy for

patients who received at most 3 embryos
β1 0.9990 0.3140 increment to log odds for

patients who received at least 4 embryos

Table 2.3. Interpretation of parameters: Antinori data

Embryo Logit Odds of pregnancy
≤ 3 β0 = −0.9316 eβ0 = 0.394
≥ 4 β0 + β1 = 0.067 eβ0+β1 = 1.07

Table 2.4. Model-Predicted Logits and Odds of pregnancy: Antinori data

than three embryos, in the study have three times higher odds for pregnancy

than patients who received at most three embryos, in the study. Notice that

both Proc Logistic and MathCad c© give similar conclusions.

2.3.3 Model Fit

Here we need to assess how close the predicted odds are to the observed values.

Embryo observed proportion observed odds

≤ 3 26
92

26
92

1− 26
92

= 0.3939394

≥ 4 46
89

46
89

1− 46
89

= 1.069767

Table 2.5. Observed proportions and odds

From table 2.5 we can immediately calculate the observed odds ratio as follows:

1.069767
0.3939394

= 2.715564.

The observed odds (odds ratio) are very much similar to the predicted odds.

Thus our model fits the data well.
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2.4 Subject-specific models with one random ef-

fect

In longitudinal studies, repeated measurements of a response variable and

a set of covariates are made on subjects across occasions. Because the within-

subject measurements are likely to be positively correlated, the correlation must

be accounted for by analysis appropriate to the longitudinal data. The standard

logistic regression model described above, fails in its assumptions to accurately

characterize the dependence in the data. Basically, the standard logistic regres-

sion model assumes that the observations are independent, which they clearly are

not when they are clustered within individuals. One solution to this problem is

to generalize the model to the case of a combination of fixed (e.g., treatment) and

random effects. The random effects allow the correlation between the repeated

measurements to be incorporated into the estimates of parameters.

2.4.1 Model fitting

To set the notation, let i denote the individuals and let j denote the treatment.

Let Yij be the value of the dichotomous outcome variable, coded 0 or 1, associated

with treatment j nested within individual i. The logistic regression model is

written in terms of the log odds (i.e., the logit) of the probability of a response,

denoted pij. Considering a random-intercept model, augmenting the standard

logistic regression model 2.1 with a single random effect yields:

log
pij

1− pij

= x′ijβ + υi (2.16)
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where xij is the (p+ 1)× 1 covariate vector (includes a 1 for the intercept), β is

the (p + 1) × 1 vector of unknown regression parameters, and υi is the random

subject effect. These are assumed to be distributed in the population as N(0, σ2).

Regression estimates are subject-specific, that is they describe the individual’s

response (conditional estimates, conditional on the random effect). Conditional

estimates represent the effect of a regressor on the outcome controlling for or

holding constant the value of the random subject effect. On the other hand, the

estimates from the standard logistic regression are ”marginal” or ”population-

averaged” estimates. Marginal estimates represent the effect of a regressor aver-

aging over the population of subjects.

2.4.2 Estimation

To set the notation, we assume that there are i = 1, ...m subjects as be-

fore, each with j = 1, 2, ..., ni repeated observations. In the case of p predictor

variables, the data are given by

(x1,Y1j), (x2,Y2,j), ...(xm,Ymj),

where Yij = (Yi1, Yi2, ..., Yini
) represents the value of the dichotomous response

variables, and xi = (xi1, ..., xip) is the value of the predictor variables for the ith

subject. The single response Yij is the jth response of the ith subject. Further-

more, Yij = 1 for success and Yij = 0 for failure. We consider estimation of a

random-intercepts mixed model, that is

log
pij

1− pij

= x′ijβ + υi (2.17)
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We would like to obtain comparable functions to equations 2.5 and 2.6 re-

spectively. A comparable function to equation 2.5 is the conditional probability

of a 1 response, conditional on the random effect υi, which is given by:

Pr(Yij = 1|υi) = Ψ(zij), (2.18)

where the standard logistic cumulative distribution is given by equation 2.2 and

zij = x′ijβ+υi. Whereas a comparable function to equation 2.6 is the probability

of a 0 response which is simply

Pr(Yij = 0|υi) = 1−Ψ(zij) (2.19)

The next step is to assume that the within-subject measurements are con-

ditionally independent given the random subject effect (i.e.,the random effects

account completely for the correlation of the data within subjects). This as-

sumption is critical and is known in Agresti (1), as the conditional independence

assumption. Because the within-subject measurements are assumed to be condi-

tionally independent, following Hogg and Craig, the conditional likelihood of ni

measurements within the ith subject is given by:

`(Yi|υ) =

ni∏
j=1

[Ψ(zij)]
Yij [1−Ψ(zij)]

1−Yij (2.20)

The conditional likelihood 2.20 and the likelihood in equation 2.8 are function-

ally of the same form. In the standard logistic regression case, for which equation

2.5 applies, we can multiply the probabilities from each subject together to yield

the likelihood of the joint pattern of all m outcomes from the subjects. Similarly,

in the random effect case, we can multiply the probabilities of each time-point
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together within a subject to yield the conditional likelihood of the joint pattern of

the ni outcomes across time for that subject. Here, it is a conditional likelihood

because these ni observations are independent (and therefore can be multiplied

together as in equation 2.20 only conditional on the random effect. To get to the

likelihood of the ni response patterns for all the m subjects, we need to have an

expression for the likelihood of Yi that does not depend on the random effects.

We can arrive at such an expression by integrating over the distribution of the

random effects. This yields the marginal probability for Yi in the population of

subjects as:

h(Yi) =

∫
υ

`(Yi|υ)g(υ)dυ (2.21)

Where g(υ) represents the population distribution of the random effects υ, namely

N(0, σ2).

The idea behind this isn’t too hard to grasp. Essentially we want to consider

the conditional likelihood, which depends on the random effect, for all possi-

ble values of the random effect, and thereby obtain the aggregated or marginal

likelihood.

We can now form the marginal likelihood of the response patterns Yi from all

subjects, and thus the total sample, by multiplying each of the subject’s marginal

likelihoods together.

Namely,

L =
m∏

i=1

h(Yi) (2.22)

or

logL =
m∑

i=1

log h(Yi). (2.23)



2.4. SUBJECT-SPECIFIC MODELS WITH ONE RANDOM EFFECT 53

It is easier to manipulate the log-likelihood in equation 2.23. If we choose the

values of the parameters that maximize the log-likelihood in equation 2.23 those

same values will also maximize the likelihood in equation 2.22. For this, we let

the parameter vector η represent either the regressors β or the variance parameter

σ, then taking derivatives

∂ logL

∂η
=

m∑
i=1

h−1(Yi)
∂h(Yi)

∂η
. (2.24)

We first manipulate the marginal likelihood in equation 2.21 as follows:

h(Yi) =
∫

υ
`(Yi|υ)g(υ)dυ

=
∫

υ
(
∏ni

j=1[Ψ(zij)]
Yij [1−Ψ(zij)]

1−Yij)g(υ)dυ

=
∫

υ
[exp(log{

∏ni

j=1[Ψ(zij)]
Yij [1−Ψ(zij)]

1−Yij})]g(υ)dυ

=
∫

υ
[exp(

∑ni

j=1[YijlogΨ(zij) + (1− Yij)log(1−Ψ(zij))])g(υ)dυ.

And so, denoting `(Yi|υ) by `i, we get

∂h(Yi)
∂η

=
∫

υ

∑ni

j=1[
Yij

Ψ(zij)
∂Ψ(zij) +

1−Yij

1−Ψ(zij)
(−∂Ψ(zij))]

∂zij

∂η
`ig(υ)dυ

=
∫

υ

∑ni

j=1
Yij−Ψ(zij)

Ψ(zij)(1−Ψ(zij))
(∂Ψ(zij))

∂zij

∂η
`ig(υ)dυ,

yielding

∂ logL

∂η
=

m∑
i=1

h−1(Yi)

∫
υ

ni∑
j=1

Yij −Ψ(zij)

Ψ(zij)(1−Ψ(zij))
(∂Ψ(zij))

∂zij

∂η
`ig(υ)dυ, (2.25)

where ∂Ψ(zij) equals the probability density function (pdf), which for the logistic

distribution is Ψ(zij)[1−Ψ(zij)]; and where

∂zij

∂β
= x′ij (2.26)
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∂zij

∂σ
=
υi

σ
. (2.27)

Actually this idea is also illustrated in Hedeker et.al (44) except that Hedeker have

standardized the random effects. Similarly, we can obtain the second derivatives

∂2 logL

∂η2
=

m∑
i=1

{
h−1(Yi)

∂2h(Yi)

∂η2
− h−2(Yi)

{
∂h(Yi)

∂η

}2
}
. (2.28)

Equations 2.25 and 2.28 can now be used in the Newton-Raphson procedure out-

lined for the ordinary logistic regression model in the previous section to obtain

the maximum likelihood estimates (MLE). At convergence, the large-sample vari-

ance covariance matrix of the parameter estimates is then obtained as the inverse

of the information matrix. The square root values of the diagonal elements of this

matrix can be used to obtain Wald statistics or construct asymptotic confidence

intervals for the model parameters.

2.4.3 Integration over the Random Effect Distribution

In order to solve the above likelihood solutions, integration over the random

effects distribution must be performed. Various approximations for evaluating

the integral 2.21 have been proposed in the literature including methods based

on the first or second order Taylor expansions (87). Numerical integration can

also be used to perform the integration over the random-effects distribution.

Specifically, if the assumed distribution is normal, Gauss Hermite quadrature

can approximate the integral 2.21 to any practical degree of accuracy (93). The

integration is approximated by a summation on a specified number of quadrature

points Q for each dimension of the integration.
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Consider the Gaussian integration formula for the Hermite polynomial in

Stroud and Secrest (93). The Hermite polynomials are defined over [−∞,∞]

and the weighting function of Hermite polynomials is

w(x) = e−x2

. (2.29)

Therefore, Gauss Hermite quadrature naturally gives the integration for:

∞∫
−∞

f(x)e−x2

dx. (2.30)

Thus, Gauss Hermite quadrature can be naturally be associated with normal

distribution as follows: Suppose we were to evaluate

∞∫
−∞

f(y)e
− (y−u)2√

2σ dy, (2.31)

where f(y) is a function of y. Substituting

x =
y − u√

2σ
(2.32)

in equation 2.31 yields

∞∫
−∞

f(y)e
− (y−u)2√

2σ dy =

∞∫
−∞

f(
√

2σx+ µ)e−x2√
2σdx =

√
2σ

N∑
q=1

ψqf(
√

2σx+ µ),

(2.33)

where following (93), {xq}N
q=1 are the roots of order N Hermite polynomial PN(x)

and {ψq}N
q=1 are:

ψq =

∞∫
−∞

N∏
j=1
j 6=q

x− xj

xi − xj

e−x2

dx. (2.34)
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Therefore, if y is normally distributed with mean µ and variance σ2, the expected

value of f(y), (E[f(y)]) is given by:

1√
2πσ2

∞∫
−∞

f(y)e
− (y−u)2√

2σ dy =
1√

2πσ2

∞∫
−∞

f(
√

2σx+µ)e−x2√
2σdx =

1√
π

N∑
i=1

ψqf(
√

2σx+µ),

(2.35)

where {xq}N
i=q and {ψq}N

i=q are the same as above.

With the numerical Gaussian quadrature integration, the approximation to

the marginal likelihood gets better as the number of quadrature points increases.

However, as the dimension of the random effects increases, the number of quadra-

ture points increases exponentially; the total number of quadrature points re-

quired for all the random effects Qr, where r is the number of random effects.

The numerical quadrature becomes computationally burdensome when there are

more than 5 random effects (59).

2.4.4 Statistical software

Fortunately, we do not have to worry about how all these equations are solved;

statistical software programs solve them for us. The NLMIXED in SAS c© proce-

dure fits nonlinear mixed models, that is, models in which both fixed and random

effects are permitted to have a nonlinear relationship to the response variable.

These models can take various forms, but the most common ones involve a con-

ditional distribution for the response variable given the random effects. PROC

NLMIXED enables us to specify such a distribution by using either a keyword

for a standard form (normal, binomial, Poisson) or SAS c© programming state-

ments to specify a general distribution.

PROC NLMIXED fits the specified nonlinear mixed model by maximizing
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an approximation to the likelihood integrated over the random effects. Different

approximations to the integral (2.21) are available, and the two principal ones

are the one we used, Gaussian quadrature and a first order Taylor series approx-

imation. There are a variety of alternative optimization techniques; the default

is the Newton Raphson described in the previous sections. Standard errors are

obtained by the Delta method. For the theory and computational techniques of

PROC NLMIXED, the book written by Pinheiro and Bates (80) is strongly

recommended. Other software which are capable of handling the random effects

include MathCad c©, R c©, S-Plus c© and WinBugs c©. In this section, attention is

focused, with the help of an example, on the use of the PROC NLMIXED

procedure in SAS c© and on the use of the MathCad c© to perform random effects

model.

2.5 Illustration

To illustrate application of the mixed-effects logistic regression model, we will

present analysis from Ezzet and Whitehead (30). We will like to point out that we

are using this example to illustrate how to analyze a complete crossover design.

This example is not an infertility trial. As it was mentioned in the previous

section, it is impossible to get a complete crossover design in infertility trials

(except if no woman conceives in the first period).

Specifically, we will examine a crossover trial comparing inhalation devices

for asthmatics. A crossover clinical trial has been conducted by 3M − Riker

to compare the suitability of two new inhalation devices (A = 1 and B = −1)

in patients who currently using a standard inhaler device delivering Salbutamol.

Group 1 used device A for one week followed by device B for another week.
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Group 2 used the devices in reverse order. No wash out period was felt necessary.

Patients reported whether there were particular features which they liked about

each device, and their responses were coded (1) for yes and (0) for no. The

experimental design is presented in Table 2.6.

Group (0, 0) (0, 1) (1, 0) (1, 1) (0, ∗) (1, ∗)
1 57 15 41 26 2 2
2 54 32 16 38 3 2

Table 2.6. Table of counts for the asthma inhaler study: Ezzet and Whitehead

We will analyse responses from patients who tried both devices and also we

will assume that there is no evidence of carry over effects. Here, we will like to

remind the reader that we emphasized in the previous sections that if there is

any evidence of carry over effects, we will not recommend the crossover designs.

2.5.1 Analysis using MathCad c©

Firstly, we will need to construct the likelihood of the data. Let Yijk denote the

response from the ith subject in the group k during the jth period, i = 1, ...., nj,

j = 1, 2, k = 1, 2. Our approach utilizes a logistic fixed effect model in the form:

logit(p(ij)k) = β0 +
β1

2
treatment(ij)k +

β2

2
periodj + υi, (2.36)

where υi ∼ N(0, σ2). The parameters β1 and β2 represent treatment and

period effects respectively. Denote the observed value Y(ij)k by y(ij)k. All the

inferences are to be based on the likelihood

L =
2∏

k=1

nk∏
i

P (Y(i1)k = y(i1)k,Y(i2)k = y(i2)k). (2.37)
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The tables 2.7 and 2.8 display the group, the outcomes, and the contributed

likelihood for the neither period effects nor carryover effects scenario and the

period effects scenario respectively.

Group Outcome Likelihood contribution

1 Y1 = 0,Y2 = 0 L100 =
∫

υ
1

1+exp{β0+
β1
2

+υ}
1

1+exp{β0−β1
2

+υ}
g(υ)dυ

1 Y1 = 0,Y2 = 1 L101 =
∫

υ
1

1+exp{β0+
β1
2

+υ}
exp{β0−β1

2
+υ}

1+exp{β0−β1
2

+υ}
g(υ)dυ

1 Y1 = 1,Y2 = 0 L110 =
∫

υ

1+exp{β0+
β1
2

+υ}
1+exp{β0+

β1
2

+υ}
1

1+exp{β0−β1
2

+υ}
g(υ)dυ

1 Y1 = 1,Y2 = 1 L111 =
∫

υ

1+exp{β0+
β1
2

+υ}
1+exp{β0+

β1
2

+υ}
1+exp{β0−β1

2
+υ}

1+exp{β0−β1
2

+υ}
g(υ)dυ

2 Y1 = 0,Y2 = 0 L200 =
∫

υ
1

1+exp{β0+
β1
2

+υ}
1

1+exp{β0−β1
2

+υ}
g(υ)dυ

2 Y1 = 0,Y2 = 1 L210 =
∫

υ

1+exp{β0+
β1
2

+υ}
1+exp{β0+

β1
2

+υ}
1

1+exp{β0−β1
2

+υ}
g(υ)dυ

2 Y1 = 1,Y2 = 0 L201 =
∫

υ
1

1+exp{β0+
β1
2

+υ}
exp{β0−β1

2
+υ}

1+exp{β0−β1
2

+υ}
g(υ)dυ

2 Y1 = 1,Y2 = 1 L211 =
∫

υ

1+exp{β0+
β1
2

+υ}
1+exp{β0+

β1
2

+υ}
1+exp{β0−β1

2
+υ}

1+exp{β0−β1
2

+υ}
g(υ)dυ

Table 2.7. Contributed likelihood from each outcome for the treatment only
scenario
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Group Outcome Likelihood contribution

1 Y1 = 0,Y2 = 0 L100 =
∫

υ
1

1+exp{β0+
β1
2

+
β2
2

+υ}
1

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

1 Y1 = 0,Y2 = 1 L101 =
∫

υ
1

1+exp{β0+
β1
2

+
β2
2

+υ}
exp{β0−β1

2
−β2

2
+υ}

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

1 Y1 = 1,Y2 = 0 L110 =
∫

υ

1+exp{β0+
β1
2

+
β2
2

+υ}
1+exp{β0+

β1
2

+
β2
2

+υ}
1

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

1 Y1 = 1,Y2 = 1 L111 =
∫

υ

1+exp{β0+
β1
2

+
β2
2

+υ}
1+exp{β0+

β1
2

+
β2
2

+υ}
1+exp{β0−β1

2
−β2

2
+υ}

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

2 Y1 = 0,Y2 = 0 L200 =
∫

υ
1

1+exp{β0+
β1
2

+
β2
2

+υ}
1

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

2 Y1 = 0,Y2 = 1 L210 =
∫

υ

1+exp{β0+
β1
2

+
β2
2

+υ}
1+exp{β0+

β1
2

+
β2
2

+υ}
1

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

2 Y1 = 1,Y2 = 0 L201 =
∫

υ
1

1+exp{β0+
β1
2

+
β2
2

+υ}
exp{β0−β1

2
−β2

2
+υ}

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

2 Y1 = 1,Y2 = 1 L211 =
∫

υ

1+exp{β0+
β1
2

+
β2
2

+υ}
1+exp{β0+

β1
2

+
β2
2

+υ}
1+exp{β0−β1

2
−β2

2
+υ}

1+exp{β0−β1
2
−β2

2
+υ}

g(υ)dυ

Table 2.8. Contributed likelihood from each outcome for period effects scenario

For each scenario the total likelihood L for this model, is given by

2∏
k=1

1∏
r=0

1∏
s=0

Lkrs
mkrs , (2.38)

where mkrs denotes the number of outcomes of the form (r, s) among group k.

Thus evaluation of L requires the computation of eight distinct integrals of the

form 2.19. These integrals are estimated using Gaussian quadrature method.

We estimated the standard errors of the parameters from the observed Fisher

information matrix. The results are tabulated in Table 2.15. The MathCad c©

code for this analysis is reserved for the next chapter. In this chapter, we will

present the code for the practical analysis using PROC NLMIXED from SAS c©.
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2.5.2 Analysis using SAS c©

The following SAS c© code creates a data set COMPLETE. The variable

OUTCOME is the response variable, and PERIOD and TREATMENT are

the explanatory variables. The variables OUTCOME takes the value 1 for yes

and 0 for no, PERIOD takes the value 1 for first period and −1 for second pe-

riod, and TREATMENT takes the value 1 when treatment is A and −1 when

treatment is B. Since PROC NLMIXED assumes that every time a new value

of the PATIENT variable is encountered a new PATIENT is being analyzed,

we need to sort our data by PATIENT. The PROC SORT arranges the data

by PATIENT.

data complete;

input group patient period treatment outcome;

datalines;

1 1 1 1 0

1 2 1 1 0

1 3 1 1 0

. . . . .

. . . . .

. . . . .

2 279 -1 1 1

;

run;

proc sort data=complete;

by patient;

run;
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The PROC NLMIXED statements to fit the logistic-normal model to these

data sets, assuming period effects (no carryover effects) are as follows:

proc nlmixed data=complete;

parms beta0=-0.472 beta1=0.2141 beta2=0.3 logsigma=0.1;

sigma=exp(logsigma);

sigma2=sigma**2;

preg=beta0 + beta1*treat/2 + beta2*period/2 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;

predict preg out=preg;

run;

Where β0, β1 and β2 represents constant, treatment effect and period effect

respectively. The PROC NLMIXED statement invokes the procedure, and the

PARMS statement defines the parameters and their starting values. In Chapter

4, we illustrate how the initial parameters are chosen. The next statements

construct the variable ppreg to correspond to the probability of success, and

the MODEL statement defines the conditional distribution of the outcomes to

be binomial. The RANDOM statement defines U to be the random effect

with subjects defined by the PATIENT variable. The PREDICT statement

constructs predictions for each observations in the input data set. Thus, we can

predict the logits, odds and probabilities for each observation. The predicted

logits for this example are listed in Appendix A.
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The output from this analysis is as follows,

Table 2.9. Specification for non-linear mixed model: Ezzet and Whitehead data

The ”Specifications” Table 2.9 lists some basic information about the non-

linear mixed model that have been specified. Included are the input data set,

dependant and patient variables, random effects, relevant distributions, and type

of optimization.

Table 2.10. Number of observations, subjects, and parameters: Ezzet and
Whitehead data

The ”Dimensions” Table 2.10 lists various counts related to the model, in-

cluding the number of observations, subjects, and parameters. These quantities

are useful for checking that data set and model are specified correctly. Also listed

is the number of quadrature points that PROC NLMIXED has selected based

on the evaluation of the log likelihood at the starting values of the parameters.
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Table 2.11. Parameters to be estimated: Ezzet and Whitehead data

The ”Parameters” output in Table 2.11 lists the parameters to be estimated,

their starting values, and the negative log likelihood evaluated at the these start-

ing values.

Table 2.12. History of the minimization of the negative log likelihood: Ezzet
and Whitehead data

The ”Iterations” output in Table 2.12 records the history of the minimization

of the negative log likelihood. For each iteration of the quasi Newton optimiza-

tion, values are listed for the number of function calls, the value of the negative

log likelihood, the difference from the previous iteration, the absolute value of the

largest gradient, and the slope of the search direction. The note at the bottom

of the table indicates that the algorithm has converged successfully according

to the GCONV convergence criterion, a standard criterion computed using a

quadratic form in the gradient and inverse Hessian.

The ”Fit Statistics” output in Table 2.13 lists the final maximized value of

the log likelihood as well as the information criteria of the Akaike and Schwarz.
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Table 2.13. Fit statistics: Ezzet and Whitehead data

Table 2.14. Maximum likelihood estimates: Ezzet and Whitehead data

The ”Parameter estimates” output in Table 2.14 lists the maximum likeli-

hood estimates and their approximate standard errors computed using the final

Hessian matrix. Approximate t − values and Wald-type confidence limits are

also provided, with degrees of freedom equal to the number of subjects minus the

number of random effects.

The above analysis is for scenario involving treatment, period effects, and the

random effects. Similarly, we can get analysis for null model and also for the

scenario involving treatment and random effects. Table 2.15 shows the estimates

(standard errors) for all the above mentioned scenarios.
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Model Method β0 β1 β2 β3 log(σ) −2logL
Null Ezzet -0.444 - - 0.228

(0.128) (0.245)
MathCad c© -0.445 - - 0.226

(0.129) (0.196)
SAS c© -0.444 - - 0.221

(0.128) (0.194)
Treatment Ezzet -0.476 0.856 - - 0.345

(0.138) (0.215) (0.262)
MathCad c© -0.478 0.856 - - 0.348 725.049

(0.139) (0.214) (0.184)
SAS c© -0.476 0.855 - - 0.341

(0.138) (0.214) (0.182)
Treatment Ezzet -0.479 0.861 0.211 - 0.351
and (0.139) (0.215) (0.206) (0.263)
period MathCad c© -0.480 0.861 0.211 - 0.354 724

(0.139) (0.215) (0.205) (0.183)
SAS c© -0.479 0.859 0.211 - 0.347 724

(0.139) (0.215) (0.205) (0.181)

Table 2.15. Conditional analysis of the asthma inhaler study.

Both the Mathcad c© and the PROC NLMIXED method produce essentially

the same results. These two methods also agrees with the results obtained by

Ezzet (30) in estimating the parameters.



Chapter 3

Crossover Designs In Infertility

Trials

For some years, there has been a debate as to the place of the crossover

design in assisted reproduction technology (ART). In this chapter we aim to

investigate (using the models discussed in Chapter 2) whether crossover and

parallel design in infertility trials result in different estimates of treatment effects.

Also we will investigate what is it that the researchers are losing by conducting

one design instead of the other. Specifically, we would like to find if there should

be preference between parallel and crossover design when conducting infertility

trials. In a crossover design, subjects randomized to different groups receive

more than one treatment in a specified order (reviewed in (50) and (84)). Thus

in a crossover design, repeated measurements are collected within the subject.

In infertility trials, couples undergo a course of treatments. In the crossover

design this course consist of repeated administration of a sequence in which the

treatment changes over time (64). The outcome of interest is the binary outcome,

pregnancy, coded 1 and 0 for positive (pregnant) and negative (not pregnant)

67
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outcome respectively. This outcome will be clustered within subjects.

To understand this, we will consider the AB : BA crossover design in which

subjects either receive treatment A followed by treatment B or B followed by

A. If a subject is randomized to say group AB, the subject will first receive

treatment A, and depending on the outcome, the subject will either allowed to

receive treatment B or the subject drops out of the trial. If the subject fails to

conceive, the subject will go ahead to receive treatment B. But if the subject

conceives, the subject drops from the trial, resulting in missing outcome for the

second period. Subjects randomized to the BA group receive treatments in the

reverse order. Thus, in the AB : BA infertility crossover design we will have those

subjects with missing outcomes in the second period, unless if all the subjects fail

to conceive in the first period. That is unless if we have the standard AB : BA

crossover design like the one in Ezzet and Whitehead (30) discussed in Chapter

2.

For comparison purposes, we will first look at the unrealistic situation where

every woman receives both treatments regardless of the outcome in the first

period. That is, we will conduct the complete AB : BA crossover design. We

will like to emphasize that the complete AB : BA crossover design is never

performed in practice in infertility trials. We are merely doing it here, for the

sake of comparisons.

Clearly, if we are presented with the data of the complete AB : BA crossover

design, we can immediately predict what could have happened if either the in-

complete AB : BA crossover design or the parallel design was performed. If we

delete, from the complete AB : BA crossover design the second outcome for every

woman who conceived in the first period, then we obtain the realistic data for a

cross over design. This is because by doing so, we do not allow for women to get
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pregnant twice. Similarly, if we delete all the outcomes in the second period we

obtain the parallel design scenario.

We will compare these three data set: the data set from the complete AB : BA

crossover design, the data set from the incomplete AB : BA crossover design and

the parallel design scenario. To this we use the maximum likelihood method

discussed in Chapter 2. Specifically, we construct the likelihoods for each data

set and obtain the maximum likelihood estimates (MLE) and their corresponding

standard errors from each data set.

We compare the maximum likelihood estimates (and their corresponding stan-

dard errors) obtained using the complete AB : BA crossover data set with the

maximum likelihood estimates (and their corresponding standard errors) obtained

using the incomplete AB : BA crossover data set. Our aim here, being to ex-

plore what actually is it that the medical practitioners are losing (in analyzing

the results) by not allowing the women to get pregnant twice. Finally, we will

compare the maximum likelihood estimates (and their corresponding standard

errors) obtained using the incomplete AB : BA crossover data set with the max-

imum likelihood estimates (and their corresponding standard errors) obtained

using the parallel data set. Here, we will like to explore what is it wrong with

the crossover design in infertility trials. Since, if this incomplete crossover design

is not employed, the only alternative design that is usually recommended is the

parallel design.

The model used for the complete and incomplete crossover data set, (because

of its nature to allow the correlation between the repeated outcomes to be incor-

porated into the estimates of parameters) is the mixed effects model described

in Chapter 2. While for the parallel design the appropriate model used is the

standard logistic regression model, also described in Chapter 2.
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To compare two different models, we must compare analogous quantities, as

is emphasized by Lee and Nelder (57). Both the maximum likelihood estimates

obtained from the complete AB : BA crossover data set and the maximum

likelihood estimates obtained from the incomplete AB : BA data set describe

the individual’s response (conditional estimates). Following Lee and Nelder (57)

these estimates and their corresponding standard errors can be compared. The

maximum likelihood estimates obtained from the parallel data set describe the

marginal response to changing covariates (marginal estimates). So we will not

be able to straightaway compare these estimates to the maximum likelihood es-

timates obtained from the crossover data set (complete or incomplete AB : BA).

The mixed effects model is the basic model and any mixed effects model leads

to a specific marginal model. It is this specific marginal model (marginalized

estimates) that allows us to compare analogous quantities. Specifically, we will

marginalize the maximum likelihood estimates obtained from the mixed effects

model so that they describe marginal response.

To perform all these, we suppose that we have m = 2n women undergoing the

complete AB : BA crossover design. The experimental design can be illustrated

as in Table 3.1 below, where mkrs denotes the number of outcomes of the form

(r, s) among group k. And where k = 1 denotes the group AB and k = 2 denotes

group BA.

A B Count B A Count
0 0 m100 0 0 m200

0 1 m101 0 1 m201

1 0 m110 1 0 m210

1 1 m111 1 1 m211

Table 3.1. Experimental design for the complete AB : BA infertility crossover
design

If we are presented with the above data (unrealistic data set) in Table 3.1, we
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can immediately predict what would have happened if the incomplete crossover

design (realistic situation) was performed. Specifically, we can predict (in each

group), the number of women who did not conceive, the number of women who

conceived in the first period only and the total number of women who conceived

in the second period only. Thus the predicted experimental design for the incom-

plete AB : BA crossover design can be illustrated as in Table 3.2 below

A B Count B A Count
0 0 m100 0 0 m200

0 1 m101 0 1 m201

1 m110 +m111 1 m210 +m211

Table 3.2. Experimental design for the predicted incomplete AB : BA crossover
design

Similarly, If we are presented with either the complete AB : BA crossover

data set, Table 3.1 or the incomplete AB : BA crossover data set, Table 3.2,

we can immediately predict what would have happened if the parallel design

was performed. Specifically, we can predict (in each group), the total number

of women who did not conceive, and the total number of women who conceived.

Thus the predicted experimental design for the parallel design can be illustrated

as in Table 3.3 below:

A B Count B A Count
0 m100 +m101 0 m200 +m201

1 m110 +m111 1 m210 +m211

Table 3.3. Experimental design for the predicted parallel design

All what we are saying is that if one is presented with the complete (incom-

plete) AB : BA data set, then one can easily analyze the data as the parallel

design data set by simply neglecting the second outcomes for each subject.

We will now introduce the mentioned models for the complete and incomplete

AB : BA crossover design.



3.1. MIXED EFFECTS MODEL FOR CROSSOVER DESIGNS 72

3.1 Mixed effects model for crossover designs

We let i, j and k denote the woman, period and group respectively. Let p(ij)k

represent the probability that the ith woman, i = {1, 2, ...2n} in the kth group,

k = {1, 2}, conceives in period j, j = {1, 2}. Further, we let

ψ(ij)k = ln(
p(ij)k

1− p(ij)k

) = x′(ij)kβ + υi, (3.1)

where x(ij)k is the (p+1)×1 covariate vector (includes a 1 for the intercept) associ-

ated with pregnancy, β is the (p+1)×1 vector of unknown regression parameters,

and υi is the random subject effect. These are assumed to be distributed in the

population as N(0, σ2
υ).

The conditional probability (conditional on the random effect) that a woman

conceives is

P (Y(ij)k = 1|υi) =
exp(ψ(ij)k)

1 + exp(ψ(ij)k)
. (3.2)

The conditional probability (conditional on the random effect) that a woman fails

to conceive is

P (Y(ij)k = 0|υi) =
1

1 + exp(ψ(ij)k)
. (3.3)

As usual, the observations within a woman are assumed independent given the

random effect. As a result, suppose each woman is allowed to go under both treat-

ments, regardless of the outcome in the first outcome, the conditional likelihoods

for one woman, under this scenario (the complete crossover) is

`C(Y(i)k|υ) =
[exp(ψ(ij)k)]

Y(i1)k

1 + exp(ψ(ij)k)
∗

[exp(ψ(ij)k)]
Y(i2)k

1 + exp(ψ(ij)k)
. (3.4)

Now, suppose we consider a realistic situation, specifically, we consider a situation
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where by if a woman get pregnant in the first period, that woman drops out from

the trial. In this scenario (the incomplete crossover), the conditional likelihoods

for one woman is

`I(Y(i)k|υ) =
[exp(ψ(ij)k)]

Y(i1)k

1 + exp(ψ(ij)k)
∗

{
[exp(ψ(ij)k)]

Y(i2)k

1 + exp(ψ(ij)k)

}1−Y(i1)k

. (3.5)

Thus

hC(Y(i)k) =

∫
υ

`C(Y(i)k|υ)g(υ)dυ, (3.6)

and

hI(Y(i)k) =

∫
υ

`I(Y(i)k|υ)g(υ)dυ, (3.7)

are the marginal probabilities for complete and incomplete AB : BA crossover

respectively, where g(υ) represents the distribution of the random effects, namely

N(0, σ2
υ).

The marginal likelihoods for 2N −women for complete and incomplete cross

over trials are respectively,

LC =
2n∏
i=1

hC(Y(i)k) (3.8)

and

LI =
2n∏
i=1

hI(Y(i)k). (3.9)

The vector x consists of the covariates associated with pregnancy. For the

purpose of illustration, we will begin with the model involving only one covariate
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(treatment). For this we let

ψ(ij)k = ln(
p(ij)k

1− p(ij)k

) = β0 + β1treatment(ij)k + exp(υi), (3.10)

where β0 is the intercept term, β1 is the treatment term and treatment={A =

1, B = −1}. While υi is subject random effect and is assumed to be normally

distributed with mean zero and variance σ2. We exponentiated the random effect

so that the likelihood looks more quadratic. Actually this model is taken from

Ezzet and Whitehead (30). We will use the model (3.10) to obtain the likelihoods

for both the complete AB : BA crossover and the incomplete AB : BA crossover.

3.1.1 Likelihood of the complete AB : BA crossover design

In the complete AB : BA crossover design, the components of the log likeli-

hood can be viewed as the contribution by the following illustrated eight cases:

Consider women randomized to the group AB. Those women will receive treat-

ment A in the first period and treatment B in the second period. Those subjects

who failed to conceive neither in the first period nor in the second period will

contribute to the log-likelihood the following:

m100 ln

∫
υ

{
1

1 + exp(β0 + β1 + υ)

1

1 + exp(β0 − β1 + υ)

}
g(υ)dυ. (3.11)

For those who failed to conceive under treatment A but conceived due to treat-

ment B, will contribute

m101 ln

∫
υ

{
1

1 + exp(β0 + β1 + υ)

exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)

}
g(υ)dυ, (3.12)
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while those who conceived due to treatment A but did not conceive under treat-

ment B, will contribute

m110 ln

∫
υ

{
exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)

1

1 + exp(β0 − β1 + υ)

}
g(υ)dυ. (3.13)

Finally, the contribution by those subjects who conceived twice is

m111 ln

∫
υ

{
exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)

exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)

}
g(υ)dυ. (3.14)

Similarly, if we consider those women who were randomized to the group BA,

these women will receive treatment B in the first period and treatment A in the

second period. The contribution to the log-likelihood by those women who failed

to conceive neither under treatment B nor under treatment A will be:

m200 ln

∫
υ

{
1

1 + exp(β0 − β1 + υ)

1

1 + exp(β0 + β1 + υ)

}
g(υ)dυ. (3.15)

For those who failed to conceive in the first period but conceived in the second

period contribute to the likelihood:

m201 ln

∫
υ

{
1

1 + exp(β0 − β1 + υ)

exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)

}
g(υ)dυ. (3.16)

while those who conceived in the first period but did not conceive in the second

period contribute:

m210 ln

∫
υ

{
exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)

1

1 + exp(β0 + β1 + υ)

}
g(υ)dυ, (3.17)
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The contribution by those who conceived twice is:

m211 ln

∫
υ

{
exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)

exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)

}
g(υ)dυ. (3.18)

As a result, the log-likelihood for the complete AB : BA crossover design can be

written as:

ΨC =
2∑

k=1

1∑
r=0

1∑
s=0

mkrs ln

∫
υ

exp(ψ(ij)k)
r

1 + exp(ψ(ij)k)

exp(ψ(ij)k)
s

1 + exp(ψ(ij)k)
g(υ)dυ, (3.19)

where mkrs is as defined in Table 3.1.

3.1.2 Likelihood of the infertility AB : BA crossover de-

sign

The log-likelihood for the infertility crossover design, can be viewed as the

addition of the following six cases: Consider the women who were randomized to

the AB group. First is the contribution by those subjects who failed to conceive

neither under treatment A nor under treatment B. those subjects contribute

m100 ln

∫
υ

{
1

1 + exp(β0 + β1 + υ)

1

1 + exp(β0 − β1 + υ)

}
g(υ)dυ. (3.20)

For the subjects who fail to conceive in the first period but conceived in the

second period will contribute

m101 ln

∫
υ

{
1

1 + exp(β0 + β1 + υ)

exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)

}
g(υ)dυ. (3.21)
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Those who conceived in the first period, will not go under the second treatment,

hence they will only contribute

m110 ln

∫
υ

exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)
g(υ)dυ +m111 ln

∫
υ

exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)
g(υ)dυ.

(3.22)

Similarly, consider those women who were randomized to the BA group. The

subjects who failed to conceive neither under treatment B nor under treatment

A contribute:

m200 ln

∫
υ

{
1

1 + exp(β0 − β1 + υ)

1

1 + exp(β0 + β1 + υ)

}
g(υ)dυ. (3.23)

For the women who failed to conceive in the first period but conceived in the

second will contribute to the log-likelihood the following:

m201 ln

∫
υ

{
1

1 + exp(β0 − β1 + υ)

exp(β0 + β1 + υ)

1 + exp(β0 + β1 + υ)

}
g(υ)dυ, (3.24)

while those who conceived in the first period contribute to the log-likelihood the

following:

m210 ln

∫
υ

exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)
g(υ)dυ +m211 ln

∫
υ

exp(β0 − β1 + υ)

1 + exp(β0 − β1 + υ)
g(υ)dυ.

(3.25)

Consequently, the log-likelihood for the incomplete AB : BA crossover design

can be expressed as:

ΨI =
2∑

k=1

1∑
r=0

1∑
s=0

mkrs ln

∫
υ

exp(ψ(ij)k)
r

1 + exp(ψ(ij)k)

{
exp(ψ(ij)k)

s

1 + exp(ψ(ij)k)

}1−r

g(υ)dυ (3.26)

where mkrs is as defined in Table 3.1.
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We can now maximize the respective log-likelihoods (3.19) and (3.26) (by

either Mathcad c© or SAS c©) to obtain the corresponding maximum likelihood

estimates. We can investigate the respective variance-covariance matrix to get

the corresponding standard errors.

3.2 Comparisons of the likelihoods

If we are moving from the complete AB : BA crossover design to the incom-

plete AB : BA crossover design information is lost on women who conceived in

the first period. If we are in the complete AB : BA crossover design, we have

the information of what happened to these women in the second period. But

when we are in the incomplete AB : BA crossover design we do not know what

is happening in the second period with regard to those women who conceived in

the first period. We will like to investigate the consequences of these loss of in-

formation by looking at the observed Fisher information and thereafter estimate

the variance covariance matrix. The log-likelihoods (3.19) and (3.26) can easily

be expressed as the sum of the following equations:

ΨC = K + (3.13) + (3.14) + (3.17) + (3.18) (3.27)

and

ΨI = K + (3.22) + (3.25) (3.28)

respectively. Where,

K = (3.11) + (3.12) + (3.15) + (3.16) = (3.20) + (3.21) + (3.23) + (3.24)



3.2. COMPARISONS OF THE LIKELIHOODS 79

3.2.1 Variance-Covariance matrix of the complete crossover

The variance -covariance matrix is estimated by the inverse of the Fisher

information (46). The Fisher information of the complete AB : BA crossover

design is given by

IC(β0, β1, υ) = −


∂2ΨC

∂β2
0

∂2ΨC

∂β0∂β1

∂2ΨC

∂β0∂υ

∂2ΨC

∂β0∂β1

∂2ΨC

∂β2
1

∂2ΨC

∂β1∂υ

∂2ΨC

∂β0∂υ
∂2ΨC

∂υ∂β2

∂2ΨC

∂υ2

 (3.29)

.

The approximate variances and covariances are found, respectively, in the

matrix

I−1
C (β0, β1, υ) ≈


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3.30)

,

where a11 = var(β0), a12 = a21 = cov(β0, β1), a13 = a31 = cov(β0, σ), a22 =

var(β1) and a33 = var(σ)

3.2.2 Variance-Covariance matrix of the incomplete crossover

The Fisher information of the complete AB : BA crossover design is given by

II(β0, β1, υ) = −


∂2ΨI

∂β2
0

∂2ΨI

∂β0∂β1

∂2ΨI

∂β0∂υ

∂2ΨI

∂β0∂β1

∂2ΨI

∂β2
1

∂2ΨI

∂β1∂υ

∂2ΨI

∂β0∂υ
∂2ΨI

∂υ∂β2

∂2ΨI

∂υ2

 (3.31)

.
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The approximate variances and covariances are found, respectively, in the

matrix

I−1
I (β0, β1, υ) ≈


b11 b12 b13

b21 b22 b23

b31 b32 b33

 (3.32)

,

where b11 = var(β0), b12 = b21 = cov(β0, β1), b13 = b31 = cov(β0, σ), b22 =

var(β1) and b33 = var(σ)

3.3 Crossover design and Parallel design

The parallel design data set is analyzed using the standard logistic model de-

scribed in the previous chapter. An obvious advantage of using the mixed effects

model is that it allows conditional inferences in addition to marginal inferences

(82). With the mixed effect model (3.1) we can obtain not only the conditional

mean E(Yij|υi
) but also the marginal mean E(Yij), while with standard logistic

model we can obtain only the marginal mean E(Yij). Given a conditional model,

one can recover information about marginal distributions. That is, conditional

model implies a marginal model, but a marginal model does not itself imply a

conditional model.

We will illustrate how given a conditional model, one can recover marginal

inferences.
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3.3.1 Marginalized Random-Effect Model

Let βc be the conditional estimates obtained under the random effect model

described above. We can predict the marginal probability from either equation

(3.6) or equation (3.7) by simply using the fact that

pij =

∫
υ

exp(βcxij + υ)

1 + exp(βcxij + υ)
g(υ)dυ. (3.33)

From the pij, we can compute marginal logistic regression estimates from the

mixed effects model, giving an intercept

βM
0 =

logit(pi1) + logit(pi2)

2
, (3.34)

and the treatment effect

βM
1 = logit(pi1)− logit(pi2). (3.35)

The standard errors are easily obtained from the fact that there exist a constant

c, such that the estimates from the fixed effects model is equal to the estimates

from the random effects model multiplied by a constant c (more details can be

seen in Agresti (1)). These marginalized estimates and their corresponding stan-

dard errors are compared with the maximum likelihood estimates obtained from

the parallel data set. We expect conditional estimates (and their corresponding

standard errors) to be higher than the marginal estimates (1).
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3.4 Illustration

As an illustration we will look at the 3M − Riker example mentioned in

the Chapter 2. We will like to state that we use this example for the sake

of illustration only. It is because we are considering the unrealistic case; the

complete cross over design in infertility, and so there is noway we can get an

infertility data where women are allowed to get pregnant twice. The trial is not

an infertility trial. We will first analyze the trial as the complete AB : BA

crossover design. We then delete the second outcome for every subject whose

outcome is a 1 in the first period, thus creating an incomplete AB : BA scenario,

which looks more similar like the infertility trial.

3.4.1 Analysis using Mathcad c©

We will illustrate how the log-likelihoods (3.19) and (3.28) are maximized

using Mathcad c©. Using the quadrature adaptive method, the log-likelihoods

(3.19) and (3.28) can be estimated by

ΓC(β0, β1, σ) =
2∑

k=1

1∑
r=0

1∑
s=0

{
mkrs ln π−

1
2

N∑
q=1

ψq

{
ω(1)k

}r

1 + ω(1)k

{
ω(2)k

}s

1 + ω(2)k

}
(3.36)

and

ΓI(β0, β1, σ) =
2∑

k=1

1∑
r=0

1∑
s=0

mkrs ln π−
1
2

N∑
q=1

ψq

{
ω(1)k

}r

1 + ω(1)k

{ {
ω(2)k

}s

1 + ω(2)k

}1−r

(3.37)

respectively, where

ω(1)k = exp(β0 + β1

2
treatment(1)k +

√
2xq exp(σ))
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and

ω(2)k = exp(β0 + β1

2
treatment(2)k +

√
2xq exp(σ)).

The {xq}N
q=1 are the roots of order N Hermite polynomial PN(x) and {ψq}N

q=1 are

as defined in equation 2.34. Furthermore treatment(1)k denotes the first treatment

in group k. Similarly treatment(2)k denotes the second treatment in group k. We

maximize ΓC(β0, β1, σ) and ΓI(β0, β1, σ) using Mathcad c©.

The following MathCad c© code will maximize both ΓC(β0, β1, σ) and ΓI(β0, β1, σ)

and produce the maximum likelihood estimates (MLE) of β0, β1, and σ.

ORIGIN:= 1

ΓC(β0, β1, σ) :=
∑2

k=1

∑1
r=0

∑1
s=0mkrs ln π−

1
2

∑N
q=1 ψq

{ω(1)k}r

1+ω(1)k

{ω(2)k}s

1+ω(2)k

ΓI(β0, β1, σ) :=
∑2

k=1

∑1
r=0

∑1
s=0mkrs ln π−

1
2

∑N
q=1 ψq

{ω(1)k}r

1+ω(1)k

{
{ω(2)k}s

1+ω(2)k

}1−r

β0 := 0 β1 := 1 σ := 1

Maximize(ΓC , β0, β1, σ)

Maximize(ΓI , β0, β1, σ)

The output of the above analysis is as follows:
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The standard errors are computed from the corresponding variance-covariance

matrix, as illustrated in the previous sections. Table 3.4 below shows the MLE

and their standard errors for the complete and incomplete AB : BA crossover for

models involving treatment only and treatment with period effects.

Model Data set β0 β1 β2 ln(σ)
Treatment Complete -0.478 0.856 0.348

(0.139) (0.214) (0.184)
Incomplete -0.404 0.710 0.561

(0.166) (0.272) (0.266)
Treatment Complete -0.480 0.861 0.211 0.354

and (0.139) (0.215) (0.205) (0.183)
Period Incomplete -0.197 0.874 -0.800 1.130

(0.637) (0.579) (2.456) (1.374)

Table 3.4. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design

We now create a parallel design trial by deleting all the second outcomes. The

log-likelihood for the parallel design takes the form

ΓP (β0, β1, σ) =
2∑

k=1

1∑
r=0

mkr· ln

{
W(1)k

}r

1 +W(1)k

, (3.38)

where

W(1)k = exp(β0 + β1

2
treatment(1)k),

and mkr· =
∑1

s=0mkrs.
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The following MathCad c© code will maximize ΓP (β0, β1) and produce the max-

imum likelihood estimates (MLE) of β0, and β1,

ORIGIN:= 1

ΓP (β0, β1) :=
∑2

k=1

∑1
r=0mkr· ln

{W(1)k}r

1+W(1)k

β0 := 0 β1 := 1

Maximize(ΓP , β0, β1)

The output of the parallel design analysis is as follows:

3.4.2 Analysis using SAS c©

The following SAS c© code creates a data set INCOMPLETE and COM-

PLETE respectively.

data incomplete;
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input seq patient period treat outcome;

datalines;

1 1 1 1 0

1 2 1 1 0

1 3 1 1 0

. . . . .

. . . . .

. . . . .

2 156 -1 1 1

2 157 -1 1 1

2 158 -1 1 1

;

run;

proc sort data=incomplete;

by patient;

data complete;

input group patient period treatment outcome;

datalines;

1 1 1 1 0

1 2 1 1 0

1 3 1 1 0

. . . . .

. . . . .

. . . . .

2 277 -1 1 1

2 278 -1 1 1

2 279 -1 1 1
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;

run;

proc sort data=complete;

by patient;

run;

The PROC NLMIXED statements to fit the logistic-normal model to these

data sets are as follows:

proc nlmixed data=incomplete;

parms beta0=-0.472 beta1=0.2141 logsigma=0.1;

sigma=exp(logsigma);

sigma2=sigma**2;

preg=beta0 + beta1*treat/2 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;

run;

proc nlmixed data=complete;

parms beta0=-0.472 beta1=0.852 logsigma=0.3;

sigma=exp(logsigma);

sigma2=sigma**2;

preg=beta0 + beta1*treat/2 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;
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run;

The ”Parameter estimates” output below (for incomplete and complete cross

over) lists the maximum likelihood estimates and their approximate standard

errors computed using the final Hessian matrix. Approximate t − values and

Wald-type confidence limits are also provided, with degrees of freedom equal to

the number of subjects minus the number of random effects.

Table 3.5. conditional estimates and their standard errors for the complete
crossover design:model with treatment only

Table 3.6. conditional estimates and their standard errors for the incomplete
crossover design:model with treatment only

The PROC NLMIXED statements to fit the logistic-normal model (with

period effects) to these data sets are as follows:
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proc nlmixed data=one;

parms beta0=-0.472 beta1=0.2141 beta2=0.3 logsigma=0.1;

sigma=exp(logsigma);

sigma2=sigma**2;

preg=beta0 + beta1*treat/2 + beta2*period/2 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;

run;

proc nlmixed data=two;

parms beta0=-0.472 beta1=0.852 beta2=0.21 logsigma=0.3;

sigma=exp(logsigma);

sigma2=sigma**2;

preg=beta0 + beta1*treat/2 + beta2*period/2 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;

run;

Table 3.7 and Table 3.8 show the output for the incomplete and complete

data analysis respectively:
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Table 3.7. conditional estimates and their standard errors for the complete
crossover design:model with treatment and period effects

Table 3.8. conditional estimates and their standard errors for the incomplete
crossover design:model with treatment and period effects

The SAS c© output is similar to our Mathcad c© results. For the complete cross

over design, our results are similar to the results in Ezzet and Whitehead (30). In

the no period effects scenario, the maximum likelihood estimates obtained from

the complete and incomplete data set are not much dissimilar. But in all the

three parameters (β0, β1, σ) the standard errors obtained from the incomplete

data set are higher than the standard errors obtained from the complete data

set. This clearly signifies loss of information. In the scenario involving period

effects, the maximum likelihood estimates obtained from the incomplete data set

shows evidence of bias. Also the standard errors are very much higher than the

corresponding standard errors obtained under the complete data set. By moving

from the no period effects scenario to the period effects scenario, we experience

an increase in standard errors in the incomplete data set. This increase is so

high that it makes it difficult to estimate the parameters. Unlike in the complete
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data set case, there is no increase in the standard errors leading to the estimates

obtained under no period effects scenario to be not dissimilar to the estimates

obtained under the period effects scenario.

3.4.3 Marginalized estimates

We will use tables 3.5, 3.6, 3.7 and 3.8 to obtain the marginalized estimates

that are comparable to the estimates from the parallel design. For the model

involving treatment only, using equations (3.34) and (3.35), the marginalized

intercept and treatment effect are estimated respectively as follows:

βM
0T =

ln λ1
1−λ1

+ ln λ2
1−λ2

2
(3.39)

and

βM
1T = ln

λ1

1− λ1
− ln

λ2

1− λ2
(3.40)

where

λ1 = π
−1
2

∑N
q=1 ψq

{
exp(beta0+ beta1

2
+
√

2xq exp(logsigma))

1+exp(beta0+ beta1
2

+
√

2xq exp(logsigma))

}

and

λ2 = π
−1
2

∑N
q=1 ψq

{
exp(beta0− beta1

2
+
√

2xq exp(logsigma))

1+exp(beta0− beta1
2

+
√

2xq exp(logsigma))

}
.

The parameters beta0, beta1 and logsigma are the maximum likelihood estimates

from either Table 3.5 or Table 3.6. Furthermore, {xq}N
q=1 are the roots of order

N Hermite polynomial PN(x) and {ψq}N
q=1 are as defined in equation 2.34.
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Similarly, for the model involving treatment and period effects, the marginal-

ized intercept and treatment effect are estimated respectively as follows:

βM
0TP =

ln Υ1
1−Υ1

+ ln Υ2
1−Υ2

2
(3.41)

and

βM
1TP = ln

Υ1

1−Υ1
− ln

Υ2

1−Υ2
(3.42)

where

Υ1 = π
−1
2

∑N
q=1 ψq

{
exp(beta0+ beta1

2
+β2

2
+
√

2xq exp(logsigma))

1+exp(beta0+ beta1
2

+β2
2

+
√

2xq exp(logsigma))

}
and

Υ2 = π
−1
2

∑N
q=1 ψq

{
exp(beta0− beta1

2
+β2

2
+
√

2xq exp(logsigma))

1+exp(beta0− beta1
2

+β2
2

+
√

2xq exp(logsigma))

}
.

The parameters beta0, beta1, beta2 and logsigma are the maximum likelihood

estimates from either Table 3.7 or Table 3.8. Table 3.9 below shows the marginal-

ized estimates and their standard errors for the complete and incomplete AB : BA

crossover together with the maximum likelihood estimates obtained from the par-

allel data set for the two considered scenarios.

Based on our calculations, the statistical estimates of treatment effects ob-

tained from a crossover design are not very much dissimilar from those obtained

under parallel design. In both scenarios, the maximum likelihood estimates ob-

tained from the parallel data set have the highest standard errors, followed by

marginalized estimates from the incomplete data set. The marginalized estimates

obtained from the complete data set has the lowest standard errors.

To further understand what is really happening we resort to simulation. Since

we are satisfied that Mathcad c© gives similar results to SAS c© and simulation is
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Model data set βM
0 βM

1

Treatment Complete -0.348 0.625
(0.101) (0.156)

Incomplete -0.265 0.466
(0.109) (0.179)

Parallel -0.269 0.393
(0.121) (0.243)

Treatment Complete -0.273 0.626
and (0.079) (0.156)

Period Incomplete -0.269 0.476
(0.869) (0.209)

Parallel -0.269 0.393
(0.121) (0.243)

Table 3.9. Marginalized estimates and the MLE from the parallel design

very much handy in Mathcad c© than in SAS c©, we will employ Mathcad c© to

perform simulation.

3.5 Simulations

We simulated a two-period cross over design with the help of a Mathcad c©.

The woman is randomized into either group AB or group BA. If a woman

is randomized into group AB, she will first receive treatment A followed by

treatment B. The women in the group BA receive the two treatments in the

reverse order. Every woman progresses through the treatment regimen. At the

first period women are randomly allocated to pregnant or not pregnant, based on

their scenario-specific probability of pregnancy. Women then proceed to obtain

a second treatment regardless of the outcome in the first period, again based on

their scenario-specific probability of pregnancy they will be allocated to pregnant

or not pregnant. For each couple the number of pregnancies were recorded. We

calculated the likelihood function associated with the progress of women through

this process. We then construct the realistic infertility trial by removing the
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second outcomes for those women who conceived in the first period. Similarly

we constructed the likelihood associated with the infertility trial. Finally, we

construct a parallel design by removing the second outcome for each woman and

we constructed the likelihood associated with the parallel design.

We considered two cases. One case with period effect and the other without

the period effect. In each case, we simulated 2000 samples of size 300. For

each sample i we record the maximum likelihood estimates (MLE), say β̂i. We

estimate the true value by the average of the β̂is. Thus

β ≈ ¯̂
β =

P2000
i=1 β̂i

2000
.

The standard error of the estimator is computed as follows

se(β) =

√
1

2000

∑2000
i=1 (β̂i − ¯̂

β)2.

For the case without the period effect, the model was

ψ(ij)k = ln(
p(ij)k

1−p(ij)k
) = −0.479 + 0.861 ∗ treatment(ij)k + exp(µi),

whereas for the case with period effect, the model was

ψ(ij)k = ln(
p(ij)k

1−p(ij)k
) = −0.479 + 0.861 ∗ treatment(ij)k + 0.211 ∗ periodij + exp(µi),

where µi ∼ N(0, σ2), and σ = 0.351. Parameters β0, β1 and β2 represent intercept,

treatment and period effects respectively.

Finally, we again, use the above models, but with samples of larger sizes. For

each case, we simulated 2000 samples of size 1000000. The following MathCad c©

with generate n sample of size m.
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In this code we can change the values of m and n to satisfy the samples

number and their size.
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3.6 Simulation results

3.6.1 Model with no Period Effects

For the model with no period effects, the conditional estimates are not very

much dissimilar. The standard errors for the estimates obtained from the incom-

plete crossover design are relatively higher than their corresponding estimates

obtained from the complete crossover design, as it is shown in Table 3.10.

Treat ¯̂
β0(Std) ¯̂

β1
¯̂σ

Complete −0.486(0.138) 0.862(0.214) 0.346(0.182)

Incomplete −0.483(0.15) 0.875(0.272) 0.28(0.589)

Table 3.10. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design for the scenario involving no period
effects

We can predict the marginal probability and thus compute marginal logistic

regression estimates as shown in Table 3.11 below:

Treat βM
0 βM

1

Full −0.352(0.097) 0.624(0.149))
Incomplete −0.353(0.122) 0.627(0.179)
Parallel −0.354(0.123) 0.63(0.241)

Table 3.11. Predicted marginal regression estimates for the scenario involving
no period effects

The predicted marginal regression estimates from both the complete crossover

design and the incomplete design agree with the marginal estimates obtained from

the parallel design. The standard errors for the treatment estimates are 0.149,

0.179 and 0.241 for the complete crossover, incomplete crossover and parallel
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model respectively.

3.6.2 Model with Period Effects

The conditional regression estimates obtained from this model are very much

dissimilar for the complete crossover design and incomplete crossover design as

illustrated in Table 3.12. The estimates obtained under incomplete crossover

design are biased with very high standard errors, while their corresponding es-

timates obtained from the full crossover design are unbiased with the standard

errors similar to the standard errors obtained from the scenario involving no pe-

riod effects.

Parameter Full Incomplete

¯̂
β0 −0.487(0.136) −0.389(0.417)
¯̂
β1 0.87(0.213) 1.073(0.604)
¯̂
β2 0.215(0.206) −0.384(1.668)
¯̂σ 0.354(0.18) −0.175(1.805)

Table 3.12. conditional estimates from the full cross over design and the infer-
tility cross over design for the scenario involving period effects

The predicted marginal regression estimates from both the complete crossover

design and the incomplete design agree with the marginal estimates obtained

from the parallel design as illustrated in Table 3.13. The standard errors for

the treatment estimates are 0.146, 0.212 and 0.240 for the complete crossover,

incomplete crossover and parallel model respectively.



3.6. SIMULATION RESULTS 99

Treat βM
0 βM

1

Full −0.274(0.121) 0.626(0.146)
Incomplete −0.274(0.121) 0.615(0.212)
Parallel -0.274(0.121) 0.631(0.240)

Table 3.13. Predicted marginal regression estimates for the scenario involving
period effects

3.6.3 Larger samples

Using the same models, for each case, we simulated 2000 samples of size

1000000. Here we will like to investigate precision and not bias. Table 3.14 shows

the maximum likelihood estimates for the complete and incomplete scenarios.

Treat ¯̂
β0(Std× 103) ¯̂

β1
¯̂σ

Full −0.479(2.315) 0.861(3.63) 0.351(3.084)
Incomplete −0.479(2.445) 0.861(4.344) 0.351(5.283)

Table 3.14. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design for the scenario involving no period
effects

The maximum likelihood obtained from the complete crossover design have

lower standard errors than the maximum likelihood estimates obtained using the

incomplete crossover design. The marginalized estimates for the scenario involv-

ing treatment only are shown in Table 3.15.

Treat βM
0 (Std× 103) βM

1

Full −0.349(1.6136) 0.628(2.5352)
Incomplete −0.349(2.029) 0.628(2.9948)
Parallel −0.349(2.0321) 0.628(4.0538)

Table 3.15. Predicted marginal regression estimates for the scenario involving
no period effects
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The predicted marginal regression parameters for the incomplete crossover design,

have higher standard errors than the marginalized estimates from the complete

crossover design. But the predicted marginal regression parameters for the incom-

plete crossover design have smaller standard errors than the estimates obtained

under the parallel design.

The conditional regression estimates and their corresponding predicted marginal

estimates for the scenario involving period effects are shown in Table 3.16 and

Table 3.17 respectively.

Parameter(Std× 103) Full Incomplete

¯̂
β0 −0.479(2.371) −0.479(5.399)
¯̂
β1 0.861(3.594) 0.861(6.491)
¯̂
β2 0.211(3.415) 0.211(18)
¯̂σ 0.351(3.114) 0.351(23)

Table 3.16. conditional estimates from the full cross over design and the infer-
tility cross over design for the scenario involving period effects

Treat βM
0 (Std× 103) βM

1

Full −0.272(2.0367) 0.627(2.5033)
Incomplete −0.272(2.03653) 0.627(4.0679)
Parallel -0.272(2.0365) 0.627(4.0865)

Table 3.17. Predicted marginal regression estimates for the scenario involving
period effects

It shows that in general,the conditional regression parameters for the incom-

plete crossover design, have higher standard errors than the conditional estimates

obtained under complete crossover design. The predicted marginal estimates un-

der incomplete crossover design have smaller standard errors than the marginal
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estimates obtained under parallel design.

3.7 Sufficiency

Suppose that in the model involving treatment only, Yi = τCi, Xi = τIi and

Zi = τPi, i = {1, 2, ..., 2000}, are the treatment estimates obtained using the

complete data set, the incomplete data set and the parallel data set respectively.

That is for every sample we obtained the treatment estimate under the complete

data set, the incomplete data set and the parallel data set. Here we will like to

investigate the sufficiency of each of the three treatment estimates. That is to say

instead of listing all the three treatment estimates, can we base our inferences only

on one of them. In statistics, a statistic is said to be sufficient with respect to a

parameter, when no other statistic which can be calculated from the same sample

provides any additional information as to the value of the parameter. That is to

say, conditional on the value of a sufficient statistic, the distribution of data is

not a function of the underlying parameter the statistic is sufficient for. We will

employ the latter definition to illustrate which of the three estimates (estimate

from the parallel design, estimate from incomplete data set and estimate from

the complete data set) is sufficient.

3.7.1 Conditional estimates

Here we will compare the treatment estimate from the incomplete data set

with the treatment estimate from the complete set to see which of the two is
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sufficient. To perform all these, we will consider the linear regression models:

E(τI |τC) = constant+
Cov(τC , τI)

V ar(τC)
∗ τC , (3.43)

and

E(τC |τI) = constant+
Cov(τC , τI)

Cov(τI)
∗ τI . (3.44)

The following regression coefficient and constant were observed,

Parameter Cov(τC ,τI)
V ar(τC)

constant

β̂0 0.994 −2.946 ∗ 10−3

β̂1 0.994 5.016 ∗ 10−3

σ̂ 1.042 −0.015

Table 3.18. Regression coefficients for the model E(τI |τC) = constant +
Cov(τC ,τI)
V ar(τC)

∗ τC

Parameter Cov(τC ,τI)
V ar(τI)

constant

β̂0 0.891 -0.052

β̂1 0.694 0.263
σ̂ 0.355 0.226

Table 3.19. Regression coefficients for the model E(τC |τI) = constant +
Cov(τC ,τI)

Cov(τI)
∗ τI

The constant term in the model E(τI |τC) = constant+ Cov(τC ,τI)
V ar(τC)

∗τC is 5.016∗

10−3 ≈ 0 and the slope term is 0.994 ≈ 1 signifying that the treatment estimate

obtained using the complete data set are sufficient. That is to say that the

model E(τI |τC) = constant + Cov(τC ,τI)
V ar(τC)

∗ τC can be simply be replaced by the

model E(τI |τC) = τC without losing the meaning associated with the entire set

of observations. On the other hand, the constant term in the model E(τC |τI) =

constant+Cov(τC ,τI)
Cov(τI)

∗τI is 0.263 6= 0 and the slope term is 0.694 6= 1 signifying that
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the treatment estimate obtained using the incomplete data set are not sufficient.

We observe that here, we can not replace the model E(τC |τI) = constant +

Cov(τC ,τI)
Cov(τI)

∗ τI by the model E(τC |τI) = τI . All what we are saying is that if you

are presented with the treatment estimate obtained from the complete data set

τC , the expectation (or best guess) of the treatment estimate obtained from the

incomplete data set will be still τC . But not vice versa.

3.7.2 Marginalized estimates

Here we will first compare the marginalized treatment estimate from the com-

plete data set with the treatment estimate obtained under parallel design. We

consider the following linear regression models:

E(τP |τC) = constant+
Cov(τMC , τP )

V ar(τMC)
∗ τMC , (3.45)

and

E(τMC |τP ) = constant+
Cov(τMC , τP )

Cov(τP )
∗ τP . (3.46)

The following slopes and constants were obtained.

Parameter Cov(τMC ,τP )
V ar(τMC)

constant

β̂M
0 0.991 −3.296× 10−3

β̂M
1 0.956 0.028

Table 3.20. Regression coefficients for the model E(τP |τC) = constant +
Cov(τMC ,τP )

V ar(τMC)
∗ τMC

The constant term in the model E(τP |τMC) = constant+ Cov(τMC ,τP )
V ar(τMC)

∗ τMC is
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Parameter Cov(τMC ,τP )
V ar(τP )

constant

β̂M
0 0.625 -0.131

β̂M
1 0.374 0.393

Table 3.21. Regression coefficients for the model E(τMC |τP ) = constant +
Cov(τMC ,τP )

Cov(τP )
∗ τP

0.028 and the slope term is 0.956 ≈ 1 signifying that the marginalized treatment

estimate obtained using the complete data set are sufficient. On the other hand,

the constant term in the model E(τMC |τP ) = constant+ Cov(τMC ,τP )
Cov(τP )

∗τP is 0.393 6=

0 and the slope term is 0.625 6= 1 signifying that the treatment estimate obtained

using the parallel data set are not sufficient.

Secondly we compare the marginalized treatment estimate obtained under

incomplete data set with the treatment estimate obtain under parallel design by

considering the models:

E(τP |τMI) = constant+
Cov(τMI , τP )

V ar(τMI)
∗ τMI , (3.47)

and

E(τMI |τP ) = constant+
Cov(τMI , τP )

Cov(τP )
∗ τP , (3.48)

The following slopes and constants were obtained.

Parameter Cov(τI ,τP )
V ar(τI)

c

β̂0 0.997 −8.849× 10−4

β̂1 0.97 0.019

Table 3.22. Regression coefficients for the model E(τP |τMI) = constant +
Cov(τMI ,τP )

V ar(τMI)
∗ τMI
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Parameter Cov(τI ,τP )
V ar(τP )

c

β̂0 0.994 −1.944× 10−3

β̂1 0.529 0.293

Table 3.23. Regression coefficients for the model E(τMI |τP ) = constant +
Cov(τMI ,τP )

Cov(τP )
∗ τP

The constant term in the model E(τP |τMI) = constant + Cov(τMI ,τP )
V ar(τMI)

∗ τMI

is 0.019 and the slope term is 0.97 ≈ 1 signifying that the marginalized treat-

ment estimate obtained using the complete data set are sufficient. On the other

hand, the constant term in the model E(τMI |τP ) = constant+ Cov(τMI ,τP )
Cov(τP )

∗ τP is

0.293 6= 0 and the slope term is 0.529 6= 1 signifying that the treatment estimate

obtained using the parallel data set are not sufficient. That is to say, if we are

presented with the treatment estimate obtained from the incomplete data set

τI , the expectation (or best guess) of the treatment estimate obtained from the

parallel data set will be still τI . But not vice versa as is illustrated in Table 3.22

and Table 3.23.



Chapter 4

Analysis of crossover design in

infertility trials

This section presents examples of cross over trials in infertility trials. The

purpose of this chapter is to demonstrate how in practise the cross over trials in

infertility should be analyzed using different statistical packages (fitting models

in practice). To emphasize this, we will employ four statistical packages, namely,

SAS c©, R c© WinBugs c© and GenStat c©. The first example that we will consider is

an AB : BA crossover trial from Gregoriou et al. (40) based on a crossover study

to compare the pregnancy rates achieved by intrauterine insemination (IUI) and

timed intercourse (TI) in gonadotrophin (hCG) stimulated cycles. Secondly, we

will look at the crossover trial where couples were initially randomized to one

treatment, subsequently alternating treatment on each cycle. These data are

from Cohlen et al. (24) based on a crossover study to investigate whether the use

of controlled ovarian hyper stimulation with human menopausal gonadotrophin

in couples with male subfertility leads to a higher probability of conception when

intrauterine insemination (IUI) is applied.

106
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In SAS c©, R c© and GenStat c©, we will carry out an analysis of deviance,

described by Senn (84), while in WinBugs c© we will make use of the deviance

information criterion (DIC; Spiegelhalter et al. (90)). We adopt the attitude

from Senn (84) that the investigator should determine on a priori grounds which

form of analysis he/she favours. In both examples, we will report the analysis

involving period effects and the analysis excluding period effects, and and we will

not perform pre-testing of period effects.

4.1 Example I

In this section we look at the data from Gregoriou et al. (40) based on a

crossover study to compare the pregnancy rates achieved by intrauterine insem-

ination (IUI) and timed intercourse (TI) in gonadotrophin (hCG) stimulated

cycles. Sixty-two couples were randomly equally divided into two groups; group

A or group B. Couples randomized to group A will begin with protocol 1 before

switching to protocol 2. Couples randomized to group B receive protocols in the

reverse order. For all couples, controlled ovarian hyper-stimulation (COH) was

performed with the help of gonadotrophin (hCG), and either timed intercourse

(TI) or intrauterine insemination (IUI) was employed. In protocol 1 timed in-

tercourse (TI) was employed, while in protocol 2 intrauterine insemination (IUI)

was employed. Couples stayed in the same protocol for at most 3 cycles before

they can switch to the alternative protocol, with each couple receiving in total

at most 6 cycles of protocols.
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Table 4.1 shows the achieved pregnancy rates in each group of attempts by

the two protocols.

Table 4.1. Pregnancy rates achieved in each group of attempts by the two
protocols

Of the 62 couples enrolled, 20 couples conceived, of which 12 conceived during

the first 3 cycles and 8 conceived in the second 3 cycles. Couples left the study

if and only if they conceived. We can analyze the data as the AB : BA crossover

design described earlier, where the first 3 cycles constitute the first period and

the second 3 cycles constitute the second period. That is to say that if one

couple conceives under cycle 1 and the other couple conceives under cycle 2 or 3,

then those two couples are regarded as having conceived under the first period.

Similarly, if one couple conceives under cycle 4 and the other couple conceives

under cycle 5 or 6, then those two couples are regarded as having conceived

under the second period. It is possible to have treated each cycle as a period of

its own. Here, we can not do that as we are restricted by the way the data is

presented. The way the data is presented does not allow us to treat each cycle as

a period. We propose to analyze this data using the mixed effects model. We first



4.1. EXAMPLE I 109

consider a scenario where the investigator believes that there is enough evidence

to include period effects. Thus we assume that the probability that a couple

i, i = {1, 2, ..., 62} in group k, k = {A,B} conceives under period j, j = {1, 2} is

p(ij)k =
exp(intercept+ β1 ∗ protocol(ij)k + β2 ∗ periodj + υi)

1 + exp(intercept+ β1 ∗ protocol(ij)k + β2 ∗ periodj + υi)
(4.1)

where as usual υi is the random couple effect, assumed to be distributed in the

population as N(0, σ2). We code our protocol as 0 and 1 for protocol 1 and

protocol 2 respectively. We store our data set in the F :drive under the file name

gregoriou.txt. The file consists of five columns labelled: group, patient, period,

protocol and response. The variable RESPONSE has two levels: 1 indicates

conception and 0 indicates fail to conceive. Also, the variable PERIOD has two

levels: 0 signifies the first period (cycles 1, 2 or 3) and 1 signifies the second

period (cycles 4, 5 or 6). The factors GROUP, PATIENT and PROTOCOL

are as defined above.

4.1.1 Analysis using SAS c©

The following statement may be used in SAS c© to import the stored data set

”gregoriou.txt” from the F :drive. The argument DATAFILE= specifies the

complete path and filename of the input file. The OUT= argument identifies the

output SAS c© data set. If the specified SAS c© data set does not exist, PROC

IMPORT creates it. The line DBMS= specifies the type of data to import.

For example, DBMS=TAB specifies to import a delimited file (tab-delimited

values) file, which its extension is .TXT. We may not need to specify DBMS=

if the filename specified with DATAFILE= contains a valid extension so that

PROC IMPORT can recognize the type of data. The statement REPLACE



4.1. EXAMPLE I 110

overwrites an existing SAS c© data set. If REPLACE is not specified, PROC

IMPORT does not overwrite an existing data set.

proc import datafile=”F:\gregoriou.txt”

out=gregoriou

dbms=TAB

replace;

run;

proc sort data=gregoriou;

by patient;

run;

This code will import the data into the SAS c© data set ”gregoriou” and sort

it by patient, which may then be used in subsequent analysis. Since PROC

NLMIXED assumes that every time a new value of the PATIENT variable is

encountered a new PATIENT is being analyzed, we need to sort our data by

PATIENT. The PROC SORT arranges the data by PATIENT.

The following PROC NLMIXED fits the model involving protocol and pe-

riod effects (saturated model).

proc nlmixed data=gregoriou;

parms intercept=-2 beta1=1 beta2=0.2 sigma=0.2;

sigma2=sigma**2;

preg=intercept + beta1*protocol + beta2*period + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome∼ binomial(1,ppreg);

random u∼ normal(0,sigma2) subject=patient;

run;
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The PROC NLMIXED statement invokes the procedure and inputs the gre-

goriou data set. The PARMS statement identifies the unknown parameters

and their starting values. While the PARMS statement is not required, it is en-

couraged to use it to provide PROC NLMIXED with accurate starting values.

Parameters not listed in the PARMS statement are assigned an initial value

of 1. We illustrate a simpler way of obtaining reasonable starting values. The

proportion of couples conceived under TI is 5
54
≈ 0.093 and the proportion of

couples conceived under IUI is 15
58
≈ 0.259. A reasonable starting value for the

intercept will be:

log( 0.093
1−0.093

) ≈ −2

While a reasonable starting value for beta1 will be:

log( 0.093
1−0.093

)− log( 0.259
1−0.259

) ≈ 1

For the starting value of beta2, we consider the proportion of conception on

each period. The proportion of conception in the first period ( that is conception

in cycles 1, 2 or 3) is 12
62
≈ 0.194, while the proportion of conception in the second

period (that is conception in cycles 4, 5 or 6) is 8
50

= 0.16. Thus a reasonable

starting value for beta2 will be:

log(0.194
0.806

)− log(0.16
0.84

) ≈ 0.2

For sigma we will choose to use 0.2. Thus we opt to choose −2, 1, 0.2 and 0.2 as

the starting values for the intercept, beta1, beta2 and sigma respectively.

The next three statements construct the variable PPREG to correspond to

the pij and the MODEL statement defines the conditional distribution (given
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the random effects) of the variable OUTCOME. Here a binomial conditional

distribution is specified with n = 1 and p = ppreg; that is a binomial distribution

with mean ppreg and variance ppreg(1 − ppreg). The RANDOM statement

defines the random effect to be U, and specifies that it follows a normal distribu-

tion with mean zero and variance sigma2. The SUBJECT= argument defines

a variable indicating when the random effect obtains new realizations: in this

case, it changes according to the values of the PATIENT variable; that is, all

observations from the same patient occur sequentially in the imported data set.

Table 4.2 displays the fit statistics and the maximum likelihood estimates for the

above PROC NLMIXED procedure (model with treatment and period effect).

Table 4.2. Maximum likelihood estimates for the model with treatment and
period effect

To carry out an analysis of deviance, we will fit a model with the period ef-

fect only and look at the change in deviance when then fitting the protocol effect

as well. The following PROC NLMIXED fits the model with period effect only:

proc nlmixed data=gregoriou;
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parms intercept=-2 beta2=0.2 sigma=0.2;

sigma2=sigma**2;

preg=intercept + beta2*period + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

Table 4.3 shows the output for the model with period effect only.

Table 4.3. Maximum likelihood estimates for the model with period effect only

The difference in −2logL for the model with period effect only and the model

with protocol and period effect is 104.5 − 99 = 5.5; since the difference in the

number of parameters in these models is 1, this value should be compared to

a chi-square distribution with 1 degrees of freedom. The following SAS c© code

will calculate the p-value. PROCHI(x,n) evaluates the probability that the

chi-square of n degrees of freedom is smaller or equal to the valve x.
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data pvalue;

pvalue=1-probchi(5.5,1);

proc print;

run;

The output for the above DATA step is as follows:

The p-value is 0.019016. Therefore at 5% level of significance, the protocol

effect is influential. For this analysis the protocol effect estimate is 1.3278 with

a 95% confidence interval of (0.04963, 2.6060). The odds ratio for IUI compared

to TI is the ratio of predicted odds of IUI versus TI, which is exp(1.3278) = 3.8.

The estimated 95% confidence interval for the odds ratio is exp(1.3278±t(0.975,61)∗

0.6398) = exp(1.3278± 1.99962 ∗ 0.6398) = (1.050896, 13.54418). These odds are

in favour of IUI. Couples undergoing IUI have nearly four times higher odds of

conception than couples undergoing TI.

Suppose the investigator believes that there is no period effects. Here, we

illustrate how the data must be analyzed if the investigator feels that there is no

need to include period effect. We first fit the the model with protocol only. The

following PROC NLMIXED fits the model with protocol only:

proc nlmixed data=gregoriou;

parms intercept=-2 beta1=1 sigma=0.2;

sigma2=sigma**2;

preg=intercept + beta1*protocol + u;

ppreg=exp(preg)/(1+exp(preg));
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model outcome∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

Table 4.4 contains the fit statistics and the maximum likelihood estimates for the

model with protocol only.

Table 4.4. Maximum likelihood estimates for the model with protocol only

To carry out an analysis of deviance, we will fit the null model (model excluding

both protocol and period effect) and look at the change in deviance when then

fitting the protocol effect as well. The following PROC NLMIXED fits the

null model:

proc nlmixed data=gregoriou;

parms intercept=-2 sigma=0.2;

sigma2=sigma**2;

preg=intercept + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;
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run;

Table 4.5 contains the fit statistics and the maximum likelihood estimates for the

null model.

Table 4.5. Maximum likelihood estimates for the null model

If we take the difference in −2 logL for the null and model involving protocol

effects, 104.5 − 99 = 5.5, we get the log likelihood ratio test for the protocol

effects. The p-value is 0.019016. Therefore at 5% significance level we reject the

hypothesis that the null model is as good as the model involving the protocol

only. Here, the protocol effect estimate is 1.3451 with a 95% confidence interval

of (0.03762, 2.6525). The odds ratio for IUI compared to TI is exp(1.3451) = 3.8.

The estimated 95% confidence interval for the odds ratio is exp(1.3451±t(0.975,61)∗

0.6539) = exp(1.3451± 1.99962 ∗ 0.6539) = (1.038366, 14.18736). These odds are

in favour of IUI. Couples undergoing IUI have nearly four times higher odds of

conception than couples undergoing TI.

4.1.2 Analysis using R c©

We begin by importing the stored data set ”gregoriou.txt”. The following

statement may be used in R c© to import the data set ”gregoriou.txt” from the



4.1. EXAMPLE I 117

F :drive into the R c© data set ”gregoriou”. The ”F:/gregoriou.txt” specifies

the complete path and filename of the input file. the HEADER=T option

specifies that the first line is a line of headings, and hence, by implication from

the form of the file, that no explicit row labels are given.

> gregoriou <- read.table(”F:/gregoriou.txt”, header=T).

The lmer function in the lme4 package is designed to fit generalized mixed-

effects model. We first assume that the investigator believes that there is period

effect. The following lmer code fits the model with protocol and period effect.

> fit <- lmer(response∼protocol+period+(1|patient),family=binomial,

data=gregoriou)

> fit

We start by looking at the terms just after the function lmer. The term on

the right hand side of ∼, response indicates the outcome to be modelled, which

must be binary. The terms on the other side of ∼ are the terms that should

be included in the model. The (1|patient) declares Patient to be the random

effect. The family indicates the distribution of the responses which should be

binomial. The data indicates the data that was read in R c©.

The output for the parameter estimates and their p-values for the above lmer

analysis are shown in Table 4.6.
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Table 4.6. lmer analysis for the model with protocol and period effect from the

The following lmer code will fit the reduced model with period effect only.

> fit1 < − lmer(response∼period+(1|patient),family=binomial,data=gregoriou)

> fit1

The output for the parameter estimates and their p-values are as shown in

Table 4.7.
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Table 4.7. lmer analysis for the model with period effect only

The difference in −2logL for the model with period effect only and the

model with protocol and period effect is 104 − 98.96 ≈ 5.5 as in the SAS c©

analysis; Therefore at 5% level of significance, the protocol effect is influen-

tial. The protocol estimate is 1.3278 with 95% confidence interval of (1.3278 ±

1.96 ∗ 0.6255) = (0.10182, 2.55378). The odds ratio for IUI compared to TI is

exp(1.3278) = 3.8. The estimated 95% confidence interval for the odds ratio is

exp(1.3278 ± 1.96 ∗ 0.6255) = (1.105684, 12.89366). These odds are in favour of

IUI. Couples undergoing IUI have nearly four times higher odds of conception

than couples undergoing TI.

Next we assume that there is no period effect. The following lmer code will

fit the model with protocol only.

> fit1 < − lmer(response∼protocol+(1|patient),family=binomial,

data=gregoriou)

> fit1

The output for the parameter estimates and their p-values are as shown in

Table 4.8.
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Table 4.8. lmer analysis for the model with protocol only

Now we fit the null model excluding both period effect and the protocol. The

following R c© code will fit the null model.

> fit1 < − lmer(response∼(1|patient),family=binomial,data=gregoriou)

> fit1

The output for the parameter estimates and their p-values for the null model

are as shown in Table 4.9.

Table 4.9. lmer analysis for the null model
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If we take the difference in −2 logL for the null and model involving protocol

effect only, 104.5 − 99.04 = 5.46, we get the log likelihood ratio test for the

protocol effects. Since the difference is 5.46 with 1 degrees of freedom, the p-

value is 0.019457. This test shows that the model with protocol only provides

a better fit than the null model. Thus, we reject the hypothesis that the null

model is as good as the model involving the protocol only. The treatment effect

estimate is 1.3450 with 95% confidence interval of (1.3450 ± 1.96 ∗ 0.6391) =

(0.092364, 2.597636). The odds ratio for IUI compared to TI is exp(1.3450) =

3.879088. The estimated 95% confidence interval for the odds ratio is exp(1.3450±

1.96 ∗ 0.6391) = (1.099580, 13.68461). These odds are in favour of IUI. Couples

undergoing IUI have nearly four times higher odds of conception than couples

undergoing TI.

4.1.3 Analysis using WinBugs c©

We first assume that there is period effect. The following WinBugs c© code

will specify the random effects model involving protocol and period effects.

model

{ for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < − intercept+beta1*protocol1[i]+ beta2*period1[i]+υ[i]

υ[i] ∼ dnorm(0, tau)

}
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for( i in 1 : N2){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < − intercept+beta1*protocol2[i]+ beta2*period2[i]+υ[i]

}

sigma< − 1/sqrt(tau)

intercept ∼ dnorm(0,1.0E-3)

beta1 ∼ dnorm(0,1.0E-3)

beta2 ∼ dnorm(0,1.0E-3)

tau ∼ dgamma(1,1.0E-4)

log.sigma< − log(sigma)

}

The WinBugs c© language use the ∼ to denote stochastic (probabilistic) rela-

tionships, and the left arrow < − to denote deterministic (logical) relationships.

The stochastic parameters intercept, beta1, beta2, and tau are given proper

but minimally informative prior distributions, while the logical expression for

sigma allows the standard deviation (of the random effects distribution) to be

estimated. The results are very sensitive to the prior distributions.

The following code will specify the data to be used.

list(outcome1 =c(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0,

0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 1,

1, 1, 1, 1, 1, 1,1,1,1,1,1) ,
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treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1) ,

period1 =c(0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,

0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0,

0, 0,0,0,0,0,0),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0,

0, 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 1, 1, 1, 1,1,1,1,1) ,

period2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0),

N1 = 62, N2=50),

The data have to be sorted in such a way that couples who failed to conceive

are listed first. For example, in the first period, we listed couples who did not

conceive followed by those who conceived in the second period, followed by those

who conceived in the first period. In the second period, we listed couples with

outcome (0, 0) (those who did not conceive in both periods) first, followed by

couples with outcome (0, 1) (those who conceived in the second period). This

will ensure that each couple keeps its random effect.

Finally theMCMC sampler must be given some initial values for each stochas-

tic node. These can be arbitrary values, although in practice, convergence can

be poor if wildly inappropriate values are chosen. Different set of initial values

are needed for each chain. To check for convergence we need to specify at least

two chains. The following codes will initialize our model. Here we give the same
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values as in SAS c©

list(intercept=-1,beta1=-1, beta2=1, tau=10,b=c(0, 0, 1, 0, 0, 0, 1,

0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0,

0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4,beta1=-4,beta2=4, tau=15,b=c(0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0,

0, 0,0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,1))

To run the model, we first click once on the Model on the tool bar. Secondly

we click once on the Specification option. We highlight the word model at the

beginning of the code. Finally we Check the model syntax by clicking once on the

check model button in the Specification window. A message saying ”model

is syntactically correct” should appear in the bottom left of the WinBUGS c©

program window.

To load the data we highlight the word list at the beginning of the data

code and we click once on the load data button in the Specification option. A

message saying ”data loaded” should appear in the bottom left of the WinBUGS c©

program window.

Now we need to select the number of chains (i.e. sets of samples to simulate).

The default is 1, but we will use 2 chains for this example, since running multiple

chains is one way to check the convergence of the MCMC simulations. Next we

compile the model by clicking once on the compile button in the Specification

option. A message saying ”model compiled” should appear in the bottom left of

the WinBUGS c© program window. To load the initial values, we highlight the
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word list at the beginning of the first set of initial values and click once on the

load inits button in the Specification window. A message saying ”initial values

loaded: model contains uninitialized nodes (try running gen inits or loading more

files)” should appear in the bottom left of the WinBUGS c© program window.

We repeat this process for the second initial values. A message saying ”initial

values loaded: model initialized” should now appear in the bottom left of the

WinBUGS c© program window. We set some monitors to store the sampled values

for selected parameters. For our example, we set monitors for the parameters

intercept, beta1, beata2 and sigma. For model selection we use the deviance

information criterion box. Now, we select the Update option from the Model

menu and we indicate the number of updates (iterations of the simulation) we

require in the appropriate white box (labelled updates), the default value is 1000.

We click once on the update button, the program will simulate values for each

parameter in the model. This may take a few seconds, the box marked iteration

will indicate how many updates have currently been completed. The number of

times this value is revised depends on the value set for the refresh option in the

white box above the iteration box. The default is every 100 iterations. When

the updates are finished, the message ”updates took ∗ ∗ ∗s” will appear in the

bottom left of the WinBUGS c© program window (where ∗ ∗ ∗ is the number of

seconds taken to complete the simulation).

We cheek convergence by looking at the graph of the two chains. Conver-

gence is signified by the two graphs merging together. Once we are satisfied

that convergence is reached, we simulate extra samples and our estimates will

be based only on the samples simulated after convergence. One way to assess

the accuracy of the posterior estimates is by calculating the Monte Carlo error

for each parameter. This is an estimate of the difference between the mean of
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the sampled values (which we are using as our estimate of the posterior mean

for each parameter) and the true posterior mean. The simulation should be run

until the Monte Carlo error (MC error) for each parameter of interest is less than

about 5% of the sample standard deviation. We first ran 20000 simulation and

we checked convergence for the intercept, beta1, beta2 and sigma. We look for

evidence of when the simulation appears to have stabilized by examining the plots

of the sample values versus iterations. Fig 4.1 shows the graphs for the intercept,

beta1, beta2 and sigma. The plots of the intercept, beta1 and beta2 show chains

for which convergence look reasonable. The plot of sigma shows chains which

have clearly not reached convergence.
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Figure 4.1. Plot of the intercept, beta1, beta2 and sigma for the model with
protocol and period effects
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We simulated extra 30000, and Table 4.10 below shows the summary statistics

for the monitored parameters and the fit statistic (deviance information criterion)

node mean sd MC error 2.5% median 97.5% start sample
intercept -2.28 0.5344 0.004679 -3.42 -2.245 -1.321 20001 60000

beta1 1.32 0.5842 0.003773 0.2377 1.301 2.542 20001 60000
beta2 -0.313 0.5288 0.002317 -1.372 -0.3081 0.7094 20001 60000
sigma 0.06426 0.1967 0.005039 0.01643 0.03876 0.2426 20001 60000

Table 4.10. Parameter estimates and their standard errors

Next we fit the model with period effect only. The WinBugs c© code that specify

the model with period effect only, the data to be used and the initial values for

the MCMC sampler is in the Appendix A.1. We ran 20000 simulation and we

checked convergence for the intercept, beta2 and sigma. We look for evidence

of when the simulation appears to have stabilized by examining the plots of the

sample values versus iterations. Fig A.1 shows the plots for the intercept, beta2

and sigma. The plots of the intercept and beta2 show chains for which conver-

gence look reasonable. The plot of sigma shows chains which have clearly not

reached convergence.

We simulated extra 30000 samples. Table 4.11 shows the summary statistics

for the monitored parameters. To compare these two models: the model with

protocol and period effect with the model with period effect only, here unlike in

R c© and SAS c©, we will use the deviance information criterion (DIC; (90)).
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node mean sd MC error 2.5% median 97.5% start sample
intercept -1.462 0.326 0.00142 -2.134 -1.451 -0.8487 20001 60000

beta2 -0.245 0.512 0.002718 -1.278 -0.2433 0.7417 20001 60000
sigma 0.0532 0.05522 0.001567 0.0163 0.03759 0.1849 20001 60000

Table 4.11. Parameter estimates and their standard errors

The idea is that models with smaller deviance information criterion (DIC)

should be preferred to models with larger deviance information criterion (DIC).

The advantage of DIC over other criteria (likelihood ratio test), for Bayesian

model selection, is that the DIC is easily calculated from the samples generated

by a Markov chain Monte Carlo simulation. The likelihood ratio test require

calculating the likelihood at its maximum over the unknown parameters, which

is not readily available from the MCMC simulation. But to calculate DIC in

WinBugs c© we simply use the DIC tool dialog from the option SAMPLES.

The DIC of the model with protocol and period effects is 105.426 while the DIC

of the model with period effect only is 108.936. Thus our model of choice is the

model with both period effects and protocol. The protocol effect is 1.32 with

estimated 95% confidence interval of 1.32± 1.96 ∗ 0.5842 = (0.174968, 2.465032).

The estimated odds ratio of IUI verses TI is exp(1.32) = 3.7. The estimated 95%

confidence interval for the odds ratio is exp(3.7 ± 1.96 ∗ 0.5842) = (1.19, 11.8).

These odds are in favour of IUI. Couples undergoing IUI have nearly four

times higher odds of conception than couples undergoing TI. These confidence

intervals, clearly shows that protocol is statistically significant.

Suppose we assume that there is no period effect. We fit the model with proto-

col only. The WinBugs c© code that specify the random effects model involving

protocol only is in Appendix A.2. We ran 20000 simulation and we checked
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convergence for the intercept, beta1 and sigma. We look for evidence of when

the simulation appears to have stabilized by examining the plots of the sample

values versus iterations. Fig A.2 shows the plots for the intercept, beta1 and

sigma. The plots of the intercept and beta1 show chains for which convergence

look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000 samples. Table 4.12 shows the summary statistics

for the monitored parameters.

node mean sd MC error 2.5% median 97.5% start sample
intercept -2.38 0.491 0.003813 -3.436 -2.344 -1.503 20001 60000

beta1 1.30 0.578 0.004338 0.224 1.279 2.501 20001 60000
sigma 0.5343 0.08985 0.002816 0.01638 0.03736 0.167 20001 60000

Table 4.12. Parameter estimates and their standard errors

Next we fit the null model excluding both period effect and the protocol. The

WinBugs c© code that specify the null model is in Appendix A.3. We first ran

20000 simulation and we checked convergence for the intercept and sigma. We

look for evidence of when the simulation appears to have stabilized by examining

the plots of the sample values versus iterations. Fig A.3 shows the plots for the

intercept and sigma. The plots of the intercept show chains for which convergence

look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000. Table 4.13 shows the summary statistics for the

monitored parameters.
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node mean sd MC error 2.5% median 97.5% start sample
intercept -1.545 0.2501 0.001007 -2.048 -2.048 -1.538 20001 60000

sigma 0.01676 0.0159 6.199E-4 0.005268 0.01215 0.05921 20001 60000

Table 4.13. Parameter estimates and their standard errors

The DIC for the model with protocol only is 103, 669. While the DIC for

the null model is 107.123. Thus the model with protocol only is preferred.

The protocol effect is 1.30 with estimated 95% confidence interval of 1.30 ±

1.96 ∗ 0.578 = (0.16712, 2.43288). The estimated odds ratio of IUI verses TI is

exp(1.30) = 3.7. The estimated 95% confidence interval for the odds ratio is

exp(1.3± 1.96 ∗ 0.578) = (1.18, 11.4). These odds are in favour of IUI. Couples

undergoing IUI have nearly four times higher odds of conception than couples

undergoing TI. These confidence intervals, clearly shows that protocol is statis-

tically significant.

4.1.4 Analysis using GenStat c©

The following GenStat c© will read data in parallel in five columns and declares

Group, Patient, Period, and Protocol as Factors.

FACTOR Group, Patient, Period, Protocol

READ [SETNVALUES=yes; SETLEVELS=yes] Group,Patient,Period,

Protocol,Response;

FREP=2(levels),labels,*
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1 1 1 1 1

1 2 1 1 1

1 3 1 1 1

. . . . .

. . . . .

. . . . .

2 60 -1 1 0

2 61 -1 1 0

2 62 -1 1 0:

The next GenStat c© statements invokes HGANALYSE procedure (Lee and

Nelder (56)). The terms HGRANDOMMODEL and HGFIXEDMODEL

define respectively, the random model (PATIENT) and the fixed model (PROTOCOL

+ PERIOD) for a hierarchical generalized linear model. The LINK and DIS-

TRIBUTION options specify their distribution and link function respectively.

The variate to be analyzed is RESPONSE and is listed on HGANALYSE .

The fitting process involves alternative fits of the augmented Generalized Linear

Models for the mean given the current estimates of the dispersion parameters,

and of the models that estimate the dispersion parameters. The convergence of

the process is assessed by comparing the dispersion estimates from successive fits.

The MAXCYCLE option can specify two scalars. The first sets a limit on the

number of alternating fits (default 99), and the second controls the number of it-

erations in the estimation of the mean model and of the dispersion model (default

30). The MLAPLACE option specifies the order of Laplace approximation to

use in the estimation of the mean model (0 or 1); default is 0. The DLAPLACE

option specifies the order of Laplace approximation to use in the estimation of
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the dispersion components (0, 1 or 2); default is 0. The term NBINOMIAL

specifies the binomial totals, which is 1.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Proto-

col + Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

To present this program to a computer, we click on the RUN option, and click

once on the SUBMIT WINDOW option. The parameter estimates and de-

viances for the saturated model described above are as follows:
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Next we fit the model involving period effect only. The following GenStat c©

will fit the hierarchical model involving period effect only.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter output for the above analysis are as follows:
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For model selection we use the information criterion based on −2Pv(h) (Lee ad

Nelder (56)). If we take the difference in −2Pv(h) for the model with protocol and

period effects and the model with period effects only, 104.542 − 99.129 = 5.413,

we get the log likelihood ratio test for the protocol (treatment) effect. Since the

difference is 5.413 with 1 degrees of freedom, the p-value is 0.019987. This test

shows that the difference between the two protocols is statistically significant.

Now we assume that there is no period effect and we fit the model with

protocol only. The following GenStat c© will fit the hierarchical model involving

protocol only.
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HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Proto-

col

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter output for the above analysis are as follows:

The null model is fit next. The following GenStat c© will fit the null model.
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HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit]

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the null model are as follows:
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The difference in −2Pv(h) for the null model and the model with protocol only,

104.695 − 99.369 = 5.326, the p-value is 0.021010. This test shows that the dif-

ference between the two protocols is statistically significant.
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4.1.5 Summary

Table 4.14 records comparative analyses of the gregoriou data.

Model Method intercept Beta1 Beta2 Deviance
Null SAS c© -1.71 104.5

(0.506)
R c© -1.71 104.5

(0.291)
WinBugs c© -1.55 -

(0.250)
GenStat c© -1.50 104.7

(0.252)
Protocol SAS c© -2.63 1.35 99.0

(0.839) (0.654)
R c© -2.63 1.35 99.0

(0.566) (0.639)
WinBugs c© -2.38 1.30 -

(0.491) (0.578)
GenStat c© -2.24 1.20 99.4

(0.476) (0.559)
Period SAS c© -1.63 -0.0936 104.5

(0.798) (0.668)
R c© -1.63 -0.0937 104.5

(0.355) (0.536)
WinBugs c© -1.59 -0.256 -

(0.326) (0.512)
GenStat c© -1.43 -0.196 104.5

(0.322) (0.500)
Protocol and Period SAS c© -2.47 1.33 -0.179 99.0

(0.948) (0.639) (0.631)
R c© -2.47 1.33 -0.179 99.0

(0.570) (0.626) (0.573)
WinBugs c© -2.28 1.32 -0.313 -

(0.534) (0.584) (0.529)
GenStat c© -2.15 1.22 -0.245 99.1

(0.508) (0.561) (0.521)

Table 4.14. Comparative analysis of the Gregoriou data

Table 4.14 gives the summary results of fitting various models for the data in
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Gregoriou et al (40) using different fitting methods. The models are, in order

of fitting : a null model, a model involving protocol (treatment) only, a model

involving period only and a model fitting protocol and period. The most im-

portant models are the model involving protocol only and the model involving

both protocol and period. The other two models are used to examine the change

in deviance. Four statistical packages: SAS c©, R c©,WinBugs c© and GenStat c©

are illustrated. SAS c©, and R c© give similar results in all the four models since

the general fitting criterion (maximum likelihood) is the same and only details of

numerical implementation are different. In fact, the deviances are in good agree-

ment between SAS c©, R c© and GenStat c©. All the four methods (SAS c©, R c©,

WinBugs c© and GenStat c©) indicate that IUI is more effective than TI, and

that couples undergoing IUI have nearly four times higher odds of conception

than couples undergoing TI.

4.2 Example II

The following data are from (24) based on a randomized crossover trial to in-

vestigate whether the combination of intrauterine insemination (IUI) and ovar-

ian stimulation improves the probability of conception in couples with male-

subfertility. Seventy-four couples with subfertility possibly related to male sub-

fertility were randomized to either group 1 or group 2. Couples randomized to

group 1 were treated with intrauterine insemination (IUI) in a natural cycle,

while couples randomized to group 2 were given a combination of intrauterine

insemination (IUI) and ovarian stimulation. This treatment was then alternated

according to a crossover design, with each couple receiving at most six treatment

cycles.
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Table 4.15 shows the pregnancy rate per completed IUI cycle and the number

of drop-outs before starting a new treatment cycle. Altogether, nine patients

dropped out before completing six cycles for reasons other than pregnancy and

thirty-four couples conceived. Twenty-one couples conceived under simulated

cycles, and thirteen couples conceived under natural cycle.

Table 4.15. Pregnancy rate per completed IUI cycle and number of drop-outs
for reasons other than pregnancy before starting a new treatment cycle

To analyze these data, we first consider a scenario where the investigator

believes that there is period effect. We fit the model with treatment and period

effects, while regarding period as a factor. Thus the probability that couple i, i =

{1, 2, ..., 74} in group k, k = {1, 2}, conceives under period j, j = {1, 2, 3, 4, 5, 6}

is

p(ij)k =
ψ(ij)k

1 + ψ(ij)k

(4.2)

where as usual υi is the random couple effect, assumed to be distributed in the

population asN(0, σ2), and ψ(ij)k = exp(intercept+β1treatment(ij)k+β2period2+

β3period3 + β4period4 + β5period5 + β6period6 + υi)

We store the data set from Table 4.15 in the F :drive under the file name

cohlendata.txt. The file consists of ten columns labelled group, patient, pe-

riod, period2, period3 period4 period5 period6 treatment response. The variable
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PERIOD indicates the period number which can be either 1, 2, 3, 4, 5 or 6. The

variable PERIODk, (k = 2, 3, 4, 5, 6) takes the value 1 if the variable PERIOD

is k, otherwise it takes the value −1. The variable TREATMENT is −1 for

IUI in natural cycle and 1 for IUI in stimulated cycle. The variables GROUP,

PATIENT and RESPONSE are as defined previously. This stored file will be

used in SAS c© and R c© analysis.

4.2.1 Analysis using SAS c©

The following SAS c© code will import the data set cohlendata and sort it by

patient.

proc import datafile=”F:\cohlendata.txt”

out=cohlen

dbms=TAB

replace;

run;

proc sort data=cohlen;

by patient;

run;

The following PROC NLMIXED invocation fits the model involving period

effects and treat period as a factor. The proportion of couples conceived under

natural cycles is 13
155

≈ 0.084 and the proportion of couples conceived under

stimulated cycles is 21
153

≈ 0.137. A reasonable starting value for the intercept

will be:

log( 0.084
1−0.084

) ≈ −2
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While a reasonable starting value for beta1 will be:

log( 0.137
1−0.137

)− log( 0.084
1−0.084

) ≈ 1

For other parameters, we will use the default value which is 1.

proc nlmixed data=cohlen;

parms intercept=-2 beta1=0.3 beta2=1 beta3=1 beta4=1 beta5=1

beta6=1 sigma=1;

sigma2=sigma**2;

preg=intercept + beta1*treatment + beta2*period2 + beta3*period3

+ beta4*period4 + beta5*period5 + beta6*period6 + u;

ppreg=exp(preg)/(1+exp(preg));

model response∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

The output for the parameter estimates and their 95% confidence interval are

as shown in Table 4.16.
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Table 4.16. Fit statistics and parameter estimates for the model with treatment
and period (treating period as a factor).

Next we fit the model with period effects only (period as a factor). The follow-

ing PROC NLMIXED invocation fits the model involving period effect only.

proc nlmixed data=cohlen;

parms intercept=-2 beta2=1 beta3=1 beta4=1 beta5=1 beta6=1 sigma=1;

sigma2=sigma**2;

preg=intercept + beta2*period2 + beta3*period3 + beta4*period4 +

beta5*period5 + beta6*period6 + u;

ppreg=exp(preg)/(1+exp(preg));

model response∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

The output in Table 4.17 below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.
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Table 4.17. Fit statistics and parameter estimates for the model with period
effects only

If we take the difference in −2 logL for the saturated model (model with treat-

ment and period effects, period treated as a factor) and the reduced model (model

involving period effects only ), 210.3− 207.8 = 2.5, we get the log likelihood ra-

tio test for the treatment effects. Since the difference is 2.5 with 1 degrees of

freedom, the p-value is 0.11385. This test shows that at 5% level of significance,

the treatment effect is not statistically significant. Our conclusion is not different

from (24); we found no statistically significant difference between the use of IUI

in a natural cycle and the use of IUI in stimulated cycle.

We again consider a scenario where the investigator believes that there is

period effect, but here unlike in the previous analysis, we regard period as hav-

ing linear effect. The following PROC NLMIXED invocation fits the model

involving treatment and period effects (linear effect).

proc nlmixed data=cohlen;

parms intercept=-2 beta1=0.3 beta2=1 sigma=1;

sigma2=sigma**2;
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preg=intercept + beta1*treatment + beta2*period2 + u;

ppreg=exp(preg)/(1+exp(preg));

model response∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

The output in Table 4.18 displays the parameter estimates and their 95%

confidence interval for above PROC NLMIXED procedure.

Table 4.18. Fit statistics and parameter estimates for the model with treatment
and period effect (period having a linear effect).

Next we fit the model with period effects only (period having a linear effect).

The following PROC NLMIXED invocation fits the model involving period

effect only (period having a linear effect).

proc nlmixed data=cohlen;

parms intercept=-2 beta2=1 sigma=1;

sigma2=sigma**2;

preg=intercept + beta2*period + u;
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ppreg=exp(preg)/(1+exp(preg));

model response∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

The output in Table 4.19 below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.

Table 4.19. Fit statistics and parameter estimates for the model with period
effects only

If we take the difference in −2 logL for the saturated model (model with

treatment and period effects, period treated having linear effect) and the reduced

model (model involving period effects only ), 216.2− 213.8 = 2.4, we get the log

likelihood ratio test for the treatment effects. Since the difference is 2.4 with 1

degrees of freedom, the p-value is 0.12134. This test shows that at 5% level of

significance, the treatment effect is not statistically significant. Our conclusion

is not different from (24); we found no statistically significant difference between

the use of IUI in a natural cycle and the use of IUI in stimulated cycle.

Now we assume that there is no period effect. The following PROC NLMIXED
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invocation fits the model involving treatment only.

proc nlmixed data=cohlen;

parms intercept=-2 beta1=0.3 sigma=1;

sigma2=sigma**2;

preg=intercept + beta1*treatment + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome ∼binomial(1,ppreg);

random u ∼normal(0,sigma2) subject=patient;

run;

The output in Table 4.20 below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.

Table 4.20. Fit statistics and parameter estimates for the reduced model

The null model that excludes both the treatment effect and the period effects is

fit next. The following PROC NLMIXED invocation fits the reduced model.

proc nlmixed data=cohlendata;

parms beta0=-1 sigma=1;
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sigma2=sigma**2;

preg=beta0 + u;

ppreg=exp(preg)/(1+exp(preg));

model outcome ∼binomial(1,ppreg);

random u∼normal(0,sigma2) subject=patient;

run;

The output in Table 4.21 displays the model fit statistics for the null model. If

we take the difference in −2 logL for the null and reduced models, 216.3−213.9 =

2.4, we get the log likelihood ratio test for the treatment effects.

Table 4.21. Maximum likelihood estimates for the null model

The p-value is 0.12134. At 5% significance level we fail to reject the hypothesis

that the null model is as good as the model involving treatment. Therefore, at

the 5% level of significance, the null model provides an adequate fit to the data.

The treatment effect is not influential. Our conclusion is not different from (24);

we found no statistically significant difference between the use of IUI in a natural

cycle and the use of IUI in stimulated cycle.
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4.2.2 Analysis using R c©

Similarly, in R c© software, the following statement will import the data set

once it is saved to, say, the F : drive as it is in our case.

> cohlen <- read.table(”F:/cohlendata.txt”, header=T)

Once the data is read into the R c© data set cohlen, we can use it to perform any

analysis in R c©. The following code will fit in R c©, the model involving treatment

and period effects (period treated as factors).

> fit <- lmer(response∼treatment+period2+period3+period4+period5

+period6+(1|patient),family=binomial,data=cohlen)

> fit

The output for the parameter estimates and their p-values are as shown in Table

4.22.
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Table 4.22. lmer analysis for the model with treatment and period effects, where
period is regarded as a factor

Next we fit the reduced model with only period effects. The following code

will fit in R c©, the model involving period effects only (period regarded as a fac-

tor).

> fit <- lmer(response∼period2+period3+period4+period5+period6

+(1|patient),family=binomial,data=cohlen)

> fit
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The output for the parameter estimates and their p-values are as shown in

Table 4.23.

Table 4.23. lmer analysis for the model with period effects only, where period
is regarded as a factor

The difference in −2 logL for the model with treatment and period effects

and the reduced model involving period effects only is 210.3 − 207.8 = 2.5. The

p-value is 0.11385. This test shows that the model with period effects only pro-

vides a better fit than the model with treatment and period effects, when period

is included as a factor. Therefore, at the 5% level of significance, treatment is

not statistically significant. Our conclusion is not different from (24); we found

no statistically significant difference between the use of IUI in a natural cycle

and the use of IUI in stimulated cycle.

We again fit the model with treatment and period effects, but here, period is

regarded as having a linear effect. The following code will fit in R c©, the model

involving treatment and period effects (period having a linear effect).
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> fit <- lmer(response∼treatment+period+(1|patient),family=binomial,

data=cohlen)

> fit

The output for the parameter estimates and their p-values are as shown be-

low in Table 4.24.

Table 4.24. lmer analysis for the saturated model, period having linear effect

Next we fit the reduced model with only period effects. The following code

will fit in R c©, the model involving period effects only (period regarded as having

a linear effect).

> fit <- lmer(response∼period+(1|patient),family=binomial,data=cohlen)

> fit
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The output for the parameter estimates and their p-values are as shown in

Table 4.25.

Table 4.25. lmer analysis for the model with period effects only, where period
is regarded as having linear effecct

The difference in −2 logL for the model with treatment and period effects and

the reduced model involving period effects only is 216.2 − 213.8 = 2.4. The p-

value is 0.12134. This test shows that the model with period effects only provides

a better fit than the model with treatment and period effects, when period is

included as having a linear effect. Therefore, at the 5% level of significance,

treatment is not statistically significant. Our conclusion is not different from

(24); we found no statistically significant difference between the use of IUI in a

natural cycle and the use of IUI in stimulated cycle.

We next assume that there is no period effects, and begin by fitting a model

with treatment only. The following code will fit in R c©, the model involving treat-

ment only (excludes period effects).

> fit <- lmer(response∼treatment+(1|patient),family=binomial,data=cohlen)



4.2. EXAMPLE II 155

> fit

The output for the parameter estimates and their p-values are as shown in Table

4.26 below.

Table 4.26. lmer analysis for the reduced model

We now fit the null model, involving no treatment. The following R c© will fit the

null model.

> fit <- lmer(response∼ (1|patient),family=binomial,data=data.1)

> fit

The output for the parameter estimates and their p-values for the null model

are as shown in Table 4.27.

If we take the difference in −2 logL for the model involving treatment and the

null model, 216.3 − 213.9, we get the log likelihood ratio test for the treatment

effects. Since the difference is 2.4 with 1 degrees of freedom, the p-value is 0.1213.

Therefore, at the 5% level of significance, the null model provides an adequate

fit to the data. The treatment effect is not influential. Our conclusion is not
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Table 4.27. lmer analysis for the null model

different from (24); we found no statistically significant difference between the

use of IUI in a natural cycle and the use of IUI in stimulated cycle.

4.2.3 Analysis using WinBugs c©

The following WinBugs c© code will specify the saturated model (model with

treatment and period effects, period as a factor), the data to be used and the

initial values for the MCMC sampler.

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept + beta1 ∗ treatment1[i] + beta2 ∗ period2[i] + beta3 ∗

period3[i] + beta4 ∗ period4[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){

outcome2[i] ∼ dbern(p2[i])
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logit(p2[i]) < −intercept + beta1 ∗ treatment2[i] + beta2 ∗ period22[i] + beta3 ∗

period3[i] + beta4 ∗ period4[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

logit(p3[i]) < −intercept + beta1 ∗ treatment3[i] + beta2 ∗ period2[i] + beta3 ∗

period33[i] + beta4 ∗ period4[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept + beta1 ∗ treatment4[i] + beta2 ∗ period2[i] + beta3 ∗

period3[i] + beta4 ∗ period44[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept + beta1 ∗ treatment5[i] + beta2 ∗ period2[i] + beta3 ∗

period3[i] + beta4 ∗ period4[i] + beta5 ∗ period55[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N6 ){

outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept + beta1 ∗ treatment6[i] + beta2 ∗ period2[i] + beta3 ∗

period3[i] + beta4 ∗ period4[i] + beta5 ∗ period5[i] + beta6 ∗ period66[i] + υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

beta1 ∼ dnorm(0, 1.0E − 3)

beta2 ∼ dnorm(0, 1.0E − 3)
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beta3 ∼ dnorm(0, 1.0E − 3)

beta4 ∼ dnorm(0, 1.0E − 3)

beta5 ∼ dnorm(0, 1.0E − 3)

beta6 ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }

list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

period2=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period3=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period4=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period5=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period6=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

period22=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1, 1,1,1,1,1,1,1,1,1,1,0,0 ) ,

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,1,
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0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0),

period33=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0

,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,

treatment4=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,1,0,1,1,1,1,0,0),

period44=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0) ,

treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,

1,1,0,1),

period55=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,
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0, 0, 0 ,0 ,0, 0, 1, 1, 1 ) ,

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

period66=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=20,beta1=20,beta2=20,beta3=20,beta4=40,beta5=40,beta6=40,

tau=3,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta1=0.3,beta2=0.3,beta3=0.3,beta4=0.3,beta5=0.3,beta6=0.3,

tau=1, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))

As before, the data have to be sorted in such a way that for any couple i that

leaves the study before couple j, then couple i is listed after we have listed couple

j. For example, we have 31 couples that did not conceive but completed the

study. So these couples have to be listed first, followed by those who leaves the

study on the second period, followed by those who leaves the study on the third

period, followed by those who leave the study on the fourth period, followed by
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those who leave the study on the fifth period and followed by those who leave

the study on the sixth period.

We checked convergence for the intercept, beta1, beta2, beta3, beta4, beta5,

beta6 and sigma. We look for evidence of when the simulation appears to have

stabilized by examining the plots of the sample values versus iterations. We ran

20000 simulations. Fig 4.2, 4.3 and 4.4 show the plots of the intercept, beta1,

beta2, beta3, beta4, beta5, beta6 and sigma.
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Figure 4.2. Plots of the intercept, beta1 and beta2
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Figure 4.3. Plots of beta3, beta4 and beta5
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Figure 4.4. Plots of beta6 and sigma

Convergence seems reasonable in all plots except the plots of sigma. We

further ran 30000 simulations and obtained our summary statistics based on those

30000 simulations. Below in table 4.28 are summary statistics for the monitored

parameters based on 30000 samples.
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node mean sd MC error 2.5% median 97.5% start sample
intercept -2.689 1.134 0.04205 -3.681 -2.624 -1.777 20001 60000

beta1 0.5623 0.4602 0.003158 -0.1841 0.5595 1.333 20001 60000
beta2 0.1437 1.165 0.04076 -1.053 0.1063 1.285 20001 60000
beta3 0.8559 1.144 0.04085 -0.2198 0.8078 1.924 20001 60000
beta4 -0.9695 1.363 0.04105 -3.013 -0.944 0.6459 20001 60000
beta5 0.01375 1.23 0.04089 -1.46 -0.007876 1.332 20001 60000
beta6 -0.1031 1.274 0.04084 -1.757 -0.1111 1.334 20001 60000
sigma 0.02282 0.1039 0.005071 0.005215 0.01216 0.05638 20001 60000

Table 4.28. Parameter estimates and their standard errors

Next we fit the reduced model with period effects only. The WinBugs c© code

that specify the model with period effects only (period as a factor), the data to

be used and the initial values for the MCMC sampler can be seen in appendix

B.1. Convergence was reached after 20000 simulations for all the parameters

except sigma. Fig B.1 shows the plots of the intercept, beta2, beta3 and beta4

and fig B.2 shows the plot of beta5, beta6 and sigma. Convergence is satisfied in

all except sigma.

We simulated extra 30000 samples. Below in table4.29 are summary statistics

for the monitored parameters based on 30000 samples.
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node mean sd MC error 2.5% median 97.5% start sample
intercept -2.373 0.6922 0.02372 -3.265 -2.31 -1.582 20001 60000

beta2 0.1311 0.6217 0.009971 -1.022 0.1182 1.321 20001 60000
beta3 0.853 0.6943 0.01909 -0.2049 0.8155 1.968 20001 60000
beta4 -0.9836 1.051 0.02183 -3.03 -0.9497 0.6885 20001 60000
beta5 0.06441 0.9146 0.02554 -1.395 0.04094 1.42 20001 60000
beta6 -0.1095 1.022 0.02858 -1.787 -0.1226 1.362 20001 60000
sigma 0.1067 0.5695 0.02415 0.01666 0.03892 0.2947 20001 60000

Table 4.29. Parameter estimates and their standard errors

The DIC for the saturated model with treatment and period effects is 222.730,

while the DIC for the model with period effects only is 224.417. Using the DIC,

the preferred model is the model with treatment and period effect. The treatment

effect estimate is 0.5623 with 95% confidence interval of 0.5623±1.96∗0.04602 =

(−0.339692, 1.464292). The confidence interval clearly show that at 5% level of

significance the treatment effect is not statistically significant.

Next we consider a scenario where period has a linear effect. The WinBugs c©

code that specify the model with treatment and period effects, period regarded

as having linear effect), the data to be used and the initial values for the MCMC

sampler can be seen in appendix B.2. We checked convergence for the intercept,

beta1, beta2 and sigma. We look for evidence of when the simulation appears to

have stabilized by examining the plots of the sample values versus iterations. We

ran 20000 simulations. Fig B.3 shows the plots for the intercept, beta1, beta2 and

sigma.

Convergence seems reasonable in all plots except the plots of sigma. We
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further ran 30000 simulations and obtained our summary statistics based on those

30000 simulations. Table 4.30 shows the summary statistics for the monitored

parameters based on 30000 samples.

node mean sd MC error 2.5% median 97.5% start sample
intercept -2.346 0.4473 0.004265 -3.252 -2.334 -1.506 20001 60000

beta1 0.5648 0.379 0.002269 -0.1673 0.5607 1.325 20001 60000
beta2 -0.04505 0.1132 9.798E-4 -0.2714 -0.0438 0.1738 20001 60000
sigma 0.02064 0.06817 0.002607 0.005295 0.01268 0.06604 20001 60000

Table 4.30. Parameter estimates and their standard errors

Next we fit the reduced model with period effects only. TheWinBugs c© code that

specify the random effects model with the main effect being period effects only

(period having linear effect) is listed in appendix B.3. We checked convergence

for the intercept, beta2 and sigma. We look for evidence of when the simulation

appears to have stabilized by examining the plots of the sample values versus

iterations. We ran 20000 simulations. Fig B.4 shows the plots for the intercept,

beta2 and sigma. Convergence seems reasonable in all plots except the plots of

sigma.

We further ran 30000 simulations and obtained our summary statistics based

on those 30000 simulations. Table 4.31 shows the summary statistics for the

monitored parameters based on 30000 samples.

The DIC for the model with period effects only is 220.797 while the DIC for
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node mean sd MC error 2.5% median 97.5% start sample
intercept -2.032 0.4117 0.006148 -2.813 -2.018 -1.3 20001 60000

beta2 -0.0427 0.1175 0.001435 -0.2699 -0.04221 0.1786 20001 60000
sigma 0.05966 0.1595 0.005895 0.01634 0.03771 0.1924 20001 60000

Table 4.31. Parameter estimates and their standard errors

the model with treatment and period effects is 220.366 respectively. The pre-

ferred model is the model with treatment and period effects. The treatment

effect estimate is 0.5648 with 95% confidence interval of 0.5648± 1.96 ∗ 0.379 =

(−0.17804, 1.30764). The confidence interval show that, at the 5% level of signif-

icance, the treatment effect is not influential.

Next we assume that there is no period effect and fit the reduced model with

treatment only. The WinBugs c© code that specify the random effects model with

the main effect being treatment only, the data to be used and the initial values

for the MCMC sampler is in appendix B.4. We first ran 20000 simulation and

we checked convergence for the intercept, beta1 and sigma. We look for evidence

of when the simulation appears to have stabilized by examining the plots of the

sample values versus iterations. Fig B.5 shows the plots of the intercept, beta1 and

sigma. The plots of the intercept and beta1 show chains for which convergence

look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000 samples, and table 4.32 shows the summary statis-

tics for the monitored parameters based on 30000 samples.
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node mean sd MC error 2.5% median 97.5% start sample
intercept -2.526 0.3312 0.004076 -3.242 -2.503 -1.938 20001 60000

beta1 0.5855 0.3886 0.002685 -0.1647 0.5803 1.363 20001 60000
sigma 0.3802 0.4606 0.01663 0.00994 0.172 1.609 20001 60000

Table 4.32. Parameter estimates and their standard errors

Final we fit the null model excluding both treatment and period effects. The

WinBugs c© code that specify the null model, the data to be used and the initial

values for the MCMC sampler is in appendix B.5. We checked convergence for

the intercept and sigma. We look for evidence of when the simulation appears to

have stabilized by examining the plots of the sample values versus iterations. We

ran 20000 simulations. Fig B.6 shows the plots for the intercept and sigma. The

plots of the intercept show chains for which convergence look reasonable. The

plot of sigma shows chains which have clearly not reached convergence.

We simulated extra 30000 samples, and table 4.33 shows the summary statis-

tics for the monitored parameters based on 30000 samples.
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node mean sd MC error 2.5% median 97.5% start sample
intercept -2.187 0.217 0.002857 -2.658 -2.171 -1.807 20001 60000

sigma 0.3605 0.434 0.01587 0.009994 0.1653 1.513 20001 60000

Table 4.33. Parameter estimates and their standard errors

The DIC for the model with treatment only is 219.147 and the DIC for the null

model is 219.450 respectively. The preferred model is the model with treatment

only. The treatment effect estimate is 0.5855 with 95% confidence interval of

0.5855 ± 1.96 ∗ 0.3886 = (−0.176156, 1.347156). The confidence interval show

that, at the 5% level of significance, the treatment effect is not influential.

4.2.4 Analysis using GenStat c©

The following GenStat c© will read data in five columns and fit the hierarchical

model involving treatment and period effects (period regarded as a factor);

FACTOR Group, Patient, Period, Treatment

READ [SETNVALUES=yes; SETLEVELS=yes] Group,Patient,Period,

Treatment,Response;\

FREP=2(levels),labels,*

1 1 1 0 1

1 2 1 0 1

1 3 1 0 1

. . . . .

. . . . .
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. . . . .

2 72 6 0 0

2 73 6 0 0

2 74 6 0 0:

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Treat-

ment + Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the model involving treatment and

period effects described above are as follows:
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Next we fit the hierarchical model involving period effects only (period as a fac-

tor). The following GenStat c© will fit the model with period effects only.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the model with period effects only

are as follows:
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The difference in −2Pv(h) of the reduced and saturated models is 210.501 −

207.986 = 2.515. The p-value is 0.11277. This test shows that the reduced model

(period effects only) provides a better fit than the saturated model( model with
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treatment and period effect) with period treated as a factor. At 5% level of

significance, treatment is not statistically significant.

We again fit the hierarchical model involving treatment and period effect.

Here we regard period as having a linear effect. The following GenStat c© will fit

the model with treatment and period effect (period having linear effect). The

difference between this code and the code above( period as a factor) is that, here

we do not specify the variate PERIOD to be a factor

FACTOR Group, Patient, Treatment

READ [SETNVALUES=yes; SETLEVELS=yes] Group,Patient,Period,

Treatment,Response;\

FREP=2(levels),labels,*

1 1 1 0 1

1 2 1 0 1

1 3 1 0 1

. . . . .

. . . . .

. . . . .

2 72 6 0 0

2 73 6 0 0

2 74 6 0 0:

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Patient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Treatment + Pe-

riod
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HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Response; NBI-

NOMIAL=1

The parameter estimates and deviances for the model with treatment and pe-

riod effects(period having a linear effect) are as follows:
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Next we fit the hierarchical model involving period effect only (period having a

linear effect)

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the reduced model are as follows:
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The difference in −2Pv(h) of the reduced and saturated models is 216.298 −

213.870 = 2.428. The p-value is 0.11918. This test shows that the reduced model

(period effects only) provides a better fit than the saturated model( model with

treatment and period effect) with period having a linear effect. At 5% level of
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significance, treatment is not statistically significant.

Now we assume that there is no period effect. We fit a model with treatment

only. The following GenStat c© will fit the hierarchical model involving treatment

only (reduced model).

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Treat-

ment

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the model with treatment only are as

follows:
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The null model is fit next. The following GenStat c© will fit the null model.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit]

HGANALYSE [MLAPLACE=0; DLAPLACE=0;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the null model are as follows:
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The difference in −2Pv(h) for the null and reduced model, 216.344 − 213.957 =

2.387, with 1 degrees of freedom. The p-value is 0.12235. This test shows that the

model with treatment only does not provide a better fit than the null model. The

treatment effect is not influential. Our conclusion is not different from (24); we

found no statistically significant difference between the use of IUI in a natural

cycle and the use of IUI stimulated cycle.
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4.3 Chapter summary

Table 4.34 records comparative analyses of the cohlen data.

Model Method intercept treatment period Deviance
Null SAS c© -2.227 216.3

(0.255)
R c© -2.228 216.3

(0.214)
WinBugs c© -2.187 -

(0.217)
Genstat c© -2.248 216.344

(0.2195)
Treatment Only SAS c© -2.564 0.586 213.9

(0.358) (0.386)
R c© -2.564 0.586 213.9

(0.328) (0.401)
WinBugs c© -2.526 0.586 -

(0.331) (0.387)
GenStat c© -2.590 0.594 213.957

(0.3337) (0.4046)
Period only SAS c© -2.420 0.051 216.2

(0.696) (0.171)
R c© -2.420 0.051 216.2

(0.424) (0.123)
WinBugs c© -2.032 -0.0427 -

(0.412) (0.118)
GenStat c© -2.561 0.082 216.298

(0.5087) (0.1281)
Period SAS c© -2.803 0.599 0.062 213.8
and (0.756) (0.392) (0.170)
Treatment R c© -2.803 0.599 0.062 213.8

(0.495) (0.409) (0.125)
WinBugs c© -2.346 0.565 -0.0451 -

(0.447) (0.379) (0.113)
GenStat c© -2.951 0.615 0.092 213.870

(0.5087) (0.4162) (0.1281)

Table 4.34. Comparative analysis of the Cohlen data(regarding period as hav-
ing linear effect)
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Model Method intercept treatment period2 period3 period4 period5 period6 Deviance
Period only(factor) SAS c© -2.656 0.232 1.082 -0.470 0.498 0.436 210.3

(0.700) (0.618) (0.698) (0.990) (0.916) (1.02)
R c© -2.656 0.232 1.082 -0.470 0.498 0.436 210.3

(0.457) (0.623) (0.571) (0.924) (0.734) (0.807)
WinBugs c© -2.373 0.131 0.853 -0.984 0.064 -0.110 -

(0.692) (0.622) (0.694) (1.05) (0.915) (1.022) -
GenStat c© -2.980 0.318 1.267 -0.254 0.750 0.721 210.501

(0.4832) (0.6437) (0.5936) (0.9562) (0.7628) (0.8393) -
Period(factor) SAS c© -3.10 0.641 0.202 1.16 -0.404 0.565 0.562 207.8
and (0.787) (0.416) (0.626) (0.719) (0.989) (0.930) (1.02)
Treatment R c© -3.096 0.641 0.202 1.161 -0.404 0.565 0.562 207.8

(0.526) (0.426) (0.642) (0.584) (0.947) (0.752) (0.829)
WinBugs c© -2.689 0.562 0.144 0.856 -0.970 0.014 -0.103 -

(1.134) (0.460) (1.165) (1.144) (1.363) (1.23) (1.274) -
GenStat c© -3.397 0.689 0.287 1.384 -0.168 0.859 0.884 207.986

(0.5551) (0.4435) (0.6690) (0.6101) (0.9837) (0.7852) (0.8692) -

Table 4.35. Comparative analysis of the Cohlen data(regarding period as a
factor)

The treatment estimates in the model involving treatment only are very much

similar in all the four statistical packages. However when period is included , we

observe that even though the treatment estimates are not very much dissimilar,

the treatment estimate produced by GenStat c© and the treatment estimate pro-

duced by WinBugs c© are more different from the treatment estimate produced

by SAS c© and R c© when period is included as a factor than when is included

as having a linear effect. The deviances are similar. In fact, SAS c©, R c© and

WinBugs c© give a change of deviance that is not significant in all the three

cases.



Chapter 5

Summary

The general aim of this thesis is to investigate the place of crossover designs in

infertility trials. Based on the logistic random effects model this research has in-

vestigated the importance of crossover design in infertility trials. We have shown

that the use of crossover design in infertility trials is not bad as some statisti-

cians believe. The logistic mixed effects model was employed because it allows

the correlation between the repeated observation within a patient to be incorpo-

rated into the estimates of the parameters. Chapter 2 began with the overview

of the standard logistic regression. We introduced and defined the mixed-effects

regression model that was used throughout the dissertation. We reviewed the

mixed-effects logistic regression for longitudinal (clustered) binary data. A full

maximum marginal likelihood solution is outlined for the parameter estimation.

In this solution, the quadrature method is used to numerically integrate over the

distribution of the random-effects.

Chapter 3 mainly discusses the crossover design in infertility trials. We com-

pared three types of data set; complete AB : BA crossover design data set,

incomplete AB : BA crossover design data set and the parallel design data set.

184
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The complete AB : BA cross over design is the standard AB : BA crossover

design where every woman is exposed two both treatments regardless of the out-

come in the first period. That is, women were allowed to get pregnant twice. The

incomplete AB : BA crossover design is the AB : BA crossover design whereby

whether or not the woman receives the second treatment depends on the out-

come in the first period. If a positive outcome (pregnancy) is observed in the

first period, the patient drops from the trial, leading to missing outcome in the

second period. We first considered a complete AB : BA crossover design, and

from it we obtained both the incomplete AB : BA crossover design data set and

the parallel design data set. To obtain the incomplete AB : BA crossover design

data set, which is the realistic scenario, we deleted the second outcome for every

woman who conceived in the first period. This is because by doing so, we do not

allow women to get pregnant twice. Similarly, to get the parallel design data set,

we deleted all the outcomes in the second period.

We constructed the likelihoods for each data set and obtain the maximum

likelihood estimates (MLE) and their corresponding standard errors from each

data set. The standard errors were obtained from the variance-covariance ma-

trices, which were estimated from the negative inverse of the Fisher information

(46). We compared the maximum likelihood estimates (and their corresponding

standard errors) obtained using the complete AB : BA crossover design data

set with the maximum likelihood estimates (and their corresponding standard

errors) obtained using the incomplete AB : BA crossover design data set. These

estimates were then marginalized so that they describe marginal response and

compared with estimates from the parallel design data set. Specifically we looked

at the data set from (30), which is not a infertility data set. The data set was

merely used for illustration since we could not find a practical infertility data set
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where a complete crossover design was performed. We employed MathCad c© and

PROCNLMIXED in SAS c© to analyze this data set.

Next we simulated the AB : BA crossover design with the help of a MathCad c©

software. We then constructed the incomplete crossover design and the parallel

design like we previously did. We first considered two cases. One case with

treatment only and the other with treatment and period effects. In each case, we

simulated 2000 samples of size 300. Secondly we simulated 2000 samples of size

1000000. By doing so, we wanted to get a clear picture of what is happening in

regard to the precision (standard errors).

Chapter 4 illustrates how in practice the cross over trials in infertility should

be analyzed using different statistical packages (fitting the mixed effects logistic

regression model). We used SAS c©, R c© WinBugs c© and GenStat c©.

5.1 Conclusion

In this thesis, we used a likelihood-based approach to the statistical analysis of

pregnancy data from complete crossover design, incomplete crossover design and

parallel design. This approach was based on the logistic random effects model in-

corporating both treatment and period effects. In both scenarios ( the model with

treatment only and the model with treatment and period effects) the treatment

estimates obtained under complete AB : BA crossover design and the treatment

estimate obtained under the incomplete AB : BA crossover design were not very

much dissimilar. The standard errors of the treatment estimates obtained under

the AB : BA incomplete crossover design were higher than the standard errors

of treatment estimates obtained under the complete crossover design. This did
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not surprise us, since if we move from the complete AB : BA crossover design

to the incomplete AB : BA crossover design information is lost on women who

conceived in the first period. If we are in the complete AB : BA crossover de-

sign, we have the information of what happened to these women in the second

period. But when we are in the incomplete AB : BA crossover design we do not

know what is happening in the second period with regard to those women who

conceived in the first period. Furthermore, this observation is expected since we

are using the same model for the complete data set and the incomplete data set.

The estimated marginalized treatment effects obtained using the incomplete or

complete crossover design are not dissimilar to the treatment estimates obtained

under parallel design. The results of this thesis do not support the conclusion

of Daya that the crossover design should be avoided as inappropriate design. In

both scenarios ( the model with treatment only and the model with treatment and

period effects), the treatment estimates obtained from the parallel design data

set have the highest standard errors, followed by marginalized estimates from the

incomplete crossover design data set. The marginalized estimates obtained from

the complete crossover design data set have the lowest standard errors. These

findings are corroborated by a set of simulations which also suggest that estimates

from the parallel design will have higher standard errors than estimates obtained

under crossover design.

Based on our simulations, the estimated treatment estimates obtained using

the complete crossover design are sufficient relative to the treatment estimate

obtained from incomplete crossover design. That is the complete crossover de-

sign should not be compared with the incomplete crossover design as it uses all

available information. Suppose that one is presented with the treatment esti-

mate obtained from the complete crossover design say τC , the expectation (or
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best guess) of the treatment estimate τI , obtained using the incomplete design

will be still τC . That is one can replace τI by τC without losing the meaning asso-

ciated with the treatment estimate. But not vice versa. Likewise the treatment

estimate obtained under the crossover design in infertility is sufficient relative to

the treatment estimate obtained under parallel design. That is to say if we are

presented with the marginalized treatment estimate obtained from the crossover

design in infertility (incomplete data set) τMI , the expectation (or best guess)

of the treatment estimate obtained from the parallel design data set will be still

τMI . But not vice versa.

5.2 Discussion

Critics of crossover design in infertility like Daya (27) and Khan et al. (52)

are mistaken by saying that the crossover design in infertility trials will lead

to incomplete data set. We agree with them that crossover design in infertility

trials will lead to incomplete data set only if it is compared with the standard

AB : BA crossover design, which is sufficient. But we believe that crossover

design in infertility trials does not lead to incomplete data set if it is compared

to the parallel design. The crossover design in infertility trial can be viewed as a

parallel design with extra information. That is, the crossover design in infertility

trials is a parallel design, but with information for those women who failed to

conceive under treatment A (or treatment B) in the first period. Khan et al (52)

stated that the crossover design in infertility trials may need to increase sample

size, thus losing one of the major statistical advantages of the crossover design

discussed in Section 1.7. However, we have shown that a sample size equivalent

to a parallel design trial would give similar treatment estimate with less standard
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error. Thus, there is no evidence that the crossover design presents a disadvantage

in terms of sample size.

The debate in the position of crossover design in infertility trials started in

more than a decade ago, when statistical softwares like PROC NLMIXED in

SAS c© and lmer procedure in R c© were not available. Generally crossover designs

are not easy to analyze especially when the outcome of interest is binary. The

difficulty part is on the estimation of the integration over the random effects

distribution. On the other hand the Pearson Chi-square test and student t-

test have been available for the parallel design for a longer time. In the past

investigators use to either analyze a crossover design as a parallel design or they

do not allow the correlation between the repeated observation within a patient

to be incorporated into the estimates of the parameters. McDonnell et al. (64)

and Cohlen et al (24) both used models to examine the place of crossover design

in infertility. Of the two models, that of McDonnell looks more like ours except

that they did not account for the correlation between the repeated observation

within a patient. We will like to point out that if the correlation between the

repeated observation is not accounted for, the likelihood obtained under crossover

design will be the same as the likelihood under parallel design as it was shown

by McDonnell. The correlation between repeated observation within a patient is

what makes crossover design different from the parallel design (98). Alborzi et al

(3), Biacchiardi et al (13), Cohlen et al (23), Gregoriou et al (40), Kirby et al (53),

Muharib et al (68), Nan et al (70), Sipe et al (86), Tiemessen et al (97) and Zreik

et al (103), all used crossover design to determine if one treatment is superior to

the other. However, the methods used in all these articles (3; 13; 24; 40; 53; 68;

70; 86; 97; 103) are not appropriate for the crossover design. The methods used

(Chi-square and student t-test) are appropriate for a parallel design.
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We are of the view that this debate was triggered by the fact that investigators

did not analyze crossover design properly and not by the fact that the crossover

design is inappropriate for infertility trials. The debate may be started because

by that time there were no easier methods to properly handle crossover designs.

Our advise to the investigators is that they should regard the information on the

incomplete crossover design as extra and useful information relative to the infor-

mation on the parallel design and thereby use it to derive more precise treatment

estimates. We recommend the use of crossover designs in infertility trials if there

is no evidence of carryover effects.

5.3 Modelling and statistical packages Issues

When data are missing, analyzing the observed data alone as if no data are

missing can result in biased conditional estimates. An advantage of the meth-

ods used in Chapter 4 is that different patients can have different number of

observations. The data input file has a separate line for each observation, and

for longitudinal studies, computations use those times for which a patient has

an observation. However, bias can arise in these methods unless the data is at

least missing at random (31; 61). Little and Robin (61) called the data missing

at random if missingness depends only on the observed response and not on the

missing outcomes. When this is plausible, our likelihood based analysis using

only observed responses is not systematically biased. We assumed that our data

is missing at random and rightfully so. Often, missingness depends on the missing

values. For instance, perhaps based may be on a new medical research a woman

dropped out when it becomes evident that the next treatment will not be effec-

tive. Then, more complex analyses are needed that model the joint distribution
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of the observed values and the missing values (60).

In this thesis the random effects were assumed to be distributed in the pop-

ulation as N(0, σ2). Neuhaus and Hauck (73) had examined the performance of

the mixed effects logistic regression analysis when the random effects are misspec-

ified. In their article, they have shown that when the random effects distribution

is misspecified, estimates of model parameters including the treatment estimates

are asymptotically biased. However the magnitude of the bias in the treatment

estimate is small.

The NLMIXED procedure in SAS c© uses exactly the procedure that is il-

lustrated in Chapter 2. The lmer procedure in R c© is only different with the

NLMIXED on the integration over the random-effects distribution. The lmer

procedure uses the Laplace approximations to approximate the integration. The

WinBugs c© procedure derive estimates by maximizing the same likelihood that

is described in Chapter 2, but it approximates the integration over the random

effects distribution by assigning proper but minimally informative prior distribu-

tions to the parameters. The likelihood in the GenStat c© procedure is completely

different from the likelihood described in Chapter 2. The GenStat c© procedure

maximizes the h−likelihood (56; 58) denoted by

h = `(Y|υ) + `(υ), (5.1)

where `(υ) is the logarithm of the density function for the random effect υ, and

`(Y|υ) is that of Y|υ. The estimates obtained from maximizing the h−likelihood

are termed maximum h-likelihood estimates (MHLEs). The maximum h-likelihood

estimates (MHLEs) are not the same as maximum likelihood estimates (MLEs)
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obtained from either SAS c©, R c© or WinBugs c©. The maximum likelihood esti-

mates (MLEs) obtained from SAS c©, R c© and WinBugs c© are not exactly the

same because each procedure uses a different method in approximating the in-

tegration over the random effects distribution (SAS c© uses the Gauss-Hermite

quadrature method, R c© uses Laplace approximation or WinBugs c© uses sam-

pling method by assigning prior distributions to the parameters). But they are

not very much dissimilar as expected.

Finally, although the negative of the matrix in equation 2.28 (Hessian matrix)

must be positive definite and hence invertible to compute the variance matrix ,

invertible Hessian matrix do not exist for some combinations of data sets and

models, and so statistical procedures sometimes fail for this reason before com-

pletion. Statistical softwares will give a warning if this is the case. When a

Hessian matrix is not invertible, there is no computational trick that can make

it invertible, given the model and the data chosen, since the desired inverse does

not exist.

5.4 Further work

Just as two observations on the same patient might tend to be more correlated

than observations on different patients, so might be observations on two patients

in the same ART clinic tend to be more correlated than observations on patients

from other ART clinics. So patients and ART clinics might be treated as random

effects, with each referring to different levels of the model. So far we have only

considered only one random effect. It will be of interest to investigate the results

of multi-level modeling. It may be of interest also to consider mixed effects logistic

models (one or more random effects) with unspecified random effects distribution.
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This approach may help against possibly harmful misspecification effects (2).

It is also our interest to consider scenarios where missingness depends on the

missing outcomes.

If we could have standardized the random effect as in (44), we observe that

Monte carlo simulation can be used to estimate the parameters of interest. This

will be another method that will be investigated in the future.



Appendix A

WinBugs Code for Gregoriou

data

A.1 Model with Period only

model

{ for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < − intercept+beta2*period1[i]+υ[i]

υ[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < − intercept+ beta2*period2[i]+υ[i]

}

sigma< − 1/sqrt(tau)

intercept ∼ dnorm(0,1.0E-3)

194
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beta1 ∼ dnorm(0,1.0E-3)

tau ∼ dgamma(1,1.0E-4)

log.sigma< − log(sigma)

}

list(outcome1 =c(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,

0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 1, 1, 1, 1,

1, 1, 1,1,1,1,1,1) ,

period1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0,

0, 0, 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 1, 1, 1, 1,1,1,1,1),

period2=c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-

1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1),

N1 = 62, N2=50),

list(intercept=-1,beta1=-1, beta2=1, tau=10,b=c(0, 0, 1, 0, 0, 0, 1, 0,

0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0,

0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4,beta1=-4,beta2=4, tau=15,b=c(0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0,

0, 0,0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,1))
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Figure A.1. Plots of the intercept, beta2 and sigma for the model with period
effects only

A.2 Model with Protocol only

model

{ for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < − intercept+beta1*protocol1[i]+υ[i]
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υ[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < − intercept+beta1*protocol2[i]+υ[i]

}

sigma< − 1/sqrt(tau)

intercept ∼ dnorm(0,1.0E-3)

beta1 ∼ dnorm(0,1.0E-3)

tau ∼ dgamma(1,1.0E-4)

log.sigma< − log(sigma)

}

list(outcome1 =c(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,

0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 1, 1,

1, 1, 1, 1, 1,1,1,1,1,1) ,

protocol1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-

1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-

1,-1,-1,-1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0,

0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 1, 1, 1, 1,1,1,1,1),

protocol2=c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1),
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N1 = 62, N2=50),

list(intercept=-1,beta1=-1,tau=10,b=c(0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,

0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0,

0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4,beta1=-4, tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0

,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,1))
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Figure A.2. Plots of the intercept, beta1 and sigma for the model with protocol
only
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A.3 Null model

model

{ for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < − intercept+υ[i]

υ[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < − intercept+υ[i]

}

sigma< − 1/sqrt(tau)

intercept ∼ dnorm(0,1.0E-3)

tau ∼ dgamma(1,1.0E-4)

log.sigma< − log(sigma)

}

list(outcome1 =c(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,

0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 1, 1,

1, 1, 1, 1, 1,1,1,1,1,1) ,

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0,
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0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 1, 1, 1, 1,1,1,1,1),

N1 = 62, N2=50),

list(intercept=-1,tau=10,b=c(0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 0, 1, 0, 1, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0,

0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4, tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0, 0, 0,

0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,1))
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Figure A.3. Plots of the intercept and sigma for the null model



Appendix B

WinBugs Code for Cohlen data

B.1 Model with period effects only(factor)

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept+beta2∗period2[i]+beta3∗period3[i]+beta4∗period4[i]+

beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < −intercept + beta2 ∗ period22[i] + beta3 ∗ period3[i] + beta4 ∗

period4[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

203
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logit(p3[i]) < −intercept + beta2 ∗ period2[i] + beta3 ∗ period33[i] + beta4 ∗

period4[i] + beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept+beta2∗period2[i]+beta3∗period3[i]+beta4∗period44[i]+

beta5 ∗ period5[i] + beta6 ∗ period6[i] + υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept+beta2∗period2[i]+beta3∗period3[i]+beta4∗period4[i]+

beta5 ∗ period55[i] + beta6 ∗ period6[i] + υ[i]

}

for( i in 1 : N6 ){

outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept]+beta2∗period2[i]+beta3∗period3[i]+beta4∗period4[i]+

beta5 ∗ period5[i] + beta6 ∗ period66[i] + υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

beta2 ∼ dnorm(0, 1.0E − 3)

beta3 ∼ dnorm(0, 1.0E − 3)

beta4 ∼ dnorm(0, 1.0E − 3)

beta5 ∼ dnorm(0, 1.0E − 3)

beta6 ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }
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list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

period2=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period3=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period4=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period5=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period6=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

period22=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1, 1,1,1,1,1,1,1,1,1,1,0,0 ) ,

period33=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0

,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,

period44=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
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outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0) ,

period55=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 1, 1, 1 ) ,

period66=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,beta2=1,beta3=1,beta4=1,beta5=1,beta6=1,tau=15,b=c(0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0,

0, 0,0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta2=0.3,beta3=0.3,beta4=0.3,beta5=0.3,beta6=0.3,tau=10,

b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))
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Figure B.1. Plots of the intercept, beta2,beta3 and beta4 for the model with
period effects only(factor)
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Figure B.2. Plots of the beta5,beta6 and sigma for the model with period effects
only(factor)
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B.2 Model with treatment and period effects(linear

effect)

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept+ beta1 ∗ treatment1[i] + beta2 ∗ period1[i] + υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < −intercept+ beta1 ∗ treatment2[i] + beta2 ∗ period2[i] + υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

logit(p3[i]) < −intercept+ beta1 ∗ treatment3[i] + beta2 ∗ period3[i] + υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept+ beta1 ∗ treatment4[i] + beta2 ∗ period4[i]] + υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept+ beta1 ∗ treatment5[i] + beta2 ∗ period5[i] + υ[i]

}

for( i in 1 : N6 ){
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outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept+ beta1 ∗ treatment6[i] + beta2 ∗ period6[i] + υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

beta1 ∼ dnorm(0, 1.0E − 3)

beta2 ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }

list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,

1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

period1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,
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treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

period2=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1, 1,1,1,1,1,1,1,1,1,1,0,0 ) ,

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,

0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0),

period3=c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0

,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,

treatment4=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,

1,0,1,1,1,1,0,0),

period4=c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4),
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outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0) ,

treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,1),

period5=c(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 1, 1, 1 ) ,

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

period6=c(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,beta1=1,beta2=1,tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0, 0, 0,

0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta1=0.3,beta2=0.3,tau=10, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1))
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Figure B.3. Plots for the intercept, beta1, beta2 and sigma for model with
treatment and period effects (linear effect)



B.3. MODEL WITH PERIOD EFFECTS ONLY(LINEAR EFFECT) 215

B.3 Model with period effects only(linear ef-

fect)

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept+ beta2 ∗ period1[i] + υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){

outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < −intercept+ beta2 ∗ period2[i] + υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

logit(p3[i]) < −intercept+ beta2 ∗ period3[i] + υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept+ beta2 ∗ period4[i]] + υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept+ beta2 ∗ period5[i] + υ[i]

}

for( i in 1 : N6 ){
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outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept+ beta2 ∗ period6[i] + υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

beta2 ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }

list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

period1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

period2=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1,

1,1,1,1,1,1,1,1,1,1,0,0 ) ,

period3=c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0,

0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,
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period4=c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4),

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0),

period5=c(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

5,5,5,5,5,5,5),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 1, 1, 1 ) ,

period6=c(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

6,6),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,beta2=1,tau=0.8,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0,

0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta2=0.3,tau=0.5, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))
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Figure B.4. Plots of the intercept, beta2 and sigma for model with period effects
only(linear effect)

B.4 Model with treatment only

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept+ beta1 ∗ treatment1[i] + υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){

outcome2[i] ∼ dbern(p2[i])
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logit(p2[i]) < −intercept+ beta1 ∗ treatment2[i] + υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

logit(p3[i]) < −intercept+ beta1 ∗ treatment3[i] + υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept+ beta1 ∗ treatment4[i] + υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept+ beta1 ∗ treatment5[i] + υ[i]

}

for( i in 1 : N6 ){

outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept+ beta1 ∗ treatment6[i] + υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

beta1 ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }

list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,
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treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,

0,0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1, 1,1,1,1,1,1,1,1,1,1,0,0 ) ,

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,

1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0

,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,

treatment4=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,

0,1,0,1,1,1,1,0,0),

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0) ,
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treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0,

0, 0, 0 ,0 ,0, 0, 1, 1, 1 ) ,

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,beta1=1,tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta1=0.3,tau=10, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1))
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Figure B.5. Plots of the intercept, beta1 and sigma for model with treatment
only

B.5 Null model

model{

for( i in 1 : N1 ) {

outcome1[i] ∼ dbern(p1[i])

logit(p1[i]) < −intercept+ υ[i]

b[i] ∼ dnorm(0, tau)

}

for( i in 1 : N2 ){
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outcome2[i] ∼ dbern(p2[i])

logit(p2[i]) < −intercept+ υ[i]

}

for( i in 1 : N3 ){

outcome3[i] ∼ dbern(p3[i])

logit(p3[i]) < −intercept+ υ[i]

}

for( i in 1 : N4 ){

outcome4[i] ∼ dbern(p4[i])

logit(p4[i]) < −intercept+ υ[i]

}

or( i in 1 : N5 ){

outcome5[i] ∼ dbern(p5[i])

logit(p5[i]) < −intercept+ υ[i]

}

for( i in 1 : N6 ){

outcome6[i] ∼ dbern(p6[i])

logit(p6[i]) < −intercept+ υ[i]

}

sigma < −1/sqrt(tau)

intercept ∼ dnorm(0, 1.0E − 3)

tau ∼ dgamma(1.0E − 4, 1.0E − 4)

log.sigma < −log(sigma) }

list(outcome1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,
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outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0,

0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0 ,0 ,0, 1,

1,1,1,1,1,1,1,1,1,1,0,0 ),

outcome4 =c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0,

0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 1, 1,0,0,0,0) ,

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0

,0, 0, 0, 0 ,0 ,0, 0, 0 ,0,0,0,0,1, 1, 1, 1,0,0),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 1, 1, 1 ),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0 ,0 ,0, 0, 0, 0 ,0 ,0, 0, 0 ,0, 0, 0, 0, 0,0, 0, 0 ,0, 0, 0, 0,

0, 0 ,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,tau=10, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1))
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Figure B.6. Plots of the intercept and sigma for the null model
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