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Abstract

Many people regard infertility as an unsuitable condition in which to run
cross-over designs. Because if treatments are successful, then some women will
become pregnant in the first period of treatment and if they become pregnant in
the first period they are very unlikely to be treated in the second period. If data
from only one period are available, then it will not be possible to perform the
within-patient comparison. Hence, it could be argued, such designs are inherently
unsuitable since they have a built-in tendency to produce missing data. To sum
up this point of view, cross-over designs in infertility are likely to produce fewer

data than one would wish and should be avoided.

We see things differently, however. Suppose a parallel design is employed.
If a couple is entered onto a parallel group design in infertility, they will have
been allocated to one or the other treatment only. If the woman fails to achieve
pregnancy, having been given that treatment, what could then be more natural
than to offer the couple the chance of trying another? If another treatment is
tried, then will it not be appropriate to record the outcome? Hence, in the worst
case one will have all the data one would have from a parallel group trial but
in practice one is likely to have more. How can more data be worse than less?
Thus, to sum up our point of view, a cross-over trial is likely to produce more

data than one would otherwise have had and should be encouraged.



A debate along these lines has been running for some years now (6} 24} 27} 52}
645 745, [75), 94]), with some promoting and occasionally running cross-over trials
and others criticising them for doing so. In this thesis we use the logistic random
effects model to illustrate that the message that the crossover design should be
avoided is not the correct one. Rather, when using the crossover design one

should be sure to analyze it correctly.

The study has found that treatment estimates obtained by allowing women to
get pregnant twice has lower standard errors than treatment estimates obtained
by conducting the realistic infertility trials. In the scenario involving no period
effects the two treatment estimates are not biased. In the scenario involving pe-
riod effect, the standard errors of the treatment estimate obtained in the realistic
data increases rapidly, while the standard errors of treatment estimate obtained
by allowing women to get pregnant twice are not dissimilar from the standard

errors obtained in the scenario involving no period effect.

There is nothing wrong in conducting crossover designs in infertility provided
appropriate statistical methods are employed. With the infertility crossover data
set we can obtain not only conditional treatment estimates but also marginal
estimates. Whereas in the parallel design we can only obtain marginal estimates.
The study has found that if the treatment say B, can be obtained using parallel
design data set, then surely, [} can be obtained using the crossover design data
set, but not vice versa. Moreover the treatment estimate B obtained using the
crossover data set will be more consistent than the treatment estimate obtained
using the parallel design. We recommend that crossover designs be used in in-
fertility trials because it will surely benefit couples as couples will be have the

opportunity to try both treatments.
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Chapter 1

Introduction

1.1 Infertility

A woman is said to be infertile if she is unable to conceive while a man is
infertile if he is unable to impregnate. A couple is said to be infertile if either
a woman or a man is infertile. There are two types of infertility; primary and
secondary infertility. Primary infertility is when the couples have never had
a child while secondary infertility means that the couples have children but a
medical, emotional or physical condition is currently making conception difficult
or not possible. Infertility may also refer to the state of a woman who is unable
to carry a pregnancy to full term. Pregnancy is the result of a complex chain of
events. In order for a woman to get pregnant: Firstly, a woman must release an
egg from one of her ovaries (ovulation). This egg must go through a fallopian
tube and enter the uterus (womb). Secondly a man’s sperm must penetrate and
fertilize the egg along the way. The fertilized egg must attach to the inside of the
uterus (L0T; [102)). In order to understand how pregnancy occurs we need to have

a basic understanding of the female reproductive system, which is illustrated in
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Fig below. More details on the female reproductive system can be found in

(10) and (89).

Figure 1.1. Female reproductive system

A woman does not become pregnant immediately after having sex. Fig [1.2

illustrates the process of ovulation.

ovulation
implanted embryo

Figure 1.2. Illustrates the process of ovulation

A woman has two ovaries, and each month an egg is released from one of

them (102). This process is called ovulation, and it occurs approximately 14
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\k ‘5_/' sperm nucleus nuclei fuse together zygf:te
) / f y = 3 o B
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f \ cells begin
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Figure 1.3. illustrates the process of fertilization

days before the onset of the next menstrual period [(12), (81)]. Evidence as to
how long after ovulation the human ovum can be fertilized agree on a maximum
duration of 48 hours (12). In order for pregnancy to begin, the egg must first
be fertilized by sperm, and then it must successfully implant in the lining of the
uterus (102)). Sperm can fertilize the egg at any time as it travels from the ovary
to the uterus. Sperm can also wait several days in the fallopian tubes for an egg

to be released. Fig[1.3]illustrates the process of fertilization.

When a man and a woman have sex, the man ejaculates his sperm into the
woman’s vagina. The sperm then swim up through the uterus and into the fal-
lopian tubes (see top diagram). If the sperm meets the egg in the fallopian tube
fertilization can occur. For pregnancy to begin the fertilized egg must success-
fully implant in the uterus. If implantation is not successful, the woman passes
the fertilized egg during menstruation. Any interference that occurs during this

fertilization process may cause infertility.
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1.2 Prevalence of infertility

Exact figures about the prevalence of infertility are difficult to determine. The
best approximations are those which are derived from specific research studies
and the numbers of childless marriages. The latter is not in itself regarded as a
precise indicator as it is known that some 5% of the world’s married population
make a conscious decision to remain childless (76). It is apparent, however that
somewhere between 1 in 10 and 1 in 6 couples experience problems with their
fertility (495 [66). According to the National Center for Health Statistics of the
Centers for Disease Control and Prevention (20) about 12 percent of women
(7.3 million) in the United States aged 15 — 44 had difficulty getting pregnant.
Also, according to the two recent retrospective studies conducted in Aberdeen
(95} ©6)], 14.1% of women had experienced difficulties in the past in becoming

pregnant.

1.3 Causes of infertility

Factors such as age, stress, poor diet, athletic training, being overweight or
underweight, tobacco smoking, alcohol, sexually transmitted diseases (ST Ds)
and health problems that cause hormonal changes contribute considerably to
fertility problems in women. [(11)),(14), (15),(64)] . For a man to be fertile he
must be able to produce an adequate amount of normal sperm. The sperm must
be able to fertilize the woman’s egg. Conditions that interfere with this process
can cause infertility in men. Sometimes a man is born with the problems that
affect his sperm. Other times problems start later in life due to illness or injury.

For example, cystic fibrosis often causes infertility in men .
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1.4 Infertility diagnosis

The cause of a couple’s infertility can be diagnosed by doing a complete fertil-
ity evaluation. This process usually begins with physical exams and health and
sexual histories. If there are no obvious problems, like poorly timed intercourse
or absence of ovulation, tests will be needed. For a man, sperm examination and
sperm count is commonly done. The number, shape, and movement of the sperm
is examined microscopically in the laboratory. Sometimes doctors also suggest
testing the level of a man’s hormones. For a woman, the first step in testing is
to find out if she is ovulating each month. A woman can track her ovulation at
home by: (i) recording changes in her morning body temperature (basal body
temperature) for several months, (ii) recording the texture of her cervical mucus
for several months, (iii) using a home ovulation test kit (available at drug or
grocery stores). Doctors can also check if a woman is ovulating by doing blood

tests and an ultrasound of the ovaries.

1.5 Infertility treatment

There are various treatments for infertility depending what the problem is.
Doctors recommend specific treatments for infertility based on test results, how
long the couple has been trying to get pregnant, the age of both the man and
woman, the overall health of the partners and preference of the partners. In-
trauterine insemination (IUI) is the commonest type of treatment for infertility
and is known by most people as artificial insemination. Several reviews article
((4), (13), (18], (22), 24), (39), @0), (©4), (©68), (70), (103)) have discussed and

compared intrauterine insemination (IUI) with other treatments.
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There is evidence from randomized trials to support the use of tamoxifen
citrate (16), clomiphene citrate (16; 47) and anastrozole (86) in women with
anovulatory infertility, though current best evidence suggests ovulation induc-
tion with gonadotrophins is an effective treatment for women with anovulatory
infertility (86). Currently there is no clear evidence of using any medication to

enhance male fertility (55).

1.6 Assisted reproductive technology

Assisted reproductive technology (ART) is a general term referring to meth-
ods used to achieve conception by artificial means. Assisted reproductive tech-
nology (ART) involves removing eggs from a woman’s body, mixing them with
sperm in the laboratory and putting the embryos back into a woman’s body.
Success rates vary and depend on many factors. Some things that affect the suc-
cess rate of assisted reproductive technology (ART) include age of the partners,
reason for infertility, clinic, type of ART, if the egg is fresh or frozen, and if the
embryo is fresh or frozen. The U.S. Centers for Disease Prevention (CDC) (21))
collected success rates on ART for some fertility clinics. According to (21)), the
average percentage of ART cycles that led to a healthy baby were as follows:
37.3% in women under the age of 35, 30.2% in women aged between 35 and 37,
20.2% in women aged between 37 and 40, and 11.0% in women aged between
41 and 42. Other methods of ART include Invitro fertilization (IV F'), Zygote
intrafallopian transfer (ZIFT) or Tubal Embryo Transfer, Gamete intrafallop-
ian transfer (GIFT) and Intracytoplasmic sperm injection (/C'SI). The most
common complication of ART is multiple fetuses. But this is a problem that

can be prevented or minimized in several different ways. The rapid development
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in assisted reproduction technology (ART) has provided infertile couples with a

variety of therapeutic options to achieve pregnancy (74)).

1.7 Infertility designs

Two common and competing designs are available for assisted reproduction
technology (ART), the crossover design and the parallel design. Crossover de-
signs are trials in which patients are allocated to sequences of treatment with
the purpose of studying differences between individual treatments (I7; R4). A
number of possible designs are available for the crossover studies. Under one
design a patient may initially be randomized to one treatment, subsequently al-
ternating treatment on each cycle. Alternatively, patients may initially receive
one treatment for several cycles before switching to another treatment. Besides
cross-over trials, there exists a parallel design. In a parallel design, a group of
randomly selected subjects receives one treatment, whereas a second group re-
ceives a different treatment until the outcome of interest occurs or the trial is

concluded.

1.8 Advantages of crossover designs

The crossover design to study the differences in treatments yields a more
efficient comparison of treatments than a parallel design. Subjects act as their
own controls, so the comparisons are usually based on within-patient variability
(which is usually less than the between-subject variability). For given power and

precision crossover designs require a smaller sample size Senn (84)).
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1.9 Disadvantages of crossover designs

Despite the appeal of having each subject serve as his/her own control, crossover
studies have substantial weaknesses, as well. The potential problem in crossover
design is that carryover effects may bias the direct treatment effects. Carryover
effect is defined as the effect of the treatment from the previous time period on
the response at the current time period. It occurs when the effect of a treatment
given in the first time period persists into the second period and distorts the
effect of the second treatment (84]). The incorporation of washout period in the
design can diminish the impact of carryover effects. A wash-out period is a period
in a trial during which the effect of a treatment given previously is believed to
disappear. The carry over effect should not be mistaken for the period effect.
A period effect is one that occurs in a given period, irrespective of the order
in which treatments are given. A carry-over effect has its origin in a preceding

treatment and is thus order-dependent (84)).

Another disadvantage of the crossover design is to do with censoring. Cen-
soring can be a problem in crossover designs if a patient drops out of the trial
during the first treatment period. If a Patient drops out of the trial during the first
treatment period, then the other treatment will have no chance to demonstrate its
effectiveness in the second period. In addition, the likelihood of becoming preg-
nant may not be constant from one period to the next because women who fail to
conceive in the first period may have a lower probability of success in the second
period. Consequently, by pooling the data obtained over the two study periods,
a larger estimate of the effect of treatment is obtained than that with a paral-
lel design trial (52)). Also mentioned in the literature in regard to the crossover

designs, is the problem of inconvenience to patients since patients are required
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to submit to a number of treatments and the total time they spend under ob-
servation will be longer. It should also be mentioned that this particular feature
can sometimes be turned to advantage in that it may be of interest for patient
to have the opportunity to try out a number of treatments for himself/herself in

order to gain personal experience of their effects (84)).

1.10 Attitudes adopted towards carry-over and

period effects?

A previously recommended method of analysing cross-over designs was to
test for carryover, and if this was significant to discard the data from the second
period and analyse only the data from the first period as if from a parallel group
trial Grizzle (4I)). Senn et al. (85) do not recommend pre-testing of carryover
effects. In his article, Freeman (34]) showed that this method of pre-testing carry
over leads to biased answers, as is generally the case when the choice between
two analyses depends on the the result of a preliminary hypothesis test. In his
book Senn (84)) argued that the use of the crossover design is effectively built on
the assumption that there is minimal carryover of the effect of a treatment into
the next period. Following this philosophy, rather than testing for carryover, in
this dissertation we will proceed as if there were no carryover. We will include
parameters for period and estimate treatment and period effects simultaneously:

that is to say, estimate treatment in the presence of period effects and vice versa.
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1.11 Crossover design in Infertility trials

The commonest of crossover designs is the AB : BA crossover design in which
approximately half of the patients are first given treatment A and on a subsequent
occasion treatment B whereas the rest of the patients are first given treatment B
and on a subsequent occasion treatment A. In the standard AB : BA crossover
design setup, for every participant there must be two observations: observation
due to treatment A and observation due to treatment B. In this standard set
up, patients act as their own control. This standard crossover design represents
a special situation where there is not a separate comparison group. Also, since
the same subject receives both treatments, there is no possibility of covariate
imbalance. Contrast this with a parallel group design where some subjects get
the first treatment and different subjects get the second treatment. The standard
AB : BA crossover design (here and after will be called complete crossover design)
has the advantage of achieving the same level of precision as the parallel design
trial, but with half the number of patients because each patient contributes two
observations (one for each treatment). In the complete crossover design, between-
subject variation (which is inherent in a parallel design) is avoided because the
comparison of the two treatments occurs in the same patient. It is the difference
in outcomes within each patient that is the key observation, and these differences
are pooled and analyzed at the conclusion of the design. When pregnancy is
the outcome, patients who conceive in the first period are withdrawn from the
study and do not receive treatment in the second period. Therefore, the essential
within-subject comparison of the responses to the two treatments does not occur.
Censored patients do not provide information on the treatment they were not ex-
posed to, thereby not permitting the within patient comparison. However, in the

medical research setting, a crossover design offers several practical advantages.
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First, with a crossover design, all couples will be exposed to both treatments,
thus couples will be motivated to participate and to complete the entire trial.
Moreover, more couples will become pregnant in a crossover-design trial than in
a parallel-design trial (24; 64) because all couples are offered the most effective
treatment for half of the treatment period (This point is also illustrated analyti-

cally in page 21).

Since 1993, an extended and sometimes heated debate has been conducted on
the place of the crossover design in infertility trials. Daya (27) opened the debate
by stating that, in his opinion, the crossover design has no place in infertility
trials. Khan et al. (52) published the results of a meta-analysis comparing
the two designs, and concluded that within the existing literature there is an
overestimation of treatment effect in crossover trials compared with parallel trials.
However, the method used by Khan (52), was criticized by many statisticians
including te Velde (94)), who later re-analyzed the data. In re-analyzing the data,
te Velde concluded that the over estimation found by Khan (52)) is statistically
insignificant. Ananth and Rhoads (€) also criticized the method used by Khan
(52), claiming that the statistical method is inappropriate. Olive (75) agreed
that the crossover design will overestimate the treatment effects but suggested
that this may be due to inadequate statistical analysis. Cohlen (24]), Norman
(74) and McDonnell (64) conducted a series of simulations to try to answer this

controversy.

Both crossover and parallel design had been extensively used in infertility tri-
als [(24),(23), (33), (39), (40), (43), (48)), (51), (65), (70), (L03)]. In cases where
parallel design was employed [(33)), (39), (43), (65)], the statistical methods used
for analysis was appropriate. On the other hand in the articles where crossover de-

signs were employed [(24), (40), (51)), (70), (103)], we feel that statistical method
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used is inappropriate for a cross over design.

In assisted reproduction technology (ART), women are allowed to conceive
only once. If a woman gets pregnant, the women is dropped from the trial. This
dissertation aims to investigate what actually is lost by not allowing women to
conceive twice. That is to say, what are we losing by moving from the com-
plete crossover design to the incomplete crossover design? Is having some of the
outcomes in the second period missing as good (may be worse) as having no
outcomes in the second period? i.e., is parallel design better (worse) than the
crossover design in infertility trials. We will illustrate how data set from the cross

over design in infertility trials is analyzed.

1.12 Motivation

We are motivated by the fact that even though crossover designs are exten-
sively used in infertility (24} [40; 48} [103)), there are still some statisticians who feel
that the use of crossover design in infertility trials is inappropriate (27} 29; 45]).
The critics of the use of crossover design in infertility trials, including Daya (27),
are concerned that women who become pregnant after the first treatment period
will leave the study. This will mean that data may not be available for within
patient comparison if crossover designs is used and pregnancy is the outcome
measure. We agree with them that the second outcome will be missing in the
event that the woman gets pregnant in the first period. It is surprising when they
put parallel design before the crossover trial with some outcomes in the second
period missing. This incomplete crossover has more information than the paral-
lel design. The question is if you were to choose between one set of data where

women are exposed to either A or B (parallel), and the other set of data where
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some women are exposed to both A and B, some are exposed to A only, and some
are exposed to B only, which data will you choose? We tend to believe that most
people will prefer the latter than the former, for the obvious reason that you are
told more of what is happening in a woman, with respect to the two treatments,
in the latter than in the former. Daya’s comments seem strange in view that as
statisticians, we will prefer to have more information than less. The crossover
design in the medical setup, will surely have some missing information on those
women who get pregnant on the first period, but will contain all the information
that is contained in the parallel design. So, the question is why in this scenario

do other statisticians like Daya opt for the data with less information.

Consider the complete crossover design data set in Table below;

AIBIO | B|A| O
00 |n| 0] 0fns
0 1 N9 0 1 Ng
110 |ng| 1] 0] ny
T{1 [ng| 1] 1] ng

Table 1.1. Complete crossover design data set

Note that this is a theoretical situation only. In practice some of the data
would be missing. It is clear that given the complete crossover data sets, one can
easily predict what would have happened if an infertility crossover design was

conducted. Basically, one can easily obtain the data set in Table below;
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A/B|O |B|A|O
010 |n | 0] 0fns
0 1 %) 0 1 Mg
1 * N3 1 * ny
1 * Uz 1 * ng

Table 1.2. infertility crossover design data set

Similarly given the incomplete crossover data sets, we can easily predict what

would have happened if the parallel design was followed. That is we can easily

get the data set in Table [I.3] below;

A/B|O |B|A|O
0 * ni 0 * Ny
0 * %) 0 * Mg
1 * ng 1 * ny
1 * Ty 1 * ng

Table 1.3. Parallel design data set

We were motivated by the way these three data sets look. Using Table [I.1],
Tabldl.2] and Table [I.3] we expect the preference of the data sets to be in the
following order: complete crossover data sets, followed by incomplete crossover
data sets and finally parallel design. Of course Table is a theoretical option
only. To our surprise some statisticians prefer the data set in Table more

than the data set in Table [1.2]

Over the past decade, the crossover design has gained popularity and is being
recommended for infertility research by many investigators [(24)), (23)),(64), (70),
(74),(103)]. In this section we will look at some of the articles where crossover
design has been used or recommended in assisted reproduction technology (ART).

We will begin by looking at the article by Zreik et al. (103).
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1.13 Review of Zreik’s Paper

In this section we will look at data from Zreik (I03) based on a crossover
study to compare two methods of timing ovulation; Luteinizing hormone urine
test (LH monitoring) and transvaginal ultrasonography. Luteinizing hormone
urine test (LH) detects a rise in lutenizing hormone. Such a rise, or surge,
signals the ovary to release the egg. This at-home test is often used by women
to help predict ovulation. On the other hand, transvaginal ultrasonography is a
a painless, harmless test that uses sound waves to produce images of the organs

and structures of the body on a screen.

1.13.1 Trial Setup

The trial took place in September 1994 at the Yale Reproductive Medicine
Center, New Haven, Connecticut, USA. Initially, 61 infertile couples agreed to
participate, but later seven couples were excluded from the analysis for fail-
ure to return or for declining crossover during the study after randomization.
Thirty-two patients with unexplained infertility or mild endometriosis, 15 pa-
tients with anovulation, and 7 patients with mild male factor infertility were
enrolled. Anovulation is absence of ovulation when it would be normally ex-

pected.

The mean age of the women was 33 years with the youngest being 24 years
and the oldest being 41 years. Patients underwent a complete infertility eval-
uation. Unexplained infertility was defined as normal findings in the infertility
evaluation and included normal laparoscopic findings or minimal endometriosis.

Direct laparoscopic visualization with or without biopsy of suspicious lesions was
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used to confirm endometriosis.

Patients were randomized by the use of a computer generated random number
table; the assignment was not known to the treating physician or the patient until
consent was obtained. The patients were randomized to either group 1 or group
2. Patients randomized to group 1 began with protocol A, whereas patients ran-
domized to group 2 began with protocol B. In protocol A, Luteinizing hormone
urine test was used to time ovulation. Urinary LH levels were determined daily
with the use of commercial kits (ovuQuick, Quidel, San Diego, CA), starting on
day 10 of the cycle and discarding the first morning void. When urinary LH was
detected, intrauterine inseminations (/UI) were performed daily for the next 2
days. In protocol B, ultrasound monitoring of folliculogenesis, starting on day
10 of the cycle, was performed until a leading follicle of > 18mm was noted, at
which human chronic gonadotropin (hC'G) of 10,000 [U was given intramuscu-
larly and intrauterine inseminations (IUI) were performed daily for the next 2
days. If no pregnancy occurred, the couple crossed over to the alternative proto-
col for the next cycle, with couples having at most four cycles. For each couple
, the number of LH and hC'G treatments and pregnancy status were recorded.
Pregnancy rate per cycle was calculated as the ratio of the number of couples
pregnant to the number of cycles in a protocol. Fisher’s exact test was used
to compare the pregnancy rates per cycle between the two protocols in each of
the three diagnostic groups (unexplained infertility, male factor infertility, and

anovulatory infertility).
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1.13.2 Results and Data analysis

The couples contributed 142 cycles of which one was excluded because of
failure of compliance by a patient randomized to urinary LH monitoring. Six
couples conceived. The data from each individual cycle in the three different

groups (male factor, anovulation, and unexplained infertility) are tabulated in

Table [1.4] below (L03]):

Cycle no | Protocol | Unexplained | Anovulation | Male factor | Total

| hCG L g 3 %
LH 5 ; : %

2 hOG ° v i 15
|k : s |4

3 hCG 2 8 3 =
| : s |4

4 hCG 3 3 3 2
LH ; 5 0 :

Total 85—6 % 1—18 %1

Table 1.4. Pregnancies obtained in each cycle with the two protocols

The first thing that (103]) did was to stratify the data according to the infertil-
ity status and test if there is any association between the protocol and pregnancy
(i.e.. they adjusted for the infertility status). The number of couples conceived

(not conceived) under each infertility status was recorded. The 2 x 2 tables were

constructed for each infertility case as shown below:
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LH | hCG
Pregnant 0 1
Not Pregnant | 9 8

Table 1.5. Male Factor Infertility

LH | hCG
Pregnant 0 0
Not Pregnant | 18 19

Table 1.6. Anovulation Infertility

LH | hCG
Pregnant 4 1
Not Pregnant | 38 43

Table 1.7. Unexplained Infertility

Fisher’s exact test was used to test if there is any association between the
outcome and the protocol. The authors found no statistically significant differ-
ences between the two protocols. However we take issue with their method of
calculation. Fisher’s exact test is valid only if say N patients were randomly al-
located to one treatment groups (hC'G)and M patients to the other (LH). That
is to say that, Fisher’s Exact test was going to be the appropriate measure if say
from Table [1.5 nine patients were randomly allocated to LH protocol and the
other nine patients were randomly allocated to the hC'G protocol. Thus Fisher’s

Exact test is valid in parallel design, not in cross over design.

1.14 Review of Cohlen’s Paper

In their article Cohlen and his group considered a hypothetical population

of subfertile couples. The population was divided into 2 equal groups and was
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assigned to either treatment A or treatment B. After randomization, each group
received either treatment A or treatment B continuously (parallel design) or
alternated between the treatment modalities (crossover design). Each couple was
offered a maximum of n = 6 treatment cycles. It was assumed that there is no
carry over effects, no period effect, and no dropouts. Couples dropout if and
only if they are pregnant. The expectations were used to estimate the per cycle
probability of conception. The objective was to determine whether a crossover
design results in a different estimate of treatment effect compared with a parallel

design.

Table[L.8 below shows the number of couples who would have become pregnant
after each treatment cycle in either parallel or crossover design trial. The total

number of all couples is 2m = 2000.

Pazllel desizn Crozzover desian
Treatment A Treatment B Treament A Treatment B
Mo, of No. of Mo of Mo. of
PIREACes g, PR per  preguanciss’Ta. FE p=r premanciesno. PR oper PEEancIes B, PR per
Cyele no. of couples cyele (%) of couples cycle (%) OR of couples cyele (O} of couplas evele (%) OR
1 1007,000 11 01,000 10 235 100:1,000 10 20071 600 M 215
2 90900 11 160UR00 10 235 BO/E0D 1% 1500900 L 235
3 S1/B10 1 128/640 0 225 THTH 10 1447720 0 225
4 731129 1 1512 i 235 587376 10 1300648 i 215
5 B5/635 11 BLE10 10 235 SH51E 1% 1047518 L 235
& 8500 1 66328 0 225 41414 10 931456 0 235
Total: 4694 AR5 1 738/3,690 i 235 40374 028 10 8514252 b 215

Table 1.8. Expected number of pregnant couples, pregnancy rate per cycle, and
odds ratio after each treatment cycle when a homogenous population of 2000
couples participates in a parallel or crossover design trial

Let p4 be the probability of conception under treatment A, and let 1—p4 = qa
be the probability of failing to conceive under treatment A. Similarly we can define
pp and gg. If the population is homogenous, we immediately observe that, under
parallel design, we can easily deduce the following (i) the expected proportion of

women pregnant at the end of the trial is
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11— gy =1—page=1-ps

(1) the expected total number of cycles involved under A, at the end of the trial

is given by the expression

Ta=m=* [ gy ']

(77) if p is the ratio of the expected number of pregnancies to the expected total

follow up time (no of cycles) as in (23)), then py = pa.

Similarly, it can be shown that in the crossover designs, the expected propor-

tion of women pregnant undergoing treatment A is

n

pa(l+qp) > 2 (qags)™"

and the expected proportion of women pregnant undergoing treatment B is

n

pe(1+qa) 37 1(qags) "
While the expected number of cycles under treatment A is given by
mox (1+45) 20 (4448)
and the expected number of cycles under treatment B is given by
mox (14 44) S5 (dags)’
In addition
Co_ pA(1+qB)Z;L%1(quB)i‘1 _ pa %il(quB)i‘l

DA = : :
(144¢8) O 20 (qaq): Y2 (qagp)i—t

= PA
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and

b = pe(1+qa) 32 (qag8)™"  p Y2 (qage)™' PB
= 7 = 3 ; = .
(14+94) 2, (gagB)’ Y2 (qagp)?t

Clearly, the estimates above are unbiased.

Under this method, it is clearly observed that, the expected number of preg-
nancies in the crossover trial is greater or equal to the number of pregnancies in

the parallel trial since,

n n

The equality holds if and only if the two treatments are equivalent.

We will show that in the most effective treatment, crossover design produce
more pregnancies than parallel design. While in the least effective treatment
the situation is reversed. Suppose B is the most effective treatment, while A is
the least effective treatment. Under crossover design, the proportion of women

pregnant due to treatment B is given by

n

2

D lak 'peds + ds 'peds ] (1.1)
=1

while under parallel design, the expected proportion of women pregnant due to

treatment B is

1 —qp (1.2)

We will prove by induction on n (n even number). We will show that it holds for



1.14. REVIEW OF COHLEN'’S PAPER 22

n = 2. For n = 2, (L.1)) becomes

PBYA + DB- (1.3)

While (|1.2)) becomes
1—qp = (1—g8)(1+qs) = pp + P45 (1.4)

Clearly (1.3)>(1.4)), since g4 > ¢5.

Now we assume that ((1.1))>(/1.2)), for any integer n = 2,4,6...2x. We will show
that (L.1)) > (1.2)), for n = 2z + 2. But for n = 2z + 2, (|1.1)) becomes

z+1
> psdy s (1+ qa) ZquZB ' (14 qa) +papai(1+qa)  (L5)

while (|1.2)) becomes

2z+42
1— g5 " =(1-qp) Zq _pBZQB +peqy (1+qs)  (16)

clearly (1.5 > ([1.6)), since g4 > ¢gp. Thus by induction we have proved that ((1.1)
is always greater than ((1.2)). Hence, in the most effective treatment, the expected
number of pregnancies under crossover is greater than the expected number of

pregnancies under parallel design (which was to be proved).

Similarly it can be shown that in the least effective treatment, the expected
number of pregnancies under parallel is greater than the expected number of

pregnancies under crossover design.

Hence we can immediately get Cohlen’s results as follows: In their article

Cohlen and his group began with py = 0.1 and pg = 0.2. The sample size is
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2000. Each couple was offered a maximum of six treatments. Thus the estimated

per cycle probability of pregnancy for treatment A is given by

A~ 1-095  _ 0.468559
PA = 560 9i-1 ~ 4.68559

=0.1= Pa.

Similarly it could be verified that pp = pg = 0.2.

Under a crossover trial

A D2 la 'pad+ay tpady 'l 0402012 0.1 =
Pa = (1-4%4%)(1+ap) = ro2912 — V-t T Pa
(=t

Similarly, pp = pg = 0.2

However crossover results in more pregnancies
2000 # [pa(1 + qp) + pu(l + qa)] » Z=l290) 0 _ 195y
pregnancies compared to
2000 # (1 — 29408%) — 1906

pregnancies in the parallel design. This difference is due to the different designs
and not to overestimation of the treatment effect. Crossover designs will produce
more pregnancies than parallel designs simply because couples are exposed to
both treatments for half of the time of trial. Crossover design results in more
pregnancies with the most effective treatment (1000%pp(1+qa)*> 0, (qaqp)’™" =
851 versus 1000 * (1 — ¢%) = 738) and a fewer pregnancies with the least effective

treatment (1000 % pa(1 4 ) * >0, (qags)™" = 403 versus 1000(1 — ¢5) = 469).

In analyzing the data, Cohlen (23)) estimated the treatment (protocol) effect
by the pregnancy rate per cycle, which is defined as the number of couples preg-

nant divided by the number of cycles in a trial. This measure pays more attention
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to the couples who stayed longer in the trial. The couples who stayed longer in
the trial contributes more information to this kind of measure as compared to
the couples who conceived in early stages of the trial. Clearly this may not be
the correct measure of treatment effect. As an example consider a scenario where
11 couples goes under an assisted reproduction technology, with couples having
at most ten cycles. Suppose ten couples conceived in the first period, and the re-
maining one couple did not conceive at the end of the trial. Thus the contributed
number of cycles is 20 and the number of pregnancies is 10, hence the pregnancy
rate per cycle is % = 0.5. This clearly does not tell us that almost all couples
conceived in the first period. For this population of 11 couples a pregnancy rate
of anything in the neighborhood of 0.99 will be more plausible than 0.5. We

really have an issue with this kind of measure. But the measure is not bad for

descriptive statistics.

1.15 Review of Mcdonnell’s Paper

McDonnell’s aim was to see if the design structure and/or the presence of
carryover effects lead to a bias in the statistical analysis, leading to possible
under/overestimation of treatments effects. The probability of conception was

assumed to be logistic and only depends on age and treatment applied.

The authors used a simulation approach to follow the progress of two theoret-
ical cohorts entering into a trial comparing /Ul = 0 and IV F' = 1. The progress
of the two cohorts was simulated under both the parallel and crossover designs.
In the parallel arm, couples initially are assigned randomly to one treatment,
staying with that treatment until leaving the trial. In the crossover arm, couples

are initially assigned to one treatment, switching treatments in subsequent cycles.
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Each couple was offered a maximum of six treatment cycles. The following four

assumptions were considered.

(7) no couples dropped out (no censoring) and the treatment had no effect
on the following cycle (no carryover effect); (i) no censoring but there was a
carryover effect; (iii) couples could be censored, but there was no carryover effect;

and (iv) both censoring and carry over effects were present.

Under no-carryover and no-censoring scenarios, the per cycle probability of

pregnancy is

exp(u(age,treat))
1+exp(p(age,treat))

p1(age, treat) =

In the carryover scenarios, the per cycle probability of pregnancy is

exp(p(age,treat)—In(1.5) X ptreat
1+exp(u(age,treat)—In(1.5) x ptreat *

po(age, treat, ptreat) =

In scenarios involving censoring, the probability of censoring was

exp(n(treat))

b3 (treat) = 1+exp(n(treat))

where

n(treat) = —3.073850 + 1.361340 x treat

p(age, treat) = —0.321865 — 6.146251 x age + 0.330317 X treat

And

ptreat = 1, if the previous treatment applied was I'V F', otherwise ptreat = 0.

Also for any probability of conception p;,{i = 1,2,3} we define ¢; = 1 — p;.
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The age of the female patient was randomly generated using the formula

Age = 25 x 1.6Y

where U is a random variable uniformly distributed on [0,1]. We will like point out
that the purpose of this section is to reproduce the author’s results analytically

(or to estimate the results analytically). The cumulative distribution of age will

be

G(age) = P(Age < age) = P(25(1.6)Y < age) = P(U < o %) = In o5

Hence the probability distribution of age is given by

flage) = d(((;j((;;ie)) = agelln1.6’ for 24 < age < 40, and zero elsewhere.

Thus the median age is given

M =25 % 1.6%5 = 31.62278

Hence their population consists of women with ages between 25 and 40 only, with
relatively more younger women than older women. A situation not dissimilar to

that seen in practice.

Using the assumptions from (64), under no carryover effects and no censoring,
we should expect the proportions of couples achieving pregnancy under parallel

design and crossover design to be

[i- {1(age, 0)q1(age, 1)}°

5 f(age)dage (1.7)
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and
40

/1 —{aq1(age,0)q1(age, 1)} f (age)dage. (1.8)

respectively.

Under a parallel design, for the carryover scenario, we should expect the

proportions of couples achieving pregnancy due to IUI and IV F to be

40

6
/[p1 (age,0) Z ¢2(age, 0,0)"! f(age)]dage (1.9)
25 n=1
and
40 5
/[pl(age, 1) + pa(age, 1,1)q1(age, 1) Z ¢@(age, 1,1)"" ! f(age)]dage  (1.10)
25 n=1
respectively.

Similarly, under the crossover design, the proportion of women achieving preg-

nancy due to IUI and IV F' are

[, [p1(age, 0) +
a1 (age, 0)gz(age, 1,0)pa(age, 0) S°2_ {gz(age, 0, 1)gz(age, 1,0)}* 1] f (age)dage

40 3

+/[Q1(a9€71)292(a96a071)Z{%(age,()a1)612(@967170)}n_1f(a96)]da9€ (1.11)

25 n=1

and

f2450 pi(age, 1) +
q1(age, 1)gz(age, 0, 1)pa(age, 1,0) 32 _ {g2(age, 1,0)gs(age, 0, 1)}~ f9age)dage

40 3
+ / ¢1(age, 0)pa(age, 1,0) Z{qg(age, 1,0)q2(age, 0,1)}* "' f(age)dage (1.12)
n=1

25
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respectively.

If we consider the censoring scenario, under parallel design the proportion of

women achieving pregnancy due to IUI and IV F are

40

/pl(age, 0) Z{ql(age, 0)g3(0)}" 1) f(age)dage (1.13)

25

and
40 5
/pl(age, 1) Z{ql(age, Dgs(1)}*Y) f(age)dage (1.14)
25 n=1

respectively.

Similarly, under the crossover design, the proportion of women achieving preg-

nancy due to IUI and IV I are

Jos p1(age,0) S22 {ai(age, 0)q5(0)qi (age, 1)g5(1)}" ") f (age)dage

+ /m(age, 0)a1(age, )gs(1) Y {a(age,0)g5(0)a (age, 1)gs(1)}" ") f (age)dage

25 n=1
(1.15)

and

Jos P1(age, 1) 320 {q1(age, 0)g5(0)q1 (age, 1)gs(1)}*~1) f (age)dage

40

+ /pl(age, 1)gi(age,0)g5(0) > {ai(age, 0)gs(0)ar (age, 1)gs(1)}" ") f (age)dage

(1.16)

respectively.

Finally if we consider the scenario involving both censoring and carryover
effect, we observe that under parallel design, the proportion of women achieving

pregnancy due to IUI is the same as in the scenario where we have censoring
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only. Whereas the proportion of women achieving pregnancy under IV F' is

/[pl(age, 1) + ¢1(age, 1)g3(1)pa(age, 1, 1) Z{qQ(age, 1, 1D)g3(1)}** f(age)]dage

25
(1.17)
In the crossover arm, the proportion of women achieving pregnancy due to 1UTI

and IV F are

f;;o p1(age,0) +
q1(age, 0)g3(0)gz(age, 1,0)g3(1)ps(age, 0,1) 32 {gz(age, 0,1)ga(age, 1,0)g3(0)gs (1)}~

+ / q1 (age, 1)(]3(1)])2((196, Oa 1) Z{Q2(ag€, O’ 1)QQ(6L96, 17 0)q3(O)q3(1)}"_1f(age)dage

%5 n=1

(1.18)

and

4
f250 pi(age, 1) +

q1(age, 1)gs(1)gz(age, 0, 1)gs(0)pa(age, 1,0) 327 {ga(age, 1,0)g2(age, 0, 1)gs(1)gs(0)}

40 5
+ / ¢ (age, 0)g3(0)ps(age, 1,0) Z{@(age, 1,0)g2(age,0,1)g3(1)gs(1)}" ' f(age)dage
25 n=1

(1.19)

Equations [1.7)[1.8] [L.9]... can be used to reproduce or estimate the results

obtained by the authors.

1.15.1 Results

Table below shows the simulation results obtained by McDonnell (64]).

The results obtained by evaluating expressions 1.7 —1.117 are shown in brackets.
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censoring | carryover state parallel crossover
no no pregnant | 49.6 (49.8) | 50.4 (50.1)
no yes pregnant | 48.0 (47.9) | 48.5 (48.6)
yes no pregnant | 40.4 (40.4) | 40.8 (40.8)
yes yes pregnant | 39.3 (39.1) | 39.6 (39.6)

Table 1.9. Proportion of patients (as percentage) achieving pregnancy or drop-
ping out under each of the four baseline scenarios

The crossover design results in an increase in the pregnancy rate, as expected
from expressions above. This increase remains small under other assumptions.
Mcdonnell’s results agree with our theoretical results. But we have a problem
with the model used by these authors. The authors made a very strong assump-
tion of independence of cycles within a couple. This strikes us as being bizarre
since outcomes from the same subject are expected to be correlated. The as-
sumption of independence of cycles within a patient, makes the likelihoods of the

two designs to be the same.

1.16 Overview of later chapters

In the remaining chapters of this dissertation, Chapter 2 provides some back-
ground on the statistical methods used for modeling binary outcomes, reviews
standard logistic and mixed effects logistic regression and their corresponding
parameter estimation including the Hermite quadrature method. Chapter 3 de-
scribes how to estimate the parameters in the crossover design and how to com-
pare estimates obtained from crossover design to estimate obtained from the

parallel design. Chapter 4 will discuss how in practice the crossover trials should
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be analyzed using the current available statistical packages. Finally we discuss

our findings in chapter 5.



Chapter 2

Mixed-Effects Regression Model

for Binary Outcomes

This chapter introduces and defines the mixed-effects regression model that is
used throughout the dissertation. We begin by discussing the mixed-effects logis-
tic regression for longitudinal (clustered) binary data. A full maximum marginal
likelihood solution is illustrated for the parameter estimation. In this solution,
the quadrature method is used to numerically integrate over the distribution of

the random-effects.

2.1 Overview

Logistic regression is like linear regression described in Neter et al. (72) in
that it is a method for modeling the effect of predictor variables on a response
variable. The difference is that the response variable is binary; e.g. dead or alive,

disease or non-diseased, exposed or unexposed, pregnant or not pregnant.

32
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Usually, binary data result from a nonlinear relationship between the proba-
bility of success p = p(x) and the covariates x associated with the binary outcome.
A fixed change in the covariate x often has less impact when the probability of
success p is near 0 or 1 than when p is near 0.5. In the assisted reproduction tech-
nology (ART), suppose that the probability p(x) of enrolling in the ART course
of treatments depends on the annual family income x. An increase of £36,000
in annual income would have less effect when x = £500,000 (for which p(x) is

near 1) than when x = £50, 000.

In practice, nonlinear relationships between p and x are often monotonic, with
p increasing continuously or p decreasing continuously as x increases. The most
important curve with this kind of behavior is the logistic curve, described more
extensively in Agresti (1)). It is used in many areas such as health care research

and biomedical studies (9).

Logistic regression is a widely accepted technique for describing the relation-
ship between a categorical outcome and a set of explanatory variables. The
response variable is usually dichotomous or binary, but it may be polytomous,
that is, have more than two response levels. These multiple-level response vari-
ables can be nominally or ordinally scaled. To provide a statistical foundation
for mixed effects generalization of the logistic regression model, we now present
an overview of the standard logistic regression model when the response is di-

chotomous.



2.2. LOGISTIC MODEL 34

2.2 Logistic Model

To formulate the logistic model, let p; represent the probability of a positive
outcome (i.e., ¥; = 1) for the ith individual. The probability of a negative
outcome (i.e., ¥; = 0) is then 1 — p;. Denote the set of covariates as x; =
(1,24, ..., Tip), where 8 = (0o, b1, ..., 8p) is a (p + 1) x 1 vector of corresponding
regression coefficients. Then the logistic regression model has the form

Pi

1 = X 2.1
8T x;0, (2.1)

where the expression on the left-hand side is referred to as the logit or log-odds
of a 1 response. The logit transformation linearizes the relationship between p(x)
and the covariates x. It is also worth mentioning that the log-odds for a 1 response
takes on values —oo < logitp(x) < oo. In logistic regression, the logit is called the
link function because it maps the (0, 1) range of probabilities unto the (—oo, 00)
range of linear predictors. There are alternative models for dichotomous response
variables (e.g. the probit regression model). One reason for the popularity of the
logit model is that the coefficients have a simple interpretation in terms of the

odds ratios. The odds of a 1 response is

- %‘p@, = eap(x;). (2.2)

Note that the relationship between the odds and the predictor variable x is non-

linear.
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The logit model 2.1, can be rewritten in terms of the probability of a 1 re-

sponse, such that

_exp(xif) 1
C lderp(xi3) 1+ exp(—x,3)

= ¥ (=x0), (2.3)

%

where W(.) is the logistic cumulative distribution function, namely

1
14 exp(—2)’

U(2) (2.4)

which implies that 0 < p(x) < 1; also a nonlinear function of the predictors.
More details regarding the logistic regression can be found in Agresti (1)) and

Neter et al. (72).

2.2.1 Interpretation of parameters

The quantity Gy in equation [2.1]is the log odds of a positive outcome for an
individual with a set of covariates x; = 0. The parameter (3, is the increment in
the log odds for a unit change in z, holding all other covariates constant. The
quantity exp(3,) is an odds ratio for the regressors, namely the ratio of the odds
of a positive response for a unit change in . For more understanding on the
interpretation of the parameters in the logistic regression model, Allison (5) and

Stokes et al. (92) are strongly recommended.

As we know from Agresti (1) that the 95% Wald confidence interval for a

given regression parameter is

B * 20975 X Se(ﬁ)~

We would like to find a comparable confidence interval for the estimated odds
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ratios. In particular suppose that we want a confidence interval for the esti-
mated odds ratio exp(8,). The 95% Wald confidence interval for the odds ratio

is computed as

exp(By £ 20,975 X se(3p)).

That is, we compute the 95% Wald confidence interval for 3, and exponentiate

the result.

2.2.2 Model Assumptions

If the dichotomous random variable Y represents the outcome from an in-

dividual subject then (i) the Y values are independent and take on values of

either 0 or 1. (i7) The variable Y has a binomial distribution with n = 1
and p(x) = (SZELL — . Therefore E(Y|x) = p(x) = o220 —

m and Var(Y|x) = p(x)(1 — p(x)). That is, the conditional distribu-

tion of the response variable Y follows a binomial distribution with probability

given by the conditional mean p(x). (iii) The conditional mean is modeled as

p(x) = 15;”?;;’2;%) =1 +emp1(7x, - (1v) The x are measured without error.

In summary, the conditional mean of the regression equation must be for-
mulated to be bounded between 0 and 1. The logistic model has this property
and the parameters in the logistic model have a natural interpretation in terms
of the odds ratio. Also the binomial, not the normal (as in linear regression),
distribution describes the distribution of the errors and will be the statistical dis-
tribution upon which the analysis is based. The principles that guide an analysis

using linear regression in Neter et al. (72)) will also guide us in logistic regression.
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2.2.3 Maximum Likelihood for Logistic Regression

Just as in simple linear regression, the data will be a sample of say m in-

dependent observations. In the case of p predictor variables, the data are given

by

(X17)/1>7 (X27}/2>7 (Xm7ym)7

where Y; represents the value of the dichotomous response variable and x; =
(zi1, ..., ¥ip) is the value of the predictor variables for the i subject. Furthermore,
assume that the response variable has been coded as 0 or 1, representing the

absence (0) or the presence (1) of the event, respectively.

In simple linear regression it was assumed in Neter et al. (72) that

E(Y|X) = 06+ 51X,

and used least-squares to estimate the parameters (3, 81, 0?) that minimized the

sum of squares

> (Y= Bo— BiX)%

For many reasons, this will not work for logistic regression. In the model
with Y; ~ Binomial(1,p;(x)), we no longer have a direct connection between Y;
and x; (which is why we need a link function). The estimation method that is
most commonly used is maximum likelihood to obtain parameter estimates. The

function for the conditional probability

ey o erp(xif)
PT(Y; - HX) - 1+€$p(Xgﬂ) _ \Ij( Xiﬁ)a (25>



2.2. LOGISTIC MODEL 38
implies that

1

Pr¥e =0k) = 0 5

=1 U(—xp). (2.6)

Thus, for those pairs (x;,Y;) where Y; = 1 the contribution to the likelihood
function is ¥(—x!/3), and for those pairs (x;, Y;) where Y; = 0 the contribution to
the likelihood function is 1—W(—x}3). A general way for describing the likelihood

for a single observation is
Pr(Y;) = UYi[1 — W], (2.7)
To see why, note that when Y; = 1 the result is
U1 -0’ =w
and when Y; = 0 the result is
U1 —0)i0=1—- .

Because the observations are assumed to be independent, following Hogg and
Craig (40)), the likelihood function for a sample of m independent observations is

obtained as the product of the individual terms for each observation or
L=]]v"n-w' (2.8)
i=1
It is easier to manipulate the log of the likelihood function

log L = i[}ﬁlog% + (1 =Y;)log(1 — W,)]. (2.9)

=1
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If we choose the values of the parameters that maximize the log of the likelihood
those same values will also maximize the likelihood. To obtain the likelihood
estimates, we therefore have to take the partial derivatives of log L with respect
0, set the derivatives equal to zero and solve for . Differentiating the log likeli-
hood function [2.9| with respect to ( yields the first derivatives for the maximum
likelihood (ML) solution:

alggL - Zm:(yi —)x; = 0. (2.10)

i=1

This result is due to the fact that for the logistic distribution OW(.) = W(.)(1 —

U(.)). Note that

OlogL — OlogL  dlogL OlogL
op 9o B T OBy

is a vector. In the simple case of a linear effect, for one predictor variable there

are two parameters to estimate, §y and ;. The two resulting equations from

equation [2.10] are

Olo m
W‘%L =2 (Yi—¥) =0

and

Tl = 3 (Vs = W) = 0.

These are not linear in the parameters. Hence iterative methods are required
to solve them (I; 44). The Newton-Raphson method is an iterative method
for solving nonlinear equations. To implement the Newton-Raphson method we

require the second partial derivatives of log likelihood function [2.9 The second
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partial derivatives are obtained as

0?logL i ,
3505 ~ 2 (1 — ,)x;x]. (2.11)

Note that % is a matrix called the Hessian matrix. In the Newton-Raphson

method, provisional estimates for the vector of parameters (# on iteration 2 are

improved by

OlogL
b,

9*logL

.00 )L (2.12)

ﬁz-‘rl = ﬁl -

(

This iterations continue until the changes in the parameter estimates and/or
likelihood value are sufficiently small. At this point the solution is said to have
converged, and the large-sample variance-covariance matrix of the maximum like-
lihood estimator is then obtained as the negative inverse of the matrix of sec-
ond derivatives. Standard errors of the parameter estimates are obtained as the
square root values of the diagonal entries of this (negative inverse) matrix. The
maximum likelihood estimates and their accompanying standard errors can be
used to compute asymptotic z—statistics (i.e., Wald statistics) or construct con-
fidence intervals. More discussion regarding this maximum likelihood estimation

procedure and iterative algorithm can be found in (I}, [19; 28} [44)) and (63).

2.2.4 Goodness of fit

Once the model has been applied, we need to assess how well it fits the data,
or how close the model predicted values are to the corresponding values. Test
statistics that assess fit in this manner are known as goodness-of-fit statistics.
They address the difference between observed and predicted values, or their ra-

tio, in some appropriate manner. Departures of the predicted proportions from
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the observed proportions should be essentially random. The test statistics have
approximate chi-square distributions when the sample size is sufficiently large.
Two traditional goodness-of-fit tests are the Pearson chi-square and the likelihood

ratio chi-square, also known as the deviance.

2.2.5 Statistical software

Several procedures in the statistical software can be used to perform logistic
regression, including the LOGISTIC procedure, the CATMOD procedure, and
the GENMOD procedure in SAS©. The LOGISTIC procedure is designed
primarily for logistic regression analysis and it provides useful information such as
odds ratio estimates and model diagnosis. The CATMOD procedure is a general
procedure designed to fit models to functions of categorical response variables.
PROC GEMOD is a procedure for analyzing generalized linear models, of
which logistic is a simple case. Other statistical software which are capable of
performing logistic regression include MathCad®©, R©, and S-plus®. In this
section, attention is focused, with the help of an example, on the use of the
MathCad®© software and on the use of the PROC LOGISTIC procedure in

SAS® to perform logistic regression.

2.3 Example

The following example, from Antinori (8) is based on a study to investigate
if higher pregnancy rates may be achieved by increasing the number of embryos
transferred. The success of IV F' depends on three major factors: embryo quality,

the number of embryos transferred and uterine receptivity. Some authors have
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claimed that higher pregnancy rates may be achieved by increasing the number
of embryos transferred, while others have found no such linear correlation and
recommend that the number of embryos transferred be reduced to two or three

to decrease the possibility of multiple implantation.

To investigate these assertions, Antinori (8) compared two groups of patients
who failed at least three previous IV F' attempts: Group A consists of 89 patients
and group B consists of 92 patients. Patients in group A received at least four
embryos while patients in group B received up to three embryos. The two groups
were similar in age, the duration of infertility, the number of previous IV F' at-
tempts and the indication for IV F'. Embryo quality was similar for both groups.
The resulting number of clinical pregnancies reached 46 in group A and 26 in

group B.

We will illustrate on how to analyze this using the logistic model defined

above. We employ the model

logit(pi;) = Bo + Brembryo.

The variable embryo takes the value 1 if patient receive at least four embryos
and is 0 otherwise. The quantity [, is the log odds of pregnancy for patients who
received up to three embryos. Since patients who received up to three embryos
are described by the intercept, this group is known as the reference cell in this
model. The parameter 3; is the increment in log odds for patients who received
at least four embryos. Table displays the probabilities and odds predicted by

this model.

We can calculate the odds ratio for patients who received at least four embryos

versus patients who received at most three embryos by forming the corresponding

ePot+h1

T — e’ . Thus we can obtain odds

ratio of the odds of pregnancy namely,
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Embryo Dij Odds of pregnancy
Bo
== | 3 -
0 1
Z 4 1j_650+ﬂ1 650‘1’,81

Table 2.1. Model-Predicted Probabilities and Odds

as functions of the model in logistic regression.

To employ the maximum likelihood estimation procedure illustrated above,
we will need to construct the likelihood for the data in Table 2.1l From Table
2.1} we can immediately get the contributions to the log likelihood as follows:

Patients who received at most three embryos contribute to the log likelihood;

L1 (B0, Br) = 26 In(17=55) + 66 (7055 ),

while patients who received at least four embryos with contribute

L2(ﬁ07ﬁ1) =46 hl(m) + 43 ln(m).

The total log-likelihood is given by

L(Bo, B1) = L1(Bo, B1) + La(Bo, 1) (2.13)

2.3.1 Analysis using MathCad®

The following MathCad® code will maximize L(S3y, 1) and produce the max-

imum likelihood estimates (MLE) of /3y, and f;,.

ORIGIN:=1

L(Bo, B1) := L1(Bo, B1) + La(Bo, Br)
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By :=0.9 B =1

Maximize(L, (o, £1)

The first step ORIGIN:=1 confirms that any counting done must begin at 1.
By default, MathCad® begins counting at 0. The second step defines the function
to be maximized, which is the log likelihood L(fy, 31). The third step defines the
starting values of the parameters to be estimated. MathCad®© is not sensitive
to the choice of the starting values. However in chapter 4 we will illustrated
how in general the starting values can be estimated. The Maximize command
will produce the maximum likelihood estimates (M LE) of the defined function.
Mathcad®© uses a variety of optimization techniques. If the problem is linear,
the Linear method is applied. If Quadratic, the Quadratic method is used (if the
Solving and Optimization Extension Pack is installed). If the problem calls for
a nonlinear solver, Mathcad®© uses the Conjugate Gradient solver; if that fails
to converge, the Levenberg-Marquardt solver; if that too fails, the Quasi-Newton
solver. These methods use different algorithms to determine the curvature and

direction in which the search is to proceed.

Although Mathcad® automatically determines the kind of problem you are
solving and attempts appropriate solving algorithms until one of the methods
converges, you can right-click the function and choose a specific method from the

menu if necessary.

The output from this analysis is as follows

N 0932
ATITe| L., = | =
0-F1 0,999

When optimizing a function of more than one parameter, Mathcad® will
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return a vector of results. The first element in this vector corresponds to the first
variable after the function name in the call to MAXIMIZE, and so on. Thus

G = —0.932 and G, = 0.999

We estimated the variance-covariance matrix from the observed Fisher infor-

mation (46). The observed Fisher information of the data set is given by:

2L oL
9600,
1(Bo, B1) = Zf; ﬁ;fl (2.14)

0B B3

The approximate variances and covariances are found, respectively, in the

matrix

1 aix a2
{=1(Bo, 1)} =~ (2.15)

Q21 Q22

where a1 = var(fy), a1z = as; = cov(By, £1), and age = var ().

The following MathCad®© code will yield the approximate variance-covariance

matrix.
2L _8°L
032 98008
1(Bo, 1) = Go 9609
02L 02L

0B ap?

{—1(—0.932,0.999)}

The output for the variance-covariance matrix is as follows:

055 qoseyy= | _ [0054 0054
CAGTRE IR =7 —0054 0099
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Thus the estimated standard errors for BAO and BAl are v/0.054 = 0.232 and

v/0.099 = 0.315 respectively.

2.3.2 Analysis using SAS®©

We will illustrate how the above example can be analyzed using Proc Lo-
gistic from SAS©. The LOGISTIC procedure was designed specifically to fit
logistic regression models. The response variable and the explanatory variables
are specified in the MODEL statement, and it fits the model via maximum likeli-
hood estimation illustrated above. PROC LOGISTIC produces the parameter
estimates, their standard errors, and statistics to assess model fit. The following

SAS© code creates the data set and invokes PROC LOGISTIC.

data embryo;
input embryo pregnancy count QQ;
00660126
10431146
run;
proc logistic descending;
freq count;
model pregnancy=embryo / scale=none aggregate;

run;

The variable pregnancy takes the value 1 if the subject is conceived and is 0
otherwise. By default, PROC LOGISTIC orders the response variable values

alphanumerically so that, for these data, it bases its model on the probability
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of the smallest value, Pr(pregnancy = 0), which is the probability of no con-
ception. The DESCENDING option in the PROC LOGISTIC statement
requests that the response value ordering be reversed. For these data, this means
that PROC LOGISTIC will model probability of conception. The SCALE
option produces goodness-of-fit statistics; the AGGREGATE option requests
that PROC LOGISTIC treat each unique combination of the explanatory vari-

able as a distinct group in computing the goodness of fit statistics.

finaly=zis of Maximum Likel ihood Estimates

Standard Hald
Parameter DF Eztimate Error Chi=-Sguare Pr > ChiSqg
Intercept 1 =0.9316 0.2315 16.1864 <.0001
embryo 1 0.9990 0.3140 10.1209 0.0015

Table 2.2. Analysis of Maximum Likelihood Estimates: Antinori data

Table lists the estimated model parameters, their standard errors, Wald
chi-square tests, and p — values. A Wald test is a statistic that takes the form
of the squared valve ratio for the estimate to its standard error; it follows an
approximately chi-square distribution when the sample size is sufficiently large
Phillips (79)). The variable embryo is significant compared to a significance level
of 0.05, with a Wald statistic of 16.1864. The model equation can be written as

follows:

logit(p;j) = —0.932 4+ 0.999embryo

Table [2.3]lists the parameter interpretations, and Table [2.4] displays the predicted

logits and odds of coronary disease.

The odds ratio is exp(f;) = exp(0.990) = 2.72. Patients who received more
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Parameter | Estimate

Standard Error

Interpretation

Bo —0.9316 0.2315 log odds of pregnancy for
patients who received at most 3 embryos
51 0.9990 0.3140 increment to log odds for

patients who received at least 4 embryos

Table 2.3. Interpretation of parameters: Antinori data

Embryo Logit Odds of pregnancy
<3 By = —0.9316 e’ =0.394
>4 Go + B1 = 0.067 efotb = 1.07

Table 2.4. Model-Predicted Logits and Odds of pregnancy: Antinori data

than three embryos, in the study have three times higher odds for pregnancy

than patients who received at most three embryos, in the study. Notice that

both Proc Logistic and MathCad®© give similar conclusions.

2.3.3 Model Fit

Here we need to assess how close the predicted odds are to the observed values.

Embryo

observed proportion

observed odds

<3

>4

26
92
16
89

26

2 = 0.3939394
1-55
46

S5 = 1.069767

89

Table 2.5. Observed proportions and odds

From table we can immediately calculate the observed odds ratio as follows:

1069767 _ 9 715564.

0.3939394

The observed odds (odds ratio) are very much similar to the predicted odds.

Thus our model fits the data well.
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2.4 Subject-specific models with one random ef-

fect

In longitudinal studies, repeated measurements of a response variable and
a set of covariates are made on subjects across occasions. Because the within-
subject measurements are likely to be positively correlated, the correlation must
be accounted for by analysis appropriate to the longitudinal data. The standard
logistic regression model described above, fails in its assumptions to accurately
characterize the dependence in the data. Basically, the standard logistic regres-
sion model assumes that the observations are independent, which they clearly are
not when they are clustered within individuals. One solution to this problem is
to generalize the model to the case of a combination of fixed (e.g., treatment) and
random effects. The random effects allow the correlation between the repeated

measurements to be incorporated into the estimates of parameters.

2.4.1 Model fitting

To set the notation, let ¢ denote the individuals and let 5 denote the treatment.
Let Y;; be the value of the dichotomous outcome variable, coded 0 or 1, associated
with treatment j nested within individual ¢. The logistic regression model is
written in terms of the log odds (i.e., the logit) of the probability of a response,
denoted p;;. Considering a random-intercept model, augmenting the standard

logistic regression model [2.1] with a single random effect yields:

R Y (2.16)

log
1- pi_y



2.4. SUBJECT-SPECIFIC MODELS WITH ONE RANDOM EFFECT 50

where x;; is the (p + 1) x 1 covariate vector (includes a 1 for the intercept), 3 is
the (p+ 1) x 1 vector of unknown regression parameters, and v; is the random

subject effect. These are assumed to be distributed in the population as N (0, o2).

Regression estimates are subject-specific, that is they describe the individual’s
response (conditional estimates, conditional on the random effect). Conditional
estimates represent the effect of a regressor on the outcome controlling for or
holding constant the value of the random subject effect. On the other hand, the
estimates from the standard logistic regression are "marginal” or ”population-
averaged” estimates. Marginal estimates represent the effect of a regressor aver-

aging over the population of subjects.

2.4.2 Estimation

To set the notation, we assume that there are + = 1,...m subjects as be-
fore, each with j = 1,2, ..., n; repeated observations. In the case of p predictor

variables, the data are given by

(X17Y1j)7 (X27Y2,j)7 (XTTL?Y"TLJ)?

where Y;; = (Yi1,Yi, ..., Yiy,) represents the value of the dichotomous response
variables, and z; = (21, ..., ;) is the value of the predictor variables for the "
subject. The single response Y; is the j response of the i'* subject. Further-
more, Y;; = 1 for success and Y;; = 0 for failure. We consider estimation of a

random-intercepts mixed model, that is

log —2— = x|.0 + v, (2.17)
p
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We would like to obtain comparable functions to equations and re-
spectively. A comparable function to equation [2.5]is the conditional probability

of a 1 response, conditional on the random effect v;, which is given by:
Pr(Yi; = 1v;) = ¥(z), (2.18)

where the standard logistic cumulative distribution is given by equation and
Zij = xgj 0+ v;. Whereas a comparable function to equation is the probability

of a 0 response which is simply

Pr(Y;,; =0Jv;) =1 — ¥(z;) (2.19)

The next step is to assume that the within-subject measurements are con-
ditionally independent given the random subject effect (i.e.,the random effects
account completely for the correlation of the data within subjects). This as-
sumption is critical and is known in Agresti (1)), as the conditional independence
assumption. Because the within-subject measurements are assumed to be condi-
tionally independent, following Hogg and Craig, the conditional likelihood of n;

measurements within the i** subject is given by:

ng

(Yilo) = [T (1 — i) (2:20)

j=1
The conditional likelihood and the likelihood in equation [2.8|are function-
ally of the same form. In the standard logistic regression case, for which equation
applies, we can multiply the probabilities from each subject together to yield
the likelihood of the joint pattern of all m outcomes from the subjects. Similarly,

in the random effect case, we can multiply the probabilities of each time-point
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together within a subject to yield the conditional likelihood of the joint pattern of
the n; outcomes across time for that subject. Here, it is a conditional likelihood
because these n; observations are independent (and therefore can be multiplied
together as in equation [2.20] only conditional on the random effect. To get to the
likelihood of the n; response patterns for all the m subjects, we need to have an
expression for the likelihood of Y; that does not depend on the random effects.
We can arrive at such an expression by integrating over the distribution of the
random effects. This yields the marginal probability for Y; in the population of

subjects as:

hYy) = / (Yilo)g(v)do (2.21)

v

Where g(v) represents the population distribution of the random effects v, namely

N(0,0?).

The idea behind this isn’t too hard to grasp. Essentially we want to consider
the conditional likelihood, which depends on the random effect, for all possi-

ble values of the random effect, and thereby obtain the aggregated or marginal

likelihood.

We can now form the marginal likelihood of the response patterns Y; from all
subjects, and thus the total sample, by multiplying each of the subject’s marginal

likelihoods together.

Namely,

L=]]nYs) (2.22)

or

log L = zm: log h(Y3). (2.23)

i=1
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It is easier to manipulate the log-likelihood in equation [2.23] If we choose the
values of the parameters that maximize the log-likelihood in equation those
same values will also maximize the likelihood in equation [2.22| For this, we let
the parameter vector 7 represent either the regressors 3 or the variance parameter

o, then taking derivatives

alOgL Zh Y). (2.24)
n

We first manipulate the marginal likelihood in equation [2.21] as follows:

hY;) = [ 0(Y;|v)g(v)dv
= [ (T (zig)] 9 [1 = W (23)] 7" ) g (w)dv
= [ lexp(log{T T3, [W (2" [1 = W(zi3)]' 4 P)]g(v)dv
= [ lexp(327L, [Yijlog ¥ (zy5) + (1 = Yij)log(1 — ¥(z))])g(v)dv.

And so, denoting ¢(Y;|v) by ¢;, we get

= T [ 0 (24)) + Tt (W (21)))) % g (v) v

Y, —¥(zi5) 8ZZJ
=/, ZJ | ST (0 (21y)) B g (v)dv,

yielding

81§§L /Z\Il (2 ;}j;j))(8‘I’(Zz‘j))%€ig(v)dv, (2.25)

where 0W(z;;) equals the probability density function (pdf), which for the logistic
distribution is W(z;;)[1 — ¥(z;;)]; and where
8Zij ,

55 =X (2.26)
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Oz _ v (2.27)

oo o

Actually this idea is also illustrated in Hedeker et.al (44)) except that Hedeker have

standardized the random effects. Similarly, we can obtain the second derivatives

Plogl & Ph(Y:) oh(Y)
DY {hl(Yi>—af72 - ey {2 } e
Equations and can now be used in the Newton-Raphson procedure out-
lined for the ordinary logistic regression model in the previous section to obtain
the maximum likelihood estimates (MLE). At convergence, the large-sample vari-
ance covariance matrix of the parameter estimates is then obtained as the inverse
of the information matrix. The square root values of the diagonal elements of this

matrix can be used to obtain Wald statistics or construct asymptotic confidence

intervals for the model parameters.

2.4.3 Integration over the Random Effect Distribution

In order to solve the above likelihood solutions, integration over the random
effects distribution must be performed. Various approximations for evaluating
the integral have been proposed in the literature including methods based
on the first or second order Taylor expansions (87). Numerical integration can
also be used to perform the integration over the random-effects distribution.
Specifically, if the assumed distribution is normal, Gauss Hermite quadrature
can approximate the integral to any practical degree of accuracy (93). The
integration is approximated by a summation on a specified number of quadrature

points @) for each dimension of the integration.
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Consider the Gaussian integration formula for the Hermite polynomial in
Stroud and Secrest (93). The Hermite polynomials are defined over [—oo, o]

and the weighting function of Hermite polynomials is

w(z) =e . (2.29)

Therefore, Gauss Hermite quadrature naturally gives the integration for:
/ flz)e ™ da. (2.30)

Thus, Gauss Hermite quadrature can be naturally be associated with normal

distribution as follows: Suppose we were to evaluate

_w—w?
/f(y)e Ver - dy, (2.31)

where f(y) is a function of y. Substituting

=24 (2.32)

in equation yields

o 9 x N
[ 1y = [ 1B+ e Vaods = Vao Y bf (Vg + )
—00 —00 qg=1

(2.33)
where following (93), {z,},_, are the roots of order N Hermite polynomial Py ()

and {¢,}0L, are:

N
by = /H T ey (2.34)
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Therefore, if y is normally distributed with mean p and variance o2, the expected

value of f(y), (E[f(y)]) is given by:

1 (y-w)? 1

(0.0 00 N
7r02_/ fly)e Ve dy = 7r02_/ F(V20z+p)e "V 20ds = % ;wq‘f(\/io'x—hu)’

V2 V2
(2.35)

where {z,} ., and {1,};_, are the same as above.

With the numerical Gaussian quadrature integration, the approximation to
the marginal likelihood gets better as the number of quadrature points increases.
However, as the dimension of the random effects increases, the number of quadra-
ture points increases exponentially; the total number of quadrature points re-
quired for all the random effects )", where r is the number of random effects.
The numerical quadrature becomes computationally burdensome when there are

more than 5 random effects (59).

2.4.4 Statistical software

Fortunately, we do not have to worry about how all these equations are solved;
statistical software programs solve them for us. The NLMIXED in SAS®© proce-
dure fits nonlinear mixed models, that is, models in which both fixed and random
effects are permitted to have a nonlinear relationship to the response variable.
These models can take various forms, but the most common ones involve a con-
ditional distribution for the response variable given the random effects. PROC
NLMIXED enables us to specify such a distribution by using either a keyword
for a standard form (normal, binomial, Poisson) or SAS® programming state-

ments to specify a general distribution.

PROC NLMIXED fits the specified nonlinear mixed model by maximizing
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an approximation to the likelihood integrated over the random effects. Different
approximations to the integral are available, and the two principal ones
are the one we used, Gaussian quadrature and a first order Taylor series approx-
imation. There are a variety of alternative optimization techniques; the default
is the Newton Raphson described in the previous sections. Standard errors are
obtained by the Delta method. For the theory and computational techniques of
PROC NLMIXED, the book written by Pinheiro and Bates (80) is strongly
recommended. Other software which are capable of handling the random effects
include MathCad®©, R©, S-Plus© and WinBugs©. In this section, attention is
focused, with the help of an example, on the use of the PROC NLMIXED
procedure in SAS© and on the use of the MathCad®© to perform random effects

model.

2.5 Illustration

To illustrate application of the mixed-effects logistic regression model, we will
present analysis from Ezzet and Whitehead (30]). We will like to point out that we
are using this example to illustrate how to analyze a complete crossover design.
This example is not an infertility trial. As it was mentioned in the previous
section, it is impossible to get a complete crossover design in infertility trials

(except if no woman conceives in the first period).

Specifically, we will examine a crossover trial comparing inhalation devices
for asthmatics. A crossover clinical trial has been conducted by 3M — Riker
to compare the suitability of two new inhalation devices (A = 1 and B = —1)
in patients who currently using a standard inhaler device delivering Salbutamol.

Group 1 used device A for one week followed by device B for another week.
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Group 2 used the devices in reverse order. No wash out period was felt necessary.
Patients reported whether there were particular features which they liked about
each device, and their responses were coded (1) for yes and (0) for no. The

experimental design is presented in Table [2.6]

Group | (0,0) | (0,1) [ (1,0) | (1,1) [ (0,%) | (1,%)
1 57 15 41 26 2 2
2 54 32 16 38 3 2

Table 2.6. Table of counts for the asthma inhaler study: Ezzet and Whitehead

We will analyse responses from patients who tried both devices and also we
will assume that there is no evidence of carry over effects. Here, we will like to
remind the reader that we emphasized in the previous sections that if there is

any evidence of carry over effects, we will not recommend the crossover designs.

2.5.1 Analysis using MathCad®

Firstly, we will need to construct the likelihood of the data. Let Y;;; denote the
response from the ith subject in the group k during the jth period, ¢ = 1,....,n;,

7 =1,2, k=1,2. Our approach utilizes a logistic fixed effect model in the form:

logit(pejyk) = Bo + %treatment(mk + %pem’odj + v, (2.36)

where v; ~ N(0,0?). The parameters (3; and (3, represent treatment and
period effects respectively. Denote the observed value Y (jx by yqjr. All the

inferences are to be based on the likelihood

2 ng
L= H H P(Y e = Yk Y a2k = Yazpk)- (2.37)

k=1 1
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The tables 2.7 and [2.§ display the group, the outcomes, and the contributed

likelihood for the neither period effects nor carryover effects scenario and the

period effects scenario respectively.

Group Outcome Likelihood contribution
1 Y1=0,¥> =01 Lioo = fv 1+ewp{ﬂi+%1+v} 1+erp{ﬁi—%+v}g(v>dv
U Yi=0Ys= 1| Lo = [, b ) g 0)a
D Y= 1Y =0 L= [, ol g0
Y= Ya =1 = [ R I e
2 I Ya=0Ye =0 Lo =, ;o o Trema B IO
2 [ Yi=0Ya= 1| Lo = f, el ()
2 Y=L Ya =0 L =, gt e g
2 [ Yi=1Ya=1 | L = [, A e )

Table 2.7. Contributed likelihood from each outcome for the treatment only

scenario
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Group Outcome Likelihood contribution
_ _ — T T
1 Y, =0,Yy,=0] Lig = fv 1rezp{fo+ 2+ 2 o} 1+exp{ﬂof%fﬂ72+v}g(v)dv
_bB1_ B2
1 Yl = O,YQ =1 LIOI = fU 1 E$p{ﬁo 2151 225+U} g(U)dU

L+exp{fo+ 3 +52 +v} 1+exp{fo— 3 — 2 +v}

Leap{fot+ G +2 +v} 1
1 Y i =1,Y2=0| Li10 = 22 v)dv
1 ;Yo =0 | Lo fv T+eap{Bot 2+ 22 1v) 1+ea:p{60—%1—%2+v}g< )

51452 o) 1eap(o—2— %2 to
1| Y= 1Y, =1 | Ly, = [ remtht gt g rod enlo 3= 5200 o(0))dw

1+ezp{ﬂ0+%+ﬂ72+v} 1+6$p{ﬁ0—’,371—’872+v}

2 Y1 = O,YQ =0 L200 = fv L L (U)dU

T+eap{Bot+ 3+ 2 +v} Treap{fo— 3 —Z+u} )

L+eap{fo+ 3 +2 +v} 1
2 Y, =0,Yy=1| Lyp = 2 d
1 y X2 210 fv Ieap{Bot B+ P2 o) 1+exp{50_%1_%2+v}g(v) v

_ _ _ 1 exp{fo— 2~ 2 v}
2 Y =1Y,=0] Loy = ot BB ) 1+emp{50_2%_2%2+v}g(v)dv

B1 B2 B1_ B2
1+exp{Bo+5+=F+v} 1+exp{fo— 5 —F+v
2 | Y, =1,Y,=1|Ly =/ ot 5 + vl Lbeaptlo— 5 = 5 40} ) gy
Y 1texp{fo+5 +F +v} Iteap{fo—5 —F+v}

Table 2.8. Contributed likelihood from each outcome for period effects scenario

For each scenario the total likelihood L for this model, is given by

2 1 1
TTTITI Zers™ (2.38)

k=1 r=0 s=0

where my,s denotes the number of outcomes of the form (r,s) among group k.
Thus evaluation of L requires the computation of eight distinct integrals of the
form [2.19] These integrals are estimated using Gaussian quadrature method.
We estimated the standard errors of the parameters from the observed Fisher
information matrix. The results are tabulated in Table 2151 The MathCad®
code for this analysis is reserved for the next chapter. In this chapter, we will

present the code for the practical analysis using PROC NLMIXED from SAS©.
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2.5.2 Analysis using SAS®©

The following SAS© code creates a data set COMPLETE. The variable
OUTCOME is the response variable, and PERIOD and TREATMENT are
the explanatory variables. The variables OUTCOME takes the value 1 for yes
and 0 for no, PERIOD takes the value 1 for first period and —1 for second pe-
riod, and TREATMENT takes the value 1 when treatment is A and —1 when
treatment is B. Since PROC NLMIXED assumes that every time a new value
of the PATIENT variable is encountered a new PATIENT is being analyzed,
we need to sort our data by PATIENT. The PROC SORT arranges the data

by PATIENT.

data complete;

input group patient period treatment outcome;
datalines;

11110

12110

13110

ooooo

2279-111

5

run;

proc sort data=complete;
by patient;

run;
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The PROC NLMIXED statements to fit the logistic-normal model to these

data sets, assuming period effects (no carryover effects) are as follows:

proc nlmixed data=complete;
parms beta0=-0.472 betal=0.2141 beta2=0.3 logsigma=0.1;
sigma=exp(logsigma);
sigma2=sigma**2;
preg=betal + betal*treat/2 4+ beta2*period/2 + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome binomial(1,ppreg);
random u normal(0,sigma2) subject=patient;
predict preg out=preg;

run;

Where (g, 31 and (5 represents constant, treatment effect and period effect
respectively. The PROC NLMIXED statement invokes the procedure, and the
PARMS statement defines the parameters and their starting values. In Chapter
4, we illustrate how the initial parameters are chosen. The next statements
construct the variable ppreg to correspond to the probability of success, and
the MODEL statement defines the conditional distribution of the outcomes to
be binomial. The RANDOM statement defines U to be the random effect
with subjects defined by the PATIENT variable. The PREDICT statement
constructs predictions for each observations in the input data set. Thus, we can
predict the logits, odds and probabilities for each observation. The predicted

logits for this example are listed in Appendix A.
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The output from this analysis is as follows,

The HLHIXED Procedure

Specifications

Data Set WORK . THO

Dependent VYariable outcome

Distribution for Dependent VYariable Binomial

Random Effects u

Distribution for Random Effects Hormal

Subject Variable patient

Optimization Technigue Dual Quasi-Newton

Integration Method Adaptive Gaussian
Quadrature

Table 2.9. Specification for non-linear mixed model: Ezzet and Whitehead data

The ”Specifications” Table lists some basic information about the non-
linear mixed model that have been specified. Included are the input data set,
dependant and patient variables, random effects, relevant distributions, and type

of optimization.

Dimensions

Observations Used L1t
Observations Hot Used 0
Total Observations 558
Subjects 279
Max Obz Per Subject 2
Parameters 4
Quadrature Points L

Table 2.10. Number of observations, subjects, and parameters: Ezzet and
Whitehead data

The ”Dimensions” Table lists various counts related to the model, in-
cluding the number of observations, subjects, and parameters. These quantities
are useful for checking that data set and model are specified correctly. Also listed
is the number of quadrature points that PROC NLMIXED has selected based

on the evaluation of the log likelihood at the starting values of the parameters.
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betal betal

=0.472 0.852

64
Parameters
beta#? log= igma MeglLool i ke
0.21 0.3 362 .059054

Table 2.11. Parameters to be estimated: Ezzet and Whitehead data

The ”Parameters” output in Table lists the parameters to be estimated,

their starting values, and the negative log likelihood evaluated at the these start-

ing values.
lteration History
lter Calls MeglLogl i ke Diff MaxGrad Slope
1 2 362.031538 0.027516 0.646022 -7 .6597
2 LY 362 .028531 0.003007 0.438854 -0.92625
3 ¥ 362 .027679 0.000852 0.457175 =0.13841
4 g 362 .026268 0.001411 0.299867 -0.,0068
LY 10 362.024814 0.001454 0.071881 -0.12073
6 12 362 .024644 0.00017 0.000511 =0.00034
7 14 362 .024644 1.044E-8 4.794E-B -2.08E-8

NOTE: GCOWY

Table 2.12. History of the
and Whitehead data

convergence criterion satisfied.

minimization of the negative log likelihood: Ezzet

The ”Iterations” output in Table records the history of the minimization

of the negative log likelihood. For each iteration of the quasi Newton optimiza-

tion, values are listed for the number of function calls, the value of the negative

log likelihood, the difference from the previous iteration, the absolute value of the

largest gradient, and the slope of the search direction. The note at the bottom

of the table indicates that the algorithm has converged successfully according

to the GCONYV convergence criterion, a standard criterion computed using a

quadratic form in the gradient and inverse Hessian.

The "Fit Statistics” output in Table lists the final maximized value of

the log likelihood as well as the information criteria of the Akaike and Schwarz.
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Fit Statistics

=2 Log Likel ihood f24.0
AIC [=maller i= better) ¥32.0
AICC (smaller is better) ¥3z.1
BIC [(=maller i= better) 746.6

Table 2.13. Fit statistics: Ezzet and Whitehead data

Table 2.14. Maximum likelihood estimates: Ezzet and Whitehead data

The HLHI¥ED Procedure

Paraneter Eztimates

Standard
arancter Estinate Ertor DF t Waluz Fr » [t] Alpha Lower Upper Gradient
tal -0, 4787 0.1386 278 =3.45% . 0006 0.05 =0,7515 =0.2053 -4.79E-h
tal 0.8593 0.2146 278 4.00 C.0001 0.05% 0.4368 1.2817 =1.35E=6

taz 0. 2106 0.2043 276 1.03 0, 3048 0.0%  =0.1927 0.6133 7.735E-T
logz igna 0.3473 0.1803 278 1.92 0.0559 0.05 =0,00876 0.7034  2.04E-G

The ”Parameter estimates” output in Table lists the maximum likeli-
hood estimates and their approximate standard errors computed using the final
Hessian matrix. Approximate t — values and Wald-type confidence limits are
also provided, with degrees of freedom equal to the number of subjects minus the

number of random effects.

The above analysis is for scenario involving treatment, period effects, and the
random effects. Similarly, we can get analysis for null model and also for the
scenario involving treatment and random effects. Table shows the estimates

(standard errors) for all the above mentioned scenarios.
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Model Method Bo 51 B2 B3 log(o) —2logL
Null Ezzet -0.444 - - 0.228
(0.128) (0.245)
MathCad®© | -0.445 - 0.226
(0.129) (0.196)
SAS© -0.444 - 0.221
(0.128) (0.194)
Treatment | Ezzet -0.476 0.856 - 0.345
(0.138) | (0.215) (0.262)
MathCad®© | -0.478 0.856 - 0.348 | 725.049
(0.139) | (0.214) (0.184)
SAS© -0.476 0.855 - 0.341
(0.138) | (0.214) (0.182)
Treatment | Ezzet -0.479 0.861 0.211 0.351
and (0.139) | (0.215) | (0.206) (0.263)
period MathCad®© -0.480 0.861 0.211 0.354 724
(0.139) | (0.215) | (0.205) (0.183)
SAS© -0.479 0.859 0.211 0.347 724
(0.139) | (0.215) | (0.205) (0.181)

Table 2.15. Conditional analysis of the asthma inhaler study.

66

Both the Mathcad® and the PROC NLMIXED method produce essentially

the same results. These two methods also agrees with the results obtained by

Ezzet (30) in estimating the parameters.



Chapter 3

Crossover Designs In Infertility

Trials

For some years, there has been a debate as to the place of the crossover
design in assisted reproduction technology (ART). In this chapter we aim to
investigate (using the models discussed in Chapter 2) whether crossover and
parallel design in infertility trials result in different estimates of treatment effects.
Also we will investigate what is it that the researchers are losing by conducting
one design instead of the other. Specifically, we would like to find if there should
be preference between parallel and crossover design when conducting infertility
trials. In a crossover design, subjects randomized to different groups receive
more than one treatment in a specified order (reviewed in (50)) and (84)). Thus
in a crossover design, repeated measurements are collected within the subject.
In infertility trials, couples undergo a course of treatments. In the crossover
design this course consist of repeated administration of a sequence in which the
treatment changes over time (64]). The outcome of interest is the binary outcome,

pregnancy, coded 1 and 0 for positive (pregnant) and negative (not pregnant)

67
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outcome respectively. This outcome will be clustered within subjects.

To understand this, we will consider the AB : BA crossover design in which
subjects either receive treatment A followed by treatment B or B followed by
A. If a subject is randomized to say group AB, the subject will first receive
treatment A, and depending on the outcome, the subject will either allowed to
receive treatment B or the subject drops out of the trial. If the subject fails to
conceive, the subject will go ahead to receive treatment B. But if the subject
conceives, the subject drops from the trial, resulting in missing outcome for the
second period. Subjects randomized to the BA group receive treatments in the
reverse order. Thus, in the AB : BA infertility crossover design we will have those
subjects with missing outcomes in the second period, unless if all the subjects fail
to conceive in the first period. That is unless if we have the standard AB : BA
crossover design like the one in Ezzet and Whitehead (30) discussed in Chapter
2.

For comparison purposes, we will first look at the unrealistic situation where
every woman receives both treatments regardless of the outcome in the first
period. That is, we will conduct the complete AB : BA crossover design. We
will like to emphasize that the complete AB : BA crossover design is never
performed in practice in infertility trials. We are merely doing it here, for the

sake of comparisons.

Clearly, if we are presented with the data of the complete AB : BA crossover
design, we can immediately predict what could have happened if either the in-
complete AB : BA crossover design or the parallel design was performed. If we
delete, from the complete AB : BA crossover design the second outcome for every
woman who conceived in the first period, then we obtain the realistic data for a

cross over design. This is because by doing so, we do not allow for women to get
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pregnant twice. Similarly, if we delete all the outcomes in the second period we

obtain the parallel design scenario.

We will compare these three data set: the data set from the complete AB : BA
crossover design, the data set from the incomplete AB : BA crossover design and
the parallel design scenario. To this we use the maximum likelihood method
discussed in Chapter 2. Specifically, we construct the likelihoods for each data
set and obtain the maximum likelihood estimates (M LE) and their corresponding

standard errors from each data set.

We compare the maximum likelihood estimates (and their corresponding stan-
dard errors) obtained using the complete AB : BA crossover data set with the
maximum likelihood estimates (and their corresponding standard errors) obtained
using the incomplete AB : BA crossover data set. Our aim here, being to ex-
plore what actually is it that the medical practitioners are losing (in analyzing
the results) by not allowing the women to get pregnant twice. Finally, we will
compare the maximum likelihood estimates (and their corresponding standard
errors) obtained using the incomplete AB : BA crossover data set with the max-
imum likelihood estimates (and their corresponding standard errors) obtained
using the parallel data set. Here, we will like to explore what is it wrong with
the crossover design in infertility trials. Since, if this incomplete crossover design
is not employed, the only alternative design that is usually recommended is the

parallel design.

The model used for the complete and incomplete crossover data set, (because
of its nature to allow the correlation between the repeated outcomes to be incor-
porated into the estimates of parameters) is the mixed effects model described
in Chapter 2. While for the parallel design the appropriate model used is the

standard logistic regression model, also described in Chapter 2.
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To compare two different models, we must compare analogous quantities, as
is emphasized by Lee and Nelder (57). Both the maximum likelihood estimates
obtained from the complete AB : BA crossover data set and the maximum
likelihood estimates obtained from the incomplete AB : BA data set describe
the individual’s response (conditional estimates). Following Lee and Nelder (57)
these estimates and their corresponding standard errors can be compared. The
maximum likelihood estimates obtained from the parallel data set describe the
marginal response to changing covariates (marginal estimates). So we will not
be able to straightaway compare these estimates to the maximum likelihood es-

timates obtained from the crossover data set (complete or incomplete AB : BA).

The mixed effects model is the basic model and any mixed effects model leads
to a specific marginal model. It is this specific marginal model (marginalized
estimates) that allows us to compare analogous quantities. Specifically, we will
marginalize the maximum likelihood estimates obtained from the mixed effects

model so that they describe marginal response.

To perform all these, we suppose that we have m = 2n women undergoing the
complete AB : BA crossover design. The experimental design can be illustrated
as in Table below, where my,s denotes the number of outcomes of the form

(r,s) among group k. And where k = 1 denotes the group AB and k = 2 denotes

group BA.
A | B | Count | B | A | Count
0 0 mMi00 0 0 Moo
0 1 mio1 0 1 moo1
1 0 mi10 1 0 ma10
1 1 mi11 1 1 mao11

Table 3.1. Experimental design for the complete AB : BA infertility crossover
design

If we are presented with the above data (unrealistic data set) in Table 3.1}, we
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can immediately predict what would have happened if the incomplete crossover
design (realistic situation) was performed. Specifically, we can predict (in each
group), the number of women who did not conceive, the number of women who
conceived in the first period only and the total number of women who conceived
in the second period only. Thus the predicted experimental design for the incom-

plete AB : BA crossover design can be illustrated as in Table below

A|B Count B|A Count
010 M 100 010 M200

0 1 mio1 0 1 moo1

1 mitp + My | 1 Ma10 + M211

Table 3.2. Experimental design for the predicted incomplete AB : BA crossover
design

Similarly, If we are presented with either the complete AB : BA crossover
data set, Table or the incomplete AB : BA crossover data set, Table [3.2]
we can immediately predict what would have happened if the parallel design
was performed. Specifically, we can predict (in each group), the total number
of women who did not conceive, and the total number of women who conceived.
Thus the predicted experimental design for the parallel design can be illustrated

as in Table 3.3 below:

A|B Count B|A Count
0 Moo + Mio1 | 0 Mogo + Moot
1 myo +man | 1 Mo10 + Mo11

Table 3.3. Experimental design for the predicted parallel design

All what we are saying is that if one is presented with the complete (incom-
plete) AB : BA data set, then one can easily analyze the data as the parallel

design data set by simply neglecting the second outcomes for each subject.

We will now introduce the mentioned models for the complete and incomplete

AB : BA crossover design.
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3.1 Mixed effects model for crossover designs

We let 7, 7 and k denote the woman, period and group respectively. Let p(;)x
represent the probability that the ith woman, ¢ = {1,2,...2n} in the kth group,

k = {1,2}, conceives in period j,j = {1,2}. Further, we let

PGk
Yk = 111(—1 ) )= X/(ij)kﬂ + v, (3.1)
— DPGj)k

where Xj;)k is the (p+1) x 1 covariate vector (includes a 1 for the intercept) associ-
ated with pregnancy, (3 is the (p+1) x 1 vector of unknown regression parameters,
and v; is the random subject effect. These are assumed to be distributed in the

population as N(0,c?).

The conditional probability (conditional on the random effect) that a woman

conceives is
exp(¢Yijyr)

( (25)k |'U) 1+eXp(¢(z])k)

(3.2)

The conditional probability (conditional on the random effect) that a woman fails

to conceive is
1

1T+ exp(Pijin)

P(Yiijie = 0vi) (3.3)

As usual, the observations within a woman are assumed independent given the
random effect. As a result, suppose each woman is allowed to go under both treat-
ments, regardless of the outcome in the first outcome, the conditional likelihoods

for one woman, under this scenario (the complete crossover) is

lexp ()| Ta0* . lexp(Yijyr )| T2k

Lo (Y = ‘
Y anlo) = W) 1+ exp @)

(3.4)

Now, suppose we consider a realistic situation, specifically, we consider a situation
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where by if a woman get pregnant in the first period, that woman drops out from
the trial. In this scenario (the incomplete crossover), the conditional likelihoods

for one woman is

[exp(th(ijye)] 0 { [exp(hqijye )] 02k }1_Y(“)k
(Y = : .
I( (Z)k’v) 1 +eXp(w(ij)k> * 1+ exp(¢(ij)k) (3 5)
Thus
he(Yn) = [ te(Yaulolg(w)do, (3.6)
and
hi(Yiyk) = / (r(Y gyi|v)g(v)dv, (3.7)

are the marginal probabilities for complete and incomplete AB : BA crossover
respectively, where g(v) represents the distribution of the random effects, namely

N(0,02).

The marginal likelihoods for 2N — women for complete and incomplete cross

over trials are respectively,

2n
Lo = H he (Y ) (3.8)
=1
and
2n
Ly =[] h(Yaw). (3.9)
i=1

The vector x consists of the covariates associated with pregnancy. For the

purpose of illustration, we will begin with the model involving only one covariate
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(treatment). For this we let

P(ij)k

Yiajr = In(
" L= PG

) = Bo + Bitreatment ;jy, + exp(v;), (3.10)

where [y is the intercept term, (; is the treatment term and treatment={A =
1,B = —1}. While v; is subject random effect and is assumed to be normally
distributed with mean zero and variance o?. We exponentiated the random effect
so that the likelihood looks more quadratic. Actually this model is taken from
Ezzet and Whitehead (30)). We will use the model to obtain the likelihoods

for both the complete AB : BA crossover and the incomplete AB : BA crossover.

3.1.1 Likelihood of the complete AB : BA crossover design

In the complete AB : BA crossover design, the components of the log likeli-
hood can be viewed as the contribution by the following illustrated eight cases:
Consider women randomized to the group AB. Those women will receive treat-
ment A in the first period and treatment B in the second period. Those subjects
who failed to conceive neither in the first period nor in the second period will

contribute to the log-likelihood the following:

e (e 1
100 1+ exp(By + B1 +v) 1 +exp(fBy — (1 +v)

(%

}g(v)dv. (3.11)

For those who failed to conceive under treatment A but conceived due to treat-

ment B, will contribute

1 exp(Bo — B +v)
o ln/ { 14+ exp(Bo+ B1 +v) 1+ exp(fy — B1 +v) } glv)dv, (3.12)

v
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while those who conceived due to treatment A but did not conceive under treat-

ment B, will contribute

exp(fo + B1 + ) 1
mlloln/{1+exp(ﬂo+ﬁl+v)1+exp(ﬂ0—ﬁ1+v)}g(v)dv' (3.13)

v

Finally, the contribution by those subjects who conceived twice is

exp(fo + (1 + v) exp(By — 1 +v)
i ln/ { 1+exp(Bo + B +v) 1+ exp(fo — 1 + v) } g(v)dv. (3:.14)

(%

Similarly, if we consider those women who were randomized to the group BA,
these women will receive treatment B in the first period and treatment A in the
second period. The contribution to the log-likelihood by those women who failed

to conceive neither under treatment B nor under treatment A will be:

1 1
m2001n/{1+exp(ﬁo—ﬁl+U)1—|—exp(ﬁo~|—ﬁl+v)}g(v)dv' (3.15)

v

For those who failed to conceive in the first period but conceived in the second

period contribute to the likelihood:

1 exp(fo + B +v)
201 hl/ { 1+exp(fBy— 1+ v) 1 +exp(fBy+ 1 +v) } g(v)dv. (3.16)

v

while those who conceived in the first period but did not conceive in the second

period contribute:

mmm/{ exp(Bo = i +v) ! }g(v)dv, (3.17)

1+exp(Bo — 1 +v) 1+ exp(B + B1 + v)

v



3.1. MIXED EFFECTS MODEL FOR CROSSOVER DESIGNS 76

The contribution by those who conceived twice is:

exp(fo — B +v)  exp(Bo + fi +v)
Ma11 hl/ { 1+exp(By— B +v) 1 +exp(By + B +v) } g(v)dv. (3.18)

v

As a result, the log-likelihood for the complete AB : BA crossover design can be

written as:

2 1 1 , s
Be =333 meln [ SR Sy (319

1+ exp(¥gsr) 1+ exp(tar)

where my,s is as defined in Table [3.1]

3.1.2 Likelihood of the infertility AB : BA crossover de-

sign

The log-likelihood for the infertility crossover design, can be viewed as the
addition of the following six cases: Consider the women who were randomized to
the AB group. First is the contribution by those subjects who failed to conceive

neither under treatment A nor under treatment B. those subjects contribute

1 1
oo ln/ { 1+ exp(fo + b1 +v) 1+ exp(fo — 1 +v) } g(v)dv. (3.20)

v

For the subjects who fail to conceive in the first period but conceived in the

second period will contribute

1 exp(Bo — 51 +v)
mio1 1n/{1+exp(ﬂo+ﬁl+v) 1+ exp(Bo — fr +U>}9(U)dv. (3.21)

(%
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Those who conceived in the first period, will not go under the second treatment,

hence they will only contribute

exp(Bo + 1 +v) exp(Bo + 1 +v)
1o ln/ 1+ exp(B + B1 + v)g(v>dv mm 1n/ 1+ exp(Bo + 51 + v)g(v)dv'

v v

(3.22)

Similarly, consider those women who were randomized to the BA group. The
subjects who failed to conceive neither under treatment B nor under treatment

A contribute:

1 1
m2001n/{1+exp(ﬁo—ﬁl+U)1+exp(50+ﬂ1+v)}g(v)dv' (3.23)

v

For the women who failed to conceive in the first period but conceived in the

second will contribute to the log-likelihood the following:

1 exp(Bo + 1 + v)
201 ln/ { 1+exp(Bo — B1 +v) 1+ exp(Bo + 1 + v) } g(v)dv, (3.24)

(%

while those who conceived in the first period contribute to the log-likelihood the

following;:

exp(fy — 1 +v)
1 +exp(Bo — B +v)

Ma10 ln/ exp(fo = fh +v) g(v)dv.

T+ exp(Bp — By + o) F e /

v v

(3.25)

Consequently, the log-likelihood for the incomplete AB : BA crossover design

can be expressed as:

\Plziiimk ln/ exp (Vi) { exp(Y(ijyk)° }1_rg<v)dv (3.26)
s 1+ exp($gr) L1+ exp(dj) |

where my,. is as defined in Table [3.1}
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We can now maximize the respective log-likelihoods (3.19) and (3.26) (by
either Mathcad® or SAS®) to obtain the corresponding maximum likelihood
estimates. We can investigate the respective variance-covariance matrix to get

the corresponding standard errors.

3.2 Comparisons of the likelihoods

If we are moving from the complete AB : BA crossover design to the incom-
plete AB : BA crossover design information is lost on women who conceived in
the first period. If we are in the complete AB : BA crossover design, we have
the information of what happened to these women in the second period. But
when we are in the incomplete AB : BA crossover design we do not know what
is happening in the second period with regard to those women who conceived in
the first period. We will like to investigate the consequences of these loss of in-
formation by looking at the observed Fisher information and thereafter estimate
the variance covariance matrix. The log-likelihoods and can easily

be expressed as the sum of the following equations:

Vo =K+ @B13) + 3.14) + B17) + B.18) (3.27)

and

v =K+ (322 + (B25) (3.28)

respectively. Where,

K = @3.11) + B.12) + (3.19) + (3.16) = (3.20) + (3-21) + (3.23) + (3.24)
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3.2.1 Variance-Covariance matrix of the complete crossover

The variance -covariance matrix is estimated by the inverse of the Fisher
information (46). The Fisher information of the complete AB : BA crossover

design is given by

02V 02V 2V
83 0Bo0B1  9fodv
- _ 92 foah 2%y
Ic(Bo, B, v) Shos  oBY  omes (3.29)

92V 92V ok Jol
0ByOv Ovd B2 ov?

The approximate variances and covariances are found, respectively, in the

matrix

151(60)617U> ~ a91 Q99 (A93 (330)

a3; Aazz2 ass

where a;; = UGT(ﬁo)aau = Q21 = COU(50751)7G13 = asz = COU(@)’U),G% =

var($y) and asz = var(o)

3.2.2 Variance-Covariance matrix of the incomplete crossover

The Fisher information of the complete AB : BA crossover design is given by

9%, 9%, 9%V,
o83 0BodB1  OBodv
- _ 9% 92w 92w
I1(Bo, v, v) el s (3.31)

0%y 9% foah 4
0BpOv OvdBa ov?
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The approximate variances and covariances are found, respectively, in the

matrix

bll b12 613
Il_l(ﬁmﬁlav) ~ bgl b22 b23 (332)

b31 b32 b33

where b;; = Ua?"(ﬁo);bm = by = COU(BO;ﬂl)abIS = by = COU(BO;O-)abQQ =

var(fy) and bsz = var(o)

3.3 Crossover design and Parallel design

The parallel design data set is analyzed using the standard logistic model de-
scribed in the previous chapter. An obvious advantage of using the mixed effects
model is that it allows conditional inferences in addition to marginal inferences
(82)). With the mixed effect model we can obtain not only the conditional
mean F(Y;,) but also the marginal mean E(Y;;), while with standard logistic
model we can obtain only the marginal mean E(Y;;). Given a conditional model,
one can recover information about marginal distributions. That is, conditional
model implies a marginal model, but a marginal model does not itself imply a

conditional model.

We will illustrate how given a conditional model, one can recover marginal

inferences.
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3.3.1 Marginalized Random-Effect Model

Let 3¢ be the conditional estimates obtained under the random effect model
described above. We can predict the marginal probability from either equation

(3.6) or equation (3.7 by simply using the fact that

B exp(0°x;; + v)
P = / 1 4 exp(B°x;; + U)g(v)dv. (3.33)

(v

From the p;;, we can compute marginal logistic regression estimates from the

mixed effects model, giving an intercept

logit(p; logit(p;
/66\4 — Ogl (p 1);_ OgZ (p 2)’ (334)

and the treatment effect

B = logit(pin) — logit(ps2). (3.35)

The standard errors are easily obtained from the fact that there exist a constant
c, such that the estimates from the fixed effects model is equal to the estimates
from the random effects model multiplied by a constant ¢ (more details can be
seen in Agresti (I)). These marginalized estimates and their corresponding stan-
dard errors are compared with the maximum likelihood estimates obtained from
the parallel data set. We expect conditional estimates (and their corresponding

standard errors) to be higher than the marginal estimates (I)).
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3.4 Illustration

As an illustration we will look at the 3M — Riker example mentioned in
the Chapter 2. We will like to state that we use this example for the sake
of illustration only. It is because we are considering the unrealistic case; the
complete cross over design in infertility, and so there is noway we can get an
infertility data where women are allowed to get pregnant twice. The trial is not
an infertility trial. We will first analyze the trial as the complete AB : BA
crossover design. We then delete the second outcome for every subject whose
outcome is a 1 in the first period, thus creating an incomplete AB : BA scenario,

which looks more similar like the infertility trial.

3.4.1 Analysis using Mathcad®©

We will illustrate how the log-likelihoods (3.19) and ([3.28) are maximized

using Mathcad®©. Using the quadrature adaptive method, the log-likelihoods

(3.19) and (3.28)) can be estimated by

2 1 1
: {won}” {wer)”
c(Bo, b1, 0) EEZ{TRMSIDW Zw w1+ (3.36)

s

and

i) = 30505 et 3 Ld [ Letend h
05 P1, 0 Migrs DT : 1—|—w() 1+ Wiy

k=1r

I
o
»

Il
o
Q

|

—

(3.37)

respectively, where

Wk = exp(fo + %treatment(l)k + \/§xq exp(o))
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and
Wy = exp(fo + Ltreatment oy, + V21, exp(0)).

The {x,})_, are the roots of order N Hermite polynomial Py (x) and {¢,})_; are
as defined in equation 2.34. Furthermore treatment i), denotes the first treatment
in group k. Similarly treatment ), denotes the second treatment in group k. We

maximize T'¢(By, 31, 0) and I';(By, 31, 0) using Mathcad®.

The following MathCad® code will maximize both T'c:(8y, 51, ¢) and T'; (5o, £1, o)

and produce the maximum likelihood estimates (MLE) of Gy, £1, and o.

ORIGIN:=1

2 1 1 _1 N w " w °
LB, B1:0) 1= 351 D pmg Dogmo Mikrs M2 3 071 1y {lJr(ulz)i)}; {14:32)};

T s 1-r
2 1 1 _1 N w w
FI (ﬁO? ﬁh J) = Zk:1 Z’I‘:O ZSZO Miers In7™2 Zq:l Q'Dq {1"'(:))(11)}16 { g—:i)(z)}; }

Maximize(I'¢, By, O1, 0)

Maximize(I's, By, 1, 0)

The output of the above analysis is as follows:



3.4. ILLUSTRATION 84

~0.478 ¥ ~0.404
Maitmize| T v, fy, By, = | 0.856 Maimize| 7, B, By.o) = | 071
0.343 0.561

The standard errors are computed from the corresponding variance-covariance
matrix, as illustrated in the previous sections. Table below shows the M LE
and their standard errors for the complete and incomplete AB : BA crossover for

models involving treatment only and treatment with period effects.

Model Data set 5o 01 o In(o)
Treatment | Complete | -0.478 | 0.856 0.348
(0.139) | (0.214) (0.184)

Incomplete | -0.404 | 0.710 0.561
(0.166) | (0.272) (0.266)

Treatment | Complete | -0.480 | 0.861 0.211 0.354
and (0.139) | (0.215) | (0.205) | (0.183)
Period Incomplete | -0.197 | 0.874 | -0.800 | 1.130
(0.637) | (0.579) | (2.456) | (1.374)

Table 3.4. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design

We now create a parallel design trial by deleting all the second outcomes. The

log-likelihood for the parallel design takes the form

Lp(Bo, B1,0) = i 1 Mgy In W}’ (3.38)
P\M05 M1, - kr- PR 72 .
k=1 r=0 L+ W

where
W(l)k — exp(ﬁo —+ %treatment(l)k),

1
and Miy. = ZS:O Mirs-
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The following MathCad® code will maximize I'p(3y, 31) and produce the max-

imum likelihood estimates (MLE) of 3y, and f,

ORIGIN:=1

Wis b
I'p(Bo, 1) = Zia 271«:0 M. In {1+1(4/)(i>}k

Maximize(I'p, 5o, 1)

The output of the parallel design analysis is as follows:

oo o g ~0.2k0
aitrdze| BByl =
poFo.Fy —

3.4.2 Analysis using SAS®©

The following SAS® code creates a data set INCOMPLETE and COM-

PLETE respectively.

data incomplete;
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input seq patient period treat outcome;
datalines;
11110
12110

13110

2156-111

2157-111

2158-111

5

run;

proc sort data=incomplete;
by patient;

data complete;

input group patient period treatment outcome;
datalines;

11110

12110

13110

ooooo
-----

2277-111
2278-111

2279-111

86
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5

run;

proc sort data=complete;
by patient;

run;

The PROC NLMIXED statements to fit the logistic-normal model to these

data sets are as follows:

proc nlmixed data=incomplete;
parms beta0=-0.472 betal=0.2141 logsigma=0.1;
sigma=exp(logsigma);
sigma2=sigma**2;
preg=beta0 + betal*treat/2 + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome binomial(1,ppreg);
random u normal(0,sigma2) subject=patient;
run;
proc nlmixed data=complete;
parms beta0=-0.472 betal=0.852 logsigma=0.3;
sigma=exp(logsigma);
sigma2=sigma**2;
preg=betal + betal*treat/2 + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome binomial(1,ppreg);

random u normal(0,sigma2) subject=patient;
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run;

88

The ”Parameter estimates” output below (for incomplete and complete cross

over) lists the maximum likelihood estimates and their approximate standard

errors computed using the final Hessian matrix. Approximate ¢ — values and

Wald-type confidence limits are also provided, with degrees of freedom equal to

the number of subjects minus the number of random effects.

Parameter Estimate

betal =0.476D
betal 0.8549
loos igna 0.3413

Standard
Error

0.1380
0.2141
0.1816

The HLHIXED Procedure

Paraneter Estinates

DF t Yalue Pr » jt! Alpha Lower

278 =-3.45 0.0006 0.05  -0.7476
278 2.99 <000 0.05 0.4335
278 1.88 0.0613 0.05 -0.01627

Upper

=0.2044
1.2763
0.6388

Gradient

-6.TGE-T
-2.21E-6
9.561E-T

Table 3.5. conditional estimates and their standard errors for the complete
crossover design:model with treatment only

Parameter Estimate

betal =0.4074
betal 0.7007
log=igma 05267

Standard
Error

0.1626
0.2684
0.2533

The HLHIXED Procedure

Parameter Estimates

DF t Yalue Pr » |t} #Alpha Lower

278 =2.50 0.0128 0.05% =0.7275
278 2.61 0.0095 0.05 0.1724
278 2.08 0.0385 0.05  0.02802

Upper

=0.08724
1.2231
1.0253

Gradient

-4.36E-6
=0. 00005
=0. 00003

Table 3.6. conditional estimates and their standard errors for the incomplete
crossover design:model with treatment only

The PROC NLMIXED statements to fit the logistic-normal model (with

period effects) to these data sets are as follows:
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proc nlmixed data—one;
parms beta0=-0.472 betal=0.2141 beta2=0.3 logsigma=0.1;
sigma=exp(logsigma);
sigma2=sigma**2;
preg=beta0 + betal*treat/2 4+ beta2*period/2 + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome binomial(1,ppreg);
random u normal(0,sigma2) subject=patient;
run;
proc nlmixed data=two;
parms beta0=-0.472 betal=0.852 beta2=0.21 logsigma=0.3;
sigma=exp(logsigma);
sigma2=sigma**2;
preg=betal0 + betal*treat/2 + beta2*period/2 + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome binomial(1,ppreg);
random u normal(0,sigma2) subject=patient;

run;

Table [3.7] and Table 3.8 show the output for the incomplete and complete

data analysis respectively:
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The HLHIXED Procedure

Parameter Estimates

Standard
araneter E=ztimate Error DF t Yalue Pr » It! Alpha Lower Upper Gradient
etad =0.4787 0.1386 278 -3.45 0. 0006 005 -0.7515  -0.205%9 -4.79E-E
etal 0.8593 0.2146 278 4.00 {.0001 0.05 0.4368 1.281F =-1.35E-6
beta? 0.2106 0.2043 278 1.03 0.3043 0.05  -0.1927 0.6133 7.795E-F

(logsigna 0.3473 0.1803 278 1.92 0.0559 0.05 -0.00876 0.7034  2.04E-G

Table 3.7. conditional estimates and their standard errors for the complete
crossover design:model with treatment and period effects

Parameter bstimates

Standard
Parameter Estinate Error DF t Value Pr » It! filpha Lower Upper Gradient
betal -0.4309 0.2449 278 -1.76 0.0796 0.06 =0.9131 0.05113 -0, 00001
betal 0.6831 0.2998 278 2.28 0.0234 0.05 0.092938 1.2733 0.000045
beta? 0.08856 0.7054 27H 0.13 0.3002 0.05 =1.3000 1.4771 =8.7E-6

logs igma 0.4440 0.7543 278 0.59 0.5566 0.05 -1.0409 1.9283 -0.00001

Table 3.8. conditional estimates and their standard errors for the incomplete
crossover design:model with treatment and period effects

The SAS® output is similar to our Mathcad® results. For the complete cross
over design, our results are similar to the results in Ezzet and Whitehead (30)). In
the no period effects scenario, the maximum likelihood estimates obtained from
the complete and incomplete data set are not much dissimilar. But in all the
three parameters (0y, 51,0) the standard errors obtained from the incomplete
data set are higher than the standard errors obtained from the complete data
set. This clearly signifies loss of information. In the scenario involving period
effects, the maximum likelihood estimates obtained from the incomplete data set
shows evidence of bias. Also the standard errors are very much higher than the
corresponding standard errors obtained under the complete data set. By moving
from the no period effects scenario to the period effects scenario, we experience
an increase in standard errors in the incomplete data set. This increase is so

high that it makes it difficult to estimate the parameters. Unlike in the complete
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data set case, there is no increase in the standard errors leading to the estimates
obtained under no period effects scenario to be not dissimilar to the estimates

obtained under the period effects scenario.

3.4.3 Marginalized estimates

We will use tables 3.5 [3.6] [3.7] and [3.8] to obtain the marginalized estimates
that are comparable to the estimates from the parallel design. For the model
involving treatment only, using equations (3.34) and (3.35)), the marginalized

intercept and treatment effect are estimated respectively as follows:

ln T+ ln

o = = (339
and
Al A2
M
=1 —1 3.40
=y T (3.40)
where
. exp beta0+bem1+\f:r exp(logsigma))
Al =m 2 Zq 1 wq {1+exp(beta0+ betal +\fjcq exp(logszgma))}
and

exp( beta()—bﬁ—a1 ++/2x4 exp(logsigma))
=17 Zq 1 g {

1+exp(beta0— betal +v/2x4 exp(logsigma))

The parameters beta0, betal and logsigma are the maximum likelihood estimates
from either Table or Table . Furthermore, {z,}}, are the roots of order

N Hermite polynomial Py(z) and {t,})_, are as defined in equation 2.34.
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Similarly, for the model involving treatment and period effects, the marginal-

ized intercept and treatment effect are estimated respectively as follows:

ln T1 —I—ln T2

Borp = ——5—— (3.41)

and

T1 T2
M
=1 —1 3.42
BITP nl—Tl n].—T2 ( )
where
o exp(beta0+ bEta1+H2+fxq exp(logsigma))
Tl=mn 2 Zq 1 ¢q {1+exp(beta0+ beml—&-m +v2z, exp(logszgma))}
and

T2 — 1 2 Z Z/) exp(beta0— beml—l—ﬁ?—&—fa:q exp(logsigma))
q=1 79 | 14exp(betaO— bem1+52 V2x4 exp(logsigma)) |

The parameters betaO, betal, beta2 and logsigma are the maximum likelihood
estimates from either Table[3.7]or Table[3.8] Table 3.9 below shows the marginal-
ized estimates and their standard errors for the complete and incomplete AB : BA
crossover together with the maximum likelihood estimates obtained from the par-

allel data set for the two considered scenarios.

Based on our calculations, the statistical estimates of treatment effects ob-
tained from a crossover design are not very much dissimilar from those obtained
under parallel design. In both scenarios, the maximum likelihood estimates ob-
tained from the parallel data set have the highest standard errors, followed by
marginalized estimates from the incomplete data set. The marginalized estimates

obtained from the complete data set has the lowest standard errors.

To further understand what is really happening we resort to simulation. Since

we are satisfied that Mathcad® gives similar results to SAS® and simulation is
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Model data set By s
Treatment | Complete | -0.348 | 0.625
(0.101) | (0.156)
Incomplete | -0.265 | 0.466
(0.109) | (0.179)
Parallel -0.269 | 0.393
(0.121) | (0.243)
Treatment | Complete | -0.273 | 0.626

and (0.079) | (0.156)
Period Incomplete | -0.269 | 0.476
(0.869) | (0.209)
Parallel -0.269 | 0.393
(0.121) | (0.243)

Table 3.9. Marginalized estimates and the M LFE from the parallel design

very much handy in Mathcad® than in SAS®, we will employ Mathcad® to

perform simulation.

3.5 Simulations

We simulated a two-period cross over design with the help of a Mathcad®.
The woman is randomized into either group AB or group BA. If a woman
is randomized into group AB, she will first receive treatment A followed by
treatment B. The women in the group BA receive the two treatments in the
reverse order. Every woman progresses through the treatment regimen. At the
first period women are randomly allocated to pregnant or not pregnant, based on
their scenario-specific probability of pregnancy. Women then proceed to obtain
a second treatment regardless of the outcome in the first period, again based on
their scenario-specific probability of pregnancy they will be allocated to pregnant
or not pregnant. For each couple the number of pregnancies were recorded. We
calculated the likelihood function associated with the progress of women through

this process. We then construct the realistic infertility trial by removing the
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second outcomes for those women who conceived in the first period. Similarly
we constructed the likelihood associated with the infertility trial. Finally, we
construct a parallel design by removing the second outcome for each woman and

we constructed the likelihood associated with the parallel design.

We considered two cases. One case with period effect and the other without
the period effect. In each case, we simulated 2000 samples of size 300. For
each sample ¢ we record the maximum likelihood estimates (MLE), say Bi. We
estimate the true value by the average of the Bl-s. Thus

~ 2000 3
s =1 Pi
p=pB= 25060 Z

The standard error of the estimator is computed as follows

se(8) = /g (5 — B2
For the case without the period effect, the model was

Yiije = ln(%) = —0.479 4 0.861 * treatment ;;r + exp(t),

whereas for the case with period effect, the model was

Yijie = ln(%) = —0.479 + 0.861 * treatment ;) + 0.211 * period;; + exp(w;),

where pi; ~ N(0,0?), and 0 = 0.351. Parameters (3, 41 and [3; represent intercept,

treatment and period effects respectively.

Finally, we again, use the above models, but with samples of larger sizes. For
each case, we simulated 2000 samples of size 1000000. The following MathCad®©

with generate n sample of size m.
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ORTGIN = 1

—0.479
Bo=| 0261
0211

P2
ptreatment) = [y + ?-t:reatment

m= 300 n = 2000

Data= |for kel.n

for iel.m

for je1.2
t:reatmenti i — -1

2

m
treatmenit. | — 1 if iS —
1.1 7

t:reatmenti — 1 otherwise

.2
ai-i— mu:urm'l,[l,enjjlll
age; ¢ 25
for 1e1.2
exp| | 1 t:reatmenti Tyl
preg; | & :

1+ exp| | W treatment. || + & |
testl «— preg 2 ﬂmij:l,D,ljl

testd preg; 5 = runifi 1 ,I:I,lj1
pregnancgrli — testl = 1

preg;nancﬂi — testi=1

EDuﬂtﬂDDi —1 if pregnancj.rli =0~ pregnancjﬂi =0~ t:reat.menti i
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K1
.2
L3

By 4

1.5

L6

By 7

k.2

-:u:uunﬂ:ll:lﬂi — 0 otherwise

n:u:nu,n’d]ll:li «— 0 othersise

n:u:nu,nﬂl:ll:li «— [0 othenwise

n:n:nuntll[li «— 0 othenrise

-:u:n.:mt[ll:lli — 0 otherwise

coutitl 1i «— 0 othersise

n:u:nu,ntII:IIi «— [0 othenwise

n:n:nuntllli — 0 othetwise
G mearn count001) -m
a4+ mean] count000) -m
B o meary count011)-m
— meary cout010) -m
8 -+ mean countl01)-m
G o mear countl00)-m
«— meary countl1l)-m

8 o meancountl 100 -m

n:u:uunt[ll[li<— 1 if pregnancgrli =0 pregnancgrﬂi =1a treatment, | = -1

-:u:uuntll:lﬂi — 1 if pregnancyli =1a pregnancyzi =0~ treatment, | = -1

-:1::1.1:c1t11I:li — 1 if pregnancyli =1a pregnancyﬂi =1a treatment. , = -1

2

n:u:nu,m‘,lillilli — 1 if pregmanc;rli =0 pregmanc;rii =0 treatment, | = 1

n:u:uunt[llli<— 1 if pregnancgrli =0 pregnancgrﬂi =1a treatment, | = 1

-:u:uuntll:lli<— 1 if pregnancyli =1a pregnancyzi =0~ treatment, | = 1

-:Duntllli(— 1 if pregnancyli =1~ pregnancyﬂi =1~ treatment. | = 1

96

In this code we can change the values of m and n to satisfy the samples

number and their size.
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3.6 Simulation results

3.6.1 Model with no Period Effects

For the model with no period effects, the conditional estimates are not very
much dissimilar. The standard errors for the estimates obtained from the incom-
plete crossover design are relatively higher than their corresponding estimates

obtained from the complete crossover design, as it is shown in Table [3.10]

Treat 570(5 td) 51 o
Complete | —0.486(0.138) | 0.862(0.214) | 0.346(0.182)
Incomplete | —0.483(0.15) | 0.875(0.272) | 0.28(0.589)

Table 3.10. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design for the scenario involving no period
effects

We can predict the marginal probability and thus compute marginal logistic

regression estimates as shown in Table below:

Treat ﬁé\/l pM

Full ~0.352(0.097) | 0.624(0.149))
Incomplete | —0.353(0.122) | 0.627(0.179)
Parallel —0.354(0.123) | 0.63(0.241)

Table 3.11. Predicted marginal regression estimates for the scenario involving
no period effects

The predicted marginal regression estimates from both the complete crossover
design and the incomplete design agree with the marginal estimates obtained from
the parallel design. The standard errors for the treatment estimates are 0.149,

0.179 and 0.241 for the complete crossover, incomplete crossover and parallel
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model respectively.

3.6.2 Model with Period Effects

The conditional regression estimates obtained from this model are very much
dissimilar for the complete crossover design and incomplete crossover design as
illustrated in Table [3.12l The estimates obtained under incomplete crossover
design are biased with very high standard errors, while their corresponding es-
timates obtained from the full crossover design are unbiased with the standard
errors similar to the standard errors obtained from the scenario involving no pe-

riod effects.

Parameter Full Incomplete
Bo —0.487(0.136) | —0.389(0.417)
B 0.87(0.213) 1.073(0.604)
By 0.215(0.206) | —0.384(1.668)
o 0.354(0.18) | —0.175(1.805)

Table 3.12. conditional estimates from the full cross over design and the infer-
tility cross over design for the scenario involving period effects

The predicted marginal regression estimates from both the complete crossover
design and the incomplete design agree with the marginal estimates obtained
from the parallel design as illustrated in Table [3.13] The standard errors for
the treatment estimates are 0.146, 0.212 and 0.240 for the complete crossover,

incomplete crossover and parallel model respectively.
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Treat M pM

Full —0.274(0.121) | 0.626(0.146)
Incomplete | —0.274(0.121) | 0.615(0.212)
Parallel -0.274(0.121) | 0.631(0.240)

Table 3.13. Predicted marginal regression estimates for the scenario involving
period effects

3.6.3 Larger samples

Using the same models, for each case, we simulated 2000 samples of size
1000000. Here we will like to investigate precision and not bias. Table shows

the maximum likelihood estimates for the complete and incomplete scenarios.

Treat éo(std X 103) 51 5’
Full —0.479(2.315) | 0.861(3.63) | 0.351(3.084)
Incomplete | —0.479(2.445) | 0.861(4.344) | 0.351(5.283)

Table 3.14. conditional estimates (standard errors) from the complete crossover
design and the incomplete crossover design for the scenario involving no period
effects

The maximum likelihood obtained from the complete crossover design have
lower standard errors than the maximum likelihood estimates obtained using the
incomplete crossover design. The marginalized estimates for the scenario involv-

ing treatment only are shown in Table [3.15]

Treat B (Std x 10%) | g1

Full —0.349(1.6136) | 0.628(2.5352)
Incomplete | —0.349(2.029) | 0.628(2.9948)
Parallel | —0.349(2.0321) | 0.628(4.0538)

Table 3.15. Predicted marginal regression estimates for the scenario involving
no period effects
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The predicted marginal regression parameters for the incomplete crossover design,
have higher standard errors than the marginalized estimates from the complete
crossover design. But the predicted marginal regression parameters for the incom-
plete crossover design have smaller standard errors than the estimates obtained

under the parallel design.

The conditional regression estimates and their corresponding predicted marginal

estimates for the scenario involving period effects are shown in Table [3.16| and

Table respectively.

Parameter(Std x 10?) Full Incomplete
Bo —0.479(2.371) | —0.479(5.399)
B 0.861(3.594) | 0.861(6.491)
2 0.211(3.415) 0.211(18)
& 0.351(3.114) 0.351(23)

Table 3.16. conditional estimates from the full cross over design and the infer-
tility cross over design for the scenario involving period effects

Treat BM(Std x 103) | pM

Full ~0.272(2.0367) | 0.627(2.5033)
Incomplete | —0.272(2.03653) | 0.627(4.0679)
Parallel | -0.272(2.0365) | 0.627(4.0865)

Table 3.17. Predicted marginal regression estimates for the scenario involving
period effects

It shows that in general the conditional regression parameters for the incom-
plete crossover design, have higher standard errors than the conditional estimates
obtained under complete crossover design. The predicted marginal estimates un-

der incomplete crossover design have smaller standard errors than the marginal
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estimates obtained under parallel design.

3.7 Sufficiency

Suppose that in the model involving treatment only, Y; = 7¢;, X; = 75 and
Z; = 7p;i, © = {1,2,...,2000}, are the treatment estimates obtained using the
complete data set, the incomplete data set and the parallel data set respectively.
That is for every sample we obtained the treatment estimate under the complete
data set, the incomplete data set and the parallel data set. Here we will like to
investigate the sufficiency of each of the three treatment estimates. That is to say
instead of listing all the three treatment estimates, can we base our inferences only
on one of them. In statistics, a statistic is said to be sufficient with respect to a
parameter, when no other statistic which can be calculated from the same sample
provides any additional information as to the value of the parameter. That is to
say, conditional on the value of a sufficient statistic, the distribution of data is
not a function of the underlying parameter the statistic is sufficient for. We will
employ the latter definition to illustrate which of the three estimates (estimate
from the parallel design, estimate from incomplete data set and estimate from

the complete data set) is sufficient.

3.7.1 Conditional estimates

Here we will compare the treatment estimate from the incomplete data set

with the treatment estimate from the complete set to see which of the two is
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sufficient. To perform all these, we will consider the linear regression models:

C
E(717|m¢) = constant + % * To, (3.43)
and
C
E(rc|tr) = constant + % * T (3.44)

The following regression coefficient and constant were observed,

Cov(tc,71)

Parameter Var(re) constant

o 0.994 —2.946 % 1073
01 0.994 5.016 %« 1073
o 1.042 —0.015

Table 3.18. Regression coefficients for the model E(7;|7¢) = constant +
Cov(tc,71) -
Var(re) ¢

Cov(rc,71)

Parameter Var(rD) constant
0o 0.891 -0.052
53 0.694 0.263

o 0.355 0.226

Table 3.19. Regression coefficients for the model E(7¢|r;) = constant +
Cov(tc,71)

Cou(Tr) *TI

The constant term in the model E(7;|7¢) = constant+ %&T){) *7¢ 18 5.016 %

1072 ~ 0 and the slope term is 0.994 ~ 1 signifying that the treatment estimate

obtained using the complete data set are sufficient. That is to say that the

Cov(rc,71)

Var-o)” * Tc can be simply be replaced by the

model E(7;|7¢) = constant +
model E(77|7¢) = 7¢ without losing the meaning associated with the entire set
of observations. On the other hand, the constant term in the model E(r¢|1) =

constant+%(i’g)*n is 0.263 # 0 and the slope term is 0.694 # 1 signifying that
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the treatment estimate obtained using the incomplete data set are not sufficient.

We observe that here, we can not replace the model E(7¢|17) = constant +

Cov(tc,71)

Cov(r) ¥ I by the model E(7¢|m;) = 7;. All what we are saying is that if you

are presented with the treatment estimate obtained from the complete data set
Tc, the expectation (or best guess) of the treatment estimate obtained from the

incomplete data set will be still 7o. But not vice versa.

3.7.2 Marginalized estimates

Here we will first compare the marginalized treatment estimate from the com-
plete data set with the treatment estimate obtained under parallel design. We

consider the following linear regression models:

Cov(Tyc, Tp)

E(7p|Tc) = constant + * TMC (3.45)

Var(tue)

and
COU(TMc, Tp)

E(tyelTp) = constant + Cou(ry) * Tp. (3.46)
The following slopes and constants were obtained.
Parameter % constant
ar(tpme)
B 0.991 —3.296 x 1073
pM 0.956 0.028

Table 3.20. Regression coefficients for the model E(7p|7¢) = constant +
Cov(Tapre,7p)

Var(tamc) *Tmc

Cov(tmc,7P)

* i
Var(tac) TMC 18

The constant term in the model E(7p|Tac) = constant +
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Parameter CO‘U/L([CM constant
ar(tp)
BM 0.625 -0.131
sM 0.374 0.393
Table 3.21. Regression coefficients for the model E(ryc|mp) = constant +
COU(TA({c,;'p) ¥ Tp
Cov(tp

0.028 and the slope term is 0.956 ~ 1 signifying that the marginalized treatment
estimate obtained using the complete data set are sufficient. On the other hand,
the constant term in the model E(7yc|mp) = constant+%{fp’;”) *7p 18 0.393 #

0 and the slope term is 0.625 # 1 signifying that the treatment estimate obtained

using the parallel data set are not sufficient.

Secondly we compare the marginalized treatment estimate obtained under
incomplete data set with the treatment estimate obtain under parallel design by

considering the models:

Cov(Tar, TP)

E(rp|TM1I) = constant + Var(ran)

* TMT, (3.47)

and
COU(TM[, Tp)

—_— A4
Cov(rp) * Tp, (3.48)

E(ty1|Tp) = constant +

The following slopes and constants were obtained.

Parameter C‘O/L(”P) c

ar(Tr)
o 0.997 —8.849 x 1074
4 0.97 0.019

Table 3.22. Regression coefficients for the model E(7p|TMI) = constant +

Cov(Tarr,7P)

Var(tarr) ™M1
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Parameter C{;L(”P) c
ar(Tp)
o 0.994 —1.944 x 103
B 0.529 0.293
Table 3.23. Regression coefficients for the model E(7p|7p) = constant +
COU(TIEII:;P) % Tp
Cov(tp

Cov(tmi,7P)

The constant term in the model E(7p|Tp;) = constant + Vartr)

* TMI
is 0.019 and the slope term is 0.97 ~ 1 signifying that the marginalized treat-

ment estimate obtained using the complete data set are sufficient. On the other

Cov(tymi1,TP)

Coo(rpy ~ ¥ TP 1S

hand, the constant term in the model E(7ry;|7p) = constant +
0.293 # 0 and the slope term is 0.529 # 1 signifying that the treatment estimate
obtained using the parallel data set are not sufficient. That is to say, if we are
presented with the treatment estimate obtained from the incomplete data set

71, the expectation (or best guess) of the treatment estimate obtained from the

parallel data set will be still 7;. But not vice versa as is illustrated in Table |3.22

and Table B.23]



Chapter 4

Analysis of crossover design in

infertility trials

This section presents examples of cross over trials in infertility trials. The
purpose of this chapter is to demonstrate how in practise the cross over trials in
infertility should be analyzed using different statistical packages (fitting models
in practice). To emphasize this, we will employ four statistical packages, namely,
SAS®, RO WinBugs®© and GenStat©. The first example that we will consider is
an AB : BA crossover trial from Gregoriou et al. (40)) based on a crossover study
to compare the pregnancy rates achieved by intrauterine insemination (/U1) and
timed intercourse (T'1) in gonadotrophin (hCG) stimulated cycles. Secondly, we
will look at the crossover trial where couples were initially randomized to one
treatment, subsequently alternating treatment on each cycle. These data are
from Cohlen et al. (24]) based on a crossover study to investigate whether the use
of controlled ovarian hyper stimulation with human menopausal gonadotrophin
in couples with male subfertility leads to a higher probability of conception when

intrauterine insemination (IUI) is applied.

106
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In SAS®, R© and GenStat©, we will carry out an analysis of deviance,
described by Senn (84), while in WinBugs® we will make use of the deviance
information criterion (DIC; Spiegelhalter et al. (00)). We adopt the attitude
from Senn (84)) that the investigator should determine on a priori grounds which
form of analysis he/she favours. In both examples, we will report the analysis
involving period effects and the analysis excluding period effects, and and we will

not perform pre-testing of period effects.

4.1 Example I

In this section we look at the data from Gregoriou et al. (40)) based on a
crossover study to compare the pregnancy rates achieved by intrauterine insem-
ination (IUI) and timed intercourse (7'7) in gonadotrophin (hCG) stimulated
cycles. Sixty-two couples were randomly equally divided into two groups; group
A or group B. Couples randomized to group A will begin with protocol 1 before
switching to protocol 2. Couples randomized to group B receive protocols in the
reverse order. For all couples, controlled ovarian hyper-stimulation (COH) was
performed with the help of gonadotrophin (hCG), and either timed intercourse
(T'I) or intrauterine insemination (/UI) was employed. In protocol 1 timed in-
tercourse (7'I) was employed, while in protocol 2 intrauterine insemination (IU1)
was employed. Couples stayed in the same protocol for at most 3 cycles before
they can switch to the alternative protocol, with each couple receiving in total

at most 6 cycles of protocols.
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Table shows the achieved pregnancy rates in each group of attempts by

the two protocols.

Method of treatment

COH+TI COH +1UI
Attempts  Patients  Canceled  Com Coneep- PR pt Patients Canceled  Com- Concep- PR per
cycles  pleted  tions eyele (%) opcles  pleted  dons eyl (%)
eyeles eyeles
Granp A (roup B
I=3 3l 15 B 4 3 3 14 i B 114
Group B Growp 4
4-f L 14 53 l 14 n 13 il 1 1.3
Total M i 128 5 19 5 n 130 15 1.3

Table 4.1. Pregnancy rates achieved in each group of attempts by the two
protocols

Of the 62 couples enrolled, 20 couples conceived, of which 12 conceived during
the first 3 cycles and 8 conceived in the second 3 cycles. Couples left the study
if and only if they conceived. We can analyze the data as the AB : BA crossover
design described earlier, where the first 3 cycles constitute the first period and
the second 3 cycles constitute the second period. That is to say that if one
couple conceives under cycle 1 and the other couple conceives under cycle 2 or 3,
then those two couples are regarded as having conceived under the first period.
Similarly, if one couple conceives under cycle 4 and the other couple conceives
under cycle 5 or 6, then those two couples are regarded as having conceived
under the second period. It is possible to have treated each cycle as a period of
its own. Here, we can not do that as we are restricted by the way the data is
presented. The way the data is presented does not allow us to treat each cycle as

a period. We propose to analyze this data using the mixed effects model. We first
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consider a scenario where the investigator believes that there is enough evidence
to include period effects. Thus we assume that the probability that a couple

i,i={1,2,...,62} in group k,k = {A, B} conceives under period j,j = {1,2} is

_exp(intercept + By * protocol(ijy, + B2 * period; + v;)
1+ exp(intercept + 1 * protocol;jy, + B2 * period; + v;)

Pij)k (4.1)
where as usual v; is the random couple effect, assumed to be distributed in the
population as N(0,0?). We code our protocol as 0 and 1 for protocol 1 and
protocol 2 respectively. We store our data set in the F' :drive under the file name
gregoriou.txt. The file consists of five columns labelled: group, patient, period,
protocol and response. The variable RESPONSE has two levels: 1 indicates
conception and 0 indicates fail to conceive. Also, the variable PERIOD has two
levels: 0 signifies the first period (cycles 1, 2 or 3) and 1 signifies the second
period (cycles 4, 5 or 6). The factors GROUP, PATIENT and PROTOCOL

are as defined above.

4.1.1 Analysis using SAS©

The following statement may be used in SAS® to import the stored data set
?gregoriou.txt” from the F' :drive. The argument DATAFILE= specifies the
complete path and filename of the input file. The OUT= argument identifies the
output SAS® data set. If the specified SAS® data set does not exist, PROC
IMPORT creates it. The line DBMS= specifies the type of data to import.
For example, DBMS=TAB specifies to import a delimited file (tab-delimited
values) file, which its extension is .TXT. We may not need to specify DBMS=
if the filename specified with DATAFILE= contains a valid extension so that

PROC IMPORT can recognize the type of data. The statement REPLACE
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overwrites an existing SAS© data set. If REPLACE is not specified, PROC

IMPORT does not overwrite an existing data set.

proc import datafile="F:\gregoriou.tzt”

out=gregoriou

dbms=TAB

replace;

run;

proc sort data=gregoriou;

by patient;

run;

This code will import the data into the SAS® data set ”gregoriou” and sort
it by patient, which may then be used in subsequent analysis. Since PROC
NLMIXED assumes that every time a new value of the PATIENT variable is
encountered a new PATIENT is being analyzed, we need to sort our data by

PATIENT. The PROC SORT arranges the data by PATIENT.

The following PROC NLMIXED fits the model involving protocol and pe-

riod effects (saturated model).

proc nlmixed data=gregoriou;
parms intercept=-2 betal=1 beta2=0.2 sigma=0.2;
sigma2=sigma**2;
preg=intercept + betal*protocol + beta2*period + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome~ binomial(1,ppreg);
random u~ normal(0,sigma2) subject=patient;

run;
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The PROC NLMIXED statement invokes the procedure and inputs the gre-
goriou data set. The PARMS statement identifies the unknown parameters
and their starting values. While the PARMS statement is not required, it is en-
couraged to use it to provide PROC NLMIXED with accurate starting values.
Parameters not listed in the PARMS statement are assigned an initial value
of 1. We illustrate a simpler way of obtaining reasonable starting values. The

proportion of couples conceived under T'I is 5—4 ~ 0.093 and the proportion of

couples conceived under U is % ~ 0.259. A reasonable starting value for the

intercept will be:

log(2g503) ~ —2

While a reasonable starting value for betal will be:

10g(18.8.%?§3) - 10g(19'3.52959) ~1

For the starting value of beta2, we consider the proportion of conception on
each period. The proportion of conception in the first period ( that is conception
in cycles 1, 2 or 3) is =5 &~ 0.194, while the proportion of conception in the second

62

period (that is conception in cycles 4, 5 or 6) is % = 0.16. Thus a reasonable

starting value for beta2 will be:

log(2:222) — log(24%) ~ 0.2

For sigma we will choose to use 0.2. Thus we opt to choose —2,1,0.2 and 0.2 as

the starting values for the intercept, betal, beta2 and sigma respectively.

The next three statements construct the variable PPREG to correspond to

the p;; and the MODEL statement defines the conditional distribution (given
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the random effects) of the variable OUTCOME. Here a binomial conditional
distribution is specified with n = 1 and p = ppreg; that is a binomial distribution
with mean ppreg and variance ppreg(l — ppreg). The RANDOM statement
defines the random effect to be U, and specifies that it follows a normal distribu-
tion with mean zero and variance sigma2. The SUBJECT= argument defines
a variable indicating when the random effect obtains new realizations: in this
case, it changes according to the values of the PATIENT variable; that is, all
observations from the same patient occur sequentially in the imported data set.
Table displays the fit statistics and the maximum likelihood estimates for the

above PROC NLMIXED procedure (model with treatment and period effect).

Fit Statistics

=2 Log Likel ihood 95.0
fAIC (smaller is better) 107.0
AICC (=maller is better) 107.2
BIC (=maller is better) 115.5
Paraneter Estinates
Standard
Parameter Esztinate Ertor DF t Yalue Pr > |t filpha Lower Upper Gradient

intercept  =2.4719 0.3475 61 =2.61 0.0114 0.05 -4.3665 -0.57/72 8.624E-G

betal 1.3278 0.6332 61 2.08 0.0420 0.0%  0.043963 2.6060 0.000012
beta? -0.1793 0.6214 61 -0.28 0.7774 0.05 -1.4419 1.0832 -2.91E-6
signa 0.3734 1.2454 61 0.73 0.4374 0.05 -1.5168 4.4637 3.639E-6

Table 4.2. Maximum likelihood estimates for the model with treatment and
period effect

To carry out an analysis of deviance, we will fit a model with the period ef-
fect only and look at the change in deviance when then fitting the protocol effect

as well. The following PROC NLMIXED fits the model with period effect only:

proc nlmixed data=gregoriou;
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parms intercept=-2 beta2=0.2 sigma=0.2;
sigma2=sigma**2;

preg—intercept + beta2*period + u;
ppreg=exp(preg)/(1+exp(preg));

model outcome~binomial(1,ppreg);

random u~normal(0,sigma2) subject=patient;

run;

Table shows the output for the model with period effect only.

Fit Statistics

=2 Log Likelihood 104.5
#IC (snaller i=s better) 110.5
AICC (=smaller iz better) 110.7
BIC (snaller i= better) 116.9

Parameter Estimates

Standard
Parameter Estimate Error OF t VYalue Pr » {t! Alpha Lower Upper OGradient
intercept  -1.6293 0.7975 61 =2.04 0.045%4 0.0% =3.2240 =0.03463 -1.48E-7
beta? =0, 09364 0.6677 61 -0.14 0.8889 0.0% ~-1.4287 1.2414 -9.79%E-7
signa 0.8110 1.468% 61 0.55 0.5829 0.05% =2.1262 3.7481 2.8B2E-T

Table 4.3. Maximum likelihood estimates for the model with period effect only

The difference in —2logL for the model with period effect only and the model
with protocol and period effect is 104.5 — 99 = 5.5; since the difference in the
number of parameters in these models is 1, this value should be compared to
a chi-square distribution with 1 degrees of freedom. The following SAS® code
will calculate the p-value. PROCHI(x,n) evaluates the probability that the

chi-square of n degrees of freedom is smaller or equal to the valve x.
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data pvalue;
pvalue=1-probchi(5.5,1);
proc print;

run;

The output for the above DATA step is as follows:

Obs pvalue

1 0.019016

The p-value is 0.019016. Therefore at 5% level of significance, the protocol
effect is influential. For this analysis the protocol effect estimate is 1.3278 with
a 95% confidence interval of (0.04963,2.6060). The odds ratio for IUI compared
to T'1 is the ratio of predicted odds of U versus T'1, which is exp(1.3278) = 3.8.
The estimated 95% confidence interval for the odds ratio is exp(1.3278£¢(0.975,61)*
0.6398) = exp(1.3278 £+ 1.99962 x 0.6398) = (1.050896, 13.54418). These odds are
in favour of IUI. Couples undergoing IU [ have nearly four times higher odds of

conception than couples undergoing 7'1.

Suppose the investigator believes that there is no period effects. Here, we
illustrate how the data must be analyzed if the investigator feels that there is no
need to include period effect. We first fit the the model with protocol only. The

following PROC NLMIXED fits the model with protocol only:

proc nlmixed data=gregoriou;

parms intercept=-2 betal=1 sigma=0.2;
sigma2=sigma**2;

preg—intercept + betal*protocol + u;

ppreg=exp(preg)/(1+exp(preg));
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model outcome~binomial(1,ppreg);

random u~normal(0,sigma2) subject=patient;

run;

Table [£.4] contains the fit statistics and the maximum likelihood estimates for the

model with protocol only.

Fit Statiztics

=2 Log Likel ihood 99.90

AIC (=maller is better) 105.0

AICC (smaller is better] 105.3

Parameter Estimates
Standard

Parameter Estinate Error OF t Value Pr » it #lpha Lower Upper OGradient
intercept  -2.6333 0.8390 61 -3.14 0.0026 0.05 -4.3110 -0.9556 -0.00902
betal 1.3451 0.6539 61 2.06 0.0440 0.05 0.03762 2.6525% =0.00001
signa 1.149% 1.0726 &1 1.07 0.2879 0.05 -0.9943 3.2946 =0.00001

Table 4.4. Maximum likelihood estimates for the model with protocol only

To carry out an analysis of deviance, we will fit the null model (model excluding
both protocol and period effect) and look at the change in deviance when then
fitting the protocol effect as well. The following PROC NLMIXED fits the

null model:

proc nlmixed data=gregoriou;
parms intercept=-2 sigma=0.2;
sigma2=sigma**2;

preg=intercept + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome~binomial(1,ppreg);

random u~normal(0,sigma2) subject=patient;
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run;

Table [4.5] contains the fit statistics and the maximum likelihood estimates for the

null model.
Fit Statistics
=¢ Log Likelihood 104.5
filC (smaller is better) 108.5
Parameter Estimates
Standard
Parameter Estimate Error OF t Value Pr » it] #lpha Lower lpper Gradient
intercept  =1.7140 0.5055 61 =3.39 0.0012 0.05 =2.7248 =0.7031 =3.19E-h
signa 0.9280 1.0100 61 0.92 0.3618 0.0% ~=1.0916 2.9476  1.634E-7

Table 4.5. Maximum likelihood estimates for the null model

If we take the difference in —2log L for the null and model involving protocol
effects, 104.5 — 99 = 5.5, we get the log likelihood ratio test for the protocol
effects. The p-value is 0.019016. Therefore at 5% significance level we reject the
hypothesis that the null model is as good as the model involving the protocol
only. Here, the protocol effect estimate is 1.3451 with a 95% confidence interval
of (0.03762, 2.6525). The odds ratio for IUI compared to T'I is exp(1.3451) = 3.8.
The estimated 95% confidence interval for the odds ratio is exp(1.3451£¢(0.975,61)*
0.6539) = exp(1.3451 £ 1.99962 x 0.6539) = (1.038366, 14.18736). These odds are
in favour of IUI. Couples undergoing IUI have nearly four times higher odds of

conception than couples undergoing 7'1.

4.1.2 Analysis using R©

We begin by importing the stored data set ”gregoriou.txt”. The following

statement may be used in R© to import the data set ” gregoriou.txt” from the
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F :drive into the R© data set ”gregoriou”. The ”F:/gregoriou.txt” specifies
the complete path and filename of the input file. the HEADER=T option
specifies that the first line is a line of headings, and hence, by implication from

the form of the file, that no explicit row labels are given.
> gregoriou <- read.table(”F:/gregoriou.txt”, header=T).

The Imer function in the Ime4 package is designed to fit generalized mixed-
effects model. We first assume that the investigator believes that there is period

effect. The following Imer code fits the model with protocol and period effect.

> fit <- lmer(response~protocol+period+(1|patient),family=binomial,
data=gregoriou)

> fit

We start by looking at the terms just after the function lmer. The term on
the right hand side of ~, response indicates the outcome to be modelled, which
must be binary. The terms on the other side of ~ are the terms that should
be included in the model. The (1|patient) declares Patient to be the random
effect. The family indicates the distribution of the responses which should be

binomial. The data indicates the data that was read in R©.

The output for the parameter estimates and their p-values for the above lmer

analysis are shown in Table
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Generalized linear mixed model fit by the Laplace approximation
Formumla: response ~ betal + beta2 + (1 | patient)

Data: greg

ATC BIC logLik deviance

107.0 117.8 -49.48 48.96
Random effects:
Groups HName Variance S5td.Dewv.

patient (Intercept) 0.894758 0.87344
Humber of obs=s: 111, groups: patient, &2

Fizxed effects:
Estimate S5td. Error z walue Pr(>|=z]|)

(Intercept) -2.4718 0.5700 -4.336 1.45=e-05 **w
betal 1.3278 0.6255 2.123 0.0338 *
beta o | A 0.5727 -D.313 0.7542

Table 4.6. Imer analysis for the model with protocol and period effect from the

The following Imer code will fit the reduced model with period effect only.

> fitl < — lmer(response~period+(1|patient),family=binomial,data=gregoriou)

> fitl

The output for the parameter estimates and their p-values are as shown in

Table 4.7,
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Generalized linear mixed model fit by the Laplace approximation

Formula: response ~ beta2 + (1 | patient)

Data: greg
ATC BIC logLik deviance

110.5 118.6 -52.25 ip4.5
Random effects:
Groups HName Variance 5td.Dew.

patient (Intercept) 0.65756 0.81098
Humber of obs=s: 111, groups: patient, &2

Fixed effects:

Esztimate 5td. Error z walue
(Intercept) -1.62926 0.35508 -4.588
beta2 -0.08371 0.53619 -0.175

Table 4.7. lmer analysis for the model with period effect only

Fri>lz1l)
4.47e-06 ***
0.861

119

The difference in —2logL for the model with period effect only and the

model with protocol and period effect is 104 — 98.96 ~ 5.5 as in the SAS®

analysis; Therefore at 5% level of significance, the protocol effect is influen-

tial. The protocol estimate is 1.3278 with 95% confidence interval of (1.3278 £

1.96 * 0.6255) = (0.10182,2.55378). The odds ratio for JUI compared to T is

exp(1.3278) = 3.8. The estimated 95% confidence interval for the odds ratio is

exp(1.3278 £ 1.96 x 0.6255) = (1.105684, 12.89366). These odds are in favour of

IUI. Couples undergoing IUI have nearly four times higher odds of conception

than couples undergoing T'1.

Next we assume that there is no period effect. The following lmer code will

fit the model with protocol only.

> fitl < — lmer(response~protocol+(1|patient),family=binomial,

data=gregoriou)

> fitl

The output for the parameter estimates and their p-values are as shown in

Table (4.8
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Generalized linear mixed model fit by the Laplace approximation

Formula: response ~ betal + (1 | patient)
Data: greq
ATC BEIC logLlik deviance
105,00 °113.% —-49. 52 895.04
Random effects:
Groups Hame Variance S5td.Dew.

patient (Intercept) 1.3223 114895
Humber of obs: 111, groups: patient, &2

Fizxed effects:
Estimate S5td. Error z walue Pr(>|=z]|)

(Intercept}) -2.68333 0.5657 —4.655-3.34=-0& **¥*
betal 1.3450 0.63581 2.105 00353

Table 4.8. lmer analysis for the model with protocol only

Now we fit the null model excluding both period effect and the protocol. The

following R© code will fit the null model.

> fitl < — lmer(response~(1|patient),family=binomial,data=gregoriou)

> fitl

The output for the parameter estimates and their p-values for the null model

are as shown in Table [4.9]

Generalized linear mixed model fit by the Laplace approximation
Formula: response ~ (1 | patient)

Data: greg

ATC BIC loglLik deviance

108.5 °113.9 -5Z 26 104.5
Random effects:
Groups HName Variance 5td.Dev.

patient (Intercept) 0.86088 0.92783
Humber of obs: 111, groups: patient, 62

Fixed effects:

Estimate 5td. Error z wvalue Pr(>|z]|)
(Intercept) =-1.713%9 0.2908 -5.894 3.T78c—09 #**

Table 4.9. lmer analysis for the null model
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If we take the difference in —2log L for the null and model involving protocol
effect only, 104.5 — 99.04 = 5.46, we get the log likelihood ratio test for the
protocol effects. Since the difference is 5.46 with 1 degrees of freedom, the p-
value is 0.019457. This test shows that the model with protocol only provides
a better fit than the null model. Thus, we reject the hypothesis that the null
model is as good as the model involving the protocol only. The treatment effect
estimate is 1.3450 with 95% confidence interval of (1.3450 + 1.96 % 0.6391) =
(0.092364,2.597636). The odds ratio for IUI compared to T is exp(1.3450) =
3.879088. The estimated 95% confidence interval for the odds ratio is exp(1.3450+
1.96 % 0.6391) = (1.099580, 13.68461). These odds are in favour of IUI. Couples
undergoing IUI have nearly four times higher odds of conception than couples

undergoing 7'I.

4.1.3 Analysis using WinBugs®©

We first assume that there is period effect. The following WinBugs© code

will specify the random effects model involving protocol and period effects.

model
{for(iin1: N1) {
outcomell[i] ~ dbern(pl]i])

logit(pl[i]) < — intercept+betal*protocoll[i]+ beta2*periodl[i]4v][i]

vli] ~ dnorm(0, tau)
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for(iin 1 : N2){
outcome?2[i] ~ dbern(p2][i])
logit(p2[i]) < — intercept+betal*protocol2[i]+ beta2*period2[i]4v]i]

}

sigma< — 1/sqrt(tau)
intercept ~ dnorm(0,1.0E-3)
betal ~ dnorm(0,1.0E-3)
beta2 ~ dnorm(0,1.0E-3)
tau ~ dgamma(1,1.0E-4)

log.sigma< — log(sigma)

The WinBugs© language use the ~ to denote stochastic (probabilistic) rela-
tionships, and the left arrow < — to denote deterministic (logical) relationships.
The stochastic parameters intercept, betal, beta2, and tau are given proper
but minimally informative prior distributions, while the logical expression for
sigma allows the standard deviation (of the random effects distribution) to be

estimated. The results are very sensitive to the prior distributions.

The following code will specify the data to be used.

list(outcomel =c(0,0,0,0,0, 0, O, 0, 0, 0, 0, 0, 0,0, O, O, O, O, O, O,
o, 90,0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, O, 0, O, O, O, 0, 0,0, O, 1,

1,1,1,1,1,1,1,1,1,1,1) ,
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treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,

1,1,11,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1) ,

periodl =c¢(0,0,0,0,0,0, 0, 0, o, o, o, o, o, 0,0, O, O, O, O, O, 0, 0, 0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0,

0, 0,0,0,0,0,0),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0,

0, 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0,0,1, 1, 1, 1,1,1,1,1) ,

period2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0),
N1 = 62, N2=50),

The data have to be sorted in such a way that couples who failed to conceive
are listed first. For example, in the first period, we listed couples who did not
conceive followed by those who conceived in the second period, followed by those
who conceived in the first period. In the second period, we listed couples with
outcome (0,0) (those who did not conceive in both periods) first, followed by
couples with outcome (0, 1) (those who conceived in the second period). This

will ensure that each couple keeps its random effect.

Finally the M C M C sampler must be given some initial values for each stochas-
tic node. These can be arbitrary values, although in practice, convergence can
be poor if wildly inappropriate values are chosen. Different set of initial values
are needed for each chain. To check for convergence we need to specify at least

two chains. The following codes will initialize our model. Here we give the same
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values as in SAS®©

list(intercept=-1,betal=-1, beta2=1, tau=10,b=c(0, 0, 1, 0, 0, 0, 1,
0o01,0001,01,1,01,01,00,0,0,0,0,0,0,0,0,0,0,0, 0,

o, o, o, o, 0,0, 0, O, O, O, 0,0 ,0, O, O, O, O, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4,betal=-4,beta2=4, tau=15,b=c(0, 0, 0, 0, 0, 0, O,
o, o, o, o,o,o,o,o,o,o,o,o,o-oo-o,.-.0,0,0o0o00,0,0,0,0,0,0,0,

o, 0,0, o, 0,0, 0, O, O, 0, 0 ,0 ,0, O, O, O, 0, 0,0,0,0,0,0,0,0,0,1))

To run the model, we first click once on the Model on the tool bar. Secondly
we click once on the Specification option. We highlight the word model at the
beginning of the code. Finally we Check the model syntax by clicking once on the
check model button in the Specification window. A message saying ”model
is syntactically correct” should appear in the bottom left of the WinBUGS®©

program window.

To load the data we highlight the word list at the beginning of the data
code and we click once on the load data button in the Specification option. A
message saying ”data loaded” should appear in the bottom left of the WinBUGS®©

program window.

Now we need to select the number of chains (i.e. sets of samples to simulate).
The default is 1, but we will use 2 chains for this example, since running multiple
chains is one way to check the convergence of the M CMC' simulations. Next we
compile the model by clicking once on the compile button in the Specification
option. A message saying "model compiled” should appear in the bottom left of

the WinBUGS® program window. To load the initial values, we highlight the
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word list at the beginning of the first set of initial values and click once on the
load inits button in the Specification window. A message saying ”initial values
loaded: model contains uninitialized nodes (try running gen inits or loading more
files)” should appear in the bottom left of the WinBUGS® program window.
We repeat this process for the second initial values. A message saying ”initial
values loaded: model initialized” should now appear in the bottom left of the
WinBUGS® program window. We set some monitors to store the sampled values
for selected parameters. For our example, we set monitors for the parameters
intercept, betal, beata2 and sigma. For model selection we use the deviance
information criterion box. Now, we select the Update option from the Model
menu and we indicate the number of updates (iterations of the simulation) we
require in the appropriate white box (labelled updates), the default value is 1000.
We click once on the update button, the program will simulate values for each
parameter in the model. This may take a few seconds, the box marked iteration
will indicate how many updates have currently been completed. The number of
times this value is revised depends on the value set for the refresh option in the
white box above the iteration box. The default is every 100 iterations. When
the updates are finished, the message "updates took * % xs” will appear in the
bottom left of the WinBUGS® program window (where * *  is the number of

seconds taken to complete the simulation).

We cheek convergence by looking at the graph of the two chains. Conver-
gence is signified by the two graphs merging together. Once we are satisfied
that convergence is reached, we simulate extra samples and our estimates will
be based only on the samples simulated after convergence. One way to assess
the accuracy of the posterior estimates is by calculating the Monte Carlo error

for each parameter. This is an estimate of the difference between the mean of



4.1. EXAMPLE I 126

the sampled values (which we are using as our estimate of the posterior mean
for each parameter) and the true posterior mean. The simulation should be run
until the Monte Carlo error (MC error) for each parameter of interest is less than
about 5% of the sample standard deviation. We first ran 20000 simulation and
we checked convergence for the intercept, betal, beta2 and sigma. We look for
evidence of when the simulation appears to have stabilized by examining the plots
of the sample values versus iterations. Fig shows the graphs for the intercept,
betal, beta2 and sigma. The plots of the intercept, betal and beta2 show chains
for which convergence look reasonable. The plot of sigma shows chains which

have clearly not reached convergence.
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Figure 4.1. Plot of the intercept, betal, beta2 and sigma for the model with
protocol and period effects
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We simulated extra 30000, and Table below shows the summary statistics

for the monitored parameters and the fit statistic (deviance information criterion)

Dhar = post.nean of -2logl; Dhat = -2LogL at post.mean of stochastic nodes

Dhar Dhat ph DIC
outcome? B1.362 59732 1631 £62.993
outcome2 41032 39 631 1.401 42 433
total 102.394 99,363 3032 105.426
node mean sd MC error | 2.5% | median | 97.5% | start | sample
intercept | -2.28 | 0.5344 | 0.004679 | -3.42 -2.245 | -1.321 | 20001 | 60000
betal 1.32 0.5842 | 0.003773 | 0.2377 1.301 2.542 | 20001 | 60000
beta2 -0.313 | 0.5288 | 0.002317 | -1.372 | -0.3081 | 0.7094 | 20001 | 60000
sigma | 0.06426 | 0.1967 | 0.005039 | 0.01643 | 0.03876 | 0.2426 | 20001 | 60000

Table 4.10. Parameter estimates and their standard errors

Next we fit the model with period effect only. The WinBugs© code that specify
the model with period effect only, the data to be used and the initial values for
the MCMC sampler is in the Appendix A.1. We ran 20000 simulation and we
checked convergence for the intercept, beta2 and sigma. We look for evidence
of when the simulation appears to have stabilized by examining the plots of the
sample values versus iterations. Fig shows the plots for the intercept, beta2
and sigma. The plots of the intercept and beta2 show chains for which conver-
gence look reasonable. The plot of sigma shows chains which have clearly not

reached convergence.

We simulated extra 30000 samples. Table shows the summary statistics
for the monitored parameters. To compare these two models: the model with
protocol and period effect with the model with period effect only, here unlike in

R© and SAS©, we will use the deviance information criterion (DIC; (90)).
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Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes
Dbar Dhat pD oc

cutcome 61.937 60.924 1.013 62.950

outcomez2 44 832 43.978 1.004 45.586

total 106.919 104.902 2mM7 103.936
node mean sd MC error | 2.5% | median | 97.5% | start | sample

intercept | -1.462 | 0.326 0.00142 | -2.134 | -1.451 |-0.8487 | 20001 | 60000

beta2 -0.245 | 0.512 | 0.002718 | -1.278 | -0.2433 | 0.7417 | 20001 | 60000
sigma | 0.0532 | 0.05522 | 0.001567 | 0.0163 | 0.03759 | 0.1849 | 20001 | 60000

Table 4.11. Parameter estimates and their standard errors

The idea is that models with smaller deviance information criterion (DIC)
should be preferred to models with larger deviance information criterion (DIC).
The advantage of DIC over other criteria (likelihood ratio test), for Bayesian
model selection, is that the DIC is easily calculated from the samples generated
by a Markov chain Monte Carlo simulation. The likelihood ratio test require
calculating the likelihood at its maximum over the unknown parameters, which
is not readily available from the MCMC simulation. But to calculate DIC in
WinBugs© we simply use the DIC tool dialog from the option SAMPLES.
The DIC of the model with protocol and period effects is 105.426 while the DIC
of the model with period effect only is 108.936. Thus our model of choice is the
model with both period effects and protocol. The protocol effect is 1.32 with
estimated 95% confidence interval of 1.32 £ 1.96 % 0.5842 = (0.174968, 2.465032).
The estimated odds ratio of U verses T'1 is exp(1.32) = 3.7. The estimated 95%
confidence interval for the odds ratio is exp(3.7 £ 1.96 % 0.5842) = (1.19,11.8).
These odds are in favour of IUI. Couples undergoing IUI have nearly four
times higher odds of conception than couples undergoing 7'I. These confidence

intervals, clearly shows that protocol is statistically significant.

Suppose we assume that there is no period effect. We fit the model with proto-
col only. The WinBugs© code that specify the random effects model involving

protocol only is in Appendix A.2. We ran 20000 simulation and we checked
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convergence for the intercept, betal and sigma. We look for evidence of when
the simulation appears to have stabilized by examining the plots of the sample
values versus iterations. Fig shows the plots for the intercept, betal and
sigma. The plots of the intercept and betal show chains for which convergence
look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000 samples. Table shows the summary statistics

for the monitored parameters.

Dhar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

DHxar Dhat P DIC

outcome? 61.027 59910 1117 62143

outcome2 40627 39.729 0,599 41 526

total 101 B54 09 533 2015 103 B3
node mean sd MC error | 2.5% | median | 97.5% | start | sample
intercept | -2.38 0.491 0.003813 | -3.436 | -2.344 | -1.503 | 20001 | 60000
betal 1.30 0.578 | 0.004338 | 0.224 1.279 2.501 | 20001 | 60000
sigma | 0.5343 | 0.08985 | 0.002816 | 0.01638 | 0.03736 | 0.167 | 20001 | 60000

Table 4.12. Parameter estimates and their standard errors

Next we fit the null model excluding both period effect and the protocol. The
WinBugs®© code that specify the null model is in Appendix A.3. We first ran
20000 simulation and we checked convergence for the intercept and sigma. We
look for evidence of when the simulation appears to have stabilized by examining
the plots of the sample values versus iterations. Fig shows the plots for the
intercept and sigma. The plots of the intercept show chains for which convergence
look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000. Table shows the summary statistics for the

monitored parameters.
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IDI:-;lr = poest.mean of -2loglL; Dhat = -2LogL at post.mean of stochastic nodes
Dlar Dhat pO DIC
autcome B4 600 Eq .03 0568 E2.168
outcome? 44 497 44 034 0455 44 955
total 106.096 105070 1.026 107123
node mean sd MC error 2.5% median | 97.5% | start | sample
intercept | -1.545 | 0.2501 | 0.001007 -2.048 -2.048 | -1.538 | 20001 | 60000
sigma | 0.01676 | 0.0159 | 6.199E-4 | 0.005268 | 0.01215 | 0.05921 | 20001 | 60000

Table 4.13. Parameter estimates and their standard errors

The DIC for the model with protocol only is 103,669. While the DIC for
the null model is 107.123. Thus the model with protocol only is preferred.
The protocol effect is 1.30 with estimated 95% confidence interval of 1.30 +
1.96 % 0.578 = (0.16712,2.43288). The estimated odds ratio of IUI verses T'I is
exp(1.30) = 3.7. The estimated 95% confidence interval for the odds ratio is
exp(1.3 £ 1.96 % 0.578) = (1.18,11.4). These odds are in favour of IUI. Couples
undergoing U have nearly four times higher odds of conception than couples

undergoing T'I. These confidence intervals, clearly shows that protocol is statis-

tically significant.

4.1.4 Analysis using GenStat©

The following GenStat© will read data in parallel in five columns and declares

Group, Patient, Period, and Protocol as Factors.

FACTOR Group, Patient, Period, Protocol
READ [SETNVALUES=yes; SETLEVELS=yes| Group,Patient,Period,
Protocol,Response;

FREP=2(levels),labels,*
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11111
12111

13111

.....
-----

.....

260-110
261-110

262-110:

The next GenStat© statements invokes HGANALYSE procedure (Lee and
Nelder (56)). The terms HGRANDOMMODEL and HGFIXEDMODEL
define respectively, the random model (PATIENT) and the fixed model (PROTOCOL
4+ PERIOD) for a hierarchical generalized linear model. The LINK and DIS-
TRIBUTION options specify their distribution and link function respectively.
The variate to be analyzed is RESPONSE and is listed on HGANALYSE .
The fitting process involves alternative fits of the augmented Generalized Linear
Models for the mean given the current estimates of the dispersion parameters,
and of the models that estimate the dispersion parameters. The convergence of
the process is assessed by comparing the dispersion estimates from successive fits.
The MAXCYCLE option can specify two scalars. The first sets a limit on the
number of alternating fits (default 99), and the second controls the number of it-
erations in the estimation of the mean model and of the dispersion model (default
30). The MLAPLACE option specifies the order of Laplace approximation to
use in the estimation of the mean model (0 or 1); default is 0. The DLAPLACE

option specifies the order of Laplace approximation to use in the estimation of
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the dispersion components (0, 1 or 2); default is 0. The term NBINOMIAL

specifies the binomial totals, which is 1.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Proto-
col + Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

To present this program to a computer, we click on the RUN option, and click
once on the SUBMIT WINDOW option. The parameter estimates and de-

viances for the saturated model described above are as follows:
Estimates from the mean model

estirmate 5.8 t{108)
constant -2.150 0.5076 -4, 236
Treatment 1 1.220 0.5610 2175
Period 1 -0.245 0.56205 -0.471

Estimates from the dispersion model

Estimates of parameters

antilag of

Farameter estimate 5.8 ™) estimate
lambda Patient

-1.349 0.734 -1.84 0.2554



4.1. EXAMPLE I 134

Likelihood statistics

-2 * hiyl) 91512
2*h 125.507
2P wih) 99,129
-2 * P_beta vh) 93 760
-2 * EQD{yl) 96531
2 *EQD 130.626
2P y{EQD) 104.248
-2 * P_beta v(EQD) 103.679

Next we fit the model involving period effect only. The following GenStat©

will fit the hierarchical model involving period effect only.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period
HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter output for the above analysis are as follows:
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Estimates from the mean model

estirmate 5.8 t{109)
constant -1 4273 0.3218 -4.435
Period 1 -0.1960 0.4999 -0.392

Estimates from the dispersion model

Estimates of parameters

antilag of

Farameter estimate 5.8 ™) estimate
lambda Patient

-2.58 1.439 -1.93 0.05621

Likelihood statistics

-2 * hiyl) 102.730
2*h 39,103
2% P _wih 104.542
-2 *F_betayih) 105.021
-2 * EQD{ylv) 107 849
2 *EQD 44,222
2 * P W{EQD) 109,661
-2 *P_betav(EQD) 110.140

For model selection we use the information criterion based on —2P,(h) (Lee ad
Nelder (56))). If we take the difference in —2P,(h) for the model with protocol and
period effects and the model with period effects only, 104.542 — 99.129 = 5.413,
we get the log likelihood ratio test for the protocol (treatment) effect. Since the
difference is 5.413 with 1 degrees of freedom, the p-value is 0.019987. This test

shows that the difference between the two protocols is statistically significant.

Now we assume that there is no period effect and we fit the model with

protocol only. The following GenStat© will fit the hierarchical model involving

protocol only.
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HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-

tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Proto-

col

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter output for the above analysis are as follows:

Estimates from the mean model

estimate 5.8 t(109)
constant 2237 0.4758 -4.701
Treatment 1 1.199 0.5588 2146

Estimates from the dispersion model

Estimates of parameters

antilag of

Farameter estimate 5.8 ™) estimate
lambda Patient

-1.107 0.654 -1.69 0.3306

Likelihood statistics

2 * hiy}) 89,754
2*h 139,749
2* P _uih) 99 369
2 * P_beta wih) 99 516
-2 * EQD{yl¥) 94 573
2 *EQD 144,565
2 * P_y{EQD) 104,485
2 *P_betay(EQD) 104.637

The null model is fit next. The following GenStat© will fit the null model.
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HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit]
HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter estimates and deviances for the null model are as follows:

Estimates from the mean model

estimate 5.\ t110)
constant -1.602 02517 -5.570

Estimates from the dispersion model

Estimates of parameters

antilog of

Farameter estimate 5B ™) estirmate
lambda Patient

-1.760 0.865 -2.03 01720

Mesgsage: s.e.5 are based on dispersion parameter with value 1.

Likelihood statistics

-2 * hiylv) 99, 277
2*h 106,744
2% P _wih) 104,695
2 * P _hetauih) 105,607
-2 * EQD{yl¥) 104,396
2 *EQD 111,863
2% P y{EQD) 109,514
2 *P_heta WEQD) 110,726
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The difference in —2P,(h) for the null model and the model with protocol only,
104.695 — 99.369 = 5.326, the p-value is 0.021010. This test shows that the dif-

ference between the two protocols is statistically significant.
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4.1.5 Summary

Table records comparative analyses of the gregoriou data.

139

Model Method intercept | Betal | Beta2 | Deviance
Null SAS© -1.71 104.5
(0.506)
RO -1.71 104.5
(0.291)
WinBugs© | -1.55 -
(0.250)
GenStat© -1.50 104.7
(0.252)
Protocol SAS© -2.63 1.35 99.0
(0.839) | (0.654)
RO -2.63 1.35 99.0
(0.566) | (0.639)
WinBugs© | -2.38 1.30 -
(0.491) | (0.578)
GenStat®© -2.24 1.20 99.4
(0.476) | (0.559)
Period SAS© -1.63 -0.0936 | 104.5
(0.798) (0.668)
RO -1.63 -0.0937 |  104.5
(0.355) (0.536)
WinBugs© | -1.59 -0.256 -
(0.326) (0.512)
GenStat© -1.43 -0.196 104.5
(0.322) (0.500)
Protocol and Period SAS© -2.47 1.33 -0.179 99.0
(0.948) | (0.639) | (0.631)
RO -2.47 1.33 | -0.179 99.0
(0.570) | (0.626) | (0.573)
WinBugs© | -2.28 1.32 | -0.313 -
(0.534) | (0.584) | (0.529)
GenStat© -2.15 1.22 | -0.245 99.1
(0.508) | (0.561) | (0.521)

Table 4.14. Comparative analysis of the Gregoriou data

Table gives the summary results of fitting various models for the data in



4.2. EXAMPLE I1 140

Gregoriou et al (40) using different fitting methods. The models are, in order
of fitting : a null model, a model involving protocol (treatment) only, a model
involving period only and a model fitting protocol and period. The most im-
portant models are the model involving protocol only and the model involving
both protocol and period. The other two models are used to examine the change
in deviance. Four statistical packages: SAS©, RO WinBugs© and GenStat©
are illustrated. SAS®, and R© give similar results in all the four models since
the general fitting criterion (maximum likelihood) is the same and only details of
numerical implementation are different. In fact, the deviances are in good agree-
ment between SAS©, RO and GenStat©. All the four methods (SAS®, R©,
WinBugs© and GenStat©) indicate that IUI is more effective than 71, and
that couples undergoing IUI have nearly four times higher odds of conception

than couples undergoing T'1.

4.2 Example 11

The following data are from (24]) based on a randomized crossover trial to in-
vestigate whether the combination of intrauterine insemination (/UI) and ovar-
ian stimulation improves the probability of conception in couples with male-
subfertility. Seventy-four couples with subfertility possibly related to male sub-
fertility were randomized to either group 1 or group 2. Couples randomized to
group 1 were treated with intrauterine insemination (IUI) in a natural cycle,
while couples randomized to group 2 were given a combination of intrauterine
insemination (IUI) and ovarian stimulation. This treatment was then alternated
according to a crossover design, with each couple receiving at most six treatment

cycles.
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Table shows the pregnancy rate per completed /U1 cycle and the number
of drop-outs before starting a new treatment cycle. Altogether, nine patients
dropped out before completing six cycles for reasons other than pregnancy and
thirty-four couples conceived. Twenty-one couples conceived under simulated

cycles, and thirteen couples conceived under natural cycle.

Cyele no. Hanaral cyclas Staoulated cyelas
No. of cyeles? Premmancies (%e) No. of cyclas? Pregnancies (%a) Ma. of drop-outs

1 18 (&Y 4 (1.5 36 (36 RN 0

2 32031 2{63) 323 5 (15.6) 0

3 26 (% & (2313 26 (300 575 1

4 25015 H 19.(21) 2105y 2

5 1507 1{6T) 2.0 3136 4

6 19.(1%) H 15.(13) 3 (200 2

Total after

6 cycles 155 (161) 15 (84 153 {159 21 (137 9

M =haes in naremthears are menher of sinted cveles

Table 4.15. Pregnancy rate per completed IUI cycle and number of drop-outs
for reasons other than pregnancy before starting a new treatment cycle

To analyze these data, we first consider a scenario where the investigator
believes that there is period effect. We fit the model with treatment and period
effects, while regarding period as a factor. Thus the probability that couple i,7 =
{1,2,...,74} in group k,k = {1,2}, conceives under period j,j = {1,2,3,4,5,6}
is

V(ij)k

—_— 4.2
1+ Yaje (4.2)

P@jk =

where as usual v; is the random couple effect, assumed to be distributed in the
population as N(0,0?), and ¢;j)x = exp(intercept+[fitreatment ;j,+Gaperiods+

Baperiods + Byperiody + Psperiods + Geperiods + v;)

We store the data set from Table {15 in the F' :drive under the file name
cohlendata.txt. The file consists of ten columns labelled group, patient, pe-

riod, period2, period3 period4 period5 period6 treatment response. The variable
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PERIOD indicates the period number which can be either 1,2,3,4,5 or 6. The
variable PERIODy, (k = 2,3,4,5,6) takes the value 1 if the variable PERIOD
is k, otherwise it takes the value —1. The variable TREATMENT is —1 for
IUT in natural cycle and 1 for /U1 in stimulated cycle. The variables GROUP,
PATIENT and RESPONSE are as defined previously. This stored file will be

used in SAS® and RO analysis.

4.2.1 Analysis using SAS®©

The following SAS® code will import the data set cohlendata and sort it by

patient.

proc import datafile="F:\cohlendata.txt”
out=cohlen

dbms=TAB

replace;

run;

proc sort data=cohlen;

by patient;

run;

The following PROC NLMIXED invocation fits the model involving period

effects and treat period as a factor. The proportion of couples conceived under

natural cycles is % ~ 0.084 and the proportion of couples conceived under
stimulated cycles is % ~ 0.137. A reasonable starting value for the intercept
will be:

log( 18'(()).%;4) ~ =2
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While a reasonable starting value for betal will be:

10g(1%.§27) - log(lg‘g_%;) ~ 1

For other parameters, we will use the default value which is 1.

proc nlmixed data=cohlen;
parms intercept=-2 betal=0.3 beta2=1 beta3=1 betad=1 betab5=1
beta6=1 sigma=1;
sigma2=sigma**2;
preg=intercept + betal*treatment + beta2*period2 + beta3*period3
+ betad4*period4 + beta5*period5 + beta6*period6 + u;
ppreg=exp(preg)/(1+exp(preg));
model response~binomial(1,ppreg);
random u~normal(0,sigma2) subject=patient;

run;

The output for the parameter estimates and their 95% confidence interval are

as shown in Table [4.16]
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Fit Statiztics

=2 Log Likel ihood 207 .8
AIC (=maller is better) 223.8
AICC (smaller is better) 224.3
BIC (=maller iz better) 242.2

Parameter Ezstimates

Standard
Parameter Estinate Error OF t ¥Yalue Pr » It] Alpha Lower Upper
intercept  =3.0963 0. T8RS 73 =-3.94 0. 0002 0.05 =-4.6637 =1.5283
betal 0.6410 0.4164 73 1.54 0.1280 0.05 =0.1383 1.4708
beta? 02015 0. 6260 73 0.32 0.7485 0.05  -1.0462 1.4491
betad 1.1611 0.7188 [t 1.62 0.1106 0.0 =0.2716 2.593r
betad =0 . 4040 0.9893 73 -0.41 0.6842 g.05 -2.3756 1.5676
betas 0. 5650 0. 9300 73 0.61 0.5454 0.05 =1.2885 2.4185
betab 0.5622 1.0234 [k 0.55 0.5844 0.05 =1.4773 2.6013
signa 1.1625% 0. 6897 Fiet 1.69 0.0962 0.05 -0.2121 2.50371

Table 4.16. Fit statistics and parameter estimates for the model with treatment
and period (treating period as a factor).

Next we fit the model with period effects only (period as a factor). The follow-
ing PROC NLMIXED invocation fits the model involving period effect only.
proc nlmixed data=cohlen;
parms intercept=-2 beta2=1 beta3=1 beta4d=1 beta5=1 beta6=1 sigma
sigma2=sigma**2;
preg—=intercept + beta2*period2 + beta3*period3 + betad*period4 +
beta5*period5 + beta6*period6 + u;
ppreg=exp(preg)/(1+exp(preg));
model response~binomial(1,ppreg);
random u~normal(0,sigma2) subject=patient;

run;

The output in Table below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.

Gradient

0. 000306
0. 000067
=0.00003
0. 000166
0. 000073
0. 000066
=0.00002
0. 000017

::1;
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Fit Statistics

=2 Log Likelihood 210.3
AIC (smaller is better) 224.3
AICC (=maller is better) 224.7
BIC (smaller is better) 240.5

Parameter Estimates

Standard
Parameter Estimate Error ODF t VYalue Pr » it] Alpha Lower Upper
intercept  -2.6559 0.7003 [ =-3.79 0.0003 0.05 =4.0516 ~-1.2602
beta? a.2321 0.6184 7 0.38 0. 7085 .05 =1.0003 1.4646
betad 1.0816 0.6978 73 1.55 0.1255 0.05 =0.3091 2.4722
betad =0.4697 0.9887 [ =0.47 0.6365 .05 =2.4422 1.5028
betab 0.4984 0.9157 Fa 0.54 0.5879 0.05 -1.3266 2.3233
betab 0.4360 1.0207 i 0.43 0.6705 0.05 =1.5983 2.4704
signa 1.0064 0.7236 [ 1.29 0. 1685 .05  -0.4357 2.4485

Table 4.17. Fit statistics and parameter estimates for the model with period
effects only

If we take the difference in —2log L for the saturated model (model with treat-
ment and period effects, period treated as a factor) and the reduced model (model
involving period effects only ), 210.3 — 207.8 = 2.5, we get the log likelihood ra-
tio test for the treatment effects. Since the difference is 2.5 with 1 degrees of
freedom, the p-value is 0.11385. This test shows that at 5% level of significance,
the treatment effect is not statistically significant. Our conclusion is not different
from (24)); we found no statistically significant difference between the use of 1U[

in a natural cycle and the use of IU I in stimulated cycle.

We again consider a scenario where the investigator believes that there is
period effect, but here unlike in the previous analysis, we regard period as hav-
ing linear effect. The following PROC NLMIXED invocation fits the model

involving treatment and period effects (linear effect).

proc nlmixed data=cohlen;
parms intercept=-2 betal=0.3 beta2=1 sigma=1;

sigma2=sigma**2;

Gradient

0. 000044
=0. 00002
0. 000011
0000017

5.53E-6
=5.62E-T
0.000014
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preg—intercept + betal*treatment + beta2*period2 + u;

ppreg=exp(preg)/(1+exp(preg));

model response~binomial(1,ppreg);

random u~normal(0,sigma2) subject=patient;

run;

The output in Table displays the parameter estimates and their 95%

confidence interval for above PROC NLMIXED procedure.

Parameter Estimate

intercept  -2.8033

betal 0.59%4
beta2 0.06189
sigma 1.0047

Table 4.18. Fit statistics and parameter estimates for the model with treatment

Fit Statiztics

-2 Log Likel ihood
#IC (=maller i= better)
#ICC (smaller is better)
BIC (=maller is better)

Standard
Error

0.7559
0.3923
0.1704
0.6442

Parameter Estimates

DF t Yalue
73 =-3.71
i3 1.53
i3 0.36
i3 1.56

Pr » Itl

0.0004
0.1308
0.717%
0.1232

and period effect (period having a linear effect).

Next we fit the model with period effects only (period having a linear effect).

The following PROC NLMIXED invocation fits the model involving period

effect only (period having a linear effect).

proc nlmixed data=cohlen;

parms intercept=-2 beta2=1 sigma=1;

sigma2=sigma**2;

preg—intercept + beta2*period + u;

213.
221.
221.
231.

filpha

0.05
0.05
0.05
0.05

L= -N--R--]

Lower

-4.,3098
=0.1824
-0. 2778
=0.27M
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Upper

-1.29363
1.3813
0.4016
2.2886

Gradient

1.748E-6
-1.66E-f
0.000015
-1.25E-6
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ppreg=exp(preg)/(14exp(preg));

model response~binomial(1,ppreg);
random u~normal(0,sigma2) subject=patient;

run;

The output in Table below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.

Fit Statistics

-2 Log Likelihood 216.2

fIC (smaller is better) 2ee.?

AICC (=maller is better) 222.3

BIC (smaller is better) 229.2

Parameter Eztimates
Standard

Parameter Eztimate Error DF t Value Pr » it] #lpha Lower Upper Gradient
intercept =2.4201 0.6955 73 =3.48 0.0009 0.05 =3.8062 =1.0340  0.00008
beta? 0.05080 0.1706 73 0.30 0.7668 0.05 -0.28393 0.3909 0.000357
signa 0.9259 0.6703 73 1.38 0.1714 0.05  -0.4099 2.2617 ~7.8B1E-7

Table 4.19. Fit statistics and parameter estimates for the model with period
effects only

If we take the difference in —2log L for the saturated model (model with
treatment and period effects, period treated having linear effect) and the reduced
model (model involving period effects only ), 216.2 — 213.8 = 2.4, we get the log
likelihood ratio test for the treatment effects. Since the difference is 2.4 with 1
degrees of freedom, the p-value is 0.12134. This test shows that at 5% level of
significance, the treatment effect is not statistically significant. Our conclusion
is not different from (24)); we found no statistically significant difference between

the use of IU[ in a natural cycle and the use of IUI in stimulated cycle.

Now we assume that there is no period effect. The following PROC NLMIXED



4.2. EXAMPLE I1 148

invocation fits the model involving treatment only.

proc nlmixed data=cohlen;
parms intercept=-2 betal=0.3 sigma=1;
sigma2=sigma**2;
preg=intercept + betal*treatment + u;
ppreg=exp(preg)/(1+exp(preg));
model outcome ~binomial(1,ppreg);
random u ~normal(0,sigma2) subject=patient;

run;

The output in Table below displays the fit statistics, the parameter esti-

mates and their 95% confidence interval.

Fit Statistics

=? Log Likelihood £13.9
AIC (smaller is better) 213.9
AICC (=naller is better) 220.0
BIC (smaller is better) 276.8

Parameter Eztimates

Standard
Parameter Estimate Error DF t Yalue Pr » it filpha Lower Upper Gradient
intercept  =2.5641 0. 3580 7a =7.16 C.0001 0.05 =3.277% =1.8506 3.097E-B
betal 0.5862 0. 3860 Ta 1.52 0.1332 0.05  -0.1831 1.3556 =7.34E-T
signa 0.8254 0.5281 7a 1.56 0.1224 0.05 -0_2371 1.8779 &.7B5E-9

Table 4.20. Fit statistics and parameter estimates for the reduced model

The null model that excludes both the treatment effect and the period effects is

fit next. The following PROC NLMIXED invocation fits the reduced model.

proc nlmixed data=cohlendata;

parms beta0=-1 sigma=1;
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sigma2=sigma**2;

preg=betal 4 u;
ppreg=exp(preg)/(1+exp(preg));

model outcome ~binomial(1,ppreg);

random u~normal(0,sigma2) subject=patient;

run;

The output in Table displays the model fit statistics for the null model. If
we take the difference in —2log L for the null and reduced models, 216.3—213.9 =

2.4, we get the log likelihood ratio test for the treatment effects.

Fit Statistics

=2 Log Likel ihood 216.3

AIC (smaller is better) 220.3

AICC (smaller is better) 220.4

BIC (=maller i=s better) 224 .9

Parameter Estimates
Standard

Paraneter Estimate Error DF t Value Pr > (ti filpha Lower pper Gradient
intercept  -2.2277 0.2548 73 -B.74 <0001 0.05 =2.7357 -1.7198 o.000112
=igma 0.7663 0.5540 73 1.38 0.1708 0.05 =0.3378 1.870% 0.000014

Table 4.21. Maximum likelihood estimates for the null model

The p-value is 0.12134. At 5% significance level we fail to reject the hypothesis
that the null model is as good as the model involving treatment. Therefore, at
the 5% level of significance, the null model provides an adequate fit to the data.
The treatment effect is not influential. Our conclusion is not different from (24);
we found no statistically significant difference between the use of U in a natural

cycle and the use of IUI in stimulated cycle.
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4.2.2 Analysis using R©

Similarly, in R© software, the following statement will import the data set

once it is saved to, say, the F': drive as it is in our case.

> cohlen <- read.table(”F:/cohlendata.txt”, header=T)

Once the data is read into the R© data set cohlen, we can use it to perform any
analysis in R©. The following code will fit in R©, the model involving treatment

and period effects (period treated as factors).

> fit <- lmer(response~treatment+period2+period3+period4+period5
+period6+-(1|patient),family=binomial,data=cohlen)

> fit

The output for the parameter estimates and their p-values are as shown in Table

4. 221
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e -

Genexalized linear mixed model fit by the Laplace approximation
Formmla: response ~ betal 4+ beta? + betal3 4+ betad + betaS + betag + (1
Data: cohlen
ATC BEIC logLik deviance

223.8 253.9 -10%.9 207.8
Random effects:
Groups Name Variance Std.Dev.

patient (Intercept) 1.3515 1.1625
Number of obs: 320, groups: patient, 74

Fized effects:
Estimate 5td. Error z value Pr(>|=z])

(Intercept) —-3.09&3 0.5264 --5.882 4.04e-09 www
betal 0.6410 0.4264 1.503 0.1327
betaZ 0.2015 0.6423 D.314 0.7538
beta3 1.16113 0.5841 1.988 0.0468 *
betad -0.4040 0.8459 -0.427 0.66596
betas 0.5650 0.7516 0.752 0.4522
betas 0.5621 0.8254 0.678 0.4979

Table 4.22. Imer analysis for the model with treatment and period effects, where
period is regarded as a factor

Next we fit the reduced model with only period effects. The following code
will fit in R©, the model involving period effects only (period regarded as a fac-

tor).

> fit <- lmer(response~period2+period3+period4+period5+period6
+(1|patient),family=binomial,data=cohlen)

> fit

pat
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The output for the parameter estimates and their p-values are as shown in

Table [4.23

Generalized linear mixed model fit by the Laplace approxXimation

Formula: response ~ beta2 + betad + beta4 + betaS + betat + (1 | patient)
Data: cohlen
AIC BIC logLik deviance

224 .3 350 -7 =185.2 218.3
Random effects:
Groups Name Variance Std.Dev.

patient (Intercept) 1.0128%8 1.0064
Humber of obs: 320, groups: patient, 74

Fixed effects:
Estimate 5td. Error z value Pr{>|z])

(Intercept}) -2.8559 B.45668 —=3.816 G.HTe-—09
betaZ 0.2321 0.6228 H.373 0.7093
beta3 1.0816 0.5714 1.883 0.0584 .
beta4 -0.4&687 0.89238 -0.508 0.6111
betas B.4584 0.7338 0.679 0.4870
betao 0.4359 0.8066 0.540 0.5889

Table 4.23. Imer analysis for the model with period effects only, where period
is regarded as a factor

The difference in —2log L for the model with treatment and period effects
and the reduced model involving period effects only is 210.3 — 207.8 = 2.5. The
p-value is 0.11385. This test shows that the model with period effects only pro-
vides a better fit than the model with treatment and period effects, when period
is included as a factor. Therefore, at the 5% level of significance, treatment is
not statistically significant. Our conclusion is not different from (24)); we found
no statistically significant difference between the use of IUI in a natural cycle
and the use of IU/ in stimulated cycle.

We again fit the model with treatment and period effects, but here, period is
regarded as having a linear effect. The following code will fit in R©, the model

involving treatment and period effects (period having a linear effect).
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> fit <- lmer(response~treatment+period+(1|patient),family=binomial,
data=cohlen)

> fit

The output for the parameter estimates and their p-values are as shown be-

low in Table .24l

Generalized linear mixed model fit by the Laplace approximation
Formmla: response ~ betal + betaZ2 + (1 | patient)

Data: cohlen

ATC BIC logLik deviance

221.8 236.9 -106.9 213.8
Random effects:
Groups Name Variance Std.Dewv.

patient (Intercept) 1.0085 1.0047
Humber of obs: 320, groups: patient, 74

Fized effects:
Estimate 5td. Error z wvalue Pr(>|z])

(Intercept) -2.80334 D:48501 ~=5086d 1o40e=08 Ak
betal 0.555945 0.408930 1.465 0.143
beta2 0.06188 0.12500 0.485 0.621

Table 4.24. Imer analysis for the saturated model, period having linear effect

Next we fit the reduced model with only period effects. The following code
will fit in R©, the model involving period effects only (period regarded as having

a linear effect).

> fit <- Imer(response~period+(1|patient),family=binomial,data=cohlen)

> fit
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The output for the parameter estimates and their p-values are as shown in

Table [£.251

Generalized linear mixed model fit by the Laplace approximation
Formmla: response ~ betaz + (1 | patient)

Data: cohlen

ATC BEIC loglLik deviance

222.2 °233.5 -108.1 216.2
Random effects:
Groups Name Variance S5td.Dev.

patient (Intercept) 0.85729 0.9259
Humber of obs: 320, groups: patient, 74

Fixed effects:
Estimate S5td. Error z value Pr(>|=z]|)

(Intercept) -2.42013 0.42430 -5.704 1.1T7e-08 ***
beta?2 0.05078 0.12381. 0.413 0.679

Table 4.25. Imer analysis for the model with period effects only, where period
is regarded as having linear effecct

The difference in —21log L for the model with treatment and period effects and
the reduced model involving period effects only is 216.2 — 213.8 = 2.4. The p-
value is 0.12134. This test shows that the model with period effects only provides
a better fit than the model with treatment and period effects, when period is
included as having a linear effect. Therefore, at the 5% level of significance,
treatment is not statistically significant. Our conclusion is not different from
(24); we found no statistically significant difference between the use of IUI in a

natural cycle and the use of IUI in stimulated cycle.

We next assume that there is no period effects, and begin by fitting a model
with treatment only. The following code will fit in R©, the model involving treat-

ment only (excludes period effects).

> fit <- Imer(response~treatment+(1|patient),family=binomial,data=cohlen)
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> fit

The output for the parameter estimates and their p-values are as shown in Table

[4.26] below.

Generalized linear mixed model fit by the Laplace approximation
Formula: response ~ betal + (1 | patient)

Data: cohlen

ATC BIC logLik deviance

219.5 231.2 -107.0 213.9
Random effects:
Groups. Name Variance 5td.Dew.

patient (Intercept) 0.68113 0.8253
Humber of obs: 320, groups: patient, 74

Fizxed effects:
Eztimate 5td. Error z value Pr(>|z])

(Intercept) -2.56840 0.3281 -T7.815 5.51e-15 www*
betal 0.5862 0.4009 1.462 0.1494

Table 4.26. lmer analysis for the reduced model

We now fit the null model, involving no treatment. The following R© will fit the

null model.

> fit <- lmer(response~ (1|patient),family=binomial,data=data.1)

> fit

The output for the parameter estimates and their p-values for the null model

are as shown in Table £.27

If we take the difference in —21log L for the model involving treatment and the
null model, 216.3 — 213.9, we get the log likelihood ratio test for the treatment
effects. Since the difference is 2.4 with 1 degrees of freedom, the p-value is 0.1213.
Therefore, at the 5% level of significance, the null model provides an adequate

fit to the data. The treatment effect is not influential. Our conclusion is not
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Generalized linear mixed model fit by the Laplace approximation
Formula: response ~ (1 | patient)

Data: cohlen

ATC BIC logLik deviance

220.3 227.9 -108.2 216.3
Random effects:
Groups Name Variance 5td.Dev.

patient (Intercept) 0.58709 0.76621
Humber of obs: 320, groups: patient, 74

Fixed effects=:

Eztimate 5td. Error z wvalue Pr(>|z])
(Intercept) -2.2278 0.2142 -10.40 «2a-1p Wk

Table 4.27. lmer analysis for the null model

different from (24)); we found no statistically significant difference between the

use of IUT in a natural cycle and the use of IUI in stimulated cycle.

4.2.3 Analysis using WinBugs®©

The following WinBugs®© code will specify the saturated model (model with
treatment and period effects, period as a factor), the data to be used and the

initial values for the M CMC' sampler.

model{

for(iin1: N1) {

outcomelli] ~ dbern(plli])

logit(plli]) < —intercept + betal * treatmentl[i] + beta2 x period2[i| + beta3 *
period3|i] + betad * periodd[i] 4+ beta’ * period5[i] + betab x period6li] + vl[i]

b[i] ~ dnorm(0, tau)

}

for(iin 1 : N2 ){

outcome2[i| ~ dbern(p2li])



4.2. EXAMPLE I1 157

logit(p2[i]) < —intercept + betal * treatment2[i] + beta2 x period22[i] + beta3 *
period3|i] 4+ beta4 x periodA[i] + betab x period5|i] + betab * period6[i] + v|i]

¥

for(iin 1 : N3 ){

outcome3|i| ~ dbern(p3]i])

logit(p3[i]) < —intercept + betal * treatment3[i| + beta2 x period2[i| + beta3 *
period33[i| + betad x periodd[i] + betab x period5i] + betab * period6[i] + v|i]

h

for(iin 1: N4 ){

outcomed[i| ~ dbern(pli])

logit(pAli]) < —intercept + betal * treatmentd[i| + beta2 x period2[i| + beta3 *
period3[i] + betad * periodd4[i] + betab x period5|i] + betab * period6[i] + v|i]

h

or(iin1: N5 ){

outcomebli| ~ dbern(p5li])

logit(pbli]) < —intercept + betal x treatment5i] + beta2 * period2[i] + beta3 *
period3[i] + betad x periodd[i] + betab *x periodb5[i| + betab * period6[i] + v]i]

}

for(iin 1 : N6 ){

outcomebli] ~ dbern(p6|i])

logit(p6li]) < —intercept + betal * treatment6[i| + beta2 x period2[i| + beta3 *
period3[i] + betad x periodd[i] + betab x periodb[i] + betab * period66[i] + v|i]

}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

betal ~ dnorm(0,1.0E — 3)

beta2 ~ dnorm(0,1.0FE — 3)
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beta3 ~ dnorm(0,1.0E — 3)
betad ~ dnorm(0,1.0E — 3)
betab ~ dnorm(0,1.0E — 3)
betab ~ dnorm(0,1.0E — 3)
tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }

list(outcomel=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
07 0 70 707 07 07 0 70 707 07 0 707 07 07 07 07 07 07 0 707 07 07 07 07 O 70 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

treatment1=¢(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

period2=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 0, 0, 0, 0, 0, O
70 707 07 07 0 70 ?07 07 0 707 07 07 07 07 07 07 0 707 07 07 07 07 0 70 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period3=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O
70 707 0’ 07 0 ’O 707 07 O 707 07 O’ 07 07 07 O? 0 ’07 O? 07 07 07 0 ’0 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

periodd=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

70 707 07 O) 0 70 707 07 0 707 07 07 O? 07 07 O? 0 707 O? 07 07 O? 0 70 707 07 07
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period5=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, O, 0, 0, 0, 0, 0, 0, O
70 707 07 07 0 70 707 07 0 707 07 Oa 07 07 Oa 07 0 707 07 07 Oa 07 0 70 707 07 Oa

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period6=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O
70 707 O’ 07 0 ’O 707 07 O 707 07 O’ 07 07 07 07 0 ’07 07 07 07 07 0 ’O 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,,000,,,0,0.,,0,0,0, 0,000,000 0,0,0,0.,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

period22=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

11,11,1,11,11,1,1.1,1,1,1,1.1,1,1,1,1,1,1,1,1,1.1,1,1,1),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0 ,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0 ) ,

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,1,
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0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0),

period33=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

ITITI I

outcomed =c( 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
707 07 0 707 07 07 07 07 07 07 0 707 07 07 07 ]‘7 170707070) )

treatmentd=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,
0,0,1,0,1,1,1,1,0,0),

periodd4=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

Li11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

b et A il bkt kb e A e e e e ke ke e ke e e e ke A e e e A |

outcome5 =¢(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,

0.,0,0,0,0,0,0,0,0,1, 1, 1, 1,0,0) ,

treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,
1717071)7

periodb5=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

ITITITITITITITITITITYI T ) T I T Y T ) T ) T ) T ) T T ) T ) T ) T T y T T) T )Ty

17171717171717]‘7]‘7]‘7]‘7]'7]'7]'7]'71717171717171717]‘7]‘7]‘7]‘7]‘7]'7]')7

outcome6 =c¢(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0, 0, 0,0 ,0,
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0,0,0,0,0,0,1,1,1),

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

period66=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1L11111111,1111,11.11,11,1,1, 11,111,111, 1,1,

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=20,betal=20,beta2=20,beta3=20,betad=40,beta5=40,beta6=40,
tau=3,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0
,0, 0, 0, 0,0 ,0, 0, 0,0, O, O, 0, 0,0, 0, 0,0, 0, 0, 0, 0, 0,0,0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,betal=0.3,beta2=0.3,beta3=0.3,betad=0.3,beta5=0.3,beta6=0.3,
tau=1, b=c¢(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))

As before, the data have to be sorted in such a way that for any couple ¢ that
leaves the study before couple 7, then couple 7 is listed after we have listed couple
7. For example, we have 31 couples that did not conceive but completed the
study. So these couples have to be listed first, followed by those who leaves the
study on the second period, followed by those who leaves the study on the third

period, followed by those who leave the study on the fourth period, followed by
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those who leave the study on the fifth period and followed by those who leave

the study on the sixth period.

We checked convergence for the intercept, betal, beta2, beta3, betad, betab,
betab and sigma. We look for evidence of when the simulation appears to have
stabilized by examining the plots of the sample values versus iterations. We ran
20000 simulations. Fig [4.2] and [4.4] show the plots of the intercept, betal,

beta2, beta3, betad, betadb, betab and sigma.



4.2. EXAMPLE I1 163

inercegt chang 1:2
25
0ot
257
Aar
st

T T T T
i S0 10007 13000 20000

hetad chaing 1:2
EOF

20F
no0r
-20F

T T T
i 5000 10000 15000 20000
fleration

et chains 1:2
20
10
on
A0
20

T
1 2000 10000 13000 20000

Figure 4.2. Plots of the intercept, betal and beta2
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Figure 4.3. Plots of beta3, betad and betab
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Figure 4.4. Plots of beta6 and sigma

Convergence seems reasonable in all plots except the plots of sigma. We
further ran 30000 simulations and obtained our summary statistics based on those
30000 simulations. Below in table are summary statistics for the monitored

parameters based on 30000 samples.
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IDI::rar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic

166

nodes
Dbar Dhat pD DIC
outcome? 48.493 47290 1.202 43,695
outcome2 44,971 43769 1.202 45.173
outcome3  58.408 58,101 1.307 B80.715
outcomed  16.536 15.527 1.009 17.545
outcomeS 26,644 25548 1.096 27739
outcomeS  19.791 18719 1.073 20.864
total 215,842 208.954 5.888 222730
node mean sd MC error | 2.5% median | 97.5% | start | sample
intercept | -2.689 | 1.134 0.04205 -3.681 -2.624 -1.777 |1 20001 | 60000
betal 0.5623 | 0.4602 | 0.003158 | -0.1841 0.5595 1.333 | 20001 | 60000
beta2 0.1437 | 1.165 0.04076 -1.053 0.1063 1.285 | 20001 | 60000
beta3 0.8559 | 1.144 0.04085 -0.2198 0.8078 1.924 | 20001 | 60000
beta4 -0.9695 | 1.363 0.04105 -3.013 -0.944 0.6459 | 20001 | 60000
betab 0.01375 | 1.23 0.04089 -1.46 -0.007876 | 1.332 | 20001 | 60000
betab -0.1031 | 1.274 0.04084 -1.757 -0.1111 1.334 | 20001 | 60000
sigma 0.02282 | 0.1039 | 0.005071 | 0.005215 | 0.01216 | 0.05638 | 20001 | 60000

Table 4.28. Parameter estimates and their standard errors

Next we fit the reduced model with period effects only. The WinBugs®© code

that specify the model with period effects only (period as a factor), the data to

be used and the initial values for the M CMC' sampler can be seen in appendix

B.1.

Convergence was reached after 20000 simulations for all the parameters

except sigma. Fig shows the plots of the intercept, beta2, beta3 and betad

and fig shows the plot of betab, beta6 and sigma. Convergence is satisfied in

all except sigma.

We simulated extra 30000 samples. Below in tabld4.29| are summary statistics

for the monitored parameters based on 30000 samples.
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Dbar Dhat pD c

outcome 47.032 45174 1.858 48.851

outcomez2 45614 44 000 1.615 47 225

outcome3  57.441 55.663 1779 59 220

outcomed 17.471 16.387 1.084 18.555

outcomes 26.913 256598 1.216 28125

outcomes 21252 20.110 1.142 22304

total 215724 207.031 8.693 224817
node mean sd MC error | 2.5% | median | 97.5% | start | sample
intercept | -2.373 | 0.6922 | 0.02372 | -3.265 -2.31 | -1.582 | 20001 | 60000
beta?2 0.1311 | 0.6217 | 0.009971 | -1.022 | 0.1182 | 1.321 | 20001 | 60000
beta3 0.853 | 0.6943 | 0.01909 | -0.2049 | 0.8155 | 1.968 | 20001 | 60000
betad | -0.9836 | 1.051 | 0.02183 -3.03 | -0.9497 | 0.6885 | 20001 | 60000
beta5 | 0.06441 | 0.9146 | 0.02554 | -1.395 | 0.04094 | 1.42 | 20001 | 60000
betab -0.1095 | 1.022 | 0.02858 | -1.787 | -0.1226 | 1.362 | 20001 | 60000
sigma 0.1067 | 0.5695 | 0.02415 | 0.01666 | 0.03892 | 0.2947 | 20001 | 60000

Table 4.29. Parameter estimates and their standard errors

The DIC for the saturated model with treatment and period effects is 222.730,
while the DIC for the model with period effects only is 224.417. Using the DIC,
the preferred model is the model with treatment and period effect. The treatment
effect estimate is 0.5623 with 95% confidence interval of 0.5623 4-1.96 % 0.04602 =
(—0.339692, 1.464292). The confidence interval clearly show that at 5% level of

significance the treatment effect is not statistically significant.

Next we consider a scenario where period has a linear effect. The WinBugs©
code that specify the model with treatment and period effects, period regarded
as having linear effect), the data to be used and the initial values for the MCMC
sampler can be seen in appendix B.2. We checked convergence for the intercept,
betal, beta2 and sigma. We look for evidence of when the simulation appears to
have stabilized by examining the plots of the sample values versus iterations. We
ran 20000 simulations. Fig shows the plots for the intercept, betal, beta2 and

sigma.

We

Convergence seems reasonable in all plots except the plots of sigma.
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further ran 30000 simulations and obtained our summary statistics based on those

30000 simulations. Table [4.30] shows the summary statistics for the monitored

parameters based on 30000 samples.

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes

Dbar Dhat pD DIC
outcome1 43317 47.443 0.874 49,191
outcome?  44.220 43,690 0.529 44749
outcomed 62171 61784 0.387 62558
outcomed  17.545 17.202 0.345 17.891
outcomes 25.899 25463 0431 26,331
outcome  19.124 18,603 0.521 19,645
total 217.278 214.191 3.088 220.366
node mean sd MC error 2.5% median | 97.5% | start | sample
intercept | -2.346 0.4473 | 0.004265 -3.252 -2.334 | -1.506 | 20001 | 60000
betal 0.5648 0.379 0.002269 | -0.1673 | 0.5607 1.325 | 20001 | 60000
beta2 | -0.04505 | 0.1132 | 9.798E-4 | -0.2714 | -0.0438 | 0.1738 | 20001 | 60000
sigma | 0.02064 | 0.06817 | 0.002607 | 0.005295 | 0.01268 | 0.06604 | 20001 | 60000

Table 4.30. Parameter estimates and their standard errors

Next we fit the reduced model with period effects only. The WinBugs®© code that
specify the random effects model with the main effect being period effects only
(period having linear effect) is listed in appendix B.3. We checked convergence
for the intercept, beta2 and sigma. We look for evidence of when the simulation
appears to have stabilized by examining the plots of the sample values versus
iterations. We ran 20000 simulations. Fig shows the plots for the intercept,
beta2 and sigma. Convergence seems reasonable in all plots except the plots of

sigma.

We further ran 30000 simulations and obtained our summary statistics based
on those 30000 simulations. Table [£.31] shows the summary statistics for the

monitored parameters based on 30000 samples.

The DIC for the model with period effects only is 220.797 while the DIC for
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Dbar Dhat pD DIC
outcome 47.098 46.325 0.773 47.871
outcome2 45.094 44 678 0.417 45511
outcomed  60.432 60.146 0.286 60.718
outcomed 18.631 18.368 0.263 18.895
outcomes 26273 25919 0.354 26,628
outcome§  20.702 20.229 0.473 21175
total 218.231 215,664 2567 220797
node mean sd MC error | 2.5% median | 97.5% | start | sample
intercept | -2.032 | 0.4117 | 0.006148 | -2.813 -2.018 -1.3 20001 | 60000
beta2 -0.0427 | 0.1175 | 0.001435 | -0.2699 | -0.04221 | 0.1786 | 20001 | 60000
sigma 0.05966 | 0.1595 | 0.005895 | 0.01634 | 0.03771 | 0.1924 | 20001 | 60000

Table 4.31. Parameter estimates and their standard errors

the model with treatment and period effects is 220.366 respectively. The pre-
ferred model is the model with treatment and period effects. The treatment
effect estimate is 0.5648 with 95% confidence interval of 0.5648 + 1.96 % 0.379 =
(—0.17804, 1.30764). The confidence interval show that, at the 5% level of signif-

icance, the treatment effect is not influential.

Next we assume that there is no period effect and fit the reduced model with
treatment only. The WinBugs© code that specify the random effects model with
the main effect being treatment only, the data to be used and the initial values
for the MC'MC sampler is in appendix B.4. We first ran 20000 simulation and
we checked convergence for the intercept, betal and sigma. We look for evidence
of when the simulation appears to have stabilized by examining the plots of the
sample values versus iterations. Fig[B.5shows the plots of the intercept, betal and
sigma. The plots of the intercept and betal show chains for which convergence
look reasonable. The plot of sigma shows chains which have clearly not reached

convergence.

We simulated extra 30000 samples, and table shows the summary statis-

tics for the monitored parameters based on 30000 samples.
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IIZII:Malr = post.mean of -2loglL; Dhat = -2LoglL at post.mean of stochastic nodes
Dbar Dhat pD C
outcome 45.303 43787 2516 43.318
outcomez2 42 937 40,5486 2.001 45.028
outcomed 39.932 50.242 1.680 61.622
gutcomed 17.197 15.984 1.212 18.40%8
outcomes 25.0086 23.923 1.083 26.089
outcomes 18.305 17.430 0.876 19.181
total 209.679 200,212 5 463 215147
node mean sd MC error | 2.5% | median | 97.5% | start | sample
intercept | -2.526 | 0.3312 | 0.004076 | -3.242 | -2.503 | -1.938 | 20001 | 60000
betal 0.5855 | 0.3886 | 0.002685 | -0.1647 | 0.5803 | 1.363 | 20001 | 60000
sigma 0.3802 | 0.4606 | 0.01663 | 0.00994 | 0.172 1.609 | 20001 | 60000

Table 4.32. Parameter estimates and their standard errors

Final we fit the null model excluding both treatment and period effects. The

WinBugs®© code that specify the null model, the data to be used and the initial

values for the MC'MC sampler is in appendix B.5. We checked convergence for

the intercept and sigma. We look for evidence of when the simulation appears to

have stabilized by examining the plots of the sample values versus iterations. We

ran 20000 simulations. Fig shows the plots for the intercept and sigma. The

plots of the intercept show chains for which convergence look reasonable. The

plot of sigma shows chains which have clearly not reached convergence.

We simulated extra 30000 samples, and table shows the summary statis-

tics for the monitored parameters based on 30000 samples.




4.2. EXAMPLE I1

Dbar = post.mean of -ZlogL; Dhat = -2ZLogL at post.mean of stochastic nodes

171

Dbar Dhat pD DIC
outcome1 45.404 43272 2132 47.537
outcome2  43.354 42,142 4722 45585
outcome3  58.473 57.062 1.416 59.894
outcomed  18.340 17.314 1.027 19.367
outcomeS  25.485 24582 0.383 26.348
outcomes  19.971 19.223 0.748 20718
total 211522 203.594 7.928 219.450
node mean | sd | MC error | 2.5% | median | 97.5% | start | sample
intercept | -2.187 | 0.217 | 0.002857 -2.658 -2.171 | -1.807 | 20001 | 60000
sigma 0.3605 | 0.434 | 0.01587 | 0.009994 | 0.1653 | 1.513 | 20001 | 60000

Table 4.33. Parameter estimates and their standard errors

The DIC for the model with treatment only is 219.147 and the DIC for the null

model is 219.450 respectively. The preferred model is the model with treatment

only. The treatment effect estimate is 0.5855 with 95% confidence interval of

0.5855 £ 1.96 * 0.3886 = (—0.176156,1.347156). The confidence interval show

that, at the 5% level of significance, the treatment effect is not influential.

4.2.4 Analysis using GenStat©

The following GenStat© will read data in five columns and fit the hierarchical

model involving treatment and period effects (period regarded as a factor);

FACTOR Group, Patient, Period, Treatment

READ [SETNVALUES=yes; SETLEVELS=yes| Group,Patient,Period,

Treatment,Response;\

FREP=2(levels),labels,*

11101
12101

13101

.....

.....
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272600

273600

27460 0:

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit| Treat-
ment + Period

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter estimates and deviances for the model involving treatment and

period effects described above are as follows:
Estimates from the mean model

estimate 5.8 t(313)
constant -3.397 0.5551 -6.119
Treatment 1 0.539 0.4435 1.554
Period2 1 0.287 0.6690 0.425
FPeriod3 1 1.384 0.6101 2.268
FPeriod4 1 -0.168 0.89837 -0.171
FPeriods 1 0.8559 0.7852 1.093
FPeriods 1 0.8584 0.8692 1.017

Estimates from the dispersion model

Estimates of parameters

antilag of

Farameter estimate 5.8 ™) estimate
lambda Patient

0.7a2 0.265 2595 2.185

Message: s.6.5 are based on disparsion parametar with value 1,
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Likelihood statistics

-2« hiylv 141,580
2 xh 363.913
-2 % Pylhl 207 986
-2 % P 203186
-2 « EQD{yl) 130,507
-2 « EQD 352,540
-2 x Py(EQD) 196,913
-2 x Pp.(EQD) 192,113

Scaled deviances

deviance df

Random term
*units™ 1416 284.4
Patient 2848 2848
Total 1701 313.0

Next we fit the hierarchical model involving period effects only (period as a fac-

tor). The following GenStat© will fit the model with period effects only.

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period
HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter estimates and deviances for the model with period effects only

are as follows:
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Estimates from the mean model

estimate
constant -2.890
Period 2 0.318
Period 3 1.267
Period 4 -0.254
Period & 0.750
Period & 0.721

g8
0.458352
0.6437
0.5936
0.9562
0.7625
0.5353

1(314)

-5.952

0.454
2135

-0.265

0.983
0.4

Estimates from the dispersion model

Estimates of parameters

Parameter estimate

larbda Patient

0.505

Mesgsage: s.6.5 are based on dispersion parameter with value 1.

Likelihood statistics

-2 % hylv)
2 xh
-2 = Pylh)
-2 = Ppawlh)
-2 = EQID{y )
-2 = EQD
-2 w Py(ECIDY
-2 w PeaulEQDY
Scaled deviances
deviance
Randaorm term
*units™® 194.5
Fatient 246
Total 1791

154 503
352554
210,501
206,301
145.119
343.164
201,112
196.911

df

2853

247

314.0

0.285

1.77
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The difference in —2P,(h) of the reduced and saturated models is 210.501 —

207.986 = 2.515. The p-value is 0.11277. This test shows that the reduced model

(period effects only) provides a better fit than the saturated model( model with
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treatment and period effect) with period treated as a factor. At 5% level of

significance, treatment is not statistically significant.

We again fit the hierarchical model involving treatment and period effect.
Here we regard period as having a linear effect. The following GenStat© will fit
the model with treatment and period effect (period having linear effect). The
difference between this code and the code above( period as a factor) is that, here

we do not specify the variate PERIOD to be a factor

FACTOR Group, Patient, Treatment

READ [SETNVALUES=yes; SETLEVELS=yes] Group,Patient,Period,
Treatment,Response;\

FREP=2(levels),labels,*

11101

12101

13101

-----
.....

272600
273600

274600:

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity| Patient
HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Treatment + Pe-

riod
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HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Response; NBI-
NOMIAL=1

The parameter estimates and deviances for the model with treatment and pe-

riod effects(period having a linear effect) are as follows:

Estimates from the mean model

estimate 5.E. 1317
constant -2.951 0.5087 -5.801
Treatment 1 0515 04162 1.477
Period 0.092 0.1281 0720

Estimates from the dispersion model

Estimates of parameters

antilog of

Farameter estimate 5| t™) estimate
lambda Patient

0.296 0.301 0.93 1.344

Message: s.e.5 are based on disoarsion parametar with value 1.
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Likelihood statistics

-2 % iyl 164.720
2xh 344 559
-2 % Pylh) 213.870
-2 % Ppulh) 217.034
-2 » EQD(y}) 156,643
-2 » EQD 336581
-2 x Py(EQD) 205.793
-2 x Pp(EQD) 208.957

Scaled deviances

deviance df

Randaom term
*units™ 164.7 20950
Patient 220 220
Total 186.8 317.0

Next we fit the hierarchical model involving period effect only (period having a
linear effect)

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Period
HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter estimates and deviances for the reduced model are as follows:
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Estimates from the mean model

estimate 5.8 t(31a)
constant -2.561 04385 -5.830
Feriod 0.0s2 01269 0.649

Estimates from the dispersion model

Estimates of parameters

antilog of

Farameter estimate 5.\ ™) estimate
lambda Patient

0160 0.314 0.51 1.174

Mesgage: e .8 are based on dispersion parametar with value 1.
Likelihood statistics

-2 % hiyl) 171.381
2xh 339,585
2w Pulh) 216,298
-2 % Pg.uih) 219,636
-2 % EQD{ylv) 163.917
2 % EQD 332.121
-2 % Py (EQD) 208,534
-2 x Pp»(EQD) 212.172

Scaled deviances

deviance df

Randorm term
*units® 171.4 2977
Patient 20.3 203
Total 191.7 318.0
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The difference in —2P,(h) of the reduced and saturated models is 216.298 —

213.870 = 2.428. The p-value is 0.11918. This test shows that the reduced model

(period effects only) provides a better fit than the saturated model( model with

treatment and period effect) with period having a linear effect. At 5% level of
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significance, treatment is not statistically significant.

Now we assume that there is no period effect. We fit a model with treatment
only. The following GenStat®© will fit the hierarchical model involving treatment
only (reduced model).

HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit] Treat-
ment

HGANALYSE [MLAPLACE=1; DLAPLACE=1;Maxcycle=999,30] Re-

sponse; NBINOMIAL=1

The parameter estimates and deviances for the model with treatment only are as

follows:

Estimates from the mean model

estimate 5|, t(318)
constant -2.5090 0.3337 -7 R2
Treatment 1 0.594 0.4046 1.467

Estimates from the dispersion model

Estimates of parameters

antilog of

Fararneter estimate 5B ™ estimate
lambda Patient

-0.210 0.357 -0.59 0.3109

Message: s.e.5 are based on dispersion parametar with value 1,
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Likelihood statistics

-2 % hiyh) 179.944
2 xh 316,102
-2 % Pylh) 213.857
-2 % Palh) 215,079
-2 x EQD(y}) 175.955
-2 x EQD 312.115
-2 % Pu(EQD) 209 570
2 % Ppu(EQD) 211,093

Scaled deviances

deviance df

Random term
*units® 179.9 3021
Patient 18.7 159
Tuotal 195.6 318.0

The null model is fit next. The following GenStat© will fit the null model.
HGRANDOMMODEL [DISTRIBUTION=normal; LINK=identity] Pa-
tient

HGFIXEDMODEL [DISTRIBUTION=binomial; LINK=logit]
HGANALYSE [MLAPLACE=0; DLAPLACE=0;Maxcycle=999,30] Re-
sponse; NBINOMIAL=1

The parameter estimates and deviances for the null model are as follows:
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Estimates from the mean model

estimate 5.8 t315)
canstant -2.248 0.2195 -10.24

Estimates from the dispersion model

Estimates of parameters

antilog of

Parameter estimate 5.8 ™ estimate
lambda Patient

-0.345 0.375 -0.93 0.7055

Message: 6.8 are based on disparsion parametar with value 1,
Likelihood statistics

-2 % hiylv 185.618
2 xh 310,080
-2 % Pulhl 216.344
-2 % Ppath) 217534
-2 % EQD{yl) 182 449
2 % EQD 306,910
-2 x P,(EQD) 213.175
-2 x Pp.(EQD) 214.370

Scaled deviances

deviance df

Random term
*units® 186.6 3046
Fatient 142 14.4
Total 18999 319.0
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The difference in —2P,(h) for the null and reduced model, 216.344 — 213.957 =

2.387, with 1 degrees of freedom. The p-value is 0.12235. This test shows that the

model with treatment only does not provide a better fit than the null model. The

treatment effect is not influential. Our conclusion is not different from (24)); we

found no statistically significant difference between the use of IUI in a natural

cycle and the use of IUI stimulated cycle.
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4.3 Chapter summary

Table records comparative analyses of the cohlen data.

Model Method intercept treatment period Deviance
Null SAS© ~2.227 216.3
(0.255)
RO -2.228 216.3
(0.214)
WinBugs®© | -2.187 -
(0.217)
Genstat®© -2.248 216.344
(0.2195)
Treatment Only | SASY -2.564 0.586 213.9
(0.358) (0.386)
RO -2.564 0.586 213.9
(0.328) (0.401)
WinBugs®© | -2.526 0.586 -
(0.331) (0.387)
GenStat®© -2.590 0.594 213.957
(0.3337) (0.4046)
Period only SAS© -2.420 0.051 216.2
(0.696) (0.171)
RO -2.420 0.051 216.2
(0.424) (0.123)
WinBugs®© | -2.032 -0.0427 -
(0.412) (0.118)
GenStat®© -2.561 0.082 216.298
(0.5087) (0.1281)
Period SAS© -2.803 0.599 0.062 213.8
and (0.756) (0.392) (0.170)
Treatment R® -2.803 0.599 0.062 213.8
(0.495) (0.409) (0.125)
WinBugs®© | -2.346 0.565 -0.0451 -
(0.447) (0.379) (0.113)
GenStat®© -2.951 0.615 0.092 213.870
(0.5087) (0.4162) (0.1281)
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Table 4.34. Comparative analysis of the Cohlen data(regarding period as hav-

ing linear effect)
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Model Method intercept treatment period?2 period3 period4 periodb period6 Deviance
Period only(factor) SASY@ -2.656 0.232 1.082 -0.470 0.498 0.436 210.3

(0.700) (0.618) (0.698) (0.990) (0.916) (1.02)
RO -2.656 0.232 1.082 -0.470 0.498 0.436 210.3
(0.457) (0.623) (0.571) (0.924) (0.734) (0.807)
WinBugs© -2.373 0.131 0.853 -0.984 0.064 -0.110 -
(0.692) (0.622) (0.694) (1.05) (0.915) (1.022) -
GenStat®© -2.980 0.318 1.267 -0.254 0.750 0.721 210.501
(0.4832) (0.6437) (0.5936) (0.9562) (0.7628) (0.8393) -
Period(factor) SASY@ -3.10 0.641 0.202 1.16 -0.404 0.565 0.562 207.8
and (0.787) (0.416) (0.626) (0.719) (0.989) (0.930) (1.02)
Treatment R® -3.096 0.641 0.202 1.161 -0.404 0.565 0.562 207.8
(0.526) (0.426) (0.642) (0.584) (0.947) (0.752) (0.829)
WinBugs© -2.689 0.562 0.144 0.856 -0.970 0.014 -0.103 -
(1.134) (0.460) (1.165) (1.144) (1.363) (1.23) (1.274) -
GenStat®© -3.397 0.689 0.287 1.384 -0.168 0.859 0.884 207.986
(0.5551) (0.4435) (0.6690) (0.6101) (0.9837) (0.7852) (0.8692) -

Table 4.35. Comparative analysis of the Cohlen data(regarding period as a

factor)

The treatment estimates in the model involving treatment only are very much

similar in all the four statistical packages. However when period is included , we

observe that even though the treatment estimates are not very much dissimilar,

the treatment estimate produced by GenStat© and the treatment estimate pro-

duced by WinBugs© are more different from the treatment estimate produced

by SAS© and R© when period is included as a factor than when is included

as having a linear effect. The deviances are similar. In fact, SAS©, R© and

WinBugs© give a change of deviance that is not significant in all the three

cases.




Chapter 5

Summary

The general aim of this thesis is to investigate the place of crossover designs in
infertility trials. Based on the logistic random effects model this research has in-
vestigated the importance of crossover design in infertility trials. We have shown
that the use of crossover design in infertility trials is not bad as some statisti-
cians believe. The logistic mixed effects model was employed because it allows
the correlation between the repeated observation within a patient to be incorpo-
rated into the estimates of the parameters. Chapter 2 began with the overview
of the standard logistic regression. We introduced and defined the mixed-effects
regression model that was used throughout the dissertation. We reviewed the
mixed-effects logistic regression for longitudinal (clustered) binary data. A full
maximum marginal likelihood solution is outlined for the parameter estimation.
In this solution, the quadrature method is used to numerically integrate over the

distribution of the random-effects.

Chapter 3 mainly discusses the crossover design in infertility trials. We com-
pared three types of data set; complete AB : BA crossover design data set,

incomplete AB : BA crossover design data set and the parallel design data set.

184
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The complete AB : BA cross over design is the standard AB : BA crossover
design where every woman is exposed two both treatments regardless of the out-
come in the first period. That is, women were allowed to get pregnant twice. The
incomplete AB : BA crossover design is the AB : BA crossover design whereby
whether or not the woman receives the second treatment depends on the out-
come in the first period. If a positive outcome (pregnancy) is observed in the
first period, the patient drops from the trial, leading to missing outcome in the
second period. We first considered a complete AB : BA crossover design, and
from it we obtained both the incomplete AB : BA crossover design data set and
the parallel design data set. To obtain the incomplete AB : BA crossover design
data set, which is the realistic scenario, we deleted the second outcome for every
woman who conceived in the first period. This is because by doing so, we do not
allow women to get pregnant twice. Similarly, to get the parallel design data set,

we deleted all the outcomes in the second period.

We constructed the likelihoods for each data set and obtain the maximum
likelihood estimates (M LE) and their corresponding standard errors from each
data set. The standard errors were obtained from the variance-covariance ma-
trices, which were estimated from the negative inverse of the Fisher information
(46l). We compared the maximum likelihood estimates (and their corresponding
standard errors) obtained using the complete AB : BA crossover design data
set with the maximum likelihood estimates (and their corresponding standard
errors) obtained using the incomplete AB : BA crossover design data set. These
estimates were then marginalized so that they describe marginal response and
compared with estimates from the parallel design data set. Specifically we looked
at the data set from (30]), which is not a infertility data set. The data set was

merely used for illustration since we could not find a practical infertility data set
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where a complete crossover design was performed. We employed MathCad® and

PROCNLMIXED in SAS® to analyze this data set.

Next we simulated the AB : BA crossover design with the help of a MathCad®©
software. We then constructed the incomplete crossover design and the parallel
design like we previously did. We first considered two cases. One case with
treatment only and the other with treatment and period effects. In each case, we
simulated 2000 samples of size 300. Secondly we simulated 2000 samples of size
1000000. By doing so, we wanted to get a clear picture of what is happening in

regard to the precision (standard errors).

Chapter 4 illustrates how in practice the cross over trials in infertility should
be analyzed using different statistical packages (fitting the mixed effects logistic

regression model). We used SAS®, R© WinBugs© and GenStat®©.

5.1 Conclusion

In this thesis, we used a likelihood-based approach to the statistical analysis of
pregnancy data from complete crossover design, incomplete crossover design and
parallel design. This approach was based on the logistic random effects model in-
corporating both treatment and period effects. In both scenarios ( the model with
treatment only and the model with treatment and period effects) the treatment
estimates obtained under complete AB : BA crossover design and the treatment
estimate obtained under the incomplete AB : BA crossover design were not very
much dissimilar. The standard errors of the treatment estimates obtained under
the AB : BA incomplete crossover design were higher than the standard errors

of treatment estimates obtained under the complete crossover design. This did
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not surprise us, since if we move from the complete AB : BA crossover design
to the incomplete AB : BA crossover design information is lost on women who
conceived in the first period. If we are in the complete AB : BA crossover de-
sign, we have the information of what happened to these women in the second
period. But when we are in the incomplete AB : BA crossover design we do not
know what is happening in the second period with regard to those women who
conceived in the first period. Furthermore, this observation is expected since we
are using the same model for the complete data set and the incomplete data set.
The estimated marginalized treatment effects obtained using the incomplete or
complete crossover design are not dissimilar to the treatment estimates obtained
under parallel design. The results of this thesis do not support the conclusion
of Daya that the crossover design should be avoided as inappropriate design. In
both scenarios ( the model with treatment only and the model with treatment and
period effects), the treatment estimates obtained from the parallel design data
set have the highest standard errors, followed by marginalized estimates from the
incomplete crossover design data set. The marginalized estimates obtained from
the complete crossover design data set have the lowest standard errors. These
findings are corroborated by a set of simulations which also suggest that estimates
from the parallel design will have higher standard errors than estimates obtained

under crossover design.

Based on our simulations, the estimated treatment estimates obtained using
the complete crossover design are sufficient relative to the treatment estimate
obtained from incomplete crossover design. That is the complete crossover de-
sign should not be compared with the incomplete crossover design as it uses all
available information. Suppose that one is presented with the treatment esti-

mate obtained from the complete crossover design say 7¢, the expectation (or
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best guess) of the treatment estimate 77, obtained using the incomplete design
will be still 7. That is one can replace 7; by 7¢ without losing the meaning asso-
ciated with the treatment estimate. But not vice versa. Likewise the treatment
estimate obtained under the crossover design in infertility is sufficient relative to
the treatment estimate obtained under parallel design. That is to say if we are
presented with the marginalized treatment estimate obtained from the crossover
design in infertility (incomplete data set) 77, the expectation (or best guess)
of the treatment estimate obtained from the parallel design data set will be still

Tyv1- But not vice versa.

5.2 Discussion

Critics of crossover design in infertility like Daya (27) and Khan et al. (52))
are mistaken by saying that the crossover design in infertility trials will lead
to incomplete data set. We agree with them that crossover design in infertility
trials will lead to incomplete data set only if it is compared with the standard
AB : BA crossover design, which is sufficient. But we believe that crossover
design in infertility trials does not lead to incomplete data set if it is compared
to the parallel design. The crossover design in infertility trial can be viewed as a
parallel design with extra information. That is, the crossover design in infertility
trials is a parallel design, but with information for those women who failed to
conceive under treatment A (or treatment B) in the first period. Khan et al (52))
stated that the crossover design in infertility trials may need to increase sample
size, thus losing one of the major statistical advantages of the crossover design
discussed in Section 1.7. However, we have shown that a sample size equivalent

to a parallel design trial would give similar treatment estimate with less standard
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error. Thus, there is no evidence that the crossover design presents a disadvantage

in terms of sample size.

The debate in the position of crossover design in infertility trials started in
more than a decade ago, when statistical softwares like PROC NLMIXED in
SAS© and Imer procedure in R© were not available. Generally crossover designs
are not easy to analyze especially when the outcome of interest is binary. The
difficulty part is on the estimation of the integration over the random effects
distribution. On the other hand the Pearson Chi-square test and student t-
test have been available for the parallel design for a longer time. In the past
investigators use to either analyze a crossover design as a parallel design or they
do not allow the correlation between the repeated observation within a patient
to be incorporated into the estimates of the parameters. McDonnell et al. (64)
and Cohlen et al (24]) both used models to examine the place of crossover design
in infertility. Of the two models, that of McDonnell looks more like ours except
that they did not account for the correlation between the repeated observation
within a patient. We will like to point out that if the correlation between the
repeated observation is not accounted for, the likelihood obtained under crossover
design will be the same as the likelihood under parallel design as it was shown
by McDonnell. The correlation between repeated observation within a patient is
what makes crossover design different from the parallel design (98). Alborzi et al
(3), Biacchiardi et al (13), Cohlen et al (23]), Gregoriou et al (40), Kirby et al (53)),
Muharib et al (68), Nan et al (70), Sipe et al (86]), Tiemessen et al (97) and Zreik
et al (T03), all used crossover design to determine if one treatment is superior to
the other. However, the methods used in all these articles (3} [13} 245 [40} [53} 68;
70; 86} [O97; 103) are not appropriate for the crossover design. The methods used

(Chi-square and student t-test) are appropriate for a parallel design.
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We are of the view that this debate was triggered by the fact that investigators
did not analyze crossover design properly and not by the fact that the crossover
design is inappropriate for infertility trials. The debate may be started because
by that time there were no easier methods to properly handle crossover designs.
Our advise to the investigators is that they should regard the information on the
incomplete crossover design as extra and useful information relative to the infor-
mation on the parallel design and thereby use it to derive more precise treatment
estimates. We recommend the use of crossover designs in infertility trials if there

is no evidence of carryover effects.

5.3 Modelling and statistical packages Issues

When data are missing, analyzing the observed data alone as if no data are
missing can result in biased conditional estimates. An advantage of the meth-
ods used in Chapter 4 is that different patients can have different number of
observations. The data input file has a separate line for each observation, and
for longitudinal studies, computations use those times for which a patient has
an observation. However, bias can arise in these methods unless the data is at
least missing at random (31} [61)). Little and Robin (61)) called the data missing
at random if missingness depends only on the observed response and not on the
missing outcomes. When this is plausible, our likelihood based analysis using
only observed responses is not systematically biased. We assumed that our data
is missing at random and rightfully so. Often, missingness depends on the missing
values. For instance, perhaps based may be on a new medical research a woman
dropped out when it becomes evident that the next treatment will not be effec-

tive. Then, more complex analyses are needed that model the joint distribution
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of the observed values and the missing values (60)).

In this thesis the random effects were assumed to be distributed in the pop-
ulation as N(0,0?). Neuhaus and Hauck (73) had examined the performance of
the mixed effects logistic regression analysis when the random effects are misspec-
ified. In their article, they have shown that when the random effects distribution
is misspecified, estimates of model parameters including the treatment estimates
are asymptotically biased. However the magnitude of the bias in the treatment

estimate is small.

The NLMIXED procedure in SAS® uses exactly the procedure that is il-
lustrated in Chapter 2. The lmer procedure in R© is only different with the
NLMIXED on the integration over the random-effects distribution. The lmer
procedure uses the Laplace approximations to approximate the integration. The
WinBugs© procedure derive estimates by maximizing the same likelihood that
is described in Chapter 2, but it approximates the integration over the random
effects distribution by assigning proper but minimally informative prior distribu-
tions to the parameters. The likelihood in the GenStat© procedure is completely
different from the likelihood described in Chapter 2. The GenStat© procedure

maximizes the h—likelihood (56} 58) denoted by

h=0Y|v)+ {(v), (5.1)

where ((v) is the logarithm of the density function for the random effect v, and
((Y|v) is that of Y|v. The estimates obtained from maximizing the h—likelihood
are termed maximum h-likelihood estimates (M H L E's). The maximum h-likelihood

estimates (M H LEs) are not the same as maximum likelihood estimates (M LE's)
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obtained from either SAS®, R® or WinBugs®©. The maximum likelihood esti-
mates (M LEs) obtained from SAS®, R© and WinBugs© are not exactly the
same because each procedure uses a different method in approximating the in-
tegration over the random effects distribution (SAS© uses the Gauss-Hermite
quadrature method, R© uses Laplace approximation or WinBugs© uses sam-
pling method by assigning prior distributions to the parameters). But they are

not very much dissimilar as expected.

Finally, although the negative of the matrix in equation (Hessian matrix)
must be positive definite and hence invertible to compute the variance matrix ,
invertible Hessian matrix do not exist for some combinations of data sets and
models, and so statistical procedures sometimes fail for this reason before com-
pletion. Statistical softwares will give a warning if this is the case. When a
Hessian matrix is not invertible, there is no computational trick that can make
it invertible, given the model and the data chosen, since the desired inverse does

not exist.

5.4 Further work

Just as two observations on the same patient might tend to be more correlated
than observations on different patients, so might be observations on two patients
in the same ART clinic tend to be more correlated than observations on patients
from other ART clinics. So patients and ART clinics might be treated as random
effects, with each referring to different levels of the model. So far we have only
considered only one random effect. It will be of interest to investigate the results
of multi-level modeling. It may be of interest also to consider mixed effects logistic

models (one or more random effects) with unspecified random effects distribution.
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This approach may help against possibly harmful misspecification effects (2)).

It is also our interest to consider scenarios where missingness depends on the

missing outcomes.

If we could have standardized the random effect as in (44]), we observe that
Monte carlo simulation can be used to estimate the parameters of interest. This

will be another method that will be investigated in the future.



Appendix A

WinBugs Code for Gregoriou

data

A.1 Model with Period only

model
{for(iin1: N1) {
outcomelli] ~ dbern(pl]i])
logit(pl[i]) < — intercept+beta2*periodl[i]4v][i]
v[i] ~ dnorm(0, tau)
}
for(iin 1 : N2){
outcome2[i] ~ dbern(p2][i])
logit(p2[i]) < — intercept+ beta2*period2[i]4v]i]
}
sigma< — 1/sqrt(tau)

intercept ~ dnorm(0,1.0E-3)

194
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betal ~ dnorm(0,1.0E-3)

tau ~ dgamma(1,1.0E-4)

log.sigma< — log(sigma)

}

list(outcomel =c(0,0,0,0,0, 0, 0, O, o, o, o, o, 0,0, O, O, O, 0, O, 0, 0, 0,0,
o, o, o, o, o, o, o, 0,0,0,0,0,0,0,0,0,0, O, O, O, O, O, O, O, 0,0,0,1, 1,1, 1,
1,1,1,1,1,1,1,1) ,
periodl=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,

1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, O,

0, 0, 0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0,0, 1,1, 1, 1,1,1,1,1),

period2=c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1),
N1 = 62, N2=50),

list(intercept=-1,betal=-1, beta2=1, tau=10,b=c(0, 0, 1, 0, 0, 0, 1, O,
o,1,0,0,0,1,0,1,1,0,1,0,1,0,0,0.,0,0,0,0,0.,0,0,0,0,0, 0,0,

o, o, o, 0,0, 0, 0, O, O, 0 ,0 ,0, O, O, O, 0, 0,0,0,0,0,0,0,0,0,0))

list(intercept=-4,betal=-4,beta2=4, tau=15,b=c(0, 0, 0, 0, 0, 0, O,
0,000,000, oo0oo0,opoo0,0°0,0,0000,0,000,0,0,0,

o, o,0, o, 0,0, 0, O, O, 0, 0 ,0 ,0, O, O, O, 0, 0,0,0,0,0,0,0,0,0,1))
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intercept chains 1:2
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Figure A.1. Plots of the intercept, beta2 and sigma for the model with period
effects only

A.2 Model with Protocol only

model
{for(iin1: N1) {
outcomelli] ~ dbern(pl]i])

logit(pl[i]) < — intercept+betal*protocoll[i]4v]i]
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vli] ~ dnorm(0, tau)

for(iin 1 : N2){
outcome2[i] ~ dbern(p2[i])
logit(p2[i]) < — intercept+betal*protocol2[i]+uv]i]

}

sigma< — 1/sqrt(tau)
intercept ~ dnorm(0,1.0E-3)
betal ~ dnorm(0,1.0E-3)
tau ~ dgamma(1,1.0E-4)

log.sigma< — log(sigma)

list(outcomel =¢(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,
0,0, 0, 0, 0, 0O, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, O, O, O, O, O, O, 0, 0,0, O, 1, 1,

1,1,1,1,1,1,1,1,1,1) ,

protocoll=c¢(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-
1,-1,-1,-1),
outcome2 =¢(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0,
0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0, 0,1, 1, 1, 1,1,1,1,1),
protocol2=c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,

171917191717171’171’]—71’17171717]-71a'17'17'19'17'17'1a'171)7



A.2. MODEL WITH PROTOCOL ONLY 198

N1 = 62, N2=50),

list(intercept=-1,betal=-1,tau=10,b=c(0, O, 1, 0, 0, 0, 1, 0, O, 1, O,
0,0,1,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,o0, 0,0, o0,0,0,0,0,o0,o0, o0, 0, 0,0,0,0,0,0,0,0,0,0))
list(intercept=-4,betal=-4, tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0

,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,1))
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Figure A.2. Plots of the intercept, betal and sigma for the model with protocol
only
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A.3 Null model

model
{for(iin1: N1) {
outcomelli] ~ dbern(pl]i])

logit(pl[i]) < — intercept+uvl|i]

v[i] ~ dnorm(0, tau)

for(iin 1 : N2){
outcome2[i] ~ dbern(p2[i])
logit(p2[i]) < — intercept+uv|i

}

sigma< — 1/sqrt(tau)
intercept ~ dnorm(0,1.0E-3)
tau ~ dgamma(1,1.0E-4)

log.sigma< — log(sigma)

200

list(outcomel =¢(0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, O,

0,0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0, 0, o, 0, 0O, O, O, 0, 0,0, O, 1, 1,

1,1,1,1,1,1,1,1,1,1) ,

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0,
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0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0,0,1,1, 1, 1,1,1,1,1),

N1 = 62, N2=50),

list(intercept=-1,tau=10,b=c¢(o0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, O, 1, O,
1,1,0,1,0,1,0,0,0,0,0,o0,o0,0,0,0,0,0,o0, 0, 0, 0,0,0,0,0, 0,0,
o, o, 0 ,0 ,0, 0, 0, O, 0, 0,0,0,0,0,0,0,0,0,0))
list(intercept=-4, tau=15,b=c¢(0, 0, 0, 0, 0, 0, O, 0, O, 0, 0, O, O, O, O,
o, o, o, o, o0, 0, 0, 0,0 ,0, 0O, O, 0,0,0,0,0,0,o0, O, O, 0,0, 0O, 0,0, 0,0,

o, o, 0 ,0 ,0, 0, 0, O, 0, 0,0,0,0,0,0,0,0,0,1))
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Figure A.3. Plots of the intercept and sigma for the null model
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WinBugs Code for Cohlen data

B.1 Model with period effects only(factor)

model{
for(iin 1: N1) {
outcomelli] ~ dbern(plli])
logit(pli]) < —intercept+beta2*period2[i|+beta3*period3[i]+betadxperiodd|i]+
betab * periodbli] + betab * period6|i] + vli]
b[i] ~ dnorm(0, tau)
}
for(iin 1 : N2 ){
outcome2[i] ~ dbern(p2li])
logit(p2[i]) < —intercept + beta2 x period22[i] + beta3 * period3|i] + betad *
period4[i] + betab x period5[i] + betab x period6[i] + v]i]
}
for(iin 1 : N3 ){

outcome3|[i| ~ dbern(p3]i])

203
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logit(p3[i]) < —intercept + beta2 x period2[i] + beta3 * period33[i] + betad *
periodA[i] + betab * period5[i] + betab * period6[i] + v]i]

}

for(iin 1 : N4 ){

outcomed[i] ~ dbern(p4li])

logit(pAli]) < —intercept+beta2«period2|il+beta3xperiod3|i]+betadsperiodd4[i]+
betab * periodbli] + betab * period6|i] + vli]

}

or(iin1: N5 ){

outcomeb[i] ~ dbern(p5l[i])

logit(p5li]) < —intercept+beta2*period2[i|+betad*period3[i]+betadxperiodd|i]+
betab * periodbbi] + betab * period6|i] + vli]

}

for(iin 1 : N6 ){

outcome6[i| ~ dbern(p6li])

logit(p6i]) < —intercept|+beta2+«period2[i|+beta3xperiod3[i]+betad«period4[i]+
betab * periodb|i] + betab * period66[i] + v]i]

}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

beta2 ~ dnorm(0,1.0FE — 3)
beta3 ~ dnorm(0,1.0E — 3)
betad ~ dnorm(0,1.0E — 3)
betab ~ dnorm(0,1.0FE — 3)
betab ~ dnorm(0,1.0E — 3)
tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }
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list(outcomel=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0,0, ,0,0 00, ,0,0 0,000 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

period2=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O
70 707 Oa 07 0 aO 707 07 0 707 07 Oa 07 07 07 07 0 aoa 07 07 07 07 0 aO 707 07 07
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period3=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
70 707 07 0’ 0 70 707 07 0 ’07 07 07 07 07 07 07 0 707 07 07 07 07 0 70 707 07 07
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

periodd=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
70 707 07 07 O 70 707 07 O 707 07 07 O? 07 07 O? O 707 O? 07 07 O? 0 70 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period5=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
70 707 O? 07 0 ?O 707 07 O 707 07 O? O? 07 O? O? 0 ?O? O? 07 O? O? 0 ?O 707 07 0?
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

period6=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O

70 707 0’ 07 0 ’0 707 07 0 707 07 O’ 07 07 O’ 07 0 ’O’ 07 07 0’ 07 0 ’0 707 07 07
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

outcome2 =¢(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, O, 0, 0, 0, O, O, 0,
0.,0.,0,0,0,0,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,

070707070707070707171717171717170) Y

period22=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

11,11,1,11,11,1,1.1,1,1,1,1.1,1,1,1,1,1,1,1,1,1.1,1,1,1),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0 .0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0 ) ,

period33=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

Ynbiabiabhab bbb bt b b b bttt kb e e kA A e ke ke e ke ke e A e |

11,11,1,11,11,1,1.1,1.1,1,1.1,1,1,1,1,1,1,1,1,1.1,1,1,1),

outcomed =¢( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0

707 07 0 70? 07 07 07 07 O? 07 O 707 07 O? 07 17 17070707()) )

period44=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

ITITITI I T TITITYIT)TYTY T)T)T)T)T)TY T)T)T)TYT)T)TYTT)TTy)TyTy)

171717171717171717]'7]'7]'7]'7]'7]'717171717171717171717171717]'7]')7
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outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0, 0,0, 0,0,0,0,0,0, 0,0,
0 70 707 07 0 70707070)17 17 17 170?0) Y

period55=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

b inb ittt e e ki ke ke ke e ke e )

171717171717]‘7]‘717171717171717171717171717]‘7]‘717171717171)7

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,1),

period66=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

ITITITI I TITI TY T)TYTY TI T)T)TY T)T)T) T) T)T) TY TT)T)TYTYT) TYTyT) yyTy))

L111,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

it ab e et ket kit et Anb Aub hab Aab Aub Al At At At Ant Ant hub R Aub A b A A A

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,beta2=1,beta3=1,betad=1,beta5=1,betab6=1,tau=15b=c(0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,

0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,beta2=0.3,beta3=0.3,betad=0.3,beta5=0.3,beta6=0.3,tau=10,
b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))
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Figure B.1. Plots of the intercept, beta2,beta3 and betad for the model with
period effects only(factor)
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Figure B.2. Plots of the beta5,beta6 and sigma for the model with period effects
only(factor)
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B.2 Model with treatment and period effects(linear

effect)

model{
for(iin1: N1) {
outcomelli] ~ dbern(pl]i])
logit(plli]) < —intercept + betal = treatmentl[i] + beta2 * periodl[i] 4+ vli]
b[i] ~ dnorm(0, tau)
}
for(iin 1 : N2 ){
outcome2[i| ~ dbern(p2li])
logit(p2[i]) < —intercept + betal * treatment2[i| + beta2 x period2[i] + v|i]
}
for(iin 1 : N3 ){
outcome3[i] ~ dbern(p3[i])
logit(p3[i]) < —intercept + betal * treatment3[i| + beta2 x period3[i] + v|i]
}
for(iin 1 : N4 ){
outcomedli] ~ dbern(p4li])
logit(pAli]) < —intercept + betal x treatment4[i] + beta2 * periodd[i]] + v|i]
}
or(iin1: N5 ){
outcomebli| ~ dbern(p5li])
logit(pbli]) < —intercept + betal * treatment5[i] + beta2 x period5[i] + v|i]

}
for(iin 1: N6 ){
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outcome6[i| ~ dbern(p6li])

logit(p6li]) < —intercept + betal * treatment6[i] + beta2 x period6[i] + v|i]
}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

betal ~ dnorm(0,1.0FE — 3)

beta2 ~ dnorm(0,1.0E — 3)

tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }

list(outcomel=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
07 O 70 707 07 07 0 70 707 07 0 707 07 07 07 07 07 07 0 707 07 07 07 07 O 70 707 07 07

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,

treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,

1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

periodl=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1’17171717171717171717171717171’17171717171717171717171717171717171717 )7

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,000,,0,0,0.,,0,0,0,0,0 00,00, 000 0,0.0,0, 0?0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,
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treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,

0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

period2=c(2,2,2,2,2,2,2,2,2.2,222222222222222222222222222

2,2,2,2,2,2,2,2,2,22,22,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0 ,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0 ) ,

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,

0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0),

period3=c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3),

outcomed =¢( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0

707 07 0 70? 07 07 07 07 O? 07 O 707 07 O? 07 17 17070707()) )

treatmentd=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,

1,0,1,1,1,1,0,0),

periodd=c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,44,44,444,44,444,4,4,4,4,4,4,444,

4444444.4),
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outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0, 0,0, 0,0,0,0,0,0, 0,0,
0 70 707 07 0 70707070)17 17 17 170?0) Y

treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,1),

period5=c(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0, 0,0 .0,
0,0,0,0,0,0,1,1,1),

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

period6=c(6,6,6,6,6,6,6.6,6,6,6,6,6,6.6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,betal=1,beta2=1,tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0,0, 0, 0,0, 0, 0,
0,0,0,0,0,0,0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(intercept=-1,betal=0.3,beta2=0.3,tau=10, b=c¢(1,1,1,1,1,1,1,1,1,1,1,1,1,1,

11111111:1111,11,111,11,1111711,21,1,11,111111117111,1111]1,1

Vb iab itk ik ik ik i e e k|

1,1,1,1,1,1,1,1,1,1,1,1,1,1))

ITITITI I TNy
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Figure B.3. Plots for the intercept, betal, beta2 and sigma for model with
treatment and period effects (linear effect)
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B.3 Model with period effects only(linear ef-

fect)

model{
for(iin1: N1) {
outcomelli] ~ dbern(pl]i])
logit(pl[i]) < —intercept + beta2 * periodl[i] 4+ v]i]
b[i] ~ dnorm(0, tau)
}
for(iin 1 : N2 ){
outcome2[i| ~ dbern(p2li])
logit(p2[i]) < —intercept + beta2 * period2[i] + v|i
}
for(iin 1 : N3 ){
outcome3[i] ~ dbern(p3[i])
logit(p3[i]) < —intercept + beta2 x period3[i] + v|i]
}
for(iin 1 : N4 ){
outcomedli] ~ dbern(p4li])
logit(pAli]) < —intercept + beta2 x period4|i]] + v]i]
}
or(iin1: N5 ){
outcomebli| ~ dbern(p5li])
logit(p5li]) < —intercept + beta2 x period5|i] + vli]
}
for(iin 1 : N6 ){
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outcome6[i| ~ dbern(p6li])

logit(p6li]) < —intercept + beta2 * period6[i] + v|i
}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

beta2 ~ dnorm(0,1.0FE — 3)

tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }

list(outcomel=c(0, 0, 0, O, O, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,
periodl=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1),

outcome2 =c¢(0, 0, 0, O, O, o, o, o, o, o, o, o, o0, o0, 0, 0, 0, 0, 0, 0, 0, O,
0.,0,0,0,0,0,0,0,0,0.,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,
period2=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2.2.2.2.2.2.2 2.2 2.2.2.2,2,2,2.2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),
outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.0.,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0, 0, 0,0,0,0,0,0, 1,
1,1,1,1,1,1,1,1,1,1,0,0 ) ,
period3=c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3),

outcome4 =¢( 0, 0, 0, 0, O, O, O, O, 0, 0, 0, o, O, O, O, O, 0, 0, 0 ,0 ,0, O,

07 0 ?O 70’ 07 0 ’07 0’ O’ 0’ 07 0? 07 0 ?O’ 0’ 07 0? 17 1’070?070) 9
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periodd=c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4),

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0
,0, 0, 0, 0 ,0 ,0, O, 0,0,0,0,0,1, 1, 1, 1,0,0),
period5=c(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5),

outcome6 =c(0, 0, O, O, O, O, o, o, o, o, o, o, O, o0, o0, 0, 0, 0, 0, 0, 0, O,
0,,0,0,0,0,0,0,0,1,1,1),
period6=c(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),
list(intercept=-4,beta2=1,tau=0.8,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O,
o, o, o, o0, o0,o0,o0,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o, o, o, o, 0 ,0 ,0, O, O, O, 0O, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
list(intercept=-1,beta2=0.3,tau=0.5, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
i1,1,1,1,1,1,1,14,1,1,1,1,1,1,14,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1.1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))



B.4. MODEL WITH TREATMENT ONLY 218
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Figure B.4. Plots of the intercept, beta2 and sigma for model with period effects
only(linear effect)

B.4 Model with treatment only

model{
for(iin1: N1) {
outcomelli] ~ dbern(plli])
logit(pl[i]) < —intercept + betal * treatmentl[i] 4+ v][i]
b[i] ~ dnorm(0, tau)
}
for(iin 1 : N2 ){

outcome2[i| ~ dbern(p2li])



B.4. MODEL WITH TREATMENT ONLY

logit(p2[i]) < —intercept + betal x treatment2]i] + vli]
h

for(iin 1: N3 ){

outcome3[i] ~ dbern(p3[i])

logit(p3[i]) < —intercept + betal * treatment3[i] 4+ v|[i
}

for(iin 1 : N4 ){

outcomed[i] ~ dbern(p4li])

logit(pAli]) < —intercept + betal = treatment4[i] + v[i]
ki

or(iin1: N5 ){

outcomebli| ~ dbern(p5li])

logit(p5li]) < —intercept + betal * treatment5[i] 4+ v|[i]
}

for(iin 1 : N6 ){

outcome6[i| ~ dbern(p6li])

logit(p6li]) < —intercept + betal = treatment6]i] + vl[i
}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

betal ~ dnorm(0,1.0FE — 3)

tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }

219

list(outcomel=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0., ,0,0 00, ,000,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) ,
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treatment1=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1),

outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,000,,0,0 0.,,0,0,0, 0,00 0,0,0, 000 0,0.0,0, 0?0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

treatment2=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,
0,0,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0),

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0 .0,

07 07 O 70 707 07 0 707 07 07 07 07 07 07 O 707 07 07 07 07 0 70 707 ]'7 171717171717171’1717070) Y

treatment3=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,

17170717070707071717070’0’0707071717171717070)7

outcomed =c( 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
707 07 0 707 07 07 07 07 07 07 O 707 07 07 07 17 170707070) b

treatment4=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,
0,1,0,1,1,1,1,0,0),

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0, 0, 0,
0,0,0,0,0,00001,1,1,1,00),
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treatment5=c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,

1,1,1,0,1),

outcome6 =c¢(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0, 0,0 ,0,

0,0,0,0,0,0,1,1,1),

treatment6=c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list(intercept=-4,betal=1,tau=15b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0,0, 0,0,0,0, 0,0

707 07 07 O? 07 070707070707070?070707070707070707070707070))

list (intercept=-1,betal=0.3,tau=10, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
171717171717171717]‘71717]'7]'717171717171717171717]‘7]'7]'7]'7]'7]'717171717171717171717]‘71717]'7]'7

1,1,1,1,1,1,1,1,1))



B.5. NULL MODEL

207

-30F

A0

intercapt chains 1:2

15
1.0¢
05
0r
05r

betal chains 1:2

T T T T
250 S0 7500 1000
iteration

=igma chains 1.2

222

Figure B.5. Plots of the intercept, betal and sigma for model with treatment

only

B.5 Null model

model{

for(iin1: N1) {

outcomelli] ~ dbern(pl]i])

logit(plli]) < —intercept + v]i]

b[i] ~ dnorm(0, tau)

}

for(iin 1 : N2 ){



B.5. NULL MODEL

outcome2[i| ~ dbern(p2li])
logit(p2[i]) < —intercept + v]i]
}

for(iin 1 : N3 ){
outcome3|i| ~ dbern(p3li])
logit(p3[i]) < —intercept + v]i]
}

for(iin 1 : N4 ){
outcomed[i| ~ dbern(p4li])
logit(pdli]) < —intercept + v]i]
}

or(iin1: N5 ){
outcomebli| ~ dbern(p5li])
logit(p5[i]) < —intercept + v]i]
}

for(iin 1 : N6 ){
outcomebli] ~ dbern(p6li])
logit(p6li]) < —intercept + v]i]
}

sigma < —1/sqrt(tau)

intercept ~ dnorm(0,1.0E — 3)

tau ~ dgamma(1.0E — 4,1.0E — 4)

log.sigma < —log(sigma) }
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list(outcomel=c(0, 0, 0, O, O, O, O, O, 0, O, O, O, O, O, O, O, O, O, O,

o, o, o, 0,0,0,0,0,0,0,0,0,0,0,o0, O, O, 0, 0, O, 0,0,0,0,0,0,0,0

?0’ 07 0? 070’070’070’070,070,0?070?0’0703071’171’171’171) 9
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outcome2 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) ,

outcome3 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O
,0,0,0,0,0,0,0,00,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0, 1,
1,1,1,1,1,1,1,1,1,1,0,0 ),

outcomed =¢( 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0, 0,0, 0,0,0,0,0,0,0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 1, 1,0,0,0,0) ,

outcome5 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0
,0,0,0,0,0,0,0,0,0,0,0,0,1, 1, 1, 1,0,0),

outcome6 =c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,1,1,1),

N1 = 74, N2=67, N3=59,N4=46, N5=40, N6=34),

list (intercept=-4,tau=15,b=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0, 0, 0,0, 0, 0, 0,
0, 0,0 ,0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
list(intercept=-1,tau=10, b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1))



B.5. NULL MODEL 225

simg chaing 102
40F
30
20
1.0
oot
irtercegt cheing 1:2
A0
20t '
30} i i !
40} !
T T T T T
i 2500 5000 7500 10000
iterstion

Figure B.6. Plots of the intercept and sigma for the null model
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