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Summary 

This thesis is concerned with the relationship between spectral decomposition of 

operators, the functional calculi that operators admit, and Banach space structure. 

The deep connection between the first two of these concepts has long been known. 

The thesis is organised as follows. Chapter 1 is an introduction to the concepts, 

ideas and constructions that will be used through at this thesis. Particularly we 

consider numerical range and hermitian operators which have a critical role in all 

this thesis. 

In Chapter 2 we give a brief overview of some of the theory of (strongly) normal 

(equivalent) operators. Developing the properties of (strongly) normal (equivalent) 

operators we will show that the possession of a functional calculus on the spectrum 

of T is equivalent to T' being scalar type prespectral of class X, thus answering a 

question of Berkson and Gillespie ([12], Remark 1). 

The operators considered in Chapter 3 are the well-bounded operators intro- 

duced by Smart [62] as a natural analogue of selfadjoint operators on Hilbert space. 

Well-bounded operators are defined as those which possess a functional calculus 
for absolutely continuous functions on some compact interval [a, b] of the real line. 

Their spectral structure was determined by Ringrose [58] and [59]. Well-bounded 

operators of type (B) were characterised by Berkson, Dowson [10] and by Spain 

[65] as being those for which the absolutely continuous functional calculus is weakly 

compact. Every well-bounded operator on a reflexive Banach space is of type (B), 

and hence has an integral representation,, with respect ' to a spectral family of pro- 
jections. 

Z. '4. ]... ß ... { 

Ringrose showed that the dual'öfä, ýwell-bounded operator can always be 

written as an integral representation with respect to a family of projections. This 

family of projections is called a decomposition of the identity. We will show that 
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if the Banach space X contains a subspace isomorphic to co, or a complemented 

subspace isomorphic to 11, then there exists a well-bounded operator which is not 

"decomposable in X" in that the projections in the decomposition of the identity are 

not the adjoints of projections on X. By applying the results of Chapter 2 we deduce 

that the set {T' :nE N} is hermitian-equivalent if T is well-bounded operator with 

decomposition of the identity of bounded variation. 

The operators considered in Chapter 4 are the AC-operators. Berkson and Gille- 

spie introduced the concept of an AC-operator as an operator which possesses a 

functional calculus for the absolutely continuous functions on some rectangle in C 

[12]. Berkson and Gillespie showed that these operators can be characterised by the 

fact that they possess a splitting into real and imaginary parts, T=U+ iV, where 

U and V are commuting well-bounded operators [12]. They showed [12] that if U 

and V are well-bounded operators of type (B) this splitting is unique, and that if 

SE L(X) commutes with U+ iV then S commutes with U and V. It was shown 

that neither result is guaranteed if the type (B) hypothesis is omitted [11]. We will 

show that if S commutes with the AC-operator T=U+ iV where U and V are 

well-bounded with decomposition of the identity of bounded variation then S com- 

mutes with U and V. It is shown if T=U+ iV is an AC-operator where U and V 

are well-bounded operators with decomposition of the identity of bounded variation, 

and if either X does not contain a copy of co, or if U and V are decomposable in X, 

then the representation is unique. We also explore some properties of AC-operators 

by applying the theory of (Foia§) decomposable operators. 

Since 1954 the problem of giving sufficient conditions for the sum and product 

of two commuting spectral operators to be spectral has attracted attention. The 

boundedness of the Boolean algebra of projections generated by the two resolutions 

of the identity is critical. In 1954 Wermer [70] proved an affirmative result on 

Hilbert space. McCarthy [48] showed that this did not remain true in a general 

Banach space. In 1964 McCarthy [49] showed that an affirmative result holds on 

closed linear subspaces of Lp spaces, where 2<p< oo. Much later, in 1997, Gillespie 

[33] proved that if E and . 
'' are two commuting Boolean algebra on X, where X is 

a Banach lattice or a closed linear subspace of a p-concave Banach lattice (p < oo), 
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then the Boolean algebra of projections generated by £ and F is also bounded. 

As a consequence of this he showed that the sum and product of two commuting 

spectral operators is also spectral in each of the above cases. We will show that the 

weakly closed algebra generated by the real and imaginary parts of a finite family of 

commuting scalar-type spectral operators on a Banach lattice not containing co, and 

on a closed linear subspace of a p-concave Banach lattice, where p< oo, is a W*- 

algebra, and that every operator in this algebra is a scalar-type spectral operator. 
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Chapter 1 

Preliminaries 

1.1 General notation 

IR will denote the set of real numbers, C the complex numbers, Z integers, N the pos- 

itive integers. Throughout, X denotes a non-zero complex Banach space, otherwise 

arbitrary unless the contrary is explicitly stated. The dual space of X is denoted by 

X'. We write (x, x') for the value of the functional x' at the point x in X. 

Definition 1.1.1. Let X be a Banach space. The weakest topology on X which 

makes each element x' :X -+ C continuous is called the weak topology of X. A 

typical open neighbourhood of xEX for the weak topology has the form 

{yEX: ýýýýýiý<E, x'E2}, 

for some e>0 and some finite set FC X'. 

A net of elements {Xa} 9X converges to xEX in the weak topology if and 

only if 

1im(x , 
i) = (X, x'), x' E X'. 

The weak topology on X is denoted by Q(X, X'). 

We have the following basic facts about weak topology (see [26], Chapter V): 

1. A subset of X is norm bounded if and only if it is weakly bounded, 

2. If Y is any convex subset of X, then the closure of Y with respect to the norm 

topology coincides with the closure of Y with respect to weak topology, 
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CHAPTER 1. PRELIMINARIES 3 

3. A linear functional A: X -+ C is continuous with respect to the topology 

Q(X, X') on X if and only if AE X'. 

Definition 1.1.2. Let X be a Banach space and let En 
1 x71 be a series of elements 

x,,, E X. 

(i) The series is said to be unconditionally norm convergent if there exists xEX such 

00 
n=1 X71. (�) = x, for all bijections 7r :N -+ N. that E 

(ii) The series is said to be weakly subseries convergent if each subseries E1 Xnk 

converges (to some element of X) in the weak topology. 

The series >1 x� in X is unconditionally norm convergent whenever it is weakly 

subseries convergent ([19], chapter 1, §4). 

Definition 1.1.3. The weakest topology on X' which makes each of the linear func- 

tional (x, ") : X' -+ C, xEX, defined by x' (x, x'), for x' E X', continuous is 

called the weak-star topology of X' and is denoted by Q(X', X). 

A typical open neighbourhood of x' E X' has the form 

{yý EXI (X, x') - 
(x, y) 1<E, XE J}, 

for some e>0 and some finite set FCX. In particular, a net of elements {x', } C X' 

converges to x' E X' for the weak-star topology if and only if 

1im(x, Xa) = (x, x'), xEX. 
a 

Definition 1.1.4. Let 11 " III and 11 " 112 be two norms on X. They are said to be 

equivalent norms if they define the same topology on X. 

11 " Iii and 11 " 112 are equivalent if and only if there are positive constants Ml and 
M2 such that Mijjxili < lIx211< M211x111 for all x in X. 

Throughout this thesis operator means "bounded linear operator". The collec- 
tion of all operators on the X is denoted by L(X). If we define 

IITH=sup {ilTxll: xEX, llxll <1} 

then L(X), with this norm, is a Banach algebra. 
The three most commonly used topologies in L(X) are the norm topology, the 

strong operator topology, and weak operator topology. 
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Definition 1.1.5. The strong operator topology on L(X) is the topology defined by 

the basic set of neighbourhoods 

{R: REL(X), jI(T-R)xII <E, xEF} 

where c>0 is arbitrary, and .F is an arbitrary finite subset of X. In particular a 

net of element {T«} converges to T if and only if {TaX} converges to Tx for every 

SEX. 

Definition 1.1.6. The weak operator topology on L(X) is the topology defined by 

the basic set of neighbourhoods 

{R: REL(X), I((T-R)x, x')I <E, x'E. F', xE. F}, 

where e>0 is arbitrary, and 7 and Y are arbitrary finite sets of elements in X' 

and X, respectively. In particular a net of elements {Ta} converges to T if and only 

if {(Tax, x')} converges to (Tx, x') for every xEX and and x' E X'. 

We shall abbreviate "weak (strong) operator topology" to "weak (strong) topol- 

ogy". When 2t is a subset of L(X) we write 2l and gis for the weak and strong 

closure of 2i, respectively. If 2t is convex then = 2r ([26], VI. 1.5). 

For any T in L(X), let T' in L(X') be its adjoint: 

(Tx, x') = (x, T'x') (x E X, x' E X'). 

Definition 1.1.7. The resolvent set g(T) of T is the set of complex numbers A for 

which AI -T is invertible in the Banach algebra L(X). 

Definition 1.1.8. The spectrum a(T) of T is defined to be C\ Lo(T). 

Definition 1.1.9. Let TE L(X). The spectral radius v(T) is defined by 

v(T)=sup{BAI: AEQ(T)}. 
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1.2 BV(J) and BV(J x K) as Banach Algebras 

Much of this thesis is concerned with functions of bounded variation. 

1.2.1 BV(J) 

Let J= [a, b] be a compact interval contained in the real line. We denote by 

T= T(J) the set of all finite partitions A= {a = AO < al <""" atz = b} of J. If f 

is a scalar-valued function on J, then the variation of f over J is defined to be 

varj f =s p If(A2)-f(Aj 
-1)I. 

A 

If varj f< oo, then f is said to be of bounded variation over J. Let BV(J) denote 

the set of functions of bounded variation over J. If we define 

IIf Ili = If (b)I + varj f 

then 11 " Ili is a norm on BV(J) which makes this space into a Banach algebra [61]. 

A function f: J -+ C is said to be absolutely continuous on J if for all c>0 

there exists a6>0 such that I: n j=1 
If (aj) -f (pj) I<E for every finite collection 

of pairwise disjoint subintervals (Ai, pp) of J for which j1 ýaý - µuý < S. 

Definition 1.2.1. Let J= [a, b]. The Banach subalgebra of BV (J) consisting of 

absolutely continuous functions on J is denoted by AC(J). For f in AC(J) 
b 

1111111= f(b) +f If'(t)I dt. 
a 

1.2.2 BV(J x K) 

Let J= [a, b] and K= [c, d] be two fixed intervals in lit The notation of variation 
for a complex-valued function defined on JxK used here is due to Hardy [36] and 
Krause. (See the discussion in [37], §254. ) Let A be a rectangular partition of JxK: 

a=so<si <... <gn=b, C=to <ti <"""<tm=lý. 

For a function f: JxK --* C define 
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nm 
VA(f) = 

EE If (si, tj) -f 
(Si, tj-1) -f 

(Si-1, tj) +f (Si-1)tj-1)I 
i=1 j=1 

and the variation of f on JxK by 

varJXK(f) = sup{VA(f) :A is a rectangular partition of Jx K}. 

The function f is said to be of bounded variation on JxK (according to Hardy and 

Krause) if each of the numbers 

varJxK f, vary f (", d), varK f (b, ") 

is finite. Denote by BV(J x K) the set of all functions f: JxK -+ C of bounded 

variation. It is readily verified that with the norm given by 

IIIfIII =If (b, d) I +varj f(", d)+varK f(b, ")+varjxxf, 

BV(J x K) is a Banach space. 

Remark 1.2.2. It should be mentioned that, as in the one-dimensional case, we 

take varJxK f=0 if either J or K reduces to a single point. 

It will be shown with pointwise product and norm III " 111, BV(J x K) is a 
Banach algebra. To prove this, it is convenient to note first that BV(J x K) may 
be considered as the 11-direct sum 

C® BVo(J) ® BVo(K) ® BVo(J x K). (1.1) 

Here 

BVo(J) = If E BV(J) :f (b) = 0} BV0(K) = if E BV(K) :f (d) = 0} 

and 

BVo(JxK)={f EBV(JxK): f(s, d)= f(b, t)=O(sEJ, tEK)}. 

The identification of BV(J x K) with (1.1) arises from writing fE BV(J x K) as 

.f 
(s, t) =f (b, d) + f, (s) + f2 (t) + 

, 
f3 (s, t), 
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where 
fi(s) = . 

f(s, d) - . 
f(b, d), f2(t) =f (b, t) -f (b, d) 

and 

f3(s, t) =f (s, t) -f (s, d) -f (b, t) +f (b, d). 

Note that 

varj fl = varj f (", d), varK f2 = varK f (b, ") 

and 

varJxx f3 = varJxx fs 

so that the above algebraic identification is indeed isometric. 

The next lemma and theorem are due to Berkson and Gillespie [12]. 

Lemma 1.2.3. Let fE BVo(J), gE BVo(K) and h, kE BVo(J x K). Then 

1. fg E BVo(J x K) and varJxK(fg) < varj f varKg, 

2. fhE BVo(J x K) and varJxK(f h) < varj f varjxK h, 

3. gh E BV(J x K) and varK g vari xK h, 

4. hk E BVo(J x K) and varJxK(hk) < varjxK h varJXK k. 

Proof. ([12], Lemma 1). 0 

Theorem 1.2.4. Under the pointwise product and norm 111 " 111, the space BV(J x K) 

is a Unital Banach algebra. 

Proof. This is a consequence of Lemma 1.2.3 and the decomposition (1.1), together 

with the fact that BVo (J) and BVo (K) are subalgebras of BV (J) and BV(K) re- 

spectively. 

1.2.3 Functional Calculus 

0 

When A is a compact Hausdorff space, we write C(A) for the Banach algebra of 

continuous complex-valued functions on A with pointwise-defined algebraic opera- 

tions and the supremum norm. When J= [a, b], we write BV(J) for the Banach 
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algebra of complex-valued functions of bounded variation on J with norm 

defined by IIIfIII=If (b) I+ var (f, J), and AC [a, b] for the subalgebra of BV (J) con- 

sisting of absolutely continuous functions on J. Suppose that a is a Banach algebra 

of scalar-valued functions on some subset SCC and that a contains polynomials. 

For n=0,1, """ , let en(z) =z". 
Let X be a Banach space. An functional calculus for T is a Banach algebra ho- 

momorphism O: a -+ L(X) for which O(en) = Tn (n = 0,1, ... 
). Some authors 

prefer the term "operational calculus" to "functional calculus". We shall say that a 

a-functional calculus O is compact (respectively weakly compact) if, for all xEX, 

the operator 0_- :a -+ X defined by Ox(f) = 0(f )x is compact when X is given 

its norm (weak) topology. We shall be concerned here with the algebras C(u(T)), 

BV(J), BV(J x K), AC(J) and AC(J x K). 

Vector Measures 

Let S2 be a non-empty set. A family of subsets E of Il is called an algebra (of sets) if 

1. SZ EE and 0EE (where 0 denote the empty set), 

2. Q \E belongs to E whenever EEE, and 

I UjEFEj EE for every finite collection {EE :jE . F} C E. 

If E is an algebra of sets with the additional property that UfENE,, EE for every 

sequence {En} C E, then it is called a a-algebra. In this case the pair (il, E) is 

called a measurable space. 

Let (cl, E) be, a measurable space. A function it :E -+ C is called a complex 

measure if µ(U, fENE,, 
) = E' 1 p(E,, ) whenever {E,, } CE is a sequence of pairwise 

disjoint sets, meaning that E,, f1En,, =0 whenever n0m. We say that p is or-additive. 
In this case triple (Q, E, p) is called a measure space. 

By Lp(1l, E, µ), 1<p< oo, we denote the Banach spaces of equivalence classes of 

measurable functions on (12, E, p) whose pth power is integrable (rep. are essentially 
bounded if p= oo). If (Q, E, p) is the usual Lebesgue measure space on [0,1] 
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we denote Lp(p) by Lp. If (I', E, µ) is the discrete measure space on a set I' with 

p({ry}) =1 for every 'y E I' we denote Lp(µ) by lp(I'). If I' = {1,2, """, n}, n< oo, 

we also denote lp(r) by lpn, while lp denotes lp(F) with r=N. 

Let E be a a-algebra of subsets of an arbitrary set Q. An additive set function p 

defined on E with values in the Banach space X is said to be a vector measure if 

00 
(µ(U(-r")), x') = 

EWTn), x) (x' E X') 

n=1 

for every pairwise disjoint sequence 1, r,, } of sets in E. 

Lemma 1.2.5 (Banach-Orlicz-Pettis). Any vector measure p is strongly count- 

ably additive. That is, p(U(T,, )) = >n 
1 p(Tn) for each sequence {T�} of pairwise 

disjoint sets in E. 

Proof. ([5], Lemma 2.2) or ([26], IV. 10.1). 0 

The results of ([26], IV. 10) show that every p-measurable p-essentially bounded 

complex-valued function on SZ can be integrated with respect to p, and that the 

integral satisfies the dominated convergence theorem. 

Lemma 1.2.6. If If,, } is a sequence of ti-integrable function which converges µ- 

almost everywhere to f, and if g is a p-integrable function such that I f�(s)I < 1g(s)I 

p-almost everywhere (n = 1,2, ... 
) 

, then f is µ-integrable and 

.f 
(s)l, ý(ds) =l im f 

. 
fn(s)µ(ds), (E E E). 

EE 

Proof. ([26], IV. 10) 0 

Lemma 1.2.7. Let X be a Banach space an it: E -+ X be a vector measure. Then 

its range p(E) is a relatively weakly compact subset of X. That is, the closure in X 

of µ(E) with respect the weak topology Q(X, X') is weakly compact. 

Proof. ([57], Proposition 1.4) 0 

When A is a compact Hausdorif space, we write S(A) and So (A) for the Q-algebra 

of Borel and Baire sets of A, respectively and B(A) and Bo(A) for the family of Borel 
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and bounded Baire measurable complex-valued functions on A respectively. We say 

that a vector measure µ on S(A) is regular if (µ("), x') is a regular measure for each 

x' in X. 

Lemma 1.2.8 ([5], Theorem 3.2). Let A be a compact Hausdorf space, let X be 

a Banach space and let O: C(A) -+ X be a weakly compact map. Then there exists 

a unique regular vector measure µ on S(A) with values in X such that 

Of = 
ff(A) 

µ(d, \) (f E C(A)). 

Conversely, if p is a vector measure on So(A) with values in X, and if O: 

C(A) -+ X is defined by Of = fA f (A) p(dA), then O is a weakly compact operator. 

Lemma 1.2.9 ([52], Theorem 5). If X is a Banach space which does not contain 

a subspace isomorphic to co, in particular if X is weakly complete, then any bounded 

operator 

o: c(A)-}x 
is weakly compact. 

Boolean algebras of projections 

An operator E in L(X) is called a projection if E2 = E. We write E<F when E 

and F are projections and E= EF = FE. If E and F are commuting projections, 

then EVF=E+F- EF and EAF= EF are also projections. The ranges of 
EVF and EAF of commuting projections E and F are given by the equations 
(EAF)X = EXnFX, (EVF)X = EX+FX =1in(EX, FX), where lin(EX, FX) 

means the closed linear manifold spanned by EX and FX. 

A set 93 of commuting projections on X is called a Boolean algebra of projections 
if a) contains 0 and I and is a Boolean algebra under V and A. A Boolean algebra 

of projections 93 is bounded if there is a constant M such that IlEll < M, EEB. 

We will be dealing exclusively with bounded Boolean algebras of projections. The 

following example shows that not all Boolean algebras of projections are bounded. 
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Example 1.2.10. Let X= Lp(R), for some pE (1,2). For each tE IR, define the 

translation operatorTt E L(X) byTtf = It, for fEX, where ft(s) =f (t+s) for a. e. 

sER. A projection EE L(X) is called a p-multiplier if ETt = TIE, for all tE lit 

It is a known fact from harmonic analysis that the family 93p of all p-multiplier 

projections is a Boolean algebra of projections for which supflIE11 :EE 93p} = 00. 

Following [26] we say that an abstract Boolean algebra E is (Q-)complete if each 

(countable) subset of E has a supremum and infimum in E. 

£, a Boolean algebra of projections on X, is (a-)complete on X if each (countable) 

subset . '' of E has a supremum and infimum in 9 such that 

(V. 9') X= tin{FX :FE Y}, (Ay) X= n FX. 
FE-17 

Lemma 1.2.11. If a Boolean algebra of projections is a-complete as an abstract 

Boolean algebra, then it is bounded. 

Proof. ([3], Theorem 2.2) or ([57], Theorem III. 1). Q 



CHAPTER 1. PRELIMINARIES 12 

1.3 Single-valued extension property 

Definition 1.3.1. An operatorT E L(X) is said to have the single-valued extension 

property if whenever f: Df --3 X is analytic in an open set Df CC and satisfies 

(X I -T)f(A) = 0, 

it follows that f=0 in D f. 

(A E Df) 

Let TE L(X) have the single-valued extension property. For each xEX we 

denote by pT(x) the set of elements aEC such that there exists an X-valued 

function x(. ) analytic in a neighbourhood of Va of a, such that 

(A I -T)x(A) =x (AEVa). 

In particular, o(T) C oT(x). The complement QT(X) = C\pr(x) is the local spectrum 

of T at x; it is a compact subset of Q(T), which is non-empty for x00. 

For FCC, let XT(F) = {x EX: QT(x) C F}. This is a T-invariant manifold. 

Lemma 1.3.2. Let TE L(X) have the single-valued extension property. Then 

1. Fig F2 implies XT(Fl) 9 XT(F2), 

2. XT(F) is a linear subspace of X, 

3. aT(x) =0 if and only if x=0, 

ý. QT(Sx) 9 QT(X) for every SE L(X) with ST = TS, 

5. QT(x(A)) = QT(x) for every xEX and AE ar(x). 

Lemma 1.3.3 ([22], Proposition 5.28). Let TE L(X). Suppose that c(T) is 

nowhere dense. Then T has the single-valued extension property. 

Lemma 1.3.4 ([17], Theorem 2.4). LetT1iT2 E L(X). If Tl has the single-valued 

extension property and Tl - T2 quasinilpotent, then 

(x EX). UT, (x) = UT2 (x) 
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Let X and Y be two Banach spaces. L(X, Y) will denote the collection of all 
bounded linear mappings of X into Y. For SE L(X) and TE L(Y) we define 

L(T), R(S), C(T, S) : L(X, Y) -3 L(X, Y) by 

L(T)A = TA, 

R(S)A = AS? 

and 

C(T, S)A=TA-AS, 

respectively (where AE L(X, Y)). For every n>1 we put 

C'(T, S)(A) = [L(T) - R(S)]'(A) 

_ (_1)kL(T)n-kR(S)k(A) 
k-o 

(n) (_1)kTn-kASk. _ 
k-0 

Definition 1.3.5. We say that T, SE L(X) are quasinilpotent equivalent if 

lim II C(T, S)'(I)II "n =0& lim IIC(S, T)n(I)Iil"n = 0. n-+oo n-+oo 

This relation is reflexive, symmetric and transitive ([171, p. 11). 

Definition 1.3.6. Let X be a Banach space and TE L(X). A closed linear subspace 
Y of X is called a spectral maximal space of T if 

1. y is invariant under T, 

2. if Z is another closed linear subspace of X, invariant under T, such that if 

Q(T IZ) 9 Q(T Iy), then 2CY. 

A spectral maximal space of TE L(X) is ultra-invariant under T; that is, in- 

variant under any operator A commuting with T. 

Definition 1.3.7. An operator TE L(X) is called decomposable if any open cover 
C= Gl U G2 of the complex plane C by two open sets G1 and G2 yields a splitting 

of the spectrum or(T) and of the space X in the sense that there exist closed T- 

invariant linear subspaces Y and Z of X for which a(TIY) C G1, a(TIZ) C G2, and 
X =Y+Z. 
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The definition of decomposability has been simplified considerably since Colo- 

joard and Foia§ wrote their book [17]. The original definition of a decomposable 

operator as developed by Foia§ was somewhat complicated and involved the notion 

of a spectral maximal space. See [43], [17] and [69] for an account of the classical 

theory of decomposable operators. 

The next three lemmas give some basic facts about (Foia§) decomposable oper- 

ators (see [17], chapters 2 and 4). 

Lemma 1.3.8. Let T be (Foiq) decomposable and Fa closed subset of a(T). Then 

XT(F) is a spectral maximal space of T, and a(TIXT(F)) 9 F. Conversely, if y is 

a spectral maximal space of T, then 

y= XT(a(TIY))" 

Proof. ([17], Theorem 2.1.5). 0 

Lemma 1.3.9. Let SE L(X), TE L(Y) be two (Foiq) decomposable operators 

and suppose AE L(X, Y). Then the following assertions are equivalent: 

1. AXS(F) 9 XT(F) for every closed set FCC. 

2. limn. 
--goo 

II C" (T, S) (A) Il 1/" =U 

Proof. ([17], Theorem 2.3.3). 

Lemma 1.3.10. If TE L(X) is a (Foia§) decomposable operator then 

XT({O}) = {x EX: um IIT"`xII "n = 0}. 

0 

Proof. ([17], Lemma 4.4.4). Q 
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1.4 Hermitian operators 

15 

In this section we consider those properties of hermitian operators which are impor- 

tant in the theory of prespectral operators. 

Definition 1.4.1. A semi-inner-product on a complex linear space Y is a function 

[", "] :YXY -4 C satisfying 

1. [x + y, z] = [x, z] + [y, z], 

[AX, Yl = A[X, Yl, X, Y, ZEY, AEC, 

2. [x, x] > 0, x 0, 

EY 3. ý [X, y] 12 < [x, x] [y, y), X, y 

A space Y with a semi-inner-product is called a semi-inner-product space. 

Lemma 1.4.2 ([47], Theorem 2). Let Y be a semi-inner-product space. Then 

11 " 11 :Y -+ C defined by jlxjj = [x, x]1/2 is a norm on Y. Conversely, let Y be a 

normed complex linear space and for each x in Y let i be a bounded functional on 
Y such that (x, j) = IIxI12 = 11l12. Then [", "] :YxY -+ C defined by [x, y] = (x, y) 

is a semi-inner-product on Y. 

In general, a normed linear space Y admits infinitely many semi-inner-products 

compatible with its norm (in the sense that [x, x] = IIx112, xE Y). However, a 

pre-Hilbert space admits a unique compatible semi-inner-product ((47], Theorem 

3). 

When Y is a semi-inner-product space and T is an operator (not necessarily 
bounded) on Y we define W(T), the numerical range of T, to be the set 

W (T) ={ [T x, x] : [x, x] = 11. 

Definition 1.4.3. An operator TE L(X) is hermitian if W (T) is real. 

We now collect a few basic facts about hermitian operators needed later. 

Lemma 1.4.4. (i) Let al, """, an E IR and let A,, """, An be hermitian operators 

on X. Then ET_1 arAr is a hermitian operator. 
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(ii) Let A,, be a net of hermitian operators on X. If {Aa} converges to A in the weak 

operator topology of L(X) then A is a hermitian operator. 

Proof. ([22], Theorem 4.4). Q 

Lemma 1.4.5. Let AE L(X). The following statements are equivalent: 

(i) A is hermitian. 

(ii) lima_.., o ci-'{lII - iaAll - 1} =0 (a E R). 

(iii) 11 exp(iaA)II =1 (a E R). 

(iv) 11 exp(iaA)II<_ 1 (a E R). 

Proof. ([22], Thorem 4.7). 0 

Lemma 1.4.6. If AE L(X) is a hermitian operator then c(A) 9R 

Proof. ([22], Theorem 4.8). 0 

Theorem 1.4.7 (Sinclair). Let A, in L(X), be a hermitian operator. Then 

IIAII = v(A). 

Proof. ([22], Theorem 4.10) 0 

Lemma 1.4.8. TE L(X) is hermitian if and only if T' is hermitian. 

Proof. 

II exp(iaT)II = II exp(iaT')II (a E R). 

0 

By Theorem 1.4.4(i) the sum of two hermitian operators is hermitian. However, 

powers of hermitian operators need not be hermitian, as the following example, due 

to M. J. Crabb, shows. See ([15], p. 57,58). 

Example 1.4.9. Let p defined on C3 by 

p(a, ß, ry) =sup{I)\-la+ß+Ayl :XEC, IAI = 1}. 
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Then p is a Banach space norm on 0. Now 0 is an algebra under pointwise mul- 

tiplication. If aE C3, let A be the operator defined by 

Ax=ax 

Observe that the operator norm of A is given by 

IIAII = sup{p(xa) :xE C3, p(x) = 1}. 

Now let a= (-1,0,1). Then A is hermitian but A2 is not hermitian. 

For: given tin R and x= (a, 0,, y) in C3 we have 

p(x exp(ita)) = p(a exp(-it), ß, y exp(it)) = p(a, ply) 

(XEC3). 

so that 11 exp(itA)II = 1. Therefore A is hermitian by Lemma 1.4.5. Let s= -7r/2 

and y= (i, 1, i). Then 

p(y)II exp(isA2)II >_ p(y exp(isa2)) = p(1,1,1). 

Since p(y) = 51/2 and p(1,1,1) =3 it follows that 

11 exp(isA2)11 > 1. 
Hence by Lemma 1.4.5, A2 is not hermitian. 



Chapter 2 

Normal-equivalent and prespectral 

operators 

The class of scalar-type spectral operators on a Banach space was introduced by 

Dunford [19] as a natural analogue of the normal operators on Hilbert space. They 

can be characterised by their possession of a weakly compact functional calculus for 

continuous functions on the spectrum ([41], Corollary 1) or ([63], Theorem). The 

more general class of scalar-type prespectral operators of class I' was introduced by 

Berkson and Dowson [9]. They proved that if TE L(X) admits a C(u(T)) functional 

calculus, then T' is scalar-type prespectral of class X. The converse implication is 

immediate if X is reflexive ([22], Theorem 6.17) or a(T) C ]R ([22], Theorem 16.15 

and the proof of Theorem 16.16). The question raised by Berkson and Gillespie 

([12], Remark 1) has remained open for some time. The problem amounts to finding 

a decomposition for T with commuting real and imaginary parts, given that T' 

has such a decomposition. We show that this can always be done, developing the 

properties of (strongly) normal (equivalent) operators for this purpose. 

2.1 Hermitian-equivalent operators 

Definition 2.1.1. An operator TE L(X) is hermitian-equivalent if and only if 

there is an equivalent norm on X with respect to which T is hermitian. 

Theorem 2.1.2. T is hermitian-equivalent if and only if there is an M (>_ 1) such 

18 
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that 

11 exp(itT)II <M (t E ]R). 

If this condition is satisfied, then 

IxI = sup{ll exp(itT)xll :tE R} 

defines a norm on X, equivalent to 11 " 11, with respect to which T is hermitian. 

Definition 2.1.3. Let AC L(X). Then A is said to be hermitian-equivalent if and 

only if there is an equivalent norm on X with respect to which every operator in A 

is hermitian. 

Lemma 2.1.4 ([22], Theorem 4.17). Let A be a commutative subset of L(X). 

Then A is hermitian- equivalent if and only if each operator in the closed real linear 

span of A is hermitian-equivalent. 

Lemma 2.1.5. Let 9 be a bounded Boolean algebra of projections on X. Then there 

is an equivalent norm on X with respect to which every operator on 6 is hermitian. 

Lemma 2.1.5 is due to Berkson ([7]). 

2.2 Normal operators, Strongly normal operators 

Definition 2.2.1. An operator TE L(X) is normal if T=R+ iJ where R and J 

are commuting hermitian operators. 

We shall need the following Fuglede-type result ([24], Lemma 3), and generali- 

sations of it. 

Lemma 2.2.2 ([24], Lemma 3). If T=R+ iJ is a normal operator and if AE 

L(X) is such that AT = TA, then AR = RA, AJ = JA. 

Remark 2.2.3. If TE L(X) is normal, then the operators R and J are determined 

uniquely by T and we write 

T*=R--iJ. 

Uniqueness follows from Lemma 2.2.2. 
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Definition 2.2.4. An operatorT E L(X) is normal-equivalent if T= R+iJ where 
RJ = JR and {R, J} is herrnitian-equivalent. 

The following result is an immediate consequence of Lemma 2.2.2 

Lemma 2.2.5. If T=R+ iJ is normal-equivalent, and if AE L(X) is such that 

AT = TA, then AR = RA, AJ = JA. 

Remark 2.2.6. The operator T=R+ iJ is normal-equivalent if and only if RJ = 

JR and 
Ilexp(isR + itJ) 11 <M 

for some M and all real s, t. 

Lemma 2.2.7. If TE L(X) is normal-equivalent then T can be expressed uniquely 
in the form R+ iJ, with RJ = JR and {R, J} hermitian-equivalent. 

Proof. If T=R+ iJ = Rl + iJl, where RJ = JR, R1J1 = J1RI, and {R, J} 

and {R1, J1} are hermitian-equivalent, then by Lemma 2.2.5, {R, J, R1, J1} is a 

commuting hermitian-equivalent set: by Lemma 2.1.4 we can renorm X to make 

them simultaneously hermitian. Since R- Rl = i(Ji - J) we have 

u(R - Rl) = Q(Ji - J) = {0} : 

by Sinclair's theorem R= R1, J= Jl. 0 
The next result is more general, relying on more intricate consideration of local 

theory. 

Theorem 2.2.8. Let Tk = Rk + iJk (k = 1,2) be two normal-equivalent operators, 

and suppose that Tl and T2 are quasinilpotent equivalent. Then 

R1=R2i J1=J2. 

Proof. ([2], Theorem 2). 0 
If TE L(X) is normal-equivalent then clearly T' E L(X') is normal-equivalent. 

The converse also holds: but is not obvious. We model our proof on that of 
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Behrends [6]. It depends on Lemma 2.2.9 which is essentially due to Behrends [6]: 

for completeness we include a proof. 
In the following lemma we shall make use of the canonical projection on the 

third dual of X. If ix :X -+ X" is the canonical injection, then P= ix' (ix)' is a 

projection on X"' whose range is ix, (X') and whose kernel is (ix(X))1. We have 

the following facts about ix, ix,, (ix)' and P: 

1. (ix)'ix, = (identity)xs, 

2. Pi,, = ix,, 

3. (ix)'P = (ix)e, 

4. IIPII = 1+ 

5. (ixX, Py, ºº) = (x, (ix)ºPyººº) = (x, (ix)ºyaº) = (ixX, y") 

for each x in X and y"' in X"'. 

Lemma 2.2.9. An operator TE L(X') is of the form S' (for some SE L(X)) if 

and only if T" commutes with the projection P= irr(iX)' : X"' -+ X"'. 

Proof. First note that if SE L(X) then 

S"iX = iX. 

If now T= S' for some SE L(X) then 

T'ix = ixS 

so 

ýZXýºT� _ S'(ix)' _ T(ix)' 

and 

PT" = ix, (ix)'T" = ix, S'(ix)' = ix, T(ix)'. 

Next note that 

T'ix, = ix, T 

from which 

T"P = T"ix, (ix)' = ix, T (ix)' : 
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so 

PT" = T"P. 

Conversely suppose T"P = PT". If y' JI. ix (X ), that is, Py"' = 0, then 

(T'ixx, y"') = (ixx, T"y ºº) 

= (ix;, PT"y"') (by 5 above) 

= (iXX, T�Py'll) 

=o 

i. e. y' -L T'ix (X) 
. It follows that T'ix(X) 9 ix(X) so that 

S=(ix)-'T'ix: X-*X 

is well-defined: and then T= S'. 0 

We can now prove the following theorem, which generalises that of Behrends ([6], 

Theorem 1). 

Theorem 2.2.10. If T' E L(X') is normal-equivalent then TE L(X) is normal- 

equivalent. 

Proof. If T' E L(X') is normal-equivalent then T' =R+ iJ where R, JE L(X'), 

and R, J commute, and 11 exp(isR + itJ)II <M for some M and all real s, t. Also 

T"' = R" + iJ" is normal-equivalent. By Lemma 2.2.9 we have T"'P = PT"'; by 

Lemma 2.2.5 we get R"P = PR" and PJ" = JP" : hence, by Lemma 2.2.9. there 

are H, KE L(X) such that H' = R, K' = J. So T=H+ iK; now 

11 exp(isH + itK) 11 = 11 exp(isR + itJ) 11 <M 

for all real s, t, so T is normal-equivalent (Remark 2.2.6). 0 

Definition 2.2.11. An operator TE L(X) is strongly normal if T=R+ iJ where 
RJ = JR and the set 

0,1,2,... } 

is hermitian. 
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Remark 2.2.12. If TE L(X) is strongly normal, T=R+ iJ as above, then the 

set {gi(R, J) + ig2(R, J) : gl, g2 E CR(Q(T))} is a commutative C*-algebra under 

the operator norm and the natural involution (g, (R, J) + ig2(R, J))* = g, (R, J) - 
ig2(R, J), where CR(or (T))) is the Banach algebra of continuous real -valued functions 

in two variables on a(T) ([15], §38). 

Definition 2.2.13. An operator TE L(X) is strongly normal-equivalent if T= 

R+ iJ where RJ = JR and the set 

{RmJ" : m, n = 0,1,2,... } 

is herrnitian-equivalent. 

Remark 2.2.14. If TE L(X) is strongly normal-equivalent then T' E L(X') is 

strongly normal-equivalent. 

The next result is a refinement of Theorem 2.2.10. 

Theorem 2.2.15. If T' E L(X') is strongly normal-equivalent then TE L(X) is 

strongly normal-equivalent. 

Proof. Suppose that there exist operators R and J such that T' =R+ iJ and there 

is an equivalent norm I"I on X' with respect to which the set 

fRmJ : m, n=0,1,2,... } 

is hermitian. Since T' is normal-equivalent, by Theorem 2.2.10 there exist H, K such 
that T=H+ iK where HK = KH and H, K are hermitian-equivalent. The set 

JR'jn : m, n=O, 1,2,... } 

is hermitian-equivalent. So there is an M (> 1) such that 

II exp(itRmJ") II <M (t E ]R, m, n=0,1,2 ... ) 

and we have 

II exp(itHmK")ýý _ ýý exp(itRmJ")II <M (t E R, m, rc = 0,1,2, ... 
). 
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If we define 

l ixi ll =sup {llexp(itHmK")xll: tER, m, n=0,1,2, ... 
} 

then is a norm on X, equivalent to the original norm, and for each tE ]R we 

have 

111 exp(itHmKf)111=1 (m, n=0,1,2, ... ). 
Therefore with this norm the set {H'"K" : m, n=0,1,2.... } is hermitian: hence T 

is strongly normal-equivalent. 

Note that if T is strongly normal-equivalent then the closed linear span of 

m, n=0,1,2,... } 

is a hermitian-equivalent set Lemma 2.1.4: equivalently, 

if (R, J) :fE CR(Q(T))} 

0 

is hermitian-equivalent. We may therefore introduce yet another norm, ry, on X, 

with respect to which T will be strongly normal: 

-y(x) = sup {II exp(if (R, J))xII :fE CR(a(T))}. 

Then 'y(x) >II jxj II: so II Ix'I II< y(x') for x' E X'. 
Questions 2.2.16. (I) Do y and III"III coincide ? 

(II) Does the norm 1"ý (on X') coincide with either the dual of of 'y or the dual of 
III -III ? 

(III) Is " (on X') automatically a dual norm?, that is, does there exist an equivalent 

norm rj on X such that Ix'I = sup{l(x, x')) : 77(x) = 1}? 
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2.3 Prespectral operators 

A family I' C X' is called total if and only if yEX and (y, f) = 0, for all fE I' 

together imply that y=0. Let E be a a-algebra of subsets of an arbitrary set Q. 

Suppose that a mapping E(") from E into the Boolean algebra of projections on X 

satisfies the following conditions: 

1. E(61) + E(52) - E(bl)E(62) = E(51 U b2), 

2. E(Sl)E(b2) = E(61 n b2) (6k, 62 E E), 

3. E(Sl - 6) =I- E(5) (6 E E), 

4. E(SZ) = I, 

5. there is a real constant M such that IIE(S)II <M for all 6EE, 

6. there is a total linear subspace I' of X* such that (E(. )x, y) is countably 

additive on E, for each x in X and each y in IF. 

Then E(") is called a spectral measure of class (E, I'). 

In the following Ep denotes the or-algebra of Borel subsets of the complex plane. 

Definition 2.3.1. An operator S in L(X) is called a prespectral operator of class 

r if there is a spectral measure E(. ) of class (Ep, r) on X such that for all 6E Ep 

1. SE(S) = E(S) S (S E Ep) 

2. a(SIE(6)X) 93 (S E Ep). 

The spectral measure E(. ) is called a resolution of the identity of class r for S. If, 

in addition, S= fe(s) )E(da) then S is said to be a scalar-type operator of class F. 

The basic decomposition theorem for prespectral operators is the following result 

due to Dunford [25]. 
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Lemma 2.3.2. Let T be a prespectral operator on X with a resolution of the identity 

E(") of class r. Define 

S=J(s) AE(dA), N=T-S. L(S) 
Then S is a scalar-type operator with a resolution of the identity of class r, and N 

is quasinilpotent. 

Definition 2.3.3. Let T be a prespectral operator on X with a resolution of the 

identity E of class r. Define 

S=J AE(dA), N=T-S. 
Q(s) 

Then S+N is called the Jordan decomposition of T corresponding to the resolu- 

tion of the identity E(. ). S is called the scalar part and N the radical part of the 

decomposition. 

Lemmas 2.3.4,2.3.5,2.3.6,2.3.7 and 2.3.8 are some basic facts needed later; 

these lemmas can be found in ([22], §5). 

Lemma 2.3.4. Let T be a prespectral operator on X of class r. 

(I) T has a unique resolution of the identity of class r. 

(II) T has a unique Jordan decomposition for the resolution of the identity of all 

classes. 

Lemma 2.3.5. Let K be a compact Hausdorf space, and let O be continuous algebra 

homomorphism of C(K) into L(X) with 0(z i 1) = I, 0(z N z) = S. Then there 

is a spectral measure E(") of class (EK, X) with values in L(X') such that 

E(dA) (f E C(K))" G(. f)ý = 
fK 
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Lemma 2.3.6. Let T be a prespectral operator on X with resolution of the identity 

E(") of class r. Then T' is prespectral on X' with resolution of the identity F(. ) of 

class X such that 

(fK 
f (A) E(dA) = 

JK 
f (A) F(dA) (f E C(a(T))" 

Moreover if 

S=f 1 E(da), N=T-S 
o(T) 

then S' + N' is the Jordan decomposition of T'. 

Lemma 2.3.7. If S be a scalar-type operator of class I' then S is strongly normal- 

equivalent. 

Proof. If we define 

R=J ReAE(da), J=J ImAE(d. \) 
o(T) v(T) 

then by Lemma 2.1.5 there is an equivalent norm on X with respect to which {E(T) : 

TE Ep} are all hermitian. Let p(x, y) be a polynomial with real coefficients in the 

two real variables x= Re A and y= Im A. There is a sequence of real-valued simple 
Borel measurable function of A converging uniformly on u(S) to p(x, y). It follows 

from Lemma 1.4.4 that p(R, J) is hermitian and so the 

{R"`, J" : m, n=0,1,2, """} 

are all hermitian. 0 

Lemma 2.3.8: If S is strongly normal-equivalent then S' is a scalar-type operator 

of class X. 

Proof. Let A be the closed subalgebra of L(X) generated by I, R, and J. Define 

S2 = {x + iy :xE a(R), yE or(J) }. Observe that 0 is compact. Let p(x, y) be a 

polynomial in the two variables x and y. We define 

(IpI) = sup{Ip(x, y) 1: x+ iy E 9}, 
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0(p) = p(R, J). 

When p has a real coefficients, O(p) is hermitian, and so by Sinclair's theorem the 

norm and spectral radius of O(p) are equal. Let M denote the set of multiplicative 
linear functionals on A. It follows that 

IIE)(p)II = sup{Iq[p(R, J)I :0E M} 

= sup{IP(O(R), c(J))I :0E M} 

C I! PII00. 

If p has complex coefficients we can express p in the form pl + ip2, where pi and p2 

are polynomials in two real variables with real coefficients. Hence 

IIe (Pi) I I: I lpi l l: I IP II,,., 

IID(P2)11 ý IIPIIoo, 

and so 
IID(p)II : 2lly l o. 

It follows from the last inequality and the Stone-Weierstrass theorem that 0 can be 

extended to a continuous, identity preserving algebra homomorphism of C(1l) into 

L(X). If fo(A) =A (A E St) then 

0(fo) = R+iJ =S 

and by Lemma 2.3.5 S' is scalar-type of class X. 11 

The converse of Theorem 2.3.5 and Theorem 2.3.8 also holds (Theorem 2.3.9). 

Theorem 2.3.9 extends that of Berkson and Gillespie ([12], Theorem 8) and answers 

the question of ([12], Remark 1 on Theorem 9) affirmatively. 

Theorem 2.3.9. Let SE L(X). Then the following conditions are equivalent: 

1. S' E L(X') is a scalar-type operator of class X, 

2. SE L(X) is strongly normal-equivalent, 
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3. there exist a compact subset SZ of C and a norm continuous representation 

E) : C(12) i-+ X such that ®(z H z) = S, E) (z i-+ 1) = I. 

Proof. 1=2. Suppose that S' E L(X') is scalar-type of class X with spectral 

measure E(. ). There is a norm I"I on X', equivalent to the original norm 11 " 11, for 

which the values of E(") are simultaneously hermitian Lemma 2.1.5. Then, putting 
R=f,,, (S) Rea E(dA) and J=f nisi ImA E(dA), we see that S' =R+ iJ, RJ = JR 

and {RJf : m, n=0,1,2,3,... } is I" 1-hermitian (proof of Lemma 2.3.7): so S' 

is strongly normal-equivalent. Hence, by Theorem 2.2.15, S is strongly normal- 

equivalent. 

2 =: ý, 3. If ý"ý is a norm equivalent to the original norm on X such that S= H+iK 

where HK = KH and 

{HmK" : m, n=0,1,2,3,... } 

is I "-hermitian, then, using Sinclair's theorem as in the proof of Lemma 2.3.8, we 

have 

I p(H, K) 1<2 sup {ip(ReA, Ima)1 :AE Q(S)} 

for all polynomials p(x, y) with complex coefficients. The Stone-Weierstrass theorem 

ensures the existence of the functional calculus 0 as claimed. 

3 1. This is immediate from Lemma 2.3.5. Q 

Theorem 2.3.10. Let Sl and S2 be two operators with adjoint of scalar-type pre- 

spectral of class X and suppose Si and S2 are quasinilpotent equivalent. Then 

S1= S2. 

Proof. By Theorem 2.3.9 Si and S2 are strongly normal-equivalent. Hence, by 

Theorem 2.2.8 Sl = S2. Q 
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2.4 Spectral operators 

In this section we consider spectral operators, a very important subclass of the 

prespectral operators. 

Definition 2.4.1. An operator SE L(X) is a spectral operator if there is a spectral 

measure E(. ) defined on Ep with values in L(X) such that 

1. E(. ) is countably additive on E, in the strong operator topology, 

2. SE(T) = E(T) S (T E Ep), 

3. a(SIE(r)X) 9T (T EE). 

Lemma 2.4.2 lists some of the important properties of resolutions of the identity 

of spectral operators ([22], Theorems 6.5,6.6). 

Lemma 2.4.2. (i) TE L(X) is spectral if and only if it is prespectral of class X'. 

(ii) Let T be a spectral operator on X and let E(") be the resolution of the identity 

of class X' for T. Let AE L(X) and AT = TA. Then 

AE(r) = E(T)A (T E Ep). 

By Lemma 2.3.6 the natural class of operators to which a C(a(T))-functional 

calculus leads is the scalar-type operators. It has been shown that we can charac- 
terise the scalar-type spectral operators by their functional calculus ([41], Corollary 

1) or ([63], Theorem). 

Lemma 2.4.3. SE L(X) is a scalar-type spectral operator if and only if S has a 

weakly compact functional calculus. 

Theorem 2.4.4. Let X be a Banach space which does not contain a subspace iso- 

morphic to co. Then SE L(X) is scalar-type spectral if and only if S satisfies any 
(and hence all) of the conditions in Theorem 2.3.9. 
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If SE L(X) is scalar-type prespectral, then S is strongly normal-equivalent 
(Lemma 2.3.7) and so S' is scalar-type prespectral of class X (Lemma 2.3.8). 

Proof. Suppose S' E L(X') is scalar-type of class X. Then by Theorem 2.3.9 the 

operator SE L(X) has a C(Q(S)) functional calculus. Since X does not contain a 

subspace isomorphic to co the C(Q(S)) functional calculus is weakly compact, (by 

Lemma 1.2.9). By Lemma 2.4.3, S is scalar-type spectral. 0 

The next lemma, due to Doust and deLaubenfels ([21], Theorem 3.2), gives us 

a source of examples of operators which have a C(Q(T)) functional calculus but are 

not scalar-type spectral. 

Lemma 2.4.5. Let X be a Banach space which contains a copy isomorphic to co. 
Then there exists an operator TE L(X) which is not scalar-type spectral, yet admits 

a C(Q(T)) functional calculus. 

The next result is immediate corollary of of Theorem 2.3.9 and Lemma 2.4.5. 

Corollary 2.4.6. Let X be a Banach space which contains a subspace isomorphic 

to co. Then there exists an operator which satisfies the three condition of Theorem 

2.3.9, but which is not scalar-type spectral. 



Chapter 3 

Well-bounded operators 

The class of well-bounded operators on a Banach space was introduced by Smart 

[62] as a natural analogue of selfadjoint operators on Hilbert space, and was first 

studied by Smart and Ringrose ([58], [59], [62]). Well-bounded operators are defined 

as those which possess a functional calculus for absolutely continuous functions on 

some compact interval [a, b] of the real line. Smart and Ringrose [58] proved that on 

a reflexive Banach space a well-bounded operator can always be written as an inte- 

gral with respect to a spectral family of projections. Ringrose showed that the dual 

of a well-bounded operator always admits an integral representation with respect to 

a family of projections. This family of projections was called a decomposition of the 

identity (a definition will be given in section 2). Well-bounded operators of type (B) 

were characterised by Berkson and Dowson [10] and by Spain [65] as being those 

for which the absolutely continuous functional calculus is weakly compact. Berkson 

and Dowson [10] introduced the class of well-bounded operators with decomposition 

of the identity of bounded variation. They showed that there exists a well-bounded 

operator with decomposition of the identity of bounded variation which is not "de- 

composable in X" in that the projections in the decomposition of the identity are 

not the adjoints of projections on X. Doust and deLaubenfels [21] showed that if the 

Banach space X contain a subspace isomorphic to co, or a complemented subspace 

isomorphic to 11, then there exists a well-bounded operator on X which is not of 

type (B). In this chapter it is shown that if a Banach space X contains a subspace 

isomorphic to co, or a complemented subspace isomorphic to ll, then there exists a 

32 
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well-bounded operator on X which is not decomposable in X. 

33 

3.1 Well-bounded operators of types (A) and (B) 

Let P(J) be the subalgebra of AC(J) consisting of the polynomials on J. P(J) is 

norm dense in AC(J). Let TE L(X). we define p(T) in the natural way by setting 

k 

p(T) = 
E. 

an7"''' 

n=O 

where p(A) = En_o a,, Al. The map p 1-i p(T) is an algebra homomorphism. 

We shall give some of the basic definitions regarding well-bounded operators. 

Definition 3.1.1. An operator TE L(X) is said to be well-bounded if there exist 

a constant K and a closed interval J= [a, b] C 
,R such that 

1 17 
b 

IIp(T)II <_ K 
{IP(a)I 

+f Ip'(t)I dt (p E P(J). 
a 

Smart [621 introduced this definition and proved the following fundamental result. 

Lemma 3.1.2. Let T be a well-bounded operator on X with natural algebra homo- 

morphism O: pH p(T) from P(J) into L(X). Let K and J be as in Definition 

3.1.1. Then 0 has a unique extension to an algebra homomorphism O: f -3 f (T) 

from AC(J) into L(X) such that' 

1. II. f (T)II : ý, KIIIfIII (f E AC(J)), 

2. if SE L(X) and ST = TS then 

Sf (T) =f (T)S 

3. f (T') =f (T)' 

(f E AC(J)), 

(f E AC(J)). 

We refer the reader to ([22], Lemma 15.2) for a proof. 

Definition 3.1.3. A function uE Ll (a, b) is C-limitable on the right at a point s 

of [a, b) if the indefinite integral of u is differentiable on the right at s. 
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Definition 3.1.4. A function uEL, (a, b) is C-continuous on the right at a point 

sE [a, b) if it is C-limitable on the right at s and if the derivative of the indefinite 

integral of u at the point s is equal to u(s). 

Lemma 3.1.5. Given any xEX, q5 E X', there exists a function wx, ý in L,,. (a, b), 

uniquely determined to within a null function, such that 

b 

(f (T')0, x) =f (b) (0, x) -fw,. o (A) df (A) (f E AC(J), 
a 

The function wy, O satisfies 

IIWx, ýII <_ IIýIIIIxIIý 
and its equivalence class (modulo null functions) depends linearly on both x and ý5. 

Proof. ([59], Lemma 3). 0 

The notation of a decomposition of the identity was introduced by Ringrose in 

[59]. 

Definition 3.1.6. A decomposition of the identity for X (on J) is a family 

{E(s): sER} 

of projections on X' such that 

1. ' E(s) =0 fors <a and E(s) =I fors > b, 

2. E(s)E(t) = E(t)E(s) = E(s) for s<t, 

3. There is a real constant K such that IIE(s)II <K for sER, 

4. The function s (x, E(s)y) is Lebesgue measurable for xEX, yE X', 

5. For each xEX, the map y (x, E(s)y) from X' into L.. [a, b] is continuous 

when X' and L,,. [a, b] are given their weak* topologies as the duals of X and 
Ll [a, b] respectively, 

6. If xEX, yE X', sE [a, b), and if the function tN fä (x, E(u)y) du is right 
differentiable at s, then the right derivative at s is (x, E(s)y). 
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If there is a decomposition of the identity for X such that 
b 
(x, E(u)y) du (Tx, y) = b(x, y) -fa 
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(SEX, yEX'). 

We say that the family {E(s) :sE IR} is a decomposition of the identity for T. 

The following lemma is due to Ringrose [59]; we shall use this lemma several 
times. 

Lemma 3.1.7. Let TE L(X) be a well-bounded operator on X and {E(A) :AE R} 

denote the decomposition of the identity constructed in ([22], Lemma 15.17). If 

SE L(X) and ST = TS, then S'E(A) = E(A)S'. 

Proof. ([22], Theorem 15.19). 0 
Given a decomposition of the identity {E(s) :sE R} there exists a unique 

well-bounded operator TE L(X) such that 
b 
(x, E(u)y) du (Tx, y) = b(x, y) -fa 

([22], Theorem 15.6). Every well-bounded operator has such a representation, but 

in general the decomposition of the identity is not uniquely determined by T ([22], 

Example 15.25). 

Definition 3.1.8. Let T be a well-bounded operator and let {E(s) :sE R} be a 
decomposition of the identity for T. Then T is decomposable in X if there exists a 
family of projections F(s) on X such that F(s)' = E(s) for all sER. 
T is well-bounded of type(A) if it is decomposable in X and the function A --> F(A)x 

is continuous on the right for every xEX. 

It has recently been shown ([56], Theorem 3.2) that an operator T is well-bounded 

of type (A) ön a Banach space X if and only if T is a well-bounded operator decom- 

posable in X. 

Definition 3.1.9. T is well-bounded of type (B) if T well-bounded of type (A) and, 
in addition, for each real s, limt, _ F(t)a; exists for every xEX. 
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The following lemma is due to Ringrose [59]. We use this lemma several times 

in this chapter and in Chapter 4. 

Lemma 3.1.10. Let T be a well-bounded operator decomposable in X and {F(A) 

AE R} be a family of projections on X whose adjoints form a decomposition of the 

identity f 9r X. Then 

(i) T is uniquely decomposable; 

(ii) if SE L(X) and TS = ST, then F(A)S = SF(A) (A E R); 

(iii) given any x in X and y' E X', the function A -+ (F(a)x, y') is everywhere 

C-continuous on the right. 

Proof. ([22], Theorem 16.3) Q 

Lemma 3.1.11 is due to Berkson and Dowson [10]. 

Lemma 3.1.11. Let T be a well-bounded operator on X, and let E(. ) be a decom- 

position of the identity for T. Then 

E(A)X'={x'EX': QT, (x')9(-oo, a]} (XER). 

Proof. ([10], Theorem 5.6). D 

Theorem 3.1.12. Let U and Ul be commuting well-bounded operators on X, where 
U is well-bounded of type (A) and U- Ui is quasinilpotent. Then U= U1. 

Proof. Let E(. ) be the family of projections on X whose adjoints are a decomposition 

of the identity of U, By lemmas 3.1.7 and 3.1.10, there exist a decomposition of the 

identity {F(s) :sE R} for Ul such that E(s)'F(s) = F(s)E(s)' for all sE lit 

Observe that U' and Ui have the single valued extension property (Lemma 1.3.3). 

Given x' E X' denote by uu, (x') the local spectrum of x' relative to Ul'. Since U- Ul 

is quasinilpotent, so also is U' - Ul. Hence aui (x') is equal to the local spectrum x' 

relative to U' by Lemma 1.3.4. Hence by Lemma 3.1.11 the projections E(s)' and 
F(s) have the same range, and hence are equal, since they commute. This is true 

forallsER, andsoU=U1. Q 

Corollary 3.1.13. If U is a quasinilpotent well-bounded operator, then U=0. 
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The integrals described here are based on the modified Stieltjes integral of Krabbe 

[42]. Spain applied this integration theory to establish various characterisation of 

well-bounded operators of type (B) ([65], Theorem 5). 

Let E1(J = [a, b]) be the family of functions E: R -- L (X) satisfying 
(i) E(s) = E(s+) = st limt,, + E(t) (s E R) 

(ii) E(s-) = st limt_. 3- E(t) exist (s E R) 

(iii) E(s) =0 (s < a) 
(iv) E(s) = E(b) (s > b). 

Then supR IIE(s)II = supj IIE(s)II < oo for EE E1 ([22], Lemma 17.1). 

We say that a sequence u= (Uk :0<k< m) is a subdivision of J if 

a= uo < ul <""", um = b. The set Uj of all subdivisions of J admits a partial order 

> defined by refinement: we write 

U=(Uk: 00 k<m) <v=(v,. 0< j <n) 

when u refines v; that is, when each [uk_1, Uk] (1 <k< m) is contained in some 
[vv-i, vv] (1 <j< n). 

Let M(u) be the family of sequences u* _ (Uk* :1<k< m) such that 

Uk_1 < U*k < ak, (1 <k< m) 

for each u in U. 

A pair ü= (u, u*) with uE Uj and u* E M(u) is called a marked partition of J. 

We write lrj for the family of marked partition of J and define the pre-order > on 

7rj by setting (u, u*) > (v, v*) if and only if u>v. 
Let 7r j_ {ýc = (u, u*) E lrj : Uk_1 < Uk* < Uk, 1 <k< m} and let 

7j={ýc=(u, u*)Elri : u*=uk, 1<k<m}. 

The sets UU, 7rj, 7rj and ij' are directed by >. Also, iij and 7rrj are cofinal in 7rß. 
Let ýD and T be functions on J, one taking values in C, the other taking values 

in L(X). When UE lrj, we define 

m 

k=1 
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The following integrals are defined as net limits in the strong operator topology 

of L(X) when they exist. We write st lim for a limit in the strong operator topology. 

Then 

jdW = st 1im E (TAU), 
'rj 

an ordinary Stieltjes refinement integral. 

fdP = st 1im (W Ail), 

a right Cauchy integral. 

ri 

J (D dql = st 1im E -D ('Di), 
iri 

a modified Stieltjes integral. 

Let Nj be the Banach subalgebra of BV(J) consisting of the functions in BV(J) 

which are left continuous on (a, b]. We define iJ for each g in BV(J) thus: 

9 
7rJ, gE NJ, 

7ý J= 

17rj', 

gE BV(J)\. NV. 

Let Eu = J: i E(uk_1)X[uk_l, uk) + E(b)X[b, oo) when EE Si and uE Uj. The 

following integral is defined as a net limit in strong operator topology when it exists. 

E dg = st lim E(g0ü) 
.1 lrJ 

(g E BV(J), EE 6(J)). 

It is easy to verify that if j El dg and 5 E2 dg exist, then 5 (El + E2) dg also exists 

and 
(E1 + E2)dg = El dg + E2 dg. 

We have the following basic facts about the integral 5E dg. 

Lemma 3.1.14. Let gE BV(J) and EE E(J). Then fE dg exists and 

E dg = st lim Eu dg. 
Ui 

Also 
fEd9 

< var(g, J) sup jlE(s)II, 

and 

E dg x 11 <_ var(g, J) sup IiE(s)xII (X E X). 
fi 

1 
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Proof. ((22], Theorem 17.4). Q 

For g in BV(J) and EE E(J), we define 

dg. S(g, E) = g(b)E(b) - 
ii 

E 

Lemma 3.1.15. Let gE BV(J), EE E(J), TE L(X) and sEJ. Then 

1. S(gx[s,,,. )T) = g(s)T, 

2. IIS(g, E)II : III9III SU j IIE(s)II, 

3. II s(9, E)xII III9III SU j IIE(s)xII (X E X), 

ý. S(X[a, s], E) = E(s). 

5. 

S (g, E 
g{(a)E(a)+JdE ,gE 

Nj, 

g(a)E(a) + j; gdE, gE BV(J)\Ni. 

Proof. ([65], Lemma 6 and Theorem 3). 11 

We shall write f ®g dE instead of S(g, E) when gE BV(G) and EE E(J). 

Lemma 3.1.16. Let T be a well-bounded operator on X and let J= [a, b] and K 

be chosen so that for every complex polynomial p we have 

IIp(7')II <_ K{Ip(b)I + varj(p)}. 

Let G: AC(J) - L(X) be the AC(J)-functional calculus discussed in Lemma 3.1.2. 

Then the following conditions are equivalent. 
(i) T is of type (B). 

(ii) For every xEX, Ox : AC(J) -4 X (0x(f) = O(f)x) is a compact linear map 

of AC(J) into L(X). 
(iii) For every xEX, Ox : AC(J) -+ X (O. x(f) = O(f)x) is a weakly compact 
linear map of AC(J) into L(X). 

(iv) T=f®A dE(A) where E(. ) is the decomposition of the identity of T. 

Proof. ([65], Theorem 5). 11 
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If X is a reflexive Banach space then every well-bounded operator on X is of 

type (B). If X contains either a subspace isomorphic to co, or else a complemented 

subspace isomorphic to 11, then there exists a well-bounded operator on the Banach 

space X which is not of type (B) ([21], Theorem 4.4). 

It has been shown if X contains either a subspace isomorphic to co, or else a 

complemented subspace isomorphic to 11, then there exists a well-bounded operator 

which is not decomposable in X. The following result is useful and does not appear 

to have been published before. 

Theorem 3.1.17. Let X= Y®Z where X and Z are closed subspaces of X and let 

PE L(X) be the projection onto Y with kernel Z. Let TE L(X) be a well-bounded 

operator of type (A) with the decomposition of the identity E(s) (s E R) and let 

PT = TP. Then setting G(s)y' = E(s)(y', 0) (s E R) gives a decomposition of the 

identity on Y' = P'X'. Also, Y is invariant subspace for T and the restriction T ly 

on Y is well-bounded of type (A). 

Proof. Let F(") be the family of projections such that E(s) = F(s)'. Since 

PT=TP 

we have PF(s) = F(s)P by Lemma 3.1.10. If we define 

Gi(s)y = F(s)(y, 0) 

G(s) = Gl(s)' (s E ]R) 

then we have 

(y, G(s)y') = (Gl(s)y, y') 

_ (F (s) (y, 0), (y', O)) 

_ «y, 0), E(s)(y', 0)). 

By Theorem 3.1 of [54], G(s) is a decomposition of the identity on the dual Y' _ 
P'X'. Also, Y is an invariant subspace for T and G(. ) is a decomposition of the 

identity for Tly. 

Since G(s) = Gl (s)' (s E R), we see that TIy is decomposable in Y. Q 
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Our main result relies on the following construction from [541, Example 4.13. 

Note that c is the linear space of all convergent sequences of scalars, and co is the 

linear space of all sequences converging to zero. 

Example 3.1.18 ([54], Example 4.13). On the Banach space co define projec- 

tions Qn (n E N) by 

Qn(x1, x2, X3) ... 
) _ Xn+li Xn+27 ... 

). 

n times 

1 
For n>1, let Pn = Qn - Qn+l. Define T= -Pn. Then T is well-bounded of 

type (B) but T' is not decomposable in X'. 

For the convenience of the reader we reproduce the details as given in [54]. 

Let P� = Qn - Qn+l, Then {P�} forms a sequence of disjoint finite-rank pro- 
1 

jections so Theorem 2.3 [53], shows that T= En=1 -Pn is well-bounded. Indeed, 
n 

since Q, ti -+ 0 in the strong operator topology, the operator T is well-bounded of 

type (B). The unique decomposition of the identity for T is given by 

0 ifs<0, 

F(s) = Q', if SE[, i-,, 
n-1 

) for n>2, 

I ifs>1. 

T is well-bounded and hence T' is well-bounded. However, T' is not well-bounded 

of type (A). Suppose that T is decomposable in X' and let {E(s) :sE R} 9 L(l,,. ) 

denote any decomposition of the identity for T'. If s00 then E(s) = F(s)'. 

But there does not exist SE L(11) such that S' = E(0). If y= (y, 
ti) Ec then 

E(O)y = l(y)u where u= (1,1,1, ... )Ec and l(y) =1im,, y,,. Fix x= (x�) E 11 and 

y= (yn) EcC lam. Define 

rt G(t) =J (x, E(s)y) ds. 
0 

For tE (0,1), let Nt be the unique integer such that 1-t< tNt < 1. Then 
G(t) - G(0) 1 it 

ti 
f(x 

=, E (s)y) ds 

1 rI/Nt 1t 
=tJ (x, E(s)y) ds +t (x, E(s)y) ds. 

o 1/Ne 
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Now 
1t 

tý (x, E(S)y) du < ýt - t/Nt KIIx1111 11 -+ o, 
1/Ns 

as t -3 0+. On the other hand 

1 1/Nt 

J (x, E(s)y) ds 

00 1 

o=Nt+l 
n n- 1 

00 n 00 

_ n(, ý 1) yn xi -f- 
E 2iYi 

n=Ni+1 i=1' i=n+1 

Let 
n 00 00 

En = 

(YnXi+ 
E 

xiYi - 1(y) E 
2i. 

i=1 i=n{-1 i=1 
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Now, given any c>0 there exists tE >0 such that for all n> Nt, IEn < e. Thus, 

1 1/Nt 
t (x, E(s)y) ds 

00 00 

=11I (y) E xi + En 
t 

n=Nt+1 
n(n - 1) 

i=1 
00 

= Ntl(y) xi +1 
00 

ý, En E 
it 

i=1 n=Nt+1 n(n- 1) 

For any t< ti, 
°O 

En f 
00 1 

E <- < 
t 

n=Ne+1 
n(n - 1) t 

n=Nt+1 
n(n - 1) - 

On the other hand, (tNt)-1 -- 1 as t -+ 0+. It follows that G is right differentiable 

at 0 and that 

G(t) - G(O) 00 

tu t= 
l(y) ýs = (xýl(y)u)" 

i=1 

.ý 3 
r 

3 
ee 

By condition (6) for a decomposition of the identity, we must have that E(O)y = 

l(y)u. If y= (yn) E lam, then y is the weak* limit of the sequence {w�} Cc where 

wn = (yl, Y2, ... ) yn, yam, ... 
). Suppose that there exists SE L(11) satisfying S' = 
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E(0). Then, for any x Ell, 

(x, E(O)y) = (Sx, y) 

=1nm(Sx, w) =1nm(x, E(O)w ) 

00 
=l im (X, l(Wn) v) =l im y. 

E 
Xi. 

i=1 
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But the last limit may not exist. It follows that no such operator S can exist. Thus 

T' is not decomposable in 11. 

A Banach space X contains a complemented subspace isomorphic to li if X' 

contains a copy of co ([45], Proposition 2. e. 8). 

We can now prove the main result of this section. 

Theorem 3.1.19. Let X be a Banach space which contains a complemented sub- 

space isomorphic to 11. Then there exists a well-bounded operator SE L(X) which 

is not decomposable in X. 

Proof. Let X=Y ®Z where Y is a space isomorphic to ll. By Example 3.1.18 there 

exists an operator T which is well-bounded but not decomposable in Y. We define 

the operator S=T®0 on X=Y®Z. By Theorem 4.3 of [55], S is well-bounded. 

We define the projection II of X onto Y by II(y, z) = (y, 0). Then IIS = SII. If S 

decomposable in X, then by Lemma 3.1.7, we have 

II'E(s) = E(s)II' (sE]E8) 

where E(s) is the decomposition of the identity for S. By Theorem 3.1.17, the 

operator Sly =T is decomposable in Y. This gives us a contradiction. Q 

The next example shows "X does not contain a copy of co" is not sufficient 

for every well-bounded operator to be decomposable in X. This example is due to 

Ringrose. 

Example 3.1.20. Let X= L1(0,1), and let TE L(X) be defined by the equation 

rt Tx(t) = tx(t) +J x(u) du (1 <_ t <_ 1). 
0 
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For any polynomial p, it follows easily that' 

t 
x(u)du. - (p(t)ý)(t) = p(t)x(t) + P, (t) 

f0 

Hence 

p(T) < sup jp(T)j + varp < 2{p(1) + varp}. 
tE[0,1] [0,1] [0,1] 

Thus T is a well-bounded operator. It is easily seen (by its uniqueness) that the 

homomorphism of Lemma 3.1.2 is determined by the equation 

rt 
(f (T)x)(t) =f (t)x(t) + f'(t) J x(u) du (x E X, fE AC(J)). 

0 
We shall make the customary identification of X' with L.. (0,1). When 0E X', 

xEX, fE AC(J), we have 

fo 
1 r1 rt (0, f (T)x) = fi(t) f (T) x (t) dt +J ¢(t) f'(t) J x(u) du dt 

00 
r1 rt pt 

=f (1) (ý, ý) -J {J O(u)x(u) du - q5(t) J x(u) du} f'(t) dt. 
000 

Hence the functions Wý,, O of Lemma 3.1.5 are given by 

tt 

Wx, m(t) =f 0(u)x(u)du - c(t) f x(u)du. 
0o 

The first term on the right- hand side of this equation is absolutely continuous, and 

therefore C- limitable on the right throughout [0,1). However, for suitably chosen 

x and 0, the second term will not have this property. For example, define 

X(t) 
1 if0<t<1/2, 

10 if 1/2<t<1. 

fi(t) =2+ sin(log It - 1/21) (0 <t<1, t 0 1/2) 

q5(1/2) = 0. 

It is easily verified that 0EL,,. (0,1)and 0 is not C-limitable on the right at 
t= 1/2. It follows that wx, o is not C-limitable on the right throughout [0,1). Now, 

by Lemma 3.1.10, T is not decomposable in X. (Note that the space X is weakly 

complete. 

An interesting question is whether there exists a non-reflexive Banach space X 

on which every well-bounded operator is decomposable in X. 
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3.2 Well-bounded operators with decomposition 

of the identity of bounded variation 

Definition 3.2.1. Let TE L(X) be a well-bounded operator on X. A decomposition 

of the identity {E(s) :sE R} for T is said to be of bounded variation if the function 

s -+ (x, E(s)y') is of bounded variation on ]R for every xEX and y' E X'. 

Example 3.2.2 ([22], Example 16.19). Let X be the Banach space of all con- 

vergent sequences w= {ß,, } of complex numbers under the norm liwil = sup, ºIß . 
The pairing of X' with 1 given by 

CO 
(w, f) = Al um ßn +E Qn, \n+li 

n-ºoo 
n=1 

where f= {an} E 11, induces an isometric isomorphism of ll onto X'. Define 

T is a well-bounded operator decomposable in X with decomposition of the identity 

TE L(X), by 

of bounded variation but T is not a well-bounded operator of type (B). 

Example 3.2.3 was introduced by Gillespie in [30] to show that the sum of two 

i 
f 

{ 
k 

commuting well-bounded operators is not necessarily well-bounded. This example 

also shows that there exists a well-bounded operator of type (B) which is not a 

well-bounded operator with decomposition of the identity of bounded variation. 

Example 3.2.3. Let e, s denote the element of 12 with 1 in the nth place and 0 

elsewhere. Then {en} constitutes an orthonormal basis for l2. Define al =0 and 
1 

an _n log n 
(n=2,3,4, """). 

Observe that an, >0 (n = 1) 2,3, """), Eý° 1 jaj2 < oo and Eß_ aj = oo. Let {x�} 

and {y,, } be defined by 
n 

X2n-1 = e2n-1 + an-i+le2i, X2n = e2n (n = 1,2,3, ' 
i=1 

n 

Y2n-1 = e2n-1, Y2n = 
E(-an-i-Fl)e2i-1 

+ e2n (n = 1,2,3, ... 
). 

i=1 

Then 
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1. Ix} is a basis Of 12i 

2. (2n, ym) = anm f or n, m=1,2,3, .. ", 

3" (e2n-1, y2m-1) = bnm for n, m=1,2,3, """, 

'ý" 
ýý ýj 

1 n-1/222-111 -- 00 as n -+ oo. 

If we define p� in L(12) by 

Pn2=(X, Yn)Xn xEl2 

for n=1,2,3, """ we see that p� is a projection, pnp,,, =0 (n 5A im), and 

46 

I= st lim E, 
n=1 pn. (This notation means that the series converges in the the strong 

00 

operator topology of L(12). ) By ((22], Theorem 18.5) the series En+ 1n 
con- 

n=1 
verges strongly in L(12) and its sum is a well-bounded operator of type (B). Let 

00 +1 T= st lim E pn. If T is a well-bounded operator with decomposition of the 
n=1 

n 

identity of bounded variation then T' is scalar-type of class 12.12 is a Hilbert space 

and hence T is scalar-type spectral. But T is not scalar-type spectral (a spectral 

operator has an unconditionally convergent expansion while T has a conditionally 

convergent expansion). It follows that T is not well-bounded with decomposition of 
the identity of bounded variation. 

Examples 3.2.2 and 3.2.3 show that neither of the classes of well-bounded oper- 

ators with decomposition of the identity of bounded variation 'and of well-bounded 

operators of type (B) includes the other. 
The next lemma, due to Berkson and Dowson, relates well-bounded operators 

and scalar-type operators ([10], Theorem 5.2). 

Lemma 3.2.4. Suppose that TE L(X) and Q(T) C 1[t Then the following condi- 
tions are equivalent. 
(i) T is a well-bounded operator with' a decomposition of the identity of bounded 

variation. 

(ii) There is d compact interval J and a constant M such that 

I ! P(T) 11 <_ 4M sup l p(t) 
tEJ 
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for all complex polynomials p. 
(iii) T' is a scalar-type operator of class X. 

If (i) holds, then T is a uniquely decomposable well-bounded operator. 

Proof. ([10], Theorem 5.2). Q 

Theorem 3.2.5. If T is a well-bounded operator with decomposition of the identity 

of bounded variation then the set 

{T': n=0,1,2, """} 

is hermitian-equivalent. 

Proof. If T is a well-bounded operator with decomposition of the identity of bounded 

variation, then, by Lemma 3.2.4, ' is real scalar-type of class X with resolution 

of the identity E(. ). Then by Theorem 2.3.9 there are operators H, KE L(X) 

such that T=H+ iK, {HTKm : n, m=0,1,2, ""-} is hermitian-equivalent and 
H' = faýsý Re A E(da) and K' =f ý(S) Im A E(dA). Note that Q(T) C IR so that 

Q(T')CR: then K'=0: so thatT=H. Q 

Corollary 3.2.6. Let TE L(X) be well-bounded with decomposition of the identity 

of bounded variation, xo EX and 

m IITnxolllln = 0. u 

Then Txo = 0. 

Proof. By Theorem 3.2.5 T is hermitian-equivalent. The result now follows from 
([2], Proposition 1). 0 

We generalise this last result to apply to all well-bounded operators in the next 

chapter (Theorem 4.2.10), relying on more intricate considerations of local theory. 

Corollary 3.2.7. Let Tl E L(X) and T2 E L(X) be well-bounded operators with 
decomposition of the identity of bounded variation, SE L(X, Y), and suppose that 
1imn-+ý IIC(T1, T2)"SIl = 0. Then T1S = ST2. 
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Recall that two operators T, SE L(X) are said to be quasinilpotent equivalent, 
TNS ([17], Definition 1.2.1), if and only if 

lim II C(T, S) nI I11/n =0= lim II C(S, T)" I 111/n 
n-+oo n-ºoo 

where I is the identity operator on X. 

Corollary 3.2.8. Let Ti and T2 be well-bounded operators with decomposition of 
the identity of bounded variation. Suppose Tl £ T2. Then Ti = T2. 

Proof. Ti and T2 are hermitian-equivalent by Theorem 3.2.5. Now the result follows 

from ([2], Corollary 2). 11 

3 



CHAPTER 3. WELL-BOUNDED OPERATORS 48 

Recall that two operators T, SE L(X) are said to be quasinilpotent equivalent, 
TS ([17], Definition 1.2.1), if and only if 

lim IIC(T, S)" I IIl/n =0= lim IIC(S, T)' 11111'" n-ºoo n-1oo 

where I is the identity operator on X. 

Corollary 3.2.8. Let Ti and T2 be well-bounded operators with decomposition of 

the identity of bounded variation. Suppose Tl " T2. Then Tl = T2. 

Proof. Ti and T2 are hermitian-equivalent by Theorem 3.2.5. Now the result follows 

from ([2], Corollary 2). 0 



Chapter 4 

AC-operators 

4.1 AC-operators and well-bounded operators with 

dual of scalar-type 

In [12] Berkson and Gillespie introduced the concept of an AC-operator as an op- 

erator which possesses a functional calculus for the absolutely continuous functions 

on some rectangle in C (more detailed definitions are given below). Berkson and 
Gillespie showed that these operators can be characterised by the fact they possess a 

splitting into real and imaginary parts, T=U+ iV, where U and V are commuting 

well-bounded operators. They showed [12] that if U and V are well-bounded of type 

(B) this splitting is unique, and that if SE L(X) commutes with U+ iV then S 

commutes with U and V. Berkson, Gillespie and Doust later showed that neither 

result is guaranteed if the type (B) hypothesis is omitted [11]. 

In this chapter the AC-operators U+ iV, where U and V are commuting well- 
bounded with decomposition of the identity of bounded variation are studied. In 

this case if SE L(X) commutes U+ iV then S commutes with U and V. It is 

shown if T=U+ iV, where U and V are commuting well-bounded operators with 
decomposition of the identity of bounded variation, and if either X does not contain 

a copy of co, or if U and V are decomposable in X, then this representation is unique. 

49 
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One of the major complications one encounters when trying to extend this the- 

ory to operators with complex spectra is deciding upon the correct concept of an 

absolutely continuous function of two variables to use. In the discussion that follows 

we shall identify the subsets of R2 with subsets of C in the usual way. Let m denote 

Lebesgue measure on R. Recall that if J= [a, b] and K= [c, d] are two compact 

intervals in R, and if A is a rectangular partition of JxK: 

a=so<si<"""<Sn=b, c=to<tl <"""<t, n=d, 

then for a function f: JxK -+ C, we define 
nm 

VA(f) = 
EE If (si, tj) -f 

(si, tj-1) -f 
(Sii-1, tj) +f (Si-1)tj-1) 

I 

i=1 j=1 

and 

varjXK(f) = sup{VA(f) :A is a rectangular partition of Jx K}. 

A function f is of bounded variation if varJ,, K f, varj f (", d) and varK f (b, ") are all 

finite. By Theorem 1.2.4 the set BV(J x K) of all functions f: JxK --} C of 
bounded variation is a Banach algebra under the norm 

II if Ill =If (b, d) I +varjf(., d) +varKf(b, ")+varjxxf" 

A function f: JxK -+ C is said to be absolutely continuous if 

1. For all c>0, there exists 6>0 such that 

1: 
varR f <e 

RE91 

whenever 91 is a finite collection of non-overlapping subrectangles of JxK 

with ERE91 m(R) < 6; 

2. The marginal functions f (", d) and f (b, ") are absolutely continuous functions 

on J and K respectively. 

The set AC(J x K) of all absolutely continuous functions f: JxK -+ C is a Banach 

subalgebra of BV(J x K), and is the closure in BV(J x K) of the polynomials in 

two real variables on JxK. Equivalently, one can consider AC(J x K) to be the 

closure in BV(J x K) of the polynomial functions p(z, 2) on JxKCC. 

Define the functions u, vE AC(J x K) by u(x, y) =x and v(x, y) = y. 
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Definition 4.1.1. An operator TE L(X) is said to be an AC-operator if there 

exists a continuous unital Banach algebra homomorphism 

e: AC(J x K) --ý L(X) for which O(u + iv) = T. 

Berkson and Gillespie ([12], Theorem 5) proved that this is equivalent to the 

condition that T can be written as T=U+ iV where U and V are commuting well- 

bounded operators on X. They showed that if U and V are well-bounded of type (B) 

the representation in the form T= U+iV is unique and if SE L(X) commutes with 

T then S commutes with U and V. However, neither result is guaranteed if the type 

(B) hypothesis is omitted as is shown by ([11], Examples 3.1 and 3.4), reproduced 

below. 

The next lemma, due to Berkson and Gillespie [12], links absolutely continuous 

functions of two variables and operators of the form U+iV, with U and V commuting 

and well-bounded. 

Lemma 4.1.2. Let TE L(X). Then the following conditions are equivalent: 

1. There exist commuting well-bounded operators U and V on X such that T= 

U+iV, 

2. There exist compact intervals J and K in R and a norm-continuous represen- 
tation 0: AC(J x K) -3 L(X) such that O(u + iv) = T. 

Proof. ([12], Theorem 5). 13 

Operators of the form U+ iV with U and V commuting well-bounded operators 

and of type (B) were characterised by 'Berkson and Gillespie in terms of weakly 

compact representation of algebras of the form AC(J x K). 

Lemma 4.1.3. Let T E-L(X). Then the following conditions are equivalent: 

1. There exist commuting type (B) well-bounded operators U and V on X such 
that T= U+ iV, 

2. There exist compact intervals J and K in R and a strongly-compact represen- 
tation O: AC(J x K) -* L(X) such that O(u + iv) = T, 
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S. There exist compact intervals J and K in IR and a weakly-compact represen- 

tation O of AC(J x K) on X such that O(n + iv) = T. 

Proof. ([12], Theorem 6). Q 

The next two lemmas are due to Berkson and Gillespie; we shall generalise these 

lemmas in §2. 

Lemma 4.1.4. Let U and V be commuting well-bounded operators of type (B) on 

X and let SE L(X) commute with U+W. Then S commutes with U and V. 

Proof. ([12], Lemma 4). O 

Lemma 4.1.5. Let 

T=U+iV=U1+iV1 

where 

1. U and V are commuting well-bounded operators of type (B) on X, 

2. Ul and Vl are commuting well-bounded operators on X. 

Then U= U1 and V= V1. 

Proof. ([12], Theorem 7). Q 

Corollary 4.1.6. An AC-operator on a reflexive space can be expressed uniquely in 

the form U+ iV, with U and V commuting well-bounded operators of type (B). 

Example -4.1.7 
([11], Example 3.1). Let X= LOO[0,1] ® Ll[0,11, with norm 

II(f, 9)II = IIfILoo + ugh'. 

Define the operator UE L(X) by U(f, g) = (hf, hg), where h is the function h(t) = 
t, tE [0,1] Then U is well-bounded, and so T= U+iU is an AC-operator. Consider 
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now the operator QE L(X) given by Q(f, g) = (0, f ). For any aEC and any non- 

negative integer n, a simple induction proof shows that (U+aQ)" = U"+nU"-laQ. 

Thus for any polynomial p, p(U + aQ) = p(U) + p'(U)caQ. If (f, g) EX then 

II P(U, aQ) (f, 9) II =IIpf 1100 + II ap'f + P9I I1 

IIPII"II. f 1100 + IaIIIP'IIihIf II00 + IIPIImII9II1 

< (1 + IaI)IIPIIBv[o, 1]II(f, 9) 11, 

and so U+ aQ is well-bounded. 

Let A=U+Q and let B=U+Q. Then A and B are well-bounded, and since 

U and Q commute, A and B also commute. Now A+ iB =U+ iU = T. 

Example 4.1.8 ([11], Example 3.4). Let T be the operator defined in Example 

4.1.7. The operator S(f, g) = (f, 0) commutes with T, but it does not commute with 

A or B. 

We do have however, the following positive results. 

Theorem 4.1.9. Let U and V be commuting well-bounded operators with decompo- 

sitions of the identity of bounded variation on X and let SE L(X) commute with 
U+W. Then S commutes with U and V. 

Proof. By Theorem 3.2.5 the operators U, V are hermitian-equivalent. Since UV = 
VU it follows that U+ iV is normal-equivalent. By 2.2.5 we have 

SU=US, SV =VS. 

Theorem 4.1.10. Let 

T=U+iV=U1+iV1 

10 

where 
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1. U and V are commuting well-bounded operators of type (A) on X, with decom- 

positions of the identity of bounded variation, 

2. Ul and Vi are commuting well-bounded operators on X. 

Then U= U1 and V= V1. 

Proof. Ul commutes with U1+iV1 and hence Ul commutes with U+iV. By Theorem 

4.1.9, Ul commutes with U and V. Similarly Vl commutes with U and V. Hence the 

set {U, V, U1, Vi} is commutative. Since well-bounded operators have real spectra, 

we can apply standard Gelfand theory to deduce that U- Ul and V- Vi are 

quasinilpotent. Now, by Theorem 3.1.12, U= Ul and V= V1. Q 

When X does not contain a copy of co we need not assume that the real and 

imaginary parts are decomposable in X. 

Theorem 4.1.11. Suppose that X does not contain a copy of co. Let 

T=U+iV=U1+iV1 

where 

1. U and V are commuting well-bounded operators on X with decomposition of 
the identity of bounded variation, 

2. Ul and Vl are commuting well-bounded operators on X. 

Then U= U1 and V= V1. 

Proof. U and V are real scalar-type spectral operators ([20], Theorem 2). Now by 

([22], Theorem 16.17) U and V are well-bounded and decomposable in X. The result 
follows from Theorem 4.1.10. p 
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4.2 AC-operators and (Foia§) decomposable op- 

erators 

Let Sl be a subset of the complex plane. An algebra A of complex functions defined 

on SZ is called normal if for every open finite covering {G1}1<i<n of fl there exist 

functions f; EA such that 

1. fß(9) 9 [0,1] 
, 

(1 <i< n), 

2. supp(fi) 9 Gi, (1 <i< n) where supp (ft) = {X E Olf (A 0 0)} 

3. Li 
l fs=1 on Q. 

Definition 4.2.1. An algebra A of complex functions defined on the set SZ CC is 

called admissible if 

1. (AHA)EA, (A -1) EA, 

2. A is normal, 

3. for every fEA and every eV supp(f), the function 

f (A) 
ý-a 

fe(a) _ 

0 

if AE Q\{e}, 

ifAEn n{e}. 

belongs to A. 

Definition 4.2.2. Let A be an admissible algebra. A mapping O: A -* L(X) is 

called a A-spectral function if 

1.6: A --} L(X) is an algebraic homomorphism and 0(A H 1) = I, 

2. The L(X) -valued function CH 0(f f) is analytic on C\ supp (f ). 

Definition 4.2.3. Let A be an algebra of complex functions defined on the closed 

set SZ C C. A will be called topologically admissible if I 



CHAPTER 4. AC-OPERATORS 

1. (aHA)EA, (a *1)EA, 

2. A is normal, 

56 

S. A is endowed with a locally convex topology r such that if I fn} 9A is a 
Cauchy sequence in r and f,, (\) -+ 0 for every AE SZ, then f, -+ 0 in r, 

4. for every fEA and every ýV supp(f), the function 

f (ý) if AEc \{e}, 

oifAEQn {e}. 

belongs to A, and the mapping ý -+ ff of C\ supp (f) into A is continuous. 

Lemma 4.2.4. Let J= [a, b], K= [c, d] and SZ =JxK, let A= AC(S2) and let 

fEA, and fC be as in Definition 4.2.3. Then 

1. fE , A, 

2. the mapping ý -* ff of C\ supp (f) into A is continuous. 

Proof. Let ýV supp(f). We can find a C°° function icf, C and a closed disc Dt 

containing e such that 'c f, t js�pp(f) =1 and r f, t I DC = 0; then 

AE C°° and ff (a) =f 
(a)rf't(A) 

, so is in A. 

The mapping ýH ft is clearly continuous. Q 

Corollary 4.2.5. AC(J) and AC(J x K) are topologically admissible algebras. 

Definition 4.2.6. Let A be a topologically admissible algebra. A mapping 0 
L(X) is called a continuous A-spectral function if 

1. O: A -4 L(X) is an algebraic homomorphism, and O(A * 1) = I, 

2.0: A -+ L(X) is continuous ([17], Definition 3.5.3). 
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Remark 4.2.7. By ([17], Theorem 3.5.4) every continuous A-spectral function is 

an A-spectral function. 

Definition 4.2.8. An operator SE L(X) is called A-scalar if there exists an A- 

spectral function 6 such that O(A) = S. Such an A-spectral function will be called 

an A-spectral function of S. 

Theorem 4.2.9. Well-bounded operators and AC-operators are (Foiaý) decompos- 

able. 

Proof. By Corollary 4.2.5 well-bounded operators and AC-operators are A-scalar 

and hence by ([17], Theorem 3.1.16) they are (FoiM) decomposable operators. Q 

If TE L(X) is a (Foia§) decomposable operator then for any closed subset F of 

Q(T) the subspace XT(F) is a spectral maximal space of T (Lemma 1.3.8). 

Theorem 4.2.10. Let TE L(X) be a well-bounded operator, x0 EX and 

lim JIT'xo 1111" = 0. 

Then Txo = 0. 

Proof. T is (Foia§) decomposable hence XT({0}) is a closed subspace of X which is 

invariant for T and satisfies u(T (XT({0})) = {0} fl u(T) (Lemma 1.3.8). Therefore, 

TI XT({0}) is a quasinilpotent well-bounded operator. Hence by Corollary 3.1.13 

TI XT({0} = 0. Now by Lemma 1.3.10 we have 

XT({O}) = {x EX: 
rlm 

JITnxIIl/n = 0}. 

Thus xo E XT({O}) and Txo = 0. 0 

Corollary 4.2.11. Let T=U+ iV where U, V are commuting well-bounded oper- 

ators. If 

ulim m 
JIT"xII1l" =0 

for some xEX, then Us = Vs = 0. 
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Proof. There is a continuous homomorphism O: AC(J x K) -+ L(X), such that 

E )(u) = U, E )(v) =V and E )(u + iv) =U+ iV. 

Now limnýý IIT"xII1"" =0 and hence xE XT({0}) (Lemma 1.3.10). This gives 

xE XT({O}) c XT(u-1({O}) = Xe(u)({O}) = Xu({O}), 

where the inclusion is by Lemma 1.3.2 and the first equality is by ([17], Theorem 

3.2.4). Hence 

lm IIU'Xlil/" = 0. 

By Theorem 4.2.10, Ux = 0. Similarly we can show that Vx = 0. Q 

Lemma 4.2.12 is due to Gillespie (private communication). 

Lemma 4.2.12. Let T= U+iV, where U, V are commuting type (B) well-bounded 

operators on a Banach space X. Fix a, bER with a<b and let 

F={zEC: a<Rez<b}. Then 

XT(F) = [E(b) - E(ä )] X 

where E(") is the spectral family of U. 

Proof. Standard Gelfand theory shows that the spectrum of the restriction of T to 
[E(b) - E(a)] X is contained in F. Hence [E(a) - E(b)] XC XT(F). Now U and 
V commute with T, and hence XT(F) is invariant under both U and V (Lemma 

1.3.9). Again, standard Gelfand theory implies that the spectrum of the restriction 

of U to XT(F) is contained in [a, b] . It now follows from ([22], Theorem 19.3) that 
XT(F) 9 [E(b) - E(ä )] X. 0 

We can now prove the following theorem, which generalises that of Berkson and 
Gillespie ([12], Lemma 4). 

Theorem 4.2.13. Suppose X and Y are Banach spaces. Let Tl = U1 + iVl E L(X) 

and T2 = U2 + iV2 E L(Y) be AC-operators where Uj, V, (i = 1,2) are commuting 
type (B) well-bounded operators. Let SE L(X, Y) be an operator such that 

Jim IIC(7'2, T1)ThSlll/n = ý. 

Then U2S=SUI, V2S=SV1 andT2S=ST1. 
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Proof. It is sufficient to show that E2(a)S = SE1(a), (a E IR) where {E1(s) :sE 

IR} and {E2(s) :sE R} are the spectral families of Ul and U2 respectively. Let 

a, bER, a<bandF={zEC: a<Rez<b}. By Lemma 1.3.9 we have 

SXTI (F) C YT2 (F) and hence S [El (b) - E1(ä )] XC [E2 (b) - E2 (a-)] Y (Lemma 

4.2.12). If {a,, } is a sequence decreasing to a, then E2 (a,, ) -+ Ei(a) (i = 1,2) strongly; 

but S[El(b) - E1(a,, -)]X C [E2(b) - E2(a,, -)]Y so 

S [El (b) - El (a)] XC [E2 (b) - E2 (a)] Y. 

Taking b sufficiently large and positive we get S [I -El (a)] XC [I -E2 (a)] Y and 

taking a sufficiently large and negative we get SE1(b)X C E2(b)Y. Hence for aER 

we have SE1(a)X C E2(a)Y, S [I -El (a)] XC [I -E2 (a)] Y and therefore E2 (a) S= 

SE, (a). 0 

Corollary 4.2.14. Let Tl = Ui + iVl E L(X) and T2 = U2 + iV2 E L(X) be AC- 

operators where U;, Vi, (i = 1,2) are commuting type (B) well-bounded operators. 
Suppose T1 N T2. Then Ul = U2, Vi = V2 and Tl = T2. 

Proof. With Y=X and S=I in Theorem 4.2.13 we obtain Ul = U2, V1 = V2 and 
Ti = T2" 13 

The following results are immediate corollaries of Theorem 3.2.5 and ([21, Theo- 

rem 1). 

Corollary 4.2.15. Suppose X and Y are Banach spaces. Let T1 = U1 + iVj E L(X) 

and T2 = U2 + iV2 E L(Y) be AC- operators, where Uj, V (i = 1,2) are commuting 

well-bounded operators with decompositions of the identity of bounded variation on 
X, Y. Suppose further that 

Jim IIC(T2, Z'i)nSill/n = 0. 

Then U2S=SU,, V2S=SV1, andT2S=ST1. 
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Corollary 4.2.16. Let X be a Banach space and let Ti = U1 + iVi E L(X) (i = 

1,2) be AC-operators with Ui, Vi, (i = 1,2) commuting well-bounded operators with 

decompositions of the identity of bounded variation. Suppose Ti £ T2. Then Ul = U2, 

V1 =V2 and T1 =T2. 

4.3 Examples 

In this section we shall present some examples of AC-operators. The next Theorem 

due to Berkson and Gillespie [12] gives us a source of examples of AC-operators. For 

completeness we include a proof. 

Theorem 4.3.1. Let T be a well-bounded operator on X and let J= [a, b] and Ki 

be chosen so that for every complex polynomial p 

IIp (T) 11 : Ki {Ip (b) I+ var j (p) }. 

Suppose fE AC(J) is such that Re f and Im f are piecewise monotonic. Then f (T) 

is an AC-operator. 

Proof. Let J= [a, b] and let 

a=ao<a, <"""<an=b 

be such that Ref is monotonic on each interval [aj_,, aj] . Let K be an interval 

containing Re f (a3) for j=0, """, n. For each polynomial p, 
n 

varj(poRef) = Eaj(p), 

j=l 
where a, (p) is the variation of p over the interval with endpoints Re f (aß_1) and 
Re f (aj) and "o" denotes the composition of functions. Hence 

var j (p o Re f) <n varK p 

and so 

IIp(Re f (T) II = II (p o Re f) (T) II < Kl II Ip o Re(f) II Ij < Kl {p Re f (b) +n varK p}. 

Hence Re f (T) is well-bounded. Similarly we can show Im f (T) is well-bounded. 13 
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Corollary 4.3.2. Let T be a well-bounded operator. Then exp(iT) and p(T) (where 

p is a polynomial) are AC-operators. 

As a consequence of this corollary, a number of naturally occurring operators are 
AC-operators. 

Let G be a locally compact abelian group and suppose that µ is a left Haar 

measure on G: that is, p is a regular positive Borel measure on G such that 

p(s + E) = p(E) for each sEG and each Borel set ECG. For 'l <p< oo, 
let Lp(G) denote the usual Banach space of equivalence classes of Borel measurable 

complex valued functions on G whose pth powers are integrable with respect to to 14 

and the norm 1/p 

IIf lip -G If I Pdµ(t) (f E Lp(G))" 

Here LS(G) denotes the usual Bnach space of equivalence classes of essentially 
bounded p-measurable functions on G with the norm IIfIII= ess suptEG If (t) 1. For 

1 p: 5 oo, fE L1(G) and gE LP(G), we define f*g for almost all sEG by 

f* 9(s) -ff (s - t)9(t) dµ(t). 

The element f*g, is called the convolution of f and g. If the Haar measure µ is 

normalized so that p(G) = 1, then Lp(G) (1 <p< oo) is a commutative Banach 

algebra with convolution as multiplication. 

Definition 4.3.3. Let G be a locally compact abelian group and let 1<p: 5 oo. For 

each xEG the mapping Ry : Lp(G) --4, Lp(G) is defined by (R_, f)(y) =f (y + x), 

where fE Lp(G) and yEGa. e. (locally a. e. in the case p= oo). 

Let G be a locally compact abelian group. If 1<p: 5 oo, then Rx E L(Lp(G)), 
11R,, (f)JI = 11f 11p, (f E Lp (G), xE G) and for each fE Lp (G) the mapping from 

G to L(Lp(G)), defined by xH Rx, (x E G), is uniformly continuous. 

Lemma 4.3.4. Let G be a locally compact group, "let 1<p< oo and, for xEG, 
let R-, be the translation operator on Lp(G). Then there exists a unique well-bounded 

operator Tx on LP(G) such that exp(iTx) = R. 

Proof. ([31], Theorem 1). 0 
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The following example is due to Berkson and Gillespie [12]. 

Example 4.3.5. Let G be a locally compact group, let 1<p< oo and, for xEG, 

let R., be the translation operator on Lp(G). Lemma . 4.3.4 and Corollary 4.3.2 show 

that Rx is an AC-operator. 

Let T_ {z EC: Izj = 1}, be the unit circle in the complex plane. The unit disc 

{z : Izi < 1} is denoted by D, and the closed unit disc {z : jzI < 1} by 1D. Let p>0 

and let f be holomorphic in D. If 

hp (f, r) = 2Ir 
J If (rest) Ip dt 

then hp(f, r) is a monotone nondecreasing function of r. 

Definition 4.3.6. The space HP(D), p>0 is the (linear) space of all functions f 

holomorphic in D, such that 

Il f lip Hp = lim hp (f, r) = sup hp (f, r) < oo. 
Til- O<p<l 

If fE HP(D), p>0 then the radial limit f (reit) exists for almost all 

tET and, denoting it by f (eit), we have 

II. f I' HP =2f If (e't) lp dt. 

For p>1,11 " UU11 is a norm and HP(D) endowed with this norm can be identified 

with a closed subspace of Lp(T). See [40] for a fuller account. 

Definition 4.3.7. Let Aut(G) denote the group of conformal maps of D onto D. 

A one-parameter group of Mdbius transformations of D, lot}, is a homomorphism 

t i-p ct of the additive group of of IR into Aut(D) such that for each zED, Ot(z) is 

a continuous function of t on IR and, for some tER, ct is not the identity map. 

Lemma 4.3.8. Let {c5t} be a one-parameter group of Möbius transformations of 

D. Then the set of common fixed points in the extended plane must be one of the 

following: 

1. a doubleton set consisting of a point of D and its symmetric image with respect 

to T (elliptic case), 
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2. a singleton subset of T (parabolic case), 

3. a doubleton subset of T (hyperbolic case). 

Moreover, for any uER such that 0,, is not the identity map, the fixed points of cu 

are the common fixed points of the group {¢t}. 

Proof. ([14], Proposition (1.5)). 0 

Lemma 4.3.9. Let {Oi} be a one-parameter group of Möbius transformations of D. 

We have: (i) If lot} is elliptic, then there are unique constants cE IR c0 and 

T ED such that ci(z) = y, (e`ct7yr(z)) fort E R, z ED, where 7, (z) = (z-T)/(Tz-1). 

(ii) If lot} is parabolic, there are cER, c0 and of ET such that for tER, zED, 

at (z) _ 
(1 - ict)z + ictca 

-icätz + (1 + ict), 

(iii) If {ct} is hyperbolic, there are unique constants cER, a, ßET, with c>0, 

a J3, such that for tER, zED, ¢t(z) = Qý, Q(eýtQý, ß(z)), where a,,, p(z) = 
(z - a)/(z - ß). 

Conversely, the equations in (i), (ii), and (iii) above define groups of the respec- 
tive types. 

Proof. ([13], Theorem (1.6)). 0 
If {qt} is a group of Möbius transformations of D, and 1<p< oo, one can select in 

a canonical way a branch of (0i)'IP for tER so that 0; +tl/p = [(q5; )i/p o Ot][011'/p, 

for s, t E R, where ¢' denotes d; ¢t(z) ([13] p. 231). Henceforth the symbol (01)1/P 

will always indicate this special branch. The isometric groups in HP(D) can now be 

described. 

Lemma 4.3.10. let {Tt} be a strongly continuous one-parameter group of isome- 

tries of H"(D), 1<p< oo, p; 2. Then 

1. If {Tt} is continuous in the uniform operator topology, there is a real constant 
w such that Tt = e"'I for tER, where I is the identity operator. 
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2. If {Tt} is not continuous in the uniform operator topology, then {TT} has 'a 

unique representation in the form 

Ttf = eti"' [g5 ]'/" f(cbt) (t E IR, fE HP(D)), 

where w is a real constant, and {q5t} is a one-parameter group of Möbius trans- 

formations of D. 

Conversely, for such w and {¢t}, if 1<p< oo, et`''t[Ot1l/p f(q5t) (t E IR, fE HP(D)) 

defines a one-parameter group of isometries of HP(D) that is continuous in the 

strong, but not in the uniform, operator topology. 

Proof. ([14], Theorem (2.4); [13], Theorem (2.1)). 0 

Lemma 4.3.11. Let {Tt} be a strongly continuous one-parameter group of isome- 

tries on HP(D), 1<p< oo. Then there exists unique well-bounded operator At on 
HP(D) such that exp(iAt) = Tt. 

Proof. ([8], Proposition 2.6). 11 

Example 4.3.12. Let {Tt} be a strongly continuous one-parameter group of isome- 

tries on HP(D), 1<p< oo. Lemma 4.3.11 and Corollary 4.3.2 show that TT is an 
A C-operator. 

It has been shown that two further properties that one might hope AC-operators 

to possess also fail. Suppose that T is a normal operator on a Hilbert space. It is 

immediate from the definition of normality that for any aEC, aT is also normal. 
Even on a Hilbert space however, the class of AC-operators fails to be closed under 

scalar multiplication ([11], Example 4.1). 

Example 4.3.13. Let p� (n E N) be projections constructed in Example 3.2.3. If 

we define A= st lim En 
i A, ap� and B= st lim EO 

1 /tnpn where An = (n + 1)/n 

(n E N) and µ2n_1 = µ2n = (2n - 1)/2n (n E N). By ([22], Theorem 18.5) A and B 

are well-bounded operators. Let T=A+ iB and a=1-i. Suppose that aT is an 
AC-operator with representation aT =C+ iD. Since p,, commutes with A and B, 
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it also commutes with aT. Then, by Theorem 4.2.13, p, a commutes with C and D. 

Now for each n, 

aTpn =Cpn + iDpn 

= (A + B)p, + i(B - A)pn 

_ ((An + µn) + i(l-in - \n))Pn) 

and so (C + iD)lp�x = ((A,, + µn) + i(µ,, - an)) I. Since Q(Clp�x) C a(C) CR 

and the range of p, ti is one-dimensional, this implies that Cjp�x = (an + µ, 1)I and 

Djp�x=(pn -An)I. Thus C= stlimý 1Cp,, =A+B andD=B - A. By 1301 

A+B is not a well-bounded operator and hence aT cannot be an AC-operator. 



Chapter 5 

Boolean algebras of projections 

5.1 V*-algebras 

Definition 5.1.1. A C'-algebra is a complex Danach algebra it with an involution 

*, satisfying IIx'xII = IIx112 for all x in it. 

Since llx'zll < llx*11llxII we have lixil 5 lIx'II for each x in A, whence llxll = (Ix' I1, 

so that the involution is isometric. 

The Gelfand -Naimark theorem characterises C'-algebras ag the north closed selfad- 
joint subalgebras of L(II), where 11 is a Hilbert space. 

Let 21 be a closed subalgebra of L(X) and S) be the set of hennitian operators 

in 21. 

Definition 5.1.2.2t is aV *-algebra if IE 2t and : 1= i) + if). 

By ([16], Theorem 2.8) 21 is V`-algebra if and only if ;i is a C%algehra under 

the (Vidav) involution *: R+ iJ -ý R- iJ (R, JE S)). \VI«n ', -11.4 a 1V1-nlgehra, 

then %= S') + iS) and if 121 = !i+i!! where .R is a set of hermitlan operators In 1, 

tlien S) = A. 
A bounded linear functional w on 'P1 is call 'td a state if c(1) = Ilw1l. 

For each xEX, the functional w:: L(X) -º C: T -ý (Tx, xj 1.4 it atsºtu on uv; "ry 
V'-algebra in 1. (X) where (", ") is a semi-inner-product ein X. 't nose funnetlonni nr(t 

called point states. 

GG 
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The strong operator topology and the weak operator topology on L(X) are of 

paramount importance: important here too are the BWO topology and BSO topol- 

ogy, the strongest topologies coinciding with the weak and strong topologies on 

bounded subsets of L(X): see ([26], VI, §9). The BWO topology coincides with the 

ultraweak topology, the BSO topology with ultrastrong topology, on L(H), when If 

is a Hilbert space. 

The following theorem is a generalisation of the Kaplansky Density Theorem: ( 

[68], Theorem). 

Theorem 5.1.8 (BWO Closure Theorem). Let 2t be a V'-algebra such that 

(211 is weakly compact. Then %, the BWO closure of %, is a W`-algebra and 

( )1= (9t) 

Moreover, any faithful representation of 2i as von Neumann algebra is 13 WO bicon- 

tinuous. 

Proof. ([68], Theorem). 0 

Remark 5.1.9. It remains open, in general, to decide whether 2i = r. 

If 2(4 C L(X) and X is reflexive the compactness condition in Theorem 5.1.8 is 

satisfied. We will prove that the compactness condition is satisfied if X does not 

contain a copy of co (the Banach space of sequences that converge to zero). For a 

proof of this fact we need the following generalisation of a theorem of Grothendieck 

[35] which states that O: % -+ X is weakly compact whenever 2t is a C-algebra 

and X is weakly sequentially complete. Pelczynski extended this result in (521; he 

showed that X need only be assumed not to contain a copy of co. Akeznann, Dodds 

and Gamlen [1] extended this theorem yet further and showed that it holds whenever 
21 is a C*-algebra and X does not contain a copy of co. Spain's result is even more 

general and it is proved in a more elementary manner ([66], Theorem 2). 

Theorem 5.1.10 (Akemann, Dodds and Gamlen). If 13 is a C`-algebra, if 
O: B -+ X is a bounded operator, and X does not contain an isomorphic, copy of 

co, then O is a weakly compact mapping. 



CHAPTER 5. BOOLEAN ALGEBRAS OF PROJECTIONS 69 

Remark 5.1.11. A stronger version, where 13 may be any complete Jordan algebra 

of operators, not necessarily commutative, can be found in ([66], Theorem 2). That 

proof relies on James's characterisation of weakly compact sets. Both Akemann, 

Dodds and Gamlen [1] and Spain [66] use the Bessaga-Pelczynski result that X con- 

tains no copy of co if and only if all series En x, ti in X with En I (xn, x') I convergent 
for all x' E X' are unconditionally norm convergent. 

Our main theorem in this section relies on the following result which was set as 

an exercise in ([26], VI. 9.1.2). 

Theorem 5.1.12. Let 93 be a subset of L(X). Then '. 1i is compact in the weak 

operator topology if, for each xEX, (Bx)w is weakly compact. 

Proof. We define 

Y=[J{(8x),: llxll<_1}. 
xEX 

By Tychonoff's theorem Y is compact. If AEY let r-(A) EY be defined by 

, r(A)ý = Ax. It will be shown that r is a homeomorphism from' onto r(Y) with 

the relative topology from Y, and that r(Y) is closed in Y. Thus Y is compact in 

the weak operator topology. 

To see that T is injective suppose that T(Al) = T(A2). Then for every xE X1 we 
have T(A1)x = 7-(A2)x. Therefore, for every xE X1, we have Alx = A2x and hence 

Al = A2. 

The sets 
{AEA : I(Ax, x')I <e} (xEXI, x'EXi) 

form a subbasis for Y in the weak operator topology, while the sets 

{T(A) :AEW, 1 (T(A), x')I <, E} (x E X1, x' E Xi) 

form a subbasis for r(Y) in the product topology of Y. It is clear that T is a 
homeomorphism. 

Let Aa be a net in Y, and let fEY and suppose r(Aa) -ý f in Y. So, for every 

xE X1i r(A,, )x -+ ff. If we define A by Ax = ff then A is linear. Given xEX, 

(x 54 0) let 'y >0 be such that 1Iryxll = 1. Then we define Ax = y-1(Ayx). If also 

0>0 is such that iIßx1I < 1, then 
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y') = 'y-11im(A,, ('Yx), y') 

= Q-1 lim(Aa(Qx), y') 

= (Q-'A(Ox), y')" 

So A is well defined. If IIxil :1 then A,, x E (Bx)w and 

(Ax, y') =1im(Aax, y') (y' E X') 

and hence 

Ax E (Bx)'. 

So f= T(A) E -r(B ). Therefore T(Y) is closed in the product topology of Y. 

0 

Theorem 5.1.13. Let X be a Banach space which does not contain a copy of co. If 

% is a V*-subalgebra of L(X), then 2. i is a W*-algebra and 

( )1= () . 
Proof. For each xEX we define T_- : 21 -+ X by r (A) = Ax : the map r. : 2t -* X 

is bounded and linear. By Theorem 5.1.10,7--, is weakly compact; that is (%lx)w is 

weakly compact. Now by Theorem 5.1.12, (2. x)1 is compact in the weak operator 
topology; by Theorem 5.1.8,2i is a W*-algebra and 

( )1=(9A, ) 

0 

The following questions seem still to be open: 
I. Is 2l closed in the weak operator topology? 

II. Is * continuous in the weak operator topology? 
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Commutative C*-algebras on X 

The remaining results in this section apply to any commutative unital C'-subalgebra 

B of L(X), and in particular to any algebra generated by a Boolean algebra of 
(hermitian) projections. 

The operators in a commutative C*-subalgebra of L(X) are called normal (some- 

times strongly normal). Abstractly, they enjoy all the properties of normal operators 

on Hilbert spaces. 
Let A be the maximal ideal space of B and 6 the inverse Gelfand map 

e: C(A) -+ B 

which is a unital isometric *-isomorphism. (6 is also called the functional calculus 
for B. ) 

On restricting 6 to the C*-subalgebra generated by I, T (for any TE B) we ob- 

tain a functional calculus for a (strongly) normal T: a unital isometric *-isomorphism 

9T: C(a(T))-- t3 

such that 

6T(zH1)=I 

GT(ZHz)=T 

©T(Z H 2) = 

IIDT(f)II = II. fIIo(T) 

The following two lemmas demonstrate how to some extent the normal operators 

on a Banach space mimic normal operators on a Hilbert space. 

Lemma 5.1.14. Let B be a commutative C*-algebra on X and let 7-l be the set of 
hermitian elements of B. Suppose that K E'1-l and 0<H<K. Then 

IIHxII :5 IIKxII (x E X). 



CHAPTER 5. BOOLEAN ALGEBRAS OF PROJECTIONS 72 

Proof. For any c>0 the operator L= H(K + ¬I)'1 is defined in f, and, by the 

functional calculus, 0<L<I; so IILI) < 1. It follows that IIHxII = II L(K+d)xII < 

II (K + EI)x11: and e is arbitrary (positive). ri 

The next result, originally due to Palmer [51] Lemma 2.7, helps us extend the 

C' structure from B to C= , t3 . The following short proof is taken from [18]. 

Lemma 5.1.15. For all BE li and xEX 

IIBxII = IIB*xII. 

Proof. For e>0 the functional calculus gives 

IIB-B2(B*B+eI)-1B*II = IIeB(B*B+EI)-'11 < f/21 

and 
JIB 2(B*B + EI)-l 11 < 1. 

Thus, for any xEX 

IIBxII =1 m II B2(B*B + EI)-1B*xll <_ IIB*xII, 

and then IIB*xIl < IIB**xll _ IlBxII. 0 0 

The weak closure of a commutative C*-algebra on X is also a C*-algebra on X. 

Theorem 5.1.16. Let 13 be a commutative C'-algebra on X and ? -l the set of her- 

mitian elements of B. Let l be the weak operator topology closure of Il, and Li 

the weak operator topology closure of B. Then 

13 =l +i l 

is a C"-algebra. Moreover, F), = 1i1 . 
So ff =B 

Proof. First note that the weak and strong closures coincide for 3-l and B (they are 
both convex sets). Now Lemma 5.1.15 shows that 133 = 3-19 + iV, so X3 is a C*- 

algebra. 



CHAPTER 5. BOOLEAN ALGEBRAS OF PROJECTIONS 73 

Consider HE(? l )i. 'Then K'= (I - [I -H2]ä)/H El, and H= 2K/(I +K2). 

Take a net Ka in '1-i converging strongly to K: put Hý = 2Ka/(I + Kä). Then 

Ha-H=2(I+Kä)-1(Ka-K) (I+K2)-1+ 1H,, (K-K,, )H 

so H E: 91-w. By the Russo-Dye Theorem [15] §38 we have (, Cý )1 C t31 Q 

Corollary 5.1.17. If, further, the unit ball of B is relatively weakly compact, then 
L is a W* algebra and any faithful representation of 13 as a concrete von Neumann 

algebra on a Hilbert space is BWO bicontinuous (that is, weakly bicontinuous on 
bounded sets) 

Proof. Use Theorem 5.1.8 0 

Remark 5.1.18. We show later (§5.2) that any such faithful representation is also 
BSO bicontinuous (that is, strongly bicontinuous on bounded sets). The proof (maybe 

the result) depends on being able to represent 13 by a spectral measure: and the 

presence of co as a subspace of X seems to be the natural obstruction to this: see 
§ 5.3. 



CHAPTER 5. BOOLEAN ALGEBRAS OF PROJECTIONS 74 

5.2 Boolean algebras of projections and the alge- 

bras they generate 

Let X be a complex Banach space, and 6a bounded Boolean algebra of projections 

on X. Write aco6 for the absolutely convex hull of 6 in L(X). 

It is known that X can be renormed so that each element of E is hermitian 

(Lemma 2.1.5). 

Theorem 5.2.1. Let .6 be a Boolean algebra of hermitian projections on a complex 

Banach space X. Then A, the linear span of E, is the *-algebra generated by 6: A 

is a commutative unital algebra, and A=f+ il-l, where 1-l is the set of hermitian 

elements of A. So 13 = ;! is a commutative C°`-algebra on X. 

Proof. Immediate from the Vidav-Palmer Theorem. 0 

Lemma 5.2.2. -Let SEA and suppose that -I <S<I. Then 

SE2acoE. 

M 
Proof. Suppose first that 0<S<I. Write S in E-step form as S=F, A3E1, where 

j=1 
the Ej are pairwise disjoint. Then 0< \j < 1. Arrange the \j in descending order: 
then SI1 = A,. Define AM+1 =0 and use Abel summation 

MMj 

S=E AjEj = E(, \j - , \j+l) Ej E aco S. 
j=1 j=1 k=1 

If -I <S<I, split S into its positive and negative parts. Q 

Theorem 5.2.3. Let .6 be a Boolean algebra of hermitian projections on a complex 

Banach space X, and let B be the C -algebra it generates: let Bl be the closed unit 
ball of B. Then 

L31 C 4aco6. 

Proof. Consider an element BE 13 such that IIBII < 1. Given c>0 we can find 

S=R+U in A such that IIB -R- 011 < min{E, 1- IIBII}. Now IIRII < 1, so by 
- IIýII - 

Lemma 5.2.2, Rj E2 aco E. Q 
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Corollary 5.2.4. The following are equivalent: 
(I) l31 is relatively weakly compact 
(II) aco E is relatively weakly compact 
(III) 6 is relatively weakly compact. 

Proof. Use the Krein-Smulian Theorem. 0 

Theorem 5.2.5. Let E be a relatively weakly compact Boolean algebra of hermitian 

projections on a complex Banach space X, and let B be the Cs-algebra generated 

by E. Then X3 is a W*-algebra and any faithful representation of 13 as a con- 

crete von Neumann algebra on a Hilbert space is BWO bicontinuous (that is, weakly 

bicontinuous on bounded sets). 

Proof. This follows from Corollary 5.2.4 and Corollary 5.1.17. Q 

5.3 a-complete Boolean algebras of projections and 

spectral measures 

On Hilbert space 

On a Hilbert space 9-l the following two facts are classical. We sketch their (elemen- 

tary) proofs for the convenience of the reader. 

Lemma 5.3.1. Any monotone net of hermitian projections on f has a supremum, 

to which it converges strongly. 

Proof. Let (E«)QEA be such a net. The generalized Cauchy-Schwarz inequality 

(P2ý, ý) < (Pa, ý) (P3ý, 6), which holds for any positive operator P on ? and 

any element ýE il, shows that the net (Eo)QEA is strongly Cauchy: and its limit 

must be the supremum. Q 

Lemma 5.3.2. Suppose that (EQ) 
aEA 

is a net of hermitian projections that con- 

verges weakly to a projection E. Then it converges strongly. 
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Proof. This is immediate from the calculation 

II (E - Ea) ýII2 = ((E - EE)2 ý' e) 

= (E2e, e) - (EEa Z, e) - (EaE Z, Z) + (EEe, e) 

-+ ((E - E2) e, Z) = 0. Q 

0 

It follows that on a Hilbert space every Boolean algebra 9 of hermitian projections 

can be extended to a complete one; that Ys is the smallest such complete extension; 

and that E-= Ew (l {projections on W}. 

On a Banach space 

On a Banach space the situation is more delicate. It was shown by Bade that if 

6 is Q-complete on X then E9 is complete on X ([28], XVII. 3.23): and that the 

family of projections in E' coincides with Es. See Corollary 5.3.9 below for a proof 

(independent of Bade's original methods). 
Let E be a a-complete Boolean algebras of projection on X. Then E is a-complete 

on X if and only if every bounded monotone (sequence) net in E converges strongly 

to a limit ([28], XVII. 3.4): and then 9 must be bounded. 

A Q-complete Boolean algebra of projections 9 on X can be identified with a 

spectral measure of class X' on the Borel sets of the Stone space of E ([19], Chapter 

I): each vector measure 9x is strongly countably additive. 

Lemma 5.3.3. If µ is a strongly countably additive vector measure with values in 

X then aco{µ(Q) :aE E} is relatively weakly compact. 

Proof. Essentially this is a result of Bartle, Dunford and Schwartz ([5], Lemma 2.3): 

see also ([19], 1.2.7 & I. 5.3). 0 

Corollary 5.3.4. If 6 is a-complete then the set aco'°(Ex) is weakly compact for 

each xEX. 
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Theorem 5.3.5. Let 6 be a (bounded) o -complete Boolean algebra of projections. 
Then C=B, the commutative C"-algebra generated by E in the weak operator 
topology, is aW -algebra, and Cl = , Ci C4 aco "6. Furthermore, any faithful rep- 

resentation of C as a von Neumann algebra on a Hilbert space is weakly bicontinuous 

on bounded sets. 

Proof. Because aco ° (ex) is weakly compact for each xEX (Corollary 5.3.4) it 

follows that jx is relatively weakly compact in X for each xEX, and so B is 

relatively weakly compact, by Theorem 5.1.12. 

Theorem 5.2.5 shows that C is a W'-algebra, and any faithful representation of 
C as a von Neumann algebra on a Hilbert space is weakly bicontinuous on bounded 

sets. Q 

Theorem 5.3.6. Let B be a commutative a-algebra on X such that B1 is relatively 

weakly compact. Let B=r. Then there is a representing spectral measure E(") 

defined on the Borel sets of the Gelfand space A of C such that 

e(f) = 
ff(A)E(d) (f E C(A))" 

Proof. Let ir :C --> L(H) be BWO continuous representation of C as a concrete 
W'-algebra. Let E(") be a representing spectral measure for ir(C): 

ir 0 o(f) =f .f 
(a)E(da) (f E c(A)). 

Now define E(") _ 7r-1E("): this yields a spectral measure on X (E(. ) is weakly 

countably additive, hence, by the Banach-Orlicz-Pettis theorem, strongly countably 

additive): and then 

o(f) = 
ff(A)E(d\) (. f E C(A))" 

0 

It is immediate that for a bounded net (Ta)QEA of operators on a Hilbert space we 
have 

\Ta/QEA -4strong(y 04 
\T* , SEA -+wenkly 0. 

A similar result for operators on a Banach space seems to be available only for 

normal operators belonging to a common W`-algebra. 
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Theorem 5.3.7. Let C be a commutative W -algebra on X. Suppose that (Sa)aEA 

is a bounded net in C. Then 

`Sck)QEA -+strongly 0 4-ý Sasa 
QEA -+weakly 0. 

Proof. Clearly S« -+, tro,,, giy 0 implies that SäSQ -4stron9ly 0 and so S, *, SQ -+weakly 0" 

Let E(") be the representing spectral measure for C guaranteed by Theorem 5.3.6. 

Suppose that SSSQ -weakly 0. Let f, = 6-'Sa. Then 

1äm (SSSýx, x') =1 im JIff I2 (E(d)ý)x, x') (x E X, x' E X'). 
n 

Therefore lim fa =0 in var (E(")x, x') measure and 
a 

lim J fa (E(da)x, x') = 0. 
A 

For fixed xEX the set {(E(")x, x') : IIx'II < 1} is a relatively weakly compact set of 

measures ([26], IV. 10.2): hence lima fA fa (E(dA)x, x') =0 uniformly for IIx'1I <1 

([35], Theoreme 2). Therefore limy, fA faE(da)x =0 that is, Sa -*strongly 0. Q 

Corollary 5.3.8. Let C be a commutative W*-algebra on X. Then any faithful 

concrete representation of C as a von Neumann algebra is weakly and strongly bi- 

continuous on bounded sets. 

Corollary 5.3.9. Let 6 be a a-complete Boolean algebra of projections, and let 

(EQ) 
QEA 

be a monotone net of hermitian projections in the commutative W*-algebra 

C generated on X by E. Then (Ea)QEA converges strongly to a projection in C. So 

E" is complete on X. What is more, E9 =E n{projections in C}. 

Proof. This follows immediately from the known result on Hilbert spaces and from 

the strong bicontinuity of faithful representations as guaranteed by the theorem. Q 

The next corollary complements ([64], Theorem 5) and ([32], Theorems 1,2). 

Corollary 5.3.10. Let ,6 be a bounded Boolean algebra of projections on a Banach 

space X and suppose that £ is relatively weakly compact. Then E has a (Q-)complete 

extension contained in E9. 
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Remark 5.3.11. ' This happens automatically when X co (see §5.3). 

Corollary 5.3.12 ([28], (XVII. 3.7)). Let E be a complete bounded Boolean al- 

gebra of projections on a Banach space X. Then E is strongly closed. 

Remark 5.3.13. The results of [23] overlap with ours. 

5.4 In the absence of co 

We can now present a theorem which is stronger than any other known to us in this 

area. 

Theorem 5.4.1. Let S be a bounded Boolean algebra of projections on a Banach 

space X 'and suppose that X does not contain an isomorphic copy of co. Then the 

weakly closed algebra generated by .6 is a W-algebra and any faithful representation 

of B as a concrete von Neumann algebra on a Hilbert space is BWO and BSO 

bicontinuous. Moreover, every operator in YO, the W -algebra generated by S in the 

weak operator topology, is a scalar-type spectral operator. 

Proof. Theorem 5.1.13 shows that 6 is relatively weakly compact. The result follows 

from Theorem 5.2.5, Corollary 5.3.8 and Theorem 2.4.4. Q 

Corollary 5.4.2. Let T be a commuting finite family of scalar-type spectral opera- 

tors on a Banach space X that does not contain an isomorphic copy of co. Suppose 

that the Boolean algebra generated by the resolutions of the identity for each TET 

is uniformly bounded. Then every operator in the weakly closed *-algebra generated 
by T is a scalar-type spectral operator. 

Remark 5.4.3. If X contains co then there is a strongly closed bounded Boolean 

algebra J of projections on X which is not complete ([32], Theorem 2). Then the 

weakly closed algebra generated by 
. ": cannot have relatively weakly compact unit ball, 

and there can be no BWO bicontinuous faithful representation of this algebra on a 

Hilbert space. 
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5.5 Boolean algebras with countable basis 

As remarked above, co seems to be the natural essential obstruction to extending 

the results of the previous section. It is of course conceivable that a closer analysis 

will provide a proof that the sum and product of a pair of commuting scalar-type 

spectral operators must be a scalar-type spectral operator (so long as the Boolean 

algebra generated by their resolutions of the identity is bounded). 

We shall say that a Boolean algebra E has a countable basis if it contains a 

countable orthogonal subfamily. F = (F7, ) 
, EN such that every E ES can be written 

00 
as the strong sum of a subset of this family. Note that then I=E Fm, the sum 

m=1 
being strongly convergent. 

Lemma 5.5.1. Let C be a commutative C-algebra on X and (Fm)mEN a countable 
W 

family of positive elements of C such that F, Fm converges in the strong topology. 
m= 

Let Cm be any sequence in C for which 0< Cm <I (Vm). Then 

00 
E CmFm 

m=1 

converges strongly. 

Proof. Note that 0< CmFm < F,,, (dm). Then, for M<N, 

NN 
0< CmFm< F'm, 

m=M+1 m=M+1 

so, by Lemma 5.1.14, the sequence (CmFm) 
mEN 

is a strongly Cauchy sequence, hence 

strongly convergent. Q 

The following theorem generalises ([33], Theorem 3.6). 

Theorem 5.5.2. Suppose that E(') and E(2) are two commuting or-complete Boolean 

algebras of projections on X and that the Boolean algebra E generated by E(l) and 

g(2) is bounded. Assume, further, that g(2) has a countable basis . 97 = (Fm)mEN. 

Then 9 has a Q-complete extension, and hence a complete extension. 

Proof. As remarked in §5.2 we may, and shall, assume that all the elements of Eý11 

and 60) are hermitian. Let C be the weakly closed C*-algebra generated by E. 
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For each sequence of projections (E, (,, ')) 
MEN 

taken from e' we can, by Lemma 

5.5.1, define E=E Em1)Fm E C: each such E is a hermitian projection in C so has 
m=1 

norm < 1. 

Consider 
00 

Cý'-°- Em11Fm: Em' E£(1) 
m=1 

It is clear that F, n EG (`dm): so £(2) C G. Note also that for any E(l) E SM we 
have EM _ Em EW11Fm: so EM E 9. Thus £(') V £(2) C C. 

00 It is clear that 9 is closed under products. Further, for any E=E Em(') F,,, E 
m=1 

we have' 
00 

I-E=ýýI-Emlý]FmECg', 
M=1 

so C9 is a Boolean algebra of hermitian projections on X. 

Note that for any such EE9 we have EFm = Em11F�a (`dm): thus any element 

of C, which can be written, though not in a unique manner, as an (orthogonal) sum 

00 
E_E EEI)Fm, 

M=l 

satisfies CO 00 

E_E Ea')Fm=1: EFm. 
m=1 m=1 

Now consider a sequence . 
(Eh) 

hEN of pairwise orthogonal projections in 9: 

00 00 
Eh = Eh1mFm =E EhFm. 

m=1 m=1 

For each k and m define 
k 

Gk, 
m 

°V Eh(l) E SM 

h=1 

and then define 
00 00 Gm, °= V Gk, 

m =V Ehl nE 
-6('). 

k-1 h=1 

Note that for each k and m 
kkk 

Gk, 
mFm =v Ehl nFm, 

=r Ehl nFm, 
= Eh Fm. 

h=1 h=1 h=1 
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Suppose given xE X" and e>0. Then' there exists an M' such that 

x-E F�, x <e 
11 M 

M=l 

11 

and then we can find N such that for 1<m<M and k>N 

II(Gm - Gk, m)XII < e/M. 
k 

Suppose that j<k: then 0<2, Eh < I, so, by Lemma 5.1.14, 
h=j+1 

kmMk (Eh)x<(Eh)(xFrnx)+j(Eh)Frnx 

hj }1 m=1 m=h=jß-1 
M 

< x-E Fmx +EII(Gk, rn-Gj, n)Fmxll 
m=1 m=1 

MM 

< x-ý Fmx +EII(Gk, m-Gj, m)XII m=1 m=1 

<E'i-E=2E. (5.1) 

This shows that 9 is Q-complete. Then is complete, by Corollary 5.3.9. 

0 

From this we obtain 

Theorem 5.5.3. Let e') and EM be two or-complete Boolean algebras of projections 

on X. Suppose that the Boolean algebra E generated by E(l) and E(2) is bounded, 

and that E(2) has a countable basis. Then the weakly closed algebra C generated by 

9 is a LV`-algebra. 

Corollary 5.5.4. (Extension of [33], Theorem 3.6) Let X be a Banach space 

and Ti, T2 be commuting scalar-type spectral operators on X with resolutions of the 

identity e(1), £(2) such that S(l) V. 6(1) is bounded. Suppose further that one of these 

operators has countable spectrum. Then all operators in the weakly closed *-algebra 

generated by Ti and T2 are scalar-type spectral operators. 
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5.6 Boundedness criteria for Boolean algebras of 

projections 

Definition 5.6.1. ' A partially ordered Banach space X over the reals is a Banach 

lattice provided 

1. x<y implies x+z<y+z, for every x, y, zEX, 

2. ax > 0, for every x>0 in X and every nonnegative real a, 

3. for all x, yEX there exist a least upper bound (l. u. b. ) xVy and a greatest 
lower bound (g. 1. b. ) xAy, 

ý. jIxII < Ilyll whenever IxI < jyj, where the absolute value lxj of xEX is defined 

by IxI =xV (-x). 

The continuity of the lattice operations implies, in particular, that the set 

C= {x :xEX, x> 0} is norm closed. The set C, which is a convex cone, is called 

the positive cone of X. 

For an element x in a Banach lattice X we put x+ =xV0 and x_ = -(x A 0) and 
IxI = x++x_. Two elements x, yEX for which Jxi A Jyl =0 are said to be disjoint. 

Every Banach lattice X has the decomposition property: if xi, x2 and y are 

positive elements in X and y< xl + x2 then there are 0< yi < xl and 0< y2 < x2 

such that y= yl + y2. 

Definition 5.6.2. The Banach lattices X and Y are said to be order isometric if 

there exists a linear isometry T from X onto Y which is also an order isomorphism. 

Definition 5.6.3. A sublattice Y of a Banach lattice X is a closed subspace of X 

such that xVy (and thus xAy=x+y-xV y) belongs to Y whenever x, yEY. 

The dual X' of Banach lattice X is also a Banach lattice provided that its positive 

cone is defined by x' >0 in X' if x(x) > 0, for every x>0 in X. It is easily verified 

that, for any x', y' E X' and every x>0 in X, we have 

(x' V y')(x) = sup{x'(u) + y'(x - u) :0<u< x} 
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and 
(x 1 Ay')(x) =inf{x'(v)+y'(x-v) :0 <v <x}. 

Let X be a real Banach lattice and let X be the linear space X®X which is 

made into a complex linear space by setting 

(a + ib)(xl, x2) _ (axi - bx2, axe + bxl). 

We can define an absolute value and norm on k by putting 

I(xi, x2)I = (Ixi12 + 1x212), II (xi, x2)II X= III(xl, x2)Illx" 
The space (X, 11, JJx) is said to be a complex Banach lattice or more precisely, 

the complexification of the real Banach lattice X. As expected, the complex Lp(p) 

or C(K) spaces are the complexifications of the real Lp(p) or C(K) with the same 

µ, respectively K. 

Theorem 5.6.4 is due to Gillespie ([33], Theorem 2.5). 

Theorem 5.6.4. Let X be a complex Banach lattice and 6, F be commuting bounded 

Boolean algebras of projection on X. Then the Boolean algebra of projections .6V. 'F 

generated by 6 and .F is bounded. Furthermore 

s 
IIg v. FII <_ _2 

2 
1) IIE1121I. '112. 

For the convenience of the reader we reproduce the details as given in [33]. 

Proof. A typical element of EVY has the form 

mn 
G=EEOikEjFki 

j=1 k=1 

where El, """, E�, are mutually disjoint elements of E, F1, """, F, a are mutually dis- 

joint elements of F, E Ej => Fk = I, and each ask equals 0 or 1. Then 

mn 

2G -I=EE Qj kEjFk, 
j=1 k=1 
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where each ßj k equals ±1. By ([33], Lemma 2.4) we have 

mn 1/2 

11(2G - I)xII = 811-011 11.1711 EIE, Fk(2G - I)x12 
j=1 k=1 

mn 1/2 

= 8IIýII IIý'II IE, FkxI2 
j=1 k=1 

< 64IIEII2II. II2IIxIi 

for all xEX This gives the required result. Q 

., 
Kakutani [39] gave an example of two commuting bounded Boolean algebras of 

projections on a Banach space which generate an unbounded Boolean algebra of 

projections. Since every Banach space is isomorphic to a subspace of C(K) space, it 

follows that Lemma 5.6.4 does not extend to arbitrary subspaces of Banach lattices. 

However, it does extend to subspaces of Banach lattices which are p-concave for 

some p in the range 1<p< oo. 

Definition 5.6.5. A Banach lattice W is p-concave if there is a constant M< oo 

such that 
n l/r n lip 

E 1141" <MEIw. i i 
k=1 

11 

k=1 

for all finite sequences w1, """, w,, in W. 

Remark 5.6.6. The least possible constant M is called the p-concavity constant of 

W: we shall denote it by Mp(w). This notation is usually applied to real Banach 

lattices. It is clear that a complex Banach lattice W is p-concave if and only if Re W 

is p-concave, and when both lattices are p-concave, Mp(W) = Mp(ReW). Also, if W 

is an Lp space, where 1<p< oo, then W is p-concave with p-concavity constant 1. 

Theorems 5.6.7 and 5.6.9 are due to Gillespie. 

Theorem 5.6.7. Let 1<p< oo and let X be a closed subspace of a p-concave 

complex Banach lattice W. Suppose S, 
.F are commuting bounded Boolean algebras 
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of projections on X. Then the Boolean algebra of projections Ev JF is bounded. 

Furthermore, 

II6VJFII : ý, a Mp(W)11611 II. II 

where ap is a constant which depends on p but not on W. 

Proof. ([33], Theorem 2.6). 0 

Theorems 5.6.4, and 5.6.7 imply similar boundedness results for other related 

classes of Banach spaces as follows. 

Definition 5.6.8. Let 1<p< oo and 1<A< oo. A Banach space X is said 

to be an Cp, a space if for every finite-dimensional subspace B of X there is finite- 

dimensional subspace C of X such that C? B and 

d(C, lp) = inf{11e - t1l :cEC, tE lp }<\ where n= dim C. A Banach space is said 

to be an Gp space (1 <p< oo) if it is an Cp,,, space for some A< oo. 

The basic theory of Gp spaces can be found in [44]. 

The unconditional basis constant X(E) of a given Banach space E is the least 

constant A having the following property: There exists a basis {ei} for E such that 
IIY 

1EI fixier ll <A whenever >iEr xiei EE has norm one and es = ±1 (i E I), 

with E1 =1 for all but finitely many i. If no such A exists, set X(E) = oo. We do 

not exclude the case where the index set I is uncountable, in which case all vectors 
Eic, x; e; have xi =0 for all but countably many indices i. More generally define the 

local unconditional constant of E, 3E,, (E), to be the infimum of all scalars A having 

the following property: Given any finite-dimensional subspace FCE, there exist a 

space U and'operators aE L(F, U), 0E L(U, E), such that #a is the identity on F 

and 11cxll e011 X(u) < A. If no such A exists, set X (E) = oo. In case Xu(E) < 00, we 

say that E has local unconditional structure. 
See [34] for a fuller account. 
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Theorem 5.6.9. Let E and F be commuting bounded Boolean algebras of projec- 

tions on a Banach space X. Then the Boolean algebra 6 V. 77 is bounded and satisfies 

IIEVFII <_ ax IIEII21I- iI2, 

where ax is constant depending only on X, in each of the following cases. 

1. X is a subspace of an Gp space for some p in the range 1<p< oo. 

2. X is a complemented subspace of an Gam. 

3. X has local unconditional structure. 

Proof. ([33], Theorem 2.9). 0 

Theorem 5.6.10. Let X be a Banach space and Ti, T2 be commuting scalar-type 
spectral operators on X with resolutions of the identity E(l), &(2). Then all opera- 
tors in the weakly closed *-algebra generated by Ti and T2 are scalar-type spectral 
operators in each of the following cases. 

1. X is a Banach lattice which does not contain a copy of co. 

2. X is a subspace of a p-concave Banach lattice, where 1<p< 00. 

3. X is a subspace of an Gp space where 1<p< 00. 

/ý. X is a complemented subspace of an G,,. space. 

Proof. (1) is immediate of Corollary 5.4.2 and Theorem 5.6.4. For (2) note that a 
Banach lattice which is p-concave for some finite p cannot contain a copy of co ([46], 

p. 52) and then apply Corollary 5.4.2 and Theorem 5.6.4. By ([44], Theorem I) part 
(3) is a special case of (2). For (4), let E1, g2 be the spectral measures of T1, T2 

By ([50], Theorem 14), the spectral measure E1 is atomic and for each xEX, the 

vector measure e'(")x is supported on a countable set. Now the result follows from 

Theorem 5.5.3.0 



Notation 

The following list includes notation which is either not defined in the body of the 

thesis or which is used in a different section to where it is defined. 

R, C the real and complex scalar fields 

N, Z the integers and the positive integers 

X a real or complex Banach space 

X' the Banach space of continuous linear functionals on X 

(x) x') the linear functional x' E X' evaluated at xEX 

Q(X, X') the weak topology on X 

Q(X', X) the weak-star topology on X' 

SOT the strong operator topology on L(X) 

WOT the weak operator topology on L(X) 

st lim the limit in the strong operator topology 

w lim the limit in the weak operator topology 
BV (J x K) the space of functions of bounded variation on JxK 

where J and K are compact intervals 
AC(J x K) the space of absolutely continuous functions on JxK 

where J and K are compact intervals 

88 
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C(A) the space of continuous functions on the Hausdorf 

space A 

(1, E, µ) a positive measure space 

Lp(Sl, E, µ) the space of equivalence classes of p-integrable 

E-measurable functions on SZ 

Lp the space Lp (S2, E, µ) where (11, E, µ) is Lebesgue 

measure space on [0,1] 

ip(I') the space Lp(r, o,, µ) where (I', E, µ) is the discrete measure 

space on a set r with p({y}) =1 for every yE I' 

lp the space lr(I') where r= {1,2, """, n} 
lp the space lp(r) where r=N 
II f lip the norm of f in LP(Q, E, p) 

L,,. (S2, E, µ) the space of equivalence classes of essentially 
bounded E-measurable function on SZ 

e(T) the resolvent set of T 

v(T) the spectrum of T 

QT(x) the local spectrum of T at x 
[, "] semi-inner-product 

W (T) the numerical range of T 

v(T) the spectral radius of T 
Lp (G) see p. 61 
HP(ID) see p. 62 

aco E the absolutely convex hull of E in L(X) 

aco S the closure of aco 6 in the weak operator topology of L(X) 
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