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Chapter 1 

General Introduction 



Techniques that reveal the molecular variation between individuals and 

populations have become invaluable tools in the study of ecology and evolution. 

The research described in this thesis, encompassing the fields of behavioural 

ecology and population genetics, illustrates a range of the applications of DNA 

analysis. Molecular genetic methods are utilised, here, to investigate avian 

senescence, offspring sex ratio variation in the Herring Gull (Larus argentatus) 

and the Three-spined stickleback (Gasterosteus aculeatus) as well as the genetic 

structure of stickleback populations. 

In this introduction I shall provide an overview of the insight that 

exploitation of genetic markers has lent to a wide variety of ecological research 

areas. A comprehensive review of the applications of molecular genetics to 

ecological and evolutionary investigation would occupy many volumes of text. 

The examples used represent a cross section of research - spanning analyses at the 

level of species, populations within species and comparisons among individual 

organisms. Within this framework of levels of organisation, I shall also present 

the areas of study that are focused upon in later chapters. Finally, I shall outline 

the aims of each investigation described in this thesis and the purpose of the 

molecular analysis used in each. 

1.1 Genetic markers in ecological study 

The development of molecular ecology has been led by advances in DNA- 

based techniques for the analysis of genetic diversity. The first technique to 

provide co-dominant genetic markers (with which heterozygotes can be 

distinguished from homozygotes) that could be easily assayed, was allozyme 

electrophoresis (Lewontin and Hubby, 1966). This procedure separates the 

different proteins (allozymes) that result from allelic variation at protein coding 
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loci and, although offering relatively low resolution, remains an economic and 

convenient method for investigating genetic differences between populations and 

individuals (May, 1998). 

Subsequent advances have been made in the direct measurement of DNA 

variation, covering a range of levels of resolution, difficulty and expense. The 

discovery of restriction endonucleases, which cleave DNA at specific sequences 

(e. g. Kelly and Smith, 1970) has allowed the development of restriction fragment 

length polymorphism (RFLP) analysis and revolutionised DNA manipulation 

techniques. The ability to sequence DNA rapidly (Sanger and Coulson, 1975) has 

since made important impact upon molecular biology and has culminated recently 

in the development of polymerase chain reaction (PCR) (Saiki et al., 1985; Mullis 

and Faloona, 1987), which amplifies specified stretches of DNA to concentrations 

that can be easily analysed. A wide range of PCR primers are now available that 

can be used to amplify highly conserved genes (such as the genetic material of the 

mitochondria and ribosomes) across varying taxonomic ranks (e. g. Simon et al 

1994). At the level of shallow phylogeny and individual variation, considerable 

progress has been made using the analysis of microsatellite arrays - common 

repetitive DNA sequences, which have a high mutation rate that allows the 

investigation of molecular variation with high resolution (Hancock, 1999). 

1.2 Classification 

The development of molecular systematics over the past 20 years has 

significantly advanced the study of evolution. The issue of circularity often flaws 

traditional analyses of adaptive radiation, based on morphological variation in 

response to ecological selection pressures. That is to say that the phenotypic traits 

undergoing selection are likely to be those that are used by the researcher to 
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classify the organisms in question. Givinish (1997) states that "any rigorous, non- 

circular study of adaptive radiation must be based on a phylogeny that has been 

derived independently of the traits involved in that radiation" (Givinish, T. J., 1997, 

page 6. ). Excluding such traits from morphological analysis can lead to problems, 

if the remaining traits have converged or are subject to evolutionary constraint 

(Givinish, 1997). 

Nevertheless, molecular phylogenies are sometimes consistent with those 

based upon morphology. For example, Titus and Larson (1995) found that 

morphology and mtDNA sequence data, relating to the evolutionary radiation of 

salamanders, showed a high degree of congruence (97.2%). In contrast, studies of 

cichlids, which show adaptive radiation to the extent of hundreds of species within 

each of the three East African Great Lakes, have revealed striking examples of 

parallel evolution in form and ecology. Morphological analyses could place two 

species of fish, which are adapted to the same ecological niches in separate lakes, 

within the same genus (Greenwood 1993). However, genetic data suggests that 

the species flocks evolved independently within each lake. For example, Reinthal 

and Meyer (1997) investigated the evolution four pairs of cichlid species from two 

localities in Lake Malawi. Their analysis of DNA sequence data indicated that all 

species from the same locality, irrespective of ecological or morphological 

similarity, shared a recent common ancestor, so were unlikely to have arisen 

following an invasion of multiple specialised lineage's. 
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1.3 Population biology 

Factors that effect populations, within species, can be investigated using an 

extensive range of molecular tools (Hoelzel, 1998). Genetic variance can be 

measured between and within populations and used in population genetic 

modelling to answer questions relating to population size, migration, selection and 

historical events. The attributes of various genetic markers and their applicability 

to the study of different aspects of population biology are reviewed by Sunnucks 

(2000). 

Phylogeography 

Population genetic markers are often used in the study of phylogeography, 

the geographical distribution of genealogical lineages. Hewitt (2001) discusses the 

use of DNA sequence analysis in studying the effects of climatic shifts upon 

colonisation, range expansion, and within-species divergence of plant and animal 

populations. European biogeographic history is particularly well studied, the 

Pleistocene glaciations having restricted the range of most species to southern 

refugia. For example, analysis of mtDNA differentiation in Pine martens (Martes 

marten) and Polecats (Mustela putorius) revealed that present day central and 

northern European populations of both species have colonised their current range 

following post-glacial population expansion from a single European refugium 

(Davison et al. 2001). The authors also detected mtDNA introgression between 

Scandinavian Pine martens and the Sable marten (Martes zibellina), indicating that 

inter-specific hybridisation has occurred. 
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Intra-specific adaptation 

The investigation of shallow phylogeny is often applied to populations, 

within species, that show diverse phenotypic variation. For example, the adaptive 

radiation of fish in post-glacial lakes, through the evolution of trophic 

polymorphism, has led to clusters of putative sub-species which often retain the 

ability to interbreed (reviewed by Schluter, 1996). The question of whether 

different phenotypes within lakes represent true, reproductively isolated, species as 

defined by the biological species concept (Mayr, 1963) can be addressed via the 

investigation of genetic differentiation. 

Studies of the Arctic Charr, Salvelinus alpinus, illustrate the complexity of 

inter-specific variation. Although morphs within lakes often show extreme 

differences in trophic morphology, behaviour and ecology, levels of reproductive 

isolation between morphs is variable (reviewed by Jonsson and Jonsson, ' 2001). 

Certain aspects of polymorphism can be linked to phenotypic plasticity, the 

variable expression of genes in response to environmental stimuli (Scheiner, 

1993). For example, Arctic charr morphs often show differences in age and size at 

maturity that might result from genetic variation. However, maturation rate can 

also be influenced directly by food quality during development (Svädeng, 1991). 

Investigation of the genetic and morphological variation of charr species 

has revealed different levels of coupled genetic and morphological divergence 

(Gislason et al., 1999). Additional studies of polymorphic fish populations have 

found similar relationships between gene flow and the extent of phenotypic 

diversification in relation to differential resource use. Examples include 

Coregonid species, such as the Whitefish, Coregonis clupeaformis, (Lu and 

Bernatchez, 1999) and the Three-spined stickleback (Taylor, 2000). 
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Stickleback genetic variation (measured at microsatellite loci) is 

investigated in relation to differences in morphology between populations from 

lochs in the North East of Scotland, in Chapter 5 of this thesis. The evolutionary 

history of the Three-spined stickleback is characterised by substantial 

diversification of the ancestral marine form, following repeated invasions of 

freshwater habitats (Bell and Foster, 1994). Post-glacial population divergence 

(both morphological and genetic) has been widely studied in populations from 

British Columbia (McPhail, 1984; Schluter, 1993; Taylor and McPhail, 1999; 

Rundle et al., 2000, Taylor, 2000) and in populations across Germany (Reusch et 

al., 2001). 

Conservation genetics 

Molecular analysis often has important applications in conservation 

biology, including the genetic management of captive breeding programmes to 

avoid inbreeding (Tudge, 1993). Genetic sampling is also useful to the 

management of wild populations. For example, microsatellite variation has been 

used to assess the impact of hybridisation with domestic cats upon populations of 

the Scottish wildcat, Felis silvestris (Daniels et al., 2001). Analysis of parent- 

offspring and sibling-sibling relationships showed recent inbreeding between 

tabby (wildcat phenotype) and non-tabby wild-living cats, suggesting a need for 

controls on domestic cat populations to prevent further introgression. 
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1.4 Variation between individuals 

Paternity analysis 

DNA based identification of parent-offspring relationships provides 

interesting avenues of research in behavioural ecology; for example, the study of 

extra-pair fertilisation in birds (Moller and Birkhead, 1993). Analysis of extra-pair 

offspring in Bluethroats (Luscinia svecica) has shown that nestlings sired by extra- 

pair males had improved immunocompetence relative to their maternal half- 

siblings (Johnsen et al. 2000). In addition, the paternal half-siblings (in the genetic 

father's nest) showed lower immunocompetence than the extra-pair young. These 

results suggest that females engage in extra-pair copulation to obtain compatible 

genes that increase offspring viability. 

Sex determination 

The development of sex-linked genetic markers that allow the sex- 

determination of newly hatched birds (Griffiths, 1998) has stimulated research into 

the factors that govern the differential allocation of offspring sex. The production 

of equal numbers of male and female offspring in sexually reproducing diploid 

species was theoretically discussed by Fisher in 1958. Fisher states that 

frequency-dependant selection stabilises the sex ratio near unity so that the 

average investment of parents in their sons and daughters should be equal; higher 

investment in one sex would be expected to be offset, evolutionarily, by higher 

mortality in that sex (Fisher, 1999). Fisher's theory assumes a linear net 

relationship between reproductive investment and return. However, Charnov 

(1982) has argued that investment may not always be proportional to return and 
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that if marginal returns in offspring reproductive success vary with offspring sex, 

then an equal investment in male and female offspring is not always expected. 

Parental manipulation of offspring sex ratio has been demonstrated in 

eusocial insects (Trivers and Hare, 1976), in which sex is determined by 

haplodiploidy. That is, females develop from fertilised eggs and are diploid whilst 

males develop from unfertilised eggs and are haploid. Similarly, adaptive sex ratio 

biases have been found in reptiles with temperature dependent sex determination 

(e. g. Freedberg and Wade, 2001). However, allocation of sex in many vertebrate 

species, including birds, is potentially constrained by chromosomal sex- 

determining mechanisms and male and female gametes are expected to be 

produced in a 1: 1 sex ratio (Fisher, 1999). 

Trivers and Willard (1973) predicted that where vertebrate species show 

extensive parental investment, the sex and number of offspring produced should be 

adaptively varied in response to maternal condition. Natural selection should 

favour a biased sex ratio when there is a difference between the cost and benefit of 

producing males and females, such that a female in poor condition is likely to 

overproduce the cheaper sex so that offspring quality and survival is maximised. 

Studies of sex ratio variation in birds, many based upon expectations of 

adaptive manipulation derived from Trivers and Willards' (1973) hypothesis are 

reviewed by Clutton-Brock (1986) and Sheldon (1998). The study described in 

Chapter 3 of this thesis used molecular sexing techniques to investigate offspring 

sex ratio variation between individuals in a wild population of the Herring gull, in 

relation to maternal quality. 

Sex-linked markers for the determination of sex from DNA of the Three- 

spined stickleback have also been recently developed (Griffiths et al., 2000). The 

stickleback provides a good model organism for the study of sex ratio variation; It 
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can be maintained and bred in relatively large numbers under controlled conditions 

in aquaria. Brood sizes are large, with clutches from a female of approximately 

fifty eggs being common. In addition, the utilisation of split-clutch in vitro 

fertilisation techniques (Barber and Arnott, 2000) allows any potentially 

confounding effects of maternal and paternal variation to be separated in the 

analysis of offspring sex ratio. The variability of offspring sex ratio, in relation to 

paternal quality, in the stickleback is examined in Chapter 4 of this thesis. 

Senescence 

Senescence is suggested to have evolved via trade-offs between age- 

specific fecundity and survival. Medawar (1952) first proposed the idea that 

selection might be absent against degeneration with age. Williams (1957) 

expanded upon this, adding that genetic mutations, which increase fecundity early 

in life, could be maintained by positive selection, even when the same mutations 

cause negative effects upon fecundity and survival later in life. The expected life 

span of individuals within species and the consequences of senescence have 

significant effects upon the evolution of life histories (Harvey et al., 1989). Age- 

sensitive events are subject to selection and the likelihood of survival to a given 

age, coupled with age-specific variation in the ability of individuals to produce 

offspring, controls the age structure of populations (Pianka, 2000). 

Individuals of some species can be aged by researchers using 

morphological features. For example, sclerochronology of reptiles (seasonal 

growth cycles recorded in hard tissues) can be used to estimate age post mortem 

(Castanet, 1994). There are also methods of age determination for ungulates, 

based upon tooth wear, although these appear fairly imprecise (Richardson et al., 

1995; Hewison et al., 1999). Investigation relating to the age of individuals in 
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free-living bird and mammal populations is largely restricted to the examination of 

tagged individuals and requires longitudinal monitoring. Field studies upon 

known-age individuals include research into the effects of age upon reproductive 

performance in deer (Clutton-Brock 1984), seabirds (Daunt et al., 1999) and 

swallows (Robertson and Rendell, 2001). The gathering of age-related 

information would be greatly assisted if molecular markers from DNA samples 

could be conveniently used to estimate the age of an individual. 

Genetic research in humans has shown that telomere length (regions of 

repetitive DNA at the end of each arm of a linear chromosome) correlates with the 

age of an individual (Hastie et al., 1990; Harley. et al., 1990; Christafalo et al., 

1998; Iwama and Toyama, 1998). It was therefore decided to investigate the 

possibility of applying telomere measurement techniques to samples of genomic 

DNA from birds. Analysis of telomere length in birds, as a method of age 

determination, was attempted and is described and discussed in Chapter 2. 

1.5 Genetic function and ecological interaction 

Although genetic analysis is used in a wide range of ecological disciplines 

to examine variation between species, populations and individuals, little is known 

about the complex relationships between the genotype, phenotype and ecological 

circumstances of most wild species. Jackson et al. (2002) highlight the need for 

functional approaches, such as the identification of genes that control ecologically 

relevant traits and their interaction with the environment. Much recent research 

has been devoted to the analysis of mircorarrays, in which the expression of 

hundreds to thousands of genes can be assayed to measure the response of an 

organism to its environment (Brown and Botstein, 1999). The mapping of genes 

that undergo ecological selection, such as the loci that control continuous variation 
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of skeletal morphology in the stickleback (Peichel et al., 2001) is also extremely 

important to the understanding of adaptation. However, the few model species 

that have been genetically well characterised in the laboratory (e. g. Drosophila 

and Arabidopsis) currently limit the range of investigation of genetic interaction 

with ecological processes. Jackson et al. (2002) suggest that, in order to study 

gene function in a natural context, a larger set of model organisms is needed. 

6 
1.6 Outline of thesis 

The subjects studied are diverse from chapter to chapter, and the 

methodology and results are, therefore, described and discussed in their entirety 

within each chapter. The first study described in Chapter 2 concerns molecular 

correlates of ageing in birds. The aim of this research was to investigate the 

possibility of using telomere length as a marker of ageing in birds and to develop a 

procedure that could be applied to research in avian ecology in general. Telomere 

length was examined by extraction of DNA from blood samples of known age 

individuals which, in birds, should be facilitated by the fact that, unlike those of 

humans, avian red blood cells are nucleated. Analysis was also attempted using 

DNA extracted from a range of avian tissue samples. Telomeres were isolated by 

restriction digestion of DNA, using enzymes that cut genomic DNA frequently, 

with the exclusion of the (known) telomeric sequence. The resulting telomeric 

fragments were then resolved on agarose gels, for subsequent analysis of mean 

telomere length. 

Chapters 3 and 4 describe two studies that utilise PCR analysis of offspring 

sex ratio. In Chapter 3, I investigate primary offspring sex ratio variation in the 

Herring gull. A biased offspring sex ratio has been shown to occur in response to 

maternal condition in gulls by Nager et al. (2000). Female Lesser Black-backed 
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gulls (Larusfuscus) were induced to lay extended clutches by removing and cross- 

fostering newly laid eggs. The sex of chicks hatching, that were laid towards the 

end of an extended sequence, when female condition has declined, was strongly 

female biased. In gulls, males are of a similar mass to females at hatching but are 

skeletally larger and are so assumed to carry less nutritional reserves (Nager et al., 

2000). This difference may explain a sex-related increase in post-hatching 

mortality found in male Lesser Black-backed gull chicks (Griffiths, 1992). 

Laying date is accepted to be an indicator of maternal quality and 

reproductive success in many species of seasonally breeding birds (Perrins, 1970), 

including gulls (Nisbet and Drury, 1972). It was decided to use hatching date of 

Herring Gull clutches, at a breeding colony on Walney Island, Cumbria, as a 

correlate of maternal condition to investigate whether sex ratio manipulation 

occurs in gulls, under natural conditions. It is hypothesised that clutches hatching 

later in the season, laid by poorer quality females, should be female-biased. In 

order to test this, blood samples were collected from newly hatched chicks, from 

complete clutches of three eggs, throughout the hatching period. Molecular 

analysis of sex was carried out using DNA extracted from each blood sample 

(Griffiths et al., 1998) and the sex ratio of each clutch analysed in relation to 

hatching date. 

Molecular sexing techniques were also applied to the analysis of offspring 

sex ratio in sticklebacks, detailed in Chapter 4. The Three-spined stickleback 

provides an interesting subject for the study of offspring sex ratio. During 

breeding, males develop nuptial colouration (including red, carotenoid-based, 

ventral skin pigmentation), build a nest and compete for mates (Wootton, 1976; 

Wootton et al., 1995). Females lay their eggs in the nest of the chosen male, who 

then provides all of the parental care. Red colouration has been shown to indicate 
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male body condition in the stickleback with good quality males having more 

intense red colouration (McLennan and McPhail, 1989b; Frischknecht, 1993; 

Bakker, 1999). This relationship would appear to form a basis for female mate 

choice, with females generally preferring to mate with redder males (Milinski and 

Bakker, 1990; Bakker, 1993). 

The aim of the study (described in Chapter 4) was to investigate the effect 

of paternal quality upon offspring sex ratio, in the stickleback. Paternal quality 

was assessed by the intensity of red nuptial colouration and its relationship with 

female choice analysed in a captive population sample, using mate choice trials. 

Clutches of eggs were fertilised using a split clutch in vitro fertilisation protocol 

(Barber and Arnott, 2000). Pairs of males of differing redness were used to 

fertilise clutches of eggs from pairs of females. Half of each of two females clutch 

was fertilised by each of two males and the eggs incubated artificially (Barber and 

Arnott, 2000). The resulting fry were then sexed at hatching using a PCR based 

technique (Griffiths et al., 2000). This split-clutch design should allow the 

comparison of offspring sex ratio, at fertilisation, between males of differing 

quality, whilst controlling for maternal effects. 

During the incubation of the fertilised stickleback clutches, many of the 

embryos were destroyed by fungal infection. This setback prompted the analysis 

described in the second section of Chapter 4, which assessed the efficacy of sexing 

stickleback embryos at earlier stages of development. DNA' was sampled from 

stickleback embryos daily between fertilisation and hatching (a period of 

approximately ten days). The amount of DNA extracted was quantified and the 

effectiveness of the PCR-based sexing technique monitored in relation to embryo 

age. 
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In Chapter 5, microsatellite variation, between populations of the Three- 

spined stickleback, was analysed. The use of microsatellites as genetic markers is 

growing rapidly and covers a wide variety of applications (Goldstein and 

Schlötterer, 1999). Although several alternative approaches to measuring 

molecular variation between groups of individuals are available (Sunnucks, 2000), 

microsatellite analyses have a number of useful attributes, when used in the 

investigation of shallow (intra-genus or intra-species) phylogeny. 

The term microsatellite is now commonly used to refer to sequences in 

the genome, consisting of a motif of less than six base pairs in length that is 

repeated head-to-tail, without interruption (Hancock, 1999). Microsatellites tend 

not to be highly conserved between species - only 30% of human microsatellites 

are present in rodents (Stallings, et al., 1991). It is this variability, a product of a 

high mutation rate that allows sequence length variation, at specific microsatellite 

loci, to be utilised in the investigation of genetic differentiation within species. In 

addition, microsatellites are numerous and codominant (Sunnucks, 2000), meaning 

that heterozygotes for a given locus can be distinguished from homozygotes. 

The main drawback of microsatellites is that extreme inter-specific 

variation means that they often need to be characterised by researchers of species 

that are being examined for the first time (Zane et al., 2002). However, PCR 

primers that amplify microsatellite loci in the Three-spined stickleback have 

already been published by several authors (Rico et al., 1993; Taylor, 1998; 

Largiader et al. 1999). 

The analysis of microsatellite variation from populations from North East 

Scotland, detailed in Chapter 5, was carried out in collaboration with an 

investigation of morphological divergence by Arnott, Barber and Pagnon 

(unpublished). The analysis of microsatellite variation is based upon tissue 
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samples from stickleback collected from a loch containing two distinct morphs, 

one group with pelvic spines and another lacking pelvic spines. These morphs 

were compared at five microsatellite loci along with a local salt marsh population 

(representing the marine ancestral form) and a population situated upstream, in a 

neighbouring loch. 
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Chapter 2 

Molecular Correlates of Ageing in Birds: 

Telomeres and Senescence 
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2.1 Introduction 

The age structure of a population is an important ecological parameter. 

However, research relating to the life-spans of higher animals often requires an 

extensive longitudinal study. For example, ornithologists might be able to 

recognise seasonal cohorts of birds that exhibit distinctive plumage characteristics 

over their first few years of life, whilst many long-lived species are only 

recognisable as juveniles or adults. In order to be more precise, birds can be ring- 

marked as hatchlings. Those that are encountered in subsequent years may then be 

used as a sample of known age individuals. 

A useful alternative might be found in the use of molecular markers. 

Simple changes to DNA occur within an organism each time that a cell divides. 

Telomeres (the extensive sequences found at the ends of chromosomes) have 

become a focus of substantial research and it is the object of this study to examine 

the telomeres of birds. It is hoped that this investigation will allow new techniques 

to be applied within an ecological context. 

Telomere structure and function 

In eukaryotes, a copy of the genome is contained in the nucleus of each 

cell, as a set of linear chromosomes. Telomeres form the termini of each arm of a 

linear chromosome. The chromosome consists of a matching pair of DNA 

molecules, folded and packaged with protein to form sister chromatids (Figure 

2.1). DNA is composed of nucleotides, which in turn are each composed of a 

nitrogen base, deoxyribose sugar and phosphate group. The nucleotides bond 

together, via the sugar and phosphate groups, in series, to form two strands of a 

DNA molecule. Each nucleotide is identical except for its base which is either 

adenine, thymine, guanine or cytosine (denoted A, T, G and Q. These form base 
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pairs, joined by hydrogen bonds, which hold together the two strands of a DNA 

molecule (T bonds preferentially with A and G with Q. When the two stands of a 

DNA molecule are separated, exposed bases will usually only pair with its 

complimentary base. Thus each single strand of a pair is the template of the other 

(Watson and Crick, 1953). Telomeric DNA consists of a long, repeated sequence 

of bases, rich in guanine. The vertebrate telomeric sequence is highly conserved 

(Meyne et al., 1989) and is represented in Figure 2.1 (expanded view). The unit 

(TTAGGG) is repeated several thousand times within a single telomere. 

Telomere structure 

internal chromosomal DNA 

AATCCCAATCCCAAT 

AG 

Figure 2.1: Telomere structure: The expanded view represents the 10-15kb 

telomeric sequence, with the repeating unit (TTAGGG),,, as it borders the internal 

chromosomal DNA. 
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One of the functions of telomeres is to act as binding sites for the proteins 

that cap and protect chromosomes from degradation and end-to-end fusion's. This 

role was identified by McLintock (1941) who recognised that intact chromosomes 

differed from those that were broken by possessing a structure that stabilised the 

ends, preventing end-to-end fusion. This telomeric sequence does degrade, 

through oxidative stress (von Zglinicki et al., 1995), possible exonuclease activity 

(Makarov et al., 1997) and as a result of mitosis. Because the telomere does not 

contain codons for protein synthesis, it may, therefore, serve as a buffer that 

protects internal chromosomal genes from deletion. Telomeres also play a role in 

meiosis, transcriptional silencing and interact with cell cycle checkpoint controls 

(McEachern et al., 2000). 

Telomeres and senescence 

Hayflick and Moorehead (1961) demonstrated that the replicative capacity 

of cells in culture decreased with increasing age of the donor tissue. In addition, 

Olovnikov (1973) noted that incomplete copying of the ends of chromosomes led 

to shortening of so-called "telogenes", with each round of mitosis. 

Telomere shortening occurs with cell division due to the failure of enzymes 

to copy the very end of a DNA strand during replication. Figure 2.2 represents the 

telomeric end of a DNA duplex, during replication. The nucleotide units that bond 

to form DNA molecules are asymmetrical and bind only in the 5' to 3' orientation. 

The upper and lower strands of the DNA duplex are antiparallel in terms of their 5' 

to 3' orientation. During cell division, the duplex separates to form a replication 

fork. Each strand from the parental molecule becomes a template for a 

complementary new strand so that replication is semi-conservative. 
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Replication is initiated by RNA primers, which bind to the parental strand 

and are then elongated by DNA polymerase enzymes to form the complimentary 

strand. On removal of the RNA primers, gaps are sealed in the 5' to 3' direction. 

At the 3' end of the new strand, filling cannot occur and a guanine rich, single 

stranded, overhang remains (Wright et al., 1997). This structure has recently been 

shown to form a loop (Griffith et al., 1999) that may function to increase the 

stability of the end of the telomere. 

Telomere shortening has been shown to occur in a variety of human tissues 

with age (Harley, 1995 reviews). Length has been shown to decline in vitro and in 

vivo, until a critical length is reached during senescence. In humans, a mean 

telomere length of 1.5 kb is proposed to coincide with cell cycle exit (Allsopp and 

Harley, 1995). Chin et al. (1999) show that shortening of telomeres to critical 

length activates the production of p53 protein that, in turn, induces transcription of 

cell cycle regulatory genes. The expression of inhibitors, p21 and p16INK, 

accompany the phenotypic alteration associated with senescence (Kipling and 

Faragher, 1997; Kiyono et al, 1998). 

The decrease in telomere length of cells with increasing age gives an 

explanation for the Hayflick limit. This limit has also been characterised in a 

range of mammals by Rhome (1981), who shows that the replicative capacity of 

fibroblasts relates to the species longevity. It might, therefore, be expected that 

species telomere length would correlate to the limits found upon cell replicative 

capacity. 
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Figure 2.2: The end replication problem 

TTTAGGGCTACGCTACGTTATCAGCAAGATCGATACAGATCAACAGTAGTTAG 
I III I III IIIIIII III III 11111 I III IIIIIIII 1111 III I!! liii 

AAATCCCGATGCGATGCAATAGTCGTTCTAGCTATGTCTAGTTGTCATCAATC 
5' 

Hydrogen bonds 

Double stranded DNA splits to 
form a replication fork 

5' 

AýGTAG, I TAc 
3' : ZC"AGATC) 11 

TTTAGGGCTACGCTACGTTATCAGCAAG AT CGAT 11111111 
11111111 

TCAAT 
CT,, PTTGTCA 3. 

iiiIiiII 111111 IIIII 11111 TATGT 

ATC 
Primer 

Okazaki 
fragment 

AGATC 

T I/i/i 

AAATCCCGATGCGATGCAATAGTCGTTC T AG 

I'II' 

'GT 5 
ýCATCAAT 

3' 

DNA strands are made by polymerase enzymes but these cannot start 
a new strand. Synthesis begins with a an RNA primer (/\^) which 
binds to the strand to be copied. DNA cannot be built in the 3' to 5' 
direction, so the lower strand ( -) is copied as Okazaki fragments, 

synthesised 5' to 3', as the replication fork "unzips". 

3' 5I 

3' 
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Following replication, the primers are removed 

3' 51 
TTTAGGGCTACGCTACGTTATCAGCAAGATCGATACAGATCAACAGTAGTTAG 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

CGATGCGATGCAATAGTCGTTCTAGCTATGTCTAGTTGTCATCAATC 
5' 3' 

3' f- ý- 5' 
TTTAGGGCTACGCTACG AGCAAGATC AGATC AGTAG 
III IIIIIIIIIIIIII IIIIIIIII IIIII IIIII 

AAATCCCGATGCGATGCAATAGTCGTTCTAGCTATGTCTAGTTGTCATCAATC 

5' 3' 

Gap filling can only occur by extension from 3' ends (i ) 

3' 5' 

TTTAGGGCTACGCTACGTTATCAGCAAGATCGATACAGATCAACAGTAGTTAG 
111111111! I Jill! III 1111111 II Jill 11111111111 1111 

CCCGATGCGATGCAATAGTCGTTCTAGCTATGTCTAGTTGTCATCAATC 

5' 3' 

3' 5' 
TTAGGGCTACGCTACGTTATCAGCAAGATCGATACAGATCAACAGTAG 
IIIIIIIII IIIIIIIIIIIII IIIIII III IIIIIII 1111111111 

AAATCCCGATGCGATGCAATAGTCGTTCTAGCTATGTCTAGTTGTCATCAATC 

5' 3' 

3' overhangs are left on both new molecules. Telomere shortening, then, 
occurs when the chromosome is replicated during cell division (diagram 

adapted from Blackburn and Greider, 1995). 
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The erosion of telomeres and eventual loss of genes, with advancing cell 

division, provides a model for replicative senescence. Increased rate of Telomere 

shortening has been shown to occur in a range of progeroid syndromes, - 

conditions which cause premature ageing (Kipling and Faragher, 1997). 

Nevertheless, the role of telomere dynamics during the ageing process is not clear. 

Telomere length varies between chromosomes within a single nucleus (Henderson 

et al, 1996), in addition to variation in mean length between tissues. For example, 

the cells lining human arteries have been shown to have an increased rate of 

telomere loss with age, when compared to those of veins which sustain less 

haemodynamic stress and, presumably, have a lower turnover during life (Chang 

and Harley, 1995). The importance of telomere attrition to ageing would, 

therefore, depend on the rate of mitosis of primary cells in a tissue and possibly 

upon the number of chromosomes within the cells of that tissue which have 

become critically shortened. 

Telomerase 

Telomere loss can be counteracted by the enzyme telomerase. Telomerase 

contains an RNA template for the telomeric sequence and maintains telomere 

length in a range of tissues. Human telomerase is expressed in germline cells 

(Frenck, et al., 1998), hematopoetic stem cells, the basal layer of the skin, basal 

crypt cells of the small intestine, lymphoid cells and thymocytes. The activation 

of the gene for human telomerase (hTERT) has also been shown to produce 

immortal cells in culture. Telomerase negative cells reached crisis (critical 

telomere length) at around 4kb whereas hTERT cells maintained telomeres at 9kb 

long. (Bodnar et al., 1998; Counter, et al, 1998; Vaziri and Benchimol, 1998). 

Telomerase is largely down-regulated in somatic tissues, possibly as a mechanism 
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to inhibit uncontrolled cell division and tumour formation. The relationship 

between telomerase and cancer has been extensively investigated in recent years 

(see deLange and Jacks, 1999 for review). Several types of cancer have been 

shown to be associated with high telomerase activity (Kim et al., 1994). 

Telomerase activity is high in mouse tissues, and some strains have 

extremely long telomeres, up to 150kb. Mice from a germline lacking telomerase 

were found to exhibit telomere shortening, which in turn caused end-to-end 

chromosome fusions and tumour formation (Blasco et al., 1997). Rudolph et al. 

(1999) found that the telomerase negative strain showed accelerated senescence 

and symptoms of ageing, such as impaired wound healing. It is possible that mice 

avoid telomere shortening, in tissues with high turnover, by maintaining a high 

level of telomerase activity at the expense of risking uncontrolled cell division. 

This may be a feasible strategy given that mice are short-lived and the mortality 

risk associated with cancer is low when compared to environmental threats to 

survival. 

Avian telomeres 

Most research on telomeres has been carried out using human or rodent 

subjects. Avian telomeres have been studied by Venkatesan and Price (1998), who 

demonstrated that telomere length decreases with age in cultured chicken 

fibrobasts (Gallus gallus domesticus), which show little telomerase expression. 

However, telomerase was found to be active in vivo in a variety of tissues from 

embryos and chicks. 
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2.2 Methods 

Telomere Restriction Fragment (TRF) measurement has been extensively 

used in investigations of human and mouse cellular senescence. An equivalent 

measurement of telomeric DNA abundance can also be made using fluorescence in 

situ hybridisation (FISH), which involves hybridisation of telomeric DNA to a 

fluorescent probe, within intact cells, and quantification by flow cytometry. A 

comparison by Hultdin et al. (1998) found a highly significant correlation between 

the mean telomeric fragment length found using the former method and the 

quantitative fluorescence value. 

The application of a protocol designed for mammalian telomere analysis to 

bird DNA requires modification of standard techniques. Avian TRF 

measurements have been made by Venkatesan and Price (1998) from cultured 

chicken cells, although not without difficulty. 

DNA extraction: phenol/chloroform method 

The analysis of telomere fragment length requires large quantities of high 

quality DNA. Phenol/chloroform extraction was used to purify genomic DNA for 

this purpose. Mixing the digested samples with phenol (an organic solvent) serves 

to remove proteins to the organic phase, whilst the DNA is partitioned in the 

aqueous buffer. The two phases can then be separated by centrifugation (phenol 

being denser) and the upper aqueous layer retained for further purification. Phenol 

also denatures protein, assisting the removal of protein from DNA. Further 

treatment of the DNA with a mixture of phenol and chloroform improves the 

efficiency of protein denaturation and phase separation. In addition chloroform 
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removes lipid (Wallace 1987) whilst final purification with chloroform removes 

any traces of phenol from the DNA preparation (Sambrook et al. 1989). 

1) Approximately lOµ1 blood was mixed with 3O0µl of SET, 30µl of 1O%SDS 

and 2.5 units/ml of Proteinase K. (12.5µl of 10mg/ml proteinase K in this case) 

in a 2.5 ml eppendorf. Samples were digested overnight in an orbital incubator 

at 55°C, then allowed to reach room temperature. 

2) 3O0µ1 phenol was added and the samples placed in a rotary mixer 15 minutes. 

The tubes were centrifuged at 18 000 xg for 10 minutes and the aqueous 

(upper) layer was then removed, with a pipette, to a clean tube. 

3) 150µ1 of phenol and 150µ1 CHC13 were added and mixed again for 15 minutes 

then centrifuged and the aqueous layer removed, as before. 

4) Step 3) was repeated, but using CHCl3 and centrifuged for 5 minutes. 

5) DNA was precipitated by adding 2 volumes of absolute alcohol and 0.1 

volumes of sodium acetate (3M pH5.2). For a 400µ1 sample, 40u1 of 3M 

NaOAc (pH 5.2) and 8O0µ1 of 100% EtOH were added. Samples were mixed 

by inversion and placed at -20°C for 1 hr (Optional). The tubes were 

centrifuged for 10 minutes and the EtOH poured off. 

6) The DNA pellet was washed 80% EtOH and dried by leaving for 15-30 

minutes at room temperature. 

7) Each DNA sample was resuspended in 50µ1 TE in an orbital incubator at 55°C 

overnight. Samples were stored at -20°C. 
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Restriction enzyme digestion and agarose gel electrophoresis 

Restriction enzyme digestion of genomic DNA (effectively of entire 

chromosomes) that leaves the telomere intact, is made possible by selection of 

enzymes that cut genomic DNA frequently but that will not cut strands within the 

repeated telomeric sequence. This should leave behind large telomeric fragments 

with a short, adjacent, sub-telomeric portion that leads to the nearest cutting site in 

the chromosome from the telomere. 

Restriction digestion was carried out using 2 units of Hinfl (Promega) and 

2 units of Alul (Promega) (Venkatesan and Price, 1998) per 40gl sample, in 

reaction buffer with 1% BSA, overnight at 37°C. A 5µl aliquot of each sample 

with 10 x Orange G loading dye was loaded into a 10cm 0.8% agarose gel (stained 

with ethidium bromide). A 4µl aliquot of 1kb DNA ladder (Promega) was 

included in each row of lanes, as a scale, and the gel was run for 20 - 30 minutes at 

100V in 1x TBE buffer. The gel was then placed on a transilluminator and 

photographed, in order to check that the genomic DNA had been successfully 

extracted and adequately restricted. 30gl of each sample with 10 x Orange G 

loading dye was then loaded into a 15cm 0.8% agarose gel (stained with ethidium 

bromide) in 1x TBE buffer and run for 16 hours at 30V. A lane containing 5µl X 

EcoR I marker (Promega) with 6x loading dye (supplied with marker), was 

included in the gel to provide scale of six DNA fragments ranging from 3.5 - 21.2 

kb in length. 

During electrophoresis (Figure 2.3), the large telomeric fragments are 

retained in the gel and should travel at distances that are proportional to the log10 

of the number of base pairs (Helling et al., 1974). Following electrophoresis, the 

gel was placed on a transilluminator and photographed. 
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DNA 

Agai-ose gel 

Southern hybridisation 

0 

L ;J 

Figure2.3: DNA samples are loaded 
into wells at the top of the gel, 
which is placed in an electrolyte 
buffer. The negatively charged 
fragments migrate through the gel 
towards the positive electrode. The 
distance moved is logarithmically 
proportional to the DNA fragment 
length 

The gel was denatured (to separate the DNA into single strands) and 

fragments transferred to a nylon membrane by Southern blotting (Figure 2.4) using 

methods described by Sambrook et al. (1989). This transfer does not alter the 

relative position of fragments produced by electrophoresis. 

Southern blot 

1) Depurination (15 minutes) 0.2M HCl (rinse in dH2O). 

2) Denaturation (2x 30 minutes) 0.4N NaOH, 1M NaCI. 

3) Neutralisation (2x 30minutes) 0.5M TrisCi, 1M NaCI pH 7.2. 

4) Ran in 10 x SSC buffer overnight (see figure2.4). 
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weight 

aper towel a-l 
nylon Whatman 
gel O MM) paper 

1) )x 
10 x SS(' 

Frýýrncý 2.4: Arrangement ýýI cl. filters and nylon (tlyhýýnýi) t()r Southern blotting. 

Hybridisation to it radio-labelled probe was then necessary to deterºninc 

mean fragment length. A single stranded analogue of telomeric I)NA 

I(TCCCAA)3TCCI was end-lahclled with yý; P ATP, using the enzyme "IT4 

Polynucleotide Kinase (T4 PNK) (Promega). 

End-labelling a (TCCCAA) '1'CC probe 

(TCCCAA)ITCC (100 no/µl) 

"t'4 PNK hul'f'cr I 

y31l' ATP (20 CWi) 2 

(specific activity 3000 Ci/inmol) 

T4 PNK (10 units/µl) 

Sterile water 5 

Total I()VI 

The above mixture was inCuhate(l at 37°(', for I hour, them heated to 70°C 

for 10 minutes, to kill the enzyme. 
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Hybridisation 

1) Hybridisation buffer was warmed to 59°C (about 1.5-3mls per 10cm2 gel) in a 

hybridisation bottle. The blot was placed between sheets of nylon mesh and pre- 

hybridised for 20 minutes. 

2) The buffer was replaced and a small amount of buffer added to the probe. The 

probe was added to the bottle and hybridised overnight at 59°C. 

3) Washing was carried out in 0.25x SSC at room temperature for 30 minutes then 

0.25x SSC for 2x1 hour at 42°C. 

Optimal hybridisation conditions were chosen according to the length and 

composition of the probe. Hybridisation temperature (Tm -5) was derived from 

the following equation: 

Tm = (A+T) X2+ (G+C) X4 °C 

A stringent washing procedure ensured that the binding of the probe was 

limited to telomeric sequences. The use of a low molarity washing buffer (0.25 x 

SSC), at moderately high temperature (42°C), prevents non-specific hybridisation. 

The blot was exposed to film to produce an autoradiograph of the hybridised 

telomeric fragments. 

Initial experiments using Lesser black-backed gull (Larus fuscus) blood 

samples, for which known age adult and chicks were available, produced faint 

telomeric smears. The appearance of these suggested that the genomic DNA 

samples were not properly restricted. The yield of DNA produced by 

phenol/chloroform extraction from around 30-50µ1 of blood was also rather low, 

with around 2µg per sample being required for initial restriction and subsequent 
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Southern analysis. It was also suspected that DNA extracted from these 

refrigerated samples was degraded. 

In order to obtain larger amounts of undamaged DNA for developing the 

measurement protocol, liver, heart, kidney, testes, brain and lung tissues were 

sampled from freshly culled Zebra finches (Taeniopygia guttata). The 

radioisotope used to label the telomeric DNA was altered from 33P to 32P, 
which 

greatly increased the hybridisation signal from the resulting smears. These new 

results provided autoradiographs showing a fairly large proportion of restricted 

genomic DNA remaining in the wells of the agarose gel following electrophoresis. 

This problem may have arisen due to the presence of residual protein in the 

sample, to which DNA will remain bound. In order to limit this, further 

extractions were made using purification columns (Qiagen Tissue Extraction Kit). 

This did not seem to alter the appearance of the smear, suggesting that additional 

or alternative explanations need be sought. One prospect is that the DNA 

fragments are simply too large to overcome the 60kb mobilisation limit (Sambrook 

et. al., 1989) for conventional agarose gel electrophoresis. 

Non-denaturing hybridisation 

Venkatesan and Price (1998) found similar results (using Southern analysis 

for chicken telomere length measurement) to those I have reported and suggest 

that the appearance is due to telomeric sequences being present at internal sites 

within the chromosome. This could, in theory, prevent adequate restriction and 

leave non-telomeric DNA within the analysis. They suggest that chicken 

chromosomes do seem to have interstitial telomeric sequences, which are visible 

during fluorescence in situ hybridisation. They also showed that the telomeric 
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smears were resistant to pre-treatment of the DNA with Ba131 nuclease. This 

exonucleic enzyme removes nucleotides from the both ends of double-stranded 

DNA molecules, in a stepwise manner, which would result in terminally derived 

telomeric DNA becoming progressively shorter. Meyne et al., (1990) also suggest 

the presence of satellite telomeric sequences, outwith chromosomal termini, in a 

variety of bird species. 

In order to overcome these features Venkatesan and Price (1998) used a G- 

overhang assay. This technique does not denature the DNA so that the telomeric 

probe exclusively targets the single-stranded guanine-rich overhang, found at the 

end of telomeres. The remainder of the telomere and any interstitial telomeric 

tracts are left double-stranded, in a dried non-denatured gel, and cannot hybridise 

to the probe. By increasing the selectivity of hybridisation in this way, 

Venkatesan and Price were able to show that telomere length becomes shorter with 

increasing number of cell divisions of chicken skin cells in culture. 

I adopted this method (including further advice from the authors) and 

attempted to carry out G-overhang assays on DNA extracted from Zebra finch 

tissues. DNA restriction and electrophoresis was carried out as before. The X 

EcoR I marker was end-labelled with y32P ATP (1µl of 0.5µg/µl stock was end- 

labelled, as described earlier for the telomeric probe, and diluted to lOng/µl with 

TE and 6x loading buffer). Between 10 and 20gl of the labelled marker 

(depending on decay of activity during storage) was included in a lane of the gel 

during electrophoresis. Instead of Southern blotting, following electrophoresis, the 

gel was soaked 2x SSC for 30 minutes, a double layer of Whatman 3MM paper 

was immersed in 2x SSC and placed under the gel on a gel drier, covered with 

cling film. The gel was dried at room temperature for 1 hour or until evenly flat; 
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then at 60°C for 1 hour or until the paper was dry. Ilyhridisatloll and 

autoradiography was carried out as hetore, except that the hyhridi sat ion 

temperature was lowered to 37°C. 

kb 

21 

7.4 

5.8 
5.6 

4.8 

3.5 

Fiýýuie 2.5: Autoradiugrtiph showing tck>nncric rest fiction fra nunts, Drum "/. chra 

finch DNA, hybridised in a non-denatured dried gel to a `N labelled telomiieric 

probe. Each lane contains telumcric restriction fragments from one sample of 

genonlic DNA (lane I: testes DNA; lanes 2-6: DNA from blood samples from 5 

individuals; lanes 7-11: DNA from liver samples from 5 indivi(luals). Vic far 

right lane contains the labelled a, EcoR / marker with fragment lengths (kh) shown 

on the right. 
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Densitometry 

Mean telomere length for each genomic sample can be measured against 

the end-labelled X EcoR I marker, which consists of DNA fragments of known 

length (see Figure 2.5). The autoradiograph was scanned to produce a digital 

image. A density profile was plotted and mean telomere length defined as the 

length on the x-axis where density is highest (Figure 2.6). 

Density profile of telomeric smear 

. 

21 7.4 5.8 5.6 4.8 
length (kb) 

Figure 2.6: density profile of a telomeric smear (lane 1, Figure. 2.5) as generated 
from the scanned autoradiograph by NIH image software (NIH, V1.61, available at 
<http: //rsb. info. nih. gov/nih-image/>). 

The telomeric restriction fragments resulting from the G-overhang assay, 

continued to be obscured by DNA retained in and near the wells of the gel (see 

Figure 2.5). Assuming that this DNA is exclusively telomeric, a remaining fault 

could be that some of the telomeres are sticking together through interactions 
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between the guanine residues on the single stranded overhangs (Zahler et al., 

1991; Hud et al., 1999; Parkinson et al., 2002). This phenomenon is possibly 

aggravated by exposure to salt solutions and freeze/thaw cycles (Carolyn Price, 

pers. com. ). 

These potential difficulties were minimised and repeated sample 

measurements attempted using DNA extracts from Zebra finch liver. However, 

variations in the concentration of DNA between smears, within a gel, meant that 

producing a suitable image for densitometry and analysis was confounded by 

differences in autoradiograph signal intensity between individual samples. 

Variations in exposure time to optimise autoradiography of different lanes were 

insufficient to gather repeatable measurements. Smears of highly concentrated 

DNA were often over-exposed during autoradiography, so that the peak density of 

fragments was obscured (Figures 2.5 and 2.6). For many fainter smears, the 

background fogging of the film was too high to detect the peak density. 

DNA quantification 

A reliable method of standardising the DNA quantity was required, as well 

as ensuring that the DNA was of sufficient quality across samples, so that 

comparable telomere measurements might be made. The following methods of 

determining DNA concentration were explored: 

1) Ethidium bromide staining: DNA intercalates with ethidium bromide and 

produces an increase in fluorescence of the dye, under UV. Ethidium bromide is 

commonly added to agarose gels and allows estimation of quantity and position of 

DNA (Sharp et al., 1973). However, quantification of DNA in a gel requires 

internal DNA standards of known concentration to be run simultaneously. A high- 
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resolution photograph taken under UV light can then be taken to compare intensity 

of fluorescence between the samples and standard. 

2) Spectrophotometry: DNA in solution absorbs UV light maximally at 260nm. 

The optical density (OD) at this wavelength can be measured in a 

spectrophotometer, with an OD of 1 corresponding to DNA concentration of 

50µg/ml (Sambrook et al., 1989). 

3) Fluorometry: Hoechst 33258 dye binds to grooves in the DNA molecule to 

produce a highly fluorescent complex. Resulting fluorescence from a dilute 

solution of DNA can measured at an excitation wavelength of 360nm and an 

emission wavelength of 460nm (VersaFluor Fluorometer System, Biorad). 

Of the above methods, fluorometry proved most effective for detecting 

differences in concentration between relatively small amounts of DNA. Ethidium 

bromide gel photographs were scanned to compare fluorescence intensity across a 

DNA dilution series using NIH-image software. However, the resolution was 

insufficient to provide more than a fair estimate of DNA quantity. A 5-50µl 

aliquot of DNA, diluted to lml for spectrophotometry, produced too low a signal 

to detect the small changes in optical density that occurred between samples, even 

though these variations in concentration produced significant changes with respect 

to autoradiography. 

Problems continued in obtaining measurable telomeric smears from Zebra 

finch tissues, as a consequence of DNA retention in the wells. In addition, the 

hybridisation procedure with dried gels produced erratic results. Often, the 

background signal from the dried gel obscured any telomeric smears present. It is 
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possible that the radio-labelled probe or unincorporated y32P ATP is more easily 

absorbed into a gel than by the nylon membrane used in Southern Blotting. I 

attempted to purify the radio-labelled probe, by removal of unincorporated 

labelled nucleotides using MicroSpin"' G-25 Columns (Amersham-Pharmacia), 

with little success. 

Refinements were also made to minimise background noise on 

autoradiographs. The addition of degraded Salmon sperm DNA to the 

hybridisation mixture serves to block non-complimentary sequences from the 

telomere probe. The viscosity of the hybridisation solution was also increased by 

the addition of Denhardts solution (Sigma-Aldrich). This should have increased 

the efficiency of the binding reaction. 

The possibility remained that Zebra finches have extremely long telomeres, 

for example certain species of mice have telomeres which are up to 150kb long 

and cannot be measured using conventional electrophoresis (Starling et al., 1990). 

However, the smears that I obtained from telomeric restriction fragment analysis 

of Zebra finch liver DNA, that seemed measurable, appear to have a mean length 

of approximately 10 kb (Figures 2.5 and 2.6). The chicken telomeres, measured 

by Venkatesan and Price (1998) have a similar size range to that of humans (10- 

15kb). 
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2.3 Discussion 

Protocol 

Progress towards solving problems with telomere measurement was slow. 

Potential solutions have taken a long time to test, the protocol taking between five 

and six days from start to finish. The failure to produce repeatable characteristic 

telomeric smears on the resulting autoradiographs cannot be attributed to a 

particular step in the protocol. 

In summary, DNA samples may be damaged before or during preparation; 

however, this should have been avoided in experiments using fresh tissues. 

Protein contamination may also be ruled out through the use of purification 

columns. It remains possible that isolation of telomeric fragments might be 

prevented by the presence of internal telomeric sequences (although using the G- 

overhang assay should avoid this) and the telomere fragments, once produced, 

might stick together. To show that only the G-overhang is hybridised using the 

non-denaturing protocol, exonuclease control experiments could be carried out. 

However, the formation of stable telomere fragment aggregations in solution is 

difficult to prove. 

Hybridisation of the telomere probe to G-overhangs was also not always 

successful, possibly because much less single stranded DNA is available to the 

probe than would occur with a denatured gel. 

Correlation of blood cell telomere length with age 

The possibility of using telomere length from blood samples of birds as a 

biomarker of senescence would be dependent upon the level of telomerase activity 

in the bone marrow. There is evidence to suggest that telomerase is active in 
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chicken embryos and to a lesser extent in two-year-old birds (Venkatesan and 

Price 1998). Telomerase detection involves preservation of fresh tissue at -70°C, 

so that the enzyme remains active, then subsequent preparation of a cell extract. 

This can be assayed using a PCR (polymerase chain reaction) based protocol, 

during which any active telomerase will extend artificial telomeric DNA fragments 

of predetermined length. Whether telomerase is active in juvenile and mature 

birds of other species remains to be seen. A telomerase repeat amplification 

protocol was attempted with extract from a zebra finch liver and no telomerase 

was detected (TRAPeze telomerase detection kit, Intergen). However, this may 

have been due to enzyme denaturation during the sample preparation. 

Haematopoetic cells divide at regular intervals, to renew red and white 

blood cells, throughout the life-span of an individual. In humans, it has been 

suggested that telomerase activity would be necessary to provide sufficient 

replicative capacity and that stem cells do not undergo senescence (Iscove, 1997). 

Nevertheless, telomere shortening has been shown to occur in peripheral blood 

cells (Vaziri et al, 1994; Weng et al., 1995 Iwama and Toyama 1998; Rufer et 

al. 1998). The notion of limited replicative capacity in haematopoeitic cells is also 

supported by Lansdorp et al. (1997). It is calculated that one stem cell need only 

undergo 55 divisions in order to supply the entire 4x1016 cells required for lifetime 

turnover. Also, the study of bone marrow transplants has shown that the amount 

of telomere shortening in the haematopoetic cells of a recipient is inversely 

correlated with the number of donor cells infused. The rate of telomere decline, in 

the bone marrow, has been found to vary with age and is most rapid early in life 

(Notaro, 1997). Telomerase activity is relatively low in adult stem cells (Frenck et 

al., 1998). Therefore, high telomerase activity and lack of replicative senescence 

in bone marrow need not be predicted. However, the Hayflick limit has recently 
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been disputed by Cristofalo et al. (1998) who found no connection between cell 

proliferative potential and human donor age. 

Alternative mechanisms of telomere shortening may be of greater 

importance than that produced during cell division. Makarov et al. (1997) 

suggests a C-strand degradation mechanism to operate, resulting in long G- 

overhangs. Chronic to mild hyperoxia is also shown to accelerate shortening (von 

Zgliniki et al., 1995), indicating that oxidative stress may play an important role. 

Single strand breaks have been found to be the major cause of telomere shortening 

by von Zgliniki et al. (2000) whilst Hamilton et al. (2001) show that oxidative 

damage to DNA occurs, with advancing age, in rats. 

Given that telomere shortening occurs independently of cell division, it 

may be doubtful that telomere length is a reliable indicator of cellular senescence. 

The additional factors, mentioned above, may shorten telomeres irrespective of the 

age of the individual. Replicative senescence itself may also vary according to 

tissue type and growth period. It is possible that, even if they could be easily 

measured, avian telomeres might not give a good correlation of length with age. 

Difficulties with the protocol, used in the present study, led to the 

abandonment of experimental attempts to measure avian telomeres. However, 

Haussmann and Vleck (2002) have recently published a method for measuring 

telomeres from zebra finch blood samples. The method used is similar to the non- 

denatured gel hybridisation protocol that I used. Differences include the use of 

restriction enzymes HaeIII, Hinf7, and Mspl, and the gel was dried for only 30 

minutes at room temperature. From a sample of 27 birds, ranging in age from 4 to 

more than 18 months old, the authors were able to correlate telomere length with 

age of the individual. Mean telomere length ranged from approximately 8.7kb in 

the youngest individuals (< 4 months) to 7.9 kb in old birds (>18 months). This 
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length variation seems narrow; however, the ages of the zebra finches sampled 

ranged over only half of the species natural life span. The telomere length values 

are similar to my estimated value of 10kb from zebra finch tissues (Figures, 2.5 

and 2.6) -although this was not measured precisely (due to problems with 

autoradiography exposure) and cannot be seen as accurate because repeatable 

measurements were not made. 

The measurement of telomeres might be better applied as an indicator of 

the residual longevity of an organism e. g. Life-span in rats is related to maternal 

nutrition, with undernourished mothers producing offspring with a lower life 

expectancy (Desai and Hales, 1997). It is possible that catch-up growth, occurring 

under these circumstances, results in accelerated telomere shortening and early 

senescence. 

Another interesting avenue of further research might be based on Rhome's 

(1981) description of variation in the Hayflick limit, across mammalian species. 

Birds provide a selection of species, with large differences in expected life-span. 

Comparative study of telomere dynamics in birds would predict that short-lived 

groups, such as small passerines, would show higher rates of attrition than long- 

lived species. Alternatively, telomerase activity may vary, such that short-lived 

birds have active telomerase (analogous to the situation in mice) whilst longer- 

lived species might suppress telomerase, in a similar way to humans. 

The potential avenues for telomere research in ecological or evolutionary 

studies are interesting. Nevertheless, in order to be used as an indicator of ageing 

in birds, telomere restriction fragment length analysis, would seem to require fairly 

large, high quality genomic DNA samples. The protocol is also fairly time- 

consuming and costly - requiring the use of radioactive substances and specialised 

equipment, so that it may not be of extensive practical use to field biology studies. 
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Chapter 3 

Variation of Offspring Sex Ratio in the Herring Gull, 

Larus argentatus: The Effects of Season and Hatching 

Sequence. 
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3.1 Introduction 

Sex allocation theory, according to Trivers and Willard (1973), predicts 

that where species show extensive parental investment, the sex and number of 

offspring produced will be influenced by the phenotypic quality of the mother. 

Natural selection should favour a biased sex ratio when there is a difference 

between the cost and benefit of producing males and females, such that a female in 

poor condition is likely to overproduce the cheaper sex so that offspring quality 

and survival is maximised. 

Experimental induction of extended clutch size in Lesser black-backed 

gulls, Larus fuscus (Nager et al., 1999) have shown that reproducing females, 

under nutritional stress, lay an increasing number of female eggs. This is thought 

to be an adaptation to increase reproductive success. Male gull chicks, being 

skeletally larger but not heavier at hatching, carry less reserves upon hatching and 

suffer reduced survival (Griffiths, 1992). 

It remains to be seen whether a sex ratio biasing mechanism operates 

widely in wild bird populations in response to maternal quality. This might be 

expected for synchronously breeding species where there are limits upon time and 

resources available for reproduction. 

Offspring sex ratio was examined in a population of Herring gulls, Larus 

argentatus, on Walney Island, Cumbria throughout a single breeding season. 

Blood sampling of chicks immediately after hatching and sexing by DNA analysis 

allowed the primary sex ratio of broods to be established (without confounding 

effects of post-hatch mortality). Egg size and laying date are good indicators of 

maternal quality in gulls (Parsons, 1970; Perrins, 1970; Nisbet and Drury, 1972). 

Individuals that are in better condition lay heavier eggs and breed earlier so that, as 

the breeding season progresses, a larger number of female offspring would be 
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expected to be recorded. Also, the chicks from the last laid eggs of each clutch 

(the smallest in a clutch of three) are expected to have a greater likelihood of being 

female than larger siblings are. 

Sex allocation 

Fisher (1958) states that frequency-dependent selection stabilises the sex 

ratio near unity, assuming a linear net relationship between reproductive 

investment and return. Charnov (1982) suggests that changes in investment may 

not be proportional to changes in returns; if marginal returns (in terms of 

fecundity) vary with the sex of the offspring then investment in males and females 

may not be equal. Frank (1990) gives a comprehensive review of sex allocation 

theory. 

Avian sex ratio variation 

Male birds are Homogametic, with two sex chromosomes (ZZ), whilst 

females are heterogametic (WZ), producing eggs with Z or W sex chromosomes, 

so in theory could control the offspring sex. Mechanisms of vertebrate sex ratio 

manipulation have not yet been demonstrated. Female birds could potentially alter 

the primary sex ratio (sex ratio of eggs laid) at any point between the production of 

W or Z-chromosome bearing gametes and the shell formation of fertilised eggs 

(Krackow, 1999). Variation in the primary sex ratio can be measured at hatching 

provided that all eggs in the clutch can be sexed, avoiding any possible bias in 

embryonic mortality. Differential post-hatching mortality may also occur leading 

to variation in the secondary sex ratio at fledging. 

Primary sex ratio manipulation has been shown to occur with hatching 

order within clutches of eggs in polygynous House wrens, Troglodytes aedon, 
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(Albrecht, 2000). The last hatched chick, which receives less parental care, is 

more likely to be a female than a male (the latter sex facing greater disadvantage, 

in terms of mate competition, if last hatched). The reverse is found in Bald eagle 

(Haliaeetus leucocephalus) clutches where the larger, more expensive, female 

offspring are more often first hatched (Bortolotti, 1986). A similar trend is found 

in Zebra finches (Taeniopygia guttata) where female fecundity benefits are 

relatively greater when fledging weight is high. Female eggs are therefore more 

likely to be laid earlier in the clutch (Kilner, 1998). 

Hatch order effects, under experimental manipulation, have also been 

recently demonstrated in a closely related species to gulls, the Great skua 

(Catharacta skua). Using similar methods of egg-removal and induction of 

extended laying to Nager et al 's (1999) gull study, Kalmbach et al. (2001) 

measured the primary sex ratio of extended skua clutches. Sexual size 

dimorphism in the skua contrasts that of gulls, with females being the larger and 

more vulnerable sex. Later hatched chicks, of nutritionally stressed mothers, were 

more likely to be male (Kalmbach et al., 2001) reinforcing the hypothesis that 

differences in body mass between the sexes result in selection pressure for sex 

ratio manipulation. 

It has also been suggested that the female may bias the sex ratio produced 

in response to paternal quality. Burley (1986) manipulated the attractiveness of 

Zebra finch mates using coloured leg bands. Red-banded males, that were shown 

to be most attractive, fathered male-biased clutches. However, this variation 

became established post-hatching and a parental role in sex-biased mortality is 

inferred (via the possibility of selective feeding or eviction from the nest box), 

rather than a skewed primary (ovulatory) sex ratio. However, the primary sex 

ratio does seem to be manipulated in response to paternal attractiveness in 
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Collared flycatchers (Ficedula albicollis). Male-biased broods were produced 

when males with a large forehead patch, a character that attracts females, fathered 

them (Ellegren et al. 1996). Further study of this species includes the 

determination of sex of extra-pair offspring. It might be expected that females 

seeking additional mates of good quality would, accordingly, invest the genes in 

male offspring. However, the sex of extra-pair chicks was found to be randomly 

determined (Sheldon and Ellegren, 1996). 

Polygynous males of the Great reed warbler Acarocephalus arundinaceus, 

(Westerdahl et al., 1997; Nishumi, 1998) provide parental care to the offspring of 

primary females. Secondary females receive less paternal investment. Sons are 

larger and more expensive to raise and so the sex ratio in primary nests is often 

skewed towards males. 

A striking sex ratio bias is found with territory quality in Seychelles 

warblers Acarocephalus seychellensis (Komdeur et al., 1997). Pairs nesting in 

good territories overproduce daughters that remain with the parents to assist future 

breeding attempts. The offspring of parents at poor quality sites produce more 

sons that disperse from the natal territory, thus avoiding competition for food. The 

Green woodhoopoe (Phoeniculus purpureus) is also a co-operatively breeding 

species. Again, the female offspring are altruistic and are also smaller and less 

costly to rear. Females are therefore more likely to be produced by pairs with 

small groups (Ligon and Ligon, 1990). 

Seasonal adjustment of sex ratio is suggested to occur in the Common 

grackle, Quiscalus quiscula (Howe, 1977). The chicks are sexually size 

dimorphic, with males being larger and suffering from increased mortality. Early 

in the season, when conditions are poorer, greater proportions of the offspring 

produced are female. The opposite situation occurs in raptors, where females tend 
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to be the larger sex. Peregrine falcons that nest early (Falco peregrinus) are more 

successful and produce a female-biased brood. Earlier eggs in the clutch are also 

more likely to be female (Olsen and Cockburn, 1991). 

Laying date may affect the reproductive status of the offspring the 

following season. The probability of female recruitment in the Spotless starling, 

Sturnus unicolour, is increased with early maturation and a shift in the sex ratio 

from daughters to sons is found as the season advances (Cordero et al., 2001). 

Daan et al., (1996) produced a simulation model based on the premise that genders 

whose maturation time is reduced by early birth date should be produced first. 

This is supported by empirical data from five raptor species. 

To summarise, offspring sex ratio has been shown to vary within clutches, 

in response to parental quality, paternal investment and resource abundance. 

There are also examples of seasonal sex biases. Although these examples may 

appear strategic, in terms of increased offspring survival or future reproductive 

success, interpretation of sex ratio variation as adaptive relies on the assumption 

that active parental manipulation is taking place. 

Analyses of bird species, that exhibit sexual dimorphism of body mass, has 

shown that the sex ratio often becomes biased between hatching and fledging due 

to differential survival of chicks. The larger sex is assumed to be more susceptible 

to starvation. Higher male mortality occurs in Rooks, Corvus frugilegis, 

(Slagsvold et al., 1986) and Lesser black-backed gulls, Larusfuscus, (Griffiths, 

1992) - both species with males larger than females. Sexual dimorphism of body 

mass is reversed in the Blue footed booby, Sula nebouxii, and female offspring 

suffer greater mortality, a risk that is increased for last hatched chicks (Torres and 

Drummond, 1997). 
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Nevertheless, many studies fail to find an expected offspring gender bias. 

Examples include Koenig and Dickinson's (1996) extensive study of Western 

bluebirds (Sialia mexicana), the measurement of paternal quality and offspring sex 

ratio in the Barn swallow, Hirundo rustica, (Saino et. al., 1999) and the 

investigation of differences within clutches and across the breeding season of the 

European sparrowhawk, Accipiter nisus (Newton and Marquiss, 1979). Trends in 

sex ratio variation found in the Great tit (Parus major) were inconsistent between 

years (Radford and Blakey, 2000) whilst Hartley et al. (1999) found no effect of 

timing of breeding, year, polygyny, brood size or female size upon the offspring 

sex of Corn buntings, Miliaria calandra. In addition, a recent study by Leech et 

al. (2001) found no effect of parental quality or extra pair paternity upon offspring 

sex ratio in a population of Blue tits, Parus caeruleus. The latter, analysis 

examined 1483 chicks in 154 broods and the authors suggest that offspring sex 

determination, at the level of the individual egg, may not be easily controlled. 

The following study aims to show whether or not Herring gulls carry out 

adaptive sex ratio manipulation, under natural conditions. A seasonal trend is 

expected, whereby poorer quality parents that nest later in the breeding season are 

likely to overproduce the cheaper sex (females). The effect of laying/ hatching 

order on sex ratio will also be studied, under the hypothesis that chicks hatched 

from the third (smallest) egg of the clutch will be more likely to be female. 
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3.2 Methods 

Blood was sampled from Herring gull chicks, during the breeding season, 

from the 23rd of May until the 11" of June (2000) at Walney Island Nature 

Reserve, Cumbria, UK. The breeding colony was mainly composed of breeding 

Lesser black-backed gulls and Herring gull nests were identified amongst these by 

the presence of at least one brooding parent. Nests containing three eggs (the most 

common clutch size) were selected for sampling when the chicks were beginning 

to hatch. These nests were assumed to belong to parents who were incubating 

their first clutch of eggs of the breeding season. It was also assumed that each 

clutch of three represented A, B and C eggs laid upon consecutive days, without 

replacement, and that the hatching sequence would match this laying sequence. 

Blood collection took place outwith the public access hours of the reserve 

and the nests used in the study were often situated near footpaths. This restriction 

was necessary, in part, to avoid disturbing areas that were being used for other 

studies. Certain areas were also avoided if nesting Eider ducks, Somateria 

mollissima were present. Many Herring gull nests were sampled from colony 

patches where Herring gull nests were clustered outwith larger areas of Lesser- 

black-backed gull predominance. These factors may have resulted in non-random 

sampling of clutches with a possible bias towards nests that were most 

conspicuous and those subjected to higher levels of disturbance by human visitors. 

In addition, at the early and late extremes of the hatching period, the encounter rate 

with nests that contained hatching chicks was low and the sampling area became 

slightly more wide-ranging. 

Blood was collected from chicks with dry feathers within 12 hours of 

hatching. A sample was obtained by puncturing the leg vein with a sterile needle 

and approximately 0.1ml of blood was collected from each chick using a glass 
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capillary tube. Blood samples were dispensed into prepared 1.5 ml plastic tubes 

containing Iml pure ethanol and stored at -20°C within four hours of collection. 

Following blood collection from the first (A) hatchling, nests were 

discreetly marked so that the remaining chicks in a clutch could be sampled later. 

The second egg (B) generally hatched within one day of the first (A) and the third 

egg (C) two days after the first. A and B chicks could not always be distinguished 

from each other, whilst the identity of the later hatching, smaller, C-chick was 

more obvious. Thus, for the majority of samples a conservative assignment of 

"A/B" or "C" was made for each chick within a nest. 

It is presumed that all of the chicks sampled from a clutch, at hatching, 

shared the same parents. This assumption is based upon evidence that the 

frequency and success of extra-pair copulation in gulls is relatively low. A 

taxonomic review of cuckoldry in birds by Moller and Birkhead (1993) list the 

frequency of extra-pair copulation in the Lesser black-backed gull (Brown, 1967) 

and Herring gull (Fitch and Shugart, 1984) as zero. This is in common with most 

colonial nesting seabirds, which exhibit a high degree of monogamy. In addition, 

Gilbert et al. (1998) found that although extra-pair copulation occurred in Western 

gulls (Larus occidentalis), genetic fingerprinting of broods revealed no extra-pair 

paternity. 
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DNA extraction - Chelex protocol 

PCR based sex determination requires only a small amount of genomic 

DNA, of which a fraction is subsequently amplified. For this purpose, extraction 

of DNA from bird blood was carried out using Chelex100 resin (Biorad). This 

polymer resin contains chelating groups that sequester metal ions, however, its 

exact role in DNA purification is not entirely clear. Chelex suspension is 

incubated with homogenised tissue, at a high temperature, which is postulated to 

release DNA from cells. It is assumed that Chelex has a protective role in 

removing metal ions that would otherwise cause DNA damage, at high 

temperature, and inhibit subsequent PCR (Walsh et al., 1991). 

1) A small piece of (coagulated) blood, around lmm3, was mixed in a 2.5m1 

eppendorf with 200µ1,5%, Chelex 100 resin (Biorad, UK) and placed on an orbital 

incubator for 20 minutes at 55 °C. 

2) Samples were vortexed for a further 10 seconds then the lids of the tubes were 

pierced and incubated at 90 °C for 10 minutes. 

3) Samples were vortexed for 10 seconds and centrifuged for 3 minutes at 18 000 

x g. The supernatant was removed with a pipette into collection tubes and stored at 

-20 °C until use. 

Sex determination by PCR 

Reactions were carried out in a total volume of 10µl under the conditions 

listed overleaf. The small volumes listed were measured more accurately (and to 

save time) by multiplying all quantities (excluding DNA) by the number of DNA 
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samples used in the PCR (e. g. 96) and preparing a "mastermix". A9 t1 aliquot of 

this mixture was then be added to each 1µl DNA sample. 

primers P2/P8 (0.1 mg/ml) 0.8 µ1 

dNTP (10mM) 0.8 µ1 

10 x PCR reaction buffer (Promega) 1.0 µl 

MgC12 (25mM) 1.0 µ1 

dH2O 3.725 µ1 

Taq (5 units/µl, Promega) 0.075 µ1 

DNA 1.0 µ1 

The reaction conditions were: 2 minutes at 94°C, 30 cycles of 1 minute at 

46°C, 1 minute, 30 seconds at 72°C and 45 seconds at 94°C followed by 1 minute 

at 46°C and five minutes at 72°C. Primers were used as described in Griffiths et 

al., (1998): 

P8 (5'-CTCCCAAGGATGAGRAAYTG-3') 

P2 (5'-TCTGCATCGCTAAATCCTTT-3') 

A negative control was included from each batch of extracted DNA 

(containing no sample, to check for contamination). In each PCR experiment, a 

positive control of known sex male and female DNA was included as well as a 

PCR negative control containing no DNA sample. PCR products were loaded 

with 10 x Orange G loading dye into 10cm 3% agarose gels (stained with ethidium 

bromide) with a4 t1 aliquot of 1kb DNA ladder (Promega) included in each row 
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of lanes, as a scale. Gels were run in 0.5 x TBE buffer at 120V for 20-30 minutes 

(Figure 3.1). 

The primers used amplify the CHD (chromobox-helicase-DNA-binding) 

gene from avian W and Z chromosomes. The CHD genes of birds show sequence 

similarity to the CHD 1 gene in mice. However, unlike mice, birds possess two 

sex-linked homologues of the gene, CHD-W and CHD-Z (Griffiths and Korn, 

1997). CHD proteins are thought to modify chromosome structure, thus 

controlling access of transcriptional apparatus to the DNA template (Woodage et 

al., 1997). The CHD gene is, therefore, highly conserved and can be used to sex a 

wide range of bird species (Griffiths et al., 1998). In most cases, including that of 

the Herring gull, the PCR product from the CHD-W gene is larger than that of the 

CHD-Z gene. Thus, DNA from females (WZ) will yield two differently sized 

PCR products whilst that from males (ZZ) will produce a single product. 

A photograph of an agarose gel, used to analyse the products of a Herring 

gull sexing PCR is shown in Figure 3.1. The lower band, seen in both the male 

and female PCR products, at around 360 bases long, is a section of the CHD -Z 

gene. This band is present in both sexes and acts an internal control, its presence 

indicating that the PCR reaction has been successful. The upper band of around 

400 base pairs in length, is a fragment of the CHD-W gene. This product is only 

obtained from females and so acts as a sexing marker. 
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Herring gull sexing gel 
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Figure 3.1: photograph of an agarosc gel with PCR products from two nm is (M 

and four female (F) Herring gulls. The right hand lanes contain the I'('R Ilecativr 
control and a1 kh DNA ladder. 

Statistical analysis 

The nuniher of' male and female c tfspring, was found for 174 coInJ)Icte 3 

egg clutches. Clutch sex ratios were expressed as the proportion of males in each 

clutch and the mean hatching date fur chicks within each clutch %\ as calculated. to 

the nearest day. Since the proportion of' males hatched lies between () and I, 

Generalised Linear Modelling (GLM) was used toi examine file hinonlialIN 

distributed data. However, standard GLM includes one error tern, whilst the 

nested structure of brood data contains two sources of random variation that 

within and between clutches. The sex of each individual chick d oes in represent 

, in independent observation, as chicks within a brood may he interconnected by, 

maternal identity. Thus, treating the sex of each chick as a single datum results in 

pseucloreplication (Hurlebert, 1984). 
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Krackow and Tkadlec (2001) addressed the problem of clustered brood 

data and suggest the use of Generalised Linear Mixed Models (GLMMs) that 

include random effects of maternal identity in the analysis. 

Clutch sex ratios were analysed by GLMM (Krackow and Tkadlec, 2001) 

in SAS. The number of male offspring was used as the dependent variable with 

the clutch size (3 in each case) entered as the binomial denominator. Maternal 

identity was entered as a random factor. Clutch sex ratio was analysed in relation 

to the mean hatch date of each brood, as a continuous variable. 

Offspring sex was analysed by GLMM as a function of hatching order 

individual hatch date and the interaction between hatch order and date. Hatching 

order could only be defined as A/B (pooled A and B chicks) or C as the laying 

order of the first two eggs could not be inferred from hatching order (often 

synchronous). Five clutches were excluded from the analysis of hatching order 

where the identity of the C chick had also been ambiguous. Maternal identity was 

entered as a random factor. Non-significant terms were removed from the model 

in a step-wise fashion, starting with non-significant interactions. 

The data was also used to examine the allocation of sex within clutches. 

The number of males and females in each clutch is expected to follow a binomial 

distribution. For this analysis, a goodness-of-fit test was used to compare the 

number of three egg clutches falling into the different categories (3 male; 2 males 

+1 female; 2 females +1 male; or 3 females) to the number of broods expected in 

each category if sex allocation occurs by chance. 

63 



3.3 Results 

There was a significant effect of mean hatch date upon clutch sex ratio 

(Fl, t72 = 3.91; p=0.0497) when date was entered as a continuous variable. This 

seems to be a result of an increase in the number of males hatching towards the 

end of the breeding season (Figure 3.2). 

Herring gull clutch sex ratio and date of 
hatching 
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Figure 3.2: Mean Herring gull clutch sex ratio variation with mean clutch hatch 
date (23rd May to 11`h June numbered as days 1 to 20). The dotted line indicates 

the mean, overall, sex ratio (0.52). Mean daily clutch sex ratios have been 

calculated from 174 complete clutches. The number of clutches (sample size) for 

each day varies (x = 8.65; s. d. = 4.43; max. = 20; min. = 1). Mean clutch sex 

ratios calculated from a sample size of. n<5 are annotated. 
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When offspring sex was analysed at the indIVAIL al Ierel IS a I'unetion uI 

hatching order and date, there was no significant interaction hetww! een sex and 

hatching order (Figure 3.3). Hatching Order was removed from the Windel, leaving 

a significant effect of date upon the offspring sex (F1_18O = 5.03 fý = O. U2(2). 

Herring gull sex ratio and hatch order 
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Figure 3.3: Proportion of ni tIcs hatched from A or B eggs (first or second in 

laying sequence) and C eggs (third laid). Prop rtions are calculated from chicks (n 

= 507) that cult he assigned a hatching order from complete three-egg clutches 

(n=169). 

The numher of clutches containin-, different 1mssihlc \C\ ratio 

combinations, ("kable 3.4) was compared tu that expected in carlº "Iºuuld 

allocation occur by chance, using a chi-squared goodness-of-tit test. 'I'hr actual 

numbers of broods in each category did nut (liner si , IIIhc, intly Initim those 
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expected, under random allocation of sex within broods (x2 = 5.37; d. f. = 3; 0.2 > 

p>0.1). 

Allocation of sex within Herring gull broods 

3 males 2 males +2 females 3 females 
1 female +1 male 

Actual no. 31 57 67 19 

No. expected by chance 21.75 65.25 65.25 21.75 

Table 3.4: Sex ratios within the 174 Herring gull complete broods of three chicks. 
The number of broods expected in each category, if sex allocation occurs by 

chance, is also shown. 
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3.4 Discussion 

Seasonal variation of offspring sex ratio in the Herring gull 

The finding of the present study, that an increase in male Herring gull 

chicks hatching occurs towards the end of the season, contradicts the predicted 

seasonal change in sex ratio. Hatching and fledging success, egg size and 

maternal age in gulls are presumed to decrease seasonally, so that those 

individuals nesting later are expected to overproduce the cheaper sex (females). 

Nisbet and Drury (1972) found that early-hatched Herring gull chicks 

showed lower post-fledging mortality than those hatching later in season. Brown 

(1967) and Parsons (1975a) found similar trends, although both studies showed an 

additional increase in mortality of very early clutches. In contrast, a study by 

Harris (1969) found that the breeding success of a colony of Herring gulls 

increased towards the end of the season. On the balance of this information, it 

seems possible that producing males at the beginning of the breeding season could 

also be counterproductive. 

Parsons (1975a) experimentally extended the laying season, in Herring 

gulls by egg-removal. Chicks hatching from the repeat clutches showed a similar 

level of success, at the peak of delayed laying to those peaking earlier, in the 

control groups. He, therefore, suggests that hatching success is correlated with 

nest synchronisation, irrespective of laying date. Should this be the case, then 

overproduction of males would seem most likely to occur during the middle of the 

season. The data from Walney does not support this idea. However, the degree of 

nest synchronisation at the colony, during the latter study, was not known. 

Chick survival also is related to egg size. Parsons (1970) found a positive 

relationship between egg size and the weight and lipid content of Herring gull 

chicks at hatching which, in turn, correlated negatively with post-hatching 
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mortality. Parsons (1972) shows that egg size, in the Herring gull, decreases 

through the breeding season. A seasonal shortening in the incubation period was 

also apparent and it is suggested that the decreased incubation time relates to egg 

size. This agrees with observations of the same species by MacRoberts and 

MacRoberts (1972), who attribute a seasonal decline in incubation time to changes 

in adult incubation behaviour (decreased attentiveness towards the end of the 

season) and an increase in temperature during the summer. Ideally, egg size, 

incubation period and chick survival should have been recorded, in the present 

study, and may have provided insight in to the unexpected variation in sex ratio 

observed. 

Davis (1975) investigated the relationship between clutch volume, female 

age and laying date in Herring gulls. Clutch volume was estimated from egg 

length and breadth measurements, using calculations described by Harris (1964). 

The study by Davis found that females advanced their laying date with age, up to 

nine years, and that clutch volume showed a similar increase with age, up to seven 

or eight years, before declining. During three years of data collection, only one 

season showed a decline in clutch volume with laying date and another a trend 

towards increased survival with egg size and hatching weight. In two of the years 

of study, later breeders were least successful. The author suggests that changes 

between years may be due to differences in the age structure of the population, and 

that the correlation between egg-size and chick survival is a result of an excess of 

young breeders, that are less experienced in foraging and parental care, laying 

small eggs. Information about maternal age, for the clutches sampled on Walney, 

would also have been beneficial to the analysis of sex ratio. However, sampling 

data, from a wide age range of individuals requires extensive longitudinal study. 
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Nevertheless, it might be possible, in future, to utilise telomere length, as a 

correlate of ageing in birds (see Chapter 2). 

A study of Glaucous winged gulls, Larus glaucescens, by Hunt and Hunt 

(1976) also showed inconsistent effects of hatching date upon breeding success. 

In a year of low food availability, chicks hatching early and on large territories 

were more likely to survive to fledging. Two years later, when food availability at 

the colony was higher, there was no effect of timing of breeding and territory size 

upon chick mortality. The authors devised models that predicted early hatching to 

be most beneficial when intra-specific cannibalism (driven by low food 

availability) is the predominant cause of chick mortality. Chicks hatching during 

the middle of season are favoured when predation outweighs the risk of 

interference by neighbours. It is possible that, in the colony on Walney, food 

availability was high, and/or the risk of chick loss to cannibalism was lowest at the 

end of the season so that late nesting parents were at a breeding advantage that 

allowed the overproduction of males. 

With regard to the hatching sex ratio in gulls, a significant seasonal bias in 

hatching sex ratio has not been observed, until now. Sayce and Hunt (1987) found 

no seasonal effect upon the number of males and females hatching at a colony of 

Western gulls. The sample size of their study is large (739 chicks); However, the 

analysis of the data is not controlled for the clustering of individuals within broods 

and the effect of maternal identity. Sayce and Hunt (1987) also report that male 

mortality, between hatching and fledging, seemed to be greater but the bias found 

was not significant. It is suggested that post-fledging differences in mortality 

account for a skew towards females found in the adult population. In addition, 

Griffiths (1992) found no seasonal trend in the allocation of sex within broods of 

the Lesser black-backed gull, Larus fuscus. Although egg volume declined 
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seasonally, there was no difference in egg volume or its seasonal decline between 

the sexes. Again, males showed an increase in post-hatching mortality, this time 

significant. 

The experimental study by Nager et al. (1999) provides strong evidence 

that sex ratio manipulation can occur in gull populations. Females were induced to 

lay additional eggs by removal, a treatment that decreases female condition and 

thereby her ability to produce high quality eggs, so that male offspring become 

less viable to produce. Survival to fledging was reduced in males, but not females, 

that came from less well-provisioned eggs. With increasing number of eggs laid, 

egg mass and chick survival decreased and the sex ratio at hatching became 

significantly female-biased, reaching 75% at the last chicks (in a clutch of twelve 

to thirteen). 

Male gull chicks appear more expensive to produce, in terms of food 

requirements and survival risk, and it seems that sex ratio manipulation by gulls is 

possible. Nevertheless, studies of seasonal breeding success of gulls give 

inconsistent results and we do not know what the seasonal survival prospects of 

male and female Herring gull chicks were, during the period of study on Walney. 

Dr Nanette Verboven (University of Glasgow) collected survival data from 

breeding Lesser black-backed gulls, during the same season, on Walney. 

Although her study involved experimental treatment, the observations made on 

control chicks (that had been cross-fostered but were otherwise unmanipulated) 

may be relevant. There was no seasonal effect upon survival, from hatching to 

fledging, of control Lesser black-backed gull chicks and no difference in survival 

between the sexes. Herring gulls are closely related to Lesser black-backed gulls, 

so it could be assumed that laying date was not an important component of 

offspring survival or differential mortality during the breeding season studied. 
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However, the sample sizes of Lesser black-backed gulls are rather low (17 males 

and 20 females) and the analysis was not controlled for laying order and nest of 

origin. 

In summary, the sex ratio data for Herring gulls collected here, contradict 

the expectation that males become less likely to survive with advancing laying 

date and the subsequent prediction that poor quality parents, laying later, are more 

likely to overproduce females. Thus, the assumptions that parental quality and the 

likelihood of male survival decrease with laying date could be flawed. Obvious 

improvements could be made to the interpretation of the results, if measurements 

of parental quality, such as mean clutch mass and data on chick survival had been 

collected. 

It would also have been interesting to examine the effect of egg size upon 

offspring survival and the possible correlates of egg size, considered to reflect 

maternal quality, such as age and breeding experience, female mass and body 

condition (see references in Risch and Rohwer, 2000). It should be considered 

that males also invest significant time and energy in reproduction, sacrificing 

energy reserves stored as fat before and during the laying period through courtship 

feeding, mate guarding and territorial behaviour (Hario et al., 1991). Thus, male 

condition may also have a significant effect upon offspring quality and survival. 

Unfortunately, additional information was not collected, owing to time 

constraints, although data from Lesser black-backed gulls collected at the same 

period did not reveal any seasonal effect upon offspring sex and survival. 

Variation, in seasonal effects upon gull breeding success is suggested to relate to 

food availability (Hunt and Hunt, 1976) and population age structure (Davis, 

1975) and it is possible that these factors contributed to unexpected trend observed 

during the present study. 
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Hatch order and sex ratio in the Herring gull 

The Herring gull is typical of many gull species in that the third egg (C) of 

a three egg clutch is smaller than the first two (A and B). Nager et al. (2000) 

demonstrate the effects of egg sequence and quality in gulls upon offspring 

survival. By using extended laying sequences and cross-fostering in Lesser black- 

backed gulls the potentially confounding effects of parental quality and decreased 

parental condition (induced by additional laying) were removed. The hatching sex 

ratio was biased towards females with increasing position in an extended laying 

sequence and there was an accompanying decline in chick survival . The later 

eggs in extended clutches were not significantly different in fresh mass from 

normal C eggs but differed in composition - containing relatively less lipid and 

more water. The hypothesis that a reproductive trade-off occurs between egg 

number and quality was supported, with clutch size being constrained by the 

ability of parents to produce good quality offspring in terms of chick survival. 

Under natural conditions, it is expected that C chicks are less likely to be male and 

also that all male clutches should be avoided by poor quality gull parents. 

Parsons (1970) showed that although the' hatching success of Herring gull 

eggs in a clutch of three did not vary, there was a significantly greater decrease in 

post-hatching survival of last hatched chicks, than would be predicted from egg 

volume effects alone. In an egg transfer experiment, Parsons (1975b) 

interchanged A and C eggs that were beginning to hatch, between nests. C-chicks 

that hatched first in a clutch showed increased survival compared to C-chicks 

hatching in their normal position. Nevertheless, the survival of C-chicks hatching 

first was still lower than that of its siblings and A-chicks moved to third in a 

hatching sequence survived better than a C-chick in the same position. Therefore, 

some of the differential mortality can still be attributed to egg volume effects. 
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It seems clear that C-chicks have an increased mortality rate, which would 

be exacerbated in male chicks that carry fewer reserves on hatching and have a 

higher growth rate. However, there was no evidence in the present study to 

suggest that C-chicks were more likely to be female. These findings agree with 

those from Herring gulls (Ryder and Termat, 1987) and Western gulls (Sayce and 

Hunt, 1987). Neither study found an effect of hatching order upon sex ratio at 

hatching, nor did Griffiths (1992), studying Lesser black-backed gull sex ratios, 

although there was an increase in post-hatching mortality with hatch-order. In a 

later study of Lesser black-backed gulls, Bradbury and Griffiths (1999) created 

experimental synchronous and asynchronous broods by grouping chicks that were 

beginning to hatch in clutches of three, of equal egg mass, at the same stage of 

hatching or clutches of three that simulated normal, asynchronously hatching 

broods. The allocation of sex with hatching order did not differ from random. 

Also, in the synchronous broods there was no difference in post-hatching survival 

time between the sexes. However, in asynchronous broods last-hatched females 

survived longer than males whilst of the chicks hatching earlier in the sequence, 

males were longer lived. In this case, it seems that chick sex ratio is affected by 

hatching asynchrony, but at the level of differential post-hatching mortality 

between male and female chicks in different hatching positions. 

Few studies show any effect of clutch sequence upon gull hatching sex 

ratio. Ryder (1983) describes a bias in Ring-billed gulls, Larus delawarensis, 

towards males in the first hatched eggs of clutches of three. However, the trend is 

seen only in two of the three seasons studied. A further publication by Meathrel 

and Ryder (1987) includes sex ratio data from the same colony, for an additional 

two years. There was no effect of sequence upon hatching sex ratio in either 

season, indicating that the previously observed trend is inconsistent. In addition, 
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the sample sizes are smaller (approximately 30 clutches per year) than that of the 

current Herring gull study and there is no control for the effect of clutch/female 

identity in the statistical analysis (Krackow and Tkadlec, 2001). 

The numbers of broods with different sex ratio combinations, at hatching in 

the Herring gull colony on Walney, did not differ from those expected by chance. 

This agrees with a similar comparison by Griffiths (1992) in Lesser black-backed 

gulls. There is no evidence to suggest that, in gulls, certain combinations of males 

and females in a 3-egg clutch are more likely to occur than others. 

Given evidence that last-hatched gull chicks (the smallest of a clutch of 

three) are less likely to survive and that increased mortality amongst third-hatched 

males seems to occur, the prediction that males are less likely to be produced from 

C-eggs seems reasonable. The study of Herring gulls on Walney found no 

difference in sex ratio between A or B eggs and C eggs, in accordance with most 

other findings in gulls. It is possible that any effect of differential mortality of 

male C-chicks, in the Herring gull population, was not strong enough to produce a 

significant benefit from sex ratio manipulation. Unfortunately, A and B eggs, in 

the current analysis, were often not distinguished from each other, preventing a 

more detailed comparison. Laying sequence was inferred from hatching order, so 

that only the later hatching, smaller C-chicks were easily recognisable. 

Further study 

It would be interesting to carry out further study of hatching sex ratio and 

subsequent offspring survival at the Herring gull colony on Walney, in relation to 

additional factors such as parental condition, age and breeding experience. The 

possibility remains that the clutches sampled at hatching, during the present study, 

may have included replacement eggs or second clutches. Ideally, nesting pairs for 
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which laying date and the outcome of any breeding attempts made (earlier in the 

season) was known should have been used. Studying pairs during laying would 

also have allowed A and B chicks (as well as C chicks) to be marked and separated 

in the analysis of sex ratio and egg sequence. 

Other variables contributing to gull reproductive success include territory 

size (Hunt and Hunt, 1976) and nest cover (Brown 1967). Potentially confounding 

variables could either be controlled for or examined as covariates of seasonal or 

hatch-order effects, in relation to hatching sex ratio. However, the relative costs 

and benefits of brood sex ratio manipulation are also likely to be influenced by 

stochastic variables such as weather conditions, food availability and levels of 

predation and disease. Any patterns in sex ratio variation should, preferably, be 

studied across a number of breeding seasons. 

The landfill site on Walney, adjacent to the study colony, was closed 

during the winter following the present study. Although the relative importance of 

landfills and anthropgenic food supplies to gull breeding colonies is somewhat 

unclear (Belant, et al., 1998), it would be worth using the opportunity to compare 

the sex ratio of young produced by Herring gulls, at the same colony, before and 

after the removal of a convenient food source. 

Mechanisms of sex ratio adjustment 

Although sex ratio manipulation does seem to occur in birds, the skews 

reported by many studies are subtle. Considering a significant skew in offspring 

sex ratio to be an example of adaptive manipulation is dubious, when little 

information is available about the costs or physiological mechanisms involved. 

Krackow (1999) discusses the potential mechanisms of avian sex ratio 

manipulation. These include segregation distortion, selective ovicide and the 
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possible effects of maternal testosterone. Because female birds are heterogametic 

(producing oocytes containing Z or W sex chromosomes), the opportunity to 

adjust the primary sex ratio is, conceivably, available to the female at any time 

between the production of gametes at meiosis and the calcification of fertilised 

eggs prior to laying. 

Krackow (1999) doubts that there is a suitable mechanism through which 

distortion of segregation of the sex chromosomes, during meiosis, could occur 

whilst Williams (1979) points out that gametes should be selected to oppose 

parental attempts at control of the offspring sex ratio. Reiss (1987) explores the 

conflict between parent and gamete over control of the offspring sex ratio by 

genetic modelling. He demonstrates that gametic autosomes would be selected to 

promote sex ratio distortion, only when profitability of producing an individual of 

one sex exceeds the other by at least a factor of three. 

Given the millions of oocytes available in the female's ovary, Oddie (1998) 

suggests that oocytes might be differentially provisioned, according to sex, thus 

manipulating the hierarchy of gamete maturity and likelihood of ovulation. 

Krackow (1999), who refers to the parent-gamete conflict (Reiss 1987) that 

predicts selection for oocytes to avoid sex-discrimination, deems suppression of 

ovulation improbable. The possibility that females arrest the development of 

follicles of the wrong sex is also discounted, owing to the rarity of observation of 

atretic follicles in birds (references in Krackow, 1999). 

The remaining window for maternal control of offspring primary sex ratio 

lies between ovulation and shell formation. In the chicken, fertilised eggs are 

calcified between 4 and 5 hours after ovulation and during this period, re- 

absorption of the egg may occur, appearing to do so in 5 to 40% of ova (Sturkie, 

1986). Selective re-absorption of fertilised eggs is likely to be costly. However, 
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female gulls are able to lay one or two replacement eggs, depending upon protein 

reserves (Houston et al., 1983) so could, potentially, sacrifice eggs of the wrong 

sex. 

None of these suggested mechanisms of sex ratio distortion are supported 

by evidence of how the female recognises the sex of gametes or embryos to be 

sacrificed. Nevertheless, recognition of sex need not be necessary if the condition 

of the female (that results in sex ratio manipulation being profitable) were to 

trigger a physiological change that affects male and female gametes or embryos 

differentially. In the laboratory rat, offspring sex ratios are distorted by natural 

variation in the mother's oestrogen level and by treatment of the female with the 

adreno-cortico-trophic hormone or gonadotrophin (references in Reiss, 1987). 

Recent interest has surrounded the discovery that yolk testosterone levels 

vary during the laying sequence (Schwabl, 1993) and with offspring sex (Petrie et 

al., 2001) of the eggs of some bird species. The testosterone in eggs is suggested 

to be provisioned by the mother (Schwabl et al. 1997). However, whether or not 

this hormone could control sex determination, during sex-chromosome segregation 

- as suggested by Petrie et al., (2001) seems controversial (Cunningham and 

Russell, 2001). Krackow (1999) discusses how sensitivity to testosterone levels 

might be dependent upon embryonic gender. In female birds, the Z-chromosome 

is non-dosage compensated (Jablonka and Lamb, 1988) so that heterogametic 

female embryos (ZW) would be expected to under-produce Z-chromosome 

products relative to male embryos (that have two Z-chromosomes). If Z- 

chromosome gene products were involved in counteracting possible adverse 

affects of testosterone upon embryonic development, then female embryos might 

suffer increased mortality. In the same way, W-specific gene products could 

potentially confer differential protection upon developing females. 
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The data of Komdeur et al., (2002) suggest that pre-ovulatory control of 

sex ratio is the most likely mechanism in the Seychelles warbler. Birds that were 

translocated to good quality territories were more likely to produce females that, 

unlike males, serve to assist future breeding attempts. Many of these pairs were 

able to lay a second egg, which was also significantly female-biased. More 

importantly, the second laid (sex-biased) eggs were laid within 24 hours of the first 

-a time scale that greatly diminishes the possibility that ovulation and subsequent 

re-absorption of unprofitable male eggs could have occurred. The authors propose 

that a sex-biased release of gametes might only evolve in species such as the 

Seychelles warbler, where the difference in benefits gained from the production of 

sons or daughters is exceptionally high. 

The most plausible mechanism for avian sex ratio manipulation, in other 

cases, would seem to be selective re-absorption of fertilised eggs, in the oviduct, 

before calcification. As yet, there is no evidence to show that female birds use this 

mechanism, during laying. Primary sex ratio manipulation is, presumably, 

physiologically costly, given that selection pressures have not led to strong 

variation in the hatching sex ratio in many of the bird species studied. 

Adaptive sex ratio manipulation: a matter of opinion? 

The occurrence of facultative offspring sex ratio manipulation in 

vertebrates remains a topic of debate. There is likely to be a publication bias 

against results that show no, potentially adaptive, sex ratio manipulation - so that 

those published could be viewed as those showing statistical coincidence. 

Brown and Silk (2002) present a meta-analysis of the relationship between 

maternal condition (derived from social rank) and offspring sex ratios in primate 

groups. Although there did not appear to be a publication bias between significant 
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and non-significant results in the literature investigated, effect sizes found in 

various studies were shown to vary with sample size. When sample sizes were 

small, large deviations in sex ratio were observed whilst the effects of maternal 

quality tended towards zero for larger sample sizes. In addition the mean variation 

in sex ratio observed between high and low-ranking females was zero, suggesting 

that the observed effects are a product of stochastic variation. 

A survey of studies in ungulates, in which good quality females are 

predicted to overproduce males, also illustrates inconsistencies between results 

(Hewison and Galliard, 1999). Several studies are listed as producing significant 

or near-significant negative relationships between female quality and the 

proportion of male offspring. These findings have particular relevance to the 

model of differential sex allocation proposed by Trivers and Willard (1973) who 

based their predictions upon a polygynous ungulate, the caribou Rangefer 

tarandus. 

With reference to sex ratio studies in birds, West and Sheldon (2002) 

analysed the results of 11 studies testing the hypothesis that sex ratio is adjusted in 

response to mate attractiveness and five studies predicting offspring sex ratio 

manipulation in co-operatively breeding species. These studies were shown to be 

consistent in their findings of predicted sex ratio skews. The authors argue the 

importance of environmental predictability in the evolution of sex ratio 

manipulation - selection pressure for adjustment will only lead to adaptation, if the 

conditions that lead to the differential reproductive value of the offspring are 

predictable. 

To conclude, the results of the present study do not support the predicted 

offspring sex-ratio variation, with season or hatching order in the Herring gull. 

The unexpected trend (that of an overproduction of sons, at the end of the breeding 
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season) is difficult to explain without further information regarding seasonal 

offspring survival rates or more direct measures of parental quality. The only 

convincing demonstration of adaptive sex ratio manipulation, at hatching, in gulls 

is that by Nager et al (1999) which used egg-removal to lower female quality to 

the extent where female offspring were -overproduced. It seems possible that, 

under natural conditions, that the difference in the relative reproductive value of 

male and female offspring often cannot be predicted or is insufficient to drive 

costly mechanisms of sex ratio control. 
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Chapter 4 

Differences in Offspring Sex Ratio in the Three-spined 

Stickleback (Gasterosteus aculeatus): The Relationship 

with Paternal Attractiveness 
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4.1 Introduction 

The three-spined stickleback 

The three-spined stickleback, Gasterosteus aculeatus, is a small sexually 

dimorphic fish. The species is common in fresh water and brackish ecosystems 

throughout northern temperate regions. Stickleback have long been the subject of 

extensive study by ethologists (Warington, 1855; Tinbergen, 1948) and 

behavioural ecologists (Huntingford, 1984; Krebs and Davies, 1993) and more 

recent interest encompasses research in the fields of ecotoxicology (Armin et al., 

2000; Bervoets et al., 2001) and genetics (Griffiths et al., 2000; Peichel et al., 

2001). 

Stickleback are relatively easy to breed and maintain in large numbers in 

aquaria, under semi-natural conditions. A new molecular tool can be used to 

reveal the sex of the stickleback, as early as newly hatched fry (Griffiths et al., 

2000) and this chapter describes two studies examining the gender of stickleback 

offspring. The first study examines the primary sex ratio of fry in relation to 

paternal quality and was carried out in collaboration with Dr lain Barber at the 

Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigon, 

UK. The second study involves the determination of sex from fertilised eggs, at 

various stages of embryonic development and was conducted at the University of 

Glasgow. 
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Section I: The Relationship of Offspring Sex Ratio with Paternal 

Attractiveness 

4.2 Introduction 

Male stickleback exhibit strong, red, nuptial colouration, which is variable 

(McLennan and McPhail, 1989a) and appears to be heritable (Bakker, 1993). All 

other factors being equal, females generally prefer redder males as mates (Milinski 

and Bakker, 1990; Bakker, 1993; Bakker and Mundwiler, 1995 but see Bakker and 

Milinski, 1991; Milinski and Bakker, 1992, Braithwaite and Barber, 2000) 

therefore, red breeding colouration can be considered to have evolved via sexual 

selection (Andersson, 1994). 

The intensity of red colouration has been found by a number of authors to 

increase with body condition or behavioural vigour (McLennan and McPhail, 

1989b; Frischknecht, 1993; Bakker et al., 1999). Thus, male red nuptial 

colouration may be described as a condition-dependant sexually selected trait. 

However, not all studies find a consistent trend. Barber et al. (2000a), found that 

the intensity of male nuptial colouration correlated positively with body condition 

when individuals were measured following capture in the wild but not after a 

period of maintenance in the laboratory. A positive correlation was found by 

Bakker and Mundwiler (1995), but only at one of two field study sites whilst 

Fitzgerald et al., (1994) report no association of colour score with body condition. 

In parallel with humans, female stickleback are homogametic (their sex 

being determined by a homologous pair of sex chromosomes, XX). Male 

stickleback are heterogametic (possessing X and Y sex chromosomes) and the 

gender of the offspring is determined during fertilisation of the female's 
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homogametic eggs by X or Y sex chromosome bearing sperm (Griffiths et al., 

2000). The male stickleback invests significant time and energy in parental care 

and might recoup reproductive costs by producing offspring that have maximum 

opportunity for future reproductive success. The production of a biased sex ratio 

in response to parental quality is discussed in Chapter 3. If we accept that 

attractiveness is heritable, a male that is sexually attractive might be expected to 

skew the offspring sex ratio towards male offspring. Male progeny, inheriting 

attractiveness, would achieve relatively greater reproductive success than female 

siblings, due to an increased advantage in mate competition. Poor quality males 

are predicted to benefit more from over-producing females that are more likely to 

secure mating opportunities. 

Reproductive biology of the three-spined stickleback 

A comprehensive account of stickleback biology is given by Wootton 

(1976) and courtship behaviour by Rowland (1994). The breeding season occurs 

in spring and early summer months, varying with latitude. At the onset of 

reproductive activity, the male stickleback defends a nesting territory and begins 

nest construction. During this phase, males develop nuptial colouration - the iris 

of the eye turns from grey to iridescent blue whilst the throat and underside 

develop red pigmentation. Females remain cryptic, although, when gravid, the 

distended belly becomes silvery and dark stripes may develop dorsally. The nest 

is composed of a mat of sand and plant material, through which a tunnel is 

excavated, and is secured by the excretion of spiggin, a glycoprotein glue 

(Jakobsson et al, 1999), produced in the male kidneys. 

Following nest completion, the male begins to court gravid females. The 

courtship display develops as a stereotypical series of stages that progress as the 
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male becomes more receptive. The initial response of a nesting male to a female is 

to attack and bite the intruder, further to which the male performs a "zigzag" 

dance. The male will then attempt to lead the female to the nest, followed by 

creeping through the tunnel, into which the female may then enter and spawn. 

Should a female choose to spawn, her readiness is indicated by the 

adoption of a "head-up" posture, which displays the distended belly. Following 

fertilisation of a clutch, the male enters a parental phase, during which the nest is 

defended and the eggs oxygenated by fanning of the pectoral fins. Egg 

development lasts approximately 11 days, although this may vary with 

temperature (Wootton, 1976). The hatched fry may be guarded for a short period 

whilst in the vicinity of the nest prior to dispersal. 

Sexual selection 

The nuptial colouration of the male stickleback is an example of a sexually 

selected character. Fisher (1999) describes how female preference for a trait 

becomes genetically coupled to female preference for that trait by conferring a 

reproductive advantage on her male offspring. Models of Fisherian sexual 

selection propose that at first the male trait may improve male survival and when 

coupled to the female preference becomes a runaway evolutionary process, only 

counteracted by negative natural selection e. g. increased risk of predation or 

metabolic costs of maintaining colouration. 

The trade-off between natural and sexual selection is illustrated in the 

guppy, Poecilia reticulata. In a study of this species by Nicoletto and Kodric- 

Brown (1999), regional variation was found in the brightness of colouration. In 

headwater habitats with low predation risk, male guppies are more conspicuous 

and have higher display rates. 
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It has also been suggested that mate-choice criteria may evolve from biases 

that already exist in the sensory system of a particular organism. A study of 

guppies by Rodd, et al. (2002) investigated whether female preference for orange 

colouration in the male was based on a general attraction to orange objects. It was 

shown that both males and females were significantly more attracted to orange 

coloured discs than to other colours, indicating a possible non-sexual origin of the 

preference. The authors propose that the bias may have evolved as a result of a 

preference for foraging upon orange coloured fruit. Female stickleback have been 

shown to exhibit a sensory bias (Ryan, 1990) towards red colouration during the 

breeding season, with an increased optomotor response at the red end of the 

spectrum (Cronly-Dillon and Sharma, 1968). However, this physiological change 

is not found in male stickleback and there is, as yet, no evidence to suggest that 

female preference for red is evolutionarily derived from a corresponding food 

colour detection bias. 

Kirkpatrick and Ryan (1991) and Andersson (1994) summarise the 

mechanisms of sexual preference evolution. Selection for male sexual 

characteristics may result from direct advantages to the female (not considered by 

the Fisherian model). For example, search costs might decline with increased 

conspicuousness. Other direct benefits may include increased fecundity as a result 

of choosing a particular male; in the case of the stickleback, this might involve 

variations in the quality of paternal care. Paternal condition, was manipulated by 

Stanley (1983; in Wootton, 1994) by altering the rations fed to captive 

reproductive males. Paternal investment, in terms of nest fanning activity was 

reduced in males on low-rations, although this did not affect the hatching success 

of fertilised clutches. McKinnon (1996) correlated red colouration of males, in the 

parental phase, with the intensity of nest defence. Redder males may provide 
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better protection to offspring against conspecifics, as redness plays an important 

role in male-male interactions (Rowland, 1983; Kraak et al. 1999). 

Selection for female preference may also act indirectly, if male condition- 

dependant traits affect offspring viability. An initial survival advantage of the trait 

is not required, as pleiotropy or genetic drift might give rise to a preference for 

ornamentation (Andersson, 1986). Good genes models suggest that females 

choose males on the basis of apparent genetic quality, as was first suggested by 

Williams (1966). The selected trait should be correlated with male fitness 

components such as growth rate, predator avoidance, disease resistance and 

competitive ability. Unlike Fishers hypothesis, the fitness of both male and female 

offspring should be correlated to the father's fitness (Kodric-Brown and Brown, 

1984). 

Milinski and Bakker (1990) have shown that female stickleback avoided 

males infested by white-spot fungus, which were recognised by their less intense 

colouration. Female choice may, therefore, be selecting for parasite resistance 

genes. Choosing healthy males may also directly benefit the female as she is less 

likely to become infected, with directly transmitted parasites, during mating. 

Barber, et al., (2000a) were able to demonstrate the genetic effects of paternal 

quality upon offspring disease resistance by comparing the maternal half-siblings 

of bright and dull-coloured males. Clutches derived from individual females were 

divided between two males using in vitro fertilisation and incubated artificially 

(Barber and Arnott, 2000), thus controlling for maternal quality and any direct 

effects of paternal care. The offspring of brighter males were more resistant to a 

controlled exposure to the parasite Schistocephalus solidus, (Cestoda: 

Pseudophyllidea) and had higher white blood cell counts if infected, suggesting 

that red colouration is an indicator of genetic quality. 
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Additional studies of parasitic infection and male red colouration show the 

relationship to be less straightforward. Of the five parasite species found in a 

population of breeding males by Folstad et al. (1994), only three were associated 

with red colouration. The incidence of two parasite species correlated positively 

with male colouration and the authors suggest that the redness of infected males 

functions to broadcast to females the degree of exposure to parasites as well as 

genetic resistance. Fish infected with S. solidus in the study by Folstad et al. 

(1994) showed decreased red colouration. However, Tierney et al. (1996) found 

no effect of S. solidus on breeding colouration and Fitzgerald et al., (1994) found 

no correlation between male redness and infection with skin-encysted trematodes. 

Nuptial colouration in the stickleback is based upon carotenoid pigments 

(Brush, 1965; Czeczuga, 1980) and the intensity of colouration increases with 

carotenoid colouration (Wedekind and Jakobsen 1998; Barber et al., 2000b). 

Carotenoid-dependant sexual signals may indicate resistance to oxidative stress 

(von Schantz et al., 1999; Lozano, 2001). The immune and detoxification systems 

of animals generate reactive metabolites and free radicals that in turn may be 

scavenged by carotenoids. The availability of pigment for display may therefore 

indicate a healthy immune system (Lozano, 1994). Carotenoid colouration may 

also display superior foraging ability, with the extent or intensity of colouration 

reflecting the ability of the individual to accumulate carotenoid containing 

nutrients from natural sources (Endler, 1980). Frischknecht (1993) carried out 

feeding experiments upon male sticklebacks to investigate the costs of extraction 

of pigment from food and deposition into chromophores. Although there was no 

direct correlation between food availability and red colouration, individuals whose 

condition increased during the experiment developed a more intense red 

colouration. 
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Reproductive costs and benefits 

Reproduction in the stickleback is costly for both sexes. A clutch of eggs 

costs the female around 14% of her post-spawning body weight, 200% of a daily 

maintenance ration (Wootton et al., 1995). Free-living females spawn, on average, 

3.4 times within a season, and the inter-spawning interval can be as little as three 

days (Mori, 1993). In addition, a gravid female has impaired swimming ability and 

increased conspicuousness so is at greater risk of predation (Wootton et al., 1995). 

Reproductive males expend a similar proportion of their daily energy budget to 

that of females, during breeding. Besides nest building, defence and courtship, the 

eleven day fanning cycle to keep the developing eggs oxygenated requires 200- 

300 J/g (body mass)/day (Wootton et al., 1995). 

Males that display costly secondary sexual traits during breeding might be 

assumed to face intra-sexual competition for mates (Darwin, 1871; Bateman, 

1948; Trivers, 1972). Bateman (1948) attributes variability in male reproductive 

success to the relatively low cost of sperm production, so that a male's investment 

in reproduction is limited by his ability to acquire mates and fertilise eggs. In 

contrast, production of eggs by females, is generally more costly, thus constraining 

the potential reproductive rate. 

Trivers (1972) extends the definition of parental investment to include the 

cost of any investment that increases offspring survival. Parental investment in the 

stickleback, therefore, should include the cost of paternal care as well as that of 

gamete production. Also, the cost of sperm production should not be ignored. 

Spermatogenesis in the male stickleback is inhibited during breeding and each 

mating uses around 5% of the male's sperm store, with a significant reduction in 

males that have bred several times (Zbinden et al., 2001). 
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Clutton-Brock and Parker (1992) propose that it is the potential 

reproductive rate of males and females, that primarily determines which sex 

competes for mates (the operational sex ratio). The male stickleback can increase 

his reproductive rate at less cost than the female, by incubating more than one 

clutch at a time, so that females become the limiting sex. Wootton et al. (1995) 

give a simulation model, that predicts the operational sex ratio of breeding 

sticklebacks, based upon the length of periods of receptivity and unreceptivity in 

both sexes. The model suggests that the operational sex ratio is male-biased, 

although factors such as food availability and sex-biased mortality are likely to 

vary the intensity of intra-sexual competition. Thus, it may be assumed that, under 

most circumstances, males face more competition for mates than females. 

It is hypothesised that redder males might produce more male offspring 

during a single breeding attempt to maximise transmission of genes for male 

signalling. The male might achieve offspring sex ratio distortion by altering the 

ratio of X or Y chromosome-bearing sperm used in fertilisation (primary sex 

ratio), or by selective cannibalism of the clutch during incubation (adjusting the 

secondary sex ratio). The latter strategy would only be effective if the cost to 

reproductive success incurred by eating viable eggs is outweighed by the future 

benefit of maintaining body condition for future reproductive effort. 

The aim of the present study is to investigate the possibility that the 

heterogametic male might bias the sex ratio of a clutch of homogametic eggs, at 

fertilisation. The sex ratio of offspring, at hatching, will be measured in clutches 

sired by males of differing quality. Given that previous studies of the relationships 

between the intensity of nuptial colouration and male attractiveness and 

reproductive success have shown inconsistency, female preference for male 

redness shall also be investigated. Mate choice trials will be used to measure 
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female response to courting males, from a wild caught population, in the 

laboratory. Eggs fertilised by males (whose colouration and attractiveness to 

females has been recorded) will be incubated, artificially, between fertilisation and 

hatching, in order to measure the primary sex ratio of the offspring. It is predicted 

that the redder, more attractive males should skew the clutch sex ratio towards 

more profitable male offspring. 
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4.3 Methods 

Husbandry 

In order to test the idea that males control offspring sex ratio, wild fish 

were captured from Llyn Frongoch, Ceredigion, Wales, before and during 

breeding (April-July, 2000). Fish were housed in aquaria and experiments carried 

out at the Institute of Biological Sciences, Edward Llwyd Building, The University 

of Wales, Aberystwyth, Ceredigion, UK. 

Males were placed in individual 16 litre nesting tanks with a 15cm plastic 

plant, for cover, and aeration was provided by a biofoam airlift filter. An area of 

sand was placed upon the gravel substrate, near the plant and two hundred lengths 

of black nylon thread (8cm) were provided as nesting material. Tanks were 

separated by grey opaque dividers to prevent male interaction. Males were fed 

twice daily on chironomid larvae. Females were held in shoals in large (160 litre) 

tanks and fed ad libitum on chironomid larvae. All fish were subject to a 16h 

light: 8h dark regime, at 19°C. Seawater (approximately 20% of the water 

volume) was added to all tanks to inhibit white-spot infection (Ichtyoptheirius 

multifillis), which is endemic in the native population. 

Males were presented with a gravid female by placing her inside a glass jar 

in the nesting tank for 20 minutes, twice daily, to encourage nesting. Nest 

building behaviour and the males reaction to the female was monitored. Once the 

nest was complete and the male had reached the stage of courtship where creeping 

through the nest occurred, he was used in mate choice trials with gravid females. 
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Mate choice trials 

Males were classified according to intensity of red nuptial colouration by 

eye using a (0-10) redness index from a colour chart (see Appendix II) Pairs 

consisting of a bright (colour score: 0-5) and dull (colour score 6-10) male were 

used for each trial. Each pair of males was presented to two females, 

consecutively, and a total of 9 pairs of males were used in mate choice trials. 

Since few receptive males were available for use in mate choice trial at any given 

time, the pairs of males were not size matched. Only gravid females that showed a 

characteristic "head-up" response when presented to a courting male, indicating 

readiness to spawn, were used in the trials. 

The experimental females were acclimatised to the choice tank (Figure 4.1) 

for around ten minutes before removing the divider between the female and the 

nesting tanks containing the courting males. Female choice was measured for 10 

minutes by recording her orientation with respect to each male (area A or B in the 

female tank) every 20 seconds (see tank set-up Figure 4.1, ). The female was 

observed without disturbance by fixing a mirror above the tank at a 45° angle, 

facing the observer. 

Time spent orientated towards each pair of males was recorded for two 

gravid females. When a female did not enter the zone adjacent to both of the 

males, the preference result was discarded as the female might be focussing her 

attention on the first and only male she has seen rather than making a mate 

comparison. 
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Figure 4.1: For mate choice trials, two nesting tanks containing males are 
positioned next to a larger tank containing a gravid female. Time spent by the 
female in areas A and B, facing each male is recorded. 

Split clutch in vitro fertilisation 

Following the trial, each male was killed humanely (with an overdose of 

anaesthetic). Male length was recorded by measuring the distance from the tip of 

the snout to the fullest extent of the tail, when fanned out, to the nearest 0.5 mm. 

The testes were removed and sperm released from both into a watch glass by 
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finely chopping the tissue. Eggs were stripped from each female, of the pair used 

in the trial, and the clutches split in half and fertilised separately using sperm from 

different males (Barber and Arnott, 2000). After twenty minutes the fertilised 

eggs were transferred from the watch glass to an incubating tank. The eggs were 

incubated, in specially designed incubators (Barber and Arnott, 2000) at 19°C for 

11 days or until hatching. The fry were then collected and stored in 100% ethanol 

for sexing analysis. 

By dividing the sperm from each male between clutches, using a split- 

clutch in vitro fertilisation (IVF) protocol (Barber and Arnott, 2000), it is possible 

to compare separately the male and female effects upon offspring sex ratio 

(Figure4.2). 
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Figure 4.2: Split clutch in vitro fertilisation - each male of a pair (1 and 2) is used 
to fertilise two females (A and B), to control for maternal affects upon the 
offspring. 

Each fry was homogenised in a 2.5 ml eppendorf, containing 200µ1 of 

ethanol, using clean forceps and scissors, washed in 0.5 M HCI. 5µl of each 
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sample was then mixed with 200pl 5% Chelex and extracted as described in 

Chapter 2. 

Sex determination by PCR 

Sex determination by PCR of sex-linked markers was carried out, at 

Glasgow University, as described in the introduction. Reactions were carried out 

in 10µl under the following conditions. A "mastermix" of reactants for each batch 

of DNA samples was prepared as described in Chapter 3: 

Primers Ga1F/Ga1R (0.1 mg/ml) 0.8 µl 

dNTP (10mM) 0.8 µl 

10 x PCR reaction buffer (Promega) 1.0 µ1 

MgC12 (25mM) 1.0 µ1 

dH2O 3.725 µ1 

Taq (5 units/µl, Promega) 0.075 µ1 

DNA 1.0111 

Thermal cycling began with 2 minutes at 94°C then 30 cycles of 1 minute 

at 46°C followed by 1 minute at 72°C and 45 seconds at 94°C, 1 min at 46°C and 

five minutes at 72°C. Primers were used following design by Griffiths et. al., 

(2000) and the primer sequences are shown overleaf. 

Ga1F (5'-CTTCTTTCCTCTCACCATACTCA-3') 

Ga1R (5'- AGATGACGGTTGATAAACAG-3') 
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Each batch of samples used in DNA extraction contained an extraction 

negative (containing no fry sample) which was also included in the PCR to check 

for extraction contamination. Control samples of DNA from male and female 

stickleback and a PCR negative, containing no DNA, were also included in each 

PCR. Thus, it was possible to check that the PCR was successful from the known 

male and female control samples and that no contamination occurred during PCR 

set-up using the PCR negative control. PCR products were loaded, with 10 x 

Orange G loading buffer, into 10cm 3% agarose gels (stained ethidium bromide), 

with a 4µi aliquot of lkb DNA ladder (Promega) included in each row of lanes, as 

a scale. Gels were run in 0.5 x TBE buffer, at 120V for 20-30 minutes, then 

placed on transilluminator and photographed (Figure 4.3). 

The primers used amplify an Y-linked marker, around 371bp long (Figure 

4.3, C) that identifies males (XY). However, a control product is necessary that is 

present in both males and females (XX) to distinguish female DNA samples from 

an unsuccessful PCR. This could be done with a second set of primers but, 

conveniently, Ga1F and Ga1R also produce a second band of around 600bp in 

both sexes (Figure 4.3, B). The uppermost band visible (Figure 4.3, A) is an 

additional fragment of DNA, that has been amplified by the PCR reaction, and is 

not sex-specific. 
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Stickleback sexing gel 
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Figu e 4.3: photograph of an agarose gel with PCR products from 3 male (M) and 
3 female (F) stickleback. The uppermost hand (A) is an additional I)NA fragment, 

that has been amplified, and is not sex-specific. The middle hand (13) is a 1)NA 
fragment amplified from both sexes that acts as a control, whilst the lower hand 
(C) is a Y-linked sex-specific DNA fragment. The right hand lanes contain the 
PCR negative control and aI kb I)NA ladder. 
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4.4 Results 

Mate choice and IVF 

Results of the mate choice trials and structure of the experimental crosses 

are shown in Table 4.4 below. 

clutch male female male colour male % female 
score length attention 

(mm) 
1A 1 A 1 39.0 25 
2A 2 A 6 41.0 71 
3B 3 B 5. 39.0 19 
4B 4 B 7 43.0 70 

- 3 C* 12 

- 4 C* 65 
5D 5 D 6 39.0 51 
6D 6 D 4 37.5 48 

- 5 E* - 
- 6 E* 

7F 7 F 8 42.0 58 
8F 8 F 0 42.0 13 

- 7 G* 70 

- 8 G* 19 

9H 9 H 7 39.5 6 
IOH 10 H 3 40.5 93 
91 9 1 32 

101 10 I 6 
11J 11 J 6 39.0 3 
12J 12 J 4 34.0 93 
11K 11 K 87 
12K 12 K 10 
13L 13 L 7 38.0 71 
14L 14 L 0 35.5 23 
13M 13 M 45 
14M 14 M 54 

15N 15 N 6 37.0 48 
16N 16 N 3 44.5 6 
150 15 0 - 
160 16 0 - 

Table 4.4, continued overleaf 
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clutch male female male colour male % female 

score length attention 
(mm) 

17P 17 P 4 43.5 54 
18P 18 P 7 39.5 38 
17Q 17 Q 10 
18Q 18 Q 90 
19R 19 R 1 49.5 - 
20R 20 R 7 37.0 - 
19S 19 S - 
20S 20 S - 
21U 
22U 

21 
22 

U 
U 

5 
0 

43.0 
44.0 - 

23V 23 V 7 35.0 - 
24V 24 V 0 44.0 - 
25W 25 W 4 35.0 - 
26W 26 W 4 40.0 - 

Table 4.4: Results of mate choice trials for each male and the structure of 
experimental clutches. Each row shows the parents crossed to fertilise each clutch. 
Females marked (*) failed to release eggs. Entries in the % female choice column 
marked (-) indicate that the female did not visit both males during the trial 
(females E and 0) or that trials were not carried out (females R-W). Each section 
(of 4 rows) contains the pairs of males and females used in a mate choice trial and 
half of each female's eggs were fertilised using half of each male's sperm. 
Sections (of 2 rows) containing a single female (females A, U. V, and W) and pair 
of males show crosses where only one gravid female was available for 
fertilisation. Male length (to nearest 0.5 mm) and colour score is shown for each 
male, along with the percentage of attention, given by the corresponding female to 
that male, during the trial. 

A total of 26 males were used to fertilise split clutches from 22 females. 

Some of the gravid females used in mate choice trials failed to release eggs when 

gentle pressure was applied to the distended belly, or only a single female was 

available for fertilisation. Thus, not all fertilisations followed the split-clutch 
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pattern shown in figure 4.2. Instead, some pairs of males were used to fertilise a 

split clutch of eggs from a single female. 

Male colouration and female attention 
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Figure 4.5: Correlation of male colour score (0 - least red colouration, 10 - most 
red colouration) and female attention. Each co-ordinate represents the mean 
proportion of time spent by two females in the vicinity of the brighter male, during 

the mate choice trial (n=9). 

Female preference data, expressed as proportions, was arcsine transformed (Sokal 

and Rohlf, 1995) for subsequent analysis. Spearman's rank correlation (Statview 

4.5) was used to compare the proportion of time spent by each of the two females 

in the vicinity of each male, to check the repeatability of mate preference. There 

was no significant correlation between females in the proportion of time spent 

oriented to individual males (r6 =-0.36; p=0.23; n= 9). 

The relationship between male colour score (ranked from 0-10 with 10 

being the brightest) and mean proportion of female attention, directed to the 
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correlation: r, = 0.35; p=0.31; n= 9). Male length may also affect female choice 

(Kraak et al., 1999), Spearman's rank correlation between male length and mean 

proportion of female attention, directed at the longer male, during the mate choice 

trial was also not significant (r, = - 0.37; p=0.32; n= 9). 

Because the two comparisons of length and colour score with female 

preference are not independent, the probability of a type 1 error (incorrectly 

rejecting the null hypotheses - that there are no effects of either male colour or 

length upon female attention) is increased. The type 1 error of the statistic of 

significance (a = 0.05) can be lowered so that the probability of making a type 1 

error at all in the series of tests does not exceed a. The Dunn - Sidäk method was 

used to calculate a value of a' for each comparison, so resulting in a conservative 

test when the individual significance tests are not independent (Sokal and Rohlf, 

1995). For two tests, that are not independent a' for each test is 0.025. 

Hatching success, male colouration and clutch sex ratio 

Unfortunately, approximately two thirds of the fertilised clutches were 

completely lost, due to fungal infection. Table 4.6 shows the parents and sex ratio 

of the clutches that survived to hatching. 

In order to control for possible female effects upon sex ratio, a comparison 

was made within split clutches (A, B, H and K). Males were classified as bright 

(colour score 0-5) or dull (colour score 6-10). There were no significant 

differences in the proportion of male offspring that hatched between the bright and 

dull groups (x2=3.456,0.5 5 p: 5 0.3,3 d. f. ). The overall sex ratio of hatched fry 

(calculated from total numbers of males: n= 197, and females: n= 132, from all 

clutches) was 60% male. The number of males was significantly greater than that 
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expected (equal numbers of males and females), x2= 6.09, p50.02,1 d. f, with 

Yates correction. 

clutch colour (bright/ 
dull) 

number of fry 

sexed 

% hatched % male 

IA dull 27 93 57 
2A bright 29 93 52 
3B dull 26 86 73 
4B bright 45 90 65 
5E bright 23 77 50 
9H bright 20 91 70 
10H dull 28 97 66 
i 1K bright 33 90 63 
12K dull 10 32 50 
19S dull 9 n/r 44 
21U dull 17 n/r 81 
25W dull 22 n/r 54 
26W dull 30 n/r 50 

Table 4.6: Hatching success and the sex ratio of experimental clutches. Males 
have been classified as "dull" (colour score: 0- 5) or "bright" (colour score: 6 -10). 
Clutch names indicate male (numbers) and female (letters) parents (see table 4.4). 
"n/r" denotes that hatching success was not recorded. 

The overall male-bias found in the sex ratio may have been due to 

differential embryo mortality during incubation. If this were the case, it would be 

expected that the skew in sex ratio would relate to the number of eggs that were 

lost from the clutch and not sexed. If increased female mortality occurred, 

resulting in a male bias in the remaining clutch, then clutches with reduced 

mortality should be less male-biased. 

Figure 4.7 shows the relationship between clutch sex ratio and the 

proportion of eggs that survived to hatching. There was no significant correlation 
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between clutch sex ratio and clutch mortality (arcsine transformed proportions, 

Spearman's rank correlation, r, = 0.34; p=0.329; n= 9). 

Clutch sex ratio and hatching success 

1 
i 0.91 L 

0.8 - 
0.7 
0.6- 
0.5 - 
0.4- 
0.3 - 

H 0.2 
PO 0.1 

0-- -- 

"f 
f. 

0 

-- __. ____ ___t__ __ -- _ _-- _- .1 

0.2 0.4 0.6 0.8 

Proportion of clutch hatched 

1 

Figure 4.7: The relationship between mortality during incubation and clutch sex 

ratio. The hatching success of each clutch is plotted against the proportion of male 
fry, sexed at hatching. 
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4.5 Discussion 

Female preference for redder males 
The proportion of time spent by females in the vicinity of courting males 

did not vary significantly with male colour score, although the number of trials 
ºih 

carried out to verify this was rather small. In total, data from 16 females was uscd 

as a measure of preference between nine pairs of males. However, studies that 

have found a positive association of male brightness with female preference have 

used similar numbers of subjects. 

Millinski and Bakker (1990) used 13 females in mate choice trials with 15 

pairs of males. Different combinations of three females were used with each pair 

of males, and the average duration of female "head-up" response correlated 

significantly with male brightness. Also, Bakker and Milinski (1991) used a total 

of nine males to generate combinations of three (bright, medium and dull) that 

were compared, sequentially, by 28 females. Again, females gave significantly 

more "head-up" response time to brighter males. The lack of association between 

female preference and male colouration, found in the present study, might be due 

to the use of time spent in the vicinity of the courting male, rather than duration of 

head-up responses, as a measure of mate preference. Also, there were large 

differences in time spent with the brighter male, between the two females that 

were used, sequentially, to measure preference between each pair of males. In 

addition, Rowland (1982) suggests that there are inter-population differences in 

the extent of female preference for redder males. 

Alternative indicators of male quality exist. In the wild, females have been 

found to choose males upon the basis of territory size, nest concealment, level of 

aggression and timing of nesting (Goldschmidt and Bakker, 1990). Females also 

prefer to spawn in nests that already contain eggs (Goldschmidt et al., 1993). 
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Also, cues such as male body size and condition, courtship behaviour and blue eye 

colour are important (Kraak et al., 1999). However, body size, in our study did 

not seem to affect female choice. Kunzler and Bakker (2000) suggest that pectoral 

fin size affects male ability to oxygenate eggs and may be used by females as an 

indicator of male quality. In the latter study, the area of pectoral fin was 

experimentally manipulated, with reduced fin size leading to extended offspring 

development time. It is, therefore, suggested that pectoral fin size may affect 

female choice. 

Male trait expression may alter according to the presence of predators or 

neighbouring dominant males. Male-male interactions cause inferior males to 

reduce colouration and expend less energy in courtship (Candolin, 1999a). This 

was avoided, during the present study of male colouration and offspring sex ratio, 

by placing opaque dividers between nesting tanks. 

Candolin (2000) also studied changes in male colouration across 

successive breeding cycles. Large males increased their colouration across cycles, 

whilst smaller males, that were unable to complete as many cycles as large males, 

did not. At the penultimate cycle, bright males cannibalised some of the eggs, thus 

reducing the reproductive success of that clutch. Consequently, females choosing 

bright males at the end of season might reduce the survival of her offspring. In 

contrast, Bakker and Mundwiler (1995) found that intensity of male colouration 

decreased across the breeding season. In order to control for these possible effects 

in our sex ratio study, all males should ideally have been caught from the wild 

prior to nesting so that each experimental individual is used during their first 

breeding opportunity. 

Female choice may also be affected by the extent to which males differ in 

colouration. Braithwaite and Barber (2000) highlight inconsistencies in female 
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choice during mate choice trials. It is shown that female mate choice correlates 

with nuptial colouration, only when the males to be discriminated between vary 

greatly in colour. I examined the effect of the difference between male pairs used 

in the present trials. The mean duration of female attention, given to the brighter 

male, did not increase significantly with the difference in colour score between the 

pair of males (Spearman's rank correlation: r, = 0.28; p=0.43; n= 9). A similar 

regression, of the difference in length between males, in a pair, and mean female 

preference for the longer male was also non-significant (Spearman's rank 

correlation: r, = - 0.51; p=0.18; n= 8) 

In addition, during mate choice trials that present males to females 

sequentially, there may be an effect of previous encounters. Bakker and Millinski 

(1991) address this topic. When a sequence of males was presented to a female, 

her response was affected by the attractiveness of both the present and the 

previously encountered male. 

The mate choice trials carried out in the above sex ratio study do not 

support the hypothesis that male colour score is good indicator of female attention. 

Also, the time spent in the vicinity of a given male does not necessarily reflect the 

probability that a female would spawn with that male. However, female attention, 

measured as time spent oriented towards a male is used as an indicator of female 

preference by several authors including Milinski and Bakker (1992) and 

Braithwaite and Barber (2000). 

Many other studies use the duration of female "head-up" posturing in the 

vicinity of a courting male as a measure of female preference (Milinski and 

Bakker, 1990; Goldschmidt et al., 1993; Bakker and Mundwiler, 1995; Candolin, 

1999a). McLennan and McPhail (1990) show that a female's "head-up" 

responsiveness correlates positively with likelihood of her spawning with one of a 

107 



pair of males used in mate choice trials. Using a different experimental 

arrangement, where six potential mates in a large arena surrounded a female, Ward 

and Fitzgerald (1987) recorded male and female behaviour before and after raising 

gates to allow female access to the nests. There was no significant correlation 

between female preference measured in time spent in a male's vicinity or duration 

of "head-up" posturing with her likelihood of spawning with a given male. 

It would be interesting to carry out mate choice trials similar to those in the 

present study, where females were given the opportunity to choose to spawn with 

either male. To investigate this involves practical difficulties, in that each pair of 

males would need to be encouraged to nest in a large tank with removable dividers 

separating the males from each other and also from a section where females could 

be placed to carry out mate choice trials. 

In our study of male quality and offspring sex ratio, the assignment of a 

redness colour score was subject to human error. Many studies have followed 

Frischknecht's (1993) method of measuring the intensity of breeding colouration. 

The male is photographed ventrally and laterally and a brightness value calculated 

from a scanned image. A red brightness value is assigned at random, or at several 

anatomically distinct points, by dividing the redness component by the sum of the 

red, green and blue component values. Percentage red area may also be calculated 

(Candolin, 2000) and included in assessment of male quality. 

Further improvements to the experiment would include the use of size- 

matched pairs of males. It might be also worth using a photographic method to 

assess redness. However, care should be taken during handling and photography 

as the fish may alter in colour whilst stressed (Candolin, 2000). 

Male quality and offspring sex ratio 
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There was no evidence to suggest that brighter males produced more male 

offspring. However, that data set for offspring sex ratio was rather small due to 

loss of many eggs to fungus. Data collection would have been made more 

efficient if the offspring were sexed as eggs, avoiding loss of sampling due to 

fungal infection (see section II of this chapter). Sexing the eggs shortly after 

fertilisation would also control for any effects of differential embryo mortality. 

The expectation of adjustment of sex ratio by the male to maximise his 

offspring reproductive success assumes that nuptial colouration is a heritable trait, 

that confers a reproductive advantage to offspring. Bakker (1993) carried out mate 

choice trials and breeding experiments that showed genetic correlation between 

male colour and female preference for brighter males. Intensity of colouration was 

also found to be heritable. 

Good quality males would gain advantage by over-producing male 

offspring, only if there were competition for females. Wootton, (1976) found that 

males in better body condition were brighter and received a higher number of 

eggs, whilst Bakker and Mundwiler (1995) studied a wild population where the 

nests of redder males were also found to contain more eggs. In a field study by 

Kraak et al. (1999), reproductive success correlated with throat redness in only one 

of two separate populations, and only during periods when overall reproductive 

success was low. 

Candolin (2000) studied male reproductive success in the 

laboratory under high and low food availability. It was shown that increased red 

colouration correlated with increased hatching success of eggs when energy was 

constrained but not when males had access to unlimited food. Thus, the breeding 

conditions in the laboratory may affect interactions between male quality and 

reproductive success. In addition, Barber et al. (2000b) found that when males 
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were captured in the wild and used in laboratory husbandry, there was an increase 

in the average intensity of male colouration, with the dullest males gaining most. 

In order to investigate the effects of male quality upon reproductive 

success and offspring sex ratio in the natural competitive environment, field study 

is required. Male sticklebacks and the contents of their nest could be collected 

during the breeding season and the eggs sexed. Male colouration could be 

recorded and female preference for males would be reflected in the number of 

eggs belonging to each male. 

However, female identity and the direct affects of paternal care could affect 

the sex ratio of eggs collected under these conditions, which are controlled for in 

our laboratory study through the split-clutch IVF design. Also, "sneaking" males 

may fertilise clutches of eggs in the nests of other males or males may steal the 

fertilised eggs of conspecifics (Mori 1995). Genetic evidence for these activities 

has been supplied by microsatellite analyses of paternity (Rico et al., 1992; 

Largiader et al., 2001). It should, therefore, be possible to analyse the sex ratio of 

eggs of differing parental origin by including microsatellite identification of 

parentage in field investigation. 

In addition, differential embryonic mortality may occur before eggs are 

collected. Nevertheless, if the sample of clutches was large and the eggs examined 

to determine the stage of embryonic development (Wootton, 1976), the 

relationship between the clutch age and sex ratio would show whether survival 

differed between eggs of either sex. Should this be the case, then any sex ratio 

variability between clutches of the same age could be attributed to parental effects. 

Candolin (1999b) examined the correlation of male stickleback redness and 

body condition in a wild population. Males in good condition had larger red areas 

than those in intermediate condition, as would be expected, but males in poor 
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condition were found to increase their signalling intensity. It is suggested that the 

poor quality males invest more in current reproduction as a terminal effort, made 

necessary to ensure some reproductive success, given diminishing prospects of 

survival. Should nuptial colouration be an unreliable indicator of male quality, it 

would have been desirable, in the present study to use additional measures of male 

condition. Body condition was quantified by Candolin (1999b) by measuring the 

male lipid content. Also, the relative liver weight can be calculated, which 

represents medium term energy reserves (Chellappa et al., 1995). Measurements 

of immunological status include relative spleen weight (the spleen becomes 

enlarged during infection or disease) and the proportion of white to red blood cells 

(Barber et al., 2000b). 

Sex ratio manipulation 

If differences had been found between males in offspring sex ratio, it 

would be difficult to obtain evidence as to how this is achieved. Williams (1979) 

emphasises that the sex ratio at the level of gamete production is restricted to 1: 1, 

in the heterogametic sex, as an automatic result of the segregation of sex 

chromosomes at meiosis. It is possible that male stickleback could alter the sex 

ratio of the sperm produced by selective destruction before fertilisation. This 

might involve differential immunological responses to male and female sperm, 

mediated through antibody production. However, there is no evidence to support 

this idea. 

An alternative strategy might be selective cannibalism of embryos during 

incubation. Egg cannibalism in male sticklebacks is suggested to increase future 

reproductive success, as bodily reserves are maintained for future parental care 

(Rohwer, 1987). Filial cannibalism should be a viable strategy for the parental 
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male, only if leaving the nest to feed represents a risk to his offspring. Egg raiding 

by conspecific males and females is common in sticklebacks, the eggs being more 

nutritious than other foods (Fitzgerald, 1991). By eating his mate's eggs, the male 

exploits the female's increased foraging opportunities. However, eating fertilised 

eggs of the sex that has lower future reproductive value would require the male to 

be able to discriminate between embryos of each sex. This might be investigated 

experimentally by leaving half-clutches of eggs to develop in the nests of males 

and comparing the sex-ratio of hatched offspring with a control group of 

artificially incubated eggs. Should selective cannibalism be found to occur, a 

greater challenge would be the detection of plausible cues that the male could use 

to recognise the sex of developing embryos. 
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Section II: Determination of Sex from Fertilised Eggs 

4.6 Introduction 

Following large losses of fertilised stickleback embryos to fungus during 

incubation, it was decided to investigate the possibility of sampling and sexing 

eggs at an earlier stage of development. The following breeding season (April - 

July 2001) males were captured from the wild and encouraged to begin nest 

building in aquaria, at Glasgow University, as described earlier. Pairs of fish were 

allowed to mate in the male's nesting tank and the fertilised eggs removed to 

incubators. Eggs were sampled daily until hatching and the DNA extracted and 

quantified. Sex determination of each egg by PCR was then attempted. 

4.7 Methods 

Gravid females were introduced to the nesting tank of a receptive male, 

allowed to spawn in the nest and then removed. Clutches of fertilised eggs were 

transferred from the nest to individual incubation tanks. Between 3 and 8 eggs 

(depending upon initial clutch size) were sampled from each of ten clutches, daily, 

from fertilisation until hatching and stored in 100% ethanol at -20°C. 

DNA was extracted from each egg/fry using the phenol/chloroform method 

(as in chapter 1, but omitting the initial phenol extraction step) and following 

precipitation, resuspended in 30µ1 TE. PCR sex determination was carried out, 

also as described earlier in this chapter. When the initial PCR of a sample of 

embryo DNA yielded no product, the PCR was repeated on up to two more 

occasions. The DNA concentration of each sample was measured using Hoechst 

33258 dye (Biorad) that binds to grooves of DNA molecules to produce a highly 
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fluorescent complex. Resulting fluorescence from a dilute solution of DNA (5µl 

sample in lml Hoechst dye solution) was measured at an excitation wavelength of 

360nm and an emission wavelength of 460nm (VersaFluor' Fluorometer, 

Biorad). The DNA concentration was calculated from its fluorescence relative to a 

dilution series of standard calf thymus DNA (Biorad). 
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4.8 Results 

DNA yield 

Figure 4.8 shows the mean mass of DNA extracted from individual 

stickleback embryos. The DNA yield ranges from around 60ng from a 1-day-old 

embryo to over 1µg from a hatched fry on day 10. 

DNA extracted from stickleback embryos 
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Figure 4.8: The mean of the total DNA extracted from each embryo is shown, 
along with the standard error. The sample size for each day is around 50 embryos. 

PCR efficiency 

The percentage of successful PCR reactions (the number of embryos that 

could be sexed within three PCR attempts, expressed as a proportion of the total 

number of embryos from each group) for each of the groups is shown in Figure 

4.9. Embryo growth is such that 98% of embryos can be successfully sexed by the 
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third day of incubation. PCR efficiency was lower (KO%) for embryos aged 

between 6 and 8 days. 

PCR efficiency - sexing embryos 
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Figure 4.9: The percentage of embryos that could be sexed by PUR, following 

DNA extraction. PCR was attempted it maximum of 3 times with samples that 

were unproductive. 

Sex ratio 

The proportion of male emhryos sampled daily is shown in Figure 4. IU. A 

significantly greater proportion of embryos that were sampled shortly alter 

fertilisation (day 1) were male than du ing the renºainiirr of the sampling (period 

(days 2-10) (x2 = 4.3; pS 0.05; 1 (l. /' with Yates Correction). The overall sex ratio 

of embryos collected (excluding embryos sampled on day I) was 64`I, (mimics: n= 

211; females: n= I20). The number of samples sexed as males (excluding 

embryos sampled on stay 1), was significantly greater than the expectation ul equal 
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numbers of males and females (x 2= 11.46; p5 0.001; 1 d. f. with Yates 

correction). 

Sex ratio of stickleback embryos 
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Figure 4.10: The proportion of stickleback embryos sexed as male, sampled 
during development (days 1-10). The dotted line shows the expected proportion of 
males (0.5). Each co-ordinate is annotated with the sample size (n), used to the 

calculate proportions (minimum, n =13; maximum, n= 48). 
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4.9 Discussion 

Sexing stickleback embryos 

The results of the embryo sexing experiment show that successful offspring 

sexing can be carried out when embryos are 3 days old. Since the total mass of 

DNA extracted doubles between embryos of 3 and 4 days of age, it would be 

sensible to use four-day-old embryos for sex ratio analysis. In addition, the age at 

which embryos can be sexed is likely to vary with temperature, as this affects the 

rate of embryo development (Wootton, 1976). The decrease in success of sexing 

embryos between 6 and 8 is puzzling, as they seemed to contain adequate DNA 

when quantified by fluorometry. Each of these DNA samples failed 3 separate 

PCR reactions; therefore it might be assumed that they were remained 

contaminated by PCR inhibitors following extraction. Unfortunately, as the entire 

embryo is used in the DNA extraction procedure, there is no possibility of re- 

extracting failed samples. 

Stickleback sex ratio 

It is interesting that the overall hatching sex ratio of stickleback fry in both 

the embryo sexing (this section) and the previous experiment (section I) was 

significantly male-biased. This bias could represent the primary sex ratio at 

fertilisation or be a result of differential embryonic mortality (if females were 

more likely to die during incubation). 

The results of embryo sexing (Figure 4.10) show that there are significantly 

more embryos sexed as male on day 1 than during the remainder of the 

development. The high proportion of males (93%) found at fertilisation is 

possibly due to the presence of Y-chromosome bearing sperm in the samples, that 
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may have been washed away by the time that embryos were collected from the 

incubators on following days. The embryos sampled on day 1 were, therefore, 

excluded from the calculation of pooled embryo sex ratio. The sex ratio seems to 

remain constant across the subsequent incubation period, and few of the embryos 

were lost to fungus. It would appear that the sex ratio of fertilised embryos at day 

three or four of artificial incubation is a good indicator of the sex ratio at hatching, 

whilst also reflecting the sex ratio at fertilisation. 

Little is known about the juvenile or adult sex ratio in wild stickleback 

populations. The sex ratio of two populations of fish, from the Baltic Sea and 

Llyn Frongoch, in Wales, was estimated by collection during breeding and found 

to be female-biased (Aneer, 1973 and Allen, 1980, cited in Wootton, 1984). 

Wootton (1984) suggests that sampling sex ratio during the breeding season is 

complicated by the behaviour of territorial males and schooling females, juveniles 

and unsuccessful males. Differences in the likelihood of catching males and 

females make it difficult to obtain a representative sample. 

Molecular sexing of spine samples from adults captured in Inverleith 

Pond, Edinburgh was carried out between March and October (Arnold et al., 

unpublished). The sex ratio of fish caught in early spring was even, with adult 

males decreasing significantly throughout the breeding season. Dermal cysts of 

the parasite, Glugea, were also counted on each individual and found to be more 

prevalent in males. 

Sex differences in parasitism have been found in another population. 

Reimchen and Nosil (2001) found that males and females were infested with 

differing parasites, which could be related to contrasting feeding ecology. 

Females of the population studied tended to be limnetic whilst males foraged in 

the benthic zone, leading to differences in consumption of parasite host prey. It is 
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suggested that males may be more susceptible to parasitism due to increased 

physiological stress arising from the demands of sexual selection and parental 

care. Males may also be more susceptible to infestation as a result of elevated 

testosterone and stress, which may lead to decreased immunocompetence (Folstad 

and Karter, 1992). Whatever the cause, it would appear that males are more likely 

to become diseased and have reduced survival during the breeding season. The 

techniques described here would be very useful for the further examination of sex 

ratio in natural populations. 
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Chapter 5 

Post-glacial Microsatellite Variation amongst Three- 

spined Sticklebacks from North East Scotland 
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5.1 Introduction 

Extensive divergence in morphology, behaviour and life history between 

populations, within a single species, has been observed in a vast array of 

organisms. Examples include insects (e. g. Bush, 1966), molluscs (Wilding et al., 

2002), isopods (Merilaita, 2001) and echinoderms (Vadas et al. 2002) as well as 

amphibians, birds and fish (reviewed by Smith and Skulason, 1996). Many of 

these intra-specific alternative phenotypes appear adaptive and may be selected for 

at a genetic level. 

Amongst fish, species that have colonised post-glacial lakes provide 

numerous examples of niche-based divergence (reviewed by Schluter, 1996) 

whereby polymorphism within species often entails adaptations that exploit 

different foraging environments within an ecosystem. Evidence for 

environmentally induced morphological variation has been found in many 

salmonid and coregonid species, as well as the three-spined stickleback 

Gasterosteus aculeatus. 

The Arctic charr, Salvelinus alpinus exhibits morphs that, within a single 

lake, may include up to two benthic feeding forms, a planktivorous and 

piscivorous morph. Morphs vary in trophic morphology, colouration and 

behaviour and also show genetic differentiation, displaying different levels of 

speciation across localities (reviewed by Jonsson and Jonsson, 2001). Whitefish, 

Coregonis clupeaformis exhibit similar phenotypic diversification in relation to 

differential resource use. Lu and Bernatchez (1999) found that more highly 

specialised sympatric Whitefish morphs showed reduced levels of gene flow 

(measured by microsatellite genotyping) between them, compared to sympatric 

morphs that showed less phenotypic differentiation. Thus, the selective force that 
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drives divergence in morphology appears to simultaneously induce reproductive 

isolation. This process, described as ecological speciation by Schluter (1996) 

involves population divergence-with-gene-flow (Rice and Hostert, 1993) and 

differs from more widely accepted models of allopatric speciation. The latter 

mechanism requires geographic isolation of populations, within a species, by 

physical barriers that prevent gene flow. Reproductive isolation between 

allopatric populations is assumed to arise via non-ecological mechanisms such as 

genetic drift, founder effects or the fixation of alternative alleles in response to 

similar selection pressures (summarised in Mayr, 1963). 

The Three-spined stickleback also shows extensive morphological 

variation between populations, and the evolution of sympatric morphs in this 

species has received considerable attention (Nagel and Schluter 1998, Taylor and 

McPhail, 2000). The ancestral marine form of the stickleback has undergone 

significant ecological divergence, following widespread colonisation of post- 

glacial freshwater habitats. The species has a wide geographical range within the 

Northern Hemisphere and is found around the margins of the Atlantic and Pacific 

Oceans (Bell and Foster, 1994). 

The research described in this chapter collaborates with a study of 

morphological variation between stickleback populations, from the Moray Firth 

coastal region of Scotland, an area that is geologically well understood. I have 

carried out microsatellite genotyping of some of the stickleback populations that 

were sampled. Stickleback were collected for study by Dr Steve Arnott and Dr 

Iain Barber, who sampled populations from 14 lochs, in order to relate 

morphology to post-glacial history. Analysis of eight characteristics (numbers of 

lateral plates, dorsal rays, anal rays, gill rakers; body depth, jaw length, gill raker 

length and stomach contents) was used to examine divergence. Of particular 
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interest was the presence of spineless and spined morphs in Loch Ruthven that 

may represent reproductively separate sympatric populations. These might arise 

either through sympatric speciation or through a sequential post-glacial invasion. 

It was decided to investigate the relationship between these samples and the 

ancestral form (represented by a local marine population, sampled from salt 

marshes at Carse of Delnies) and to compare these populations with a solitary 

population from Loch a' Choire, upstream of Loch Ruthven (see Figure 5.1). 

Figure 5.1: Map of Scotland with an expanded view of the Moray Firth coastal 

region. The locations of stickleback populations that were sampled and used in 

microsatellite analyses are shown: (1) Carse of Delnies (2) Loch a' Choire (3) 
Loch Ruthven. 

Stickleback speciation 

Three-spined sticklebacks present in the marine fossil record, up to 10 

million years ago, are very similar to the extant marine form. Outgroups to this 

species are generally marine, suggesting that G. aculeatus is ancestrally marine. 

From this fairly homogenous marine stock it would seem that populations have 
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colonised a wide variety of inland habitats. These freshwater groups diverge from 

the marine ancestral state to form a phylogenetic raceme (Figure 5.2). 
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Figure 5.2: The phylogenetic raceme of the Gasterosteus aculeatus species 
complex. Diversification is shown in a hypothetical two-dimensional phenotypic 
space (abscissas: PI, PII) with an upper section cut away to show the internal 

structure (from Bell and Foster, 1994). 

The pattern of evolution of the stickleback differs from the conventional 

phylogenetic tree in that there is a central axis (analogous to the central axis of an 

inflorescence from which many flowers project) consisting of a phenotypically and 

temporally stable lineage (the marine form). Short-lived specialised isolates 

(freshwater groups) diverge rapidly and frequently over time from marine 

125 



populations, following invasion of heterogeneous freshwater habitats, which are 

often subject to geographical isolation (Bell and Foster, 1994). 

Stickleback populations around the North West of British Columbia are 

particularly well studied, not least due to the occurrence of sympatric species pairs 

in six locations. McPhail (1984) describes the pairs present in small lakes on 

islands in the Strait of Georgia region. He examined benthic and limnetic morphs 

from Enos Lake for meristic counts (e. g. gill raker number), morphometrics and 

allozyme variation as well as laboratory-reared offspring from both parental forms 

and their reciprocal F, and F2 hybrids. Consistent differences were found in gill 

raker number and body shape in both wild and laboratory reared morphs, whilst 

hybrids were intermediate in traits. The two forms also differed significantly in 

allele frequency at two allozyme loci. 

These benthic and limnetic morphs show parallel evolution in each lake 

(Taylor et al., 1997). Limnetics are found in open water (except during the 

breeding season, when both forms nest in the littoral zone) and are slender bodied 

and smaller with a narrower gape than benthics. The gill rakers are longer and 

more numerous, in the limnetic population, so that plankton are efficiently sieved 

from the water. Limnetic fish are therefore similar to the planktivorous marine 

population (Taylor and McPhail, 1999). Benthic fish are deeper bodied with a 

wide gape for feeding upon littoral invertebrates. 

Initial analysis of mtDNA suggested that significant genetic differences 

between the morphs had arisen independently in four lakes and that two of the 

pairs appeared to be monophyletic, indicating sympatric divergence. In the 

remaining two lakes the limnetic form was more closely related to the putative 

marine ancestor, supporting the hypothesis that the plankton-feeding morphs are 

derived from a secondary post-glacial invasion (Taylor and McPhail, 1999). 
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Further genetic analysis at six microsatellite loci has shown that these freshwater 

populations have lower allelic diversity than the marine stock, as would be 

predicted for populations founded independently from a limited sample (Taylor 

and McPhail, 2000). The microsatellite analysis also suggests that none of the 

species pairs are monophyletic. The sympatric divergence of two species pairs 

suggested by Taylor and McPhail's (1999) mtDNA study seemed less likely 

following phylogenetic analysis that included the microsatellite data. Instead, the 

limnetic morphs appeared more closely related to their marine ancestor than the 

benthics, giving support to the allopatric scenario of a double invasion (Taylor and 

McPhail, 2000). Nevertheless, ecological selection in sympatry may still 

contribute to the evolution and maintenance of polymorphism between the pairs. 

A low level of hybridisation occurs between wild benthic and limnetic 

populations (around 1%, McPhail, 1992). Hybrids are fertile but, being 

intermediate in form, have a foraging disadvantage, with reduced feeding 

efficiency in both prey habitats (Schluter, 1993). During the breeding season, the 

two morphs are often found nesting in close proximity in the littoral zone of the 

lakes (Foster et al., 1998). In order to test whether prezygotic isolation is 

reinforced in sympatry, Rundle and Schluter (1998) conducted a series of 

laboratory experiments comparing mating preferences of benthic females with 

morphologically similar females from solitary (allopatric) populations. Mate 

choice trials showed that the benthic females discriminated between benthic and 

limnetic males whereas allopatric females did not. In addition, limnetic males 

were found to show a departure from the ancestral preference for large females, 

instead choosing smaller mates. Body size differs markedly between the forms 

and was found to act as a basis for divergent mate selection between morphs by 
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Nagel and Schluter (1998). Reproductive isolation may also be facilitated by the 

evolution of differences in male courtship behaviour (Nagel and Schluter, 1998). 

Assortative mating between stickleback morphs may provide an example 

of reproductive character displacement - whereby low hybrid fitness reinforces 

premating isolation (Rice and Hostert, 1993). Environmental reduction of hybrid 

fitness has been tested experimentally in sticklebacks (Vamosi et al., 2000). 

Artificial ponds and lake enclosures were stocked with laboratory-reared F, 

hybrids and parental species and subsequent growth and survival monitored over 

several months. Relative survival of hybrids was lower than expected and their 

growth rate was slightly lower than that of benthics. Limnetics were slower 

growing, being smaller as adults. 

The morphological and behavioural differences that have arisen through 

stickleback microevolution have been shown to have a heritable genetic basis, and 

persist for at least two generations when bred in the laboratory (McPhail, 1984). 

The genes controlling morphological variation of the stickleback have been 

mapped to chromosomal regions by Peichel et al. (2001). Genomic library 

screening and sequencing identified 227 microsatellite markers that were used to 

type the offspring of a limnetic/benthic cross. Linkage analysis found quantitative 

trait loci that accounted for two thirds of the variation in the number of small gill 

rakers. Other characters such as spine length and lateral plate number were also 

linked to different loci. Some traits mapped to similar regions of the chromosome 

indicating the importance of genetic linkage or pleiotropy in the covariation of 

characters. 
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Microsatellites 

Microsatellites are repeated sequences of DNA, with a repeat unit of less 

than six base pairs. They are randomly distributed throughout non-coding regions 

of eukaryotic genomes; with CA repeats being the most common motif in 

vertebrates (see Hancock, 1999, for review). Unlike allozymes, that show little 

variation, microsatellites are highly polymorphic. They have a relatively high 

mutation rate, are easily scored and are therefore extensively used as markers for 

measuring gene flow and population subdivision (Sunnucks, 2000). 

Several functional roles of microsatellites have been proposed (Kashi and 

Soller, 1999 review). Their properties as regulatory sequences have been 

investigated by Hamada et al. (1984) who inserted a TG repeat array into 

expression vector plasmids, which were then transfected to cells in culture. The 

expression of plasmid genes was subsequently enhanced by the microsatellite. 

Insertion of the Z-DNA repeat d(TG)30 is thought to induce a change in strand 

conformation during homologous pairing of chromosomes that promotes 

recombination (Wahls et al., 1990). Pardue et al. (1987) noted a non-random 

distribution of certain repeat sequences in Drosophila chromosomes. A 

particularly high density of (dC-dA),,. (dG-dT)� stretches was revealed on the X 

chromosome by in situ hybridisation. The distribution appears to be evolutionarily 

conserved between Drosophila species and is correlated to dosage compensation 

(whereby transcription from the single X chromosome of the male is higher than in 

females, who have two copies of X). 

Tri-nucleotide repeat expansions at selected loci are implicated in human 

disease. Five classes of trinucleotide-repeat diseases have been identified, in 

conditions such as myotonic dystrophy, Fragile X syndrome and Freidrich's ataxia 
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(reviewed by Rubensztein, 1999). However, for the purpose of population genetic 

studies, microsatellites are assumed to be selectively neutral, as loci are selected 

for comparison at random (Jayne and Lagoda, 1996). 

Mutation 

Microsatellite mutation is thought to arise by strand slippage during DNA 

replication. Repetitive sequences in the nascent (newly copied) strand may 

reanneal out of phase to the template, giving rise to looped-out bases in either 

strand, shortening or lengthening the product (Hancock, 1999). Schlötterer and 

Tautz (1992) analysed slippage synthesis of DNA in vitro. Simple sequence 

primers were used in PCR to synthesise varied repetitive di- and tri-nucleotide 

repeats, indicating that slippage occurs frequently and at a high rate. Unequal 

chromatid exchange and genetic recombination may also change microsatellite 

repeat number (Shriver et al., 1993). Estimated rates of microsatellite mutation 

vary between species (reviewed by Hancock, 1999; Jarne and Lagoda, 1996). 

Analysis of human pedigrees by Weber and Wong (1993) found a mutation rate of 

1.2 x 10 -3 per locus per gamete per generation, in microsatellite repeat number. 

Microsatellite evolution has been the subject of much theoretical work with 

three main models of mutation having been proposed. The infinite allele model 

(Kimura and Crow, 1964) predicts that each mutation creates a new allele at a rate, 

u. Identical alleles share a common ancestor and novel mutations cannot result in 

a new allele of the same sequence as those existing previously. The K allele 

model assumes that the number of possible alleles is K, with a probability (K-1) 

that the allele will mutate to any other allelic state (Crow and Kimura, 1970). 

Under the stepwise mutation model (Kimura and Ohta, 1978), each mutation 
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lengthens or shortens the microsatellite array by one repeat unit. This means that 

alleles are more closely related when they are similar in size, but that they may 

also mutate towards allelic lengths already present in the population, that are not 

identical by descent (reviewed by Estoup and Cornuet, 1999; Balloux and Lugon- 

Moulin, 2002). 

Models of microsatellite evolution may also be rendered inaccurate by bias 

in the direction of length mutations. Weber and Wong (1993) found that 

mutations most commonly involved an increase, rather than a decrease in 

microsatellite length. In addition, there may be constraints upon maximum and 

minimum allele sizes that result in reduced heterozygosity, relative to that 

expected under the step-wise mutation model (Neilsen and Pasboll, 1999). Range 

constraints may vary between loci, along with mutation rate, the effect being most 

extreme when comparing divergent taxa. Pollock et al. (1998) describe 

procedures for estimating these parameters to improve phylogenetic reconstruction 

using microsatellite data. 

In populations that have undergone a recent bottleneck, most of the 

existing microsatellite mutations are likely to have arisen from single recent 

mutations (Estoup and Cornuet, 1999). This reasoning was applied to a study of 

Honey bee (Apis mellifera) sub-populations to compare mutation models. 

Simulation studies of two loci rejected the stepwise mutation model in favour of 

the infinite allele model (Estoup et al., 1995). However, the distribution of allele 

sizes in Weber and Wong's (1993) pedigree study lends support to the single step 

model. In addition, Shriver et al. (1993) compared probability distributions of 

number of alleles, modes, range in allele size and heterozygosity for a range of 

mutation rates to expectations derived from computer simulations. Microsatellite 
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loci were most similar to simulated results under the stepwise mutation model and 

showed deviations from the infinite allele model. 

More recently, a two-phase model was proposed by DiRienzo et al. (1994). 

This model predicts most mutational changes to be of single base pairs with a 

lower occurrence of larger mutations. The observed variance of the allelic 

distributions of a sample of ten loci, from a human Sardinian population, was 

compared with theoretical predictions of the single step mutation model and the 

two-phase model. For 8 out of 10 loci examined, the single step was rejected in 

favour of the two-phase model. Nevertheless, it is clear that no single mutation 

model yet described can accurately describe the evolution of all microsatellite loci. 

Measuring population differentiation 

The most commonly used statistics for the estimation of population 

structure from microsatellite alleles are FST and RST. Wright's (1951) FST assumes 

that the loci follow the infinite alleles mutation model, and can be defined as the 

correlation between two alleles sampled randomly from sub-populations relative to 

alleles chosen at random from the total population. The FST value is 0 when sub- 

populations have identical allele frequencies and reaches 1 when the sub- 

populations share no similarities. 

Given evidence that most mutations occur as single steps, Slatkin (1995) 

devised the RST statistic, appropriate to the step-wise mutation model. Unlike FsT, 

which is calculated from the variances in allele frequencies, RsT is derived from 

the variance in allele sizes. Using computer simulation, Slatkin (1995) found that 

estimates of FST showed too much genetic similarity between populations, 

especially following long periods of divergence. Nevertheless, tests based on RST 
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can be less powerful, due to its high associated variance (Balloux and Lugon- 

Moulin, 2002). Comparisons of FST and RsT under different simulated conditions 

were made by Balloux and Goudet (2002), who found that RsT gives a better 

reflection of population structure under low-levels of gene flow, whilst FST gives 

better estimates for less highly structured populations with greater levels of gene 

flow. 
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5.2 Methods 

Fish were collected from lochs in the Moray Firth coastal region of 

Scotland during the breeding season (May-June) using seine nets and traps. This 

avoids biased sampling due to trophic selectivity, as the fish nest in littoral zones. 

Between 40-80 fish were sampled from each site and frozen at -20°C. Following 

morphological analysis, a small amount of tissue was dissected from the gill 

opercula for DNA extraction. 

DNA extraction: salt method 

1) Each tissue sample (around 1cm3) was finely chopped in a 2.5m1 eppendorf, 

containing 250µl Digestion solution, using small dissection scissors. The 

scissors were washed in 0.5M HCI and distilled water between samples to 

prevent cross-contamination. 

2) 5µl (10mg/ml) Proteinase K (Promega) was mixed into each sample using a 

vortex mixer and digestion was carried out overnight in and orbital incubator at 

55°C. 

3) 250µ1 4M ammonium acetate was added and the samples left at room 

temperature for 15 minutes, mixing regularly. 

4) Samples were centrifuged at 18 000 xg for 10 minutes. The supernatant was 

transferred to a clean tube and mixed with 500µ1 100% ethanol to precipitate 

the DNA. 

5) The DNA pellets were washed in 70% ethanol and air-dried for 15 minutes. 

6) Samples were resuspended in 50µ1 TE, overnight, in an orbital incubator at 

55°C and stored at -20°C. 
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Microsatellite selection 

For this study I selected primers for five loci identified by Taylor (1998) 

and Largiader et al. (1999). The primers were tested using DNA from a selection 

of stickleback isolates, including those used in this study and samples from Wales 

and Edinburgh. Each primer was checked to ensure that the microsatellite 

products were polymorphic. Some primers were rejected, as they did not produce 

differing products between any individuals, following PCR and electrophoresis on 

4% agarose (see conditions below). 

PCR 

Optimal PCR conditions for amplification of microsatellite fragments 

were selected, following comparison of PCR performance at different annealing 

temperatures (a gradient of 45-55°C was used). The concentration of magnesium 

chloride in the reaction mix was also optimised by comparing a range from 0 to 

3.5 mM in 0.5mM increments. A concentration of 2.5mM was found to be 

optimal and an annealing temperature of 50°C, as these conditions resulted in large 

amounts of PCR product with all primer sets. Products were visualised by 

electrophoresis of 5µl aliquots (with 10 x Orange G loading dye) in 4% 10 cm 

agarose gels (with ethidium bromide staining) in 1x TBE buffer, at 100V for 20 

minutes. A 4µl aliquot of lkb DNA ladder (Promega) was included in each row of 

lanes to provide a scale. Gels were then placed on a transilluminator and 

photographed. 

Details of the primers and microsatellite loci used are shown in Table 5.3. 

Each primer set was used with each DNA sample to find the lengths of all five loci 

in every individual. One primer from each pair was end-labelled with a 5' ABI 
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dye (Sigma-genosys, UK). Different coloured dyes (6-FAM or HEX) were used in 

primers for longer or shorter microsatellites, so that the products from 

amplification of two loci could be run together in one gel lane and later 

distinguished by size and the colour of dye fluorescence emission. 

PCR 

Reactions were carried out in lOµ1 under the following conditions: 

Primers (forward and reverse, 0.1 mg/ml) 0.8 µl 

dNTP (10mM) 0.8 µ1 

10 x PCR reaction buffer (Promega) 1.0 Al 

MgC12 (25mM) 1.0 Al 

dH2O 2.725 µl 

Taq (5 units/µ1, Promega) 0.075 µ1 

DNA 2.0 µl 

PCR conditions were as follows: 2 minutes at 94°C followed by 30 cycles 

of 50°C for 30 seconds, 72°C for 20 seconds and 94°C for 30 seconds, then 1 

minute at 50°C and 5 minutes at 72°C (extra extension time to increase yield). A 

negative control for each batch of extracted DNA and a PCR control containing no 

DNA were included in each PCR to check for extraction or PCR contamination. 

Following PCR, 5µl of each sample was run on a 4% agarose gel with a 

1kb DNA ladder, in 0.5 x TBE buffer at 120V, for 20-30 minutes to confirm that 

the PCR had worked, check for contamination, and to estimate the amount of 

dilution required for each product. 
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Microsatellite measurement 

The PCR products were diluted with distilled water, according to the 

intensity of ethidium bromide fluorescence shown by DNA bands in the gel. 

Samples were then loaded onto an acrylamide gel with a 500bp marker (PE 

Biosystems) and run through an ABI PRISM 373 DNA sequencer (PE 

Biosystems) by the Molecular Biology Sequencing Unit, GeneScan Service, 

University of Glasgow. 

Analysis of the GeneScan results was carried out using GeneScan analysis 

software (Applied Biosystems). An example of a digitised gel image is shown in 

Figure 5.4. and a fluorescence profile of one of the lanes from this gel is shown in 

Figure 5.5. The peaks show the lengths of two microsatellite loci, measured in 

base pairs. Data analysis requires the repeat number of each motif, at each locus. 

This is calculated by subtracting the length of the primers and flanking sequences 

(available from the Genbank sequence) and dividing the remainder by the length 

of the repeat, e. g. a CA repeat sequence is divided by two to find the number of 

repeats. 
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Microsatellite gel image 

length 
250hp 

200hp 

lGOhp 
150hp 
I39hh 

I OOhp 

Figure 5.4: GeneScan gel image showing microsatcllites amplified from mo loci: 

Gac4174PBBE (blue) and Gael 16PBBE (green). The base-pair marker is shown 
in red with lengths on the right. 

139 

t 
Figure 5.5 



... 
0 
ý, 
a 
aý ý, c aý u 
aý ý. 0 

eý u 
aý C 
aý 

Gý 

0 
0 N 
N 

0 
0 
0 
N 

0 
0 
co 

0 
0 
co 
1 

O 
O 
Nt 

0 
0 N 

O 
O 
O 
r 

ýr. 
rl 

x 
ei 

C 

ýýi 

ý, 

x 

C. - -C 
L 

Dl) 
G 
J 

-J 

UV 

V 

G 
ows 

yO 
ct 
cd 

-a "a 
O 

cd 

cy t 
C11 

tU.. C 

bC 

r 
y 

L Cd 

J 

ýJ a 

-N 

CU a 

-U 

C1 O 

C) U u 

c 

ýJ U 

LE 
aý 

^J Cd 

C 

V 

C .. 

JC 

uO 
s 
h ýy 

Wx 
ycd 'r" A. 

öc 
s 

ro 

w 
GQ 

iA 
-r 

cq 

V 
C 



5.3 Results 

The microsatellite motif repeat number, at each locus, was calculated from 

the allele lengths for each individual. This genotypic data was analysed using 

Arlequin software (Schneider et. al, 2000) 

Variability within populations: Hardy-Weinberg equilibrium 

In large populations that exhibit random mating with no selection, mutation 

or migration, the relationship between the gene frequencies and genotype 

frequencies of the population are expected to obey Hardy-Weinberg law. For 

multiple alleles, where Al and A2 are any two of the alleles and they have 

frequencies in the population of qt and q2 respectively, the expected Hardy- 

Weinberg genotype frequencies are derived as follows: 

Genotype: AAAAAA 111212 

Frequency: q12 29192 922 

(Adapted from Falconer and McKay, 1996) 

The observed allele frequencies within a population, at a given locus can 

be used to estimate the expected genotype frequencies in the population, under 

Hardy-Weinberg equilibrium. The observed genotype frequencies can then be 

compared to those expected using goodness-of-fit methods. A Hardy-Weinberg 

equilibrium test (Guo and Thomson, 1992) was carried out for each stickleback 

population. 
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The observed and expected microsatellite genotype frequencies are shown 

for each locus in Tables 5.6 - 5.9, along the probability of sampling the observed 

allele frequencies at each locus, if the population is at Hardy-Weinberg 

equilibrium. 

For most of the loci typed for each population, the probability that the 

observed allele frequencies have been sampled from a population at Hardy- 

Weinberg Equilibrium is less than 0.05. The exceptions are the observed allele 

frequencies at locus Gac7188PBBE in the spined morph sample from Loch 

Ruthven (Table 5.7) and at two loci Gac1116PBBE and Gac3133PBBE in the 

sample from the salt marsh (Table 5.8). For these loci, the null hypothesis - that 

the populations are at Hardy-Weinberg equilibrium, cannot be rejected. 

The spined fish sampled from Loch Ruthven were collected at two separate 

sampling sites. In order to check for an effect of sampling site on population 

structure, a Hardy-Weinberg test was carried out on the allele frequencies 

observed in the spined morph sample, sub-divided by site of capture (Tables 5.10 

and 5.11). Fish captured at site A showed allele frequencies at three loci, which 

could have arisen in a population at Hardy-Weinberg equilibrium, with a 

probability, p >0.05 (Table 5.10). This was also found for one locus from the 

sample collected at site B (Table 5.11). The occurrence of deviations in the 

frequency of sampled genotypes from those expected, at Hardy-Weinberg 

equilibrium could be due to non-random mating within sub-populations. This can 

result in an excess of homozygotes, a condition known as the Wahlund effect (see 

discussion). 
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Hardy-Weinberg test: Loch Ruthven: spineless morph sample 

Locus No. of Obs. Heter. Exp. Ifeter p. value 
Genotypes 

Gac4174PBBE 20 0.55000 0.87444 0.008 

Gac1116PBBE 20 0.45000 0.91410 <0.001 

Gacµ10 20 0.70000 0.97179 <0.001 

Gac3133PBBE 20 0.60000 0.93974 <0.001 

Gac7188PBBE 20 0.65000 0.96538 <0.001 

Table 5.6: Number of genotypes and the observed and expected heterozygosities at 
five loci, from a sample of spineless stickleback morphs from Loch Ruthven (n = 
20). The p-value denotes the probability of the observed allele frequencies being 

encountered in a population at Hardy-Weinberg equilibrium. 

Hardy-Weinberg test: Loch Ruthven: spined morph sample 

Locus No. of Obs. Heter. Exp. Ileter p. value 
Genotypes 

Gac4174PBBE 15 0.40000 0.82299 <0.001 

Gac1116PBBE 14 0.42857 0.96296 <0.001 

Gac t10 13 0.61538 0.94769 <0.001 

Gac3133PBBE 14 0.71429 0.94709 0.001 

Gac7188PBBE 15 0.66667 0.92644 0.073 

Table 5.7: Number of Genotypes and the Observed and Expected heterozygosities 

at five loci, from a sample of spined stickleback morphs from Loch Ruthvcn (n = 
15). The p-value denotes the probability of the observed allele frequencies being 

encountered in a population at Hardy-Weinberg equilibrium. 
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Hardy-Weinberg test: salt marsh sample 

Locus No. of Obs. Heter. Exp. Heter p. value 
Genotypes 

Gac4174PBBE 17 0.64706 0.90731 0.015 

Gac1116PBBE 17 0.88235 0.94652 0.501 

Gacp 10 17 0.52941 0.91087 <0.001 

Gac3133PBBE 17 0.76471 0.90374 0.053 

Gac7188PBBE 17 0.58824 0.93048 <0.001 

Table 5.8: Number of genotypes and the observed and expected heterozygosities at 
five loci, from a sample of stickleback from a salt marsh popul ation (n = 17). The 

p-value denotes the probability the observed all ele frequencies being encountered 
in a population at Hardy-Weinberg equilibrium. 

Hardy-Weinberg test: Loch a' Choire sample 

Locus No. of Obs. Heter. Exp. Ifeter p. value 
Genotypes 

Gac4174PBBE 22 0.59091 0.66596 <0.001 

Gac1116PBBE 22 0.45455 0.93763 <0.001 

Gacµ10 22 0.68182 0.87209 0.002 

Gac3133PBBE 22 0.40909 0.69345 0.007 

Gac7188PBBE 22 0.63636 0.94080 <0.001 

Table 5.9: Number of genotypes and the observed and expected heterozygosities at 
five loci, from a sample of stickleback from Loch a' Choire (n = 22). The p-value 
denotes the probability the observed allele frequencies being encountered in a 

population at Hardy-Weinberg equilibrium. 
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Hardy-Weinberg test: Loch Ruthven, spined morph, sampling site A 

Locus No. of Obs. Heter. Exp. Ileter p. value 
Geno es 

Gac4174PBBE 8 0.75000 0.85833 0.125 

Gac1116PBBE 8 0.50000 1.00000 <0.001 

Gacp. 10 6 0.83333 1.00000 0.120 

Gac3133PBBE 8 0.75000 0.89167 0.408 

Gac7188PBBE 8 0.50000 0.85833 0.018 

Table 5.10: Number of genotypes and the observed and expected heterozygosities 

at five loci, from a sample of spined stickleback from Loch Ruthven (n = 8) 

collected at site A. The p-value denotes the probability the observed allele 
frequencies being encountered in a population at Hardy-Weinberg equilibrium. 

Hardy-Weinberg test: Loch Ruthven, spined morph, sampling site B 

Locus No. of Obs. Heter. Exp. fleter p. value 
Genotypes 

Gac4174PBBE 7 0.00000 0.78022 0.001 

Gac1116PBBE 6 0.33333 0.95455 <0.001 

Gac t10 7 0.42857 0.94505 0.003 

Gac3133PBBE 6 0.66667 0.93939 0.012 

Gac7188PBBE 7 0.85714 0.92308 0.490 

Table 5.11: Number of genotypes and the observed and expected heterozygosities 

at five loci, from a sample of spined stickleback from Loch Ruthven (n = 7) 

collected at site B. The p-value denotes the probability the observed allele 
frequencies being encountered in a population at Hardy-Weinberg equilibrium. 

145 



Variability between populations: 
Population pair-wise comparisons 

FsT and RsT statistics were calculated summarise the degree of 

differentiation among samples (Tables 5.12 and 5.13). The p-values (shown 

bellow each statistic in parentheses) denote the probabilities, associated with each 

statistic, that the genetic difference between each pair of populations is zero. 

Population pair-wise FST values 

Population Ruthven Ruthven salt marsh Loch a' Choire 
(spineless) (seined) 

Ruthven (Spineless) 0.000 

Ruthven (Spined) 0.018 0.000 
(0.198) 

salt marsh 0.050 0.049 0.000 
(<0.001) (<0.001) 

Loch a' Choire 0.082 0.082 0.080 0.000 
(<0.001) (<0.001) (<0.001) 

Table 5.12: Population pair-wise FsT values, calculated from the allele frequencies 
from each sub-population relative to the whole population. Each statistic 
represents the genetic difference between the sub-populations heading each row 
and column. P-values (shown in parentheses) denote the probability of observing 

the sampled genetic difference between each population pair, if FST = 0. 
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Population pair-wise R5T values 

Population I Ruthven Ruthven salt marsh Loch a' Choire 

Ruthven (spineless) 0.000 

Ruthven (spined) 0.054 0.000 
(0.090) 

Salt marsh 0.435 0.315 0.000 
(<0.001) (<0.001) 

Loch a' Choire 0.461 0.390 0.255 0.000 
(<0.001) (<0.001) (<0.001) 

Table 5.13: Population pair-wise RsT values, calculated from the variance in allele 
sizes of each sub-population. Each statistic represents the genetic difference 
between the sub-populations heading each row and column. 

Both FST and RST values show similar differences between the sub- 

populations. Each population pair are significantly different from one another (p: 5 

0.05), with the exception of the Loch Ruthven morphs. The genetic difference 

between the spined and spineless population samples, based upon FsT, is not 

significant (p = 0.198). The RST values are considerably larger but agree that the 

genetic difference between morphs is not significant (p = 0.090). 

147 



Possible evolutionary correlates of genetic differentiation 

Linearized F5T (Rousset 1997), as a measure of genetic distance, was 

compared to geographical and morphological population parameters. Genetic 

distances were calculated for each population, from the FsT value relating to the 

putative ancestral (salt marsh) population, as follows: 

Linearized FST = FST/ (1 -1ST). 

The relationships between genetic distance and population altitude (above 

sea level) and geographical distance from the salt marsh population are shown in 

Figures 5.14 and 5.15. 

Genetic isolation by altitude 
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Figure 5.14: Linearized FST between each stickleback sub-population and the 

marine form plotted against population altitude 
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Genetic isolation by distance 
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Figure 5.15: Linearized FST between each stickleback sub-population and the 
marine form plotted against the distance from the salt marsh sampling site. 

There appears to be a positive relationship between the genetic distance 

and the of populations from the marine sampling site and height above sea level 

(Figure 5.16). Principle component analysis was carried out upon residuals of the 

measured morphological variables, standardised by length by Arnott, Pagnon and 

Barber (unpublished). They found that morphological variation correlated 

significantly with population altitude. Of the morphological variables, length 

corrected body depth and body mass were found to correlate strongly with altitude 

(Female body depth: r= -0.8333, p<0.001; Male body depth: r=0.831, p< 

0.002; Female body mass: r= -0.795, p<0.003; Male body mass r= -0.888, p 

<0.0001). Thus, fish from populations at high altitude are slimmer bodied than 

those found nearer sea level. 
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In order to examine the relationship between morphological and genetic 

variation, linearised FST was compared to the divergence of each population, in 

mean length corrected body mass and body depth, from the marine form (Figures 

5.16 and 5.17). Morphological measurements were provided by Arnott, Pagnon 

and Barber (unpublished). Divergence in body mass and depth was calculated as 

the magnitude of the decrease in mean length corrected body mass and mean 

length corrected body depth between each population sample and the salt marsh 

sample (marine form). 

Genetic distance and divergence in body 
mass 

0.1 -1 Loch a' Choiref 
N 0.08 
PLO 0.06 Loch Ruthven so 

0.04 - 
0.02 

salt marsh 
0"------- , -- -- , 

0 0.01 0.02 0.03 0.04 

Morphological divergence in length corrected body 
mass (mass/length) (g/mm) 

Figure 5.16: Linearized FST between each sub-population and the marine form 

plotted against divergence in mean length corrected body mass. Divergence was 
calculated as the magnitude of the decrease in mean length corrected body mass 
between each population and the marine form (g/mm). 
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Genetic distance and divergence in body 
depth 
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Figure 5.17: Linearized FST between each stickleback sub-population and the 
marine form and divergence in mean length corrected body depth. Divergence 

was calculated as the magnitude of the decrease in mean length corrected body 
depth between each population and the marine form (mm/mm). 

There appears to be a positive relationship between genetic distance from 

the salt marsh population and the extent of the reduction in mean length corrected 

body mass and body depth (between each population and the salt marsh 

population). Unfortunately, the relationships between morphology, altitude and 

genetic divergence cannot be analysed statistically as the number of populations 

studied is too small. 

Assignment test 

An assignment test was carried out that uses the microsatellite repeat 

number data at each locus from each individual of a population to calculate the 
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probability of its genotype in the assigned population and the probability of its 

genotype in every population. A matrix was calculated, giving, for each pair of 

populations, the number of individuals sampled in the first but assigned to the 

second (Table 5.18). An assignment calculator was used on the web-site: 

<http: //www. biology. ualberta. ca/jbrzusto/Doh. php>. The calculations used are 

described by Paetkau et al. (1995). 

Assignment test 

Population name (to) Ruthven Ruthven salt marsh Loch a' Choire 
(from)1. L* (Spineless) (Spined) 

Ruthven (Spineless) 

Ruthven (Spined) 

salt marsh 

Loch a' Choire 

8930 

7512 

02 15 o 

101 18 

Table 5.18: Population level assignment matrix showing the number of individuals 

sampled from the first population (row headings) and assigned to the second 
(column headings). 

The assignment test gives an indication of the genetic isolation of each 

population. Most of the individuals sampled from the salt marsh and Loch a' 

Choire are assigned to their population of origin. Individuals sampled from Loch 

Ruthven are usually assigned to Loch Ruthven, but each morph is often assigned 

by genotype, to the other morphological group. 
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5.4 Discussion 

Hardy-Weinberg proportions 

Under Wahlund's principle (Wahlund, 1928; in Wallace 1981), the sub- 

division of a large population into a series of smaller ones will result in a higher 

frequency of homozygotes, at the expense of heterozygotes. Therefore, the excess 

of homozygotes above that expected from Hardy-Weinberg proportions in the 

populations studied may be attributed to a Wahlund effect. 

Should non-random mating occur due to population sub-division, it would 

be expected that the heterozygosity of the two groups of Spined morphs from 

separate sampling sites at Loch Ruthven would be closer to the expected 

proportions under Hardy-Weinberg equilibrium. This is the case for the sub- 

population sampled at site A, for which three out of five loci are at Hardy- 

Weinberg equilibrium, in contrast to the spined population considered as a whole, 

which has the expected proportion of heterozygotes at only one locus. 

Lower than expected heterozygosity might also have been found as a result 

of sampling loci that exhibit null alleles. Null or non-amplifying alleles can arise 

as result of mutations in one of the priming sites in the flanking sequences adjacent 

to the microsatellite repeat (Pemberton et al., 1995). This would result in loci 

appearing to be homozygous when, in fact, a second heterozygous microsatellite 

allele was present, but was not amplified in the PCR. However, the probability of 

mutation in flanking sequences is lowered when loci are used for analysis that 

were characterised for the species of study (Scribner and Pearce, 2000). Also, a 

survey of the results of the Hardy-Weinberg analysis shows that, although the 

observed heterozygosity is often lower that expected, all of the loci used show 

frequencies of heterozygotes that could be expected at Hardy-Weinberg 

equilibrium in at least one of the population samples. 
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Genetic distance measures 

The RST values are significantly greater than zero for all possible 

population pair-wise comparisons, as are the FsT values except that between the 

pair of morphs in Loch Ruthven. The R5T statistics exceed FST for all of the 

populations studied. This might be due to a high mutation rate, which lowers FsT 

(Balloux and Goudet, 2002). FsT is also more sensitive to mutation rate when 

migration is low (Balloux and Lugon-Moulin, 2002). It is likely that there is little 

migration between the populations studied (except those within Loch Ruthven) 

due to geographical barriers. Under a strict step-wise mutation model, RST is 

independent of mutation rate so may be a better measure of genetic differentiation, 

in this case. However, RST has a high variance (Balloux and Lugon-Moulin, 

2002). 

Balloux and Goudet (2002) carried out simulations of RsT and FFT, under 

different levels of gene flow, mutation rates, population number and sizes and 

show that no statistic is best overall. However, R5T is recommended when there is 

low gene flow between populations and F5T when there is high gene exchange. 

Slatkin (1995) concludes that F5T measures show too much genetic similarity 

when the coalescence time between the populations studied is large and should 

only be used when the time scale involved is tens or hundreds of generations. 

The colonisation of the Lochs studied is thought to have occurred post- 

glacially, during marine incursion, around 10,000 years ago. Allowing for a 

similar number of stickleback generations since isolation, coupled with low 

migration, we would expect the RST statistics to provide a more accurate measure 
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of genetic differentiation. However, the Loch Ruthven morphs, should they 

constitute separate populations, have an unknown coalescence time and no 

obvious geographical barriers to migration, so that FST may give a better 

description of their genetic differentiation. 

Speciation 

The significant genetic differences between stickleback populations are 

interesting. Although an RST or F5T value greater than zero does not tell us 

whether or not the populations are reproductively isolated, the genetic 

differentiation of stickleback populations provides insight into evolutionary 

divergence of the species. 

There appears to be a trend towards increased genetic divergence from the 

marine form with increasing altitude. This might reflect the time since isolation, 

assuming that the colonisation of freshwater habitats took place during post-glacial 

marine incursion. Receding sea levels would be expected to isolate populations at 

higher altitudes (e. g. Loch a' Choire) earlier than those nearer present sea level 

(e. g. Loch Ruthven). 

Analysis of morphological data by Arnott, Pagnon and Barber 

(unpublished) showed a significant correlation of length corrected body mass and 

body depth with altitude of thel4 populations studied. Linearized FsT appears to 

increase with divergence in mean body mass and depth, from the marine form, 

suggesting that genetic and morphological differentiation co-vary. However, the 

populations that were genotyped constitute a fraction of those for which 

morphological variation has been extensively investigated. The interaction 

between genetic distance and morphological divergence with altitude and possibly 
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time since isolation could be resolved further by following the methods of this 

chapter with the remaining populations. 

There is little evidence from this study to suggest that genetic isolation is 

related to the geographical distance from the founder population. This is in 

contrast to the findings of Reusch et al. (2001). Genetic distance was measured 

from microsatellite variation of sticklebacks sampled from a variety of habitats in 

Germany. Populations followed an isolation by distance model, within lake and 

estuarine habitat types. Again, extending the genetic analysis, to the other 

populations in the locality of those in our study, would provide further insight into 

the effect of geographic isolation. 

Sympatric morphs 

Although the FST comparison between the spined and spineless stickleback 

morphs in Loch Ruthven indicates no significant genetic difference between the 

two, there are striking morphological differences. In addition to lacking pelvic 

spines, the spineless morph fish exhibited a reduction in pelvic girdle length, and 

increased pelvic girdle asymmetry, when compared to the spined fish and the 

population sample from Loch a' Choire (Arnott, Pagnon and Barber, unpublished). 

There were no significant differences between the morphs in length-corrected 

body depth (two tailed t-test, p=0.65) and body mass (two tailed t-test, p= 0.40). 

Should the morphs have constituted discrete, reproductively isolated 

populations, like those found in British Columbia, their mechanism of divergence 

might have been revealed by genotypic variation. If each morph was more closely 

related to the other than to the putative ancestor then sympatric speciation may 

have been invoked. It is probable that the morphological differences observed 
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have indeed arisen in sympatry, given that the value of FST is not significantly 

greater than zero for the difference between morphs, yet significant for differences 

between each morph and the putative marine ancestor. Nevertheless, care should 

be taken when interpreting genetic data in this way. Although the mtDNA 

divergence of morphs in the British Columbian lakes suggests that speciation has 

occurred in sympatry, a similar pattern of monophyly between morphs would arise 

if speciation reached an advanced stage in allopatry, followed by a second 

invasion of marine stickleback, with subsequent gene flow during secondary 

contact (Taylor et al., 1997). 

The pair-wise FST value for genetic difference between the Loch Ruthven 

morphs, at 0.018, is considerably smaller than values found between samples of 

benthic and limnetic pairs found in British Columbia. F5T values for Emily, Enos, 

Paxton and Priest lakes are approximately ten-fold greater, ranging from 0.209 to 

0.336, and were all highly significant at p <0.001 (Taylor and McPhail, 2000). 

It would be interesting to carry out behavioural studies on the Loch 

Ruthven morphs, such as mate choice trials (described in the previous chapter) 

which would reveal any divergence in mating preferences between the morphs and 

in turn, might indicate the evolution of prezygotic reproductive isolation and 

incipient speciation. However, the morph specific mating preferences of the 

sympatric morphs found in the British Columbian lakes appeared to be based upon 

divergence in body size (Nagel and Schluter, 1998) and there is no significant size 

difference between the morphs sampled from Loch Ruthven. 

Gene flow 
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Methods of assignment testing have been evaluated, under different 

conditions, by Cornuet et al. (1999) using simulated population data. Likelihood 

methods based upon the likelihood that an individual's multilocus genotype will 

occur in two or more candidate populations, were found to perform better than 

genetic distance measures in the assignment of individuals to the correct 

population of origin. The genotypic frequency likelihood based method of 

assignment (Paetkau et. al., 1995), used in the present study, performed well (80- 

100% accuracy) when population differentiation estimated by FsT ranged from 

0.05 to 0.1 (Cornuet et al., 1999). The FST values obtained for the populations in 

this study lie within this range, with the exception of the pair-wise value between 

the Loch Ruthven morphs. However, Cornuet et al' s (1999) assessment of 

accuracy is based upon larger sample sizes (30 individuals per population) 

sampled at ten loci. Also the frequency method used assumes that populations are 

at Hardy-Weinberg equilibrium and linkage equilibrium (alleles are randomly 

associated). 

Given that the genotypic frequencies of the populations sampled showed 

deviation from Hardy-Weinberg expectations, it might have been better to have 

used the Bayesian assignment method described by Cornuet et al (1999), which 

does not assume Hardy-Weinberg equilibrium or linkage equilibrium. 

The assignment testing placed 2 out of 17 of the salt marsh genotypes in 

the Ruthven spined population. This genetic similarity cannot be ascribed to gene 

flow between the two groups, owing to geographical isolation and must instead be 

attributed to the retention of ancestral alleles in the Ruthven population. 

It is possible that the spined fish captured in Loch Ruthven, originate from 

the Loch a' Choire population and have been washed downstream via the small 

fast-flowing bum that connects the two Lochs. It is, however, unlikely that fish 
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could migrate upstream from Loch Ruthven, as the gradient is steep. If 

downstream migration occurred, then Loch Ruthven spined morphs would be 

expected to be genetically more similar to the Loch a' Choire population sample 

than the spineless morphs. Relatively few fish, outwith the indigenous population, 

are assigned to or from Loch a' Choire, which in addition to the high pair-wise FsT 

values obtained between this population and both of the Loch Ruthven morphs, 

suggests that gene flow is minimal. 

Stickleback evolution 

The results of this study of stickleback populations of the Highlands of 

Scotland further illustrate the rapid divergence of freshwater colonists that 

characterises the evolution of this species (Bell and Foster, 1994). Rates of 

speciation in post-glacial fishes are high due to the increased availability of novel 

niches within newly formed lakes, which lack competing species (Schluter, 1996, 

Smith and Skulason, 1996). 

The high rate of evolution in the stickleback is counteracted by a high 

probability of rapid extinction (Bell and Foster, 1994). One of the species pairs 

extant in British Columbia may be, at present, undergoing collapse. An increased 

number of hybrids in Enos Lake, in addition to the observation that the gill raker 

number in limnetic morphs is being lowered towards an intermediate state, 

suggests that selection pressures are changing (Kraak et al., 2001). 

The fate of the sympatric morphs of this study, whether speciation or 

introgression, will depend upon the future costs and benefits of maintaining 

divergent phenotypic traits. It is interesting that none of the populations sampled 

seem to contain allele frequencies at all loci that are in agreement with Hardy- 
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Weinberg equilibrium. The occurrence of non-random mating within lochs might 

serve to increase the rate of future adaptive radiation. 
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Appendix I: Reagents 

This section describes the reagents used and the method of preparation of 

their stock form, if applicable. Unless otherwise stated, reagents were the purest 

grades available from Sigma-aldrich, or BDH (Merk-Eurolab), stored at room 

temperature. Aqueous solutions were made up in either autoclaved distilled water 

or distilled water, as appropriate. 

ABI dye labelled primers Supplied by Sigma-genosys, stored at -20°C. 

Primer stock and PCR products containing 

labelled primers were wrapped in aluminium 

foil to prevent contact with light. 

Agarose Prepared fresh, for each gel between 0.8 and 

4% (w/v) was dissolved in TBE buffer. 

Alul Supplied by Promega with 10 x reaction 

buffer, stored at -20°C. 

BSA Fraction V, stored dry at 4°C and as a 10mg/ml 

solution in water at -20°C. 

Chelex100 Supplied by Biorad, 5% suspension in 

autoclaved distilled water used for DNA 

extraction, stored at 4°C. 

Chloroform Chloroform: propan-2-ol (24: 1). 

Degraded salmon sperm DNA 10mg/ml aqueous solution, supplied by Sigma- 

aldrich, stored at -20°C. Used at a 

concentration of 100µg/ml in hybridisation 
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solution. 

Denhardts solution 50 x concentrate supplied by Sigma-aldrich, 

stored at - 20°C. 5x Denhardts solution added 

to hybridisation solution. 

Digestion solution 20mM EDTA, 50mM Tris[hydroxymethylj 

aminomethane, 20mM NaCl, adjusted to p118 

with 0. IN HCI, autoclaved and 1.5%SDS 

added. 

dNTP ATP, CTP, GTP, TTP (100mM) stock 

nucleotides, supplied by Promega, stored at - 

20°C. lOµl of each added to 360µl autoclaved 

distilled water to make dNTP mix used in 

PCR, stored at -20°C. 
X EcoR I marker Supplied by Promega. Diluted to 0.2µg/ul, 

supplied with 6x loading dye, stored at -20°C. 

Hinft Supplied by Promega with 10 x reaction 

buffer, stored at -20°C. 

Hybond Hybond-N nylon membrane supplied by 

Amersham-pharmacia, single-stranded DNA 

2 binding capacity: 600µg/cm. 

Hybridisation buffer 0.5M Na2HPO4,5% SDS. 

1kb DNA ladder lkb DNA ladder supplied by Promega or BRL. 

Diluted to 0.2 tg/ul, stored at -20°C. 

Orange G loading dye (10 x) Glycerol (50%v/v), 

10mM Tris[hydroxymethyl] aminomethane 
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(adjusted to pH8 with 0.1N HC1), 25mM 

EDTA, Orange G. Filtered (0.21im). 

y32P ATP IsoblueTM y32P ATP, 100/ml, specific activity 

3000Ci/mmol supplied by ICN, stored at -20°C. 

y33P ATP IsoblueTM 733P ATP, IOCi/ml, specific activity 

3000Ci/mmol supplied by ICN, stored at - 
20°C. 

Phenol Re-distilled phenol was equilibrated with 0.5 

volumes of TE (pH7.6) and 0.1% SDS. The 

aqueous layer was removed and m-Cresol 

(0.05vols), 2-mercaptoethanol (0.002vols) and 

8-hydroquinoline (0.1%w/v) added. Stored at - 

20°C or in foil wrapped tubes for immediate 

use. 

Phenol/Chloroform Phenol: chloroform: propan-2-ol (25: 24: 1). 

Proteinase K Supplied by Promega, stored at -20°C. 

SDS Sodium dodecyl sulphate (10%w/v). 

SET 100mM NaCl, 1mM EDTA, 100mM 

Tris[hydroxymethyl) aminomethane (adjusted 

to pH8 with 0.1N HCI). Autoclaved. 

SSC (20 x) 3M NaCI, 0.3M sodium citrate (adjusted to 

pH7 with 0.1N NaOH). 

Taq DNA polymerase Supplied by Promega with 10 x reaction 

buffer, stored at - 20°C. 

TBE (1 x) 89mM Tris[hydroxymethyl] aminomethane, 
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89mM Boric acid, 2mM EDTA (adjusted to 

pH8 with O. 1N HC1).. 

TE 10mM Tris[hydroxymethyl] aminomethane 

(adjusted to pH8 with 0.1N HCI), 1mM EDTA. 

Autoclaved. 

T4PNK Supplied by Promega with 10 x kinase buffer, 

stored at - 20°C. 
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Appendix II: Stickleback colour chart 

The colour chart used as an index of male stickleback nuptial colouration, 

in mate choice trials and the analysis of stickleback offspring sex ratio (Chapter 3), 

is shown below: 

This colour chart is a section of the Winsor and Newton Designers 

Gouache Colour Range. The manufacturers colour codes are given in italics and 

the colour scores, assigned to male sticklebacks with a matching intensity of red, 

are given in hold. The colour range can be downloaded at the following web-site: 

<http: //www. winsornewton. com/Main/Sitesections/ColorChartsAl l/colorchartmain 

page. html>. 
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