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Abstract 

The Eastern Arc Mountains (EAM) of Tanzania and Kenya are a biodiversity hotspot 

with remarkable patterns of endemism. Many taxa are restricted to single blocks of 
the chain, a pattern thought to reflect a history of persistent but fluctuating forest 

cover so that the mountains are analogous to an island chain. EAM biodiversity has 

been studied for some time but is still poorly understood on many levels. Improved 

understanding of the evolution of EAM amphibians and of the biogeography of the 

EAM requires accurate phylogenies. Using amphibians, a group considered 

especially sensitive to environmental change, this study investigated the (1) 

Phylogenetic relationships of seven amphibian lineages (Boulengerula, 

Scolecomorphus, Callulina, Probreviceps, Hoplophryne, Spelaeophryne and 
Arthroleptides) to understand relationships among species and populations. Then (2) 

using molecular phylogenies from amphibians and the literature, temporal and spatial 

patterns were assessed using cladistic biogeography methods and molecular 
divergence dates to assess biogeography of the EAM (3) Lastly, the distribution of 
amphibians in the EAM were analysed using descriptive biogeographic approaches 
to investigate spatial patterns. Results from phylogenetic analysis of partial 
mitochondrial genes 125,16S and cytb, indicate that many populations occurring 
throughout the EAM are likely to represent distinct, previously unrecognized species. 
Apart from the genera Spelaeophryne and Arthroleptides, up to twice as many 

species might be recognized in each genus. The level of species diversity in the EAM 

is expected to increase rapidly with taxonomic refinements of these and other 

amphibian groups restricted to the EAM. Analysis of the biogeography of the EAM 

indicates that general spatial relationships are non-significant (both cladistic and 
descriptive reconstructions). Temporal data demonstrates that lineages divergence 

events are not co-temporal, even for taxa with similar dispersal ability. Overall, the 

historical biogeography in the EAM is likely to be complex. Geographic history of the 

EAM has been marked by repeated periods of fragmentation, isolation, contraction 

and expansion of forest habitats, and it is therefore not surprising that both temporal 

and spatial data are non-significant. Limitations to this study are discussed, 

particularly the effect of incomplete sampling of taxa and populations. Temporal 

estimates consistently support the ancient divergences of amphibian lineages, which 

suggest the EAM have persisted for a relatively long time. Persistence might have 

been important for the maintenance of biodiversity'in the EAM. The EAM represent 

an important reservoir of phylogenetic diversity and its future conservation is critical 

for maintaining African biodiversity. 
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Chapter 1. Introduction 

Chapter One 

Introduction 

The thesis reports a study of the phylogenetic diversity of some amphibians in the 

rainforests of the Eastern Arc Mountains (EAM) of Africa, and an investigation of the 
biogeographic history of the region. It was undertaken because the area is of 
exceptional biological interest. The forests of the EAM are believed to have had a 
prolonged, fragmented and persistent history, even during climatic fluctuations and it 
Is thought that this promoted remarkable levels of species diversity and endemism. 
The biogeographic history of Eastern Arc is poorly understood (Fjeldsb and Lovett, 
1997; Burgess et a/. 1998; Burgess et al. in press), so that understanding patterns of 
speciation in amphibians, a suitable biogeographic indicator group, may help to 
better elucidate the biogeographic history of the region. Comparisons may also 
permit an evaluation of speciation patterns in tropical forests. Among only three other 
areas In Africa, the EAM of Tanzania and Kenya are considered a biodiversity 
hotspot (Myers et al. 2000) and consequentially a region of global importance. 

Part 1: Background: Biological and climatic history of 
the tropical rainforests of the Eastern Arc Mountains 

1.1 Introduction 

1.1.1 Overview of tropical rainforests 
Estimates suggest that more than half of the currently described terrestrial species 

are found in rainforests, despite rainforest habitats covering just 8% of the planet's 
land area (Wilson, 1988; Newmark, 2002). Whether this reflects their true share of 
Earth's diversity is uncertain, because rainforests are poorly explored. Recent reports 

of a previously unrecognised diversity of even relatively conspicuous species that 

await description (e. g. Biju, 2001; Meegaskumbura et al. 2002), suggest these are 

underestimates. Irrespective of this, rainforests, referred as the crucible of 

evolutionary processes (Wilson, 1988), represent a significant reservoir of the world's 
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biodiversity (Myers et al. 2000). However, there is a lack of understanding of these 

richly diverse areas compared to temperate regions (Hewitt, 2004). Of the few 

studies that have looked at the patterns of diversification in tropical forests, it appears 
that species generally show prolonged diversification patterns, though these differ 

between taxa and continental regions (e. g. Fjeldsa and Lovett, 1997; Pennington of 

a/ 2004; Moritz of al. 2000) and overall suggest much complexity. More recent 
diversification patterns have been consistently drawn from studies of temperate 

species (Hewitt, 2004), which has led people to speculate on correlations between 

time of persistence and biodiversity (see review: Hewitt, 2004). 

Tropical rainforests are distributed along the equatorial region of Africa, Asia and the 

Americas, reaching 100 south and 10° north, and below 3,000 feet, and are 

characterised by high rainfall. The distribution of rainforests worldwide, and by 

implication a large proportion of the planet's biodiversity, has changed radically 

through time. The waxing and waning of rainforests in particular regions are largely 

the result of plate tectonic movements and variations in climate (Whitmore, 1990). 

Our understanding of these changes, the causal factors and their effect on rainforest 

species is patchy and is derived from the geological record and the relationships and 

distributions of extinct and extant organisms. 

1.1.2 Tectonic and climatic influences on rainforests 
The occurrence of forest has fluctuated dramatically through time, in association with 

a number of influential factors. Movement of continental plates undoubtedly had a 

fundamental influence in a number of different ways on the evolution of forest 

systems (Hamilton, 1988; Morley, 2000; Whitmore, 1990): (1) Position of the 

continental plates relative to the equator, with moist forest tracking the land bisecting 

the equator (Hamilton, 1988); (2) The movement of landmasses resulting in the 

opening and closure of oceans, which has a significant effect on global climate 

patterns (Lovett, 1993a; Morley, 2000; Cane and Molnar, 2001); (3) Interchange of 

species, as continents separated and collided (Bonnefille, 1984; Biju and Bossuyt, 

2003). In addition to the movement and position of continents affecting climatic 

circulation, other localised and worldwide climate patterns have had a major 

influence on the composition of rainforests and their occurrence (Jansson and 

Dynesius, 2002; Whitmore, 1990). Periodic oscillations in the climate, such as those 

due to Milankovitch cycles (the eccentricity of the Earth's orbit), have been shown to 
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correlate with changes in forest cover (e. g. Bonnefille, 1984; Lovett, 1993a). Climatic 

fluctuations during the Pleistocene have also been shown to influence changes in 

rainforest distribution (Van der Hammen, 1974; Hamilton, 1988). 

1.1.3 Biogeography of tropical rainforests 

Despite the complex nature of interactions between species and their environments, 
it is possible to reconstruct many of the changes that were critical in producing the 
distributions of rainforests seen today (Whitmore, 1990). Some of these patterns 
have been relatively straightforward to understand, based on tectonic plate theory 

and the distribution of organisms (Raven and Axelrod, 1974; Axelrod and Raven, 
1978; Sneath, 1967; Cracraft, 1974; Hedges et al. 1996; Bossuyt et al. 2004; San 
Mauro et al. 2005). There are though other, more subtle patterns, which are difficult 

to detect (e. g. Roelants at al. 2005), and which are crucial to our understanding of 
the diversification of rainforests. A critical component to understanding the origins 
and determinants of forest systems are the signatures, sometimes cryptic, left in the 

phylogenetic relationships between extinct and extant species distributed both in and 
outside rainforests. These organisms can be important indicators of changes in 
habitat (Hamilton, 1988; Avise, 2000; Hewitt, 2004), and tectonic movement (Raven 

and Axelrod, 1974; Avise, 2000), provided that they are affected by these events in 

predictable ways. 

1.1.4 Tropical rainforests: Broader issues 

Understanding evolutionary diversification in rainforests is important to elucidate 

much broader questions fundamental to evolutionary biology, such as the 

mechanisms of speciation, adaptive radiations, definition of species, and 
conservation biology. Examples relevant to this study are given below. 

7.1.4.1 Speciation in rainforests 
The processes responsible for generating high rainforest diversity have been of great 

interest to biologists for over a century (Wallace, 1876; Darwin, 1872; Whitmore, 

1990). Numerous theories have been advanced but few have been rigorously tested 

using modern approaches (Moritz et al. 2000). This debate has centred on two main 

competing hypotheses, though not necessarily mutually exclusive, the refuge model 

(dominant in temperate modes of species diversification) and the persistence model. 

The persistence hypotheses grew from speculation that the relatively stable 

conditions afforded by rainforest habitats resulted in low extinction rates and the 
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gradual accumulation of species over time (Fisher, 1960). This persistence 
hypothesis places significance on diversifying selection in distinct habitats, 

irrespective of geographic separation, but it has been challenged by evidence that 

suggests that climates have fluctuated dramatically, particularly recently in the 

Pleistocene, and this led to the formulation of the refuge hypothesis (Haller, 1969). 

The refuge hypothesis proposes that changes in climate caused periodic contractions 

and expansions of forests, which would have isolated populations, thereby promoting 

allopatric speciation. This model of speciation involves the accumulation of genetic 

differences in Isolated populations with the Incidental emergence of reproductive 

isolation. The refuge theory has recently been challenged by a number of studies 

describing speciation patterns that do not correlate with global climatic fluctuations, 

particularly during the Pleistocene (Knapp and Mallet, 2003; Klicka and Zink, 1997, 

1999; Zink and Slowinski, 1995; Colinvaux at aL 1996). Explanations however are 

still required to account for the increased endemism exhibited in Pleistocene refuges, 

which initially alerted biologists to the refuge hypothesis. At present time there is no 

consensus on which speciation model best describes, or best accounts for the main 

mechanisms of evolutionary diversification in tropical rainforests. This confusion is 

demonstrated by the differing conclusions derived from both Neotropical and 

Australian case studies (Hewitt, 2004). Patterns underlining the great diversity and 

historical complexity of these areas include examples of recent speciation processes 

(Pennington et aL 2004) and much deeper historical events, often, from the Pliocene 

(Hewitt, 2004; Moritz et al. 2000; James and Moritz, 2000). This issue is almost 

completely unexamined for Asia and Africa (Hewitt, 2004), and current theories in 

Africa are based largely on distribution data (Fjeldsa and Lovett, 1997; Bruhl, 1997), 

evidence that Is considered to have limited ability to inform on such subjects. Clearly 

these matters are significant, both for determining the patterns of diversification, but 

also for understanding fundamental evolutionary processes. The precise 

mechanisms of the speclation process are still poorly understood (Mallet, 2001; 

Barton, 2001; Moritz et a/. 2000), however an increasing amount of phylogenetic data 

should provide an opportunity to evaluate competing hypotheses. 

1.1.1.2 Conservation Biology of rainforest biodiversity 

Humans are having a profound effect upon the natural world (Wright, 2005). Forest 

cover has been estimated to have reduced 20% globally, as a direct consequence of 

human induced changes, and numbers of threatened species are ever increasing. In 
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light of this biodiversity crisis (Wilson, 1988), it has become critical that we prioritise 

efforts to conserve the most biodiverse regions (Gaston and Williams, 1993). 

Deciding whether an area is more worthy for conservation is a tricky decision and of 

critical importance in a world of limited resources. If a complete inventory of the 

composition of each rainforest was known then this would be possible, but this is not 

realistic or even an economically efficient goal (Myers of a/. 2000; Vane-Wright et al. 
1991). Alternatively, an economically viable approach is to use surrogate measures 

of total biodiversity, including indicator species (e. g. Moritz et al, 2001; Moritz, 2002), 

habitat (as summarised by Brooks et al. 2004) and phylogenetic diversity (Ehrlich 

and Wilson, 1991; Sechrest of al. 2002). An interesting recent example suggested 
that conservation of all currently established hotspots (1.4% of the Earth's land 

surface area) would save nearly 70% of all carnivore and primate genetic diversity 

(Sechrest, of al. 2002). In conservation biology it is generally considered that added 

value or worth should be placed on assemblages that are distinctive phylogenetically 
(Vane-Wright et a/. 1991). If we are to develop strategies to safeguard future 

evolutionary potential (as in Sechrest, of al. 2002) as well as conserve extant 

species, understanding the origins of diversity, particularly in rainforests, is an urgent 

priority. 

1.2 Eastern Arc Mountains 

1.2.1 Introduction 

The EAM are a chain of isolated mountain blocks stretching over 700km from the 

Taita Hills in Kenya, to Mahenge Mountain in southern Tanzania (refer to Fig. 1.1). 

They are comprised of the following mountains: Taita Hills, North Pares, South 

Pares, West Usambaras, East Usambaras, Nguu, Nguru, Ukaguru, Rubeho, Uluguru, 

Malundwe, Udzungwa, and Mahenge. These mountains, composed of ancient 

crystalline Precambrian basement rocks, contain the main proportion of East Africa's 

rain forests, and are notable for a high degree of plant and animal diversity (Clarke, 

1988; Howell, 1993; Lovett, 1990; 1993b; 1998a; 1998b; Burgess et al. 1998a; 

Newmark, 2002; Burgess et al. in press), despite comprising just 0.1% of global 

rainforest. The Eastern Arc however Is not the most speciose of global hotspots, but 

the number of species per km2 is high, with remarkable levels of endemism In 

animals and plants (Lovett, 1993b; Hoffman, 1993). Large patches of undisturbed 

montane forests are still present, but the lowland and sub-montane layers of the 
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forest have suffered extensive losses and fragmentation caused by human 

disturbance (Newmark, 2002). Estimates suggest only 6.7% of the original primary 

vegetation remains (Myers et al. 2000). Preservation of these forests in light of 
increasing deforestation (Newmark 2002; Doggart et al. in press) has been singled 

out as a conservation priority (CEPF, 2003). 

Despite the fact that the biodiversity and evolutionary history of the EAM has been 

studied for a comparatively long period (Barbour and Loveridge, 1928; Loveridge, 
1937; Moreau, 1966; Rodgers and Homewood, 1982), they remain very poorly 
understood (Grimshaw, 2001). The exact historical origin of the EA forests is 

unknown, but is probably associated with a number of geological and climatic factors 

(see section 1.2.2). Essentially, once the continent of Africa reached its current 

equatorial position (-40mya), favourable climatic conditions would have promoted 
the growth of forest habitats (Lovett, 1993a). These habitats may have persisted over 

only small time periods, because of severe climatic fluctuations. However, once the 

EAM were uplifted, as a result of significant regional geological changes (25-10mya), 

the mountains would have then attracted substantial rainfall, condensing the moist air 

coming in from the Indian Ocean (orographic rainfall). From this point onwards it is 

believed that the Eastern Arc forests would have persisted; even during extreme dry 

phases forest would have contracted but not completely disappeared (Lovett, 1993a). 

The main source of evidence for the persistence of rainforest is based on the 

phylogenetic relationships between disjunctly distributed sister taxa (Burgess of al. 

1998a). Loveridge (1937) noted the striking resemblance between the faunas of the 

montane forests of East and West Africa. Similarly, more recently authors have 

shown species linking to forest areas in Madagascar (Lovett, 1993b; Emberton of al. 

1997; Huber, 2003), and southeast Asia (as summarised in Burgess et al. 1998a). 

The persistence of rainforest then allowed the diversification of numerous groups of 

animal and plant species (Burgess et al. 1998a; in press, see section 1.2.3.3). 
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Figure 1.1. 

Map of the Eastern Arc Mountains, modified from Menegon et a/. 2004. Areas in green are 

Eastern Arc Mountains, areas in brown are of more recent volcanic origin. 

Africa has been described as the 'odd man out' by Richards (1973), on account of 

the much lower species richness and relatively poor representation of phylogenetic 

lineages compared to elsewhere on the globe (Morley, 2000). Duellman (1993) noted 

this disparity when comparing the diversity of anurans in Africa and South America. 

Duellman (1993) among others (e. g. Morley, 2000) explained the difference in 

species richness by the disparity of 'xeric and humid environments on the two 
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continents'. Xeric environments today dominate the continent of Africa. Apart from 

the main central African forests there are only relatively small patches of forest in 

East and West Africa. However, enclosed in these small, fragmented areas is the 

main concentration of African'biodiversity, which is extraordinarily rich (e. g. Kingdon, 

1989; Burgess et al. in press). In an analysis of areas of global importance for the 

conservation of biodiversity, Myers et al. (2000) singled out four areas in Africa (out 

of 25 global hotspots). They concluded that if conserved, these 25 hotspots would 

save a significant proportion of the world's biodiversity, despite covering just 1.4% of 
the total land surface. These areas include the Eastern Arc Mountains and Coastal 
forests of Tanzania and Kenya, West Africa forests, Cape florisitic province, and the 

Succulent Karoo region. Kingdon (1989) also suggested prioritising conservation 

investment exclusively in the continent's 'centres of endemism'. That the EAM are of 

prime conservation importance in Africa has been supported by other studies 

(Stattersfield et al. 1998; Myers et al. 2000; Olsen and Dinerstein, 1998; Burgess et 

al. in press). Worryingly though, much of the region's fauna and flora are poorly 

known, and there is little understanding of species occurrence, biogeography and 

evolution (e. g. Schiotz, 1981; Burgess, et al. 1998a). 

1.2.2 Geological and climatic history of Africa 

In comparison to other continents, Africa has experienced long periods of geological 

isolation and stability. Separating from Australia/Antarctica in the earliest Cretaceous 

(Briggs, 1987), India, Madägscar around 130mya (Rabinowitz et al. 1983; Smith et a/. 

1994) and South America by 100 mya (Pitman et al. 1993). Africa has been almost 

entirely isolated during the whole of the Tertiary, and before these breakups the 

continent constituted an 'integral unit' (Griffths, 1993). Dating from the early 

Palaeozoic (-440 mya) until the onset and eventual formation of the rift valley, Africa 

has also been little affected by major geological events (King, 1978; Hamilton, 1978; 

Livingstone, 1993; Lovett, 1993a). Drifting of the African plate has also been less 

severe than other continents (Briggs, 1987), with Africa moving slightly north east of 

its position during the Cretaceous (Hamilton, 1988; Smith et aL" 1994). Geologically, 

the African landscape has been subject to slow long term erosional processes, 

punctuated by severe rifting and uplifting as a result of crustal melting during the 

Neogene (present time to 25 mya) (Griffiths, 1993). 
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In contrast to its relative geological stability, Africa has been marked by severe 

climatic fluctuations, most significantly during the Tertiary when the continent 

experienced rapid wet and dry cycles (Lovett, 1993a). This geological and climatic 
history of Africa is summarised in Fig. 1.2. 

Under favourable climatic conditions, following the catastrophic extinctions that 

occurred at the end of the Cretaceous, the African continent showed 'continued 

diversification' (Morley, 2000) of indigenous taxa during the Palaeocene and Eocene 

(Axelrod and Raven, 1978). During this period, a thermal maximum was reached, 

with forest covering extensive areas of the continent, most probably a lowland 

equatorial forestbelt (Morley, 2000). This wet and humid episode is believed to have 

been the result of global climate patterns where moist air would have been directed 

from the Tethys Sea and newly emerging Atlantic and Indian Oceans over Africa, 

inducing high rainfall (Lovett, 1993a). At the onset of the Eocene (-55mya) numerous 

trans oceanic dispersal events are thought to have occurred between Africa and 

South America, Eurasia and India, as evidenced by the appearance of certain taxa of 

non-African origin (Morley, 2000), increasing the diversity of rainforest taxa. By the 

Late Eocene (-40mya), assemblages of a modern affinity were also starting to occur, 

with the appearance of taxa that 'today characteristise West African rainforest' 

(Morley, 2000). 

The generally warm and moist conditions experienced over a prolonged period in the 

Palaeocene and Eocene came to an abrupt end in the Oligocene (-35mya), with a 

global cooling event (Lovett, 1993a). Although apparently not affecting Africa as 

extensively as other regions (Morley, 2000), it induced an expansion of grasslands, 

the contraction of rainforest areas and the extinction of certain taxa. There is though, 

very limited evidence for this specific time period (Morley, 2000), so any generalities 

concerning vegetational changes should be interpreted cautiously. The Middle and 

Late Oligocene showed a gradual diversification of forest species, as climatic 

conditions appeared to recover. During this time, uplift of the central African plateau 

was initiated (Burke and Wilson, 1972) and as a consequence East and West African 

rainforest began its slow separation, with the splitting of drainage patterns 

'accentuating a divide' between East and West Africa (Lovett, 1993a). At this point 

the progenitors of the Eastern Arc may have resembled mountains, and if so, the 

massifs would have received increased rainfall suitable for development of rainforest. 

It is unclear how much vertical movement each mountain block had undergone 
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(Lovett, 1993a), but such topographic barriers would have increased rainfall, which 

would also have encouraged the development of rainforests. 
Time (mya) Position of continent Geological and biotic events RECENT Forest Occurence 
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The gradual increase in forest diversity carried on into the early Miocene, with 

rainforest extending across equatorial Africa (Andrews and Van Couvering, 1975; 

Chesters, 1955,1957). The middle Miocene was marked by a drier period, which 

was thought to resemble contemporary East African habitats, with the emergence of 

grass-dominated vegetation (Retallack et a/. 1990; Cerling et al. 1992), and the 

presence of a forest component (Jacobs and Kabuye, 1987). This aridification 

corresponds with the closure of the Tethys sea (when Africa and Eurasia collided). 
This closure caused a reduction in the amount of moist air, lowering precipitation 
(Lovett, 1993a). During this period there were also significant dispersal events, 

clearly documented in the exchange of Eurasian mammal faunas (Bonnefille, 1984), 

though dispersal is thought to be less important in other groups, such as plants 
(Morley, 2000). The end of the Miocene was accompanied by significant block 

faulting in the rift area (-10 Mya), with the EAM thought to resemble their present day 

configuration (Lovett, 1993a). This period of faulting, volcanism, warping and 

aridification, ended a long period of instability initiated in the late Oligocene. These 

processes resulted in a clear separation of the drainage basins of East Africa from 

central and West Africa (Hamilton, 1982), with exchange of species restricted (Lovett, 

1993a). The and corridor that was formed is thought to have had significant, and long 

lasting impact on the interchange of species, particularly those restricted to forest 

(Lovett, 1993a). 

The precise age, and fragmentation sequence of the block faulted mountains of the 

Eastern Arc is very poorly understood (Teale, 1936; Griffiths, 1993). The crystalline 

rock of the mountains appears to date back to the Late Proterozoic (-2000mya). The 

absence of fossils support its early geological history, and it has been suggested that 

progenitors of the Eastern Arc may have been initiated (block faulting) as early as the 

Karoo period (-290-180mya), at the origin of the breakup of Gondwana (Sampson 

and Wright, 1964; Griffiths, 1993). The origins of the EAM are ancient, but more 

recent uplift of the central plateau (25-10mya) was critical for their present day 

formation (Hamilton, 1988; Saggerson, 1962). During this Intensive period of vertical 

movement huge areas of the Congo basin were lowered and other areas, including 

the EAM, were pushed upwards. As a result of these changes, the presumably once 

continuous area of the EAM is believed to have became fragmented and separated 

(Quennel et al. 1956), and would have developed a highly localised climate that 

could have supported rainforest until the present day (Lovett, 1993a). A 

topographical formation like the EAM can confer climatic stability even during large 
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climatic fluctuations, limiting the magnitude of dry periods (Partridge of al. 1995; 

Fjeldsa, 1994; Fjelds6 and Lovett, 1997). The southern highlands, not considered to 
be an integral part of the EAM (Lovett, 1988) are also considered to have a long 

geological history, which is reflected in their rich biodiversity (Griffiths, 1993; 

Davenport, pers. comm. ). More recent formations, such as the Late Tertiary volcanos 

of Kilimanjaro, Hanang and Meru have a relatively depauperate fauna and flora 
(Axmacher at al. 2004) compared to the EAM. 

Late Tertiary climatic and geological history in Africa is relatively well understood, 

especially in East Africa, as a consequence of the interest in hominid evolution 
(Hamilton, 1988). The expansion of savanna habitats in East Africa occurred 

intermittently (deMenocal, 1995; Partridge, et al. 1995), causing extinction in many 

groups of animals and plants. There are a number of possible causes; closure of the 

Indonesian seaway (Cane and Molnar, 2001), southward movement of Antarctica 

initiating the cold Benguela current around Africa (Shackleton and Kennett, 1975; 

Morley, 2000), and the Mediterrranean salinity crisis (Hamilton, 1988). This was also 

matched by periods of warmer (Williamson, 1985), moist weather, which allowed the 

dispersal of some montane taxa such as Podacarpus (Hamilton, 1988; Morley, 

2000). These fluctuations continued in the Quaternary, when again rainforests 

contracted and expanded (Hamilton, 1976; Hamilton, 1988; Morley, 2000) 

corresponding with glaciations at the poles (Jansson and Dynesius, 2002). Evidence 

has suggested climates fluctuating towards savanna from forest habitats on at least 

three occasions (e. g. 2.8,1.7,1. OMyrs) (deMenocal, 1995). It has been argued that 

temperature depression associated with the Ice Ages would have caused major 

extinctions of African forest organisms (Hamilton, 1988). The response of forest to 

the glacial and interglacial periods during the Pleistocene and Holocene has been 

investigated (Van Zinderen Bakker and Coetzee, 1972; Van der Hammen, 1974; 

Hamilton, 1976; Hamilton, 1988; Ambrose and Sikes, 1991; deMenocal, 1995; 

Marchant of al. 1998; Dupont, 2001) using the pollen record and lake level changes. 

These studies demonstrate that expansion and contraction of forest has occurred on 

numerous occasions. These studies suggest that altitudinal migration of montane 

forest occurs in response to warmer and colder periods (as shown in Fig. 1.3), with 

the lowering of vegetation zones by an altitude of about 1000m (Hamilton, 1976, 

1988; Van Zinderen Bakker and Coetzee, 1972). There is no direct evidence for the 

persistence of Eastern Arc forest during the most and phases in Africa's history. 

However, it has been suggested that during Pleistocene glacial maxima, coastal 
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regions (i. e. areas close to the EAM) were little influenced by these fluctuations, 

maintaining conditions suitable for forests (Prell et al. 1980). 
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Figure 1.3 

Altitudinal distribution of montane forest during glacial and interglacial periods, altered from 

Hamilton, 1988. 

In total, this large body of evidence suggests that rainforests in Africa were 
fragmented during various periods of climatic instability, and over a considerable time 

period. This climatic instability appears to have had substantial consequences, 

limiting rainforests to small regional refugia, with the extinction of many species 

(Hamilton, 1976; 1988). This is consistent with the belief that Africa is faunistically 

and floristically depauperate compared to Asia and the Neotropics (Richards, 1973; 

Morley, 2000; Whitmore, 1990). Rifting of the East African block-faulted mountains 

-25-10 mya also produced highly localised and stable forest habitats (Fjeldsä, 1994; 

Fjeldsä and Lovett, 1997; Partridge et al. 1995), though the precise nature of the 

fragmentation sequence and the timing is very uncertain. 

1.2.3 Patterns of species diversity in the Eastern Arc Mountains 

1.2.3.1 Taxonomic diversity patterns 

Diversity patterns in the Eastern Arc Mountains are thought to correlate with the 

climatic and geological history of the area (Rodgers and Homewood, 1988; Lovett, 

1998a, b), which appears to be supported by the patterns of endemism. When the 
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EAM are compared to the rest of Africa, both animal (Burgess et a/. 1998b; Burgess 

at al. in press) and plant (Lovett, 1998a) groups show remarkable levels of 

endemism. Lovett (1998a) evaluated the diversity of vascular plants in the East 

African region, showing that 58% of vascular plants are endemic compared to coastal 
forest (14%), Lake Nyasa forests (4.5%) and Northern forests (4%), all showing 

substantially less endemism. However, the diversity in the Eastern Arc is not evenly 
distributed among all groups in the region or spatially with each mountain. As 

mentioned, vascular plants show a high degree of endemism, and the same occurs 
in amphibians and reptiles (Howell, 1993). In the less mobile invertebrate groups, the 

degree of endemism is even higher, i. e. milllipedes (76%), linyphiid spiders (82%), 

harvestmen spiders (88%) beetles (95%) and grasshoppers ('high') (Scharff, 1992, 

1993; Hoffman, 1993; Basilewsky, 1976; Hochkirch, 1998; 2001). In contrast, 

mammals and birds show significantly less endemism (Stuart et al. 1993; Kingdon, 

and Howell, 1993). These contrasting levels of endemism show, unsurprisingly how 

the degree of endemism is highly correlated with the ability to disperse. 

1.2.3.2. Spatial diversity patterns in the EAM 

As a region, the EAM represent a considerable wealth of diversity. However a 
disproportionate number of species are found in three main areas (Usambara, 

Udzungwa, and Uluguru). 
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Figure 1.4. 

Ranked importance for endemic and near-endemic tree species of the 13 mountain blocks 

within the Eastern Arc Mountain range (Burgess et at in press). 
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In studies investigating the number of endemics in each EAM block, Burgess of al. 
(1998a; in press) illustrated that the Taita Hills, East Usambara, Uluguru, and 
Udzungwa 'ranked of greatest importance' on account of having the most number of 
endemics, even when factoring in the area of forest (see Fig. 1.4). There are a 

number of possible explanations for these differences, which were discussed by 

Burgess et aL (1998a; in press). Firstly, given that the numbers are representative of 

the actual differences and not collecting intensity (see below), the ranking may be 

indicative of the variations in geographical history, area, spatial distribution, climate 

and topographical complexities. Although collectively grouped together as the ancient 

crystalline mountains, each massif appears to have a distinct geological history 

(Griffiths, 1993; Lovett, 1993a). The Uluguru Mountains have been postulated to 

have more ancient faulting origins than other regions (Griffiths, 1993). Thus it seems 

reasonable to assume that certain blocks may have been activated earlier or later, 

and connected to other mountains or areas and this may have impacted on species 
diversity (Iverson, 1991; Lovett, 1993a). It would also be predicted based on island 

biogeography theory (MacArthur and Wilson, 1967), that the largest forest area 

would retain the greatest species diversity, which appears to be broadly correct 
(Udzungwa, East Usambara, Uluguru) (Newmark, 1998; Burgess et al. in press. ). 

The proximity of each EAM to the coast and relative position to the equator affects 

rainfall patterns, as shown by the different precipitation regimes among Eastern Arc 

blocks (Hamilton, 1988). The highest rainfall pattern correlates with the areas of 

highest endemism, for example East Usambara and Uluguru have the highest annual 

precipitation and endemism levels. Fjelds9 and Lovett (1997) showed a positive 

correlation between areas in the EAM with stable climatic regimes and numbers of 

endemic species. Precipitation levels are altered dramatically by the position of 

mountains, for example the Rubeho Mountains (which have a relatively low species 

diversity) are in the rain shadow of the Uluguru Mountains. In addition to spatial 

position, topographical complexities may account for differences in the numbers or 

abundances of species. Some mountain blocks have a great proportion of eastern 

facing escarpments (e. g. Udzungwa and East Usambara), and large altitudinal 

ranges (e. g. Uluguru and Udzungwa) (Iverson, 1991; Burgess et al. 1998a). 

Preliminary quantitative data seem to support these differences, Burgess et al. 

(1998a; in press) showed high levels of vertebrate endemism occur on eastern facing 

parts of mountains in the Udzungwa and East Usambara. 
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The evidence that heterogeneous patterns of diversity in the EAM are the result of 
geographical and historic differences seems compelling, but there are likely to be 

sampling inequalities that will have biased or inflated differences. The three areas of 
highest diversity (East Usambara, Uluguru, and Udzungwa) are also those that have 

historically received the greatest attention (see above). Many of the other regions 
(Mahenge, Rubeho, North Pare, South Pare, Malundwe and Ukaguru) which show 

relatively depauperate levels of endemism are poorly known (as discussed by Stuart, 

1991), and have only been recently explored for a few specific groups (e. g. Evans 

and Anderson, 1993; Akker and Highstead, 1992; Seddon et al. 1995; Doggart et al. 
in press; Loader et al. 2004a). Results from these surveys are somewhat 

contradictory. Burgess et al. (1998a; p. 49) believe that recent studies 'have not 

resulted in many new findings', indicating that the Eastern Arc probably does show 
significant differences in species composition between mountains. Recent 

herpetological surveys of Ukaguru, Rubeho and Mahenge however have resulted in 

new species descriptions and findings (Poynton, 2003b; Channing and Stanley, 

2002; Channing at a/. 2002; Loader et al. 2004a; Menegon at al. 2003b, 2004; 

Menegon and Doggart, in prep. ), and new species continue to be described from 
Usambara, Uluguru and Udzungwa regions (de Sa at al. 2004; Menegon et al. 
2003b; 2004; Burgess at al. 2002). It seems, at least herpetologically, that we are far 

from understanding the true diversity of the EAM, bearing in mind also our poor 
taxonomic understanding of several groups (Howell, 1993; Poynton, pers. comm. ). It 

seems unlikely that Rubeho, Ukaguru, Pares, Mahenge, and Malundwe will show 

comparable levels of endemism to the Udzungwa, Uluguru and Usambara, given 
their drier forest habitats and smaller areas of forest. Even so, current inventories are 
likely to underestimate the biodiversity of these areas (Loader et al. 2004a). Until 

further fieldwork Is carried out, a confident interpretation of endemism patterns in the 

Eastern Arc is hindered by uneven survey effort. 

1.2.3.3 Regional relationships of the fauna and flora of the EAM 

Hypothesised relationships of EAM species and to those in other regions in Africa 

have underpinned our understanding of the biogeographic history of the EAM, and 

provided the best indirect evidence for the archaic age of the forests (Burgess, 

1998a). Spatially, the Eastern Arc lies adjacent to the coastal Zanzibar-Inhambane 

regional mosaic lowland forests. However, as noted earlier, there are significant 

faunal and floral differences between the coastal forests and the EAM (Clarke, 1998; 

Poynton, 1990; 2000b; 2003a), which suggests only a limited shared biogeographical 
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history. Species in the Eastern Arc show closer relationships with geographically 

more distant forests in central, and West African forest regions, (Guineo-Congolian). 

Kirk-Spriggs (2003, p. 152) mentions these affiliations as being a 'highly distinctive 

and well known distribution pattern of species restricted to forest', which is thought to 

be indicative of a former connection between these areas. This pattern of distribution 

has been shown in a number of animal groups, including Coleoptera (Wagner, 2001), 

Diptera (de Meyer, 2001), Odonata (Clausnitzer, 2001), and amphibians (Poynton, 

1999). The significance of the close relationship between East and West African 

forest species was placed into further context when it was speculated that 

connections between these two regions were probably severely restricted from the 

Miocene onwards (see Geology section 1.2.2), and therefore many species would 

have been isolated and would have to have persisted from this time onwards. For 

some vagile organisms it is possible to reconcile disjunct distributions with possible 

dispersal events and these are likely to have produced patterns of recent 

relationships, e. g. between species. Furthermore, some species thought to be 

restricted to forest habitats may be able to tolerate more and conditions, and would 
have been able to disperse through gallery woodland forest or lowland habitats which 

may have extended at various times between these areas (Hamilton, 1988). 

However, the biology of many species (the cold adapted afromontane element, 

sensu Poynton, 2000a) suggests that there are unlikely to be any plausible 

mechanisms for undertaking such a trans continental migration. In such cases, * the 

most likely explanation is that the most recent forest connection in the Miocene was 

the last possible period of exchange between montane species (Lovett, 1993a), and 

that since then these taxa have persisted as 'biogeographically relictual species' 

(Fjeldsa and Lovett, 1997). This hypothesis has been applied to explain some of the 

'ancient' patterns of relationship between East and West African forest species 

(Kingdon, 1989; Lovett, 1993a; Burgess et al. 1998a). 

1.2.3.4 Temporal patterns of diversity 

The temporal origin of the endemic faunas of the EAM has only been preliminarily 

investigated, and this is one of the main foci of the thesis: The general consensus 

suggests a mixture of both recently evolved endemics (neo-endemics) and ancient 

lineages (palaeo-endemics) (Fjeldsb, 1994; Fjeldsb and Lovett, 1997). The 

occurrence of both ancient and newly evolved species indicates the EAM is both a 

centre of recent evolution and an ancient refuge (e. g. Burgess et al. 1998a). This 
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contrasts with the nearby lowland coastal forests, where recent speciation is less 

evident and most endemic species seem to be ancient (Burgess of al. 1998b; 

Matthee of a/. 2004). Examples of genetically ancient lineages in the EAM include 

birds (e. g. Roy of al. 1997; Roy, 1997) with monophyletic forest groups thought to 

stretch back some 30 million years, dwarf pigmy chamaeleons (Mathee et al. 2004), 

angiosperms (Davis et al. 2002; Möller and Cronk, 1997; Lindqvist and Albert, 2001), 

grasshoppers (Hochkirch, 1998; 2001), molluscs (Emberton of al. 1997), caecilians 

and snakes (Wilkinson of al. 2003; Gravlund, 2002), elephant shrews (Douady et al. 
2003b), and bryophytes (Pocs, 1998). Despite there being patchy evidence for the 

temporal diversity of lineages in the EAM, little work has been carried out to 

synthesise all this information to develop a coherent understanding of temporal 

patterns in the EAM. 

1.2.3.5 Summary 

The EAM show variable patterns of species richness and evenness. We currently 

have only a limited ability to interpret these diversity patterns, because sampling 

inequalities are notable (Howell, 1993; Burgess et al. 1998a; Poynton, et al. 

submitted) and only limited data are available. A preliminary extrapolation of 

distribution data and isolated phylogenetic case studies suggest that the isolation and 

persistence of mountain forests had a substantial influence on the diversity of 

species (e. g. Fjelds6 and Lovett, 1997; Roy of al. 1997). It Is unclear how 

biogeographically the different mountain blocks relate to one another, and how recent 

connections have been broken between each mountain and forest region, and 

consequently the impact this has had on the Isolation of populations. A broad 

cladistic biogeographical investigation of the EAM is lacking. This study may allow a 

better interpretation of the history of the area. 
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Part 2: Investigations into the biogeography of 
Amphibians of the Eastern Arc Mountains 

1.3 Amphibians and biogeography 

1.3.1 Introduction 

Amphibians are a model group for biogeographical studies, as shown by their often, 
restrictive habitats and breeding requirements (e. g. Poynton, 1962; Avise, 2000). 
Recent broad scale studies of amphibian biogeography have shown patterns 
consistent with our understanding of plate tectonics (e. g. Wilkinson of al. 2002; 
Gower et al. 2002; Biju and Bossuyt, 2003; Roelants et al. 2004), despite some 
striking examples of widely dispersing amphibians (Vences et al. 2003a; Vences of 
al. 2004). Numerous regional phylogeographic studies have also been carried out 
using amphibians (predominantly frogs) as indicators. These studies are generally 
congruent with the patterns of geographic changes, thereby confirming the idea that 
they are good indicators of geographical events (Avise, 2000). 

1.2.2 Amphibian biogeography in Africa 

The taxonomy of mainland African amphibians is very poorly understood 
(Mittermeier, et al. 1992; Lawson, 1993; Lawson and Klemmens, 2001; Rödel, 2000; 

as summarised by Poynton, 1999), particularly the fossorial herpetofauna (Gower 

and Wilkinson, 2005) and as would be expected there are only a few biogeographical 

studies (e. g. Wieczorek et al. 2000, Vences of al. 2004; see also section 2.6.2.2). 

Broad overviews of the historical events shaping the evolution of African amphibians 

are generally lacking, and we have only a very rough understanding of the possible 

biogeographical Influences on their diversification (e. g. Poynton, 1962; Poynton and 
Broadley, 1991; Savage, 1973; Laurent, 1979; Duellman, 1993) compared to other 

groups (e. g. Mammals, Kingdon and Howell, 1993). There are various reasons for 

this, Including; lack of phylogenies for cladistic biogeographical reconstructions (Kirk- 

Spriggs, 2003; see section 2.6.2.2), lack of fossil data (Howell, 1993), but probably 

most significant is the lack of sampling in vast regions of Africa (Lawson, 1993; 

Lawson and Klemens, 2001), and detailed taxonomic work (Poynton, 1999). 
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Herpetologists have long speculated on the origin and determinants of tropical 

diversity in Africa, and attention has focused on two distinct elements: the 

widespread lowland tropical fauna and the isolated montane fauna (e. g. Loveridge, 

1937; Poynton, 2003a). The evolutionary histories of these elements are thought to 
differ significantly, with an archaic origin suggested for the montane fauna and a 

more recent origin for the lowland fauna. These differences are thought to be 

indicative of their respective biogeographic histories: the montane fauna is 

characterised by prolonged persistence, whereas the lowland fauna has been subject 
to the constant fluctuations of the turbulent African climate and have therefore 

experienced recent isolation, expansion, dispersal and extinction. Current 

understanding of these patterns and processes is poor and there is a dearth of 

quantitative and qualitative data. One would expect that isolation and persistence in 

montane habitats would generate specific phylogenetic, ecological and physiological 
patterns, and similarly, specific patterns would be anticipated for the lowland faunas. 
These predictions can be used to generate testable hypotheses to evaluate patterns 
of speciation of tropical amphibian fauna of East Africa. 

Loveridge (1937) was the first to note the difference between lowland and montane 

amphibian fauna in his distributional survey of East Africa. He noted that 83% of the 

anurans occurring below 300m (lowland) were widely distributed, while only 48% in 

the highest zone (>1500m; montane). This montane fauna extends from South 

African to isolated highlands areas along the highland "spine" of Africa to Ethiopia 

and West African highlands (Poynton, 1962; Largen and Drewes, 1989; Largen, 

1991; Poynton, 1998; Poynton, 1999). The Eastern Arc Mountains, a component of 

the montane fauna, has been singled out as a good example of a highly diversified 

fauna (e. g. Microhylids and Bufonids), which Poynton (1998; p. vi-vii) suggested was 

the result of 'prolonged isolation'. These EAM assemblages have been shown to be 

distinctly different from the proximally close lowland assemblages (Poynton, 2003a; 

Loader et al. 2004a). 

Montane fauna of the EAM are confined to regions generally found above 400m, 

although the precise altitude is dependent upon the latitude and geography of an 

area. For example, for montane faunas distributed in mountains in a rain shadow, or 

at certain slope aspects, species have been found at generally higher altitudes 

(Emmett, 2004; Menegon, pers. comm). Below 400m, a generally widespread 

tropical lowland fauna is present. Between these two amphibian faunas there is a 
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complex transition zone where both assemblages overlap (Poynton, 2000a; Poynton, 
2003a). Poynton (2003a; p. 124) envisaged over geological time that subtraction 
zones between these two faunas would be periodically 'spreading and 
withdrawing... following cyclic changes in climate' which would have clear 
biogeographic implications on speciation patterns. Many authors have attributed high 
levels of endemism in the EAM amphibians (e. g. Loveridge, 1937) to this 
biogeographical history. These biogeographical patterns are not solely found in 

amphibians, but are congruent with patterns found in other species (Grimshaw, 
2001), particularly poor dispersers, such as many invertebrates (Hoffman, 1993; 
Scharff, 1993). It is likely that the same, or similar biogeographic processes have 
influenced speciation patterns in the fauna and flora of the EAM, this however has 

yet to be tested. 

Comparisons of the amphibian fauna with other continents have considered Africa to 

be 'depauperate' (Laurent, 1979; Duellman, 1993) however vast areas of forest are 

completely unknown, so until baseline herpetological research in tropical Africa is 

carried out, any such conclusions may be premature. However, it is likely that a 
continent dominated by arid habitats will have proportionally less amphibian species 
than in more forested continents. On mainland Africa, the areas of highest amphibian 
diversity are unsurprisingly located in regions covered by forest (see Table 1.1). In 

particular, montane elements are singled out as being Important reservoirs for 

amphibian diversity, as shown by numbers of species in Cameroon, Tanzania, and 
South Africa (all in the top four mainland countries for amphibian diversity). 

Table 1.1. 

The number of Amphibian species in the top ten African countries, with land area. 
Country Land area (sqkm') Number of species 
Madagascar 581,540 219 

Congo, The Democratic Republic of the 2,267,600 207 

Cameroon 469,440 180 

Tanzania 886,037 142 

South Africa 1,219,912 114 

Nigeria 910,768 98 

Angola 1,246,700 90 

Kenya 569,250 90 

Ivory Coast 318,000 85 

Zambia 740,724 84 
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Worryingly the areas richest for amphibian diversity; forest habitats, are also 
threatened by habitat destruction. Preliminary results from the recently compiled 

global amphibian assessment have shown that some 26% of African amphibians are 
threatened and 20% were evaluated as being data deficient (Stuart, pers. comm. ). 

So not only are African amphibians at risk of becoming extinct, they are also 
relatively poorly understood compared to other regions of the world. Based on these 
findings, conservation projects in the hotspots of amphibian diversity are being 

established (as shown by CEPF global hotspots initiative, 2002; 2003). It is hoped 
that these projects will increase understanding of amphibian diversity in Africa, 

particular in the richly diverse rainforest areas, such as those found in the forests of 
Tanzania and Kenya (Howell, 1993). 

1.4 Study taxa and molecular marker selection 

1.4.1 Introduction 

In a volume on the biogeography of East African forests, a number of authors 
(Hoffman, 1993; Scharff, 1993; de Jong and Congdon, 1993) suggested that it would 
be necessary to examine the evolutionary history of a monophyletic group endemic 
to the Eastern Arc to gain an insight into the biogeographic history of the area. 
Preferable would be species with a small range and low vagility (eg. Scharff, 1993). 

In the same volume, Howell (1993) suggested the favourable characteristics of 

Eastern Arc amphibians for use as biogeographical indicators (suggested previously 

Loveridge, 1937; Schiotz, 1981). Amphibians, he suggested, would be suitable 

because they depend upon habitat connections rather than long, distance dispersals 

for migration. Howell, (1993; p. 195) also alluded to the methods that should be 

applied in such investigations, stating 'the study of mitochondrial and ribosomal DNA 

sequences would allow the refined Insight into the ages and relationships of each 

herpetofaunal assemblage relative to the others within the EA system'. In addition to 

the appropriateness of amphibians as indicators In biogeographical analyses, the 

amphibian fauna of this region Is very poorly known. As Howell (1993; p. 173) 

introduced in his chapter on the herpetofauna of the eastern African forests 'of all the 

vertebrates, the amphibians and reptiles of the forests are the poorest known and 

receive the least attention from layman and biologists alike'. 
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1.4.2 Taxon selection 

1.4.2.1 Introduction 

In this study, I focus upon a series of taxonomically unrelated amphibian groups 

whose species show different distribution patterns. Although the lineages were not 

entirely chosen at random (species were selected partly on the basis of availability of 

tissues), the taxa chosen were not selected because of congruence in distribution, 

which may be seen to bias a biogeographical study. Species chosen for this study 

were selected mainly on the basis of their dependence on forest habitats. Species 

restricted entirely to forest habitats (part of the afro-montane element, sensu 

Poynton, 2003a) were favoured because these species were more likely to show 

patterns congruent with habitat changes. Habitat requirements are unknown for many 

species, and assumptions were made based on the localities of material previously 

collected and personal experience. Zonation of the amphibian fauna in Eastern 

Tanzania has been well documented (e. g. Poynton, 2003a; Loader at al. 2004a), and 
there has been shown to be distinct lowland and upland faunas. 

Table 1.2. 

Groups selected for study 

Genus, or subfamily Family Amphibian Reproductive Ecological 

order mode niche 
Scolecomorphus§ Scolecomorphidae Gymnophiona Viviparous Fossorial & 

forest floor 

Boulengerula§ 

Arthroleptides* 

Brevicipitines- Callullna, 

Probreviceps, & 

Spelaeophryne§ 

Caeciliidae Gymnophiona Direct developing Fossorial 

Ranidae Anura Aquatic larval Forest floor & 

development stream 

Microhylidae Anura Direct developing Arboreal, forest 

In the genus floor & 

Breviceps fossorial 

Hoplophrynet Microhylidae Anura Aquatic larval Forest floor 

development 

§Contains species that are vulnerable, according to the IUCN redlist. 
*Contains species that are threatened, according to the IUCN redlist. 

tContains species that are critically endangered, according to the IUCN redlist 

Dispersal ability influences biogeographic patterns (Vermeij, 1991) and this needs to 

be accounted for in studies on biogeography. Taxa sampled in this study are 
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considered to be associated predominantly with the upland faunas with limited 

capacity for dispersal. However the taxa selected had different biologies, which 

potentially influence biogeographic patterns. Amphibians show an array of dispersal 

capabilities, reproductive modes, and habitat niches. For example, it may be that by 

virtue of their presumed relatively low dispersal capabilities, that fossorial amphibians 

retain more information than non-fossorial taxa on 'original' biogeographic patterns. 

Therefore, amphibians selected in this study show a range of dispersal abilities that 

would permit common biogeographical patterns to be more strongly evaluated. The 

following groups were selected (see Table 1.2): 

1.4.2.2 Caecilians 

Gymnophionan amphibians are thought to be ideal subjects for biogeographic 

studies because of their presumed limited powers of dispersal, and dependence 

upon forest habitats (Taylor, 1968; Nussbaum, 1985; Nussbaum and Hinkel, 1994). 

Knowledge of the caecilians of the Eastern Arc is extremely limited, and this is true 

for caecilians in general (Nussbaum and Wilkinson, 1989). Caecilians occur on all the 

mountains of the EA, where they can be found in moist soils; mainly in forest but also 

in agricultural land. Most EA mountain blocks harbour species of two genera found 

throughout the region, the caeciliid Boulengerula and the scolecomorphid 

Scolecomorphus. The systematics of these genera were relatively recently reviewed 

(Nussbaum 1985, Nussbaum and Hinkel, 1994), but there remain several 

outstanding questions. These caecilians are very different animals - Boulengerula is 

slender, has short tentacles and the eye is very reduced and not visible externally, 

while individuals of Scolecomorphus are usually more robust and reach a greater 

size, and they have eyes that are visible when they protrude, with closely associated, 

long tentacles (O'Reilly of al. 1996; Gower of al. 2004). Boulengerula lay eggs that 

develop directly (Nussbaum, 1994), while Scolecomorphus are viviparous (e. g. 

Nussbaum, 1985; Loader of al. 2003a, b). A recent ecological study of the species 

Boulengerula boulengarl and Scolecomorphus vittatus in the East Usambara 

Mountains (Gower et al. 2004) indicated differences between the proportions of 

captures above and below ground, and these results were taken to indicate different 

ecologies. B. boulengeri was interpreted as predominantly a burrower in soil, and S. 

vittatus as an animal spending a greater proportion of time above ground than B. 

boulengar!. Whether these ecological differences are reflected in all species of the 

genera Boulengerula and Scolecomorphus is uncertain. However, based on the 

morphological similarity among species in each genus, the ecological differences 
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shown between S. vittatus and B. boulengari probably hold true for all members of 

each genus. 

1.4.2.3 Frogs 

Morphological studies on East African microhylid and petropedetid frogs (Channing 

et al. 2002; Poynton, unpublished) indicate the existence of distinctive species in 

each geographical area of the Eastern Arc (though not necessarily each mountain). 

Microhylid frogs are a fascinating group, showing enormous morphological diversity 

(Parker, 1934) from 'squat and small toad-like animals to arboreal frogs with 

expanded tips of the digits' (Duellman and Trueb, 1994; p. 549). The EAM harbour six 

lineages, belonging to two distinct subfamilies (Brevicipitinae and 

Melanobatrachinae). Furthermore, within the Brevicipitinae there are a number of 

distinct morphological lineages that have interesting ecologies, including fossorial 

(Probreviceps, Breviceps), arboreal (Callulina) and open woodland/forest edge 

(Spelaeophryne). Breeding biology of brevicipitines is unknown for the endemic East 

African genera, although the presence of large pigmented ova in females suggests a 

direct developing mode of reproduction. The widespread African genera Breviceps 

has been shown to be a direct developer (Parker, 1934), which suggests 

brevicipitines may be exclusively direct developers. The small cryptic Hoplophryne 

and Parhoplophryne microhylids are forest dependent, aquatic developers (Parker, 

1934; Barbour and Loveridge, 1928; Harper and Vonesh, 2002). Tadpoles of 

Hoplophryne are thought to possess a unique structure on the abdomen that has 

been postulated to help manoeuvring in small water-filled tree holes or bamboo cups 

that they occupy (Harper and Vonesh, 2002). The torrent frogs Arthroleptides are 

relatively large ranids, and are found near rocky streams in forests. They are 

characterised by their expanded heart-shaped digital discs, which allow them to cling 

to rocks in the stream. The tadpoles of Arthro/eptides have an interesting 

morphology; the mouthparts are highly modified, wide, with densely keratinised jaw 

sheaths (Drewes et al. 1989), which allow them to adhere and graze on the surface 

of moss-covered rocks. In summary, all the taxa selected displayed features which 

were appropriate for biogeographical reconstructions, while displaying unique 

characteristics which may have interesting evolutionary implications both 

biogeographically and functionally. 
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1.4.3 Molecular markers 

Molecular markers are used to discover patterns of gene flow between taxa, and the 

variations shown are expected to mirror processes such as fragmentation, long 

distance colonization, and population division (Avise, 2000). For an alternative 

perspective see Irwin (2002), Funk and Omland, (2003) and the discussion in section 

2.5.1. Markers display a number of different properties and accordingly these 

characteristics make them suitable for addressing particular hypotheses. Most 

importantly, the level of variability a marker displays might be appropriate for 

investigating deep phylogenetic divergence patterns, but not population dynamics, so 

the choice of marker should be dependent upon the question that the study is 

attempting to address (Graybeal, 1993; Simon et al. 1994). Partial fragments of 

mitochondrial DNA (mtDNA) are widely used In phylogenetic studies, and this Is 

because of their rapid rate of evolution at the nucleotide level, maternal inheritance, 

ease of amplification due to multiple copies and lack of recombination. Rapid rates of 

nucleotides substitutions between individuals make them suitable for reconstructing 

species relationships (Avise, 1994; Avise, 2000). Because mtDNA typically doesn't 

recombine, and are transmitted through maternal lines in most species, the 

sequences therefore represent organismal 'pedigrees' (Wilson, 1985), and therefore 

can be interpreted as a lineage sharing a pattern of common descent in phylogenetic 

analyses (Avise, 1994). These features have instilled the molecule as a marker of 

major importance in phylogenetics, and the results yield demographically relevant 

conclusions about historical population structure (Avise, 2000). 

Mitochondrial markers that have been extensively utilised are 12S (small ribosomal 

subunit) and 16S (large ribosomal subunit). These markers are particularly favoured 

because they have regions that evolve at different rates, which mean they contain 

information from both old splitting events (in conserved domains) and recent 

speciation events (from fast evolving sites In more variable regions) (Avise, 2000). At 

a practical level also, mtDNA can be reliably amplified using "universal" primers, In 

particular 12S and 16S, which work for almost any species. Furthermore, sequences 

that can be easily accessed and downloaded from genetic databases (Benson of al. 

1998) are mtDNA sequences. The ease at which mtDNA can be amplified and 

accessed, and its suitable phylogenetic properties have made mtDNA a popular 

genetic marker; 70% of all phylogenetic studies conducted involve analyses of 

mtDNA (Avise, 2000; see also section 2.5.1 for a further discussion). 
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In addition to 12S and 16S markers, there are a number of other genes that are 

frequently used in phylogenetic studies. Among a dozen or so protein coding genes 

in the mitochondrial genome, Cytochrome b (cytb) is widely used (Irwin et al. 1991; 

Hillis of al. 1996), particularly for species level questions, in frogs (e. g. Graybeal, 

1993) and caecilians (e. g. Gower of al. 2002; 2005), and for which reliable universal 

primers are available (Goebel, 1999). Protein coding genes may provide valuable 

data for phylogenetic studies. Unlike 12S and 16S sequences for which homology is 

sometimes uncertain and alignment difficult, cytb sequences code for proteins, which 

restrict sequence ambiguities such as insertions and deletions. Furthermore, 

because cytb is a protein-coding gene with 1st, 2nd and 3rd codon positions, there are 

variable and predictable relative rates of substitution that increase its utility in 

phylogenetic studies (e. g. Graybeal, 1993). 

One potential pitfall of using mtDNA is that, because of its matrilinear, non- 

recombining mode of inheritance, it will always exhibit a phylogenetic pattern of 

transmission. Within populations this branching pattern will represent specific 

ancestor-descendant lineages rather than phylogenetic relationships of a species 
(Puorto et al. 2001). Therefore, multiple haplotype clades do not necessarily imply 

multiple organismal lineages. Introgressive hybridisation can produce the same 

effect (Echelle and Echelle, 1994). There is also the possibility that, because mtDNA 

is maternally inherited, a strong geographical pattern will reflect only female gene 

flow and dispersal, which may differ from those patterns in males, thereby giving an 

inaccurate picture of phylogenetic relationships (Avise, 1994). Given these problems, 

nuclear markers are slowly beginning to be favoured, but have received far less 

attention in studies of population differentiation, as they show slow rates of molecular 

evolution and also currently lack reliable universal primers (Hillis at al. 1996). 

Previous studies of 12S, 16S and cytb on both caecilians (Gower et al. 2002; 2005; 

Presswell, 2002) and frogs (Graybeal, 1993; Vences et al. 2003a, b) have indicated 

their usefulness at reconstructing phylogenies of species and populations for 

biogeographic investigations. In addition, primers are available which worked reliably 

for target taxa (Presswell, 2002; Goebel of a/. 1999). As a result, the three genes 

12S, 16S and cytb were used in this study to investigate systematic and 

biogeographic patterns. 
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1.5 Aims of the project 
The central aim of this project is to improve understanding of the historical 
biogeography of the EAM. This is tackled by reconstructing molecular phylogenies for 

several independent lineages of amphibians. Combined with species distribution 
data, these are used to explore area relationships through cladistic biogeography, 

molecular clock estimations and descriptive biogeographical methods. 

Main hypotheses to be addressed: 

(1) There is a significant area relationship(s) in the Eastern Arc Mountains. 

(2) That area relationship(s) are temporally congruent. 

(3) That congruent area relationships are consistent with nestedness patterns 
recovered in parsimony analysis of endemicity and similarity indices. 

(3) Discordance in temporal and spatially relationships is correlated with dispersal 

ability (for example, fossorial vs. non-fossorial). 

(4) That there is a strong correlation both temporally and spatially between area 
relationships and significant geographic events, e. g. uplift of the mountains in the late 
Miocene. 

(5) Phylogenetic lineages are generally deeply divergent between monophyletic taxa 

distributed in the Eastern Arc, in association with a long period of geological and 

climatic stability. 

In addition, analyses of multiple unrelated taxa can reveal common biogeographic 

patterns, which may contribute to understanding of the dynamics of speciation and 

rates of DNA evolution (Avise, 2000). Results from molecular phylogenies also 

provide an essential framework for studies on taxonomy, comparative morphology, 

ecology, and conservation. 
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Chapter Two 

Materials and methods 

2.1 Specimen collection 

2.1.1 Introduction 

In order to address the aims of this project, a wide geographical sampling of 
components of the Eastern Arc amphibian fauna was necessary. It was also crucial 
that material was available which would allow the extraction of DNA for generating 
molecular sequences. The following sources were utilised to achieve this goal: 
Material deposited at the Natural History Museum London (NHM), loans of material 
from international museum institutions, and new fieldwork in Tanzania and Kenya. 

2.1.2 Sources of specimens 

2.1.2.1 Natural History Museum, London. 

The EAM has had a long history of collecting and study dating from the early 
missionary days and the German/British occupation of Tanzania and Kenya (Howell, 

2000), and this is reflected in the collections of many national institutions. Specimens 

deposited in the herpetological section of the NHM London represent one of the 

largest worldwide collections of EAM amphibians, primarily through the collections 

made by Arthur Loveridge, Alice Grandison, and Kim Howell (Howell, 2000). These 

collections have been worked on by a succession of staff in the herpetology section, 

all of which have had an active interest in EAM amphibians (e. g. Boulenger, 1882; 

1883; 1894; 1895; 1898; Parker, 1934; Grandison, 1983), which continues today 

(e. g. Clarke, 1988; Poynton, 2003b; Wilkinson, et al. 2004). Most of these collections 

were made many years ago, and were preserved in formalin, which has rendered 

them broadly unsuitable for extracting DNA. 

One of the most significant recent contributions to the NHM collection has been the 
deposit of nearly -4,000 specimens by Professor Kim Howell of the University of Dar 

es Salaam. Professor Howell has carried out biotic surveys and conservation work in 

conjunction with various individuals and non-government organisations over the past 
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thirty years in Tanzania. Collaborating with Kim Howell, two groups have made 

significant collections that are of relevance to the work outlined here, Frontier- 

Tanzania and the Tanzanian Forest Conservation Group (TFCG). These 

collaborations have focused, though not entirely, on baseline biodiversity surveys of 
EAM, which has included collections of amphibians (e. g. Frontier, 1999-2002; 2001; 

Johansson et al. 1998; Doggart et al. 2004; in press). A large proportion of the 

amphibians collected during these expeditions are sent to the NHM for taxonomic 

identifications that are then used in compiling species lists for biological inventories 

(e. g. Frontier, 2001). Professor John Poynton has identified amphibians sent by 

Frontier-Tanzania and TFCG over the past ten years. These collections have 

resulted in a number of significant discoveries (e. g. Poynton et a/. 1998b; Poynton, 

2003b; Menegon et a/. 2004). The amphibian material collected by Frontier-Tanzania 

and TFCG is preserved in ethanol (70%), and is therefore suitable for extracting 
DNA'. The author worked for Frontier-Tanzania as a volunteer (1997) and an 

assistant research co-ordinator (2000) in biodiversity inventory surveys of the East 

Usambaras. 

2.1.2.2 Other institutions 

Other than the collection held at the NHM, many East African amphibian specimens 

are held at the Museum of Comparative Zoology in Harvard (MCZ), especially among 

the collections made by Arthur Loveridge in the 1920-30s. Unfortunately, Loveridge's 

collections were all preserved in formalin, creating difficulties in extracting long 

strands of DNA. Standard measurements of the type specimens held in MCZ were 

made for comparisons with other material used in this study. Similarly, material held 

at the Zoological Museum Berlin includes valuable historical collections. This material 

was principally described In the works of Tornier (1897) and Nieden (1910; 1912; 

1913). Extraction of DNA was not attempted for any of this material; the age of the 

specimens, and the probable use of formalin for preservation meant that molecular 

work may have been inefficient. Measurements of the Berlin material were made for 

comparison with voucher specimens used for generating molecular data (Wilkinson 

et al. 2004). Material was borrowed from California Academy of Sciences (CAS), 

Zoological Museum of the University of Copenhagen (ZMUC), Museo Trentino di 

Scienze Naturali, Trento, Italy (MTSN), John Measey (JM), Transvaal Museum (TM), 

Museum d'Histoire Naturelle Geneva (MNHG), Univeristy of Texas, Arlington (UTA) 

1 Collections of amphibians by Frontier-Tanzania deposited at the NHM between 
1989-1999 were preserved in industrial methylated spirits. 
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and Field Museum Chicago (FMNH). Material borrowed from these institutions and 
individuals provided specimens or tissues that were used for obtaining molecular 

sequence data (see Appendix 2). 

2.1.2.3 Fieldwork 

Based on the tissues assembled from various sources it was clear that there were 

still large gaps in the sampling of amphibians of the EAM. Sampling gaps were 

obvious for locations where specimens were present, but for which tissues were not 

available. However, with localities where no survey data existed it was less clear if 

species were likely to occur there. Disparity in the number of species found in each 

Eastern Arc mountain have often been attributed to inadequate sampling (e. g. 

Schiotz, 1981; Burgess et al. 1998a). I was optimistic that surveys of poorly known 

areas would result in range extensions and new species. Fieldwork carried out in 

November 2001 and March 2002 was planned to sample the less well known areas. 

It was however apparent that sampling inequalities between mountains could not be 

completely overcome. In addition, fieldwork carried out in 2001/2 was over a short 

period, during which I was unlikely to sample all amphibian species or areas. Despite 

these problems, sampling of all the Eastern Arc mountains was carried out (either 

through fieldwork or museum specimens) to a greater or lesser extent, apart from 

one locality, Malundwe Hill. This was difficult to sample logistically, being located 

within Mikumi National Park, and requiring official authorisation that I was unable to 

acquire. No single species was sampled in this study from this area, despite one 

known record of a caecilian Scolecomorphus sp. (Howell, pers. comm. ). Malundwe 

Hill is the smallest patch of forest in the EAM (Burgess et at. 1998a), and possibly of 

least biological importance (see Lovett and Norton, 1989 and Lovett and Pöcs, 1993) 

of all the EA massifs, and was therefore determined as being of lowest priority. In 

general, the EAM experience two main rainy seasons (though there are differences 

north to south between the mountain blocks), the short rains in November and 

December and the long rains from April to June. Experience shows that fieldwork is 

best carried out during the rainy seasons, when amphibians are most abundant and 

active and so fieldwork was timed to coincide with the onset of the rains. The 

schedule of fieldwork is shown in Table 2.1, and the specimens collected during 

these field trips are shown in Appendix 1. 

Prior authorisation to carry out research In Tanzania was obtained in May 2001 

through the Tanzania Commission for Science and Technology (COSTECH) and 

TAWIRI. The research permit RCA 2001-272 allowed me access to carry out 
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fieldwork in the EAM in Tanzania and to export the preserved specimens back to the 
UK. Before visiting any forest reserve, regional and local authorisation was 
necessary to carry out any work. Permission from regional offices in Tanga, Arusha, 

and Morogorro was necessary before embarking on fieldwork in specified areas. 

Table 2.1. 
Fieldwork carried out in 2001-2002. 

Dates Locality Forest reserve Notes 
06/10/2001- 07/10/2001 Coastal Forest Ras Kutani Survey- 1 day 
09/10/2001- 12/10/2001 Mahenge Sall Forest Survey- 3 days 

Mountains 
13/10/2001- 15/10/2001 Dar es Salaam - Processina Now 

16/10/2001-19/10/2001 Rubeho Mountains 

20/10/2001- 22/10/2001 Nguru Mountains 

26/10/2001- 29/10/2001 West Usambara 
Mountains 

28/4/2002- 29/4/2002 East Usambara 
Mountains 

04/05/2002- 05/05/2002 Ukaguru Mountains 

09/05/2002- 12/05/2002 North Pare 
Mountains 

12/05/2002 Arusha 

Mafwemiro 
Forest 
Nguru South 
Forest 
Mazumbi Forest 

material from JB 
Survey- 2 days 

Survey- 2 days 

Survey- 3 days 

Magambo Forest Survey- 2 days 

Ikwamba Forest Survey- 2 days 
and Mamiwa- 
Kisara Forest 
Kindoroko Forest Survey- 2 days 

Processing Nguu 
and West 
Usambara material 
from JB 

13/05/2002- 14/05/2002 South Pare Chome Forest Survey- 2 days 
Mountains 

15/05/2002-16/05/2002 West Usambara Ambangula Survey-1 day 
Mountains Forest 

18/05/2002 Bagamoyo Ruvu ferry Survey-1 day 
21/05/2002- 22/05/2002 Uluguru Mountains Uluguru North Survey- I day 

Forest 

The first field season was carried out in conjunction with Dr Jean Mariaux of the 

Museum d'Histoire Naturelle Geneva, and the second with Dr Jean Mariaux, Dr 

David Gower and Dr Mark Wilkinson. Specimens that were deposited in MNHG are 

not listed. During all fieldwork night and day collections were carried out usually over 
two to three-day intensive survey periods. Drift fences were constructed in the forest 

to collect leaf-litter amphibians when there was enough assistance from residents of 

the area. Digging and searching through leaf litter and forest was carried out to 

locate burrowing caecilians and microhylid frogs. All specimens were killed by 

anaesthesia using MS222, and preserved in buffered formalin. Almost all specimens 
had tissue samples (liver) for DNA analysis taken and these were stored in 95% 
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ethanol. Live specimens were also obtained from Joe Beruducci (JB) in Arusha who 

captively breeds reptiles and amphibians. 

A Garmin e-map GPS was used to obtain the coordinates of specimens collected 
during fieldwork. In addition, co-ordinates were obtained from maps and a gazetteer 
(www. gazetteer. com) for all other specimens. These co-ordinates were used for 

calculating distances between each locality using ArcView, assisted by Neil Cox of 

Conservation International. The distance is based on projected units of the data, so 

the data needed to be projected from latitude and longitude into a map coordinate 

system in meters. For these calculations, an Equidistant Azimuthal projection was 

chosen with the azimuth near the centre of the data's extent, minimizing the distortion 

that may be caused by the choice of projection. The tool calculates the distance from 

each feature in one dataset to the features of another layer. In this case, the points 

were brought into ArcView as an XY event theme and used as both the 'from' and 'to' 

dataset, this gives the distance between each point and all other points in the same 

layer. The data were then automatically added to the table of the input layer, creating 

the matrix of distances. This table was then exported to an Excel spreadsheet. 

2.2 DNA extraction 
A total of 243 tissue samples were processed (see Appendix 2). These samples 

included specimens that had come into contact with formalin, industrial methylated 

spirits (IMS), and ethanol. Extraction of DNA from these tissues required various 

methods to complement the method of preservation. Generally, tissues that were not 

preserved In ethanol were unlikely to produce fragments of DNA from which 

successful amplification could be carried out. However, there were exceptions to this, 

and a number of recently deposited tissues preserved 'in IMS yielded amplifiable 

DNA.. Storage in IMS appears to degrade DNA, because samples more than two 

years old did not produce adequate quantities for efficient amplification. DNA 

fragments were not obtained from any formalin preserved material (see Appendix 2). 

Standard protocols for DNA extraction from ethanol fixed tissues were followed, as 

described in Sambrook et aL (1989). A small piece of tissue (1-2mm3) was chopped 

with a sterile scalpel blade then suspended in 800µI digestion buffer' in a 1.5ml 

I (Digestion buffer: 1MTris 1000µI, 5MNaCI 200µI, 0.5MEDTA 2001AI, SDS 500µI, 
Prot. K 4001AI (20 mg/ml), then add autoclaved water to make up to 10ml solution). 
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eppendorf. Samples were kept at 55°C for three hours in a shaking incubator, or 

overnight at 37°C. After the incubation period the sample was centrifuged (at 

13,000rpm) for two minutes, and the supernatant was pipetted off, leaving behind 

any undigested tissue fragments. An equal volume (800µI) phenol/chloroform (1: 1), 

was added to the digest sample which was agitated and centrifuged (at 13,000rpm) 

for 3 minutes. This process was repeated once usually, or twice with dirty samples. 

The supernatant was then pipetted off and added to 700µI chloroform, and vortexed 

and centrifuged for a further two minutes. The cleaned sample was then cleaned with 

an ultrafiltration MICROCON (100) column following the manufacturer's instructions. 

The resulting solution is then used directly as a template for PCR amplification. The 

approximate concentration of the DNA was checked by gel electrophoresis. 2µI of the 

template was run on an agrose gel (1-2%) with an ethidium bromide (1µI added) 

stain and was run for 60 minutes at 5OmA. The gel was viewed on a short-wave UV 

transilluminator, and a digital photograph processed using the program Labworks 4.0 

(UVP Inc. Upland, UK). 

Extraction procedures for obtaining sequences from formalin and IMS preserved 

material were investigated for a number of tissues for species where fresh material 

was not available. DNeasy Kits (Qiagen®, UK) provide protocols for extraction of 
DNA from formalin preserved material. These extractions provided negligible levels 

of template for PCR reactions. Extraction of DNA from material preserved in IMS was 

more successful, standard methods with a prolonged digestion period sometimes 

resulted in DNA suitable for PCR amplification. 

2.3 Polymerase chain reaction and PCR sequencing 

2.3.1 PCR and gel purification 
The methods adopted follow standard PCR protocols (as described by Palumbi, 

1996). Fragments of the 12S and 16S rRNA genes and the cytochrome b (cytb) 

gene were amplified by the polymerase chain reaction (PCR) on a Hybaid Omnigene 

E, Mastercycler, and Perkin Elmer thermocycler, using specific primers (custom 

primers by Bioline, UK®) as listed in Table 2.2. The volumes used in the reactions 

are given: 18µI Water2,2.5µI Buffer (Bioline, UK®), 2.0µI MgCI2 (25mM, Bioline, 

2 Alternative volume of water was used with the addition of a PCR additive buffer 

(Bioline, UK®), 13µI Water with 5µI of PCR high spec. additive. 
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UK®), 1.0µI of each forward and reverse primer (10µM), 0.2µI dNTP (mixed dATP, 

dCTP, dGTP, dTTP), 0.15 µI Taq polymerase (Bioline, UK®), 2µI genomic DNA. 

All reagents were prepared as a PCR master mix to which DNA was added before 

samples were placed in the PCR machine. Mineral oil was overlaid on reactions 

carried out using the Hybaid Omnigene E machine, which lacked a heated lid. The 

following cycles were specified on all machines: 

1) 80°C for 2 minutes (pause to put tubes into PCR machine) 

2) 1x (96°C 4min; 94°C 4min; 45°C 45 secs.; 72°C 1min) 

3) 35x (94°C 4min; 45°C 45 secs.; 72°C 1min) 

4) 1x (72°C 10min; 4°C hold) 
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Table 2.2 
Primers used to amplify 12S, 16S and cytb in this study. 

Name Primer 
Location 

Sequence 5'- 3' Amplify Frog (F) 
or Caecilian (C) 

Source 

12Sa 12S AAA AAG CTT CAA ACT GGG ATT F and C Kocher, et al. AGA TAC CCC ACT AT 1989. 
12Sb 12S TGA CTG CAG AGG GTG ACG GGC F and C Kocher, et a/. GGT GTG T 1989. 
12Sb 12S GAG GGT GAC GGG CGG TAT GT F and C After (Kocher, 
(chicken) et al. 1989. ) 
16Sa 16S GGC CTA AAA GCA GCC ACC TGT F and C After (Hedges, AAA GAC AGC G 

et al. 1993) 
16Sb 16S GAG GAT TTT TTA TTC TCC GTG F and C After (Hedges, GTC GCC CCA et al. 1993) 
L14724 cytb CCG AGC TTG ATA TGA AAA ACC F and C Meyer and ATCG TTG Wilson, 1990. 
MVZ 15-L cytb GAA CTA ATG GCC CAC ACW WTA F Moritz, et al. CGN AA 1992. 
C131 F cytb CCA TCC AAC ATC TCA GCA TGA F Palumbi, et al. TGA AA 1996. 
CB 1F cytb CCA TCA AAC ATT TCA TCA TTA F and C Palumbi, et al. (frog) TGA AA 

1996. 
CB2F cytb GGA CAA ATA TCA TTC TGA T F Palumbi, et al. GG 

1996. 
CB2F cytb TGA GGA CAA ATA TCT TU TGA F and C Palumbi, et al. (frog) GGG 

1996. 
CB2R cytb CCC TCA GAA TGA TAT TTG TCC F Palumbi et al. TCA , 1996. 
CB2R cytb CCC TCA AAA AGA TAT TTG TCC F and C Palumbi, et al. (frog) TCA 1996. 
CB3R cytb GGC AAA TAG GAA RTA TCA TTC F Palumbi, et al. 

1996. 
CB3R cytb GGC GAA TAG GAA RTA TCA TTC F and C Palumbi, et al. 
(frog) 1996. 

Products from PCR reactions were electrophoresed in a 1% agarose gel (Bioline, 

UK®) stained with ethidium bromide for 60 minutes at 5OmA, and were then viewed 

on a short-wave UV transilluminator, and photographed using a computerised 
Labworks 4.0 System (UVP Inc. Upland, UK). The PCR fragments of expected size 

were cut from the gel. It was then necessary to extract and purify the PCR products 

contained in the gel slices to use as a template for sequencing. In general, PCR 

products were purified using a silica method as described In Boyle and Lew (1995). 

In addition, PCR products were recovered using QlAquickTM Gel Extraction Kit 

(Qiagen, Crawley, UK) as described by Presswell (2002). 

2.3.2 Sequencing reactions 

Sequencing reactions were carried out at the Natural History Museum sequencing 
facility and University of Glasgow Molecular Biology Support Unit. Both facilities 
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analysed the reactions in an ABI 377 apparatus (Applied Biosystems, Perkin Elmer, 

UK). Sequencing in this study used a fluorescent dideoxy chain terminator method 
(as described by Hillis et aL 1996). Amplification of the template was carried out on a 
Mastercycler, and Perkin Elmer thermocycler, using the same primers as used in 

amplification. The volumes used in the reactions are: 3.5µI Water, 2.0µI buffer 

(BigDyes, PE Biosystems), 2.01AI Big Dye (BigDyes, PE Biosystems), 1.0µI of primer 
(2.5µM), 3.5µI sequencing template. 

All reagents were prepared as a primer specific master mix to which sequencing 
template was added before samples were placed in the PCR machine. The following 

cycle for the sequencing reaction was used: 
1) 80°C for 2 minutes (pause to put tubes into PCR machine) 
2) 1x (96°C 5min; 95°C 20 secs.; 50°C 10 secs.; 60°C 4min) 

3) 24x (95°C 20 secs.; 50°C 10 secs.; 60°C 4min) 

4) 4°C hold 

2.4 Sequence alignment 
Forward and reverse electropherograms and their base calls were imported into the 

program Sequencher 3.1.1"' (Gene Codes Corporation, USA). The program 

automatically aligns forward and reverse strands, producing a consensus sequence, 
which is then checked by hand to resolve any ambiguities. Consensus sequences 

with primer sequences removed were then imported into BioEdit v. 5.0.9 (Hall, 1999) 

a manual sequence alignment program. In addition to these newly gathered 

sequence data, partial 12S, 16S and cytb sequences for various species were 

Imported, either from unpublished data of the NHM herpetology group, or from 

published data held in Genbank (refer to Appendix 3 for all GenBank sequences 

utilised). Specific alignment procedures and outgroup selection will be discussed in 

each appropriate chapter section. In general, sequences were aligned manually, 

length differences were resolved by inserting alignment gaps, and positions that 

could not be aligned unambiguously were excluded. Hypervariable regions therefore 

were excluded from analyses. To Include the maximum amount of information, 

analyses were carried out on two separate alignments for each group: (1) an 

alignment of all available sequences and outgroups to investigate the phylogenetic 

position of groups, and divergence times using appropriate taxa with calibration 

dates. Typically these alignments excluded more variable regions, because more 
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distantly related taxa were included in the alignment, and (2) an alignment of specific 

groups confined to East Africa (e. g. only Scolecomorphus, Boulengerula, 

Arthroleptides, or African microhylids). 

2.5 Molecular phylogenetic analysis 

2.5.1 Introduction 

In this section I will outline the different approaches to analyse evolutionary 

relationships using molecular data. Only methods of relevance to this study will be 

covered, and therefore this will not be an exhaustive review of all methods. The 

principal aim of any phylogenetic analyses is to infer evolutionary relationships. 

Typically this involves finding evolutionary hypotheses that are most consistent with 

the available molecular or morphological data, and what we are willing to assume 

about how the data evolved (Page and Holmes, 1998). There are numerous methods 

that can be employed to infer phylogenetic relationships, and certain factors need to 

be considered when selecting the best methods to use, which will be discussed 

individually in the section on tree estimation (see section 2.5.3). Prior to any analysis, 

it is important to establish how reliable are the collected data (Hillis et al. 1996). 

There are various statistical methods that assess the overall structure of the data, the 

congruence among different gene partitions, and the informativeness of a data set 

(see section 2.5.2). Depending upon the type of analysis carried out, a single tree or 

multiple sets of trees may result from a phylogenetic analysis. In cases where there 

are multiple trees, consensus techniques can summarise the shared relationships 

(see section 2.5.4). A posteriori assessment of the relationships that phylogenetic 

trees describe can be made by various statistical measures and procedures (see 

section 2.5.5). It may often be the case that relationships differ from those expected 

prior to analysis, and In cases where there are alternative hypotheses which need to 

be explored it is possible to compare how significantly different a given suboptimal 

tree (a hypothesis) Is to the one Inferred (see section 2.5.6). 

Once a phylogenetic tree is obtained, how confident can we be that the molecular 

data can reconstruct evolutionary relationships among species? Phylogenetic trees 

based on molecular data show relationships among the genes sampled; therefore, 

the phylogeny is In fact a gene tree. Whether these gene trees can be interpreted as 

representing the relationships among species (i. e. species trees) depends on the 
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genes being orthologous (Avise, 1986) and the genetic differences, which we 

assume show speciation don't reflect other patterns. Avise (1986; 2000) explained 
how there might be cases where gene trees and species trees are incongruent, and 
therefore phylogenetic hypotheses might be false. Avise demonstrated theoretically 

how mitochondrial haplotypes from a polymorphic ancestor subject to random 

lineage sorting could show a gene tree which conflicts with a species tree (Avise, 

2000). Avise (1994) added that only after sufficient complementary haplotype 

extinction would species be recovered as monophyletic in gene trees. This process is 

called lineage sorting and causes incongruence between gene and species trees. 

How common is lineage sorting in mitochondrial datasets? Quantitative data 

compiled by Funk and Omland (2003) on mitochondrial lineages and simulation 

studies by Irwin (2002) have independently suggested that correspondence between 

gene trees and evolutionary relationships (and their biogeographical interpretations) 

should not be presumed. In their survey, Funk and Omland (2003) suggest that 

species level paraphyly or polyphyly is abundant in the mitochondrial studies 

sampled (23%). Irwin (2002) also demonstrated in simulation studies how 

'phylogeographic breaks' (divergence between two lineages) could result without a 
barrier to gene flow. This may explain why divergence within some lineages may not 
'coincide with changes in other traits' (Irwin, 2002; p. 2383). Irwin (2002) did offer a 

more optimistic view though for studies of certain organisms, suggesting the 

likelihood of observing discordant phylogeographic patterns (ancestral 

polymorphism) is decreased in species that show poor dispersal ability and have 

small populations. Presumably some amphibians would be expected to be less likely 

to demonstrate such patterns based on these characteristics. To detect species level 

paraphyly or polymorphism Funk and Omland (2003) suggest increased attention to 

sampling and better interpretation of results by both systematists and population 

geneticists. In addition to sampling from all the available populations, this study will 

make only preliminary interpretations of divergence patterns, and that any final 

conclusions will most probably await sampling of more populations and nuclear 

genes. 

2.5.2 Data quality and homogeneity 

Once data have been collected and an alignment constructed, manually or 

automatically, they can be tested to assess their phylogenetic utility and to determine 
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whether data partitions can be combined (Hillis and Huelsenbeck, 1992). There are a 
number of methods for making such assessments, including the permutation tail 
probability test (PTP) (Faith and Cranston, 1991), the incongruence length test (ILD) 
(Farris et al. 1994) and saturation plots. Some of these tests do not necessarily 
accept or reject the ability of a data set to reconstruct a phylogeny but provide useful 
indications on the quality of the data and appropriate approaches that need to be 
undertaken to estimate a robust phylogeny. 

A permutation tail probability test is used to test for the absence of taxonomic 

structure in a data set (Faith and Cranston, 1991). It is a randomisation procedure in 

which the proportions of character states are maintained but are randomly 

reallocated among species and then trees are estimated, and this is repeated a 
number of times (Felsenstein, 2004). If the tree score for the randomly permuted data 

do not differ significantly enough from the most parsimonious solution then this 
indicates that the data contain no more hierarchical structure than random data 

(Bryant, 1992). Passing the test however does not demonstrate that the data are 

phylogenetically structured, and is therefore a minimum requirement (Wilkinson et al. 
2002b). In addition to PTP tests there is a measure that uses the distribution of tree 

scores. The ILD test assesses the congruence in data partitions and is used as a 
guide to whether or not to combine them in a single phylogenetic analysis 
(Huelsenbeck et al. 1996). Felsenstein (2004) suggests caution in concluding that 
two data sets imply different trees, because the test appears to be affected by 
inequalities in rates of evolution (Dolphin et al. 2000). 

A major problem in molecular phylogenetics Is saturation (Page and Holmes, 1998), 

which occurs when rates of molecular evolution are rapid. Increased rates of 

molecular evolution cause problems In our ability to distinguish between homologous 

or homoplastic molecular sequences. For example, three lineages may share an A in 

common, but for one of the lineages this nucleotide may have changed from A to aC 

and then back to an A, resulting in an underestimation of the level of difference 

between lineages. Molecular sequences evolve at different rates, as changes 
between all nucleotides are not equally common (transitions and transversions), and 

there are inequalities in substitution rates at codon positions of protein coding genes. 

As a result of these inequalities, single sites may show increased rates of molecular 

evolution and therefore possibly multiple substitutions. Multiple substitution (back 

substitutions, parallel substitutions, convergent substitutions) rates at single sites 
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may potentially confuse phylogenetic reconstruction. Recognising the potential effect 
this can have on data is necessary before any phylogenetic analysis (Page and 
Holmes, 1998). 

Assessing whether a data set suffers from saturation or not is often done by plotting 
the estimated numbers of transitions and transversions against the corrected 

pairwise differences. The degree of overlap between plots of transitions and 
transversions give an indication of the relative rates of these types of substitutions. It 

would be expected in an unsaturated data set that transitions would be proportionally 

greater than transversions. There are also other methods, such as plotting pairwise 
distances against "corrected" distances. In unsaturated data the observed and 
corrected distance should show a linear relationship whereas in saturated data a 

non-linear relationship would be expected. If saturation appears to be a problem in a 

data set then there are particular measures that can be made when inferring 

phylogenies. Since transitions are likely to become saturated first, and are therefore 

more likely to confuse phylogenetic relationships, these characters can be excluded 

or down-weighted and these analyses can be compared to data with transitions 

included. Evaluation of the difference in resolution of the phylogeny with these 

potentially confusing characters removed can be made. Third codon positions that 

show increased substitution rates can also be treated in a similar way. 

2.5.3 Tree estimation methods 

Depending upon the data set, there are a number of possible methods for inferring 

phylogenies. In the case of molecular sequence data the main approaches for 

determining evolutionary relationships are parsimony, likelihood, distance and 

Bayesian methods. Of these methods, a fundamental distinction between two types 

can be drawn (as summarised by Page and Holmes, 1998): (1) Methods that convert 

molecular sequence data into pairwise distances, so that trees are constructed based 

on overall similarity, e. g. distance methods (2) Discrete methods that analyse every 

single character separately, e. g. parsimony, likelihood, and Bayesian methods. 

These methods will be briefly discussed in the following sections. 

2.5.3.1 Distance methods 

Distance methods use the overall similarity of sequences as a basis for calculating 

evolutionary relationships. For each sequence pair in an alignment, the distance is a 
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value based on the proportion of positions that differ, known as the p-distance. 
However this p-distance can be an underestimation of the true difference. This is 
because some of the aligned nucleotides might be the result of multiple events (see 

section 2.5.2). In distance methods therefore, estimations of the number of 
substitutions (and overall similarity) that have actually occurred are attempted by 

applying specific evolutionary models. There are a number of substitution models 

that are derived from how we think molecular evolution might proceeds. For example, 
in simple substitution models such as Kimura's two-parameter model, distance 

calculations account for unequal transition and transversion rates (Kimura, 1980). 

More complex parameters can be included such as those accounting for base 

frequency differences, and site rate heterogeneity. Branch lengths 'as a result of 

these parameters will vary depending on the model used to calculate the differences. 

Once pairwise differences are calculated, a phylogeny can then be constructed using 

various tree-building methods. Summaries of all these methods are provided In 

Felsenstein (2004) and Page and Holmes (1998) and will not be discussed here. 

Essentially though, there are two main classes, algorithmic and optimisation 

methods, some of which are considered to be more appropriate than others (Page 

and Holmes, 1998). 

Distance methods have been criticised for a number of reasons; the principal 

objections being that pairwise distances lose information of higher order 

combinations of character states, history of character evolution cannot be inferred, 

and negative branch lengths predicted by some distance methods may not be 

evolutionarily interpretable (as summarised by Page and Holmes, 1998; p. 185-6). 

Despite the vigour of these criticisms, distance methods are still used to analyse 

sequence data because they are computationally efficient and therefore particularly 

useful for large datasets. In addition, the LogDet distance method is particularly 

useful for inferring relationships in the face of base compositional biases. 

For distance analyses, as discussed, there is an array of possible models. Models 

with few parameters are not likely to be realistic and tend to give inaccurate 

estimates of evolution. Adding extra, parameters is thought to produce more realistic 

models but increases sampling errors and the uncertainty of the resultant estimates 

because every parameter added reduces the information content (Swofford et al. 

1996; Page and Holmes, 1998). Because of this conflict, contrasting models were 

used in this study: (1) the simpler Kimura two parameter model which takes into 
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account the differences between the number of transitions and transversions, and (2) 
the more complex GTR model, which in most cases was selected from several 
available models using hierarchical likelihood ratio tests and (3) LogDet method 
which is used to resolve sequences where there is variable base composition (Page 

and Holmes, 1998). 

2.5.3.2 Parsimony methods 
Parsimony is one of the most commonly used methods in analyses reconstructing 

evolutionary relationships (Swofford et al. 1996), and has been favoured by some 

phylogeneticists for its supposed philosophical foundation (Farris, 1978). Parsimony 

methods are easily understood; the preferred tree is the one that involves the 

'minimum net amount of evolution' (Felsenstein, 2004). The goal in molecular 

phylogenetic analyses using parsimony methods is to search for the tree that 

assumes the least number of total nucleotide changes. Calculating the shortest tree 

can be straightforward based on a single cost for each substitution (Fitch, 1971). 

There are however a number of more complex models, all with the same goals of 

minimizing the number of steps. Swofford et aL (1996) summarise these methods, 

and they describe models that are believed to more accurately mirror substitutions in 

molecular data, in that not all sites are equally phylogenetically useful (eg. transitions 

vs. transversions). In addition to generating models that more accurately reflect 

evolution in molecular data, weighting schemes can be applied that place greater 

emphasis on more phylogenetically informative characters and thereby give a better 

estimation of the true tree. 

Along with other methods, parsimony is known to be susceptible to long branch 

attraction (LBA) artefacts (Felsenstein, 1978), in which lineage specific rate 

heterogeneity confounds phylogenetic inference by grouping lineages with similar. 

rates together. The problems of LBA have been shown to be particularly acute in 

sequences that show considerable rate variation, or when sequences are from quite 

divergent taxa (Anderson and Swofford, 2004). However, the impact of LBA is 

thought to be less important for phylogenies in which a large number of taxa are 

included (Page and Holmes, 1998). 
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2.5.3.3 Maximum likelihood 

Maximum likelihood methods are widely used to estimate statistical parameters. The 
likelihood of a hypothesis is a function of the probability of the data given the model. 

Likelihood is taken to provide a natural preference order for selecting among 

competing hypotheses (Felsenstein, 2004). Calculating likelihoods requires an 

explicit model of how, in the case of phylogenies, the data evolved (Swofford et al. 

1996). As implied then, likelihood methods are dependent upon how good the model 

is (Page and Holmes, 1998). The models constructed in likelihood analyses are 

based on the following three main parameters: the tendency of base to change to 

another, the composition (e. g. base frequencies), and the among site variation. The 

first model to be developed, and the simplest, is the Jukes-Cantor model (Jukes and 
Cantor, 1969), which assumes equal substitution and frequency between all the 

nucleotide bases. Further models extend this to include different rates of base 

changes, and frequencies (Page and Holmes, 1998) such as would be expected 
based on our understanding of transition and transversion changes in nucleotide 

sequences. The most complex variant of these models is the General Time 

Reversible model (GTR) (Lanave et al. 1984), which has six substitution types. 

Further parameter rich models were developed to account for among site variation, 

which includes parameters that describe both the proportion of invariable sites in a 

data set and in more complex models the probability that any one position may 

belong to a specific rate class (e. g. quickly evolving site). Data sets not accounting 

for such variation, where it has been shown that the rates are highly variable among 

sites, can have serious consequences on phylogenetic inference, and result in 

misleading likelihood trees (Swofford et al. 1996; Foster, 2004). With all the possible 

permutations of these parameters, it is clear there are a number of different models 

that could be utilised in an analysis, which leads inevitably to the question 'which 

model should I choose? ' Fortunately, a goodness of fit test has been developed 

which can quantitatively assess which model best fits the data, and this can be 

calculated automatically In the program ModelTest 3.06 (Posada and Crandall, 

1998). Using hierarchical likelihood ratios or the Akaike information criterion, model 

test identifies a model that beyond which the addition of more parameters does not 

produce a significant improvement in the likelihood. As with every approach, 

likelihood has been subject to criticism. Opponents have questioned the model 

selection procedure. Most studies select (as assessed in the program ModelTest) the 

most complex model GTR +I+G or GTR + SS, which suggests that given the 
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addition of more parameters one could significantly improve the model. A recent 

paper has also suggested that parsimony outperforms likelihood analyses when 
there are heterogenous rates (sequences change non-identically over time) of 

molecular evolution (Kolaczkowski and Thornton, 2004). 

Based on our understanding of stochastic changes in molecular sequences, models 

used in likelihood may be more or less accurate but most importantly sufficiently 

accurate to allow good phylogenetic inferences. It is likely that more complex models 

will continue to be developed which better depict how sequences evolve. Likelihood 

provides a framework for determining if improvement in likelihood is accompanied by 

including more parameters. The continuing emphasis on molecular data to 

understand evolutionary relationships means likelihood will continue to be a popular 

approach for determining evolutionary relationships. 

2.5.3.4 Bayesian inference 

Phylogenetic analyses using Bayesian methods have only recently been formalised 

(mid 1990s) and only within the last five years have programs been developed which 

can execute the analysis (Huelsenbeck and Ronquist, 2001). Bayesian analysis has 

made a striking impact on the systematic community, as a consequence of the ability 
to analyse large phylogenetic trees using complex evolutionary models, and the 

detection of the footprints of natural selection in DNA sequences (Huelsenbeck, et al. 
2001). Bayesian inference is closely related to likelihood analyses in that it uses 

ratios of likelihoods to determine the probability of accepting proposals in Markov 

chain Monte Carlo (MCMC) chains. Summaries of Bayesian methods are given in 

Huelsenbeck and Ronquist (2001) and Lewis (2001) and the principles are outlined 

there and will not be covered here. Software implementations of Bayesian 

approaches already include a wide variety of stochastic models for nucleotide, 

protein, restriction site and morphological data. In addition, these methods allow 

modelling of heterogeneous substitution rates across the data (as in likelihood and 
distance methods), and subsets. As with all phylogenetic methods there are 

problems with Bayesian analysis, including overly high posterior probabilities (see 

section on measures for trees), sensitivity to taxon sampling, and uncertainty over 

convergence of MCMC chains on trees of high likelihood. Advocates of these 

approaches have suggested certain procedures that can alleviate these problems 

(as summarised in Lewis, 2001). As previously mentioned In likelihood methods, 

parametric methods (such as Bayesian) are thought to perform poorly when 
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molecular evolution is even moderately heterogenous (Kolaczkowski and Thornton, 

2004). 

2.5.4 Consensus methods 

Systematists are often faced with the problem of interpreting multiple trees. There are 

a number of consensus methods for drawing inferences from, or for providing 

summaries of agreement and conflict among multiple trees, the utility of which is 

dependent upon the context (Wilkinson and Benton, 1996). In essence then, no 

single consensus method is universally applicable to all consensus problems. 
Consensus methods utilised in this study, include; strict and majority rule consensus 

methods In phylogenetic reconstructions, and the Nelson consensus in 

biogeographic analyses. 

The simplest consensus tree is a strict consensus, which constructs a summary tree 

that contains all and only those clades that are found in all of the trees. However, 

strict consensus approaches are considered too stringent for the purposes of many 

studies. For example, where there are many most parsimonious trees, the strict 

consensus is often poorly-resolved and may be just a 'bush' that provides no 

information other than that there are no clades in common. As a result, there has 

been a drive to develop methods that provide better resolution through not being so 

strict. Majority-rule methods construct a tree that includes those clades that are 

present in a 'majority' of the trees whose consensus is being sought. For instance, 

majority rule consensus with 100% setting would only include groups that are found 

in 100% of all the trees, which would be equivalent to a strict consensus. Majority 

rule consensus methods however are usually set at a lower bound, such as 50%, 

and it is this flexibility that allows the user to obtain a summary of the percentage of 

relationships found among all parsimonious solutions. In biogeographic studies, a 

Nelson's consensus tree, as executed in the program Component 2.0 (Page, 1993), 

finds the largest clique of groups that are all compatible with each other, I. e. areas 

that are found grouped together in all trees. 

2.5.5 Support for clades 

There are a number of procedures for evaluating the robustness of a phylogeny and 

not surprisingly there is also much debate about which are the most appropriate 

measures and how they should be interpreted (Felsenstein, 2004). Measures that are 

automatically calculated in Bayesian analyses, are posterior probabilities, and these 
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provide 'credibility' values for clades (Huelsenbeck and Ronquist, 2001). There have 

been some highly critical appraisals of these measures, and certain authors have 

questioned the seemingly inflated probabilities on Bayesian trees (Erixon et al. 2003; 

Douady et al. 2003a), and comparisons with other measures (bootstrap) have shown 

inconsistencies. As a result, it has been recommended that Glade credibility values 

should be interpreted with caution, and values of less than 0.95 are considered 

weakly supported (Erixon et al. 2003). A more traditional approach for evaluating 

support is the 'bootstrap', which is a standard statistical method for estimating 

sample variance by resampling from the original data. In phylogenetics, characters 

are randomly resampled with replacement to give many bootstrap replicate data sets 

of the same size as the original. The frequency with which clades are found in the 

analyses of the resampled data is the Glade's bootstrap proportion and is taken as a 

measure of support. It is uncertain what exactly constitutes a significant result. 

Felsenstein (1985) suggested proportions of 95% or greater should be considered 

well supported. Bootstrap analyses can be applied to a wide range of analytical 

methods, including likelihood, distance and parsimony. 

Bremer support or the Decay index is a measure that compares the length of a 

parsimony tree with a particular Glade and the length of the best suboptimal tree 

without that Glade (Felsenstein, 2004). The difference between these two values is 

given as the support value, and this is equivalent to the number of steps it takes to 

collapse that Glade. There are difficulties in interpreting what these values equate to, 

as there is 'no immediate statistical interpretation' based on these values 

(Felsenstein, 2004; p331). Extensions to the decay analyses have been suggested 

(Wilkinson et al. 2000; Gatesy, 2000). In this study the methods discussed above are 

employed. Consistency between measures is interpreted as a more probable 

hypothesis, and conflicting relationships or measures of support are treated with 

caution. 

2.5.6 Comparison of alternative hypotheses 

We often want to test the phylogeny recovered in our analyses against alternative 

competing hypotheses. For example, we may ask whether the observed paraphyly of 

a particular grouping is strongly supported or if the tree we get from an analysis is 

significantly different from the suboptimal traditional phylogeny. There are several 

ways of doing this, depending on the criterion being used to estimate the phylogeny. 
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For parsimony, the Templeton test evaluates whether the number of steps between 

optimal and suboptimal trees Is more significant than would be expected from 

random sampling error. For likelihood analyses Goldman (2000) recommends the 

use of the Shimodaira-Hasegawa test (Shimodaira and Hasegawa, 1999) to compare 
the likelihood values. Whereas previously the Kishino-Hasegawa test (Kishino and' 
Hasegawa,. 1989) was used, which has been shown to be inappropriate unless all the 

trees have been specified a priori. It is possible to assess alternative hypotheses in 
Bayesian trees. This is achieved by filtering all the Bayesian trees recovered for the 

grouping of Interest, and the number of trees recovered then provides a proportion 
from the total number of filtered trees. For example, if five trees with the suboptimal 
hypothesis are recovered from 1000 total trees filtered, the hypothesis shows 0.5% of 
trees include that hypothesis. It is however not entirely clear what proportion 

constitutes a rejection of the alternative hypothesis and this is not a statistical test of 

significance. 

2.6 Biogeographical methods 

2.6.1 Introduction 

It is clear that species found on the planet are not randomly distributed, and this point 

is best exhibited in groups of species restricted to continents or islands. For example, 

marsupials have a restricted distribution and are not found randomly dotted around 

the globe. Found on the continent of Australia, New Guinea, and South America (one 

of the American opposums lives in North America), the current distribution of 

marsupials reflect recent migrations and the breakup of the continental landmasses. 

Therefore, distributions of species are determined by a range of causal factors; 

abiotic (e. g. plate tectonics) and biotic (e. g. dispersal ability). Biogeography is the 

branch of evolutionary biology that is concerned with understanding how non-random 

distributions are best explained. In addition to this, biogeographers are interested in 

the general patterns and the processes that have contributed to the present and past 

distribution of all organisms, which leads inevitably to fundamental questions 

regarding evolution; such as the relationship between biogeography and 

diversification. Biogeography therefore forms an integral part of evolutionary biology. 

There are a number of analytical methods that have been developed to investigate 

the patterns and the processes that have led to the distribution of extant and extinct 
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taxa (Morrone and Crisci, 1995; Cecca, 2002). In this study I consider two main 

schools of biogeography, and these will be covered in the following sections on 

descriptive and cladistic methods. These sections will not include an exhaustive 

discussion of all methods, but more importantly those relevant to this study. At the 

end of these sections is a discussion of molecular clock methods, which provide 

another important source of data for understanding biogeographical events 

(Donoghue and Moore, 2003). Although there is considerable debate and continuing 

uncertainty concerning the best biogeographic methods (Platnick and Nelson, 1978, 

1981; Lieberman, 2000; Upchurch and Hunn, 2002; Donoghue and Moore, 2003; 

Humphries and Parenti, 1999; McDowall, 2004), for the purpose of this study an 

attempt is made to apply all potentially useful methods and search for commonalities 

in the results. Using different methodological approaches to investigate the 

biogeography of an area has, as claimed by some authors (e. g. Cracraft, 1994; 

Cecca, 2002), been important in verifying biogeographical conclusions made using 

one method. The approaches are therefore not considered as 'mutually exclusive 

alternatives' (Morrone and Crisci, 1995). It Is with this rationale that this study was 

conducted. Combining the results from each analysis into a single-meta analysis was 

not attempted. Rather as suggested by Racheli (2004) comparisons were made 
between each method. 

2.6.2 Descriptive biogeographical methods 

2.6.2.1 Introduction 

In endeavouring to elucidate the relationships between areas or communities, it Is 

common to compare species occurrence and abundance (Krebs, 1999). Based on 

distributional data, biologists have been able to make either quantitative or qualitative 

(depending on the data, abundance or presence/absence respectively) measures of 

similarity between organismal assemblages. Descriptive methods derive their primary 

source of information from the presence and absence of taxa in an area. They have 

been considered analogous to phenetic methods because of the estimation of 

pairwise overall similarities of species distributions of areas. Using this approach, 

relationships among areas are inferred using the presence or absence of taxa. 

Relationships between areas are estimated by assuming that the relative recency of 

the biogeographic association of two areas is directly proportional to the number of 

taxa that are shared between them. It has been argued that the varied ages, ecology 
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and dispersal capabilities of species making up these biotas make it difficult to infer 

historical processes from phenetic assessments of the relationships among 

assemblages (Morrone, 1994). Similarly, Farris (1981) suggested phenetic 
biogeographical methods do not accurately reflect historical relationships, but appear 
to be sensitive to local extinction or differentiation and not the common biogeographic 

history of the area. In summary, the species lists and similarity indices, the basic data 

of descriptive biogeography, may be useful descriptors of assemblage differences 

and similarities but not the most appropriate tools for elucidating the biogeographic 

history of an area. 

Investigations of the biogeography of the African fauna and flora have mostly used 

descriptive methods (e. g. Keay, 1954; Stuart, 1991; Tattersfield et al. 1998) and 

current understanding, certainly of East African amphibians, is based on the 

application of such approaches (Poynton, 1998; 2000; 2003a ; Poynton and Boycott, 

1996; Loader at al. 2004a). There are a number of possible explanations for this (e. g. 

authors' methodological preferences), but the main reason would appear to be the 

lack of phylogenetic studies of African taxa that are suitable for using cladistic 

biogeographical techniques (Kirk-Spriggs, 2003). 

2.6.2.2 Similarity coefficients of assemblages 

All similarity co-efficients take the number of species shared between areas as the 

foundation of the measure. There are subtle differences between each coefficient, 

and it has been argued that particular measures are more useful than others (Bloom, 

1981; Krebs, 1999; Cecca, 2002). Which measures employed depends upon the type 

of data; presence absence data (Jaccard and Sorenson indices) or abundance of 

species (Bray-Curtis index). For the purpose of this study, both Jaccard and 

Sorenson indices are utilised and compared. These two measures are most 

commonly used (e. g. Inger and Voris, 2001; Ramanamanjato et al. 2002). The 

formulas for Jaccard (Cj) and Sorenson (Cs) are given below: 

1. CJ=a/(a+b+C) 

2. Cs = 2a/(2a +b+ c) 

Where, a= number of species common to both sites, b= number of species in site B, 

but not in A, c= number of species in site A, but not in B 
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Once similarity indices are calculated for each pairwise comparison, a hierarchical 

cluster analysis is carried out on these symmetrical matrices to investigate patterns 

of nestedness among the assemblages (Cecca, 2002). Hierarchical cluster analysis 
is performed using a distance algorithm (Krebs, 1999) for which there are a number 

of different criteria. Based on the multivariate analysis a dendrogram can then be 

constructed, which provides a summary of the relationships, and a framework for 

interpreting results. - 

There have been a number of criticisms concerning the use of these similarity 

measures. Krebs (1999) cited ambiguities concerning the selection of measures and 

their evaluation. He argued that similarity measures are descriptive coefficients, and 

are not 'estimators of some statistical parameter' (Krebs, 1999). Therefore evaluating 

the reliability of the data is not possible unless by some type of Monte Carlo 

procedure (Krebs, 1999). For the purpose of this study, the PTP randomisation test 

(e. g. PTP; Faith and Cranston, 1991) is used as in phylogenetic studies to assess if 

the data contain no more structure than randomly permuted data. In addition the data 

matrix will be bootstrapped to assess how robust groupings are. Choosing the 

appropriate measure and the methods to analyse their relationships can also be 

tricky. There are a number of different similarity coefficients ('some two dozen', 

Krebs, 1999) that are widely used in the literature (e. g. Cecca, 2002). There are also 

as many methods for assessing their hierarchical relationships (Krebs, 1999) using 

multivariate analyses. Thus, there is no standard methodology that a biogeographer 

may use to assess the similarity of assemblages and their hierarchical relationships. 

2.6.3 Parsimony Analysis of Endemicity 

Parsimony analysis of endemicity (PAE) is used to Investigate the relationships 

among areas using the occurrence of species in an area (same data as used in 

section 2.6.2), and analysing the matrix using cladistic algorithms (Rosen, 1988; 

Rosen and Smith, 1988). The method is analogous to cladistic methods in classifying 

areas (taxa in phylogenetic cladistics) by their shared taxa (characters In cladistics) 

using' parsimony (Rosen, 1988; Cox and Moore, 2000). There is however a 

fundamental difference between PAE and phylogenetic cladistic methods In that the 

former is not using historical signatures of relationships among taxa (see section 

2.6.4; Wiley, 1988). The resulting PAE cladograms consist of a nested set of 

endemic biotas as represented In a branching diagram (Cecca, 2002). As with 
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interpretations of similarity indices and their resulting dendrograms, historical 

comparisons in PAE rely on the assumption that similarities are the result of shared 

history. Interpretation of these branching diagrams can be difficult, because similarity 

between localities may result either from 'greater ecological similarity or from more 

recent biotic links' (Cox and Moore 2000; p. 170). and therefore their biogeographic 

meaning can be difficult to understand (Rosen, and Smith, 1988; Rosen, 1992; 

Brooks and van Yeller, 2003). 

A number of authors (Rosen, 1988; da Silva, and Oren, 1996; Ron, 2000; Racheli 

and Racheli, 2003) have used PAE 'cladograms' to make inferences about historical 

relationships. Da Silva and Oren (1996) and Racheli and Racheli, (2003) have also 
found that PAE area 'cladograms' were congruent with area cladograms obtained 

using cladistic biogeographical methods. Despite these examples, PAE has been 

used' relatively infrequently (Cecca, 2002), and this is fundamentally associated with 
the problems many critics have with the interpretation of the results (as summarised 
by Brooks and van Veller, 2003; Upchurch, 2004). Morrone (1994) has suggested 
that PAE area cladograms may be used as a tool to delimit areas of endemism on an 
'intracontinental scale', when several species are included in the analysis, which may 
be an important prior step before defining areas for cladistic biogeographical 

analyses. 

2.6.4 Cladistic biogeographical analysis 

2.6.4.1 Introduction 

Biogeography has been revolutionised by the finding that the earth's surface has 

undergone considerable geological change; continental plates have combined, 

broken away and migrated around the globe (Wegener, 1966). Based on this 

radically new understanding, biologists re-interpreted species distributions, and this 

provided solutions to previously intangible problems (Sneath, 1967). Furthermore, 

relationships among some groups were shown to be congruent with the 

fragmentation sequence of continental plates, as first shown by Brundin's (1966) 

study of chironomid midges (Cox and Moore, 2000). As evidence accumulated, the 

splitting of areas and the species occurring there (vicariance) was shown to have a 

considerable influence upon relationships in many animals and plants. It had long 

been appreciated that species phylogeny often accurately reflects biogeographical 
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events (Sneath, 1967), but analytical biogeographical methods were not formalised 

until Nelson and Platnick (1981). Nelson and Platnick (1981) provided a cladistic 
framework for understanding biogeographical distributions, as well as providing 

evidence for reconstructing palaeogeographies (Lieberman, 2000). The following 

sections will outline the general theory behind cladistic biogeography and its practical 

application. It concludes with remarks concerning current debates surrounding 

cladistic biogeography that are of relevance to this study. 

2.6.4.2 Cladistic biogeography 

In cladistic biogeograpy the singular aim is to evaluate the congruence in the 

branching patterns of species relationships that occur in the same areas. Species 

phylogenies should reflect biogeographical changes that have occurred (as 

discussed 2.6.4.1) and it is this correspondence between taxonomic and area 

relationships that underpin these methods. There are two basic steps to be made in 

any cladistic biogeographical analysis. The first is to replace all the terminal taxa on a 

species phylogeny with the areas that these species occur in (Fig. 2.1a, b). These 

branching diagrams are called taxon-area cladograms (TACs) (Sanmartin and 

Ronquist, 2002). In the second step, a common biogeographic signal may be 

revealed by comparison of TACs from different taxa occurring in the same areas (see 

Fig. 2.1a). A 'consensus' of all the relationships in the source TACs is summarised in 

a single tree called a general area cladogram (GAC). It is possible that there are 

cases where there remains no biogeographical signal, as shown in Fig 2.1 b. 

Examples 1a and lb are simplistic cases, and It is often the case In biogeographical 

analyses that the TAC that are compared to formulate a GAC are much more 

problematic. For example, there are times when there are incomplete or conflicting 

area relationships, as shown in Figure 2.. 1c, d, e. These examples (2.1c, d, e) are the 

three main sources of difficulty in cladistic biogeographic approaches; widespread 

taxa, redundant distributions, and missing areas (Morrone and 

Crisci, 1995). Each of these can result in conflicting area statements that may 

obscure a common biogeographical pattern. There are several different methods that 

have been developed to deal with these problems (Brooks and van Veller, 2003). In 

summary, a priori methods modify the TACs that are analysed, based on a set of 

assumptions that account for conflicting relationships (as in 2.1c, d, e) and then 

attempt to maximise the fit of TACs to a GAC (eg. Component 2.0; Page, 1993; see 
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the next section for overview). A posteriori methods do not alter the TACs, instead 

TACs are optimised to a common distribution (GAC) and any conflicting distributions 

(e. g. widespread species and sympatric taxa) are explained as 'post-speciation 

dispersal, or speciation by colonization' using a parsimony analysis (Brooks and van 
Veller, 2003; p. 820). For the purpose of this study, a priori methods are investigated 

in order to assess the topological congruence between TACs generated in Chapters 

3-6, as well as published phylogenies. Future work could investigate a posteriori 

methods but these are currently not deemed critical for addressing the aims of the 

project. 

la. Congruence 

abC 
N3 

TAC 1 

lb. Incongruence 
ab 

ý23 

TAC 1 

1c. Widespread taxa 

ab cd 

TAC 

ab 
456 
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TAC 2 
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GAC 

b 

GAC 

Id. Redundant distribution 
abcda 

TAC 

le. Missing areas 

acd 

TAC 

Figure. 2.1. 

Methods in cladistic biogeography (modified from Sanmartin and Ronquist, 2002). Areas are 

given as letters at the end of branches, and species are numbers. Ia. Congruence: 

comparison of two TAC's with species 1-6 results in congruent GAC. 1b. Incongruence: 

comparison of two TAC's with species 1-6 results in Incongruent GAC. Conflicting TAC's (see 

text for explanation): 1c. Widespread taxa. Id. Redundant distribution. 1e. Missing areas. 

To investigate the common history of the area using a priori methods, it is first 

necessary to convert the conflicting TACs into resolved area cladograms (RAC). This 
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means that for each phylogeny used each area is represented by 'one terminal 

[branch]' (Sanmartin and Ronquist, 2002; " p. 77) so the RAC can then be assessed 

along with other resolved TACs or previously conflicting RACs. The conversion of a 

TAC into a RAC is by no means a straightforward process, and it is a topic of debate 

(eg. Van Yeller et al. 1999; Sanmartin and Ronquist, 2002). Marco van Veller at al. 

(1999; 2003), Morrone and Crisci (1995) and Sanmartin and Ronquist, (2002) all 

provide good summaries on the procedures for resolving TACs, when applying 

different assumptions. Essentially, the different assumptions allow for patterns such 

as extinction and dispersal (Van Veller et a/. 1999), processes common In 

biogeography, to be resolved so as to maximise common patterns. These 

assumptions have been connected to different biogeographic processes, Assumption 

0= vicariance, Assumption 1= vicariance + extinction, Assumption 2= vicariance + 

extinction + dispersal (Van Veller et al. 2003). The application of these different 

assumptions has not been without its critics, not least because examples from the 

same dataset applying different assumptions have produced significantly different 

GAC (Morrone and Crisci, 1995). There also appears to be no basis for choosing one 

assumption over another. Assumption 0 and 1, have been criticized as being 'too 

restrictive and unrealistic', and assumption 2, 'indecisive and uninformative' 

(summarised by Sanmartin and Ronquist, 2002; p. 77). There Is still no real 

consensus of opinion on the best approach to be taken. Most advocates suggest an 

experimental ethos, and that multiple trials of different approaches should be taken to 

evaluate all possible hypotheses and compare this to other quantitative approaches 

(Morrone and Crisci, 1995). 

Once it is established whether or not there is a common biogeographical signal (e. g. 

resolved GAC), it is necessary to interpret the result. If there Is no common 

biogeographic signal, then it could be indicative of (1) complex biogeographical 

history which may be intractable, or that the (2) actual lineages or (3) the number of 

lineages used are inadequate for resolving the biogeography of the area. For 

explanation (1), certain areas may have extreme fluctuations in climate and geology 

that affect organisms in significantly different ways that cannot be reflected in general 

biogeographic patterns accessible by any method. For (2) it might be clear that 

some of the lineages used in the analysis may not be suitable, such as vagile 

organisms which are less likely to share a common biogeographic history with a 

species unable to disperse long distances. Lastly, (3), analogous to increasing 

phylogenetic accuracy in phylogenetic analysis (Hillis, 1996), the addition of more 
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phylogenies to an analysis may improve resolution. Pennington et a/. (2004; p 531) 
however makes the point that 'there is no precedence in the literature for having faith 
that addition of taxon cladograms will aid resolution' of biogeographical patterns. 

If an analysis from a cladistic biogeographic study results in a fully resolved GAC, the 

interpretation of a common biogeographic pattern is again not straightforward, and 

cannot be 'confidently attributed to any particular cause' (Donoghue and Moore, 

2003; p. 261). Cladistic biogeography assumes that once a well-supported GAC is 

produced from the RACs, the patterns produced are that of vicariance, as these are 
the only patterns that can be consistently repeated. However, can it be safely 

assumed that repeated spatial patterns are caused by vicariance? Take the simple 

example in Fig. 2.2. a, which shows two TAC with two congruent area relationships, 
i. e. x (y, z). Given these patterns, a cladistic biogeographer would interpret the pattern 

as a result of fragmentation of the areas, with y, z sharing a more recent history than 

x. Now look at Fig. 2.2b, which shows 'pseudocongruence', in this example species 

share a common pattern, but the causal events that have resulted In their distribution 

differ. 

It is also possible to imagine other examples where patterns may suggest a common 
history, implying fragmentation, and synchronous speciation in TACs which actually 
do not correspond to the historical reality or fragmentation sequence at all 
(Donoghue and Moore, 2003; p. 262, fig. 1 provide a good summary). 
'Pseudocongruence' was also discussed by Hunn and Upchurch (2001). They 

demonstrated that the assumption of vicariance as the sole factor in imposing 

repeated spatial patterns was incorrect. Vicariance-mimicking events may confound 

cladistic interpretations such as 'the appearance of a dispersal route that allows 

members of several different clades to simultaneously populate a new area' (Hunn 

and Upchurch, 2001; p. 395). Hunn and Upchurch (2001) urge an interpretation of 
GAC as relationships being indicative of 'recency of biotic interaction' instead of 

classic cladistic interpretation implying a fragmentation sequence. Distinguishing 

between vicariance and geodispersal is difficult; additional information such as the 

timing of geological events is necessary to assess the likely probability of these 

processes (Donoghue and Moore, 2003). 
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Figure 2.2. 

Hypothetical biogeographic scenarios; above- temporal and spatial congruence below- 

pseudocongruence (see text for explanation). 

Based on these criticisms and others made by Hunn and Upchurch (2001) it is dear 

that cladistic biogeographic methods, which focus exclusively on spatial congruence, 

are imperfect (Donoghue and Moore, 2003). One solution to the interpretation of 

dadistic reconstructions is absolute dating of the diversification of lineages, so that 

pseudocongruence can be detected (Cunningham and Collins, 1994). For example in 

Fig. 2.2. b, molecular dating on the timing of speciation at node b, c would provide 

important data for resolving pseudocongruence. Donoghue and Moore (2003) 

57 



Chapter 2. Materials and methods 

suggested that absolute dating could provide vital information for teasing apart 
previously intractable biogeographical problems. However, molecular dates are 
controversial (see section 2.6.5), so it is currently uncertain to what extent temporal 
data can provide a solution to biogeographical problems. 

2.6.4.3 Testing spatial congruence of areas 

There are a number of methods for assessing the congruence of spatial relationships 
between cladograms (e. g. Component, BPA, and TASS). In the case of this study, a 
Tree Reconciliation Analysis (TRA), as formulated by Page (1995) was used. TRA is 

considered a suitable technique for reconstructing and assessing the statistical 

significance of biogeographic patterns (e. g. Upchurch et al. 2002). There were two 

parts to a TRA analysis which aims to find the optimal area cladogram for the data: (i) 

finding the GAC using Component 2.0 (Page, 1993); (ii) testing of the GAC topology 

for statistical significance using TreeMap 1.0. (Page, 1995). Component analysis 

(Page, 1993) has been widely used for investigating congruence in spatial data 

(Morrone and Crisci, 1995). In Component, the general area cladogram is derived by 

the 'intersection of the sets of [resolved] area cladograms' (Morrone and Crisci, 1994; 

p. 386) and then based on these 'intersections' a GAC is constructed. If there are 

multiple optimal trees, a Nelson's consensus tree can be constructed which shows 

the relationships common to all trees. Component can apply assumptions 0,1, and 2 

(as outlined above) according to the presence of widely distributed species and 

redundant distribution in taxon area cladograms. Once a GAC is obtained, it is 

randomly permuted in TreeMap and reconciled with the taxon trees. Tree Map 

searches for the tree that requires the fewest total duplications and losses to account 

for a set of TACs or RACs. The significance of the GAC can then be assessed by 

comparing the number of duplication events to that of the randomly permuted data. 

The presence of congruent or incongruent area relationships can then be accepted 

or rejected. 

2.6.5 Molecular clocks and dating 

2.6.5.1 Introduction 
. 

One of the most promising but controversial uses of molecular sequence data In 

systematics is for the estimation of divergence times (Fitch, 1976; Hillis et aL 1996). 
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In the early studies of molecular evolution, inferences of stochastic changes in 

sequences were made (Zuckerkandl and Pauling, 1965). Based on this even, clock- 

like change in molecular sequences, dates for nodes on phylogenetic trees could be 

inferred (Wilson et al. 1985). On the whole, sequences appeared to evolve at a 

constant rate, and an approximately linear relationship between evolutionary distance 

and time of species divergence was generally found (Kumar and Hedges, 2003). 

However, as sequence data accumulated it became clear that there was not a 

globally constant rate of molecular evolution (Wu and LI, 1985; Martin and Palumbi, 

1993). Significant differences in evolutionary rates among species and genes have 

been demonstrated (DeSalle and Templeton, 1988; and as summarised by Gillespie, 

1991) and the fidelity of the universal clock has been questioned (Avise, 1994; Ayala, 

1986). It is now accepted that the 'molecular clock' does not have a globally constant 

rate (Avise, 1994; LI and Grauer, 1991), and discrepancies in rates have been 

suggested to be largely the result of lineage specific rate variation (Martin and 

Palumbi, 1993) caused by differences in, for example, body size, metabolism, 

generation time and DNA repair. The realisation that sequence evolution is more 

complex has led to a more sophisticated approach to the application of molecular 

clocks. Identification and implementation of complex rate variation of sequence data 

into phylogenetic analyses and clock estimates is now possible (Posada and 

Crandall, 1998; Posada, 2003; Robinson et al. 1998; Sanderson, 1998; Kishino et al. 

2001). Consensus of opinion suggests that the clock-like behaviour of a data set 

should be initially treated as a hypothesis for each gene and lineage, and accepted 

or rejected following analyses of rate variation (e. g. Robinson and Huchon, 2000; 

Posada and Crandall, 1998). 

In the case of some of the data sets utilised in this study, it has already been 

demonstrated that there is lineage specific rate variation (Wilkinson et al. 2002a; 

Wilkinson et al. 2003; Loader et al. 2004). In this study divergence estimates are 

calculated using rate-smoothing methods (Sanderson, 1997; 1998; 2002a, b; 2003). 

There are methods in these programs that can estimate divergence times for 

datasets which do not show clock like rates of evolution, and thereby provide a better 

estimation of molecular divergence times, both relative and absolute (see section 

2.6.3). 
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2.6.5.2 Molecular clock tests 

Rate heterogeneity has been shown to have a negative impact on phylogenetic 

estimates, giving rise to spurious relationships (Swofford et a/. 1996). An approach 

that is commonly applied to test for rate heterogeneity is the relative rates test 

(Sarich and Wilson, 1973), as implemented in programs such as rrTree (Robinson 

and Huchon, 2000). In this test, a branch length comparison is made between an 
ingroup and a reference taxon (usually the outgroup). If each ingroup taxon differs 

from the reference group by a similar amount (no significant branch length 

differences) then rate homogeneity cannot be rejected. Critics of the relative rates 
test (e. g. Ayala, 1986) have shown that it is biased towards finding equal rates, and 
has high Type II error rates. Despite these problems it Is utilised to determine rate 

variation in various phylogenetic studies (e. g. Wilkinson et al., 2002a; 2003). The 

benefits of the relative rates tests are that problematic taxa with specific lineage rate 

variation can be identified. A molecular clock can also be tested using a hierarchical 

likelihood ratio test (Posada, 2003). A likelihood estimated tree with a molecular clock 

enforced is compared to a likelihood tree without a clock enforced (a stricter version 

of the NJ method, e. g. Posada, 2003). The likelihood score for the former (LO) is 

subtracted from the latter (L1) then multiplied by two (e. g. 0= 2"(L1- LO)). The sum 

should then be compared on a chi-squared table to determine the p-value; where the 

degrees of freedom equal the number of taxa minus two. 

2.6.5.3 Rate smoothing methods 

Molecular data for which the assumption of constant rates over time has not been 

violated are not necessarily required, for example when divergence times for DNA 

sequence data are estimated using the software r8s (Sanderson, 2003). This uses a 

likelihood estimation to assess variance in substitution rates, and takes account of 

any variances in the estimation of ages of lineages. The program also allows 

calibration using multiple constraints on node ages. Depending upon the rate 

variation in the dataset, different algorithms are utilized. For data where there is 

significant rate variation, penalized likelihood is the most suitable approach 

(Sanderson, 2002a). Penalized likelihood is used to identify an optimal rate 

smoothing parameter, which constrains the amount of change among ancestors and 

descendants. The optimal smoothing parameter is determined by a cross validation 

approach whereby the parameter chosen best predicts the overall terminal branch 

lengths in a saturated rate model (Sanderson, 2003). The Langley Fitch method is 
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better applied to data where there is no significant rate variation (e. g. clock like 
dataset) (Sanderson, 2002b). 

2.6.5.4 Calibration points 
Crucial to the estimation of 'absolute' time on a phylogenetic tree is at least one 

calibration point. Calibration points come in various guises. Most of those utilised in 

the literature are fixed by fossil or geological evidence. For example, Biju and 
Bossuyt (2003) utilised (among other calibrations points) the minimum age of 
Cryptobranchidae (164 Myr) to date their amphibian tree. This is marked by the 

recent discovery of basal members of Cryptobranchidae from the volcanic deposits of 
the Jiulongshan Formation, China. Evidence from geological data includes events 

such as Gondwana fragmentation, in which separation of areas where ancestors 

were assumed to be continuously distributed but then became separated (e. g. 

caeciliid fauna, Wilkinson et al. 2002), or colonization of an area which was volcanic, 

previously submerged and thus uninhabitable (e. g. Carranza et al. 2000; Vences et 

a/. 2003a). Calibrations based on previous molecular dating estimates have also 
been used (Roelants et al. 2004). In a few cases, calibrations are fixed based on 

sequences of extinct lineages with known divergence times, as shown in bird 

divergence estimates calibrated using extinct moas (Cooper at al. 2001; Haddrath, 

and Baker, 2001). 

Calibration points can be problematic. Geological data may not be appropriate for 

dating vicariance in taxa that may have the ability to disperse beyond potential 

barriers and the quality of plate tectonic data may also be uncertain, especially for 

island fragments whose origin and evolution is complex. Similarly, the 

incompleteness of the fossil record suggests any date is subject to imprecision. 

Fossils only provide a minimum estimate for the divergence of two lineages 

(Gingerich, 1983; Reisz and Müller, 2004). Further problems derive from using single 

calibration points, especially where these are fixed by taxa with lineage specific rate 

variation (Bromham, 2002). The use of multiple calibration points is clearly 

advantageous for a more thorough estimation of divergence times. Despite the 

problems mentioned above, confidence in temporal information is increasing, as a 

result of the development of methods that better integrate fossil and molecular data 

(Donoghue and Moore, 2003; Sanderson, 2003; Rambaut and Bromham, 1998; 

Thorne et aL 1998; Aris-Brosou and Yang, 2002; Hedges and Kumar, 2004). 
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The following calibration points are used in this study: 

Frogs: The divergence between two members of the strictly freshwater aquatic family 
Pipidae is used as a calibration point. The African genus Hymenochirus and South 
American genus Pipa are sister groups (Canatella and Trueb, 1988) and must have 
diverged by the time that America and Africa separated at 101 mya ago (Pitman of al. 
1993). The oldest known age of the Comoran Island Mayotte (8.7 Mya ago; as 
described by Vences, 2003 from Nougier et aL 1986) provides additional calibration 
points between the pairs of Comoroan Boophis sp. and Mantidactylus sp. and 
Madagscan Boophis tephraeomystax and Mantidactylus wittei. 

Caecilians: The node joining India-Seychellean to Afro-American caeciliids 
(Wilkinson, et al. 2002) is calibrated by the minimum age of separation of 
Madagascar-India-Seychelles from Africa and America Gondwana, estimated to be 

130 Mya (Smith et al. 1994). An additional'calibration of 101 Mya is used for the node 
joining the African Schistometopum and South and central American Dermophis, 

recovered in recent analyses (Hedges et al. 1993; Wilkinson et al. 2002; and 
Wilkinson et al. 2003) based on the separation of Africa from South America from 

dated at 101 mya (Pitman et al. 1993). Any bias of the calibrations will be 

unidirectional, with calibrations representing probable underestimates of the 

divergence ages. All ages should therefore be considered as conservative. 

2.6.5.5 Synchronous splitting events 

One of the most fundamental questions this study is attempting to address is: Are 

divergences between commonly distributed, but independent amphibian lineages 

temporally congruent, and by implication plausibly driven by a common causal 

factor? Given that the absolute date estimations calculated from molecular data are 

correct, and the genes sampled between groups overlap (e. g. Zamudio and Greene, 

1997), hypotheses concerning temporal congruence can be addressed as well as 

their possible association with changes in climate or geology. Confidence intervals 

provide the upper and lower limits for the overlap of each temporal estimate, and 

therefore determine the significance of temporal congruence. However, there might 

be concerns that the absolute dating estimates are incorrect, and if there are 

consistent errors made within and between lineages, then correspondence may be 

coincidental rather than informative. Molecular clock dates are controversial (see 
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section 2.6.5.1) and it is likely that there are substantial negative influences on 
absolute time estimates, e. g. under estimation of divergence dates, and saturation of 
data. In light of these concerns, estimation procedures that account for rate variation 
are investigated here, and quantitative assessment of the data sets is* undertaken. 
Absolute dates are critical for assessing temporal congruence with specific 
biogeographic events (see section 2.5), but are not important for testing the 
hypotheses of synchronicity between cladogenetic events. Lineages divergences can 
be shown to be congruent using relative temporal estimates, even if the absolute 
timing may be uncertain. 

2.7. Specifications 

2.7.1 Phylogenetic Analysis 

Using PAUP 4b10 (Swofford, 1998) all the molecular data sets were evaluated for 

differences between randomly permuted data (Faith and Cranston, 1991), 

incongruence in data sets (e. g. between 12S, 16S and cytb) and saturation. The level 

of saturation in each partition was investigated, from plots of uncorrected pairwise 

divergences against Tamura-Nei divergences, for transitions and transversion. The 

Tamura-Nei divergences take account of deviations from equal base composition 

and differences in substitution rates among bases (Tamura and Nei, 1993). Deviation 

from the isometric line on such a plot indicates increasing saturation of substitution 

for transitions or transversions. Furthermore, transitions were plotted against 

transversions and both a power curve and linear regression line plotted, and the r- 

squared value compared. If the power curve line is shown to have a higher r-squared 

value then there is some appreciable level of saturation in the data. 

Protein coding sequences (cytb) were translated into amino acids using MacClade 

(Maddison and Maddison, 2002), which was used to verify the position of codons. 

Parsimony, maximum likelihood and distance analyses were all carried out in the 

program PAUP* 4.0b10 (Swofford, 1998). Kimura 2 parameter, LogDet and 

Maximum Likelihood distance analyses used the minimum evolution objective 

function on all runs. Likelihood analyses used models of evolution selected using 

Modeltest (Posada and Crandall, 1998). Alignment gaps were treated as missing 

data. Tree searches were heuristic with 100 (parsimony and distance analyses) or 10 

(ML) random addition sequences and TBR branch swapping. Bayesian analyses 
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were performed using MrBayes 3.01 (Huelsenbeck, and Ronquist, 2001) using the 

selected ML model. The Metropolis coupled, Markov chain Monte Carlo analysis was 

run with 4 chains for 1,500,000 generations. Trees were sampled every 1000 

generations, with the first 1000 generations discarded. 

Support for clades was measured with bootstrap proportions (Felsenstein, 1985) 

(1000 pseudoreplicates) using both parsimony and distance options. Bayesian 

posterior probabilities are also calculated automatically in MrBayes analyses. Decay 

indices (Bremer, 1988) for clades were determined by enforcing converse topological 

constraints to find suboptimal trees; this was done manually in PAUP. The 

significance of length differences between most parsimonious and suboptimal trees 

found in constrained analyses were assessed using a non-parametric test 

(Templeton, 1983). Similarly, suboptimal ML trees, conforming to various a priori 

hypotheses, were found through searches enforcing user-defined topological 

constraints. Differences between optimal and suboptimal ML trees were assessed 

using the Shimodaira-Hasegawa test (Shimodaira & Hasegawa, 1999) using RELL 

with 1000 bootstrap replicates. ' 

2.7.2 Molecular divergence estimates 

To estimate molecular divergence dates between specific clades a number of taxa 

were included that provided calibration points (see section 2.6.5.4 for precise details). 

As suggested by Bromharn et al. (2000), the likelihood ratio test was used to 

evaluate whether the molecular clock held for the analysed sequences (i. e. a single 

rate of molecular evolution). This was achieved by estimating a likelihood tree with a 

molecular clock enforced, which was compared to a likelihood tree without a clock 

enforced (see section 2.6.5.2). For the program r8s, a tree with branch lengths needs 

to be provided. ML trees obtained in analyses were used to estimate all the 

divergence times. Branch lengths for this tree topology and the best fitting 

substitution model selected by Modeltest were estimated using likelihood with PAUP 

4b10 for all r8s analyses. Divergence times were calculated using both likelihood 

methods assuming a molecular clock (Langley fitch), and methods relaxing the 

molecular clock assumption (penalized likelihood), i. e. methods allowing for lineage 

specific rate variations (see Sanderson, 2002a, 2002b, 2003). 
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Confidence intervals on molecular divergence estimates are based on Langley-Fitch 

s-unit support limits (Cutler, 2000; see also Sanderson, 2002b). S-units support 
limits are the parameter estimates at which the log-likelihood drops by an amount of 
s units. As pointed out by Sanderson (2002b), interpreting s-units support limits of 
divergence time estimates is not straightforward. In fact, a drop of 2 units in the log- 

likelihood values equals the 95% confidence interval in the case of normally 
distributed parameters. However, molecular divergence times are unlikely to be 

normally distributed. Therefore, 2-units support limits cannot be assumed to 

encapsulate the 95% confidence intervals around the maximum likelihood estimate. 
Accordingly, Sanderson (2002b) suggested conservative s values (of at least 4) 

should be preferred when defining s-units support limits for divergence time 

estimates. In this study, 4 units were used to calculate the approximate confidence 
intervals for temporal estimates. 

2.7.3 Biogeographical analyses 

The definition of areas of endemism for use in biogeographic analyses is often 
difficult to define because there is not always a clear geographical separation of 
areas used in analyses (Morrone and Criscl, 1995). In many cases, such as 
continuous continental land areas, the designation of taxa to areas can be difficult 

which has an influence on biogeographic analyses (Morrone and Crisci, 1995). In the 

case of this study, it is fortunate that areas are clearly separated by the topography of 
the region. The Eastern Arc Mountains of Tanzania and Kenya are mountains 
uplifted, and are therefore clearly defined against the low lying savanna region. There 

was never any ambiguity in designating a species or population to an area, as the 

mountains are clearly marked and non-overlapping. 

2.7.3.1 Descriptive Biogeography 

Similarity Indices 

A data matrix was constructed where "0" is coded for the absence of the taxon from 
the area and "1" for the presence in the area (see Appendix 4). Amphibian species 

lists were compiled from various sources, see details in Appendix. Jaccard and 
Sorenson indices were then calculated using the program Community Analysis 

Package (CAP) (1999). To elucidate the biogeographical relationships between 

areas, I conducted bluster analyses (Krebs, 1999) using both Jaccard and Sorenson 

indices. Dendrograms are automatically constructed from these calculations in the 

program. Using PAUP 4b10 (Swofford, 1998) the data matrix was also evaluated for 
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differences between randomly permuted data (Faith and Cranston, 1991) by carrying 

out a PTP test. 

PAE 
Exactly the same data matrix used for calculating similarity indices, was also used in 

PAE analyses (see Appendix 4). The matrix was constructed in MacClade and then 

exported into PAUP4b1O (Swofford, 1998). Exhaustive searches were carried out on 
the matrix, which calculates all possible trees. The cladogram was rooted using a 
hypothetical area coded with all zeros, as suggested by Rosen (1988). In addition 

support for clades was measured with bootstrap proportions (Felsenstein, 1985) 

(1000 pseudoreplicates) using parsimony options. 

2.7.3.2 Cladistic Biogeography 
Taxon cladograms were generated from analyses of 12S, 16S and cytb using the 

following tree building methods: Parsimony, Maximum Likelihood, Bayesian analyses 

for the following groups: Arthroleptides, Boulengerula, Scolecomorphus, 

Bravicipitines, and Hop/ophrynines. Details of the phylogenetic relationships of these 

species are given in Chapters 3-6. Usually the best likelihood tree was used for 

biogeographic reconstructions, as these analyses require fully bifurcating trees. In 

addition to these phylogenies, all suitable trees were included from the literature (e. g. 

Andropadus, Lobelias, Crotaphapeltis, Saintpaulia, Nectarina, and Rhampholeon). All 

phylogenies utilised were derived from molecular data, and consequently terminal 

taxa in molecular phylogenies represent lineages and not necessarily species. In this 

study when a species or population is represented by a single accession or 

accessions which are monophyletic then it is safe to assume that the accession 

represents a single species/population and can be coded for the areas that it occurs 

in. -Both the amphibian and a combined dataset were then subjected to a cladistic 

biogeographic analysis, referred to as 'Tree Reconciliation Analysis'. Firstly, 

resolved area cladograms were tested for the presence of repeated area 

relationships using Component 2.0 (Page, 1993). Following this, the statistical 

significance of GAC topology was tested using Tree Map version 1.0 (Page, 1995). 
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Chapter Three 

Systematics and Biogeography of 
Arthroleptides 

3.1 Aims 

This chapter aims to investigate the systematic and biogeographical patterns in the 
frog genus Arthroleptides. Arthroleptides belong to a poorly known amphibian family 

with uncertain phylogenetic affinities. I will briefly examine the phylogenetic position 
of East African genus Arthroleptides. Using the wide sampling of Arthroleptides 

populations available I will also investigate the monophyly of the genus, species 
limits, and investigate population difference within the Eastern Arc. By investigating 
the differences between species and populations, I will also consider their 
biogeographical implications, including large-scale patterns of African biogeography 

and regional biogeography. In particular I will explore the possible effect the 

suggested fragmentation and prolonged isolation of mountains of the Eastern Arc 
have had on the genus. 

3.2 Introduction 

3.2.1 Arthroleptides 

Arthroleptides are ranid frogs found restricted to the montane forest regions of East 

Africa, and are associated with riverine habitats, hence the name torrent frog. Of the 

three currently described species, two are endemic to the Eastern Arc (Channing at 

al. 2002; see Fig. 3.1) and are almost continuously distributed along the mountains. 

They are currently assigned to the family Petropedetidae. Nieden (1910) described 

the first species Arthroleptides martiensseni (Fig. 3.2a), based on material collected 
from Amani (or presumed from, see Channing at aL 2002), in the East Usambara 

Mountains. Nieden (1910) thought his specimens resembled members of the two 

ranid genera Arthroleptis and Petropedetes, sharing the absence of vomerine teeth 

and foot morphology of the former, and the strongly broadened finger and toe tips in 

the latter (Neiden 1910). However, specimens were differentiated enough from both 

67 



rapier a. oysremarics and d ogeograpny or Annrolept d 

of these genera to warrant their own generic status. A second species, A. dutoiti (Fig 

3.2b. ), was described from the volcanic Mount Elgon, which lies on the Kenyan and 
Ugandan border (Loveridge, 1935). Since the description of A. dutoiti (Loveridge, 

1935), no further specimens have been collected, despite recent surveys in the 

region (Lötters, pers. comm. ). In light of the apparent absence of A. dutoiti in Mount 

Elgon, the species is considered critically endangered, and may even be extinct 
(G. A. A., 2004). Arthroleptides dutoiti can be easily distinguished from A. martiensseni 
by its smaller size and reduced webbing. 
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Figure 3.1 

Distribution of the Arthroleptides in East Africa (see Table 3.1 for details). Areas in green are 

Eastern Arc Mountains, areas in brown are of more recent volcanic origin. See Table 3.1 for 

key to numbers. 

The most recently described species from this genus was Arthroleptides yakusini (Fig 

3.2c. ), found in the southern montane region of Tanzania (Uluguru, Udzungwa, and 
Mahenge) (Channing et al. 2002; Loader et al. 2004a). This Arthroleptides species 
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has a large body size, distinguished by its extensive webbing, and reduced 

supratympanic ridge (Channing et al. 2002). Prior to the description of the southern 

species A. yakusini ('ya kusini' means from the south), A. martiensseni was thought 

to occur throughout the Eastern Arc (East Usambara, Ngurus, Uluguru, and 
Udzungwa) (Frost, 2002). The description by Channing et al. (2002) of A. yakusini 

split the distribution; with A. martiensseni restricted to the East Usambara. The 

specific status of material collected from the Ngurus (Emmrich, 1994), is however still 
in doubt because this material has not been examined (Channing et al. 2002). 

Table 3.1 

List of the occurrence of Arthroleptides species in East Africa and sampled in this study. With 

66% of populations sampled. 

Species Locality Reference Sampled 
1 Arthroleptides dutoiti Mount Elgon Loveridge, 1935 X 

Kenya 
2 Arthroleptides martiensseni East Usambara, Nieden, 1910 

Tanzania 
3 Arthroleptides cf. martiensseni Nguru, Emmrich, 1994 X 

Tanzania 
4 Arthroleptides yakusini Uluguru, Channing et al. 

Tanzania 2002. 
5 Arthroleptides yakusini Udzungwa, Channing et al. 

Tanzania 2002. 
6 Arthroleptides yakusini Mahenge, Loader et a/. 

Tanzania 2004a. 

Figure 3.2 

Pictures of Arthroleptides (a) A. martiensseni (Amani, East Usambara) (b) A. dutoiti (Mount 

Elgon), scale in cm (c) A. yakusini (Udzungwa). Pictures kindly provided by Vonesh, Rosado 

and Menegon, respectively. 
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Chapter 3. Systematics and Biogeography of Arthroleptides 

3.2.2 Phylogenetic relationships among Petropedetidae frogs and outgroups 

Noble (1931) erected the subfamily Petropedetinae for the two genera Arthroleptides 

and Petropedetes, which were similar in their 'size and palates' (p. 520). A confused 
history then followed in which certain "ranid" genera were gradually placed in the 

subfamily, and taxonomic ranks were changed (Dubois, 1992). The changing of 
taxonomic ranks in ranids was argued as not being adequately justified (Inger, 1996) 

but is generally followed today (Frost, 2002). The group is now formally recognised 
in the family Petropedetidae (Frost, 2002), which consists of the following 12 genera: 
Anhydrophryne, Arthroleptella, Arthroleptides, Cacosternum, Dimorphognathus, 

Ericabatrachus, Microbatrachella, Natalobatrachus, Notophryne, Petrodepetes, 

Phrynobatrachus, Phrynodon, Poyntonia (Duellman and Trueb, 1994). There are 

approximately 102 species currently described from this family, and half of these 

species belong to the pan-African genus Phrynobatrachus (68 species). The 

petropedetids also comprise a number of monotypic genera (Anhydrophryne, 

Dimorphognathus, Ericabatrachus, Microbatrachella, Natalobatrachus, Nothophryne, 

Phrynodon, Poynotonia), which show highly derived features. Possibly, as a 

consequence of these highly derived forms, phylogenetic relationships among 

Petropedetidae are poorly understood, and even the monophyly of the group is far 

from well established (Blommers-Schlösser, 1993). 

Despite the various controversies concerning the taxonomic status of ranoid frogs 

(Frost, 2002), petropedetids are considered part of the superfamily Ranoidea (sensu 

Ford and Canatella, 1993). Their 'ranid' affinities have been supported by various 

morphological studies (e. g. Noble, 1931; Griffiths, 1957,1963). Griffiths suggested 

the grouping of petropedetids with dendrobatids in a ranid Glade, but this has been 

disputed (Ford, 1993). Recent morphological studies have provided only a limited 

understanding of relationships among Petropedetides (Scott, 2002; Largen, 1991). 

Interestingly there appears to be support for the genera Arthroleptides, 

Ericabatrachus, Petropedetes, and Phrynodon forming a 'natural phylogenetic group' 

(Largen, 1991; p. 150), which Scott (2002) partially agreed with, excluding Phrynodon 

from this Glade. If correct, this finding is consistent with distribution patterns shown in 

other afromontane amphibian groups, with species showing closer relationships 

between montane East and West African and Ethiopian highlands than with species 

in close proximity, as also shown in bufonids, microhylids and caecilians (Largen, 

1991; Poynton, 1999; Nussbaum, 1985). 
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Other Ranids 
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Petropedetes 

Ericabatrachus 
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Arthroleptides 

Other Ranid 
Families 

Ranoidea 
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Petropedetidae 

Figure 3.3. 

Summary of the relationships among Petropedetidae frogs, group A represents all other eight 
Petropedetidae genera, summarised from various sources. 

Molecular investigations on petropeditids have been sparse and not particularly 
informative, because only one or two relevant taxa have been sampled. For example, 

Vences et al. (2003a) found the genus Petropedetes to form a weakly supported 

Glade with the African ranid Ptychadena, and Biju and Bossuyt (2003) found good 

support for the placement of Petrodepetes as sister to consecutive lineages of Asian 

ranids (Meristogenys), Indian rhacophorids (Philautus) and mantellids (Boophis). 

Only one African ranid was included in the former study, and no African ranids were 

included in the latter study, so Interpretations are very limited. The most significant 

finding is that shown by Van der Meijden et al. (2004) who provided evidence for the 

paraphyly of petropedetids using a nuclear marker, RAG 1. Their study found that the 

south African genus Cacosternum forms a Glade with Ptychadena, with Petropedetes 

basal to this group (no other relevant taxa were included), thus suggesting that 

petropedetines are paraphyletic, unless Ptychadena is considered a petropedetidae. 

Clearly, further research, both molecular and morphological is needed to establish 

the relationships among this family, as well as the wider relationships among ranids. 

Certain outgroups were utilised in this study which provided suitable calibration 

points for molecular dating estimates, including the Pipid genera; Pipa and 
Hymenochirus, Hyperoliid genera; Tachycnemis, Heterixalus, Afrixalus, Hyperolius, 
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Mantellid genera; Boophis and Mantidactylus. The phylogenetic relationships among 
these groups are better understood, but will not be treated exhaustively here, for 

reviews see Cannatella and Trueb (1988) Drewes (1984) Emerson at al. (2000) 

Vences et al. (2003a, b) and Biju and Bossuyt (2003). A brief summary is provided 
below. 

The Hyperoliidae, commonly known as Treefrogs (Schiotz, 1999), comprise over 200 

species of African, Madagascan, and Seychellean species (Drewes, 1984; Ford and 
Cannatella 1993; Duellman and Trueb, 1994; Frost, 2002). Ford and Cannatella 

(1993) defined Hyperoliidae as the name for the descendants of the hyperoliid 

genera (Acanthixalus, Afrixalus, Callixalus, Chrsobatrachus, Cryptohylax, 

Heterixalus, Hyperolius, Kassina, Kassinula, Leptopelis, Nesionixalus, Opisthothylax, 

Phlyctimantis, Tachycnemis, and Tornierella). Drewes and Wilkinson (2004) recently 

returned to the synonomy of Hyperolius the Sao Tome Hyperoliid genus 

Nesionixalus. Hyperoliid phylogeny has been analysed based on morphology (Liem, 

1970; Drewes, 1984) and this has provided evidence for the monophyly of 

hyperoliids. Recently the relationships among hyperoliids have been questioned 

using molecular data, showing a more complex picture. Vences at al. (2003a, b) and 

Van der Meijden et al. (2004) questioned the monophyly of Hyperoliidae, with 

Leptopelis forming a Glade with the non-hyperoliid genus Arthroleptis. Broader 

sampling will be necessary to fully test the monophyly of Hyperolidae, which is not 

the subject of this study. 

3.3 Materials and methods 

3.3.1 Specimens 

The specimens sampled are given in Table 3.2 

3.3.2 Phylogenetic analyses 

To investigate the phylogenetic relationships among Arthroleptides and their 

molecular divergence times, two datasets were compiled in BioEdit. The first dataset 

included all the taxa shown in Table 3.2, and this alignment was used to estimate 

divergence times. The second data set included only Arthroleptides and 
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Petropedetes taxa, thereby including a larger proportion of the original sequence 
data, because there were fewer hypervariable regions. Following analyses (among 

many others, Biju and Bossuyt, 2003; Vences et al. 2003a; Hertwig et al. 2004) that 

show the basal position of pipids relative to all neobatrachids, the two pipid species 
Hymenochirus boettgeri and Pipa parva were designated as the outgroup and used 
to root trees for analyses of the complete dataset. In the second alignment, the West 

African species Peteropedetes parkeri was used as the root of the tree, as this 

showed robust support as the sister group to Arthroleptides in all preliminary 

analyses. 

3.3.3 Dating estimates 

Specifications for the molecular dating estimates are given in Chapter 2. 

Table 3.2. 
Arthroleptides and outgroups analysed in this study, *= sequences obtained from Genbank. 

Sequence 

number Specimens Species Locality Forest Reserve 

T282 MW 1844 Arthroleptides yakusini Mahenge Sali FR 

T285 MW 1852 Arthroleptides yakusini Mahenge Sail FR 

T286 MW 1854 Arthroleptides yakusini Mahenge Sall FR 

T414 KMH 22148 Arthroleptides yakusini Udzungwa West Kilombero Scarp FR 

T415 KMH 21533 Arthroleptides yakusini Uluguru Kasanga FR 

T416 KMH 21535 Arthroleptides yakusini Uluguru Kasanga FR 

T417 KMH 21215 Arthroleptides martiensseni East Usambara Nilo FR 

T419 KMH 21188 Arthroleptides martiensseni East Usambara Nilo FR 

T458 RdS5862 Arthroleptides yakusini Uluguru Uluguru North FR 

T459 RdS5946 Arthroleptides martiensseni East Usambara Amani NR 

T464 MW 3044 Hyperolius puncticulatus Ukaguru lkwamba FR 

T465 MW 1837 Afrixalus uluguruensis Mahenge Sall FR 

T466 MW 2338 Arthroleptis tannerl West Usambara Mazumbi FR 

n/a n/a *Pipa parva South America n/a 

n/a n/a *Hymenochirus boettgeri West Africa n/a 

n/a n/a *Petropedetes parker! West Africa n/a 

n/a n/a *Mantidactylus sp. Mayotte n/a 

n/a n/a *Mantidactylus wittei Madagascar n/a 

n/a n/a *Boophis sp. Mayotte n/a 

n/a n/a *Boophis tephraeomystax Madagscar n/a 

n/a n/a *Heterixalus tricolor Madagscar n/a 

n/a n/a *Tachycnemis seychellensis Seychelles n/a 
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3.4 Results 

3.4.1 Phylogeny 

1 
3.4.1.1 Data Quality and details 

All PCR amplifications from DNA templates yielded products of the expected size, 

which when analysed In Sequencher 3.1.1 TM contained minimal levels of site 
ambiguity. The PTP test rejected the null hypothesis of no more structure in the data 
than randomly permuted data (P> 0.001). There was no significant difference in base 

composition across all taxa (chi-squared tests for homogeneity, P= 1). Further 

comparisons were made between each partial gene fragment to investigate the 

extent to which the data sets individually result in different trees. Incongruence length 
difference test as applied in PAUP (partition homogeneity test) and showed no 
significant incongruence between each data set (P> 0.99), suggesting that combining 
the datasets would not be problematic (Cunningham, 1997). Each gene was 

subjected to combined and separate analyses, and no significant topological 

differences were noted for Petropedetidae groups. Branch lengths indicated different 

rates of molecular evolution between cytb, 12S and 16S (Fig. 3.4a-c), with cytb 

evolving more rapidly and basal splits being more strongly compressed. Furthermore, 

analysis of each cytb site showed 3rd positions to have a increased 

transition/transversion rates than 15t and 2nd positions, which is consistent with what 
is known about codon evolution e. g. Graybeal (1993) (see Fig. 3.4d-f). Third position 

analysis shows greater resolution at tree tips and increased number of changes 

relative to other positions (Fig. 3.4d-f). Saturation plots were calculated for each gene 

partition, and these indicate that the data appear not to be saturated (summarised in 

Fig. 3.4g), as shown by significant r2 value, and separation of transition and 
transversion regression lines. In cytb for the third position, the most rapidly evolving 

sites, greater transition and transversion rates are shown than other partitions, which 

might suggest saturation In the data. Overall however, relationships inferred from 

each data partition, and reconstruction methods have almost entirely congruent tree 

topologies. 

The first, larger alignment, including all taxa consisted of 22 taxa and 1537 

characters: see Table 3.3 for details. The second, petropedetidae alignment, 

consisted of 11 taxa and 1710 characters: see Table 3.4 for details. Constant 

characters comprised 55% of the first alignment and 82% of the second. 
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Figure 3.4 

(a-f) Comparison of branch lengths for different data partitions (g) Plot of substitution of 

transversions and transitions, indicating levels of saturation, with transitions in purple, and 

transversions in blue, r2 value for transitions (r2`0.9152) and transversions (r2-0.9212). 

Table 3.3. 
Details of character informativeness for the full alignment of 22 taxa. 

cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 389 216 161 12 180 279 848 
Variable- 62 19 27 16 33 42 137 
uninformative 
Parsimony 333 26 73 234 100 119 552 
informative 
Total 784 261 261 

1 
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1 
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Table 3.4. 
Details of character informativeness for Arthroleptides and Petropedetes. 

cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 614 252 235 127 359 436 1409 

Variable- 60 7 15 38 35 59 154 
uninformative 
Parsimony 110 2 11 97 10 27 147 
informative 
Total 784 261 261 262 404 522 1710 

3.4.1.2 Phylogeny 

The results show highly congruent patterns of relationships among all the partitions 

and the methods of analysis, with little ambiguity in the relative position of all taxa. 

Where there was difficultly in resolving relationships, this was usually because of little 

divergence among samples. A summary is shown in Fig 3.5. a of the strict consensus 

of MPTs and in Fig-3.5. b the single maximum likelihood tree. 

All data partitions and combined analysis agreed upon the relationships shown in Fig. 

3.5 apart from in some data partitions where populations of A. yakusini and A. 

martiensseni were not as well resolved, the African treefrog sister group to the 

treefrog genera Heterixalus and Tachycnemis, and the position of Arthroleptis 

relative to treefrogs and mantellids. The position of the treefrogs, as shown in Fig. 

3.5, was well supported in all combined analyses, and this resolution is a significantly 

better fit to the data than suboptimal 'groupings in both likelihood (P=<0.001) and 

parsimony topology tests (P=<0.001). Only in separate likelihood analyses of 12S 

and 16S was this topology shown to be poorly resolved in a polytomy. Likelihood 

analysis of 16S data also showed weak support for the grouping of Arthroleptis and 

mantellids, whereas all other analyses show there was moderate support for 

Arthroleptis as sister group to the Hyperoliids sampled in this study. 
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Figure 3.5 
(a) Strict consensus of 11MPT, tree length 1910. Bootstrap proportions shown above 
branches, Decay Index values shown below, along with Templeton test result (+= <0.05 

significant). (b) Maximum likelihood tree (LnL= 9722.46810), GTR+I+G model using 
Modeltest. Base frequencies estimated at 0.3349,0.2644,0.1291 and 0.2716 for A, C, G and 
T respectively, substitution rates =1.0000,4.5963,1.0000,1.0000,8.8352, and the proportion 

of invariant sites set at 0.3256 and a gamma distribution shape parameter of 0.4430. Values 

on branches show Bayesian posterior probabilities, bootstrap proportions calculated using 

distance criterion; kimura 2 parameter, LogDet, and maximum likelihood. Below branches 

shows SH test results (+_ <0.05 significant). 
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Divergence within the populations of the species A. yakusini and A. martiensseni is 

very limited (see Appendix 4), and it is because of this that the phylogenetic 

relationships within these populations are not well resolved in any analyses. This is 

clearly shown in the second Arthroleptides alignment, which shows a majority of 

characters being constant (82%). Among the Arthroleptides populations, only within 
A. martiensseni and Mahenge A. yakusini are there any substantial phylogenetic 

structure between haplotypes, which is shown between Nilo FR and Amani NR, and 
Sali FR but this is only weakly supported (Bootstrap=68 and 70 respectively, see Fig. 
3.5). 

Overall, the phylogeny provides robust support for the recognition of the groups 
including hyperoliids, mantellids, Petropedetidaes and Arthroleptides. The 

monophyletic grouping of Petropedetes and Arthroleptides is well supported. Within 

Arthroleptides, the divergence of two main clades represented by the species A. 

martiensseni and A. yakusini is shown to be robustly supported and an unambiguous 

resolution. In addition there is significant support for the recognition of sub 

populations in A. yakusini, characterised between each mountain block of occurrence 
(Mahenge, Uluguru, and Udzungwa). 

3.4.2 Molecular divergence estimates 

3.4.2.1 Consistency of calibration estimates 

The reliability of the calibration points were Investigated in two ways; (1) by fixing one 

of the two calibration points, and using this fixed point to then estimate the 

divergence time for an unfixed calibration point. The divergence times for each 

unfixed calibration point could be estimated and then compared to each fixed time. 

For example, fixing the split between Hymenochirus and Plpa at 101 mya, to 

estimate the divergence of unfixed Mantidactylus species pair. (2) Comparison of 

divergence estimates for taxa common to both this study and that of Vences of al. 

(2003a). Vences et al's (2003a) divergence estimates are based on nuclear gene 

fragments, whereas the study here compares partial mitochondrial gene fragments 

from the same taxa. Particular taxa were included into the alignment to test this (eg. 

Hoterixalus, Tachycnemis, Afrixalus) and are compared to divergences given by 

Vences et al. (2003a). The calibration points appear to provide reasonably robust 

7R 



Chapter 3. Systematics and Biogeography of Arthroleptides 

reciprocal estimates of each other (see Table 3.5a). The confidence intervals given 

allow the rejection of the hypothesis that single fixed calibration point estimates show 

substantial difference in divergence estimates from multiple fixed calibration points, 

and thereby validating their usage as calibration points. Comparison with the 

estimates given in Vences et al. (2003a) to the dates estimated using mitochondrial 

data here show good correspondence for the Tachycnemis Heterixalus Glade. The 

overall congruence and consistency in the estimation of divergence is also not 

surprising given that the data provide a robust phylogenetic hypothesis of 

relationships, and appear to be little affected by saturation. 

Table 3.5. 

Consistency of dating estimates (a) Single calibration point estimation (b) Comparison of 
molecular divergence dates between Vences et a/. 2003a and this study. 

Estimated time using single fixed calibration points 
(a) Hymenochirus and Pipa Mantidactylus species pair 
Hymenochirus and Pipa 113.23 (97.34-126.23) Constrained 

Mantidactylus species pair Constrained 10.62 (7.67-10.98) 
Calibration= 101 mya Calibration= 8.7 mya 

(b) Vences et al., (2003a) This study 

Tachycnemis Heterixalus 11-21 Myr 14.97 

3.4.2.2 Absolute time estimates for Arthroleptides 

Estimation of divergence times was carried out using both Langley-Fitch and 

Penalized likelihood approaches. Rate heterogeneity in the data set was shown to be 

marginally significant, as shown by the likelihood ratio test (i=31.59294, P=>0.05, 

d. f. =20) demonstrating that with the molecular clock enforced there was a significant 

difference between likelihood scores. Two estimates were carried out on an 

alignment including all taxa, and one with the removal of Petropedetes, which 

contained only a partial segment of cytb sequenced for all other taxa. The two 

estimates are shown in Table 3.6. Alternative data partitions were also investigated 

(not shown), with cytb data removed (including the third positions). The results of 

these did not conflict with the results shown below. 
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Table 3.6. 

Absolute divergence times in Myr. for clades within Petropedetidae. 
Most recent common 

ancestor (MRCA) 
Petropeaetes removed 

ngley-Fitch I Penalized La 

Likelihood I Likelihood 

n/a 
Arthroleptides 60.17) 
A. martiensseni Vs. 18.94 19.88 (15.17- 19.88 22.01 (18.23- 
A. yakusini 25.32) 26.62) 
A. yakusini Mahenge 4.56 3.65 (2.76- 2.34 2.53 (1.94-4.01) 
Vs. Udzungwa, Uluguru 4.81) 

A. yakusini Udzungwa 2.03 2.55 (1.69- 1.71 1.79 (0.75-1.79) 
Vs. Uluguru 2.76) 

3.5 Discussion 

3.5.1 Phylogeny 

3.5.1.1 Higher level relationships 

Taxonomic sampling of African ranids is very limited, and therefore this analysis 

offers only a tentative understanding of their phylogenetic relationships. There have 

been a number of molecular phylogenies including ranids published recently, and 

these data have formed part of the sequences analysed here (Biju and Bossuyt, 

2003; Vences et al. 2003a, 2003b). However, based on the newly collected samples 

added to these sequences, there are new insights that can be made (see Fig. 3.5). 

The optimal trees provide strong support for the monophyly of Hyperoliidae, with a 

basal Hyperolius, and Afrixalus sister to Tachycnemis and Heterixalus. This result is 

entirely congruent with the combined results from molecular phylogenies of Vences 

at al. (2003a, b) and van der Meijden at al. (2004), and in addition to combined 

morphology and molecular datasets (Emerson et al. 2000) and morphological 

analyses of Drewes (1984) where there is overlap in sampling. 

The position of Arthroleptis as basal to the Hyperoliidae is also congruent with other 

molecular studies (Emerson et al. 2000; Biju and Bossuyt, 2003; Vences et al. 

2003a, b). The close grouping of "Mantellidae" (sensu Vences et al. 2003b) with 

Petropedetidae is clearly resolved In this analysis, and supported in previous analyse 
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(Biju and Bossuyt, 2003; Vences et al. 2003a, b), which indicate a more recent 

common ancestor shared between these two clades than with arthroleptid or 
hyperoliids. The grouping of the petropedetides genera Arthroleptides and 
Petropedetes in this analysis is unsurprising based on their morphological similarity 
(Largen, 1991). Without sampling any further petropedetid lineages, or African 

ranids, this analysis provides only tentative insights into the relationships of 

petropedetids. The grouping of the petropedetid Cacosternum with Ptychadena (not 

a petropedetid), albeit weakly, in van der Meijden's (2004) study highlights the poor 

understanding we have of the relationships among petropedetidae and ranids in 

general. Ford (1993) suggested that the petropedetids might be paraphyletic with 

respect to other African ranids, which is supported by Scott (2002). Further analysis 

of other putative petropedetidae lineages and ranids will be necessary to resolve the 

relationships among this group of frogs which is beyond the scope of this study. 
Given the poor understanding we have of the content and meaning of 'Ranoidea' as 
it stands (Inger, 1996), a wide sampling strategy will be necessary to fully resolve 

Hymenochirus 

Figure 3.6. 
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Summary of the higher relationships inferred from 12S, 16S and cytb data presented in this 

study. 
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3.5.1.2 Arthroleptides: species and population differences 

Species limits in Arthroleptides 
Three species of Arthroleptides are currently recognised (Channing, et a/. 2002) and 

molecular evidence in this study provides good support for two of these species. The 

monophyly of Arthroleptides can be further tested if A. dutoiti is included in future 

molecular analyses. The distinction of a southern Eastern Arc Glade, as recently 

recognised morphologically by the species Arthroleptides yakusini, is found in all 

analyses. Pairwise comparisons (see Table 3.7) show considerable percentage 

sequence difference (7.8%) between the A. yakusini Glade and A. martiensseni 

Glade, a percentage difference that Is substantially greater than that exhibited 

between other amphibian species using the same genes (e. g. Wieczorek et a/. 1997). 

Based on the data presented here, and morphological studies (Channing at al. 2002), 

the status of A. yakusini as a distinct species is well corroborated. Within the species 

A. yakusini there is clear geographical structure, with distinct populations in Uluguru, 

Udzungwa, and Mahenge Mountains all strongly supported. These populations 

appear to show limited infraspecific haplotype diversity within each mountain block, 

but between mountains there are 1-2% differences, which suggest a period of 

substantial isolation. The Mahenge Glade also appears to show the greatest 

divergence from the other mountain populations (in A. yakusini), as demonstrated by 

pairwise differences (See Table 3.7). 

Data provided in this study suggest that the Mahenge population of Arthroleptides 

yakusini might be a distinct lineage, and therefore a candidate for a previously 

unrecognised species. Further morphological and molecular studies will be 

necessary to see if there are any distinct phenotypic characters in the population that 

may provide evidence for the separation of this population from Uluguru and 

Udzungwa populations. No endemics have yet been detected in the Mahenge 

amphibian fauna, but evidence from other groups (Keilland, 1990; Lovett and Pocs, 

1993; Mariaux, pers. comm. ) suggests this area might be rich in endemics. The 

sampling of Arthroleptides in each mountain population is somewhat restricted and 

this limitation makes population interpretations tentative. Further understanding of the 

haplotype diversity and population level differences in these species will require a 

greater sampling of populations and genetic markers. 
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yakusini T282 (Sal! FR) 

yakusini T286 (Sah FR) MAHENGE 

yakusinl T285 (Sall FR) 

yakuslni T414 (West Kllombero Scarp) I 
UDZUNGWA 

yokusini T415 (Kasanga FR) 

yakusini T416 (Kasanga FR) txucuau 

yakusini T458 (Uluguro North FR) 

martiennsen! T417 (Ndo FR) 

marfiennsen! T419 (Nifo FR) EAST USAMBARA 

maRiennsen! T459 (Amani A(R) - 

hopedetes parker! 

Figure 3.7 

Phylogeny of Arthroleptides alignment, with Bootstrap proportions shown above branches. 

Table. 3.7 

(a) Percentage pairwise difference in Arthroleptides. (b) Geographical distance between 

mountain blocks in the Eastern Arc Mountains. 

(a) % Sequence variation Within population Between population To sister species 

A. yakusini (Mahenge) 0.01-0.07% 1.3-1.56% 7.87-7.90% 

A. yakusini (Uluguru) 0.13% 0.52-1.56% 7.92-7.97% 

A. yakusini (Udzungwa) n/a 0.50-1.30% 7.68-7.71% 

A. martiensseni 0.01-0.07% n/a 7.87-7.97% 

(b) Geographical distance Mahenge Uluguru Udzungwa E. Usambara 

(Sall) (Kasanga) (WKS) (Amani) 

Mahenge (Safi) - 270km 155km 449km 

Uluguru (Kasanga) - 194km 217km 

Udzungwa (WKS) - 405km 

East Usambara (Amani) - 

All 
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3.5.2 Biogeography 

3.5.2.1 East and West African rainforest biogeography 

An ancient vicariant event separating the forests of East and West Africa has been 

hypothesised as being critical in shaping the evolution of rainforest taxa in Africa (see 

Chapter 1) (Kingdon, 1989; Lovett, 1993a; Burgess et aL 1998a). Data presented 

here suggest that the separation of two montane taxa, the West African Petropedetes 

and East African Arthroleptides predate a recent dispersal/vicariant event between 

these two regions, and even a Miocene event. The most conservative estimates 

show a date of 50 Mya, in the Eocene period; a phase substantially predating the 

initiation of the uplift of the central African plateau when East and West African forest 

started its slow separation (Lovett, 1993a). If the molecular clock estimates are 

correct then the separation is consistent with the hypothesis that dispersal of forest 

amphibians between both East and West Africa was restricted, however this is 

unlikely to be the causal factor for the split. Which causal factors might be important, 

given the poor understanding we have of this period in Africa (Morley, 2000), is 

uncertain. Future investigations may contradict the tentative conclusions made here, 

such as; finding of Pedropedetes in East Africa or Arthroleptides in West Africa, or 

opposite distribution to that seen today of post-Miocene fossils with paraphyly of this 

group and conflicting dating estimates. In addition, there might be concerns on the 

use of mitochondrial data for such ancient divergence events (Vences at al. 2003a). 

Future work on this should concentrate on estimates using nuclear data that may 

more accurately measure absolute time of splitting events. Sampling of other 

Petropedetid genera (e. g. Ericabatrachus) would also further elucidate biogeographic 

history of Africa, as well as examining other groups with similar distributions (e. g. 

Nectophrynoides and caecilians). 

3.5.2.1 Eastern Arc biogeography 

The biogeographic history of the EAM is long and complex (see section Chapter 1). 

The main process that is thought to have driven the diversification of organisms in 

this region is the gradual isolation of EAM from other mountain regions (e. g. 

Southern Highlands) and between each EAM block, these events correlated with the 

orogenic activities in the region over the past 25 Myr. Since these orogenic events, 

contacts and separations between forests within and between mountains in the EAM 
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may have been initiated by climatic changes in the region, which will have directly 

influenced the distribution of forests organisms. 

Temporal correlations in Arthroleptides 
The results presented here show a strong correlation between phylogeny and 

distribution, an overview of which is shown in Fig. 3.8. Located in the south of the 

Eastern Arc, clades C, and D (Arthroleptides yakusini) form a well supported Glade, 

and are deeply divergent from Glade A (Arthroleptides martiensseni) in the north. This 

pattern could be explained as the results of geographical distance between each 

area, with Glade C, and D and terminal B closely associated geographically, and 

therefore phylogenetically, or perhaps the pattern is indicative of a more definitive 

barrier to gene flow, which perhaps separated these two regions. It would be 

expected that a linear relationship between genetic pairwise distance and. 

geographical distance would be observed if the patterns were the result simply of 

geographical proximity. However, it appears this is not the case (refer to Table 3.7) 

as can be seen by proportionally large differences. For example, pairwise differences 

within the southern Glade show divergences of 1-2% for distances up to 270km, 

whereas a substantially smaller distance between Uluguru and East Usambara 

(217km) shows a 7-8% difference. If these results are representative of all the 

populations in each region, it seems more likely that sequential isolation of each 

mountain block population has been a major factor in the differentiation of this group. 

That is, that separation of East Usambaras occurred at an earlier period than that 

between Mahenge, Uluguru and Udzungwa. Bowie et al. (2004) showed that recent 

exchange between northern and southern EAM was rare, which they speculated was 

the result of a significant biogeographic barrier to dispersal. 

Based on molecular clock estimations, substantial temporal divergence is shown 

between Arthroleptides martiensseni (clade A) and Arthroleptides yakusini (clade C), 

and this split might be correlated with the significant orogenic activity in the area 

around the Miocene period (-25-10 Myr). The rift valley was beginning to be formed 

during this period, and the Eastern Arc Mountains were speculated as beginning to 

become uplifted to their present arrangement (Lovett, 1993a). It is difficult to evaluate 

how significant this event may have been on the diversification of Arthroleptides 

given the lack of any other form of data that may allow testing of this hypothesis. 

Reliable geological data, such as the exact timing of uplift and isolation of each 

Eastern Arc mountain, will be necessary to make a full assessment of these possible 
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correlations. More recent events appear to characterise the differences shown 
between the southern mountain blocks, i. e. Mahenge, Uluguru and Udzungwa (2-4 
Myr). There are numerous climatic events that occurred in East Africa around this 
Pliocene/Pleistocene period that could account for the changes in forest distribution 

(Zachos et al. 2001; Morley, 2000; Matthee et a/. 2004; Trauth at al. 2005) and 
therefore population isolation that may have restricted the exchange between each 

mountain block. Wetter periods are associated around 2-6 Myr (Lovett, 1993a), which 

may correspond to the results given here. 
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Figure 3.8 
Summary of the relationships and divergence times in Arthroleptides (refer to text for 

explanation of clades and terminal). 

Spatial Congruence in Arthroleptides 

Based on the topology recovered in this analysis, which shows a distinct difference 

between north and south Eastern Arc Mountain blocks, there are consistent area 

patterns with other animal groups: snakes (Gravlund, 2002), birds (Roy, 1997), and 
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plants (Moller and Cronk, 1997; Lindqvist and Albert, 2001). However, there are 
examples from other groups that contradict this topology (Roy et al. 2001; Hochkirch, 
2001). It Is unclear whether the congruence in these groups is indicative of a 
common biogeographical signal or, as perhaps indicated in studies that contradict the 

area relationships, is simply reflective of common dispersal routes. Analysis of the 
biogeographical patterns shared among amphibians and other groups are discussed 

more fully in Chapter 7. 

Population differentiation 
If species delimitation cannot rely solely on a tree-based method, a phylogeographic 
analysis (e. g. nested-clade analysis, Templeton, 1998) could be applied to test for 

significant association between mtDNA phylogenies and geography. However, the 

statistical and inferential power of these phylogeographical tests depend heavily on a 
thorough sampling in order to distinguish between population and species-level 
historical events (Templeton of al. 1995; Templeton, 2001). Based on the limited 

number of samples in this study, more will need to be collected before such a study 
would be meaningful, but is clearly worthy of future consideration. A different 

approach is to compare genetic distances based on nucleotide sequences, as shown 
in studies by Ashton and de Queiroz (2001) and Wieczorek et al. (1997; 2000). 

Generally, diversity within Arthroleptides populations is limited (e. g. A. martiensseni 

and A. yakusini Mahenge: see Fig. 3.7). If the limited degree of divergence between 

these populations is representative of gene flow and isolation, these results might be 

indicative of the history of forest distribution in these areas. 

Today many of the forests within each mountain are fragmented, however, prior to 

the impact of humans, rainforests would probably have been continuous within most 

mountains, certainly in the East Usambaras (Hamilton, 1988). Species therefore 

would have been capable of dispersal within the whole area, which now because of 

the patchiness of forest habitats is not possible. Thus the fragmented forest reserves 

today may have only recently restricted gene flow, and it would be anticipated that 

any phylogeographic divisions would be limited. For the East Usambara species A. 

martiensseni, small differences are noted between populations geographically 

separated, which might point to a recent interbreeding of these populations. Dense 

sampling of populations will be necessary to fully assess this hypothesis. However 

evidence from other biogeographic studies of amphibians within the Usambaras, 

although limited, show consistent phylogeographic patterns. De Sä of a!. (2004), 
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showed limited genetic differences between Mazumbal FR and Ambangula FR 

populations in the species Callulina kisiwamsitu from the West Usambara. 

Furthermore, Loader at al. (2004) showed similar patterns of population homogeneity 

within the Probreviceps macrodactylus macrodactylus complex in the East Usambara 

from Nilo FR and Amani NR, though this was not explicitly discussed. 

Samples of Arthroleptides yakusini from the Uluguru Mountains show greater 

haplotype diversity than other populations (as discussed above) despite similar 

geographical distance between population samples. The recent geographical history 

of the Uluguru Mountains is poorly understood, certainly compared to the Usambara. 

Perhaps the greater haplotype diversity is indicative of a more fragmented history or 

ecological diversification in these populations. Based on the available evidence it is 

difficult to assess these speculations, but perhaps warrants further study with an 

increased sampling of populations. A phylogeographic comparison between these 

mountain blocks maybe particularly enlightening for studies of speciation and the 

effects of ecological diversity, considering the differences taxonomically and 

ecologically between each mountain block (Fjeldsb and Lovett, 1997; Menegon et al. 

2004). 

RR 



Chapter 4. Systematics and Biogeography of African Microhyfids 

Chapter Four 

Systematics and Biogeography of 
African Microhylids 

4.1 Aims 

This chapter assesses the phylogenetic relationships of African microhylid frogs 

based on mitochondrial sequence data. I examine the phylogenetic position of 
African Microhylids relative to each other and to some Asian Microhylids. This 

analysis includes representatives of all African subfamilies, six of the eight genera, 

and the enigmatic hemisotid Hemisus. In particular, sequence data are analysed and 

used to examine the taxonomic status of brevicipitine species and their relationships. 

Biogeographic hypotheses are examined in light of the findings gathered on the 

systematics of microhylids. A focus on Eastern Arc Biogeography is made, as this is 

one of the main areas where African microhylids are distributed. 

4.1 Introduction 

4.1.1 Microhylids 

Microhylids are a diverse group of subterranean, terrestrial and arboreal frogs 

occurring in northern Australasia, South and Southeast Asia, sub-Saharan Africa, 

Madagascar, and North and South America. The approximately 350 nominate 

species are classified in 64 genera and 10 subfamilies. This is the largest number of 

genera in any amphibian family, comprising some 15% of all frog genera (Frost, 

2002). The status, composition, inter- and intrarelationships of Microhylidae have not 

been studied in detail, and the family remains In general poorly understood. Indeed, 

even the monophyly of Microhylidae is far from established (see below). In 

association with their ecological diversity, microhylids display great morphological 

variation, particularly in their cranial and pectoral girdle structure (Parker, 1934; 

Carvalho, 1954; Blommers-Schlösser, 1993; Wu, 1994). The inadequate state of 

microhylid systematics partly stems from the lack of comparative morphological 

studies. Blair (1962) suggested the use of non-traditional character systems for 
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clarifying evolutionary relationships in frogs. More specifically, Largen and Drewes 

(1989) suggested molecular data would be useful for resolving relationships among 
African microhylids. 

4.1.1 African Microhylids 
The suprageneric taxonomy of Microhylidae has barely changed since the milestone 

monograph of Parker (1934) but, given the generally inadequate state of current 

knowledge, this is unlikely to prove stable. Currently, the eight African (excluding 

Madagascar) genera are divided into three subfamilies (Frost, 2002). The African 

Brevicipitinae consists of twenty species in five genera. Three of these genera 

(Probreviceps, Callulina, Balebreviceps) are found in evergreen forests of East 

Africa, whereas the remainder (Breviceps, Spelaeophryne) are also known to inhabit 

some drier habitats. Among the moist forest genera, Probreviceps is the most 

speciose (3 species) and apart from the Zimbabwean P. rhodesianus is found 

principally in the mountain forests of Tanzania (Howell, 1993). P. macrodactylus is 

subdivided into three subspecies (Parker, 1934), P. m. macrodactylus from the 

Usambara, P. m. loveridgei from the Uluguru and Udzungwa, and P. m. rungwensis 

from Rungwe and the Udzungwa. The latter two subspecies are sympatric in the 

Udzungwa Mountains, suggesting that they. may be separate species. Callulina is 

also found throughout the Eastern Arc Mountains, and is known from C. kreffti and a 

species recently described from the West Usambaras, C. kisiwamsitu. De Sä et al. 

(2004) anticipated that 'other disjunct populations throughout the Eastern Arc 

Mountains may also prove to be distinct species'. Ba/ebreviceps is monotypic, with B. 

hilimani known from the Bale Mountains, Ethiopia (Largen and Drewes, 1989). The 

only species of Spelaeophryne, S. methneri, is found in both low and highland areas 

of southeastern Tanzania, and Breviceps (15 species) is confined to eastern and 

southern Africa, being 'concentrated in South Africa' (Poynton, 1964; see also 

Channing, 2001; Minter, 2003). The Indo-African Melanobatrachinae comprises four 

species: Melanobatrachus indicus (Western Ghats, India), Hoplophryne rogersl (East 

Usambara, Tanzania), Hoplophryne uluguruensis (Uluguru and Udzungwa, 

Tanzania), and Parhoplophryne usambaricus (East Usambara, Tanzania). These 

species all appear to be strictly confined to forests. The subfamily Phrynomerinae 

comprises five species of Phrynomantis that have a wide distribution across savanna 

and woodland habitats in sub-Saharan Africa (see Fig. 4.2 and Table 4.1 for 

summary). 

90 



Chaps 

Figure 4.1 

Photos of microhylids and Hemisus (a) Callulina kreffti (b) Probreviceps new sp. (Ukaguru) (c) 

Hop/ophryne rogersi (d) Hemisus marmoratum. Photos provided kindly by Vonesh (a, c) 
Menegon, (b) and CAS (d). Scale unknown for all photos. 
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Figure 4.2 

Distribution of East African Microhylids, distributed in Tanzania unless otherwise stated. 

Areas in green are Eastern Arc Mountains, areas in brown are of more recent volcanic origin. 
See Table 4.1 for key to numbers. 
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Table 4.1. 

Occurrence of African Microhylids, species occurring in Tanzania unless stated otherwise. 
With 66% of populations sampled. 

Species Locality Reference Sampled 
1 Callulina sp. Taita hills, Howell, 1993 

Kenya 
2 Callulina sp. North Pare, This study 

3 Ca/lulina sp. South Pare, This study 

4 Callulina sp. Shimba hills, AMNH collection x 
Kenya 

5 Callulfna sp. West de Sä, et al. 2004. 'I 
Usambara, 

6 Callulina sp. East Usambara, Nieden, 1910. 

7 Callulina sp. Nguu, Menegon, 2003. 

8 Ca/lulina sp. Nguru, Emmrich, 1994. X 

9 Callulina sp. Ukaguru, Akker and 'l 
Highstead 1994. 

10 Callulina sp. Uluguru, Barbour and 
Loveridge 1928. 

11 Callulina sp. Udzungwa, Frontier, 2001 '1 

12 Probreviceps m. macrodactlyus West Howell, 1993 X 
Usambara, 

13 Probreviceps m. macrodactlyus East Usambara, Nieden, 1910 

14 Probreviceps m. macrodactlyus Nguu, Menegon, et al. X 
2003b 

15 Probreviceps m. macrodactlyus Nguru, This study. X 

16 Probreviceps new sp. Ukaguru, Channing et at 
2002 

17 Probreviceps uluguruensis Uluguru, Barbour and 
Loveridge, 1928. 

18 Probreviceps m. loveridgei Uluguru, Parker, 1931. 'I 

19 Probraviceps m. loveridgei Udzungwa, Parker, 1931. '1 

20 Probreviceps m. rungwensis Udzungwa, This study. 

21 Probreviceps m. rungwensis Southern Parker, 1931. X 
Highlands, 

22 Probreviceps rhodesianus Stapleford, Poynton et al. X 
Zimbabwe 1967 

23 Spelaeophryne methneri Uluguru, Doggart et al. 
2004. 

24 Spelaeophryne methneri Udzungwa, This study. X 

25 Spelaeophryne methneri Kilombero, Hinde et al. 2002. 

26 Spelaeophryne methneri Mahenge Loader et al. 
2004a. 

27 Spelaeophryne methneri Matembo, Parker, 1931. X 

28 Parhoplophryne usambarica East Usambara, Barbour and X 
Loveridge, 1928 

29 Hoplophryne rogersi East Usambara, Barbour and 
Loveridge, 1928 

30 Hoplophryne rogersi Nguu, Menegon et al. 
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2003b 
31 Hoplophryne uluguruensis Uluguru, Barbour and X 

Loveridge, 1928 
32 Hoplophryne uluguruensis Udzungwa, Frontier, 2001 '1 

4.1.2 Phylogenetic Relationships of African Microhylids 
Parker's (1934) monograph of the family Microhylidae stands as the most significant 

contribution to microhylid taxonomy, and the first attempt to understand relationships 

among Microhylids. The taxonomy of the family has changed very little since Parkers 

(1934) contribution (Duellman and Trueb, 1994). Parker recognised two subfamilies 

with African members; the African Brevicipitinae and the Indo-African 

Melanobatrachinae. The only alteration to Parker's (1934) classification was the 

inclusion of the genus Phrynomantis by Laurent (1941) as the third African microhylid 

subfamily (Phrynomerinae), which is recognised today (Frost, 2002). Parker (1934) 

recognised Brevicipitinae as a subfamily within the Microhylidae for Breviceps 

Merrem, 1820, Callulina Nieden, 1910, Probreviceps Parker, 1931 and 

Spelaeophryne Ahl, 1924. Although he did not comment specifically on the 

relationships between the genera within the subfamily he did provide some data from 

which a few basic inferences may be made. Parker (1934) wrote that breviciptines 

were exclusively African (actually confined to southern and eastern Africa; p. 10), and 

that the four genera were "closely allied" but were not apparently "particularly closely 

related to any of the other existing genera" within the Microhylidae. He also noted 

that the breviciptines were the only microhylid subfamily in which the complete 

shoulder girdle was retained in all genera. This may suggest breviciptines are a 

monophyletic and possibly basal Glade with respect to other microhylids. The 

implication of monophyly is further supported by Parker's comment on the special 

nature of the vomer, reduced posteriorly but bearing a large anterior and medial 

expansion. 

Parker (1934) made no specific comment on the relationships within the 

Melanobatrachinae, though by the affiliation of Hoplophryne and Parhoplophryne with 

Melanobatrachus, based primarily on the absence of auditory apparatus he 

suggested an affiliation. The arrangement of the sub family Melanbatrachinae has 

surprisingly not been questioned (Noble, 1931; Savage, 1973; Laurent, 1986). Parker 

(1934; p. 11) did speculate briefly on the relationships of the Melanobatrachinae with 

other microhylids, suggesting that despite the group being 'incompletely known' they 

seemed to be a 'natural, probably archaic, assemblage... possibly a distinct family' 
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Two quantitative analyses have recently questioned Parker's groupings; 1) 

Blommers-Schlösser's (1993) analysis of 20 morphological characters and 2) Wu's 

PhD dissertation (1994), a cladistic analysis of the Microhylidae using 188 

morphological characters. Both Blommers-Schlösser and Wu found that 

Brevicipitinae differ substantially from the remaining microhylids in a number of 

morphological features, and they share characters with the enigmatic genus 

Hemisus. These findings led Blommers-Schlösser to suggest removing the 

Brevicipitinae from Microhylidae and include it with Hemisus in a new family, 

Hemisotidae. In contrast Wu (1994) found that Rhinophrynus also grouped with 
Hemisus in a family he named 'Brevicipitidae'. Morescalchi (1973) provided 

supporting evidence for the divergence of breviciptids from all other microhylids with 

the similarities in 24 karyotype of Breviceps, Ranids and Hemisus, despite this, 

Bogart (1976, p. 206) considering them to be 'best explained' as convergences. 

Blommers-Schlösser's (1993) analysis was criticised by Channing (1995) who 

investigated the anatomy of Hemisus and Brevicipitinae, pointing out character 

differences between the genera, which has been further supported and extended in a 

recent analysis of osteology (van Dijk, 2001). Channing (1995) concluded that the 

association of Hemisus and Brevicipitinae was premature. The currently more 

orthodox view that brevicipitines are microhylids and only distantly related to 

Hemisus was summarised by Ford & Cannatella (1993). Recent studies of larval 

morphology (Haas, 2003) and DNA sequence data (Biju and Bossuyt, 2003; Vences 

et al. 2003b) have reinforced the view that Hemisus is only distantly related to a 

monophyletic Microhylidae, but none of these studies sampled any brevicipitine taxa. 

More specifically, Haas's (2003) study on the phylogeny of frogs using mainly larval 

characters robustly supported the monophyly of the Microhylidae, with 

Scaphiophryne placed as the most basal lineage. Included in his analysis of African 

taxa, he recovered Phrynomantis as the sister group to the enigmatic Madagascan 

microhylid Paradoxophyla palmate, and Hemisus grouped within the Hyperoliidae. 

Based on the latter finding, Haas suggested that Hemisus should be included in the 

Hyperoliidae. Haas however did not include any brevicipitids in his analysis, so the 

grouping of Hemisus with brevicipitines as suggested by Blommers-Schlösser (1993) 

and Wu (1994) could not be critically appraised. 

Evidence has recently emerged from studies of both mitochondrial and nuclear 

datasets suggesting brevicipitines may not nest within the Microhylid family (Darst 
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and Canatella, 2004; Van Meide et al. 2004; Loader et al. 2004), agreeing with 
Blommers-Schlösser (1993) and Wu's (1994) morphological conclusions. All studies 
independently show that brevicipitines group with non-microhylids, though levels of 

support are relative weak, and only Loader et aL (2004b) show unambiguously that a 
tree topology recovering a monophyletic grouping of Microhylids is significantly worse 

than optimal trees. In this chapter, I will extend the preliminary analyses of Loader et 

al. (2004), including a denser sampling of African 'Microhylids' found in continental 

Africa. I focus especially on brevicipitines and hoplophrynines distributed in the 

Eastern Arc Mountains. Hemisus Is also included, in order to explore the relationship 

of this genus with microhylids. 

4.1.3 Biogeography of Microhylids 
The current distribution of microhylids has been interpreted as reflecting the break up 

of Gondwana (Savage, 1973; Duellman and Trueb, 1994). Savage (1973) further 

speculated that the three extant African microhylid subfamilies (Brevicipitinae, 

Melanobatrachinae, Phrynomerinae) diversified prior to Gondwana fragmentation. In 

contrast, Duellman and Trueb (1994: p. 489) argued that a brevicipitine-phrynomerine 

lineage diversified only after Gondwana fragmentation. No attempt has been made to 

quantitatively assess these hypotheses. At a finer scale, the high species diversity 

and strong patterns of endemism in amphibians (including microhylids) of the Eastern 

Arc is believed to be intimately associated to more recent geographic events (Fjeldsb 

and Lovett, 1997; Howell, 1993). Microhylids have been mentioned as a group 

potentially affected by the geographic history of the EAM (Poynton, 1999a). In this 

study I make the first assessment of the likely effects of the breakup of Gondwana, 

and the potential impact of fragmentation and isolation in the EAM on the speciation 

and diversification of African microhylids. 

4.2 Materials and methods 

4.2.1 Specimens 

A total of 55 terminal taxa were used in this study (Table 4.2). Sequences for 45 

terminal taxa were generated from newly collected material from Tanzania, Kenya 

and Ivory Coast. These were supplemented by sequences for 10 species obtained 

from GenBank (Benson et al. 1998). 
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Table 4.2. 

African Microhylids and outgroups analysed in this study, '= sequences obtained from 
Genbank, and P denotes members of the Pipidae. 
Sequence 
number Specimens Species Locality Forest Reserve 
T148 KMH 16360 Probreviceps m. macrodactylus East Usambara Amani-Sig! 
T158 KMH 18974 Probreviceps m. rungwensis Udzungwa West Kilombero Scarp FR 
T182 KMH 19152 Probreviceps m. loveridgei Udzungwa West Kilombero Scarp FR 
T183 KMH 22702 Probreviceps m. loveridgei Udzungwa West Kilombero Scarp FR 
T184 KMH 22067 Probreviceps m. loveridgei Udzungwa West Kilombero Scarp FR 
T186 KMH 22060 Probreviceps m. loveridgel Udzungwa West Kilombero Scarp FR 
T204 KMH 21570 Probreviceps ulugurensis Uluguru Uluguru South FR 
T205 KMH 21577 Probreviceps ulugurensis Uluguru Uluguru South FR 
T206 KMH 21575 Probreviceps ulugurensis Uluguru Uluguru South FR 
T207 KMH 21461 Probreviceps m. loveridgei Uluguru Mkungwe FR 
T208 KMH 21532 Probreviceps m. loveridgel Uluguru Kasanga FR 
T209 KMH 21475 Probraviceps m. loveridgei Uluguru Mkungwe FR 
T245 KMH 23136 Probreviceps m. macrodactylus East Usambara Nilo FR 
T246 KMH 23137 Probreviceps m. macrodactylus East Usambara Nilo FR 
T247 KMH 21399 Probreviceps m. macrodactylus East Usambara Nilo FR 
T281 MW 1826 Breviceps mossambicus Mahenge Sap FR 
T283 MW 1848 Breviceps mossambicus Mahenge Sall FR 
T284 MW 1850 Speleophryne methneri Mahenge Sall FR 
T303 MW 1968 Callulina kisiwamsitu West Usambara Mazumbal FR 
T420 KMH 22723 Hoplophryne ulugurensis Udzungwa West Kilombero Scarp FR 
T423 KMH 23534 Callulina krefft! East Usambaras Nilo FR 
T424 KMH 23364 Hoplophiyne rogersi East Usambaras Nilo FR 
T425 KMH 21555 Callulina kreffli Uluguru Shikurufumi FR 
T426 MW 3050 Callulina kreffli Ukaguru lkwamba FR 
T428 MW 3058 Probreviceps new sp. Ukaguru Ikwamba FR 
T429 MW 3065 Callulina sp. North Pare Kindoroko FR 
T432 MW 3101 Callulina sp. North Pare Kindoroko FR 
T446 MW 3197 Callulina sp. Taita Hills Ngangao FR 
T447 MW 3215 Callulina kisiwamsltu West Usambara Ambangula FR 
T448 KMH 22478 Ca/lullna sp. Uzungwa West Kilombero Scarp FR 
T449 KMH 19141 Probreviceps m. rungwensis Uzungwa West Kilombero Scarp FR 
T450 KMH 19158 Probreviceps m. rungwensis Uzungwa West Kiiombero Scarp FR 
T452 MS 23 Cal/ulina kreffli South Pare Near Chome FR 
T453 L Phrynomantis bifasciatus Mkomazi Ubani Mbuga 
T455 MW 1856 Hemisus marmoratum Mahenge Sall FR 
T461 KMH 21451 Spe/eophryne methneri Uluguru Mkungwe FR 
T467 MW 3830 Callulina kreffli Nguu Mountians Nguu FR 
T468 MW 3831 Hoplophiyne rogersl Nguu Mountians Nguu FR 
T470 Red Label Phrynomantls microps Ivory Coast Comoe NP 
T471 Yellow Label Hemisus sudanensis Ivory Coast Conroe NP 

T473 MW 3852 Spelaeophryne methneri Kilombero Valley 
T493 SHCP287 Probreviceps m. rungwensls Southern Highlands Rungwe FR 
T495 MTSN1 Probreviceps new sp. Ukaguru Mamiwa-Kisara FR 
T496 MTSN2 Probreviceps new sp. Ukaguru Mamiwa-Kisara FR 
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n/a n/a *Pipe parva "P" South America n/a 
n/a n/a *Hymenochirus boettged "P' West Africa n/a 
n/a n/a 'Mantidactylus sp. Mayotte n/a 
n/a n/a *Mantidactylus wittei Madagascar n/a 
n/a n/a *Boophis sp. Mayotte n/a 
n/a n/a *Boophis tephraeomystax Madagscar n/a 
T465 MW 1837 Afrixalus uluguruensis Mahenge Sali FR 

n/a n/a 
'Kaloula taprobanica India n/a 

n/a n/a 
'Scaphiophryne brevis Madagscar n/a 

n/a n/a 'Scaphiophryne gottlebel Madagscar n/a 
n/a n/a 'Microhyla sp. FB-2000 India n/a 

Although microhylids are also distributed elsewhere in sub-Saharan Africa, collecting 

was concentrated in Tanzania because all but one genus (Balebreviceps from Bale 

Mountains, Ethiopia (Largen and Drewes, 1989)) of African microhylids occur there. 

The sampling of species known to occur in Tanzania is complete except for 

Parhoplophryne usambaricus, which is known from only a single specimen (Barbour 

and Loveridge, 1928). All other Tanzanian species are represented in this study by at 
least one specimen, and across all but a few areas of their distribution. Beyond 

Tanzania, this study lacks intensive sampling of Breviceps, with only one of 15 

species included. The sub-Saharan Phrynomantis is represented by two of the five 

known species. The only species of Probreviceps not included in this study is the 

Zimbabwean P. rhodesianus. Unsuccessful attempts were made to amplify DNA from 

museum specimens of Probreviceps rhodesianus, and Balebreviceps hillmanl (see 

Appendix 2). 

Four non-African microhylids were included, including representatives of at least two 

major lineages within the family, the Madagascan Scaphiophryninae (Scaphiophryne) 

and more cosmopolitan Microhylinae (Microhyla, Kaloula). All microhylid taxa for 

which 12S, 16S and cytb data are currently deposited in GenBank were included, 

with the exception of the Madagascan dyscophine Dyscophus guineti, for which the 

available data do not match the regions sequenced here, and contain several 

ambiguities. In addition to microhylids, I included a number of taxa for calibrating the 

molecular clock estimations; Hymenochirus boettgeri, Pfpa parva, Boophis new sp., 
Boophis tephraeomystax, Mantidactylus new sp. and Mantidactylus wittel. The East 

African Afrixalus uluguruensis, Hemisus marmoratus and West African H. sudanensis 

were also included to investigate phylogenetic relationships of Hemisus relative to 

brevicipitines. 
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4.2.2 Phylogenetic Analysis 

Two alignments were constructed to investigate the phylogenetic relationships of 
African microhylids. The first larger alignment included all taxa, following analyses 
(among many others, Biju and Bossuyt, 2003; Vences et al. 2003a; Hertwig et al. 
2004) that show the basal position of pipids relative to all neobatrachids, the two 

pipid species Hymenochirus boettgeri and Pipa parva were designated as the 

outgroup and used to root trees. The second alignment included only Brevicipitine 
taxa, with species Hoplophryne rogersl used as an outgroup, as recovered in 

previous analyses (Loader at al. 2004b; de Sä et al. 2004). 

4.2.3 Molecular Divergence Estimates 

Divergence dates between clades were estimated by adding a number of taxa that 

provided calibration points (see section 2.6.5). 

4.3 Results 

4.3.1 Data Quality 

For the full alignment a total of 1131 aligned sites were analysed, of which 564 were 

constant, 67 variable but parsimony uninformative, and 500 parsimony informative 

(see Table 4.3). For the brevicipitine alignment, 1165 sites were analysed, of which 
709 were constant, 59 variable but parsimony uninformative, and 397 parsimony 

informative (see Table 4.4). Both data sets have a PTP of 0.01, allowing rejection of 

the null hypothesis that they contain no more hierarchical structure than expected by 

chance alone. There is no significant base composition bias for any taxon for both 

alignments, whether or not uninformative sites are considered. Rate heterogeneity 

was investigated using hierarchical likelihood ratio test and rrTree. The results show 

that both alignments show significant rate heterogeneity (Full alignment 

L=257.63108, P= <0.01, d. f. =53 and Brevicipitine alignment A=71.91698, P= <0.01, 

d. f. =36). Relative rates tests indicated that Spelaeophryne methneri, Hemisus 

marmoratus, Hemisus sudanensis, Hoplophryne rogersi (T424) and Breviceps 

mossambicus evolved more rapidly than the other taxa (p= <0.05). Plots of 

transitions vs. transversions (see Fig. 4.3. d for a summary) show a linear relationship 

for both substitution rates for all data partitions (not shown), all partitions are marked 

by an increased rate in transitions. Branch lengths also indicated different rates of 
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molecular evolution between cytb, 12S and 16S (Fig. 4.3a-c), with cytb evolving more 

rapidly with strongly compressed basal splits. Power regression lines (not shown) for 

plots of transition vs transversions show a better fit than linear regression lines (full 

alignment: linear r2=0.86, power r2=0.93, brevicipitid alignment linear r2=0.91, power 

r2=0.95), for both data sets, though greater in the full alignment. The results suggest 

that saturation may be a problem with these data, particularly for the full alignment. 
Furthermore, significant rate heterogeneity and incongruence in basal topologies 

recovered from different data partitions suggest that there may be a problem. 

(a) cytochrome b 

Q w 
(d) 

a 

0 
W 

All Stj". it i1ions 

(c) 

Figure 4.3 

(a-c) Comparison of branch lengths for different data partitions (d) Plot of substitution of 

transversions and transitions, indicating levels of saturation, with transitions in purple, and 

transversions in blue, r2 value for transitions (rz-0.9666) and transversions (rz-0.9572). 
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Table 4.3 
Details of character informativeness for the full alignment of 55 taxa. 

Cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 175 99 74 2 145 244 564 
Variable- 17 6 7 4 19 31 67 
uninformative 
Parsimony 222 33 57 132 141 137 500 
informative 
Total 414 138 138 138 305 412 1131 

Table 4.4 
Details of character informativeness for the brevicipitid alignment of 38 taxa. 

Cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 174 94 73 7 218 317 709 
Variable- 19 6 7 6 20 20 59 
uninformative 
Parsimony 182 25 45 112 112 103 397 
informative 
Total 375 125 125 125 . 350 440 1165 

4.3.2 Phylogeny 

4.3.2.1 Full Alignment 

Parsimony analysis yielded eight most parsimonious trees (MPTs), which differed 

only in the precise position of the samples of Probreviceps macrodactylus loveridgei, 

and Callulina sp. (Uluguru) and Callulina sp. (Udzungwa) (Fig. 4.4). The ML analysis 

used the GTR +I+G model (as recommended by both criteria used in Modeltest). 

The optimal ML tree (Fig. 4.5) is entirely congruent with trees recovered in Bayesian 

analysis and very similar to the MPTs. Most relationships common to parsimony and 

ML trees are well supported as judged by bootstrap proportions and decay indices 

(Fig. 4.4, and 4.5), apart from basal splits, which in parsimony are only weakly 

supported, as judged in bootstrap proportions. Alternative data partitions (e. g. 12S, 

16S and cytb combined and separated) generally recovered the same topology, 

though showing weaker support for clades than combined results. Bayesian posterior 

probabilities are generally high (>0.90), perhaps unreasonably so, for all splits in the 

optimal ML tree (Fig. 4.5), including for relationships not found in the MPTs. The 

main differences observed between optimal parsimony and maximum likelihood trees 

are the sister group relationships to the Probreviceps Glade and the relationships 
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recovered within the Callulina Glade. For the latter, analyses of the brevicipitine 

alignment (see 4.3.2.2) show congruence between all methods, and this topology is 

recovered in parsimony analyses of the full alignment. (Fig. 4.5). Further discussions 

of these relationships are therefore given in section 4.3.2.2. The position of 

Spelaeophryne relative to Probreviceps and Callulina is unstable. Parsimony analysis 

show weak support for Spelaeophryne as sister group to Callulina and Probreviceps. 

However, the optimal likelihood and Bayesian tree show Spelaeophryne to be sister 

group to Probreviceps, which is also poorly supported (70). Neither hypothesis is 

strongly supported which means determining the best alternative scenario is not 

possible (however see 4.3.2.2). Basal relationships are poorly recovered in 

parsimony analyses, with weak support for the monophyly of non-Brevicipitine 

microhylids, brevicipitines, and Hemisus. 
Hymenochirus boettgen 
Pipe PaNg 
Mantidactylus sp 
Mantrdactylus wettet 
Boophis sP 
Boophis tephraeomystax 
HoPlophryne ulugunrensis Udzungwa T420 
Hoplophryne ropers E Usambara T424 
Hoplophryne rogersr Nguu T468 
PMynomanhs b ascratus T453 
Phrynomanlrs mrcrops T470 
Kaloula laprobamca 
Mrcrohyla sp 
Scaphrophryne gottiebei 
Scaphropnryne breves 
Alnxalus ulugurensls 
Hemrsus marmo/etum 
Hemrsus sudanensis 
8 mossamlucus - Say FR T281 
B mossamdcus - Si. FR T283 
S methnen - Mkungwe FR T461 - Uluguru 
S methnen - Kilombero Valley T473 
S mefhrrel, - Sek FR T284 - MahmW 
Caauana - Kmdoroko T429 - North Pare 
Cel uhna - Krndoroko T432 - North Pare 
Celhrkna - Ngargao FR T446 - Tafle Hills 
C be11h - Nib FR T423 East I. lsambara 
CahWins Chorre FR T452 - South Pare 
C klsiwemsdu - Mazumbal FR T303 - West Usambara 
C krsiwemsdu - Ambanguia FR T447 - West Uarnhars 
Cutulina - Shikurufumi T425 - Uluguru 
Callulina - West Kibmbero Scarp FR T448 - Udzungwa 
Cellulme Nguu FR T467 - Nguu 
Calluline - lkwambe FR T426 - Ukaguru 
P now sp - lkwamba FR T428 - Ukaguru 
P new sp. Mamwa Kisara FR T495 - llkaguru 
P new ap - Menxwe Kisara FR T496 - Ukaguru 
Pm rungwensis - Rungwe FR T493 - Southern Hphlands 
Pm nmgwensis - West Kibmbero Scarp FR T450 - Udzungwa 
P m. nmgwensis - West Kibmoero Scarp FR T158 - Udzungwa 
P m. rurgwensi3 - West Kibrnbero Scarp FR T182 - Udzungwa 
P. m. rungwensis West Krbmbero Scarp FR T449 - Udzungwa 
P ulugwuensis - Uluguru South FR T204 - Uluguru 
P ulugunnnsis - Uluguru South FR T205 - Uluguru 
P. uluguruensis - UluguhJ South FR T206 - Uluguru 
Pm macrodadylus - Amam-Stgi T 148 - East Usambara 
Pm maaodectylus - Ndo FR T245 East Usarnoara 
Pm maaodactylus - Nib FR T246 - East Usamhara 
om macrodactylus - Nib FR T247 - East Usambara 
Pm lovendgei - Kasanga FR T206 - Uluguru 
Pm loverxlger - Mkungwe FR T207 - Uluguru 
om bvendget - Mkungwe FR T209 - Uuguru 
om bvendger - West Kllombero Scarp FR T183 - Udzungwa 
°m loventlget - West Kilombero Scarp FR T184 - Uclzungwa 
Pm lovendger - West Kilombero Scarp FR T186 - Udzurgwa 

Figure 4.4 

Strict consensus of 8MPT's for the full alignment, tree length 2505. Bootstrap proportions 

shown above branches (parsimony, kimura 2 parameter distance, maximum likelihood 

distance, log-det distance), Decay index values below along with templeton test result (+= 

significant at 0.05). 
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P. uluguruensis 
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P. new sp. 
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100 Kilombero Valley T473 

100 Sali FR T284 - Mahenge S. methneri 
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100 Mazumbai FR T303 - West Usambara C kisiwamsitu 100 + Ambangula FR T447 - West Usmbara . 
90 + Chome FR T452 - South Pare I C. sp. 

gg Nilo FR T423 East Usambara ý C. kreffti 
100 Kindoroko T429 - North Pare 

99 
+ Kindoroko T432 - North Pare 

Shikurufumi T425 - Uluguru 63 sp C 
100 Nguu FR T467 - Nguu . . 

=ý1 lkwamba FR T426 - Ukaguru + 100 L West Kilombero Scarp FR T448 - Udzungwa 
Ngangao FR T446 - Taita Hills 

100 Sali FR T281 - Mahenge B. mossambicus Sali FR T283 - Mahenge 

100 

84 

91 

95 Kaloula taprobanica 
52 Microhyla sp. 

00 Scaphiophryne gottlebei 
Scaphiophryne brevis 

99 Phrynomantis bifasciatus T453 

+ Phrynomantis microps T470 
100 Hoplophryne rogersi Nilo FR T424 - East Usambara 

+ Hoplophryne rogersi Nguu FR T468 - Nguu 

+ Hoplophryne uluguruensis West Kilombero Scarp FR T420 - Udzungwa 

0.05 substitutions/site 

Figure 4.5. 

Full alignment. Maximum likelihood tree (LnL= 12214.19611), GTR+I+G model selected using 

Modeltest. Base frequencies estimated at 0.31360,0.27150,0.16280 and 0.25210 for A, C, G 

and T respectively, substitution rates =2.4616,7.3178,3.8592,0.9558, and 14.8339 and the 

proportion of invariant sites set at 0.3658 and a gamma distribution shape parameter of 

0.6481. Values on branches show Bayesian posterior probabilities. Below branches shows 

SH test results (+= significant at 0.05). 
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4.3.2.2 Brevicipitine Alignment 

Optimal tree recovered from likelihood and bayesian analyses are shown in figure 
4.6. The relationships shown are very similar to the optimal parsimony trees (not 

shown), apart from the relative position of Spelaeophryne, and the resolution of 
Nguu, Uluguru, Udzungwa, and Ukaguru populations of Callulina. For the former, in 

previous analyses of the full alignment the position of Spelaeophryne was also 

shown to have this contrasting arrangement between parsimony and 
bayesian/Iikelihhod methods. The only significant difference being that increased 

support is shown in the bayesian tree for the Callulina (Spelaeophryne, 

Probreviceps) resolution, whereas parsimony still shows low bootstrap value for the 

alternative topology Spelaeophryne, (Callu/ina, Probreviceps). Whether this is 

significant is unclear. Unfortunately therefore, some of the generic relationships 

among brevicipitids in this alignment are still uncertain, even with an addition of 

characters. The resolution of populations of Callul/na (Nguu, Uluguru, Udzungwa, 

and Ukaguru) collapses to a polytomy in parsimony analyses, and weak bootstrap 

results are also shown for the resolution of Nguu, Uluguru, and Ukaguru populations. 
However, the same tree topology to likelihood and bayesian trees are recovered in 

the bootstrap tree and majority rule trees. 

Overall, most of the 35 nodes of the strict consensus show high support (for all 

methods of analyses) and provide support for the monophyly of genera, species and 

subspecies recognised, which is similar to those results in the full alignment. Strong 

support is revealed for the basal position of Brev/ceps relative to all other 
brevicipitids. Some results are noteworthy and differ from aspects of the analyses of 

the larger alignment. Most significant is the arrangement of the populations/species 
in the genus Callulina. As previously mentioned, the arrangement of the Callulina 

tree in the brevicipitid alignment is consistent for all methods employed. This pattern 
is also exactly the same for analyses of the full alignment using parsimony, differing 

only from Bayesian and Likelihood analysis of the full alignment, which shows 

alternative positions for basal lineages (Taita Hills and North Pares). Considering the 

generally high support in the brevicipitid alignment for the position of Ca/lulina 

populations in all analyses, and this arrangement shown in the full alignment in 

parsimony analyses then this is taken to represent the most robust hypothesis of 

relationships among populations of Callulina (see Fig. 4.6). 
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100/99/ 18 

Figure 4.6 

Hoplophryne rogerst Nib FR T424 - East Usambara 

100/100/9 
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891-10 1 100/ 14 Rungwe FR T493 - Southern Highlands I P. m. rungwensis 
Ikwamba FR T428. Ukaguru 

13 109/ 1 
Manbwe Kisara FR T496 - Ukaguru 

I 
P. new sp 

Mamiwa Kisara FR T495 - Ukaguru 

95/69/2 Kllombero Valley T473 
100/100/75 Sall FR T284 - Mahenge S. methneri 

Mkungwe FR T461 - Uluguru ' 

100/ 100/9 - Mazumbai FR T303 - West Usambara 
100/94/6 Ambargula FR T447 - West UsmDera 

- 

I C. kisiwamsitu 
9a-/ 1 

-- Chorre FR T452 - South Pare ---' ý Callulina sp. 
--- Nato FR T423 East Usambara C. krefti 

92/57/1 
94/64/0' Shikurutumi T425 -I tuguru 

90/11 99/90/ 1 "-ý' - Nguu FR T467 - Nguu 

- ----1 100110012 
Ikwamba FR T426 - Ukaguru 

West Kilombero Scarp FR T448 - Udzungwa 
Callu//na sp. 

'/00/99/ 12 Ngangao FR T446 - Telta Hills 

100/ 100/21 Kindoroko T429 - North Pare 

Kindoroko T432 -North Pare 

1001100/71 Sall FR T281 - Mahenge 

Sall FR T283 - Mahenge B. mossambicus 

Brevicipitine alignment. Maximum likelihood tree (LnL= 7112.02925), GTR+I+G model 

selected by Modeltest. Base frequencies estimated at 0.30790,0.27060,0.16820 and 
0.25330 for A, C, G and T respectively, substitution rates =2.9249,10.6388,5.4734,1.4592, 
19.0572, and the proportion of invariant sites set at 0.4493 and a gamma distribution shape 

parameter of 0.8015. Values on branches show Bayesian posterior probabilities, bootstrap 

proportions calculated using parsimony, and decay index. 

4.3.2.3 Hypotheses 

In addition to investigating the support of the recovered phylogenetic trees, 

alternative hypotheses were examined which were relevant to the interpretation of 

the systematics and evolution of African microhylids. Trees were constrained to 

investigate three main hypotheses concerning the relative position of the main 
Microhylid groups (e. g. Scaphiophrynes, Brevicipitines, and all other Microhylids): (1) 
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Are Scaphiophryne microhylids basally positioned relative to all other Microhylids 

(including breviciptines). This arrangement was termed the Scoptanura hypothesis 

(Ford and Cannatella, 1993). (2) Alternative arrangement, including Brevicipitines 

and Scaphiophrynes forming a Glade (3) Monphyly of African 'microhylids' (eg. 

Phrynomantis, Brevicipitine, and Hoplophryne) (4) Monophyly of Brevicipitines and 
Phrynomantis as speculated by Duellman and Trueb (1994). These constraints were 

compared to the optimal tree. Furthermore, the monophyly of the P. macrodactylus 

sub species complex was assessed, an arrangement not recovered in all optimal 
trees but predicted. 

Table 4.5 

Testing for microhylid hypotheses using parsimony analysis **= significant at 0.005 

significant at 0.1 

Number of extra steps Templeton test 

Scoptanura hypothesis (Hemisus, 12 0.1460 
Scaphiophryne (Breviciptines, Non- 

Scaphiophrynes)) 

(Hemisus, Non-Scaphiophrynes 9 0.3047 
(Breviciptines, Scaphiophrynes)) 

Monophyly of African microhylids 13 0.0704* 

Monophyly of Brevicipitines, 9 0.3047 

Phrynomantis 

Monophyly of P. macrodactlylus sub 31 0.0001** 

species complex 

4.3.3 Molecular divergence estimates 
Divergence estimates are given in Table 4.6. There are notable differences between 

the two dating methods, which given the rate heterogeneity exhibited In the data set 

is not unexpected. Sanderson's (2002a) penalized likelihood (PL) method has been 

used to estimate divergence times while allowing for lineage specific rate variation, 

and because of the preference for PL methods when data exhibits rate heterogenity 

these are here interpreted as providing more reliable estimates. The ML tree used to 
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estimate the divergence times was obtained from the full alighment, which when 

compared to the brevicipitine alignment, includes some suboptimal arrangements 
(e. g. relationships among Callulina). Based on the discrepancy among trees 

recovered using different methods, divergence times for these parts of the tree will be 

interpreted very conservatively. 

Table 4.6 

Absolute divergence times in Myr. for clades within African Microhylids. Refer to Fig. 4.7 for 

precise position of nodes. 
Most recent common ancestor (MRCA) Estimation method 

1. MRCA Hoplophryne 91.04 71.78 
(61.22-84.55) 

2. Hoplophryne rogersi, H. uluguruensis 51.80 40.23 

(25.86-48.59) 

3. Hoplophryne rogersi (Nguu-East Usambara) 39.31 29.18 

(22.00-37.31) 

4. Phrynomantis bifasciatus, P. microps 24.75 17.67 

(12.27-24.73) 

5. Hemisus sudanensis, H. marmoratum 28.60 36.34 

(29.74-44.88) 

6. MRCA Phrynomantis 88.47 66.66 

(59.24-78.27) 

7. MRCA (Hemisus, Hyperolius) 78.77 91.25 
(80.45-101.09) 

8. MRCA (Hemisus, Hyperolius) Brevicipitids 107.66 120.39 

(111.59-134.35) 

9. MRCA (Hemisus, Hyperolius, Brevicipitids) 110.95 123.18 

Microhylids (114.11-136.89) 

10. MRCA Breviceps 88.91 103.50 

(94.51-114.28) 

11. MRCA Callulina 69.28 83.17 

(74.77-91.89) 

12. MRCA Spelaeophryne 61.69 74.81 
(58.98-83.79) 

13. MRCA Probreviceps 36.83 44.94 
(37.62-53.07) 

14. Spelaeophryne methneri (Mahenge, 0.98 1.39 

Kilombero) Uluguru (1.13-3.08) 

15. Spelaeophryne methnerl (Mahenge, 0.32 0.47 

Kilombero) (0.30-1.48) 
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16. Callulina 35.04 40.62 
(refer to node) (33.34-48.61) 
17. Callulina 23.33 27.31 
(refer to node) (22.37-33.28) 
18. Callulina 2.94 3.43 
(refer to node) (2.33-4.37) 
19. Callulina 20.64 24.27 
(refer to node) (19.48-29.58) 
20. Callulina 18.05 21.27 
(refer to node) (16.84-26.66) 
21. Callulina 7.80 11.50 
(refer to node) (8.90-13.64) 
22. Callulina 1.62 2.13 
(refer to node) (0.57-4.74) 
23. Probreviceps 20.67 22.58 
(refer to node) (19.86-25.82) 
24. Probreviceps 11.55 12.03 
(refer to node) (9.46-15.21) 
25. Probreviceps 4.77 5.55 
(refer to node) (3.27-9.29) 
26. Probreviceps 3.37 4.25 
(refer to node) (3.02-7.60) 
27. Probreviceps 18.52 22.92 
(refer to node) (17.92-28.65) 
28. Probreviceps 12.21 12.50 
(refer to node) (9.25-15.89) 
29. Probreviceps 0.59 0.57 
(refer to node) (0.31-2.03) 
30. Probreviceps 1.50 1.74 
(refer to node) (0.36-3.09) 
30. Probreviceps 2.37 2.58 
(refer to node) (1.28-3.89) 
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Figure 4.7 
Phylogeny of African Microhylids with nodes calculated for molecular divergence times. 

4.4 Discussion 

4.4.1 Phylogeny 

4.4.1.1 Higher relationships 

Loader et al. (2004b) analysed a subset of the data and taxa presented here. They 

found that despite uncertainties over the position of the root, that the Brevicipitids are 

the sister group to Hemisus (i. e. a Glade containing non-brevicipitine Microhylids). 

Support for the paraphyly of Microhylids was also provided from recent investigations 

of the brevicipitid species Callulina kreffti (Darst and Canatella, 2004) and Breviceps 

Callulina 
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fuscus (Van Meide et al. 2004) who independently showed that brevicipitines do not 
form a monophyletic group with other Microhylids. Results gathered here are 

generally congruent with all these findings. The optimal trees recovered in all 

analyses (Figs. 4.4 and 4.5) are consistent with the monophyly of all previously 

recognised genera and subfamilies (except Microhylinae). The brevicipitines (e. g. 
Breviceps, Callulina, Spelaeophryne, and Probreviceps) are shown to form a Glade 

with Hemisus. However, unlike Loader at al. (2004), in topology tests this resolution 

was not shown to be significantly different from suboptimal arrangements, e. g. 

monophyletic Microhylids. The differences in the resolution between this analysis and 
Loader at al. (2004) are likely to be the result of greater taxonomic sampling which 
led to an increase in alignment ambiguities, as mentioned in their paper, and possibly 

saturation of cytb data (not used in Loader et al. 2004 analysis). Although the 

hypothesis that brevicipitids are not Microhylids cannot be excluded based on this 

analysis, molecular (Loader at al. 2004; Darst and Canatella, 2004; Van Meide et al. 
2004) and morphological data (Blommers-Schlösser, 1993; Wu, 1994) strongly 

support brevicipitids being outside of the microhylid family. The monophyly of 
Hemisus and Hyperolius in all analyses is moderately supported in this study, and is 

congruent with previous analyses (Vences et al. 2003b; Darst and Canatella, 2004) 

and is therefore uncontroversial. 

The implications from this study and recent molecular phylogenetic studies (Darst 

and Canatella, 2004; Van Meide et al. 2004) suggest a re-assessment of brevicipitids 

is necessary. Additional taxon sampling and data from other (probably nuclear) 

genes and/or from morphological systems will be needed to further resolve 

phylogenetic relationships before this can be undertaken with confidence. Also, of 

pressing concern are the implications these studies have for the classification of 

Brevicipitids. Darst and Canatella (2004) suggest the superfamily Brevicipitoidea 

could be erected to Include all Arthroleptidae, Hyperoliidae, Hemisus and 

Brevicipitines as one alternative to revising the taxonomy of brevicipitids and ranids 

(see Fig. 4.8 for summary and Darst and Canatella, 2004). Although logically this 

may appear to be the . best arrangement, based on the evidence at hand, stability of 

taxonomic classifications needs to be considered and any major changes In the 

arrangement should be tempered with the expectation that given our limited 

understanding of the content of the Glade Ranoidea (as defined by Ford and 

Cannatella, 1993) more changes are likely to occur. Further areas of interest include 

the putative grouping of the African genera Hoplophryne, Parhoplophryne with the 
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Indian genus Melanobatrachus in Parker's (1934) subfamily Melanobatrachinae. The 

two monotypic genera Parhoplophryne and Melanobatrachus are currently 

unsampled. However, based on their large disjunct distribution (India and East Africa) 

and morphological inconsistencies (Savage, 1973) it is likely the content of this 

subfamily grouping may change in the future. 

Other Rands 
Ranidae 

Microhylidae" 

Microhylidae 

Brevicipitines 

Hemisus I Hemisotidae 

Ar(hroleptidae I Arthroleptidae 

Leptopelis 
Hyperoliidae 

Hyperoliidae 

Ranoidea 

Ranoidea I Microhyloidea 

Brevicipitoidea 

Relationships Current taxonomy D&C (2004) 

Figure 4.8 

Summary of the higher relationships among Microhylids, Ranids, Hyperoliids and 

Brevicipitines. 

4.4.1.2 Non-brevicipitine microhylids 

For the non-brevicipitid microhylids all optimal trees show these taxa recovered in a 

single Glade, although weakly supported in all analyses. Inter-relationships among 

the genera Scaphiophryne, Hoplophryne, Phrynomantis, Microhyla, and Kaloula are 

also poorly resolved, and little can be interpreted from these results. However, the 

position of Hoplophryne within a putative Glade comprising a mixture of widely 

geographically distributed, non-brevicipitine microhylids is uncontroversial (Parker, 

1934). The similar nesting of Phrynomantis is supported by detailed studies of 

morphology (Laurent, 1941; Haas, 2003). Noble (1931) placed Phrynomantis in its 

own subfamily, not closely allied to any other microhylids. Parker (1934) excluded 

Phrynomantis from Microhylidae based on the presence of intercalary cartilages, a 

110 



Chapter 4. Systematics and Biogeography of African Microhylids 

character now known to be present in other microhylids (Wu, 1994). Data from larval 

morphology strongly support the nesting of Phrynomantis within a Glade of non- 
scaphiophrynine microhylids (Haas, 2003). 

The rarely collected, cryptic microhylid Hoplophryne is endemic to the EAM, with two 

species currently recognised; H. rogersi from East Usambara and Nguu Mountains 
(Menegon et aL 2003b) and H. uluguruensis from Uluguru and Udzungwa Mountains 
(Barbour and Loveridge, 1928; Frontier, 2001). The phylogeny recovered in this 

study supports the recognition of the species H. rogersi occurring in Nguu and East 
Usambara, as shown by their grouping. Whether the population from the Nguu 

represents a distinct species, as implied by large branch length differences/genetic 
distance (6.3%), awaits further assessment. Preliminary morphological work seems 
to suggest very little differences (Loader, unpublished), although this is based on a 
single specimen. Samples from the Uluguru Mountains are absent, and sampling this 

area will be important in evaluating the status of the Udzungwa population and the 

species H. uluguruensis. Bearing in mind these species appear to be restricted to 

montane forest areas, rarely collected outside forest below 400m, it seems likely 

populations on different mountains might be a distinct species. 

4.4.1.3 Brevicipitines 

Monophyly of subfamily 

Likelihood and bayesian analyses support the monophyly of Brevicipitinae. Posterior 

probability for this group is high, and Shimadairo-Hasegawa tests (p= 0.0402) do not 

suggest this resolution can be attributed to sampling error (Fig. 4.5). Parsimony 

analyses for this node however provide less convincing support, with bootstrap of 80, 

decay index of 4 and Templeton test (p = 0.0891). Overall though the strong support 

in likelihood and bayesian analyses, other molecular data sets (Darst and Canatella, 

2004; Loader et al. 2004; Van Meide et al. 2004) and corroboration from 

morphological studies (Parker, 1934; Blommers-Schlösser, 1993; Wu, 1994) means 

the monophyly of brevicipitine is the most likely resolution. Certain morphological 

characters have previously suggested brevicipitids non-microhylid features, Parker 

(1934) commented on the special nature of the brevicipitine vomer, reduced 

posteriorly (post-choanally) but bearing a large anterior and medial expansion. 

Parker noted other characters, Le retention of a complete shoulder girdle, which 
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readily distinguished brevicipitines from all other Microhylids. Further work is required 
to determine derived and plesiomorphic conditions. 

Generic Relationships 

Phylogenetic relationships of Brevicipitinae genera have been explored by Poynton 

(1964; 1999), Poynton and Pritchard (1976), Largen and Drewes (1989) and Wu 

(1994). As their names suggest, Probreviceps and Breviceps have been thought as 
being closely related, and Poynton (1999: p. 515) proposed that Breviceps 'can be 
derived from sylvicolous East African Probreviceps'. This was based on the 

observation of clinal variation In the lengths of limbs and digits along the continuous 
North to South distribution of the two genera (Poynton and Pritchard, 1976). 

Probreviceps from Tanzania have the longest limbs and toes, followed by P. 

rhodesianus (further South, in Zimbabwe), then Breviceps (which occurs further 

southwards) with the shortest. In contrast, Wu (1994) hypothesised that Callulina and 
Probreviceps comprise a Glade, with successive sister groups formed by a 

paraphyletic Breviceps, and Spelaeophryne. Focussing on pectoral girdle 

morphology, Largen and Drewes (1989) questioned the monophyly of Probreviceps + 
Breviceps by suggesting that Probreviceps is more closely related to Balebreviceps 
(not included in this analysis). Analyses presented here and in Loader et ah (2004b) 

strongly exclude Breviceps from a Glade comprising Probreviceps, Callulina and 
Spelaeophryne. Judged by the Templeton test (p < 0.04), it is unnecessary to 

attribute the difference (14 steps) between our MPTs and the best trees containing a 
Probreviceps + Breviceps Glade to random sampling error. Despite this, the optimal 
trees recovered In the analyses (Figs. 4.5,4.6, and 4.7) do not preclude the 

possibility that Breviceps evolved from a Probreviceps-like ancestor, in keeping with 
Poynton's hypothesis. 

Bootstrap support for the Spelaeophryne + Callulina + Probreviceps Glade, and for 

the monophyly of the constituent genera is high in all analyses, although the best 

trees In which Probreviceps is constrained to be non-monophyletic do not have a 

significantly worse fit to the data (Fig. 4.5). The relationships among these three 

genera are not clearly resolved, although no analyses recovered one of the three 

possible resolutions, l. e. the pairing of Callullna + Spelaeophryne. Currently, 

morphological data that might provide decisive support for one of the two competing 

hypotheses (in the optimal parsimony and ML trees) are lacking. The conflict and 

lack of resolution might be caused by heterogeneous rates of molecular evolution 
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(i. e. Spelaeophryne relative to other brevicipitines), inadequate taxon sampling 
(Balebreviceps hillmanl; additional species of Braviceps), or simply too few sequence 
data. Clearly more data both molecular and morphological are needed, before an 
adequate appraisal of intergeneric relationships in the Breviciptinae can be 

presented. 

Callulina 
Prior to de Sä, et al. 's (2004) description of the species Callulina kisiwamsitu from the 
West Usambara, the genus Callulina contained one single species Callulina kreffti, 

considered to be widespread throughout the EAM (Barbour and Loveridge, 1928; 

Howell, 1993; Frontier (Udzungwa) 2001). The recognition of two species disjunctly 

distributed in the geographically adjacent mountain blocks of the Usambaras in de 
Sä, et al. 's (2004) paper have implications for the status of all other Callulina 

populations known to occur in the EAM. De Sä et al. (2004) anticipated that other 
'distinct populations of Callulina throughout the Eastern Arc Mountains may also 

prove to be distinct species' (de Sä et al. 2004; p. 223), although their status was not 
addressed. In light of the evidence that Callulina species are different between East 

and West Usambaras (de Sä et al. 2004), and the level of amphibian endemism in 

the EAM (e. g. Howell, 1993; Menegon et al. 2004) the other Cal/ulina populations 

would appear to be likely candidates as new species. 

The recognition of Callulina kisiwamsitu based on morphology and molecular data Is 

again strongly supported here by our molecular analyses, as also demonstrated by 

de Sä et al. (2004) and Loader of al. (2004b). As outlined in their paper de Sä, of al. 
(2004) showed that the two samples of C. kisiwamsitu in the West Usambara 

Mountains (Ambangula FR T447 and Mazumbai FR T303) that form a Glade, are 

geographically more distant from each other (31.13 km apart), than samples from 

Mazumbai are to Callulina kreffti from Nilo, East Usambara (19.73 km apart). This 

suggests that the phylogenetic relationships do not appear to be the result of clinal 

variation among now separated populations, but Indicative of the populations of the 

East and West Usambara mountains being specifically distinct. This assessment is 

also consistent with the known differences in the amphibian assemblages of the East 

and West Usambara Mountains (Howell, 1993; Menegon of aL 2004; Poynton, pers. 

comm. ). Sampling of C. kreffti populations from the type locality of Amani in East 

Usambara would be useful, and necessary to fully evaluate phylogeographic patterns 

in this species. 
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The relationships among almost all of the known populations of Callulina (apart from 
Nguru Mountains) are summarised in Fig. 4.9. As can be seen from this figure, this 

study provides evidence for the tentative recognition of many new species of 
Callulina, as supported by the large degree of divergence in molecular sequences, a 
conclusion supported also by morphology (Loader, unpublished). As a measure for 

the detecting whether mitochondrial lineages may represent new species, pairwise 

genetic comparisons can be made between currently designated Callulina species 

and other amphibian studies. 

For example, between the species C. kreffti and C. kisiwamsitu genetic distances are 

approximately 7.4%, which can be regarded as particularly high for most amphibian 

studies of inter-specific genetic heterogeneity between species (e. g. Wieczorek and 
Channing, 1997; Gower at al. 2002). Taken that this high and somewhat 

conservative estimate approximates species differences in Callulina, then almost all 
the species identified in Fig. 4 would be considered new, as shown by genetic 
distances of >7%. Only relatively smaller divergences are exhibited between South 

Pare and West Usambara (4.7%) populations, and West Usambara and Clade 

'Callulina, sp. 2' (>6%), and even these values exceed published estimates of genetic 
differences between amphibian species. Although such estimates may not be an 

appropriate measure for designating new species, the molecular data highlights need 
for further work. 

It is noteworthy that although there are many new disjunct populations (see above), 

there is also a Glade comprised of a number of populations from disjunct mountain 

blocks, with very limited genetic diversity (0.2-11%). This Glade includes Udzungwa, 

Uluguru, Ukaguru and Nguu populations, and based on inferences from the 

phylogeny and genetic pairwise distances these probably form a single species. It is 

uncertain whether this Glade also shows congruent morphological patterns, but 

geographically these populations are closely aligned, and therefore a recent contact 

among these areas can be imagined which would allow genetic Interchange between 

these populations. It is likely that populations from the Nguru Mountains (the only 

mountain population missing from this study) nests in this Glade, based on its 

geographical proximity. Sampling will be necessary to establish if this is correct. 
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Figure 4.9 

Relationships in Callulina based on Brevicipitine alignment. Values on branches show 
Bayesian posterior probabilities, bootstrap proportions calculated using parsimony, and decay 

index. 

Table 4.7 

Summary of the geographical distance (km) (above the diagonal) and % genetic distances 

between Callulina populations (below the diagonal). 

1 2 3 4 5 6 7 8 9 10 11 12 
1. Probreviceps 

2. Callulina T303 
West Usambara- M 15.3% - 19.7 283.4 131.1 241.6 153.1 153.1 162.0 31.1 411.2 86.4 
3. Callulina T423 
East Usambara 15.8% 7.5% - 283.3 141.7 249.4 170.7 170.7 172.7 35.6 415.5 105.5 
4. Callulina T425 
Uluguru 15.6% 6.2% 7.2% - 181.2 108.0 382.0 382.0 432.0 252.3 146.6 320.4 
5. Callulina T467 
Nguu 15.2% 6.4% 7.3% 0.8% - 113.0 200.9 200.9 255.8 106.3 288.8 141.3 
6. Callulina T426 
Ukaguru 15.2% 6.2% 7.2% 0.6% 0.2% - 301.7 301.7 365.5 213.9 178.1 250.4 
7. Callulina T429 
North Pare 15.3% 10.1% 9.2% 9.5% 9.5% 9.4% - 0 86.1 171.9 479.1 70.6 
8. Callulina T432 
North Pare 15.3% 10.1% 9.2% 9.5% 9.5% 9.4% 0.0% - 86.1 171.9 479.1 70.6 
9. Callulina T446 
Taita Hills 14.8% 8.2% 9.7% 7.8% 8.0% 7.8% 9.5% 9.5% - 190.5 543.5 115.3 
10. Callulina T447 
West Usambara- A 15.2% 0.4% 7.4% 6.2% 6.4% 6.2% 9.9% 9.9% 8.0% - 381.3 101.8 
11. Callulina T448 
Udzungwa 15.4% 6.3% 7.3% 1.1% 1.0% 0.9% 9.0% 9.0% 8.2% 6.3% - 428.2 
12. Callulina T452 
South Pare 14.8% 4.7% 9.0% 7.1% 7.4% 7.2% 10.6% 10.6% 8.8% 4.7% 7.1% 

There does not appear to be a significant correlation (r2= 0.1513) between 

geographical distance and pairwise genetic, though with increasing distance 

populations are more likely to show increased pairwise genetic distance, as shown 

10019416 Ambangula FR T447 - West Usmbara 
90/-41 Chome FR T452 - South Pare I Callulina sp. 1 

92/5711 
Nilo FR T423 East Usambara ý C. kreffti 

4/64/0 
Shikurufumi T425 - Uluguru 

99/90/1 Nguu FR T467 - Nguu 
90/-11 

Ikwamba FR T426 - Ukaguru 
Callulina sp. 2 

100/ 100/2 
West Kilombero Scarp FR T448 - Udzungwa 

100199112 Ngangao FR T446 - Talta Hills I Callulina sp. 3 

100/100/21 Kindoroko T429 - North Pare 
Callulina sp. 4 

Kindoroko T432 - North Pare 
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by the positively inclined trendline (see Fig. 4.10). This finding suggests that 

populations are not freely interbreeding, which would be anticipated given the 

isolation of populations on 'islands' of forest along the mountain chain. 
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Figure 4.10. 

Geographical distance against corrected pairwise differences, rz = 0.1513. 

Phylogenetic relationships among genera of brevicipitines show strong support for 

the monophyly of the genus; topology tests and the degree of support are evidence 
for this. The topology of the optimal Callulina tree shows basal clades being 

geographically located in northern areas of the EAM (Taita Hills and North Pare), 

which are genetically highly divergent from all other clades (7.8-10.0%). These two 

Glades are also morphologically most divergent, and show consistent morphological 

differences. Most significant are the differences in the 'mode of life' in these 

prospective species. Taita Hills and North Pare populations appear to be fossorial, 

which is in contrast to all other Callulina species and populations that appear to be 

arboreal. As a consequence of these significant differences in lifestyles, there are 

correlated morphological changes in fossorial species; e. g. lack of a tympanum, 

absence of expanded digital discs, stouter body, and shorter limbs (Loader, 

unpublished). Fossoriality appears to be the ancestral condition in the genus 

Callulina, which is also the dominant mode of life in brevicipitines (see Fig. 4.10a). 

Without the inclusion of Taita Hills and North Pares populations, the interpretation of 

the evolution of fossoriality and arboreality in brevicipitines would be less clear (Fig. 

4.1 Ob). 
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8) OUTGROUP b) OUTGROUP 

BREVICEPS BREVK: EPS 

CALLULINA'NORTH PARE' 

'- CALLULINA KREFFTI 
CALLULINA'TAITA HILLS' 

CALLULINA KREFFTI CALLULINA KISIWAMSRU 

CALLULINA KISIWAMSITU 

+ 
BURROWMIG SPELAEOPHRYNE SPELAEOPHRYNE 

PROBREVICEPS 

fir, I 

ARBOREAL PROBREVICEPS 

Fig 4 11 

Evolution of arboreality and fossoriality in brevicipitines, based on likelihood and bayesian 

reconstructions. Red is for fossorial, Blue is for arboreal and purple is equivocal. a) 
Reconstruction of brevicipitine alignment b) Reconstruction of brevicipitine alignment with only 

named species included. 

Relationships among clades nested within Callulina, outside of Taita Hills and North 

Pare populations show a distinctive phylogeographic split between northern and 

southern clades, as mentioned in previous studies (Gravlund, 2002; Roy, 1997; 

Moller and Cronk, 1997; Lindqvist and Albert, 2001) with the grouping of northern 

species and populations (Usambara and South Pares), and southern areas 
(Udzungwa, Uluguru, Ukaguru, and Nguu). It is interesting to note the closer 

relationship shared between South Pare and West Usambara, than the latter to East 

Usambara where there are closer faunal similarities between amphibians (Howell, 

1993). Whether the South Pare population represents a new species or Callulina 

kisiwamsitu is uncertain and awaits morphological data. However, a significant 

genetic pairwise distance of 4.7% suggests South Pare population might be distinct. 

Further collections will be necessary to ascertain the status of this population. 

Before the description of the species Callulina kisiwamsitu (de Sä et al. 2004) the 

genus Callulina was considered a monotypic genus. Evidence presented in this study 

provides a valuable insight into a poorly understood group, in particular the diversity 

of species which currently is severely underestimated, both in terms of numbers (>5) 

but also morphological diversity (e. g. arboreal and fossorial forms). 
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Probreviceps 
Probreviceps is currently divided into 3 species (P. macrodactylus, P. rhodesianus, 

and P. uluguruensis), with one species P. macrodactylus split into three subspecies 
(Parker, 1934). In addition, a currently undescribed species from the Ukaguru is 

known (Channing and Stanley, 2002). The species of Probreviceps are cryptic, but 

are reliably distinguished on the basis of morphology (Parker, 1934; Poynton, 

unpublished), advertisement calls (Mkonyi et al. 2004), and molecular data (Loader 

et al. 2004). Analyses show that the genus is monophyletic, and that all species and 

subspecies sampled (P. macrodactylus, P. uluguruensis and Probreviceps new sp. 
(Channing and Stanley, 2002)) form a -clade (see Fig. 4.6). However, there are 

notable results that question the specific status of species, and subspecies, and 
therefore call for a re-assessment of the genus. 

Prior to Loader et al. 's (2004) study, the status of the Probreviceps macrodactylus 

complex has not been investigated in a phylogenetic context. Limited morphological 

studies on P. macrodactylus species complex had been carried out (Parker, 1934; 

Poynton et a/. in prep. ). Results from these studies suggested only very little 

differences between the sub species P. macrodactylus macrodactylus from East 

Usambara and P. m. loveridgel from Uluguru and Udzungwa. The third sub species 
Probreviceps macrodactylus rungwensis however could be distinguished from other 
Probreviceps, by its large tympanum and notably pointed snout (Poynton, pers. 

comm. ), which suggested it could represent a distinct species. Data from 

advertisement calls (Mkonyi at al. 2004) has recently suggested that there are 

distinct differences between the calls of P. macrodactylus macrodactylus P. m. 

loveridgei, and P. u/uguruensis (calls of P. m. rungwensis and P. rhodesianus were 

not collected), which might be indicative of them being separate species. 

Analyses presented here (and in Loader at al. 2004) suggest that there are few 

genetic differences between the subspecies P. macrodactylus macrodactylus and P. 

m. loveridgei. In addition, and contrasting to 12S and 16S data presented by Loader 

et al. (2004b), P. m. macrodactylus and P. m. loveridgel are resolved into separate 

clades, although only moderately supported. For the subspecies P. m. macrodactylus 

and P. m. loveridgel data recognise the division of populations, consistent with the 

subspecific designations of Parker (1934), the likelihood that they represent distinct 

species is uncertain. Based on the calls of P. m. macrodactylus and P. m. loveridgei 

which can be easily distinguished (Mkonyi et al. 2004) it could be suggested that the 
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populations might be distinct at species level. However, morphologically the 

subspecies are indistinguishable (Poynton, pers. comm. ) and therefore their status 
as subspecies or species remains uncertain. For the third subspecies P. m. 
rungwensis sampling from both the type locality of Rungwe in the Southern 
Highlands and the Udzungwa were carried out, analyses show this subspecies to be 

paraphyletic. Suboptimal topologies, including a monophyletic P. macrodactylus sub 
species complex is significantly different from optimal paraphyletic solutions 
presented in Fig. 4.12. Based on the molecular results presented here, as in Loader 

et al. (2004b), and their morphological differences (Poynton at al. in prep), it seems 
clear that P. m. rungwensis should be considered a distinct species and not a 
subspecies of Probreviceps macrodactylus. 

In Loader et aL's (2004) study of African Microhylids sampling for P. m. rungwensis 
included populations from the Udzungwa, and not the type locality for the sub 

species in Rungwe (Parker, 1934). Loader et aL (2004) recommended that sampling 
Rungwe would be necessary to evaluate the status of this species 'particularly in light 

of the apparently significant biogeographical barrier between these populations (the 

'Makambo Gap', e. g. Lovett, 1990; Keilland, 1990; Gravlund, 2002). The phylogeny 

presented here shows significant divergence between these two populations (-4%), 

and indicate that the Udzungwa population might be distinct. The Southern 

Highlands have been shown to be a centre of endemism with strong zoological 

affinities to the Eastern Arc (Davenport, pers. comm. ). Analyses of the snake genus 
Crotaphopletis (Gravlund, 2002) and the bird genus Andropadus (Roy, 1997) indicate 

these regions show extensive levels of divergence between populations from 

Southern highlands and the Udzungwa Mountains. Based on these findings, 

populations of amphibian species (e. g. Nectophrynoides viviparous, Arthroleptis 

reichei, Scolecomorphus kirkii) distributed throughout the Udzungwa and the 

Southern Highlands may prove to be distinct with more refined taxonomic 

approaches. 

Based on morphology, Channing and Stanley (2002) suggested the presence of a 

new species of Probreviceps from the Ukaguru Mountains. Molecular data supports 

the presence of a distinct species as demonstrated by the high support for this Glade 

and genetic divergence (-5%). The recognition of the species as being distinct is 

further supported by call data, which is highly distinctive, being a slow series of clicks 

(Loader et al. in prep. ). Interesting morphological similarities are also shown by its 
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close relationship to P. m. rungwensis, which both share a pointed snout, apparently 
keratinised in the new species from Ukaguru, and a large tympanum (which is 

strongly sexually dimorphic in both species). 
Amani-Sigl T148 - East Usambara 

94/63/1 
100110019 Nilo FR T245 - East Usambara 

Nilo FR T246 - East Usambara P. m. macrodactylus 
1 9ý5 Nilo FR T247. East Usambara 

100/100118 
West Kilombero Scarp FR TI 83 - Udzungwa 

10 19915 
West Kilombero Scarp FR T184 - Udzungwa P. m. loveridgel 5/6? 11 

g& /p West Kilombero Scarp FR T186 - Udzungwa 

1001100111 10010017 Mkungwe FR T207 - Uluguru 

Mkungwe FR T209 - Uluguru P. m. loveridgel 
881-io Kasanga FR T208 - Uluguru 

Uluguru South FR T204 - Uluguru 
1001100119 

Uluguru South FR T205 - Uluguru 
I 
P. uluguruensis 

100/96/8 195/5 Uluguru South FR T206 - Uluguru 

West Kilombero Scarp FR T158 - Udzungwa 
9616711 West Kilombero Scarp FR T182 - Udzungwa 

P. m. rungwensis 1001100/17 West Kilombero Scarp FR 1449 - Udzungwa 
1ooi97/7 West Kilombero Scarp FR T450 - Udzungwa 

001100114 Rungwe FR T493 - Southern Highlands I P. m. rungwensis 
lkwamba FR T428 - Ukaguru 

10 100/13 Mamiwa Kisara FR T496 - Ukaguru P. new sp. 
Mamiwa Kisara FR T495 " Ukaguru 

Figure 4.12 

Relationships in Probreviceps based on Brevicipitine alignment. Values on branches show 
Bayesian posterior probabilities, bootstrap proportions calculated using parsimony, and decay 

index. 

Spelaeophryne 

The enigmatic species Spelaeophryne methneri has a scattered but wide distribution 

throughout SE coast of Tanzania and the Eastern Arc region (Parker, 1934; Howell, 

1993). Despite its wide distribution throughout East Africa, covering some 500km, 

only a single species is known for this monotypic genus. This cryptic species Is found 

in a range of habitats and altitudes, but is usually found in woodland or forest areas. 
The species is highly distinctive with a red band across the top of the head (though In 

one specimen this marking is absent), resembling the dorsal patterning of a honey 

badger. Morphologically all these populations appear to be homogenous. Results 

from sequences of three genes show limited genetic variation (0.5-0.6% between 

populations in Uluguru, Kilombero (=Udzungwa), and Mahenge), which when 

compared to the degree of difference seen in other brevicipitid genera from species 

distributed in both areas (Probreviceps macrodactylus loveridgei 0.8-1 %; Callulina 
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1%) is moderately less. Although this study does not sample all the known 

populations of Spelaeophryne, based on the molecular data there do not appear to 
be any cryptic species. It is likely that the generalist habitat of Spelaeophryne 

compared to the evergreen forest restricted species of Callulina and Probreviceps 

may have influenced the lower genetic heterogeneity in this genus. 

Conclusions 
The use of molecular data for investigating phylogenetic relationships among African 

microhylids show large genetic heterogeneity between mountain populations, and it 

is likely that many of these populations will be recognised as being new upon 

subsequent study of morphology. With the exception of Spelaeophryne, nearly all of 
the groups sampled show twice as many species as previously anticipated 
(Probreviceps: 3 species- now estimated 5-6 species; Callulina 2 species- now 

estimated 6 species; Hoplophryne: 2 species- now estimated 3-4 species). Some of 
the previously unrecognised forms represent cryptic species, ones which are 

morphologically similar, but which display divergent mitochondrial lineages (e. g. C. 

kreffti from Uluguru; Probreviceps rungwensis from Rungwe and Udzungwa). 

However, many of the 'new' species represent newly collected populations, which are 
both morphologically and molecularly distinct (e. g. Probreviceps from Ukaguru; 

Callulina from North Pares and Taita Hills). The only anomaly in the pattern of high 

species diversity among EAM microhylids is shown In the brevicipitine taxa 

Spelaeophryne. As previously mentioned, the significant differences in habitat 

preference of Spelaeophryne to all other Microhylids may account for the different 

phylogenetic patterns. This result might be significant: of all the Microhylid taxa that 

occur in the EAM, the species Spelaeophryne methneri has the least restrictive 
habitat preference, occurring in woodland and lowland areas. All other microhylid 

genera (eg. Hoplophryne and Cal/ulina) are restricted to the upper montane 

rainforests (Poynton, 2003) and therefore presumably show restrictive dispersal 

capabilities among mountain blocks. For forest restricted species there tends to be 

new species between each mountain block, which Is not repeated In Spelaeophryne. 

Perhaps a fuller geographical sampling of Spelaeophryne throughout its distribution 

may uncover significant genetic variation. Overall, the phylogenetic patterns in 

microhylids are congruent with the idea that fragmentation and Isolation may have 

been important in generating high species diversity in the EAM (Lovett, 1993a). 
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4.4.2 Biogeography 

4.4.2.1 African Biogeography 

Savage (1973) speculated that the three extant African microhylid subfamilies 
(Brevicipitinae, Melanobatrachinae, Phrynomerinae) diversified prior to Gondwana 
fragmentation. In contrast, Duellman and Trueb (1994: p. 489) argued that a 
brevicipitine-phrynomerine lineage diversified only after Gondwana fragmentation. 
Based on the tree recovered In this analysis Duellman and Trueb's hypothesis can 
be rejected because there is no rooting of our optimal trees in which Phrynomantis 

and brevicipitines form a Glade. However, suboptimal solutions are not statistically 
significant, which contrasts to the results presented by Loader of al. (2004b) who 
were 'not compelled to attribute the difference (9 steps) between our MPTs and the 
best trees in which Phrynomantis and brevicipitines are a potential Glade to sampling 
error (Templeton test, p<0.02)'. The inclusion of more outgroups, and cytb data in 
this analysis may have obscured the optimal tree and their relationships. Hertwig of 
a/. (2004) has shown that the use of partial mitochondrial data for investigating early 
branching events in amphibians is unsuitable. The inclusion of appropriate molecular 
data (e. g. nuclear) will be needed to resolve these questions, particularly more slowly 
evolving gene fragments. 

Estimates of molecular dates provided another source of data to evaluate 
biogeographic hypotheses. If dating estimates are correct, they indicate that the three 

major clades; non-brevicipitine Microhylids, brevicipitines, Hemisus all diverged from 

each other around the same time period. Firstly, as indicated by the optimal tree non- 

brevicipitine Microhylids diverged from Hemisus and Brevicipitines around 111 Myr 

(Langley Fitch 114-136 Myr), followed soon after by Hemisus and Brevicipitines 

splitting around 107 (Langley Fitch 111-134 Myr). If the Langley Fitch estimates 

confidence values are considered, then the estimates overlap with the final phase of 

Gondwana fragmentation, which cannot reject the hypothesis given by Savage 

(1973) that brevicipitines and hoplophrynines/phrynomantis diverged prior to the 

fragmentation. However, Savage also speculated that Hoplophrynines and 

Phrynomantis also diverged at this time, whereas estimates here suggest a much 

more recent divergence time (91 Myr; Langley Fitch 61-84 Myr). Overall the tree and 

dating estimates dispute Duellman and Trueb's hypothesis that the brevicipitines and 

phrynomerines diverged after Gondwana fragmentation but is less clear on 

hypotheses proposed by Savage (1973). 
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Phylogenetic results presented in this study do not support the classification of 
brevicipitines as Microhylids. Microhylids surveyed in this study include the genera 
Scaphiophryne, Hoplophryne, Phrynomantis, Microhyla, and Kaloula. Traditionally, 

the patterns of relationships among Microhylids have been interpreted as reflecting 
the breakup of Gondwana, with distinct elements from Africa, Madagascar, Asia, and 
America. There appears to have been little crossover in the Microhylid faunas from 

these areas based on classificatory systems, although there are exceptions (e. g. 
Melanobatrachine). Based on the molecular dates, the divergence of hoplophrynines 

from all other microhylids occurred around 91 Myr (Langley Fitch 61-84 Myr). This 

date is much more recent than the breakup of Gondwana, post dating the separation 

of Madagascar-India-Seychelles complex from Africa, and if correct could imply: a 
transoceanic dispersal event, incorrect geological reconstructions of Gondwana, or 

stepping stone terrains that are now absent. More recent dates (not shown or 

calculated) would also be inferred for the splits between Phrynomantis and 

Scaphiophryne, Microhyla, and Kaloula, which again imply more recent links between 

East Africa, Madagascar and India. Long distance transoceanic dispersal events 

have been suggested in amphibian species, e. g. Ptycadena mascarenensis and 
Hyperoliid Tree Frogs (Vences et al. 2004a, b). However, these examples are likely to 

be exceptions to the rule. Forest-restricted microhylids would be unlikely to make 

transoceanic dispersals. That three splits in the base of the tree consistently show 

dates more recent than would be predicted could suggest molecular clock estimates 

might be proportionally underestimating, perhaps the result of saturated data. Until 

more data is collected, which is not saturated (e. g. nuclear genes), conclusions 

should be viewed cautiously. There is clear potential in the future for testing 

hypotheses concerning the diversification of microhylids and how this corresponds to 

Gondwana fragmentation (as investigated in chamaeleons by Raxworthy et al. 2002). 

Forest restricted species have been predicted to show biogeographic patterns that 

mirror the significant geographic changes (geological and climatic) that have 

occurred to the forests during Africa's history. Most Importantly, the timing of 

separations and the degree of isolation forests have undergone. East and West 

Africa contain the main proportion of Africa's montane rainforests, and many of the 

species are related, though only distantly because of the long period of separation 

(e. g. Loveridge, 1937). Brevicipitines and Hoplophrynines do not have any affinities 

with any known West African forest species, however the microhylid genera 
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Phrynomantis and the ranid Hemisus occur both in East and West Africa, though not 

necessarily in forest habitats. Sampling of these genera show deep divergences 

between East and West African species, despite the actual species themselves being 

relatively widely distributed. Phrynomantis species are widely distributed in moist 

savannas of sub-Saharan Africa, with P. bifasciatus distributed from Kenya to Angola 

and southwards to Namibia and north South Africa (Channing, 2001). P. microps is 

restricted to grasslands, and savanna in Guinea to the Sudan savanna (Rödel, 

2000). For Hemisus, the species Hemisus marmoratum is found in both savannas 

and moist rainforest (contrary to Channing, 2001) from Senegal to Eritrea south to 

north South Africa. Hemisus sudanensis, formerly a subspecies of marmoratum, is 

found in similar habitats, with an overlapping range from Senegal to Eritrea (Rödel, 

2000). For the species Phrynomantis mlcrops and Phrynomantis bifasciatus, and 
Hemisus sudanensis and Hemisus marmoratum respective dating estimates are: 25 

Mya (12.27-24.73), and 29 Mya (29.74-44.88). The divergence estimates appear to 

correspond with the pronounced biogeographic separation between East and West 

Africa around 25 Mya (Lovett, 1993a). The correlation however may simply be 

coincidental as such a biogeographic event would probably not be significant for 

savanna living amphibians. For example, savanna dwelling mammals show more 

recent patterns of divergence between East and West African regions (eg. Hamilton, 

1988; Kingdon, 1989; Pitra et al. 2002). This study identifies groups that potentially 

could be useful for investigating the biogeography of non-forest habitats in Africa, 

and if the patterns of divergence correspond to forest species or other taxonomic 

groups living in similar habitats. 

4.4.2.2 Eastern Arc Biogeography 

The age and changes in the size and contiguity of rainforest habitats in the EAM 

have been predicted to have a significant influence on speclation patterns in forest 

dependent species. Tree topologies and estimates of divergence times allow an 

opportunity to investigate these temporal and spatial patterns in the Eastern Arc 

Mountains. Tanzanian Brevicipitines and Hoplophrynines are almost entirely confined 

to upland evergreen forest of the isolated constituent blocks of the Eastern Arc 

Mountains and Southern Highlands (e. g., Howell, 1993). Taken at face value, the 

optimal phylogeny recovered in the analyses and relative molecular dating estimates 

(Fig. 4.12) suggest that divergence of lineages (Probreviceps, Callulina and 

Hoplophryne) giving rise to extant species occurring In the Udzungwa, East 
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Usambara, Uluguru, Ukaguru and Nguu, has occurred at least twice. For example, 

splits between lineages occurring in the Ulugurus show different degrees of 
divergence (Fig. 4.13)_ Combined distributional and phylogenetic evidence does not 
fit with a simple, single vicariance/dispersal event, but is seemingly in accordance 

with the hypothesis that a combination of both vicariant isolation, possibly through 

fragmentation, and climatic fluctuations have repeatedly isolated and connected 

populations along the EAM. 
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Figure 4.13 

A chronogram of 'Microhylid' species found distributed in the Eastern Arc Mountains. 

Divergence times suggest that each brevicipitine and hoplophrynine lineage has 

persisted for at least 40 Myr, and by implication the habitats where they occur. An 

archaic origin has long been speculated for the forests of the EAM (Lovett, 1993a), 

and is supported here using microhylids as indicators. These results are also 

congruent with divergence times presented in other groups that show a long period of 

persistence; e. g. snakes (Gravlund, 2002) and chamaeleons (Matthee, 2004). 
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Figure 4.14 

Speciation patterns of Microhylids in the Eastern Arc Mountains. Chronograms of Microhylid 

populations (Hoplophrynines and Brevicipitines) and their closest sister group, for each 

mountain block. Mountains are colour coded with each split, black areas have no 

chronograms of microhylids available. 

The fragmentation and uplift, of presumably a once continuous and relatively shallow 
Eastern Arc Mountain chain, are believed to have influenced speciation in this region. 
Furthermore, the subsequent prolonged isolation of mountains is believed to have 

allowed a substantial period of time, which would have generated high levels of 

endemism. Phylogenetic evidence from Microhylids presented here show that some 

lineages may have been isolated for a long time in single mountain blocks. For 

example, Callulina populations in Taita Hills and North Pares, shown to be separated 

for more than 40Myr. The Taita Hills have been considered as an example of a 

mountain block separated for a considerable period of time, as shown by large 

molecular (e. g. Wilkinson et al. 2003; Lens et al. 2002) and morphological (e. g. 

Brooks et al. 1998; Perkin et al. 2003) differences between selected species. Brooks, 

et al. (1998; p. 1) believed the Taita Hills were 'sufficiently differentiated ... 
(that it]... 

should be merited consideration as a centre of endemism in its own right'. Another 

example includes the Ukaguru Mountains, which Menegon et al. (2004) suggested 
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has probably been isolated for a relatively long period, based on the occurrence of at 
least one endemic bufonid genus (Channing and Stanley, 2002; Poynton et al. 
1998b), and evidence of a rich, currently undescribed endemic amphibian fauna 
(Channing and Stanley, 2002). Phylogenetic evidence presented here supports the 

recognition of a new species of Probreviceps, which may suggest patterns of 

isolation. However, recent divergences are also shown from populations of Callulina, 

only recently diverging from Uluguru, Udzungwa and Nguu populations, suggesting a 

recent connection to these mountains. If molecular dating estimates are correct, they 

imply that the Ukaguru's may have been isolated, however at least one recent 

exchange is evident between adjoining mountains based on the Callulina phylogeny. 

Almost all mountain blocks in the EAM show patterns of long-term persistence of 
lineages (see Fig. 4.14), with only the South Pares, West Usambara, and Mahenge 

showing more recent patterns (within 10myr). Whether this reflects a more general 

pattern of species persistence in these mountain blocks or is a specific pattern of a 

lineage is difficult to currently evaluate. The sampling of more lineages with similar 

distributions would be an appropriate step to correctly estimate such patterns. 

Patterns of speciation in microhylid frogs indicate a complex temporal history, which 

show splits between species occurring at both ancient and recent periods. Whether 

these splits correspond to particular geographic events is unclear, particularly when 

bearing in mind the uncertainty of molecular divergence time estimates. Molecular 

dates may not be able to confidently correlate speciation events with geological 

events, however in this study they allow the ability to differentiate between single, or 

multiple speciation events occurring in an area. 

Spatially, the phylogenetic patterns within brevicipitines and hoplophrynine species 

are incongruent. Based upon tree topology, the inferred ancestral area for Cal/ulina is 

the northern part of the Eastern Arc, with the southernmost species being nested well 

within the genus. In contrast, the inferred ancestral areas for Probreviceps and 

Hoplophryne are the southern ranges of the Eastern Arc Mountains. The geographic 

history of the region appears to have influenced each brevicipitine and hoplophrynine 

lineage in different ways. This finding shows that, although there are strong 

indications that amphibian (Wilkinson et al. 2003; Loader et al. 2004b), and reptilian 

(Matthee et al. 2004; Gravlund, 2002) lineages have been influenced by the 

biogeographic history of the EAM, the history seems to be highly complex both 

spatially and temporally. The differences in phylogenetic patterns between lineages 
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might be accounted for by the differing ways that removing barriers affects species 
that share a common biogeographic history (Vermeij, 1991). For example, the 

variation in phylogenetic patterns in brevicipitines and hoplophrynines appears to be 

correlated seemingly with dispersal capability; forest dependent lineage 

Hoplophryne, Probreviceps, Callulina shows the strongest phylogenetic patterns of 
isolation, with Spelaeophryne able to tolerate many different habitats with shallow 

phylogenetic divergences among mountains. The degree to which speciation events 

show synchronous or delayed co- speciation depends on properties (population 

structure, reproductive mode, and habitat requirements) of the groups under study. 
Therefore, dispersal ability might be able to account for differing temporal patterns 
between lineages. However, in this example, it is highly unlikely that such differences 

between lineages could account for such divergent phylogenetic patterns, as seen in 

Probreviceps and Callulina. A better explanation for such discordant biogeographic 

patterns between lineages is a complex biogeographic history where many patterns 

are overlaid and there is no single biogeographic history for all lineages. This will be 

discussed more fully in Chapter 7. 

I 
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Chapter Five 

Systematics and Biogeography of 

Scolecomorphidae 

5.1 Aims 

In this chapter, I Investigate the systematic and biogeographical patterns in the 

caecilian family Scolecomorphidae. The family is endemic to the mountains of East 

and West Africa. Monophyly of Scolecomorphidae has been supported on 

morphological grounds, however relationships among its species are poorly 

understood. The study reported here represents the largest molecular sampling of 

populations of the East African genus Scolecomorphus, including all the currently 

recognised species. Using molecular data I focus on species limits, and population 
differences, which allows the current taxonomy of Scolecomorphus to be tested. The 

data also allow an examination of biogeographical patterns, including both large- 

scale and local patterns In Africa. The wide geographical sampling throughout the 

Eastern Arc allows some assessment of the possible Influence fragmentation and 

prolonged isolation of mountains of the Eastern Arc are purported to have had upon 
the family. 

5.2 Introduction 

5.2.1 Caecilians 

Caecilians comprise the least understood of the three orders of amphibians 

(Nussbaum and Wilkinson, 1989). So scarce is the knowledge of these amphibians 

that they are probably the most poorly known order of tetrapods. This is true for all 

aspects of their biology, including their systematics. Caecilians are poorly understood 

for a number of reasons, but the main factors are probably their cryptic habits, 

tropical distribution, and lack of dedicated study (Nussbaum and Wilkinson, 1989). 

Caecilians are distributed throughout much of the wet tropics, occurring In South 

America, Africa, the Seychelles, the Indian subcontinent and parts of SE Asia. They 

are absent (or at least unknown) from Madagascar and Australasia. Although one of 
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the recognised Families (the South American Typhlonectidae) includes aquatic 

species, most caecilians are found in the soil, spending their time in their 

subterranean burrows, and probably only coming to the surface during heavy rains 

and/or possibly at night. As a result, caecilians are rarely seen in the wild. Caecilian 

morphology appears well adapted to life underground. They have robust skulls that 

they push through the soil, and many have their eyes greatly reduced, sometimes to 

just a small group of cells concealed beneath bone and skin. In such forms, the eyes 

probably have a limited visual function, perhaps only detecting light and dark. One of 

the main sensory apparatus used by caecilians appears to be a pair of retractable, 

probably chemosensory tentacles on the snout that are unique to the group. Unlike 

other amphibians, caecilians are entirely limbless with elongate snake- or worm-like 

bodies. Their resemblance to worms is further enhanced by their moist, externally 

scaleless amphibian skin and its external subdivision Into conspicuous rings or 

annuli. 

Caecilians are often regarded as a small, conservative, and even 'primitive' 

vertebrate group. However, despite numbering only about 160 currently recognised 

species worldwide, caecilians are extremely diverse, and many novel morphological 

features and natural histories are evidence of this (e. g. Wilkinson and Nussbaum, 

1997; Loader et a/. 2003b). Amphibians in general show enormous morphological 

diversity, which is reflected in the habitat niches they occupy: aquatic, fossorial and 

arboreal to gliding forms. The presence of comparatively divergent morphological 

forms between groups has meant that the monophyly of the three orders (caecilians, 

salamanders and frogs) has generally been widely accepted (Duellman and Trueb, 

1994). However, the relationships among the three living orders still remain 

somewhat uncertain (as summarised in Meyer and Zardoya, 2003). Most 

morphological (e. g. Duellman and Trueb, 1994), palaeontological (e. g. Milner, 1988) 

and recent molecular evidence (e. g. Zardoya and Meyer, 2001; San Mauro et a/. 

2004) seem to suggest that salamanders and frogs form a Glade (Batrachia), with 

caecilians the sister group to this. 

Caecilians are currently divided Into six families, and relationships among these 

families appear to be reasonably well resolved at the base of the tree (see Fig. 5.1). 

The South American family Rhinatrematidae is sister group to all other living 

caecilians, which is well supported by both morphological and molecular data 

(Duellman and Trueb, 1994; Wilkinson, 1997; Wilkinson of al. 2002a; San Mauro at 
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al. 2004). For the remaining caecilians, the Indian Uraeotyphlidae and Asian 

Ichthyophidae form a sister group to a Glade coined the "advanced caecilians" 
(Nussbaum, 1991). The "advanced caecilians" comprise the three families 

Scolecomorphidae, Typhlonectidae, and Caeciliidae, with the family 

Scolecomorphidae thought to be basally positioned to the families Caeciliidae and 
Typhlonectidae. 

Relationships among the "advanced caecilians" however are very poorly resolved 
(Hedges et al. 1993; Wilkinson et al. 2002a; Wilkinson et aL 2003), as shown by the 

polyphyletic distribution of caeciliids in the latest molecular analyses (see Fig. 5.1). 

"Caecillidae"- all others sampled 

"Caecillidae"- Caecilia 

n 

Typhlonectidae 
N 

Scolecomorphidae 

"Caecilildae" - Boulengerula/Herpele 

Uraeotyphlidae 

Ichthyophidae 

Rhinatrematidae 

Figure 5.1 

Summary of the most recent view of family relationships among caecillans (modified from 

Wilkinson et aL, 2003). 

In molecular analyses of partial mitochondrial sequence data, Caecilia sp. has been 

shown as forming a Glade with Typhionectes. Furthermore, the African species 

Herpele squalostoma, Boulengerula taitanus and Boulengerula boulengeri form a 

sister group to all other "higher caecilians" (Hedges, 1993; Wilkinson of al. 2003), 

albeit weakly supported. Based on this evidence the phylogenetic relationships 

among "higher caecilians" are poorly understood, and await further taxon sampling 

(Wilkinson of al. 2003; San Mauro of al. 2004). Certain schemes have been proposed 

to resolve the paraphyletic status of the family Caeciliidae (e. g. Taylor, 1968; 
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Laurent, 1986), but were dismissed (e. g. Nussbaum and Wilkinson, 1989). 

Nussbaum and Wilkinson (1989) argued that these schemes were poorly conceived, 
inaccurate methods and characters, and therefore did not provide a robust alternative 
to the currently imperfect taxonomy. 

Species limits are poorly understood in caecilian systematics, one of the main 

problems being the paucity of obvious external morphological features. Species 

accounts are dominated by counts of annuli, vertebrae and teeth (Taylor, 1968). In 

cases where these counts are Inconclusive, workers have utilised alternative systems 

for investigating systematics. Certain systems have already been singled out as 

having good potential for such investigations; molecular data (e. g. Wilkinson et al. 

2002a; Wilkinson et al. 2003; Gower et a/. 2002), phallus morphology (Gower and 
Wilkinson, 2002), and life history features (Loader at al. 2003b). In this study I look at 

molecular data to resolve relationships among the poorly known caecilian family 

Scolecomorphidae, and investigate the Implied biogeographical patterns. 

5.2.2 African caecilians 

African caecilians constitute a substantial proportion of the known diversity of the 

order. Approximately 13% of the recognised caecilian species are African, and two of 

the six caecilian families can be found in Africa, including the endemic family 

Scolecomorphidae. Recent molecular phylogenetic analyses (Wilkinson of al. 2003) 

have included eight taxa from five of the seven genera and therefore provided the 

best insight into the phylogenetic relationships of African caecilians. In addition to the 

paraphyletic position of the caeciliids Boulengerula and Herpele (with respect to the 

family Typhlonectidae) monophyly was supported in the genera Scolecomorphus, 

Boulengerula, and Schistometopum. The relationship of the West African caeciliid 

Geotryptes seraphini was poorly resolved in phylogenetic analyses. Wilkinson at al. 

(2003) noted significant base compositional biases and rate variation that may have 

hindered resolving the position of this species in the analysis. Wilkinson of al. (2003) 

rejected the hypothesis that the caecilian assemblages of Africa, and of East and of 

West Africa are monophyletic. The nestedness patterns of African caecilians and the 

deep divergences in Wilkinson et al's (2003; p. 89) phylogeny suggested the 'current 

diversity of African caecilians predates the break-up of Gondwana' although no 

dating estimates were made. The caeciliid genera Sylvacaecilfa and Idiocranium still 

await sampling in a molecular study. Nussbaum (1985) suggested that Idiocranium 
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represented a distinct lineage and does not appear to show close affiliations with 

other taxa. Africa is very poorly explored herpetologically, and this is particularly true 
for caecilians. Large areas of central Africa await sampling (Nussbaum and Pfrender, 

1998) and it is likely we currently severely underestimate the diversity of caecilians 
found on this continent. 

5.2.3 Scolecomorphid Caecilians 

Species belonging to the family Scolecomorphidae are distributed In the montane 
forests of East and West Africa (Nussbaum, 1985). Scolecomorphids have a number 

of distinctive morphological synapomorphies, including the absence of stapes and in 

Scolecomorphus the presence of protrusible eyes that migrate from the orbit during 

development in association with the tentacle (Nussbaum, 1985; O'Reilly et al. 1996). 

Despite the fact that scolecomorphids have been known to have many derived 

features (e. g. Brand, 1956), it was not until Taylor (1969) that they were given a 

familial rank. The revision of the family by Nussbaum (1985) led to numerous 

changes in the definition and diagnosis of the family, genera, and species. 

Nussbaum (1985) re-examined Taylor's (1969) diagnosis of the family, which was 

based mainly on observations he made on East African species. The main problem 

with Taylor's diagnosis of the family was his understanding of cranial morphology, 

which conflicted with previous reports (de Villiers, 1938; Brand, 1956). The 

inconsistencies prompted Nussbaum to re-examine these cranial characters in 

addition to reviewing other features. Nussbaum (1985; p. 3) redefined the family, 

using various skull, muscle, and hyobranchial characters. Some of the characters 

which Taylor (1969) placed an emphasis on diagnosing the family; strong diastema 

between the provomerine and palatine teeth, palatine teeth posterior to the maxillary 

teeth and squamosals and parietals separated by large diastema, were re-evaluated 

and redefined and used to differentiate between East and West African species, and 

this provided evidence for the subsequent recognition of West African 

Scolecomorphids in the new genus Crotaphatrema (Nussbaum, 1985). 

The genus Crotaphatrema is known from a total of only eight specimens, with three 

species recognised (C. bornmulleri, C. lamottel, and C. tchabalmbaboensis) 

(Lawson, 2000). These species are separated on the number of annuli, colouration, 

and various head measurements. Little is known of their natural history, and extent 

of variation between and among each member of this genus. Species are found 
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distributed along the montane forests of Cameroon, and it has been speculated that 

more species exist in the poorly investigated tropical forests of this region of West 
Africa (Lawson, 2000) Scolecomorphus species are known from many more 

specimens, and currently three species are recognised (S. kirkii, S. uluguruensis, 
S. vittatus). There has however been much confusion regarding the status of certain 
Scolecomorphus species, as they have been poorly defined (Nussbaum, 1985). 
Confusion has arisen with the description of species and subspecies based, it 

seems, primarily on geographically separated populations and aberrant 

morphological characters (Barbour and Loveridge, 1928; Loveridge, 1953; 1957; 
Taylor, 1968). 

y. 
aý 

1.40. 

Boulenger (1883) described Scolecomorphus kirkii based on a single specimen, 

probably found 'from the vicinity of Lake Tanganyika'. Following this, further material 
became available to Boulenger (1895) from Malawi, which he also placed in the 

species S. kirkii. This species was then characterised by its distribution in Malawi, 

because this was the only definite locality. Correspondence between Dr H. W. Parker 

at the Natural History Museum, London and Arthur Loveridge (Loveridge, 1953) 

revealed that the locality of the holotype of S. kirkii was initially recorded as 
Mpwapwa, and was subsequently struck out and replaced with 'probably about Lake 
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Tanganyika' (Loveridge, 1953; p. 332). The former locality might be considered a more 

probable location, because Mpwapwa is a village between the Ukaguru and Rubeho 

Mountains within the Eastern Arc Mountains, the centre of Scolecomorphus diversity, 

seemingly more probable than Lake Tanganyika where no other caecilian record 

exists. Fieldwork around the river basins of Lake Tanganyika provided no evidence 
for the occurrence of Scolecomorphus in the region (Loader, unpublished). However, 

the town of Mpwapwa is located on the train line connecting Western Tanzania to 

coastal Tanzania, and in former times an outpost village for travellers going from 

East to West (Howell, 2000), and therefore could conceivably account for the 

contradictory locality data of Mpwapwa and Lake Tanganyika. 

Uncertainties over the provenance of the holotype of S. kirkii have caused difficulties 

for interpreting population and species differences in the genus. This problem is 

particularly acute when bearing in mind the level of amphibian endemism in the EAM 

(Howell, 1993), where many species are often restricted to single mountain blocks 

(e. g. Menegon et al. 2004). Nussbaum (1985) carried out a morphometric survey of 

Scolecomorphus in an attempt to address the question of morphological variation 

among populations of Scolecomorphus species, and thereby investigate species 

boundaries, and potentially, the affiliation of the holotype S. kirkil, among other 

questions. In this study, he demonstrated that the holotype of S. kirkii clustered with 

populations from Malawi, Southern Highlands (Ubena), Udzungwa, Uluguru and 

Rubeho and not with populations of S. vittatus or S. uluguruensis. Nussbaum (1985) 

felt he could confidently distinguish among all Scolecomorphus species,, based on 

multivariate statistical analyses, however no single morphometric or meristic trait 

could diagnose species. This difficulty In diagnosing species on a single 

morphological character was highlighted by Nussbaum's (1985; p. 45) key for the 

genus, which is entirely based on colour. Taken at face value then, Nussbaum's 

results suggest the holotype probably originated from one of the S. kirkA localities, 

e. g. Malawi, Southern Highlands, Udzungwa, Uluguru and Rubeho, unless in the 

unlikely event specimens are eventually uncovered from Lake Tanganyika region 

(>2,000km away) that are morphologically similar to the holotype. Furthermore based 

on Nussbaum's analyses, the holotype cannot be excluded from occurring In 

Mpwapwa (Rubeho) a possible locality for the holotype. Defining the characteristics 

and distribution of S. kirkii is important for Interpreting new populations (Nussbaum, 

1985; Loader et al. 2003a; Gower et al. 2004). 
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Following Boulenger's 1883 description of S. kirkii, he described the new genus and 

species Bdellophis vittatus (1895) based on material from the Usambara, which he 

thought showed a distinct eye position, differing substantially from S. kirkii. However, 

the genus Bdellophls was later synonymised, and the species placed in the genus 
Scolecomorphus by Barbour and Loveridge (1928; p. 179) who showed the eye 
differences accounted for by Boulenger (1895) was a 'sign of youth, ossification 
developing with age so that the eyes of adults are concealed'. Barbour and Loveridge 

recognised the species S. vittatus as occurring in the East and West Usambara 

Mountains and Uluguru Mountains, which was latter verified by Nussbaum (1985; 

p. 42), despite a 'wide scatter' in multivariate analyses which he concluded may 

reflect geographical variation. More recently the species S. vittatus has been shown 
to occur in the Nguru, North Pare Mountains and possibly Mombassa in Kenya, the 

latter based on an old museum specimen held at the NHM (Nussbaum, 1985; 

Emmrich, 1994). A third species, S. uluguruensis, was described (Barbour and 
Loveridge, 1928), based on material collected by Loveridge from the Uluguru 

Mountains. Sympatric with both S. kirkii and S. vittatus, this species was shown to be 

different based primarily on a distinct colour pattern. Subsequent work has shown 
distinct differences in phallodeum ornamentation (Wake, 1998) and head proportions 
(Nussbaum, 1985). 

In addition to S. uluguruensis, Barbour and Loveridge (1928; p. 181) also described 

the species S. attenuatus from the same locality as S. uluguruensis, which it 

resembled but differed in body proportions and colouration, 'being jet-black' in colour. 

However, Nussbaum's (1985) reappraisal of this material showed that S. attenuatus 

is a junior synonym of S. uluguruensis. Nussbaum (1985) suggested the colour 
difference and slenderness of S. attentuatus was a result of the poor state of 

preservation. 

Taylor (1968) made some modifications to the genus by dividing Scolecomorphus 

kirkii into two species, with S. kirkii occurring in Malawi and Uluguru, and the new 

species S. convexus from the south-central highlands (Iringa region- presumably 
Udzungwa and Southern Highlands), perplexingly placed geographically between S. 

kirkii populations of the South and North (see Fig. 5.3). However, Nussbaum (1985) 

also synonmised S. convexus, because these specimens were indistinguishable from 

S. kirkii, the differences Taylor used to differentiate the species were the result of 

desiccation, which resulted in an aberrant morphological feature (Nussbaum, 1985). 
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Currently, three species can be found distributed along all the Eastern Arc Mountains 

in Tanzania, and South to the highlands in southern Tanzania, Malawi and 
Mozambique, but are absent from the Taita Hills in Kenya (shown in Fig. 53 and an 

accompanying table). 

The limited number of samples from 'scattered' localities available to Nussbaum 

(1985) precluded definite conclusions about colour variation (e. g. North Pare 

population of S. vittatus p. 30). It seems likely that many cryptic species might be 

present, based on the level of speciation of other animal and plant groups 

(particularly amphibians and reptiles) in the area and limited data on variation in 

Scolecomorphus species (e. g. Nussbaum, 1985; Gower et al. 2004). The inadequate 

number of samples available to previous workers has meant a full appreciation of the 

scolecomorphids of the Eastern Arc has not been possible. Over the past 10 years, 

samples from Frontier-Tanzania and fieldwork carried out in this study have 

increased the number of specimens available from each mountain block, which has 

prompted a preliminary investigation of species boundaries and relationships in the 

EAM in this study. 
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Fig. 5.3 

Distribution of the caecilian Scolecomorphus in East Africa. See Table 5.1 for key to species. 
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Table 

5.1. List of the occurrence of Scoleomorphus species in East Africa and sampled in this study. 

With 62% of populations sampled. 
Species Locality Reference Sampled 

1 Scolecomorphus vittatus Mombassa, Nussbaum, 1985 X 
Kenya 

2 Scolecomorphus vittatus North Pare, Nussbaum, 1985 
Tanzania 

3 Scolecomorphus sp. South Pare, This study 
Tanzania 

4 Scolecomorphus vittatus West Usambara, Barbour and 
Tanzania Loveridge, 1928 

5 Scolecomorphus vittatus East Usambara, Boulenger, 1895 'I 
Tanzania 

6 Scolecomorphus sp. Nguu, Menegon, at al. 
Tanzania 2003b 

7 Scolecomorphus kirkii Nguru, Emmrich, 1994 X 
Tanzania 

8 Scolecomorphus sp. Ukaguru, This study 
Tanzania 

9 Scolecomorphus vittatus Uluguru, Nussbaum, 1985 X 
Tanzania 

10 Scolecomorphus kirkii Uluguru, Nussbaum, 1985 
Tanzania 

11 Scolecomorphus uluguruensis Uluguru, Nussbaum, 1985 
Tanzania 

12 Scolecomorphus kirkii Rubeho, Nussbaum, 1985 
Tanzania 

13 Scolecomorphus sp. Malundwe, Howell, 1993 X 
Tanzania 

14 Scolecomorphus kirkii Udzungwa, Loveridge, 1935 
Tanzania 

15 Scolecomorphus kirkfi Mahenge, Loader, at al. 2004 
Tanzania 

16 Scolecomorphus kirkii Southern Highlands, Loveridge, 1935 X 
Tanzania 

17 Scolecomorphus kirkii Lake Tanganyika? Boulenger, 1883 X 
Mwapawpa? 

18 Scolecomorphus kirkii Cholo, Loveridge, 1935 X 
Malawi 

19 Scolecomorphus sp. Nissa, Branch (pers. com. ) 'I 
Mozambique 

5.3 Materials and methods 

5.3.1 Specimens 

Specimens were collected from various sources (see Appendix 2). Once tissues 

were assembled, DNA extraction, amplification and sequencing were carried out (see 

section 2.3 for methods). 

138 



Chapter 5. Systematics and Biogeography of Scolecomorphidae 

Table 5.2. Scolecomorphus and outgroups sequenced In this study. 
Sequence 
number Specimens Species Locality Forest Reserve 
T7 RAN 31529 Scolecomorphus sp. Unknown Unknown 
T17 SG 5700 Scolecomorphus vittatus West Usambara Ambangula FR 
T20 SG 5589 Scolecomorphus vittatus East Usambara nr Amani 
T160 UFS 5662 Scolecomorphus vittatus West Usambara Mazumbai FR 

T172 MW 901 Scolecomorphus vittatus East Usambara Amani-Kwamkoro 

T174 KMH 22480 Scolecomorphus kirkii Udzungwa West Kiombero Scarp FR 
T175 KMH 22703 Scolecomorphus kirkii Udzungwa West Kiombero Scarp FR 
T176 KMH 22168 Scolecomorphus kirk!! Udzungwa West Kiombero Scarp FR 
T177 KMH 22716 Scolecomorphus kirk!! Udzungwa West Kiombero Scarp FR 
TI78 KMH 22724 Scolecomorphus kirki! Udzungwa West Kiombero Scarp FR 
T179 KMH 22041 Scolecomorphus kirkii Udzungwa West Kiombero Scarp FR 
T188 CAS 168810 Scolecomorphus vittatus West Usambara Mazumbai FR 
T197 KMH 25021 Scolecomorphus sp. Uluguru Uluguru South FR 
T198 KMH 25024 Scolecomorphus uluguruensis Uluguru Uluguru North FR 
T199 KMH 25000 Scolecomorphus uluguruensis Uluguru Uluguru North FR 
T226 KMH 21262 Scolecomorphus vittatus East Usambara Nilo FR 

T227 KMH 23333 Scolecomorphus vittatus East Usambara Nilo FR 
T228 KMH 21263 Scolecomorphus vittatus East Usambara Nilo FR 

T238 R 096037 Scolecomorphus kirkii Udzungwa Kilanzi Kihungulu FR 
T244 KMH 23344 Scolecomorphus vittatus East Usambara Nilo FR 
T271 MW 1842 Scolecomorphus kirk/i Mahenge Sall FR 
T272 MW 1846 Scolecomorphus kirkli Mahenge Sall FR 

T276 MW 1897 Scolecomorphus kirk!! Rubeho Matwemiro FR 
T427 MW 3054 Scolecomorphus kirk!! Ukaguru Ikwamba FR 

T430 MW 3070 Scolecomorphus vittatus North Pare Kindoroko FR 

T431 MW 3072 Scolecomorphus vittatus North Pare Kindoroko FR 

T433 MW 3114 Scolecomorphus villa (us Nguu Mountians Handeni side 
T435 MW 3141 Scolecomorphus vittatus South Pare Chome FR 

T440 MW 3278 Scolecomorphus kirkii Uluguru Uluguru North 

T441 KMH 23346 Scolecomorphus vittatus East Usambara Mgambo FR 

T442 MW 3048 Scolecomorphus kirkil Ukaguru lkwamba FR 

T443 MW 3115 Scolecomorphus vlttatus Nguu Mountians Handeni side 
T457 MW 3202 Scolecomorphus vittatus South Pare Chome FR 

T469 MW 3832 Scolecomorphus kirkii Udzungwa Udzungwa Scarp Forest 

T493 Ni197 Scolecomorphus kirkii Mozambique Nissa 
Crotaphatrema 

N/a UTA 51667 tchabalmbaboensis Cameroon Mount Tchabal Mbabo 

N/a UTA 38889 Herpele squalostoma Cameroon Mundemba 

N/a UTA 51487 Dermophis mexicanus Guatemala Izabal, Morales 

T438 MW 3225 Schistometopum gregorii Tanzania Bagamoyo 

N/a MW 331 Gegenophls ramaswami India Thenmalal 
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5.2.2 Phylogenetic analyses 
Phylogenetic analyses were carried out as detailed in section 2.7. Two alignments 
were used to investigate relationships among Scolecomorphids, (1) All 

scolecomorphids and outgroups used for calibrating molecular clock estimates (2) 
Only Scolecomorphus species, with the species Scolecomorphus uluguruensis used 
to root the tree. S. uluguruensis was shown to be unambiguously basally positioned 
in all preliminary analyses. This alignment resulted in the inclusion of data 

unalignable in the first alignment. 

5.3.3 Molecular divergence estimates 

Molecular divergence dates between specific clades were estimated by adding a 
number of taxa that provided calibration points (see section 2.7.2, and 3.2.3 for 

precise details and approaches for these calibrations). 

5.4 Results 

5.4.1. Phylogeny 

5.4.1.1 Data Quality and Details 

Partial 12S, 16S and cytb data were collected for all samples apart from T17 for 

which I was unable to amplify the first part of the cytb. The data are significantly 
different from randomly permuted data sets (P= 0.0001). No significant base 

composition differences were shown across all taxa analysed (chi-squared tests for 

homogeneity, P= 1). The full alignment showed significant rate heterogeneity, 

though only marginally (A=60.78668, P=<0.05). The alignment of only 
Scolecomorphus taxa was also shown to have significant rate heterogeneity 

(z=156.50658, P=<0.001). The Incongruence length difference test showed no 
significant incongruence between any data partition (P<0 0.98). 

Separate and combined analyses were carried out which resulted In a few minor 
differences, but overall the phylogeny was similar between all analyses whether 

different data partitions were combined or separately analysed which is congruent 

with the ILD test results. Branch lengths for cytb, 12S and 16S data partitions show 

similar rates of molecular evolution (Fig. 5.4a-c). An analysis of each cytb site 

showed 3rd positions to have a transition/transversion rate greater than other 
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positions (see Fig. 5.4d-f). Third position analysis shows greater resolution at tree 
tips and increased number of changes relative to other positions (Fig. 5.4d-f). 

(9) 

k 
N 
C 

N 
C 
z 

x 6ubsat, ü0n5 

Figure 5.4. 

(a-f) Comparison's of branch lengths for different data partitions. (g) Plot of substitution of 
transversions and transitions, indicating levels of saturation, with transitions in blue, and 
transversions in purple, r2 value for transitions (r2-0.9726) and transversions (r2-0.9356). 

Saturation plots were calculated for each gene partition and cytb codon position, 
these plots indicate that saturation is evident in the data (summarised in Fig. 5.4g) 

shown by substantial overlap in points of transitions and transversions. Saturation 
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levels were further investigated for each alignment by fitting a linear and power 

regression lines to a plot of transitions and transversions. Results (not shown) 

indicate that the full alignment is better fitted using power regression lines, whereas 

the alignment including only Scolecomorphus showed similar correlation levels 

(linear r2=0.96, power r2=0.95). These results indicate that the larger alignment is 

saturated whereas the smaller alignment less so. 

The full alignment consisted of 40 taxa and 1575 characters (see Table 5.3). The 

alignment of only Scolecomorphus taxa consisted of 36 taxa and 1653 characters 

(see Table 5.4). 

Table 5.3. Details of character informativeness for the full alignment of 40 taxa. 

cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 384 215 157 12 178 274 836 
Variable- 86 25 33 28 56 53 195 
uninformative 
Parsimony 319 23 73 223 108 117 544 
informative 
Total 789 263 263 263 342 444 1575 

Table 5.4. Details of character informativeness for the Scolecomorphus alignment of 35 taxa. 

cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 493 246 198 49 284 373 1150 
Variable- 61 12 25 24 6 32 99 
uninformative 
Parsimony 252 10 46 196 54 98 404 
informative 
Total 806 268 269 269 344 503 1653 

5.4.1.2 Phylogeny 

5.4.1.2.1 Introduction 

The relationships inferred from the mtDNA alignment from 40 taxa, including 36 

Scolecomorphids are summarised in Fig. 5.5. and 5.6. The alignment including only 

36 Scolecomorphus samples, with an extra 51 characters, is summarised in Fig. 5.7. 

The results of the analyses of the larger alignment using maximum likelihood and 

Bayesian methods produced almost identical topologies, but differed from parsimony. 

Analyses of fewer taxa (exclusively Scolecomorphus species) shows a similar 
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resolution, but showing a more robust support of relationships between leaves, as 

shown by the higher Bayesian posterior probabilities. This alignment also shows 
slightly greater correspondence between each tree building method, with fewer 

contradictory topologies. For this reason, the alignment including only 
Scolecomorphus species will be discussed more fully. The specific status of each 

species as described by Nussbaum is treated separately in section 5.4.1.2.4. 

5.4.1.2.2 Full Alignment 

In the full alignment all three methods clearly Indicate the monophyly of 

scolecomorphids, the basal position of S. uluguruensis relative to all other 
Scolecomorphus species, and the monophyly of most (also see section 5.4.1.2.3) 

mountain populations (West Usambara, East Usambara, North Pare, South Pare, 

Ukaguru, Mahenge, and Udzungwa). The relative phylogenetic position of all the 

monophyletic populations, which may or may not represent the two described 

species S. kirkii and S. vittatus, is sensitive to the method of analyses, and is weakly 

supported at some nodes. Bayesian posterior probabilities suggest the following 

clades are well supported, though not necessarily how they relate to one another: 
(North and South Pares) (Ukaguru, East Usambara, Nguu) (Mahenge, Mozambique). 

Parsimony and distance analyses show only weak support for most relationships for 

populations of S. kirkii and S. vittatus, with the clades (North and South Pare) 

(Ukaguru, Nguu, and East Usambara) shown as being moderately supported. All 

analyses therefore are In agreement with the monophyly of almost all mountain 
haplotypes, and in addition the clades including Pare populations and an Ukaguru, 

Nguu, and East Usambara clades. 

5.4.1.2.3 Scolecomorphus only alignment 
With the exception of "S. vittatus" from the East Usambara Mountains, all analyses 

where more than one haplotype is sampled for each mountain population, the 

monophyly of these clades are robustly supported. The relationships among each 

mountain population show varying degrees of resolution, and depend upon the tree 

building method. Bayesian analyses and likelihood analyses show total agreement in 

relationships and the posterior probabilities also show high support for most nodes, 

with values of 95 or greater (see Fig. 5.7). This is in sharp contrast with parsimony 

bootstrap proportions (see Fig. 5.6), which are substantially lower and may suggest 

Bayesian probabilities show Inflated support values. Bayesian and likelihood 
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reconstructions show geographical proximity being significant in explaining the 
relationships among populations, with adjacently located areas usually associated. 
This is shown in the following clades: Southern EAM (Mahenge, Mozambique, 
Rubeho, Uluguru, and Udzungwa), and Northern EAM (Ukaguru, Nguu, East 
Usambara), (North and South Pare). The weakest part of the tree In all analyses 
appears to be the splits between southern EAM populations (e. g. Mahenge, 
Mozambique, Uluguru, Rubeho and Udzungwa- see Figure 5.7) 

Schistometopum gregod 
Dennoph, s mexicanus 

Gegenophls remeswami 
Crotephattame tchabalmbaboensis 

too S. vittatus West Usambara-Ambengula T160 
100 S. v/ttatus West Usembaro- Mazumbal T188 

88 
S. vitfatus West Usambera- nr. Korogwe T17 

too S. vitlatus North Pares- T430 

o'S. viiietus North Pares- T431 

too S. ap. South Pares- T457 

+ S. sp. South Pares- T435 
S. kirkil Kilhenzl FR Udzungwa- T238 
S. kirkii WKS FR Udzungwa- T175 

100 S. kirki! WKS FR Udzungwa- T178 

p S. kirkl! WKS FR Udzungwa- T1 74 
10o S. kirkil WKS FR Udzungwa- TI 78 

kirkii WKS FR Udzungwa- TI 77 
88 S. kbkil WKS FR Udzungwa- T179 

r S. kirkll U. Scarp FR Udzungwa. T469 
too S. klrkll Mahenge- T271 

ps 98 " S. kirkli Mahenge- T272 
ee S. kirkil Mozambique- N1197 

S. k rk!! unknown- T7 
S. kirk!! Rubeho- T276 

S. kirk!! Uluguru- T440 

ys S. vlttotus Ameni-Kwamkoro East Usambora- TI 72 

98 99 S. vittatus nr. Amen! East Usambara- T20 

" S. vittatus NO East Usambara- T227 
S. vlttatus Nib East Usembara- 7226 

S. vittatus Nib East Usambora- T228 
100 

S. vitlatus Ndo East Usambara- T244 

go 99 1 S. vittatus Nguu- T433 
S. vittotus Nguu- T443 

99 S. viltatus Mgambo FR East Usambara- T441 

t pp S. kirkl! Ikwambe Ukaguru- T427 

" klrkd lkwambe Ukaguru" T442 S. 

pp S. sp. Uluguru South-T197 

. py S. ulugunrensls Uluguru North- T198 

+ S. uluguruensis Uluguru North- T199 
Herpele squalastome 

- 10 changes 

Figure 5.5 
Maximum likelihood tree (LnL= 10990.51188), GTR+l+G model selected from Modeltest. 
Base frequencies estimated at 0.3700,0.2375,0.1129 and 0.2796 for A, C, G and T 

respectively, substitution rates =1.0000,3.9850,1.0000,1.0000,7.0603, and the proportion 

of invariant sites set at 0.3302 and a gamma distribution shape parameter of 0.5651. Values 

on branches show Bayesian posterior probabilities, '= less than 85. Below branches shows 
SH test results (+= significant at =<0.05). 
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Scolecomorphus sp. Uluguru South- T197 
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Figure 5.6. 

Strict consensus of 14MPTs, tree length 2087. Bootstrap proportions shown above branches 

for parsimony, ML distance, and log-det distance. Decay Index values are shown below along 

with Templeton test result (+= significant <0.05). 
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Figure 5.7. 

Maximum likelihood tree (LnL= 7708.79510), GTR+I+G model using Modeltest. Base 

frequencies estimated at 0.33320,0.21730,0.15830 and 0.29120 for A, C, G and T 

respectively, substitution rates = 1.0000 3.9850 1.0000 1.0000 7.0603, and the proportion of 

invariant sites set at 0.5116 and a gamma distribution shape parameter of 0.7689. Values on 

branches show Bayesian posterior probabilities and bootstrap proportions for parsimony. 

Bremer support values are shown below, and SH test results (+= significant at <0.05). Red 

colour refers to specimens currently referable to S. vittatus and Blue colour refers to S. kirkii. 

5.4.1.2.4 Species boundaries in Scolecomorphus 
Each specimen sampled was identified based on the morphological key provided by 

Nussbaum (1985). All specimens could be assigned to a species apart from some 

specimens collected in this study from the South Pares and Uluguru South FR 
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(T197). Specimens collected from South Pare were similar to S. uluguruensis, but 

differed from it in numbers of teeth and annuli. Here the South Pare form is referred 
to as Scoiecomorphus sp. 1. The specimen collected from Uluguru South differs from 

S. uluguruensis, the species it most closely resembles, in teeth, colouration and head 

proportions. This is referred as Scolecomorphus sp. 2. The data provides the 

opportunity to investigate Nussbaum's classification. 

Table 5.5 gives the statistical support for the clades of S. kirkii and S. vittatus. S. 

uluguruensis is not included in the table. Likelihood and parsimony topology tests 

shown on Fig. 5.5 and 5.6 indicate that an alternative grouping of the S. uluguruensis 

Glade is significantly suboptimal (P=<0.0001) for all three specimens sampled. The 

species S. vittatus is not monophyletic with divergent clades found nested in different 

parts of the tree (see Fig. 5.7). Topology tests (both Templeton and Shimadairo- 

Hasegawa) show that a Glade including all East Usambara "S. vittatus" (the type 

locality for the species) in a Glade is significantly worse (P=<0.001) than the 

resolution shown in Fig. 5.7. This suggests that the two populations may represent 

distinct lineages. Furthermore, monophyly of all the S. vittatus populations as 

recognised by Nussbaum (1985) is rejected, regardless of whether South Pare 

population is considered to be S. vittatus or not. However, when Glade 1 (see Fig. 

5.7) is excluded from these constraints and the S. Pare population is regarded as S. 

vittatus the monophyly of populations of S. vittatus is not too significantly different 

from the optimal arrangement. 

For tests of the status of the species Scolecomorphus kirkii, a Glade including all 

recognised populations is shown to be significantly suboptimal from the arrangement 

in Fig. 5.6. However, if the Ukaguru population is excluded this is not shown to be a 

significantly different grouping. 

5.4.2 Molecular divergence estimates 

5.4.2.1 Consistency of calibration estimates 

Calibration points were evaluated for their consistency, and thereby to quantify the 

potential confounding effects this may have on divergence estimates. Two calibration 

points were used to calculate the divergence times, and the reliability of each of 

these were scrutinised by fixing one calibration point and using this to estimate the 
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other. The confidence intervals shown in Table 5.6 allow the rejection of the 
hypothesis that multiple fixed calibration points based on geological *evidence show 

substantial difference in divergence estimates to single fixed estimated calibration 

points. 

Table 5.5. Statistical support for alternative hypotheses of phylogenetic relationships of 
Scolecomorphus, using parsimony methods for both alignments. * significant (P=<0.05). 

Tree Includes Number of extra steps Templeton test 

Monophyly of all recognised Scolecomorphus vittatus 19 0.0126* 
populations (without S. Pare). 

97 <0.0001* 

Monophyly of all recognised Scolecomorphus vittatus 26 0.0212* 
populations (with S. Pare considered as S. vittatus). 

91 <0.0001* 

Monophyly of all recognised Scolecomorphus vittatus 12 0.0522 
populations (excluding Glade 1) 

15 0.0482* 

Monophyly of all recognised Scolecomorphus vittatus 4 0.6069 
populations (excluding Glade 1 and S. Pare considered 
as S. vittatus) 

12 0.08626 

Monophyly of all recognised Scolecomorphus kirkfi (all 22 0.0042* 
kirki, ) 

85 <0.0001* 

Monophyly of all recognised Scolecomorphus kirkii (all 1 0.989 
kirkii except Ukaguru population) 

1 0.976 

Table 5.6. Consistency of dating estimates using single calibration point estimation. 

Dermophis- Schistometopum Gegenophis- (Africa lade) 

(constrained 101 mya) (constrained 130 mya) 

Divergence estimate as PL- 111.15 PL- 118.56 

given from single fixed LF- 111.28 (97.08-126.83) LF- 117.98 (102.32-132.46) 

calibration point 
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5.4.2.2 Absolute time estimates for Scolecomorphus 

Significant rate heterogeneity was identified in the data set, and thereby estimation of 
divergence times was carried out using methods that could account for rate 
differences, i. e. Penalized likelihood approach. Confidence intervals were obtained 

using the Langley-Fitch method. The two estimates are shown in Table 5.7. The 

different estimation methods show considerable overlap in divergence estimates, and 
there is little difference between dates, which might suggest rate variation is not 

sufficiently acute to render molecular dates unusable. PL methods generally show 

more recent divergence estimates. Analyses of data partitions with third positions of 

cytb data removed did not conflict significantly with any of the results shown below 

(not shown). 

Table 5.7. 

Absolute divergence times in Myr. for clades within Scolecomorphus. Refer to Fig. 5.8 for 

precise position of nodes. 
recent common ancestor (MRCA) 

1. Crotaphatrema, Scolecomorphus. 91.20 87.81 

(82.56-93.98) 

2. All Scolecomorphus. 43.31 43.45 

(38.56-47.72) 

3. Scolecomorphus uluguruensis Glade. 11.79 11.90 

(9.73-14.41) 

4. Scolecomorphis uluguruensis- 0.13 0.23 

Uluguru North FR c/ade. (0.10-0.56) 

5. Scolecomorphus- Ukaguru, (Nguu, East 14.21 15.23 

Usambara). (13.28-18.06) 

6. Scolecomorphus- Mgambo, (Nguu, East 8.00 8.60 

Usambara). (6.56-10.97) 

7. Scolecomorphus- Nguu, East Usambara. 0.92 1.01 

(0.81-1.28) 

8. Scolecomorphus vittatus, S. kirkii Glade- 19.43 20.19 

(refer to node). (17.92-22.46) 

9. Scolecomorphus- Rubeho, (Mozambique, 12.57 13.28 

Mahenge). (11.78-16.27) 

10. Scolecomorphus- (Mozambique, 10.44 11.01 

Mahenge). (9.46-12.86) 

11. Scolecomorphus- 13.18 13.78 

(refer to node) (12.42-15.33) 
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12. Scolecomorphus- South Pare, North Pare. 11.07 

13. Scolecomorphus- Mahenge. 0.75 

14. Scolecomorphus- North Pare. 0.67 

15. Scolecomorphus- South Pare. 0.34 

16. Scolecomorphus- Udzungwa Glade. 9.23 

17. Scolecomorphus- Udzungwa Glade. 4.63 

18. Scolecomorphus- Udzungwa Glade. 0.22 

19. Scolecomorphus- East Usambara Glade. 4.81 

20. Scolecomorphus- West Usambara Glade. 3.64 

21. Scolecomorphus 12.91 

(refer to node) 

11.95 

(10.37-13.46) 

0.81 

(0.52-0.98) 

0.93 

(0.73-1.16) 

0.50 

(0.27-0.86) 

9.87 

(8.20-11.53) 

4.93 

(3.68-6.39) 

0.15 

(0.11-0.55) 

5.04 
(3.48-6.88) 

3.91 

(2.57-4.79) 

12.94 

(10.42-14.33) 

It is notable that many recent speciation events appear to be clustered, and not 

continuous. According to molecular clock estimates, a large proportion of the lineage 

divergence events in Scolecomorphus seemed to correspond to 10-14Myr (nodes 

3,5,6,9,10,11,12 and 21). 
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Figure 5.8. 

Phylogeny of Scolecomorphus with nodes calculated for molecular divergence times using 

r8s. 

5.5 Discussion 

5.5.1 Phylogeny 

5.5.1.1 Higher level relationships 
Taking into consideration that this study presents only a very limited sampling of 

caecilian families, molecular data presented here support previous analyses of 

caecilian phylogeny (Wilkinson of al. 2003), whereby scolecomorphids are 

monophyletic. The Scolecomorphids sampled in this study were recovered as a 

putative Glade in all analyses. This includes representatives of both genera; 

Crotaphatrema and Scolecomorphus, and a representative of almost all populations 

of Scolecomorphus known to occur. The Glade comprising Crotaphatrema and 
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Scolecomorphus is robustly supported, which is consistent with the limited 

morphological data available (Nussbaum, 1985). A previous study by Wilkinson et al. 
(2003) unambiguously recovered a Scolecomorphus Glade, and showed its relatively 
basal position (see section 5.2.3 for details). Furthermore, preliminary analyses of an 

alignment including the largest number of African caecilian species, and genera 

sampled (Loader at al. unpublished), including data gathered from this study, show 

congruence with the arrangement of scolecomorphids as shown by Wilkinson et al. 
(2003). 

5.5.1.2 Scolecomorphus 

Species level taxonomy 

Scolecomorphus is distributed in an area of high endemism, and it would be 

predicted based on their presumed limited dispersal ability (Taylor, 1968) that as in 

other amphibian groups, many species would occur in this region. The most recent 

revision of scolecomorphids (Nussbaum, 1985) using morphology recognised three 

species with overlapping distributions in the EAM. The molecular phylogeny 

presented in this study allows the explicit testing of species limits and boundaries 

based on our current understanding of the genus Scolecomorphus (Nussbaum, 

1985). Analyses presented in this study include a comprehensive sampling of all 

known species and almost all known and newly discovered representatives of 

Scolecomorphus populations. 

Well-corroborated evidence from different mitochondrial genes and partitions suggest 

that the species S. uluguruensis is sister group to all other Scolecomorphus species, 

and is highly divergent from all other species. The distinctiveness of S. uluguruensis 

is also supported by limited morphological evidence, which suggests a similar 

resolution; males have spines on the phallodeum, and both sexes have a distinct 

colouration differing from S. kirkii and S. vittatus (Nussbaum, 1985; Wake 1998). 

Results suggest the existence of an undescribed species (T197), as shown by 

substantial molecular differences. This single specimen was captured from the 

Uluguru South FR, in the Uluguru Mountains (a new locality for Scolecomorphus) and 

is similar to S. uluguruensis, which is currently confined to Uluguru North (Nussbaum, 

1985). Interestingly, the forest reserve Uluguru South is ecologically different from 

the submontane forests of Uluguru North FR; the reserve is covered by moist forest, 
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with upland grassland areas, swamps and forest patches of the Lukwangule plateau 
(Lovett, and Pocs, 1993; Menegon et a/. 2004). The Ulugurus are an area of 
extraordinary rich amphibian diversity (Barbour and Loveridge, 1928), with many 
endemics. Menegon et al. (2004) showed that the Uluguru Mountains harbour many 
species of the bufonid Nectophrynoides, with some species restricted to either 
Uluguru North or Uluguru South. These results suggest the distinctness of these two 

areas. Further sampling of populations and diverse taxa will be necessary to test the 

suggestion that Uluguru South and Uluguru North have substantially different 

endemic faunas. 

The statuses of S. vittatus and S. kirkii are much more complicated. For S. vittatus 
the data suggests that the current understanding of the distribution and 

morphological variability in this species as outlined by Nussbaum (1985) is 

inadequate. The first obvious problem is the recognition of two deeply divergent S. 

vittatus haplotypes in the East Usambaras, populations that are syntopic. A statistical 

assessment using topological constraints showed that grouping all specimens 

identified as S. vittatus (Nussbaum, 1985) from the East Usambara Into a single 

Glade was significantly suboptimal. The suggestion is that at least two species, one 

currently undescribed, can be recognised from the East Usambara. Morphological 

analysis of these populations will be necessary to Investigate this more fully. 

However preliminary data collected during this study and by Gower et al. (2004) 

indicate both populations appear to show distinctive morphological variation. 

Alternatively, it should also be considered that the molecular differences could reflect 

a diverse polymorphism in the ancestral population, which as a result of random 

lineage sorting events have produced widely divergent mitochondrial haplotypes 

(Avise, 1994). Therefore, the results may not be Indicative of non-interbreeding 

populations. This cannot be ruled out, but the consistent morphological and 

molecular differences would appear to favour the previous scenario at present. 

Based on examination of the holotype of S. vittatus (BM1946.9.5.59) this species is 

characterised by a pointed snout, and dark thin mid-dorsal stripe which contrasts with 

a much more reddish ventral colouration. This phenotype agrees with that of the 

sequences for T172, T20 (voucher specimen not inspected), and T227. And based 

on this morphological similarity, these populations most closely represent S. vittatus 

as first described by Boulenger. In contrast the other haplotype of S. vittatus (Clade 1 

in Fig. 5.7) in the East Usambara (T226, T228, T244) has a broad rounded snout with 
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a larger mid dorsal stripe and lighter cream coloured ventral region. This larger 
headed population also attains a greater size (Gower et al. 2004) and appears to be 

more broadly distributed within the EAM; occurring in the Nguu Mountains (1433, 

T443), and the lowland woodlands (Mgambo FR- T441) and the submontane forests 

(Nilo FR- T226, T228, T244) in the East Usambara, whereas S. vittatus appears to 

be restricted to higher submontane regions of the East Usambara. The occurrence of 
the larger headed population at areas of both higher and lower altitude may account 
for the recent patterns of diversification between the Nguus and East Usambara. A 

careful assessment of these populations will be necessary, because curiously, 

populations of East Usambara (1226, T228, T244, T441 separated by only -20km) 
are rendered paraphyletic by Nguu haplotypes (T433, T443 -180km from East 

Usambara). 

Confronted by small sample sizes and a broad scatter of morphological variation, 
Nussbaum, (1985) was unable to distinguish two species in the East Usambara. This 

may also have obscured his ability to distinguish distinct populations elsewhere. 
Populations outside of the East Usambara (e. g. West Usambara, Pares) may have 

shown overlapping characters with the combined populations in the East Usambara, 

but if these populations were treated as separate, other populations may have been 

distinguished. This problem it seems would have been further exacerbated by the 

fact that scolecomorphids show significant sexual dimorphism (Nussbaum, 1985) and 
that Nussbaum most importantly only had available a limited number of specimens 

and hence limited power in the statistical analysis. Considering the difficulties in 

distinguishing between caecilian species In general (Nussbaum and Wilkinson, 

1989), even with large sample sizes (Gudynas of al. 1988; Nussbaum and Pfrender, 

1998; Presswell, 2002) these findings are not surprising. Once each population from 

the East Usambara is correctly distinguished re-examination of the morphological 

variation of populations from Nguru, Pares, and Ulugurus may uncover additional 

cryptic species. These speculations seem to be borne out by the molecular trees 

recovered in all analyses that show a large genetic diversity exhibited between each 

mountain population, suggesting they are distinctive. Whether each population 

warrants recognition at the species level awaits detailed study of morphology. An 

indication that each population most probably represents a new species is suggested 

by the paraphyletic position of S. vittatus populations, albeit weakly supported in 

some analyses, and preliminary morphological work on populations from North and 
South Pare, which show that they are readily distinguishable. If both Pare 
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populations are considered as new species, then it would be logical to infer other 
populations (e. g. West Usambara) with similar levels of divergence are likely to 

represent new species. It is also noteworthy that recent detailed molecular and 
morphological studies of other amphibian groups from the EAM (presented in this 
thesis and published papers e. g. de Sä et al. 2004; Menegon et al. 2004) have 

suggested high levels of species diversity and endemism. 

The specific status of S. kirkii cannot be explicitly tested in this molecular study, 
because sampling of the holotype was not possible (and of uncertain locality). A 

combined molecular and morphological study will be necessary to fully evaluate this 

species. However, based on the optimal trees it is possible to indicate the likely 

patterns in these populations that may focus morphological studies. The most 

significant result is the strongly supported placement of a species currently referable 
to S. kirkii from the Ukaguru, which lies outside of the main S. kirkii Glade and more 

closely related to S. vittatus. Topology tests confirm that the placement of this group 
in a monophyletic S. kirkii Glade is significantly suboptimal. The placement of this 

sample is robustly supported in all analyses and would therefore appear to represent 

a divergent lineage, probably an undescribed species (see Fig. 5.6). A Glade 

including mainly southern located EA populations (Mahenge, Mozambique, 

Udzungwa, Uluguru and Rubeho) is relatively well supported in ML and Bayesian 

analyses. This resolution is not well supported in parsimony analysis, which only 

shows close affinities between Mahenge, Udzungwa and Mozambique haplotypes 

with the other clades unresolved in a polytomy. Within this Glade the lineages are 

divergent, even within mountain blocks (e. g. Udzungwa) and potentially may 

represent distinct species. The recognition of mtDNA clades as putative species is 

precluded at present because of ambiguous support for clades and the uncertain 

morphological variation in these populations. Further data will need to be collected 

before species level taxonomy can be tackled satisfactorily. 

Species Level Phylogeny 
Poor hierarchic structure is found among samples in the large clades of "S. vittatus" 

and "S. kirkii", with little resolution in the branching pattern between each mountain 

population. There are a number of possible explanations for the lack in resolution, 

with an emphasis placed either on the quality of the data, or interpreting the patterns 

as a phenomenon of the speciation process. Patterns may also be the result of both 

processes, so it is difficult to decipher between all the possible explanations. The 
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data presented could suggest the phylogeny is strongly compressed due to 

saturation of sites at deeper nodes, because there is significant rate variation and 

saturation in the dataset. However, in an alignment with only Scolecomorphus 

species saturation was shown to be less important and the branching pattern at basal 

nodes was still compressed and is similar to the results of the larger alignment. In 

addition, compression of these nodes is consistently shown in all data partitions, 
including 1ý`, 2nd, and 3`d position of cytb (see Fig. 5.3). 
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Figure 5.9. 

Summary of the phylogenetic relationships of Scolecomorphus and the taxonomic findings. 

If the poor hierarchic structure is not artifactual, it is possible that the patterns are due 

to rapid speciation over a short time, and or both that speciation may have occurred 

simultaneously due to a uniform extrinsic factor, suggesting a 'true polytomy'. Similar 

patterns have been shown in the clades of African greenbuls in the EAM (Roy, 2001), 

which suggests it might be indicative of speciation patterns in the area (see 
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Biogeography section for discussion). Determining which causal pattern is more likely 

is difficult bearing in mind the limited understanding we have of the region, caecilian 
biology, and the speciation process in general. Further work will be necessary to 

investigate this further, and collection of more sequence data may help to resolve 
these issues. 

Genetic distance and species boundaries 

a. Species 
Molecular markers, such as allozymes and mtDNA have been increasingly used to 

determine amphibian species boundaries (e. g. Avise, 2000). In addition to evaluating 

phylogenies, comparisons of genetic distances have also been made to infer the 

relative amount of change between two haplotypes, and by implication the relative 
degree of isolation between haplotypes (e. g. Ashton and de Queiroz, 2001; 

Wieczorek and Channing, 1997). It has been suggested that genetic distances 

maybe a useful indicator for understanding species boundaries (Thorpe, 1982; 

Highton, 1989; Wieczorek and Channing, 1997). Wieczorek and Channing (1997) 

used genetic distances to investigate species boundaries in the subspecies of 

Hyperolius marmoratus and used the distances, in addition to other character 

systems (e. g. morphology) to validate taxonomic classifications. 

This study identifies a number of diverse mitochondrial lineages that could be 

considered to represent distinct species (Table 5.8). For example, a pair of species 

which are readily distinguished from one another based on morphology (S. vittatus 

T172 against S. kirkii T174), show -5.8% difference. If it were taken that this then 

roughly approximates the genetic difference between Scolecomorphus species this 

would identify almost all of the mountain populations as being distinct. In addition, if 

the results here are compared to previous estimates of species boundaries in 

amphibians, then the amount of difference between most mountain populations far 

exceeds that shown between other species (Wieczorek and Channing, 1997; >2% in 

12S genes for frogs; Gower et al. 2002; >3% for Ichthyophid caecilians). Such 

conclusions would suggest that we currently severely underestimate the diversity of 

Scolecomorphus species. However, the uncertainties surrounding the factors that 

have caused the genetic heterogeneity (e. g. possible lineage sorting effects) mean 

that an attempt to define species boundaries based on these differences alone is not 

pursued or advised in general in this study. 
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Table 5.8. Summary of the geographical distance (km) (above the diagonal) and % genetic 
distances (for 12S, 16S and cytb genes) between Scoleomorphus populations (below the 

diagonal), using exemplars. Geographical distances provided by Neil Cox (Conservation 

International) apart from Mozambique, which was approximated. 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1. S. uluguruensis 
(T199) Uluguru 35 213 219 260 -630 144 35 189 353 288 244 110 

2. S. sp. 
(T197)Uluguru 5.5 270 271 230 -600 129 35 158 376 313 273 110 

3. S. vittatus (T188) 

W. Usambara 14.8 14.6 25 472 -815 275 213 381 172 102 36 214 

4. S. vittatus (T172) 

E. Usambara 14.2 14.3 4.5 478 -815 292 219 393 189 120 26 230 

5. S. kirkii (T271) 

Mahenge 14.8 14.4 5.1 5.1 -430 255 260 130 592 535 504 292 

6. S. kirkii (Nil97) 

Mozambique 15.6 15.5 6.2 6.4 5.9 -600 -630 -500 -900 -860 -820 -600 
7. S. kirkii (T276) 

Rubeho 14.6 14.4 5.2 5.3 4.5 5.9 144 130 352 306 311 62 

8. S. kirkii (1440) 

Uluguru 15.7 14.8 6.2 5.9 6.6 7.7 5.8 189 353 288 244 110 

9. S. kirkii (T174) 

Udzungwa 15.3 14.6 5.4 5.8 6.3 7.1 5.0 6.8 479 428 416 178 

10. S. vittatus 
(T430) N. Pare 14.2 14.2 5.2 5.5 5.8 7.7 5.4 6.7 6.6 70 171 302 

11. S. vittatus 
(T435) S. Pare 14.4 14.2 5.3 5.6 6.5 7.9 5.9 7.2 7.3 5.3 105 250 

12. S. vittatus 
(T226) E. Usambara 14.6 14.5 7.7 7.5 8.5 9.5 7.6 9.3 8.4 8.9 9.1 249 

13. S. kirkii (1427) 

Ukaguru 14.6 14.3 7.4 7.7 8.9 9.3 7.5 8.7 8.2 7.8 8.2 6.7 

b. Within Population Variation 
Generally, each mountain population shows fairly limited levels of within lineage 

divergence (excluding the two highly divergent lineages of S. vittatus), and these 

patterns are consistent with a scenario of recent interbreeding within these mountain 

localities (e. g. Mahenge, Ukaguru, Pares). However, a number of populations show 

large genetic heterogeneity within potentially Interbreeding populations (e. g. 

Usambaras, Udzungwa). Larger differences are exhibited between mountain 

populations where denser spatial sampling of haplotype lineages has been carried 

out, which perhaps would be expected. However, some divergences are still so large 

that the lineages may potentially be new species given the difference (e. g. Udzungwa 

S. kirkii) and these need to be examined carefully in future analyses. It needs to be 

ascertained based on a larger number of samples whether these divergent lineages 
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are simply a function of geographical distance, isolation, or perhaps the results are 

misleading as the gene tree is decoupled from the species trees (lineage sorting 

effects). The EAM show considerable geological, climatic, and ecological 
heterogeneity and this may have influenced diversification of lineages, even within 

mountain populations, resulting in the presence of more than one species for each 

mountain block. 

Conclusions 
Overall, the results suggest that there are a number of cryptic species of 

Scolecomorphus, but further analyses of morphology will be necessary to investigate 

this. Based on molecular data conservative estimates of species diversity In 

Scolecomorphus indicate the genera may contain twice as many species, though 

three times as many species is a more likely number. The current gross 

underestimation of species is a result of previously limited sampling of populations in 

the EAM and the difficulties encountered in diagnosing caecilian species. Future 

work should also investigate the association between geographic and genetic 

distances (see also below), which can be examined using Mantel tests or nested- 

clade analysis (NCA) (Templeton, 1998; Templeton, 2004). The molecular study 

presented here has provided a vital impetus and a starting point for re-evaluating the 

systematics of Scolecomorphidae. 

5.5.2 Biogeography 

5.5.2.1 East and West African Rainforest Biogeography 

Certain geological and climatic events are thought to have influenced patterns of 

speciation in amphibians restricted to the montane forests of East and West Africa 

(Poynton, 1999). Phylogenies of appropriate amphibian species have not been 

available, which has prevented the testing of biogegraphic hypotheses (Kingdon, 

1989; Lovett, 1993a; Burgess et al. 1998a). Molecular dating estimates presented 

here suggests that the separation of the West African Crotaphatrema and East 

African Scolecomorphus significantly predate a recent dispersal/vicariant event 

between the two forest regions, and remarkably date back some 90 Myr. Confidence 

intervals suggest times ranging from 82-93Myr, which significantly predate a period 

that has been hypothesised as restricting dispersal between regions (20-3OMyr). It 

appears that perhaps once a barrier was established between the East and West 
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African forests in the Miocene, this may have excluded dispersal between montane 
areas and thereby restrict dispersal of Scolecomorphus or Crotaphatrema. 
Restriction of dispersal between the two montane forest regions has been indicated 
in similar studies of Rhampholeon (Matthee et al. 2004). 

Estimates of the divide between East and West African scolecomorphids suggest 
that separation of forests regions in the Miocene did 'not influence divergence 

between the two genera. It is unclear what factors may have been critical in 

separating these two lineages, given the number of possible geological and climatic 
influences (Morley, 2000; Zachos et al. 2001; Trauth et al. 2005). The basal node of 
the Scolecomorphus Glade is dated at 38-48 Myr, closer to the origin of East and 
West separation. The significance of this date is difficult to evaluate, but may be 

associated to the beginning of the restriction of Eastern Arc forests. Overall, the 

temporal data cannot reject the hypothesis that dispersal of Scolecomorphidae 

between both East and West African forest was restricted, which is consistent with 

the biogeographical patterns found in other groups (Grimshaw, 2001). 

5.5.2.2 Eastern Arc biogeography 

Indications that the isolation and persistence of EAM rainforests may have Influenced 

speciation of amphibians, were first concluded from differences exhibited between 

the Uluguru and Usambara Mountains assemblages (Barbour and Loveridge, 1928). 

Barbour and Loveridge (1928) noticed similarities between the fauna of Usambara 

and Uluguru, but more significantly they described many new species restricted to 

either mountain range (e. g. Hop/ophryne uluguruensis, Scolecomorphus 

uluguruensis, and Boulengerula u/uguruensis), which suggested a period of isolation 

that permitted the evolution of new species. The most recent studies (Howell, 1993; 

Channing et al. 2002a; Menegon et al. 2004; de Sd of al. 2004; Loader et al. 2004) 

have continued to emphasise that long periods of isolation and fragmentation have 

been important in determining the diversity of EAM forests. However quantitative 
temporal data is still lacking to support these speculations concerning the amphibian 
fauna. 

a. Spatial Patterns in the EAM 

Repeated patterns of area relationships among widely divergent lineages of 

organisms are thought to be indicative of a shared biogeographic history. A 
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comparison of Scolecomorphus phylogeny with other published phylogenies show 
interesting similarities. Spatially, Scolecomorphids show some interesting 

geographical relationships, with associations between northern located EAM 

populations (Pare, Usambara) and southern (Udzungwa, Uluguru, Rubeho, 

Mahenge), which is repeated in other studies (e. g. Roy, 1997; Moller and Cronk, 

1997; Matthee at al. 2004). Furthermore the most southerly positioned mountain 
block (Mahenge) shows a close phylogenetic relationship with a scolecomorphid 
distributed south and outside of the EAM (Mozambique). These closer phylogenetic 

relationships within the northern and southern mountain blocks suggest a more 

recently shared biogeographical history in these areas, which is not a controversial 
finding. 

There are some notable exceptions to the congruence in spatial relationships, 

whereby patterns between areas do not correspond with previous findings, 

expectations, and suggest a significant departure from common biogeographic 

patterns. This includes the placement of the Nguu Glade in the phylogeny. Bowie et 

al. (2004) noted a distinct separation between Nguru and Usambara montane 

communities, which they suggested was the point at which northern and southern 

EAM mountains were probably biogeographically divided. Although this study does 

not sample populations that are known to occur in Ngurus (Emmrich, 1994), the 

geographically close Nguu (and floristically very similar, e. g. Lovett and Pocs, 1993) 

is deeply nested- in an Usambara Glade (see Glade 1 Fig. 5.5). If populations from 

Nguu are similar to Nguru (as would be expected based on preliminary morphological 

evidence) then this significant biogeographical barrier between southern and 

northern EAM regions may not exist for scolecomorphid caecilians. Sampling of all 

the Scolecomorphus populations in this area is needed before these hypotheses can 

be fully tested. Preliminary evidence from other groups also suggests a close 

association between Nguru, Nguu and Usambara fauna (Menegon et al. 2003b; 

Howell, 1993) in addition to the Ulugurus (Doggart et al. 2004). Therefore, Bowie's 

(2004) findings may not be a general biogeographical pattern but possibly lineage 

specific. The equidistant position of the Ngurus and Nguu relative to the Uluguru and 

Usambaras would suggest a mixture from both assemblages is likely, in addition to 

its own endemic fauna, which is poorly understood (Emmrich, 1994; Menegon et al. 

2003b). 
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Based on the geographical proximity of mountains and published phylogenetic 
studies, spatial patterns do not show congruent area topology in scolecomorphids. 
The position of the Ukaguru population in the optimal Scolecomorphid trees would be 

predicted to group more closely to those of southern mountains (e. g. Knox and 
Palmer, 1998). Instead, the Glade is the sister group to the Nguu/Usambara Glade. 
Recent evidence from amphibians (bufonids: Channing and Stanley, 2002; Poynton 

et al. 1998b; Menegon et al. 2004; and Microhylids; Channing et al. In prep) has 

shown the Ukagurus harbour a divergent amphibian assemblage In addition to the 

absence of a number of widespread Eastern Arc taxa (Menegon et al. 2004). Based 

on these findings the area is believed to have been Isolated for a relatively long 

period (Channing and Stanley, 2002; Menegon at al. 2004; Channing et al. in prep; 

see also Chapter 4). The discovery of a divergent Ukaguru Scolecomorphus Glade, 

possibly a new species restricted to this area, is then consistent with these findings. 

Whether these coherent amphibian phylogenetic patterns are reproduced in other 

groups (apart from Knox and Palmer, 1998), and by Implication suggest a general 
biogeographic pattern, is currently uncertain, because our knowledge is still quite 

rudimentary. 

Discordance in spatial patterns provides evidence for a complex biogeographic 

history in the region. Further evidence from optimal phylogenies (Figs. 5.5,5.6) 

suggest that divergence of lineages giving rise to extant Uluguru, East Usambara 

populations has occurred at least twice. For these populations at least, the evidence 

suggests more than one single vicariance/dispersal event has occurred. Therefore, 

the relationships seem to be more in accordance with the hypothesis that more than 

one event has isolated and reconnected Eastern Arc montane forests (e. g. Roy, 

1997; Loader et al. 2004b), possibly following an Initial gradual fragmentation of 
EAM. Perhaps more recent dispersal events have obscured a common 
biogeographic pattern, such as the fragmentation of mountain blocks. 

b. Temporal Patterns in the EAM 

The most outstanding aspect of the temporal patterns in the genus Scolecomorphus 

is the tempo of speciation patterns. Based on the likelihood analyses and the 

resulting estimated dates, there is evidence for the long persistence of lineages, 

coupled by periods of rapid speclation in many lineages (see Fig. 5.10). 
Scolecomorphus u/uguruensis, a basal Scolecomorphus lineage is estimated to have 
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persisted for -40Myr, and if correct suggests the montane forest habitats (Barbour 
and Loveridge, 1928) that Scolecomorphus occur in have also persisted. Prolonged 
persistence of lineages is also evident in other forest-restricted taxa, supporting the 
patterns in the Scolecomorphus tree (Gravlund, 2002; Matthee et al. 2004). ' 

The rapid speciation of many lineages during a relatively short time period may 
correspond to significant biogeographic events. Although the speciation events in all 
the lineages may not all be contemporaneous, the timing corresponds roughly to the 

end of a prolonged period of uplift in the EAM, when each of the EA mountain blocks 
became separated (Lovett, 1993), occurring between 25Myr- 10Myr (Partridge of al. 
1995) (see Fig. 5.10). Of the 14 lineages only one example shows a recent 
divergence times between mountains, e. g. East Usambara and Nguu (marked ß in 
Fig. 5.10). All other examples. show substantial periods of isolation approximately 

ranging from 8-14Myr. The rapid isolation and timing among lineages seems to fit 

with a biogeographic history of fragmentation. 

How plausible are such biogeographic scenarios? There are a few problems with 
evaluating biogeographic hypotheses. Firstly, ascertaining correlations between 

speciation and geographic events are generally very problematic, simply because the 

estimation of divergence times using molecular clock methods are not completely 
reliable (see section 2.6). Data that is perhaps more reliable than the mitochondrial 
data used in this study, such as nuclear gene fragments, may allow for more robust 

calculations, however even with these data sets there is a large degree of ambiguity 
in calculations (Ayala, 1986). Secondly, even when temporal data can be confidently 

utilised, many alternative biogeographic scenarios could be envisaged which could, 
based on the evidence at hand, explain the genetic diversity exhibited between 

lineages, e. g. vicariance mimicking processes (Nunn and Upchurch, 2001). Often, 

phylogenetic data are insufficient to allow discrimination between causal factors that 

can influence speciation patterns in similar ways. As a result, it is often difficult to 

tease apart the causal processes that have Influenced speciation in any particular 
lineage. 

However, even if molecular date estimates are incorrect, which, for example means 

questioning the precise length of time forests have persisted, such problems do not 
discount the ability to interpret the speciation patterns in Scolecomorphus being 

punctuated by at least two main periods of diversification. Such multiple speciation 
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events within a mountain block suggest a more complex biogeographic history than 

just simple fragmentation, unless significant inter-individual molecular rate difference 

are used to explain the differences, an unlikely and unprecedented explanation. 
Fragmentation of the EAM might be invoked as an explanation for influencing the 

biogeographic history of Scolecomorphus. It is unclear if fragmentation is the driving 

force behind the existing phylogenetic patterns in Scolecomorphus and not merely 

vicariance mimicking patterns. Further data of Scolecomorphids, other lineages, and 

geological data will be necessary to assess the biogeographic patterns in the region 

and their causes more effectively. Single studies are inherently speculative, but they 

do allow the generation of hypotheses that can be tested with other groups or more 

data. 
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Figure 5.10 

Summary of the biogeographical history of Scolecomorphus, showing the possible 

correspondence between speciation events and the fragmentation of the EAM. 
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Chapter Six 

Systematics and Biogeography of 

Boulengerula 

6.1 Aims 
The caecilian family Caeciliidae has a cosmopolitan distribution, found in Africa, Asia 

and South and central America. The relationships among genera and many of the 

species are very poorly understood due to lack of detailed study. In this chapter I 

investigate the phylogenetic relationships of the caeciliid genus Boulengerula, a 

group restricted to Eastern Africa; found almost throughout the Eastern Arc 

Mountains, coastal forests of Kenya and Tanzania and Rwanda and Malawi. The 

study here represents the widest molecular sampling of populations and species of 

Boulengerula to date. Using molecular data I investigate species limits, population 
differences, and phylogenetic relationships. This allows testing of the current 
taxonomy. The data also allow an examination of biogeographical patterns. 
Considering the wide geographical sampling throughout the Eastern Arc and coastal 

forests I assess the possible influence fragmentation and prolonged isolation of 

mountains of the Eastern Arc might have had on this group of amphibians. 

6.2 Introduction 

6.2.1 Introduction 

(See section 5.1.1 and 5.1.2 for introduction to Caecilian systematics and 

background to African caecilian systematics, phylogeny and biogeography). 

The caeciliid fauna of Africa, excluding the Seychelles, includes six genera and 17 

currently recognised species (Wilkinson et al. 2004). These species are primarily 
distributed close to the coast line of East and West Africa, with only 1 species 

confirmed as occurring In central Africa (Bou/engeru/a fisheri from Rwanda; 

Nussbaum and Hinkel, 1994). Only the genus Shistometopum transects the continent 

of Africa, with one species S. thomense (Nussbaum and Pfrender, 1998), described 
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from San Thome in West Africa and another, S. gregorii, from the coastal plains of 
Tanzania and Kenya (Nussbaum and Pfrender, 1998). All other genera are confined 
either to the East (Boulengerula, and Sylvacaecilia) or the West (Herpele, 
Idiocranium, and Geotryptes) of equatorial Africa (Nussbaum and Hinkel, 1994). Of 
these genera, Boulengerula is the most speciose African genus, in addition to being 
one of the more widely distributed. 

6.2.1 Boulengerula 
Boulengerula are found throughout the mountain forests of the Eastern Arc and 
lowland coastal areas (see Fig. 6.1). As currently conceived (Wilkinson et al. 2004) 
the genus comprises 6 species. Tornier (1897) described the first of these, 
Boulengerula boulengeri, from Amani in the East Usambara Mountains (see Fig. 6.1) 
based on five specimens collected by the German explorer Eisner. Fifteen years later 
B. denhardti was described from the region of the Tana River Delta of Kenya based 

on a single poorly preserved specimen (Nieden 1912). Although dehydrated, Nieden 

(1912) was able to easily identify this specimen as being distinct from the only other 
Boulengerula species, B. boulengeri by the greater number of annuli. Following 

Nieden and Tornier, Arthur Loveridge herpetologist at the Museum of Comparative 

Zoology, Harvard, became a significant force in East African herpetology. He 

pioneered many expeditions throughout the region, collecting in the many un- 

surveyed parts of East Africa (Howell, 2000). Loveridge was first in East Africa during 

the First World War, in the then named German East Africa (Tanzania). During his 

service, Loveridge made some collections of reptiles and amphibians, including a 

single caecilian thanks to a fellow colleague, who whilst under 'an unpleasant shell 
fire' in the Uluguru Mountains' managed to uncover one (Loveridge, 1925; p. 764). 

This specimen, the only caecilian he collected during this time, was initially identified 

as B. boulengeri (Loveridge, 1925), but was later described as the species B. 

uluguruensis (Barbour & Loveridge, 1928) once further samples were collected on 
his second visit to the Ulugurus in 1926. 

Loveridge's several expeditions to East Africa took him to; the Ulugurus and 
Usambaras (1926); Southern Highlands (1929-30); Kenya and Tanzania (1932); 

Uganda (1939); Malawi and Mozambique (1948-9) among many others. As a result 

of Loveridge's surveys, the knowledge of the herpetological fauna was greatly 
increased, doubling the numbers of amphibians known since - Nieden's 1912 

publication, which included caecilians, a group Loveridge showed great interest in: 
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'imagine my joy on seeing a squirmy mass of slimy caecilians' (Loveridge, 1947; 

p. 31). During this period of exploration Loveridge described two more Boulengerula 

species; B. changamwensis (Loveridge, 1932) from lowland Changamwe in Kenya; 

B. taitanus (Loveridge, 1935) from the Taita Hills, in Kenya (see Fig. 6.1) part of the 

Eastern Arc Mountains. Loveridge distinguished his species mainly on colouration 

and annular counts. 

Figure 6 1. 

Pictures in life of Boulengerula boulengeri (left) and Boulengerula taitanus (right). Scale 

unknown. 

In addition to describing new caecilian species, Loveridge also made significant 

amendments to caecilian taxonomy. During Loveridge's time in Kenya he made 

collections of caecilians from the Tana River, an area he interpreted as including the 

holotype localities of the three caeciliid species that had been previously reported 

from this region, Dermophis gregoril (Boulenger, 1894), Boulengerula denhardti 

(Nieden, 1912), and Bdellophis unicolor (Boettger 1913). Loveridge's material 

included only a single species of caecilian, and based on a comparison of his 

material with published reports for the three named species, Loveridge (1936) 

concluded that all three names were synonymous, with the oldest name, D. gregorii, 

having priority. Later, Parker (1941) partitioned African and Neotropical Dermophis, 

and designated gregorii the holotype species of the strictly African genus 

Schistometopum. He and subsequent workers, except Wilkinson et al. (2004) see 

below, accepted Loveridge's view that both B. unicolor and B. denhardti were junior 

synonyms of S. gregorii (Taylor, 1968; Nussbaum and Hinkel, 1994; Nussbaum and 

Pfrender, 1998). 
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Taylor (1968) reviewed the genus Boulengerula, recognising the four species 
described by Tornier (1897), Barbour and Loveridge (1928) and Loveridge (1932; 

1935), but removing three of the species (B. changamwensis, B. taitanus, and B. 

uluguruensis) to a newly designated genus Afrocaecilia, with B. boulengeri remaining 

as the sole species of Boulengerula. Taylor (1968) reasoned that the absence of 

splenial teeth and fusion of the tip of the tongue to the gum in the species B. 

changamwensis, B. taitanus, and B. uluguruensis were such distinct morphological 
differences that distinction at the generic level was warranted. Nussbaum and Hinkel 

(1994) concluded that Taylor's split between these groups was unjustified and 
'artificial' and they preferred to recognise a single genus Boulengerula as originally 

conceived (Nussbaum and Hinkel, 1994; p. 754). Their justification for this was 

primarily based on an analysis of the phylogenetic relationships (using 17 

morphological characters) of Boulengerula that contradicted Taylor's scheme. Their 

analysis showed that the genera Boulengerula and Afrocaecilia are possibly 

paraphyletic, and therefore did not support Taylors (1968) concept of Afrocaeciliä. 

In addition to reviewing the genus, Nussbaum and Hinkel (1994) provided a 
description of a new species B. fisheri from the cloud forests of Rwanda. B. fisheri is 

a long slender species, with a high number of primary annuli (186), compared to the 

other species: B. boulengeri (124-134); B. changamwensis (140-148); B. 

uluguruensis (128-144); and B. taitanus (137-144). Nussbaum and Hinkel (1994) also 

provided an updated key to the species, principally based on annular counts, 

colouration, and presence and absence of teeth series. Distribution data were also 

extended for certain species, B. uluguruensis was shown to occur in the Ngurus 

(based on Emmrich, 1994), for the species B. changamwensis referral of specimens 

extended the distribution from Changamwe to the Shimba Hills In coastal SE Kenya 

(NMK L/1887) to a disjunct population 1320km south In the Shire Highlands in 

Malawi (BMNH 92.12.31.45). Lastly, a Masters thesis by the Danish herpetologist 

Martin Vestergaard (1994) also extended the distribution of B. boulengeri based on 

collections he made throughout the Usambaras, showing the presence of the species 
In the West Usambara Mountains, but with the suggestion that this population might 
be specifically distinct. 

Following a re-examination of the holotype of B. denhardti, Wilkinson et al. (2004) 

confirmed Nieden's (1912) assessment that this form represented a distinctive 

species of Boulengerula, contra to Loveridge's (1936) assessment that the species 
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was a junior synonym of Schistometopum gregorii. Accordingly, Wilkinson et al. 
(2004) resurrected B. denhardti from synonymy. They also showed that the 

morphological data used by Nussbaum and Hinkel (1994) were insufficient to resolve 
relationships with any confidence, or evaluate the Afrocaecilia, concept. No taxonomic 

changes were suggested by Wilkinson et al. (2004), however their analysis left open 
questions regarding the systematics and taxonomic classification of this group. 

The goals of this study were to estimate the phylogeny of Boulengerula using 12S, 

16S and cytb and elucidate the history of biogeographic diversification in 

Boulengerula in the Eastern Arc Mountains. Specifically, I used phylogenetic data to 

evaluate (l)-species boundaries, based on the most complete survey to date of 

Boulengerula populations from Kenya and Tanzania (2) taxonomic classifications 

proposed by various authors (Taylor, 1968; Nussbaum and Hinkel, 1994) based on 

morphology (3) the pattern of speciation in the group; both the timing and sister 

group relationships, which may allow an inference on the biogeographic history of the 

group and how this correlates with the climatic and geological history of the EAM and 

coastal region of Kenya and Tanzania. 
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Distribution of the caecilian Boulengerula in East Africa (see Table 6.1 for details). 
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Table 6.1. 

List of the occurrence of Boulengerula species in East Africa and sampled in this study. With 

59% of populations sampled. 

Species Locality Reference Sampled 
1 Boulengerula denhardti Tana river, Nieden, 1912 X 

Kenya Wilkinson at al. 2004 

2 Boulengerula taitanus Taita hills, Loveridge, 1935 

Kenya 

3 Boulengerula changamwensis Changamwe, Loveridge, 1932 

Kenya 

4 Boulengerula changamwensis Shimba hills, Kenya Nussbaum and Hinkel X 

1994 
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5 Boulengerula boulengeri West Usambara, Vestergaard, 1994 
Tanzania 

6 Boulengerula boulengeri East Usambara, Tornier, 1897 1 

Tanzania 

7 Boulengerula uluguruensis Nguu, This study. X 
Tanzania 

8 Boulengerula uluguruensis Nguru, Emmrich, 1994 
Tanzania 

9 Boulengerula uluguruensis Uluguru, Barbour & Loveridge, 
Tanzania 1928. 

10 Boulengerula uluguruensis Kazizumbwe, This study .1 
Tanzania 

11 Boulengerula changamwensis Shire highlands, Nussbaum and Hinkel X 
Malawi 1994 

12 Boulengerula fisheri For@t de Cymandungo, Nussbaum and Hinkel X 
Rwanda 1994 

6.3 Materials and methods 

6.3.1 Specimens 

Specimens were collected from various sources (see Appendix 2). Once tissues 

were assembled, DNA extraction, amplification and sequencing were carried out (see 

section 2.3 for methods). Nussbaum and Hinkel's (1994) key to the genus 
Boulengerula was used to determine the identity of all specimens used in this study. 

Table 6.2 

Boulengerula and outgroups sequenced in this study. 
Sequence 
number Specimens Species Locality Forest Reserve 
T6 N/a Boulengerula boulengeri Unknown Unknown 
T9 B8 Boulengerula taitanus Taita Hills, Kenya Wundanyl 
T161 MW 1024 Boulengerula taitanus Taita Hills, Kenya Wundanyi 
T162 MW 1026 Boulengerula taitanus Taita Hills, Kenya Wundanyl 
T163 MW 1021 Boulengerula taitanus Taita Hills, Kenya Wundanyi 
T164 MW 1019 Boulengerula taitanus Taita Hills, Kenya Wundanyi 
T165 MW 390 Boulengerula boulengeri East Usambara Msyuzl Scarp FR 
T166 MW 392 Boulengerula boulengeri East Usambara Amani-Kwamkoro FR 
T171 MW 399 Boulengerula boulengeri East Usambara Amani-Kwamkoro FR 
T173 MW 1015 Boulengerula taitanus Taita Hills, Kenya Wundanyi 
T201 KMH 21450 Boulengerula uluguruensis Uluguru Mkungwe FR 
T202 KMH 21463 Boulengerula uluguruensis Uluguru Mkungwe FR 
T203 KMH 21480 Boulengerula uluguruensis Uluguru Mkungwe FR 
T225 KMH 21270 Boulengerula boulengeri East Usambara Nilo FR 
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T243 KMH 23345 Boulengerula uluguruensis Coastal Forest Kazizumbwe FR 
T277 MW 1899 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T278 MW 1956 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T279 MW 1984 Boulengerula boulengeri West Usambara Mazumbai FR 
T280 MW 2331 Boulengerula boulengeri West Usambara Mazumbai FR 
T299 MW 1901 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T300 MW 1903 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T301 MW 1907 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T302 MW 1909 Boulengerula uluguruensis Nguru Mountain Nguru South FR 
T305 MW 2336 Boulengerula boulengeri West Usambara Mazumbal FR 
T434 MW 3132 Boulengerula boulengeri West Usambara Lushoto 
T436 MW 3208 Boulengerula boulengeri West Usambara Ambangula FR 
T437 MW 3217 Boulengerula boulengeri West Usambara Ambangula FR 
T439 MW 3268 Boulengerula uluguruensis Uluguru Uluguru North 
T445 MW 3174 Boulengerula taitanus Taita Hills Ngangao FR 
T475 JM 150 Boulengerula boulengeri East Usambara Shambangeda, nr Amani FR 
T476 MW 3777 Boulengerula changamwensis Changamwe Kenya 
T482 JM 849 Boulengerula taitanus Taita Hills Kasigau FR 
T483 JM 794 Boulengerula taitanus Taita Hills Mbololo FR 
T484 JM 966 Boulengerula uluguruensis Uluguru Tandai Village, 
T487 JM228 Boulengerula taitanus 

. 
Taita Hills Chawia FR 

T490 HM 1 Boulengerula changamwensis Coastal Kenya Changamwe 
T491 HM 51 Boulengerula new sp. Taita Hills Sagala 
T492 HM 52 Boulengerula new sp. Taita Hills Sagala 
n/a UTA 38889 Herpele squalostoma Cameroon Mundemba 
n/a UTA 51487 Dermophis mexicanus Guatemala Izabal, Morales 
T438 MW 3225 Schistometopum gregorii Coastal Tanzania Bagamoyo 
n/a MW 331 Gegenophis ramaswami India Thenmalai 

6.3.2 Phylogenetic analyses 

Phylogenetic analyses were carried out as detailed in section 2.7.1. Only one 

alignment was used to investigate relationships among species of Boulengerula. 

Following analyses by Wilkinson, of al. (2003) which showed Herpele and 

Boulengerula, possibly form a sister group, the species Herpele squalostoma was 

designated as an outgroup and used to root trees for preliminary analyses. Following 

these analyses, additional taxa were then included to calibrate molecular clock 

estimations; Gegeneophis ramaswamil, Dermophis mexicanus and Schistometopum 

gregoril. These taxa were then used as the outgroup for further analyses. The 

relationships recovered from these analyses did not differ from preliminary analyses, 

and are presented in the results section. 
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6.3.3 Molecular divergence estimates 
Molecular divergence dates between specific Glades were estimated by adding a 
number of taxa that provided calibration points (see section 2.5 and 5.2.3 for precise 
details and approaches for these calibrations). 

6.4 Results 

6.4.1 Phylogeny 

6.4.1.1 Data Quality and Details 

Partial 12S, 16S and cytb data were collected for all samples apart from T6, T166 

and T483 for which I was unable to amplify the first part of cytb. Randomly permuted 
data were shown to be significantly different from the Boulengerula dataset (P< 

0.001). No significant base composition differences occur across all taxa analysed 
(chi-squared tests for homogeneity, P= 1). The Incongruence length difference test 

showed no significant incongruence between each gene (P= 0.72). Separate and 

combined analyses were carried out which resulted In a few minor differences, but 

overall the phylogeny was similar between all analyses, whether different data 

partitions were combined or analysed separately, which is as expected with the ILD 

test results. For cytb, 12S and 16S branch lengths for each data partition show 

similar rates of molecular evolution (Fig. 6.4a-c). Analysis of each cytb codon 
indicated 3'" position to show only marginally greater transition/transversion rate than 

other positions (see Fig. 5.4d-f). Saturation plots were calculated for each gene 

partition and cytb codon position. These plots indicate some saturation in the data 

(summarised in Fig. 6.3g), as shown by considerable overlap in points of transitions 

and transversions. Furthermore, fitting linear and power regression lines to a plot of 
transitions and transversions also indicated saturation is potentially a problem for this 

data set (not shown; linear r2=0.878, power r2=0.9135). 
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Figure 6.3. 

(}) 3rd Position 

(a-f) Branch length comparisons of different data partitions (g) Plot of substitution of 
transversions and transitions, indicating levels of saturation, with transitions in blue, and 
transversions in purple, r2 value for transitions (r2-0.9611) and transversions (r2'0.954). 

The alignment consisted of 37 taxa (33 Boulengerula) and 1445 characters (see 
Table 6.3). 

Table 6.3. 
Details of character informativeness for the full alignment of 37 taxa. 

Cytb 12S 16S Total 
rRNA rRNA 

All positions Position Position Position 
1 2 3 

Constant 466 160 161 145 141 165 771 
Variable- 96 30 36 30 53 29 178 
uninformative 
Parsimony 223 72 64 87 119 153 495 
informative 

Total 785 262 261 262 313 347 1445 

(C) Iss 
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6.4.1.2 Phylogeny 

The relationships inferred from a matrix of 12S, 16S and cytb for 37 samples are 

summarised in Fig. 6.4 and 6.5. Analyses show good agreement between all 

phylogenetic reconstruction methods; Bayesian, Likelihood, Parsimony and Distance 

which all essentially show the same tree, with only minor differences In the 

arrangement of populations within species. In summary, analyses recovered clades 
formed by all nominal species, with B. boulengeri sister to a group including B. 

taitanus (B. changamwensis B. uluguruensis). Support for nominal species is good 

as judged by high bootstrap proportions, decay indices, bayesian posterior 

probabilities and by tests using topological constraints which indicate all clades of 

species shown are significantly different from suboptimal arrangements (as shown in 

both parsimony and likelihood score comparisons). 

For the B. taitanus Glade; all optimal trees (likelihood, parsimony and bayesian) show 
the resolution of populations: Sagalla ( Kasigau ( Mbololo, Chawia (Wundanyl, and 
Ngangao)))). However, among the 11 haplotypes sampled, convincing support is 

shown only for the Clades including: (1) Sagalla, (Kasigau (Mbololo, Chawia 

(Wundanyi, and Ngangao) (2) Kasigau (Mbololo, Chawia (Wundanyi, and Ngangao). 

There is very little sequence difference among populations within the (Mbololo, 

Chawia (Wundanyi, and Ngangao)) Glade, which is why resolution is so poor. 
Considerable differences are shown between Sagalla and the rest of the Taita 

populations. For the B. uluguruensis Glade, all trees show a basal split between 

Uluguru/Coastal Tanzania and Nguru populations and this is well supported. Within 

Uluguru populations, the lowland semi-deciduous forest populations of Mkungwe 

form a Glade with the coastal Tanzanian population (Kazizumbwe), but this is only 

moderately supported and there Is little sequence divergence among all B. 

uluguruensis populations (excluding Nguru populations). The main Uluguru montane 

forest block populations (Tandal and Uluguru North) form a weakly supported Glade. 

Nguru populations of B. uluguruensis are shown to form a well-supported Glade 

(samples all from one locality- Komboro in Nguru South FR), which is highly 

divergent from the Uluguru/Coastal Tanzania Glade. One sample for B. 

changamwensis (from SE Kenya) is included, this is strongly supported as the sister 

group to B. uluguruensis Glade. 
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The Glade including samples of populations of B. boulengeri is the only part of the 

Boulengerula tree that shows conflicting results among methods, however these 

differences are minimal. Parsimony recovers the sample T165 as sister to all other 
Boulengerula boulengeºi samples, whereas Likelihood and Bayesian reconstructions 

recover T165 within an otherwise West Usambara lade (T437, T436, T305, T279). 
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Figure 6.4. 

Strict consensus of 2160 MPTs, tree length 1612. Bootstrap proportions shown above 

branches for parsimony, ML distance, and log-det distance. Decay Index values are shown 

below along with Templeton test result (+= significant P=<0.05). 

There are uncertain relationships among many of the populations because there is 

only limited divergence. Support for the main splits within B. boulengeri is generally 

good; this includes the monophyly of B. boulengeri from Amani FR and Nilo FR 
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Figure 6.5. 

Maximum likelihood tree (LnL= 9150.18654), GTR+I+G model selected from Modeltest. Base 

frequencies estimated at 0.33100,0.23630,0.15750, and 0.27520 for A, C, G and T 

respectively, substitution rates = 3.5006 4.4277 2.9227 1.1268 14.6852, and the proportion of 
invariant sites set at 0.3702 and a gamma distribution shape parameter of 1.2118. Values on 
branches show bootstrap proportions for maximum likelihood and Bayesian posterior 

probabilities. Bremer support values are shown below, and SH test results (+= significant at 
P= <0.05). 
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6.4.1.3 Hypotheses 

Comparisons were made between the optimal phylogeny and constrained suboptimal 

hypotheses. Trees were constrained to investigate two hypotheses: (1) Nussbaum 

and Hinkel's (1994) arrangement of, Boulengerula based on cladistic analysis of 17 

morphological characters (excluding the presence of Brasilotyphlus braziliensis and 

Boulengerula fisheri, not surveyed in this study). (2) Monophyly of coastal 

populations (B. changamwensis and B. uluguruensis (T243). (3) Monophyly of 

Eastern Arc species (excluding coastal B. changamwensis, B. uluguruensis 

(Kazizumbwi). 

Table 6.4. 
Testing for Boulengerula hypotheses using parsimony analysis, `= significant at p= <0.005 
level. 

Number of extra steps Templeton test p value 

Nussbaum hypothesis: outgroup (B. 43 0.0002* 

taitanus (B. uluguruensis ( B. 

changamewensis (B. boulengeri)))) 

Monophyly of B. changamwensis and 40 0.0003* 

B. uluguruensis (T243) 

Monophyly of Eastern Arc species: B. 43 0.0002* 

taitanus, B. uluguruensis (excluding 

Kazizumbwi), and B. boulengeri. 

Results indicate that all hypotheses are significantly suboptimal solutions from the 

phylogeny recovered In Fig. 6.4. and Fig. 6.5. 

6.3.1.4 Genetic distances 
Pairwise distances were calculated for an exemplar of each geographical population 

of Boulengerula. In addition, the geographic distances between each sample was 

calculated using GPS co-ordinates (see section 2.1.2.3). These results are given in 

Table 6.5. The values were used for evaluating the presence of divergent lineages 

within and between mountain populations. 
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Table 6.5. 

Summary of the geographical distance (km) (above the diagonal) and % genetic distances 

(12S, 16S and cytb combined) between Boulengerula populations (below the diagonal), using 

exemplars. Geographical distances provided by Neil Cox (Conservation International), apart 
from samples 17-20 which were approximated. 

123456789 10 11 12 
1. Herpele squalostoma 

2. B. taitanus (Wundanyi) 
T9 20.7% 4.8 392.0 308.7 389.0 394.2 168.3 193.3 193.3 157.9 152.4 
3. B. taitanus (Ngangao) 
T445 20.6% 0.1% 396.1 311.5 392.4 397.6 172.7 197.5 197.5 162.0 156.0 
4. B. uluguruensis 
(Kazizumbwe) T243 21.5% 11.7% 11.7% 170.4 99.2 111.8 224.4 198.8 198.8 234.2 244.4 
5. B. uluguruensis (Nguru) 
T278 21.1% 12.0% 12.0% 5.4% 100.8 99.5 180.6 160.2 160.2 174.7 164.2 
6. B. uluguruensis 
(Mkungwe) T203 20.9% 11.1% 11.2% 0.6% 4.6% 13.2 235.9 210.4 210.4 237.7 237.0 
7. B. uluguruensis 
(Uluguru North) T439 21.3% 10.9% 10.9% 0.6% 4.3% 0.7% 243.9 218.7 218.7 244.8 242.8 
8. B. boulenged (Nilo) 
T225 22.4% 18.6% 18.7% 18.7% 17.9% 18.3% 18.3% 26.2 26.2 19.7 46.2 
9. B. boulengeri (Amani) 
T171 22.2% 18.5% 18.7% 18.6% 17.9% 18.3% 18.2% 0.7% 0 36.7 56.3 
10. B. boulengeri (Amani) 
T166 21.1% 17.9% 17.9% 17.5% 16.1% 16.9% 17.0% 0.7% 0.3% 36.7 56.3 
11. B. boulengerl 
(Mazumbai) T280 22.9% 18.2% 18.4% 18.2% 17.7% 18.0% 17.9% 2.1% 2.0% 1.8% 26.7 
12. B. boulengeri 
(Lushoto) T434 22.6% 18.2% 18.2% 18.1% 17.7% 17.8% 17.8% 2.0% 1.9% 1.3% 1.3% 
13. B. boulenged - 
(Mazumbai) T279 21.8% 18.7% 18.6% 18.3% 17.8% 17.8% 17.7% 4.3% 4.2% 3.3% ' 3.9% 3.5% 
14. B. boulengeri 
(Ambangula) T436 22.0% 18.7% 18.7% 18.4% 17.8% 17.8% 17.9% 4.2% 4.2% 3.1% 4.1% 3.8% 
15. B. uluguivensis 
(Tandai) T484 21.0% 11.1% 11.1% 0.9% 4.6% 1.1% 0.7% 17.9% 17.8% 16.5% 17.5% 17.3% 
16. B. changamwensis 
(Changamwe) T490 20.6% 11.5% 11.3% 7.9% 7.5% 7.7% 7.9% 18.7% 18.6% 17.5% 18.6% 18.6% 
17. B. new sp. (Sagalla) 
T492 21.7% 8.5% 8.4% 11.7% 12.5% 12.0% 11.7% 18.6% 18.4% 17.4% 17.9% 18.1% 
18. B. taitanus (Chawia) 
T487 21.1% 0.4% 0.4% 11.0% 11.9% 11.3% 11.1% 18.5% 18.4% 17.8% 18.1% 18.1% 
19. B. taitanus (Kasigau) 
T482 20.9% 1.2% 1.2% 11.9% 12.3% 11.4% 11.0% 18.7% 18.6% 17.4% 18.2% 18.0% 
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Table 6.5 (continued) 

13 14 15 16 17 18 19 
1. Herpele squalostoma 

2. B. taitanus (Wundanyi) 
T9 157.9 186.6 394 155.0 45 15 85 
3. B. taitanus (Ngangao) 
T445 162.0 190.5 397.6 159.5 45 20 90 
4. B. uluguruensis 
(Kazizumbwe) T243 234.2 207.1 111.8 332.3 385 390 330 
5. B. uluguruensis (Nguru) 
T278 174.7 145.5 99.5 323.3 300 305 250 
6. B. uluguruensis 
(Mkungwe) T203 237.7 206.7 13.2 368.8 390 385 335 
7. B. uluguruensis 
(Uluguru North) T439 244.8 213.7 10.0 378.4 395 390 320 
8. B. boulengeri (Nilo) 
T225 19.7 35.6 243.9 142.8 170 165 110 
9. B. boulenged (Amani) 
T171 36.7 25.1 218.7 163.8 190 185 105 
10. B. boulengeri (Amani) 
T166 36.7 25.1 218.7 163.8 190 185 105 
11. B. boulengerl 
(Mazumbai) T280 0 31.1 244.8 151.9 155 160 100 
12. B. boulenged 
(Lushoto) T434 26.7 38.0 242.8 171.4 150 150 95 
13. B. boulengeri 
(Mazumbai) T279 31.1 244.8 151.9 155 160 100 
14. B. boulenged 
(Ambangula) T436 1.6% 213.7 178.2 185 180 120 
15. B. uluguniensis 
(Tandal) T484 17.3% 17.5% 378.4 395 390 320 
16. B. changamwensis 
(Changamwe) T490 18.4% 18.3% 8.3% 150 155 140 
17. B. new sp. (Sagalla) 
T492 18.3% 18.6% 11.7% 11.7% 30 40 
18. B. taitanus (Chawia) 
T487 18.6% 18.6% 10.7% 11.4% 8.2% 60 
19. B. taitanus (Kasigau) 
T482 18.4% 18.5% 10.8% 11.6% 8.3% 0.7% 

6.4.2 Molecular divergence estimates 

6.4.2.1 Consistency of calibration estimates 
Calibration points for caecilian molecular dating estimates were evaluated in the 

previous chapter, reference to this section is suggested (section 5.4.2.1). 

6.4.2.2 Absolute time estimates for Boulengerula 

Estimation of divergence times was carried out using both Penalized likelihood (PL) 

and Langley-Fitch (LF) methods. The data set showed evidence of rate variation and 
therefore LF estimates should be interpreted cautiously. However, both divergence 

estimation methods show considerable overlap in estimates, with LF methods 

showing marginally more recent estimates. The two estimates are shown in Table 
6.6. 
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Table 6.6. 

Absolute divergence times in Myr. for clades within Boulengerula. Refer to Fig. 6.7 for precise 

position of nodes. 
Most recent common ancestor (MRCA) Estimation method 

Penalized Likelihood Langley-Fitch 

1. B. boulengeri (B. uluguruensis, B. 78.95 64.85 

changamwensis, B. taitanus) (58.92-71.24) 

2. B. boulengeri 11.34 11.86 

(refer to node) (8.17-15.86) 

3. B. boulengeri 8.53 8.02 

(refer to node) (6.65-10.99) 

4. B. boulengeri 2.36 1.59 

(refer to node) (1.18-3.41) 

5. B. boulengeri 1.75 1.44 

(refer to node) (0.89-3.09) 

6. B. boulengeri 1.62 1.04 

(refer to node) (0.33-3.43) 

7. B. boulengeri 10.45 9.93 

(refer to node) (6.74-12.40) 

8. B. boulengeri 8.24 7.91 

(refer to node) (5.01-11.19) 

9. B. boulengeri 6.31 6.13 

(refer to node) (4.24-10.50) 

10. (B. changamwensis, B. taitanus, B. 45.10 37.74 

uluguruensis) (32.96-42.78) 

11. B. taitanus (B. changamwensis, 26.81 24.21 

B. uluguruensis) (20.29-28.64) 

12. B. uluguruensis 2.69 3.11 

(refer to node) (1.97-4.68) 

13. B. uluguruensis 15.59 13.16 

(refer to node) (7.24-16.67) 

14. B. taitanus 25.48 20.32 

(refer to node) (17.47-24.22) 

15. B. taitanus 3.11 2.62 

(refer to node) (0.26-4.60) 

16. B. taitanus 1.60 1.35 

(refer to node) (0.74-2.57) 

17. B. taitanus 1.16 0.98 

(refer to node) (0.10-1.64) 
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B. boulengeri - Nilo FR- T225 
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B. boulengerf - Mazumbai FR- T279 

B. boulengerl - Mazumba( FR- T305 

Figure 6.6 

Phylogeny of Boulengerula, with nodes calculated for molecular divergence using r8s (see 

table 6.6). 

6.5 Discussion 

6.5.1 Phylogeny 

6.5.1.1 Relationships among species of Boulengerula 

Analyses of -1.5kb/per sample of mitochondrial sequence data presented here 

allows the first robust estimate of species relationships within Boulengerula and 
therefore a quantitative assessment of the various proposed schemes for the 

classification of the genus. The optimal phylogeny recovered in the analyses is 

shown in Fig. 6.4 and 6.5 and summarised in Fig. 6.7a). This phylogeny is strongly 
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supported in all analyses and differs significantly from suboptimal arrangements. The 
data strongly rejects Nussbaum and Hinkel's (1994) morphological phylogeny and 
therefore by implication questions the taxonomic action that Nussbaum and Hinkel 

made in rejecting Taylor's (1968) separation of Afrocaecilia from Boulengerula. 

Clades recovered in this analysis directly correspond to the groups recognised by 

Taylor: Afrocaecilia (B. changamwensis, B. taitanus, B. uluguruensis, ) and 
Boulengerula (B. boulengen). 

Although Taylor's (1968) classification cannot be rejected based on the optimal 

molecular tree, is it appropriate to recognise two distinct genera, Afrocaecilia and 
Boulengerula? Essentially, the question focuses on whether the differences between 

these two groups are substantial enough to warrant recognition at generic level. 

However this is a highly subjective aspect of biological higher classifications. It has 

been widely acknowledged that biological classifications suffer from a lack of 

standardization across groups and a criterion for what constitutes certain hierarchies, 

such as a genera, is not clear (de Queiroz and Gauthier, 1992). Given this ambiguity, 

it is difficult to conclusively judge whether Boulengerula species should be 

recognised in two groups or not. 

/ Outgroup 

1612 steps 

B. taitanus 

B. changamwensis 

B. uluguruensis 

B. boulengeri 

b) 

1655 steps 

Outgroup 

B. uluguruensis 

B. changamwensis 

B. boulengeri 

B. taitanus 
Figure 6.7 

Comparison of hypotheses with tree scores, a) Optimal phylogeny recovered in analyses b) 

Constrained subpotimal phylogeny as proposed In Nussbaum and Hinkel (1994). 

Avise and Johns (1999) suggested molecular divergences might be a good tool for 

standardisation of taxonomic ranks, and although ranks differ between groups they 
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can be used to gauge differences, if not on a broad scale but within groups (such as 

amphibians). Large molecular divergences between the two 'groups' Boulengerula 

and 'Afrocaecilia' point to the possible recognition at the generic level. Divergences 

of around -18% are exhibited between Boulengerula boulengeri and 'Afrocaecilia' (B. 

taitanus, B. uluguruensis, B. changamwensis) which is substantial, even at the 

generic level. When these values are compared to other caecilians (Gower et al. 
2005), amphibians (Graybeal, 1993), and other vertebrates (de Queiroz and Lawson, 

1994; Avise and Johns, 1999) the differences would be recognised as being 

distinctive at the generic level. Indeed, even the differences between B. taitanus and 
B. uluguruensis/ B. changamwensis Glade are substantial (-10-12%), and if 

compared to widely divergent caecilian genera (e. g. Uraeotyphlus and Ichthyophis 

sp. 14%) it might be tempting to consider these two groups at generic level also. 
Perhaps this can be best decided by comparing morphological differences between 

closely related, but uncontroversially distinct genera of other caeciliids. 

Morphologically there is a poor understanding of the diversity in Bo lengerula, 

however, preliminary investigations of phallus morphology has indicated some 

distinct differences between Taylor's (1968) Afrocaecilia and Boulengerula groups 
(see Fig. 6.7; Müller et al. 2005). The phallodeum has been shown to have diagnostic 

value (Gower and Wilkinson, 2002), and Müller at al. (2005) suggest that differences 

in the degree of development in tuberosities on the phallus might be a putative 

synapomorphy for Afrocaecilia. Further morphological and molecular work will be 

necessary to fully ascertain the relationships and taxonomic, ranks of these groups, 

however it seems that the current recognition of one genus Boulengerula does not 

fully convey the taxonomic diversity of the group. 

A strongly supported relationship is shown between B. changamwensis and B. 

uluguruensis, which are also morphologically very similar, known to differ only in the 

lengths of teeth rows, and the presence of a diastema In the vomerine tooth series. 

B. changamwensis is thought to occur in SE Kenya (Changamwe and Shimba Hills) 

and Malawi (Nussbaum and Hinkel, 1994; Malonza and Muller, 2004), and has been 

associated with coastal lowland amphibian fauna (Poynton, 2000b), whereas B. 

uluguruensis, prior to this study, was known to occur only in the EAM, in the Ulugurus 

and Ngurus (Nussbaum and Hinkel, 1994). It was surprising therefore to sample a 

population identified as B. u/uguruensis from the Tanzanian lowland coastal forest 

Kazizumbwe. Sequences of this population confirmed this identity, as it grouped with 

B. u/uguruensis populations to the exclusion of B. changamwensis. To further assess 
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this optimal topology and suboptimal alternatives, trees were constrained to include a 

coastal Glade (Changamwe and Kazizumbwe samples). Templeton tests (p < 0.0003) 

do not require attributing the difference (40 steps) between the MPTs and the best 

trees consistent with coastal monophyly to random sampling error, and therefore 

data indicates strongly that B. uluguruensis also occurs in coastal lowlands, bisecting 

the distribution of B. changamwensis as currently conceived. 

The data allow a preliminary evaluation of the likely extension of B. changamwensis 
from Kenya to Malawi to be made. Given the substantial distance between 

populations of SE Kenya and Malawi (1,430km), the differentiation between Malawi 

and Tanzanian fauna (Howell, 1993) and the apparent absence of B. 

changamwensis in coastal Tanzania (intermediate in location between these two 

disjunct populations), it is likely that the Malawi population may represent a presently 

undescribed species. The species B. fisheri and B. denhardti were not sampled in 

this study, but based on morphology, and their distribution it is likely they are 

affiliated with B. uluguruensis and B. changamwensis. 

Boulengerula boulengeri 

The type species B. boulengeri was described based on collections from Amani in 

the East Usambaras, and the species is known to occur throughout the East 

Usambaras (Johansson et al. 1988). Recently the distribution of B. boulengeri has 

been extended to the West Usambara (Drewes, pers. comm.; Vestergaard, 1994). 

Vestergaard (1994) believed the West Usambara populations were distinguishable 

from B. boulengeri, though closely related. He outlined this in his masters thesis, 

suggesting there were differences in colour and annular counts. A description of this 

putative species was not completed, and in the literature B. boulengeri has been 

reported to occur in both East and West Usambara (Burgess et al. 1998a). In light of 

this preliminary work, surveys throughout the Usambäras were carried out to cover 

the widest geographical coverage in the now fragmented forest components of each 

mountain block. From the first field season, surveys provided samples from the 

geographical extremes of the East Usambaras (Amani NR and Nilo FR) and north 

east of the West Usambara, (Mazumbai FR) the locality where Vestergaard had 

collected samples of his proposed new species, (see Fig. 6.8 and 6.9). Preliminary 

morphological and molecular work appeared to support Vestergaard (1994) and, his 

designation of a new species of Boulengerula. Measurements showed a greater 
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mean number of annuli and vertebrae in West Usambara populations (Loader, 

unpublished). Furthermore, the molecular phylogeny showed a clear separation 

between East and West populations (clades A and D in Fig. 6.8), with genetic 

distances of 3.3% (see Fig. 6.8 for summary of phylogeny, with blue B. boulengeri 

and red 'new' Boulengerula species), together considered significant enough to 

warrant the description of a new species. 

Boulengerula boulengeri - EU Nilo FR- T2254 

L Boulengerula boulengeri - EU Shambegeda T475 #. 
A 

Boulengerula boulengeri - EU Amani-Kwamkoro- 714 

* Boulengerula boulengeri - EU Amani-Kwemkoro- T1664 

- Boulengerula boulengeri - WU Mazumbai- T280 ý 
u Boulengerula boulengeri - unknown T6 ?B 

Boulengerula boulengeri - WU Lushoto- T434 

Boulengerula boulengere -EU Msuyzi Scarp FR- T165 

Boulengerula boulengerii- WU Ambangula FR- T437 ý. C 

Boulengerula boulengeri - WU Ambangula FIR- T436 
l Boulengerula boulengeri - WU Mazumbai FR-- T279 4p 

Boulengerula boulengeri -WU Mazumbai FR -T305 
4 ýI 

I 

Figure 6.8 

Relationships in Boulengerula boulengeri recovered from ML analyses. EU = East Usambara, 

WU = West Usambara, tree symbol means collected in forest, brown circle in agricultural 

away from forest, both symbols implies collected near to forest in agriculture (see text for full 

explanation). 

Following the acquisition and sequencing of samples from different forest reserves 

(Ambangula, Lushoto) and habitats (agricultural plots of land) it was found that 

certain West Usambara haplotypes nest in an East Usamabara lade, and vice versa 

(see Fig. 6.8 clades B and C). These 'rogue' haplotypes, as I will call them, blurred 

the previously straightforward differences between East and West populations, 

pointing to significant genetic heterogeneity and uncertain population affinities in B. 

boulengeri. Support for these relationships is only moderate and only minimal 

divergence is shown (1-2% between A and B, and 1-2% for C and B). If the 

phylogenies represent distinct phylogeographic patterns, which may not necessarily 

be the case, then there appears to have been recent exchanges between both 

mountain blocks, in corresponding directions between each lineage. 
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It is also noteworthy that the 'rogue' populations are derived from samples collected 
in agricultural areas, and these cluster within forest populations from opposite 

mountain blocks. Perhaps this pattern is co-incidental, a result of the patchiness in 

sampling, however the pattern may also be the indicative of other processes. Are 
there any reasonable explanations for such genetic patterns between two areas? 
Outside of any biogeographical explanation, which will be discussed later, the 

patterns could be indicative of processes that give rise to specific genetic patterns, 
such as stochastic lineage sorting events (Avise, 1994). The localities may still 

represent two distinct genetic populations, even with no gene flow, but the sharing of 
haplotypes could be the result of a shared genetic diversity appearing in the 

ancestral gene pool. The chances of a mitochondrial haplotype in the ancestral gene 
pool surviving through the generations of population has been suggested to depend 

on the effective population size and the number of generations (Avise, 1994). 
Another possible explanation is that certain populations sampled in this study have 

undergone introgression, and now have mitochondrial genomes originating In 

neighbouring species. The incorporation of genes of one species into another is a 
well-documented phenomenon and, if undetected, can prevent the retrieval of the 
true evolutionary relationships (Alves, et al. 2003). This is especially likely when 
phylogenies are inferred using just mitochondrial or nuclear genes but not a 
combination of both, the situation in the current study. 

Overall the relationships recovered suggest large genetic and morphological 

heterogeneity in the species Boulengerula boulengari in the Usambaras. Whether the 

variation observed can be resolved into distinct clades, that are morphologically and 

molecularly congruent, and by implication represent distinct lineages, is currently 

unclear. Further sampling is necessary, and once achieved, among other 

phylogenetic reconstruction methods, nested Glade analysis (Templeton, 1998) may 

prove useful for understanding genetic differentiation among populations. Molecular 

systematics provides a powerful tool for investigating relationships and species level 

questions, but an uncritical approach can lead to incorrect taxonomic conclusions. 

The evolutionary history of the Usambaras probably needs more samples before any 

well-founded conclusions can be reached. Informative nuclear markers also need to 

be included in future studies, which would allow a better interpretation of evolutionary 

relationships between species. 
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Figure 6.9 

a) Schematic map of Northern Eastern Arc Mountains. b) Cross section of Usambara 

Mountains, with distribution of tropical evergreen forest at high altitudes. c) Schematic map of 
Usambara Mountains and forest reserves. Asterix indicates sampling areas for Boulengerula, 

and filled squares indicate towns. Based on maps in Iverson (1991), Goodman et a!. (1995), 

and Frontier (2002). 

Boulengerula uluguruensis 

The unpigmented caecilian B. uluguruensis is known to occur in the Uluguru, Nguru 

Mountains, and the coastal forest Kazizumbwe. The phylogeny here recovers two 

distinct clades, one including Uluguru and Kazizumbwe populations, and a second 
including populations from the Ngurus, despite the Ulugurus being equidistant from 
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Ngurus and Kazizumbwe (-100km). These clades are strongly supported, and 
topology tests show optimal trees differ significantly from suboptimal arrangements 
(see Fig. 6.4 and 6.5). Genetic distances of 4.3- 5.4% are evidence of the degree of 
difference between these two clades. Morphological work has not been carried out 

on these populations, so it is difficult to assess the likelihood that they each represent 
distinct species. Distribution patterns of other amphibian lineages do not provide any 

supporting evidence, with examples in the literature of both endemic species 
(Barbour and Loveridge, 1928; Menegon, pers. comm. ) and widely distributed 

species (Howell, 1993) in both areas. 
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Figure 6.10. 

Map of the Uluguru Mountains, provided by Nike Doggart and Andy Perkin. 
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Within the B. uluguruensis Glade, which includes samples from Ulugurus and coastal 
Kazizumbwe, there is significant genetic heterogeneity between two subclades 
(T201, T202, T203, T243 and T484, T439), which is moderately supported. One 

Glade corresponds to caecilians collected in lowland deciduous forests (eg. Mkungwe 

FR in the Ulugurus and coastal forests of Kazizumbwe) and the second to the main 
Uluguru block in agricultural sites (Tandal and Uluguru North) (see Fig. 6.10). The 

lowland Glade includes samples (Mkungwe and Kazizumbwe) that are geographically 

more distant from each other than any of the other pairs of samples (Kazizumbwe 

and Mkungwe are 100km apart, whereas Mkungwe and Uluguru North are 13km 

apart). The geographical variation therefore might be associated with ecological 

similarities among these populations rather than geographic distances. Denser 

sampling should be used to fully evaluate these patterns. The biogeographical 

significance of this will be discussed in the biogeography section 6.5.2. 

B. taitanus 

Thorough geographic sampling has been carried out for Boulengerula occurring in 

the Taita Hills. This includes all areas of their known distribution, including new 

records in Kasigau and Sagalla. Phylogenetic analyses show a remarkably high 

degree of molecular divergence between populations from Sagalla and all other B. 

taitanus populations (-8%). Figure 6.11 shows a summary of the phylogeny 

recovered and a map of the populations surveyed. Therefore, explanations for the 

genetic differences among all populations cannot simply be correlated to 

geographical proximity among populations, as demonstrated by the geographically 

most distant population (Kasigau) showing only limited genetic differences, compared 

to Sagalla. The Sagalla population appears not to be a geographic variant of B. 

taitanus. Congruent with this are the morphological differences between populations: 

gross differences in the phallodeum morphology, in addition to annuli, vertebrae, and 

colour differences, distinguish the Sagalla population as being distinct. Populations 

from Kasigau, Mbololo, Dawidia are morphologically very similar, with only minor 

colouration differences (Measey, pers. comm. and Müller, pers. comm. ). Therefore 

there are consistent taxonomic conclusions from both morphology and molecular 

data, which suggest the Sagalla population represents a new and distinct species 

(Müller et aL 2005). 

Excluding the Sagalla population, relationships among all B. taitanus populations 

show congruence with geographical proximity among populations, with the most 

190 



ula 

distant and isolated population showing greatest differences (e. g. Kasigau). Inclusive 

relationships are shared between populations derived from the main Taita block 

Dawida, with Mbololo and Kasigau lineages consecutively outside this Glade (see Fig. 

6.11). However, divergence among these lineages is very limited and this part of the 

tree is only moderately resolved. Further resolution of these lineages using quickly 

evolving genes, such as control region (Presswell, 2002), may further elucidate the 

relationships and geographical correlates between populations. 

a) 
Boulengerula tattanus - Wundanyi- T9 

Boulengerula taitanus - Wundanyi- T161 

Boulengerula taitanus - Wundanyi- T163 
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Figure 6.11 

a) Phylogeny of B. taitanus, with b) schematic map of the Taita Hills. The inset map shows 

the position of the Taita Hills in Kenya. The map shows all mountainous areas above 1000m. 

Names written in capital letters refer to mountains, others to towns. Asterix indicates sampling 

areas for Boulengerula. Map kindly provided by Hendrik Müller. 
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Conclusions 
The study provides the first molecular test of relationships within the genus 
Boulengerula and the patterns of diversification. The results also provide an essential 
basis for future reviews of the taxonomy of the group and its classification. With 

caveats concerning incomplete sampling (B. fisher!, B. denhardti, and Malawi 

populations of B. changamwensis) the mitochondrial relationships indicate the 

presence of at least one cryptic and presently undescribed species. Data also 

suggests that Taylor's (1968) generic classification of the group might be the most 

useful, as this most closely reflects the relationships and temporal diversity recovered 
in the phylogeny of Boulengerula. 

6.5.2 Biogeography 

6.5.2.1 East and West African biogeography 

Based on the current understanding of African caecilian phylogeny, Herpele and 

Boulengerula are sister groups, though deeply divergent (Wilkinson et al. 2003). 

Wilkinson et al. (2003) also demonstrated that the 'caecilian and caeciliid fauna of 

Africa, and those of East and West Africa are not monophyletic'. The sister group 

relationship between East African (Bou/engerula) and West African (Herpele) 

caeciliids therefore provides an opportunity to investigate biogeographical patterns 
between these two regions. The split between Herpele and Boulengerula indicates a 

substantial period of separation, based on molecular dating estimates (not shown in 

table) the split dates back -100 Myr. Some of the caecilian fauna of Africa has 

previously been inferred as diversifying before the complete breakup of Gondwana 

(Wilkinson at al. 2003), and the first molecular date estimates for this split provided 

here are congruent with this, with the breakup not entirely complete (Pitman et al. 

1993). It is highly uncertain what factors may have been Important in influencing 

divergence between these two lineages, given the number of possible geological and 

climatic influences at this point (Morley, 2000). Furthermore, species of Herpele and 

Boulengerula are found in habitats outside of forest (Hebrard, 1992; Lawson, 1993), 

so it is also unclear how these groups may respond to fluctuations in habitat. The 

dates and distributions however support the idea that dispersal between East and 
West Africa has been limited since the Miocene (Lovett, 1993a; Matthee et al. 2004), 

which corresponds with the palynological and distribution data (e. g. Grimshaw, 

2001). 
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6.5.2.1 Biogeography of Eastern Arc Mountains and coastal lowlands 

The genus Boulengerula is found almost throughout the EAM and the lowlands of 
East Africa, biogeographically distinct elements of East Africa (Poynton, 2000b). The 

relationships between Boulengerula species of both lowlands and highlands is 

therefore of general interest in studies of East Africa biogeography. Phylogenetic 

evidence suggests the two biogeographic areas are not monophyletic (both 

monophyletic EAM and coastal forest were shown to be significantly suboptimal, see 
Hypotheses 6.3.2.3). Furthermore, coastal lineages are nested within montane 

clades, with varying divergence. There are two implications from these results; firstly, 

although the coastal fauna and flora appears to have an archaic history, as 

suggested by endemic species (Burgess et al. 1998b; Matthee et al. 2004), the origin 

of these species is likely to be more recent than that of the EAM. The basal position 

of Eastern Arc species is good evidence for this and is well supported from other 

studies indicating the disparity in the species richness between these forests 

(Burgess, 1998b). Furthermore, contact between these areas appears to have 

occurred on more than one occasion, based on branch lengths between B. 

changamwensis, B. uluguruensis and populations of B. uluguruensis from Mkungwe 

and Kazizumbwe, which show disproportionate differences (7% and 0.6% 

respectively). Molecular divergence estimates further corroborate this evidence by 

indicating at least ten times amount of difference between these splits (PL estimates: 
26.81 Myr and 2.65Myr respectively). Even if molecular dates are incorrect, a highly 

improbable disparity in molecular rates between. lineages would have to compensate 

for such a substantial differences between lineages. 

These results suggest, for Boulengerula at least, that the EAM Is most probably a 

refuge for the more recently diversified coastal fauna, because of the position of 

coastal species/populations on the Boulengerula tree. This might reflect a more 

general pattern, as there are other examples of species that have populations in both 

areas, such as the forest gecko Cnemaspis barbouri (Uluguru, Nguru, and Coastal 

Forests), dwarf bufonid Mertensophryne micranotis (East Usambara, Coastal 

Forests), and closely related species within the genus Saintpaulia (EAM and coastal) 

(Howell, 1993; Lindquist and Albert, 2001). Testing the phylogeographic patterns of 

these populations will be important for understanding the diversification of the coastal 

fauna and flora. The data outlined here are consistent with the hypothesis that both 

the EAM and coastal forests share a biogeographic history, where presumably 

multiple contacts between areas have been made (Burgess et al. 1998b). 
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6.5.2.2 Biogeography of the isolated, fragmented mountains of the EA 
Between Mountains 

Based on the geological history in the EAM of fragmentation and isolation between 

mountain blocks, it would be predicted that the closer geographical proximity of a 
mountain would be coupled with closer phylogenetic relationships between species 

occurring in these mountains. From the optimal trees, only the relationships between 

the Ngurus and Ulugurus appear to be congruent with this. Surprisingly, Taita Hills 

species show closer phylogenetic affinity, and by implication biogeographical affinity, 

to the more geographically distant Ulugurus and Ngurus, to the exclusion of the 

geographically closer Usambaras. Using dating estimates the tempo of these 

diversifications can be investigated, with both the congruent and incongruent 

geographic relationships showing informative patterns. The incongruent relationships 

between mountain blocks show consistently deep divergences, substantial enough to 

pre-date the timing of the fragmentation of the Eastern Arc, which is shown for splits 

between the Usambaras and Taita Hills (-59-71 Myr); and Uluguru/Nguru- Taita Hills 

(-32-42Myr). If molecular dates are correct, for these speciation patterns, the data 

allow the rejection of the hypothesis that fragmentation of the Eastern Arc 

corresponds to speciation events. Even if the dating estimates are incorrect, the 

relative disparity between these two splits (nearly twice as much) does not fit with 

geological data, which suggest a period of rapid fragmentation in the region (Lovett, 

1993a; Griffiths, 1993) around 20Myr. It is uncertain what biogeographical processes 

influenced the splits. The relationship between Nguru and Uluguru populations, the 

only congruent geographic relationship also reveals interesting biogeographical 

patterns. The split shows divergences estimated between 7-16Myr, which might be 

contemporaneous with fragmentation of the EAM (suggested to occur between 10- 

14Myr). The correspondence might be co-incidental, but the timing and spatial 

congruence suggests a possible link. Further sampling of populations and nuclear 

genes will be necessary to improve estimates dates. 

Moreau (1966) and Loveridge (1937) proposed an ancient origin for montane forests 

of East Africa, because of some striking sister group relationships between montane 

forest species of East and West Africa, areas separated for at least 20Myr. 

Surprisingly little quantitative data has been collected in the seventy years since 

these early speculations (see Burgess et al. 1998a). Molecular divergence times 

between monophyletic EAM clades including B. taitanus- B. boulengeri and B. 

uluguruensis, if correct, suggest a prolonged period of isolation in the EAM. The 
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presence of monophyletic Eastern Arc taxa suggests that taxa have been present in 
these forests since these splits, and provides some of the first quantitative support for 
the archaic age of Eastern Arc taxa and the habitats they occupy. 

Within Mountains 

Considerable genetic heterogeneity Is exhibited in populations restricted to single 

mountain blocks. How significant these patterns are for understanding the high 

species diversity in the EAM is unclear, however consistent patterns of fragmentation 

between closely distributed populations within mountains would appear to be have 

significant implications for the formation of new species. Within the Taita Hills, 

extraordinary levels of genetic differences are shown between the fragmented 

isolated forests reserves, which do not all simply correspond with geographic 

distance. Excluding Sagalla, Fig. 6.11. shows the relationships between populations 

and a map of. their distribution. The results indicate limited genetic heterogeneity 

between populations, based on isolated localities scattered in the Taita Hills (Chawia, 

Ngangao, and Mbololo), some nearly 60kms away (Kasigau). Evidence shows that 

geographically more isolated areas (Kasigau and Mbololo) are more divergent, 

indicating a positive correlation between distance and genetic differences. These 

results suggest recent contact between these areas have been made, though more 

recently in closer localities, presumably at a time when forest was more widely 
distributed than today (Hamilton, 1988). The molecular dates for all these clades 

correspond to periods when climatic conditions could have plausibly connected forest 

in these localities. However, populations from Sagalla, isolated, but not 

geographically the most distance, show deep divergence patterns suggesting 

prolonged isolation. Substantial dates are given for this separation, ranging from 17- 

25Myr. Regardless of whether the estimates are correct, considerable divergence is 

exhibited in this population, which differ considerably from all other Taita localities 

sampled. These results appear to be congruent with the limited biogeographic data 

on other groups in the Taita Hills. Brooks et aL (1998) indicated Sagalla as being 

home to species not present in other Taita blocks, suggesting the distinctiveness of 

avian fauna in the area. Furthermore, the similarity between Kasigau, Dawida, and 

Mbololo blocks is shown by the population homogeneity of new species of; millipedes 

(Vandenspiegel, 2001), spiders (Warui and Jocqu6,2002), and galagos (Perkin et. 

a/. 2002) found in the Taita Hills. The data provides an Insight into the remarkable 
fauna of the Taita Hills. Further phylogeographic studies of other groups are 
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encouraged to elucidate common biogeographic patterns between the fragmented 
forests of this region. 

Herpetologically, the Usambaras have distinctive elements, with a number of 

endemics restricted to single mountain blocks; for example for the West Usambara 

(Arthroieptis tanneri, Callulina kiswamsitu, Nectophrynoides vestergaard, ) and East 

Usambara (Nectophrynoides frontieri, Callulina kreffti) (Menegon et al. 2004; de Sa 

et al. 2004). Further taxonomic studies on other amphibian groups are likely to 

distinguish more populations as being distinct (Poynton, pers. comm. ). The presence 

of single site endemics suggests a period of isolation between these habitats, 

separated by the Lwengera Valley (see Fig. 6.9). Significant genetic heterogeneity is 

exhibited between populations of Boulengerula boulengeri from both East and West 

Usambaras, which if interpreted as being indicative of population divergence, show 

that both populations from the East and West Usambaras have made contact on 

more than one occasion. The phylogenetic tree presented provides a complex picture 

of the interrelationships, with three distinct splits. The first oldest split corresponds to 

splitting between East and West Usambara (8-15Myr), with consecutive speciation 

events within each mountain block between East and West mountain blocks more 

recently (6-10Myr and 4-10Myr), perhaps dispersals between East and West 

Usambaras. Furthermore there is considerable genetic heterogeneity within clades 

in each population that may suggest substantial fragmentation within the Usambara 

Mountains. Although currently fragmented, the forests were, until very recently, 

believed to be continuous, so it is uncertain whether the heterogeneity maybe the 

result of fragmentation or simply reflective of other processes. Sampling throughout 

the range of distribution will be necessary to assess this. 

The expansion and contraction of forests between these closely aligned mountain 

blocks is likely to produce complex patterns, particularly in species able to disperse 

through marginal habitats, such as caecilians. Fig. 6.12 outlines a possible scenario 

that could account for the patterns observed in Boulengerula boulengarl in the 

Usambaras. The diagram shows how, previously separated populations might have 

come into contact, and left patterns similar to those shown in the phylogeny. These 

scenarios are conjectured and quantitative data will be needed to assess such 

hypotheses. Multiple contacts between the East and West Usambaras species have 

been suggested. Gravlund (2002) showed recent divergence patterns in the forest 

snake Crotaphope/fis, with the West Usambara Glade nested within an East 
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Usambara dade showing 0.7% difference in NADH 2 and cytb sequences of -1.5kb 
in length. Older divergences are reflected in the Microhylid Callulina, (de Sä et al. 
2004) which showed both substantial molecular (7.5%) and morphological 
differences that are distinguished at species level. Differences cannot be discounted 

as reflecting differing dispersal abilities (between frogs and snakes) in response to 

the same geographic events. Substantial differences (ten times) however imply a 
history of multiple contacts between these regions. 

1O 
3. 

C>0 
Figure 6.12 

Schematic diagram showing the splitting and rejoining of habitats and its consequences on 

populations A and B (habitats in shown in green for time periods 1-3). (1) Disjunct distributed 

species A and B (2) Extension of habitat, brings populations spatially in contact (3) Retreat of 

habitat, populations of each species become separated and spatially closer to other 

population. 

Conclusions 
The patterns of diversification in Boulengerula suggest complex histories involving 

both allopatric isolation among refugial areas (i. e. Ngurus and Ulugurus) and patterns 

of dispersal, albeit over different spatial and temporal scales seemingly 

corresponding to the fragmentation of Eastern Arc mountains and many fluctuating 

climatic periods during the last 1OMyr and other uncertain ancient influences. Given 
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the number of complex geological and climatic events that have occurred during 

these periods it is easy to correlate biogeographical events with splits in a 

phylogenetic tree. For this reason, only cautious Inferences should be drawn. 

However, evidence shows that speciation events do seem to occur at points in time 

when climates are fluctuating. For example, 53% of all the splits (as calculated from 

PL estimates) between populations of Boulengerula occur at periods associated to 

fluctuating climatic periods (2-6Myr; 6-9Myr) in the last 40Myr. If Langley-Fitch S- 

units are considered (analogous to confidence intervals), 70% of splits correspond 

with these periods. Considering this constitutes around 20% of the last 40 million 

years, perhaps this pattern is indicative of elevated levels of speciation during these 

fluctuating periods, although divergence patterns of extinct species are unknown. 

More general patterns are difficult to decipher, because there are a limited number of 

biogeographical replicates. Denser sampling of lineages on a wider geographical 

scale is necessary in order to gauge if these phenomena are common to all lineages 

in the EAM. Preliminary evidence from a number of lineages suggest a prolonged 

period of persistence of clades in EAM areas (Ulugurus, Ngurus, Usambaras, and 

Taita Hills) which supports the claims that the EAM are an area of refuge for ancient 

lineages, and perhaps the longevity of these forests, even during climatically 

unstable periods maintained the biodiveristy. The EAM are predicted to have become 

significant biogeographical refuges when the position of equatorial Africa reached its 

current position, and the mountains were uplifted (30-2OMyr). The dates from splits 

between monophyletic Eastern Arc taxa significantly predate this. These results may 

lead to questions regarding the persistence of these forests during the last 50 Myr. 
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Chapter Seven 

Biogeography of 
the Eastern Arc Mountains 

'The derivation of the Eastern Arc fauna is both long and complex. This biogeographical 

complexity is well illustrated by the fact that In addition to species found throughout Africa and 
those confined to eastern Africa, there are also genera and species linking the Eastern Arc 

with Guineo-Congolian forest block further to the west, the forested areas of Madagascar, and 
South East Asia. The presence of this wide variety of relationships, comprising relics as well 

as members of recently diversified groups, makes this area extremely interesting for studies 

of evolution and biogeography. ' Burgess et al. (1998a). 

7.1 

Biogeographic relationships among the mountains of the Eastern Arc have been 

difficult to quantitatively elucidate, despite a long historical interest in this highly 

biodiverse region. The origin and determinants of EAM biodiversity have been 

speculated upon, with attention focused on a history of prolonged persistence of 
forest with periodic fragmentation. Isolation and persistence in montane habitats 

should generate specific phylogenetic patterns, providing a means of testing 

hypotheses explaining the causal determinants of diversity in the EAM. However, 

investigating biogeographic patterns in the EAM has been difficult, because 

phylogenetic relationships have been so poorly studied. Data collected in this study 

provide the first broadscale phylogenetic survey of Independently derived amphibian 

lineages found in the EAM, and this presents an opportunity to address previously 

intangible biogeographic problems. Molecular clock approaches are used to estimate 

divergence times and these are coupled with analytical biogeographic approaches 

and published phylogenies to assess spatial and temporal congruence of 

divergences among independent lineages. Elucidation of biogeographic patterns In 

the EAM may also have broader implications for understanding diversification in 

rainforests. 
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7.2 Introduction 

'On the premise that major environmental changes can drive evolutionary events, the rough 
coincidence in time between major geological, environmental and evolutionary changes may 
not be trivial' 

Adamson and Williams (1987; p. 597). 

Two central questions in biology are why are there so many living things and why are 

they distributed where they are? In an attempt to answer these, biogeographers have 

searched for correlations between environmental changes and the diversification of 

organisms. Large-scale changes, such as the fragmentation of continental plates, are 
believed to have had a significant influence on the evolution of organisms. Recent 

work has provided compelling evidence that environmental processes have 

influenced diversification (for review see Hewitt, 1996; 2004). For example, analytical 

biogeographical approaches have shown how the break up of the supercontinent 

Pangea influenced dinosaurian diversification (Upchurch et al. 2002), and changes in 

climate have influenced plant diversity in the Amazonian basin (Pennington et al. 

2004). In the past, correlations between environmental change and evolutionary 

events were made in a 'narrative', 'descriptive' way, and were therefore somewhat 

speculative. This was primarily a consequence of the unavailability of appropriate 

data and methods that allow evaluation of explicit hypotheses within a statistical 
framework. Recent molecular methods have greatly advanced our knowledge of 

diversification (Hewitt, 2004) because explicit assessments of both temporal and 

spatial relationships are now possible. The methods are now in place to address a 

plethora of both large and small-scale biogeographic problems, which, given good 

sampling of organisms throughout their ranges, can test long-standing hypotheses 

about their diversification. The accumulation of data on diversification allows not only 

an understanding of evolutionary history, but also the assessment of broader 

questions, such as 'why are there so many species in the tropics? ' (Hewitt, 2004) 

7.2.1 Eastern Arc Biogeography 

The forests of the Eastern Arc are thought to be ancient, and to have persisted 

throughout severe climatic fluctuations and fragmentation (Lovett 1993a). This 

environmental stability coupled with isolation of the component mountains are 
believed to have had an important influence on the evolution of forest species and 
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high levels of species endemism (Hoffman, 1993; Fjeldsa and Lovett 1997; Lovett 

1993a; Gravlund 2002; Roy, 1997; Howell, 1993; Burgess et al. 1998a). Numerous 

amphibian species are endemic to the Eastern Arc Mountains (Howell, 1993), and 

are considered by Poynton (2000; 2003b) cool-adapted and forest associated, with 

many species not known to occur below the 400m boundary between lowland and 

montane forest (Poynton et al. 1998). Because of these apparent ecological 
limitations, the ability of most amphibians to disperse across the dry habitats found 

between mountains in the Eastern Arc would appear to be limited. Consequently, as 

has been proposed for other animal and plant species (e. g. Loveridge, 1937; Lovett, 

1993a), the distribution of amphibians is thought to reflect both the long history of the 

forests but also periods of isolation of the fragmented mountain blocks. 

The hypothesis that environmental changes have influenced diversification in EAM 

amphibians has thus far been based primarily on distribution data, which are not 

optimal for addressing such questions. The aim of this chapter is to investigate the 

likely influences that environmental changes have had on the diversification of 

amphibians, using primarily their evolutionary history and current patterns of 

distribution. Because amphibians are sensitive to habitat changes, more general 

conclusions on the biogeographic history of the region can also be inferred. The 

geographic history of the EAM has been summarised (see section 1.5.1), and 'Fig. 7.1 

outlines the general sequence of events that are believed to have occurred in the 

history of the region. 

The early origins of the EAM are poorly understood (see Fig. 7.1 a) (Lovett, 1993a); 

forest cover in the region was likely to have fluctuated periodically, due to a low lying 

East African topography. Following the formation of the rift valley by 20 Mya (see 

Fig. 7.1 b), the Eastern Arc Mountains, along with other mountains in East Africa (e. g. 

Mount Kahuzi (Biega) of Congo, Mount Elgon, and Ruwenzori Mountains) became 

uplifted (Cahen and Snellling, 1984) and would have attracted higher precipitation 

(orographic rainfall) and therefore supported moist forest habitats. Some authors 

have suggested that certain mountain regions may have originated substantially 

earlier (Cahen and Snelling, 1984). Once the EAM became uplifted, forest habitats 

are thought to have persisted in montane regions, with areas surrounding the 

mountain 'islands' having forest habitats (see Fig. 7.1 b lighter green areas) fluctuating 

in size in response to climatic changes in East Africa. Over time, other mountain 

regions in the vicinity of the EAM originated; the southern highlands originating about 
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-15-1OMya (see Fig. 7.1c) and the volcanic mountains, Kilimanjaro more recently 1- 
2Mya (see Fig. 7.1d) (Davenport, pers. comm. ). 

A 

B 

C 

.D 

.ý-E 

F 

Figure 7.1 

Hypothetical model of the geographical history of the EAM at a) 40-30 Myr b) 20-15 Myr c) 10 

Myr d) 5-0 Myr. Fragmentation of Eastern Arc forest, shaded in dark green. Volcanic areas 

shown in brown. e) Hypothetical chronogram (in Myr), of amphibian lineages showing 

correspondence in their speciation patterns with consecutive isolation of areas in the EAM. 
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Throughout the history of the forests of East Africa, forest is believed to have 

persisted, though extending or contracting in response to climatic changes. An 

overall climatic trend of progressive aridification over the past 1OMyr is thought to 

have isolated the fragmented mountains limiting any dispersal events between blocks 

(Lovett, 1993a). Based on the proposed geographic history of the EAM outlined, 

specific biological hypotheses would be predicted. If the geographic history of the 

EAM corresponds to those outlined (see Fig. 7. la-d), then particular biogeographic 

patterns, temporal and spatial would be expected (see Fig. 7.1e) 

7.2.2 East and West African montane forest relationship 
Located in the geographical extremes of the equatorial region, the forests of East and 

West Africa share some interesting biotic similarities. Loveridge (1937) hypothesised 

an ancient origin for montane forests, because of some striking close relationships 

between montane forest species of East and West Africa, areas separated for at 

least 20Myr (Lovett, 1993). If the proposed relationships are correct, then the 

implication is that montane forest has persisted throughout severe climatic 

fluctuations and geological fragmentation in the Tertiary. Surprisingly little 

quantitative data have been collected in the seventy years since these early 

speculations. Loveridge's (1937) postulated 'ancient trans-African forest' connection 

between the Cameroon Mountains in the West with the Eastern Arc Mountains was 

primarily based on the taxonomic distinctiveness of the montane fauna coupled with 

the degree of morphological divergence between closely related amphibian species 

distributed in East and West Africa. In addition to this, geological and climatic 

evidence available at the time, although scant, provided evidence for the separation 

of East and West African forest. 

Results from recent studies of organisms found in the forests of East and West Africa 

have revealed long-term persistence of lineages, and by inference rainforest habitats, 

as demonstrated by Matthee et al. 's (2004) study of chamaeleons. The long-term 

persistence of rainforests may have been critical in structuring present biodiversity in 

montane African rainforests (Fjeldsh and Lovett, 1997; Hewitt, 2004). This is further 

demonstrated by the prevalence of other deeply divergent endemic monophyletic 

EAM taxa (Loader et al. 2004; Wilkinson of al. 2003). However, because of the 

limited number of studies, more general patterns are difficult to decipher. Evidence 

from the taxonomic distinctiveness of species and genera restricted to the montane 

regions of East and West Africa also do not contradict the hypothesis that long term 
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persistence of forest habitats has occurred, and suggest that East and West African 

regions have been separated for a prolonged period (e. g. Gauld and Underwood, 

1986; Largen and Drewes, 1991; Largen, 1997). The large mammal fauna of Africa 

shows more recent patterns of divergence between East and West African regions 

(e. g. Hamilton, 1988; Kingdon, 1989; Pitra et al. 2002) probably due to their greater 
dispersal ability. Denser sampling of lineages on a wider geographical scale is 

necessary to gauge whether deeply divergent forest clades are common to all 
lineages, and if they are paralleled in other African montane regions, such as 

Ethiopia. Given the geographic history of the region, it would be anticipated deep 

divergences between East and West African montane taxa would be recovered (see 

Fig. 7.2a). Data conflicting such a hypothesis would show recent divergence between 

forest-restricted East and West African taxa, as shown in Fig. 7.2b. An evaluation of 

new phylogenetic data should allow a fresh perspective on this long-standing 

question in African biogeography. 

a) 

i -ý 
xr 

ww Figure 7.2. 

b) 

Hypothetical relationships among lineages in the montane forests of Ethiopia, Eastern Arc 

and West Africa. (a) Deep divergence between East and West Africa (b) Shallow genetic 
divergence between East and West Africa. 

7.2.4 Hypotheses 

(1) The phylogenetic relationships of amphibians and other groups reflect the 

fragmentation history of the EAM. 
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(2) If congruent area relationships are recovered, area relationship(s) are temporally. 

congruent with the initial uplift and eventual fragmentation of the EAM. 

(3) Congruent area relationships in Cladistic are consistent with nestedness patterns 

recovered in parsimony analysis of endemicity and phenetic analyses of similarity 

indices. Congruence between methods is repeated in all EAM amphibian groups and 

provides further evidence for a common biogeographic history. 

(4) Discordance in temporal and spatial relationships is correlated with dispersal 

ability. 

(5) There is a strong correlation both temporally and spatially between area 

relationships and major geographic events, e. g. uplift of the EA mountains in the late 

Miocene. 

(6) Divergences among monophyletic EA taxa are deep, reflecting a long period of 

geological and climatic stability. 

(7) Divergence between East and West African lineages correspond to the 

separation of these biogeographic regions -20 Mya. 

7.3 Methods 

7.3.1 Descriptive Biogeography 

7.3.1.1 Matrix construction 

A presence/absence data matrix was constructed for the distribution of amphibians in 

the Eastern Arc Mountains, Southern Highlands, Coastal forest, and Malawi where 

"0" coded for absence, "1" for presence, and "? " for uncertain records (refer to 

Appendix 4). Up to date species descriptions were incorporated where possible, 

including unpublished descriptions (Channing et al. in prep.; Menegon et a/. in prep). 

Approximately 16 new records were also added based on unpublished fieldwork and 

newly collected material held at the Natural History Museum. Two matrices were 

compiled, the first included records of all amphibians occurring in the Eastern Arc 

Mountains, based on a number of different sources (Howell, 1993; Loader et al. 
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2004a; Menegon et al. 2003; Menegon, pers. comm.; Poynton, pers. comm.; 

Mariaux, pers. comm.; Doggart et al. 2004; Doggart et al. in press; Loader, field data 

Appendix 1; Emmrich, 1994). The second matrix was based on the first but with the 

removal of most species occurring below 400 metres or associated with non-forest 

habitats. The aim of the descriptive biogeographical analyses is to understand the 

relationships between forested mountains of the Eastern Arc, and therefore excluding 

amphibians associated with the lowland fauna or higher altitiude but non-forest 

habitats was necessary. Determining whether a species is truly dependent upon 

forest habitats is often difficult because of a lack of ecological, physiological and 

behavioural studies of African amphibians (Howell, 2000). Data on this aspect of the 

study is particularly lacking and more data is required which would greatly enhance 

future evaluations. Further studies will be necessary to assess to what degree the 

current ecological classifications are accurate. 

The use of 400m as the boundary between highland and lowland species was based 

on the subtraction patterns of the amphibian fauna in East Africa. Poynton (1990) 

initially suggested the differentiation between highland and lowland fauna occurred at 

300m, but recent evidence, based on amphibian distribution in East Usambara 

(Poynton et al. submitted) suggests that the zone is better delimited at 400m as 

shown by characteristic changes in bufonid genera and the flora (Burgess and 

Clarke, 2000). Species occurring below 300m and/or occurring in non-forest habitats 

were removed from the second matrix, though exceptions were made as follows: 

Bufo brauni, Boulengerula boulengeri, Hoplophryne rogersi, Callulina kreffti, 

Arthroleptides martienssenl and Scolecomorphus vittatus are predominantly found in 

montane habitats and associated with the afromontane fauna (Poynton, 1998), but a 

few were collected at about 200m. The presence of these species at slightly lower 

elevation than predicted is likely to be the influence of microgeographical differences 

between forest reserves. The records are based from specimens collected at Mtai 

Forest Reserve, Kambai Forest Reserve, and Kwamgumi Forest Reserve, all 

eastward facing escarpments of significant altitude (within the East Usambaras) that 

attract increased levels of precipitation (see Fig. 7.3). In comparison, the forests 

reserves of Manga, Mlinga, Longuza, Mgambo, Magrotto are generally much more 

low lying, constituting the scattered remnants of lowland forest and do not attract 

similar amounts of precipitation. These abiotic factors might Influence the 

composition of assemblages in the fragmented forest reserves. 
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To assess if the data show any hierarchical structure, a permutation tail probability 
test (PTP) was carried out (Faith and Cranston, 1991). PTPs evaluate whether a 
matrix is more hierarchically structured than randomly permuted data. Below the 

chosen cutoff value (<0.05), parsimony PTP rejects the null hypothesis that the data 

have no more phylogenetic structure than expected by chance alone. Failure to pass 
the test suggests the data are not suitable for phylogeny reconstruction or any 

analogous methods, such as PAE. Faith & Cranston's (1991) PTP was determined 

with parsimony analyses of 100 randomisations of the data using PAUP. 
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Figure 7.3 

Geographical arrangement of the forest reserves in the East Usambara Mountains, shaded 

areas show submontane forests at lower elevations (-200-400m). 

7.3.1.2 Similarity Indices 

The data matrix was constructed based on species distribution as shown in Appendix 

4, which was then imported into Community Analysis Package (CAP) (1999). 

Analyses of similarity between communities are divided into two stages: First, an 

appropriate similarity or difference index must be chosen, such as Jaccard's and 
Sorenson's Indices. These are simple and reliable measures of the extent to which 
two sites share species in common (Southwood and Henderson, 2000). Secondly, in 
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an attempt to graphically represent the differences (e. g. Jaccard Index), a 
hierarchical clustering method can be used to determine relationships between sites. 
Clustering methods usually join the shortest branches (smallest difference) of the 

dendrogram first and the two largest branches last. Examples of such algorithms 
include single linkage, Wards linkage, and average linkage approaches (also known 

as Unweighted Pair Group Method, UPGMA). UPGMA methods are the most 

commonly used numerical classification methods in community ecology analyses 
(Krebs, 1999), though there are minor differences between the clustering methods 

used for reconstructing relationships (e. g. Ludwig and Reynolds, 1988; Turpie et al. 
2000; Ramanamanjato et al. 2002). 

7.3.1.3 Parsimony Analysis of Endemnicity 

To perform a PAE, an area by taxa matrix was coded in MacClade (the same matrix 

as used in 7.3.1.3), which was subsequently exported Into PAUP (Appendix 4). Using 

a hypothetical outgroup area (coded with all zeros), as Rosen and Smith (1998) 

suggested, trees were analysed using parsimony in PAUP. All analyses were done 

with a branch and bound approach. Zero length branches were suppressed. Support 

for clades was measured with bootstrap proportions (Felsenstein, 1985). 

7.3.2 Cladistic Biogeography 

Taxon cladograms were compiled from analyses carried out in Chapters 3-6. Most 

cladograms used represented the most well supported set of relationships as 

estimated using maximum parsimony, maximum likelihood and Bayesian analyses of 

combined 12S, 16S and cytochrome B data (A rth rolep tides, Boulengerula, 

Scolecomorphus, brevicipitines, and Hoplophryne) as summarised In Fig. 7.4. a-f. 

Because cladistic biogeographic analyses need fully bifurcating trees, where there 

was incongruence in a tree topology between methods of analyses, the most fully 

resolved trees were used, usually derived from likelihood or Bayesian analyses. The 

relationships among brevicipitines and Scolecomorphus were obtained from 

likelihood analyses and Bayesian methods, all other trees were from analytical 

results that were congruent among all methods. Additionally, phylogenies from the 

literature were included; Snakes (Crotaphopeltis; Gravlund, 2002), Chamaeleons 

(Rhampholeon; Matthee at al. 2004), Birds (Andropadus; Roy, 1997; Nectarina; 

Bowie et al. 2004), and Angiosperms (Saintpaulia; Lindgvist and Albert, 2001; 

Lobelia; Knox and Palmer, 1998) as summarised in Fig. 7.4. g-m. Fully resolved 
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likelihood trees were utilised instead of consensus parsimony trees, as is the case for 

Rhampholeon (Matthee et at. 2004). For all area cladograms, multiple accessions of 

a single Glade from the same area of endemism were collapsed to a single area 

terminal. 

Two data sets were subjected to 'tree reconciliation analysis' (TRA: Page, 1995 and 

references therein) in order to test for the presence of repeated spatial relationships. 
The first data set consisted of amphibian phylogenies, generated in this study. The 

second data set included all available phylogenies from the literature in addition to 

the amphibian phylogenies. A General Area Cladogram (GAC) was obtained using 

Component 2.0 (see Appendix 5 for file executed in Component 2.0). There were no 

widespread taxa (i. e. taxa occurring in two or more of the areas), so there was no 

need to consider either assumptions 1 or 2 of Nelson & Platnick (1981) or 

assumption 0 of Zandee and Roos (1987). Analytically, this made searching for the 

GAC simpler. 

The GAC was obtained using a heuristic nearest neighbour interchange (NNI) 

branch-swapping algorithm. The criterion of minimisation was 'duplication events' (i. e. 

the number of times the taxa had to unnecessarily split to accommodate the topology 

of the putative GAC). When multiple GACs were recovered, a Nelson's consensus of 

them was calculated; this finds the largest clique of (non-conflicting) area 

components. For assessing the robustness of the GAC, it was randomly permuted 

10,000 times in TreeMap 1.0 (Page, 1993) and then reconciled with the taxon trees; 

for each permutation, the duplication figure was also recorded. The p-value for the 

GAC was obtained from this distribution (Page, 1993). 
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relationships between taxon area ciadograma 

Phylogenies used in cladistic biogeography, a-f amphibian phylogenies generated here and g- 

m non-amphibian phylogenies from the literature. Numbers refer to areas and letters to 

phylogenies. Relationships between taxon area cladograms are summarised (bottom right) 

which is necessary for Component 2.0 block. Areas were coded using the following 

convention, 1 Taita Hills, 2 North Pare, 3 South Pare, 4 West Usambara, 5 East Usambara, 6 

Nguu, 7 Nguru, 8 Ukaguru, 9 Uluguru, 10 Rubeho, 11 Udzungwa, 12 Mahenge, 13 Southern 

highlands, 14 Malawi, 15 Mozambique, 16 Coastal Forest, 17 Ruwenzori, and 18 Volcanic 

mountains. 

7.3.3 Temporal Data 

Data from genetic pairwise distance and likelihood dating estimates were compiled 

into tables. For molecular dating estimates generated by r8s, the confidence values 

from S-values provide the range in which temporal data is shown to be incongruent 

or not. In addition, comparisons between lineages showing significantly different rate 
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variation (e. g. Scolecomorphus) were evaluated conservatively. Rate variation 

between lineages was calculated with the computer program r8s. Using the 

differences in rate variation, comparisons of temporal congruence and incongruence 

could be better evaluated by accounting for rates of molecular evolution in lineages. 

In addition to comparing molecular dates from r8s, pairwise genetic distances were 

compared between each lineage for each EA mountain population to assess the 

correspondence between genetic diversity and geographic distance. Further 

comparisons were also made with published temporal data. Molecular date estimates 

were taken directly from Gravlund (2002) and Matthee of aL (2004) and compared. 

7.4 Results 

7.4.1 Descriptive Biogeography 

7.4.1.1 Similarity indices 

The PTP test (p= >0.05) did not reject the null hypothesis that the data show no more 

hierarchical structure than randomly permuted data. Analysis of the relationships 

among EAM species assemblages, using similarity indices are summarised in Fig. 

7.5-7.10. The dendrograms show the pairwise similiarities among each area 

combination, using two similarity indices (Jaccard's Index, Fig. 7.4,6 and 7.8; 

Sorenson's Index, Fig. 7.5,7 and 7.9) and three clustering alogirthms (Wards 

Clustering method, Fig. 7.4 and 7.5; Average Linkage Method, Fig. 7.6 and 7.7; Single 

Linkage Method, Fig. 7.8 and 7.9). 

The results of hierarchical classification are presented in the form of tree diagrams, 

or dendrograms. These dendrograms are useful not only for displaying groupings, 

but also the degree of difference between groups (Branch lengths). The results show 

a general congruence between different clustering methods and Indices. Differences 

are confined to the placement of certain areas (e. g. Taita Hills and Ukaguru between 

Average and Wards clustering algorithms; Malawi between Single and 

Average/Wards clustering methods). The greatest differences between methods are: 

Average and Wards dendrograms consistently recover two main groups (1) Eastern 

Arc 'clade' (2) Rubeho, Mahenge, Coastal Forest, and Southern Highlands, whereas 

single Linkage clustering recovered (1) Eastern Arc'clade' (same as Average/Wards 

cluster, excluding Taita Hills and Pares) (2) Southern Highlands sister to this group 

(3) Malawi and Pares sister group to 2. (4) All other areas successively sister to this 
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group. In most dendrograms close relationships are generally shown by areas in 

close proximity, e. g. Malawi (North and South), Pares (North and South), Nguu and 
Ngurus, Uluguru and Udzungwa, Southern Highlands and Mahenge/Malawi. The 

EAM areas Rubeho and Mahenge do not nest with other EAM, but cluster with 
Malawi, Southern Highlands, Mahenge, and Coastal Forests. Closer similarity 
between areas, however, is not always directly proportional to geographical 

proximity; Uluguru and Udzungwa show the greatest faunal similarity despite being 

separated by -190km. Most importantly, the mountains of the EA do not form a 

single group. Overall, there are similarities between clustering methods, but there Is 

some ambiguity in the relationships recovered among certain areas. 

w. I 

Figure 7.5 
Cluster analysis of Jaccard's similarity co-efficient for 16 forests In EAM using Ward's 
agglomerative method. 
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Figure 7.6 
Cluster analysis of Sorenson's similarity co-efficient for 16 forests In EAM using Ward's 

agglomerative method. 
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Figure 7.7 
Cluster analysis of Jaccard's similarity co-efficient for 16 forests in EAM using average 
linkage agglomerative method. 
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Figure 7.8 
Cluster analysis of Sorenson's similarity co-efficient for 16 forests in EAM using average 
linkage agglomerative method. 
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Figure 7.9 
Cluster analysis of Jaccard's similarity co-efficient for 16 forests in EAM using single linkage 

agglomerative method. 
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Figure 7.10 
Cluster analysis of Sorenson's similarity co-efficient for 16 forests in EAM using single linkage 

agglomerative method. 

7.4.1.2 Parsimony Analysis of Endemnicity 

For 16 areas and 60 taxa, PAE yielded 30 most parsimonious area cladograms, with 

107 steps, consistency index of 0.561, and retention index of 0.598. Of the 60 

characters, 28 were parsimony uninformative and 32 are parsimony Informative. 

Analyses were carried out with parsimony uninformative characters included and 

excluded. No significant differences were noted from these two analyses. A majority 

rule consensus tree Is shown in Fig. 7.11a and bootstrap proportions given in Fig. 

7.11 b, with only proportions >50% shown. Note that phylogenetic terminology Is used 
to describe the relationships in PAE (clades, monophyly), denoting groupings 
between areas. 
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a) Majority rule consensus of 30 MPT b) Bootstrap proportions 
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Figure 7.11 

Parsimony Analysis of Endemnicity reconstructions of forest dependent species a) Majority 

rule b) Bootstrap analysis. Circled numbers refer to 1) EAM Glade 2) mixed area Glade. 

The majority rule consensus shows groupings of all Eastern Arc Mountain areas, 

apart from Rubeho and Mahenge. The split between these two clades (marked I and 

2; see Fig. 7.11a) are poorly supported, with bootstrap values of less than 50 for both 

clades. Northern EAM areas are basally positioned within EAM Glade (Taita Hills, 

North Pares, South Pares), though this is very poorly supported in bootstrap 

analyses. Within Glade 1, southern areas show geographically discordant patterns 

of relationships, for example, East Usambara shares closer relationships with Nguu, 

Uluguru and Udzungwa than West Usambara. However, all the relationships within 

Glade 1 are poorly supported. For Glade 2, Malawi areas- North and South, are 

polyphyletic, in addition EAM areas, Rubeho and Mahenge are also paraphyletic. 

Almost all relationships in the PAE tree are poorly supported, apart from Uluguru + 

Udzungwa, which is moderately supported. Overall, analyses show that there is a 

poor resolution of relationships among EAM area amphibian assemblages. 
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7.4.1.3 Are there congruent patterns of amphibian assemblage relationships 
between PAE and similarity index methods? 
There appears to be congruence between relationships recovered in PAE and 

similarity index results. Based on the reconstructions using PAE (based on majority 

rule consensus tree) and similarity indices, nestedness patterns showed similarity in 

the close relationship shared between some amphibian assemblages (1) Uluguru 

and Udzungwa (2) East and West Usambara and (3) Nguru and Nguu (4) close 

relationship of Rubeho and Mahenge to non-EAM areas (5) Non-monophyly of EAM. 

However, even in the examples given, the relationships are very poorly supported 

(see Fig. 7.11 b). Only the close relationship between Uluguru and Udzungwa is 

supported in PAE analyses, which Is consistently recovered by all similarity methods. 

The lack of robust resolution is also highlighted by similarity measures, using Single 

Linkage clustering methods, which show proportionally similar degrees of difference 

among many of the sites (see Fig. 7.9 and 7.10). Thus, although there are differences 

in amphibian assemblages shared between areas (in dendrograms recovered from 

similarity measures), the poor resolution between these suggests that there is only 

limited hierarchical structure. 

7.4.2 Cladistic Biogeography 

The results of a TRA analysis are shown in Fig. 7.12. Each data set was analysed 

separately. 

7.4.2.1 Amphibians only 

Component analysis was run on six amphibian phylogenies (see Appendix 5 for 

blocks). The maximum allowable 1000 GACs were recovered by Component (the 

program does not allow any more). Based on the 1,000 GACs, a Nelson consensus 

was constructed which is summarised in Fig. 7.12a. 

This topology was taken as the GAC, and was statistically evaluated using TreeMap 

1.0. The GAC has a duplication value of 18 and the topology has a p-value of 0.54, 

which is non-significant. In an attempt to investigate solution space more effectively, 
because nearest neighbour interchange methods (NNI) are liable to get trapped on 
'islands', a subtree pruning and re-grafting branch swapping algorithm was used 
(more rigorous, but with increased computation time). This however produced exactly 
the same 1000 GAC's and Nelson consensus as recovered in NNI analysis. 
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7.4.2.2 All phylogenies 

Component analysis was run on all thirteen phylogenies (see Appendix 5 for blocks). 
Similar to the last result, a maximum allowable 1000 GACs were recovered. The 

Nelson consensus of these is shown in Fig. 7.12b. 

This topology was then imported into TreeMap 1.0 as the GAC. The GAC has a 
duplication value of 38 and the consensus has a p-value was 0.81 which again is 

non-significant. 

7.4.2.3 Overview of Cladistic biogeographical results 

Analysis of both datasets indicates' statistically non-significant results, which means 

that biogeographic inferences from the GAC in Fig. 7.12 are not supported. However, 

the randomisation test carried out in TreeMap 1.0 cannot be interpreted as an 

absence of vicariance patterns in the EAM, as randomisation tests are 'asymmetrical' 

(Upchurch et al. 2002: p. 614), which means an absence of evidence of a signal, not 

absence of repeated area relationships. 
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Nelson consensus of 1000 General Area cladograms recovered In Component analysis a) 

Amphibians only b) All phylogenies Included. Values on branches denote proportion of non- 

conflicting area components. P values are shown, both highly Insignificant. 
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7.4.2.4 Congruent patterns of spatial relationships between descriptive and 
cladistic biogeographical methods? 
An overview of the biogeographic relationships recovered in cladistic and descriptive 

analyses is presented in Fig. 7.13. The figure presents commonalities shared 
between the two approaches, one based on the phylogenetic relationships of 

amphibians and the second on the distribution of amphibians. There is some 

similarity seen between approaches, the close biogeographic relationships shared 
between northern located EAM (Pares and Taita Hills), the placement of Rubeho and 
Mahenge (EAM) in a group of forests located outside of the EAM (Malawi, Coastal 

Forest, and Southern Highlands). Despite these similarities there are predominantly 

discordant biogeographic relationships including the of grouping of Nguru + Nguu; 

Uluguru + Udzungwa among others. Overall, the congruent area relationships are 
difficult to quantitatively or qualitatively evaluate, because robust area relationships 

cannot be inferred from either data set, as shown by lack of support in TreeMap for 

general area cladograms, and bootstrap results in PAE. Thus I am led to conclude 

that there is no statistical support for amphibian area relationships in the EAM across 

methods. 
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Figure 7.13 

a) General Area Cladogram recovered in Component analysis for amphibian phylogenies b) 
Majority rule tree recovered In PAE analysis. 
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7.4.3 Temporal Data 

Sequence divergence patterns can provide a test of whether species are affected by 
the same causal processes. In addition (assuming endemicity) they provide evidence 
for either the relative or absolute length of time that lineages may have, occurred in a 

region, and therefore whether lineages are recent or relict diversifications. Temporal 

patterns are therefore critical in evaluating the biogeographic history of an area. The 

following results provide a synthesis of all molecular dating estimates and divergence 

levels among phylogenies estimated in this study and taken from the literature. 

7.4.3.1 Temporal comparisons within EAM 

Genetic pairwise differences were compiled (Table 7.2) for all Eastern Arc Mountain 

lineages analysed in Chapters 3-6. In addition geographic distances were calculated 
for each mountain block. Molecular rate variation comparisons were made between 

all lineages, indicating a homogenous rate between microhylids, Boulengerula and 
Arthroleptides. However, Scolecomorphus mtDNA was shown to evolve more rapidly, 

roughly three times as fast (see Table 7.1). The largest degree of variation (standard 

deviation) was exhibited in African microhylid rates, which would be expected given 

the large degree of phylogenetic diversity in this group. 

Table 7.1. 
Summary of rate variation (substitutions per site per unit time 

Rate Variation Standard Deviation 
(mean) 

African Microhylids 0.001023 0.0002474 
Scolecomorphus 0.003016 0.0001687 
Boulengerula 0.001096 0.0000026 
Arthroleptides 0.0009387 0.000008491 

Molecular divergence estimates were compiled and compared among each mountain 

block (see Table 7.3; upper diagonal). Temporal congruence was then evaluated 

(see Table 7.3 lower diagonal) using absolute time estimates. Incongruent temporal 

estimates are marked in Table 7.3. Where temporal congruence could not be 

rejected, i. e. there was significant overlap in absolute time confidence limits (s- 

values), this was marked in Table 7.3. Of the 18 comparisons made in the Table 7.3, 

12 (66%) show differences that cannot reject temporal congruence, but 6 (33%) allow 

rejection of temporal congruence. Table 7.3 provides evidence based on the 

temporal relationships from lineages, which reject the hypothesis that all speclation 

events between mountain populations show temporally congruent divergences. 
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Table 7.2. 

Upper diagonal shows pairwise divergence of lineages between each mountain block. Lower 
di ririnni ehnwc r, annrnnhiral distance between each mountain block. 

1 2 3 4 5 6 7 8 9 10 11 12 

9.5% 8.8% 8.2% 18.6% 18.2`%, 120% 7.8% 11.1% 8.2% 

Taita Hills 9.7% 8.0% 7.8% 

2. 90 - 5.3% 5.2% 5.5% 9.5% 7.8% 14.2% 5.4% 6.6% 5.8% 

North Pares 10.6% 10.6% 8.9% 8.9% 9.4% 6.7% 9.0% 
9.2% 9.5% 

3. 115 70 - 5.3% 5.6% 91% 8.2% 14.4% 5.9% 7.3% 6.50/. 

South Pares 4.7% 9.0% 7.4% 7.2% 7.2% 7.1% 
7.1% 

4. 160 155 85 - 2.0% 6.4% 17.7% 7.4% 17.9% 5.2% 5.4% 5.1% 

West 4.3% 7.7% 6.2% 14.8% 6.3% 
Usambara 4.5% 6.2% 

7.7% 6.2% 

7.5% 
7.5% 

5. 195 190 120 40 - 7.3% 17.9% 73% 18.3% 53°% 5.8% 5.1 %, 

East 7.5% 6.7% 14.2% 76 8.4% 8.5% 

Usambara 6.3% 7.2% 14.6% 7.3% 
9.7% 59% 10.2% 

9.3°/ 2.9% 
7.2% 10.0% 
8.6% 
2.7% 

6. 255 200 140 130 125 - 0.2% 0.8% 7 6% 1.0% 85% 
Nguu 14.6% 8.4% 

9.3% 10.0% 

7, 310 260 200 175 160 55 - 4.3% 
Nguru 

8. 365 300 250 240 230 115 71 - 8.7% 7.5/% 8.2% 8.9% 

Ukaguru 0.6% 0.9% 
9.7% 5.4% 
9.3% 9.2% 

9, 395 355 290 245 220 155 95 110 14 6'/ 153°i, 14.8% 
Uluguru 5 8% 6.8% 66 

1.1 /° 0.5% 
9.8% 
9.5% 
84%, 
1 6"... 
0.6% 

1 p, 420 350 305 305 290 175 130 60 145 - 5 4.5% 
Rubeho 

11. Udzu n ggwa 540 480 430 410 395 290 240 180 190 130 - 6 3^. 4, 
0.5% 

12. Mahenge 645 590 535 505 480 395 340 290 260 255 130 - 

(Boulengerula (Red), Scolecomorphus (Green), Callulina (Indigo), Probreviceps (Plum), Spelaeophyme 

(Black) Hoplophryne (Brown) Arthroleptides (Yellow) and Crotaphopeltis (Light Blue) 
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Table 7.3. 

Upper diagonal shows divergence estimates (in Myr) between areas. Temporal congruence 
is shown in Lower diagonal based on results from Table 7. X and upper diagonal in this table. 

1 2 3 4 5 6 7 8 9 10 11 12 
1 64.85 37.74 37.74 

Taita Hills (58.92- (32.96- (32.96- 
71.24 42.78 42.78) 

2. 11.95 12.94 13.78 

North Pares North (10.37- (10.42- (12.42- 
14.33) 1533) 

3 11.50 13.78 

South Pares (8.90- 
13.64) 

(12.42- 
15.33) 

12.94 18.00 
(10.42- (12.58. 
1433) 23.421 1 

4. 13.78 

West 
t 

(12.42- 
15.33) 

Usambara 
5 29.18 64.85 15.23 19.88 19.88 19.88 

E 
t 

(22.00- (58.92. (13.28- (15.17- (15.17- (15.17- 
ast 37.31) 71.24) 18.06) 25.32) 25.32) 25.32) 

Usambara 
1.01 22.58 40.23 

(0.81. (19.86- (25.86- 
1.28) 25.82) 48.59) 

64.85 12.03 
(58.92- (9.46. 
71.24) 15.21) 

22.58 
(19.88- 
25 82 

6. 0.53 1.96 40.23 
(25.86. 

Nguu 15.23 48.59) 
(13.28- 
18.06) 3.43 

(2.33. 
437) 

13.16 

Nguru 
(7.24- 
18.67 

8. t t 1.96 3.43 
( 

Ukaguru 
i 37) 

22.92 
(17.92- 
2865) 

9 
_ 

2.55 
7 ) 2 

3.65 
(i 8 ) 

Uluguru 6 . 1 
3.43 1.39 

(2.33- (1.13- 
4.37) 3.08) 

12.03 
(9.46- 
15.21 

10 7.55 13.28 
(4.75- (11.78- 

Rubeho 10.35) 16.27) 

14 51 

11. 3.65 
(2.76. 

Udzungwa 4.81) 

0.47 
(0.30- 
1.48) 

14 51 

Mahenge 

§- Molecular clock incongruence (no overlap in LF estimates) 
t- Temporal congruence cannot be rejected (no significant difference in % difference or LF 
estimates) 
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7.4.3.2 Temporal comparisons between EAM and other regions 
Molecular clock estimates and genetic pairwise differences between Eastern Arc 

Mountain taxa and species/populations occurring south of EAM, Coastal Lowlands, 

and West Africa are shown in Table 7.4. Patterns indicate a substantial period of 
isolation between regions South of Mahenge and Udzungwa, Le. Rungwe and 
Mozambique. The correspondence between molecular clock estimates from the frog 

lineage Probreviceps and snake lineage Crotaphopeltis, indicate a common 

biogeographic history. Comparisons between coastal and lowland forests indicate 

temporally incongruent patterns, as shown by recent divergence between southern 

coastal forests/lowland forest (Kazizumbwe and Kilombero) and more archaic to 

northern, Kenyan coastal forests (Changamwe) in Boulengerula. 

Temporal comparisons indicate a broad spectrum of divergence dates between EAM 

and West Africa lineages, divergences ranging from 12.27 - 99.25 Mya. The patterns 

of divergence seem to correspond with dispersal capability, as shown by tolerance to 

a diverse array of habitats. For amphibians not restricted to forest habitats (Hemisus 

and Phrynomantis), species pairs from East and West Africa are shown to have 

diverged more recently, 30-45Mya and 12-25Mya respectively. In contrast, 

(generally) forest restricted amphibian pairs; Arthroleptides! Petropedetes, 

Boulengerula/ Harpele, and Scolecomorphus/ Crotaphatrema show much deeper 

divergences of 40-10OMya. The lower bound of temporal estimates for forest 

restricted species significantly predate the separation of East and West African 

forests, (around 20Mya of Lovett, 1993a). Data presented by Matthee et al. (2004) 

also show molecular clock estimates (18 - 35Mya) that indicate similar levels of 

divergence. The data permit the conclusion that if molecular clock estimates are 

correct, dispersal between forest restricted amphibian species between East and 

West Africa has been limited since the Miocene. Even if dates are incorrect, forest 

restricted species show substantially greater divergences than non-forest 

amphibians. 
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Table 7.4. 
Pairwise divergences of EA lineages (Boulengerula (Red), Scolecomorphus (Green), 

Probreviceps (Plum), Phrynomantis (Black) Hemisus (Brown) Arthroleptides (Indigo) 

Spelaeophryne (Grey) Rhampholeon (t Dark Red) and Crotaphopeltis (Light Blue)) between 

regions in Africa. 

South of EAM Coastal or Lowland Forest West Africa 

Rungwe, Mozambique Kazizumbwe Changamwe Kilombero 

Southern Valley 

Highlands 

Eastern Arc 3.8% 5.9% 0.6% 7.7% 0 51, 20.7% 

Mountains: 12.5OMyr 11.01 Myr 311 Myr 24.21 Myr 0 47fMy 99.25Myr 

Genetic (9.25-15.89) (9.46 -12.86) (1.97 - 4.68) (20.29 - 28.64) (0 30 1 48) 20.2% 

distance ' 18.6°iß, 87.81 Myr 

and ß 22.8Myr (82 56 - 93.98) 

molecular (8.4 37 2) 5.2% 

date 17.67Myr 

estimates (12.27 - 24.73) 
12.7°/, 

36.34Myr 

(29.74 - 44.88) 

14.3% 

50.12Myr 

(40.16 - 60.17) 

t? % 
26.19 (18.7- 

33.68) 

Range 3.8-18.6% As above As above As above As above 5.2-20.7% 

9.25 - 37.2 2.27-99.25 

Myr Myr 

* divergences based on cyw ana NU Z, is estimates Dasea on molecular clock rates, see 

Gravlund (2002), tdivergences based on estimates in Matthee et al. (2004). 

7.4.3.3 Correlations between genetic and geographical distances within East Africa 

amphibian lineages 

Genetic heterogeneity among populations should theoretically increase with greater 

geographical distances if there is no barrier to interbreeding, for example one would 

expect hypothetical populations A and B separated by 10km to be closer genetically 

than to population C which is 100km equidistant from both A and B. However, if there 

are barriers to contact between populations, such as a mountain between A and B, 

then there is likely to be biases in the degree of genetic similarity between 

populations. Genetic pairwise differences were compared with the geographical 

distance for each combination of area and within-lineage difference (exemplars of 

each mountain block). Fig. 7.14 shows a positive correlation between increasing 
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genetic distance and geographical distance (r2 value= 0.4864), although it is not 
perfectly linear, explaining only 48% of the variation. Therefore, although genetic 
distances are likely to increase with greater geographical distance, there is not a 
direct linear relationship, which might indicate more complex biogeographic 

processes are evident. 
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Figure 7.14 
Graph showing the correlation between genetic distance (% pairwise difference) and 

geographical distance (in km) based on exemplars presented in Table 7.2 (r2= 0.4864). 

7.4.3.4 Persistence estimates 
Divergence time estimates between monophyletic Eastern Arc Mountain taxa are 
shown in Table 7.5. EAM lades allow biogeographic interpretations to be made, in 

particular the persistence of forest habitats for forest-restricted species. For example, 
a parsimonious biogeographic interpretation of a lade distributed in the EAM (see 
Fig. 7.15a) would be that all ancestors, from the initial split between taxa, would be 

distributed in the EAM area, otherwise a less parsimonious long dispersal event is 

needed to explain the pattern. In contrast, a Glade incorporating species distributed 

outside the EAM makes biogeographic interpretations ambiguous (Fig. 7.15b). The 

presence of forest-dependent clades is consistent with the interpretation that the 
habitat has also persisted for as long as the lade, therefore providing a proxy for 
investigating the former distribution and persistence of forest. Molecular clock 
results indicate that in all montane lineages a substantial period of persistence is 
inferred, ranging from 15- 70 Mya, with four of the six lineages showing temporally 

congruent divergence between 25- 48 Myr, averaging approximately 42 Mya. 
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Lindqvist and Albert (2001) have suggested the 'basal' position of a species and the 

area, or areas they occur in might be indicative of the geographical origin of a Glade, 

termed 'ancestral areas'. Ancestral areas for basal dades in lineages however are 

difficult to interpret, because single areas cannot be unambiguously assigned as an 

ancestral area (see Probreviceps Glade as an example Fig. 4.12). Furthermore, 

conclusions are likely to be highly sensitive to extinction processes and range 

expansions (Losos and Glor, 2003). Current distribution of a species is not 

necessarily a reliable indicator of the previous range of a species. In this study 

therefore ancestral areas were not inferred, but areas that were absent from basal 

positions on trees were identified (see Table 7.5). Areas not found in basal nodes 

include; Rubeho, Nguu, West Usambara, and South Pares. The absence of these 

areas might be indicative of a more recent origin of the forest. 

Table 7.5. 
Molecular divergence estimates (Mya) between basally positioned EAM forest-restricted 

clades. 

Molecular date 19.88 40.23 40.62 44.94 43.45 64.85 

estimates (15.17-25.32) (25.86-48.59) (33.34-48.61) (37.62- (38.56-47.72) (58.92-71.24) 
53.07) 

Eastern Arc East Usambara Udzungwa or North Pare Uluguru, Uluguru Taita Hills, 

Ancestral Area or Mahenge Uluguru Ukaguru or Usambara, 

Origin 
Udzungwa Nguru or 

Uluguru 

a) b) 
EAM EAM EAM EAM CF EAM 

Figure 7.15 

Use of phylogenies to infer persistence of montane forest a) Monophyly of EAM taxa b) Non- 

monophyly of EAM taxa. Green infers montane forest, brown infers lowland forest, CF= 

Coastal Forest and Black refers to ambiguous distribution and therefore uncertain habitat of 

ancestors. 
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7.4.3.5 Dispersal ability of study taxa 

Taxonomic groups in this study were chosen primarily for their best potential to 

reconstruct forest habitats, thereby limiting any potential confounding effects. All taxa 

selected were 'forest restricted', which in this study was best determined by their 

current occurrence only In forests, and a constrained altitudinal distribution, as 
Poynton (1998a) outlined. However, in general, more detailed data were unavailable 

that might better evaluate the ecology of the chosen species (Howell, 1993; 2000). In 

addition to the use of altitudinal data for selecting lineages, specific biological 

characteristics make a distribution outside forest for certain taxa highly improbable. 

For example, none of the amphibian lineages chosen in this study is believed to be 

an open site breeder. Therefore, because lineages utilized In this study have 

restrictive habitat requirements, it is unlikely that any minor differences in biological 

characteristics between lineages can account for temporal incongruence. A 

rudimentary exploration of data was carried out to assess, qualitatively, whether 

lineages showed decreased divergence proportional to dispersal ability. For each 

amphibian lineage, ranges of altitudinal distribution and habitats were compiled (see 

the ranked Table 7.6). In addition, chronograms of each lineage, which were ranked 

according to dispersal ability, are compared in Fig. 7.16a, b. 

Comparisons were made separately for frogs and caecilians, because it is unclear 

how geographic patterns would influence the diversification of these divergent 

animals. In frogs, there appear to be consistent associations between phylogenetic 

divergence and dispersal ability. The brevicipitine lineage Spe/aeophryne, which Is 

found in forest and non-forest habitats, shows the least degree of divergence 

between mountain populations (see Fig. 7.16b). Overall there Is an Increase In 

phylogenetic diversity with presumed dispersal ability, with only very minor 

Inconsistencies (e. g. Callulina). However, it is worthwhile to note that 'basally' 

positioned populations of Callulina appear to be fossorial, so the similar phylogenetic 

diversity between Callulina and Probreviceps may reflect a more similar ecology and 

life history than the data implied here. Comparison between the two caecilian 

lineages (Scolecomorphus and Boulengerula) also appear to show consistent 

relationship between phylogenetic diversity and dispersal ability (see Fig. 7.16a). The 

genus Boulengerula shows characteristics that imply it would be a poorer disperser 

than Scolecomorphus, in that it Is more subterranean and is oviparous (Gower of al. 

2004). 
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Table 7.6. 

Table showing ecological and reproductive characteristics of lineages sampled in this study 
for frogs and caecilians. 

Lineages Altitudinal Habitats Breeding Ecological 

range collected Niche 

Frogs 

I Hoplophryne 2100-355m LF, SMF, Specialized Tadpoles: Cryptic and 
MF, AZ develop in tree holes. forest floor 

2 Probreviceps 2100-420m RF, LF, SMF, Presumed to be a direct Cryptic and 
MF, AZ developer. forest floor 

3 Callulina 1900-180m IF, SMF, Presumed to be a direct Arboreal and 
MF, PF developer. forest floor 

F fl 4 Arthroleptides 1900-180m FE, PF, RF, Specialized Tadpoles: orest oor 
IF, SMF develop in river torrents and stream 

5 Spelaeophryne 1000m-290m FE, RF, LF Presumed to be a direct Cryptic and 
developer. floor dwelling 

Caecilians 

I Boulengerula 2100m-180m PF, LF, SMF, Direct developer. Subterranean 

MF, A 

CD 
2 Scolecomorphus 2100m-190m AZ, PF, FE, Viviparous Subterranean 

LF, SMF, & forest floor 
MF, A 

Habitat Abbreviations: FE (Forest Edge), PF (Plantation Forest), LF (Lowland Forest), RF (Riverine 

Forest), SMF (Submontane Forest), MF (Montane Forsest), AZ (Alpine Zone) and Agriculture (A). 
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Figure 7.16 

Chronogram of a) caecilians b) frogs sampled in this study, showing phylogenies ranked with 

presumed decreasing dispersal ability left to right. 

7.5 Discussion 

7.5.1 Hypotheses 

7.5.1.1 Are there significant area relationship(s) in the EAM recovered using 

cladistic methods? 

Data from cJadistic biogeographic analyses of amphibians show non-significant area 

relationships within the Eastern Arc Mountains. Furthermore, with the addition of 

phylogenies from other groups, area relationships continue to be non-significant. The 

statistical failure of the cladistic biogeographic analyses of the EAM might be the 

result of a number of potential influences, though it is difficult to assess which factor 
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might be most important (1) Error in molecular tree topologies, perhaps the result of 
inadequate sampling of lineages or genes. (2) Non-pattern processes, such as 
dispersal and extinction may have had an overwhelming effect on biogeographical 

patterns (3) More than one genuine biogeographic signal is present (vicariance or 
vicariance mimicking processes). 

The potential influences of poorly resolved trees should not be underestimated. 
Thorough sampling of all populations was not possible for the amphibian groups 
investigated, which could potentially obscure biogeographic patterns. For amphibian 

phylogenies estimated in this study, approximately 63% of all known populations 

were sampled (Arthroleptides- 66%, microhylids- 66%, Scolecomorphus- 62% and 
Boulengerula- 59%). Given the incomplete sampling, a poor resolution of spatial 

relationships in the Eastern Arc Mountains is not unsurprising. Furthermore, notable 

geographical sampling deficiencies were also particularly evident In this study for 

populations in all groups in Malundwe Hill and Nguru mountains. Many parts of the 

EAM are yet to be fully explored, with almost nothing known of the Nguu, or Rubeho 

Mountains. Recent discoveries have greatly changed the overall understanding of the 

diversification of certain groups, which were thought to be relatively well understood 
(Dineson et al. 1994; Doggart et a!. in press; Menegon and Doggart, in prep. ). The 

inclusion of populations absent in the studies outlined in Chapters 3-6 is a priority. 
Incomplete sampling of populations is the main limitation for resolving spatial 

relationships in this study. 

Amphibians are generally intolerant of habitat changes (e. g. Inger and Voris, 1991; 

Biju and Bossuyt, 2003). It is therefore unlikely that species, particularly those 

restricted to forest habitats, would be able to disperse between mountains separated 

by savanna regions. Therefore, forest restricted species would only be able to move 

between mountain blocks if suitable forest corridors existed at some past time(s). 

Based on the data, it is difficult to evaluate how likely the discordant area 

relationships are the product of dispersals (see also below). Given the restrictive 

nature of study taxa, dispersal through forest corridors and/or depressed forest belts 

during glacial fluctuations would be the only likely mechanism. Glacial fluctuations 

are thought to have impacted the East African region significantly (e. g. Hamilton, 

1988), which would have promoted habitat expansion and contraction periodically, 

and perhaps Increased the likelihood of dispersal, in contrast to a static environment 

which would not have permitted dispersal between areas for forest restricted taxa. 
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Temporal data indicate consistently that between many areas are punctuated by 

more than one speciation event, with both ancient and recent divergences. Such 

evidence indicates that at least partially, the biogeographic history has been 
influenced by dispersal, which may have affected the resolution of biogeographic 

analyses focussed on vicariance patterns (see also Section 7.5.1.5). 

It is difficult to evaluate, based on the evidence at hand, if there is a superposition of 
biogeographic patterns, which may obscure more recent relationships. However, the 
large degree of divergence exhibited between monophyletic taxa (see Temporal 

results), suggests there is a substantial period of time in which different geographic 

'pattern processes' (vicariance, or vicariance mimicking processes) may have 

influenced amphibian diversification. From a probabilistic perspective, considering 

the large time span that taxa have persisted in the region, it Is likely that more than 

one biogeographic event has influenced the relationships recovered, possibly with 

vicariant patterns decaying over time. Without an appropriate method for time slicing 

molecular data, in contrast to fossil data (Grande, 1985; Upchurch et al. 2002), it is 

unlikely that untangling two biogeographic signals is possible using current methods. 

Overall the TRA analysis provided no clear evidence for a common area relationship. 

Reiterating the conclusion that Lavin et al. (2001) made on the failure of modern 
biogeographic approaches to reconstruct vicariance patterns, perhaps the 'rarity' of 

groups that have not been influenced by 'extinction, dispersal and sympatric 

speciation' may confound current analytical, vicariant approaches. Future studies of 

the EAM might focus on event based biogeographic methods, which use other 

biogeographic processes (dispersal) to explain incongruent area relationships, such 

as those implemented in the program DIVA (Ronquist, 1997). Conceivably, the 

inclusion of more data (phylogenies) would also permit a greater understanding of 

the biogeographic relationships in the EAM, though this Is uncertain and no previous 

study provides a precedent for this. The findings presented here underline the 

intrinsically complex nature of biogeographic studies spanning long periods of time. 

7.5.1.2 Are area relationships temporally congruent in the EAM? 

Understanding patterns of speciation between lineages allows hypotheses about 

changing climates and fragmentation to be investigated. Potentially, divergence 

events may show spatially congruent patterns that occurred at different times, but 
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without temporal divergence estimates this would be difficult to determine. Besides 

fossils, molecular clock divergence times are our only means of understanding the 

changes of faunas and floras through time (see Chapter 2.6.4.2). Despite the well- 
documented controversy surrounding the calculation of absolute time estimates, 

molecular data have provided important evidence concerning the tempo and mode of 

evolution (Kumar and Hedges, 1998; 2004; Hedges et al. 1996; 2004). Area 

relationships recovered in this study are not robustly resolved, but the amphibian 

phylogenies show some congruent area relationships, which allow an assessment of 

a common history between pairs of areas. 

As outlined in the results section, temporal data reject the hypothesis that all 

divergence events between mountains show congruent temporal divergences. Of the 

18 comparisons made, 60% allow the rejection of the hypothesis of temporal 

congruence. Taking a conservative approach for assessing temporal congruence, 

33% of comparisons unambiguously reject divergence events as being co-temporal 

between lineages. For example, comparing population samples between Uluguru 

and Udzungwa Mountains, temporal data show divergences of 2.55 Mya (1.69-2.76) 

for Arthroleptides yakusini; 3.43 Mya (2.33-4.37) Callulina sp.; 12.03 Mya (9.46- 

15.21) for Probreviceps macrodactylus; 13.28 Mya (11.78-16.27) for Scolecomorphus 

sp. Based on these molecular date estimates, speciation patterns show temporal 

congruence between the species pairs Arthroleptides + Callulina and Probreviceps + 

Scolecomorphus but not among them. Evidence therefore suggests at least two 

contacts between Uluguru and Udzungwa Mountains, rejecting the hypothesis that 

one causal event (vicariant or dispersal event) has occurred between the two areas. 

For example, it has been speculated that once the EAM became fragmented, each 

mountain would have became totally Isolated, with only a dispersal events for forest 

restricted species possible during wet periods when forest may have connected each 

mountain block. The data suggest more than one geographic event, which may 

correspond to fragmentation and dispersal events, or simply multiple dispersal 

events. 

Temporal congruence between lineages is supported in a greater proportion of 

comparisons made, which could support a single geographic event influencing 

diversification of amphibians in the EAM. However these comparisons are based on 

only a limited number of replicates, and therefore do not provide a stringent 

biogeographic test. Overall,, the implications are that divergence events have 
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occurred over a prolonged period, with no single cause, (such as the fragmentation 

of the EAM), likely to have influenced diversification patterns in amphibians. Given 

the small number of replicates, comparison of more amphibian lineages will 

undoubtedly provide a more thorough test of temporal congruence. Based on the 

results here, increased sampling of lineages will probably show added complexity to 

the temporal and spatial biogeographic history of the EAM. Evidence presented here 

cannot reject the hypothesis that fragmentation has been important in structuring the 

biodiversity in the EAM. 

7.5.1.3 Are area relationships consistent with nestedness patterns recovered 
in descriptive methods? 

Analysis of data based on the distribution of amphibian species shows congruent 

patterns between methods (PAE vs. similarity indices, and clustering methods), 

although the data are weak, as shown by poor bootstrap results. Both the taxonomy 

and distribution of EAM amphibian species is poorly understood (Howell, 1993; 

Poynton, 2004; Poynton at al. submitted), thus any evaluation or comparison 

between PAE and similarity analyses may be limited, certainly for the more poorly 

studied mountains. It is clear that evidence presented in this thesis suggests the 

presence of many new species with different distributions to those currently 

recognised, with the genus Cal/ulina a prime example. Furthermore, it is likely that 

such taxonomic problems will be repeated In other amphibian groups found in the 

EAM. Based on preliminary studies of certain groups; e. g. large arthroleptids 
(Poynton, pers. comm. ) Nectophrynoides (Menegon at a/. unpublished), Afrixa/us 

u/uguruensis and Hyperollus spinigularis (Clarke, pers. comm. ) current taxonomic 

understanding severely underestimates taxonomic richness of EAM amphibians. 
New species and genera will continue to be described (Channing and Stanley, 2002; 

Menegon, pers. comm. ), which will change current understanding of species and 

their distribution. 

A fuller understanding of species distribution throughout the EAM is also likely to 

impact on descriptive biogeographic analyses. Faunal and floral inventories of all 

Eastern Arc blocks remain incomplete, and further study in every Eastern Arc block 

would likely discover additional new species and new distribution records in all but 

the best-known groups, such as mammals. Surveys of all Eastern Arc Mountains are 

necessary, but certain areas have historically attracted more interest, such as the 

East Usambara, which has led to survey effort biases. Burgess of al. (in press) 
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investigated such biases, using Isango's (2001) list of Eastern Arc publications as a 

proxy for survey effort. Based on this measure, Burgess et al. (in press) found a 

correlation between survey effort and the biodiversity ranking of the Eastern Arc 

blocks. These findings give an indication of the sampling inequalities in the EAM and 

point to the limitations of biogeographic analyses based on incomplete distribution 

data. Perhaps the low statistical support for relationships obtained In descriptive 

analyses, reflect the uneven sampling of amphibians in the EAM. Overall it Is clear 

that determining species taxonomy and their distribution based on current 

understanding is difficult. Prior to the investigations outlined here, which have refined 

taxonomic understanding of certain groups and the distribution of species, our 

perception of amphibian diversity in eastern Tanzania grossly underestimated 

species numbers and diversity within each mountain block. As a consequence of 

these, the data matrix was probably incorrectly coded in places, which potentially 

obscured patterns in these analyses. 

In addition to problems with incomplete or incorrectly coded data matrix as a result of 

insufficient information on distributions or incorrect taxonomic classifications, there 

are methodological problems in reconstructing the biogeographic history of an area 

using species distributions. As has already been outlined (see section 2.6.2), 

descriptive approaches use data that are unable to confidently evaluate 

biogeographic patterns. Upchurch (2004) forcefully argued, against using 

'descriptive' approaches, stating such methods 'should never be used to assess the 

historical relationships between biotas and/or geographic areas' even in the case 

when 'scarcity of data prevents us from applying appropriate methods'. Upchurch, 

(2004) insists that instead of using data derived from species distributions for 

investigating biogeographical problems when species phylogenies are unavailable, it 

would be better to focus attention on collecting data we lack. The descriptive 

biogeographic results presented here are ambiguous and it is difficult to assess their 

utility. However, even with an improved or even 'complete' data set, understanding 

the biogeographic complexity of the EAM based on distribution data Is not likely to be 

a fruitful mode of research, taking into account the ages, ecology and differing 

dispersal capabilities of amphibians distributed in the forests. 
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7.5.1.4 Are temporal or spatially discordant relationships correlated with 
dispersal ability? 

'Environmental tracking of ranges of species in accordance with climatic changes is 

likely to involve complex lagging, governed by the spreading and retracting rate of 

each species' (Poynton, 1999; p. 513). 

For species able to tolerate a wide range of habitats (e. g. some birds and mammals), 

or able to disperse long distances (e. g. birds), the footprints of climatic and geological 

changes are less likely to affect diversification patterns. Based on the fact that 

biological characteristics of taxa influence temporal and spatial biogeographic 

patterns (Hewitt, 2004), it is pertinent to consider whether taxa In this study have 

notably different biological characteristics (e. g. dispersal ability) that might explain the 

discordant temporal and spatial patterns recovered. Even within groups with 

restrictive habitats, such as amphibians, there is a spectrum of ecological differences 

among species (Austin et al. 2004), as shown by restrictive breeders (e. g. 

Arthroleptides) and habitat generalists (e. g. hyperoliids). For inferring changes in 

forest distribution it is sensible to use species closely associated with forest, so that 

their ancestors can be inferred as occurring in similar types of habitats. Such 

prerequisites for a study are not always possible, mainly because the habitat 

requirements of an extant or extinct organism cannot always be easily inferred. 

Generally, a correlation between dispersal ability and phylogenetic diversity was 

recovered from comparisons made in this study (see section 7.4.3.5), which Is not 

entirely unsurprising given the impact dispersal has on diversification of organisms 

(Vermeij, 1991). However, the poor understanding of the ecology of lineages and 

how these affect dispersal ability forbids any clear understanding. For example, in 

comparisons of the two-caecilian lineages, (Scolecomorphus and Boulengerula) a 

consistent relationship between phylogenetic patterns and dispersal ability is 

recovered, with the presumed poorer disperser Boulengerula showing patterns of 
longer isolation. In support of this, Gower et aL (2004) recently evaluated the 

distribution and abundance of Scolecomorphus vittatus and Boulengerula boulengeri 

and concluded B. boulengeri was primarily a subterranean burrower while S. vittatus 

spends more time at the surface. These findings could be used as evidence of S. 

vittatus being a better disperser. In addition, Gower et al. (2004) outlined other 
biological characteristics that might have a significant impact on dispersal ability, e. g. 
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reproductive biology. However it might be premature to make such broad 

comparative conclusions on dispersing ability. For example, recent surveys of 
Boulengerula and Scolecomorphus in the EAM (Loader, pers. obs. ) show both 

species show a large range of ecological tolerance to non-forest mountain habitats, 

and therefore it is unclear how this may affect dispersal ability. Despite the finding 

that dispersal ability influences diversification patterns in the amphibians utilized in 

this study, the degree of incongruence, both spatially and temporally, means that it is 

unlikely that dispersal can explain fully the many incongruent biogeographic patterns 

recovered. 

Findings based on cladistic biogeographical analyses and temporal data suggest that 

speciation events are temporal and spatially incongruent in amphibians. This is 

further corroborated by phylogenies of other groups. Temporal and spatial 

incongruence between lineages cannot be easily explained by proportional 

differences in dispersal ability. Therefore the biogeographic history of EAM is likely to 

be the result of more than one single event, such as fragmentation that might 

produce a clear vicariant signal. More detailed sampling of populations will need to 

assess how robust this hypothesis is. The sampling intensity in this study precludes 

any strong conclusions. Perhaps a greater understanding of ecology, physiology, and 

genetic diversity may alter perceptions of this in the future. Future studies should 

attempt to better quantify both quantitative and qualitatively the ecology of the 

Eastern Arc amphibian fauna and thereby evaluate more effectively the 

diversification of these lineages. This can be achieved by traditional ecological 

approaches or more sophisticated GIS techniques (Raxworthy et aL 2003). Austin et 

aL (2004: p. 814) suggested that differences in phylogenetic diversity may be 'partially 

attributable to generation times, or metabolic rates', dispersal ability clearly 

influences biogeographic patterns but to what extent it alters phylogeny of closely 

related species is unclear at present. Correlations between habitats and species 

distribution have been examined using geo-reference data (Raxworthy et aL 2003). 

Such data could potentially better constrain biogeographical analyses and their 

conclusions. 
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7.5.1.5 Is there a strong temporal and spatial correlation between area 
relationships and geographic events in the EAM? 

Recent biogeographic studies have shown that a comparison of phylogenetic 

patterns can provide evidence that current distributions are the result of particular 
fragmentation events, such as the movement of continental land-masses (e. g. 
Upchurch et al. 2002; Gower et al. 2002; Bossuyt et al. 2004). Furthermore, with the 

availability of molecular divergence estimates, the ages of the events, such as 
isolating barriers, can be assessed and correlations made between geographical 
history and the evolutionary diversification of lineages. The use of more than one 

phylogenetic lineage allows the testing of more general biogeographic patterns, 
because the same biogeographic barrier might be expected to influence independent 

lineages in a similar way. 

Determining causal events from spatial data remains difficult without resolved trees. 

The main spatial process thought to have impacted on the EAM is the rapid uplifting 

of mountains in the Miocene and it would be expected that spatial relationships would 
be recovered which would correspond to the fragmentation of a previously 

continuous forest. It is unclear what the pattern and sequence of fragmentation 

between mountains is (Griffiths, 1993), and so it can only be assumed that closely 

adjoined mountains would, in general, show closer area relationships from a process 

of fragmentation. Despite the fact that area relationships obtained from cladistic and 
descriptive biogeographic approaches were shown to be non-significant, an analysis 
to evaluate if closer area relationships (based on the GAC recovered from Fig. 7.13a) 

were positively correlated with geographical distance was carried out. Figure 7.17b 

shows a positive correlation between geographical distance and distance of the GAC 

between areas (with an r2 of 0.51). This might be indicative of a history of 

fragmentation. However, the area relationships recovered In this analysis were 

shown to be non-significant, and even if the GAC was shown to be significant, 

correspondence between area relationships and geographical distances could be the 

result of other vicariant mimicking processes (Hunn and Upchurch, 2002). Overall, 

the spatial data remain problematic and require the gathering of more taxon area 

cladograms to assess whether the pattern of Incongruence Is common to all 

amphibian lineages in the EAM. 
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Figure 7.16. 

a) Spatial relationships recovered in TRA analysis, with map of Eastern Arc Mountains. 

Colours correspond to clades and geographical areas. b) Graph showing the geographical 

distance between areas against the number of steps between areas in the General Area 

Cladogram (r2= 0.51). 

Significant area relationships were not recovered in any of the analyses carried out. 

However, there appears to be a consistent separation between southern and 

northern EA areas (see Fig. 7.17a). This phylogenetic pattern implies the presence of 

a biogeographic barrier between northern (Taita Hills, Pares, Usambaras) and 

southern (Ulugurus, Rubeho, Udzungwa, Mahenge) EAM regions, with the 

separation between northern and southern regions around the Ngurus. This 

separation of Eastern Arc fauna (shown also in the non-significant GAC, Fig. 7.16) 

has previously been suggested (e. g. Bowie et al. 2004). The area around the Ngurus 

is believed to be a significant barrier to dispersal because of its position in line with 
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the island of Zanzibar, which is thought to have accentuated dry phases. Zanzibar 

influences climatic patterns in the region (Lovett, 1993), more so than the islands of 
Pemba and Mafia, by reducing precipitation levels, and this may have resulted in the 

forests of the Ukagurus, Ngurus, Nguu and lowland forests connecting these areas, 

drying out more severely (see Fig. 7.18). Similar patterns are thought to be influential 

in the coastal forests of Tanzania and Kenya, whereby northern and southern coastal 

forests, demarcated by the Zanzibar rainshadow. Distinct northern and southern 

faunas and floras suggest dispersal between these areas might have been limited 

(Burgess and Clarke, 2000; Tattersfield et al. 1998). A proper assessment of this will 

need to be made with denser sampling of Nguru populations in the lineages under 

study. 

Figure 7.18 

Map of the Eastern Arc Mountains showing rainshadows produced from adjacent areas 

(Zanzibar, Ulugurus, and East Usambaras) 

The proximity of coastal islands relative to the EAM is not the only influence on the 

climatic circulation in East Africa that might have implications for understanding 

biogeographic patterns. The effect of distance each mountain is to the coast has 

dear influences, with increasing distance correlated decreased precipitation levels. 

Burgess et al. (in press) have identified a correlation between greater distance to 

coast and lower biodiversity levels. Another factor influencing climatic conditions is 
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the topography of land adjacent to the coast, in some areas the coast is obscured by 

other mountains. The Ukagurus and Rubehos have reduced rainfall, in part the 

result of the longer distance to the coast, and the barrier of the Ulugurus (Fig. 7.18) 

condensing much of the moist air. Regions Influenced by the effects of rainshadows, 

such as the Rubehos, receive reduced levels of precipitation, and likely experience 

more severe and phases. It is interesting to note that the Rubehos, along with the 

Nguu, West Usambara, and South Pares show consistently more recent levels of 
divergences in amphibians than other EAM areas, regions that have reduced 

precipitation levels. Conversely, mountains in close proximity to the coast, and not 

obscured by other mountains, such as the East Usambara and Ulugurus show 

biogeographic patterns consistent with greater and deeper phylogenetic diversity, 

correlating with a more stable climatic history (see 7.5.1.6). This should be tested in 

the future, whereby correlations with increased phylogenetic diversity can be made 

against abiotic factors, such as precipitation regimes. Assessing the determinants for 

maintaining high levels of biodiversity will be Important for understanding both 

evolutionary processes and conservation measures. 

In contrast to spatial data, temporal data provide a wider scope for testing 

hypotheses about the geographic history of an area, though not uncontroversially 

(see section 2.6). Determining whether specific events are congruent with divergence 

events can be difficult to evaluate, there are often a number of possible geographic 

events with imprecise timings. For example, in East Africa during the Tertiary period 

a number of processes are believed to have been significant, Including climatic 

changes (Williamson, 1985; Hamilton, 1988; Trauth et aL 2005), formation of the rift 

valley (Partridge et al. 1995; Lovett, 1993a), and volcanism (Lovett, 1993a) all 

generally occurring over a prolonged and overlapping period of time. Molecular data 

from this study provide a number of examples that show an apparent 

correspondence with the uplifting of mountains In the early Miocene period (-25-10 

Myr). The lineages Arthroleptides, Scolecomorphus, Callulina, Probreviceps, 

Boulengerula, and Hoplophrye all have examples of branching patterns that 

correspond to this time. Only Spelaeophryne, with its more widespread habitat 

distribution, is shown to have more recent divergence patterns. Of particular note Is 

the rapid diversification of Scolecomorphus, where in a relatively short period of time 

many lineages appear to show rapid allopatric divergence between mountains, which 

corresponds precisely with the proposed final phases of the fragmentation of the 

EAM (Partridge at al. 1995). 
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More recent climatic fluctuations, such as the humid episode 3.3-3.4 Mya 

(Williamson, 1985; Trauth et al. 2005) and Pleistocene fluctuations (0-1 Mya) are 

marked by divergence patterns in most lineages of Arthroleptides, Scolecomorphus, 

Callulina, Probreviceps and Boulengerula. The association between divergence and 

various geographic events (uplift and climatic changes) might be coincidental, but the 

timing does not reject a possible link. Further sampling of populations and nuclear 

genes will be necessary to fully clarify these dating estimates. In addition, a greater 

understanding of the geological and geographical changes that have taken place on 

the African mainland may assist in interpreting biogeographic patterns more critically. 

Taking both the spatial data and temporal data together, this study identifies that 

there are a number of different processes that have influenced the diversification of 

the EA amphibian fauna. This complex biogeographic history of this region offers a 

challenging area of future study. 

7.5.1.6 Are phylogenetic lineages deeply divergent between monophyletic 
taxa in the Eastern Arc? 

Investigating the endemic ranid genera In southern mountain ranges of India, 

Roelants at al. (2004) found 'long term' evolutionary history based on proportionally 

large divergences in amphibian molecular phylogenies. Drawing on comparisons 

around the globe, they mentioned similar areas of high amphibian endemism that 

have also experienced a prolonged period of isolation, including Island faunas (e. g. 

New Zealand's leiopelmatid frogs; sooglossid frogs of the Seychelles; Madagascar's 

mantelline frogs), and climatically isolated regions (e. g. heleophrynid frogs of South 

Africa). Missing from these examples are the climatically Isolated Eastern Arc 

amphibian fauna of Tanzania and Kenya (e. g. dwarf bufonids, microhylids and 

caecilians), which is believed to be highly diversified, and thought to have persisted 

for a long period of time (Howell, 1993). It is likely that the absence of the EAM as an 

example of an isolated amphibian fauna in Roelants at al's (2004) paper is a 

consequence of the relatively poor understanding of the mountain fauna. Only very 

limited phylogenetic evidence has been used to address questions on the EAM, none 

of which has been based on amphibian lineages, an ideal Indicator group (Avise, 

2000). Matthee at al. (2004) and Gravlund (2002) provided some recent evidence for 

the long-term residence of forest restricted species; with Rhampholeon and 

crotaphopeltids in the Eastern Arc estimated to have peristed for -20-3OMyr, though 
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the patchy geographical sampling provided only a limited test of this. Most research 
has concentrated on distributional data to infer isolation and persistence (e. g. Bruhl, 

1997; Poynton, 1999). 

Bruhl (1997 p. 223) used the distribution of flightless Insects to Investigate patterns of 

forest distribution in Africa. Bruhl (1997) suggested a 'clearer view of former 

distribution of montane habitats' could be Inferred because of the Inability of flightless 

insects to disperse long distances 'which could obscure common biogeographical 

patterns'. Based on the taxonomic distinctiveness of insect lineages between certain 

mountains throughout equatorial Africa, and the absence of taxa in other mountains, 

Bruhl (1997) suggested persistence of forest in the Eastern Arc Mountains and the 

likely drying of forests in other regions, such as Mount Kenya. Recent evidence has 

supported this, as shown by the close phylogenetic relationships between species in 

the EAM, and Madagscar (Vandenspiegel, 2001; Warul and JocquO, 2002; Huber, 

2004; Tattersfield et aL 1998), Seychelles (Johanson and Williassen, 1997) and 

South East Asia (Dineson et aL 1994; Burgess, et al. 1998a), which suggests the 

persistence of lineages since the breakup of Madagascar and Africa (-130Myr). 

Based on a number of different sources of evidence, palaeontological, phylogenetic, 

and distributional, the EAM have been predicted to show divergence patterns of 

forest persistence dating back some 25Myr. This precise date Is thought to 

correspond with the uplift of EAM during the rifting of East Africa, which attracted 

orographic rainfall providing the necessary humid environment to support rainforest 

habitats. Prior to this rifting and the exclusive climate this afforded, the forests of the 

EAM are thought to have been present, though their occurrence temporally and 

spatially would likely have fluctuated dramatically. The African climate has been 

shown to have fluctuated dramatically, long periods of aridification between 50-30 

Mya (Retallack et al. 1990; Cerling of al. 1992; Morley, 2000) promoted grass- 

dominated habitats, and rainforest habitats would have likely been restricted to small 

refuges (Hamilton, 1988). 

Molecular dating estimates support (from lineages representing four currently 

recognised amphibian families: Scolecomorphidae, Caeciilidae, Petropeditidae, and 

Microhylidae) the long-term persistence of EAM Glades. Forest dependent 

amphibians sampled in this study (excluding Spe/aeophryne) all show long branch 

lengths, which when calibrated to estimate molecular divergence times show a 
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proportionally long period of persistence in monophyletic EAM taxa, an average of 

-42Myr (15-71 Myr). A minimum period of persistence is calculated at 15Myr 

(minimum s-value estimate) for the Arthroleptides lineage. If the molecular clock 

estimates are correct, then the results consistently indicate archaic persistence, pre- 
dating substantially the rifting of East Africa (-25Myr). That the dates nearly double 

the predicted period of persistence of forest in the EAM may seem surprising, but 

there appears to be some geological evidence that may support this. Cahen and 
Snelling (1984) suggested some higher peaks in the EAM might be older than initially 

predicted, for example, the Ulugurus may have been a significantly sized mountain 

around 37Mya, which might have attracted orographic rainfall and therefore forest 

habitats would be likely to have persisted. 

The dates estimated for the origin of the EAM by Cahen and Snelling (1984) 

corresponds more closely with the temporal data of basal amphibian clades sampled 

in this study. In addition, four of the six lineages sampled In this study Indicate the 

Ulugurus as a possible ancestral area (Scolecomorphus uluguruensis being a prime 

example), which provides further evidence for the ancient history of this region. The 

generally more basal position of Uluguru species is also supported in phylogenies of 

other EAM groups, for example Lobelia morogoroensis (Knox and Palmer, 1998) 

Saintpaulia goetzeana and Saintpaulia pusilla (Lindgvist and Albert, 2001), 

Andropadus neumanni (Roy, 1997), Helicopsyche stoltzel (Johanson and Williassen, 

1997) and Crocidura (Stanley, pers. comm. ). Based on these preliminary findings it 

might be reasonable to assume that the Ulugurus may have served as an early 

refuge for ancient forest fauna of the EAM. Knox and Palmer (1998) similarly 

suggested for giant lobelias that the Ulugurus might be an ancestral area in the EAM, 

arriving as a colonist from the Asia/Pacific region. Attempts to Infer ancestral areas, 

based on modern distributions and phylogenies of extant species, however are 

considered difficult to Interpret (Losos and Glor, 2003). Range expansions 

particularly can confuse reconstructing ancestral areas, particularly in areas 

dominated by climatic process promoting forest persistence, and periodic expansion 

and contraction (Morley, 2000). Furthermore, sampling of coastal, central African 

areas may show that EA taxa are not monophyletic and thereby render the 

reconstructions ambiguous. The sampling of more lineages with similar distributions 

over a wider area would be an appropriate step to evaluate patterns. There remain 

many difficulties in investigating the geography of speciation (Losos and Glor, 2003). 
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Stuart (1981) investigated correspondence between geologically older mountains 

and levels of avian biodiversity in the EAM, and he proposed the highly biodiverse 

forests of Usambaras and Ulugurus are derived from geologically older mountains 

and that the maintenance of these habitats was likely to have influenced biodiversity 

patterns. Stuart (1981) noted that it is not necessarily correct to assume that older 

mountain ranges have older forests, because forest palaeo-history is likely to be 

more dependent on climatic changes than on geology. Amphibian lineages sampled 

in this study indicate that almost all mountain blocks in the EAM have patterns of 

long-term persistence of lineages (see Table 7.6), with only the South Pares, West 

Usambara, and Mahenge showing more recent patterns (within 10 Myr). Whether this 

reflects a more general pattern of species persistence in these mountain blocks or is 

a specific pattern of the lineages sampled is difficult to currently evaluate, because 

there are few geological data on the specific origin of each mountain in the EAM. As 

in several other continents, biodiversity in Africa is concentrated In the tropical forests 

along the equator. Opposing hypotheses explaining tropical forest biodiversity are the 

ancient, stable nature of these environments (Fisher, 1960; Fjelds6 & Lovet 1997) or 

their fluctuating history in association with global climate change, whereby forest taxa 

are repeatedly confined to periodically isolated refugia (Haffer, 1969). Amphibian 

lineages sampled in this study seem to bear the genetic footprints of both recent 

climatic fluctuations and of the long-term persistence of rainforests. 

The results provide a preliminary insight into more general patterns of diversification 

in the EAM, perhaps repeated In other groups and elsewhere in tropical forests 

around the globe. Fjeldsb and Lovett (1997) suggested that the distribution patterns 

of plant and bird species implied that persistence was important In maintaining 

biodiversity in montane African rainforests, which was supported by phylogenetic 

surveys of Matthee et al. (2004) and Gravlund (2002). It Is likely that without the 

presence of suitable forest habitats, such as the EAM, the ancient endemic 

amphibian fauna as determined here would have perished. Clearly persistence has 

been critical in structuring the biodiversity of the EAM. Persistence of habitats Is 

thought to have been critical in other regions (see Knapp and Mallet, 2003 for 

review). For example, in Asia, Roelants at al. (2004) suggested the persistence of 

favourable climatic conditions, analogous to those outlined in the EAM, served as a 

refuge for old lineages of amphibians. A more precise Investigation Into the rates of 

diversification, and how they vary over time, across geographic boundaries and 

among taxonomic groups needs to be undertaken to understand the processes of 
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persistence more effectively in Africa (in methods and approaches outlined by 

Barraclough and Nees, 2001). 

The results outlined here identify a valuable reservoir of amphibian evolutionary 

history in the EAM of Kenya and Tanzania. Further sampling of more populations and 

lineages should clarify whether these ancient divergences reflect persistence in the 

region as a whole. Consistent patterns in other animal and plant groups appear to 

support the theory that the long persistence of habitats has been critical in structuring 

the biodiversity of the EAM (e. g. Lovett et al. 2005). The data support the status of 

the EAM as a biodiversity hotspot, and lends further claim to the recognition of the 

EAM as a World heritage site (Lovett, 1988). It Is difficult to evaluate how the EAM 

compares to other regions in Africa, such as West Africa and Ethiopia, because there 

is a real lack of phylogenetic data of amphibians from these areas. It might be 

predicted that the other forested African mountains, which are of different ages and 

surrounded by different habitats, will show proportionally different biodiversity levels. 

Such hypotheses need to be tested with molecular phylogenies and good ecological 

and distributional data. Studies will also be necessary to evaluate how this ancient 

endemic diversity compares with other regions In the world and thereby evaluate 

conservation efforts more effectively (Sechrest et al. 2002). Considering the small 

area of the spatially fragmented EAM forests (5,011 km2 In area of which only 

1,560km2 is primary, mature forest), the ancient fauna of the EAM is highly 

threatened by Increasing levels of deforestation (Newmark, 2002). If prioritising areas 

for conservation in the EAM Is necessary, then based on the heterogeneity in 

phylogenetic diversity between mountains, certain areas deserve greater attention for 

conservation efforts, e. g. ancestral areas (Ulugurus, Taita, Usambaras) (e. g. Moritz 

and Faith, 1998; Moritz et al. 2001; Moritz, 2002). 

7.5.1.7 Are there deep divergences between faunas in East and West Africa? 

If the molecular clock estimates are correct, then the separation between East and 

West African forest amphibians (see Table 7.4) Is consistent with the hypothesis that 

dispersal has been restricted between East and West. However, it Is unlikely that the 

separation of forests during the Miocene uplift was the causal factor for the split, as 

demonstrated by the significantly large divergence estimates (>25Myr). Which causal 

factors are associated with these deeper splits (in Scolecomorphidae, 

Boulengerula/Herpele and Arthroleptides/Petropedetes), is very unclear given the 
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poor understanding we have of this period in Africa. Matthee et al. (2004) suggested 
the separation may have been important in the diversification of the dwarf 

chameleons, and the dates they provide are certainly more contemporaneous with 
Miocene uplift than the amphibians outlined in this study. A better understanding of 
African geography will be necessary for an evaluation of possible causal factors of 

speciation in amphibians sampled here. More recent divergence estimates are 

shown for non-forest amphibians separated by the same geographical barriers, given 
their tolerance to savanna habitats its not surprising that Hemisus and Phrynomantis 

are able to disperse more recently between East and West African regions. This 

, provides further compelling evidence that may support the hypothesis that forest 

species are strongly restricted to either Eastern or Western forests in Africa, and are 

unable to disperse freely. 

7.5.1.8 Biogeographical relationship between coastal fauna and EAM 

The biogeographic history of the EAM is believed to be highly complex (see above). 

It has been speculated that the turbulent biogeographic history has had a direct 

influence on the evolutionary history of the organisms in the EAM (Lovett, 1993). The 

coastal lowland forests of Eastern Africa, stretching from the Tana River in Kenya to 

the inselberg forests of Mozambique (see Fig. 6.13), are also believed to have a 

prolonged history, associated with fluctuations in climate. The presence of single site 

endemic species considered 'relicts' (Burgess et al. 1998b) supports the idea that 

they have persisted for a relatively long period. Matthee of al. 's (2004) study of the 

pigmy chamaeleon Rhampholeon lent support to this hypothesis, demonstrating that 

the coastal fauna Is characterised by old lineages, stretching back 30 Myr and 

diversifying around 10-12 Mya. Over the past 30 Myr, the coastal region Is thought to 

have been submerged on several occasions, with the last complete Inundation 

around -12 Mya (Zachos et al. 2001). The consequences of such flooding would 

have been periodic clearing of coastal forests, species would have either retreated to 

refuges (possibly the EAM) or become extinct. Recent climatic fluctuations, such as 

in the Pleistocene, are thought to have had a less catastrophic effect, only restricting 

forests to localised patches (Prell at al. 1980), which maybe the reason for the 

persistence of relict species, tracing back 10-12 Mya In the coastal region (Mathee, 

et al. 2004). The EAM have been postulated to be a refuge for the coastal forests, 

with a few species common to both used as evidence (Howell, 1993), but the details 

of this interaction are poorly understood (Burgess at al. 1998b). 
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The coastal forests of East Africa (see Fig. 6.13) are now mainly small isolated 

patches running adjacent and close to the coast line (Burgess, and Clarke, 2000), but 

there are some areas of overlap with the Eastern Arc Mountains (eg. East Usambara 

and Ulugurus), which has significant biogeographical implications. Forests in the 
Eastern Arc Mountains are altitudinually stratified, whereby different forest types lie in 

close proximity along the sharp topographical conformities between the mountains 

and the coastal plateau. For example, the forests of the East Usambara show 

marked changes between montane, submontane, and lowland forest (see Fig. 6.13). 

At lower elevations the sub-montane forest grades In species composition and 
physiognomy to that of the lowland Coastal Forests. Thus there is no hard altitudinal 
boundary between these two forest types (Lovett et al. 2001), but Instead a 
continuum between the Eastern Arc and coastal forest types. 

Despite the 'continuum' between submontane, lowland and coastal forests, there 

appears to be a clear difference in the faunas (Burgess and Clarke, 2000). This Is 

shown by the remarkable amphibian species turnover between the lowland and 

montane forests (e. g. Loveridge, 1937; Poynton, 2003; Loader at al. 2004b), and this 

appears to be indicative of a more general biogeographic pattern, seen also in other 

groups (e. g. birds: Stuart, 1991). For example, the lowland amphibian fauna of East 

Usambara shows greater similarity with coastal forests than montane regions 
(Poynton, unpublished data). Only a few species are truly shared between lowland 

and highland regions, which suggest a long-standing difference between these 

areas. The reasons for these differences are very uncertain, but it is believed that the 

answer lies in the comparative age of the two areas, with the EAM containing long- 

term resident species, as shown by some distinct taxonomic differences (microhylid 

and dwarf bufonid fauna). 

Molecular data based on lineages with distributions in both the EAM and coastal 

lowlands suggest a prolonged history, as shown by the long-branch connecting B. 

changamwensis (-20 Myr). This species could be considered as further evidence of 

an 'ancient relict' lowland fauna, congruent with Matthee et al. 's (2004) findings for 

Rhampholeon. This finding may change in the future with sampling of other coastal 

and montane species, such as B. denhardti and B. fisher!. More recent fluctuations, 

and presumably colonization events between forested regions of EAM and coastal 

areas are also evident (e. g. Boulengerula uluguruensis and Spelaeophryne methnen) 

which may correspond with the retreat and expansion of lowland forest habitats over 
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the past few millions years (Clarke and Karoma, 2000). Furthermore, truly montane 
species do not occur in lowland habitats (e. g. Hoplophryne, Callu/ina, and 
Probreviceps). The rarity of species with distributions in both lowland and highland 

areas might be the result of the specialization of species into montane and lowland 

habitat niches associated with their long periods of environmental stability. 

Campbell and Duellmau (2000) discussed similar issues, with reference to the 

amphibian fauna of central America. They noted the 'severe impediments' of living in 

montane habitats, most significantly the problems amphibians face with breeding in 
fast flowing streams. Plethodontid salamanders are a good example of a dramatic 

radiation of specialized amphibian breeders in the montane tropics. A number of 
amphibian species in the EAM show distinctive breeding strategies. For example, the 

semi-terrestrial tadpole of Arthroleptides, has well-developed limbs and digital pads 
that allows them to cling on steep humid rock faces (Drewes et al. 1989). Some of 
these specializations may have restricted the endemics to a narrow range of potential 

niches and prevented their subsequent dispersion outside these mountain ranges. 
Perhaps dispersal from lowland to highland habitats, which have been long occupied 
by a highly adapted amphibian assemblage, would be difficult. It presumably would 

also be difficult for montane taxa to disperse to the lowlands. The ecological and 
physiological Implications for making a transition from lowland to highland habitats 

are probably considerable and of great significance to the evolutionary diversification 
in the area. Further data will be needed to investigate the relationships between 
lowland and highland fauna areas and the Influence of abiotic and biotic factors. 

7.5.1.9 Biogeographical relationship between Southern Highlands and the 

EAM. 

The Southern Highlands have a highly complex geological history, similar in respect 
to the Eastern Arc Mountains, with its geological origins over 400 Mya. Over the past 
290 Myr it is thought that the Southern Highlands have been subjected to an 

assortment of different faulting processes and volcanism in the region (e. g. Lake 

Nyasa rifting, Miocene uplifiting, late tertiary volcanics -7 Mya e. g. Mt Rungwe; and 

recent Quaternary volcanics). Essentially the Southern Highlands are very old, with 

much younger volcanics (e. g. Mt Rungwe). Very little detailed study has been made 

of this region, despite its interesting affiliations with both the EAM and the Nyasa 

mountains (Davenport, in prep. ). Some amphibian genera and species that 
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characterise the montane fauna of the EAM are found distributed in this region, and 

provide good evidence for the close biogeographic history shared between these 

regions: e. g_ Nectophrynoides viviparous, Scolecomorphus kirkii, Probreviceps 

rungwensis, and Arthroleptis reichei. Recent study of the snake Crotaphopeltis 

(Gravlund, 2002) has shown an interesting biogeographic pattern of prolonged 

separation of the Eastern Arc and Southern Highlands populations of the species C. 

tomieri, despite being morphologically very similar. Gravlund (2002) placed emphasis 

on the Makambako Gap, an and area separating the regions (see Fig. 7.19), which he 

believed may have restricted dispersal between the Udzungwa/Mahenge mountain 

escarpment and the Southern Highlands. The timing of the separation between 

populations of C. tornieri was estimated to be 8-37 Myr, and Gravlund (2002) 

suggested the gap might be a significant barrier for other lineages. 

Figure 7.18 

Detailed schematic map of the Southern EAM and the Southern Highlands in Tanzania. 

Using the species Probreviceps rungwensis, distributed in both the Southern 

Highlands and EAM, it was possible to evaluate if the Southern Highlands and the 

Udzungwa mountains do show patterns of long-term isolation in amphibians. 
Estimates based on molecular clock methods indicate that the populations of P. 

rungwensis have been separated for -10 Mya, which coincides with date estimates 

provided by Gravlund (2002). It is possible that the diversification of the amphibian 

and reptile lineages could have resulted from different biogeographic events, but the 

data cannot reject the hypothesis that divergence events were temporally 

incongruent. More biogeographic replicates are necessary to fully scrutinize this 

finding, to test whether these two amphibian and reptile examples reflect a general 

biogeographic pattern. 
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Chapter Eight 

Conclusions 

The EAM have long been recognised as a centre of high species diversity and 

endemism (e. g. Loveridge, 1925; Barbour and Loveridge, 1928; Howell, 1993). 

Despite this, only limited understanding of the factors that have been responsible for 

generating this diversity have been investigated? Findings presented here, principally 

using amphibians as indicators for elucidating patterns of diversification, have added 

substantially to understanding the likely factors that have been Influential In 

promoting the rich diversity in this African biodiversity hotspot. As outlined in each of 

chapters 3-6, a previously unrecognised large molecular diversity for all Investigated 

amphibian lineages, which is likely in many cases to represent new species. In nearly 

all lineages examined, almost twice as many species are likely to be recognised, 

once subsequent morphological studies are completed. In addition, preliminary data 

on other amphibian groups (Menegon et al. 2004; Poynton, submitted) appears 

congruent with this finding, and it is thus clear that the EAM is an important repository 

of amphibian diversity. In particular, archaic phylogenetic lineages, not found 

elsewhere in Africa are restricted wholly (e. g. Callulina, Hoplophryne) or partially 
(e. g. Scolecomorphus, Boulengerula, Probreviceps, Arthroleptides) to the EAM. 

Considering the small area of the EAM, the region is evidently one of the most 
important areas in Africa and perhaps globally for amphibians. 

This high level of amphibian endemism and diversity is thought to be the result of a 

geographic history in which the EAM underwent periods of fragmentation and 
isolation. In the case of the EAM, a dynamic geographic history appears to have 

yielded equivalently complex diversification patterns In amphibians. It Is probable, 

because amphibians are generally intolerant of ecological change, that these 

patterns that appear to be evident In other groups, reflect a common pattern. Spatial 

and temporal data complied in this study have provided the first comprehensive test 

of this, using seven amphibian lineages. 

A comparison of phylogenetic trees from amphibians distributed in the EAM rejects 
the presence of congruent area relationships. Furthermore, with the addition of other 

groups (birds, chameleons, and plants) non-significant area relationships are also 
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recovered. Because there are some sampling inequalities in each lineage, 

biogeographical patterns might be obscured. However, because incongruent spatial 

(cladistic and descriptive) and temporal (molecular dating) relationships are 

recovered in this analysis, multiple (some non-pattern making) events (fragmentation 

and climatic change) seem to have influenced the biogeographic history of the EAM. 

Relationships between each EA mountain and areas located outside of the EAM offer 

some interesting insights. Not surprisingly, there Is a correlation, although only weak, 

between geographic distance and genetic pairwise distance/steps on the GAC, which 

indicates a closer (historical) connection between geographically closer areas. A 

consistent separation is also seen between northern and southern EAM regions in 

most amphibian phylogenies (also shown in the non-significant GAC), whereby 

dispersal between these areas is less frequent, which is perhaps indicative of there 

being significant barriers to dispersal, as previously suggested (e. g. Bowie of al. 

2004). Generally deep levels of divergence occur between EAM taxa and sister 

groups/populations distributed outside of the EAM, which lends further support to the 

suggestion that EAM is an area of a prolonged and isolated history. 

Temporal data show that divergences have occurred repeatedly between areas and 

lineages, rejecting the possibility that areas have been fragmented and then 

completely isolated. Instead of a complete Isolation, it is more probable that the more 

recent climatic changes have provided routes for dispersal between mountains. 

Evidence from molecular dates of amphibians Indicates a more recent history of 

divergence in certain taxa that may correspond with changes in the Pliocene and 

Pleistocene. Despite the lack of a vicariant biogeographic pattern, a correspondence 

between the isolation of mountain populations and the uplift and final rapid 

separation of mountains is indicated In' one or two examples using molecular dates, 

most clearly in the caecilian genus Scolecomorphus. The geographic process of 

rapid uplift might be less likely to produce clear vicariant patterns than slower 

processes and perhaps might be the reason why fragmentation patterns are not 

recovered in these analyses. It would be worthwhile testing whether this pattern of 

diversification is repeated In other groups and areas where similar geographic 

histories have occurred. 

Molecular data presented in this study have enhanced biogeographic interpretations. 

Using molecular data, determining whether speclation between lineages is 

synchronous, and corresponds to known geographic events has been possible. 
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However, despite the clear importance of including time in biogeographic studies 
(Nunn and Upchurch, 2001), this study has identified the weakness inherent in 
biogeographic approaches; resolving complex spatial patterns and the inability of 
data to distinguish between dispersal and vicariance processes. Prospects for 

remedying these problems appear, at least partially, possible with an advancement of 
some methods (Donoghue and Moore, 2003). Time slicing as recently formalised by 
Hunn and Upchurch (2001) is an approach for resolving complex spatial patterns in 
dated fossil species. Upchurch and Hunn (2002; p. 613) found time slicing particularly 
effective at alleviating complex dinosaurian spatial biogeographic relationships, and 
suggested it was 'a key step in detection of ancient biogeographic patterns'. A logical 

extension of the time slicing method could be the utilisation of dated molecular trees 
instead of fossils. There are a number of theoretical hurdles that will need to be 
jumped before this approach could be effectively used on molecular data. For 

example, it would be difficult to infer the spatial distribution of lineages back In time 

with only extant species as the reference to this (Losos and Glor, 2003). This study 

also demonstrates the need for detecting dispersal and vicariant processes in 

phylogenies, which is currently difficult, and in some people's opinions are impossible 

to uncover (Ebach et al. 2002). The use of molecular dated trees with approaches 

such as DIVA, which optimise spatial relationships using both vicariance and 
dispersal events could be Important (e. g. Donoghue and Moore, 2003), though 

criticisms have been made of these approaches (Ebach et al. 2002). Other Important 

developments include using coalescence analysis, for determining the direction of 

colonization events (Hewitt, 1996), which perhaps might indicate the probability of 

vicariance or dispersal processes (Losos and Glor, 2003). Clearly more 

methodological work is required, and this study Identifies areas where it might be 

most useful to invest time in developing methods, especially with the continuing 

emphasis of molecular data in systematics and biogeography. Furthermore, and 

perhaps most critically, better historical abiotic data will be necessary so hypotheses 

can be better formulated and tested to investigate the possible Influences that the 

geographic history of the EAM has had on species diversity. 

Dispersal ability is clearly important in interpreting biogeographical patterns, 

especially when there are clear differences between the lineages being compared, 

e. g. comparing birds and flightless insects. In the case of this study, differences in 

dispersing, as quantified by habitat preferences, were shown to have an influence on 

diversification. Despite this apparent influence, it seems unlikely that diversifications 
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between lineages might be temporally congruent once lineage specific differences 

are taken account of, as demonstrated by the magnitude of difference in temporal 
estimates. A better explanation would be that each amphibian lineages is influenced 
by more than one causal event between areas in the EAM, obscuring biogeographic 

patterns. 

Comparisons between forest restricted, and non-forest restricted species indicate 
that at least for forest species in the EAM, their ability to migrate to other regions has 
been limited, both to closely positioned areas (e. g. Southern Highlands) or further 

away (e. g. West African forests). The causal processes for these are poorly 
understood but appear to be intimately associated to the formation and subsequent 
isolation of mountains that have excluded, or limited dispersal between areas at 
different times. Testing the degree of isolation between different animals groups 

would be a logical next step to evaluate how strongly the processes of isolation and 
persistence, as outlined here, have shaped the diversification of all organisms in the 

region. 

Different hypotheses have been used to explain global tropical forest biodiversity 

(Knapp and Mallet, 2002), the ancient, stable nature of these environments (Fisher 

1960; Fjeldsb and Lovett 1997) or their fluctuating history in association with global 

climate change, whereby forest taxa are repeatedly confined to isolated refugia 
(Haffer, 1969). In the absence of any phylogenetic evidence, Burgess, et al. (1998a) 

emphasised that the number of endemics provided good evidence that persistence 

and isolation were Important in structuring the biodiversity of the EAM. An Important 

aspect of the evolutionary diversification of EA amphibians, as outlined In this study, 

appears to be the prolonged persistence of forest. Dates suggest a history 

substantially predating the Miocene uplift (-40 Mya), which Indicates that forest 

habitats are likely to have persisted for a prolonged period, extending the early 

evolution of the EAM further back than previously anticipated. This has Important 

implications for understanding the origin and maintenance of African biodiversity. 

The climatic history of Africa has been marked by periods of severe aridification. 
Recently, throughout the dry phases in Africa's Tertiary history, areas such as the 

South African succulent region, Ethiopian Highlands, EAM and West African 

montane region are thought to have been essential in providing stable environments 
for maintaining biodiversity. Prior to the formation of these mountains (e. g. formation 
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of the rift valley) good evidence (Morley, 2000) suggests that there were no 

mountains of moderate altitude In equatorial Africa that could confer highly localised 

climates for forests. Therefore, during periods of aridification (Morley, 2000), large 

areas of equatorial Africa, usually covered in forest, would have severely dried out. 
Based on temporal data on the diversification of forest amphibians in the EAM, this 

study suggests either East African climate was stable enough for supporting forests 

even in low lying areas (in small refuges), or perhaps mountains of significant altitude 

and size were present. It is difficult to assess which hypothesis is more likely based 

on the limited evidence. Because there is more convincing evidence that the African 

climate did suffer from severe arid periods (Morley, 2000) and that low lying forest 

would have dried out as a consequence of this, the presence of mountainous areas, 

such as progenitors of the EAM is a more probable hypothesis. Considering that we 

have only a very limited understanding of the geological and climatic history of Africa, 

the finding that phylogenetic evidence might show contradictory patterns is not 

surprising. Evolutionary relationships of amphibians (and other groups) also 

consistently recover certain areas as having lineages placed at the basal split of 

trees, and perhaps these areas (Ulugurus, East Usambaras) may have been 

significant topographical features, in a pre-Miocene African landscape. Testing the 

archaic age of these areas would be useful using lineages as proxies, it would also 

focus attention on the geology of the region. 

Habitat and lineage persistence is clearly an important process in explaining current 

biodiversity patterns in the EAM. Evidence outlined in this study provides the first 

quantitative test of one the four biodiversity hotspots in Africa, and supports the 

prediction that highly biodiverse areas show prolonged history. Testing whether this 

is more general pattern in Africa would be interesting for future understanding of the 

origin and maintenance of biodiversity in Africa. Persistence seems to have also 

influenced phylogenetic diversification in other tropical rainforests on the globe 

(Roelants et al. 2004), which may imply a common relationship between biological 

diversity and geographic history. These patterns contrast distinctly with diversification 

patterns in temperate regions, where more recent changes, corresponding to 

relatively recent glacial fluctuations, seem to be more Influential (Hewitt, 2004). 

Comparing and contrasting these different areas will undoubtedly prove Important for 

establishing global understanding of the origin and maintenance of biodiversity. 
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In light of the phylogenetic evidence presented here, the human disturbance of 
pristine habitats in the EAM is of great concern (Brooks of aL 2002; Burgess et al. 
2002). Disturbance of pristine habitats stresses natural populations in complex ways, 
in particular those with highly adaptive life history strategies such as seen in the 

torrent frog Arthroleptides. Amphibians are believed to be especially prone to 

changes in habitats (Stuart et al. 2004; Gardner, 2001) and it is a critically important 

task to maintain rich forest environments for the continued preservation of these 

species (Burkey, 1995). Many of the species described in this thesis are endemic to 

single mountain blocks, some of which are severely threatened, as exemplified by 

the recent gold mining pressure in the Usambaras (Doggart of al. 2004). The 

restricted ranges of some species (e. g. Nectophrynoides and Callulina) make them 

particularly at risk when faced by habitat loss and environmental pressures (the 

recent decline of N. asperginis being a case in point). The forests of the EAM are still 

relatively poorly known (Burgess of al. 1998), so the task for future researchers is to 

inventorise the unexplored areas, and new funding incentives are planning to achieve 
this (CEPF, 2002). This is important for determining conservation priorities within the 

EAM. Long-term management policies will be needed to guarantee the preservation 

of these fascinating forests before they disappear. The EAM represent a unique 
biological heritage (Burgess et al. 2004), as well as an important water catchment for 

much of Tanzania. The loss of the Eastern Arc forests would be devastating to all 

concerned. 
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Appendix 3. Sequences obtained from Genbank. 

Species 12s 16s Cytochrome b 
Pipa parva AY333652 AY333690 AY341743 

Hymenochirus boettgeri AY341634 AY341726 AY341744 

Petropedetes parken AY341628 AY341724 AY341738 

Mantidactylus sp. ZSM 
652 2000 

AY341585 AY341585 AY341731 

Mantidactylus witte! AY330904 AY263275 AY263303 

Boophis sp. ZSM 
685 2000 

AY341610 AY341716 AY341733 

Boophis tephraeomystax AF215163 AF215334 AF249070 

Heterixalus tricolor AY330900 AY341725 AY341740 

Tachycnemis seychellensis AY341629 AY454395 AY341739 

Kaloula taprobanica AF249004 AF249057 AF249085 

Scaphiophryne brevis AF026357 AF026377 

Scaphiophryne gottlebei AF215144 AF215385 

Microhyla sp. FB-2000 AF249060 AF249081 

. 273 
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Appendix 5. Component Analysis 

#NEXUS- AMPHIBIANS ONLY COMPONENT ANALYSIS 

begin taxa; 
dimensions ntax= 15; 
taxlabels TH SP NP WU EU NGU NGR UK UL RUB UD MAH SH MOZ CF; 
endbiock; 

begin distribution; 
ntax= 46; 
range 
a2 : UL, 
a3 : UK, 
a4: EU, 
a5: NGU, 
a6: EU, 
a7: EU, 
a8 : UL, 
a9: UD, 
alO: MAH, 
all: MOZ, 
a12 : RUB, 
a13: WU, 
a14 : SP, 
a15: NP, 
b2 : TH, 
b3 : UL, 
b4: CF, 
b5: NGR, 
b6 : EU, 
b7: WU, 
b8: EU, 
b9 : WU, 
c2: EU, 
c3: UD, 
c4: UL, 
c5: MAH, 
d2 : UD, 
d3 : UL, 
d4: EU, 
d5: NGU, 
e2 : EU, 
e3: UL, 
e4: UD, 
e5: UL, 
e6: UD, 
e7 : SH, 
e8 : UK, 
f2: SP, 
f3: TH, 
W UD, 
f5: NGU, 
f6: UK, 
f7: UL, 
f8: EU, 
f9: WU, 
flO: NP; 

tree associate = (((a2, ((a3, (a4, (a5, a6))), (a7, ((a8, (a9, (a12, (a10, all)))), (a13, (a14, a15)))))), ((b2, (b5, (b3, b4))), ((b6, b7), (b8, 
b9)))), ((c2, (c5, (c3, c4))), (((d2, d3), (d4, d5)), (((e5, (e2, (e3, e4))), (e8, (e6, e7))), (f2, (f3, ((f4, (f7, (f5, f6))), (f8, (f9, f10))))))))); 
endblock; 
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#NEXUS - ALL TAXA COMPONENT ANALYSIS 

begin taxa; 
dimensions ntax= 18; 
taxiabels TH SP NP WU EU NGU NGR UK UL RUB UD MAH SH MAL MQZ CF RUW VM; 
endblock; 

begin distribution; 
ntax= 98; 
range 
a2 : UL, 
a3 : UK, 
a4: EU, 
a5 : NGU, 
a6: EU, 
a7: EU, 
a8 : UL, 
a9 : UD, 
a10 : MAH, 
all : MOZ, 
a12 : RUB, 
a13 : WU, 
a14 : SP, 
a15: NP, 
b2 : TH, 
b3: UL, 
b4 : CF, 
b5 : NGR, 
b6: EU, 
b7: WU, 
b8 : EU, 
b9 : WU, 
c2 : EU, 
c3: UD, 
c4: UL, 
c5: MAH, 
d2 : UD, 
d3 : UL, 
d4 : EU, 
d5: NGU, 
e2 : EU, 
e3 : UL, 
e4 : UD, 
e5 : UL, 
e6: UD, 
e7: SH, 
e8 : UK, 
f2 : SP, 
f3 : TH, 
f4: UD, 
f5: NGU, 
f6: UK, 
f7: UL, 
f8: EU, 
f9: WU, 
f10 : NP, 
g2 : SH, 
g3 : UD, 
g4: UL, 
g5 : EU, 
g6: WU, 
h2 : UL, 
h3: TH, 
h4 : NGR, 
h5: EU, 
h6: NGR, 
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h7: EU, 
h8 : WU, 
12: NGR, 
13: UL, 
14: UL, 
i5: UK, 
i6: NGR, 
17: EU, 
i8: NGR, 
i9: UL, 
j2: SH, 
j3: UD, 
j4: UL, 
j5: NGR, 
j6: EU, 
j7: NP, 
k2: UL, 
k3: UD, 
k4 : SH, 
k5 : VM, 
k6 : NP, 
k7: RUW, 
k8 : UL, 
k9 : UD, 
12: EU, 
13: NP, 
14: MOZ, 
15: UD, 
16: RUB, 
17: UL, 
18: RUW, 
19: MAL, 
m2 : VM, 
m3: WU, 
m4 : NP, 
m5 : SH, 
m6 : UD, 
m7 : MOZ, 
m8 : UL, 
m9: NGR, 
m10: RUB, 
m11 : UD 

tree associate = (((h2, (h3, ((h6, (h4, h5)), (h7, h8)))), ((i2,13), ((i4, (i5,16». (19, (17. i8))))), ((((a2, ((a3, (a4, (a5, a6))), (a7, ((a8, (a9, (a12 
(a10, al1)))), (a13, (a14, a15)))))), ((b2, (b5, (b3, b4))), ((b6, b7), (b8, b9)))), ((c2, (c5, (c3, c4))), (((d2, d3), (d4, d5)), (((e5, (e2, (e3, 
e4))), (e8, (e6, e7))), (f2, (f3, ((f4, (f7, (f5, f6))), (f8, (f9, f10))))))))), (((92, ((93, g4), (g5,96))), ((12,13), (14, ((15,16), (17, (18,19)))))). (((m2, 
(m3, m4)), ((m5, (m6, m7)), (m8, (m9, (m10, ml1))))), ((j2,03,04, (j5, g6, j7))))), ((k2, (k3, k4)), ((k5, (k6, k7)), (k8, k9)))))))) 

endblock; 
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Appendix 6. Papers published 

" Muller, H, Measey, GJ, Loader. SP. and Malonza, P. K. 2005. A new species of 
Boulengerula Tornier (Amphibia: Gymnophiona: Caeciliidae) from an isolated mountain 
block of the Taita Hills. Zootaxa 1004: 37-50. 

" Gower DJ, Loader. SP., Wilkinson, M. and Moncrieff, C. 2004. Niche separation and 
comparative abundance of Boulengerula boulengerl and Scolecomorphus vittatus 
(Amphibia: Gymnophiona) in East Usambara forest, Tanzania. African J. Herpetology 53 
(2): 183-190. 

" Loader. SP. et al. 2004. Phylogenetic relationships of African Microhylid frogs Inferred 
from DNA sequences of mitochondrial 12S and 16S ribosomal rRNA genes. Organisms 
Diversity and Evolution 4: 227-235. 

" Menegon, M., Salvidio S. and Loader. SP. 2004. Five new species of Nectophrynoides 
(Amphibia: Anura: Bufonidae) species from the Eastern Arc Mountains, Tanzania. 
Tropical Zoology 17: 97-121. 

" S6 R. D, Loader SP., and Channing A. 2004. A new species of Callulina (Anura: 
Microhylidae) from the West Usambara Mountains, Tanzania. Journal of Herpetology 38 
(2): 219-222. 

" Gower DJ, Rasmussen JB, Loader SP. and Wilkinson, M. 2004. The burrowing asp 
Atractaspis aterrima Günther as a predator of the caecilian amphibian Scolecomorphus 
kirkii Boulenger. African Journal of Ecology 42: 83-87. 

" Gower DJ, Loader. SP and Wilkinson M. 2004. Assessing the conservation status of soil 
dwelling vertebrates: insights from the discovery of Typhlops uluguruensis (Reptilia: 
Serpentes: Typhlopidae). Systematics and Biodiversity 2 (1): 79-82. 

" Wilkinson, M., Loader. SP., Muller, H., and Gower D. J. 2004. Taxonomic status and 
phylogenetic relationships of Boulengerula denhardti (Amphibia: Gymnophiona: 
Caeciliidae). Mitt. Mus. Nat. kd. Berl., Zool. Reihe 80 (1) 41-51. NOT INCLUDED 

" Loader. SP., Poynton, J., and Mariaux, J. 2003. Herpetofauna of the Mahenge 
Mountains, Tanzania: A window on African biogeography. African Zoology 39 (1) 71-76. 

" Wilkinson, M, Loader. SP., Gower, DG, Sheps, JA and Cohen, BL. 2003. Phylogenetic 
Relationships of African Caecilians (Amphibia: Gymnophiona): Insights from 
Mitochondrial rRNA Gene Sequences. African Journal of Herpetology 52 (2): 83-92. 

" Wilkinson, M, and Loader. SP. 2003. Worms of wisdom. BBC Wildlife, March edition. 
NOT INCLUDED 

" Loader. SP, Gower, DG, and Wilkinson, M. 2003. Caecilians: mysterious amphibians of 
the Eastern Arc Mountains (Arc Journal, July 2003). 

" Loader. SP, Wilkinson, M, Gower, DJ, and Msuya, C. 2002. A remarkable juvenile 
Scolecomorphus vittatus (Amphibia: Gymnophiona) from the Pare Mountains, Tanzania. 
(Journal of Zoology 259: 93-101). 
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