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ABSTRACT  

 

Pulmonary arterial hypertension (PAH) is a rare and progressive disease 

characterised by increased pulmonary vascular resistance and elevated 

pulmonary artery pressure, leading to right ventricular failure and eventually 

death.  The monoamine 5-hydroxytryptamine (5HT) has been implicated in the 

processes of pulmonary vasoconstriction and pulmonary artery remodelling that 

contribute to the development of the PAH.  However, the signalling mechanisms 

utilised by 5HT that contribute to pulmonary vascular remodelling are still 

unclear and appear to be cell-type specific, with much of the work having been 

carried out in pulmonary artery smooth muscle cells (PASMCs).  Fibroblasts 

also contribute significantly to the pulmonary vascular remodelling that occurs 

during PAH, however little is known of the role 5HT plays in this cell type.  Using 

Chinese Hamster Lung Fibroblast (CCL-39) cells as a model system to 

investigate the mitogenic effects of 5HT, this study has characterised potential 

5HT-mediated signalling pathways in fibroblasts that may contribute to 

pulmonary vascular remodelling.  

5HT was found to induce a rapid and transient activation of extracellular 

regulated mitogen-activated protein kinase (ERK), a process central to the 

mitogenic effects of 5HT in CCL-39 cells.  Furthermore, the 5HT transporter 

(5HTT), 5HT1B and 5HT2A receptors were all required for optimal ERK-

dependent proliferation.  Pharmacological inhibition of the Rho/ROCK (Rho-

associated kinase) pathway significantly inhibited 5HT-stimulated ERK 

activation, cyclin D1 accumulation and proliferation.  Inhibition of ROCK had no 

effect on the translocation of active ERK to the nucleus, but did however 

selectively inhibit 5HT-induced activation of a cytoplasmic pool of ERK.  

Additionally, ROCK inhibition had no effect on the ability of 5HT to activate 

mitogen-activated protein kinase kinase (MEK), suggesting ROCK is required 

for maintaining functional interactions between MEK and ERK.  Sensitivity to 

ROCK inhibition is restricted to 5HT1B receptor activation of the ERK pathway.  

Moreover, the role of ROCK in maintaining cytoskeletal integrity is important in 

mediating 5HT-induced ERK activation, as disruption of the actin cytoskeleton 

markedly and specifically reduces 5HT- stimulated ERK activation. 
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Using a model of PAH, arising from overexpression of 5HTT (5HTT+), the 

effects of ROCK inhibition in vivo were investigated.  ROCK 1 and ROCK 2 

transcripts were upregulated in response to chronic hypoxia, with the 

upregulation of ROCK 1 potentiated in 5HTT+ mice.  Administration of the 

ROCK inhibitor Y27632 had significantly greater effects in 5HTT+ mice 

compared to WT, highlighting the functional importance of the increase in 

ROCK 1 transcript.  Hypoxia-induced pulmonary vascular remodelling and 

elevated right ventricular pressure were attenuated more significantly by ROCK 

inhibition in 5HTT+ mice than in WT.   Furthermore, ROCK inhibition only 

reduced hypoxia-derived right ventricular hypertrophy significantly in 5HTT+ 

animals and not WT. 

In conclusion, this study highlights a role for ROCK in the pulmonary vascular 

changes that occur during PAH and proposes a new mechanism by which 

cross-talk between ROCK and 5HT signalling systems occurs. 
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1.1  PULMONARY ARTERIAL HYPERTENSION 

 

Pulmonary arterial hypertension can be characterised by sustained elevation of 

pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP), 

leading to impaired right-heart function and eventually failure.  The condition is 

defined clinically by a mean pulmonary arterial pressure exceeding 25 mmHg at 

rest or 30 mmHg during exercise (Barst et al., 2004).  Common symptoms 

include fatigue, exertional dyspnea, edema and syncope (Rich et al., 1987).  As 

symptoms experienced by most patients are non-specific, diagnosis is 

frequently delayed.  

Pulmonary hypertension is classified into 5 main categories: pulmonary arterial 

hypertension (PAH), pulmonary hypertension with left heart disease, pulmonary 

hypertension associated with lung diseases and/or hypoxaemia, pulmonary 

hypertension due to chronic thrombotic and/or embolic disease, and 

miscellaneous (Simonneau et al., 2004) (Table 1.1).  Around 10% of patients 

that present with PAH without any identifiable cause have a family history of the 

disease, and are referred to as having familial PAH (Loyd et al., 1984), with 

remaining patients classified as having idiopathic PAH (IPAH).  Familal PAH is 

an autosomal dominant disorder with incomplete penetrance and genetic 

anticipation, that was initially mapped to a locus designated PPH1 on 

chromosome 2q31-32 (Morse et al., 1997, Nichols et al., 1997).  PPH1 was 

subsequently fine mapped to a 3cM region on chromosome 2q33 (Deng et al., 

2000a), that has been associated with mutations in the BMPR2 gene encoding 

bone morphogenetic protein (BMP) type 2 receptor (BMPR-2) (Lane et al., 

2000, Deng et al., 2000a).  Germline mutations in BMPR-2 have been identified 

in 60% of patients with familial PAH and also in around 10% to 30% of those 

with the idiopathic form of the condition (Lane et al., 2000, Deng et al., 2000b, 

Thomson et al., 2000).  Other genetic factors, such as polymorphisms in the 5-

hydroxytryptamine (5HT) transporter gene, have also been associated with the 

development of the condition (Eddahibi et al., 2001).  Moreover, PAH may occur 

secondary to other conditions, including collagen vascular disease, HIV 

infection or lung diseases such as chronic obstructive pulmonary disease 

(COPD) (Simonneau et al., 2004). 
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The idiopathic form of the disease occurs more frequently in women than men 

(>2:1) and is usually fatal within 3 years if untreated (Newman et al., 2004).  

Current therapies, such as prostacyclin and endothelin antagonists markedly 

improve physical function and survival, with the 5 year mortality rate around 

50% (Newman et al., 2004).  
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Revised World Health Organisation Clinical Classification of 
Pulmonary Hypertension (Venice 2003)  
 

Pulmonary arterial hypertension 
 
Primary pulmonary hypertension 

Idiopathic 
Familial 

Related to: 
Collagen vascular disease 
Congenital systemic to pulmonary shunts 
Portal hypertension 
HIV infection 
Drugs/Toxins 

Anorexigens 
Other 

Associated with significant venous or capillary involvement 
  Pulmonary veno-occlusive disease 
  Pulmonary capillary haemangiomatosis 

  Persistent pulmonary hypertension of the newborn 
 

Pulmonary venous hypertension 
 
Left-sided atrial or ventricular heart disease 
Left-sided valvular heart disease 

 

Pulmonary hypertension associated with lung disease s and/or 
hypoxaemia 

 
Chronic obstructive pulmonary disease 
Interstitial lung disease 
Sleep-disordered breathing 
Alveolar hypoventilation disorders 
Chronic exposure to high altitude 
Developmental abnormalities 

 

Pulmonary hypertension due to chronic thrombotic an d/or embolic 
disease 

 
Thromboembolic obstruction of proximal pulmonary arteries 
Thromboembolic obstruction of distal pulmonary arteries 

  Nonthrombotic pulmonary embolism (tumour, parasites, foreign material) 
 

Miscellaneous 
 
Sarcoidosis, histiocytosis X, lymphangiomatosis, compression of pulmonary vessels 
(adenopathy, tumour, fibrosing mediostinitis) 
 

 
 
 
 
 
Table 1.1  Revised Clinical Classification of Pulmo nary Hypertension.  
The aim of classification was to identify different categories of pulmonary 
hypertension that shared similarities in pathophysiological mechanisms and 
clinical symptoms.  Clinical classification is important in standardising diagnosis 
and treatment. 
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1.2   THE PULMONARY CIRCULATION 
 

The pulmonary circulation is a closed circuit of vessels carrying blood between 

the heart and lungs.  In healthy adults the system is a low-pressure, low-

resistance circuit, with a mean PAP between 9 - 19 mmHg at sea level (Chemla 

et al., 2002).  In addition to this, the pulmonary vessels are thin-walled and 

highly distensible, able to accommodate large increases in blood flow, such as 

that occurring during exercise, with minimal increases in PAP (Chemla et al., 

2002, Vonk-Noordegraaf et al., 2005). 

Pulmonary blood vessels are arranged to facilitate efficient gas exchange, 

carrying blood into the pulmonary microvasculature of the alveoli, where uptake 

of oxygen and the unloading of excess carbon dioxide occurs.  The pulmonary 

arteries run alongside the airways, branching with them and producing a large 

surface area within the alveolar region by means of a capillary network sheet 

flow (Mandegar et al., 2004, Hislop and Pierce, 2000).  Blood flow in the 

pulmonary arteries must be sufficient and at a linear velocity with the counter 

current for gas exchange to occur (Hislop and Pierce, 2000).  Larger vessels in 

the proximal region of the pulmonary arterial network are elastic in structure 

with several layers of smooth muscle separated by collagen and elastic laminae 

(Hislop and Pierce, 2000).  As the arterial tree advances distally and the vessels 

decrease in diameter, there is a gradual decrease in the level of 

muscularisation, with arteries only partially muscular or completely non-

muscular (Hislop and Pierce, 2000, Meyrick and Reid, 1983, MacLean et al., 

2000). 

Unlike the systemic circulation, where hypoxic conditions result in vasodilation, 

in the pulmonary circulation vasoconstriction occurs (Aaronson et al., 2006).  

Hypoxic pulmonary vasoconstriction (HPV) is thought to be an adaptive 

mechanism, unique to the vessels of the lungs.  HPV is greatest in resistance 

pulmonary arteries (200-300 µm diameter).  In contrast, large pulmonary 

arteries behave like systemic arteries, relaxing in response to hypoxic 

conditions.  HPV appears to be an intrinsic property of pulmonary artery smooth 

muscle cells (PASMCs) (Murray et al., 1990, Yuan et al., 1990) and is important 

in redirecting blood flow from poorly ventilated areas of the lung to better 

ventilated areas, maximising oxygenation of pulmonary venous blood 
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(Mandegar et al., 2004, Moudgil et al., 2005).  The mechanisms of HPV are not 

fully understood but appear to involve the coordinated inhibition of voltage-

gated K+ (Kv) channels and activation of voltage-gated L-type calcium channels 

in resistance PASMCs (Weir et al., 2005).  Furthermore, mitochondrial 

generation of reactive oxygen species (ROS) have been implicated in the 

mechanism of HPV.  However, controversy exists as to whether an increase or 

decrease in ROS production occurs in response to hypoxia (Weissmann et al., 

2006). 

 

1.3  PATHOBIOLOGY OF PAH 

 

Pulmonary hypertension is a disease of the small pulmonary arteries, resulting 

from the combined effects of pulmonary vasoconstriction, vascular remodelling 

and thrombosis (Gurbanov and Shiliang, 2006, Mandegar et al., 2004).  These 

processes contribute to the increases in PVR and PAP witnessed in patients 

with PAH, putting excessive burden on the right ventricle due to the increased 

workload required to compensate for elevated downstream pressure, and 

eventually results in right-sided heart failure (Mandegar et al., 2004, Humbert et 

al., 2004).  The pathogenesis of PAH is complicated and multifactorial. 

 

1.3.1  PULMONARY VASOCONSTRICTION IN PAH 

 

Pulmonary vasoconstriction is a main contributing factor to PVR and thus 

elevated PAP.  Hypoxia plays a major role in vasoconstriction during PAH.  For 

instance, in patients with conditions such as COPD and high altitude pulmonary 

edema, sustained alveolar hypoxia results in vasoconstriction of pulmonary 

vessels and vascular remodelling leading to the development of PAH 

(Mandegar et al., 2004).  Excessive pulmonary vasoconstriction has also been 

related to abnormal K+ channel functions and/or expression as well as 

endothelial dysfunction and calcium sensitisation (Moudgil et al., 2005). 
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ROLE OF K+ CHANNELS IN PULMONARY VASOCONSTRICTION    

 

K+ channels play an important role in the regulation of pulmonary vascular tone 

(Nelson et al., 1990).  Inhibition of K+ channels depolarises PASMCs, resulting 

in the opening of voltage-gated Ca2+ channels, increasing cytoplasmic Ca2+ 

levels (Nelson et al., 1990, Yuan, 1995), which may trigger pulmonary artery 

vasoconstriction.  Indeed, blockade of Kv channels using 4-aminopyridine has 

been found to cause pulmonary vasoconstriction (Hasunuma et al., 1991).  

Hypoxia also inhibits K+ currents and depolarises PASMC membranes (Post et 

al., 1992, Yuan et al., 1993), suggesting a role for K+ channels in mediating 

HPV .  Certain K+ channels are sensitive to O2 levels as they possess cysteine 

and methionine groups which are subject to reduction or oxidation by redox 

mediators, such as reactive oxygen species (Moudgil et al., 2005).   Some Kv 

channels, such as the Kv1.5 channel, respond to redox mediators by altering 

their gating and open-state probability (Archer et al., 2004).  Oxidants, including 

H2O2, increase potassium currents in PASMCs, whereas reducing agents inhibit 

them (Reeve et al., 1995).  The redox theory of HPV suggests that under 

normoxic conditions, there is basal production of reactive oxygen species, such 

as H2O2 by the electron transport chain of PASMC mitochondria maintaining the 

Kv current (Archer et al., 1986, Reeve et al., 1995).  However, this mechanism 

is upset during hypoxic conditions, resulting in the decreased production of 

H2O2 inhibiting Kv channels and resulting in activation of voltage gated L-type 

Ca2+ channels, which subsequently increases intracellular Ca2+ levels and 

induces HPV (Moudgil et al., 2005, Moudgil et al., 2006) (Figure 1.1).  Several 

O2-sensitive Kv channels may be involved in mediating HPV, including Kv1.5 

(Archer et al., 1998, Archer et al., 2001), Kv2.1 (Archer et al., 1998, Patel et al., 

1997) and possibly Kv1.2 (Hulme et al., 1999) and Kv3.1b (Osipenko et al., 

2000).  For instance, in mice deficient in Kv1.5, HPV is markedly attenuated 

(Archer et al., 2001).  Indeed, Kv1.5 channels have been found to be 

downregulated in PASMCs from patients with PAH (Yuan et al., 1998), as have 

both Kv1.5 and Kv2.1 channels in rats with chronic hypoxia-induced PAH 

(Michelakis et al., 2002b).   
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ROLE OF INTRACELLULAR Ca2+ HOMEOSTASIS IN PULMONARY 

VASOCONSTRICTION  

 

Intracellular Ca2+ plays an essential role in pulmonary vasoconstriction, with 

both extracellular calcium influx and release of intracellular calcium from the 

sarcoplasmic reticulum involved in mediating HPV (Salvaterra and Goldman, 

1993, Gelband and Gelband, 1997).  Smooth muscle contraction is initiated by 

an elevation in intracellular free calcium concentration ([Ca2+]i).  Calmodulin 

(CaM), an intracellular Ca2+-binding protein, binds to Ca2+ as [Ca2+]i rises.  The 

resulting CaM/Ca2+ complex then binds to and activates myosin light chain 

kinase (MLCK) leading to phosphorylation of the myosin light chain (MLC) of the 

contractile apparatus.  This process stimulates the activation of the myosin 

ATPase, hydrolysing ATP to generate energy for the cycling of myosin cross-

bridges with actin filaments.  The formation of these cross bridges brings about 

smooth muscle contraction, resulting in vasoconstriction (Somlyo and Somlyo, 

1994) (Figure 1.2). 

[Ca2+]i is elevated in PASMCs exposed to hypoxia (Salvaterra and Goldman, 

1993, Wang et al., 2005, Bakhramov et al., 1998, Cornfield et al., 1993).  This 

hypoxia-induced increase in [Ca2+]i results in PASMC contraction (Murray et al., 

1990, Leach et al., 1994, Jin et al., 1992). Furthermore, hypoxia triggers 

increases in [Ca2+]i  and contraction in small intrapulmonary arteries that is 

sustained during the hypoxic period and reversed on return to normoxia 

(Robertson et al., 2000b).  Several studies have reported the predominant 

source of Ca2+ contributing to elevated [Ca2+]i during hypoxic conditions is 

extracellular and enters PASMCs via the voltage-gated L-type calcium channel 

(Bakhramov et al., 1998, Cornfield et al., 1993).  Inhibition of these channels 

has been shown to attenuate hypoxic responses in pulmonary arteries (Jin et 

al., 1992, Leach et al., 1994) and HPV in isolated lungs and intact animals 

(Redding et al., 1984, Stanbrook et al., 1984, Simonneau et al., 1981, McMurtry 

et al., 1976). 

In addition to this, the release of calcium from intracellular stores has also been 

proposed to mediate HPV.  Gelband and Gelband (1997) reported that in rat 

pulmonary arteries, the initial event in HPV is the release of Ca2+ from 

intracellular stores, resulting in elevated [Ca2+]i and increased pulmonary artery 
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tone.  Furthermore, in canine pulmonary arteries, release of Ca2+ from the 

sarcoplasmic reticulum was found to contribute significantly to HPV (Jabr et al., 

1997).  Depletion of Ca2+ stores have also been shown to abolish hypoxic 

responses in PASMCs (Dipp et al., 2001).  Similarly, release of intracellular 

calcium, from ryanodine-sensitive stores contributes significantly to HPV in 

perfused lungs (Morio and McMurtry, 2002). 

Entry of Ca2+ via store-operated Ca2+ channels (SOCCs) may also be important 

in mediating HPV.  As mentioned previously, in PASMC under acute hypoxic 

conditions, release of Ca2+ from intracellular stores has been observed resulting 

in increased [Ca2+]i .  In some instances this has been reported to enhance 

capacitative Ca2+ entry via SOCCs (Kang et al., 2003, Ng et al., 2005) and may 

therefore contribute to HPV.  Furthermore, in another study where intracellular 

Ca2+ stores were depleted and voltage-gated L-type Ca2+ channels blocked, 

hypoxia still resulted in an increase in [Ca2+]i.  This was attributed to the ability 

of acute hypoxia to enhance Ca2+ entry via SOCCs (Wang et al., 2005).  

Chronic hypoxia has also been found to upregulate members of the canonical 

transient receptor potential channel (TRPC) gene family (TPRC1 and TPRC6) 

in pulmonary arteries, resulting in increased expression of SOCCs and 

receptor-operated Ca2+ channels (ROCs) in PASMCs.  The enhanced activity of 

these channels under hypoxic conditions contributes to elevated [Ca2+]i and 

increased pulmonary vascular tone (Lin et al., 2004) (Figure 1.3).  Further 

highlighting the role of intracellular Ca2+ release in mediating HPV, cyclic ADP 

ribose, which acts on ryanodine receptors to stimulate intracellular Ca2+ release, 

is elevated by hypoxia in small pulmonary arteries.  Moreover, contraction to 

hypoxia in these arteries was completely suppressed by using a cyclic ADP 

ribose antagonist (Wilson et al., 2001). 

Smooth muscle cell contraction is dependent not only on [Ca2+]i but also on the 

Ca2+ sensitivity of the contractile apparatus (Morgan, 1987).  Under conditions 

of agonist-mediated contraction, Ca2+ sensitisation can occur.  For example, in 

permeabilised SMCs, agonists can enhance the force of contraction when 

intracellular Ca2+ remains constant (Kitazawa et al., 1989).  One mechanism of 

Ca2+ sensitisation suggests altered relations between myosin regulatory light 

chain phosphorylation and intracellular Ca2+, involving the MLCK or 

phosphatase cascades (de Lanerolle and Paul, 1991).  Another possible 



 10 

mechanism of sensitisation involves alterations in Ca2+ affinity of regulatory 

proteins such as caldesmon and calponin.  These proteins are associated with 

thin filaments and inhibit actin-myosin interaction, a process attenuated by Ca2+ 

(Winder et al., 1998).  Ca2+ sensitisation also occurs in pulmonary arteries 

under hypoxic condition.  During sustained HPV, force development continues 

to increase while [Ca2+]i attains a constant level (Robertson et al., 1995, 

Robertson et al., 2003).  In addition to this, Rho-associated kinase (ROCK) 

inhibition has been shown to suppress sustained HPV in pulmonary arteries and 

perfused lung (Robertson et al., 2000a).  Furthermore, ROCK has been 

proposed to contribute to sustained HPV by mediating Ca2+ sensitisation in 

pulmonary arteries (Nagaoka et al., 2004).  

  

ROLE OF REACTIVE OXYGEN SPECIES IN PULMONARY 

VASOCONSTRICTION 

 

HPV is an important physiological response of the lung to alveolar hypoxia, 

required to redistribute pulmonary blood flow from areas of low oxygen to high 

oxygen availability.  However, the underlying oxygen sensing and signal 

transduction mechanisms of HPV remain unclear.  Several studies have 

reported that inhibition of the mitochondrial electron transport chain (ETC) 

specifically inhibits HPV (Michelakis et al., 2002a, Weissmann et al., 2003, 

Waypa et al., 2001).  These findings suggest a role for mitochondria as oxygen 

sensors for HPV.  Two conflicting hypotheses have developed concerning a role 

for mitochondria in HPV.  (1)  The redox hypothesis of HPV suggests that a 

decrease in mitochondrial ROS occurs during hypoxia, shifting the cellular 

redox balance towards a more reduced state.  As mentioned previously, this 

can result in the inhibition and closure of Kv channels, a process mediated by 

the redox pairs GSH/GSSG and NADH/NAD (Moudgil et al., 2005, Michelakis et 

al., 2002c).  (2)  In direct contrast to this, a hypoxia-induced increase in 

mitochondrial ROS production has also been reported.  This increase in ROS is 

thought to mediate HPV by triggering intracellular calcium release (Waypa et 

al., 2001, Waypa and Schumacker, 2005). 

In support of the former hypothesis, rotenone and antimycin A (inhibitors of the 

proximal region of the ETC), were shown to mimick the effects of HPV in 
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isolated pulmonary arteries and PASMCs, decreasing ROS production and 

subsequently resulting in the inhibition of potassium channels (Michelakis et al., 

2002a).  Furthermore, under normoxic conditions, pharmacological inhibition of 

the ETC proximal to complexes II and III (sites of mitochondrial ROS release) 

resulted in a reduction in ROS production and an increased pulmonary artery 

pressure (Michelakis et al., 2004).  Taken together these findings suggest a 

decrease in mitochondrial-produced ROS mediates HPV. 

On the other hand, others have provided evidence that increased ROS release 

from ETC complex III occurs under hypoxic conditions in isolated rat lung, and 

that this increase in ROS mediates HPV (Waypa et al., 2001).  Furthermore, 

inhibition of the proximal region of the ETC was found to attenuate hypoxia-

induced constriction in PASMCs by decreasing intracellular Ca2+ levels (Waypa 

et al., 2002).  Conversely, hypoxia has been reported to trigger increases in 

[Ca2+]i by augmenting ROS signalling from mitochondria (Waypa et al., 2006). 

Therefore, these findings suggest an increase in mitochondrial-produced ROS 

mediates HPV by facilitating increases in [Ca2+]i. 

NAD(P)H-oxidases, enzymes that function to generate superoxide, have also 

been proposed as possible oxygen sensors of HPV.  Again, two conflicting 

concepts exist as to the contribution of NAD(P)H-oxidase-derived superoxide in 

HPV, with one reporting an upregulation and another reporting a 

downregulation of superoxide.  Reports that NADPH-oxidase is activated in 

response to hypoxia in PASMCs (Marshall et al., 1996), and that the generation 

of superoxide and subsequent formation of H2O2 are required for HPV in 

perfused rabbit lung (Weissmann et al., 1998), suggest that NADPH-mediated 

increases in superoxide are required to mediate HPV.  Increased superoxide 

generation and an increased expression of NADPH-oxidase has also been 

observed in pulmonary arteries from pulmonary hypertensive fetal lambs 

(Brennan et al., 2003).  The hypothesis that NADPH-mediated superoxide 

production contributes to HPV is further confirmed by the ability of NADPH-

oxidase inhibitors to attenuate HPV in intact lungs (Weissmann et al., 2000).  

But, it has also been suggested an NADPH-oxidase-mediated decrease in 

superoxide occurs during HPV (Wolin et al., 1999).  Several studies have 

reported decreases in superoxide and H2O2 generation under hypoxic 

conditions. This has been suggested to attenuate the cellular levels of cyclic 
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guanosine 3’, 5’ monophosphate (cGMP) due to reduced stimulation of soluble 

guanylyl cyclase and thus results in vasoconstriction (Burke-Wolin and Wolin, 

1989, Burke-Wolin and Wolin, 1990, Cherry et al., 1990, Wolin et al., 1999).   

In summary, while ROS play a key role in mediating pulmonary vascular tone in 

hypoxia, there is no consensus as to whether ROS are increased or decreased 

under hypoxic conditions. 

 

ROLE OF ENDOTHELIAL DYSFUNCTION IN PULMONARY  

VASOCONSTRICTION 

 

Endothelial dysfunction results in an imbalance in the production of vasodilatory 

and vasoconstrictive agents.  In PAH an insufficient level of vasodilators such 

as nitric oxide (NO) and prostacyclin, in addition to an increase in the production 

of vasoconstrictors such as endothelin-1 (ET-1), favours the vasoconstriction of 

pulmonary arteries.  For instance, prostacyclin synthesis has been found to be 

decreased in endothelial cells from patients with PAH due to a reduction in the 

expression of prostacyclin synthase, the enzyme responsible for its synthesis 

(Christman et al., 1992, Tuder et al., 1999).  Endothelium-derived vasodilators 

are further decreased in PAH by the reduction of endothelial NO synthesis 

(eNOS) expression, reported in endothelial cells of patients (Giaid and Saleh, 

1995).  In addition to this, vasoactive interstitial peptide (VIP), a potent 

pulmonary vasodilator, has also been found to be reduced in serum from PAH 

patients (Petkov et al., 2003).  To further contribute to the vasoconstrictive 

environment, increased levels of ET-1, which induces vasoconstriction, have 

been reported in both animal models and patients with PAH (Giaid et al., 1993).  

It can therefore be seen that endothelial dysfunction results in an imbalance of 

endothelium-derived mediators, favouring vasoconstriction and contributing to 

the pathobiology of PAH.  
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Figure 1.1  The role of potassium channel activity in mediating hypoxic 
pulmonary vasoconstriction.   
Normoxia is associated with open, oxidised Kv channels.  Under hypoxic 
conditions, Kv channels become reduced, resulting in their closure and 
membrane depolarisation.  This facilitates the opening of voltage-gated L-type 
Ca2+ channels.  Ca2+ influx via these channels elevates intracellular Ca2+ 
concentrations, resulting in vasoconstriction.  Oxidising compounds mimic the 
effects of normoxia, while reducing agents mimic the effects of hypoxia. 
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Figure 1.2  Signal transduction mechanisms mediatin g contraction of vascular smooth muscle. 
The level of free intracellular calcium (Ca2+) is a major determinant of smooth muscle contraction.  As free intracellular calcium 
(Ca2+) rises, it binds and forms a complex with calmodulin (CaM).  The Ca2+/CaM complex then activates myosin light chain kinase 
(MLCK), which subsequently phosphorylates the myosin light chain (MLC).  This stimulates myosin ATPase activity and promotes 
crossbridge cycling with actin filaments.  The formation of these crossbridges underlies smooth muscle cell contraction and results 
in vasoconstriction. 
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Figure 1.3 Diagram of the proposed mechanisms contr ibuting to increased intracellular Ca 2+ concentrations and hypoxic 
pulmonary vasoconstriction (HPV). 
Hypoxia results in decreased activity of Kv channels and membrane depolarisation, thereby initiating the opening of L-type Ca2+ 
channels and allowing Ca2+ influx.  Intracellular Ca2+ is also elevated by the hypoxic activation of receptor-operated Ca2+ channels 
(ROC) and store-operated Ca2+ channels (SOCC).  In addition, hypoxia induces calcium release from intracellular stores in the 
sarcoplasmic reticulum, further elevating intracellular Ca2+.  The depletion of these stores is also thought to contribute to the 
activation of SOCC.  
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1.3.2  PULMONARY VASCULAR REMODELLING 

 

Vascular remodelling is a term often used to describe structural and functional 

alterations to blood vessels, allowing them to function more effectively.  It is an 

adaptive process which occurs in response to long-term changes in 

haemodynamic conditions that occur during development (Mulvany et al., 

1996).  However, the process can contribute to the pathobiology of various 

vascular diseases, including PAH. 

Under normal conditions the diameter of the pulmonary artery wall is maintained 

by a balance between proliferation and apoptosis of pulmonary artery 

fibroblasts (PAFs), PASMCs and pulmonary artery endothelial cells (PAECs) 

(Gurbanov and Shiliang, 2006, Mandegar et al., 2004).  In PAH this balance is 

disrupted in the favour of proliferation, resulting in an increase in the thickness 

of the artery wall and a narrowing of the vessel lumen which eventually results 

in its complete occlusion.  These structural changes result in the loss of 

vascular compliance and are responsible for the increase in PVR observed in 

PAH patients (Mandegar et al., 2004, Gurbanov and Shiliang, 2006).  

Pulmonary vascular remodelling can be initiated by a variety of stimuli, including 

anorectic drugs, collagen vascular disease and chronic hypoxia (Mandegar et 

al., 2004).  This process involves all layers of the vessel wall and is complicated 

by the cellular heterogeneity that exists within the pulmonary artery wall (Jeffery 

and Morrell, 2002) (Figure 1.4).   

 

CONTRIBUTION OF PULMONARY ARTERY SMOOTH MUSCLE CELLS 

(PASMCs) TO VASCULAR REMODELLING 

 

Common to the pathogenesis of all forms of human PAH is an increase in the 

thickness of the medial layer of muscular pulmonary arteries and the 

muscularisation of distal, previously non-muscular pulmonary arteries (Humbert 

et al., 2004, Stenmark and Mecham, 1997, MacLean et al., 2000).  The 

increased thickness of the medial compartment is due to hypertrophy and 

proliferation of SMCs and the increased synthesis and deposition of matrix 

proteins including elastin and collagen (Stenmark and Mecham, 1997).  The 
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muscularisation of previously non-muscular arteries may be due to the 

differentiation and hypertrophy of intermediate cells and pericytes present in the 

vessel wall, which acquire a smooth muscle like appearance (Meyrick and 

Perkett, 1989, Durmowicz and Stenmark, 1999) .  During PAH, changes in the 

phenotype of PASMCs occur, which contribute to the process of vascular 

remodelling.  For instance, PASMCs taken from patients with PAH have been 

shown to have increased proliferative capabilities (Eddahibi et al., 2001).  

Furthermore, it has also been suggested that smooth muscle cells (SMCs) may 

contribute to intimal thickening and neointima formation by migrating from the 

media to the subendothelial layer, where they change phenotype from contactile 

to synthetic and secrete excessive extracellular matrix proteins (Olschewski et 

al., 2001).  In addition to this, the pulmonary artery is composed of 

phenotypically diverse SMC populations (Frid et al., 1994).  These 

subpopulations exhibit different proliferative responses to hypoxia-induced PAH, 

a property that be may important in the process of medial remodelling (Wohrley 

et al., 1995)(Figure 1.4). 

 

CONTRIBUTION OF PULMONARY ARTERY FIBROBLASTS (PAFs) TO 

VASCULAR REMODELLING 

 

Fibroblasts also play an important role in vascular remodelling.  Located in the 

adventitial compartment, fibroblasts proliferate, hypertrophy and increase 

production of extracellular matrix proteins (Stenmark et al., 2002, Stenmark and 

Mecham, 1997).  The most dramatic structural changes occur in the adventitia 

of small pulmonary arteries as a result of these processes (Stenmark et al., 

1987, Murphy et al., 1981, Durmowicz et al., 1994).  The pulmonary vasculature 

appears to contain multiple, functionally distinct subpopulations of fibroblasts.  

These subpopulations have marked differences in morphology and proliferative 

capabilities and this may play a crucial role in regulating vascular remodelling 

(Das et al., 2002).  Unlike, SMCs, hypoxia induces proliferation in pulmonary 

artery fibroblasts in the absence of exogenous growth factors (Falanga and 

Kirsner, 1993, Storch and Talley, 1988).  Furthermore, fibroblasts have been 

observed to proliferate earlier and have a greater response to hypoxia than 

endothelial or SMCs (Belknap et al., 1997).  In addition to an increase in the 
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number of fibroblasts in the adventitial layer of hypoxic pulmonary arteries, a 

large increase in matrix protein deposition has been observed, with increases in 

collagen, elastin and tropoelastin reported (Durmowicz et al., 1994).  Fibroblasts 

have also been shown undergo changes in cytoskeletal and contractile protein 

expression, significantly altering their function.  This process results in the 

expression of α-smooth muscle actin within the cells, suggesting conversion to 

myofibroblasts, which may contribute to the development of PAH (Short et al., 

2004).  The hypoxic activation of fibroblasts may also have some bearing on the 

increase in SMC proliferation observed in PAH (Rose et al., 2002).  Moreover, 

fibroblasts have been proposed to migrate to the medial and intimal layers of 

pulmonary vessels during PAH contributing to neointimal formation (Humbert et 

al., 2004) (Figure 1.4). 

 

CONTRIBUTION OF PULMONARY ARTERY ENOTHELIAL CELLS (PAECs) 

TO VASCULAR REMODELLING 

 

In chronic hypoxic PAH, increases in intimal thickness occur due to hypertrophy 

and hyperplasia in both the endothelial and sub-endothelial layers (Stenmark 

and Mecham, 1997).  Plexiform lesions occur in a large percentage of patients 

with PAH (Tuder et al., 1994).  These lesions originate in small precapillary 

vessels usually at blood vessel bifurications (Stevens, 2005).  Increases in 

endothelial cell proliferation contribute to the formation of such lesions (Tuder et 

al., 1994, Voelkel and Tuder, 1995) and in some instances plexiform lesions 

occur as a result of monoclonal endothelial cell proliferation (Lee et al., 1998a).  

Plexiform lesions grow into the vessel resulting in lumen occlusion (Stevens, 

2005).  Enothelial cells within these lesions have a pro-proliferative, anti-

apoptotic phenotype and no longer grow in a monolayer, with the resulting 

intravascular growth resembling a tumour (Tuder et al., 2001).   Other 

abnormalities have been observed in the endothelial cells of these lesions 

compared to normal pulmonary endothelial cells (Loscalzo, 1992).  For 

example, a decreased production of vasodilators (Tuder et al., 1999, Giaid and 

Saleh, 1995)  and increased production of vasoconstrictors have been reported 

(Giaid et al., 1993).  Furthermore, these endothelial cells also express pro-

angiogenic molecules such as vascular endothelial derived growth factor 
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(VEGF) and VEGF receptor (VEGFR), which may contribute to cell proliferation 

and vascular remodelling (Tuder and Voelkel, 2001).  Changes in surface 

coagulant properties and proinflammatory cytokine production have also been 

observed in endothelial cells from PAH patients.  For instance, under hypoxic 

conditions, thrombomodulin production is suppressed and procoagulant activity 

increased (Ogawa et al., 1990).  Furthermore, hypoxia also increases 

interleukin-1α (IL-1α) production by endothelial cells and upregulates 

endothelial-leukocyte adhesion molecule-1 (ELAM-1) and intracellular adhesion 

molecule-1 (ICAM-1) on the cell surface (Shreeniwas et al., 1992).  This 

suggests hypoxia induces changes in the endothelial layer promoting 

coagulation and increasing the interaction of endothelial cell with circulating 

inflammatory cells.  In support of this hypothesis, increased adherence of 

leukocytes and platelets has been observed in in vivo models of PAH (Hung et 

al., 1986).  Increased inflammatory infiltrates have also been observed in a 

variety of plexiform lesions (Balabanian et al., 2002).  Recently, it has also been 

proposed that PAECs may contribute to vascular remodelling under chronic 

hypoxic conditions by transdifferentiating into smooth muscle-like cells (Zhu et 

al., 2006).  This may be an alternative explanation for the muscularisation of 

previously non-muscular vessels in the process of PAH (Figure 1.4). 

 

ROLE OF APOPTOSIS IN VASCULAR REMODELLING 

 

Apoptosis, or programmed cell death, is a fundamental biological function 

involved in many physiological and pathological processes.  It can be defined as 

a well ordered form of cell death comprised of a regulated sequence of events, 

resulting in removal of cell material without the release of harmful substances to 

surrounding tissue (Renehan et al., 2001).  In PAH the balance between 

proliferation and apoptosis is disturbed.  In PASMCs, increased proliferation 

and decreased apoptosis contribute to the thickening of the vessel wall and 

vascular remodelling (Stenmark and Mecham, 1997, Mandegar et al., 2004).  

Several lines of investigation implicate decreases in apoptosis in the 

development and maintenance of PAH.  For instance, PASMCs from patients 

with PAH have been shown to be resistant to apoptotic inducers such as BMP -

2, 5 and 7 (Zhang et al., 2003).  Furthermore, a reduction in Kv channel 
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expression and function in PASMCs attenuates programmed cell death by 

decelerating apoptotic volume decrease (AVD) and inhibiting cytoplasmic 

caspases (Zhang et al., 2003).  The anti-apoptotic protein Bcl-2 has also been 

reported to be increased in the lungs of PAH patients.  Further highlighting the 

role of apoptosis in pulmonary vascular remodelling, the induction of apoptosis 

in models of PAH has been found to result in the regression of hypertrophied 

PASMCs (Cowan et al., 1999, Rabinovitch, 1998)(Figure 1.4). 

 

1.3.3  VASCULAR THROMBOSIS 

 

Thrombosis often occurs in the pulmonary arterioles of many PAH patients and 

may result from injury to the endothelium, abnormal fibrinolysis, enhanced 

procoagulant activity and platelet abnormalities (Humbert et al., 2004, Veyssier-

Belot and Cacoub, 1999, Herve et al., 2001).  Indeed, decreased fibrinolytic 

activity has been observed in the plasma of patients with PAH  (Welsh et al., 

1996, Frank et al., 1997).  Furthermore, the endothelium plays an important role 

in regulating coagulation.  The decrease in production of prostacyclin and NO 

by endothelial cells of PAH patients is likely to contribute to thrombosis as both 

of these mediators inhibit platelet aggregation (Moncada and Vane, 1979, 

Moncada et al., 1991).  Moreover, the production of thrombomodulin, a co-

factor produced by endothelial cells that binds and inactivates thrombin to 

attenuate coagulation, is significantly decreased in individuals with PAH (Welsh 

et al., 1996).  The imbalance in the level of pro- and anti-coagulant factors in the 

favour of coagulation contributes to thrombus formation in PAH patients (Figure 

1.4). 
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Figure 1.4  Schematic diagram of how individual pat hophysiological components contribute to increased pulmonary 
vascular resistance and pulmonary artery pressure d uring pulmonary hypertension. 
Changes in cellular function within the wall of pulmonary arteries contribute to pulmonary vascular remodelling, vasoconstriction 
and thrombosis, leading to increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (PAP), characteristic of 
pulmonary hypertension.  Figure adapted from Mandegar et al., (2004). 
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1.3.4  MEDIATORS OF PAH 

 

Given the multifactorial pathobiology of PAH, various mediators have been 

implicated in the development and progression of the disease.  Several factors 

mentioned previously, which affect vascular tone, also promote vascular 

remodelling e.g. ET-1 and Kv channels (Mandegar et al., 2004).  Genetic 

factors, such as mutations in the BMPR-2 gene also contribute to the 

development of the condition, however in most cases PAH is not attributed to 

inherited genetic mutations (Thomson et al., 2000).   Therefore, other external 

stimuli play a major role in contributing to the development of PAH.  Some of 

the key mediators involved in the development and maintenance of PAH are 

described below. 

 

ROLE OF THE TRANSFORMING GROWTH FACTOR-β (TGF-β) 

SUPERFAMILY AND SIGNALLING PATHWAYS IN VASCULAR 

REMODELLING 

 

The TGF-β superfamily of structurally related cytokines includes TGF-β, BMPs 

and activins.  The TGF-β superfamily members induce a multitude of effects 

such as cell differentiation, proliferation, migration and apoptosis in a variety of 

cell types (Roberts and Sporn, 1993). As mentioned previously, mutations in the 

BMPR-2 gene have been associated with the pathogenesis of PAH, as have 

somatic mutations in the TGF-β type 1 receptor (TGF-βR1) and abnormalities in 

TGF-β signalling (Yeager et al., 2001, Richter et al., 2004).    Briefly, signal 

transduction of TGF-β superfamily receptor ligands requires the ligand-induced 

formation of heteromeric complexes of type 1 and type 2 transmembrane 

serine/threonine kinase receptors (Derynck and Zhang, 2003).  Different 

receptor combinations allow for differential ligand binding properties and diverse 

signalling responses to the same ligand (Derynck and Zhang, 2003). Ligand 

binding induces the phosphorylation of the GS segment in the type 1 receptor 

by the type 2 receptor kinases.  The active type 1 receptor then phosphorylates 

the receptor-activated mothers against decapentaplegic (R-Smad) proteins.  

Activated R-Smads can then dimerise with a common mediator-Smad (Co-
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Smad) to form a signalling complex capable of translocating to the nucleus, 

resulting in the transcription of Smad-responsive genes, some of which encode 

anti-proliferative and pro-apoptotic proteins (Derynck and Zhang, 2003) (Figure 

1.5).  The BMPR-2 receptor has been documented to interact with three 

different type 1 receptors (ALK-2, ALK-3 and ALK-6) and signals via the R-

Smads, Smad 1,5 and 8 (Derynck and Zhang, 2003, Moustakas et al., 2001) 

(Figure 1.5).  

The exact mechanisms as to how BMPR-2 and TGF-β mutations and 

alterations in signalling pathways contribute to vascular remodelling in PAH are 

not fully understood, but it is thought they have a negative effect on pro-

apoptotic Smad complexes.  In normal human PASMCs, treatment with BMPs 

results in increased apoptosis and a reduction in levels of the anti-apoptotic 

protein Bcl-2, thereby triggering the release of cytochrome C from mitochondria 

and activating caspases 3, 8 and 9 (Lagna et al., 2006, Zhang et al., 2003).  

However, in cells taken from patients with PAH, BMP-induced apoptosis is 

significantly attenuated (Zhang et al., 2003, Yang et al., 2005, Lagna et al., 

2006).  These cells displayed mutations in the kinase domain or carboxy-

teminus of BMPR-2 and were also found to be deficient in Smad signalling 

(Lagna et al., 2006, Yang et al., 2005, Zhang et al., 2003).  Loss of function 

mutants in BMPR-2 have also been reported to contribute to increased 

endothelial cell survival and decreased apoptosis (Teichert-Kuliszewska et al., 

2006).  In addition to this, in the monocrotaline-rat model of PAH, TGF-β 

receptor (TGF-βR) 1 and TGF-βR2, as well as Smad 3 and 4, were all found to 

be reduced in the lung and PASMCs, resulting in decreased TGF-β-induced 

signalling and apoptosis (Zakrzewicz et al., 2007). Furthermore, in mice 

developed to incorporate an inducible dominant-negative mutant of the TGF-

βR2 receptor, chronic hypoxia-induced pulmonary hypertension was 

significantly attenuated (Chen et al., 2006).   

TGF-β activity may also influence other factors implicated in vascular 

remodelling.  For instance, TGF-β induces ET-1 production in human pulmonary 

arteries (Markewitz et al., 2001), as well as stimulating connective tissue growth 

factor (CTGF) production in pulmonary fibroblasts (Kucich et al., 2001).  These 

findings suggest a role for the TGF-β superfamily of receptors and downstream 

signalling cascades in the development of pulmonary hypertension, and also 
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highlight the requirement for a balance between apoptosis and proliferation in 

the maintenance of a healthy vascular system. 

 

POTASSIUM CHANNELS AND VASCULAR REMODELLING 

 

As mentioned previously, Kv channels play an important role in mediating 

vasoconstriction during PAH.  The downregulation of Kv1.5 and Kv2.1 channels 

that occurs during PAH also play a significant role in pulmonary vascular 

remodelling.  Chronic decreases in K+ channel expression induces PASMC 

proliferation and hypertrophy (Mandegar et al., 2004). This is thought to occur 

as loss of Kv current depolarises the cell membrane resulting in the intracellular 

accumulation of calcium, with the Ca2+/Calmodulin complex subsequently 

formed responsible for activating several steps of the cell cycle and thus favours 

cellular proliferation (Hardingham et al., 1997).  In addition to the 

downregulation of Kv channels contributing to proliferation, it also appears to 

have an effect on apoptotic processes.  Previously, activation of Kv channels 

has been reported to play an important role in both early and late volume 

decrease associated with the induction of apoptosis (Platoshyn et al., 2002).  

Therefore, the downregulation of these channels in PAH has an inhibitory effect 

on apoptosis.  Furthermore, the resulting intracellular accumulation of K+ ions 

due to the loss of Kv channels has been shown to inhibit caspases and thus 

decrease apoptosis (Thornberry and Lazebnik, 1998, Bortner and Cidlowski, 

1999, Bortner et al., 1997).  In addition to this, survivin, a known inhibitor of 

apoptosis has been reported to be expressed in PAH, resulting in Kv channel 

downregulation in PASMCs (McMurtry et al., 2005).  Overexpression of survivin 

in normal PASMCs promotes proliferation and decreases Kv current.  

Conversly, treatment with a dominant negative survivin mutant was found to 

significantly increase Kv current  in PASMC from PAH patients and attenuate 

the effects of  experimental PAH in vivo (McMurtry et al., 2005). 

In summary, it can be seen that Kv channels play an important role in 

maintaining the balance between apoptosis and proliferation in pulmonary 

smooth muscle cells, and that the downregulation of these channels in PAH tips 

the balance in favour of proliferation and thus contributes to vascular 

remodelling.  
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ENDOTHELIUM-DERIVED FACTORS AND VASCULAR REMODELLING 

 

As mentioned previously, endothelial-derived factors play an important role in 

regulating vascular tone.  However, changes in the synthesis and expression of 

these mediators during PAH also contribute to vascular remodelling.  In addition 

to its potent vasodilatory effects NO also has anti-proliferative capabilities.  

Therefore its reduction in PAH may be a factor in the remodelling process.  

Indeed, decreases in endothelial NOS (eNOS) expression were reported in the 

vascular endothelium of patients with PAH, with expression levels correlating 

inversely to the severity of the histological changes observed (Giaid and Saleh, 

1995).  Furthermore, in a hypoxic model of PAH, prolonged inhaled NO therapy 

resulted in a marked attenuation in the level of muscularised arteries and right 

ventricular hypertrophy (RVH) (Horstman et al., 1998).  Inhaled NO has also 

been used in the treatment of patients, markedly reducing pulmonary artery 

pressure and PVR (Channick et al., 1996). 

NO mediates it effects by binding to and activating guanylyl cyclase, thus 

elevating intracellular levels of cGMP (Stasch et al., 2002).  Phosphodiesterase 

(PDE) enzymes are important in regulating the cellular levels of cGMP and 

cyclic 3’, 5’ adenosine monophosphate (cAMP), by controlling their rates of 

degradation (Bender and Beavo, 2006).  Several studies have reported the 

upregulation of PDEs during PAH, including elevated levels of PDE1, 3 and 5 

(Schermuly et al., 2007, Murray et al., 2002, Murray et al., 2007, Maclean et al., 

1997).  Selective inhibition of these PDEs has been found to have 

antiproliferative effects (Murray et al., 2007, Wharton et al., 2005) and reduce 

pulmonary vascular remodelling (Schermuly et al., 2004, Schermuly et al., 

2007, Sebkhi et al., 2003, Garg et al., 2006). 

In addition to its vasoconstrictive effects, ET-1 acts as a growth factor 

(Yanagisawa, 1994) and has been found to play a crucial role in vascular 

remodelling during PAH.  ET-1 predominantly binds to two receptors, 

endothelin-A (ETA) and endothelin-B (ETB) receptors. Responses to ET-1 

appear to be mainly via the ETA receptor subtype (Arai et al., 1990, Barnes and 

Liu, 1995).  ETA receptors are found on smooth muscle cells only and, when 

activated, induce vasoconstriction and cellular proliferation. ETB receptors on 

smooth muscle cells, when activated, cause vasoconstriction, whereas those on 
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endothelial cells produce vasodilation (via production of NO) and clearance of 

circulating ET-1 (Galie et al., 2004).  Hypoxia has been shown to attenuate ETB-

induced vasoconstriction in rat pulmonary arteries.  This study suggested that 

the hypoxia-induced production of ROS increases ET-1 release from endothelial 

cells and results in the downregulation of ETB receptors on SMCs (Wang et al., 

2006).  

The upregulation of ET-1 occurs in the lungs of patients with various etiologies 

of PAH (Giaid et al., 1993).  Confirming the role of ET-1 in the development of 

PAH, treatment with ET antagonists have been found to attenuate the 

development of pulmonary vascular remodelling in a variety of models of the 

condition (Kim et al., 2000, Oparil et al., 1995, Eddahibi et al., 1995, Okada et 

al., 1995).  Furthermore, bosentan, a competitive antagonist at both ETA and 

ETB receptors, is benefical in the treatment of human PAH (Rubin et al., 2002).  

Therefore, endothelial-derived mediators play an important role in regulating 

vascular tone and cell proliferation within the pulmonary vasculature, with 

dysregulation of these mediators significantly contributing to the development of 

PAH. 

 

THE POTENTIAL ROLE OF EICOSANOIDS IN PULMONARY VASCULAR 

REMODELLING 

 

Eicosanoids such as prostacyclin and thromboxane A2 (TXA2) have been 

implicated in the pathophysiology of PAH.  As mentioned previously, TXA2 

levels are elevated in endothelial cells from patients with PAH.  This contributes 

to vasoconstriction during PAH and also has mitogenic effects, in addition to 

contributing to platelet aggregation.  Patients with PAH have elevated levels of 

urinary 11-dehydro-TXB2, a major urinary metabolite of TXA2, suggesting a role 

for TXA2 in the pathogenesis of PAH (Christman et al., 1992).  In an in vivo 

model of the condition, inhibition of TXA2 significantly reduced arterial media 

thickness, as well as RVH, delaying the onset of PAH.  These beneficial effects 

were suggested to be mediated mainly by inhibiting platelet aggregation 

(Nagata et al., 1997). 

Prostacyclin synthesis is also altered in PAH.  In addition to its vasodlilatory 

properties, prostacyclin inhibits smooth muscle cell proliferation and platelet 
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aggregation (Fetalvero et al., 2007).  As mentioned earlier, endothelial cells 

from patients with PAH have reduced expression of prostacyclin synthase 

(Tuder et al., 1999) and decreased levels of prostacyclin metabolites have been 

observed in the urine of such patients (Christman et al., 1992).  Prostacylin 

therapy is a mainstay in the treatment of PAH, with many prostacylin analogues 

such as epoprostenol, treprostinil and beraprost improving the pulmonary 

function of patients (Lee and Rubin, 2005).  Another such analogue, iloprost, 

has been reported to have beneficial effects on pulmonary vascular remodelling 

in vivo; reducing RVH, medial wall thickness and the number of muscularised 

pulmonary arteries in monocrotaline-induced PAH (Schermuly et al., 2005b).  In 

summary, the balance between the actions of TXA2 and prostacyclin are 

important in maintaining a healthy pulmonary vasculature.  Alterations in levels 

of these mediators during PAH contribute to the progression of the disease. 

 

ANGIOGENIC AND GROWTH FACTORS AND VASCULAR REMODELLING 

 

Abnormalities in the expression of various angiogenic factors and growth factors 

have been suggested to play a role in PAH.  One such factor, namely VEGF, 

has been implicated in various etiologies of PAH.  VEGF is a vascular 

endothelial cell-specific mitogen with pro-angiogenic properties and is secreted 

by various cell types.  In systemic vessels, increases in VEGF bioavailability at 

sites of endothelial injury accelerate repair and attenuate neointimal formation 

(Asahara et al., 1995).  In addition to this, VEGF overexpression within the 

vascular wall restores endothelium dependent relaxation and protects against 

vasoconstriction and platelet aggregation (Thomas, 1996).  VEGF is abundant 

in the adult lung (Monacci et al., 1993) and can be regulated by hypoxia 

(Monacci et al., 1993, Liu et al., 1995).  Indeed, increase in VEGF, VEGFR1 

and VEGFR2 have been observed in the lungs of hypoxic rats (Tuder et al., 

1995, Christou et al., 1998).  Similary, the upregulation of VEGF has also been 

observed in platelets from patients with PAH (Eddahibi et al., 2000b), in addition 

to increased levels of VEGF and VEGFRs in the lungs of such patients (Hirose 

et al., 2000).  In particular VEGF and VEGFR expression appears to be 

upregulated in plexform lesions (Tuder and Voelkel, 2001), with VEGF levels 

elevated in SMCs inside and adjacent to these areas (Hirose et al., 2000).  
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Furthermore, VEGFRs were also observed to be expressed on endothelial cells 

in and around these lesions (Hirose et al., 2000).  In addition to its beneficial 

effects in the systemic circulation, overexpression of VEGF also appears to play 

a protective role in the pulmonary circulation, as highlighted by various in vivo 

studies.  For instance, VEGFR2 inhibition in chronically hypoxic rats results in 

severe PAH (Taraseviciene-Stewart et al., 2001).  Conversly, VEGFA 

overexpression markedly attenuates the development of hypoxic PAH in rats.  

Comparable effects were also observed in rats where gene transfer of VEGFA 

to the pulmonary microvasculature had been undertaken.  In these animals the 

effects of monocrotaline-induced PAH were significantly reduced even in PAH 

that was already established (Campbell et al., 2001).  VEGFA overexpression in 

chronically hypoxic rats also has a protective effect (Partovian et al., 2000).  

Similarly, overexpression of VEGFB has also been reported to have beneficial 

effects (Louzier et al., 2003).  It has been suggested the advantageous effects 

of VEGF overexpression may be due to its ability to protect endothelial function 

and upregulate mediators such as eNOS (Kroll and Waltenberger, 1998, Hood 

et al., 1998, Partovian et al., 2000).  Furthermore, it has also been proposed 

that endogenous levels of VEGF do not counteract PAH, but that it is the 

upregulation of VEGF that assists in combating the condition.  This is supported 

by data showing that in mice, where VEGFB has been knocked out, 

haemodynamic changes in response to hypoxia remain unaffected (Louzier et 

al., 2003).  Moreover, in patients with PAH receiving prostacyclin therapy, levels 

of VEGF are elevated compared to control (Eddahibi et al., 2000b). 

Angiopoetin-1 (Ang-1), a smooth muscle-secreted ligand that plays a pivitol role 

in vasculogenesis and is an important mediator of both physiological and 

pathological angiogenesis (Hayes et al., 1999), has also been implicated in the 

development of PAH.  Ang-1 signal transduction occurs via the endothelial-

specific receptor Tie2 (Davis et al., 1996).  Ang-1 is absent in normal adult lung 

tissue, but appears to be constitutively expressed in lungs from PAH patients 

(Du et al., 2003).  A potential role for Ang-1 in PAH is also highlighted by 

development of the condition in rodents genetically engineered to constitutively 

express Ang-1 in the lung (Sullivan et al., 2003).  Furthermore, Ang-1 has also 

been reported to attenuate the expression of BMPR1a, which is required for 

BMPR2 signalling in PAECs (Du et al., 2003).  Given the role of BMPR2 in 
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PAH, inhibition of its signalling by Ang-1 may contribute to vascular remodelling.  

It has also been suggested that Ang-1 may contribute to pulmonary artery 

remodelling by stimulating the proliferation of PASMCs.   Human PAECs treated 

with Ang-1 have been shown to produce 5HT, which then acts on SMCs 

resulting in their proliferation (Sullivan et al., 2003).  However, in contrast to a 

notion that Ang-1 contributes to the development of PAH, a protective role has 

also been reported.  In this study, Ang-1 gene therapy reduced mortality, 

systolic right ventricular pressure (sRVP) and RVH in monocrotaline-induced 

PAH (Zhao et al., 2003).  Although contradictory, these studies imply a role for 

Ang-1 in the pulmonary hypertensive process.  More recently, other studies 

have confirmed the pathogenic effects of Ang-1 in PAH.  For instance in some 

rodent models of PAH, gene transfer of a Tie2 receptor antagonist markedly 

reduced the development of PAH (Kido et al., 2005).  Furthermore, another 

study showed increased levels of Tie2 receptor expression and phosphorylation 

in PAECs from PAH patients (Dewachter et al., 2006).  This also suggests the 

Ang-1/Tie 2 pathway is potentiated in PAH patients, resulting in the increased 

production of endothelial cell-derived growth factors such as ET-1 and 5HT 

which may then contribute to SMC proliferation. 

Platelet-derived growth factor (PDGF) may also contribute to PAH.  In an animal 

model of the condition, increased levels of PDGF receptors (PDGFR) have 

been observed (Balasubramaniam et al., 2003).  Furthermore, it has also been 

reported that PDGF antagonists have beneficial effects in rats with 

monocrotaline-induced PAH, in addition to the chronic hypoxic mouse model of 

the condition, reversing vascular remodelling in both instances (Schermuly et 

al., 2005a).   
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Figure 1.5  TGF- β receptor signal transduction pathway induced by BM P ligands. 
 
BMP ligands (BMP-2,-4,-7) bind the receptor complex at the cell surface inducing phosphorylation of the type 1 receptor by the type 
2 receptor.  The active type 1 receptor then phosphorylates and activates Smad1/5/8, which subsequently dimerise and interact 
with the common mediator Smad, Smad 4.  This complex then translocates to the nucleus resulting in the transcription of Smad-
responsive genes such as Id (inhibitor of differentiation) and Msx-1 (Miyazono et al., 2005, Alvarez Martinez et al., 2002).  Figure 
adapted from Derynck and Zhang (2003). 



 31 

1.4  5-HYDROXYTRYPTAMINE (5HT) 

 

In addition to the mediators of PAH mentioned previously, 5HT has been shown 

to play a pivitol role in the disease process, as will be described in the following 

section. 

 

1.4.1  5HT STRUCTURE, SYNTHESIS AND METABOLISM  

 

5HT, or “serotonin”, was chemically identified by Rapport et al (1948) as one of 

the major vasoconstricting substances in defibrinated blood, originating from 

platelets.  It was subsequently found to also act as a major neurotransmitter, 

being involved in a variety of  processes carried out by the central nervous 

system (CNS), as well as regulating several functions in the periphery (Hoyer et 

al., 2002).  5HT is a monoamine, its structure comprising an amino group 

connected to an “indole” group by an ethyl chain (Figure 1.6).   

Production of 5HT occurs in a variety of cells including neurons, 

enterochromafin cells and endothelial cells.  The biosynthesis pathway converts 

dietary tryptophan to 5-hyroxytryptophan by the action of the enzyme 

tryptophan hydroxylase (TPH).  This process is the rate-limiting step in the 

generation of 5HT.  Two isoforms of TPH exist; TPH2 which is expressed 

abundantly in the brain, and TPH1, which is responsible for the synthesis of 

5HT in the periphery (Nakamura and Hasegawa, 2007).  5-hydroxytryptophan is 

then decarboxylated by a ubiquitous animo-acid decarboxylase, resulting in the 

formation of 5HT (Figure 1.7).  Upon synthesis, 5HT is taken up and stored by 

platelets as they pass through the intestinal circulation, as well as being stored 

in neurons and chromaffin cells. 

Degradation and inactivation of 5HT occurs through the action of monoamine 

oxidases (MAO), which catalyse its oxidative deamination.  Monoamine 

oxidases are found in most tissues and exist in 2 forms encoded by different 

genes, MAO-A and MAO-B.  It is MAO-A that preferentially catalyses the 

degradation of 5HT (Youdim and Bakhle, 2006).  Deamination by MAO-A is 

then followed by oxidation to 5-hydroxyindoleacetic acid, which is excreted in 

the urine (Figure 1.7).  
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1.4.2 PHYSIOLOGICAL FUNCTIONS OF 5HT 

 

The actions of 5HT are numerous and complex, varying between species and 

this is reflected by the large array of 5HT receptors that have been identified.  

The physiological effects of 5HT are mediated by 14 different receptor 

subtypes.  These receptors are divided into 7 distinct classes (5HT1 – 5HT7), 

mainly on the basis of their structural and functional characteristics (Hoyer et 

al., 2002).  5HT is also a substrate for the 5HT transporter (5HTT), which 

actively uptakes 5HT into cells (Torres et al., 2003).   

The gastrointestinal tract is one of the main sites of action of 5HT, where the 

monoamine stimulates gastrointestinal motility, fluid secretion and is involved in 

eliciting nausea and vomiting (Gershon and Tack, 2007).  In addition to this, 

5HT is also involved in the process of platelet aggregation, the dysregulation of 

which can contribute to thrombus formation and vascular disease (McNicol and 

Israels, 2003, Torr et al., 1990, Noble and Drake-Holland, 1990).  5HT also 

plays a role in nociception, stimulating nociceptive sensory nerve endings in a 

variety of tissues (Goadsby, 2000, Graven-Nielsen and Mense, 2001, Jeong et 

al., 2004).  Drugs targeting 5HT receptors are widely used in the treatment of 

migrane (Villalon et al., 2003).  Furthermore, a variety of processes in the CNS 

are regulated by 5HT; these include hallucinations and behavioural changes, 

sleep wakefulness, mood, feeding behaviour and control of sensory 

transmission (Barnes and Sharp, 1999). Clinical conditions associated with 

disturbed 5HT function include depression, anxiety, schizophrenia, carcinoid 

syndrome, and, as mentioned previously, migraine. (Bleich et al., 1988),  

 

1.4.3  GPCR REGULATION 

 

With the exception of the 5HT3 receptor, which is a ligand-gated ion channel, 

the 5HT receptors are members of the G-protein-coupled receptor (GPCR) 

suprefamily (Hoyer et al., 2002).  GPCRs regulate many physiological 

processes and include receptors for a range of chemically diverse hormones, 

neurotransmitters and chemokines (Pierce et al., 2002).  Comprised of an 

extracellular N-terminus, 7 transmembrane spanning helices and an intracellular 

C-terminus, most GPCRs signal by activating heterotrimeric G-proteins (Pierce 
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et al., 2002) (Figure 1.8).  G-proteins consist of α, β and γ subunits, and are 

generally referred to by their α-subunit.  To date 16 Gα subunits have been 

identified and grouped into 4 families, Gs, Gq, Gi and G12/13 (Milligan and 

Kostenis, 2006).  In addition to this, 5 β and 12 γ subunits have been reported 

(Milligan and Kostenis, 2006).  The pathways stimulated by GPCRs are 

dependent on the type of G-protein they associate with and receptors typically 

couple with one or more type of G-protein (Hamm, 1998).  The association of G-

protein with receptor is generally via the second or third intracellular loop of the 

GPCR (Hawes et al., 1994, Lameh et al., 1992).  The binding of agonist to its 

receptor results in a conformational change, facilitating the activation of the G-

protein by promoting the exchange of GDP for GTP at the guanine nucleotide 

binding site of Gα-subunit (Hamm, 1998, Pierce et al., 2002).  This process 

results in the dissociation of the Gα subunit from the Gβγ subunits, which 

remain bound together.  The activated Gα subunit and βγ dimer are then free to 

act as mediators of receptor-stimulated signalling pathways (Hamm, 1998) 

(Figure 1.9).  Giα subunits mediate intracellular signalling by inhibiting adenylyl 

cyclase, where as Gsα subunits stimulate adenylyl cyclase (Pierce et al., 2002).  

In addition to this, Gqα, activates phospholipase Cβ, while G12/13 have been 

shown to be involved in small G protein activation and cytoskeletal remodelling 

(Pierce et al., 2002, Ulloa-Aguirre et al., 1999).  Furthermore, Gβγ subunits can 

activate a variety of proteins, including PLCβ, (Clapham and Neer, 1997). 

   

1.4.4 5HT RECEPTOR CLASSES 

 

5HT mediates its physiological effects via activation of its multiple receptor 

subytpes.  The 5HT1 receptor class consists of 5 receptor subtypes:  5HT1A, 

5HT1B, 5HT1D, 5ht1E and 5ht1F receptors.  In humans these receptors share 40-

63% sequence identity and mediate their effects by coupling preferentially to 

Giα, thus inhibiting adenylyl cyclase and  cAMP production (Hoyer et al., 2002).  

5ht1E and 5ht1F receptors are designated with lower case to indicate that a 

physiological role for these endogenous receptor has not yet been 

demonstrated (Hoyer et al., 2002).  However, physiological functions for 5HT1A, 

5HT1B and 5HT1D receptors have been well characterised.  5HT1A receptors are 

largely distributed throughout the CNS and in the raphe nuclei act as 
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autoreceptors to attenuate serotonergic neuron firing (Hoyer et al., 2002).  This 

receptor subtype is also  involved in modulating many behavioural effects such 

as anxiety and depression (Hoyer et al., 2002).  Currently, the 5HT1A receptor 

agonist buspirone is used clinically in the treatment of these conditions (Den 

Boer et al., 2000).   

5HT1B receptors are expressed in the CNS where they act as terminal 

autoreceptors (Hoyer et al., 2002) and may also be involved in controlling the 

release of other neurotransmitters such as acetylcholine and noradrenaline 

(Pauwels, 1997).  Also located on cerebral arteries and other vascular tissues, 

they play a role in mediating contraction (Hoyer et al., 2002).  The 5HT1D 

receptor possesses 63% structural homology with the 5HT1B receptor, although 

its expression is low compared with the 5HT1B (Hoyer et al., 2002).  5HT1D 

receptors have been found in the human heart where they modulate 5HT 

release (Hoyer et al., 2002).  In addition to this, the receptor may also play a 

role in neurogenic inflammation and nociception.  Indeed, 5HT1D receptor 

antagonists have been shown to suppress these processes in guinea pig 

models, suggesting it may be a therapeutic target in the treatment of migraine 

(Cutrer et al., 1999). Many currently available drugs used in the treatment of 

migraine act as antagonists at both 5HT1B and 5HT1D receptors (Hoyer et al., 

2002). 

The 5HT2 class of receptor includes the 5HT2A, 5HT2B and 5HT2C receptors 

which exhibit 46-50% overall sequence homology.  These receptors couple 

preferentially to Gq, activating phospholipase C (PLC) to increase the formation 

of inositol 1,4,5 trisphosphate and elevate cytosolic Ca2+ (Hoyer et al., 2002).  

5HT2A receptors are widely expressed in both the CNS and periphery, where 

they are involved in mediating vascular SMC contraction in bronchial, uterine 

and urinary tissues (Hoyer et al., 2002).  5HT2A receptors are also involved in 

mediating platelet aggregation, thrombosis and increased capillary permeability 

following exposure to 5HT (Nagatomo et al., 2004).  In the CNS, stimulation of 

this receptor mediates secretion of hormones such as renin and prolactin (Van 

de Kar et al., 2001).  Furthermore, activation of this receptor class also 

mediates many behavioural functions and has been implicated in conditions 

such as schizophrenia (de Angelis, 2002).  The 5HT2B receptor has been 

located in the gastric fundus where it mediates fundic SMC contraction (Hoyer 
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et al., 2002).  They are also expressed in the heart, brain and lung (Hoyer et al., 

2002).  The 5HT2B receptor has been associated with promoting cell cycle 

progression in fibroblasts (Nebigil et al., 2000b) and cell survival in 

cardiomyocytes (Nebigil et al., 2003).  It may also contribute to cardiac 

hypertophy (Nebigil and Maroteaux, 2003).  Furthermore, the 5HT2B receptor is 

required for normal heart formation during embryogenesis (Nebigil et al., 

2000a). Expression of the 5HT2C receptor is widespread throughout the CNS 

and also found in the choroid plexus (Hoyer et al., 2002).  5HT2C receptors have 

been found to mediate various behavioural effects and are involved in 

conditions such as anxiety, depression and panic disorders (Lacivita and 

Leopoldo, 2006).  This receptor subtype also plays a role in regulating 

dopaminergic function and inhibits dopaminergic transmission (Di Matteo et al., 

2002).  Additionally, 5HT2C receptors have been found to be involved in 

mediating seizures and convulsion and as such are being considered in the 

treatment of epilepsy (Isaac, 2005).  Furthermore, appetite and glucose 

homeostasis as also controlled, in part by the 5HT2C receptor (Lacivita and 

Leopoldo, 2006).  Notably, many antipsychotic drugs mediate their effects via 

antagonism of 5HT2A and 5HT2C receptors (Leysen, 2004).  

Located on both central and peripheral neurones, the 5HT3 receptors are 

ligand-gated ion channels which trigger rapid depolarisation due to Na+ and 

Ca2+ influx and K+ efflux (Hoyer et al., 2002).  5HT3 receptors play a particularly 

important role in the gut, regulating gastric motility and intestinal secretion 

(Hoyer et al., 2002). These receptors are also involved in mediating 

chemotherapy- and radiotherapy-induced nausea and emesis (Gandara et al., 

1998, Hoyer et al., 2002). 

5HT4, 5ht6 and 5HT7 receptors all couple preferentially to Gs, promoting cAMP 

formation (Hoyer et al., 2002).  Located in the GI tract, heart and CNS, 5HT4 

receptors mediate a variety of functions (Hoyer et al., 2002).  In the gut, 5HT4 

receptors are involved in regulating gastric motility (Degen et al., 2001) and as a 

result, 5HT4-selective agonists such as prucalopride are used in the treatment 

of some forms of irritable bowel syndrome (IBS) (De Schryver and Samsom, 

2000, Spiller, 2004). In addition to this, 5HT4 receptors have been found in atria 

and ventricles of the heart, where they regulate heart rate, atrial contractile 

force and relaxation (Bach et al., 2001, Hegde and Eglen, 1996).  Furthermore, 
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CNS effects of the 5HT4 receptor include modulation of neurotransmitter 

release, enhanced synaptic transmission and a potential role in memory (Hoyer 

et al., 2002). 5ht6 receptors are almost exclusively expressed in the CNS, where 

they have been shown to regulate glutamatergic and cholinergic neuronal 

activity (Woolley et al., 2004).  This receptor may also be involved in the 

regulation of cognition and feeding (Woolley et al., 2004).  5HT7 receptors are 

expressed extensively in the vasculature and also in nonvascular smooth 

muscle, where it mediates relaxation (Thomas and Hagan, 2004).  In the CNS, 

this receptor may also be involved in anxiety and cognitive disturbances 

(Thomas and Hagan, 2004).  Possible roles in circadian rhythms, sleep, 

thermoregulation and learning and memory have also been reported (Hedlund 

and Sutcliffe, 2004, Jovanovska and Prosser, 2002, Thomas and Hagan, 2004).  

Little is known about the 5ht5 receptor class.  Two subtypes (5ht5A and 5ht5b) 

have been identified in rodents, however only the 5ht5A gene has been found to 

encode a functional protein in humans (Nelson, 2004).  5ht5 receptors are 

thought to couple to Gi/o, decreasing levels of cAMP (Carson et al., 1996, 

Francken et al., 1998).   With widespread expression in the CNS, the 5ht5A 

receptor has been proposed to act as an autoreceptor and may also be involved 

in the control of circadian rhythms (Thomas, 2006) (Figue 1.10).   

 

1.4.5 5HT TRANSPORTER (5HTT) 

 

The 5HT tansporter is a member of the NaCl-dependent transporter family that 

cotransport their substrate together with Na+ and Cl- ions (Torres et al., 2003).  

5HTT is responsible for the clearance of 5HT from the synaptic cleft following 

release of the neurotransmitter, thereby terminating its action (Torres et al., 

2003).  Other cell types also express 5HTT, including platelets (Talvenheimo 

and Rudnick, 1980), which acquire extracellular 5HT for subsequent release in 

the process of platelet activation (Cirillo et al., 1999). Expression has also been 

observed in the intestinal tract (Wade et al., 1996), adrenal gland (Schroeter et 

al., 1997), blood vessels, heart (Ni and Watts, 2006) and lungs (Marcos et al., 

2004).  Furthermore, 5HTT is one of the primary targets for drugs used in the 

treatment of depression, including tricyclic antidepressants and selective 

serotonin reuptake inhibitors (SSRIs) (Zohar and Westenberg, 2000), as well as 
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being a target for drugs of abuse such as amphetamines, NMDA and cocaine 

(Ricaurte et al., 2000, Koob, 2000). 

Structurally, 5HTT consists of 12 transmembrane domains (TMDs), connected 

by 6 extracellular and 5 cytoplasmic loops, with both the amino and carboxyl 

termini residing in the cytoplasm (Torres et al., 2003, Nelson, 1998) (Figure 

1.11).  In TMD1, an aspartic acid residue (D98) is key for substrate recognition, 

possibly through interactions between the carboxyl group and the positive 

change of the amine group of 5HT (Barker et al., 1999).  In addition to this 

TMD3 and the third intracellular loop are also important in the function of 5HT 

binding and translocation. The TMD3 binds 5HT at a site located in the 

translocation path, while the third intracellular loop contains a reactive cysteine 

residue (Cys357), sensitive to conformational changes that result from ion and 

ligand binding (Androutsellis-Theotokis et al., 2001). 

The driving force for 5HT uptake is the ion concentration gradient generated by 

the plasma membrane Na+/K+ ATPase.  5HTT cotransports 5HT with one Na+ 

and one Cl- ion, while the counter-transport of K+ outwards is required in the 

translocation mechanism (Torres et al., 2003, Nelson, 1998).  Binding of 5HT, 

Na+ and Cl- induces a conformational change in the transporter allowing 

exposure of the 5HT binding site to the opposite side of the membrane and thus 

transport of substrate and ions (Nelson, 1998, Torres et al., 2003).  The 

reorientation of 5HTT then requires the binding and outward transport of 

intracellular K+ ions (Nelson, 1998, Torres et al., 2003).  In certain 

circumstances 5HTT may act in reverse, transporting 5HT out of the cell.  This 

mechanism is especially important in the action of amphetamines, which induce 

massive release of monoamines (Seiden et al., 1993).    

The activity of 5HTT can be regulated by both pre- and post-transcriptional 

modifications.  5HTT is encoded by a single gene on chromosome 17q11.2 

(Ramamoorthy et al., 1993).  Polymorphisms in this gene have been identified 

and found to alter the activity of 5HTT.  These polymorphisms occur in the 5’- 

flanking promoter region and consist of multi-allelic 17-bp tandem repeat and an 

insertion/deletion of a 44-bp sequence (Lesch et al., 1996).  This results in long 

(L) and short (S) alleles, with the S form shown to have reduced transcriptional 

efficiency, decreased 5HTT expression and 5HT uptake (Lesch et al., 1996). 
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Posttranscriptionally, protein kinase C (PKC), protein phosphatase 2A (PP2A) 

and p38 are all involved in the regulation of 5HTT activity.  Multiple serine and 

threonine phosphorylation sites have been located on the cytoplasmic domains 

of 5HTT and phosphorylation appears to play a major role in regulating 5HTT 

trafficking and thus its ability to take up 5HT.  Activation of PKC has been 

shown to phosphorylate 5HTT in a calcium-dependent manner, resulting in its 

internalisation and a decreased activity (Jayanthi et al., 2005, Ramamoorthy et 

al., 1998, Samuvel et al., 2005).  Conversly, inhibition of protein phosphatase 

2A (PP2A) also increases 5HTT phosphorylation and subsequent internalisation 

(Ramamoorthy et al., 1998), highlighting the important role phosphorylation 

plays in regulating 5HTT.  Interestingly 5HT has been found to decrease 5HTT 

phosphorylation, thus inhibiting its internalisation (Ramamoorthy et al., 1998).  

This may be a negative feedback mechanism to prevent 5HTT downregulation 

when high levels of extracellular 5HT are present.   The mitogen-activated 

protein kinase (MAPK) p38 also regulates the activity of 5HTT in manner 

distinct from that of PKC, by regulating the delivery of 5HTT to the plasma 

membrane (Samuvel et al., 2005).  In this study inhibition of p38 decreased 5HT 

uptake by attenuating the levels of the transporter present at the membrane.  

Furthermore, receptor mediated activation of p38 has been shown to result in 

enhanced 5HTT activity, by a process that was independent of 5HTT trafficking 

(Zhu et al., 2005).  This effect was dependent on activity of PP2A.  Taken 

together, these finding suggest the importance of phosphorylation in the 

regulation of 5HTT activity, in addition to its regulation at a genetic level (Figure 

1.12). 
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Figure 1.6  Diagram of the chemical structure of 5- hydroxytryptamine 
(5HT). 
 
5HT is a biogenic amine. It structure comprises of an amino group, which is 
attached to an indole group by an ethyl chain. 
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Figure 1.7  5HT biosynthesis and metabolism pathway . 
 
5HT is synthesised from dietary tryptophan, which is converted to 5-hydroxytryptophan by the enzyme tryprophan hydroxylase, 
then to 5HT by a non-specific decarboxylase.  Degradation occurs by the enzyme monoamine oxidase-A, resulting in the formation 
of 5-hydroxyindoleacetic acid, which is excreted in urine. 
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Figure 1.8  General Structure of a GPCR. 
 
Diagram represents a typical GPCR, consisting of seven transmembrane-
spanning α-helices, with an extracellular N-terminus and intracellular C-
terminus.  The central core comprises transmembrane domain II, III, V and VI, 
and is essential in ligand binding.  Glycosylation sites towards the N-terminus 
as thought to be involved in receptor trafficking.  Figure adapted from Ulloa-
Aguirre et al (1999). 
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Figure 1.9  The function of the G-protein in mediat ing agonist induced signal transduction. 
 
The binding of agonist to a GPCR results in coupling of the α-subunit of its associated G-protein to the receptor and subsequent 
exchange of GDP for GTP.  Exchange of GDP for GTP results in the dissociation of α and βγ subunits, allowing them to interact 
with effector proteins and initiate cellular responses.  The intrinsic GTPase activity of the α-subunit hydrolyses GTP to GDP, 
resulting in the reassociation of α and βγ subunits and terminates receptor signalling. 
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Figure 1.10  Diagram summarising mechanisms by whic h 5HT receptors mediate their response. 
 
All 5HT receptors except the 5HT3 are G-protein-coupled receptors, with different receptors coupled to different G-proteins to elicit 
a reponse.  The 5HT3 receptor is a ligand-gated non-selective cation channel.



 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11  Diagram of proposed topology of the 5H T transporter (5HTT). 
 
5HTT is comprised of 12 transmembrane domains connected by intracellular and extracellular loops with both the C- and N-
terminus located in the cytoplasm.  Figure adapted from Torres et al (2003). 
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Figure 1.12  Post-translational regulation of the a ctivity of the 5HT 
transporter (5HTT). 
 
Activation of protein kinase C (PKC) results in the phosphorylation and 
subsequent inactivation and internalisation of 5HTT.  The presence of 5HT 
inhibits 5HTT phosphorylation retaining active 5HTT at the plasma membrane.  
p38 MAP kinase is required for the trafficking of active 5HTT back to the plasma 
membrane.  Furthermore the activation of p38 by cell surface receptors such as 
the adenosine receptor is important in maintaining 5HTT in its active state, a 
process that is dependent on protein phosphatase 2A (PP2A). 
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1.5  ROLE OF 5HT AND 5HTT IN PULMONARY HYPERTENSION 

 

In the lungs, 5HT is locally released from pulmonary neuroendocrine cells and 

neuroepithelial cell bodies distributed throughout the airways.  The lungs play 

an important role in the removal of 5HT from the circulation, with as much as 

95% being taken up or inactivated (Gaddum et al., 1953, Thomas and Vane, 

1967, Wiersma and Roth, 1980).  Under normal circumstances, pulmonary 

tissue is exposed to low levels of 5HT as it is taken up and stored in platelets, 

thus removing it from the circulation.  However, under hypoxic conditions 

(Johnson and Georgieff, 1989) and during situations involving mechanical strain 

(Pan et al., 2006) large amounts of 5HT are secreted.  In the pulmonary 

circulation 5HT is thought to play a role in promoting SMC proliferation, 

vasoconstriction and thrombosis, processes involved in the development of 

PAH. 

A large body of evidence now exists implicating 5HT in the development of the 

condition.  For instance, several patients with PAH have elevated plasma levels 

of 5HT, in addition to a decrease in the levels of 5HT stored in platelets (Herve 

et al., 1995).  Moreover, 5HT was also implicated in the development of PAH in 

patients following treatment with anorexigens such as aminorex and 

fenfluramine derivatives.  Aminorex increases plasma levels of 5HT by inducing 

its release from platelets and attenuating its breakdown by inhibiting MAO 

(Zheng et al., 1997, Fishman, 1999).  Fenfluramine derivatives also increase 

levels of circulating 5HT.  These anorexigens interact with 5HTT, stimulating the 

release of 5HT from platelets and inhibit its reuptake (Buczko et al., 1975, 

Fristrom et al., 1977). Furthermore, in PAECs from PAH patients, increased 

TPH1 expression and 5HT synthesis has been observed and this was thought 

to contribute to increased SMC proliferation (Eddahibi et al., 2006).  Another 

study found that the effects of chronic hypoxia were markedly attenuated in 

mice deficient in TPH, with reductions in right ventricular pressure (RVP) and 

vascular remodelling reported (Morecroft et al., 2007).  Together, these 

observations confirm an important role for 5HT in vascular remodelling during 

PAH. 
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Both 5HT receptors and 5HTT contribute to the actions of 5HT in the pulmonary 

hypertensive process.  5HT is a potent vasoconstrictor and in the human 

pulmonary arteries mediates its effects via the 5HT1B receptor (Morecroft et al., 

1999), whilst the 5HT2A receptor is important in the contractile response in other 

species, including rats (Chand and Altura, 1980, MacLean et al., 1996).  

However, in rats maintained under chronic hypoxic conditions, contractile 

responses to 5HT are enhanced and this process is mediated by both 5HT2A 

and 5HT1B receptors (MacLean et al., 1996, Keegan et al., 2001).  5HT1B 

receptors have also been found to be upregulated in experimental PAH 

(Rondelet et al., 2003).  In addition to the role of 5HT receptors in 

vasoconstriction, they also play a role in mediating vascular remodelling.  In 

chronically hypoxic rats, administration of a 5HT1B antagonist significantly 

reduced hypoxia-induced right ventricular hypertrophy (RVH) and vascular 

remodelling (Keegan et al., 2001).  Furthermore, in 5HT1B knock-out mice, 

chronic hypoxia-induced PAH was also markedly attenuated (Keegan et al., 

2001).  The 5HT2B receptor has also been reported to facilitate the development 

of PAH.  In one study, chronically hypoxic mice with inactive 5HT2B receptors 

failed to develop PAH (Launay et al., 2002).  This study also observed an 

increase in 5HT2B receptor transcript in patients with idiopathic PAH.  

Additionally, treatment with 5HT2A receptor-selective antagonists have been 

found to have beneficial effects, improving survival and reducing vascular 

remodelling in monocrotaline-induced PAH (Hironaka et al., 2003).  

Furthermore, several cellular studies have highlighted the mitogenic effects of 

5HT in the pulmonary cells and therefore its potential contribution to vascular 

remodelling.  In some cell types the mitogenic effects are mediated via 5HT 

receptors. In rat pulmonary artery fibroblasts for example, inhibition of the 5HT2A 

receptor markedly reduced 5HT-induced proliferation (Welsh et al., 2004).  

Similar effects have also been observed in other fibroblast cell lines (Lee et al., 

1999).  However, it is the 5HTT that has attracted most attention in recent times 

and several lines of evidence suggest a major role for 5HTT in vascular 

remodelling. 

5HTT expression has been found to be elevated in the lungs of many patients 

with PAH.  This increased expression has been associated with polymorphisms 

in the 5HTT gene (Eddahibi et al., 2003).  In a study carried out by Eddahibi et 
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al (2001), 65% of patients with idiopathic PAH were found to be homozygeous 

for the L-allelic variant, conferring increased expression of 5HTT, compared to 

only 27% of controls.  Subsequently, in patients with the LL-genotype, PAH was 

found to be more severe than those with LS or SS-genotypes who expressed 

lower levels of 5HTT (Eddahibi et al., 2003).  Various animal models also 

support the role of 5HTT in the development of PAH and its contribution to 

vascular remodelling.  Such studies have shown that administration of 5HTT-

selective inhibitors protect against both hypoxia- and monocrotaline-induced 

PAH (Guignabert et al., 2005, Marcos et al., 2003).  Furthermore, mice deficient 

in 5HTT display a marked reduction in RVH and vascular remodelling in 

response to hypoxia compared with control (Eddahibi et al., 2000a).  Conversly, 

mice over-expressing 5HTT display increased RVP under normoxic conditions, 

and have notably exaggerated responses to hypoxia compared to control 

animals, with elevated vascular remodelling and RVH (MacLean et al., 2004). 

The levels of 5HTT, as well as 5HT1B, 5HT2A and 5HT2B receptors have all been 

found to be elevated in pulmonary arteries of patients with PAH (Marcos et al., 

2004).  However, only 5HTT is upregulated in PASMCs (Marcos et al., 2004), 

suggesting it may contribute specifically to SMC hyperplasia and play a role in 

mediating vascular remodelling.    In fact, in mice engineered to over-express 

5HTT in SMCs only, increases in RVP, RVH and vascular remodelling were 

observed to occur spontaneously by 8 weeks of age, with these effects 

worsening with time (Guignabert et al., 2006).  Furthermore, augmented 

proliferative capabilities of PASMCs from patients with PAH have been 

associated with increased expression levels of 5HTT (Marcos et al., 2004, 

Eddahibi et al., 2001).  The enhanced proliferation of these cells to 5HT or 

serum can be abolished by 5HTT inhibitors such as citalopram and fluoxetine 

(Marcos et al., 2004).  In further support of its role in vascular remodelling, the 

increase in 5HTT expression observed in PAH patients was located mainly in 

the medial layer of remodelled vessels (Eddahibi et al., 2001).  Hypoxia has 

also been found to result in increased 5HTT expression and transport activity, 

augmenting mitogenic responses in PASMCs (Eddahibi et al., 1999). Therefore, 

through the actions of 5HTT and its receptors, 5HT appears to play a major role 

in the development of pulmonary hypertension, contributing to both 

vasoconstriction and vascular remodelling. 
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1.6  ERK MAP KINASE PATHWAY 

 

The extracellular-signal regulated kinase (ERK) MAP kinase pathway is crucial 

in mediating the mitogenic effects of 5HT (Lee et al., 1999, Lee et al., 2001, 

Suzuki et al., 2003, Liu et al., 2004).  MAP kinases (MAPKs) are a family of 

well-conserved proteins expressed in all eukaryotic cells.  Three major classes 

of MAPKs have been identified: ERK, p38 and c-jun N-terminal kinase (JNK).  

MAPKs are serine/threonine kinases and are activated by phosphorylation on a 

Thr-X-Tyr motif.  ERK has the dual phosphorylation motif Thr-Glu-Tyr, JNK has 

Thr-Pro-Tyr and the Thr-Gly-Tyr motif is present on p38 (Davis, 1995).  The 

overall sequence identity among ERK, p38 and JNK is 40-45%.  p38 and JNK 

are activated by various stress stimuli, including cytokines, osmotic shock and 

hypoxia (Welsh et al., 2001b, Davis, 2000, Zarubin and Han, 2005) (Figure 

1.13).   

Currently eight ERK MAPKs have been identified, termed as ERK1-8 

(Bogoyevitch and Court, 2004).  ERK1 and ERK2 were the first identified 

members and are the most extensively studied.  They are expressed 

ubiquitously and have 90% sequence identity (Boulton et al., 1991).  The 

Ras/Raf/MEK/ERK cascade is a well conserved pathway that is involved in the 

control of many fundamental cellular processes such as proliferation, 

differentiation and apoptosis (Lewis et al., 1998, Pearson et al., 2001).  A wide 

range of extracellular stimuli have been found to activate ERK, via the 

stimulation of tyrosine receptor kinases and GPCRs, through Ras-dependent 

and Ras-independent pathways (Lewis et al., 1998).  The Ras/Raf/MEK/ERK 

pathway conveys signals in the form of a cascade of phosphorylation events.  

Receptor-mediated activation of Ras, a small GTPase, at the plasma 

membrane promotes its binding to the N-terminus of Raf kinases (Raf-1, A-Raf, 

B-Raf), recruiting Raf to the membrane and subsequently activating them.  Raf 

activation is also dependent on phosphorylation at multiple sites.  In the case of 

Raf-1, phosphorylation sites important for its activation at Ser338, Tyr341, 

Thr491 and Ser 949 have been identified (Chong et al., 2001). Once active Raf, 

then phosphorylates MEK (mitogen activated protein kinase kinase) within its 

activation loop at two serine residues (Ser 217 and Ser 221) (Alessi et al., 
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1994).  MEK may then subsequently activate ERK by phosphorylating tyrosine 

and threonine residues located within its kinase activation loop.  In the case of 

human ERK1, phoshorylation occurs at Tyr202 and Thr 204, while human 

ERK2 is phosphorylated on Tyr185 and Thr197.  Unlike MEK, significant ERK 

activation requires phosphorylation at both sites, with Tyr phosphorylation 

preceeding that of Thr (Ferrell and Bhatt, 1997).  Active ERK is then able to 

mediate many cellular processes by acting on substrates in the nucleus and 

cytoplasm (Kolch, 2005) (Table 1.2).   

In quiescent cells ERK is localised in the cytoplasm (Torii et al., 2004).  Under 

these circumstances, ERK forms a complex with MEK, which retains it in the 

cytoplasm due to the presence of a nuclear export sequence in the amino-

terminal domain of MEK (Fukuda et al., 1996).  Activation of ERK leads to the 

dissociation of the MEK/ERK complex allowing ERK to translocate to the 

nucleus where it can phosphorylate multiple transcription factors (refer to Table 

1.2), modulating gene transcription and mediating many physiological 

responses (Torii et al., 2004, Brunet et al., 1999, Lewis et al., 1998, Pearson et 

al., 2001) (Figure 1.14).  ERK activity is terminated by dephosphorylation of the 

tyrosine and threonine groups within its activation loop.  Dual specificity 

phosphatases (DUSPs), which display differing levels of specificity for MAPKs, 

play an important regulatory role by dephosphorylating and inactivating ERKs.  

At least nine DUSPs have been isolated in mammalian cells and it is thought 

that these phosphatases participate in the negative feedback control of MAPK 

activation (Keyse, 2000).  Nuclear accumulation of ERK is transient and 

inactivated ERK must relocalise to the cytoplasm, a process which is critical for 

further stimulation to occur.  It has been suggested that the relocalisation of 

inactive ERK occurs by a MEK-dependent transport system, whereby MEK 

transiently enters the nucleus and binds inactive ERK, exporting it back to the 

cytoplasm (Adachi et al., 2000). 

The ERK MAPK cascade is regulated at many levels.  A number of scaffolding 

proteins regulate signalling through this pathway (Kolch, 2005).  Kinase 

suppressor of Ras-1 (KSR1) acts as a scaffold and has been found to bind all 

kinase members of the ERK cascade (Morrison, 2001, Kolch, 2005).  For 

example, KSR promotes MEK activation by presenting MEK to activated Raf 

(Muller et al., 2001).  Exogenous inhibitors of the ERK/MAPK pathway also 
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exist.  One such inhibitor RKIP (Raf kinase inhibitor protein) bind both Raf and 

MEK preventing their interaction and thus MEK phosphorylation and activation 

(Yeung et al., 1999).   

β-arrestins, which are known to play a role in desensitizing and internalising 

GPCRs, also act as scaffolding proteins for the ERK cascade.  β-arrestins 

consist of two 46kDa proteins, β-arrestin-1 and β-arrestin-2 (Luttrell and 

Lefkowitz, 2002).  Following agonist binding and subsequent GPCR 

phosphorylation by GPCR kinases (GRKs), β-arrestins directly interact with the 

phosphorylated GPCR at the cell surface.  β-arrestin binding uncouples the 

receptor from heterotrimeric G proteins and targets it to clathrin-coated pits for 

removal from the plasma membrane by endocytosis (Ceresa and Schmid, 

2000).  β-arrestin can simultaneously bind various other signalling proteins, 

including components of the ERK cascade.  All three ERK pathway components 

have been observed in GPCR/β-arrestin complexes.  In rat kidney epithelial 

cells, protease-activated receptor 2 (PAR2) stimulation results in the formation 

of complexes containing internalised receptor, β-arrestin-1, Raf-1 and activated 

ERK (DeFea et al., 2000).  Similarly, in COS-7 and HEK293 cells, activation of 

the angiotensin type 1a receptor (AT1aR) leads to the formation a receptor, β-

arrestin-2, Raf-1, MEK1 and ERK2 complex (Tohgo et al., 2002). 

β-arrestins not only bind ERK cascade components but also contribute to 

GPCR-mediated ERK activation.  For instance, overexpression of β-arrestin has 

been found to significantly increase angiotensin-mediated ERK activation in 

COS-7 cells (Tohgo et al., 2002).  Furthermore, levels of active ERK bound to 

β-arrestin complexes are increased when Raf-1 is overexpressed and markedly 

reduced when a kinase-inactive MEK protein is expressed, indicating that the β-

arrestin scaffold acts as a platform for signal transmission from Raf to MEK and 

ERK (Luttrell et al., 2001).  In addition to this, β-arrestins appear to target ERK 

activity to a pool of cytoplasmic substrates.  In the case of the AT1aR, β-arrestin 

facilitates GPCR-mediated ERK activation but inhibits ERK-dependent 

transcription by binding to active ERK and retaining it in the cytoplasm (Tohgo 

et al., 2002).  Furthermore, the stability of the GPCR/ β-arrestin interaction 

determines the level of β-arrestin-bound ERK, thus influencing the subcellular 

localization of activated ERK and the physiological consequences of ERK 

activation (Tohgo et al., 2003). 
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Figure 1.13  p38 and JNK signalling cascades. 
 
The activation of p38 and c-Jun N-terminal kinase (JNK) requires a 3-tiered 
cascade.  A MAP kinase (MAPK) is activated by a MAP kinase kinase 
(MAP2K), which it turn is also activated by phosphorylation by a MAP kinase 
kinase kinase (MAP3K).  MAPKs can be activated by a least 2 MAP2Ks and 
several MAP3Ks.  MAP2Ks display substrate specificity, while MAP3Ks can 
activate multiple MAPK cascades.  p38 has 4 isoforms, α,β,γ and δ, while JNK 
has 3 isoforms, JNK 1,2 and 3 (Raman and Cobb, 2003). 
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Transcription 
factors  

Kinases and 
phospatases 

Cytoskeletal 
proteins 

Signaling 
proteins 

Apoptotic 
proteins/ 

proteinases 

Other 
proteins 

      
ALM1 DAPK Annexin XI EGFR Bad Amphiphysin 1 

Androgen receptor ERK1/2 Caldesmon ENaCβ/γ Bim-EL CPSII/CAD 
ATF2 FAK1 CENP-E Fe65 Calpain CR16 
BCL6 GRK2 Connexin FRS2 Caspase 9 GRASP55 

BMAL1 Inhibitor-2 Cortactin Gab1 EDD GRASP65 
CBP Lck Crystallin Gab2 IEX1 HABP1 

CEBPβ MAPKAP3 DOC1R GAIP MCL-1 Histone H 
CRY1/2 MAPKAP5 Dystrophin Grb10 TIS2 HnRNP-K 

E47 MEK1/2 Lamin B2 IRS1 TNFR CD120a KIP 
Elk1 MKP1/2 MAP1 LAT  MBP 
ER81 MKP3 MAP2 LIFR  PHAS-I 
ERF MKP7 MAP4 MARCKS  CPLA2 

Estogen receptor MLCK MISS Naf1α  Rb 
c-Fos MNK1/2 NF-H PDE4  SAP90/PDS95 
Fra1 MSK1/2 NF-M PLCγ  Spinophilin 

GATA1/2 PAK1 Paxillin PLCβ  Topoisomerase II 
HIF1α PTP2C Stathmin KV4.2  Tpr 
HSF1 Raf1 SWI/SNF KSR1  TTP(Nup47) 
ICER B-Raf Synapsin 1 Rab4  Tyrosine  
c-Jun RSK1-4 Tau SH2-B  hydroxylase 

Microphthalmia S6K Vinexin β ShcA  Vif 
c-Myc Syk Calnexin Sos1  Vpx 
N-Myc   Spin90   

Net (Sap2)   TSC2   
NFATc4      
NF-IL6      
NGF1-

B/TR3/Nur77 
     

Pax6      
PPARγ      

p53      
Progesteron 

receptor 
     

RNA Pol II      
PUNX2      
Sap1      

Smad1      
Smad2/3      

SP1      
SRC1      

SREBP1/2      
STAT1/3      
STAT5a      

TAL1/SCL      
TFII-I      
TFIIIB      
TGIF      
TIF1A      
Tob      
UBF      

 
Table 1.2  ERK Substrates. 
 
Once activated ERK is able to phosphorylate its substrates, with different 
activating stimuli resulting in the phosphorylation of different substrates.  More 
than 150 cytoplasmic and nuclear ERK substrates have been identified, including 
protein kinases, protein phosphatases, transcription factors, scaffolding proteins, 
signalling molecules, cytoskeletal proteins, receptor and apoptosis-related 
proteins.  Table adapted from Lu and Xu (2006). 
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Figure 1.14  ERK1/2 MAP kinase signalling pathway. 
 
Generally, ERK1/2 is activated by a cascade initiated by activation of the small G protein Ras, followed by activation of a Raf family 
member and subsequent activation of MEK1/2.  Raf can also be activated independently of Ras resulting in ERK activation (Lu and 
Xu, 2006).  Once active, ERK can then activate substrates in the nucleus, resulting in the transcription of target genes or act on 
substrates in the cytoplasm (refer to Table 1.2 for examples of substrate). 
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1.7  Rho AND Rho EFFECTORS 

 

Rho and its effectors have been implicated in the signalling pathways that 

contribute to vasoconstriction and vascular remodelling during the development 

of PAH and may also be involved in signal transduction downstream of 5HT.   

 

1.7.1  SMALL G-PROTEINS 

 

Rho belongs to the small GTP-binding protein superfamily of monomeric G 

proteins with molecular masses in the region of 20-40kDa.  Currently, more than 

one hundred small G proteins have been identified in eukaryotic cells, which 

can be characterised into five major families: Ras, Rho, Rab, Sar/Arf and Ran 

(Takai et al., 2001).  Small GTP-binding proteins play an important role in signal 

transduction, with the Ras family involved in gene expression, playing an 

important role in the activation of the ERK MAPK cascade. Cytoskeletal 

regulation is mediated via the Rho family, whereas the Rab and Sar1/Arf family 

are involved in regulating vesicular trafficking.  Finally, the Ran family regulate 

nucleocytoplasmic transport and microtubule dynamics involved in cell cycle 

progression (Takai et al., 2001). The Rho family has around 20 distinct 

members including, Rho, Rac, Cdc42, RhoD, RhoG, TC10, Rnd and TTF, which 

share 50-55% identity (Hall and Nobes, 2000).  In particular, Rho has 3 

isoforms A, B and C, with Rho A the most extensively studied.  All Rho isoforms 

can be selectively inhibited by the C3 transferase (C3) enzyme from Clostridium 

Botulinum by ADP-ribosylation  (Aktories et al., 1989).     

 

1.7.2 REGULATION OF Rho-GTPases 

 

Rho-GTPases, like other small G proteins, act as molecular switches by cycling 

between inactive GDP-bound and active GTP-bound states (Schmidt and Hall, 

2002, Jaffe and Hall, 2005).  These interactions take place at the plasma 

membrane and Rho-GTPases interact with the membrane via a twenty-carbon 

chain geranylgeranyl lipid residue attached to their C-terminus (Seabra, 1998).  

Guanine nucleotide exchange factors (GEFs) facilitate the exchange of GDP for 
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GTP, resulting in activation of the Rho-GTPase and subsequent downstream 

effector pathways.  GTPase activating proteins (GAPs) accelerate the intrinsic 

GTPase of Rho family members, resulting in their inactivation.  Guanine 

nucleotide dissociation inhibitors (GDIs) also play a role in regulating the activity 

of these small G proteins.  GDIs interact with GDP bound Rho-GTPases, 

sequestering them in the cytosol, inhibiting GDP dissociation and controlling 

cycling between the membrane and cytosol (Schmidt and Hall, 2002, Jaffe and 

Hall, 2005) (Figure 1.15).  Lysophosphatidic acid (LPA) was the first agonist 

identified to activate Rho (Ridley et al., 1992). Since then several other ligands 

acting on both GPCRs and receptor tyrosine kinases (RTKs) have been found 

to activate the small GTPase.  GEFs are critical mediators of Rho-GTPase 

activity and extracellular stimuli acting on membrane receptors are thought to 

activate GEFs, subsequently resulting in the activation of Rho-GTPase and 

downstream signalling pathways (Schmidt and Hall, 2002).  Some GEFs are 

highly specific towards a single GTPase, for example, p115RhoGEF is selective 

for Rho (Hart et al., 1996), whilst others such as Vav1 regulate the activity of 

Cdc42, Rac and Rho (Olson et al., 1996). 

 

1.7.3 PHYSIOLOGICAL FUNCTIONS OF Rho 

 

The Rho-GTPase family mediates a variety of biological responses.  In addition 

to the major role regulating assembly of the actin cytoskeleton (Hall, 1998), 

Rho-GTPases also participate in a variety of other functions mediated by a wide 

variety of effector proteins.  These process include cell polarity, gene 

transcription, vesicular transport, cell cycle progression, enzyme regulation and 

microtubule dynamics (Etienne-Manneville and Hall, 2002, Jaffe and Hall, 

2005).   

Rho itself mediates many diverse biological functions.  Implicated in the 

regulation of neuronal development, activation of Rho has been found to inhibit 

neurite extension and the formation of dendritic spines (Luo, 2000, Li et al., 

2000, Wong et al., 2000).  Rho also plays an important role in cell contraction.  

In the cardiovascular system for instance, vasoconstriction and vasodilation, 

process that control blood flow and are also important to normal physiological 

function can be regulated by Rho.  In aortic smooth muscle, numerous agonists 
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have been shown to activate Rho, which via its effector protein ROCK induces 

myosin light chain phosphorylation thereby promoting contraction (Fukata et al., 

2001, Sakurada et al., 2001).  Futhermore, Rho is also involved in the control of 

barrier function in vascular endothelial cells, which controls functions such as 

the extravasation of circulating lymphocytes into underlying tissues (van Nieuw 

Amerongen et al., 2000).  The contractile forces generated by Rho activation 

are thought to destabilise endothelial cell-cell junctions (Wojciak-Stothard et al., 

2001).  Moreover, during migration, the small GTPase regulates contractile 

forces required at the rear of the cell and is also associated with focal adhesion 

assembly (Raftopoulou and Hall, 2004).  In addition, Rho plays a role in 

phagocytosis, mediating type II phagocytosis by macrophages via the 

complement receptor (Caron and Hall, 1998).  A role in cell proliferation and cell 

cycle progression has also been described.  In fibroblasts Rho plays two 

important roles in this process, inhibiting expression of cyclin/cyclin dependent 

kinase (Cdk) inhibitor p21Waf/Cip1 and also inducing cyclin D1 expression in mid-

G1 phase  (Olson et al., 1998, Welsh et al., 2001a).  Rho also participates in the 

secretion of mediators such as histamine from immune cells (Norman et al., 

1996, Pinxteren et al., 2000).  Furthermore, Rho modulates gene expression by 

regulating transcription factors such as serum response factor (SRF) and NFкB  

(Hill et al., 1995, Perona et al., 1997).  The large and diverse array of responses 

elicited by Rho activation are regulated by its many effector proteins.  

 

1.7.4.  Rho EFFECTOR PROTEINS 

 

Several cellular targets of Rho have been identified.  These effectors interact 

specifically with the GTP-bound form of the GTPase at specific sites (Bishop 

and Hall, 2000).  The Rho effectors protein kinase N1 (PKN1) and PKN2 are 

involved in endosomal trafficking.  Other Rho effectors, mammalian diaphanous 

protein 1 (mDia1), mDia 2 and mDia 3 mediate both microtubule stabilisation 

and actin polymerisation.   Citron, another mediator is a kinase that is critical for 

cytokenesis and has also been implicated in other elements of cell cycle 

progression.  One of the most widely studied Rho effector proteins is ROCK, 

which plays an important role in mediating cell contractility. 
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1.7.5.  RHO ASSOCIATED KINASE (ROCK) 

 

ROCK, a 160kDa serine/threonine kinase, was the first identified substrate of 

Rho and was initially characterised for its role in mediating stress fibre formation 

and focal adhesions (Leung et al., 1996, Somlyo and Somlyo, 2000).  Two 

isoforms have been identified, ROCK1 and ROCK2, which have 65% overall 

sequence identity.  The kinase domain of these proteins is highly conserved, 

exhibiting 92% identity (Nakagawa et al., 1996).  ROCK1 is widely expressed in 

a variety of tissues including, the heart, lung, kidney, pancreas and skeletal 

muscle, with little expression detected in the brain.  ROCK2 however, is highly 

expressed in the brain, with low levels also detected in the lung (Amano et al., 

2000).  Structurally, ROCK is composed of an N-terminal kinase domain, a 

coiled-coil domain and an auto-inhibitory C-terminus.  The auto-inhibitory region 

contains the Rho-binding (RB) and pleckstrin homology (PH) domains.  In its 

resting state, both RB and PH domains can bind independently to the amino 

terminal kinase domain, inhibiting kinase activity.  Binding of Rho-GTP with the 

RB domain alters the conformation of ROCK, disrupting the interaction between 

auto-inhibitory and kinase regions, freeing the kinase domain and thus 

activating ROCK (Amano et al., 2000, Riento and Ridley, 2003) (Figure 1.16).  

ROCK can also be activated independently of Rho by some lipids, especially 

arachadonic acid (AA) (Feng et al., 1999).  Furthermore, other small GTPases, 

including Gem and RhoE, have been shown to bind to ROCK and have an 

inhibitory effect.  RhoE inhibits ROCK1 by binding to its amino-terminal region, 

encompassing the kinase domain, and attenuates the ability of ROCK to 

phosphorylate its downstream targets (Riento et al., 2003).  Gem on the other 

hand, binds the coiled-coil domain of ROCK adjacent to the RB domain.  This 

has been suggested to modify the substrate specificity of ROCK, as it inhibits 

ROCK-mediated phosphorylation of myosin light chain but not LIM kinase 

(Ward et al., 2002).  
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1.7.6.  ROCK EFFECTOR PROTEINS 

 

ROCK activates a variety of proteins to mediate its effects.  Most notably, 

ROCK interacts with and phosphorylates both myosin light chain (MLC) and the 

myosin-binding subunit of MLC phosphatase (Amano et al., 1996, Kawano et 

al., 1999).  MLC phosphatase is inhibited by phosphorylation, resulting in 

increased MLC phosphorylation. This, in addition to the direct phosphorylation 

of MLC by ROCK, stimulates the actin-activated ATP-ase activity of myosin and 

promotes the assembly of actin-myosin filaments and mediates stress fibre 

formation (Amano et al., 1996, Kawano et al., 1999, Bresnick, 1999).  Activation 

of these substrates also increases tension generation and induces contraction 

in muscular cells (Fukata et al., 2001, Sakurada et al., 2001).  Another ROCK 

target is LIM kinase (LIMK) which, when phosphorylated by ROCK, 

subsequently phosphorylates and inactivates cofilin, resulting in stabilisation of 

actin filaments (Bamburg et al., 1999, Maekawa et al., 1999).  ROCK also 

activates a ubiquitous Na+/H+ exchange protein (NHE1), which also contributes 

to stress fibre formation as well as focal adhesion formation (Tominaga and 

Barber, 1998, Tominaga et al., 1998).  Other ROCK substrates that contribute 

to actin assembly are adducin and the ERM (ezrin/radaxin/moesin) family 

proteins.  Phosphorylation of adducin by ROCK may be necessary for 

membrane ruffling, while activation of ERM is thought to be involved in microvilli 

formation (Amano et al., 2000).  Furthermore, the ROCK-mediated activation of 

collapsin response mediator protein-2 (CRMP2) participates in the process of 

neuronal growth cone collapse (Arimura et al., 2000).  ROCK also 

phosphorylates the intermediate filament proteins, vimentin, neurofilament and 

glial fibrillary acidic protein (GFAP) to induce depolymerisation, a function 

important in cytokinesis (Kosako et al., 1997, Goto et al., 1998, Hashimoto et 

al., 1998, Yasui et al., 1998).  In summary, it can be seen that ROCK activates 

a wide range of effector proteins necessary to tranduce signals initiated by Rho 

activation (Figure 1.17).  Activation of the Rho/ROCK pathway has been 

implicated in variety of pathological condition such as hypertension, vascular 

inflammation, atherosclerosis and cerebral ischemia (Rikitake and Liao, 2005).  

ROCK may also play a role in the development of PAH, which is discussed 

extensively in the introduction to Chapter 4. 
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Figure 1.15  Regulation of Rho-GTPase activation. 
 
Small GTPases such as Rho cycle between an inactive GDP-bound form and 
an active GTP-bound form.  Activation is controlled by guanine nucleotide 
exchange factors (GEFs), which facilitate exchange of GDP for GTP.  GTPase 
activating proteins (GAPs) increase intrinsic GTPase activity of Rho family 
members thereby deactivating them.  Guanine nucleotide dissociation inhibitors 
(GDIs) also regulate activity by sequestering Rho-GTPases in the cytosol. 
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Figure 1.16  Regulation of Rho-kinase (ROCK) activi ty. 
 
Binding of Rho-GTP to the Rho-binding domain (RB) of ROCK disrupts an 
autoinhibitory intramolecular interaction, freeing the catalytic kinase domain and 
allowing it to interact with ROCK substrates.  ROCK remains active until GTP 
hydrolysis of Rho occurs.  (PH, pleckstrin homology domain).  Figure adapted 
from Amano et al (2000). 
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Figure 1.17.  Summary of ROCK effectors and functio ns. 
The activation of ROCK by the small G protein Rho results in the phosphorylation of downstream substrates that have multiple 
physiological effects.  ROCK substrates include collapsin response mediator protein 2 (CRMP2), adducin, intermediate filament 
proteins (IFs), LIM kinase (LIMK), ERM family proteins (ezrin/radixin/moesin), myosin light chain (MLC) and the myosin binding 
subunit of myosin phosphatase (MBS).  Figure adapted from Amano et al (2000). 
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1.8  5HT-INDUCED SIGNALLING PATHWAYS INVOLVED IN 

VASCULAR REMODELLING 

 

Although 5HTT appears to be the major player in mediating the mitogenic 

effects of 5HT in human PASMCs (Marcos et al., 2004, Eddahibi et al., 1999), 

5HT receptors have also been found to contribute to the signalling process 

required for cellular proliferation even if they do not directly induce proliferation 

in their own right.  Much of the work on 5HT-induced mitogenic signalling has 

been carried out in bovine PASMCs.  Briefly, these studies suggest that 

formation of reactive oxygen species (ROS) by the activation of NADPH 

oxidase, following 5HT entry via 5HTT, results in the activation of ERK, a 

process that is pivotal in mediating the proliferative effects of 5HT (Lee et al., 

1999, Lee et al., 2001, Lee et al., 1998b).  Once in the nucleus, activated ERK 

can phosphorylate transcription factors including GATA-4 (Suzuki et al., 2003), 

Elk-1 and Erg-1, as well as inducing cyclin D1 expression (Liu et al., 2004) and 

thus promoting proliferation.  In this cell type, 5HT receptors have also been 

found to contribute to the proliferative effects of 5HT independently of ERK 

activation.  Stimulation of the 5HT1B/1D receptor has been shown to result in the 

activation of the small G-protein Rho and the resulting activation of ROCK, its 

downstream mediator, facilitates the translocation of ERK to the nucleus where 

it can mediate its mitogenic effects (Liu et al., 2004).  Futhermore, the 5HT2A 

receptor is also involved in the mitogenic response.  This receptor appears to 

activate the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB) 

pathway, resulting in the downstream activation of the mammalian target of 

rapamycin (mTOR) and subsequent p70 ribosomal S6 kinase (S6K1) activation 

(Liu and Fanburg, 2006).  Reactive oxygen species were also found to be a 

requirement for PKB activation in this instance.  Furthermore, inhibition of MEK 

by various means blocked 5HT-induced S6K phosphorylation but not that of 

PKB suggesting another pathway may be involved (Liu and Fanburg, 2006). 

Therefore, in this cell type, diverse, independent signalling pathways are 

activated by 5HT, via 5HT receptors and 5HTT, resulting in PASMCs 

proliferation (Figure 1.18). 
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The signalling pathways utilised by 5HT appear to be cell type-specific.  In a 

study using commercially available human PASMCs, 5HT was found to induce 

proliferation by a different mechanism for that seen in bovine PASMCs, 

however this model also highlighted the requirement for both 5HTT and 5HT 

receptors in the mitogenic process.  In this case, the 5HT2A receptor mediated 

ERK activation in response to 5HT, while 5HT transported into the cell via 5HTT 

was subsequently broken down by MAO-A to produce reactive oxygen species 

required to facilitate the translocation of ERK to the nucleus (Lawrie et al., 2005) 

(Figure 1.19).  A role for MAO has also been suggested in 5HT signal 

transduction in cardiac myocytes.  In these cells, the 5HT2B receptor was found 

to contribute to the proliferative effects of 5HT, as inhibition of this receptor 

resulted in the reduction of 5HT-mediated ERK activation.  However, inhibition 

of 5HTT had a more marked effect, inhibiting ERK activation by more than 80%.  

As suggested in human PASMCs, entry of 5HT into the cell via 5HTT, resulted 

in the generation of reactive oxygen species by the action of MAO-A.  In this 

instance, the generation of ROS were required to induce ERK activation 

(Bianchi et al., 2005).  Various 5HT receptors has been demonstrated to 

coupled positively to ERK activation, including 5HT1A (Cloez-Tayarani et al., 

2004, Adayev et al., 2003), 5HT2A (Gooz et al., 2006), 5HT2B (Nebigil et al., 

2003, Nebigil et al., 2000b), 5HT4 (Norum et al., 2003), and 5HT7 (Lin et al., 

2003, Norum et al., 2003). In the case of the 5HT2B receptor, activation of ERK 

promotes cell survival in addition to progression through the cell cycle (Nebigil 

et al., 2003, Nebigil et al., 2000b).  Taken together, these studies suggest that 

ERK activation is required in order to mediate the mitogenic effects of 5HT and 

also highlight the importance of 5HTT and 5HT receptors in this process.  

In addition to its role in mitogenesis, 5HT has also been found to promote cell 

migration.  In human aortic endothelial cells, 5HT has been shown to potently 

enhance cell migration through a RhoA- and ERK-dependent pathway mediated 

by 5HT1 receptors and 5HTT (Matsusaka and Wakabayashi, 2005a).  Similar 

effects were also observed in human aortic SMC, although in this cell type 

migration was mediated via the 5HT2A receptor (Matsusaka and Wakabayashi, 

2005b).  Likewise, 5HT induces PASMC migration, a process that may be 

important in vascular remodelling given the extension of PASMCs into non-

muscular pulmonary artery during PAH.  Day et al (2006) reported that in bovine 
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PASMC, 5HT stimulated migration and cytoskeletal reorganisation through 

activation of the 5HT4 receptor, a process that required the elevation of cAMP 

and activation of a chloride channel (Day et al., 2006).  In this cell type, ERK 

activation is also required for migration to occur, although this was not mediated 

by either the 5HT4 receptor subtype or elevation of cAMP.  Regulation of motility 

by ERK may therefore occur in parallel to 5HT-induced cytoskeletal 

rearrangments and be mediated by another receptor (Day et al., 2006).   

5HT also plays a role in PAH by influencing other pathways important in the 

development and maintanence of the condition.  For example recently, 5HT was 

found to transactivate PDGFRβ in PASMCs and this process was dependent on 

5HTT.  The transactivation process described was important in mediating SMC 

proliferation and migration (Liu et al., 2007).  Furthermore, 5HT has also been 

observed to interact with the BMP signalling pathway and promote the 

development of PAH.  In a study using BMPR2-deficient mice, treatment with 

5HT exaggerated the pulmonary hypertensive effects of chronic hypoxia 

compared to wild-type littermates.  It was proposed this effect occurred due to 

the ability of 5HT to inhibit BMPR2 signalling, attenuating Smad 1/5 

phosphorylation and the transcription of BMP/Smad target genes (Long et al., 

2006).  It can therefore be seen that 5HT stimulates diverse signalling 

pathways, mediated via 5HTT and various 5HT receptors, and also modulates 

other signalling pathways resulting in the promotion of vascular remodelling and 

thus contributing to the development of PAH.  
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Figure 1.18  5HT-induced mitogenic signalling trans duction pathways in bovine pulmonary artery smooth muscle cells 
(PASMCs). 
 
In bovine PASMCs 5HT-induced proliferation requires co-operation between ERK, ROCK and PI3K pathways.  The action of 5HT 
on the 5HT transporter (5HTT) results in the activation of the ERK pathway, a process that is dependent on the production of 
reactive oxygen species (ROS) by NADPH oxidase.  The 5HT1B receptor is involved in mediating the activation of ROCK, which is 
required to facilitate the translocation of active ERK to the nucleus.  Additionally, activation of the PI3K/Akt pathway by the 5HT2A 

receptor is also important in the proliferative response.  Figure adapted from Liu and Fanburg (2006). 
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Figure 1.19  5HT-induced mitogenic signal transduct ion pathways in human PASMCs. 
 
In human PASMCs the 5HT2A receptor and the 5HT transporter (5HTT) co-operate to mediate the proliferative effects of 5HT.  The 
5HT2A receptor is involved in the process of ERK activation, while transport of 5HT into the cell via 5HTT results in the formation of 
reactive oxygen species (ROS) due to 5HT breakdown by the enzyme monoamine oxidase-A (MAO-A).  ROS produced are 
required for the translocation of ERK to the nucleus, where it activates the transcription factor GATA-4 and transcription of 
mediators that result in cellular proliferation.  Figure adapted from Lawrie et al (2005). 
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1.9  AIM 
 

The monoamine and mitogen, 5HT has been implicated in the development of 

PAH.  However, the signal transduction pathways utilised by 5HT to induce cell 

proliferation and thus contribute to pulmonary vascular remodelling are not fully 

understood.  Therefore, the aim of this thesis is to characterise cellular 

signalling pathways that contribute to the mitogenic effects of 5HT and 

determine a role for these pathways in vivo. 
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Chapter 2 

MATERIALS AND METHODS 
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2.1  Materials  

 

Abcam Ltd, Cambridge, UK: 

Anti-SP1 antibody (ab13370), anti-GAPDH antibody (ab8245). 
 

Amersham Biosciences UK Ltd, Buckinghamshire, UK: 

[methyl-3H]Thymidine (specific activity 2.0Ci/mmol), Rainbow Markers (14.4-220 

kDa). 

 

Biorad Laboratories Ltd, Hemel Hempstead, UK: 

Bradford’s reagent. 
 

Calbiochem, Merck Biosciences Ltd, Nottingham UK: 

Anti-cyclinD1(Ab-3) mouse mAb (CC12), conconavalin A from 
Conconavalin ensiformis (conA), phorbol-12-myristate-13-acetate (PMA), 
U0126, SB203580.  
 

Cambrex Bio Science, Berkshire, UK: 

Dulbecco’s Modified Eagle Medium with 4.5g/l glucose (DMEM), Dulbecco’s 

Phosphate Buffered Saline without Ca2+ and Mg2+ (PBS). 

 

Cell Signaling Technology Inc, Beverly, MA, USA: 

Phospho-MEK1/2 (Ser217/221) antibody (9121), p44/42 MAP Kinase antibody 

(9102), phospho-p44/42 MAP Kinase (Thr202/Tyr204)(E10) mouse mAb 

(9106), phospho-p38 MAP Kinase (Thr180/Tyr182) antibody, p38 MAP Kinase 

antibody (9212). 

 

Cytoskeleton Inc, Denver, CO, USA:  

Cell permeable C3 transferase from Clostridium botulinum. 

 

Fisher Scientific, Loughborough, Leicestershire, UK : 

4-2-hydroxyethyl-1-piperazineethanesulphonic acid ( HEPES), glycine, 
hydroxymethyl-aminomathane (Tris) base, sucrose, so dium hydroxide, 
ammonium persulphate, concentrated hydrochloric aci d, sodium 
carbonate, sodium hydrogen carbonate, sodium dihydr ogen ortho-
phosphate, disodium hydrogen ortho-phosphate. 
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Inverclyde Biologicals, Bellshill, Lanarkshire, UK 

Protan nitrocellulose membrane (Scleicher and Schuell; pore size 0.2µm). 

 

Invitrogen Ltd, Paisley, UK: 

AlexaFluor 594 -conjugated phalloidin, Trizol reagent. 
 

McQuilkin Laboratory Supplies:  

Skimmed Milk 

 

Melford Laboratories Ltd, Ipswich, Suffolk, UK: 

Dithiothreitol (DTT). 
 
Meniel-Glaser, Braunschweig, Germany: 
Microscope slides, coverslips. 
 

Perkin Elmer, Boston, MA, USA: 

Western Lightning  Chemiluminescence Reagent Plus, glass fibre filter  
mat A, sample bags, Betaplate Scint for Betaplate. 
 

Pierce, Rockford, IL, USA: 

Western blot stripping solution. 

 

Riedel-de Haen, Germany: 

Ethylenediaminetetra-acetic acid (EDTA), ethyleneglycol-bis(2-aminoethyl)-

N,N,N’,N-tetra acetic acid (EGTA), glycerol, methanol. 

 

Santa Cruz Biotechnology Inc, Santa Cruz, CA, USA: 

Phospho-cofilin (Ser3) antibody (sc12912). 
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Sigma-Aldrich Ltd, Poole, Dorset, UK: 

Cytochalasin D from Zygosporium mansonii (Cyto D), latrunculin B (Lat 
B), monoclonal anti- αααα tubulin antibody (T9026), goat anti-mouse IgG 
(whole molecule) peroxidase conjugate (A4416), meth iothepin (mesylate 
salt), iproniazid (phosphate salt), anisomycin (AN) , 5-hydroxytryptamine 
(serotonin)(creatine sulphate salt) (5HT), foetal b ovine serum (FBS), L-
glutamine (200mM), penicillin streptomycin solution  (10,000 units 
penicillin and 10mg streptomycin per ml in 0.9% NaC l), N-acetyl-L-
cysteine (NAC), goat anti-rabbit IgG peroxidase con jugate (A8275), anti-
sheep IgG peroxidase conjugate (A3415), monodansylc adaverin (MDC), 
30% (w/v) acrylamide/0.8% (w/v) bis-acrylamide, try psin-EDTA, 
Bromophenol Blue, phenylmethylsulphonyl fluoride (P MSF), benzamidine, 
soybean trypsin inhibitor, Tween-20, Triton X-100, bovine serum albumin 
(BSA), 4,4 dicarboxy-2, 2 biquinoline disodium salt , sodium deoxycholate, 
sodium potassium tartrate, copper (II) sulphate, N, N,N’,N’-
tetramethylethylenediamine (TEMED), paraformaldehyd e, nonident P-40 
(NP-40). 
 

Tocris Bioscience, Bristol, UK: 

Y27632 dihydrochloride, citalopram hydrobromide, GR55562 dihydrochloride, 

ketanserin tartrate, fluoxetine hydrochloride, α-methyl-5-hydroxytryptamine, 

CP94253. 

 

Upstate Biotechnology, Lake Placid, NY, USA: 

Anti-phospho-MYPT1 (Thr 696)(rabbit polyclonal IgG)(07-251), anti-MYPT1 

(sheep immunoaffinity purified IgG)(07-159). 

 

VWR International Ltd, Poole, UK: 

Sodium chloride, sodium dodecyl sulphate (SDS), potassium hydroxide, 

potassium chloride. 
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2.2  METHODS 

 

2.2.1  Cell Culture.  

 

CCL-39 Chinese hamster lung fibroblast cells were cultured in T-75 flasks in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 2mM L-

glutamine, 100U/ml penicillin, 100µg/ml streptomycin and 10% (v/v) foetal 

bovine serum (FBS).  Cells were maintained at 37oC in a humidified 5% (v/v) 

CO2 atmosphere (5% CO2/95% air) until confluent.  Once confluent the cell 

monolayer was washed with Ca2+- and Mg2+ - free phosphate buffered saline 

(PBS).  The cells were then detached by addition of 2 ml trypsin, followed by 

incubation at 37oC.  6ml of media were then added to the flask and cells 

resuspended by gentle pipetting.  Thereafter, cells were either passaged into T-

75 flasks to maintain the cell line or seeded into dishes for experimental 

analysis. 

 

2.2.2  Preparation of Cell Extracts for Immunoblott ing.  

 

Cells for immunoblotting were grown to confluence in 6-well tissue culture 

plates.  Following treatment with the appropriate stimuli, reactions were ceased 

by transferring to ice.  Media was then removed and the cell monolayer washed 

three times with 2 ml ice-cold PBS.  Cells were then lysed by scraping into 

200µl of RIPA buffer (50mM HEPES pH 7.5, 150mM NaCl, 1% (v/v) Triton X-

100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 0.01M sodium 

phosphate, 5mM EDTA, 0.1mM PMSF, 1µg/ml soybean trypsin inhibitor, 1µg/ml 

benzamidine) and transferred to ice-cold micro-centrifuge tubes, then allowed to 

solublise for 30 minutes with occasional vortexing.  The insoluble cellular debris 

was then removed by centrifugation (20,000 g for 15 min, 4oC).  150µl of 

supernatant were then taken for assay to determine protein concentration and 

analysis by SDS-PAGE and immunoblotting. 
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2.2.3  Determination of protein concentration by bi cinchoninic acid (BCA) 

protein assay.  

 

BCA assays were carried out in a 96-well plate format with duplicate bovine 

serum albumin (BSA) standards ranging in concentration from 0-2 mg/ml in a 

volume of 10µl.  The same volume of each sample of unknown protein 

concentration was also added in duplicate. Each well was then supplemented 

with 200µl of BCA solution (1% (w/v) 4,4 dicarboxy-2, 2 biquinoline disodium 

salt, 2% (w/v) sodium carbonate, 0.16% (w/v) sodium potassium tartrate, 0.4% 

(w/v) sodium hydroxide, 0.95% (w/v) sodium dicarbonate (pH 11.25), 0.08% 

(w/v) copper (II) sulphate) and incubated at room temperature for 10-15 

minutes.  Protein concentration was then determined by measuring absorbance 

of samples at 492nm (A492) using a MRX-TCII plate reader (Dynex 

Technologies).  The absorbance of the known standards was used to generate 

a best-fit straight-line plot of A492 versus protein concentration, from which the 

protein concentration of the unknown samples could be deduced. 

 

2.2.4.  Determination of protein concentration by B radford’s protein assay.  

 

Bradford protein assays were carried out in a 96 well plate with duplicate BSA 

standards ranging in concentration from 0-2 mg/ml in a volume of 10µl.  The 

same volume of each sample with unknown protein concentration was also 

added in duplicate. Each well was then supplemented with 50µl of Bradford’s 

reagent which had been diluted 1:4 in distilled deionised water.  Samples were 

then incubated for 10 minutes at room temperature and protein concentrations 

determine by measuring absorbance at 630nm (A630).  A best-fit straight-line 

plot of A630 versus protein concentration was then constructed using data 

obtained from the standards.  This plot was then used to deduce the unknown 

protein concentration of the experimental test samples. 
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2.2.5  SDS-PAGE and Immunoblotting Analysis.  

 

The protein concentrations of samples prepared for SDS-PAGE were 

determined by bicinchoninic acid (BCA) protein assay, unless otherwise stated.  

Samples were then equalised for protein concentration and volume, and 2x 

SDS-PAGE sample buffer (50mM Tris, pH 6.8 at room temperature, 10% (v/v) 

glycerol, 12% (w/v) SDS, 10mM dithiothreitol, 0.0001% (w/v) bromophenol blue) 

added.  Samples then underwent fractionation by SDS-PAGE using a 10% 

acrylamide resolving gel (10% (w/v) acrylamide, 0.3% (w/v) bisacrylamide, 0.4M 

Tris (pH 8.8), 0.1% (w/v) SDS, 0.01% (w/v) ammonium persulphate and 0.001% 

(v/v) TEMED) and 3% acrylamide stacking gel (3% (v/v) acrylamide, 0.1% (v/v) 

bisacrylamide, 0.1M Tris (pH 6.8), 0.1% SDS, 0.01% ammonium persulphate 

and 0.001% (v/v) TEMED) unless otherwise stated.  Electrophoresis of samples 

was carried out in the presence of pre-stained protein markers (Rainbow 

Markers 14.3 - 220 kDa, Amersham Biosciences) in order to estimate the 

molecular mass of immunoreactive proteins.  Using Biorad Mini-Protean III gel 

electrophoresis systems, electrophoresis was carried out at 150V in running 

buffer (27.4mM Tris, 0.19M glycine, 0.1% (w/v) SDS) until the bromophenol 

blue dye front reached the bottom edge of the gel.  Fractionated proteins were 

then transferred to nitrocellulose membrane at 400mA for 45 minutes in transfer 

buffer (24.7mM Tris, 0.19M glycine and 20% (v/v) methanol).  Following 

transfer, the nitrocellulose membrane was washed briefly in Tris Buffered 

Saline-Tween (TBST) (20mM Tris pH 7.5 at room temperature, 150mM NaCl, 

0.1% Tween 20), before blocking for one hour at room temperature in Blotto 

(5% (w/v) skimmed milk in TBST). Membranes were then incubated overnight 

with 1:1000 dilution of primary antibody in 5% BSA (w/v) in TBST at 4oC.  

Subsequently, membranes were washed three times in TBST for 10 minutes 

each wash.  The appropriate HRP-conjugated secondary antibody diluted 

1:1000 in Blotto was then incubated with membranes for 1 hour at room 

temperature before three further 10-minute washes in TBST.  Each membrane 

was then treated with ECL reagents (Perkin Elmer) as per the manufacturer’s 

instructions and immunoreactive proteins were then visualised by exposure to 

X-ray film. 
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Densitometry was performed on each resulting film exposure to determine 

normalized levels of the protein of interest using Total Lab version 2.0 imaging 

software. 

 

2.2.6  [3H]-Thymidine incorporation assay of  DNA synthesis  

 

Cells were plated out at a density of 2x104 cell/ml into 96-well plates and grown 

in full media for 24 hours before serum starving for a further 24 hours.  The 

media was then replaced with fresh media containing no serum and the 

appropriate stimuli in a final volume of 200µl.  Each experimental condition was 

carried out in triplicate.  After an incubation period of 18 hours, 0.5µCi/well [3H]-

thymidine was added.  Proliferation was stopped after a further 6 hours by 

harvesting cells onto glass fibre filter mats using a Betaplate 96-well harvester 

(Wallac).  The glass fibre filter mats used are printed on both sides with a grid to 

aid alignment with the wells of 96-well plates. During the harvesting process the 

96-well plate harvester washes each well with distilled water three times, 

dislodging the cell monolayer.  The contents of the aspirate are then transferred 

directly to the corresponding grid square of the glass fibre filter mat by vacuum 

filtration.  Filter mats are then left to dry before being sealed in clear plastic 

sample bags with 10 ml of scintillation fluid (Betaplate Scint for Betaplate).  

Filters were then placed in a 96-format filtermat cassette and incorporated [3H]-

thymidine  assessed by liquid scintillation counting, using a 1205 Betaplate 

Liquid Scintilation Counter (Wallac) and results expressed as counts per minute 

(cpm). 

 

2.2.7  Preparation of cytosolic and nuclear cell fr actions for nuclear 

translocation experiments.  

 

Cells were seeded into 10cm tissue culture dishes and grown to confluence.  

Media was then replaced with serum free media and incubated overnight.  

Following this, cells were treated with the appropriate stimuli in the presence or 

absence of inhibitors and the reaction stopped by transferring onto ice.  

Subsequent steps were also performed on ice.  Media was aspirated and the 
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cell monolayers washed twice with ice cold PBS.  Cells were then gently 

scraped from each tissue culture dish in a volume of 1ml PBS and transferred to 

ice cold micro-centrifuge tubes.  Samples were centrifuged at a temperature of 

4oC for 4 minutes at ~2000g.  The resulting pellet was then resuspended in 

400µl of nuclear extraction buffer A (10mM HEPES (pH 7.9 with KOH), 10mM 

KCl, 0.1mM EDTA, 0.1mM EGTA, 1mM DTT) and left to incubate on ice for 15 

minutes, after which, 25µl of 10% (v/v) NP-40 were added and samples 

vortexed.  Subsequently, samples were briefly centrifuged and the resulting 

supernatant containing the cytosolic cellular fraction removed and transferred to 

another micro-centrifuge tube. 

The remaining pellet was then washed 4 times with 500µl buffer A, with brief 

centrifugation (20,000g for 15 seconds) between each wash and the 

supernatant discarded. After the final wash the pellet was resuspended in 

nuclear extraction buffer B (20mM HEPES (pH 7.9 with NaOH), 450mM NaCl, 

1mM EDTA, 1mM EGTA 1mM DTT), vortexed and incubated on ice with 

occasional agitation for 15 minutes.  Finally, samples were centrifuged at 

20,000g for 15 minutes and the resulting supernatant, containing the nuclear 

fraction removed and transferred to a fresh micro-centrifuge tube.  Protein 

concentrations were measured using Bradfords assay and samples analysed by 

SDS-PAGE and immunoblotting. 

 

2.2.8  Staining of Actin Cytoskeleton  

 

Cells were seeded in 6-well plates (approx 2 x 105 cells/ml) onto sterile glass 

coverslips and grown for 16-24 hours, prior to serum starvation for a further 16 

hours. Cells were then treated with agonist in the presence or absence of other 

agents as described for each individual experiment.   

The following steps were carried out at room temperature.  Firstly, the media 

was removed and discarded and coverslips washed three times in 2 ml PBS.  In 

order to fix the cell monolayer, coverslips were then incubated for 15 minutes in 

2 ml of 4% (w/v) paraformaldyde in a 5% (v/v) sucrose/PBS solution.  

Subsequently coverslips were washed a further twice with 2 ml PBS and the cell 

monolayer permeabilised by the addition of 2 ml 0.1% (v/v) Triton X-100 in PBS 
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for 2 minutes.  Coverslips were then washed twice in 2 ml PBS and blocked for 

30 minutes in 5% (w/v) BSA in PBS.  100µl of Alexa Fluor 594-conjucated 

phalloidin diluted 1:20 in a 5% (w/v) BSA/PBS were then added to each 

coverslip and incubated fro 20-30 minutes.  Finally, cells were washed twice in 

PBS and mounted on glass slides in 40% (v/v) glycerol/PBS.  Fluorescent 

proteins were visualised on a Zeiss fluorescent microscope using x 40 objective 

and pictures obtained using Axiovision AC version 4.4 software. 

 

 

2.3  In Vivo  METHODS 

 

2.3.1  In Vivo  Experimental Design  

 

Experiments were conducted in accordance with the United Kingdom Animals 

(Scientific Procedures) Act 1986.  5HTT+ mice that overexpress 5HTT, 

previously generated as described by Jennings et al 2006, were used in this 

study.  These mice were generated from the C567BL/6 X CBA wildtype (WT) 

strain, which were also used as controls. 

Briefly, the transgene used to develop the 5HTT+ was 500 kb yeast artificial 

chromosome (YAC35D8) containing the human 5HTT (h5HTT) gene flanked by 

a 150 kb sequence towards the 5’ end and a 300kb towards the 3’ end, with the 

short allele of the 5HTTLPR in the promoter region and a 10-repeat allele of the 

VNTR in intron 2.  The yeast artificial chromosome was modified to include a 

hemagglutinin epitope tag at the C-terminus of the 5HT protein and a LacZ 

reporter gene downstream of an internal ribosomal entry site as described 

previously (Shen et al., 2000).  Analysis by in situ hybridisation showed that 

h5HTT mRNA was expressed in a pattern that closely resembled the 

endogenous mouse 5HTT gene (Jennings et al., 2006). 

For the purposes of this study both WT and 5HTT+ female mice aged 5-6 

months were maintained in either normoxic (~ 21% (v/v) oxygen) or 

hypoxic/hypobaric conditions for a period of 14 days.  To achieve hypoxic 

conditions, animal were housed in a hypobaric chamber that was initially 
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depressurised slowly by 50 mbar every 15 minutes until the pressure reached 

550 mbar (~10% O2).  Animals were then maintained at 550 mbar for 14 days. 

During this period mice were dosed daily with either vehicle (water) or 30mgkg-1 

Y27632 (a ROCK inhibitor) by oral gavage. 

 

2.3.2  In Vivo  Haemodynamic Measurements  

 

After 14 days of drug dosage, anaesthesia was induced by 3% (v/v) halothane 

and body weight of mice determined.  Anaesthesia was then maintained with 

halothane (1% (v/v) to 1.5% (v/v)) and a mixture of nitrous oxide and oxygen 

(1:6) using a face mask.   Systemic arterial blood pressure (SAP) was 

measured by cannulation of the carotid artery.  In order to do so, the right 

carotid artery was first isolated and tied off distally using surgical thread.  

Following this a small artery clip was placed around the proximal end of the 

artery to prevent blood flow.  A small incision was made in the artery and the 

cannula (0.75mm OD, Portex) advanced in the proximal direction.  The cannula 

was then tied in place and the artery clip removed to allow measurement of 

SAP and heart rate (HR). 

Right ventricular pressure was measured using a 25 gauge needle mounted on 

a micromanipulator.  The tip of the needle was aligned with the mid point of the 

sternum and advanced through the diaphragm into the right ventricle.   Entry of 

needle into the right ventricle was confirmed by the morphology of the pressure 

trace obtained.  Both cannula and needle were attached to pressure 

transducers (Elcomatic E751A) connected to a MP100 data acquisition system 

(BIOPAC Systems Inc, Santa Barbra, CA). 

Results were analysed using an AcquiKnowledge 3.5 software package. 

Following the measurement of haemodynamics, heart and lungs were removed 

from each animal for analysis. 

 

2.3.3  Meaurment of Right Ventricular Hypertrophy  

 

Hearts removed following haemodynamic measurements were carefully 

dissected.  The atria were first removed, the right ventricular free fall was then 

dissected from the left ventricle plus septum.  The right ventricle free wall and 
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LV plus septum were weighed separately and the ratio of right ventricle to left 

ventricle calculated.   

 

2.3.4  TaqMan Reverse Transcription-Polymerase Chai n Reaction  

 

RNA was extracted from mouse whole lung tissue using Trizol reagent.  Real-

time fluorogenic reverse transcription-polymerase chain reaction (PCR) was 

then performed by TaqMan® Gene Expression Assay (Applied Biosystems, CA, 

USA) using gene expression probes for mouse ROCK 1 and ROCK 2 

(Mn00485745_m1 and Mm00485761_m1 respectively) according to the 

manufacturers instructions.  Relative abundance of ROCK 1 and ROCK 2 

mRNA was determined by using the comparative delta CT method with 18s 

ribosomal RNA as an internal control. 

This work was carried out by Dr J Sheward, University of Edinburgh. 

 

2.3.5  Lung Histology  

 

Three sagittal sections were obtained from left lungs.  Sections were stained 

with Elastica-Van Gieson stain and pulmonary arteries (<80 µm) microscopically 

assessed in a blinded fashion for muscularization.  Arteries were considered 

muscularized if they processed a distinct double-elastic lamina visible for at 

least half the diameter in the vessel cross section.  At least 100 arteries were 

counted per lung section.  The percentage of vessels containing double-elastic 

lamina was calculated as the number of muscularized vessels/total number of 

vessels counted x 100. 

This work was carried out by Dr I Morecroft, University of Glasgow. 

 

2.3.6  Statistical Analysis.  

 

Statistical analyses were carried out using either Students two-tailed unpaired t-

test as described in Graphpad Prism 4 software. Where appropriate, one-way 

analysis of variance (ANOVA) with Newman-Keuls multiple comparison post 

test was applied, unless otherwise stated. 
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Chapter 3 

Characterisation of 5HT-stimulated  

Mitogenic Signalling Pathways 
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3.1  INTRODUCTION 
 

5HT plays an important role in the etiology of PAH, contributing to remodelling 

and vasoconstriction of the pulmonary circulation.  As described previously, 

5HT and the expression and activity of 5HTT have been reported to play a 

critical role in the disease process.  For instance, 5HT and 5HTT have been 

implicated in pulmonary vascular smooth muscle cell hyperplasia and vascular 

proliferation in both experimental hypoxic PAH and the human condition 

(Eddahibi et al., 2001; Eddahibi et al., 2000b).  Furthermore, polymorphisms in 

the promoter region of the 5HTT gene resulting in increased 5HTT expression 

have been reported in around 65% of patients with familial PAH (Eddahibi et al., 

2003). 

At a cellular level several studies have highlighted the ability of 5HT to induce 

proliferation in a variety of cell types including, cardiac myocytes, endothelial 

cells and PASMCs (Bianchi et al., 2005; Pakala et al., 1999; Liu and Fanburg, 

2006).  The ability of 5HT to mediate cellular proliferation may be an important 

contributing factor to pulmonary artery remodelling during pulmonary 

hypertension.  An array of intracellular pathways has been proposed to describe 

the signalling mechanisms utilised by 5HT to result in cellular proliferation.  A 

common theme of these hypotheses is the ability of 5HT to induce ERK1/2 

activation, a process which appears to be key to the proliferative response (Lee 

et al., 1999; Lee et al., 2001). 

5HT can mediate cell signalling by interacting with several 5HT receptor 

subtypes or through 5HTT, which transports 5HT across the plasma membrane 

using a Na+/Cl- gradient.  A large body of evidence exists suggesting the 

mitogenic effects of 5HT are largely mediated via 5HTT.  Much of this work has 

been carried out in bovine PASMCs.  In this cell type, signal transduction 

initiated by 5HT involves 5HTT-dependent generation of reactive oxygen 

species (ROS) and activation of the MEK/ERK pathway (Lee et al., 1998b; Lee 

et al., 1999; Lee et al., 2001).  In short, the 5HT-induced signalling response 

includes the sequential activation of Ras/Rac-1, NADPH oxidase activation, 

generation of ROS and finally the phosphorylation and activation of ERK MAP 

kinase (Lee et al., 1999; Suzuki et al., 2003).  Downstream transcriptional 

components of this pathway have also been characterised.  For instance, in 
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PASMCs, stimulation with 5HT has been found to induce the ERK-dependent 

DNA binding of transcription factors, Erg-1, GATA-4, as well as phosphorylation 

of Elk-1 (Liu et al., 2004; Suzuki et al., 2003). 

5HT receptors also appear to be important in the proliferative response, with a 

number of studies reporting the combined action of receptors and transporter 

are required to mediate the effects of 5HT.  For example, in  rat pulmonary 

artery fibroblasts, the 5HT2A receptor and 5HTT are both involved in 5HT-

induced proliferation (Welsh et al., 2004).  In another fibroblast cell line, 5HTT, 

5HT1B/1D and 5HT2A  are all thought to be involved in 5HT-induced ERK 

activation and proliferation (Lee et al., 1999).  Interactions between 5HTT and 

receptors have also been highlighted in PASMCs, where stimulation of 5HT1B/1D 

and 5HT2 receptors result in the activation of distinct signalling pathways 

required to facilitate the activation of ERK via 5HTT (Liu et al., 2004; Liu and 

Fanburg, 2006). 

The role of the p38 MAP kinase cascade in 5HT-mediated signalling is unclear.  

In certain cell types 5HT has been shown to activate p38 (Lieb et al., 2005, 

Welsh et al., 2004) and also play a role in 5HT-mediated contraction (Tasaki et 

al., 2003).  On the other hand, several studies have also shown that 5HT has no 

effect on p38 and is unable to induce its activation (Cloez-Tayarani et al., 2004; 

Lee et al., 2001).  In addition to this, p38 is thought to play an important role in 

the regulation of 5HTT (Prasad et al., 2005; Zhu et al., 2005). 

Another possible mechanism for 5HT induced proliferation has been suggested.  

In this model 5HT entry into the cell may result in proliferation via receptor-

independent reactive oxygen species generation.  It has been reported recently 

that 5HT is able to induce hypertrophy in cultured rat cardiac myocytes (Bianchi 

et al., 2005; Vindis et al., 2000).  This process appears to require the production 

of hydrogen peroxide, generated by the breakdown of 5HT by the enzyme MAO 

A.  Furthermore, the reactive oxygen species formed are required for ERK 

activation, which in turn contributes to the myocardial remodelling.  MAO B has 

also been shown to generate hydrogen peroxide and that this leads to ERK1/2 

dependent mitogenesis (Vindis et al., 2000).   

Other factors may also be pivotal in regulating 5HT-induced ERK activation.  

For instance, components of the endocytotic pathway may be involved.  The 

scaffolding proteins β-arrestins have been shown to bind ERK1/2 and thus 
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regulate its activity (Tohgo et al., 2003; Tohgo et al., 2002).  In addition to this, it 

has been shown that the 5HT1A receptor must undergo calcium/calmodulin-

dependent receptor endocytosis in order to activate ERK (Della Rocca et al., 

1999).  Furthermore, several other scaffolding proteins have been shown to 

regulate the ERK pathway including MEKK1 and MP1 (Morrison and Davis, 

2003).  These proteins could potentially be involved in mediating 5HT-induced 

ERK activation. 

In summary, several potential signalling pathways required for 5HT-induced 

mitogenesis have been suggested.  However, much of this work has been 

carried out in PASMCs.  As mentioned previously, each cell type within the 

pulmonary artery contributes to the remodelling process that occurs during 

PAH.  It would therefore be beneficial to investigate the role of 5HT and the 

signalling mechanisms utilised in other cell types.  In this chapter, 5HT induced 

mitogenesis was investigated in a fibroblast cell line (Chinese hamster lung 

fibroblasts (CCL-39s)) in order to elucidate any novel signalling mechanisms 

that may be involved in the remodelling process. 
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3.2  RESULTS 
 

Prior to identifying components involved in 5HT mitogenic signalling, the 

timecourse of 5HT-induced ERK1/2 activation was first characterised.  

Quiescent CCL-39 cells were stimulated with 5HT (1µM) over a 24 hour period.  

Subsequent immunoblotting using a phospho-specific ERK1/2 antibody 

revealed that addition of 5HT rapidly and transiently induced ERK1/2 activation, 

with maximal activation occurring around 2 minutes (p<0.01 versus vehicle, 

n=3) (Figure 3.1).  Levels returned to that of basal after 30 minutes with no 

further activation noted during the 24 hour period.  5HT was also found to have 

a mitogenic effect in CCL-39 cells, inducing a dose dependent increase in 

proliferation as determined by [3H]-thymidine incorporation (Figure 3.2).  

Inhibition of the ERK1/2 MAP kinase signalling cascade using U0126 (1µM), a 

MEK inhibitor, markedly attenuated the effects of 5HT, reducing the maximal 

proliferation by 80±5% (Figure 3.2).  Furthermore, inhibition of MEK significantly 

reduced 5HT-induced ERK1/2 activation by around 73±3% (p<0.001 versus 

5HT alone, n=3) (Figure 3.3).  Under these circumstances responses to PMA 

were also significantly decreased (p<0.05, n=3), indicating U0126 was effective 

at the concentration used. 

Under certain conditions the p38 MAP kinase cascade has been implicated in 

signal transduction via 5HT receptors (Welsh et al., 2004) and in the regulation 

of 5HTT (Zhu et al., 2005).  To investigate the involvement of p38 in 5HT-

induced signalling in CCL-39 cells, cells were stimulated over a period of time 

with 5HT (1µM).  Treatment with 5HT was found to have no effect on the levels 

of phosphorylated p38 (p-p38) during the timecourse studied, suggesting 5HT is 

unable to activate p38 (Figure 3.4).  In addition to this, the role of p38 in 5HT-

induced proliferation was assessed (Figure 3.5).  Treatment with p38 inhibitor 

SB203580 at a concentration of 5µM had no effect on the ability of 5HT to 

induce proliferation.  In contrast, SB203580 at a concentration of 10µM 

markedly reduced 5HT-induced proliferation, resulting in levels of [3H]-thymidine 

incorporation similar to those witnessed under vehicle conditions.  SB203580 

(5µM) was effective in inhibiting p38 as pre-treatment with the inhibitor resulted 

in a significant attenuation in the response to anisomycin, a known p38 activator 

(63.7±3% reduction, p<0.001, n=3) (Figure 3.6).   
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Figure 3.1   Timecourse of 5HT-induced ERK activation.    
 
CCL-39 cells were serum starved for 16 hours and then stimulated with 5HT 
(1µM) for 0-24 hours.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).   * p<0.05, ** 
p<0.01 versus vehicle using Newman-Keuls multiple comparison test. 
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Figure 3.2   Effect of MEK inhibition by UO126 on 5HT-induced 
proliferation.    
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of  UO126 (1µM) (MEK inhibitor) for a further 
24 hours, with 0.5µCi/well [3H]-thymidine added for the final 6 hours of this 
incubation.  Cell were then harvested onto a glass fibre filter mat and [3H]-
thymidine incorporation assessed by liquid scintillation counting.  Data shown 
are representative of n=3.  Results expressed as mean ± SEM of triplicate 
samples.   ** p<0.01 versus vehicle using an unpaired, two tailed t-test. 
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Figure 3.3  Effects of MEK inhibition with UO126 on  ERK activation.   
 
After serum starvation for 16 hours, CCL-39 cells were pre-treated with either 
vehicle or UO126 (1µM) for 30 minutes prior to stimulation with 5HT (1µM) or 
PMA (2µM) for 5 minutes.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).  * p<0.05 
versus PMA, *** p<0.001 versus 5HT using Newman-Keuls multiple comparison 
test. 
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Figure 3.4   Timecourse of the effects of 5HT on p38 activation.    
 
Following serum starvation for 16 hours, CCL-39 cells were stimulated with 5HT 
(1µM) for 0-120 minutes or with anisomycin (1µg/ml) for 5 minutes. Cell lysates 
were prepared and equalised for protein concentration by BCA assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using phospho-specific 
and total p38 antibodies.  Blots shown are representative.   Results are 
expressed as mean ± SEM (n=3).  Statistical analysis using Newman-Keuls 
multiple comparison test revealed no significant differences.  Stimulation with 
anisomysin (1µg/ml) for 5 minutes resulted in a 1.8±0.3 fold increase from 
basal. 
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Figure 3.5   Effects of p38 inhibition by SB203580 on 5HT-induce d 
proliferation.   
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of  SB203580 (5µM or 10µM) (p38 inhibitor) for 
a further 24 hours, with 0.5µCi/well [3H]-thymidine added for the final 6 hours of 
this incubation.  Cell were then harvested onto a glass fibre filter mat and [3H]-
thymidine incorporation assessed by liquid scintillation counting.  Data shown 
are representative of n=3 assays.  Results expressed as mean ± SEM of 
triplicate samples.  * p<0.05, ** p<0.01 versus vehicle using an unpaired, two 
tailed t-test. 
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Figure 3.6   Effects of p38 inhibitor SB203580 on p38 activation .   
 
After serum starvation for 16 hours, CCL-39 cells were pre-treated with either 
vehicle or SB203580 (10µM) for 30 minutes prior to stimulation with 5HT (1µM) 
or anisomysin (1µg/ml) for 5 minutes.  Cell lysates were prepared and equalised 
for protein concentration by BCA assay.  Samples were then analysed by SDS-
PAGE and immunoblotting phospho-specific and total p38 antibodies.  Blots 
shown are representative.  Results are expressed as mean ± SEM (n=3). ** 
p<0.01 versus anisomycin using Newman-Keuls multiple comparison test. 
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However, the ability of SB203580 (10µM) to reduce 5HT-induced proliferation 

maybe owing to the fact, that at this concentration the p38 inhibitor also 

significantly reduced responses to PMA by 27±4% (p<0.01, n=3) (Figure 3.7), 

suggesting the ERK1/2 MAP kinase pathway may also be effected.  A large 

body of evidence exists implicating 5HTT in the development of pulmonary 

hypertension.  Therefore, the role of 5HTT in the pathways utilised by 5HT to 

induce its mitogenic effects were assessed.  Using CCL-39 cells 5HTT was 

blocked using citalopram, a commonly used selective serotonin reuptake 

inhibitor (SSRI) and the effects on 5HT-induced ERK1/2 activation monitored.  

Pre-treatment with citalopram (1µM) was found to significantly attenuated the 

dose-dependent increase in ERK1/2 activation induced by 5HT, reducing the 

maximal 5HT response by 35±9% (p<0.05, n=3) (Figure 3.8).  Moreover, 

treatment with citalopram also markedly decreased 5HT-induced proliferation by 

82±2% of the maximal response (Figure 3.9). 

5HT receptors, namely 5HT1B/1D and 5HT2A may also be involved in the 5HT-

induced mitogenic response (Lee et al., 1999; Liu and Fanburg, 2006).  Initially, 

the 5HT1/2 receptor antagonist methiothepin was used in order to determine if 

these 5HT receptors played any role in 5HT-induced ERK1/2 activation and 

proliferation in CCL-39 cells.  Pre-treatment with methiothepin (1µM) was able 

to significantly attenuate the dose-dependent increase in ERK1/2 activation 

elicited by 5HT (Figure 3.10), with the maximal 5HT response reduced by 

50±7% (p<0.01, n=3).  Inhibition of 5HT1/2 receptors using methiothepin also 

almost completely abolished 5HT induced proliferation reducing the maximal 

response by 91±1 % (Figure 3.11). 

The individual contribution of 5HT2A and 5HT1B/1D receptors was then assessed 

pharmacologically.  Pre-treatment of cells with ketanserin (1µM), a 5HT2A 

receptor antagonist, significantly reduced maximal 5HT-induced ERK1/2 

activation by 47±9% (p<0.05, n=3) (Figure 3.12).  Similarly, blockade of 5HT2A 

receptors using ketanserin almost completely abolished 5HT-induced 

proliferation, resulting in levels of [3H]-thymidine incorporation similar to those 

witnessed under vehicle conditions (Figure 3.13).  The role of 5HT1B/1D was also 

examined using GR55562, a selective 5HT1B/1D receptor antagonist.  Treatment 

with this compound also significantly reduced 5HT-induced ERK1/2 activation to 

57±7% of the maximal response (p<0.001, n=3) (Figure 3.14).  In addition to 
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this, 5HT1B/1D receptor antagonism abolished the dose-dependent increase in 

proliferation induced by 5HT (Figure 3.15).  Moreover, simultaneous inhibition of 

5HTT and 5HT receptors using a combination of citalopram (1µM) and 

methiothepin (1µM) did not completely abolish 5HT induced ERK1/2 activation.  

At the maximal response, inhibition of 5HTT and 5HT1/2 receptors reduced 5HT-

induced ERK1/2 activation by 57±5% (p<0.001, n=3) (Figure 3.16).  It should 

also be noted that the SSRI and 5HT antagonists used in this study had no 

effect on the ability of PMA to activate ERK, indicating the reductions in ERK 

activation observed are specific to the 5HT signalling pathway.  Taken together, 

these results suggest 5HTT, 5HT1B/1D and 5HT2A receptors all play a role in 

5HT-induced ERK1/2 activation and proliferation, with inhibition of any one of 

these components resulting in the attenuation of the mitogenic effects of 5HT. 

The role of receptor internalisation in 5HT-mediated ERK1/2 activation was also 

studied.  Endocytosis is known to play an important role in the regulation of 5HT 

receptors and GPCRs in general (Bhatnagar et al., 2001; Le Roy and Wrana, 

2005) as well as in regulating 5HTT signalling (Jayanthi et al., 2005).  Using 

structurally unrelated compounds, the role of endocytosis in 5HT-induced 

ERK1/2 activation was investigated.  Conconavalin A (Con A), a lectin and 

commonly used inhibitor of endocytotic processes (Pippig et al., 1995; Tang et 

al., 2000) was initially employed.  Con A binds to α-D-mannosyl and α-D-

glucosyl residues on cell surface proteins and lipid with high affinity, inhibiting 

their mobility and thus ability to be internalised (Zhao et al., 2002; Tang et al., 

2000).  Pre-treatment with this compound was found to significantly elevate 

basal levels of ERK1/2 activity within CCL-39 cells by 31±4% (p<0.01, n=3) 

(Figure 3.17).  In addition to this, the maximal 5HT response was similarly 

increased in the presence of Con A (40±10% increase, p>0.05, n=3).  

Monodansylcadaverin (MDC), a compound previously shown to inhibit 

internalisation from the plasma membrane (Schutze et al., 1999; Davies et al., 

1980, Chow et al., 1998) was also used (Figure 3.18).  MDC is an inhibitor of 

transglutaminase, a membrane-bound enzyme that participates in the 

internalisation of receptors (Schutze et al., 1999; Davies et al., 1980; Chow et 

al., 1998).  MDC was found to have no effect on either the basal levels of 

pERK1/2 or 5HT-induced ERK1/2 activation. 
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Figure 3.7   Effects of p38 inhibition by SB203580 on ERK activa tion.    
 
After serum starvation for 16 hours, CCL-39 cells were pre-treated with either 
vehicle or SB203580 (10µM) for 30 minutes prior to stimulation with PMA (2µM) 
for 5 minutes.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3). ** p<0.01 
versus PMA using a two-tailed unpaired t-test. 
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Figure 3.8   Effects of 5HTT inhibitor citalopram on 5HT-induced  ERK 
activation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with citalopram (1µM) (5HTT inhibitor).  Cells were then stimulated for 5 minutes 
with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates 
were prepared and equalised for protein concentration by BCA assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using phospho-specific 
and total ERK antibodies.  Blots shown are representative.  Results are 
expressed as mean ± SEM (n=3).  * p<0.05 versus vehicle pre-treated cells 
using an unpaired, two tailed t-test. 



 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9   Effects of 5HTT inhibition by citalopram on 5HT-ind uced 
proliferation.    
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of  citalopram (1µM) (5HTT inhibitor) for a 
further 24 hours, with 0.5µCi/well [3H]-thymidine added for the final 6 hours of 
this incubation.  Cells were then harvested onto a glass fibre filter mat and [3H]-
thymidine incorporation assessed by liquid scintillation counting.  Data show are 
representative of n=3 assays.  Results expressed as mean ± SEM of triplicate 
samples.  * p<0.05, ** p<0.01 versus vehicle using an unpaired, two tailed t-test. 
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Figure 3.10   Effects of 5HT 1/2 receptor antagonist methiothepin on 5HT-
induced ERK activation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with methiothepin (1µM) (5HT1/2 receptor antagonist).  Cells were then 
stimulated for 5 minutes with increasing concentrations of 5HT (0-10µM) or 
PMA (2µM).  Cell lysates were prepared and equalised for protein concentration 
by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).  * p<0.05, ** 
p<0.01 versus vehicle pre-treated cells using an unpaired, two tailed t-test. 
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Figure 3.11   Effects of 5HT 1/2 receptor antagonist methiothepin on 5HT-
induced proliferation.    
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of methiothepin (1µM) for a further 24 hours, 
with 0.5µCi/well [3H]-thymidine added for the final 6 hours of this incubation.  
Cell were then harvested onto a glass fibre filter mat and [3H]-thymidine 
incorporation assessed by liquid scintillation counting.  Data shown are 
representative of n=3 assays.  Results expressed as mean ± SEM of triplicate 
samples.  *** p<0.001 versus vehicle using an unpaired, two tailed t-test. 
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Figure 3.12   Effects of 5HT 2A receptor antagonist ketanserin on 5HT-
induced ERK activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with ketanserin (1µM) (5HT2A receptor antagonist).  Cells were then stimulated 
for 5 min with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell 
lysates were prepared and equalised for protein concentration by BCA assay.  
Samples were then analysed by SDS-PAGE and immunoblotting using 
phospho-specific and total ERK antibodies.  Blots shown are representative.  
Results are expressed as mean ± SEM (n=3).  * p<0.05, ** p<0.01 versus 
vehicle pre-treated cells using an unpaired, two tailed t-test. 
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Figure 3.13   Effects of 5HT 2A receptor antagonist ketanserin on 5HT-
induced proliferation.    
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of ketanserin (1µM) for a further 24 hours, with 
0.5µCi/well [3H]-thymidine added for the final 6 hours of this incubation.  Cell 
were then harvested onto a glass fibre filter mat and [3H]-thymidine 
incorporation assessed by liquid scintillation counting.  Data shown are 
representative of n=3 assays.  Results expressed as mean ± SEM of triplicate 
samples. ** p<0.01, *** p<0.001 versus vehicle using an unpaired, two tailed t-
test. 
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Figure 3.14  Effects of 5HT 1B/1D antagonist GR55562 on 5HT-induced ERK 
activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with GR55562 (1µM) (5HT1B/1D receptor antagonist).  Cells were then stimulated 
for 5 minutes with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  
Cell lysates were prepared and equalised for protein concentration by BCA 
assay.  Samples were then analysed by SDS-PAGE and immunoblotting using 
phospho-specific and total ERK antibodies.  Blots shown are representative.  
Results are expressed as mean ± SEM (n=3).  ** p<0.01, *** p<0.001 versus 
vehicle pre-treated cells using an unpaired, two tailed t-test. 
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Figure 3.15   Effects of 5HT 1B/1D receptor antagonist GR55562 on 5HT-
induced proliferation.    
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of GR55562 (1µM) for a further 24 hours, with 
0.5µCi/well [3H]-thymidine added for the final 6 hours of this incubation.  Cell 
were then harvested onto a glass fibre filter mat and [3H]-thymidine 
incorporation assessed by liquid scintillation counting.  Data shown are 
respresentative of n=3 assays.  Results expressed as mean ± SEM (n=3) of 
triplicate samples. * p<0.05, ** p<0.01, *** p<0.001 versus vehicle using an 
unpaired, two tailed t-test. 
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Figure 3.16   Effects of simultaneous 5HT 1/2 receptor and 5HTT inhibition 
by methiothepin and citalopram on 5HT-induced ERK a ctivation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated 
simultaneously for 1 hour with methiothepin (1µM) and citalopram (1µM).  Cells 
were then stimulated for 5 minutes with increasing concentrations of 5HT (0-
10µM) or PMA (2µM).  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).  ** p<0.01, 
*** p<0.001 versus vehicle pre-treated cells using an unpaired, two tailed t-test. 
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Figure 3.17   Effects of conconavalin A (conA) on 5HT-induced ERK  
activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with conconavalin A (conA) (0.25mg/ml).  Cells were then stimulated 
for 5 minutes with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  
Cell lysates were prepared and equalised for protein concentration by BCA 
assay.  Samples were then analysed by SDS-PAGE and immunoblotting using 
phospho-specific and total ERK antibodies.  Blots shown are representative.  
Results are expressed as mean ± SEM (n=3).  * p < 0.05 , ** p < 0.01 versus 
vehicle pre-treated cells using an unpaired, two tailed t-test. 
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Figure 3.18   Effects of monodansylcadaverin (MDC) on 5HT-induced  ERK 
activation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with monodansylcadaverin (MDC) (100µM).  Cells were then stimulated 
for 5 minutes with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  
Cell lysates were prepared and equalised for protein concentration by BCA 
assay.  Samples were then analysed by SDS-PAGE and immunoblotting using 
phospho-specific and total ERK antibodies.  Blots shown are representative.  
Results are expressed as mean ± SEM (n=3).  Statistical analysis using an 
unpaired, two tailed t-test revealed no statistical differences between vehicle 
and MDC pre-treated cells. 
 



 106 

In an attempt to distinguish between ERK1/2 activation elicited by 5HT 

receptors and 5HTT, selective inhibitors of each of these components were 

used to determine if endocytosis is important in either 5HT receptor or 5HTT-

mediated responses.  To investigate the role of the endocytotic pathway in 5HT 

receptor-mediated ERK1/2 activation, 5HTT was blocked using fluoxetine (1µM) 

so that 5HT applied to the cells would act only via 5HT receptors.  In this 

instance, inhibition of 5HTT with fluoxetine resulted in a significant reduction in 

5HT-induced ERK1/2 activation (p<0.05, n=3) (Figure 3.19).  However, pre-

treatment with both fluoxetine and MDC resulted in levels of ERK1/2 activation 

similar to that witnessed in vehicle pre-treated cells.  Conversely, to determine 

the role played by the endocytotic pathway in 5HTT-mediated ERK1/2, 5HT2A 

and 5HT1B/1D receptors were blocked using ketanserin (1µM) and GR55562 

(1µM) respectively.  Inhibition of 5HT receptors was found to significantly 

reduce 5HT-mediated ERK1/2 activation (p<0.01, n=3) (Figure 3.20).  Pre-

treatment with both MDC and 5HT receptor antagonists resulted in levels of 

ERK1/2 activation similar to that induced by 5HT under vehicle pre-treated 

conditions.  These findings suggest endocytosis is not a requirement for 5HT-

induced ERK1/2 activation via either 5HTT or 5HT receptors in CCL-39 cells. 

Possible downstream mediators of 5HTT and 5HT receptors were then 

investigated.  Several studies have reported that the production of reactive 

oxygen species (ROS) may be pivotal in the ability of 5HT to produce its 

mitogenic response (Bianchi et al., 2005; Lawrie et al., 2005).  In order to 

determine if ROS are involved in the 5HT-mediated response in CCL-39 cells, 

the antioxidant N-acetyl-cysteine (NAC) was employed.  At 10mM, NAC was 

found to significantly attenuate 5HT-induced ERK1/2 activation, with maximal 

5HT responses reduced by around 60±18% (p<0.05, n=3) (Figure 3.21).  

Reduction of ROS production using NAC also markedly reduced the 

proliferative effects of 5HT, with the maximal 5HT-induced response attenuated 

by 83±19% (Figure 3.22). 

It has previously been suggested that on entry into cells the breakdown of 5HT 

by monoamine oxidases results in the production of ROS (Liu et al., 2004).  

Thus, to test this hypothesis, iproniazid, a monoamine oxidase (MAO) inhibitor 

was used and its effects on 5HT-induced ERK1/2 activation and proliferation 

studied.  Pre-treatment with iproniazid (0.1mM) was found to have no effect on 
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the concentration dependent increase in ERK1/2 activation produced by 5HT 

(Figure 3.23).  Likewise, selective inhibition of MAO did not effect the ability of 

5HT to induce proliferation in this cell type (Figure 3.24).   

ROCK has also been implicated in the development of PAH and may be a 

downstream mediator of the 5HT mitogenic response (Lee et al., 1999).  In 

CCL-39 cells inhibition of ROCK using the selective inhibitor Y27632 (5µM) 

almost completely abolished 5HT-induced proliferation, attenuating the 

maximum response by 93±2% (n=3) (Figure 3.25).  In addition to this, Y27632 

also significantly attenuated the concentration-dependent increase in ERK1/2 

activation mediated by 5HT.  In this instance 5HT-induced ERK1/2 activation 

was reduced by 52±9% (p<0.05, n=3) (Figure 3.26).  The effects of a cell 

permeable C3 transferase, which inhibits the function of ROCK by inactivating 

Rho GTPase, an upstream effector in the ROCK pathway, was also utilised.  

Inhibition of the ROCK pathway by this means produced a similar effect as that 

seen with Y27632.  C3 transferase significantly attenuated the increase in 

ERK1/2 activation produced by 5HT by 43±15% (p<0.05, n=4) (Figure 3.27).    

In order to further determine the role of ROCK in the 5HT-mediated response, 

cyclin D1, a downstream mediator in the ERK1/2 cascade was also monitored.  

5HT (1µM) was found to increase levels of cyclin D1 present in CCL-39 cells in 

a biphasic manner over a 24 hour period (Figure 3.28).  Stimulation with 5HT 

significantly increased cyclin D1 levels after 6 hours (62.5±5% increase from 

basal, p<0.05, n=5), subsequently levels of cyclin D1 decreased before peaking 

at 16 hours (107±15% increase from basal, p<0.01, n=5) and remained 

elevated at 24 hours (85±8% increase from basal, p<0.01, n=3).  Inhibition of 

ROCK was able to abolish the elevation in levels of cyclin D1 induced by 6 hour 

stimulation with 5HT (p<0.05, n=3) (Figure 3.29).  Taken together these results 

highlight the involvement for ROCK in the signalling pathway required for 5HT-

induced ERK activation and proliferation. 



 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19   Effects of MDC on receptor mediated 5HT-induced ERK  
activation.    
 
CCL-39 cells were serum starved for 16 hours.  Following this, cells were 
treated with either fluoxetine (1µM) or MDC (100µM) alone or in combination for 
30 minutes.  Cells were then stimulated for 5 minutes with increasing 
concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates were prepared and 
equalised for protein concentration by BCA assay.  Samples were then 
analysed by SDS-PAGE and immunoblotting using phospho-specific and total 
ERK antibodies.  Blots shown are representative.  Results are expressed as 
mean ± SEM (n=3).  * p < 0.05 versus vehicle pre-treated cells using an 
unpaired, two tailed t-test. 
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Figure 3.20   Effects of MDC on 5HTT mediated ERK activation.    
 
CCL-39 cells were serum starved for 16 hours.  Following this, cells were 
treated with either, ketanserin and GR55562 (1µM) or MDC (100µM) or a 
combination of both for 30 minutes.  Cells were then stimulated for 5 minutes 
with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates 
were prepared and equalised for protein concentration by BCA assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using phospho-specific 
and total ERK antibodies.  Blots shown are representative.  Results are 
expressed as mean ± SEM (n=3).  ** p < 0.01 versus vehicle pre-treated cells 
using an unpaired, two tailed t-test. 
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Figure 3.21   Effects of N-acetylcysteine (NAC) treatment on 5HT- induced 
ERK activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with N-acetylcysteine (10mM).  Cells were then stimulated for 5 
minutes with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell 
lysates were prepared and equalised for protein concentration by BCA assay.  
Samples were then analysed by SDS-PAGE and immunoblotting using 
phospho-specific and total ERK antibodies.  Blots shown are representative.  
Results are expressed as mean ± SEM (n=3).  * p<0.05 versus vehicle pre-
treated cells using an unpaired, two tailed t-test. 
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Figure 3.22   Effects of NAC treatment on 5HT-induced proliferati on.  
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 

5HT in the presence or absence of N-acetylcysteine (NAC) (10mM) for a further 

24 hours, with 0.5µCi/well [3H]-thymidine added for the final 6 hours of this 

incubation.  Cell were then harvested onto a glass fibre filter mat and [3H]-

thymidine incorporation assessed by liquid scintillation counting.  Data shown 

are representative of n=3 assays.  Results expressed as mean ± SEM of 

triplicate samples.  * p<0.05, ** p<0.01 versus vehicle using an unpaired, two 

tailed t-test. 
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Figure 3.23   Effects of monoamine oxidase inhibition with iproni azid on 
5HT-induced ERK activation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with iproniazid (0.1mM) (monoamine oxidase inhibitor).  Cells were then 
stimulated for 5 minutes with increasing concentrations of 5HT (0-10µM) or 
PMA (2µM).  Cell lysates were prepared and equalised for protein concentration 
by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).  Statistical 
analysis using unpaired, two tailed t-tests revealed no significant differences 
between vehicle and iproniazid pre-treated cells. 
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Figure 3.24   Effects of monoamine oxidase inhibition by iproniaz id on 
5HT-induced proliferation.   
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of iproniazid (0.1mM) for a further 24 hours, 
with 0.5µCi/well [3H]-thymidine added for the final 6 hours of this incubation.  
Cell were then harvested onto a glass fibre filter mat and [3H]-thymidine 
incorporation assessed by liquid scintillation counting.  Data shown are 
representative of n=3 assays.  Results expressed as mean ± SEM of triplicate 
samples. 
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Figure 3.25   Effects of Rho-kinase inhibition by Y27632 on 5HT-i nduced 
proliferation.   
 
CCL-39 cells were serum starved for 24 hours then incubated with 0-100µM 
5HT in the presence or absence of Y27632 (5µM) (Rho-kinase inhibitor) for a 
further 24 hours, with 0.5µCi/well [3H]-thymidine added for the final 6 hours of 
this incubation.  Cell were then harvested onto a glass fibre filter mat and [3H]-
thymidine incorporation assessed by liquid scintillation counting.  Data shown 
are representative of n=3 assays.  Results expressed as mean ± SEM of 
triplicate samples.  *** p<0.001 versus vehicle using an unpaired, two tailed t-
test. 
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Figure 3.26   Effects of ROCK inhibition with Y27632 on 5HT-induc ed ERK 
activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with Y27632 (5µM).  Cells were then stimulated for 5 minutes with 
increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates were 
prepared and equalised for protein concentration by BCA assay.  Samples were 
then analysed by SDS-PAGE and immunoblotting using phospho-specific and 
total ERK antibodies.  Blots shown are representative.  Results are expressed 
as mean ± SEM (n=4).  * p<0.05 versus vehicle pre-treated cells using an 
unpaired, two tailed t-test. 
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Figure 3.27   Effects of Rho-GTPase inhibition with C3 transferas e on 5HT-
induced ERK activation .   
 
After serum starvation for 16 hours CCL-39 cells were pretreated for 6 hours 
with cell permeable C3 transferase (specific Rho-GTPase inhibitor).  Cells were 
then stimulated for 5 minutes with 5HT (1µM) or vehicle.  Treatment with PMA 
(2µM) for 5 minutes was used as a positive control for pERK.  Cell lysates were 
prepared and equalised for protein concentration by BCA assay.  Samples were 
then analysed by SDS-PAGE and immunoblotting using phospho-specific and 
total ERK antibodies.  Blots shown are representative.  Results are expressed 
as mean ± SEM (n=4).  * p<0.05 versus 5HT, ** p<0.01 versus vehicle using 
Newman-Keuls multiple comparison test. 
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Figure 3.28   Timecourse  of 5HT-induced cyclin D1 accumulation.    
 
CCL-39 cells were serum starved for 16 hours and then stimulated with 5HT 
(1µM) for 0-24 hours.  Cells grown in media containing 10% serum were used 
as a positive control for cyclin D1 accumulation.  Cell lysates were prepared and 
equalised for protein concentration by BCA assay.  Samples were then 
analysed by SDS-PAGE and immunoblotting using cyclin D1 and GAPDH 
antibodies.  Blots shown are representative.  Results are expressed as mean ± 
SEM (n=5).   * p<0.05, ** p<0.01 versus vehicle using Newman-Keuls multiple 
comparison test. 
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Figure 3.29   Effects of ROCK inhibition with Y27632 on 5HT-induc ed 
Cyclin D1.    
 
After serum starvation for 16 hours CCL-39 cells were treated with Y27632 
(5µM) and 5HT (1µM) for 6 hours. Cells grown in media containing 10% serum 
were used as a positive control for cyclin D1 accumulation.  Cell lysates were 
prepared and equalised for protein concentration by BCA assay.  Samples were 
then analysed by SDS-PAGE and immunoblotting using cyclin D1 and GAPDH 
antibodies.  Blots shown are representative.  Results are expressed as mean ± 
SEM (n=3).   * p<0.05 versus vehicle and † p<0.05 versus 5HT using Newman-
Keuls multiple comparison test. 
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In order to determine if the ROCK pathway functions selectively downstream of 

either 5HT receptors or 5HTT, various pharmacological agents were employed.  

As described previously, inhibition of ROCK significantly reduced 5HT-induced 

ERK1/2 activation (41±3% reduction, p<0.05, n=3).  Stimulation with α-methyl-

5HT (α-meth) (1µM), a 5HT2-selective agonist, resulted in ERK1/2 activation in 

CCL-39 cells (Figure 3.30).  This activation was around 55±8% of that observed 

with 5HT.  Co-administration of α-meth with Y27632 had no effect on the ability 

of agonist to induce ERK1/2 activation (α-meth induced 54.6±8% of the maximal 

response, while α-meth + Y27632 induced 56.3±13% of maximal 5HT 

response), suggesting that the ROCK pathway is not involved downstream of 

5HT2 receptors.  CP93129, a selective 5HT1B receptor agonist was also used. 

CP93129 (1µM) was also found to induce ERK1/2 activation, with the maximal 

response produced reaching 51±10% of that elicited by 5HT (Figure 3.30).  In 

contrast to α-meth, pre-treatment with Y27632 significantly attenuated the ability 

of the 5HT1B agonist to activate ERK1/2, reducing the level of ERK1/2 activation 

by 76±3% (p<0.05, n=3).  These findings suggest that ROCK is an important 

mediator specifically, downstream of the 5HT1B receptor. 

In light of the fact that there are no selective agonists for 5HTT, selective 5HT 

receptor antagonists were instead used in order to block 5HT receptors thus 

allowing 5HT to act preferentially on 5HTT (Figure 3.31). Inhibition of 5HT2A and 

5HT1B/1D receptor significantly reduced 5HT-mediated ERK1/2 activation by 

60±7% (p<0.001, n=3).  However, pre-treatment with Y27632 had not effect on 

the attenuation induced by these antagonists.  In addition to this, as shown 

previously, citalopram attenuated 5HT-mediated ERK1/2 activation (31±2% 

reduction, p<0.01, n=3) and this response also remained unaffected by ROCK 

inhibiton (32±9%, p<0.01, n=3).   

To further elucidate the mechanism of action as to how ROCK modulates ERK 

phosphorylation, the effect of Y27632 on MEK, the upstream kinase responsible 

for phosphorylating ERK1/2, was studied.  Immunoblotting using a phospho-

specific MEK antibody revealed that Y27632-mediated inhibition of ROCK had 

no effect on 5HT-induced MEK activation (Figure 3.32).   
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Figure 3.30   Effects of ROCK inhibition with Y27632 on 5HT 2A and 5HT1B 
receptor-mediated ERK activation.   
 
After serum starvation for 16 hours CCL-39 cells were pretreated for 30 minutes 
with Y27632 (5µM) or vehicle.  Cells were then stimulated for 5 minutes with 
either 5HT (1µM), α-methyl5HT (1µM) (5HT2A agonist) or CP93129 (1µM) 
(5HT1B agonist).   Treatment with PMA (2µM) for 5 minutes was used as a 
positive control for pERK.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total ERK antibodies.  Blots shown 
are representative.  Results are expressed as mean ± SEM (n=3).  * p<0.05 
versus CP93129 treated cells using an unpaired, two tailed t-test. 
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Figure 3.31   Effects of ROCK inhibition with Y27632 and selectiv e 
antagonists on 5HT-induced ERK activation.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 1 hour 
with Y27632 (5µM) and either citalopram (1µM), or a combination of ketanserin 
(1µM) and GR55562 (1µM) before stimulation with 5HT (1µM)  for 5 minutes.  
Treatment with PMA (2µM) for 5 minutes was used as a positive control for 
pERK.   Cell lysates were prepared and equalised for protein concentration by 
BCA assay.  Samples were then analysed by SDS-PAGE and immunoblotting 
using phospho-specific and total ERK antibodies.  Blots shown are 
representative.  Results are expressed as mean ± SEM (n=3).  ** p<0.01, *** 
p<0.001 versus 5HT using Newman-Keuls multiple comparison post test. 
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Figure 3.32  Effects of ROCK inhibition with Y27632  on 5HT-induced MEK 
activation.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with Y27632 (5µM).  Cells were then stimulated for 5 minutes with 
increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates were 
prepared and equalised for protein conentration by BCA assay.  Samples were 
then analysed by SDS-PAGE and immunoblotting using phospho-specific MEK 
and total ERK antibodies.  Blots shown are representative.  Results are 
expressed as mean ± SEM (n=3).  Statistical analysis using an unpaired, two 
tailed t-test revealed no significant differences between vehicle and Y27632 
treated cells. 
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ROCK has also been previously reported to be involved in facilitating the 

translocation of active ERK to the nucleus (Liu et al., 2004).  Given the ability of 

Y27632 to attenuate the induction of cyclin D1 in CCL-39 cells (Figure 3.29), 

studies into the role of ROCK in the nuclear translocation of pERK in this cell 

type were also carried out.  Stimulation with 5HT resulted in an increase in the 

level of pERK1/2 in both cytoplasmic and nuclear cell fractions (Figure 3.33).  

Inhibition of ROCK with 5µM Y27632 specifically attenuated ERK1/2 

phosphorylation in the cytoplasm (33±8% reduction, p<0.01, n=4) but had no 

effect on the levels of pERK1/2 present in the nucleus in response to 5HT, 

suggesting inhibition of ROCK is unable to affect the ability of pERK1/2 to 

translocate into the nucleus.  

Since inhibition of ROCK resulted in the attenuation of 5HT-induced ERK1/2 

activation, yet had no effect on MEK activation, it may therefore regulate dual 

specificity phosphatases (DUSPs), responsible for de-phosphorylating ERK1/2.  

In order to investigate this hypothesis, the effects of the tyrosine phosphatase 

inhibitor, sodium-ortho-vanadate, on the ability of Y27632 to attenuate ERK1/2 

activation was tested (Figure 3.34).  Treatment with sodium-ortho-vanadate on 

its own significantly increased basal levels of ERK1/2 activation (51±5% versus 

vehicle, p<0.001, n=3).  Stimulation with 5HT in the presence of sodium-ortho-

vanadate resulted in an increase in ERK1/2 activation similar to that of 5HT 

alone.  Moreover, the phosphatase inhibitor was unable to reverse the ability of 

the ROCK inhibitor to reduce 5HT-induced ERK1/2 activation, suggesting 

ROCK does not mediate its effects by regulating DUSPs responsible for de-

phosphorylating ERK1/2. 

In order to further elucidate the mechanisms by which 5HT utilises ROCK to 

mediate its mitogenic effects, the ability of 5HT to directly activate the ROCK 

pathway was studied.  To do this, myosin phosphatase, a downstream 

substrate of ROCK was monitored.  Activation of ROCK results in the 

phosphorylation of the myosin binding subunit of myosin phosphatase (MYPT1) 

(Amano et al., 2000).  Immunoblotting using a phospho-specific antibody to 

MYPT1 (pMYPT1), revealed that over a period of 2 hours, stimulation with 5HT 

(1µM) had no effect on MYPT1 phosporylation, suggesting that 5HT does not 

directly activate this pathway (Figure 3.35).   
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Figure 3.33   Effects of ROCK inhibition with Y27632 on the nucle ar 
translocation of pERK.    
 
CCL-39 cells were serum starved for 16 hours.  The cell monolayer was then 
pre-treated for 30 minutes with Y27632 (5µM) or vehicle prior to stimulation with 
5HT (1µM) or PMA (2µM) for 5 minutes.  Cytosolic and nuclear fractions were 
prepared and equalised for protein concentration by Bradford’s assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using a phospho-
specific ERK antibody.  Immunoblotting using SP1 and GAPDH antibodies was 
also carried out to determine the integrity of nuclear and cytosolic fractions 
respectively.   Blots shown are representative. Results are expressed as mean 
± SEM (n=4).  ** p<0.01 using an unpaired two-tailed t-test. 
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Figure 3.34   Effects of tyrosine phosphatase inhibition with van adate and 
ROCK inhibition with Y27632 on 5HT-induced ERK acti vation.    
 
After serum starvation for 16 hours CCL-39 cells were treated for 30 minutes 
with either sodium ortho-vanadate (100µM) or Y27632 (5µM) alone or in 
combination.  Treatment with PMA (2µM) for 5 minutes was used as a positive 
control for pERK.  Cells were then stimulated with 5HT (1µM) for 5 minutes 
before cells were harvested.  Cell lysates were prepared and equalised for 
protein concentration by BCA assay.  Samples were then analysed by SDS-
PAGE and immunoblotting using phospho-specific and total ERK antibodies.  
Blots shown are representative.  Results are expressed as mean ± SEM (n=3).  

† p<0.001 versus vehicle, *** p<0.001 versus 5HT using Newman-Keuls multiple 
comparison post test. 
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Figure 3.35   Timecourse of effects of 5HT on phosphorylation of myosin 
phosphatase.   
 
Following serum starvation for 16 hours, CCL-39 cells were stimulated with 5HT 
(1µM) for 0-120 minutes.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific and total antibodies to the myosin 
binding subunit of myosin phosphatase.  Blots shown are representative.   
Results are expressed as mean ± SEM (n=3).  Statistical analysis using 
Newman-Keuls multiple comparison test revealed no significant differences. 
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In addition to this, cofilin, another downstream substrate of ROCK, was also 

studied.  When active, ROCK phosphorylates LIMK, which in turn 

phosphorylates cofilin (Amano et al., 2000).  Upon stimulation with 5HT, an 

initial rapid increase in the levels of phosphorylated cofilin (p-cofilin) was 

observed (51±12% increase from basal).  However, due to large variability, this 

increase was not found to be statistically significant (p>0.05, n=5) (Figure 3.36).  

Furthermore, pre-treatment with the ROCK inhibitor Y27632 had no effect on 

the ability of 5HT to activate cofilin (Figure 3.37), suggesting cofilin is being 

phosphorylated independently of ROCK.   

Finally, the effects of 5HT on actin stress fibres, the formation of which is a Rho 

mediated response, were studied.  Under vehicle conditions, actin stress fibres 

were detected in CCL-39 cells by light microscopy (Figure 3.38).  Stimulation 

with 5HT (1µM) over a period of 2 hours was unable to induce any change in 

the presence of actin stress fibres within the cells.  However, inhibition of ROCK  

was able to disrupt the actin cytoskeleton and abolish the presence of actin 

stress fibres (Figure 3.39).  In light of the findings that 5HT does not appear to 

directly activate the ROCK pathway, but ROCK inhibition is able to disrupt the 

formation of actin stress fibres, the role of the actin cytoskeleton in 5HT-induced 

ERK1/2 activation was investigated.  Given that inhibition of ROCK attenuates 

5HT-induced ERK1/2 activation and also disrupts the actin cytoskeleton, the 

effects of other inhibitors on the gross morphology of the actin cytoskeleton 

were determined.  Citalopram, ketanserin, GR55562, NAC and U0126, which 

have all been previously show to attenuate the ability of 5HT to activate ERK1/2 

had no effects on the actin cytoskeleton (Figure 3.40).  The effects of agents 

such as cytochalasin D and latrunculin B which are known to disrupt actin 

cytoskeleton morphology were also analysed.  Latrunculin B mediates its effects 

by associating with actin monomers, preventing them from repolymerising and 

forming filaments (Morton et al., 2000; Spector et al., 1983).  Cytochalasin D 

has a different mode of action disrupting the actin cytoskeleton by binding both 

barbed and pointed ends of actin filaments causing both depolymerisation and 

inhibition of polymerisation (Cooper, 1987; Spector et al., 1983).  Figure 3.41 

demonstrates the ability of both cytochalasin D and latrunculin B to disrupt the 

actin cytoskeleton in CCL-39 cells.  The effect of these agents on 5HT-induced 

ERK activation was also investigated.  Cytochalasin D was found to significantly 



 128 

attenuate 5HT-induced ERK1/2 activation, with a reduction of around 35±19% 

at the maximal 5HT response (p<0.05, n=3) (Figure 3.42).  Similarly, latrunculin 

B also significantly reduced 5HT-induced ERK1/2 activation.  The maximal 5HT 

response was reduced in this case by 62±8% (p<0.01, n=3) (Figure 3.43).   
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Figure 3.36   Timecourse of effects of 5HT on phosphorylation of cofilin 1.    
 
Following serum starvation for 16 hours, CCL-39 cells were stimulated with 5HT 
(1µM) for 0-120 minutes. Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific cofilin 1 and GAPDH antibodies.  Blots 
shown are representative.   Results are expressed as mean ± SEM (n=5).  
Statistical analysis using Newman-Keuls multiple comparison test revealed no 
significant differences. 
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Figure 3.37   Effects of ROCK inhibition with Y27632 on cofilin 1  
phosphorylation.    
 
Following serum starvation for 16 hours cells were pre-treated for 30 minutes 
with either vehicle or Y27632 (5µM).  Cells were then either treated with vehicle 
or 5HT (1µM) for 5 minutes.  Treatment with LPA (100µM) for 15 minutes was 
used as a positive control.  Cell lysates were prepared and equalised for protein 
concentration by BCA assay.  Samples were then analysed by SDS-PAGE and 
immunoblotting using phospho-specific cofilin 1 and GAPDH antibodies.  Blots 
shown are representative.   Results are expressed as mean ± SEM (n=4).  * p < 
0.05 versus vehicle using Newman-Keuls multiple comparison test. 
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Figure 3.38   Timecourse of effects of 5HT on actin stress fibre formation  in CCL-39 cells. 
 
CCL-39 cells were serum starved for 16 hours then stimulated with 5HT (1µM) for 0-120 minutes.  Cells were then fixed with 4% 
paraformaldehyde and the actin cytoskeleton detected by immunofluorescence using Alexa Fluor 594 conjugated-phalloidin.  No 
changes in the actin cytoskeleton were detected following treatment with 5HT.  Images were captured using a Ziess fluorescent 
microscope using x 40 objective lens.  Pictures shown are representative of n=3 experiments. Scale bar represents 100µm. 
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Figure 3.39   Effects of ROCK inhibition with Y27632 on actin str ess fibres 
in CCL-39 cells.    
 
CCL-39 cells serum starved for 16 hours then treated with either vehicle or 
Y27632 (5µM) for 30 minutes.  Subsequently, cells were fixed with 4% 
paraformaldehyde and the actin cytoskeleton detected by immunofluorescence 
using Alexa Fluor 594-conjugated phalloidin.  Treatment with Y27632 was 
observed to disrupt the actin cytoskeleton.  Images were captured using a Ziess 
fluorescent microscope using x 40 objective lens.  Pictures shown are 
representative of n=3 experiments.  Scale bar represents 100µm. 
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Figure 3.40   Effects of signal pathway inhibitors on actin stres s fibres in 
CCL-39 cells.  
 
CCL-39 cells were serum starved for 16 hours then treated with either 
citalopram (1µM), ketanserin (1µM), GR55562 (1µM) for 1 hour or N-
acteylcysteine (0.1mM), U0126 (1µM) for 30 minutes.  Subsequently, cells were 
fixed with 4% paraformaldehyde and the actin cytoskeleton detected by 
immunofluorescence using Alexa Fluor 594-conjugated phalloidin.  No changes 
in the actin cytoskeleton were detected following treatment with inhibitors.  
Images were captured using a Ziess fluorescent microscope using x 40 
objective lens.  Pictures shown are representative of n=3 experiments.  Scale 
bar represents 100µm. 
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Figure 3.41   Effects of Cytochalasin D and Latrunculin B on the actin 
cytoskeleton of CCL-39 cells.   
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with either latrunculin B (10µM) or cytochalasin D (10µM).  
Subsequently, cells were fixed with 4% paraformaldehyde and the actin 
cytoskeleton detected by immunofluorescence using Alexa Fluor 594-
conjugated phalloidin.  Images were captured using a Ziess fluorescent 
microscope using x 40 objective lens.  Treatment with latrunculin B or 
cytochalasin D was observed to disrupt the actin cytoskeleton.  Pictures shown 
are representative of n=3 experiments.  Scale bar represents 100 µm. 
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Figure 3.42   Effects of Cytochalasin D on 5HT-induced ERK activa tion.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with cytochalasin D (10µM).  Cells were then stimulated for 5 minutes 
with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates 
were prepared and equalised for protein concentration by BCA assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using phospho-specific 
and total ERK antibody.  Blots shown are representative.  Results are 
expressed as mean ± SEM (n=3).  * p < 0.05 versus vehicle pre-treated cells 
using an unpaired, two tailed t-test. 
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Figure 3.43   Effects of Latrunculin B on 5HT-induced ERK activat ion.    
 
After serum starvation for 16 hours CCL-39 cells were pre-treated for 30 
minutes with latrunculin B (10µM).  Cells were then stimulated for 5 minutes 
with increasing concentrations of 5HT (0-10µM) or PMA (2µM).  Cell lysates 
were prepared and equalised for protein concentration by BCA assay.  Samples 
were then analysed by SDS-PAGE and immunoblotting using phospho-specific 
and total ERK antibodies.  Blots shown are representative.  Results are 
expressed as mean ± SEM (n=3).  * p < 0.05 , ** p < 0.01 versus vehicle pre-
treated cells using an unpaired, two tailed t-test. 
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3.3  DISCUSSION 
 

As stated in the introduction, the ability of 5HT to activate ERK MAP kinase 

plays a critical role in its mitogenic effects and as such may contribute to the 

remodelling process that occurs during PAH.  Therefore, investigation into the 

signalling mechanisms utilised by 5HT may give rise to potential therapeutic 

targets for new drugs in the treatment of PAH.  To further elucidate these 

signalling pathways, this study investigated potential mediators of the 5HT 

induced response and how these components contributed to 5HT-mediated 

ERK activation and proliferation. 

Previous studies have characterised the rapid activation of ERK1/2 in PASMCs 

with maximal activation occurring around 5 minutes (Lee et al., 1999).  This is 

consistent with the results shown in Figure 3.1, where 5HT is able to induce a 

rapid and transient activation of ERK1/2.  Furthermore, in CCL-39 cells the 

mitogenic effects of 5HT appear to be dependent on its ability to activate 

ERK1/2 (Figure 3.2).  Other studies have also confirmed the requirement for 

ERK1/2 activation in 5HT-induced proliferation (Bianchi et al., 2005; Lawrie et 

al., 2005). Interestingly, 5HT only resulted in an initial rapid and transient 

activation of ERK, with no further activation witnessed over the 24 hour period.  

Previous studies have indicated that in this cell type sustained MAP kinase 

activation is required for cyclin D1 induction and DNA synthesis (Balmanno and 

Cook, 1999).  The study suggested agonists such as LPA and TRP-7, which 

caused only transient ERK activation, were poor inducers of proliferation.  

However, stimulation with thrombin, which induced a sustained activation of 

ERK, resulted in a proliferative response.  Work carried out by other groups has 

also shown 5HT was unable to induce late phase ERK activation (Meloche et 

al., 1992) but still induced proliferation in CCL-39 cells (Pouyssegur et al., 1988; 

Lee et al., 1999). 

The role of p38 in 5HT-mediated signalling remains unclear.  It has previously 

been shown that 5HT is able to activate p38 via the 5HT2A receptor under 

hypoxic conditions (Welsh et al., 2004).  Furthermore, in NIH3T3 cells 

overexpressing the 5HT2A receptor, 5HT was shown to activate both ERK1/2 

and p38 (Kurrasch-Orbaugh et al., 2003).  In human astrocytoma cells, 5HT has 

also been reported to activate p38 via the 5HT7 receptor (Lieb et al., 2005).  In 
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contrast to these findings, 5HT was unable to induce activation of p38 in CCL-

39 cells (Figure 3.4).  This is consistent with findings in both bovine PASMCs 

and in rat vascular SMCs where 5HT had no effect on the activation status of 

p38 (Banes et al., 2001; Lee et al., 2001).  Despite being unable to activate p38, 

inhibition of p38 resulted in a marked reduction in 5HT induced proliferation in 

CCL-39s (Figure 3.5).  This phenonenom has also been witnessed in PASMCs 

suggesting p38 may act as a negative regulator of 5HT-induced proliferation 

(Lee et al., 2001).  However, in the present study, the concentration of 

SB203580 that was effective in abolishing proliferation also significantly 

attenuated the activation of ERK by PMA (Figure 3.7).  This suggests the ERK 

cascade in general may be affected, thus explaining the effects of SB203580 on 

5HT-induced proliferation.  In addition to this, inhibition of p38 has been 

reported to decrease 5HTT activity and 5HT uptake (Samuvel et al., 2005).  The 

effects of p38 inhibition on 5HTT described in this study may contribute to 

reduction in proliferation observed in Figure 3.5.  

CCL-39 cells have been shown to uptake 5HT, a process which can be blocked 

by various inhibitors of 5HTT (Lee et al., 1999), confirming the presence of 

functional 5HTTs in this cell type.  By using pharmacological approaches, this 

study and that of others also suggested the presence of 5HT1B/1D and 5HT2A 

receptors (Lee et al., 1999).  In the present investigation the role of 5HT 

receptors and transporter in 5HT-induced ERK activation were assessed.  

Inhibition of 5HTT (Figure 3.8), 5HT2A (Figure 3.12) or 5HT1B/1D receptors 

(Figure 3.14) all significantly reduced 5HT-mediated ERK activation.  In addition 

to this, inhibition of anyone of these components resulted in almost complete 

abolition of the proliferative response.  Furthermore, simultaneous inhibition of 

5HT1/2 receptors and 5HTT did not have an additive effect, resulting in a 50% 

reduction in ERK1/2 activation, similar to that witnessed by inhibition of one 

component alone (Figure 3.16).  These findings suggest 5HT receptors and 

5HTT may co-operatively interact to mediate the effects of 5HT.  Several 

examples of cross- talk between GPCRs have been documented.  Gi-coupled 

receptors have been shown to amplify the effects of those coupled to Gq.  For 

example, stimulation of 5HT1B receptors augments SMC contraction induced by 

histamine (H1) receptors or thromboxane A2 in rat femoral arteries and iliac 

arteries (MacLennan et al., 1993; Yildiz and Tuncer, 1995).  Furthermore, Gq-
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coupled receptors have also been reported to augment Gs-coupled receptor-

stimulated adenylyl cyclase activity (Selbie and Hill, 1998).  In support of the 

hypothesis of cross-talk, functional interactions between 5HT1B receptors and 

5HTT have been reported to mediate vasoconstriction in small pulmonary 

arteries (Morecroft et al 2005).  Interactions between 5HTT and 5HT receptors 

have also been demonstrated by the finding that chronic inhibition of 5HTT 

affects 5HT2A receptor signalling (Damjanoska et al., 2003).  Inhibition of 5HTT 

has also been shown to dampen 5HT receptor signalling in HEK293 cells 

(Johnson et al., 2003).  Furthermore, stimulation of 5HT2A receptors results in 

activation of PKC and increases levels of intracellular calcium (Rahimian and 

Hrdina, 1995), both of which are involved in the regulation of 5HTT 

(Ramamoorthy et al., 1998).  In addition, inhibition of 5HTT has also been 

reported to upregulate 5HT2B receptors in mouse astrocytes (Kong et al., 2002).  

The contribution of 5HTT and 5HT receptors in mediating mitogenic effects has 

been most extensively characterised in bovine PASMCs, where interactions 

between signalling pathways induced by receptors and transporter are required 

to produce cell proliferation. In this cell type, while 5HTT appears to be 

responsible for initiating signalling that results in ERK activation.  5HT2 and 

5HT1B/1D receptors are also required to perpetuate the proliferative response 

(Liu and Fanburg, 2006).  However, in this case inhibition of 5HT receptors 

does not decrease ERK activation but modulates processes required for ERK to 

induce its mitogenic effects.  In human PASMCs stimulation with 5HT appears 

to result in ERK activation via 5HT2A receptor and not 5HTT (Lawrie et al., 

2005).  In these PASMCs, 5HTT also plays a role in mediating the effects of 

5HT but is not involved in the activation of ERK.  Taken together these findings 

suggest functional interactions between 5HT receptors and 5HTT and cross-talk 

between the signalling pathways induced in executing cellular mitogenesis.  

5HT2A receptors have previously been found to interact with caveolin-1 in 

different cell types, a process which modulates 5HT signalling (Bhatnagar et al., 

2004; Cogolludo et al., 2006).  Caveolin-1 forms an important component of 

caveolae, specialised plasma membrane microdomains that have been found to 

compartmentalize and integrate numerous signalling events including the MAP 

kinase cascade (Shaul and Anderson, 1998).  5HTT has also been reported to 

be partitioned into lipid microdomains in the plasma membrane.  The 
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compartmentalisation of 5HT receptors and 5HTT into specialised areas of the 

membrane may facilitate their ability to cross-talk. 

The role of internalisation in 5HT-induced ERK activation was also assessed.  

In certain circumstances clathrin-mediated endocytosis and caveolin have been 

implicated in the regulation of signalling from 5HT receptors and 5HTT 

(Bhatnagar et al., 2004; Della Rocca et al., 1999; Jayanthi et al., 2005).  In this 

instance inhibition of internalisation using the structurally unrelated compounds 

ConA and MDC had little effect on the 5HT-induced ERK activation (Figures 

3.17 and 3.18).  ConA significantly increased ERK activity under basal 

conditions and a similar increase was also witnessed in response to 5HT, 

suggesting conA may activate ERK MAP kinase pathway in this cell type.  The 

increased activity of ERK observed may be due to the binding of ConA to cell 

surface glycoproteins.  For instance ConA has previously been shown to 

crosslink PZR glycoproteins, an immunoglobulin superfamily of cell surface 

proteins, resulting in their tyrosine phosphorylation (Zhao et al., 2002).  In CCL-

39 cells ConA may crosslink receptor tyrosine kinases, resulting in their 

activation and thus contributing to the elevated basal levels of ERK activation.  

No effects of 5HT-induced ERK activation were witnessed in response to MDC 

treatment suggesting internalisation from the plasma membrane is not a 

requirement for 5HT-induced ERK activation.  In addition to this, MDC reversed 

the inhibitor effects of 5HT receptor antagonists (Figure 3.20) and the 5HTT 

blocker fluoxetine (Figure 3.19).  This may be due to the ability of MDC to inhibit 

receptor desensitisation and down regulation of 5HTT by preventing receptor 

and 5HTT internalisation from the plasma membrane, thus potentiating the 

effects of 5HT.  These findings suggest endocytosis is not a requirement for 

5HT-induced ERK activation and proliferation.  However, it would be beneficial 

to monitor receptor endocytosis directly in this model before drawing a final 

conclusion.  Attempts were made to generate CCL39 cell lines stably 

overexpressing a green fluorescent protein (GFP)-tagged rat 5HT2A receptor in 

order to monitor receptor internalisation.  Cells transfected with 5HT2A-GFP 

receptor also confer resistance to the neomycin derivative G418, allowing 

selection of 5HT2A-GFP positive cells.  Despite isolation of multiple G418-

resistant clones over several separate transfections that were resistant to  

treatment with 1 mg/ml G418, only 5-10% of the cells expressed the GFP-
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tagged receptor construct, as determined by fluorescence microscopy.  

Moreover, the 5HT2A-GFP cells were also refractory to further enrichment by 

fluorescence-activated cell sorting (FACS) (data not shown). 

ROS have also been implicated in mediating the effects of 5HT.  As stated 

previously, ROS appear to be a downstream mediator of 5HTT, required to 

induce ERK1/2 activation in PASMCs.  In this study, N-acetyl-cysteine, an 

antioxidant, significantly reduced 5HT-induced ERK1/2 activation, suggesting 

ROS are also required in CCL-39 cells to form part of the mitogenic signalling 

response (Figure 3.21).  This is consistent with previous studies that have 

reported the generation of superoxide in this cell type in response to stimulation 

of 5HT (Lee et al., 1999).  The ability of ROS such as O2- and H2O2 to activate 

ERK has been well documented.  A number of growth factors have been shown 

to generate intracellular ROS production, a process that appears to be essential 

for their mitogenic signalling.  For instance, PDGF stimulated increases in  

intracellular ROS are required for ERK activation, DNA synthesis and regulation 

of gene expression (Sundaresan et al., 1995).  Furthermore, in mesangial cells, 

ROS generation via the 5HT2A receptor is though to be responsible for ERK 

activation (Grewal et al., 1999).  The mechanisms by which ROS regulate ERK 

activation remain unclear, although it has been proposed they are able to 

regulate the activity of phosphatases responsible for modulating ERK activity 

(Kim et al., 2003). 

ROS have also been shown to play a critical role in cardiac hypertrophy 

(Bianchi et al., 2005) and a variety of other vascular diseases (Yung et al., 

2006).  In cardiomyocytes, entry of 5HT into the cell via 5HTT is thought to 

result in the formation of H2O2 due to its breakdown by MAO.  The reactive 

oxygen species formed are then responsible for ERK activation and subsequent 

hypertrophy (Bianchi et al., 2005).  In the present study, inhibition of MAO had 

no effect on 5HT-mediated ERK activation, suggesting production of ROS by 

MAO has no role in the proliferative response in CCL-39 cells.  This is similar to 

findings in PASMCs (Lee et al., 1999).  Another study has suggested that ROS 

generation by MAO is not required for ERK activation, but does play a role in 

mediating the nuclear translocation of pERK (Lawrie et al., 2005).  However, 

given that inhibition of MAO had no effect on 5HT-induced proliferation this 

mechanism is unlikely to occur in CCL-39 cells. 
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The RhoA/ROCK pathway has also been implicated in the actions of 5HT.  5HT 

has been shown to activate RhoA in rat aortic rings (Sakurada et al., 2001).  

Furthermore, RhoA/ROCK appears to be involved in 5HT-mediated contractions 

in bovine cerebral arteries (Nishikawa et al., 2003).  In addition to its role in 

contraction, ROCK may also mediate mitogenic effects and has been 

suggested to play a role in PDGF BB-induced proliferation in systemic vascular 

SMCs (Chapados et al., 2006).  Based on data presented here, ROCK also 

appears to be involved in mediating 5HT-induced proliferation in CCL-39 cells 

(Figure 3.25).  This effect may be due to the ability of the Rho/ROCK pathway 

to modulate 5HT-induced ERK activation as inhibition of both Rho (Figure 3.27) 

and ROCK (Figure 3.26) significantly reduce 5HT-induced ERK activation.  This 

effect appears to be specific to 5HT as inhibition of ROCK has no effect on 

PMA-induced ERK activation.  Studies in human aortic SMCs have also shown 

the inhibition of ROCK attenuates 5HT-induced ERK activation (Matsusaka and 

Wakabayashi, 2005b).  Conversly, sustained activation of ROCK has been 

found to promote ERK activation in NIH-3T3 fibroblasts (Croft and Olson, 2006).  

ROCK also plays a role in ERK activation induced by angiotensin II in 

mesenteric resistance arteries (Matrougui et al., 2001).  However, in these 

studies the mechanisms by which inhibition of ROCK modulates ERK activation 

were not addressed.   

The requirement of ROCK for 5HT-induced proliferation has been shown 

previously in PASMCs (Liu et al., 2004). However in that study inhibition of 

ROCK had no effect on ERK phosphorylation, but was required to mediate the 

translocation of active ERK to the nucleus to stimulate the transcription factor 

phosphorylation required for cell cycle progression and cellular proliferation.  

Thus, the role of ROCK in nuclear translocation was also investigated in CCL-

39 cells.  These experiments suggested that ROCK attenuates the 

phosphorylation of ERK in the cytoplasm but has no effect on the ability of 

pERK to translocate to the nucleus (Figure 3.33).  In addition to this, inhibition of 

ROCK was also able to completely abolish 5HT-induced cyclin D1 expression 

(Figure 3.29), consistent with findings by Liu et al 2004.  Rho has previously 

been associated with normal cell cycle progression and expression of  cyclin D1 

(Welsh et al., 2001b; Jaffe and Hall, 2005).  Moreover, ROCK is also involved in 

the regulation of the cyclin D1-cdk4 complex via ERK-dependent cyclin D1 
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expression (Roovers and Assoian, 2003).  The current study would suggest that 

cytoplasmic effectors of ERK are responsible for mediating 5HT-induced 

proliferation.  It has previously been reported that in PC12 cells proliferative 

signals cause a transient activation of ERK which remains mainly in the 

cytoplasm (Marshall, 1995). 

The RhoA/ROCK pathway may interact with components of the ERK MAPK 

cascade upstream of ERK thus explaining the effects of RhoA/ROCK inhibition 

on 5HT-induced ERK activation.  However in CCL-39 cells inhibition of ROCK 

had no effect on 5HT-mediated MEK activation (Figure 3.32).  This suggests the 

Rho/ROCK pathway regulates the phosphorylation status of ERK independently 

of MEK its upstream kinase.  Various studies have highlighted interactions 

between the RhoA/ROCK pathway and members of the Ras/Raf/MEK/ERK 

signalling pathway.  Rho-GTPases have been shown play a role in Ras 

mediated Raf activation (Li et al., 2001).  Furthermore Raf-1 appears to operate 

as a regulator of Rho downstream signalling associating with ROCK II via its 

amino-terminus in primary mouse keratinocytes (Ehrenreiter et al., 2005).  This 

interaction controls the subcellular distribution of ROCK II and limits its 

activation.  In mouse embryonic fibroblasts where the BRAF gene has been 

knocked out, levels of ROCK II and pERK where decreased (Pritchard et al., 

2004).  In other cell types active Rho has been shown to bind to MEKK1 and 

stimulate its kinase activity (Gallagher et al., 2004).  MEKK1, an upstream 

kinase in the JNK and p38 pathways is known to bind and function as a scaffold 

for ERK (Morrison and Davis, 2003).  Mechanisms as to how interactions 

between the Rho/ROCK pathway and ERK MAP kinase pathway mediate 5HT-

induced proliferation remain unclear.  It is possible that scaffolding proteins 

which interact with the MEK/ERK pathway may mediate cross talk between the 

pathways.  It is well documented that scaffolding proteins target MEK/ERK 

complexes to specific cellular location and affect the activity of specific 

components of the signalling cascade (Kolch, 2005). 

Phosphatases play an important role in the regulation of ERK MAP kinases.  It 

is possible that in CCL-39 cells the Rho/ROCK pathway may modulate 

phosphatases involved in the regulation of the ERK phosphorylation and as 

such, affect its activation in response to 5HT.  Using vanadate as a non-specific 

tyrosine phosphatase inhibitor had no effect on ability of the ROCK inhibitor to 
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attenuate 5HT-induced ERK activation, suggesting phosphatases are not 

involved in mediating the effects of ROCK (Figure 3.34).  Treatment with 

vanadate alone elevates basal activity of ERK presumably by inhibiting DUSPs, 

which are responsible for maintaining ERK activation status under basal 

conditions.  This effect may mask any alterations in ERK phosphorylation 

induced by vanadate in the presence of the ROCK inhibitor.  Therefore the 

ability of ROCK to modulate phophatases involved in 5HT-induced ERK 

activation cannot be ruled out.  It may be beneficial to investigate the role of 

phosphatase by other means such as using inhibitors to specific phosphatases 

or monitoring ERK-specific phosphatase activity within the cells.   

It has previously been reported that 5HT modulates the Rho/ROCK pathway via 

the 5HT1B/1D receptor (Liu et al., 2004).  Using selective agonists, this was also 

shown to be the case in CCL-39 cells (Figure 3.30), with 5HT1B/1D receptors 

involved in mediating the effects of ROCK but not 5HT2 receptors.  Interestingly, 

using 5HTT blockers to ensure the effects of 5HT were mediated via 5HT 

receptors, ROCK inhibition had no further effect in reducing 5HT-receptor 

mediated ERK activation (Figure 3.31).  This implies ROCK is not involved 

downstream of 5HT receptors present in CCL-39 cells.  Furthermore, using 5HT 

receptor antagonists to ensure 5HT acts preferentially via 5HTT, inhibition of 

ROCK had no further effect on the reduction in ERK activation, suggesting 

ROCK does not function downstream of 5HTT. 

To try and address this issue further, the ability of 5HT to activate the 

Rho/ROCK pathway was assessed.  Prior studies have shown the ability of 5HT 

to activate this pathway in a variety of tissues and cell types including PASMCs 

(Liu et al., 2004), and aortic SMCs (Matsusaka and Wakabayashi, 2005b). 

In PASMCs 5HT has been shown to activate Rho and its downstream effector 

MYPT1.  However, in CCL-39 cells, following stimulation with 5HT no activation 

of MYPT1 (Figure 3.35) was observed.  This may be due to the high basal level 

of MYPT1 phosphorylation present.  5HT did however elevate levels of p-cofilin, 

another downstream mediator of ROCK (Figure 3.36). Although, this response 

was consistently observed, due to high basal levels and variability it was not 

found to be statistically significant.  Furthermore, this variable phosphorylation 

could not be attenuated by inhibition of ROCK (Figure 3.37).  LIMK is the direct 

upstream mediator of cofilin and can be activated via the Rac/PAK pathway.  
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This may explain why inhibition of ROCK is unable to prevent the 

phosphorylation of cofilin.  In addition to this, under quiescent conditions CCL-

39 cell displayed a high degree of actin stress fibres.  Stimulation with 5HT 

resulted in no notable change in the presence of these fibres (Figure 3.38).  

These findings are in contrast to a study in PASMCs, where application of 5HT 

was shown to cause disruption of the actin cytoskeleton (Day et al., 2006), 

highlighting the differences in 5HT signalling pathways between different cell 

types.  Furthermore the high levels of pMYPT1, p-cofilin and presence of actin 

stress fibres observed in unstimulated CCL-39 cells suggests a high degree of 

basal Rho activity, making any potential increase in the activity of the 

Rho/ROCK pathway induced by 5HT difficult to quantify.  In the future it may be 

valuable to use other methods, such as a GST-fusion proteins containing 

domains derived from Rho target proteins (e.g. GST-tagged rhotekin-RBD 

protein) in order to detect the effects of 5HT on the Rho/ROCK pathway.   

Figure 3.39 shows the ability of the ROCK inhibitor to disrupt the presence of 

actin stress fibres in CCL-39 cells.  Given the effects of ROCK inhibition on 

actin stress fibre formation it was hypothesised that the actin cytoskeleton may 

play a crucial role in the regulation of 5HT-induced ERK activation.  Others have 

reported the role of the cytoskeleton in mediating ERK activity.  For example, 

disruption of the actin cytoskeleton by cytochalasin D has been shown to 

prevent Raf activation by inhibiting its translocation to the plasma membrane in 

response to GTP loading of Ras (Krepinsky et al., 2005).  The cytoskeleton also 

plays a role in mediating the translocation of active ERK to the nucleus.  For 

instance, disruption of the actin cytoskeleton has been shown to prevent 

stretch-induced nuclear localisation of ERK in ventricular myocytes, a process 

that can be restored by agents such as jasplakinolide, which cause actin 

polymerisation (Kawamura et al., 2003).  ROCK and the actin cytoskeleton are 

also involved in mediating pressure-induced ERK activation and 

phosphorylation in mesenteric arteries (Matrougui et al., 2001).  In order to 

address whether inhibition of 5HT receptors or 5HTT resulted in any change in 

the cytoskeleton and thus resulted in a reduction in ERK activation, actin stress 

fibres were assessed.  None of the antagonists or inhibitors used previously had 

any notable effect on the presence or distribution of actin stress fibres within the 

cells, suggesting the ability of these inhibitors to attenuate 5HT-induced ERK 
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activation is not via modulation of the actin cytoskeleton (Figure 3.40).  

However, treatment with cytochalasin D and latrunculin B, agents that disrupt 

the actin cytoskeleton by distinct mechanisms, resulted in a significant reduction 

in 5HT-mediated ERK activation but had no effect on ERK activation induced by 

treatment with PMA (Figure 3.42 and 3.43) suggesting these findings are 

specific to 5HT.  Disruption of the actin cytoskeleton using agents such as 

cytochalasin D has previously been suggested to inhibit internalisation from the 

plasma membrane.  However, neither MDC nor con A, agents that also inhibit 

internalisation were able to attenuate ERK activation, suggesting that the effects 

of cytochalasin D are due to its ability to disrupt the actin cytoskeleton alone.  

These results imply that in this cell type the actin cytoskeleton, and ROCK in 

particular, play a crucial role in mediating 5HT-induced ERK activation.  The 

role of the actin cytoskeleton in meditating the distribution of signalling 

components within the cell may be key in the ability of 5HT to activate ERK.  As 

mentioned previously ROCK and the actin cytoskeleton have been reported to 

mediate the translocation of various components of the ERK cascade and thus 

regulate its activity (Krepinsky et al., 2005; Kawamura et al., 2003, Liu et al., 

2004).  Interestingly, stress fibre formation can also directly regulate gene 

expression of a subset of serum response factor-dependent genes (Copeland 

and Treisman, 2002; Geneste et al., 2002; Gineitis and Treisman, 2001).   

5HT has previously been shown to induce reorganisation of vimentin filaments 

in tracheal SMCs (Tang et al., 2005).  It may therefore be beneficial to 

determine the role of other components of the actin cytoskeleton, such as 

microtubules and intermediate fibres in mediating the effects of 5HT.  The 

PAK/LIMK pathway is also involved in regulation of the cytoskeleton.  Given the 

apparent importance of the actin cytoskeleton in mediating the effects of 5HT, it 

may prove useful to investigate the potential role of this pathway in the process.  

LIMK has already been implicated in the expression of cyclin D1 (Roovers et al., 

2003) and PAK is thought to be involved in the 5HT-mediated reorganisation of 

vimentin (Tang et al., 2005). 

In CCL-39 cells, entry of 5HT into the cell via 5HTT appears to be required to 

mediate its proliferative effects.  What is unclear however, is where 5HT acts 

once inside the cell.  As stated previously, studies suggest intracellular 5HT 

may be broken down by MAO to produce ROS, which are involved in ERK 
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activation and thus contribute to cellular proliferation.  This appears not to be 

the case in this cell type as inhibition of MAO is unable to modulate 5HT-

induced ERK activation.  One other possibility is that once inside the cell 5HT 

acts as a “second messenger” modulating proliferative signalling pathways.  

One group has suggested that once inside the cell 5HT is transamidated to Rho 

rendering it constitutively GTP-bound and active (Walther et al., 2003; Guilluy et 

al., 2007).  Other molecules such as spingosine-1- phosphate (S1P) have been 

shown to regulate ERK1/2 activity via both its extracellular and intracellular 

actions (Goodemote et al., 1995).  Thus, it is possible that inside the cell 5HT 

may activate intracellular receptors which form part of a 5HT signal transduction 

pathway.  Indeed, several GPCRs have been detected intracellularly and are 

thought to function in mediating intracellular signalling.  For instance the LPA1 

receptor has been reported to be constitutively expressed in the nucleus of 

several mammalian cell types where it participates in the intracellular signalling 

of LPA and regulates protein phosphorylation (Waters et al., 2006).  If this is the 

case for 5HT, our data would suggest that ROCK may be important in 

maintaining the intracellular localisation of these receptors. 

It may also prove fruitful to further investigate the role of ROS in this system.  

ROS have previously been shown to be involved in the activation of the 

Rho/ROCK pathway (Jin et al., 2004).  Rho is also thought to contribute to the 

formation of superoxide in certain cells (Kim et al., 2004).  Given the 

requirement of ROS in 5HT-mediated ERK activation, investigations into the 

effects of ROCK inhibition on ROS production may shed some light on the 

mechanisms by which ROCK regulates the 5HT response.  It has previously 

been shown that H2O2 inhibits phosphatases PP1 and PP2A resulting in 

increased ERK phosphorylation (Kim et al., 2003).  Therefore, if the Rho/ROCK 

pathway via stimulation with 5HT is responsible for ROS generation in CCL-39 

cells, its inhibition may affect the activity of phosphatases responsible for 

activating ERK thus attenuating 5HT-incuded ERK activation.  

To summarise, 5HT1B/1D, 5HT2A receptors and 5HTT all appear to play a role in 

mediating 5HT-induced ERK activation and proliferation, suggesting cross-talk 

between receptor and transporter signalling pathways.  ROCK also plays a role 

in mediating the mitogenic effects of 5HT via the 5HT1B/1D receptor.  However, 

5HT does not appear to directly activate the Rho/ROCK pathway, at least not 
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within the means of detection used in this study.  The ability of ROCK to 

modulate cytoskeletal dynamics appears to be pivotal in its ability to modulate 

5HT-induced ERK activation.  
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Chapter 4 

Characterisation of the Effects of ROCK  

Inhibition on an In Vivo  Model of Pulmonary Hypertension. 
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4.1  INTRODUCTION 

 

As described previously, ROCK is a major downstream effector of the small 

GTP-ase Rho.  Its functions include: the dynamic regulation of cytoskeletal 

proteins, cell migration, proliferation and smooth muscle contraction.  

Dysregulation of the Rho/ROCK pathway has also been implicated in numerous 

pathophysiological processes in the cardiovascular system such as 

atherosclerosis (Mallat et al., 2003), angina (Masumoto et al., 2002; Mohri et al., 

2003), myocardial infarction (Satoh et al., 2003), restenosis (Sawada et al., 

2000) and hypertension (Kobayashi et al., 2002).   

RhoA has been found to play a particularly important role in the hypertensive 

process in several in vivo models.  For instance, increased expression and 

activity of RhoA has been observed in  vascular SMCs (Seko et al., 2003), in 

addition to the implication of Rho-dependent signaling pathways, in resistance 

artery remodeling occurring during hypertensive process (Mukai et al., 2001; 

Wesselman et al., 2004).  Moreover, ROCK is thought to mediate calcium 

sensitization in VSMCs, a process involved in the pathobiology of hypertension 

(Uehata et al., 1997).  Furthermore, in spontaneously hypertensive rats, 

upregulation of ROCK was found to precede the development of hypertension 

(Mukai et al., 2001).  ROCK has also been shown to be involved in 

hypertension in humans (Masumoto et al., 2001). 

A growing body of evidence also exists highlighting the role of the Rho/ROCK 

pathway in the pulmonary circulation. Pulmonary artery endothelial cells from 

pulmonary hypertensive piglets have been shown to display increased RhoA 

activity (Wojciak-Stothard et al., 2006).  In addition to this, RhoA activity and 

ROCK 1 protein expression are each elevated in mildly hypoxic fawn hooded 

rats compared to those maintained at sea level (Nagaoka et al., 2005), with 

similar findings also reported in chronically hypoxic rats (Hyvelin et al., 2005).  

The activities of RhoA and ROCK have also been reported to be elevated by 

high flow-induced PAH (Li et al., 2007).  Moreover, exposure of rat PASMCs to 

hypoxia has also been shown to significantly increase ROCK activity (Wang et 

al., 2001). 
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ROCK appears to play a dual role in the pathophysiology of pulmonary 

hypertension contributing to both vasoconstriction and vascular remodeling.  

Several laboratories have reported the vasodilatory properties of ROCK 

inhibition on hypoxia-induced vasoconstriction in pulmonary vessels.  In 

intrapulmonary vascular rings maintained in hypoxic conditions, slow sustained 

contraction was markedly reduced by treatment with Y27632, a ROCK inhibitor 

(Wang et al., 2001; Robertson et al., 2000a).  Furthermore, studies carried out 

in rats suggest that ROCK-mediated calcium sensitization plays a pivitol role in 

the increased basal pulmonary artery tone and sustained vasoconstriction 

observed in pulmonary vessels during chronic hypoxia (Nagaoka et al., 2004).   

ROCK-mediated vasoconstriction is also thought to be an important component 

of severe occlusive PAH (Oka et al., 2007). 

In addition to this, chronic treatment with ROCK inhibitors has also been shown 

to reduce elevated pulmonary artery pressure in models of pulmonary 

hypertension.  Administration of fusadil reduced pulmonary artery pressures in 

chronic hypoxic (Nagaoka et al., 2005), high flow-induced (Li et al., 2007) and 

monocrotaline-induced animal models of pulmonary hypertension (Abe et al., 

2004).  Moreover, Y27632 had similar effects, significantly reducing pulmonary 

artery pressures in the chronic hypoxic rat (Hyvelin et al., 2005). ROCK may 

also couple vasoconstriction with vascular remodeling in pulmonary arteries by 

contributing to matrix synthesis in vascular smooth muscle cells (Chapados et 

al., 2006).  Indeed, the beneficial effects of ROCK inhibition on RVH and 

pulmonary vascular remodeling have been described.  For example, 

administration of fusadil was found to decrease RVH and medial pulmonary 

artery wall thickness in in vivo models (Nagaoka et al., 2005; Abe et al., 2004; Li 

et al., 2007).  In addition to this, the potentially beneficial effects of sildenifil 

(Sauzeau et al., 2003; Guilluy et al., 2005) and statins (Girgis et al., 2007; Xing 

et al., 2006) in the treatment of PAH may be partially owing to the ability of 

these drugs to inhibit the RhoA/ROCK pathway.  

The results discussed previously in chapter 3 suggest ROCK as a possible 

downstream mediator of 5HT in its proliferative response.  Given the pivotal role 

of 5HT and 5HTT in the development of pulmonary hypertension (Eddahibi et 

al., 2001) and the apparent importance of ROCK, any cross-talk between these 

systems in vivo were investigated.  Specifically, in this chapter, the effects of 
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ROCK inhibition on chronic hypoxia-induced pulmonary hypertension in WT and 

5HTT+ mice were assessed. 
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4.2  RESULTS 

 

Initially, relative expression levels of ROCK 1 and ROCK 2 transcripts in whole 

lung tissue from WT and 5HTT+ under both normoxic and hypoxic conditions 

were assessed.  In the case of ROCK 1, under normoxic conditions WT and 

5HTT+ mice display similar levels of expression (Figure 4.1).  Hypoxia resulted 

in the elevation of ROCK 1 transcript levels in WT and 5HTT+ mice (WT: 

359±21% increase, p<0.05, n=5.  5HTT+: 1041±27%, p<0.01, n=5), with the 

increase more pronounced in 5HTT+ mice.  Furthermore, under normoxic 

conditions relative levels of ROCK 2 are similar in both WT and 5HTT+ mice 

(Figure 4.2).  Exposure to chronic hypoxia on the other hand caused a 

significant increase in ROCK 2 levels in both WT (600±28% increase from 

normoxic, p<0.01, n=6) and 5HTT+ mice (863±37% increase from normoxic, 

p<0.05, n=6) resulting in similar levels of transcript expression.  This suggests 

that overexpression of 5HTT enhances the hypoxia-induced transcription of 

ROCK 1. 
The effects of ROCK inhibition on RVP in WT and 5HTT+ mice maintained in 

both normoxic and hypoxic conditions were assessed.  Hypoxia was found to 

cause a significant elevation in mRVP in WT and 5HTT+ mice (WT: p<0.01, n=5 

5HTT+: p<0.05, n=5) (Figure 4.3).  Under normoxic conditions 5HTT+ mice 

exhibited higher mRVP than WT mice (WT: 12.5±1.5mmHg, 5HTT+: 

16.08±3mmHg).  Furthermore, inhibition of ROCK had no effect on mRVP in 

normoxic WT mice (n=6); it did however reduce the elevated mRVP in normoxic 

5HTT+ mice (p<0.05, n=7).  In addition to this, under hypoxic conditions, 

administration of Y27632 attenuated the elevated mRVP seen in WT mice 

(p<0.05, n=8).  Moreover, when administered to 5HTT+ mice in hypoxic 

conditions, Y27632 reduced mRVP (p<0.001, n=8) resulting in pressures similar 

to than seen in normoxic vehicle-dosed WT mice (5HTT+ hypoxic Y27632: 

12.9±3mmHg, n=8, WT normoxic vehicle: 12.5±1.5mmHg, n=8). 
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Figure 4.1  Relative expression levels of ROCK 1 tr anscript in whole lung 
tissue from WT and 5HTT + under both normoxic and hypoxic conditions.    
 
Whole lungs were removed from euthanised animals for RNA isolation.  After 
reverse transcription, relative transcript levels of ROCK1 were determined by 
TaqMan RT-PCR.  Results expressed as mean ± SEM relative to levels of 18s 
ribosomal RNA, WT n=5, WT hypoxic n=5, 5HTT+ n=5, 5HTT+ hypoxic n=5.  * p 
< 0.05, ** p < 0.01 using Newman-Keuls multiple comparison test. 
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Figure 4.2   Relative expression levels of ROCK 2 transcript in whole lung 
tissue from WT and 5HTT + under both normoxic and hypoxic conditions.    
 
Whole lungs were removed from euthanised animals for isolation of RNA.  After 
reverse transcription, relative transcript levels of ROCK 2 were determined by 
TaqMan RT-PCR.  Results expressed as mean ± SEM relative to levels of 18s 
ribosomal RNA, WT n=5, WT hypoxic n=6, 5HTT+ n=5, 5HTT+ hypoxic n=6.  * p 
< 0.05, ** p < 0.01 using Newman-Keuls multiple comparison test. 
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Figure 4.3  Effects of Y27632 administration on mea n right ventricular 
pressure (mRVP).   
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30mgkg-1) daily by oral gavage.  Subsequently mRVP was measured 
by a transdiaphramatic approach.  Results expressed as mean ± SEM, WT 
vehicle n=8, WT Y27632 n=6, WT vehicle hypoxic n=5, WT Y27632 hypoxic 
n=8, 5HTT+ vehicle n=7, 5HTT+ Y27632 n=7, 5HTT+ vehicle hypoxic n=5, 
5HTT+ Y27632 hypoxic n=8. * p < 0.05, ** p < 0.01, *** p < 0.001 using 
Newman-Keuls multiple comparison test. 
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Similar effects were also observed on sRVP.  Under normoxic conditions 5HTT+ 

mice displayed a pulmonary hypertensive phenotype, exhibiting elevated sRVP 

compared to WT mice (WT: 18.7±1.2mmHg, n=8, 5HTT+: 27.6±3.4mmHg, n=7, 

p<0.05) (Figure 4.4).  Again, hypoxia significantly elevated sRVP in both WT 

and 5HTT+ mice (WT: p<0.05, 5HTT+: p<0.01).  Y27632 significantly attenuated 

this response (WT: p<0.05, 5HTT+: p<0.01) having a more pronounced effect in 

the 5HTT+ group. 

Comparable trends in dRVP were also noted, with hypoxia elevating pressures 

in both WT (p<0.05) and 5HTT+ (p<0.01) mice (Figure 4.5).  Under normoxic 

conditions dRVP in 5HTT+ animals appears elevated compared to WT (WT: 

5.7±1.5mmHg, n=8, 5HTT+: 8.9±3.4mmHg, n=7, p>0.05).  Administration of 

Y27632 had no effect on dRVP observed under normoxic conditions in WT 

mice; it did however marginally reduce the elevated pressure seen in 5HTT+ 

mice.  Notably, the most marked effects of ROCK inhibition occurred in 5HTT+ 

mice under hypoxic conditions, where Y27632 significantly reduced the 

elevation in dRVP (p<0.01) and returned pressures near to levels witnessed in 

normoxic WT animals (WT normoxic vehicle: 5.7±1.5mmHg, n=8, 5HTT+ 

hypoxic Y27632: 5.5±2.4mmHg, n=8).  These findings show that ROCK 

inhibition, attenuates hypoxia-induced increases in RVP and that this effect is 

most notable on sRVP.  Given that sRVP is significantly higher in 5HTT+ mice, 

the benefical effects of ROCK inhibition are more pronounced in these mice.  

The effects of Y27632 observed were specific to the pulmonary circulation as 

mean systemic arterial pressures and heart rates were found to be unaltered by 

administration of Y27632 (Table 4.1).  Furthermore, neither overexpression of 

the 5HTT gene nor chronic hypoxia has any effect on systemic haemodynamics 

(Table 4.1). 
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Figure 4.4  Effects of Y27632 administration on sys tolic right ventricular 
pressure (sRVP).   
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30mgkg-1) daily by oral gavage.  Subsequently sRVP was measured 
by a transdiaphramatic approach.  Results expressed as mean ± SEM, WT 
vehicle n=8, WT Y27632 n=6, WT vehicle hypoxic n=5, WT Y27632 hypoxic 
n=8, 5HTT+ vehicle n=7, 5HTT+ Y27632 n=7, 5HTT+ vehicle hypoxic n=5, 
5HTT+ Y27632 hypoxic n=8.  * p < 0.05, ** p < 0.01 using Newman-Keuls 
multiple comparison test. 
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Figure 4.5  Effects of Y27632 administration on dia stolic right ventricular 
pressure (dRVP).   
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30mgkg-1) daily by oral gavage.  Subsequently dRVP was measured 
by a transdiaphramatic approach.  Results expressed as mean ± SEM, WT 
vehicle n=8, WT Y27632 n=6, WT vehicle hypoxic n=5, WT Y27632 hypoxic 
n=8, 5HTT+ vehicle n=7, 5HTT+ Y27632 n=7, 5HTT+ vehicle hypoxic n=5, 
5HTT+ Y27632 hypoxic n=8.  * p < 0.05, ** p < 0.01 using Newam-Keuls 
multiple comparison test.  
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Table 4.1  Effects of Y27632 administration on syst emic arterial pressure 
(SAP) and heart rate (HR).    
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30mgkg-1) daily by oral gavage.  Subsequently SAP and HR were 
measured by cannulation of the right carotid artery.  Results expressed as 
mean ± SEM. No significant differences between groups were found using 
Newman-Keuls multiple comparison test. 
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The effects of ROCK inhibition on RVH were also assessed (Figure 4.6). In WT 

animals under normoxic conditions, administration of Y27632 had no effect on 

the RV/LV+S ratio (n=7).  Exposure to chronic hypoxia induced a marked 

elevation in this ratio (p<0.001, n=14) and treatment with Y27632 had no effect 

on this hypertrophic response (n=9).  Similarly, in 5HTT+ mice, Y27632 had no 

effect on the RV/LV+S ratio under normoxic conditions (n=10) and exposure to 

chronic hypoxia markedly increased RVH (p<0.001, n=14).  However, in 

contrast to WT mice, when administered with Y27632, 5HTT+ mice exhibited 

significantly reduced RVH under hypoxic conditions (p<0.001, n=9). 

Pulmonary vascular remodeling was also assessed (Figure 4.7).  Hypoxia 

significantly elevates the percentage of remodeled arteries in WT and 5HTT+, 

with the remodelling observed in 5HTT+ mice more marked (16.8±1%  versus 

23.3±2%, p < 0.001, n=6).  In addition, administration of Y27632 under hypoxic 

conditions significantly attenuates the percentage of remodeled pulmonary 

arteries in WT (12.6±0.8%, p<0.01, n=4) and 5HTT+ mice (11.7±0.8%, p<0.001, 

n=7). 

Taken together, these observations suggest that inhibition of ROCK not only 

reduces elevated pulmonary artery pressure but also markedly attenuates 

pulmonary vascular remodeling.  These inhibitory effects are more prominent in 

5HTT+ mice, highlighted by the fact that ROCK inhibition selectively reduces 

RVH in these mice. 
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Figure 4.6  Effects of Y27632 administration on rig ht ventricular 
hypertrophy.    
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30 mgkg-1) daily by oral gavage.  Following haemodynamic 
measurement hearts were removed and right ventricular hypertrophy assessed 
by calculating the ratio of the right ventricle to left ventricle plus septum 
(RV/LV+S).  Results expressed as mean ± SEM, WT vehicle n=12, WT Y27632 
n=7, WT vehicle hypoxic n=14, WT Y27632 hypoxic n=9, 5HTT+ vehicle n=14, 
5HTT+ Y27632 n=10, 5HTT+ vehicle hypoxic n=14, 5HTT+ Y27632 hypoxic n=9.  
*** p < 0.001 using Newman-Keuls multiple comparison test. 
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Figure 4.7  Effects of Y27632 administration on the  pulmonary vascular 
remodelling.    
WT and 5HTT+ mice were maintained in either normoxic or hypoxic conditions 
for 14 days during which period they were administered with either vehicle or 
Y27632 (30 mgkg-1) daily by oral gavage.  Following haemodynamic 
measurement lung tissue was removed for analysis. Results expressed as 
mean ± SEM, WT vehicle n=6, WT Y27632 n=4, WT vehicle hypoxic n=6, WT 
Y27632 hypoxic n=4, 5HTT+ vehicle n=7, 5HTT+ Y27632 n=5, 5HTT+ vehicle 
hypoxic n=6, 5HTT+ Y27632 hypoxic n=7.  **p<0.05, ** p< 0.01, *** p < 0.001 
using Newman-Keuls multiple comparison test. 
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4.3  DISCUSSION 

 

ROCK is thought to play a role in the pathophysiology of several vascular 

diseases including PAH.  5HT and 5HTT are also implicated in the development 

of the condition.  Given the results discussed in Chapter 3 of this thesis and 

studies carried out by others (Liu et al., 2004), potential cross-talk between 5HT 

signaling pathways and ROCK were investigated in vivo. 

Chronic hypoxia is a commonly used model of pulmonary hypertension (Marcos 

et al., 2003; Long et al., 2006; Eddahibi et al., 1998), and in this study, exposure 

of WT mice to hypoxia resulted in elevated RVP and RVH, hallmarks of 

experimental PAH.  As mentioned previously 5HTT is thought to be involved in 

the development of PAH and consistent with previously published results 

(MacLean et al., 2004; Guignabert et al., 2006), 5HTT+ mice appeared to 

display a spontaneously pulmonary hypertensive phenotype, with significantly 

elevated sRVP under normoxic conditions.  Polymorphisms in the 5HTT gene 

promoter associated with overexpression of 5HTT, have also been observed in 

a large percentage of patients with PAH (Eddahibi et al., 2001). 

ROCK is an important mediator of vascular tone and has previously been 

implicated in hypoxic pulmonary vasoconstriction, with its inhibition attenuating 

vasoconstriction in isolated rat lung and pulmonary arteries (Robertson et al., 

2000a; Fagan et al., 2004).  This may explain the ability of ROCK inhibition to 

significantly attenuate sRVP in both WT and 5HTT+ mice (Figure 4.4).  The 

effects of ROCK inhibition appears specific to the pulmonary circulation, as 

Y27632 had no effect on mSAP or HR (Table 4.1).  The beneficial effects of 

ROCK inhibition on RVP observed in this study are consistent with findings by 

others in chronically hypoxic, fawnhooded and monocrotaline treated rats 

(Hyvelin et al., 2005; Nagaoka et al., 2006; Abe et al., 2004; Guilluy et al., 

2005). 

The beneficial effects of ROCK inhibition on RVP appear more pronounced in 

5HTT+ mice, with all parameters of RVP significantly attenuated (Figures 4.3 to 

4.5).  The more marked effect of ROCK inhibition in these mice is also 

highlighted by the fact that Y27632 appears to specifically attenuate hypoxia 

induced RVH in 5HTT+ mice but not WT mice (Figure 4.6).  Others have also 

suggested the beneficial effects of ROCK inhibition on RVH in chronically 
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hypoxic rats (Abe et al., 2004; Guilluy et al., 2005; Nagaoka et al., 2006).  

Furthermore, inhibition of ROCK has previously been shown to attenuate 

pulmonary vascular remodelling and vessel wall thickness in a variety of models 

of pulmonary hypertension (Abe et al., 2004; Guilluy et al., 2005; Nagaoka et 

al., 2006).  These finding agree with the present study in which administration of 

the ROCK inhibitor Y27632 significantly attenuated hypoxia-induced pulmonary 

vascular remodelling (Figure 4.7). 

Moreover, the effects of chronic hypoxia on relative levels of ROCK 1 and 

ROCK 2 transcript were assessed.  Hypoxia resulted in elevation of ROCK 2 in 

both WT and 5HTT+ to a similar extent.  In the case of ROCK 1 however, a 

more marked increase was observed in 5HTT+ mice (Figure 4.1).  This 

observation may also be related to the augmented effects of ROCK inhibition on 

RVP, vascular remodelling and RVH in 5HTT mice.  These findings suggest a 

potential link between 5HTT and ROCK 1 expression.   

A number of studies have previously shown the ability of hypoxia to upregulate 

RhoA in a variety of cell types and tissues, including PASMCs (Bailly et al., 

2004), PAECs (Wojciak-Stothard et al., 2006) and rat pulmonary arteries 

(Guilluy et al., 2005).  Increased protein levels of ROCK 1 have also been 

reported in the pulmonary arteries of fawnhooded rats kept at high altitude 

(Nagaoka et al., 2006).  Furthermore, consistent with findings in the present 

study, elevated ROCK 1 and 2 mRNA levels have been observed in lungs from 

chronically hypoxic rats (Hyvelin et al., 2005).  However, the mechanisms 

resulting in increased ROCK expression during hypoxia have not been 

addressed. 

Hypoxia is known to modulate the expression of a wide variety of genes.  One 

major class of transcription regulators activated in response to hypoxia are 

hypoxia inducible factors (HIF) (Wang et al., 1995).  HIF-1α, HIF-2α (Ema et al., 

1997; Tian et al., 1997; Flamme et al., 1997), HIF-3α (Gu et al., 1998) subtypes 

have been identified, with HIF-1α most ubiquitously expressed and extensively 

characterised (Semenza, 2004).  HIF comprises of heterodimeric transcription 

factors HIFα and HIFβ, which bind to consensus DNA binding motifs within the 

regulatory promoter region of hypoxia responsive genes, known as the hypoxia 

response elements (HRE), resulting in transcriptional regulation of the target 

gene (Wang et al., 1995).  
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A large number of genes with a wide range of functions are regulated by HIF-1 

including VEGF (Levy et al., 1995),  inducible NOS (iNOS) (Melillo et al., 1995), 

cyclo-oxygenase 2 (COX-2) (Kaidi et al., 2006) erythropoietin (EPO) (Semenza 

and Wang; 1992, Semenza et al., 1991) and GLUT1 (Chen et al., 2001).  It is 

possible that ROCK genes may also be upregulated by HIF-1 under hypoxic 

conditions, thus explaining the increased mRNA levels observed in this study in 

chronically hypoxic mice.  Indeed, data analysis of the promoter region of 

murine ROCK 1 and ROCK 2 genes identified potential HIF-1 consensus 

sequences, suggesting HIF-1 may be involved in hypoxia-mediated ROCK 

upregulation (Figure 4.8).  

Other transcription factors, such as nuclear factor kappa B (NFкB),  cAMP 

response element binding protein (CREB), p53, Egr-1 Sp-1 and AP-1 have all 

been found to be activated either directly or indirectly by hypoxia (Cummins and 

Taylor, 2005), contributing to altered gene transcription.  Hypoxic activation of 

the afore mentioned transcription regulators may also contribute to the 

increased transcript levels of ROCK observed under chronically hypoxic 

conditions in the present study.  Indeed, data analysis of the promoter region of 

the human ROCK gene suggested several possible cis DNA elements including 

AP-1 and Sp-1 (Shimokawa and Takeshita, 2005).  However, the function of 

these elements has not been evaluated.  Similarly, data anlaysis of murine 

ROCK 1 and ROCK 2 identified a potential Sp-1 and AP-1 binding sites in each 

promoter region.  This analysis also detected potential NFкB and CREB 

transcription factor binding sites. 

In addition to this, inflammatory stimuli may be involved in the regulation of 

ROCK expression during hypoxic conditions.   Hypoxic activation of NFкB has 

been found to increase the level of inflammatory mediators such as COX-2, 

tumour necrosis factor α (TNFα) and interleukin-6 (IL-6).  The upregulation of 

inflammatory mediators by this mechanism may influence ROCK expression, as 

angiotensin II and interleukin 1β (IL-1β) have previously been shown to 

increase the expression and function of ROCK in vascular SMCs.  This process 

was dependent of NFкB (Hiroki et al., 2004).  

Hypoxia also activates various kinases, which may result in altered gene 

transcription.  The MAP kinases ERK (Stenmark et al., 2002; Minet et al., 2000), 

p38 (Stenmark et al., 2002; Welsh et al., 2001a) and JNK (Stenmark et al., 
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2002) have been found to be activated under hypoxic condition, as have other 

protein kinases such as PKC (Yuan et al., 2005), PKA (Beitner-Johnson et al., 

1998), CaMK (Beitner-Johnson et al., 1998; Yuan et al., 2005) and Src (Thobe 

et al., 2006).  Activation of such kinases during hypoxia may result in the 

modulation of signalling pathways and alterations in gene transcription, 

accounting for the increased levels of ROCK transcript.  For instance, there is 

evidence to suggest that in various circumstances activation of p38 results in 

the expression of various inflammatory mediators including TNFα and iNOS 

(Wang et al., 2004).  Given the effect of inflammatory stimuli on ROCK, this may 

in turn result in its upregulation.  Furthermore the increased entry of 5HT into 

cells in 5HTT+
 mice may potentiate signal transduction resulting in the increased 

transcription of ROCK 1. 

Paracrine factors released during hypoxia may also contribute to the regulation 

of ROCK activity.  Mediators such as adenosine are released during hypoxic 

conditions. The accumulation of extracellular adenosine has previously been 

found to affect the transcription of genes such as VEGF and eNOS 

(Ramanathan et al., 2007; Min et al., 2006).  Therefore, accumulation of 

adenosine could potentially effect ROCK expression by activating signal 

transduction pathways that mediate its transcription.  Furthermore, given both 

adenosine and p38 both play important roles in the regulation of 5HTT activity 

(Zhu et al., 2004; Zhu et al., 2005), the increased presence of these mediators 

during hypoxic conditions may contribute to the augmented hypoxic-

upregulation of ROCK 1 in 5HTT+ mice.    

To conclude, the more pronounced beneficial effects of ROCK inhibition on 

RVP and vascular remodelling in 5HTT+ mice and the ability of Y27632 to 

reduce right ventricular hypertrophy in 5HTT+ mice but not WT mice, suggests 

cross-talk between 5HT and ROCK signaling systems.  This hypothesis is 

consistent with the marked elevation in the expression of ROCK1 observed in 

the lungs of 5HTT+ mice in response to hypoxia.  Whilst, both ROCK 1 and 

ROCK 2 promoter regions contain potential HIF-1 binding sites explaining their 

upregulation during hypoxia, the mechanisms as to how overexpression of 

5HTT results in increased transcript levels of ROCK 1 in the lung requires 

further investigation.  
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Figure 4.8  Schematic diagram showing the potential  position of HIF-1 
consensus sequences in the promoter region of murin e ROCK 1 and 
ROCK 2 genes.   
 
Data analysis of ROCK 1 and ROCK 2 genes revealed several potential HIF-1 
binding sites in their promoter regions. For each gene, a 2kb region upstream of 
the transcription initiation site was analysed for HIF-1 consensus sequences 5’-
GCTGT-3’ and 5’-ACTGT-3’.  
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Chapter 5 

FINAL DISCUSSION 
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SUMMARY 

 

5HT is a monoamine, synthesised by the body from dietary tryptophan and 

plays a major role in wide variety of physiological and pathological processes, 

including pulmonary hypertension (Levy, 2006, MacLean et al., 2000, Hoyer et 

al., 2002).  Evidence exists implicating 5HT in the vasoconstriction and vascular 

remodelling that occurs during PAH (MacLean et al., 2000).  5HT has been 

shown to act as a mitogen in a variety of cell types (Lee et al., 1999, Liu and 

Fanburg, 2006, Lawrie et al., 2005, Bianchi et al., 2005) and it is this effect that 

may contribute to the vascular remodelling that occurs in patients with PAH.  

This project has characterised signalling pathways utilised by 5HT to induce 

fibroblast proliferation, in particular highlighting the role of the Rho/ROCK in this 

process.  Furthermore, using an in vivo model where the 5HTT protein is 

overexpressed, inhibition of the Rho/ROCK pathway was found to have marked 

beneficial effects on the symptoms of PAH. 

In Chapter 3, examination of 5HT mitogenic signalling using CCL-39 hamster 

lung fibroblasts revealed that proliferation was ERK-dependent and that 

5HT1B/1D receptors, 5HT2A receptors and 5HTT were all required for optimal 

ERK activation and proliferation, suggesting cross-talk between 5HT receptors 

and the transporter.  Furthermore, pharmacological inhibition of Rho/ROCK  

pathway significantly inhibited 5HT induced ERK activation, cyclin D1 

accumulation and proliferation.  However, no effect on 5HT-induced MEK 

activation or on the ability of active ERK to translocate to the nucleus was 

observed.  Instead, inhibition of the ROCK was found to specifically inhibit the 

activation of a cytoplasmic pool of ERK.   These findings suggest that ROCK 

inhibition may reduce the ability of MEK to promote ERK phosphorylation.  

Furthermore, ROCK functions downstream of the 5HT1B receptor in mediating 

5HT-induced ERK activation.  In the cell type used in this study, the direct 

activation of Rho/ROCK pathway by 5HT was not detected by means of 

immunoblotting for the activation of downstream substrates of ERK.  However, 

actin stress fibres were detected in the cells prior to stimulation with 5HT, 

suggesting a high basal activity of Rho which may mask the effects of 5HT on 

the Rho/ROCK pathway.  The function of ROCK in maintaining cytoskeletal 
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intergrity is central to its role in 5HT-induced ERK activation in this cell type as 

disruption of the actin cytoskeleton by other agents such as latrunculin B and 

cytochalasin D also markedly attenuate the ability of 5HT to activate ERK.  The 

role of the ROCK and the actin cytoskeleton in mediating 5HT-induced ERK 

activation are specific to 5HT pathways as neither inhibition of ROCK nor 

disruption of the actin cytoskeleton had any effect on the ability of PMA to 

activate ERK. 

In Chapter 3, this study characterised the effects of ROCK inhibition on 5HT-

induced ERK activation and proliferation, however it may also be useful to 

determine the effects of ROCK activation on these processes, as this would be 

expected to promote proliferation.  One possible way in which to address the 

effects of ROCK activation would be to use a conditionally active ROCK 

construct.  Indeed, a study carried out by Croft et al 2006, using a conditionally 

activated ROCK-estrogen receptor (ROCK-ER) fusion construct, reported that 

activation of ROCK-ER by an estrogen analogue was sufficient to stimulate cell 

cycle progression in NIH 3T3 mouse fibroblasts.  Based on the findings in 

Chapter 3, estrogen-mediated ROCK-ER activation in CCL-39 cells would be 

expected to potentiate 5HT-stimulated proliferation and ERK activation.    

Chapter 3 also suggesst that the ROCK pathway, via 5HT1B stimulation controls 

MEK activation of a cytoplasmic pool of ERK.  One possible mechanism by 

which many GPCRs are able to activate specific pools of ERK is via the action 

of scaffolding proteins such as β-arrestin, which can mediate the recruitment of 

Src or Raf/MEK/ERK signalling complexes following agonist stimulated receptor 

phosphorylation (DeFea et al., 2000, Wang et al., 2006b, Shenoy et al., 2006).  

Much work has been carried out on the regulation of 5HT2A receptor 

phosphorylation and interactions with β-arrestin (Bhatnagar et al., 2001, Gray et 

al., 2003, Gray and Roth, 2001, Gray et al., 2001).  However little evidence on 

5HT1B receptor regulation exists.  Interestingly, data analysis of the protein 

sequence of the human 5HT1B receptor revealed a cluster of serine and 

threonine residues within its third intracellular loop.  This is characteristic of G-

protein-coupled receptor kinase (GRK) phosphorylation sites, which have a high 

affinity of β-arrestins.  Similar sites have previously been described for other 

GPCRs, including the V2 vasopressin receptor and the α2A adrenoreceptor (Pao 

and Benovic, 2005, Innamorati et al., 1997).  Therefore, future experiments to 
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characterise 5HT1B receptor regulation may be useful in determining the 

mechanisms by which 5HT, via the 5HT1B receptor and the Rho/ROCK pathway 

specifically controls a cytoplasmic pool of ERK.  

The results presented in Chapter 3 also identify a role for the actin cytoskeleton 

in 5HT-mediated mitogenesis.  It appears that ROCK maintains the integrity of 

the cytoskeleton in order to facilitate 5HT-mediated ERK activation and 

proliferation.  These findings may be of physiological relevance as other 

components involved in the control of actin cytoskeletal dynamics have been 

implicated in the development of PAH.  LIMK, a key regulator of actin dynamics, 

has been found to interact with the tail region of the BMPR2 receptor, a process 

which inhibits LIMK activity (Foletta et al., 2003).  A BMPR2 mutant with a 

truncation in the COOH-terminus that has also been described in patients with 

PAH was reported to be unable to bind or inactivate LIMK (Foletta et al., 2003).  

Given the role of BMPR2 in the development of PAH these findings suggest that 

deregulation of actin dynamics may contribute to the pathobiology of PAH.  

Furthermore, the upregulation cofilin-2 and LIMK 2 have been reported in 

cultured PASMCs and in pulmonary arteries from monocrotaline-treated rats 

(Dai et al., 2006).  Increased levels of these proteins were suggested to 

promote cell motility, a process that may contribute to vascular remodelling and 

occlusion of pulmonary arteries.  The cytoskeleton also plays a vital role in the 

regulation of pulmonary vascular permeability.  For example, actin filaments are 

of importance to endothelial cell permeability, with disruption of these filaments 

resulting in decreased endothelial barrier integrity and infiltration of 

inflammatory mediators, a process that occurs in disease states such as acute 

lung injury and acute respiratory distress syndrome (Dudek and Garcia, 2001).  

Therefore, cytoskeletal integrity may have a widespread role in PAH affecting 

both BMPR2 and 5HT signalling.     

Give the apparent role of ROCK in mitogenic 5HT-activated signalling 

pathways, Chapter 4 investigated the role of ROCK in a chronic hypoxic mouse 

model of PAH, using transgenic mice that ubiquitously overexpress 5HTT in 

order to determine any potential interactions between 5HT and ROCK pathways 

in vivo. 

Using quantitative RT-PCR, chronic hypoxia was found to upregulate both 

ROCK 1 and ROCK 2 transcripts, with the upregulation of ROCK 1 potentiated 
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in 5HTT+ mice.  Furthermore, ROCK inhibition resulted in a marked reduction in 

hypoxia-induced sRVP and vascular remodelling, effects that were significantly 

greater in 5HTT+ mice compared to WT.  In addition, the hypoxia-induced RVH 

that occurred in both WT and 5HTT+ groups was only sensitive to ROCK in 

5HTT+ mice.  Taken together, Chapters 3 and 4 highlight a role for Rho/ROCK 

pathway in the development of PAH and suggest interactions between 5HT and 

Rho/ROCK systems in mediating the mitogenic effects of 5HT.   

In Chapter 4, inhibition of ROCK was found to have more significant effects in 

5HTT+ mice, an effect which may be due to the potentiated hypoxia-induced 

upregulation of ROCK 1.  The increased expression of ROCK transcript 

detected in the chronic hypoxic mouse model, suggested increased ROCK 

activity, which may contribute to the remodelling process and cell proliferation.  

Analysis of mouse lung tissue by immunoblotting is required to determine the 

levels of ROCK protein, as well as the activation status of downstream ROCK 

substrates, in order to confirm that ROCK activity is increased during hypoxia. 

Recently it has been demonstrated that entry of 5HT into the cell via 5HTT 

mediates the prolonged activation of Rho by the transglutaminase-mediated 

serotinylation of RhoA (Guilluy et al., 2007, Walther et al., 2003).  This may 

contribute to the potentiated effects of hypoxia in 5HTT+ mice, given the more 

marked beneficial effects of ROCK inhibition in these animals.  If this 

mechanism is functional in fibroblasts, using the data presented in Chapters 3 

and 4, a potential model to explain how the enhanced expression of ROCK 1 

observed in 5HTT+ mice promotes remodelling by enhancing the mitogenic 

effects of 5HT in fibroblasts may be proposed (Figure 5.1).  In this model, entry 

of 5HT into the cell via 5HTT facilitates the transglutaminase (TG)-catalysed 

serotonylation of Rho, rendering it constitutively active.  Serotonylated Rho 

proteins can then bind and activate ROCK1 and ROCK2.  As ROCK1 transcript 

levels are markedly elevated in response to hypoxia and 5HTT overexpression, 

this may be the predominant isoform affected.  In pulmonary fibroblasts, 

enhanced ROCK expression may facilitate 5HT1B receptor activation of the ERK 

pathway by assisting MEK-mediated ERK phosphorylation.  To confirm this 

hypothesis the phenomenon of serotonylation must be confirmed in the 

fibroblasts studied.  For instance, detection of 5HT binding to RhoA may be 

determined by immunoprecipitating RhoA from 5HT stimulated fibroblasts and 
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subsequently immunoblotting using an anti-5HT antibody.  However, in 

disagreement with the hypothesis of serotonylation, pretreatment of CCL-39 

cells with MDC had no effect on 5HT stimulated ERK activation (Figure 3.18).  

MDC inhibits the transglutaminase enzyme required for serotonylation to occur 

and thus if serotonylation occurs it CCL-39 cells it may have been expected that 

MDC would inhibit 5HT-induced ERK activation.  MDC has previously been 

found to inhibit binding of 5HT to RhoA in mouse aortic SMCs (Guilluy et al., 

2007). However, the concentration of MDC (200µM) used in this study was 

significantly higher than that used in Chapter 3 (100µM) and this may explain 

why MDC pre-treatment was unable to inhibit 5HT-stimulated ERK activation.  

Therefore, the process of serotonylation cannot be ruled out in CCL-39 cells.  

Furthermore, given the hypoxia-induced upregulation of ROCK in mice, future 

experiments may include the use of a hypoxic cellular model to determine if this 

phenomenon also occurs in vitro and to ascertain any changes that may arise in 

the ROCK-dependent 5HT mitogenic signalling during hypoxia.  Studying 

signalling pathways under hypoxic conditions and also the use of a primary cell 

line derived from mouse pulmonary arteries would allow a more direct 

comparision and intregration between  the cellular signal transduction pathways 

investigated and  the chronic hypoxic mouse model of PAH.   

This study highlights the role of ROCK in the development of pulmonary 

hypertension and indicates cross-talk between 5HT and Rho/ROCK signalling 

pathways.  The results are of clinical relevance, given ROCK inhibitors such as 

fusadil are currently being investigated as potential therapies for PAH (Ishikura 

et al., 2006).  Furthermore, inhibition of ROCK appears to have selective effects 

on the pulmonary circulation, as shown in this study (Table 4.1) and by others 

where fusadil selectively induces vasodilation in pulmonary arteries but not 

aorta in an animal model of PAH (Jiang et al., 2007).  In addition to this, other 

agents such as sildenafil and statins appear to mediate their beneficial effects 

on the symptoms of PAH via inhibition of the ROCK pathway (Xing et al., 2006, 

Guilluy et al., 2005).  To conclude, ROCK appears to be a promising therapeutic 

target in the treatment of PAH, with drugs targeting ROCK having beneficial 

effects on pulmonary vasoconstriction and pulmonary vascular remodelling.  

The findings in this study confirm ROCK’s importance in the development PAH 
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and suggest potential mechanisms of action for the therapeutic effects of ROCK 

inhibitors. 
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Figure 5.1   Proposed model of how chronic hypoxia and increased  5HTT 
activity control 5HT-mediated proliferation via  ROCK. 
 
Overexpression of 5HTT results in elevated levels of 5HT entering the cell.  Entry 
of 5HT facilitates the transglutaminase (TG)-catalysed serotinylation of Rho, 
resulting in the constitutive activation of Rho.  Active Rho then binds and 
activates ROCK, predominantly ROCK 1.  Active ROCK is required for 5HT1B 

receptor-mediated phosphorylation and activation of ERK by MEK.  Once active 
ERK mediates cellular proliferation and contributes to vascular remodelling. 
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