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Abstract 

Studies on the hepatitis C virus (HCV) life cycle have been aided by the 

development of in vitro systems that permit replication of the viral RNA 

genome and virus particle production. However, the exact functions of the 

viral proteins, particularly those engaged in RNA synthesis, are poorly 

understood. It is thought that NS4B, one of the replicase components, induces 

the formation of replication complexes (RCs) derived from host cell 

membranes. These RCs appear as punctate foci at the endoplasmic reticulum 

(ER) membrane and incorporate the viral and cellular proteins necessary for 

HCV RNA synthesis. 

To gain insight into the nature of RCs, green fluorescent protein (GFP) was 

inserted into the coding region of NS5A, one of the HCV-encoded replicase 

components. The impact of the GFP insertion was examined in the context of 

a subgenomic replicon (SGR) based on JFH1, a genotype 2a HCV strain that 

exhibits efficient RNA replication in cell culture. The resulting construct was 

capable of robust replication and allowed characterisation of NS5A in live cells 

that synthesised viral RNA. NS5A displayed a diffuse, ER-like distribution and 

was also observed in foci. These foci are presumed to represent RCs and 

NS5A was relatively immobile at these sites. This result was confirmed using 

SGRs harbouring a photoactivatable derivative of GFP (PAGFP). Utilising 

plasmid-encoded HCV polyproteins, it was apparent that the targeting of 

NS5A to these structures was dependent on NS4B. Removal of the NS4B 

coding region resulted in a diffuse, ER-like distribution of NS5A, with little 

evidence of the protein within RCs. NS5A was mobile under these conditions, 

suggesting that the dynamics of NS5A are linked to focus formation by NS4B.  

To further investigate these findings, a panel of 15 alanine substitutions was 

constructed in the C-terminal region of NS4B. Transient replication assays 

revealed that five mutants were incapable of replication, two displayed an 

attenuated phenotype, and eight exhibited replication levels comparable to the 

wild-type (wt) genome. Of the five non-replicating mutants, two were defective 

in their ability to produce foci, while one failed to generate any foci. Thus, the 

C-terminus of NS4B is important for RC formation. Loss of NS4B foci 
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correlated with decreased NS5A located in these structures. Furthermore, 

NS5A hyperphosphorylation was reduced for mutants compromised in foci 

production. This suggests that the membranous changes induced by NS4B 

provide a favourable environment for post-translational modifications of NS5A. 

Interestingly, the remaining two non-replicating mutants displayed no 

impairment in foci production and the characteristics of NS5A were also 

unaltered. Therefore, in addition to producing the cellular environment for 

HCV genome synthesis, NS4B is likely to play a more direct role in RNA 

replication. 

HCV RCs are believed to be relatively enclosed structures that permit limited 

exchange of materials with the cytoplasm. In support of this hypothesis, 

previous reports have shown that NS5A is the only replicase component 

capable of restoring replication to defective genomes when supplied in trans. 

In those studies, SGRs harbouring replication-lethal NS4B mutations could 

not be rescued by trans-complementation. Utilising the five novel non-

replicating genomes described above, the potential to trans-complement 

NS4B in transient replication assays was re-examined. Wt protein produced 

from a functional HCV replicon could trans-complement defective NS4B 

expressed from two of the five mutants. Moreover, active replication could be 

reconstituted from two defective viral RNAs harbouring mutations within NS4B 

and NS5A. These findings have important implications for our understanding 

of RC formation.     

Genome-length JFH1 RNA produces infectious virus particles in Huh-7 cells. 

Using this system, it has become increasingly apparent that some HCV-

encoded replication components are also involved in virus assembly and 

release. To determine whether NS4B had any influence on these latter stages 

of the virus life cycle, the NS4B mutations that did not block RNA replication 

were introduced into the full-length JFH1 genome. While the majority of 

mutants had no effect on virus production, one mutant consistently enhanced 

infectious virus titres by up to five-fold compared to wt JFH1. Interestingly, 

introduction of the same mutation into a chimeric J6-JFH1 genome resulted in 

repressed virion production. Together, these results suggest that NS4B 

contributes to virus assembly and release in a genotype-specific manner.  
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In an attempt to identify novel cellular proteins involved in HCV genome 

replication, a siRNA library targeting 299 nucleotide-binding proteins was 

screened. For the screen, a robust system was established using two cell 

lines (derived from Huh-7 and U2OS cells) that replicated tri-cistronic SGRs. 

While the U2OS cell line supported HCV RNA replication less efficiently 

compared to Huh-7 cells, this cell type was efficiently transfected with siRNA. 

Consequently, increased gene-silencing and greater effects on HCV 

replication were observed in the U2OS cell line. Thus, U2OS cells may be a 

suitable alternative to Huh-7 cells for HCV-related siRNA studies. For the 

library screen, all siRNAs were tested in both cell lines, and cell viability 

measurements allowed specific effects on viral RNA synthesis to be 

characterised. The screen identified several cellular proteins that enhanced 

and suppressed HCV RNA replication. This study provides an important 

framework for more detailed analyses of these proteins in the future. 

 

 XVIII



Daniel M Jones      

One and Three Letter Amino Acid Abbreviations 

 

Amino acid   Three letter code   One letter code 

 

Alanine    Ala     A 

Arginine    Arg     R 

Asparagine    Asn     N 

Aspartic acid    Asp     D 

Cysteine    Cys     C 

Glutamine    Gln     Q 

Glutamic acid   Glu     E 

Glycine    Gly     G 

Histidine    His     H 

Isoleucine    Ile     I 

Leucine    Leu     L 

Lysine     Lys     K 

Methionine    Met     M 

Phenylalanine   Phe     F 

Proline    Pro     P 

Serine     Ser     S 

Threonine    Thr     T 

Tryptophan    Trp     W 

Tyrosine    Tyr     Y 

Valine     Val     V 

 XIX



Daniel M Jones      

Author’s Declaration 

All work presented in this thesis was obtained by the author’s own efforts, 

unless otherwise stated. 

 XX



Daniel M Jones  Chapter 1 
 
1 Introduction 

 

1.1 Background  

1.1.1 Discovery of Hepatitis C Virus 

By the early 1970s, specific viral and antigenic markers of hepatitis A virus (HAV) 

and hepatitis B virus (HBV) had been identified. This led to the development of 

sensitive serologic tests that allowed the diagnosis of these viruses in patients 

suffering viral hepatitis. However, a significant number of hepatitis cases in 

individuals receiving blood transfusion could not be attributed to either HAV or 

HBV (Feinstone et al., 1975, Prince et al., 1974), and the agent responsible was 

termed non-A, non-B hepatitis (NANBH). 

Inoculation of chimpanzees with plasma or serum from human patients with 

NANBH resulted in persistent elevated serum alanine aminotransferase (ALT) 

levels, indicating that the NANBH agent was infectious and capable of establishing 

a chronic state (Alter et al., 1978, Hollinger et al., 1978). Further work, in which 

known-infectious human plasma treated with chloroform was inoculated into 

chimpanzees, showed that the NANBH agent was susceptible to this lipid solvent 

(Feinstone et al., 1983). In a separate study, human plasma retained its infectivity 

in chimpanzees following passage through 80nm filters (Bradley et al., 1985). 

Collectively, these data suggested that the cause of NANBH was a small, 

enveloped virus. However, further efforts to identify the NANBH agent were 

hampered by the lack of cell culture models, and the inability to infect animals 

other than chimpanzees. 

The development of sensitive molecular biological techniques in the 1980s 

eventually led to the discovery of the causative agent of NANBH. Prior to this point 

in time, conventional immunological methods had failed to identify specific viral 

antibodies and antigens, which was attributed to a low concentration of viral 

antigen in NANBH infections (Choo et al., 1989). In an attempt to overcome this 

limitation, nucleic acids were extracted from infectious material, and a 

complementary DNA (cDNA) library was generated in bacteriophage (strain λgt11) 

to express polypeptides encoded by the cDNA (Choo et al., 1989). Sera derived 

from patients with documented NANBH were then used to screen the library. A 

single bacteriophage clone (termed 5-1-1) was identified that expressed a 
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polypeptide recognised by serum from donors with NANBH, but not by serum 

derived from control individuals (Choo et al., 1989). 

Further experimentation showed that RNA extracted from infected chimpanzee 

liver hybridised with the cloned cDNA, but to only one of the strands. Furthermore, 

this signal was not retained upon treatment with ribonuclease (Choo et al., 1989). 

These data indicated that the infectious agent was a single-stranded RNA 

(ssRNA) molecule, and nucleotide sequence analysis demonstrated the cDNA 

strand within 5-1-1 possessed one continuous open reading frame (ORF). The 

authors concluded that a new virus, named hepatitis C virus (HCV), was the 

causative agent of NANBH.  

 

1.1.2 Classification and Genotypes of HCV 

Analysis of the HCV genome indicated that it was organised in a similar manner to 

both flaviviruses and pestiviruses, which are members of the flaviviridae family 

(Choo et al., 1991, Miller & Purcell, 1990). However, there was little sequence 

homology between HCV and these viruses, resulting in classification of HCV to a 

novel hepacivirus genus. Thus, the viruses within the flaviviridae family are related 

by their genome organisation of monopartite, ssRNA genomes of positive polarity, 

which encode a single polyprotein.    

HCV exhibits extraordinary genetic diversity. Comparison of HCV nucleotide 

sequences recovered from infected individuals across the globe has revealed the 

existence of six major genetic groups or clades, which differ by 30-35% at the 

nucleotide level (Simmonds, 2004). This variability is not evenly spread throughout 

the genome. For example, the viral glycoproteins E1 and E2 display the greatest 

diversity, whereas the 5’ untranslated region (5’ UTR) is much less variable (see 

Section 1.2.2 for more details). The six HCV genotypes can be further subdivided 

into more closely related subtypes, which differ in nucleotide sequence by 20-25% 

(Simmonds, 2004). Although it was suggested that more than six HCV genotypes 

might exist, the current consensus states that the genotypic division should be 

limited to six (Simmonds et al., 2005). Assignment of strains into a new clade 

would require the demonstration of consistent phylogenetic grouping that is distinct 

from any of the currently existing HCV genotypes. 

Like all positive-strand RNA viruses, the HCV-encoded RNA polymerase 

possesses no proofreading or 5’-3’ exonuclease activity, and therefore introduces 
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Figure 1.1 Worldwide distribution of the six HCV genotypes

A world map highlighting the distribution of the six HCV genotypes across the globe. Pie charts for each genotype are shown for those regions where information is 
available.
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mutations into the viral genome during replication. Based on comparisons of 

complete genomes obtained after eight (in chimpanzee) and 13 (in human) years 

of evolution, it is estimated that the mean frequency of mutation is ~1.4x10-3 - 

1.9x10-3 substitutions per nucleotide per year (Ogata et al., 1991, Okamoto et al., 

1992). Consequently, not only is there substantial genetic variation between 

viruses infecting different people, but also between those HCV viruses within 

individual infected patients. In the infected individual, this heterogeneous spectrum 

of circulating mutant viruses is referred to as quasispecies (Martell et al., 1992).     

 

1.1.3 HCV Epidemiology and Transmission 

The current estimate for the prevalence of HCV infection is ~3% of the world 

population, equivalent to 170 million people (Thomson, 2009). Precise figures are 

difficult to determine, since most countries do not routinely screen for HCV 

infection. Furthermore, most HCV infections are asymptomatic for decades and 

therefore remain undetected. Although HCV is endemic in most parts of the world, 

there is a substantial degree of geographic variability in its prevalence. HCV is 

estimated to infect 0.6% of the population in the UK, but almost 2% of the 

population in the USA (Thomson, 2009). Fewer data are available for developing 

countries, where it is considered that HCV prevalence is generally higher. For 

example, HCV antibodies have been detected in 15-20% of the general population 

in Egypt (Frank et al., 2000), mainly as a result of parenteral antischistosomal 

therapy (PAT, see below). Interestingly, the distribution of each HCV genotype can 

also be mapped geographically (Nguyen & Keeffe, 2005). For instance, the 

prevalent genotype found in Europe, the USA and China (genotype 1) differs from 

that predominantly found in countries such as Egypt and Africa (genotype 4), and 

South Africa (genotype 5). This distribution is represented in Figure 1.1.    

Age-specific analysis of prevalence has identified three patterns of HCV 

transmission (Wasley & Alter, 2000). In countries with the first pattern (such as 

Australia and USA), the majority of infections are found in individuals between 30 

and 49 years of age, indicating that the risk of infection occurred relatively recently 

(~40 years ago) and primarily affected young adults (Armstrong et al., 2006). In 

countries with the second pattern (such as Japan, China and parts of Europe 

including Italy and Spain), most infections are found in older individuals, 

suggesting that the risk of HCV infection in these countries was greatest in the 

past, ~40-60 years ago (Campello et al., 2002, Dominguez et al., 2001, Zhang et 

3 



Daniel M Jones  Chapter 1 
 
al., 2005). In countries with the third pattern (such as Egypt), the prevalence of 

HCV infection increases with age, and high rates of infection are found in all age 

groups (Frank et al., 2000). This pattern of infection suggests an increased risk in 

the past in addition to an ongoing risk of infection (Wasley & Alter, 2000). Much of 

this regional variability can be attributed to the frequency and extent to which 

different risk factors have contributed to HCV transmission. 

HCV infection occurs by direct purcutaneous exposure to blood, mainly in the form 

of transfusion of blood products from infected donors, unsafe therapeutic 

injections, and injecting drug use (Shepard et al., 2005). Since the introduction of 

donated blood screening by antibody and nucleic acid testing, new cases of 

transfusion-associated HCV infection have been virtually eliminated (Lemon et al., 

2007). However, transmission via this route remains a problem in countries where 

screening practices are not common. Indeed, unsafe medical practice in general 

still accounts for a large degree of HCV infections. One study estimated that in 

2000, 2 million cases of HCV infection were caused worldwide via contaminated 

medical injections (Hauri et al., 2004). Similarly, the high prevalence of HCV in 

Egypt can be mostly attributed to poor medical practice, including the PAT 

campaign, where many people became infected with HCV due to reuse of glass 

syringes (Frank et al., 2000). Needle-stick injuries, as well as improper cleaning 

and disinfection of medical equipment can also contribute to HCV transmission. In 

developed countries, including the UK, USA and Australia, injecting drug use 

accounts for most newly acquired HCV infections (Thomson, 2009). For example, 

90% of those diagnosed with HCV in Scotland in 2003 had injected drugs 

(Hutchinson et al., 2005). HCV infection has also been attributed to perinatal 

transmission and sexual activity, although studies on both of these routes of 

transmission have provided inconsistent results. 

 

1.1.4 Clinical Features of HCV Infection   

The predominant site for HCV infection and replication is the liver. The virus is a 

major cause of end-stage liver disease and hepatocellular carcinoma (HCC), and 

is now the most common indication for liver transplantation (Sharma & Lok, 2006). 

HCV frequently establishes a chronic infection following an acute infection. Both 

conditions are described in the following sections. 
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1.1.4.1 Acute HCV Infection 

Following exposure to HCV, the majority of individuals exhibit mild or no 

symptoms, meaning that acute infections are rarely recognised and diagnosed 

(Thomson, 2009). However, some patients may display malaise, fatigue, nausea 

and sometimes jaundice, although without the use of specific testing, such 

symptoms could also be attributed to hepatitis A or B infections. While fulminant 

hepatitis (characterised by a severe acute phase, potentially causing liver failure) 

can occur during acute infection, this condition is rare. Despite the asymptomatic 

profile of HCV infection, elevated ALT levels can be detected in the majority of 

cases (Lemon et al., 2007). Acute HCV infection will resolve spontaneously in ~15-

30% of infected individuals, although the exact mechanisms underlying viral 

clearance are currently uncertain. Major contributing factors are likely to include 

host and environmental factors (such as age, sex and alcohol intake), viral load 

and, particularly, the vigour of the infected individual’s immune response (Lemon 

et al., 2007). Patients with acute resolving hepatitis typically mount an early, multi-

specific T-cell response, whereas patients displaying weak and inefficient immune 

responses tend to develop persistent HCV infection (see Section 1.1.5).   

 

1.1.4.2 Chronic HCV Infection 

The majority (~70-85%) of individuals infected with HCV will develop a chronic 

infection, typically characterised by a long period in which symptoms are absent. 

During this stage, there is usually a continuing and constant viremia, although not 

as high as that found during the acute phase of infection. Nonetheless, it is 

estimated that ~1012 virions are produced daily in a chronically infected person 

(Neumann et al., 1998).  Chronically infected patients may remain symptomless 

for 35 years or more, but can eventually develop serious liver disease including 

steatosis (fat accumulation in the liver), hepatic fibrosis (resulting from sustained 

inflammation) and compensated and decompensated cirrhosis (Lemon et al., 

2007). ~20% of chronically infected patients will develop liver cirrhosis over a 20-

year period, although this estimate is highly variable (Ishii & Koziel, 2008). While 

the liver is able to function in compensated cirrhosis, this is not the case for 

decompensated cirrhosis. Such pathologies can lead to complications including 

portal hypertension (a block of blood flow into the liver, causing bleeding) and 

hepatic encephalopathy (where toxin-filtration is compromised, possibly leading to 

attention deficiency and confusion, Thomson & Finch, 2005). HCC is a late 
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consequence of HCV infection, and develops in ~0-3% of cirrhotic patients per 

year (Ishii & Koziel, 2008). Decompensated cirrhosis and HCC are life threatening, 

although progression to such serious disease states is difficult to predict in the 

individual patient.  

Whereas some DNA viruses are able to integrate their genomes into the host cell 

genome resulting in tumour formation, HCV is a RNA virus and therefore confined 

to the cytoplasm of cells. Therefore, it is generally thought that HCC arises from 

HCV-induced cirrhosis and long-term inflammatory responses that cause oxidative 

stress, potentially damaging cellular DNA (Okuda et al., 2002). Other evidence 

suggests that HCV-encoded proteins, such as core, may be directly oncogenic 

(Moriya et al., 1998). Interestingly, distinct HCV genotypes exhibit differences in 

their ability to establish long-term infections that lead to liver disease (Zein, 2000). 

For example, genotype 3 HCV strains are associated with prominent hepatic 

steatosis, and have lower tendency to cause chronic infections compared to 

genotype 1 strains (Lehmann et al., 2004, Rubbia-Brandt et al., 2000).  

 

1.1.5 Immunological Response to HCV Infection 

The immune response to virus infection can be broadly divided into two 

categories, the humoral immune response (governed by B-lymphocytes) and the 

cell-mediated immune response (governed by T-lymphocytes).  

B-lymphocytes are responsible for producing antibodies involved in the humoral 

immune response. Following HCV infection, viral RNA can typically be detected 1-

2 weeks after infection, and HCV-specific antibodies can be detected by ~7-8 

weeks (Pawlotsky, 1999). Antibodies against NS3, core and the envelope 

glycoproteins are usually first to appear, and the hypervariable region 1 (HVR1) of 

E2 (see Section 1.2.2.3) is thought to be a major target for antibodies (Orland et 

al., 2001). Antibodies are capable of neutralising HCV infection since infectivity in 

chimpanzees can be neutralised by in vitro antibody treatment (Farci et al., 1994). 

In this study, HCV (obtained from a patient with acute infection) was mixed with 

seropositive plasma from a chronically infected patient in vitro. Upon inoculation of 

this mixture into chimpanzees, no infectivity was observed (Farci et al., 1994). By 

comparison, chimpanzees inoculated with HCV mixed with seronegative plasma 

did develop an infection. These results suggest that antibodies are capable of 

preventing HCV infection. Experiments using HCV pseudoparticles (see Section 

1.3.1.2) have shown that HCV-specific neutralising antibodies possess cross-
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reactivity, meaning they can prevent infection with pseudoparticles harbouring 

homologous and heterologous HCV glycoproteins (Bartosch et al., 2003a, Meunier 

et al., 2005, Meunier et al., 2008). However, anti-HCV antibodies do not prevent 

reinfection of chimpanzees or humans (Bowen & Walker, 2005). Furthermore, 

HCV clearance has been associated with a lack of antibody production in 

chimpanzees (Cooper et al., 1999) and an absence of seroconversion in humans 

(Post et al., 2004). Hence, it appears that antibodies do play a role in the 

neutralisation of HCV but it is probable that other immune mechanisms contribute 

to viral clearance.       

T-lymphocytes such as helper T-cells (CD4+) and cytotoxic T-cells (CD8+) act in 

concert to regulate the cell-mediated immune response. A pattern of poorly 

controlled viremia can predict persistence in HCV-infected patients and this can be 

attributed (at least in part) to ineffective CD4+ and CD8+ T-lymphocyte responses 

(Missale et al., 1996, Thimme et al., 2001). This poor response can result from 

insufficient production of these cells, or a response that is maintained for too short 

a duration (Bowen & Walker, 2005). In contrast, vigorous, sustained and broadly 

directed CD4+ and CD8+ responses have been associated with a self-limiting 

course of infection (Missale et al., 1996, Thimme et al., 2001). It is thought that the 

CD4+ response is particularly important, since HCV-specific antibodies and CD8+ 

T-lymphocytes are able to develop in the absence of CD4+, yet cannot control 

viremia (Kaplan et al., 2007). CD8+ T-lymphocytes are capable of targeting 

infected cells displaying viral epitopes, but also modulate infection by producing 

cytokines such as interferon (IFN)-γ and tumour necrosis factor (TNF). These 

cytokines are important for the clearance of several viruses (Guidotti & Chisari, 

2001), although little insight into CD8+-mediated clearance of HCV currently exists. 

There is evidence that CD8+ T-lymphocytes can be impaired for IFN-γ production 

during acute and chronic HCV infection, possibly representing a mechanism by 

which the virus establishes persistence (Ishii & Koziel, 2008).        

 

1.1.6 Diagnosis of HCV Infection 

HCV infection can be diagnosed utilising both serological and virological assays, 

which are described in the following sections. 
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1.1.6.1 Serological Assays  

Serological assays are performed using an enzyme immunoassay (EIA) to detect 

antibodies targeting various HCV epitopes. The presence of anti-HCV antibodies 

is then revealed by anti-antibodies labelled with an enzyme, which catalyses the 

conversion of a substrate into a coloured compound that can be measured. The 

degree of colour change is proportional to the level of antibody present in the 

plasma/serum sample (Pawlotsky, 2002). This method can be used for genotype 

determination, via the detection of antibodies targeting genotype-specific HCV 

epitopes. 

 

1.1.6.2 Virological Assays 

Virological assays for the detection of HCV RNA permit both qualitative and 

quantitative analysis of viral load. These tests are more beneficial than serological 

assays since they can detect virus before antibodies are produced. Following 

extraction from plasma/serum, RNA is reverse-transcribed into cDNA, which is 

amplified by the polymerase chain reaction (PCR) to generate double-stranded 

DNA (dsDNA) copies, or by transcription-mediated amplification (TMA) to produce 

ssRNA copies (Chevaliez & Pawlotsky, 2007). These methods give a qualitative 

measure of HCV RNA. Quantitative analysis of RNA load can be determined using 

RT-PCR or signal amplification methods such as the branched DNA (bDNA) 

assay. bDNA assays use ssDNA oligonucleotides harbouring enzymes that 

catalyse colour change, which bind to HCV RNA molecules by hybridisation. 

Unlike RT-PCR, this technique requires no reverse transcription step. Similar to 

serological assays, virological assays can determine HCV genotype using PCR 

primers that bind well-characterised polymorphisms in the 5’ UTR (Lemon et al., 

2007). 

 

1.1.7 Treatment of HCV Infection 

Currently there is no vaccine for HCV and this topic remains highly challenging 

due to the heterogeneity of the virus, the tendency of HCV to promote chronic 

infection, and the uncertainty concerning protection from re-infection upon further 

exposure to the virus (Houghton & Abrignani, 2005). For those patients who 

develop decompensated cirrhosis and HCC, liver transplantation is the only 

available treatment. However, reinfection of the graft typically occurs due to 
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circulating HCV in the blood (Terrault & Berenguer, 2006), and is associated with a 

more rapid progression of cirrhosis within 5-10 years of transplantation (Berenguer 

et al., 2000). 

 

1.1.7.1 Treatment of Infection by IFN-α and Ribavirin Combination Therapy 

At present, the standard treatment for HCV infection is a combination of pegylated 

IFN-α and ribavirin. Originally, monotherapy with IFN was administered to patients 

but 12-18 month treatment periods (3 million units of IFN administered three times 

a week) eliminated the virus in only 20-30% of individuals (Poynard et al., 1996). 

However, the conjugation of polyethylene glycol to IFN improves the half-life of the 

molecule, allowing treatment administration to be reduced to once per week 

(Heathcote et al., 2000, Zeuzem et al., 2000). It was originally found that ribavirin 

monotherapy had little activity against HCV infection (Di Bisceglie et al., 1992). 

Surprisingly, by combining ribavirin treatment with pegylated IFN-α administration, 

sustained viral responses can be achieved in ~40-50% of patients with genotype 1 

infections, and in 70-80% of patients with genotype 2 or 3 infections (Soriano et 

al., 2009). To date, combination therapy provides the most effective HCV 

treatment. Unfortunately, as well as the limited response rate in treated patents, 

therapy is costly, and can cause severe side effects including myalgia, fever, 

headaches, haemolytic anaemia and severe depression (Fried et al., 2002). 

Consequently, more effective and better-tolerated therapies to treat HCV infection 

are urgently required.   

The mechanism by which IFN administration exerts a therapeutic effect against 

HCV infection is unknown. The type-1 IFNs (IFN-α, β, ω, and λ) are host cell-

synthesised proteins that play crucial roles in the innate antiviral immune 

response, and have antiviral, antiproliferative, and immunomodulatory activities 

(Sen, 2001). IFN-α does not target HCV in a virus-specific manner but acts by 

inducing the expression of IFN-stimulated genes (ISGs), which establish an 

antiviral state within cells (Feld & Hoofnagle, 2005). However, the IFN pathway is 

complex and it is not known which of the many ISGs induced by IFN is/are 

responsible for inhibiting HCV.  

Like IFN treatment, the anti-HCV mechanism of ribavirin is also not understood. 

Ribavirin is a guanosine analogue, and is processed within the cell to form 

phosphorylated forms of ribavirin. It is hypothesised that the viral polymerase may 
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misincorporate ribavirin triphosphate (RTP) during RNA synthesis, leading to 

premature chain termination (Feld & Hoofnagle, 2005). However, ribavirin has also 

been suggested to act as a viral mutagen, since treatment appears to increase the 

rate at which errors are introduced into the viral genome during replication in cell 

culture (Contreras et al., 2002, Tanabe et al., 2004). It has been hypothesised that 

such a mechanism (termed ‘error catastrophe’) may be able to abolish a 

population of HCV quasispecies within the infected host (Crotty et al., 2001), 

although this proposal is controversial.           

 

1.1.7.2 Potential Future Therapies 

Major research efforts are focused on the production of STAT-C (specifically 

targeted antiviral therapy for hepatitis C) compounds that can specifically and 

directly target the HCV life cycle. Optimally, novel HCV therapies should be less 

toxic and more effective, yet permit a shorter duration of therapy compared to the 

current standard of treatment. However, drug resistance still presents the major 

hurdle for all newly developed treatments due to the vast number of quasispecies 

generated during the course of infection, which allow rapid viral adaptation to the 

selective pressure of the antiviral drug. Therefore, therapies should preferably 

target all viral variants, in addition to preventing the emergence of resistant viruses 

(De Francesco & Migliaccio, 2005). The most popular targets for small-molecule 

inhibitors are the NS3/4A serine protease and the NS5B RNA polymerase (see 

Section 1.2.2 for more details). 

Viral replication requires cleavage of the viral polyprotein, a function performed 

(although not exclusively) by the NS3/4A serine protease. Protease inhibitors (PIs) 

that target this activity are currently under development, one of the most promising 

of which is the compound telaprevir (VX-950). Telaprevir is a reversible inhibitor of 

the NS3/4A protease, and treatment of cell lines harbouring HCV genomes could 

eliminate viral RNA (Lin et al., 2006). In phase II clinical trials, triple therapy 

(pegylated IFN-α, ribavirin and telaprevir) achieved sustained virological 

responses of 62% in treated individuals and, interestingly, the presence of ribavirin 

in the therapy reduced the risk of emerging telaprevir-resistant HCV strains 

(Soriano et al., 2009). Skin rashes, nausea and anaemia are the main side effects 

of telaprevir. This compound is currently undergoing phase III clinical trials. 

The HCV polymerase is essential for replication of viral RNA and has therefore 

been a major target for drug development. The types of polymerase inhibitors 
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Figure 1.2 The HCV virion

A representation of a HCV particle (top) and its components (bottom). The single-stranded RNA 
genome is enclosed within the capsid, presumed to be composed of core protein. An envelope 
derived from host cell membranes surrounds the viral capsid and the HCV glycoprotein E1/E2 
heterodimers are embedded within it. The virion is approximated to be 50-65nm in diameter and 
is proposed to complex with LDL/VLDL, resulting in the generation of a lipoviroparticle (LVP). 	

LDL/VLDL E1/E2 Core Envelope RNA
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currently being developed include nucleoside analogues (chain terminators) and 

non-nucleoside analogues (allosteric inhibitors). R-1626 is a nucleoside analogue, 

which is converted into R-1479 within the intestinal mucosa. Due to the high 

conservation of the NS5B nucleotide-binding site, R-1479 possesses potent 

antiviral activity against all HCV genotypes in vitro (Soriano et al., 2009). During 

phase II trials however, R-1626 caused severe neutropenia (a low white blood cell 

count), and a high rate of HCV infection relapse occurred after completion of 

therapy (Pockros et al., 2008). Consequently, development of R-1626 was halted 

at the end of 2008. Currently, no non-nucleoside analogue polymerase inhibitors 

have reached advanced stages of clinical development.               

  

1.2 Molecular Features of HCV 

1.2.1 Virion Morphology 

Due to the difficulties involved in isolating pure HCV particles, physicochemical 

data for HCV virions is lacking. HCV RNA-containing particles from infected 

individuals circulate complexed with very low- and/or low-density lipoproteins 

(VLDLs and LDLs), which are particles that export cholesterol and triglyceride from 

hepatocytes in the liver (Andre et al., 2002, Nielsen et al., 2006). Recent data 

suggest that the processes of HCV assembly and release are tightly coupled to 

VLDL production (see Section 1.4.4.2). The entities resulting from combination of 

HCV with LDL/VLDLs have been referred to as lipoviroparticles (LVPs). 

Beside lipoprotein, the HCV virion is thought to contain three virus-encoded 

components (Figure 1.2). These are a RNA genome, a capsid and envelope 

glycoproteins. The viral core protein comprises the capsid (see Section 1.2.2.2) 

and this structure harbours the HCV genome. The envelope (a lipid layer derived 

from host cell membranes) surrounds the capsid and contains the viral 

glycoproteins E1 and E2 (see Section 1.2.2.3). It has been proposed that following 

assembly at lipid droplets (LDs), HCV nucleocapsids bud through endoplasmic 

reticulum (ER) membranes, acquiring an envelope and surface glycoproteins in 

the process (Roingeard et al., 2008). However, the exact mechanism by which 

nascent virus particles traffick from LDs and acquire lipoprotein components en 

route to the cell surface is currently unknown.  

Electron microscopy (EM) analysis of virus particles produced in cell culture 

indicate that HCV has an inner ring of 30-35nm (thought to be the capsid) and an 
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Figure 1.3 The HCV genome and encoded viral proteins

[A] Schematic representation of the HCV genome. The single open reading frame (ORF) is shown and the structural and non-structural (NS) protein coding regions are 
depicted. The RNA is flanked by two untranslated regions (UTRs) at the 5' and 3' ends. The viral RNA is translated to generate a single polyprotein. [B] Following and 
during translation, the polyprotein is processed by host and viral proteases to generate the individual HCV proteins. Two host proteases, signal peptidase (SP, black 
arrowheads) and signal peptide peptidase (SPP, grey arrowhead), generate the structural proteins and p7. The NS2/NS3 protease (green arrowhead) and NS3 serine 
protease (red arrowheads) cleave the indicated protein interfaces. The role and size (kDa) of each protein is indicated.
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overall diameter of 50-65nm (Wakita et al., 2005). These particles are similar in 

size to those observed in vivo, in both infected chimpanzees (Shimizu et al., 1996) 

and human serum (Kaito et al., 1994). Interestingly, intracellular virus particles 

exhibit a buoyant density (1.15-1.20 g/ml) that is higher than that observed for 

secreted virions (1.03-1.16 g/ml) (Gastaminza et al., 2006). Thus, the biochemical 

composition of HCV particles appears to be modified during viral egress, a likely 

consequence of the aforementioned association with lipoprotein components 

(Andre et al., 2002, Nielsen et al., 2006). 

 

1.2.2 The Viral Genome 

The HCV genome is a 9.6kb ssRNA molecule of positive polarity, and encodes a 

single ORF flanked by 5’ and 3’ UTRs. Translation of the RNA genome produces a 

polyprotein of 3010 amino acids (for the genotype 1a consensus strain H77, 

although this figure can vary between strains). Host and viral proteases process 

the polyprotein precursor to yield the structural (core, E1 and E2) and non-

strucutral (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B, see Figure 

1.3). Cleavage also produces p7, a protein that is currently unassigned to either 

category, although recent work suggests that p7 may be a virion component 

(Griffin et al., 2008).  

 

1.2.2.1 The 5’ UTR 

The 5’ UTR is a highly conserved sequence consisting of 341 nucleotides that 

contributes towards replication and translation of the viral genome (Friebe et al., 

2001, Honda et al., 1999). The 5’ UTR harbours an internal ribosome entry site 

(IRES), a RNA structure that is responsible for initiating cap-independent 

translation of viral RNA. Here, the only eukaryotic translation initiation factors 

required are eIF2 and eIF3 (Ji et al., 2004). Structural analyses of the IRES 

suggest that it contains four distinct domains (termed I-IV, Honda et al., 1996a). 

Domain I forms a small, stem-loop structure that is dispensable for overall IRES 

activity but may have a regulatory role in translation efficiency (Honda et al., 

1996b). Domains II and III are essential for genome translation, since they directly 

contact and position the small (40S) ribosomal subunit at the AUG codon for core 

protein (Honda et al., 1996a and 1996b). The 3’ end of the 5’ UTR and the 5’ end 

of the core coding region form domain IV of the IRES (Honda et al., 1996a and 
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1996b). While domain IV is not required for ribosome binding, the structural 

stability of this region is inversely proportional to translation efficiency (Honda et 

al., 1996a). Thus, all regions of the IRES are essential for, or at least contribute to 

HCV translation. Additionally, the 5’ UTR is essential for replication. For example, 

domains I and II are sufficient for viral RNA synthesis, although the efficiency of 

this process is enhanced by the presence of the complete 5’ UTR (Friebe et al., 

2001, Kim et al., 2002).  

A variety of host-encoded factors associate with the HCV 5’ UTR and regulate 

both replication and translation of the viral genome. For example, polypyrimidine 

tract binding protein (PTB), La autoantigen and poly (rC)-binding protein (PCBP2) 

all bind to regions within the 5’ UTR (Ali & Siddiqui, 1995, Ali & Siddiqui, 1997, 

Fukushi et al., 2001). Each of these factors is capable of influencing viral RNA 

replication, while PTB and La autoantigen are also necessary for translation 

(Domitrovich et al., 2005, Fukushi et al., 2001). Recently, the liver-specific 

microRNA-122 (miR-122) was shown to bind two locations within the unstructured 

region between domains I and II of the 5’ UTR sequence and this binding is 

essential for both viral RNA replication (Jopling et al., 2008, Jopling et al., 2005) 

and translation (Henke et al., 2008).   

 

1.2.2.2 Core 

The core coding region is found at the very N-terminus of the HCV polyprotein and 

is presumed to form the viral capsid into which the viral genome is packaged 

(McLauchlan, 2009). Upon translation, core (and the nascent polypeptide chain) is 

targeted to the ER membrane by a signal peptide located between core and E1, 

which is cleaved by the cellular enzyme signal peptidase (SP) to liberate E1 and 

generate the immature (21kDa) form of core (Santolini et al., 1994). Subsequently, 

core undergoes a second cleavage event mediated by cellular signal peptide 

peptidase (SPP), giving rise to the mature (19kDa) species of core (Hussy et al., 

1996, McLauchlan et al., 2002). This SPP-mediated cleavage event is essential for 

trafficking of core to LDs, the presumed site for initiation of virus assembly 

(McLauchlan et al., 2002, Miyanari et al., 2007).    

The mature form of core is a dimeric α-helical protein that consists of two domains 

termed D1 and D2. D1 harbours positively-charged residues and is involved in 

RNA binding (Boulant et al., 2005). D2 is essential for the trafficking of core to LDs 

and deletions within this region can block the association of core with LDs (Hope & 

13 



Daniel M Jones  Chapter 1 
 
McLauchlan, 2000). Structural analysis of D2 has revealed the presence of two 

amphipathic α-helices (termed HI and HII), separated by an unstructured region 

referred to as the hydrophobic loop (HL, Boulant et al., 2006). The hydrophobic 

residues within each helix are likely to interact with the phospholipid layer 

surrounding LDs, since mutation of these residues can abolish core-LD 

association (Boulant et al., 2006). 

Core protein is essential for virus production, as demonstrated by a recent 

mutagenic analysis (Murray et al., 2007). Furthermore, the D2-mediated 

association of core with LDs is necessary for this process (Boulant et al., 2007, 

Miyanari et al., 2007) and the loading of core onto LDs over time coincides with 

increased virus production (Boulant et al., 2007). Interestingly, mobility studies 

using GFP-D2 fusion proteins revealed that the D2 domain of two HCV genotypes 

differed in their mobility (Shavinskaya et al., 2007). Lower GFP-D2 mobility is 

presumed to indicate tighter binding of the GFP fusion protein with LDs. Since the 

HCV genotype that possessed lower D2 mobility released more virus, it was 

proposed that enhanced virus production is associated with a tighter core-LD 

interaction (Shavinskaya et al., 2007). The essential nature of core-LD association 

has also been demonstrated by studies on SPP cleavage. Here, mutation of the 

signal peptide at the C-terminal end of immature core, or reduction of 

enzymatically active SPP by inhibitor or small inhibitory RNA (siRNA) treatment 

prevented the trafficking of core to LDs, consequently reducing viral titres 

(Okamoto et al., 2008, Targett-Adams et al., 2008b). Thus, fully mature core is 

required for efficient viral particle assembly.  

 

1.2.2.3 E1 and E2 

E1 (35kDa) and E2 (60/70kDa) are glycoproteins that are thought to reside on the 

envelope of viral particles, forming non-covalent heterodimers that are essential 

for virus entry (Dubuisson, 2007). Both proteins harbour a single C-terminal 

transmembrane domain (TMD) that anchors the proteins to the ER membrane 

(Cocquerel et al., 1999, Cocquerel et al., 1998), resulting in the N-termini being 

orientated in the ER lumen. The TMDs are composed of two hydrophobic regions 

that are separated by at least one invariant charged residue (Cocquerel et al., 

2000). During translation, E1 is directed to the ER membrane by the signal peptide 

residing within the C-terminus of core, where SP-mediated cleavage subsequently 

produces the N-terminus of E1 (Dubuisson et al., 2002). Similarly, the TMD of E1 
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acts as a signal sequence that targets E2 to the ER membrane and further SP-

mediated cleavage at the E1/E2 and E2/p7 boundaries releases both 

glycoproteins from the adjacent polyprotein (Dubuisson et al., 2002). Importantly, 

the TMDs of E1 and E2 also facilitate E1/E2 heterodimer formation (Op De Beeck 

et al., 2000), as well as the fusion properties of both proteins (Ciczora et al., 2007). 

E1 and E2 contain up to five (E1) and eleven (E2) conserved glycosylation motifs 

that undergo N-linked glycosylation upon retention of both proteins within the ER 

(Goffard & Dubuisson, 2003). This modification is believed to aid glycoprotein 

folding and facilitate HCV entry (Goffard et al., 2005). 

Analysis of several HCV isolates revealed two hypervariable regions within E2, 

termed HVR1 and HVR2 (Weiner et al., 1991). HVR1 is located at the N-terminus 

of E2 and the variability of this region can be attributed to (i) the ability of this 

region to tolerate amino acid substitutions and (ii) the strong selective pressures 

exerted on HVR1 by the host immune response (Penin et al., 2001). Indeed, 

antibodies targeting HVR1 epitopes change during the course of chronic infection, 

indicating selective immune pressure upon this region (Forns et al., 1999). Despite 

this variability, sequence analysis has demonstrated that the overall conformation 

and physicochemical properties of HVR1 are conserved, revealing a basic stretch 

of residues that may be involved in binding other proteins, lipids or 

glycosaminoglycans (GAGs, Penin et al., 2001). Furthermore, mutation of the 

basic residues within HVR1 reduces virus entry, although this has no apparent 

effect on glycoprotein-receptor binding (Callens et al., 2005). Therefore, HVR1 

may facilitate viral entry. 

The E1/E2 heterodimer is essential for virus entry and E2 binds to three cellular 

receptor proteins; scavenger receptor class B member I (SR-BI), occludin (OCLN) 

and CD81 (Liu et al., 2009, Pileri et al., 1998, Scarselli et al., 2002). An interaction 

between HCV glycoproteins and the entry co-receptor claudin-1 (CLDN1) has yet 

to be demonstrated, although this is likely since knockdown of CLDN1 inhibits 

HCV entry (Evans et al., 2007). Utilising antibodies or compounds that target 

E1/E2 have confirmed the role of these glycoproteins in virus entry. For example, 

cyanovirin-N (CV-N) can inhibit HCV entry by interacting with the N-linked glycans 

present on both glycoproteins, thereby inhibiting the E2-CD81 interaction (Helle et 

al., 2006).        
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1.2.2.4 p7 

p7 is a hydrophobic 7kDa protein located between the E2 and NS2 proteins of the 

HCV polyprotein. During translation, p7 is directed to the ER membrane where SP 

cleaves the protein from E2 and NS2 (Lin et al., 1994a). However, cleavage 

events at the E2-p7 and p7-NS2 junctions are delayed (and in the case of the 

latter, incomplete), leading to the production of E2-p7-NS2 and E2-p7 precursor 

proteins (Dubuisson et al., 1994, Lin et al., 1994a). These precursors have no 

apparent role in virus production, although their significance cannot be dismissed 

(Jones et al., 2007). p7 harbours two TMDs (TM1 and TM2) connected by a 

cytoplasmic loop, and exhibits a double-spanning topology whereby the N- and C-

termini are orientated towards the ER lumen and the loop is located within the 

cytoplasm (Carrere-Kremer et al., 2002, Patargias et al., 2006).  

p7 has no obvious function in viral RNA replication (Lohmann et al., 1999), but 

injection of viral RNAs harbouring p7 deletions into chimpanzees has shown that 

the protein is essential for HCV infectivity in vivo (Sakai et al., 2003). It has since 

been demonstrated that viral RNA genomes lacking p7 are incapable of producing 

infectious virus in cell culture and furthermore, that this block occurs prior to the 

assembly of HCV virions (Jones et al., 2007, Steinmann et al., 2007). Adaptive 

mutations in p7 can enhance virus production (Russell et al., 2008) and studies 

utilising chimeric viruses have also implicated p7 as being a virulence factor that 

may influence viral fitness (Steinmann et al., 2007).   

p7 has been classified as a member of the viroporin protein family, since it can 

form hexameric structures that exhibit cation channel activity in artificial 

membranes (Griffin et al., 2003, StGelais et al., 2007). The ion channel activity of 

p7 is essential for HCV infectivity in chimpanzees (Sakai et al., 2003) and relies on 

the cytoplasmic loop of the protein (Griffin et al., 2004). p7 function can be 

inhibited by amantadine, a compound that blocks ion channels and has previously 

been used to reduce influenza A-encoded M2 ion channel activity (Fleming, 2001). 

The sensitivity of p7 to amantadine and other ion channel inhibitors is genotype-

dependent (Griffin et al., 2008), therefore more potent compounds that can inhibit 

multiple p7 sequences would be required if this protein were to be a target for anti-

HCV therapy.     
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1.2.2.5 NS2 

NS2 is a 23kDa protein harbouring multiple membrane-spanning domains that 

localise the protein to the ER membrane (Santolini et al., 1995, Yamaga & Ou, 

2002). Crystallography of the NS2 C-terminal region, which contains a protease 

domain, revealed a globular structure that is thought to reside on the cytosolic side 

of the ER membrane, whereas the N-terminus of NS2 is predicted to contain three 

TMDs (Lorenz et al., 2006). Of these TMDs, only the first has been structurally 

characterised and consists of a flexible helical element connected to a stable α-

helix (Jirasko et al., 2008). Further studies are required to define the exact 

topology of NS2 at the ER membrane.  

The NS2 protein is responsible for autoproteolytic cleavage at the NS2/NS3 

junction (Grakoui et al., 1993b, Hijikata et al., 1993), while the N-terminus of NS2 

is liberated by SP-mediated cleavage of the signal peptide at the C-terminus of p7 

(Lin et al., 1994a). Mutagenic analyses have demonstrated that cleavage of the 

NS2/NS3 junction requires the NS3 serine protease domain but not its enzyme 

activity (Grakoui et al., 1993b, Hijikata et al., 1993). The structural integrity of the 

NS3 serine protease domain relies on its ability to bind a zinc atom (De Francesco 

et al., 1996) and NS2/NS3 protease activity is enhanced by zinc but inhibited by 

metal chelating agents such as EDTA (Pieroni et al., 1997). It is therefore likely 

that NS3 contributes structurally towards NS2/NS3 protease activity. 

Although NS2 is dispensable for viral RNA replication (Lohmann et al., 1999), 

recent studies have revealed a key role for NS2 in the production of infectious 

virus particles. The use of chimeric viral genomes containing the NS3-NS5B 

region from HCV strain JFH1, coupled with the structural genes from other 

genotypes, have shown that the position of the intra/inter-genotypic junction within 

NS2 affects infectious particle production (Pietschmann et al., 2006). For most 

chimeras, a junction between the first and second TMDs is optimal, indicating that 

interactions between the N-terminus of NS2 and p7 or the structural proteins is 

important for virus production (Pietschmann et al., 2006). Additionally, cell culture 

adaptive mutations (CCAMs) that enhance virus production have been found 

within the NS2 coding region (Russell et al., 2008, Yi et al., 2007). Finally, full-

length NS2 is important for the production of virus particles, although the 

proteolytic function of the protein is dispensable in the virus assembly pathway 

(Jirasko et al., 2008, Jones et al., 2007). Like p7, NS2 apparently functions at a 

step prior to the assembly of infectious HCV particles (Jones et al., 2007).        
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1.2.2.6 NS3 

NS3 is a multifunctional 70kDa protein that features a N-terminal serine-type 

protease, while the C-terminal two-thirds of the protein encode a RNA 

helicase/NTPase domain. NS3 forms a non-covalent interaction with the central 

region of its protein co-factor, NS4A (Bartenschlager et al., 1995, Lin et al., 1995). 

This interaction allows NS3 to localise to the ER membrane, where it is retained 

via the N-terminal TMD of NS4A (Wolk et al., 2000). 

Upon association with the ER membrane, the serine-type protease domain of NS3 

associates with NS2 to cleave the NS2/NS3 junction (see previous section). 

Subsequently, NS3 cleaves between the NS3/NS4A, NS4A/NS4B, NS4B/NS5A 

and NS5A/NS5B junctions (Bartenschlager et al., 1993, Grakoui et al., 1993a). 

With the exception of the NS3/NS4A junction, all boundaries are processed in 

trans (Bartenschlager et al., 1994). NS3-mediated cleavage occurs in a shallow 

binding pocket containing a catalytic triad composed of His, Asp and Ser residues, 

and mutation of any of these amino acids abolishes NS3-mediated cleavage 

(Bartenschlager et al., 1993, Grakoui et al., 1993a). NS3 also binds a zinc atom by 

coordinating with three Cys residues plus a His residue (De Francesco et al., 

1996) and these amino acids are critical for efficient NS3 activity (Hijikata et al., 

1993). Importantly, association of NS3 with its co-factor NS4A is crucial for the 

NS3/NS4A and NS4B/NS5A cleavage events and also aids processing at the 

NS4A/NS4B and NS5A/NS5B junctions (Failla et al., 1994, Gallinari et al., 1998, 

Lin et al., 1994b). This is presumably due to a contribution from NS4A to faclitate 

NS3 folding (Kim et al., 1996, Love et al., 1996). 

The C-terminal two-thirds of NS3 encode a Y-shaped molecule that harbours both 

RNA helicase and NTPase activities (Kim et al., 1998, Yao et al., 1997). Although 

monomeric NS3 can bind to RNA substrates, a NS3 dimer is required in order to 

unwind RNA (Serebrov & Pyle, 2004). This process is proposed to occur in a 

series of coordinated but discontinuous movements of the helicase, which pauses 

every 18bp of unwound RNA substrate when the helicase adjusts its conformation 

in an ATP-dependent fashion (Serebrov & Pyle, 2004). In isolation, NS3 is a 

relatively poor RNA helicase and is dependent upon the presence of both its 

protease domain and its NS4A cofactor for efficient RNA unwinding activity (Beran 

et al., 2009, Frick et al., 2004, Pang et al., 2002). Interestingly, NS3 is also 

capable of unwinding DNA duplexes, suggesting that the protein may influence 
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cellular DNA (Pang et al., 2002, Tai et al., 1996). The exact function of the NS3 

helicase is unknown but it has been hypothesised to be involved in unwinding 

RNA secondary structures at the termini of viral RNA or dsRNA replicative 

intermediates (Dubuisson, 2007).  

NS3 is essential for HCV RNA replication (Lam & Frick, 2006, Lohmann et al., 

1999) and this process also requires the RNA binding and helicase activity of the 

protein (Beran et al., 2009). CCAMs that enhance RNA replication efficiency have 

been identified in both the protease and helicase domains of NS3 (Lohmann et al., 

2003). Recently, the NS3 helicase domain has been implicated in virus assembly, 

since mutations within its coding region can rescue virus production from inter-

genotypic chimeras that are otherwise defective for virion production (Ma et al., 

2008, Yi et al., 2007).    

     

1.2.2.7 NS4A 

NS4A is the smallest HCV-encoded protein at only 6kDa, and consists of a N-

terminal hydrophobic sequence, a central domain that interacts with and stabilises 

NS3 (see above) and a C-terminal acidic region. The N-terminus of NS4A is 

responsible for targeting the NS3-NS4A complex to ER membranes (Wolk et al., 

2000), while the C-terminal acidic region influences both NS5A phosphorylation 

and RNA replication efficiency (Lindenbach et al., 2007). NS4A acts as a cofactor 

for both the serine protease (Bartenschlager et al., 1994, Failla et al., 1994, Lin et 

al., 1995) and helicase activities of NS3 (Frick et al., 2004, Pang et al., 2002). 

Recent data demonstrate that the active, ATP-bound state of NS3 binds RNA 

tightly only when NS4A is present, allowing the NS3-4A complex to reach maximal 

ATP-hydrolysis activity at lower RNA concentrations compared to NS3 expressed 

alone (Beran et al., 2009). Thus, the RNA binding strength and ATPase activity of 

NS3 are coupled and both processes are enhanced by NS4A. 

 

1.2.2.8 NS4B 

NS4B is 27kDa in size and is a highly hydrophobic protein. Consequently, 

investigation into NS4B structure has been restricted and identifying structured 

regions within the protein typically relies on predictive methodology. The central 

portion of NS4B is predicted to contain 4 TMDs that bind the protein tightly to ER 

membranes, while the remaining regions of the protein are thought to reside on 
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either the cytosolic or lumenal sides of the ER membrane (Hugle et al., 2001, 

Lundin et al., 2003). NS4B is co-translationally targeted to the ER by a N-terminal 

amphipathic helix (Elazar et al., 2004). However, the precise orientation of the N-

terminal region is uncertain since glycosylation studies have revealed that, at least 

in some NS4B molecules, this region may translocate to the lumenal side of the 

ER membrane post-cleavage, creating a fifth TMD termed TMX (Lundin et al., 

2006, Lundin et al., 2003). The TMDs of NS4B are linked via three transmembrane 

loops, and the loop connecting TM2 and TM3 is believed to reside on the cytosolic 

side of the ER membrane (Lundin et al., 2003). Analysis of this loop has revealed 

the presence of a nucleotide-binding motif (NBM) involved in the binding and 

hydrolysis of GTP (Einav et al., 2004), which may influence cell transformation 

(Einav et al., 2008b). Additionally, in vitro purified preparations of NS4B possess 

adenylate kinase activity, indicating that NS4B may be involved in ATP production 

(Thompson et al., 2009). The C-terminus of NS4B is predicted to reside in the 

cytoplasm (Hugle et al., 2001, Lundin et al., 2003) and is highly conserved 

(Welsch et al., 2007). Two cysteine residues at the end of the C-terminus (amino 

acids 257 and 261) apparently undergo palmitoylation, a lipid modification that 

may be important for the formation of protein-protein interactions within viral 

replication complexes (RCs, Yu et al., 2006).   

Expression of NS4B induces rearrangements of cellular ER membranes, 

producing punctate structures that have been termed the ‘membranous web’ and 

membrane-associated foci (MAFs, Egger et al., 2002, Gosert et al., 2003, Gretton 

et al., 2005). Two important observations indicate that these structures are the 

complexes in which viral RNA replication takes place. Firstly, other NS proteins 

involved in replication localise to these punctate sites (Elazar et al., 2004, Hugle et 

al., 2001) and disrupting the ability of NS4B to bind to ER membranes leads to a 

loss of proteins at these foci (Elazar et al., 2004). Secondly, studies utilising FISH 

(Gosert et al., 2003, Targett-Adams et al., 2008a), BrUTP labelling (El-Hage & 

Luo, 2003, Moradpour et al., 2004b) and an antibody that binds to dsRNA 

intermediates (Targett-Adams et al., 2008a) have all demonstrated that viral RNA 

colocalises with NS proteins at punctate structures on the membrane. Therefore, 

the membrane rearrangements induced by NS4B are likely to be essential for viral 

RNA replication. 

Aside from generating an environment suitable for HCV RNA synthesis, NS4B 

apparently contributes directly to viral replication. Studies have shown that CCAMs 

within NS4B are able to enhance RNA replication by up to 30-fold compared to 
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genomes containing wild-type (wt) NS4B (Lohmann et al., 2003, Lohmann et al., 

2001). A mutagenic analysis of NS4B revealed amino acids that influenced HCV 

genome synthesis and these had a variety of effects, from enhancing to abolishing 

RNA replication (Lindstrom et al., 2006). Insertion of the Con1 (genotype 1b) 

NS4B coding region into the H77 (genotype 1a) genome enhanced RNA synthesis 

by 10-fold (Blight, 2007) and similarly, Con1 genomes harbouring H77 NS4B 

sequences were defective for replication (Paredes & Blight, 2008). Furthermore, 

the replication efficiency of these defective chimeric genomes could be recovered 

by mutations within NS3 (Paredes & Blight, 2008). These data suggest that NS4B 

interacts with the replication machinery in a genotype-specific manner, where 

compatibility between NS3 and NS4B is required for efficient RNA replication 

(Paredes & Blight, 2008). NS4B can bind specifically to negative-stranded viral 

RNA and disruption of this process inhibits HCV replication (Einav et al., 2008a). 

Hence, the role of NS4B appears to be twofold; firstly, to create an environment 

that permits RC assembly and secondly, to modulate viral RNA synthesis within 

RCs. 

 

1.2.2.9 NS5A 

NS5A is a phosphoprotein that exists as two species, termed the hypo- (56kDa) 

and hyperphosphorylated (58kDa) forms. NS5A can be divided into three domains 

(I-III), which are separated by two low complexity sequences (LCS I and LCS II, 

Tellinghuisen et al., 2004). Domain I is the best characterised region of NS5A and 

binds a single zinc atom per protein molecule, which is essential for HCV RNA 

replication (Tellinghuisen et al., 2004). Based on the crystallographic structure of 

domain I, this region may dimerise to form a basic groove that could accommodate 

a single or double strand of RNA (Tellinghuisen et al., 2005). Indeed, NS5A is 

capable of binding to both positive- and negative-strand viral RNA (Huang et al., 

2005). Domain I also harbours an amphipathic α-helix that mediates the 

association of NS5A with ER membranes and disruption of this structure results in 

a loss of membrane binding and viral RNA replication (Brass et al., 2002, Elazar et 

al., 2003). Domains II and III are poorly characterised compared to domain I, 

although recent studies have suggested that domain II is flexible and disordered in 

nature (Liang et al., 2006), while domain III is mostly unstructured (Hanoulle et al., 

2009). 
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Hypophosphorylated NS5A represents the basally phosphorylated form of the 

protein and phosphorylation occurs primarily on serine residues that reside in LCS 

I, domain II and domain III (Huang et al., 2007b). Although not mapped directly, 

three serine residues located within LCS I (referred to as S2197, S2201 and 

S2204 in Tanji et al., 1995) are important for hyperphosphorylation of NS5A, since 

reduced levels of the hyperphosphorylated protein are detected upon mutation of 

these residues (Blight et al., 2000). For hyperphosphorylation, NS5A must be 

expressed from a polyprotein that also encodes NS3, NS4A and NS4B, indicating 

that these proteins are likely to interact with the cellular machinery to promote 

NS5A phosphorylation (Koch & Bartenschlager, 1999, Neddermann et al., 1999). 

NS5A is essential for HCV RNA replication and while domains I and II are required 

for this process, domain III is dispensable (Appel et al., 2008, Tellinghuisen et al., 

2008b). As a result, domain III can tolerate the insertion of molecules including 

green fluorescent protein (GFP) and dsRed without abrogating RNA replication 

(Appel et al., 2005b, Liu et al., 2006, McCormick et al., 2006, Moradpour et al., 

2004b), thus allowing characterisation of NS5A in live cells. For example, studies 

with NS5A-GFP fusion protein have shown that NS5A is frequently localised with 

HCV RNA in cells actively replicating viral genomes (Targett-Adams et al., 2008a). 

In genotype 1 subgenomic replicons (SGRs), CCAMs typically cluster within 

domain II and LCS I, which are implicated in NS5A hyperphosphorylation (Blight et 

al., 2000, Tanji et al., 1995). Furthermore, the phosphorylation status of NS5A 

influences replication and several studies have shown that reducing 

hyperphosphorylation results in enhanced RNA synthesis (Appel et al., 2005b, 

Evans et al., 2004b, Neddermann et al., 2004). Interaction between NS5A and 

human vesicle-associated-membrane protein A (hVAP-A), a protein involved in 

intracellular vesicle trafficking, is required for HCV RNA synthesis (Gao et al., 

2004, Zhang et al., 2004b) and hyperphosphorylated NS5A binds hVAP-A less 

efficiently compared to the basally phosphorylated protein (Evans et al., 2004b). 

Thus, phosphorylation may provide a mechanism for switching between viral 

replication and other stages of the HCV life cycle, via the modulation of protein-

protein interactions within the viral RC. Indeed, NS5A interacts with an expansive 

list of cellular proteins that are essential for, or at least facilitate HCV replication 

(see Section 1.4.3.3).  

It has recently been established that domain III of NS5A is essential for virus 

particle production in cells harbouring genome-length HCV RNA (Appel et al., 

2008, Tellinghuisen et al., 2008a). One study also demonstrated that mutations 
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within domain I of NS5A can prevent the protein associating with LDs, thought to 

be the sites of virus assembly (Miyanari et al., 2007). These mutations also 

prevented trafficking of other NS proteins and viral RNA to LDs, reducing 

infectious virus production as a result (Miyanari et al., 2007). In a separate study, 

mutation of a single serine residue within domain III prevented virus production 

without abolishing the association between NS5A and LDs (Tellinghuisen et al., 

2008a). Indeed, NS5A harbouring deletions within domain III retains the ability to 

interact with LDs but the protein is unable to associate with core at these sites 

(Appel et al., 2008). Thus, domains I and III may contribute to virus assembly by 

distinct mechanisms. While the work by Miyanari et al., and Appel et al., 

demonstrate that recruitment of viral NS proteins and RNA is essential for virus 

formation, the study conducted by Tellinghuisen et al., suggests that NS5A 

hyperphosphorylation is also important, since a reduction in this modification 

reduced infectious virus production. Overall, these results demonstrate the 

importance of NS5A to virus assembly, although its precise role has yet to be 

identified. 

Beside roles in viral replication and assembly, NS5A also interacts with a range of 

cellular signalling pathways (Macdonald & Harris, 2004). For example, protein 

kinase R (PKR) is an IFN-induced protein that phosphorylates eIF-2α upon 

detection of dsRNA exceeding 30bp, shutting down protein translation as a result 

(Samuel, 1993). NS5A is able to bind to PKR, preventing shutdown of protein 

synthesis, presumably allowing HCV translation to continue unhindered (Gale et 

al., 1997). In addition to interfering with the host cell IFN-response, NS5A is able 

to interact with signal cascades that mediate cell growth, such as the Ras-Erk 

pathway. NS5A can perturb epidermal growth factor (EGF)-stimulated activation of 

the Ras-Erk signalling pathway (Macdonald et al., 2003, Macdonald et al., 2005), 

at least in part by directing EGF-EGFR complexes from late endosomes where 

activation of Ras usually takes place (Mankouri et al., 2008). These studies, as 

well as others, suggest that NS5A may be able to optimise the cellular 

environment to facilitate the HCV life cycle.         

 

1.2.2.10 NS5B 

NS5B is a 68kDa protein located at the very C-terminus of the HCV polyprotein. 

NS5B is a tail-anchored protein, meaning it attaches to the ER membrane via a 

highly conserved C-terminal TMD (Ivashkina et al., 2002, Schmidt-Mende et al., 
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2001) and this association is critical for HCV RNA replication (Moradpour et al., 

2004a). NS5B is the RdRp and can copy HCV genomes in the absence of other 

viral or cellular factors (Behrens et al., 1996, Lohmann et al., 1997). NS5B is 

therefore responsible for generating both positive- and negative-strand RNAs 

during viral replication. NS5B is described as a typical ‘right-hand’ polymerase, 

where the thumb and finger domains create a channel for binding the RNA 

template and surround the palm domain that harbours the catalytic GDD motif 

(Penin et al., 2004). This active site chelates magnesium cations to drive 

polymerase function. 

The interactions of NS5B with other proteins, both viral and cellular, are important 

for modulating polymerase activity. For example, NS5A interacts with NS5B 

(Shirota et al., 2002) and disrupting this association inhibits HCV RNA replication 

(Shimakami et al., 2004). NS3 and NS4B also regulate NS5B activity (Piccininni et 

al., 2002). Similarly, cellular proteins cyclophilin B (CyPB) and nucleolin interact 

with NS5B, enhancing RNA synthesis (Shimakami et al., 2006, Watashi et al., 

2005). CyPB stimulates the RNA binding activity of NS5B and cyclosporin A (CsA, 

a CyPB inhibitor) can prevent this enhancement (Watashi et al., 2003).         

 

1.2.2.11 The 3’ UTR 

The 3’ UTR has a tripartite structure consisting of a variable region, a poly (U/UC) 

tract and a highly conserved 98-nucleotide sequence designated the 3’ X-tail, 

which together are involved in both viral RNA replication and translation (Blight & 

Rice, 1997, Tanaka et al., 1996, Yamada et al., 1996). The variable region is 

proposed to contain two stem-loops (termed VSL1 and VSL2), although these 

regions are dispensable for RNA replication in cell culture (Friebe & 

Bartenschlager, 2002) and for HCV infectivity in chimpanzees (Yanagi et al., 

1999). The poly (U/UC) region is variable in length and composition, consisting of 

uridine residues that are interspersed with occasional cytidine residues. This 

segment must be at least 26 nucleotides in length to permit viral RNA replication 

(Friebe & Bartenschlager, 2002). The 3’ X-tail is a highly conserved RNA 

sequence that is proposed to harbour three stable stem-loop structures (termed 

SL1-SL3). Deletion of any one of these elements prevents replication in cell 

culture (Friebe & Bartenschlager, 2002, Yi & Lemon, 2003) as well as infectivity in 

chimpanzees (Yanagi et al., 1999). 
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Aside from roles in replication, the 3’ UTR also stimulates IRES-mediated 

translation of viral RNA (Song et al., 2006). Interestingly, cellular factors PTB and 

La autoantigen, which interact with the 5’ UTR (see Section 1.2.2.1), also 

recognise the 3’ UTR (Ito & Lai, 1997, Spangberg et al., 1999). It has been 

proposed that the 3’ UTR enhances IRES-dependent translation by increasing the 

efficiency of termination (Bradrick et al., 2006). 

 

1.3 Systems used to Study the HCV Life Cycle 

The HCV life cycle consists of three main phases (i) binding and entry of the virus 

to target cells (ii) translation and replication of the viral genome and (iii) assembly 

and release of new virus particles. In 2005, three separate groups demonstrated 

that JFH1, a genotype 2a HCV strain (see Section 1.3.1.3), was capable of 

producing virus particles that could establish productive infection in naïve cells 

(Lindenbach et al., 2005, Wakita et al., 2005, Zhong et al., 2005). Thus, JFH1 

provides a robust tool for the study of the entire HCV life cycle. Prior to the 

discovery of JFH1, much investigation into HCV was conducted utilising surrogate 

models such as pseudoparticles (for analysing virus entry) and SGRs (to study 

RNA replication). The characteristics and application of these and other systems 

are described below. 

 

1.3.1 Binding and Entry Analysis 

To infect target cells, viruses typically bind to specific receptors on the cell surface 

to initiate entry. Although the precise composition of infectious HCV particles is 

currently unknown, the envelope glycoproteins E1 and E2 are obvious candidates 

for the binding of HCV particles to cells. Before the discovery of JFH1, a number of 

systems were used to study HCV binding and entry. 

 

1.3.1.1 Solubilised Glycoproteins 

The expression of E1 and E2 in vitro has demonstrated that a substantial 

proportion of these proteins exist as high molecular weight aggregates that likely 

represent misfolded complexes (Deleersnyder et al., 1997, Dubuisson et al., 

1994). To overcome this problem, several groups have utilised soluble versions of 

the E1/E2 glycoproteins that are generated via removal of the hydrophobic C-
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terminal TMDs (Flint et al., 1999, Scarselli et al., 2002). The truncated 

glycoproteins (sE1 and sE2) exhibit a lower tendency to form non-productive 

aggregates (Michalak et al., 1997). Solubilised glycoproteins can be utilised to 

investigate the binding of HCV envelope proteins to cellular receptors but are 

unsuitable for examining any subsequent stages in the entry process.  

 

1.3.1.2 HCV Pseudoparticles (HCVpp) 

The development of the HCVpp system allowed study of the complete HCV entry 

process. HCVpp are produced by transfecting 293T cells with plasmids expressing 

(i) a HCV E1/E2 polyprotein (ii) retroviral core proteins and (iii) a packaging-

competent, retrovirus-derived genome harbouring a reporter gene (Bartosch et al., 

2003b). Thus, secreted HCVpp consist of retroviral core particles containing DNA 

that encodes a reporter gene, with HCV E1/E2 heterodimers anchored in the 

surrounding lipid envelope. Several groups have utilised the HCVpp system, 

demonstrating that the particles exhibit a tropism for liver cells and can be 

neutralised by anti-E2 antibodies or sera from HCV-infected individuals (Bartosch 

et al., 2003b, Hsu et al., 2003, Op De Beeck et al., 2004). 

 

1.3.1.3 HCV Cell Culture System (HCVcc) 

Three groups simultaneously reported the development of a cell culture system 

capable of producing infectious HCV particles (HCVcc) in 2005 (Lindenbach et al., 

2005, Wakita et al., 2005, Zhong et al., 2005). This system involves introducing 

genome-length HCV RNA into human hepatoma Huh-7 cells. The RNA is derived 

from a cloned viral genome of the HCV isolate JFH1, a genotype 2a strain 

obtained from a Japanese individual with fulminant hepatitis (Kato et al., 2001). 

The UTRs and NS3-NS5B region of JFH1 permit SGRs derived from this HCV 

strain to replicate their RNA genomes efficiently in cell culture (see Section 1.3.2). 

Furthermore, HCVcc-derived virus particles are infectious in inoculated 

chimpanzees (Wakita et al., 2005), although the animals do not progress to 

chronicity after acute infection. To date, the HCVcc system represents the most 

authentic system for analysing viral entry. 
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Figure 1.4 Subgenomic and genomic HCV replicons

[A] Schematic representation of the first described subgenomic replicon (SGR). The construct is 
a bi-cistronic RNA molecule composed of the HCV 5' UTR linked to the neomycin resistance 
gene (Neo), an EMCV IRES, the NS coding region (NS3-NS5B) and finally the 3' UTR. 
Derivatives of this construct have subsequently been developed, including [B] SGRs where Neo 
is replaced with the luciferase reporter gene (Luc) and [C] full-length genomes that also harbour 
the Neo gene. These SGRs often contain adaptive mutations within the NS proteins to increase 
replication efficiency.
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1.3.2 RNA Replication Analysis 

Despite the construction of the first HCV cDNA clone in 1989, examining viral 

replication has only become possible since the late 1990s. The first functional, full-

length cDNA clones were reported in 1997 (Kolykhalov et al., 1997). Inoculation of 

these RNAs into chimpanzees caused the animals to become HCV seropositive 

and exhibit elevated ALT levels, but replication of the transcripts in cell culture 

could not be demonstrated (Kolykhalov et al., 1997). It was not until 1999 that the 

SGR system was developed, permitting autonomous replication of modified HCV 

genomes in Huh-7 cells (Lohmann et al., 1999). The SGR system has evolved to 

become the benchmark for studying HCV RNA replication and remains an 

important tool despite the advances made with the HCVcc system. 

SGRs were initially derived from Con1, a genotype 1b HCV strain. The coding 

region from core-p7 or core-NS2 was replaced with a gene encoding neomycin 

phosphotransferase (neo) and the HCV IRES directed translation of this gene. The 

NS coding region (NS3-NS5B) was placed under the control of a second IRES, 

derived from encephalomyocarditis virus (EMCV). Hence, the first SGRs were bi-

cistronic constructs (Figure 1.4, A). Transfection of in vitro transcribed SGR RNA 

into Huh-7 cells followed by G418 selection resulted in a small number of resistant 

colonies that supported stable replication of HCV RNAs, which could be 

maintained persistently under continuous drug selection (Lohmann et al., 1999). 

Unfortunately, replication of these RNA species was relatively inefficient. 

Advances with the SGR system were quickly made with the discovery that 

persistent selection of cells harbouring HCV RNAs promoted the generation of 

CCAMs, which enhanced viral replication (Blight et al., 2000). These mutations 

tended to cluster in NS5A (Blight et al., 2000). Other studies also reported the 

existence of CCAMs within this protein, as well as within NS3, NS4B and NS5B 

(Krieger et al., 2001, Lohmann et al., 2001). The mutations enhanced replication 

sufficiently to permit the construction of SGRs in which the neo gene was replaced 

by the luciferase coding region (Figure 1.4, B). This modification allowed 

assessment of RNA replication transiently, removing the need for time-consuming 

selection processes (Krieger et al., 2001). Furthermore, CCAMs were used to 

generate full-length selectable HCV genomes (Figure 1.4, C), which supported 

RNA synthesis and expressed all of the viral proteins (Blight et al., 2003, Blight et 

al., 2002, Pietschmann et al., 2002). Unfortunately, both subgenomic and genome-

length RNAs had limited properties. Firstly, adapted full-length HCV genomes 
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failed to produce infectious virus despite robust replication in tissue culture cells 

(Blight et al., 2003, Pietschmann et al., 2002). Secondly, adapted SGRs did not 

replicate in chimpanzees, suggesting that CCAMs were highly attenuating in vivo 

(Bukh et al., 2002). In support of this notion, adaptive mutations selected in tissue 

culture cells have never been found in virus isolated from HCV-infected 

individuals. 

Following studies with Con1, SGRs derived from other HCV strains (such as H77, 

genotype 1a) were developed (Yi & Lemon, 2004). Like Con1, these SGRs were 

reliant upon adaptive mutations within the NS protein coding region in order to 

produce detectable levels of RNA replication (Yi & Lemon, 2004). Employing an 

approach identical to that adopted with Con1 and H77 HCV strains, a JFH1-based 

SGR was also developed (Kato et al., 2003). Importantly, RNA transcribed from 

this construct replicated with far greater efficiency compared to previously 

described SGRs and furthermore, did not require G418 selection or CCAMs (Kato 

et al., 2003). Replacement of the neo gene in JFH1 SGRs with the luciferase 

coding region created a much-improved system for quantitative measurement of 

viral RNA replication compared to genotype 1 SGR systems (Targett-Adams & 

McLauchlan, 2005). 

 

1.3.3 Virus Assembly and Release 

The development of the HCVcc system in 2005 has permitted investigation into 

the latter stages of the HCV life cycle for the first time. Genome-length JFH1 

produces virus particles with a specific infectivity of 1.4 x102 RNA copies per 

focus-forming unit (FFU), as derived from comparing the abundance of virus 

particle RNA to the infectious titre (Yi et al., 2006). Infectious titres are measured 

by TCID50 (median tissue culture infective dose) analysis, an assay determining 

the amount of pathogenic agent required to produce pathological change in 50% 

of cell cultures. The isolation of JFH1 has also permitted the development of 

chimeric viruses, which contain the core-NS2 region from various HCV genotype 

fused to the NS3-NS5B coding sequence of JFH1. The most efficient of these is a 

chimera termed Jc1, which consists of strain HC-J6- and JFH1-derived sequences 

and is capable of yielding infectious titres up to 1000-fold higher than JFH1 

(Pietschmann et al., 2006). Such increased production of infectious progeny may 

result partly from the LD binding efficiency of HCV-encoded core protein (see 

Section 1.2.2.2). While the generation of such viruses and chimeras has facilitated 
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Figure 1.5 Model for HCV binding and entry

HCV particles are brought into contact with cell surfaces via the complexed LDL/VLDL interacting 
with the LDL receptor (LDL-R). Glycosaminoglycans (GAGs) may also be important for inital 
attachment. Subsequently, the HCV virion is proposed to interact with SR-BI, CD81 and the tight 
junction proteins CLDN-1/6/9 and OCLN. Many of these interactions are mediated by the E2 
protein present on the virion surface. HCV entry is thought to occur by clathrin-mediated 
endocytosis, followed by acidification of the endosome. This leads to a fusion event between the 
viral envelope and the endosome membrane, releasing the HCV genome into the cell cytosol for 
translation and replication.
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the study of virus assembly and release, the relatively recent discovery of JFH1 

means that these stages of the HCV life cycle remain poorly understood. 

 

1.4 The HCV Life Cycle 

1.4.1 Binding and Entry 

Typically, virus entry is initiated when virions bind to attachment factors on the cell 

surface. Binding can be relatively non-specific and serves to concentrate virus on 

the cell surface before it attaches to one or more specific receptors, leading to 

release of the genome into the cell interior (Dubuisson et al., 2008). The 

attachment factors and specific viral receptors necessary for HCV binding and 

entry into cells are discussed in the relative order they are believed to be utilised 

by the virus. This stage of the life cycle is also depicted in Figure 1.5. 

 

1.4.1.1 Attachment factors  

As mentioned previously (see Section 1.2.1), HCV particles are thought to 

circulate as LVPs, complexed with LDLs and/or VLDLs (Andre et al., 2002, Nielsen 

et al., 2006) and these components may aid the attachment of HCV to target cells. 

Supporting this hypothesis, antibodies directed against the LDL receptor (LDL-R) 

can inhibit the accumulation of viral RNA in cells (Agnello et al., 1999, Germi et al., 

2002, Molina et al., 2007). This finding was accompanied by the observation that 

increased LDL-R expression and LDL entry correlated with increased viral RNA 

accumulation in cells (Molina et al., 2007). Additionally, antibodies targeting 

apolipoproteins B and E (apoB and apoE, major protein components of VLDLs) 

neutralised HCV infectivity in a dose-dependent manner (Agnello et al., 1999, 

Chang et al., 2007). These data collectively suggest that LDL and/or VLDL are 

important for the HCV entry process and that the LDL-R might serve as an initial 

attachment factor for the virus. 

In addition to the LDL-R, GAGs may also represent an initial docking site for HCV 

particles. The composition and quantity of GAGs varies substantially from cell to 

cell and may therefore be an important determinant for viral tropism. It has been 

proposed that the positively-charged residues within the N-terminus of E2 may be 

able to interact with negatively-charged structures such as GAGs (Penin et al., 

2001). Although GAGs such as heparin and heparan sulfate bind recombinant E2 

proteins (Barth et al., 2003), no such binding has been observed using the HCVpp 
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system (Helle & Dubuisson, 2008). However, an indirect interaction between HCV 

and GAGs via virus-associated lipoproteins such as VLDL cannot be dismissed. 

While the mechanism of interaction between GAGs and HCV remains uncertain, 

evidence suggests that these factors are indeed important for virus entry. For 

example, treatment of cells, or the virus directly, with increasing concentrations of 

heparin decreased the amount of HCVcc infection, presumably due to competition 

(Germi et al., 2002, Koutsoudakis et al., 2006). Similarly, treating cells with 

heparinase, enzymes that cleave heparan sulphate molecules, reduced 

recombinant E2 binding and furthermore, HCVcc entry into cells (Barth et al., 

2003, Koutsoudakis et al., 2006). 

 

1.4.1.2 Specific Viral Receptors 

Following attachment of HCV virions to the exterior of cells, the virus interacts with 

specific receptors to initiate entry. To date, four receptors have been identified. 

The first, SR-BI, is a multi-ligand receptor that contains two TMDs and a highly 

glycosylated extracellular loop that directly interacts with sE2 via HVR1 (Bartosch 

et al., 2003c, Scarselli et al., 2002). In addition to this direct association between 

HCV and SR-BI, it is proposed that the lipoproteins attached to the virion also 

interact with the receptor. For example, interaction between HCV and SR-BI is not 

inhibited by antibodies targeting E2 and HVR1, yet exogenous VLDL or antibodies 

targeting apoB both decrease HCV entry into cells (Maillard et al., 2006). An 

interaction between SR-BI and HCV-associated lipoproteins is plausible, since SR-

BI was initially identified as the major receptor for high-density lipoprotein (HDL) in 

the liver and is involved in selective lipid uptake (Dubuisson et al., 2008). The 

importance of SR-BI in HCV entry has been confirmed using both the HCVpp 

(Bartosch et al., 2003c, Voisset et al., 2005) and HCVcc systems (Catanese et al., 

2007, Grove et al., 2007, Kapadia et al., 2007). Importantly, HCVcc is able to bind 

to Chinese hamster ovary (CHO) cells expressing SR-BI, but not to those 

expressing CD81 (Evans et al., 2007), suggesting that HCV binds to SR-BI before 

interaction with other specific receptors involved in virus entry. 

The first identified and best defined HCV receptor is CD81, a tetraspanin that was 

initially demonstrated to interact with sE2 (Pileri et al., 1998). Furthermore, E1/E2 

heterodimers exhibit stronger interactions with CD81 compared to sE2, implying 

that E1 may modulate the binding process (Cocquerel et al., 2003).  CD81 

contains four TMDs, a small extracellular loop (SEL) and a large extracellular loop 
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(LEL), the latter of which interacts with E2 (Helle & Dubuisson, 2008). CD81 has 

been confirmed as an essential receptor for HCV entry utilising HCVpp (Bartosch 

et al., 2003c, Cormier et al., 2004, Zhang et al., 2004a) and HCVcc (Kapadia et 

al., 2007, Lindenbach et al., 2005, Wakita et al., 2005). While antibodies targeting 

CD81 impair HCV entry, inhibition occurs after the virus has attached to cells 

(Cormier et al., 2004). Therefore, CD81 likely acts as a co-receptor that aids HCV 

entry after the virus has already bound to cells, possibly via SR-BI (see above). 

In an attempt to discover genes that render non-permissive cell lines susceptible 

to HCV entry, CLDN1 was identified as another essential viral entry receptor 

(Evans et al., 2007). CLDN1 belongs to the family of tight junction proteins and, 

like CD81, possesses four TMDs with two extracellular loops. The first 

extracellular loop is required for HCV entry, although no interaction between the 

viral glycoproteins and CLDN1 has been demonstrated (Evans et al., 2007, Zheng 

et al., 2007). CLDN1 is thought to act at a post-binding step and kinetic studies 

suggest that the receptor is utilised downstream of HCV interaction with CD81 

(Zheng et al., 2007). A limited number of other CLDN family members are also 

able to mediate HCVcc entry, including CLDN6 and CLDN9 (Meertens et al., 2008, 

Zheng et al., 2007). 

Recently another tight junction protein, OCLN, has been implicated in the entry of 

HCVpp and HCVcc (Liu et al., 2009, Ploss et al., 2009). As for SR-BI and CD81, 

the interaction between HCV and OCLN is thought to be mediated via interaction 

with E2 and direct binding of the two factors has been observed (Liu et al., 2009). 

Silencing of OCLN in cell lines permissive for HCV entry reduces both HCVpp and 

HCVcc infection (Ploss et al., 2009). Similarly, expression of OCLN alongside SR-

BI, CD81 and CLDN1 rendered non-permissive cell lines competent for HCV 

infection (Ploss et al., 2009). It was noted that viral infection led to a decrease in 

CLDN1 and OCLN expression levels, suggesting that regulation of cell surface 

receptors may provide a mechanism for superinfection exclusion (Liu et al., 2009). 

A similar downregulation of the other entry factors, SR-BI and CD81, has not been 

observed in HCVcc-infected cells (Schaller et al., 2007).      

Importantly, the expression of SR-BI, CD81, CLDN1 and OCLN renders murine 

and hamster cells permissive for HCVpp infection, suggesting that these four host 

receptors are sufficient for HCV entry (Ploss et al., 2009). The identification of all 

necessary entry factors is a major step towards the construction of a small animal 

model for HCV infection.      
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1.4.1.3 Internalisation of HCV virions 

Enveloped viruses typically enter cells by (i) fusion of their envelope with the cell 

plasma membrane, releasing the viral genome into the cytosol or (ii) by 

endocytosis. In the case of the latter, an activation step usually leads to fusion of 

the viral envelope with the endosome membrane and the acidic pH of endosomes 

is thought to play a key role in this process. Thus, pH sensitivity is a reasonable 

indicator for viral entry by endocytosis. 

Both HCVpp and HCVcc entry is sensitive to agents that neutralise the acidic pH 

of cellular endosomes (Blanchard et al., 2006, Hsu et al., 2003, Meertens et al., 

2006). Furthermore, treatment of cells with chlorpromazine (which disrupts the 

formation of clathrin-coated pits) or the use of siRNA targeting clathrin, reduces 

HCVpp and HCVcc entry (Blanchard et al., 2006, Meertens et al., 2006). Hence, 

clathrin-mediated endocytosis represents a likely mechanism for HCV entry. Once 

internalised, the virus envelope is proposed to fuse with the membranes of early 

endosomes in order to release the HCV genome into the cytosol (Meertens et al., 

2006). Further work is required to fully define these early steps of the HCV life 

cycle. 

 

1.4.2 Translation and Polyprotein Processing 

1.4.2.1 Translation 

Upon release into the cytoplasm, the host ribosomal machinery translates the viral 

genome after binding to the HCV IRES within the 5’ UTR (see Section 1.2.2.1). 

Ribosomes consist of (i) a small (40S) subunit that mediates interactions between 

the anticodons of the tRNA and the codons of the mRNA and (ii) a large (60S) 

subunit, which catalyses peptide bond formation in the growing polypeptide chain 

(Steitz, 2008). Whereas translation of cellular mRNA involves the eukaryotic 

initiation factor (eIF) 4F protein complex (consisting of eIF4E, eIF4G and eIF4A), 

HCV translation requires only eIF2 and eIF3 (Pestova et al., 1998). eIF2 places 

the initiator tRNA (Met-tRNA) on the surface of the 40S ribosomal subunit, which is 

bound directly to the HCV IRES to form a pre-initiation 48S complex and this 

complex is stabilised by eIF3 (Ji et al., 2004). Subsequent association of the 60S 

ribosomal subunit results in a translationally active 80S complex that initiates 

protein synthesis to generate the HCV polyprotein precursor.    
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Figure 1.6 HCV genome replication and virus assembly

Replication of the viral genone is thought to occur within altered membranes derived from the ER. These replication complexes (RCs) are thought to protect viral RNA and 
proteins from cellular degredative processes. Replicated RNA can then associate with ribosomes (depicted by R above) for further production of viral proteins, or be 
transported to lipid droplets (depicted by LD above) for packaging into viral capsids. The trafficking of RNA to LDs has been proposed to occur in an NS5A-dependent 
manner. 
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1.4.2.2 Polyprotein Processing 

Following translation, cellular and viral proteases process the HCV polyprotein to 

produce the mature structural and NS proteins. Core, E1, E2 and p7 are 

generated by SP and SPP-mediated events (see Sections 1.2.2.2-1.2.2.4). NS2 is 

liberated by the combined activity of the NS2/NS3 protease (see Section 1.2.2.5). 

The remaining NS proteins, NS3, NS4A, NS4B, NS5A and NS5B, are all 

generated by NS3/NS4A-mediated cleavage (see Section 1.2.2.6).   

 

1.4.3 RNA Replication 

1.4.3.1 Nature of the HCV RC 

Replication of HCV RNA is thought to occur rapidly after virus entry, since both 

positive- and negative-strand RNAs have been detected using Northern blot 

hybridisation by 2-4 hours after introduction of RNA into cells (Binder et al., 2007). 

RNA synthesis takes place within RCs, structures derived from altered ER 

membranes (Figure 1.6). RCs contain all the necessary components for RNA 

synthesis, including NS proteins, viral RNA and cellular factors involved in genome 

replication (Egger et al., 2002, Gosert et al., 2003, Mottola et al., 2002, Waris et 

al., 2004). Interestingly, viral RNA and NS proteins are ribonuclease and protease 

resistant, unless cells are first treated with detergents. This indicates that RCs are 

possibly enclosed membranous structures that protect HCV genomes from the 

intracellular environment (El-Hage & Luo, 2003, Quinkert et al., 2005, Waris et al., 

2004). In support of this notion, RCs are unable to replicate exogenously 

introduced RNA templates (Lai et al., 2003). Nonetheless, exit from RCs must be 

possible for the transport of replicated viral RNA to sites of viral assembly. It is 

estimated that RCs consist of minimally one negative-strand RNA template, up to 

ten positive-strand RNA copies and several hundred NS proteins (Quinkert et al., 

2005). Clusters of RCs on the ER membrane are thought to represent the 

‘membranous web’, a structure previously visualised by EM analysis (Egger et al., 

2002, Gosert et al., 2003). Strong evidence suggests that the HCV-encoded NS4B 

protein is responsible for inducing the membranous changes that bring about RC 

formation; the contributions of each of the NS proteins to RNA replication have 

already been described (see Section 1.2.2). 
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1.4.3.2 Mechanism of RNA Replication 

HCV genome replication involves the production of a negative-strand RNA 

template from the positive-strand genome by the NS5B polymerase, which is then 

used for the production of multiple positive-strand RNA molecules (Lohmann et al., 

1999, Takehara et al., 1992). The negative- and positive-strand RNAs are thought 

to form a dsRNA replicative intermediate, from which nascent strands are 

synthesised by strand-displacement (Targett-Adams et al., 2008a). The generation 

of replicative intermediates is not specific to HCV and dsRNA has been visualised 

during viral replication of other positive-strand RNA viruses (Weber et al., 2006). 

Indeed, other members of the flaviviridae, including Kunjin virus (KV) and dengue 

virus (DV) replicate their genomes via dsRNA intermediates (Miller et al., 2007, 

Westaway et al., 1997). In cells actively replicating HCV, dsRNA is detected in 

close proximity to RCs, suggesting that the intermediates are protected within 

these complexes (Targett-Adams et al., 2008a). It is likely that such protection 

would be necessary in order to prevent cellular dsRNA-activated enzymes (such 

as PKR) from triggering the shutdown of the host translational machinery.  

 

1.4.3.3 Contribution of Cellular Factors to HCV RNA Replication 

In cell culture, Huh-7 cells are typically used for the propagation of HCV SGRs. 

Attempts to utilise other cells have revealed that HCV replication can be 

accomplished in human liver-derived cell lines such as HepG2s and IMY-N9s 

(Date et al., 2004), cervical carcinoma-derived cells (HeLa, Kato et al., 2005, Zhu 

et al., 2003), embryonic kidney cells (293, Ali et al., 2004, Kato et al., 2005) and 

cells from osteosarcoma (U2OS, Targett-Adams & McLauchlan, 2005). Moreover, 

subgenomic HCV RNAs replicate in the murine hepatoma cell line Hepa 1-6 (Zhu 

et al., 2003), suggesting that viral genome synthesis can occur in cells derived 

from hosts that are not naturally infected with HCV. However, HCV viral RNA 

synthesis is typically inefficient in all of these cell types compared to the Huh-7 cell 

line and replication has not been detected in many other cell-types that have been 

tested. Thus, HCV-encoded replicase components alone are insufficient to support 

viral genome synthesis, suggesting that specific factors derived from the host cell 

are essential for this process.  

Data obtained using Huh-7 cells illustrate at least two lines of evidence that the 

host cell environment substantially affects viral RNA synthesis. Firstly, treatment of 

Huh-7 cell lines harbouring autonomously replicating HCV genomes with IFN or 
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Figure 1.7 Cellular proteins that influence HCV RNA replication

A list of some of the documented cellular factors that promote viral RNA synthesis. 
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viral inhibitors generates cells in which the SGRs have been eliminated. Upon 

retransfection of these ‘cured’ cells with a second HCV SGR, enhanced RNA 

replication is observed compared to naïve cells (Blight et al., 2002, Murray et al., 

2003). Several groups have utilised cured Huh-7 derivatives, such as Huh-7.5 and 

Huh-7.5.1 cells, to achieve higher levels of HCV RNA replication (Bartenschlager 

& Pietschmann, 2005). Secondly, transfection of increasing amounts of SGR 

transcripts results in decreased HCV RNA synthesis (Lohmann et al., 2003), 

implying that host factors necessary for viral replication are limiting in Huh-7 cells. 

This hypothesis is strengthened by studies examining competition between HCV 

SGRs, where decreased RNA synthesis is observed upon introduction of multiple 

genomes into cells (Evans et al., 2004a).  

The studies described above indicate that HCV genome replication does not 

depend solely on hepatocyte- or primate-specific factors. Nevertheless, specific 

host factors are required for viral replication, which are only present or expressed 

to sufficient levels in certain cell types. Indeed, an extensive list of cellular proteins 

that modulate HCV genome synthesis has been generated. Some of these factors 

have been described previously in Section 1.2.2 and others are depicted in Figure 

1.7. The proteins are involved in regulating a range of cellular processes. For 

example, ATM and Chk2 are DNA damage sensors (Ariumi et al., 2008), while 

Rab5 is a protein found in early endosomes (Stone et al., 2007). The mechanisms 

by which many of these cellular factors influence HCV RNA synthesis is not known 

and further investigation is required to fully understand their involvement in this 

process. 

 

1.4.4 Virus Assembly and Release 

Based on assembly and egress strategies for other viruses, it is presumed that 

replicated RNA is packaged into capsids, which acquire a host-derived lipid 

envelope before transport to the cell surface for release. Investigation into the 

assembly and release of HCV has only become possible since the development of 

the JFH1 HCVcc system, meaning that this area of research remains in its infancy. 

The current understanding of HCV assembly and release is described below. 
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1.4.4.1 HCV Assembly    

The first stages of assembly require HCV core, which comprises the viral capsid. 

Core is targeted to LDs (Barba et al., 1997, Hope & McLauchlan, 2000, Moradpour 

et al., 1996), which are crucial for the production of infectious virus particles 

(Boulant et al., 2007, Miyanari et al., 2007). The attachment of core to LDs is 

mediated by D2, following maturation of the protein by SPP (see Section 1.2.2.2). 

EM analysis has revealed the presence of particles containing core and E2 around 

LDs coated with core (Miyanari et al., 2007), suggesting that virion formation may 

occur at LDs. Furthermore, core is responsible for co-localisation of LDs with RCs 

containing NS proteins and viral RNA (Miyanari et al., 2007). Thus, core may 

recruit the viral components necessary for virus assembly at LDs (Figure 1.6).  

Apart from core, other HCV-encoded proteins are essential for the assembly of 

virions. For example, p7 has been suggested to be a virion component (Griffin et 

al., 2008) and is essential for a pre-assembly step in virion production (Jones et 

al., 2007, see Section 1.2.2.4). Similarly, NS2, the only NS protein not essential for 

RNA replication, is required for events that precede the assembly of infectious 

virus at LDs (Jones et al., 2007, see Section 1.2.2.5). It has been thought that the 

NS3-NS5B proteins function solely in viral genome synthesis, but recent reports 

demonstrate that these components also have roles in viral assembly. For 

example, although domains I and II of NS5A are involved in RNA replication, 

domain III participates in virus particle assembly and is necessary for the 

trafficking of RCs to core found on LDs (Miyanari et al., 2007, see Section 1.2.2.9). 

In support of this mechanism, increased interaction between NS5A and core 

correlates with enhanced virus production (Masaki et al., 2008). More recently, 

NS3 has been shown to influence the production of infectious progeny, since 

mutations within the protein are able to rescue virus production from otherwise 

defective chimeric viruses (Ma et al., 2008, Yi et al., 2007). In these studies, NS3 

and NS5A expressed from non-productive chimeras were recruited to core on the 

surface of LDs but no intracellular virus was produced (Ma et al., 2008). Hence, 

NS3 possibly mediates virus assembly following the recruitment of RCs to LDs but 

preceding particle assembly.  

As described above, the association of RCs with LDs occurs in a core- and NS5A-

dependent manner. However, there is limited insight into the precise mechanisms 

by which these proteins bring together sites of RNA replication and sites of virion 

assembly. One hypothesis is that the coating of LDs by core induces their 
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redistribution from the cytoplasm to the microtubule organising centre (MTOC) at 

the perinuclear region (Boulant et al., 2008). The trafficking of LDs is dependent 

on the microtubule network and disruption of this process leads to a reduction in 

infectious progeny (Boulant et al., 2008). Hence, LD redistribution may serve to 

concentrate core-coated LDs at sites where viral replication takes place. A similar 

but separate mechanism may involve interactions between NS3, NS5A and actin 

filaments, permitting the trafficking of RCs along the microtubule network (Lai et 

al., 2008). Therefore, HCV-encoded proteins such as core and NS5A may 

modulate the trafficking of RCs and LDs via the microtubule network in order to 

increase the probability of their interaction, possibly enhancing the likelihood of 

assembly events. 

To date, visualisation of HCV particles within cells remains problematic. HCV-like 

particle (HCV-LP) budding has been observed when core is overproduced using a 

Semliki Forest virus (SFV) replicon vector, which expresses HCV structural 

proteins (Blanchard et al., 2003, Hourioux et al., 2007, Roingeard et al., 2004). 

Furthermore, 3D electron microscopy has shown that HCV-LP budding initiates at 

membranes close to LDs, rather than membranes directly juxtaposed with LDs 

(Roingeard et al., 2008). It would be useful to observe such events with authentic 

HCV particles, especially since HCV-LP budding is abortive in nature (Roingeard 

et al., 2008). However, HCV particles produced using the HCVcc system have yet 

to be detected convincingly by EM. Prior attempts to do so have been 

unsuccessful (Rouille et al., 2006), although spherical virus-like structures have 

been identified in close proximity to LDs in cells producing HCVcc (Miyanari et al., 

2007). These structures were recognised by core- and E2-specific antibodies, 

indicating that the particles possibly represent HCV virions (Miyanari et al., 2007).   

 

1.4.4.2 HCV Release 

Following genome packaging, details regarding further maturation of the virion 

before egress are limited. An increasing body of evidence suggests that the 

LDL/VLDL assembly and secretion pathway may provide a means for transport of 

HCV virions from the cell. HCV particles can circulate complexed with VLDLs 

(Andre et al., 2002, Nielsen et al., 2006), which are produced in hepatocytes to 

export triglyceride and cholesterol into the extracellular environment (Gibbons et 

al., 2004). VLDL assembly is thought to occur in two different stages, (i) 

microsomal triglyceride transfer protein (MTP) transfers triglyceride from either 
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Figure 1.8 Trans-complementation of viral functions

Representation of the systems used to analyse trans-complementation of viral proteins, where 
mutant RNA is introduced [A] simultaneously into cells with helper RNAs [B] simultaneously into 
cells with plasmid-expressed proteins/polyproteins [C] into cell lines already containing helper 
RNA genomes or plasmid-expressed proteins. [D] Representation of the HCV polyprotein, 
indicating which proteins can (ticks) and cannot (crosses) be complemented in trans. 
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LDs or the ER lumen to apoB, allowing the growing apoB molecule to fold on a 

hydrophobic core and form a pre-VLDL (Olofsson & Boren, 2005) (ii) apoE, 

another VLDL component, aids the fusion of pre-VLDLs with triglyceride droplets 

derived from LDs in the ER/Golgi (Mensenkamp et al., 2001). Hence, LDs provide 

the bulk of lipid for VLDL formation in hepatocytes (McLauchlan, 2009). 

Importantly, an MTP inhibitor and siRNA targeting apoB are capable of reducing 

the release of virus particles (Huang et al., 2007a) and apoB is a rate-limiting 

factor for HCV assembly (Gastaminza et al., 2008). Moreover, silencing of apoE 

reduced infectious titres of intracellular HCV virions, indicating that the VLDL 

assembly pathway may be important for viral assembly as well as secretion 

(Chang et al., 2007). Comparison of intracellular and extracellular HCV virions 

suggest that the association of virus particles with lipoprotein particles lowers their 

buoyant density (Gastaminza et al., 2006), possibly having implications for the 

infectivity of the virus. For example, virus particles isolated from infected 

chimpanzees exhibit a lower buoyant density compared to those obtained in cell 

culture, and exhibit enhanced infectivity when used to infect naïve cells 

(Lindenbach et al., 2006). 

 

1.5 Trans-Complementation of Virus Functions 

Studies on HCV and other positive-strand RNA viruses have revealed that non-

functional viral RNAs containing deleterious coding regions can have function 

restored to them by supplying wt components in trans. This process is referred to 

as trans-complementation and can provide insights into the functional organisation 

of viral RCs and the mechanisms that govern virus assembly. The ‘helper’ 

components that can restore function are usually supplied via (i) transient 

introduction of replicating or non-replicating RNA, (ii) introduction of plasmid-

expressed proteins, or (iii) autonomous expression of proteins or replication of the 

helper RNA within a cell line. These approaches are represented in Figure 1.8, A-

C. 

 

1.5.1 Trans-Complementation of HCV RNA Replication 

To date, investigation into trans-complementation of HCV RNA replication has 

utilised genotype 1b SGRs containing CCAMs and revealed that NS5A is the sole 

viral NS protein involved in RNA synthesis that can be supplied in trans (Appel et 
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al., 2005a, Tong & Malcolm, 2006). These analyses have yielded conflicting 

results regarding the context of NS5A expression in relation to its ability to trans-

complement a defective genome. For example, one study showed that 

complementation by NS5A relied on its expression as part of a polyprotein (NS3-

NS5A), since expression of NS5A alone failed to restore replication of an inactive 

SGR (Appel et al., 2005a). In a separate study however, NS5A produced stably 

within a cell line was able to complement a defective replicon without the need for 

expression as part of a polyprotein (Tong & Malcolm, 2006). The assays employed 

in these two reports differed slightly and it is therefore possible that distinct results 

may arise from the type of system used to study trans-complementation. However, 

both studies agreed that replication could not be restored to SGRs harbouring 

replication-lethal mutations in NS3, NS4B and NS5B by supplying these proteins 

in trans (Appel et al., 2005a, Tong & Malcolm, 2006). Therefore, it seems that the 

majority of the HCV replicase components can only function in cis for HCV RNA 

synthesis. The results presented by Appel et al. suggest that the NS components 

within a NS3-NS5A polyprotein are essential for the production of NS5A protein 

that is capable of restoring replication to defective genomes. Indeed, these 

proteins are required for post-translational modifications of NS5A, such as 

hyperphosphorylation (Koch & Bartenschlager, 1999, Neddermann et al., 1999). 

Alternatively, NS5A precursors may be important for replication, as found for other 

positive-strand RNA viruses (see Section 1.5.1.3). Interestingly, mutations 

affecting the N-terminal amphipathic α-helix of NS5A could not be rescued by 

trans-complementation (Appel et al., 2005a), suggesting that these mutants may 

fold incorrectly and interact with other replicase components in a manner 

incapable of rescue. The available data imply that NS5A is able to gain entry to 

RCs harbouring non-functional proteins, thereby restoring function by trans-

complementation. Such a scenario fits with its perceived role in replication and 

assembly, since NS5A is proposed to be responsible for the trafficking of NS 

proteins and viral RNA to core situated on LDs (Miyanari et al., 2007). 

 

1.5.2 Trans-Complementation of HCV Virion Assembly 

The HCVcc system has allowed examination of the ability to trans-complement 

other stages of the HCV life cycle, besides genome synthesis. As described 

previously, NS5A is not only a replicase component but is also required for virus 

assembly and domain III of the protein is critical for this process (see Section 
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1.2.2.9). Using the HCVcc system, it was shown that virus production from HCV 

RNAs containing deletions in domain III could be rescued by supplying intact 

NS5A in trans (Appel et al., 2008). Another NS protein, NS2, is also involved in a 

pre-assembly step of HCV virion production (see Section 1.2.2.5) and the HCVcc 

system has revealed that assembly defects caused by mutations within NS2 can 

be complemented by functional NS2 supplied in trans (Jirasko et al., 2008). 

Regarding the structural proteins, HCV genomes containing lethal mutations within 

core can be rescued by ectopic expression of functional core protein (Miyanari et 

al., 2007). Furthermore, HCV RNA molecules lacking the entire core-NS2 coding 

region can be packaged in the presence of helper genomes supplying these 

proteins, or when introduced into ‘packaging cell lines’, in which the core-NS2 

region is autonomously produced (Ishii et al., 2008, Steinmann et al., 2008). These 

trans-complemented HCV particles (HCVTCP) exhibit characteristics identical to 

HCVcc. Thus, a cis-acting interaction between the core-NS2 proteins and the 

NS3-NS5B coding region is apparently unnecessary for virus assembly and 

release. This indicates that the mechanisms engaged in trans-complementation of 

HCV assembly are apparently less stringent compared to those involved in viral 

RNA synthesis. A summary of the HCV proteins, which can and cannot be trans-

complemented, is shown in Figure 1.8, D. 

 

1.5.3 Trans-Complementation of Other Positive-Strand RNA Viruses 

Prior to analysis of HCV trans-complementation, studies using several other 

positive-strand RNA viruses highlighted differences in the ability to trans-

complement proteins involved in their life cycles. Within the flaviviridae family, 

study of KV has shown that functional proteins expressed in trans can restore the 

replication of RNAs harbouring deletions within the NS1 (replication component), 

NS3 (helicase) and NS5 (RdRp) proteins (Khromykh et al., 1999b, Khromykh et 

al., 2000). Trans-complementation is also possible for RNAs harbouring mutations 

in all three of these proteins (Khromykh et al., 2000). Interestingly, while NS1 

supplied alone in trans can rescue replication, the NS5 protein can only restore 

replication efficiently when expressed in the context of a NS1-NS5 polyprotein 

(Khromykh et al., 1999a). With bovine viral diarrhoea virus (BVDV), NS5 can 

function in trans (Grassmann et al., 2001), although it is unclear whether NS5 

must be expressed from a polyprotein in order to restore replication to inactive 

RNAs. As with KV, yellow fever virus (YFV) RNAs harbouring a defective NS1 
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protein can be trans-complemented by NS1 supplied alone (Lindenbach & Rice, 

1997). Taken as a whole, these data indicate two important points. Firstly, there is 

no apparent consistency between those proteins that can and cannot be trans-

complemented for members of the flaviviridae, possibly suggesting differing 

mechanisms through which these viruses form functional RCs. Secondly, the 

results suggest that for some viruses (such as KV and HCV), the mature proteins 

comprising RCs may only be targeted to the appropriate location, or function 

correctly, when delivered from precursor polyproteins. The importance of 

precursors in trans-complementation is not restricted to members of the 

flaviviridae. For example, trans-complementation assays with poliovirus (PV, a 

member of the picornaviridae) have shown that viral RNA harbouring lethal 

mutations within the 3AB coding region can only be complemented by a 3AB-3D 

polyprotein and not by 3AB alone (Towner et al., 1998). Hence, protein precursors 

may be important for RNA replication in positive-strand viruses in general. 

 

1.6 Modulation of HCV Infection by RNA Interference (RNAi) 

RNAi is an intrinsic cellular system that allows regulation of gene expression. In 

this process, short-interfering (si) RNA molecules are able to silence genes by 

mediating cleavage of messenger RNA (mRNA) prior to translation. Hence, this 

technology can be used to silence RNA molecules of known sequence and has 

become a promising therapeutic strategy to target viral infections. siRNA-mediated 

interference as a means of targeting the HCV life cycle has been demonstrated by 

two approaches. Firstly, by direct targeting of the HCV RNA genome using virus-

specific siRNAs and secondly, by modulating expression of host cell factors that 

have a role in the virus life cycle (see Section 1.4.3.3). Because siRNA technology 

was utilised for the studies presented in this thesis, these two approaches are 

described in the following sections and a third section outlines the mechanisms 

underlying siRNA-mediated cleavage of RNA.      

 

1.6.1 Targeting the HCV Genome Directly  

siRNAs bind to complementary ssRNA molecules in order to initiate the cleavage 

events that lead to silencing. Therefore, the ssRNA genome of HCV is an ideal 

target for RNAi. Several studies have shown that in cell culture, HCV gene 

expression can be reduced using siRNAs that are complementary to the viral 
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genome (Randall & Rice, 2004). While the majority of the HCV genome is 

apparently accessible to the RNAi machinery, the most successful approaches 

have been achieved by targeting highly conserved viral sequences, since siRNAs 

that differ from their target sequence by two or more bases are inefficient at 

silencing HCV replication (Randall et al., 2003). Therefore, siRNAs directed 

against the 5’ UTR (Chevalier et al., 2007, Kanda et al., 2007, Kronke et al., 2004, 

Seo et al., 2003, Yokota et al., 2003), NS3 and NS5B (Kapadia et al., 2003, 

Prabhu et al., 2005) are the most efficient options for reducing HCV RNA 

replication, since these regions of the genome are well conserved. The HCV 5’ 

UTR is particularly highly conserved across HCV genotypes and therefore siRNAs 

directed against this sequence are able to potently inhibit viral RNA synthesis for 

several HCV strains, including Con1, H77 and JFH1. For example, siRNA 

treatment of cells harbouring Con1 SGRs can decrease viral RNA levels by 80-fold 

and replicating viral genomes can be cleared from >98% of cells (Randall et al., 

2003). Furthermore, siRNA treatment of naïve cells can reduce viral replication 

upon infection with HCVcc derived from strain JFH1 (Chevalier et al., 2007).   

It is currently unclear whether HCV is targeted directly by the RNAi response 

pathway in vivo. Recently, the HCV-encoded proteins core and E2 have been 

shown to interact with components of the cellular machinery responsible for gene 

silencing (Ji et al., 2008, Wang et al., 2006). These results suggest that the RNAi 

pathway may target HCV RNA in cells and that the virus has evolved strategies to 

circumvent this host response. However, other groups have presented evidence to 

the contrary; for example, cells harbouring replicating HCV genomes show no 

detectable presence of viral siRNAs (Pfeffer et al., 2005). Hence, it remains to be 

confirmed whether RNAi represents an antiviral pathway that responds to HCV 

infection.  

 

1.6.2 Targeting Host Cell Genes Involved in HCV RNA Synthesis 

In addition to targeting the HCV genome directly, siRNAs have been used to 

demonstrate the importance of various host cell proteins for viral replication. For 

instance, siRNA has been used to confirm the contribution of cellular proteins 

hVAP-A (which interacts with NS5A, see Section 1.2.2.9), La autoantigen and PTB 

(which both interact with the 5’ and 3’ UTRs, see Sections 1.2.2.1 and 1.2.2.11) to 

viral replication (Xue et al., 2007). Several groups have screened libraries of 

siRNAs targeting host cell factors in an attempt to discover novel proteins involved 
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in HCV RNA replication. Such approaches have identified several human kinases 

(Supekova et al., 2008), transporter proteins and transcription factors (Ng et al., 

2007), to name but a few. A study conducted by Randall et al. in 2007 screened 

62 cellular genes previously reported to interact with HCV proteins or RNA and 

assessed the effect of their knockdown on JFH1 RNA production. From this 

screen, 26 genes that influenced HCV RNA replication were identified. 

Interestingly, in cells transfected with siRNAs targeting the RNAi component Dicer, 

HCV RNA synthesis was reduced by ~7-fold (Randall et al., 2007). This result is 

surprising, since it would be predicted that reducing Dicer should lead to a crippled 

anti-HCV RNAi response. Thus, the RNAi pathway may facilitate, rather than 

hinder, HCV replication. This screen also confirmed the importance of miR-122 in 

viral RNA synthesis, which has previously been reported to bind to the 5’ UTR in 

genotype 1 SGRs (Jopling et al., 2005, Randall et al., 2007). Therefore, it is 

possible that miR-122 is important for the replication of all HCV genotypes.  

Overall, siRNA technology represents an ideal system for identifying host cell 

genes that influence HCV genome synthesis. As mentioned previously, siRNAs 

could represent a promising candidate for HCV therapy. However, much work is 

needed to improve siRNA delivery to cells, limit off-target effects and minimise the 

development of viral resistance (Lopez-Fraga et al., 2008).  

 

1.6.3 Discovery and Mechanism of RNAi  

RNAi was first characterised after injection of dsRNA molecules into the nematode 

C. elegans resulted in potent and specific reductions in levels of complementary 

mRNA transcripts (Fire et al., 1998). RNAi was thereafter identified in mammalian 

cells through the introduction of double-stranded siRNAs of 21bp in length 

(Elbashir et al., 2001a). The fact that IFN production can be induced by the 

presence of dsRNA molecules of >30bp in length complicated the initial 

demonstration of RNAi in mammalian cells. siRNAs induce the cleavage of 

complementary mRNAs in a process called post-transcriptional gene silencing 

(PTGS). PTGS functions as an innate antiviral defence mechanism in nematodes, 

insects, plants and fungi but endogenously expressed siRNAs have yet to be 

identified in mammals (Kim & Rossi, 2007). 

siRNA-mediated RNAi occurs when dsRNA molecules in the cytoplasm are 

processed by a complex comprising Dicer (a RNase enzyme), TAR RNA-binding 

protein (TRBP) and Argonaute 2 (AGO2). Upon binding to dsRNA, Dicer cleaves 
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the molecule into 19-23bp siRNAs characterised by 2-3bp overhangs at the 3’ end 

and 5’ phosphate groups (Dykxhoorn et al., 2003). Following cleavage, AGO2 cuts 

the sense ‘passenger’ RNA strand, leaving only the single antisense ‘guide’ strand 

associated with the Dicer complex (Matranga et al., 2005, Rand et al., 2005). A 

number of other Argonaute proteins associate at this stage, leading to the 

formation of an active RNA-induced silencing complex (RISC) that is targeted to 

mRNA molecules via the complementary pairing of the complexed guide strand. 

Once the guide strand binds the complementary sequence, RISC cleaves the 

mRNA strand in the centre of the duplex formed by annealing of the guide siRNA 

to the target mRNA (Elbashir et al., 2001b). Cleaved mRNA transcripts are 

subsequently degraded by cellular exonucleases, while the RISC complex is 

recycled for further cleavage events. The stages of siRNA mediated gene 

silencing are depicted in Figure 1.9.  

 

1.7 Fluorescent Proteins and their Applications 

Fluorescent proteins such as GFP have been extensively used for the 

characterisation of viral proteins, including those encoded by HCV. This approach 

is particularly useful for live-cell studies, since fixation and antibody staining is not 

required to observe fluorescence. For example, reports utilising GFP-tagged NS4B 

have shown that the protein localises to punctate structures on the ER membrane 

in live cells (Gretton et al., 2005, Lundin et al., 2006, Lundin et al., 2003). Similarly, 

insertion of GFP into the NS5A coding region revealed that it localised with viral 

RNA at punctate sites (Moradpour et al., 2004b). Since GFP was utilised for many 

of the studies presented in this thesis, a brief description of the protein and its 

applications are presented below.    

  

1.7.1 GFP 

Fluorescent proteins belonging to the so-called GFP-like protein family have been 

identified in a variety of marine organisms. Due to their bright colours ranging from 

cyan to green to red, the proteins have been used extensively in cell and 

molecular biology (Wachter, 2006). GFP is a 27kDa protein first discovered in the 

Pacific Northwest jellyfish Aequorea victoria more than 45 years ago (Shimomura 

et al., 1962). X-ray crystallography has revealed the three-dimensional structure of 

GFP and the biochemical and physical properties of its chromophore have been 
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Figure 1.9 The RNA interference (RNAi) pathway

An overview of the mechanism by which RNAi mediates gene silencing. [A] A complex 
comprising Dicer, TAR RNA-binding protein (TRBP) and Argonaute 2 (AGO2) is recruited to 
dsRNA molecules in the cytoplasm. [B] Dicer cleaves the dsRNA into 19-23bp fragments. [C] 
AGO2 then cleaves the sense RNA strand (green), leaving behind the antisense RNA strand 
(red). [D] Argonautes and argonaute-associated proteins are recruited to the complex, forming 
the active RNA-induced silencing (RISC) complex. [E] The antisense RNA molecule specifically 
guides the RISC complex to target mRNA molecules by binding the complementary mRNA 
sequence. [F] mRNA is cleaved by AGO2 and subsequently degraded by cellular exonucleases.  
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defined (Tsien, 1998). GFP exists as a mixed population of neutral phenols and 

anionic phenolates, which produce major (397nm) and minor (475nm) absorbance 

peaks respectively (Patterson & Lippincott-Schwartz, 2002). Upon illumination of 

GFP with ultraviolet or ~400nm light, the chromophore population undergoes 

photoconversion, shifting predominantly to the anionic form and increasing the 

minor peak absorbance (Figure 1.10, A). It is this minor peak population that emits 

green fluorescence upon excitation with a 488nm laser. The GFP chromophore is 

derived from the amino acid triplet Ser-Tyr-Gly, which is located within the centre 

of the barrel-like structure of the protein (Yang et al., 1996). 

GFP has proven to be a highly useful tool for studying the properties and 

behaviour of proteins in biological systems and possesses several key features 

that make it advantageous over other approaches. Firstly, the folding of GFP into a 

functional unit is autocatalytic and independent of external substrates or cofactors 

(except oxygen). Moreover, the fusion of GFP to cellular proteins rarely affects the 

native properties of the tagged-protein and is typically non-toxic in cells (Zimmer, 

2002). The applications for GFP are wide and varied. GFP was first utilised as a 

reporter gene, where several promoters controlled the expression of the protein, 

allowing fluorescence intensity to indicate the level of gene expression in living 

cells (Chalfie et al., 1994). Probably the most common use for GFP is as a fusion 

tag, permitting the localisation and behaviour of heterologous proteins to be 

monitored. This fusion can be at the N- or C-terminus of the protein of interest, but 

GFP can also be inserted within protein-coding sequences, as demonstrated with 

HCV-encoded NS5A (see Section 1.2.2.9). Furthermore, the stability of GFP 

fluorescence means that insights into protein behaviour can be gained over 

extended time periods.                

 

1.7.2 Photoactivatable-GFP (PAGFP) 

As described above, GFP fluorescence is observed upon excitation of the minor 

absorbance peak chromophore population using a 488nm laser. Preceding 

excitation, chromophores undergo photoconversion from the major to minor 

absorbance peak upon exposure to ultraviolet or ~400nm light. For GFP, a 

population of chromophores produce a small minor absorption peak before 

photoconversion occurs (Figure 1.10, A). Hence, a ~3-fold increase is detected 

upon excitation at 488nm. PAGFP also exists as a dual population of 

chromophores, with the important difference that a barely detectable minor 

45 



Daniel M Jones  Chapter 1 
 
absorbance peak is evident prior to photoconversion (Figure 1.10, B). Therefore, 

exposure to ultraviolet or ~400nm light followed by excitation at 488nm, produces 

fluorescence increases of >60-fold (Patterson & Lippincott-Schwartz, 2002). These 

properties rely upon a single T203H mutation within the GFP coding sequence.  

PAGFP can be tagged to cellular proteins in the same way as GFP, with the 

advantage that distinct regions within cells can be activated. This approach allows 

protein movement to be monitored, especially since fluorescence activation is 

irreversible and therefore will not diminish over time. PAGFP has been used for 

mobility studies of lysosomes (Patterson & Lippincott-Schwartz, 2002), voltage-

gated potassium channels (O'Connell & Tamkun, 2005) and mitochondria (Haigh 

et al., 2007).  

 

1.7.3 Fluorescence Recovery After Photobleaching (FRAP) 

GFP is a suitable molecule for photobleaching studies, since the fluorescence 

emitted from the protein can be irreversibly abolished upon bleaching with high 

intensity laser power. FRAP analysis involves the selective photobleaching of a 

defined area of the cell, followed by measurement of fluorescence recovery within 

the bleached region over a period of time (Figure 1.10, C). Fluorescence will only 

recover if mobile, non-bleached molecules are able to move into the bleached 

area. The different rates and extents to which fluorescence recovers can provide 

insights into protein dynamics, including interactions of proteins with other cellular 

components (Reits & Neefjes, 2001). 

FRAP has previously been used to examine the mobility of HCV proteins 

harbouring GFP. For example, mobility analysis of GFP-tagged NS4B revealed 

that the protein was relatively mobile on the ER membrane compared to when it 

was localised to punctate membranous structures (Gretton et al., 2005). These 

structures are thought to be analogous to RCs. Similarly, GFP-tagged NS5A 

expressed from a replicating genome exhibited no appreciable mobility within 

these structures (Wolk et al., 2008). Therefore, FRAP is a useful tool that is able to 

define the dynamics of viral proteins expressed in cells.        

 

1.8 Aims of the Study 

Initially, the aim of the project was broadly divided into two lines of investigation. 

The first aim was to insert GFP and PAGFP into the C-terminal coding region of 
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NS5A in the context of a JFH1-based SGR. This strategy would enable 

characterisation of NS5A in a live-cell environment harbouring actively replicating 

HCV RNA (Chapter 3). Secondly, we sought to determine the role of NS4B in HCV 

RNA replication, specifically with respect to its ability to alter cellular membranes. 

This investigation would utilise mutagenesis of the NS4B coding region (Chapter 

4). 

The NS4B mutagenesis studies yielded several novel replicating and non-

replicating mutant SGRs, leading to the establishment of two further projects. 

Firstly, the ability to complement defective NS4B protein in trans utilising non-

replicating viral RNAs would be assessed (Chapter 5). Secondly, replicating HCV 

SGRs harbouring NS4B mutations would be used to determine whether NS4B had 

any influence on virus assembly and release (Chapter 6). 

Finally, in an attempt to identify novel cellular proteins involved in HCV genome 

replication, a library of siRNAs targeting nucleotide-binding proteins was screened 

in two cell lines (Chapter 7). It was hoped that this study would also expand the 

scope of the project beyond investigation solely into viral components.   
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2 Materials and Methods 

 

2.1 Materials 

2.1.1 Vectors 

Plasmid Source 

pGEM-T-Easy Promega 

pGFP-C1 Clontech 

pPAGFP-C1 Jennifer Lippincott-Schwartz [National Institutes of Health, USA]

pZero 2.1 Invitrogen 

pCMV10 Nigel Stow [MRC Virology Unit] 

 

2.1.2 Kits and Enzymes 

2.1.2.1 Kits 

Kit Source 

PureLink HiPure plasmid midi-prep kit Invitrogen 

QIAQuick gel extraction kit Qiagen 

KOD Hot Start DNA Polymerase kit Novagen 

QuickChange Site-Directed Mutagenesis kit Stratagene 

QuickChange II XL Site-Directed Mutagenesis kit Stratagene 

T7 RiboMAX Express Large Scale RNA Production 

System 
Promega 

Luciferase Assay system Promega 

Enhanced Chemiluminescence Plus Western Blotting 

Detection System 
Amersham Biosciences 

NovaRED substrate kit for peroxidase Vector 

Aquabluer Cell-Viability assay 
MultiTarget 

Pharmaceuticals 

RNeasy mini kit Qiagen 

Taqman kit Applied Biosciences 
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2.1.2.2 Enzymes 

Enzyme Source 

Restriction enzymes NEB/Roche 

T4 DNA ligase NEB 

Calf intestinal phosphatase NEB 

Mung bean nuclease NEB 

Taq polymerase NEB 

KOD polymerase Novagen 

Multiscribe RT Applied Biosciences

 

2.1.3 Cells 

Cells Description Source 

Huh-7 

cells 
Human hepatoma cell line John McLauchlan [MRC Virology Unit] 

2/1 cells 
Huh-7 cells harbouring 

the JFH1 replicon 

Paul Targett-Adams [MRC Virology Unit] 

(Targett-Adams and McLauchlan, 2005) 

U2OS 

cells 

Human osteosarcoma cell 

line 
Chris Boutell [MRC Virology Unit] 

 

2.1.4 Transfection/Transformation reagents 

Reagent Source 

Lipofectamine 2000 Invitrogen

Lipofectamine RNAiMAX Invitrogen

Opti-mem-I Gibco 

 

2.1.5 Cell Culture Growth Medium 

All cell culture media were supplied by Gibco (Invitrogen Life Technologies). Huh-7 

and U2OS cells were grown in DMEMComplete (Dulbecco’s Modified Eagle Medium 

[DMEM] supplemented with 10% foetal calf serum (FCS), 100 units/ml 

penicillin/streptomycin and 1x non-essential amino acids). 2/1 cells, Tri-Huh-7 cells 

and Tri-U2OS cells were maintained in DMEMComplete supplemented with 100μg/ml 
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G418-sulphate (Melford). All cells were harvested using 1x Trypsin (10x stock 

supplied from Sigma). 

PBS, versene, L-broth and yeast tryptose (YT) broth were prepared in-house by 

the media department. 

 

2.1.6 Antibodies 

2.1.6.1 Primary Antibodies 

Antibody Species Source 

Anti-NS5A 
Sheep 

polyclonal 

Mark Harris and Steve Griffin, [University of Leeds] 

(Macdonald et al., 2003) 

Anti-NS4B 
Rabbit 

polyclonal 

Sarah Gretton [University of Leeds] and Graham 

Hope [MRC Virology Unit] 

Anti-Core 
Rabbit 

polyclonal 

Graham Hope and John McLauchlan [MRC Virology 

Unit] (Hope and McLauchlan., 2000) 

Anti-

dsRNA 

Mouse 

monoclonal 
Scicons [Hungary] (Targett-Adams et al., 2008) 

Anti-Actin 
Mouse 

monoclonal 
Sigma 

Anti-CKI-α 
Goat 

polyclonal 
Santa Cruz Biotechnology 

 

2.1.6.2 Secondary Antibodies 

Antibody Species Source 

Anti-mouse IgG-HRP Goat polyclonal Sigma 

Anti-goat/sheep IgG-HRP Mouse monoclonal Sigma 

Anti-rabbit IgG-PAP Goat polyclonal Sigma 

Anti-mouse-Alexa-488 (FITC) Donkey polyclonal Invitrogen 

Anti-mouse-Alexa-568 (TRITC) Goat polyclonal Invitrogen 

Anti-rabbit-Alexa-488 (FITC) Donkey polyclonal Invitrogen 

Anti-rabbit-Alexa-594 (TRITC) Donkey polyclonal Invitrogen 

Anti-sheep-Alexa-488 (FITC) Donkey polyclonal Invitrogen 

Anti-sheep-Alexa-594 (TRITC) Donkey polyclonal Invitrogen 
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2.1.7 Commonly Used Chemicals 

Chemical Abbreviation Source 

2-Amino-2-(hydroxymethyl)-1,3-propanediol TRIS BDH 

2-Mercaptoethanol β-ME Sigma 

37.5:1 acrylamide/bis solution - Bio-RAD 

4’,6-diamidino-2-phenylindole DAPI Promega 

Agarose - Melford 

Ammonium persulphate APS Bio-RAD 

Ampicillin Amp Melford 

Bromophenol Blue BPB BDH 

Chloroform - Sigma 

Ethanol EtOH Fischer Scientific

Ethidium Bromide EtBr Sigma 

Kanamycin Kan Melford 

Glucose - BDH 

Glycine - BDH 

Hydrogen peroxide H2O2 Sigma 

Methanol MeOH BDH 

N,N,N’,N’-Tetramethylethylene-diamine TEMED Sigma 

Neomycin phosphotransferase G418 Melford 

Paraformaldehyde PFA Sigma 

Phenol - Sigma 

Propan-2-ol - BDH 

Sodium carbonate Na2CO3 BDH 

Sodium chloride NaCl BDH 

Sodium dodecyl sulphate SDS BDH 

Sodium hydroxide NaOH BDH 

Sucrose - BDH 

Triton X-100 TX-100 Sigma 

Triton X-114 TX-114 Sigma 

Tween 20 - Sigma 
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2.1.8 Clones 

Clone Source 

pGFP-DNase X Johannes Coy [MTM Laboratories AG, Germany] 

pSGR-JFH1 Takaji Wakita [National Institute of Infectious Diseases, Japan]

pSGR-luc-JFH1 Paul Targett-Adams [MRC Virology Unit] 

pJFH1 Takaji Wakita [National Institute of Infectious Diseases, Japan]

pJ6-JFH1 Arvind Patel [MRC Virology Unit] 

 

2.1.9 Solutions 

2.1.9.1 Bacterial Expression 

Solution Components 

L-Broth 170mM NaCl, 10g/l Bactopeptone, 5g/l yeast extract

L-Broth agar L-broth plus 1.5% (w/v) agar 

Yeast tryptose broth 85mM NaCl, 16g/l Bactopeptone, 10g/l yeast extract

 

2.1.9.2 DNA Manipulation & Purification 

Solution Components 

Equilibration buffer 

(EQ1) 

0.1M sodium acetate (pH 5.0), 0.6M NaCl, 0.15% (v/v) 

Triton X-100 

Cell resuspension 

buffer (R3) 

50mM Tris-HCl (pH 8.0), 10mM EDTA,  

100μg/ml RNase A 

Lysis buffer (L7) 0.2M NaOH, 1% (w/v) SDS 

Precipitation buffer 

(N3) 
3.1M potassium acetate (pH 5.5) 

Wash buffer (W8) 0.1M sodium acetate (pH 5.0), 825mM NaCl 

Elution buffer (E4) 100mM Tris-HCl (pH 8.5), 1.25M NaCl 

TE buffer (TE) 10mM Tris-HCl (pH 8.0), 0.1mM EDTA 

Agarose gel loading 

buffer 
5x TBE, 50% sucrose, 1μg/ml BPB 

TBE (10x) 0.9M Tris-HCl, 0.9M boric acid, 0.02M EDTA 
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T4 DNA Ligase buffer 

(10x) 

400mM Tris-HCl, 100mM MgCl2, 100mM DTT, 5mM ATP 

(pH 7.8) 

ThermoPol buffer 

(10x) 

200mM Tris-HCl, 100mM (NH4)2SO4, 100mM KCl, 20mM 

MgSO4, 1% Triton X-100, (pH 8.8) 

Reaction buffer (10x) 
200mM Tris-HCl , 100mM (NH4)2SO4, 100mM KCl, 20mM 

MgSO4, 1% Triton X-100, (pH 8.8)  

 

2.1.9.3 SDS-PAGE 

Solution Components 

Running gel buffer 

(RGB, 4x) 
1.5M Tris-HCl (pH 8.9), 0.4% (w/v) SDS 

Stacking gel buffer 

(SGB, 4x) 
0.5M Tris-HCl (pH 6.7), 0.4% (w/v) SDS 

Boiling mix (3x) 
29% (v/v) SGB, 6% (w/v) SDS, 2M β-ME, 29% (v/v) 

glycerol, 1μg/ml BPB 

Tank buffer 25mM Tris-HCl, 200mM glycine, 0.1% (w/v) SDS 

Phase separation lysis 

buffer 

10μM Tris-HCl (pH 7.4), 150μM NaCl,  

2% (v/v) Triton X-114 

Phase separation 

solution 

10μM Tris-HCl (pH 7.4), 150μM NaCl, 6% (w/v) sucrose, 

0.06% (v/v) Triton X-114 

 

2.1.9.4 Western Blot Analysis 

Solution Components 

Towbin buffer 25mM Tris-HCl (pH 8.0), 192mM glycine, 20% (v/v) methanol 

PBS (A) 
170mM NaCl, 3.4mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4, 

25mM Tris-HCl (pH 7.2) 

PBS (A)-

Tween 
PBS (A), plus 0.05% (v/v) Tween-20 

Block buffer PBS (A)-Tween, plus either 2% or 5% (w/v) dried milk (Marvel) 
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2.1.9.5 Tissue Culture 

Solution Components 

Trypsin 
0.25% (w/v) Difco trypsin dissolved in PBS (A),  

0.0005% (w/v) phenol red 

Versene 0.6mM EDTA in PBS-(A), 0.002% (w/v) phenol red 

 

 

2.1.10 Oligonucleotide Synthesis and DNA Sequence Analysis 

Oligonucleotides were synthesised and supplied by Sigma-Aldrich. All sequence 

analysis was performed by the sequencing service at the University of Dundee. 

 

2.1.11 siRNA Library 

Positive (siHCV) and negative (Con) control siRNAs and a library of 897 siRNAs 

directed against cellular nucleotide-binding proteins were supplied by Ambion. 

1nM of each library siRNA was supplied by the manufacturer, and resuspended in 

dH2O to yield a stock concentration of 100μM (siHCV and Con) or 50μM (library 

siRNAs). Each cellular gene in the library was targeted by 3 siRNAs directed 

against different regions of the mRNA sequence. Hence, the library comprised 

siRNAs targeted against 299 cellular genes. 

 

2.2 Methods 

2.2.1 Tissue Culture Maintenance 

All cell lines were cultured in DMEMComplete at 37ºC in an atmosphere of 5% CO2. 

Cells harbouring the neomycin resistance gene as part of the HCV SGR were 

cultured in the presence of G418 at a concentration of 100μg/ml. Cell lines were 

typically grown in 160cm2 tissue culture flasks (Nunc). At confluency, cells were 

removed by trypsin treatment and resuspended in 10ml of DMEMComplete, before 

use either for experiments or flask re-seeding. 
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2.2.2 DNA Manipulation 

2.2.2.1 DNA Restriction Enzyme Digestion 

Digests were performed at 37°C (unless otherwise specified by the supplier) 

typically in 50μl reactions, using 10 units of restriction enzyme per 0.5μg DNA per 

hour. All reactions were carried out using the supplier-specified buffer and BSA if 

necessary. 

 

2.2.2.2 DNA Ligation 

Purified DNA fragments were ligated in 10μl reactions containing 1x ligase buffer 

and 2 units of T4 DNA ligase. Reactions were incubated at 4ºC for 16-18 hours. 

Resulting ligated DNA was diluted 1:20 in dH20, prior to electroporation into 

competent E.coli bacteria. 

 

2.2.2.3 Transformation of Competent Bacteria 

Transformation was carried out using electrocompetent GeneHogs (a DH10B-

derived E.coli strain [Invitrogen]). 10μl of GeneHogs were thawed on ice before the 

addition of 2μl pre-diluted DNA (see above). The mixture was then transferred into 

a pre-chilled cuvette (1mm gap [Apollo]) for electroporation at 1.6kV, 25μF using a 

Bio-Rad Gene Pulser II. Electroporated bacteria were resuspended in 500μl YT 

broth and incubated at 37ºC with shaking at 180rpm for 1 hour. This step allowed 

bacterial expression of the antibiotic resistance gene present in the electroporated 

plasmid DNA. 10-50μl of cultures were plated onto L-broth agar plates containing 

100μg/ml of appropriate antibiotic and incubated at 30ºC overnight. 

 

2.2.2.4 Transformation of Competent Bacteria for Site-Directed Mutagenesis 

DpnI-treated DNA from PCR reactions (Section 2.2.2.8) was used to transform 

either 50μl XL1-Blue Supercompetent cells or 45μl XL10-Gold Ultracompetent 

cells (Stratagene). All cells were thawed on ice (at this point for XL10-Gold cells 

only, 2μl β-ME was added and the cells were incubated on ice for 10 minutes). 2μl 

mutant DNA was added to the competent cells, which were incubated on ice for a 

further 30 minutes. DNA-bacteria mixtures were then heat-pulsed at 42ºC for 

either 30 seconds (XL10-Gold cells) or 45 seconds (XL1-Blue cells) and then 

incubated on ice for a further 2 minutes. 0.5ml of YT broth pre-heated to 42ºC was 
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added to each mixture, followed by incubation at 37ºC for 1 hour with shaking at 

180rpm. 2x 250μl aliquots of cultures were plated onto L-broth agar plates 

containing 100μg/ml of appropriate antibiotic and incubated at 37ºC overnight. 

 

2.2.2.5 Small-Scale DNA Purification (Minipreps) 

Single colonies of transformed bacteria were used to inoculate 2ml of L-broth 

containing a selective antibiotic, followed by incubation overnight at 30°C with 

shaking at 180rpm. 200μl of cultures were added to an equal volume of lysis 

buffer, vortexed briefly and then incubated for 5 minutes at room temperature. 

200μl precipitation buffer was added and samples were vortexed briefly. Cellular 

debris was pelleted by centrifugation at 15000x G for 2 minutes before the 

supernatant was removed and added to 600μl isopropanol to precipitate the 

plasmid DNA. Samples were centrifuged at 15000x G for 5 minutes to pellet the 

DNA. The supernatant was removed and the pellet was washed with 70% ethanol, 

and spun again at 15000x G for 5 minutes. The supernatant was removed and the 

pellet was allowed to air-dry. The pellet was then resuspended in an appropriate 

volume of dH2O for analysis by restriction enzyme digestion. 

 

2.2.2.6 Large-Scale DNA Purification (Midipreps) 

Transformed bacteria were used to inoculate 150ml L-broth containing a selective 

antibiotic, followed by overnight incubation at 30°C with shaking at 180rpm. 

Bacterial cells were pelleted by centrifugation at 4000x G for 10 minutes at 4°C 

and the supernatant was removed. The following purification steps were 

performed using the PureLink HiPure plasmid midiprep kit (Invitrogen). The pellet 

was resuspended in 4ml of buffer R3 (cell resuspension buffer) by pipetting. 4ml of 

buffer L7 (lysis buffer) was added to the suspension and mixed gently by 

inversion. The solution was incubated at room temperature for 5 minutes before 

addition of buffer N3 (precipitation buffer) and further mixing by inversion, at which 

point the cellular debris was pelleted by centrifugation at 6500x G for 10 minutes 

at room temperature. The supernatant (containing plasmid DNA) was filtered 

through an equilibrated HiPure Midi column (Invitrogen) by gravity. Once the 

supernatant had filtered through and plasmid DNA had bound, the column was 

washed twice with 8ml of buffer W8 (wash buffer), each time allowed to filter by 

gravity. Plasmid DNA was then eluted by adding 5ml of buffer E4 (elution buffer) 
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and mixed gently with 3.5ml of isopropanol to precipitate plasmid DNA. DNA was 

pelleted by centrifugation of samples at 6500x G for 15 minutes at 4°C. The 

supernatant was removed from the pellets, which were then washed once with 

70% ethanol and centrifuged at 6500x G for 5 minutes at 4°C. Finally, the 

supernatant was removed and, after being allowed to air-dry, plasmid DNA was 

resuspended in 200μl of TE buffer. 

 

2.2.2.7 PCR Amplification and dA-Tailing of DNA 

PCR reactions were performed using the KOD Hot Start DNA Polymerase kit 

(Novagen), typically in a final volume of 50μl. The reaction contained ~25ng DNA 

template, 10μM forward and reverse primers, 2mM dNTPs, 1x KOD buffer, 1nM 

MgSO4 and 1 unit of KOD polymerase. Reactions were made up to 50μl with 

dH20. All PCR reactions were performed in a ThermoHybaid PX2 Thermal Cycler. 

Typically, reactions were heated to 94ºC for 2 minutes to allow complete 

denaturation of dsDNA.  PCR was then performed as follows: (i) DNA strand 

separation at 94ºC for 15 seconds (ii) primer annealing at 55ºC for 1 minute (iii) 

strand elongation at 72ºC for 1 minute/Kb of DNA. Steps (i)-(iii) were repeated 35 

times. KOD polymerase produces blunt-ended PCR products, which were dA-

tailed before ligation into commercial vectors such as pGEM-T-Easy. dA-tailing 

was performed by adding 2μl dATP, 1x ThermoPol buffer and Taq polymerase (5 

units) to 15μl of purified PCR product. The reaction was then incubated at 70ºC for 

20 minutes, followed by re-purification of the PCR product through a QIAquick spin 

column (Section 2.2.3.2). This resulted in PCR products with 3’ dA-tailed 

overhangs that could be ligated into the dT-tailed pGEM-T-Easy vector. 

  

2.2.2.8 Site-Directed Mutagenesis 

Mutagenesis reactions were performed using either the QuickChange Site-

Directed Mutagenesis kit (for DNA templates up to ~8kb) or QuickChange II XL 

Site-Directed Mutagenesis kit (for DNA templates >8kb, both from Stratagene). 

Forward and reverse primers for mutagenesis were designed to incorporate the 

desired mutation(s) in the middle of the primer sequence and were between 25 

and 45 bases in length. PCR reactions were performed in a final volume of 50μl 

and consisted of ~25ng DNA template, 10μM forward and reverse mutagenic 

primers, dNTPs, 1x Reaction buffer and either PfuTurbo DNA polymerase (normal 
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kit) or PfuUltra HF DNA polymerase (XL kit). In the case of the XL kit, the 

manufacturer recommended addition of QuickSolution at this point to improve 

linear amplification. Reactions were made up to 50μl with dH2O. PCR reactions 

were performed in a ThermoHybaid PX2 Thermal Cycler. Typically, reactions were 

heated to 95ºC for 1 minute to allow complete denaturation of dsDNA. PCR was 

then performed as follows:  (i) DNA strand separation at 95ºC for 30 seconds (50 

seconds for the XL kit)  (ii) primer annealing at 55ºC for 30 seconds (60°C for 50 

seconds for the XL kit) (iii) strand elongation at 68ºC for 1 minute/Kb of DNA (2.5 

minutes/Kb for the XL kit). Steps (i)-(iii) were repeated 18 times. Finally, reactions 

were heated to 68ºC for 1 minute/kb of DNA template length. Following PCR, DpnI 

(10 units) was added to each reaction to digest the non-mutated dam-methylated 

parental DNA. Reactions were mixed by pipetting, then centrifuged at 15000x G 

for 1 minute, followed by incubation at 37ºC for 1 hour. DpnI-treated DNA was then 

used to transform either XL1-Blue Supercompetent cells, or XL10-Gold 

Ultracompetent cells. 

 

2.2.2.9 Linearisation of HCV SGR and HCV Genomic Plasmid DNA 

Plamids were linearised with XbaI in a 50μl reaction. After linearisation, DNA was 

purified through a QIAquick spin column (Section 2.2.3.2) before addition of 2 units 

of Mung bean nuclease (MBN). The reaction was incubated at 30ºC for 30 

minutes, to allow complete removal of the sticky-ends generated by the XbaI 

digestion. Linearised DNA then underwent phenol/chloroform purification (Section 

2.2.3.3), before resuspension in an appropriate volume of dH20. 

 

2.2.3 Isolation and Purification of DNA 

2.2.3.1 Agarose Gel Electrophoresis 

This method was employed to resolve DNA fragments produced by PCR or 

restriction enzyme digestion. 1% agarose gels (120mm x 90mm) were used to 

separate fragments larger than 500bp. Shorter DNA fragments were resolved 

using 2% gels. Agarose gels were prepared using 0.5x TBE buffer and contained 

a final concentration of 1μg/ml ethidium bromide. Typically, gels were run at 150V 

in 0.5x TBE buffer. Where appropriate, DNA fragments were run alongside 1Kbp 

or 100bp ladders (NEB). DNA was visualised under long-wave UV light (if the DNA 
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was to be used for cloning) or short-wave UV light. Gel photography was 

performed on a BioRad gel documentation system. 

 

2.2.3.2 Purification of DNA from Agarose Gels 

Gel slices containing digested DNA fragments were excised with the aid of long-

wave UV light and then purified using the QIAQuick gel extraction kit (Qiagen). 

This system was also used to purify PCR products prior to dA-tailing (Section 

2.2.2.7) or to purify linearised DNA products (Section 2.2.2.9). Buffer QG 

(solubilisation buffer) was added to the DNA-containing gel slice at a ratio of 3:1 

and then incubated at 50ºC to dissolve the agarose. If the DNA to be purified was 

<500bp or >4kb in size, 1 gel volume of isopropanol was added at this stage to 

increase DNA yield. DNA in the gel solution was then bound to a QIAquick spin 

column by centrifugation at 15000x G for 1 minute. The column was washed once 

with 750μl buffer PE (wash buffer) and centrifugation was repeated at 15000x G 

for 1 minute. DNA was eluted from the column by addition of 30-50μl of buffer EB 

(elution buffer) followed by further centrifugation at 15000x G for 1 minute. Purified 

DNA was eluted into a fresh 1.5ml tube. 

 

2.2.3.3 Phenol/Chloroform Extraction 

Linearised DNA (Section 2.2.2.9) was purified by addition of an equal volume 

(typically 60μl) of a 1:1 solution of phenol/chloroform, followed by vigorous 

vortexing. The solution was then centrifuged at 15000x G for 1 minute to separate 

the organic layer (containing proteins) and aqueous layer (containing nucleic 

acids). The upper aqueous layer was transferred to a fresh tube and an equal 

volume of chloroform was added before vortexing. Centrifugation at 15000x G for 

1 minute separated the aqueous and organic layers. The aqueous phase was 

transferred to a fresh tube and DNA was obtained via ethanol precipitation (see 

below). 

 

2.2.3.4 Ethanol Precipitation 

DNA was precipitated from solution by addition of 5M sodium chloride to a final 

concentration of 250μM, followed by addition of 2.5 volumes of 100% ethanol. The 

solution was vortexed briefly before storage at -20ºC for at least 20 minutes. 

Following precipitation, DNA was pelleted by centrifugation at 15000x G for 5 
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minutes. The supernatant was removed and the pellet was washed with 70% 

ethanol before centrifugation was repeated at 15000x G for 5 minutes. 

Supernatant was removed and the pellet was allowed to air-dry before 

resuspension in an appropriate volume of dH20. 

 

2.2.4 RNA Manipulation 

2.2.4.1 In Vitro RNA Transcription 

In vitro transcription reactions were performed using the T7 RiboMAX Express 

Large Scale RNA Production System (Promega). Reaction volumes varied 

depending on the experiment but consisted of 1x Express buffer (containing all 

NTPs), 2μl T7 enzyme mix and 1-2μl of linearised DNA template. Reactions were 

incubated at 37ºC for 30-60 minutes. 1-2μl transcribed RNA was analysed on an 

agarose gel to ascertain RNA quality and yield, before electroporation into 

mammalian cells (Section 2.2.5.1). 

 

2.2.4.2 RNA Extraction and Purification 

The following steps were performed using the RNeasy Mini kit (Qiagen) to extract 

RNA from cells grown on a 24-well dish. Cells were washed once with PBS (A) 

before the addition of 600μl of RLT buffer (containing 10μl of β-ME/ml) per well, 

followed by incubation at room temperature for 2 minutes. Cell lysates were 

transferred to a microcentrifuge tube and vortexed, before being passed through a 

QIAshredder spin column to remove cell debris. Samples were centrifuged at 

15000x G for 2 minutes and supernatant was recovered. 1 volume (typically 600μl) 

of 70% ethanol was added to the homogenised lysate and mixed thoroughly by 

pipetting. Samples were then transferred to an RNeasy spin column and 

centrifuged at 15000x G for 15 seconds and supernatant was discarded. 700μl 

buffer RW1 (wash buffer) was then added to the column and centrifugation was 

repeated at 15000x G for 15 seconds. Again, supernatant was discarded. 500μl 

buffer RPE (wash buffer with ethanol) was then added to the column and 

centrifugation at 15000x G for 2 minutes was performed. At this point the column 

was placed into a fresh collection tube and centrifuged at 15000x G for 1 minute. 

The column was again transferred to a fresh tube prior to the addition of 30-50μl of 

RNase-free water. RNA was eluted from the column by centrifugation at 15000x G 
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for 1 minute. Purified RNA was then stored at -70°C or used for quantification of 

specific RNAs by qRT-PCR (Section 2.2.6.2).  

         

2.2.5 Introduction of DNA/RNA into Eukaryotic cells 

2.2.5.1 RNA Electroporation of Eukaryotic cells 

After resuspension following trypsin treatment, the appropriate number of cells 

was centrifuged at 200x G for 5 minutes at room temperature. Media was removed 

and pelleted cells were washed by resuspension in PBS (A), followed by further 

centrifugation at 200x G for 5 minutes at room temperature. Cells were 

resuspended in an appropriate volume of PBS (A) for electroporation to give a cell 

count of ~4x106/ml. For each electroporation, 0.8ml of resuspended cells was 

transferred to a cuvette (4mm gap, [Apollo]) along with 10μg of in vitro transcribed 

RNA (Section 2.2.4.1). Electroporation was performed at 0.36kV, 950μF using a 

Bio-Rad Gene Pulser II. Electroporated cells were transferred into an appropriate 

volume of DMEMComplete, mixed thoroughly by pipetting, then seeded into cell 

culture dishes as follows: (i) 24-well plates at 2x105 cells/well (ii) 35mm dishes at 

8x105 cells/well (iii) 60mm dishes at 3x106 cells/well. Once seeded, cells were 

incubated at 37ºC. 

 

2.2.5.2 DNA Transfection of Eukaryotic Cells 

After resuspension following trypsin treatment, cells were counted and cell culture 

dishes were seeded as follows: (i) 24-well plates at 7x104 cells/well in 500μl 

DMEMComplete (ii) 6-well plates at 2x105 cells/well in 2ml DMEMComplete. Prior to DNA 

transfection, cells were allowed to settle for 24 hours at 37ºC. Dependent on cell 

culture dish area, 0.5-2μg DNA and 2-10μl Lipofectamine 2000 (Invitrogen) were 

diluted separately into individual 50-250μl volumes of Opti-mem-I (Gibco) and 

incubated at room temperature for 5 minutes. The diluted DNA and Lipofectamine 

2000 were combined and incubated at room temperature for a further 20 minutes. 

The DNA-Lipofectamine 2000 mixture was added to the plated cells and incubated 

at 37ºC for 16-20 hours. 
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2.2.6 Assessment of HCV RNA Replication 

2.2.6.1 Luciferase Assays 

To indirectly determine levels of HCV RNA replication, media was removed from 

cells previously electroporated with subgenomic viral RNA carrying a luciferase 

reporter enzyme. Cells were washed once with PBS (A) and then lysed by addition 

of 100μl of 1x cell lysis buffer (Promega). After 2 minutes, 50μl of lysed cells was 

added to 100μl of luciferase assay substrate (Promega) in a 1.5ml centrifuge tube. 

The mixture was immediately vortexed before being placed into a GLOMAX 

luminometer (Turner Biosystems) to determine luciferase activity. All assays were 

performed in duplicate. 

 

2.2.6.2 qRT-PCR 

RT-PCR reactions were performed as a two-step process. The first step involved 

generation of cDNA from purified cellular RNA (Section 2.2.4.2) and was 

performed using the Taqman kit (Applied Biosciences), typically in a final volume 

of 20μl. The reaction contained 1μl of cellular RNA, 2.5μM random hexamers, 

dNTPs, 1x RT buffer, 5.5μM MgCl2, 8 units of RNase inhibitor and 25 units of 

Multiscribe RT. Reactions were made up to 20μl with dH20. Reverse transcription 

was performed in a ThermoHybaid PX2 Thermal Cycler as follows: (i) primer 

annealing at 25°C for 10 minutes (ii) strand elongation at 37°C for 1 hour (iii) RT 

inactivation at 95°C for 5 minutes. The second step allowed Real-Time PCR using 

the cDNA obtained from the first step. Reactions typically contained 900nM 

forward and reverse primers, 250nM FAM JFH1 probe, 1x Taqman Fast Universal 

Mix and 2μl of cDNA template. Reactions were made up to 20μl using dH20. Both 

primers and the probe were complementary to sequences in the 5’ UTR of the 

JFH1 genome. Reactions were performed using an Applied Biosciences 7500 Fast 

Real-Time PCR System. Reactions were heated to 95ºC for 20 seconds to allow 

denaturation of the cDNA.  PCR was then performed as follows: (i) dsDNA strand-

separation at 95ºC for 3 seconds (ii) primer annealing and strand elongation at 

60ºC for 30 seconds. Steps (i) and (ii) were repeated 40 times. All RT-PCR 

reactions were performed in triplicate. The above protocol was also applied to 

determine cellular GAPDH levels as a control, using GAPDH-specific primers in 

the second step of the reaction. 
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2.2.7 Preparation of Mammalian Cell Extracts for SDS-PAGE 

Analysis 

Prior to SDS-PAGE analysis, cells were washed once with PBS (A). Cells were 

then harvested in 50-100μl of 1x boiling mix (dependent on cell culture dish 

volume) and heated to 100ºC for ~10 minutes. For difficult to detect membrane-

bound proteins, cellular membrane fractions were isolated by phase extraction. 

After washing with PBS (A), cells were harvested in 200μl phase lysis buffer and 

transferred to a centrifuge tube. The lysed cells were centrifuged at 8000x G for 5 

minutes at room temperature to pellet cellular debris, which was removed from the 

supernatant. 400μl phase separation solution was added to the supernatant and 

mixed thoroughly by inversion. To separate the detergent and aqueous phases, 

the solution was centrifuged at 15000x G for 5 minutes at room temperature. The 

upper aqueous phase was removed, leaving only the oily detergent phase to 

which 500μl cold 100% acetone was added to precipitate protein. Samples were 

centrifuged at 15000x G for 5 minutes at room temperature to pellet precipitated 

proteins. The supernatant was removed, the pellet resuspended in 20-50μl 1x 

boiling mix and heated to 100ºC for ~10 minutes. Samples were then analysed by 

SDS-PAGE (see below). 

 

2.2.8 SDS-PAGE Analysis 

Proteins were resolved by electrophoresis using Bio-Rad Miniprotein II Apparatus. 

10 x 7cm glass plates were assembled using 1.5mm spacers. Resolving gels were 

prepared using acrylamide (30% acrylamide/bis solution, 37.5:1, 2.6% cross-

linker) at a final concentration of 8-12% in 1x resolving gel buffer. Addition of APS 

(to 0.1%) and TEMED (to 0.08%) initiated polymerisation and the solution was 

immediately poured into the gel assembly apparatus, leaving a gap of ~2cm at the 

top. The solution was then overlaid with 1ml of 100% butan-2-ol. When 

polymerisation was complete, the butan-2-ol was discarded and the gel surface 

was washed thoroughly with dH20. Stacking gels were prepared using acrylamide 

at a final concentration of 5% in 1x stacking gel buffer. Again, polymerisation was 

initiated upon the addition of APS (to 0.1%) and TEMED (to 0.08%), before the 

solution was overlaid onto the resolving gel. A 10-tooth Teflon comb was typically 

used to form wells in the stacking gel. The gel was allowed to polymerise before 

removal of the comb. Gels were then loaded into a tank and submerged in tank 

buffer. Protein samples prepared as described previously (see above) were loaded 
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into each well. Protein markers (Bio-Rad) were also included for protein size 

determination and empty wells were filled with an equal volume of boiling mix. 

Electrophoresis was performed at 120V until the required separation of protein 

markers and samples was achieved. Gels were then removed from the apparatus 

for Western blot analysis (see below). 

 

2.2.9 Western Blot Analysis 

2.2.9.1 Nitrocellulose Membrane Protein Transfer 

Proteins resolved by SDS-PAGE were transferred to a nitrocellulose membrane 

utilising a Bio-Rad mini-transblot apparatus. The apparatus was set up in the 

following order, building from bottom to top: fibre pad, blotting paper, gel, 

nitrocellulose membrane, blotting paper, fibre pad. All materials were soaked in 

Towbin buffer prior to and during assembly. The materials were transferred to the 

transblot apparatus, ensuring the membrane was facing the anode. The tank was 

filled with Towbin buffer, and electrotransfer was performed at 60V for 2 hours. 

 

2.2.9.2 Protein Immunodetection 

All washing steps were performed using PBS (A)/0.05% Tween-20. Post-transfer, 

nitrocellulose membranes were washed briefly, then blocked for ~1 hour using 

block buffer (Section 2.1.9.4) at room temperature. Membranes were washed for 

~5 minutes, then probed overnight at 4ºC with the appropriate primary antibody 

diluted in block buffer and 1% sodium azide. Membranes were washed and 

probed with the appropriate secondary antibody diluted in block buffer for ~1 hour 

at room temperature. Membranes were washed before a final wash with PBS (A) 

to remove any traces of detergent. Proteins were detected utilising the Enhanced 

Chemiluminescence Plus Western Blotting Detection System (Amersham 

Biosciences) and a Konica film-processing unit SRX-101a, with Kodak X-OMAT S-

film. 

 

2.2.10 Microscopy Techniques and Analysis 

2.2.10.1 Indirect Immunofluorescence 

Electroporated or transfected cells on 13mm coverslips were fixed for 10 minutes 

using 100% methanol at -20°C, or 4% paraformaldehyde (PFA) at room 
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temperature. PFA also contained 0.05% TX-100 for cell permeabilisation. The 

fixing solution was removed and cells were washed 3 times with PBS (A). Primary 

antibody was diluted in PBS (A) to the appropriate working concentration and 

200μl of diluted antibody was added to cells and incubated at room temperature 

for ~1 hour. Cells were washed 3 times with PBS (A) and the secondary antibody 

was diluted into PBS (A) to give the required working concentration. 200μl of this 

solution was added to the cells and incubated at room temperature for ~1 hour. At 

this stage, cells were washed 3 times with PBS (A) and nuclei were stained by the 

addition of DAPI diluted 1/2000 in PBS (A). Cells were then incubated for ~5 

minutes at room temperature. Cells were washed with dH20 to remove residual 

salt and mounted onto slides using Citifluor glycerol/PBS solution, before sealing 

with nail varnish. Fluorescence microscopy was performed using a ZEISS LSM510 

Meta confocal microscope. 

 

2.2.10.2 Live-Cell Microscopy 

For visualising GFP-tagged proteins, cells were seeded onto 35mm live cell dishes 

(MatTek Cultureware). Prior to microscopy, cells were washed with PBS (A), 

before the addition of DMEM lacking phenol red. Microscopy was performed using 

a ZEISS LSM510 Meta confocal microscope, which was fitted with an enclosed 

stage heated to 37ºC and included a supply of 5% CO2.  

 

2.2.10.3 FRAP Analysis 

Cells for FRAP analysis were seeded onto live cells dishes, in the manner 

described above. For photobleaching, regions of the cell (~38μm2 in area) were 

exposed to 100% laser power (488nm laser line) for 6 iterations. Images were 

recorded prior to and immediately after bleaching, then every 2 seconds for 2 

minutes in order to determine fluorescence recovery. Images were recorded using 

2% laser power and all data was corrected against background fluorescence. 

 

2.2.10.4 Activation of PAGFP 

Cells were seeded onto live-cell dishes as described previously (Section 2.2.10.2). 

100% laser power (405nm laser line) was used to activate NS5A-PAGFP fusion 

protein molecules in selected intracellular regions. Images were recorded 
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immediately pre- and post- activation and for periods of up to 15 minutes following 

activation of PA-GFP. 

 

2.2.11 Assessment of HCV Infectious Virus Production 

2.2.11.1 Preparation of Virus 

Cells were electroporated as described previously (Section 2.2.5.1), with full-

length genomic HCV RNA (strain JFH1). After electroporation of RNA into cells, all 

procedures were performed under category level 3 (CL3) conditions. 

Electroporated cells were seeded onto 6-well plates at 8x105 cells/well. At 24, 48 

and 72 hours, infectious media was removed from cells and centrifuged at 400x G 

for 2 minutes to pellet cellular debris, before being stored at 4ºC. 

  

2.2.11.2 Cell Infection for TCID50, Immunofluorescence and SDS-PAGE 
Analyses 

For TCID50 analysis, naïve Huh-7 cells were seeded at 3x103 (in 200μl media) per 

well in flat-bottomed 96-well plates (Nunc). For immunofluorescence and SDS-

PAGE analysis, cells were seeded into 35mm dishes (with 13mm coverslips for IF) 

at 2x105 cells/well. Cells were allowed to settle at 37ºC for 24 hours. Cells 

prepared for TCID50 analysis were inoculated with serial fivefold dilutions of 

infectious media harvested as described above. Plates were then incubated at 

37ºC for 72 hours before TCID50 analysis (see below). For immunofluorescence 

and SDS-PAGE analysis, media was removed from the naïve cells and replaced 

with 2ml of infectious media diluted 1/2 (1ml infectious media and 1ml fresh 

media). Plates were then incubated at 37ºC for 72 hours. Infected cells were either 

fixed in 100% methanol (for immunofluorescence) or harvested in 50μl boiling mix 

(for SDS-PAGE) and then processed as previously described (Sections 2.2.10.1 

and 2.2.8 respectively). 

 

2.2.11.3 TCID50 Analysis 

72 hours post-infection, cells were fixed in 100% methanol at -20°C for 10 

minutes. Methanol was removed and cells were washed 3 times with PBS (A). 

Hydrogen peroxide was diluted in PBS (A) to a concentration of 0.3% and 50μl of 

this solution was added to cells for ~30 minutes at room temperature. This step 
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was necessary to saturate endogenous peroxidases present in the cells. Cells 

were washed 3 times with PBS (A). Primary antibody (anti-NS5A) was diluted 

1/5000 in PBS (A) and 50μl of antibody was added to cells and incubated for ~1 

hour at room temperature. Cells were then washed 3 times with PBS (A). 

Secondary antibody (anti-goat/sheep IgG-peroxidase) was diluted 1/1000 in PBS 

(A). 50μl of secondary antibody was added to cells, followed by incubation for ~1 

hour at room temperature. Cells were washed a final 3 times with PBS (A), before 

staining with the NovaRED substrate kit for peroxidase (Vector) in accordance with 

the manufacturers instructions. Positive cells were determined by microscopy, and 

final TCID50 values were calculated. 

 

2.2.12 siRNA Library Screen 

2.2.12.1 siRNA Transfection 

Transfections were performed in 24-well plates. For each well, 100μl Optimem-I 

was mixed with 1μl Lipofectamine RNAiMAX reagent (Invitrogen). The siRNAs 

were added to the transfection mixture as follows: (i) 1μl control siRNAs at a 

concentration of 50μM (ii) 0.5μl of the 3 library siRNAs (targeted against the same 

gene) at a concentration of 50μM each, giving an overall concentration of 75μM. 

Plates were then incubated at room temperature for 10-20 minutes. Wells were 

seeded with 7x104 Tri-Huh-7 or Tr-U2OS cells/well (cell lines harbouring SGRs 

containing both luciferase and neomycin genes), in a volume of 900μl. Therefore, 

the final volume in each well was 1ml, giving a final siRNA concentration of 50nM 

(control siRNAs) and 75nM (library siRNAs). Plates were incubated at 37ºC for 48 

hours before cells were harvested to determine luciferase levels (Section 2.2.6.1) 

and cell viability (see below). 

 

2.2.12.2 Cellular Viability Assay 

Cell viability was determined using the Aquabluer Cell-Viability assay (MultiTarget 

Pharmaceuticals). Aquabluer measures the redox environment in growth medium, 

where viable cells maintain a reduced environment that is able to convert 

AquaBluer from a non-fluorescent oxidised form to a reduced fluorescent species, 

which can be quantified. Therefore, Aquabluer does not require preparation of cell 

extracts. Experiments using actinomycin D were utilised for authentification of the 

assay. For the siRNA library screen, plates were removed and assayed for cell 
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viability 48 hours after siRNA transfection. 1 volume of Aquabluer reagent was 

added to 9 volumes of fresh DMEMComplete and mixed by pipetting. 100μl of this 

solution was added to the media in each well and mixed by pipetting. Plates were 

returned to incubate at 37ºC for ~4 hours. Post-incubation, plates were stored in 

the dark for ~30 minutes to allow media to reach room temperature. 100μl of each 

sample to be tested was then transferred to a black microwell 96-well plate (nunc) 

and placed into a HIDEX Chameleon plate reader. Fluorescence intensity was 

measured at 540ex/590em and all values were corrected for background 

fluorescence and repeated in duplicate. 
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3 Live Cell Analysis of the HCV-Encoded NS5A 

Protein 

 

3.1 Introduction 

Similar to other positive-stranded RNA viruses, HCV replication occurs within 

altered cellular membranes containing all components necessary for replication of 

the viral genome (Mackenzie, 2005, Salonen et al., 2005). Visualisation of cells 

harbouring replicating HCV genomes has revealed the presence of punctate foci 

on the ER membrane, which contain viral NS proteins (Moradpour et al., 2004b, 

Mottola et al., 2002), viral RNA (El-Hage & Luo, 2003, Gosert et al., 2003, Targett-

Adams et al., 2008a) and several host cell factors. Therefore, foci visualised by 

confocal microscopy are likely to represent viral RCs. 

In order to gain insight into the functional organisation of RCs, previous studies 

have involved conjugating viral proteins to fluorescent molecules such as GFP. 

This approach has been utilised to examine viral RC components, including NS4B 

(Elazar et al., 2004, Gretton et al., 2005, Lundin et al., 2006, Lundin et al., 2003) 

and NS5A (Brass et al., 2002, Kim et al., 1999). Because GFP-tagged proteins 

can be examined in live cells, further biophysical analysis is possible. For 

example, mobility analysis has demonstrated that NS4B is more mobile on the ER 

membrane compared to when it is located at MAFs, believed to represent RCs 

(Gretton et al., 2005). This type of analysis on other replicase components may be 

useful to gain a greater understanding of viral RC properties and the interactions 

occurring within them. 

It has been demonstrated that the GFP ORF can be inserted into the C-terminal 

region of NS5A (Appel et al., 2005b, Liu et al., 2006, Moradpour et al., 2004b). 

Importantly, GFP could be inserted into NS5A in the context of SGRs derived from 

the genotype 1b strain Con1, allowing direct visualisation of NS5A in cells actively 

replicating the viral genome (Moradpour et al., 2004b). Unfortunately the 

replication levels of such genotype 1 SGRs in cell culture is poor (Appel et al., 

2005b). By contrast, SGRs derived from the genotype 2a strain JFH1 sequence 

replicate far more efficiently (Kato et al., 2003, Targett-Adams & McLauchlan, 

2005). Therefore, the initial aim of the project was to insert the GFP ORF into the 

NS5A coding region of a JFH1-based SGR. It was hoped that this construct would 
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5A1 (287bp)
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NS5A (Domain III) NS5B

3825 4093

4094 4344

2839 4234

418

NS5A sequence T TAC CAA CCG CCC ACC GTT GC

5A1_F 

NS5A sequence TCC GCC TCC TCT ATG CCC CCC C 

5A1_R 

 C CCG TGC ACT TAC CAA CCG CCC ACC GTT GC 
ApaLI

5' 3'

AGG CGG AGG AGA TAC GGG GGG GAT GGC CAC CC 
AgeI

5'3'

3816

4103

5A1 primers

NS5A sequence

5A2_F 

CTC GAG GGG GAG CCT GGA GAT4104

CCC AGA TCT CTC GAG GGG GAG CCT GGA GAT
BglII

NS5B sequence

5A2_R 

TC AAC CCT TTG AGT AAC TCG C

AG TTG GGA AAC TCA TTG AGC GCC CGG GGG G
ApaI

4354

5' 3'

5'3'

5A2 primers

Figure 3.1 Primers used to create 5A1 and 5A2

A schematic representation of NS5A is shown (top) and the region where GFP was inserted is 
shown below it. The positions of 5A1 and 5A2 within this region are indicated. The primers used 
to create 5A1 and 5A2 are also shown, with introduced non-viral sequences depicted in red. 
Restriction sites used for cloning purposes are underlined. The sizes of 5A1 (287bp) and 5A2 
(250bp) are inclusive of introduced restriction sites. Amino acid numbers (1-465) begin at NS5A, 
while nucleotide numbers (2839-4234) begin at the NS3 coding region. 5A1 and 5A2 were 
subsequently introduced into the pGEM-T-Easy cloning vector.
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Figure 3.2 Creation of pGEM-5A1-GFP-5A2

[A] The GFP ORF was excised from pEGFP-C1 as an AgeI/XbaI fragment and inserted between 
the AgeI/SpeI sites in pGEM-5A1. This created pGEM-5A1-GFP and destroyed the SpeI/XbaI 
restrictions sites. [B] The 5A2 coding region was excised using BglII/ApaI and inserted into the 
corresponding sites in pGEM-5A1-GFP to create pGEM-5A1-GFP-5A2.

AhdI AhdI

AhdI AhdI

AhdI



Daniel M Jones  Chapter 3 
 
provide a more robust system for studying the characteristics of NS5A in live cells 

actively replicating viral RNA. 

 

3.2 Creation and Characterisation of the luc-JFH1GFP SGR 

3.2.1 Insertion of GFP into the luc-JFH1 SGR 

It has been previously established that GFP can be inserted between amino acids 

418 and 419 of the Con1 NS5A sequence without abolishing HCV RNA replication 

(Moradpour et al., 2004b). The stretch of amino acids surrounding this site is 

identical in the JFH1 NS5A coding region. Therefore, a strategy to insert GFP into 

the luc-JFH1 SGR at the same position was adopted. Luc-JFH1 is a bi-cistronic 

SGR (see Figure 1.4), where the first cistron incorporates the firefly luciferase 

reporter gene and translation is directed by the IRES contained within the JFH1 5’ 

UTR. The second cistron contains the JFH1 NS protein region from NS3 through 

to NS5B under control of the EMCV IRES (Targett-Adams & McLauchlan, 2005), 

which permits cap-independent translation initiation of the NS proteins in a manner 

analogous to that of the HCV IRES. Hence, the proteins within each cistron are 

presumably translated in equimolar amounts. The 3’ terminus of the SGR contains 

the 3’ UTR sequence of JFH1, which is critical for efficient RNA replication and 

translation (Friebe & Bartenschlager, 2002, Song et al., 2006).    

Insertion of the GFP ORF was performed in three cloning stages: (i) PCR 

amplification of the NS5A sequences flanking the insertion site and introduction of 

GFP into this region (ii) insertion of the GFP ORF, now flanked by NS5A 

sequence, into the NS3-NS5B coding region (iii) re-introduction of the NS3-NS5B 

region (now containing GFP) into the luc-JFH1 SGR sequence. The final SGR was 

termed luc-JFH1GFP; the cloning strategy is described in detail below, and 

presented in Figures 3.1-3.3. The generation of luc-JFH1GFPGND, a construct 

defective for replication, is also described in Section 3.2.1.3.  

 

3.2.1.1 Insertion of the GFP ORF into the NS5A Coding Region 

The strategy required insertion of the GFP ORF between the codons for amino 

acids 418 and 419 of NS5A. Therefore, primers were designed to amplify two 

fragments (termed 5A1 and 5A2) that flanked this region, using luc-JFH1 as a 

template (Figure 3.1). Fragment 5A1 was 287bp in length, including the introduced 

flanking ApaLI and AgeI sites that were employed for cloning purposes. Fragment 
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4A 4B 5A GFP 5B

pZEro-NS3-        	
GFP-NS5B

NsiI EcoRV

luc-JFH1

NS3 4A 4B 5A 5B

NsiI EcoRV

luc-JFH1GFP

4A 4B 5A GFP 5BNS3

NsiI EcoRV

[C]

Figure 3.3 Creation of luc-JFH1GFP

[A] The NS3-NS5B coding region was excised from luc-JFH1 using NsiI/EcoRV and inserted into 
pZEro-2.1 between the corresponding sites to create pZEro-NS3-NS5B. [B] The 5A1 and 5A2 
sequences flanking the GFP sequence in pGEM-5A1-GFP-5A2 were digested with AhdI. This 
fragment was then inserted between the corresponding AhdI sites in pZEro-NS3-NS5B. [C] The 
NS3-GFP-NS5B coding region was excised from pZEro-NS3-GFP-NS5B using NsiI/EcoRV. This 
fragment was then inserted between the corresponding sites in luc-JFH1 to create the final 
construct luc-JFH1GFP. [D] Amino acid sequence of the GFP insertion into NS5A. Sequences in 
black represent NS5A residues whereas those in grey are additional residues flanking the GFP 
insertion that were introduced as a result of the cloning strategy. Residues in green represent 
GFP. 
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5A2 was 250bp in length including the introduced BglII and ApaI sites and also 

contained the first 91bp of the NS5B coding region. Both fragments were 

individually ligated into pGEM-T-Easy to create pGEM-5A1 and pGEM-5A2 

respectively (Figure 3.2). Following these steps, the pGFP-C1 vector was digested 

with AgeI and XbaI, thus excising the GFP coding region. GFP was then inserted 

between the AgeI and SpeI sites of pGEM-5A1, creating pGEM-5A1-GFP and 

destroying the SpeI/XbaI sites in the process (Figure 3.2, A). 5A2 was excised 

from pGEM-5A2 using BglII and ApaI and the fragment was introduced into the 

corresponding sites of pGEM-5A1-GFP. This resulted in pGEM-5A1-GFP-5A2, 

with GFP inserted between codons for amino acids 418 and 419 of the original 

NS5A sequence (Figure 3.2, B).  

 

3.2.1.2 Insertion of 5A1-GFP-5A2 into the NS3-NS5B Coding Region 

The majority of the 5A1-GFP-5A2 fragment was removed from pGEM-5A1-GFP-

5A2 using two existing AhdI sites (Figure 3.3, B). However, the fragment could not 

be directly inserted into the luc-JFH1 plasmid due to the presence of a third AhdI 

site within the plasmid backbone. Therefore, a large fragment of the NS coding 

region from luc-JFH1 was excised using NsiI (in NS3) and EcoRV (in NS5B) 

(Figure 3.3, A). This fragment was termed NS3-NS5B and was inserted between 

the NsiI and EcoRV sites of the pZEro-2.1 vector, creating pZEro-NS3-NS5B 

(Figure 3.3, A). Thereafter, the 5A1-GFP-5A2 fragment was introduced into pZEro-

NS3-NS5B using the corresponding AhdI sites, creating pZEro-NS3-GFP-NS5B 

(Figure 3.3, B). 

 

3.2.1.3 Creation of luc-JFH1GFP and luc-JFH1GFPGND 

With GFP successfully introduced into the C-terminus of NS5A within the context 

of the NS3-NS5B coding region, pZEro-NS3-GFP-NS5B was digested with NsiI 

and EcoRV. This yielded the NS3-GFP-NS5B fragment, which was introduced into 

luc-JFH1 using the same sites (Figure 3.3, C). This generated the final construct, 

luc-JFH1GFP. To create a negative control SGR that incorporated GFP, luc-JFH1-

GND (Targett-Adams & McLauchlan, 2005) was digested with EcoRV and HpaI. 

The excised fragment contained the majority of the NS5B coding sequence, 

including the GND mutation in the viral polymerase sequence that blocks 

replication. This GND fragment was then introduced into luc-JFH1GFP using the 
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Figure 3.4 luc-JFH1GFP replicates efficiently in Huh-7 cells

[A] Huh-7 cells were electroporated with RNA from luc-JFH1, luc-JFH1GFP and their GND 
counterparts. Cells were lysed at 4, 24, 48 and 72 hours post-electroporation and extracts were 
assayed for luciferase activity. Assays were performed in triplicate and the averages are shown. 
Error bars indicate the range of the values recorded at each time point. [B] Huh-7 cells set up in 
parallel to those described in [A] were harvested for Western blot analysis at 4, 24, 48 and 72 
hours post-electroporation. 2/1 cells harbour an autonomously replicating JFH1 SGR and were 
used as a positive control. The hyper- (closed circles) and hypo- (open circles) phosphorylated 
species of NS5A are indicated.

WT/GFP
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corresponding sites, creating luc-JFH1GFPGND. Luc-JFH1GFP and luc-

JFH1GFPGND were subsequently linearised and used as templates for in vitro 

transcription of RNA for experimental studies. 

 

3.2.2 Characterisation of luc-JFH1GFP 

3.2.2.1 Luc-JFH1GFP Replicates to Levels comparable to luc-JFH1 

To determine the effect of inserting the GFP coding sequence on replication, RNA 

transcribed from luc-JFH1GFP and luc-JFH1GFPGND was electroporated into Huh-7 

cells. RNA encoding luc-JFH1 and luc-JFH1-GND was also electroporated into 

cells and acted as positive and negative controls respectively. These control 

constructs do not contain GFP and have previously been shown to replicate 

efficiently (luc-JFH1) or be incapable of replication (luc-JFH1-GND), as judged by 

measuring luciferase activity over a 72-hour period (Targett-Adams & McLauchlan, 

2005). Upon introduction of RNA into cells, luc-JFH1 replicated robustly and 

luciferase levels were almost 20-fold higher by 72 hours compared to the 4-hour 

value (Figure 3.4, A). In contrast, luciferase levels expressed from luc-JFH1-GND 

were approximately 130-fold lower by 72 hours compared to the 4-hour time point. 

This result indicated that luc-JFH1-GND RNA did not replicate, in agreement with 

previous results (Targett-Adams & McLauchlan, 2005). Examination of luciferase 

levels from luc-JFH1GFP indicated that insertion of GFP into the NS5A coding 

region did not block replication of the SGR (Figure 3.4, A). However, luc-JFH1GFP 

did display a delay in replication kinetics and by 24 hours, replication was only 

35% of that compared to the unmodified SGR as judged by luciferase activity. 

Nonetheless, luciferase values increased to 91% of those produced by luc-JFH1 

by 72 hours. Therefore, it was concluded that insertion of GFP into NS5A did not 

significantly impair replication of the SGR. Luc-JFH1GFPGND was deemed 

incapable of replication, since luciferase activity declined as rapidly as that seen 

with the control GND SGR (Figure 3.4, A). 

To confirm that the NS5A-GFP fusion protein expressed from luc-JFH1GFP could 

be detected during transient replication, cell extracts prepared over 72 hours were 

examined by Western blot analysis (Figure 3.4, B). Extracts from cells harbouring 

luc-JFH1 and both GND SGRs were also analysed. NS5A expressed from luc-

JFH1 was detected as two bands, representing the hypo- (56kDa) and 

hyperphosphorylated (58kDa) species of NS5A (Tanji et al., 1995). Due to the 

insertion of GFP, two larger species of NS5A-GFP were detected in cells 
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Figure 3.5 Onset of replication by luc-JFH1GFP is delayed compared to luc-
JFH1

Huh-7 cells were electroporated with RNA encoding [A] luc-JFH1 [B] luc-JFH1GFP. Both 
experiments included GND controls. Cells were lysed every two hours and luciferase activity was 
measured up to and including 24 hours post-electroporation. Assays were performed in triplicate 
and error bars represent the range of the values recorded at each time point.
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harbouring luc-JFH1GFP. These bands were presumed to represent the hypo- 

(83kDa) and hyperphosphorylated (85kDa) forms of the fusion protein (Figure 3.4, 

B). Both NS5A and NS5A-GFP were detected at 48 hours post-electroporation 

and displayed no evidence of proteolytic breakdown (Figure 3.4, B). However, 

breakdown cannot be firmly excluded in the absence of a Western blot for GFP. In 

agreement with the luciferase assays, protein levels expressed from both SGRs 

were comparable by 72 hours post-electroporation. By contrast, no NS5A protein 

was detected in cells electroporated with either luc-JFH1-GND or luc-JFH1GFPGND 

(data not shown), emphasising the inability of these SGRs to replicate.  

 

3.2.2.2 Insertion of GFP into luc-JFH1 Delays the Onset of RNA Replication 

The results presented in Figure 3.4, A indicated that replication of luc-JFH1GFP 

RNA was delayed in the first 24 hours post-electroporation compared to 

unmodified luc-JFH1. To more precisely determine whether this delay occurred, 

Huh-7 cells were electroporated with RNA from luc-JFH1 and luc-JFH1GFP and 

luciferase activity was measured every two hours over a period of 24 hours (Figure 

3.5, A and B). Luc-JFH1-GND and luc-JFH1GFPGND were included as controls. 

For all constructs, luciferase activity increased for the first six hours post-

electroporation, followed by a subsequent decrease in enzyme levels. Luc-JFH1 

luciferase values declined until approximately 12 hours but then increased sharply 

for the remaining 12 hours (Figure 3.5, A). In contrast, luc-JFH1GFP luciferase 

levels did not increase until approximately 18 hours post-electroporation but 

continued to increase thereafter (Figure 3.5, B). Luciferase levels expressed from 

both GND SGRs decreased after six hours. This result, taken together with those 

shown previously (Figure 3.4, A), revealed that replication of luc-JFH1GFP was 

delayed by 4-6 hours compared to unmodified luc-JFH1.  

 

3.2.2.3 Visualisation of NS5A-GFP in Fixed and Live Cells 

The incorporation of GFP into NS5A has previously been shown to allow direct 

visualisation of the protein in electroporated cells (Moradpour et al., 2004b). 

Therefore, Huh-7 cells were electroporated with RNA encoding luc-JFH1 and luc-

JFH1GFP, before being fixed and examined for NS5A and NS5A-GFP over a period 

of 72 hours (Figure 3.6, A and C). Cells were also probed for dsRNA, an 

intermediate of viral genome synthesis. Replication of the HCV genome is thought 
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Figure 3.6 Visualisation of NS5A, NS5A-GFP and dsRNA in cells actively 
replicating luc-JFH1 and luc-JFH1GFP RNA

Huh-7 cells electroporated with RNA from [A] luc-JFH1 [B] luc-JFH1-GND [C] luc-JFH1GFP and 
[D] luc-JFH1GFPGND were fixed and stained for NS5A using NS5A antisera (in [A] and [B]) and 
dsRNA using J2 at 4, 24, 48 and 72 hours post-electroporation. In [C] and [D], NS5A-GFP was 
visualised directly. Cell nuclei were stained using DAPI. Scale bars represent 10µm.
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Figure 3.7 NS5A-GFP and NS5A staining coincide, and NS5A-GFP can be 
directly visualised in live cells actively replicating luc-JFH1GFP RNA

[A] Huh-7 cells electroporated with RNA from luc-JFH1GFP were fixed and stained with NS5A 
antisera and DAPI at 4, 24, 48 and 72 hours post-electroporation. [B] Live Huh-7 cells harbouring 
luc-JFH1GFP were visualised at 4, 24, 48 and 72 hours post-electroporation. Scale bars represent 
10µm.
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to occur through production of a negative-strand RNA template, which is used for 

synthesis of positive-sense RNA molecules (Lohmann et al., 1999, Takehara et 

al., 1992). A dsRNA duplex is generated by attachment of a positive-strand RNA 

to the negative-strand template and can be detected using the monoclonal 

antibody J2 (Targett-Adams et al., 2008a). Visualisation of NS5A expressed from 

luc-JFH1 required use of NS5A antisera, which revealed an ER-like distribution of 

the protein that included punctate sites of fluorescence at all time points (Figure 

3.6, A). dsRNA was localised exclusively to punctate structures throughout the 

cytoplasm and these sites shared limited co-localisation with the sites of NS5A 

fluorescence. For cells electroporated with luc-JFH1GFP RNA, NS5A-GFP was 

visualised directly and exhibited a cytoplasmic distribution indistinguishable to that 

of NS5A expressed from the unmodified SGR and sites of dsRNA fluorescence 

were also similar (Figure 3.6, C). In cells expressing GND constructs, NS5A and 

NS5A-GFP were detected at 4 hours post-electroporation but were undetectable 

thereafter, whereas dsRNA could not be visualised at any time point (Figure 3.6, B 

and D). It is therefore likely that detection of NS5A and NS5A-GFP at the 4-hour 

time point for all SGRs represented translation of the input RNA, since the 

absence of a dsRNA signal indicated that replication intermediates were not 

detected so soon after electroporation. 

To confirm that the GFP fluorescence expressed from luc-JFH1GFP accurately 

represented NS5A protein, cells harbouring luc-JFH1GFP were counter-stained with 

NS5A antisera (Figure 3.7, A). NS5A-GFP and NS5A displayed a significant 

degree of overlap at all time points, indicating that GFP provided a representative 

marker of NS5A distribution in cells. However, it should be noted that areas where 

these two signals did not overlap were also apparent. To determine whether 

NS5A-GFP could be visualised under live cell conditions, live cells electroporated 

with luc-JFH1GFP RNA were examined for the presence of NS5A-GFP over a 

period of 72 hours (Figure 3.7, B). NS5A-GFP was visualised as early as 4 hours 

and displayed an ER-like distribution with punctate sites of fluorescence at all time 

points that was indistinguishable from the pattern observed in fixed cells.  

These results, taken together with those presented in Sections 3.2.2.1 and 3.2.2.2, 

demonstrated that luc-JFH1GFP replicated efficiently and permitted direct 

visualisation of NS5A in cells. Based on these data, NS5A was further 

characterised in live cells containing actively replicating HCV RNA.  
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3.3 The NS Proteins Influence Localisation and Mobility of 

NS5A 

Among the techniques available for analysis of GFP-tagged proteins, FRAP has 

emerged as a powerful tool for studying the intracellular dynamics of proteins 

(Reits & Neefjes, 2001). FRAP can also be used to gain insights into protein 

interactions and the technique has previously demonstrated that HCV-encoded 

NS4B displays slower movement when localised to small punctate structures on 

the ER membrane (termed MAFs) compared to when it is localised on the ER 

membrane (Gretton et al., 2005). To examine the mobility properties of NS5A, 

cells electroporated with luc-JFH1GFP RNA were examined by FRAP (Figure 3.8, 

A). For comparative purposes, FRAP was also conducted on cells expressing 

GFP-DNase-X, a mobile ER protein (Gretton et al., 2005). NS5A-GFP 

fluorescence was bleached to 17% compared to the pre-bleach value and 

fluorescence recovery was measured over two minutes. NS5A-GFP fluorescence 

had recovered to only 30% of the pre-bleach value after two minutes, whereas 

DNase-X fluorescence had recovered to 82% over the same period of time (Figure 

3.8, A). Therefore, NS5A-GFP mobility was limited in cells actively replicating HCV 

RNA.  

To determine whether the low mobility of NS5A-GFP was an inherent 

characteristic of the fusion protein, the NS5A-GFP ORF was amplified and 

inserted into pCMV10, creating pCMV-NS5A-GFP (employing the cloning strategy 

depicted in Figure 3.8, C and D). Cells expressing pCMV-NS5A-GFP were 

analysed by FRAP at 16-20 hours post-transfection. NS5A-GFP fluorescence was 

bleached to 20% compared to the pre-bleach value, similar to the bleaching of 

NS5A-GFP expressed from luc-JFH1GFP. However, after the 2-minute recovery 

period, fluorescence had recovered to 65% of the pre-bleach value (Figure 3.8, A). 

NS5A-GFP localisation also differed depending on the context of its expression; 

when expressed from pCMV-NS5A-GFP, NS5A-GFP exhibited a diffuse ER-like 

localisation. In contrast, NS5A-GFP expressed from luc-JFH1GFP displayed an ER-

like pattern along with punctate sites of fluorescence (compare panels in Figure 

3.8, B). This result suggested that one or more of the NS proteins present in luc-

JFH1GFP influenced the localisation and mobility of NS5A. 
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Figure 3.8 The NS proteins influence the localisation and mobility of NS5A

[A] Cells electroporated with luc-JFH1GFP RNA were analysed by FRAP at 24 hours post-
electroporation. Cells transfected with pCMV-NS5A-GFP and GFP-DNase-X were analysed at 16-
20 hours post-transfection. Selected areas of 38µm  were bleached using 100% laser power and 
recovery within these regions was monitored for two minutes at 2% laser power. Values are 
expressed as a percentage of the pre-bleach value and error bars represent standard errors. [B] 
Huh-7 cells harbouring pCMV-NS5A-GFP (left panel) and luc-JFH1GFP RNA (right panel) were 
visualised directly at 16-20 hours after transfection (pCMV-NS5A-GFP) or electroporation (luc-
JFH1GFP). Scale bar represents 10µm. [C] A schematic representation of the NS3-NS5B coding 
region of luc-JFH1GFP is shown (top). The positions and sequences of the primers used to amplify 
the NS5A-GFP region are shown, with introduced non-viral sequences depicted in red. Restriction 
sites used for cloning purposes and start/stop codons are underlined.  The size of NS5A-GFP 
(2160bp) is inclusive of introduced restriction sites. Nucleotide numbers begin at the NS3 coding 
region. The NS5A-GFP fragment amplified by PCR was subsequently introduced into the pGEM-
T-Easy cloning vector to yield pGEM-NS5A-GFP. [D] The NS5A-GFP ORF was excised from 
pGEM-NS5A-GFP using XmaI and introduced into the corresponding site in pCMV10 to generate 
pCMV-NS5A-GFP.
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3.3.1 Analysis of NS5A-Photoactivatable GFP (PAGFP) 

To confirm the lower mobility of NS5A-GFP expressed from luc-JFH1GFP, the GFP 

ORF in NS5A was replaced with a photoactivatable form of GFP (termed PAGFP), 

to generate luc-JFH1PAGFP. PAGFP possesses a Thr to His mutation at amino acid 

203 of the protein coding region, which results in increased fluorescence upon 

photoactivation (see Section 1.7.2). This property allows activation of 

fluorescence, which is useful for studying protein dynamics within live cells 

(Patterson & Lippincott-Schwartz, 2002 and 2004). Luc-JFH1PAGFP was created 

using the same strategy employed for luc-JFH1GFP (Figures 3.1-3.3) and a non-

replicating control was also constructed (luc-JFH1PAGFPGND).  

 

3.3.1.1 Luc-JFH1PAGFP Replicates to Levels comparable to luc-JFH1 and luc-
JFH1GFP 

To ensure luc-JFH1PAGFP was capable of replication, RNA transcribed from Luc-

JFH1PAGFP and luc-JFH1PAGFPGND was electroporated into cells and luciferase 

values were recorded over 72 hours. Cells electroporated with luc-JFH1 and luc-

JFH1-GND provided positive and negative controls respectively. In agreement with 

previous results, luc-JFH1 replicated efficiently, whereas luc-JFH1-GND was 

incapable of replication (Figure 3.9, A). Luciferase levels from luc-JFH1PAGFPGND 

declined as quickly as those seen with luc-JFH1-GND, indicating that this SGR 

was incapable of replicating (Figure 3.9, A). Luc-JFH1PAGFP gave luciferase levels 

that were only 29% compared to those produced by the unmodified SGR by 24 

hours, indicating a delay in the onset of viral RNA synthesis (Figure 3.9, A). 

However, luciferase activity rose to 77% of the values expressed from luc-JFH1 by 

72 hours. This delay in replication was consistent with that observed upon 

insertion of GFP into the luc-JFH1 genome (Figure 3.4, A). The similarity in 

replication kinetics between luc-JFH1GFP and luc-JFH1PAGFP is unsurprising, since 

GFP and PAGFP differ only by a single amino acid. 

To confirm that NS5A-PAGFP protein could be detected during transient 

replication, cell extracts prepared over 72 hours were examined by Western blot 

analysis (Figure 3.9, B). NS5A-PAGFP was detected in cells at 48 and 72 hours 

post-electroporation and no evidence of breakdown was apparent, although this 

could not be confirmed without a Western blot for GFP. In contrast, NS5A-PAGFP 

was not detected in cells expressing RNA encoding luc-JFH1PAGFPGND (data not 

shown). 
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Figure 3.9 luc-JFH1PAGFP replicates efficiently in Huh-7 cells and NS5A-
PAGFP displays a low level of mobility in live cells 

[A] Huh-7 cells were electroporated with RNA from luc-JFH1, luc-JFH1PAGFP and their GND 
counterparts. Cells were lysed at 4, 24, 48 and 72 hours post-electroporation and extracts were 
assayed for luciferase activity. Assays were performed in triplicate and the averages are shown. 
Error bars represent the range of the values recorded at each time point. [B] Huh-7 cells 
electroporated with luc-JFH1PAGFP RNA were harvested for Western blot analysis at 4, 24, 48 and 
72 hours post-electroporation, and NS5A was detected using NS5A antisera. 2/1 cells were used 
as a positive control. The hyper- (closed circles) and hypo- (open circles) phosphorylated species 
of NS5A are indicated. [C] Various regions of cells harbouring luc-JFH1PAGFP were activated by 
exposure to a 405nm laser (indicated by a dotted rectangle [cell I] and circle [cell II]). Post-
activation, cells were monitored for 15 minutes to observe any diffusion of fluorescence into the 
non-activated areas of the cell. Whole cells were then activated by exposure to a 405nm laser. 
Images are shown in Glow-scale for clarity. Scale bar represents 10µm.
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3.3.1.2 NS5A-PAGFP Exhibits a Low Level of Mobility in Live Cells 

The data obtained from FRAP analysis of luc-JFH1GFP suggested that NS5A-GFP 

possessed limited mobility in cells (Figure 3.8, A). To further examine this lack of 

mobility, cells were electroporated with RNA encoding luc-JFH1PAGFP and 

analysed by confocal microscopy after 24 hours (Figure 3.9, C). Before activation 

of PAGFP, low fluorescence could be detected in cells, consistent with previous 

reports (Patterson & Lippincott-Schwartz, 2002). Selected cellular regions were 

then activated using a 405nm laser, resulting in PAGFP fluorescence. Post-

activation, areas of NS5A-PAGFP fluorescence were readily identified (Figure 3.9, 

C). Cells were monitored for 15 minutes to identify any diffusion of fluorescence 

that would indicate movement of activated NS5A-PAGFP into non-activated 

regions of the cell. However, little transfer of the fusion protein was evident in 

terms of appearance of fluorescence in non-activated regions, although in the 

second example shown there is some loss of signal intensity in the activated 

region (Figure 3.9, C). This is a likely consequence of photobleaching over the 15-

minute period. To ensure that NS5A-PAGFP molecules were present throughout 

the cytoplasm, the remaining area of cells was activated. Upon activation, NS5A-

PAGFP fluorescence was clearly visible throughout the entire cell and displayed a 

localisation consistent with that of luc-JFH1GFP (Figures 3.6, B and 3.7). These 

results confirmed that NS5A exhibits a low level of mobility in cells that harbour 

actively replicating luc-JFH1GFP and luc-JFH1PAGFP RNA. 

        

3.4 NS5A Localisation and Mobility is Influenced by NS4B  

Analysis of NS5A using FRAP and PAGFP indicated that NS5A did not exhibit 

appreciable mobility in cells containing actively replicating viral genomes. 

Additionally, NS5A expressed alone gave an ER-like distribution, whereas NS5A 

produced from luc-JFH1GFP also localised to punctate foci (Figure 3.8, B). These 

data suggested that one or more of the NS proteins expressed from luc-JFH1GFP 

could incorporate NS5A into MAF-like structures. This could result in NS5A being 

tethered at these sites, thereby decreasing protein mobility. 

Previous studies have revealed that NS4B induces ER membrane 

rearrangements, producing discrete structures referred to as the ‘membranous 

web’ and MAFs (Egger et al., 2002, Gosert et al., 2003, Gretton et al., 2005). 
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Other NS proteins (including NS5A) localise to these NS4B-induced structures, 

presumably creating sites capable of replicating HCV RNA (Elazar et al., 2004, 

Hugle et al., 2001). Importantly, abolishing NS4B membrane association results in 

a loss of membrane alteration and consequently, NS proteins cannot localise to 

these structures in cells expressing subgenomic polyproteins (Elazar et al., 2004). 

It was therefore predicted that NS4B was at least partly responsible for the 

differences in NS5A localisation and mobility observed when expressing the 

protein alone compared to expressing it from a SGR. 

To test this hypothesis, NS4B was removed from the NS coding region. Since 

removal of NS4B from luc-JFH1GFP would abolish replication, the NS3-NS5B 

coding region was introduced firstly into pCMV10, generating JFH1Poly. This 

plasmid permitted polyprotein expression in the absence of viral RNA replication 

and could be used to examine the effect of removal of NS4B on the localisation 

and mobility of NS5A. 

  

3.4.1 Construction of Plasmids Expressing the HCV NS3-NS5B 

Coding Region from Strain JFH1  

3.4.1.1 Construction of JFH1Poly 

The NS3-NS5B coding region (including GFP) was amplified in three fragments 

(termed F1-F3) using luc-JFH1GFP as a template (Figure 3.10, A). F1 was 1910bp 

in length and included an introduced EcoRI site and ATG initiation codon, the 

entire NS3 coding region and 7bp of NS4A. F2 was 2304bp in length and 

incorporated existing NsiI (in NS3) and AgeI sites (in NS5A, Figure 3.10, A). F3 

was 2702bp in length and introduced a KpnI site, TAG termination codon and 

included the entire GFP and NS5B coding regions. F3 also contained 37bp of 

NS5A sequence upstream from the 5’ end of GFP, thus incorporating a pre-

existing AgeI site (Figure 3.10, A). F1-F3 were introduced into pGEM-T-Easy, 

producing pGEM-F1, pGEM-F2 and pGEM-F3 respectively (Figure 3.10, B). 

These fragments were then excised using EcoRI/NsiI (pGEM-F1), NsiI/AgeI 

(pGEM-F2) and AgeI/KpnI (pGEM-F3) (Figure 3.10, B). pCMV10 was cut with 

EcoRI and KpnI and the four fragments were ligated in a single reaction to create 

JFH1Poly.  
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Figure 3.10 Construction of JFH1Poly

[A] A schematic representation of the NS3-NS5B coding region of luc-JFH1GFP is shown (top). 
The positions and sequences of the primers used to amplify F1-F3 are indicated, with introduced 
non-viral sequences depicted in red. Restriction sites used for cloning purposes and start/stop 
codons are underlined. The sizes of F1 (1910bp), F2 (2304bp) and F3 (2702bp) are inclusive of 
introduced restriction sites. Nucleotide numbers begin at the NS3 coding region. F1-F3 were 
subsequently introduced into the pGEM-T-Easy cloning vector, generating pGEM-F1, pGEM-F2 
and pGEM-F3. [B] F1, F2 and F3 were excised from the corresponding pGEM constructs using 
EcoRI/NsiI, NsiI/AgeI and AgeI/KpnI respectively. The pCMV10 vector was digested using EcoRI 
and KpnI and ligated with F1-F3 in a four-fragment ligation to generate JFH1Poly.
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3.4.1.2 Creation of JFH1PolyΔ4B 

Removal of NS4B from JFH1Poly required the complete excision of the NS4B 

coding region in addition to maintenance of NS3 cleavage at the newly created 

NS4A/NS5A junction. The cleavage sites between the NS4A/NS4B and 

NS4B/NS5A junctions contain Cys-Ala and Cys-Ser motifs in the P1 and P1’ 

positions respectively (Figure 3.11, B). Cys at P1 and either Ala or Ser at P1’ are 

highly favoured for recognition and cleavage by the NS3 protease (Kim et al., 

2000, Zhang et al., 1997). Therefore, removal of NS4B from JFH1Poly would need 

to maintain an NS4A/NS5A junction that retained a Cys-(Ala/Ser) motif. The 

cloning strategy utilised primers that introduced FspI sites between the 

NS4A/NS4B and NS4B/NS5A junctions, creating a new NS4A/NS5A junction with 

a Cys-Ala motif that should be recognised and cleaved by NS3 (Figure 3.11, A and 

B).    

JFH1Poly was used as a template for the amplification of two fragments termed 

Δ4B1 and Δ4B2 (Figure 3.11, A). Δ4B1 was 2070bp in length and contained the 

entire NS3 and NS4A coding regions, as well as the first 15bp of NS4B. This 

incorporated the introduced EcoRI site at the start of the NS3 coding region 

(Figure 3.11, A). The reverse primer for Δ4B1 introduced a nucleotide change 

(TGCGCC - TGCGCA) that resulted in the creation of an FspI site at the 

NS4A/NS4B junction and retained the cysteine residue marking the end of NS4A. 

Fragment Δ4B2 was 1282bp in length and included the 3’-terminal 20bp of NS4B 

and the NS5A coding region, up to and including the AgeI site that defined the 

boundary with GFP (Figure 3.11, A). The forward primer for Δ4B2 introduced two 

nucleotide changes (TGCTCC-TGCGCA) that resulted in the creation of an FspI 

site at the NS4B/NS5A junction and changed the first serine residue of NS5A to an 

alanine. The two fragments were subsequently introduced into pGEM-T-Easy, 

creating pGEM-Δ4B1 and pGEM-Δ4B2 (Figure 3.11, C). 

Δ4B1 and the Δ4B2 were excised from pGEM-Δ4B1 and pGEM-Δ4B2 using EcoRI 

and FspI and FspI and AgeI respectively (Figure 3.11, C). JFH1Poly was digested 

with EcoRI and AgeI and the resultant backbone was ligated with Δ4B1 and Δ4B2 

in a single ligation reaction to produce JFH1PolyΔ4B.  
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Figure 3.11 Construction of JFH1Poly∆4B

[A] A schematic representation of the NS3-NS5B coding region of JFH1Poly is shown (top). The 
positions and sequences of the primers used to amplify ∆4B1 and ∆4B2 are indicated. The 
introduced nucleotide changes for creation of the FspI sites are depicted in red. Restriction sites 
used for cloning purposes are underlined, as is the start codon in ∆4B1_F. Nucleotide numbers 
refer to the JFH1Poly sequence, beginning at the NS3 coding region. ∆4B1 and ∆4B2 were 
subsequently introduced into the pGEM-T-Easy cloning vector, yielding plasmids pGEM-∆4B1 
and pGEM-∆4B2. [B] A schematic representation of the NS4A/NS4B and NS4B/NS5A junctions 
in a wt polyprotein and the new NS4A/NS5A junction created by deleting NS4B. The amino acids 
present at the P1 and P1' positions of each junction are shown and cleavage occurs between 
these residues. [C] ∆4B1 and ∆4B2 were excised from pGEM-∆4B1 and pGEM-∆4B2 using 
EcoRI/FspI and FspI/AgeI respectively. The EcoRI/AgeI fragment from JFH1Poly was replaced 
with ∆4B1 and ∆4B2 in a three-fragment ligation. This resulted in a polyprotein that excluded the 
NS4B coding region, yet maintained a Cys-Ala cleavage site at the NS4A/NS5A junction.
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3.4.2 NS4B Distributes NS5A to Foci 

To examine the effect of NS4B removal on localisation of NS5A, cells were 

transfected with JFH1Poly, pCMV-NS5A-GFP and JFH1PolyΔ4B, and NS5A-GFP 

distribution was examined. Additionally, examination of NS5A-GFP expressed 

from both JFH1Poly and luc-JFH1GFP would determine whether viral replication had 

any influence on NS5A localisation. Therefore, cells electroporated with luc-

JFH1GFP RNA were also analysed. At least 250 cells expressing each construct 

were examined and the localisation of NS5A-GFP was scored into one of two 

categories: (i) NS5A-GFP predominantly localised to the ER, or (ii) NS5A-GFP 

predominantly localised to foci (Figure 3.12, A). NS5A-GFP expressed from 

JFH1Poly was localised to foci in 92% of cells and only 8% of cells displayed a 

localisation described as being predominantly ER-like (Figure 3.12, A). Luc-

JFH1GFP gave a similar profile, where NS5A-GFP was located at foci in 95% of 

cells. This result suggested that HCV RNA replication had little or no influence on 

NS5A localisation. By contrast, NS5A-GFP expressed alone or from JFH1PolyΔ4B 

was localised predominantly on the ER in 97% of cells (Figure 3.12, A). This 

localisation assay confirmed that NS5A was distributed to foci in the presence of a 

polyprotein and furthermore, that this distribution was dependent on NS4B but 

independent of HCV RNA replication. 

 

3.4.3 NS4B Reduces the Mobility of NS5A 

Previous results revealed that NS5A displayed an ER-like distribution and was 

more mobile when expressed in isolation as compared to expression from luc-

JFH1GFP (Figure 3.8, A). An ER-like pattern of NS5A localisation was also 

observed upon removal of NS4B from the NS3-NS5B polyprotein (Figure 3.12, A). 

To determine whether removal of NS4B increased NS5A mobility, FRAP analysis 

was performed on cells harbouring luc-JFH1GFP RNA, or DNA encoding JFH1Poly, 

JFH1PolyΔ4B and pCMV-NS5A-GFP (Figure 3.12, B). NS5A-GFP expressed from 

luc-JFH1GFP and JFH1Poly was bleached to 18% and 19% respectively compared 

to pre-bleach values. Over a two-minute period, fluorescence intensity recovered 

to 32% (luc-JFH1GFP) and 33% (JFH1Poly, Figure 3.12, B). This low recovery of 

fluorescence in cells expressing NS5A-GFP from luc-JFH1GFP was identical to that 

observed previously (Figure 3.8, A). Fluorescence recovery in cells expressing luc-

JFH1GFP and JFH1Poly was comparable, suggesting that RNA replication had no 

influence on NS5A mobility. In contrast, NS5A-GFP fluorescence in cells 
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Figure 3.12 NS4B influences the localisation and distribution of NS5A

[A] Huh-7 Cells were electroporated with luc-JFH1GFP RNA, or transfected with JFH1Poly, pCMV-
NS5A-GFP or JFH1Poly∆4B plasmids, and NS5A-GFP was visualised at 16-20 hours later. At 
least 250 cells were observed for each construct and scored into either of two categories: (i) 
NS5A-GFP localised predominantly to the ER (top, left panel) (ii) NS5A-GFP localised 
predominantly to foci (top, right panel). Cells in each category are expressed as a percentage of 
the total number counted for each construct. Scale bar represents 10µm. [B] Huh-7 cells 
electroporated with luc-JFH1GFP RNA were analysed by FRAP at 24 hours post-electroporation. 
Cells transfected with plasmids pCMV-NS5A-GFP, GFP-DNase-X, JFH1Poly and JFH1Poly∆4B 
were analysed at 16-20 hours post-transfection. Areas of 38µm  were bleached using 100% 
laser power and recovery within these regions was monitored for two minutes at 2% laser power. 
Values are expressed as a percentage of the pre-bleach value and error bars represent standard 
errors. [C] Lysates from cells transfected with the indicated constructs were examined by 
Western blot analysis 24 hours post-transfection. NS5A was detected using NS5A antisera. The 
hyper- (closed circles) and hypo- (open circles) phosphorylated species of NS5A are indicated. 
Note that hyperphosphorylated NS5A could only be detected in cells expressing JFH1Poly. 
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expressing JFH1PolyΔ4B recovered to 54% after two minutes. This was 

substantially greater than the recovery observed for either luc-JFH1GFP or JFH1Poly 

(Figure 3.12, B). However, this fluorescence recovery was lower compared to that 

for NS5A-GFP expressed from pCMV-NS5A-GFP (65%). These data indicate that 

NS4B is a major contributing factor in the low mobility of NS5A-GFP, although 

other NS proteins also partly account for the low recovery of the fluorescent 

protein. 

To ensure that removal of the NS4B coding region did not affect cleavage at the 

NS4A/NS5A junction, extracts from cells transfected with pCMV-NS5A-GFP, 

JFH1Poly and JFH1PolyΔ4B were examined by Western blot analysis for the 

presence of NS5A-GFP (Figure 3.12, C). NS5A-GFP was detected in all cell 

extracts at the correct predicted molecular weight of ~83kDa, confirming that 

cleavage at the NS4A/NS5A junction was not disrupted in JFH1PolyΔ4B. 

Interestingly, with the exception of cells expressing JFH1Poly, only the 

hypophosphorylated species of NS5A was detected (Figure 3.12, C). This result is 

consistent with previous reports stating that hyperphosphorylation of NS5A can 

only occur in the presence of the other NS proteins and that NS4B is critical to this 

process (Koch & Bartenschlager, 1999, Neddermann et al., 1999). Overall, these 

results showed that NS5A is incorporated into foci in the presence of an NS3-

NS5B polyprotein and that NS4B is an essential component of this process. Once 

localised to these structures, NS5A displays a lower mobility compared to protein 

present on the ER membrane.  

 

3.5 Discussion 

Before the discovery of JFH1, genotype 1 SGRs were commonly utilised for 

investigating HCV RNA replication. Studies with genotype 1 SGRs typically involve 

indirect measurement of viral RNA replication by determining the colony forming 

efficiency of cells that stably replicate the SGR under selective pressure (see 

Section 1.3.2). Efficient replication in these assays is dependent upon the 

presence of CCAMs within the viral sequence. Even with such mutations however, 

the replication capacity of these constructs is substantially lower than that of wt 

JFH1 SGRs, such as luc-JFH1 (Kato et al., 2003, Targett-Adams & McLauchlan, 

2005). With luc-JFH1, the level of luciferase produced within electroporated cells is 

deemed to provide an indirect quantitative measurement of viral genome 

synthesis. Furthermore, the replication efficiency of JFH1 RNA allows transient 
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measurement of genome synthesis and bypasses the requirement of cell lines 

stably replicating HCV SGRs. Therefore, JFH1 SGRs provide a robust system for 

the study of transient HCV RNA replication. 

At the outset of this study, a SGR based on the genotype 1b strain Con1 was used 

to demonstrate that the C-terminus (domain III) of NS5A could tolerate the 

insertion of GFP without abolishing viral replication (Moradpour et al., 2004b). This 

finding was further validated by other groups (Appel et al., 2005b, Liu et al., 2006), 

and allowed the characterisation of NS5A in live cells. The results presented here 

show that GFP can also be inserted into the same region of JFH1-encoded NS5A, 

thus allowing the characterisation of NS5A in the context of an efficiently 

replicating viral genome. With the Con1 system, GFP insertion into NS5A resulted 

in a moderate reduction of viral replication (Appel et al., 2005b, Liu et al., 2006, 

Moradpour et al., 2004b). A similar effect on replication was also evident with luc-

JFH1GFP, particularly within the first 24 hours of replication (Figure 3.4, A). Further 

analysis revealed that active replication of luc-JFH1GFP was delayed by 4-6 hours 

compared to unmodified luc-JFH1 (Figure 3.5, A and B). Domain III of NS5A is 

dispensable for RNA replication, as judged by a luciferase assay system similar to 

that described here (Appel et al., 2008). Therefore, perturbing the structure of 

domain III through the insertion of GFP would be expected to have no effect on 

replication. However, it cannot be excluded that the presence of GFP within 

domain III results in the modification of global NS5A structure, which may be 

unfavourable for RNA synthesis. Alternatively, it is possible that the delay in luc-

JFH1GFP replication is merely a consequence of translating a longer SGR genome. 

In this respect, it would be interesting to determine whether full-length viral RNA 

initially exhibit levels of replication that are lower than those displayed by a SGR.      

Viral RNA replication is thought to occur rapidly after virus entry and both positive 

and negative-strand RNAs have been detected using Northern hybridisation at 2-4 

hours after introduction of RNA into cells (Binder et al., 2007). It is important to 

note that the luciferase system used here could not detect viral RNA replication 

until at least 12 hours post-electroporation (Figure 3.5). This is likely due to the 

excess luciferase translated directly from the input RNA, resulting in the luciferase 

signal masking production of the enzyme from replicated genomes. In support of 

this notion, luciferase values increased up to 6 hours post-electroporation with 

RNAs harbouring GND mutations that render them incapable of replication (Figure 

3.5). Similarly, NS5A expressed from GND mutant RNA can be detected in cells 

by 4 hours, providing conclusive evidence that a significant level of protein is 
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produced directly from the RNA introduced by electroporation (Figure 3.6). 

Therefore, the luciferase system is probably less sensitive for the detection of viral 

replication at early time points compared to techniques that detect RNA directly.       

NS5A-GFP expressed from luc-JFH1GFP could be directly visualised in both fixed 

and live cells and was distributed on both the ER membrane and to punctate 

cytoplasmic structures termed foci (Figures 3.6 and 3.7). This pattern of NS5A 

localisation was also evident in cells expressing photoactivatable NS5A-GFP 

(Figure 3.9, C). These foci became more abundant over 72 hours and are 

consistent with those previously identified in cells actively replicating HCV RNA 

(El-Hage & Luo, 2003, Gosert et al., 2003, Moradpour et al., 2004b, Mottola et al., 

2002).  Viral RNA co-localises with NS5A in studies utilising FISH (Gosert et al., 

2003, Targett-Adams et al., 2008a), BrUTP labelling (El-Hage & Luo, 2003, 

Moradpour et al., 2004b) and use of an antibody that detects dsRNA intermediates 

(Targett-Adams et al., 2008a). This result strongly suggests that NS5A foci are 

indicative of viral RCs. However, NS5A (expressed from luc-JFH1) and NS5A-

GFP (expressed from luc-JFH1GFP) were also localised at sites that did not 

apparently include dsRNA and cells were found to harbour a greater quantity of 

NS5A (Figure 3.6, A and C). An excess of NS proteins compared to viral RNA has 

been demonstrated previously and consequently, it is thought that less than 5% of 

the NS proteins present in cells are actively engaged in RNA replication (Quinkert 

et al., 2005). Therefore, NS5A distribution alone is not sufficient to identify sites 

replicating HCV RNA. It is possible that NS5A protein localised at sites distinct 

from viral RNA is engaged in other roles, such as viral assembly or modulating the 

host cell response to viral infection (Macdonald & Harris, 2004, Miyanari et al., 

2007).      

Interestingly, NS5A-GFP no longer localised to foci when expressed in isolation 

and instead exhibited a more diffuse ER-like distribution, suggesting that NS5A 

does not inherently form or localise to these sites (Figures 3.8, B and 3.12, A). 

Furthermore, NS5A-GFP expressed alone was mobile in cells, yet was relatively 

immobile when expressed in the context of an NS3-NS5B polyprotein (Figure 3.8, 

A and Figure 3.12, B). Analogous to these results, previous biochemical analysis 

has shown that NS5A produced from a polyprotein is more tightly associated with 

membranes compared to NS5A expressed in isolation (Brass et al., 2002). The 

correlation between the data presented here and that reported by Brass et al. 

suggests that measurement of protein mobility by FRAP is a plausible alternative 

approach for examining protein-protein and protein-membrane interactions. 
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The HCV NS4B protein represented a likely candidate for influencing the 

localisation and mobility of NS5A. NS4B induces foci formation when expressed in 

cells and other HCV proteins form a multiprotein complex at these sites (Egger et 

al., 2002). These structures are assumed to be consistent with the foci seen in 

confocal microscopy studies, believed to represent sites of viral RNA replication. 

This assumption is strengthened by additional studies revealing that disruption of 

NS4B membrane association causes the mis-targeting of other replicase 

components (including NS5A) to foci, abolishing RNA replication in the process 

(Elazar et al., 2004). In agreement with these results, removal of the NS4B coding 

region resulted in a loss of NS5A-GFP localisation to foci and a corresponding 

increase in mobility of the fusion protein (Figure 3.12, A and B). Therefore, the 

presence of NS4B is critical for NS5A to associate to foci and, once at these sites, 

NS5A displays lowered mobility. Other investigations into viral RCs have also 

highlighted the limited mobility of NS5A within foci (Wolk et al., 2008). These data 

suggest that RCs likely represent sites that have a relatively static internal 

architecture that allow limited detectable mobility of the proteins contained within 

them. It is possible that NS5A and NS4B interact within RCs, resulting in the 

decreased mobility of NS5A. Indeed, NS4B itself displays no appreciable mobility 

when located within these structures (Gretton et al., 2005). Interactions involving 

NS5A and NS4B have been previously identified, although it is unknown whether 

they associate directly (Dimitrova et al., 2003). Alternatively, NS5A may have a 

higher affinity for the membrane alterations induced by NS4B, rather than NS4B 

itself.  
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4 Mutational Analysis of the NS4B C-terminus 

 

4.1 Introduction 

In the previous chapter NS4B was identified as being responsible for influencing 

both the localisation and mobility of NS5A. This prompted a more detailed 

investigation into the relationship between these two proteins and the properties of 

NS4B. 

NS4B exhibits the characteristics of an integral ER membrane protein and various 

biochemical and predictive analyses suggest that the central part of the protein 

consists of at least four TMDs (Hugle et al., 2001, Lundin et al., 2003). It is 

therefore believed that the majority of the NS4B protein is tightly buried within the 

ER membrane and consequently inaccessible to other viral or cellular factors. 

However, the N- and C-termini as well as a small transmembrane loop linking 

TMD2 and TMD3 are thought to reside on the cytosolic side of the ER membrane 

(Figure 4.2). Such orientation of the termini would allow cleavage of NS4B from 

NS4A and NS5A by the NS3 protease, which itself resides in the cytosol (Lundin 

et al., 2003). Therefore, these three regions of NS4B may interact with and/or 

influence other NS proteins residing on the cytosolic side of the ER, including 

NS5A.  

The C-terminus of NS4B is highly conserved among members of the flaviviridae 

family (Welsch et al., 2007), yet has been poorly characterised to date. Of the 

studies conducted on this region, one study reported that mutating C-terminal Cys 

residues resulted in impaired NS4B-NS5A interaction (Yu et al., 2006). Thus, the 

NS4B C-terminus may directly influence NS5A. This prompted a detailed analysis 

of the C-terminal region of NS4B by mutagenesis and examination of whether this 

region was responsible for the changes in NS5A localisation and mobility observed 

in the previous chapter.  

 

4.2 The NS4B C-terminus is well conserved and is predicted to 

contain two α-helices 

Based on structural predictions, the C-terminus of NS4B is defined as the region of 

70 amino acids immediately downstream of TMD4 (Hugle et al., 2001, Lundin et 

al., 2003). To gain further insight into the conservation of the NS4B C-terminus, 
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Figure 4.1 Conservation and predicted secondary structure of the JFH1 
NS4B C-terminus

[A] 141 NS4B sequences from the Los Alamos HCV database (http://hcv.lanl.gov/content/hcv-
index) were aligned using the Jalview Multiple Alignment Editor (http://www.jalview.org/). 
Alignment of the C-terminal region only is shown (aa192 - 261). Bars represent conservation for 
each amino acid as a percentage and asterisks denote amino acids with 100% conservation. The 
amino acid sequence shown represents the JFH1 NS4B C-terminus. Region 1 and Region 2 
were designated arbitrarily based on the conservation pattern of the C-terminal region as a 
whole, with Region 1 being highly conserved and Region 2 being less well-conserved. [B] 
Secondary structure prediction of the JFH1 NS4B C-terminus. The sequence was analysed using 
the PSIPRED Protein Structure Prediction Server (http://bioinf.cs.ucl.ac.uk/psipred/). The 
positions of the two helices (termed H1 and H2) are shown. [C] Summary of the HCV genotypes 
used for the alignment study depicted in [A]. 
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141 HCV NS4B sequences were aligned using the Jalview Multiple Alignment 

Editor. These sequences were derived from the Los Alamos HCV database and 

featured strains from all six HCV genotypes (Figure 4.1, C). The alignment 

revealed a conservation pattern in which the N-terminal half of the C-terminus 

(defined as Region 1) consisted of highly conserved residues. In contrast, the C-

terminal half of the C-terminus (defined as Region 2) displayed lower conservation 

(Figure 4.1, A).  

To complement the data obtained through alignment, the sequence of the JFH1 

NS4B C-terminus was analysed using the PSIPRED Protein Structure Prediction 

Server. This revealed the presence of two potential α-helices, with the first helix 

(defined as H1, 13 amino acids in length) located within Region 1 and a second 

longer helix (defined as H2, 27 amino acids in length) within Region 2 (Figure 4.1, 

B). The positions of these helices agreed with those predicted in other studies on 

the NS4B C-terminus (Welsch et al., 2007). The intra-helical region and those 

flanking the two helices were deemed to be unstructured. 

 

4.3 Mutation of the NS4B C-terminus  

Utilising the information gained from the conservation and secondary structure 

prediction data, 15 individual amino acids within the NS4B C-terminal coding 

region of the luc-JFH1GFP replicon were selected for mutation (Figure 4.2). These 

residues were distributed along the length of the C-terminal region and 

incorporated: 

(i) Three mutations in the region upstream of H1 (M1, M2 and M3) that included 

substitution of an Arg residue at position 192 (M1) involved in RNA binding (Einav 

et al., 2008a). 

(ii) Two mutations in H1 (M4 and M5).   

(iii) Three mutations in the segment separating H1 and H2 (M6-M8). 

(iv) Six mutations in H2, including substitution of Trp (M13) and Thr (M14) residues 

at positions 252 and 254 respectively that were previously reported to have a role 

in HCV RNA replication (Lindstrom et al., 2006). 

(v) One mutation in the segment downstream of H2 at a Cys residue (M15) at 

position 257 that is believed to be a site for palmitoylation of NS4B (Yu et al., 

2006).   
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Figure 4.2 Topology of the NS4B protein and mutational analysis of the C-terminal domain

A schematic representation of the predicted topological arrangement of NS4B bound to the ER membrane is shown (top). NS4B is predicted to contain four TMDs 
(numbered 1-4) that span the ER membrane, where the flanking N- and C- terminal ends are oriented in the cytosol. Positions of previously identified features including 
the α-helix, TMX domain and the nucleotide binding motif (NBM) are shown. The predicted helices H1 and H2 are also indicated. The amino acid sequence of the C-
terminal region of strain JFH1 is presented. Amino acids substituted with alanine are underlined and numbered M1-M15. Amino acids predicted to lie within helices H1 
and H2 are overlined and shown in green. Asterisks denote invariant amino acids and residues are numbered in accordance with the N-terminal end of NS4B.
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2056 2890

4B/5A (847bp)

NS4B sequence GCC TCT AGG GCG GCT CTC ATC

4B/5A_F 

NS5A sequence GGG TTT GCA CCA TCT TGA CAG 

4B/5A_R

  GAA TTC GCC TCT AGG GCG GCT CTC ATC 
EcoRI

5' 3'

CCC AAA CGT GGT AGA ACT GAC CTC GAG 
SacI

5'3'

2056

2890
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[B]
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NS5A
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NS4B
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Figure 4.3 Construction of NS4B C-terminal mutants by site-directed 
mutagenesis

[A] A schematic representation of the NS3-NS5B coding region of luc-JFH1GFP is shown (top) 
and the position of the amplified fragment is indicated. The primers used to create 4B/5A are 
shown, with introduced non-viral sequences depicted in red. Restriction sites used for cloning 
purposes are underlined. The size of 4B/5A (847bp) is inclusive of introduced restriction sites. 
Nucleotide numbers refer to the JFH1Poly sequence, beginning at the NS3 coding region. 4B/5A 
was introduced into the pGEM-T-Easy cloning vector to create pGEM-4B/5A. [B] pGEM-4B/5A 
was used for site-directed mutagenesis (indicated by SDM) of the C-terminal region of NS4B 
between the BamHI sites present in NS4B and NS5A. All 15 mutants were individually introduced 
in this manner, to generate pGEM-4B/5AM1-M15. 
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Figure 4.4 Construction of luc-GFPM1-M15 and PolyM1-M15 NS4B mutants

[A] The NS4B/NS5A fragment harbouring mutations within the C-terminus of NS4B was excised 
from pGEM-4A/5AM1-M15 using BamHI (F4). This fragment could not be directly introduced into 
luc-JFH1GFP or JFH1Poly due to the presence of a third BamHI site within NS5B. Therefore, 
JFH1Poly was digested to yield three fragments. F1 was created by digestion with EcoRI (marking 
the start of NS3) and the first BamHI site (in NS4B). F2 was created by digestion with the second 
BamHI site (in NS5A) and KpnI (marking the end of NS5B). F3 contained plasmid sequence and 
was created by digestion with KpnI and EcoRI. F1 - F4 were then ligated in a four-fragment 
ligation, to yield PolyM1-M15. All constructs were screened for correct orientation of the BamHI 
fragment. [B] To create luc-GFPM1-M15, the region between NsiI and EcoRV was excised from 
PolyM1-M15 and inserted between the corresponding sites in luc-JFH1GFP.    
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All targeted residues were substituted with Ala, as this amino acid was predicted to 

have minimal influence on the overall structure of NS4B. Mutations were 

individually introduced into a 266bp fragment of NS4B by site-directed 

mutagenesis, before introduction into the luc-JFH1GFP replicon (using the cloning 

strategy depicted in Figures 4.3 and 4.4). This strategy created mutants luc-M1GFP 

- luc-M15GFP (Figure 4.2). A list of the primers used to create M1-M15 can be 

found in Appendix 1.  

 

4.4 Characterisation of HCV NS4B Mutants 

4.4.1 The C-terminus of NS4B is Involved in HCV RNA Replication 

To determine whether any of the 15 mutations within the NS4B C-terminus had an 

impact on replication, RNA transcribed from luc-M1GFP-luc-M15GFP was 

electroporated into Huh-7 cells and luciferase activity was measured over a 72-

hour period (Figure 4.5, A-C). RNAs encoding luc-JFH1GFP and luc-JFH1GFPGND 

were also electroporated into cells as positive and negative controls respectively. 

In agreement with earlier results (see Section 3.2.2.1), luciferase values indicated 

that replication of luc-JFH1GFP was impaired within the first 24 hours before 

increasing over the remaining time points, whereas luc-JFH1GFPGND was 

incapable of replicating, as judged by determining enzyme activity over the time 

course (Figure 4.5, A-C). When the 15 mutants were tested in this assay, eight 

mutants (M1, M6, M7, M9, M10, M12, M14 and M15) gave patterns of luciferase 

activity comparable to that for luc-JFH1GFP, indicating they retained the capacity to 

replicate (Figure 4.5, A-C). An attenuated replication phenotype was observed for 

luc-M3GFP and luc-M11GFP and luciferase levels expressed from these mutants 

were 48-fold and 63-fold lower respectively compared to the values obtained for 

luc-JFH1GFP at 24 hours. Although luciferase levels for both mutants increased 

after this initial decline, values remained considerably lower than those observed 

with luc-JFH1GFP by 72 hours (Figure 4.5, A and C). Of the 15 mutants tested, 

luciferase values from five mutants (M2, M4, M5, M8 and M13) declined over the 

72-hour period as rapidly as those seen with luc-JFH1GFPGND, indicating that 

these SGRs did not replicate (Figure 4.5, A-C). Subsequent qRT-PCR analysis 

confirmed this pattern of replication for all 15 mutant SGRs (B. Flatley, personal 

communication). 
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Figure 4.5 Replication competence of NS4B mutants

Huh-7 cells were electroporated with RNA encoding luc-JFH1GFP, luc-JFH1GFPGND and all 15 
mutants, termed luc-M1GFP - luc-M15GFP. Cells were lysed at 4, 24, 48 and 72 hours post-
electroporation and extracts were assayed for luciferase activity. Assays were performed in 
triplicate in three separate experiments: [A] luc-M1GFP - luc-M5GFP [B] luc-M6GFP - luc-M10GFP 
[C] luc-M11GFP - luc-M15GFP. Average values are shown for each experiment and error bars 
indicate the range of the values recorded at each time point.
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These results revealed five amino acids (G196, N206, F211, E226 and W252) 

within the C-terminus of NS4B that are critical for HCV RNA replication and a 

further two residues (G200 and T241) that reduce replication when mutated to Ala. 

Only one of the residues, W252, has been reported previously as critical for HCV 

replication (Lindstrom et al., 2006). The remainder of this chapter explores the 

basis for the block in replication exhibited by the 5 non-replicating mutants. 

 

4.4.2 Foci-Forming Abilities of Non-Replicating NS4B Mutants 

When expressed alone in cells, NS4B possesses the intrinsic ability to induce the 

formation of foci on the ER membrane (Egger et al., 2002, Gosert et al., 2003, 

Gretton et al., 2005). Replicase components including NS proteins (Moradpour et 

al., 2004b, Mottola et al., 2002) and viral RNA (El-Hage & Luo, 2003, Gosert et al., 

2003, Targett-Adams et al., 2008a) have been shown to localise to these 

structures, suggesting that foci represent viral RCs. Therefore, the impact of each 

non-replicating mutant was analysed for effects on foci formation. Each mutant 

NS4B coding region was amplified and introduced into the pGFP-C1 vector 

(employing the cloning strategy depicted in Figure 4.6, A and B), creating 

pNS4BM2GFP, pNS4BBM4GFP, etc. Here, each NS4B coding region is tagged to the 

C-terminus of GFP, allowing NS4B distribution to be determined by analysing GFP 

fluorescence. This approach has been utilised previously (Egger et al., 2002, 

Gosert et al., 2003, Gretton et al., 2005). We also examined the impact of each 

non-replicating mutant on foci formation in the context of JFH1Poly, where NS4B 

would be cleaved from an authentically processed polyprotein. Hence, all five 

mutations were introduced into JFH1Poly, creating M2Poly, M4Poly, etc (using the 

cloning strategy in Figure 4.4, A). With these constructs, NS4B distribution could 

be determined utilising R1063, an antibody that recognises and binds the NS4B C-

terminal sequence.  

 

4.4.2.1 NS4B Proteins from Non-Replicating Mutants form Foci when 
Expressed in Isolation 

Live cells expressing wt NS4B-GFP and each mutant (pNS4BM2GFP, 

pNS4BM4GFP, etc) were visualised 16-20 hours post-transfection (Figure 4.7, A). 

Wt NS4B-GFP was predominantly localised to punctate structures on the ER 

membrane, indicative of the foci reported previously (Egger et al., 2002, Gosert et 
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Figure 4.6 Construction of pNS4B-GFP and pCMV-NS4B

[A] A schematic representation of the NS3-NS5B coding region of luc-JFH1GFP is shown (top). 
The positions and sequences of the primers used to amplify NS4B are shown, with introduced 
non-viral sequences depicted in red. Restriction sites used for cloning purposes and start/stop 
codons are underlined. The size of NS4B (798/801bp) is inclusive of introduced restriction sites 
and is dependent upon the forward primer used. Nucleotide numbers begin at the NS3 coding 
region. Primer NS4B_F (i) was used for the introduction of NS4B into the pEGFP-C1 vector and 
therefore has no start codon. Primer NS4B_F (ii) was used for the introduction of NS4B into the 
pCMV10 vector and therefore includes a start codon. Reverse primer NS4B_R was used for the 
amplification of both variants of the NS4B. Both NS4B fragments were subsequently introduced 
into the pGEM-T-Easy cloning vector, creating pGEM-NS4B (i) and pGEM-NS4B (ii). [B] The 
NS4B ORF was excised from pGEM-NS4B (i) using BglII and HindIII and introduced into pGFP-
C1 between the corresponding sites. This resulted in a plasmid encoding a NS4B-GFP fusion 
protein, with the GFP tag at the N-terminal end of NS4B. [C] The NS4B ORF was excised from 
pGEM-NS4B (ii) using KpnI and HindIII and introduced between the corresponding sites of 
pCMV10, to create pCMV-NS4B.  
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Figure 4.7 NS4B mutants expressed in isolation form foci

Huh-7 cells were transfected with plasmids encoding [A] pNS4B-GFP and the five mutant 
derivatives, or [B] pCMV-NS4B and the five mutant derivatives. 16-20 hours after transfection, 
NS4B-GFP was visualised in live cells (in the case of [A]) or in fixed cells using NS4B antisera 
R1063 (in the case of [B]). Scale bars represent 10µM. 
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al., 2003, Gretton et al., 2005). In cells expressing NS4B-GFP from each of the 

non-replicating mutants, the distribution and localisation of the foci were 

indistinguishable from those seen with wt NS4B (Figure 4.7, A). These data 

suggested that the mutations did not affect the foci-forming abilities of the NS4B 

protein. 

To exclude the possibility that the GFP tag had an effect on NS4B behaviour, the 

mutant NS4B coding regions were introduced into pCMV10 (employing the cloning 

strategy depicted in Figure 4.6, A and C). These constructs (pCMV-NS4BM2, 

pCMV-NS4BM4, etc) were transfected into cells and NS4B was visualised 16-20 

hours later using NS4B antibody R1063 (Figure 4.7, B). In agreement with the 

results obtained using GFP-tagged proteins, no differences were observed 

between the foci induced by wt and mutant NS4B proteins.  

 

4.4.2.2 NS4B Proteins from Non-Replicating Mutants Differ in their Ability to 
form Foci when Expressed from a Polyprotein  

The data obtained above suggested that mutations within the C-terminus of NS4B 

did not affect foci formation. To determine whether the presence of other viral 

replicase components influenced this observation, JFH1Poly and each mutant 

derivative (M2Poly, M4Poly, etc.) was transfected into cells and the localisation of 

NS4B was examined 16-20 hours later using R1063 antibody (Figure 4.8, A - C). 

Furthermore, the use of JFH1Poly also enabled the localisation of NS5A-GFP to be 

determined.  

In contrast to the results obtained from analysis of the five NS4B mutants in 

isolation, the mutants now differed in their abilities to form foci and could be 

divided into three distinct phenotypic categories. Firstly, M2Poly and M5Poly 

produced foci containing both NS4B and NS5A-GFP, and these foci were 

indistinguishable from those observed with JFH1Poly (Figure 4.8, A). In the second 

category, M4Poly and M8Poly exhibited a dual phenotype whereby some cells 

contained foci to which both NS4B and NS5A-GFP co-localised, while other cells 

revealed little evidence of either protein being localised to foci (Figure 4.8, B). 

M13Poly was the sole member of the third category in which both NS5A-GFP and 

NS4B were rarely detected in foci and the ER-like pattern of NS5A-GFP 

distribution was identical to that seen with JFH1PolyΔ4B (Figure 4.8, C).  
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Figure 4.8 The NS4B C-terminus contains determinants for foci formation

Huh-7 cells were transfected with plasmids encoding JFH1Poly, JFH1Poly∆4B and each JFH1Poly 
NS4B mutant. 16-20 hours post-transfection, cells were fixed and NS4B was visualised using 
R1063, while NS5A-GFP was observed directly. Localisation patterns for both proteins were 
divided into three phenotypic categories: [A] proteins predominantly localised to foci, [B] proteins 
localise to foci in some cells (i) but display an ER-like distribution in others (ii), [C] both proteins 
display an ER-like distribution only. Scale bars represent 10µm. [D] Huh-7 cells transfected in 
parallel to those described in [A] - [C] were harvested for Western blot analysis at 20 hours post-
transfection and the membrane was probed with R1063 antisera.
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To confirm that introducing mutations into NS4B had not decreased the stability of 

the protein or influenced polyprotein processing, cells expressing each mutant 

were harvested approximately 20 hours post-transfection and subjected to 

Western blot analysis (Figure 4.8, D). In all cases NS4B was detected at the 

correct size of ~27kDa and revealed no evidence of degradation or altered 

cleavage. 

 

4.4.2.3 The NS4B C-terminus Influences Localisation of NS5A to Foci and 
the Number of Foci in Cells 

Studies on the five NS4B mutants revealed that three (M4, M8 and M13) were 

compromised in their ability to form foci at the ER membrane. In order to acquire a 

quantitative assessment of NS5A localisation with these mutants, at least 250 cells 

expressing JFH1Poly, JFH1PolyΔ4B and each mutant JFH1Poly construct were 

analysed and the localisation of NS5A-GFP was scored into one of two categories: 

(i) NS5A-GFP predominantly localised to the ER, or (ii) NS5A-GFP predominantly 

localised to foci (Figure 4.9, A). This approach revealed that NS5A-GFP 

expressed from JFH1Poly was localised to foci in a high proportion of the cells 

examined (94%), whereas the majority of cells expressing JFH1PolyΔ4B gave an 

ER-like distribution of NS5A-GFP (98%, Figure 4.9, A). Examination of cells 

expressing M2Poly and M5Poly revealed that NS5A-GFP was localised to foci in 94% 

and 92% of cells respectively, confirming that these mutant NS4B proteins 

produced foci indistinguishable from those of wt NS4B. M4Poly and M8Poly exhibited 

a dual phenotype of NS5A-GFP distribution, with 48% and 50% of the fusion 

protein respectively being localised to foci, while the remaining 52% and 50% of 

cells displayed an ER-like distribution of the protein (Figure 4.9, A). Finally, NS5A-

GFP expressed from M13Poly gave a distribution consistent with an ER-like pattern 

in 85% of cells examined. 

To confirm further the impact of NS4B mutations on foci formation, cells 

expressing each construct were examined using software that allowed the number 

of NS5A-GFP foci per cell to be counted (Figure 4.9, B). Approximately ten cells 

were counted for each construct and the average number of foci per cell was 

calculated. This analysis revealed that constructs capable of producing foci 

(JFH1Poly, M2Poly and M5Poly) gave similar numbers of foci (116-128 foci per cell). 

Mutants that impaired foci formation (M4Poly and M8Poly) had a lower number of foci 

per cell (82 and 90 foci respecitively). (Figure 4.9, B). M13Poly and JFH1PolyΔ4B 
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Figure 4.9 The NS4B C-terminus influences NS5A-GFP localisation to foci 
and the number of foci in cells

Huh-7 cells were transfected with JFH1Poly, JFH1Poly∆4B and each JFH1Poly NS4B mutant. 16-20 
hours post-transfection, cells were fixed and NS5A-GFP was visualised directly. [A] At least 250 
cells were observed for each construct and scored into a category dependent on NS5A-GFP 
localisation: (i) NS5A-GFP localised predominantly to the ER (top, left panel) (ii) NS5A-GFP 
localised predominantly to foci (top, right panel). Cells in each category are expressed as a 
percentage of the total number counted for each construct. [B] The number of foci were counted 
in approximately 10 cells per construct and the averages are shown. Error bars represent 
standard errors.
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Figure 4.10 The NS4B C-terminus influences NS5A-GFP mobility

Huh-7 cells transfected with [A] GFP-DNase-X, JFH1Poly and JFH1Poly∆4B or [B] each NS4B 
mutant were analysed by FRAP at 16-20 hours post-transfection. Selected areas of 38µm  were 
bleached using 100% laser power and recovery within these regions was monitored for two 
minutes at 2% laser power. Values are expressed as a percentage of the pre-bleach value. Error 
bars have been removed for clarity.
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only produced 29 and 59 foci per cell respectively in this assay, confirming the 

impaired ability of these mutants to generate foci.  

Taken together, these results indicated that amino acids N206 (M4), E226 (M8) 

and particularly W251 (M13) were important for the ability of NS4B to generate foci 

and for the incorporation of NS5A at these sites. In contrast, residues G196 (M2) 

and F211 (M5) were apparently unimportant for these functions.  

 

4.4.3 The NS4B-C-terminus Influences NS5A Mobility  

In the previous chapter, it was found that the NS5A-GFP fusion protein was more 

mobile on the ER membrane compared to when it was localised at foci (see 

Section 3.3). Furthermore, the presence of NS4B was responsible for NS5A-GFP 

distributing to foci, lowering mobility of the fusion protein in the process (see 

Sections 3.4.2 and 3.4.3). Given that NS5A-GFP mobility was measurably different 

in the presence and absence of NS4B and since three of the five non-replicating 

NS4B mutants were able to reduce the amount of NS5A-GFP located at foci, 

NS5A-GFP mobility was examined when expressed from these mutants. Cells 

harbouring JFH1Poly, JFH1PolyΔ4B and each JFH1Poly NS4B mutant were examined 

by FRAP analysis at 16-20 hours post-transfection (Figure 4.10, A and B). FRAP 

was also conducted on cells transfected with GFP-DNase-X, which served as a 

positive control for mobility. NS5A-GFP fluorescence was bleached to 18% - 23% 

in all cases, compared with pre-bleach values. In agreement with earlier results 

(see Section 3.4.3), NS5A-GFP fluorescence recovery over a two-minute period 

was greater in cells expressing JFH1PolyΔ4B (52%) compared to those harbouring 

JFH1Poly (37%), which expressed the entire NS3-NS5B coding region (Figure 4.10, 

A). Upon examination of cells expressing the NS4B mutants, it was evident that 

mutants M2Poly and M5Poly, which did not affect foci formation, also had little impact 

on NS5A-GFP mobility and the fusion protein expressed from these mutants 

recovered to 30% and 38% respectively (Figure 4.10, B). These rates of recovery 

were comparable to that seen with JFH1Poly. However, mutants that caused a loss 

of foci formation in cells (M4Poly and M8Poly) exhibited increased NS5A-GFP 

mobility and FRAP analysis revealed fluorescence recoveries of 46% and 43% 

respectively when expressed from these mutants (Figure 4.10, B). Most strikingly, 

NS5A-GFP expressed from M13Poly recovered to 51%, comparable to the recovery 

displayed by JFH1PolyΔ4B (Figure 4.10, A and B).  
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Figure 4.11 The NS4B C-terminus Influences NS5A-GFP phosphorylation

Lysates from cells transfected with JFH1Poly and each NS4B mutant were analysed by Western 
blot at 16-20 hours post-transfection. The membrane was probed with NS5A antisera. The 
hyper- (closed circles) and hypo- (open circles) phosphorylated species of NS5A are indicated. 
Wild-type (black circle) and diminished (grey circle) levels of hyperphosphorylated NS5A are also 
shown. The gels are different exposures from the same Western blot. 
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The FRAP analysis results revealed that NS5A-GFP fluorescence recovery 

correlates with the ability of each mutant to form foci; foci-forming mutants (M2Poly 

and M5Poly) displayed a low level of fluorescence recovery, while mutants 

incapable of forming foci (M13Poly) exhibited recovery values comparable to when 

NS4B was absent from the polyprotein. 

 

4.4.4 The NS4B C-terminus Influences Hyperphosphorylation of 

NS5A 

NS5A exists as two phosphorylated species of 56kDa (hypophosphorylated NS5A) 

and 58kDa (hyperphosphorylated NS5A, Tanji et al., 1995), and previous work has 

shown that the presence of NS4B is essential for NS5A hyperphosphorylation 

(Koch & Bartenschlager, 1999, Neddermann et al., 1999). This requirement for 

NS4B was confirmed by comparing NS5A-GFP expressed from JFH1Poly and 

JFH1PolyΔ4B, where hyperphosphorylation was not detected in the absence of 

NS4B (see Section 3.4.3). In light of this observation, NS5A-GFP phosphorylation 

was examined in cells expressing each non-replicating NS4B mutant (Figure 

4.11). Western blot analysis of NS5A-GFP expressed from M2Poly and M5Poly 

confirmed that the fusion protein was detected as two bands, presumed to be the 

hypo- and hyperphosphorylated species (Figure 4.11). The Western blot profile of 

these two mutants was indistinguishable from that seen with JFH1Poly. However, 

the abundance of the hyperphosphorylated form of NS5A-GFP was decreased for 

M4Poly and M8Poly, where a seemingly greater amount of the hypophosphorylated 

form was detected. Furthermore, the hyperphosphorylated species of NS5A-GFP 

was not detected in cells harbouring M13Poly (Figure 4.11).  

Taken together with the mobility data and examination of foci formation, these 

results establish a correlation between NS5A localisation, mobility and 

phosphorylation, and also reveal that amino acids within the C-terminus of NS4B 

can influence these characteristics. The results from this chapter are summarised 

in Figure 4.12.        

   

4.5 Discussion 

The hydrophobic nature of NS4B has restricted structural studies on the protein 

and consequently, predictive analysis has been an important tool for identifying 

structured regions within NS4B. Such analyses have predicted several important 
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Figure 4.12 Summary of the characteristics of the mutants at the C-terminus of NS4B 

A schematic representation of the NS4B C-terminus is shown. Region 1 (highly conserved), Region 2 (less conserved compared to Region 1), the positions of both 
predicted helices (H1 and H2) and the locations of the 15 mutations are depicted. Invariant amino acids are denoted by an asterisk and are numbered with respect to the 
N-terminal end of NS4B. Mutations that did not effect (green), attenuated (orange) or abolished (red) replication are highlighted. Results with the five non-replicating NS4B 
mutants are also summarised. 

+/-

* * * * * * * * *
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features, including the four TMDs in the central portion of the protein (Hugle et al., 

2001, Lundin et al., 2003). However, only one study has examined the presence of 

putative structured regions within the C-terminal region of NS4B (Welsch et al., 

2007). The results in this chapter represent an attempt to gain a greater insight 

into the C-terminal region of NS4B by utilising conservation studies, protein 

structure prediction and mutagenic analyses.  

An alignment of 141 HCV sequences revealed that the C-terminus of NS4B could 

be broadly divided into two segments; Region 1 (36 amino acids, 58% of which 

were invariant) and Region 2 (34 amino acids, 29% of which were invariant, 

(Figure 4.1, A). These different levels of conservation suggest that the first half of 

the NS4B C-terminus is under a high level of selective pressure, possibly 

indicating an important function for this region in the HCV life cycle. Indeed, four of 

the five mutations that abolished HCV replication targeted amino acids within 

Region 1, three of which were invariant (Figures 4.12). It is therefore possible that 

Region 1 makes a greater contribution to viral RNA replication compared to 

Region 2. By contrast, only one mutation within Region 2 (W251A, M13) abolished 

replication (Figure 4.5, C). The sequence alignment data revealed that this Trp 

residue was invariant across HCV genotypes and a previous report has shown it to 

be critical for replication of genotype 1b HCV replicons (Lindstrom et al., 2006). 

Therefore this residue is likely to be essential for genome synthesis in all strains of 

HCV. In the same study, N254 was identified as important for the replication and 

mutation of this Asn to Asp resulted in decreased RNA replication (Lindstrom et 

al., 2006). The amino acid at position 254 is not fully conserved and is replaced by 

Thr in JFH1 (Figure 4.1, A). Interestingly, mutation of this residue to Ala (M14) in 

our mutagenic study had no effect on HCV RNA replication (Figure 4.5, C). 

Analysis of the HCV sequences used for alignment revealed that other amino 

acids occurred naturally at this position and it is therefore likely that Thr, Ala and 

Asn are all compatible with functional NS4B in viral replication. In contrast, Asp is 

an acidic amino acid that may alter the conformation of the C-terminus and 

thereby block the function of NS4B.  

Protein structure prediction analysis of the JFH1 NS4B C-terminus predicted two 

α-helical elements (termed H1 and H2, Figure 4.1, B) and the positions of these 

helices correlated with those predicted previously (Welsch et al., 2007). H1 was 

predicted to reside within the highly conserved Region 1, while H2 encompassed 

the majority of the more variable Region 2. Data from the alignment of HCV 

sequences revealed that 69% of the residues constituting H1 were invariant, 
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compared to only 30% of those within H2. Interestingly, both mutations introduced 

into H1 (N206A, M4 and F211A, M5) abolished replication, whereas only one of 

the five mutations introduced into H2 (W251A, M13) had this effect (Figure 4.5, A 

and C). These results imply that H1 may be critical as a structural element for 

NS4B function, whereas H2 is more genetically flexible. Confirmation of the 

existence of these helices and any additional insight into their function warrants 

further study. 

NS4B possesses the intrinsic ability to re-arrange cellular ER membranes into 

structures that permit assembly of complexes capable of replicating viral RNA 

(Egger et al., 2002, Gosert et al., 2003, Mottola et al., 2002). These altered 

membranes are thought to be analogous to foci, small punctate structures on the 

ER membrane that contain replicase components including NS proteins 

(Moradpour et al., 2004b, Mottola et al., 2002), viral RNA (El-Hage & Luo, 2003, 

Gosert et al., 2003, Targett-Adams et al., 2008a) and several documented host 

cell factors critical to replication. Therefore, the ability of each non-replicating 

NS4B mutant to induce foci was investigated. Expressing NS4B proteins in 

isolation from each mutant resulted in the production of foci that were 

indistinguishable from those produced by a wt protein (Figure 4.7, A and B). 

However, expressing mutant NS4B sequences in the context of a polyprotein 

highlighted differences in the foci-forming characteristics of the mutants (Figure 

4.8, A-C). The reason for this discrepancy in results is unclear. One possibility is 

that the presence of the other NS proteins may be required in order for NS4B to 

form interactions essential for authentic foci generation. Indeed, direct interactions 

between NS4B and NS3, NS4A and NS5A have been demonstrated in the past 

(Dimitrova et al., 2003, Gao et al., 2004) and it is thought that NS4B can form 

complexes with NS5B via its interaction with NS5A (Gao et al., 2004). Therefore, 

the ‘foci’ seen when expressing NS4B in the absence of the other NS proteins may 

not represent functional replicase units but rather aggregates of NS4B protein. The 

fact that the properties of NS4B seemingly differ depending on the context of its 

expression means that examining HCV proteins expressed as part of a polyprotein 

is likely to increase the relevance of the results obtained, especially since NS4B 

would be expressed in this manner during HCV infection.  

C-terminal residues N206 (M4), E226 (M8) and particularly W251 (M13), were 

integral to the foci-forming ability of NS4B (Figure 4.8, B and C). Furthermore, loss 

of these foci resulted in changes to NS5A-GFP mobility and phosphorylation 

(Figures 4.10, B and 4.11). Results presented previously revealed that NS5A is 
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more mobile on the ER membrane compared to when localised to foci (see 

Section 3.3), suggesting that NS5A possesses a more rigid association with foci. 

This hypothesis is strengthened by the fact that NS4B mutations resulting in a loss 

of foci also increased the mobility of NS5A-GFP.  NS5A is phosphorylated on 

multiple Ser and Thr residues and exists as hypo- and hyperphosphorylated forms 

(Tanji et al., 1995). Although the functional importance of both forms is unclear, 

reduction of the hyperphosphorylated form of NS5A increases RNA replication in 

genotype 1 SGRs (Appel et al., 2005b, Neddermann et al., 2004), yet decreases 

virion assembly and release of HCVcc (Tellinghuisen et al., 2008a). Hence, it has 

been proposed that the phosphorylation status of NS5A may act as a switch 

between genome synthesis and the latter stages of the virus life cycle (Evans et 

al., 2004b). Hyperphosphorylation of NS5A requires expression of the protein from 

a RNA molecule encoding an intact NS3-NS5A polyprotein (Koch & 

Bartenschlager, 1999, Neddermann et al., 1999). In agreement with these reports, 

removal of NS4B from a polyprotein resulted in loss of the hyperphosphorylation of 

NS5A-GFP (see Section 3.4.3). Furthermore, there was a correlation between the 

ability of NS4B to form foci and the hyperphosphorylation of NS5A, where 

prevention of foci formation (W251A, M13) resulted in a loss of NS5A-GFP 

hyperphosphorylation (Figure 4.11). These results suggest that 

hyperphosphorylation of NS5A can only occur when foci are correctly formed and 

that replication at these sites is not required for this process. It is possible that RCs 

formed by functionally intact NS4B results in the increased contact of NS5A with 

cellular kinases such as CKII-α (Quintavalle et al., 2006 and 2007). Hence, NS5A 

hyperphosphorylation may only occur within intact RCs. Alternatively, NS5A may 

be hyperphosphorylated in the cytoplasm but protection from cellular 

phosphatases may only be offered when the protein is localised to intact RCs. 

Such a scenario could be possible, since the contents of RCs have previously 

been shown to be protected from both protein and RNA degradation (Aizaki et al., 

2004, El-Hage & Luo, 2003, Yang et al., 2004).          

Aside from providing an environment for replication to occur, any additional 

contributions of NS4B to viral replication are poorly understood. Importantly, the 

mutational analysis presented here identified two mutations, G196A (M2) and 

F211A (M5), that abolished replication yet had no effect on the ability of NS4B to 

form RCs on the ER membrane (Figure 4.8, A). Furthermore, the localisation, 

mobility and phosphorylation of NS5A were all unaffected by mutation of these two 

residues (Figures 4.10 and 4.11). This result possibly indicates that NS4B 
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contributes a further undefined function to the synthesis of viral genomes, beyond 

the induction of membranous changes. Alternatively, it cannot be ruled out that the 

foci induced by these mutant proteins could be altered in a manner too subtle to 

be detected by the microscopy studies used here.   
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5 Trans-Complementation Studies Utilising NS4B and 

NS5A Mutant SGRs 

 

5.1 Introduction    

In order to gain insight into the functional organisation of HCV RCs and their 

components, trans-complementation assays utilising defective and helper SGRs 

have been established (Appel et al., 2005a, Tong & Malcolm, 2006). These assays 

have shown that NS5A can be complemented in trans, whereas replication cannot 

be restored to SGRs containing deleterious mutations within the NS3, NS4B or 

NS5B coding regions (Appel et al., 2005a, Evans et al., 2004a, Tong & Malcolm, 

2006). These data imply that the majority of the NS proteins must be derived from 

the same polyprotein in order to function, or that they are incapable of exchange 

between RCs. Such a scenario is plausible, since NS3 (via NS4A), NS4B and 

NS5B are tightly anchored to the ER by hydrophobic domains, possibly restricting 

their mobility (Ivashkina et al., 2002, Lundin et al., 2003, Wolk et al., 2000). In 

contrast, NS5A associates with the ER post-translationally via an N-terminal 

amphipathic α-helix (Brass et al., 2002) and therefore may have a looser 

association with membranes that facilitates its transfer between sites of replication 

(Appel et al., 2005a). 

Previous studies investigating trans-complementation of HCV proteins were 

performed using stable cell lines and genotype 1 SGRs harbouring CCAMs (Appel 

et al., 2005a, Evans et al., 2004a, Tong & Malcolm, 2006), which replicate poorly 

in comparison to SGRs derived from JFH1 (Kato et al., 2003, Targett-Adams & 

McLauchlan, 2005). Furthermore, a limited set of mutations were tested for each 

NS protein, particularly in the case of NS4B (Appel et al., 2005a, Tong & Malcolm, 

2006). Thus, it was possible that trans-complementation of NS proteins other than 

NS5A may be detected using an expanded set of mutants in the context of a JFH1 

SGR. 

To test this hypothesis, trans-complementation of NS4B was re-examined using 

the five non-replicating luc-JFH1GFP mutants harbouring mutations within the C-

terminus of NS4B that were deleterious for RNA replication.  
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5.2 Non-Replicating NS4B Mutant SGRs can be Complemented 

in trans 

Results in the previous chapter revealed that SGRs containing five of the 15 NS4B 

mutants (M2, M4, M5, M8 and M13) were incapable of replicating when 

electroporated into Huh-7 cells. To determine whether replication of these mutants 

could be restored by the presence of functional NS4B, RNA from each mutant 

(luc-M2GFP, luc-M4GFP, etc) was electroporated into Huh-7 cells with (Figure 5.1, C) 

or without (Figure 5.1, B) helper RNA encoding neo-JFH1 and luciferase activity 

was measured over 72 hours. The ability to trans-complement defective replicons 

has been investigated previously by co-electroporating SGRs in this manner 

(Evans et al., 2004a). Neo-JFH1 is a SGR analogous to luc-JFH1 but harbours a 

selectable antibiotic resistance marker in place of the luciferase gene (Figure 5.1, 

A). Therefore, any detected luciferase activity in this assay would result from 

replication of the NS4B mutant RNA rather than the neo-JFH1 helper RNA. Cells 

were also electroporated with RNA encoding luc-JFH1GFP and luc-JFH1GFPGND 

along with neo-JFH1 to provide positive and negative controls respectively.  

Upon introduction of mutant RNA into cells in the absence of neo-JFH1 helper 

RNA, luciferase values from each of the five NS4B mutants declined almost as 

rapidly as for the GND control; these data are in agreement with the results in 

Chapter 4 and indicate that the mutants were incapable of replicating in Huh-7 

cells (Figure 5.1, B). In contrast, luciferase levels from luc-JFH1GFP increased over 

the 72-hour time period. Interestingly, luc-JFH1GFP displayed a different pattern of 

luciferase activity when introduced simultaneously with RNA from neo-JFH1; 

enzyme activity remained at similar levels up to 48 hours and then declined by 72 

hours (Figure 5.1, C). This result suggested that luc-JFH1GFP replication was 

partially attenuated in the presence of the second SGR, neo-JFH1. Competition 

between SGRs has been identified previously and the presence of one replicon 

has been demonstrated to reduce the capacity of a second to replicate (Evans et 

al., 2004a). Hence, it was possible that luc-JFH1GFP replication was lowered due to 

competition from the neo-JFH1 SGR. Among the mutants, luciferase values from 

luc-M2GFP, luc-M8GFP and luc-M13GFP at 72 hours post-electroporation were higher 

compared to luc-M4GFP, luc-M5GFP and the GND control (Figure 5.1, C). However, 

since attenuation of these mutants by neo-JFH1 may occur in a similar manner to 

that for luc-JFH1GFP, trans-complementation was assessed in an alternative 

system.  
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Figure 5.1 Transient trans-complementation of non-replicating NS4B 
mutant SGRs 

[A] Schematic representation of the non-replicating NS4B mutant SGRs (M2, M4, M5, M8 and 
M13, top) and the helper SGR, Neo-JFH1 (bottom). Each NS4B mutant contains the luciferase 
reporter gene and encodes the NS5A-GFP fusion protein. Neo-JFH1 encodes the Neo gene and 
an untagged NS5A protein. RNA from luc-JFH1GFP, luc-JFH1GFPGND and each NS4B mutant 
(luc-M2GFP, luc-M4GFP, etc) was [B] electroporated into Huh-7 cells [C] co-electroporated with 
RNA encoding Neo-JFH1 into Huh-7 cells. Cells were lysed at 4, 24, 48 and 72 hours post-
electroporation and extracts assayed for luciferase activity. All assays were performed in 
duplicate and average values are shown for each experiment. Error bars represent the range of 
the values recorded at each time point. 
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Trans-complementation of the five non-replicating NS4B mutants was next 

attempted by electroporating RNA into 2/1 cells, a Huh-7 cell line that 

autonomously replicates the neo-JFH1 SGR. In this situation, the helper RNA is 

already present in cells and is not introduced simultaneously with the mutant 

RNAs, as with the previous system. 2/1 cells were also electroporated with RNA 

from luc-JFH1GFP and luc-JFH1GFPGND and luciferase activity was assessed over 

72 hours.  

In contrast to results from the previous assay, luciferase values from luc-JFH1GFP 

in 2/1 cells were approximately 50-fold higher by 72 hours compared to the 4-hour 

time point, indicating that efficient replication occurred in the presence of the 

helper RNA (Figure 5.2, B). A decrease in luciferase activity was observed over 

the first 24 hours in 2/1 cells harbouring each NS4B mutant. However, luc-M2GFP 

and luc-M8GFP exhibited increases in luciferase levels between 24 and 72 hours, 

indicating partial restoration of replication for these mutant SGRs (Figure 5.2, B). 

Luc-M13GFP also displayed an increase in enzyme activity, although this was 

delayed to between 48 and 72 hours. In contrast, luciferase levels provided no 

evidence of replication for luc-M4GFP, luc-M5GFP or the GND control (Figure 5.2, B). 

By 72 hours post electroporation, luciferase levels for luc-M2GFP and luc-M8GFP 

were approximately 100-fold lower compared to luc-JFH1GFP and enzyme activity 

from luc-M13GFP was more than 3500-fold lower. However, these levels were 

significantly greater than the values obtained with luc-M4GFP, luc-M5GFP and luc-

JFH1GFPGND, which all gave luciferase values in excess of 30000-fold lower by 72 

hours compared to luc-JFH1GFP. Therefore, luc-M2GFP, luc-M8GFP and to a lesser 

extent, luc-M13GFP, were considered capable of a low level of trans-

complementation. 

To confirm that the partial restoration of luciferase activity for three of the five non-

replicating NS4B mutants was also reflected in rises in HCV protein expression, 

2/1 cells electroporated with each mutant RNA were fixed at 72 hours and 

examined for the presence of NS5A-GFP. Since the SGR present in 2/1 cells 

encodes a wt NS5A protein, any detected NS5A-GFP would confirm expression 

from the input mutant RNA (Figure 5.2, C). Cells were stained also for NS5A that 

would be produced by neo-JFH1. NS5A was detected in a high proportion of the 

2/1 cells, representing expression by the autonomously replicating neo-JFH1 

SGR. However, for cells electroporated with luc-JFH1GFP, luc-M2GFP and luc-

M8GFP, NS5A-GFP was also visualised (Figure 5.2, C, white arrowheads and 

shown enlarged in D). A low proportion of cells expressing NS5A-GFP was evident 
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Figure 5.2 Non-replicating NS4B mutant SGRs can be trans-complemented

[A] Schematic representation of the non-replicating NS4B mutant SGRs (M2, M4, M5, M8 and 
M13, top) and the helper SGR, which replicates auntomously within the 2/1 cell line (bottom). 
Each NS4B mutant contains the luciferase reporter gene and encodes the NS5A-GFP fusion 
protein. The 2/1 helper SGR encodes the Neo gene and wt NS5A.  [B] RNA from luc-JFH1GFP, 
luc-JFH1GFPGND and each NS4B mutant (luc-M2GFP, luc-M4GFP, etc) was electroporated into  2/1 
cells. Cells were lysed at 4, 24, 48 and 72 hours post-electroporation and extracts assayed for 
luciferase activity. All assays were performed in duplicate and average values are shown for each 
experiment. Error bars indicate the range of the values recorded at each time point. [C]  Cells 
electroporated in parallel to those described in [B] were fixed at 72 hours post-electroporation and 
NS5A was visualised using NS5A antisera. Cells were also stained with DAPI and NS5A-GFP 
was visualised directly. The detection of NS5A-GFP indicated replication of the NS4B mutant 
SGR and cells with this phenotype are indicated (white arrowheads) and shown in closer detail in 
[D]. Scale bars represent 10µm.
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Figure 5.3 A Ser to Ile change at amino acid 232 abolishes luc-JFH1 
replication

[A] Schematic representation of the luc-JFH1S232I replicon, with the position of the S232I 
mutation within NS5A depicted beneath. luc-JFH1S232I contains the luciferase reporter gene and 
encodes an untagged NS5A protein. [B] RNA from luc-JFH1, luc-JFH1-GND, luc-JFH1S232I and 
luc-JFH1S232IRev was electroporated  into Huh-7 cells. Cells were lysed at 4, 24, 48 and 72 
hours post-electroporation and extracts assayed for luciferase activity. All assays were performed 
in duplicate and average values are shown for each experiment. Error bars indicate the range of 
the values recorded at each time point.  
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for luc-M2GFP and luc-M8GFP in comparison to luc-JFH1GFP, most likely as a 

consequence of the decreased replication efficiency of these mutants as indicated 

by luciferase measurements. NS5A-GFP could not be detected in cells expressing 

luc-M4GFP, luc-M5GFP, the GND control or luc-M13GFP, despite this mutant 

displaying a slight increase in replication by 72 hours (Figure 5.2, C). However, it 

is probable that this level of replication was too low for visualisation of NS5A-GFP.  

Taken together, the results revealed that the replication of some, but not all SGRs 

harbouring mutations within the NS4B coding region could be rescued by the 

presence of a replicating helper RNA, most likely through trans-complementation 

of NS4B.  

 

5.3 A Non-Replicating NS5A Mutant SGR can be 
Complemented in trans 

In the previous chapter, it was demonstrated that the processes of foci formation 

and NS5A hyperphosphorylation were linked, and NS4B mutants that were 

compromised in their ability to create foci only produced the basally 

phosphorylated species of NS5A. Originally, we sought to determine whether 

phosphorylation acted as a determinant of NS5A localisation, where 

hyperphosphorylation might result in the trafficking of NS5A to foci. To explore this 

hypothesis, a Ser to Ile change at amino acid 232 was introduced into the NS5A 

coding region of luc-JFH1 by site directed mutagenesis, since introduction of the 

same mutation into a genotype 1b strain Con1 SGR (referred to as amino acid 

2204 in Lohmann et al., 2001) reduced the level of hyperphosphorylated NS5A. 

This SGR was called luc-JFH1S232I (Figure 5.3, A). Surprisingly, electroporation of 

RNA from luc-JFH1S232I into Huh-7 cells resulted in luciferase levels that followed 

the same pattern as those observed for luc-JFH1-GND, indicating that luc-

JFH1S232I was incapable of replicating (Figure 5.3, B). Construction of a revertant 

(termed luc-JFH1S232IRev) confirmed that this single amino acid change was 

sufficient to completely abolish replication, since reversion of the Ile to Ser at 

position 232 resulted in RNA replication that paralleled luc-JFH1 (Figure 5.3, B). 

Therefore, luc-JFH1S232I represented a non-replicating SGR. 

NS5A is capable of trans-complementation and the replication of SGRs containing 

mutations within its coding region can be restored in the presence of functional 

NS5A supplied by a helper RNA (Appel et al., 2005a, Tong & Malcolm, 2006). To 
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Figure 5.4  luc-JFH1S232I RNA replication can be trans-complemented

[A] Schematic representation of the luc-JFH1S232I replicon (top) and the helper SGR, which 
replicates autonomously within the 2/1 cell line (bottom). luc-JFH1S232I contains the luciferase 
reporter gene, while the 2/1 helper SGR encodes the Neo gene. Both SGRs harbour untagged 
NS5A proteins. [B] RNA from luc-JFH1, luc-JFH1-GND and luc-JFH1S232I was electroporated  
into 2/1 cells. Cells were lysed at 4, 24, 48 and 72 hours post-electroporation and extracts were 
assayed for luciferase activity. All assays were performed in duplicate and average values are 
shown for each experiment. Error bars represent the range of the values recorded at each time 
point. 
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determine whether replication of luc-JFH1S232I could be restored in the same 

manner, luc-JFH1S232I was electroporated into 2/1 cells and luciferase activity was 

measured over 72 hours (Figure 5.4, B). In 2/1 cells, luc-JFH1S232I exhibited 

luciferase values at the 72-hour time point that were only four-fold lower than 

those displayed by luc-JFH1 (Figure 5.4, B). In contrast, no increases in luciferase 

activity were observed in 2/1 cells electroporated with luc-JFH1-GND. This result 

indicated that replication of the luc-JFH1S232I SGR could be restored in the 

presence of the functional SGR present in 2/1 cells, presumably by trans-

complementation of NS5A. 

 

5.4 Reconstitution of Replication from Non-Replicating NS4B 
and NS5A Mutant SGRs 

5.4.1 Detection of NS4B Mutant SGR Replication 

The results described thus far confirmed that a functional helper RNA could rescue 

the replication of SGRs harbouring mutations in both NS4B and NS5A. We next 

sought to determine whether the replication of each NS4B mutant could be trans-

complemented using a helper RNA harbouring the deleterious S232I mutation 

within NS5A (Figure 5.5, A). Huh-7 cells were co-electroporated with neo-

JFH1S232I and each NS4B mutant (luc-M2GFP, luc-M4GFP, etc) and luciferase 

activity was recorded over 72 hours (Figure 5.5, B). Interestingly, luciferase levels 

increased between 24 and 72 hours post-electroporation for luc-M2GFP, luc-M8GFP 

and luc-M13GFP, indicating that replication was partially restored for these mutants. 

Trans-complementation had previously been demonstrated for these three 

mutants using a functional helper SGR in 2/1 cells (Figure 5.2, B). Here however, 

trans-complementation seemed more efficient, and luciferase levels were 40-fold 

(luc-M2GFP), 33-fold (luc-M8GFP) and 85-fold (luc-M13GFP) lower than those 

exhibited by luc-JFH1GFP by 72 hours (Figure 5.5, B). Again, luc-M4GFP, luc-M5GFP 

and the GND control exhibited decreases in luciferase levels over the time course, 

confirming that these mutants could not be rescued by trans-complementation. 

To confirm that replication was restored in cells containing two non-functional 

SGRs, cells set up in parallel to those described above were examined for the 

presence of NS5A-GFP and dsRNA (Figure 5.5, C). Each NS4B mutant encodes 

NS5A-GFP, thus detection of the fusion protein would indicate replication of the 

mutant SGR. Similarly, the detection of dsRNA would confirm that active 
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Figure 5.5 Reconstitution of replication from non-replicating NS4B and 
NS5A mutant SGRs

[A] Schematic representation of the non-replicating NS4B mutant SGRs (M2, M4, M5, M8 and 
M13, top) and the defective 'helper' Neo-JFH1S232I SGR, which itself cannot replicate (bottom). 
Each NS4B mutant contains the luciferase reporter gene and encodes the NS5A-GFP fusion 
protein, whereas Neo-JFH1S232I encodes the Neo gene and an untagged NS5A protein. [B] RNA 
from luc-JFH1GFP, luc-JFH1GFPGND and each NS4B mutant (luc-M2GFP, luc-M4GFP, etc) was co-
electroporated with RNA encoding neo-JFH1S232I into Huh-7 cells. Cells were lysed at 4, 24, 48 
and 72 hours post-electroporation and extracts were assayed for luciferase activity. All assays 
were performed in duplicate and average values are shown for each experiment. Error bars 
represent the range of the values recorded at each time point. [C] Cells electroporated in parallel 
to those in [B] were fixed at 72 hours post-electroporation and dsRNA was visualised using J2 
antibody. Cells were also stained with DAPI and NS5A-GFP was visualised directly. Scale bars 
represent 10µm.
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replication had occurred. Upon examination of cells, both NS5A-GFP and dsRNA 

were present in cells co-electroporated with luc-JFH1GFP and neo-JFH1S232I, 

consistent with the increase in luciferase activity seen over 72 hours with this 

construct (Figure 5.5, C). In contrast, neither NS5A-GFP nor dsRNA could be 

visualised in cells containing a combination of luc-M4GFP, luc-M5GFP and neo-

JFH1S232I RNAs. However, NS5A-GFP and dsRNA were observed in a low 

number (~1%) of cells co-electroporated with luc-M2GFP, luc-M8GFP and neo-

JFH1S232I, and both signals were also detected occasionally (<1% of cells) with the 

luc-M13GFP mutant (Figure 5.5, C). 

 

5.4.2 Detection of NS5A Mutant SGR Replication 

The data described above indicated that luc-M2GFP, luc-M8GFP and luc-M13GFP 

could all be trans-complemented by a non-functional helper RNA harbouring a 

deleterious NS5A mutation. This prompted an investigation into whether neo-

JFH1S232I could, in turn, be trans-complemented by the NS4B mutants. To 

examine this possibility, neo-JFH1S232I was replaced with luc-JFH1S232I, therefore 

allowing the replicative ability of this SGR to be quantified by measuring luciferase 

activity. Similarly, the luciferase gene present in the NS4B mutants (luc-M2GFP, luc-

M4GFP, etc) was replaced with the neo gene (Figure 5.6, A). Thus, the experiment 

was essentially identical to that presented in Figure 5.5, B, except measurement of 

luciferase activity would now reveal whether trans-complementation was restoring 

replication of the NS5A mutant SGR as opposed to the NS4B mutant SGRs. Each 

NS4B mutant (neo-M2GFP, neo-M4GFP, etc) was co-electroporated into cells along 

with luc-JFH1S232I and luciferase activity was monitored over 72 hours (Figure 5.6, 

B). Interestingly, luciferase levels expressed from luc-JFH1S232I increased between 

48 and 72 hours when electroporated into cells with neo-M2GFP, neo-M8GFP and 

neo-M13GFP (Figure 5.6, B). In contrast, luc-JFH1S232I could not replicate when 

combined with neo-M4GFP, neo-M5GFP or when introduced individually into cells.  

The results presented in Section 5.4.1 indicate that the replication of S232I leads 

to production of functional NS4B that can trans-complement M2, M8 and M13, 

restoring their replicative ability. In turn, data shown in this section suggest that the 

functional NS5A-GFP protein from M2, M8 and M13 can trans-complement the 

non-replicating S232I mutant, restoring its capacity to replicate. Taken together, 

the conclusion from these experiments is that NS4B and NS5A mutant SGRs are 

mutually dependent for their replication.  
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Figure 5.6 Trans-complementation of a defective SGR with a NS5A 
mutation by non-replicating SGRs expressing mutant NS4B

[A] Schematic representation of the non-replicating luc-JFH1S232I SGR (top) and the defective 
'helper' NS4B mutant SGRs (M2, M4, M5, M8 and M13), which themselves cannot replicate 
(bottom). Each NS4B mutant contains the Neo gene and encodes the NS5A-GFP fusion protein, 
whereas Neo-JFH1S232I encodes the luciferase reporter gene and an untagged NS5A protein. [B] 
RNA from luc-JFH1GFP and luc-JFH1S232I was co-electroporated with RNA encoding each NS4B 
mutant  (Neo-M2GFP, Neo-M4GFP, etc) into Huh-7 cells. Cells were lysed at 4, 24, 48 and 72 
hours post-electroporation and extracts were assayed for luciferase activity. All assays were 
performed in duplicate and average values are shown for each experiment. Error bars indicate 
the range of the values recorded at each time point.
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Figure 5.7 Generation of cell lines from non-replicating NS4B and NS5A 
mutant SGRs

Huh-7 cells were co-electroporated with RNA from Neo-JFH1S232I and either Neo-M2GFP or Neo-
M8GFP, before being passaged for several weeks in the presence of G418. Cells were fixed and 
NS5A-GFP was visualised directly along with [A] NS5A, using NS5A antisera or [B] dsRNA, 
using J2 antibody. Cells were also stained using DAPI. In [A], cells exhibiting NS5A-GFP (white 
arrowheads) and NS5A (white arrows) are depicted. Similarly in [B], cell populations harbouring 
either dsRNA alone [i], or dsRNA and NS5A-GFP [ii] are shown. Scale bars represent 10µm.
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5.4.3 Creation of a Cell Line from Non-Replicating NS4B and NS5A 

Mutant SGRs 

The above results indicate that transient replication could be reconstituted in cells 

electroporated with two non-replicating SGRs. However, it was not clear whether 

this mutual trans-complementation would sustain replication of both mutants over 

an extended period of time. Therefore, we next attempted to create cell lines 

harbouring stably replicating NS4B and NS5A mutants. The first cell line was 

generated by co-electroporating Huh-7 cells with RNA encoding neo-M2GFP and 

neo-JFH1S232I, while the second cell line contained neo-M8GFP and neo-JFH1S232I. 

Thus, each cell line would harbour two distinct SGRs; one with a non-functional 

NS4B and the other with a non-functional NS5A. A cell line utilising M13 was not 

attempted since previous results had suggested that this mutant was trans-

complemented less efficiently than M2 and M8 (Figure 5.2, B). All cells were 

permitted to grow for 72 hours post-electroporation before the addition of G418, 

since data in Sections 5.4.1 and 5.4.2 had revealed that mutant RNA replication 

had initiated by this point. G418 selection was maintained for several weeks 

before each cell line was examined by fluorescence microscopy. 

Firstly, each cell line was stained using NS5A antisera to allow detection of both 

NS5A (neo-JFH1S232I) and NS5A-GFP (neo-M2GFP and neo-M8GFP, Figure 5.7, A). 

NS5A-GFP was also visualised directly in both cell lines. After G418 selection, it 

was expected that cells would contain both the NS4B and NS5A mutants and that 

their mutual trans-complementation would sustain replication, conferring G418 

resistance to the cells. Consequently, cells should exhibit expression of both NS5A 

and NS5A-GFP. As expected, NS5A could be detected in the majority of cells from 

both cell lines. However, not all of the NS5A-positive cells visibly expressed NS5A-

GFP (Figure 5.7, A, white arrows), although a low number of cells expressing 

NS5A and NS5A-GFP were detected (Figure 5.7, A, white arrowheads). Both cell 

lines were examined for the presence of dsRNA to confirm that they produced 

replicated HCV RNA and NS5A-GFP was also visualised (Figure 5.7, B). As 

expected, both cell lines exhibited cells that contained both NS5A-GFP and 

dsRNA (Figure 5.7, B, [ii]). Once again however, cells were frequently found that 

displayed no detectable NS5A-GFP, yet exhibited a dsRNA signal (Figure 5.7, B, 

[i]). 
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Figure 5.8 Summary of the trans-complementation data for non-replicating NS4B mutant SGRs

A schematic representation of the NS4B C-terminus is shown. Region 1 (highly conserved), Region 2 (less conserved compared to Region 1), the positions of both 
predicted helices (H1 and H2) and the positions of the five mutations that abolish replication are depicted. Invariant amino acids are denoted by an asterisk and are 
numbered with respect to the N-terminal end of NS4B. Mutations that could (green) or could not be (red) trans-complemented are highlighted.  

+
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These results confirmed that cell lines could be established from the selection of 

two non-functional SGRs and the interpretation of these results will be discussed 

below. A summary of the NS4B trans-complementation data from this chapter is 

presented in Figure 5.8.  

 

5.5 Discussion 

A hallmark of positive-strand RNA viruses is their ability to rearrange internal 

cellular membranes, ultimately creating structures that are capable of supporting 

viral RNA replication (Mackenzie, 2005, Salonen et al., 2005). For HCV, these 

membrane-derived RCs have been shown to contain NS proteins and viral RNA 

that are protected from degradation by RNase or protease treatment (Aizaki et al., 

2004, El-Hage & Luo, 2003, Yang et al., 2004). These data suggest that RCs are 

enclosed structures that permit little exchange of material between the internal and 

external environments of the complex and therefore, RCs may include all 

components necessary for replication upon formation. However, RCs cannot be 

entirely enclosed since replicated viral RNA is thought to be transported to LDs for 

packaging into virus particles (Miyanari et al., 2007). 

Previous investigations into the functional organisation of HCV replicase proteins 

within RCs utilised genotype 1 SGRs harbouring CCAMs and examined the ability 

to complement non-functional NS3, NS4B and NS5A proteins (Appel et al., 2005a, 

Tong & Malcolm, 2006). It was concluded from these experiments that NS5A was 

the only HCV NS protein involved in RNA replication that can be supplied in trans. 

In the case of NS4B however, a limited set of mutants was tested for their ability to 

be complemented. The mutants tested included a single mutation at Val 186 

(referred to as 1897 in Appel et al., 2005), in addition to two large deletions 

spanning amino acids 71-110 and 194-222 (referred to as Δ1782-1821 and Δ1905-

1933 respectively in Appel et al., 2005). SGRs harbouring these large deletions or 

the Val point mutation were not complemented in trans. However, V186 is 

predicted to reside within TMD4, while the deletions would encompass the majority 

of TMDs 1 and 2 (Δ71-110) and the entirety of predicted Helix 1 within the C-

terminal domain (Δ194-222). Hence, the mutations tested would either severely 

disrupt the overall structure of NS4B, or its membrane-binding properties. 

Therefore, we re-investigated the ability to trans-complement NS4B using 

efficiently replicating JFH1-based SGRs along with the five non-replicating 

mutants that were characterised in Chapter 4. These mutants harboured single 
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amino acid changes within the C-terminus of the protein, which is predicted to 

reside on the cytosolic side of the ER and may therefore be accessible by 

functional NS4B supplied in trans. 

The results presented in this chapter show for the first time that replication can be 

at least partially restored to non-functional SGRs (M2, M8 and M13) by trans-

complementation of the NS4B protein (Figure 5.2). In contrast, M4 and M5 were 

incapable of being complemented in this manner. With no available structural data 

on the C-terminal region of NS4B, it is unclear why some NS4B mutants can be 

complemented whereas others are not. Both N206 (M4) and F211 (M5) are 

completely conserved across all HCV isolates and cannot be complemented. 

However, E226 (M8) is also invariant, yet can be complemented (Figure 5.2). 

Therefore, mutation of highly conserved amino acids is not predictive of whether 

NS4B complementation is possible. M2, M8 and M13 also exhibited varying 

effects on the ability of NS4B to form foci as well as NS5A localisation and 

phosphorylation (see Section 4.3), meaning there is no clear correlation between 

these data and the complementation results. However, it is interesting that N206 

(M4) and F211 (M5) both reside within Helix 1 (Figure 5.8), an α-helical structure 

determined by secondary structure prediction. It has been previously 

demonstrated that mutations within NS5A that abolish the amphipathic nature of 

the N-terminal α-helix results in the production of NS5A that cannot be 

complemented in trans (Appel et al., 2005a, Evans et al., 2004a). It is therefore 

tempting to speculate that a similar scenario may occur with NS4B, in which 

mutations M4 and M5 interfere with the secondary structure of Helix 1. In contrast, 

mutations within unstructured regions of NS4B (M2 and M8) can be trans-

complemented (Figure 5.8). Investigation into the structural organisation of the 

NS4B C-terminus would allow further insights into this hypothesis. 

Introduction of three non-replicating NS4B mutants and one non-replicating NS5A 

mutant into 2/1 cells led to restoration of replication, presumably due to the trans-

complementation of NS4B and NS5A respectively. However, the efficiency of 

complementation was lower for the NS4B mutants compared to that observed with 

the NS5A S232I mutant. By 72 hours post-electroporation, trans-complementation 

of NS5A restored the replication of luc-JFH1S232I to 24% compared to luc-JFH1GFP 

(using the luciferase values in Figure 5.4, B). In contrast, complementation of 

NS4B restored replication of luc-M2GFP and luc-M8GFP to only 1% compared with 

luc-JFH1GFP, and luc-M13GFP was lower still at 0.05% (using the luciferase values 
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in Figure 5.2, B). The difference between NS4B and NS5A complementation 

efficiencies may arise from differing mechanisms by which the proteins are able to 

provide their functions in trans. The membrane association of NS5A is governed 

by an N-terminal amphipathic α-helix, whereas NS4B is an integral membrane 

protein that is tightly anchored to the ER by its four TMDs (Brass et al., 2002, 

Lundin et al., 2003). It has been speculated that the looser association of NS5A 

with membranes may facilitate its exchange between distinct RCs located at 

different intracellular sites, whereas such a scenario may not arise for NS4B 

(Appel et al., 2005a). Indeed, NS4B exhibits a low level of mobility when localised 

to intracellular foci (Gretton et al., 2005). Hence, complementation of NS4B may 

occur within individual sites of viral RNA replication and we propose a model in 

which more than one genome can be incorporated into a single RC (Figure 5.9). 

Such an event may be rare and could account for the lower efficiency of NS4B 

complementation compared to NS5A. The incorporation of two distinct SGRs into 

a single RC might create a local pool of viral components, a combination of which 

could reconstitute active replication (Figure 5.9). Therefore, the replication of both 

SGRs would be mutually dependent and rely on the continuous reciprocal trans-

complementation of functional proteins from both genomes. It is unlikely that 

replication of the input mutant RNA occurs in RCs formed by the functional SGR 

already present in cells (as with 2/1 cells), since detection of replication should 

then be possible for all NS4B mutants. Similarly, SGRs harbouring the GND 

mutation within NS5B should be replicated if this were the case. Recombination 

between the two SGRs is also unlikely, since this event would be expected to 

occur with all mutants tested. 

The wt luc-JFH1GFP SGR exhibited efficient levels of replication when 

electroporated into 2/1 cells containing a replicating helper JFH1 SGR (Figure 5.2, 

B). In contrast, luc-JFH1GFP replication was partially attenuated when introduced 

into Huh-7 cells simultaneously with the same helper JFH1 SGR (Figure 5.1, C). 

These results suggest that competition occurs when two replication-competent 

SGRs are introduced simultaneously into a cell. Previous studies have shown that 

Huh-7 cells containing a replicating SGR are refractory to replication of a second 

SGR (Evans et al., 2004a). Furthermore, SGR replication efficiency is inversely 

correlated with the amount of SGR RNA introduced into a cell (Lohmann et al., 

2003).  The conclusion from both studies was that host cell components necessary 

for RC formation and/or function might be limiting in Huh-7 cells. The data 

presented in this chapter suggest SGRs introduced simultaneously into cells may 
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Figure 5.9 Proposed model for NS4B trans-complementation and 
reconstitution of active RNA replication

The translation of the two non-replicating RNA genomes results in two species of subgenomic 
polyprotein; one encoding non-functional NS4B (M2, M8 and M13, shown in green) and the other 
encoding non-functional NS5A (S232I, shown in red). The non-functional proteins in each case 
are depicted with a red cross. Alone, these SGRs are incapable of forming RCs that replicate 
viral RNA. However, co-electroporation of both SGRs into cells may result in a pool of NS 
proteins from each genome. It is possible that a combination of proteins from each SGR may be 
able to form a hybrid RC that contains functional NS4B (from the S232I SGR) and functional 
NS5A (from the M2, M8 and M13 SGRs), in addition to the other NS proteins and host cell 
factors (shown in light blue) required for viral RNA replication. These hybrid RCs would therefore 
be functional and replication of two distinct mutant genomes (shown in green and red) might 
occur within a single complex. Hence, each SGR would be mutually dependent on the other for 
replication.
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compete for limiting host cell factors involved in the formation of RCs. However, 

this competition was not observed upon introduction of an SGR into cells that 

already contained actively replicating viral RNA. This result raises at least two 

possibilities. Firstly, limiting host factors may be required for the formation of RCs 

but not the process of RNA replication. Hence, these factors would be released 

from RCs formed by the first SGR, making them available to the second SGR. 

Secondly, limiting host cell factors may be retained within formed RCs and 

therefore synthesis of these factors may have to exceed a threshold level in order 

for a second SGR to create sites capable of replicating viral RNA. Alternatively, 

2/1 cells have been shown to harbour lower levels of viral RNA compared to cells 

that have been electroporated transiently with RNA from a SGR (B. Flatley and P. 

Domingues, personal communications). It is therefore possible that excess viral 

RNA that is introduced into cells by electroporation sequesters limiting host cell 

factors and that this sequestration does not occur in 2/1 cells where a lower level 

of viral RNA is present.  

The data obtained from the cell lines harbouring non-replicating SGRs revealed 

that NS5A could be detected in the majority of cells, whereas fewer cells contained 

NS5A-GFP (Figure 5.7, A). This result was surprising, since all cells were 

expected to contain NS5A (expressed from neo-JFH1S232I) and NS5A-GFP 

(expressed from neo-M2GFP and neo-M8GFP). NS5A-GFP should trans-

complement neo-JFH1S232I, restoring replication of this SGR. In turn, replication of 

neo-JFH1S232I would provide functional NS4B that could trans-complement neo-

M2GFP or neo-M8GFP. In other words, the mutual dependency of each SGR relies 

on the presence of functional NS5A-GFP, since the untagged NS5A produced by 

neo-JFH1S232I is defective. The detection of cells expressing dsRNA (Figure 5.7, 

B) and NS5A but not NS5A-GFP could indicate that neo-JFH1S232I replicates but 

neo-M2GFP and neo-M8GFP do not. At least two possibilities could explain these 

results. Firstly, NS5A-GFP may be present in all cells replicating viral RNA but at a 

level too low to be detected by direct visualisation. This hypothesis is plausible 

since NS5A can be trans-complemented efficiently in comparison to NS4B and 

therefore a very low level of NS5A-GFP could be sufficient to restore replication of 

neo-JFH1S232I. Alternatively, the S232I mutation may have reverted, or other 

compensatory mutations within neo-JFH1S232I could have arisen. Such mutations 

could permit neo-JFH1S232I to replicate in the absence of either neo-M2GFP or neo-

M8GFP. Sequence analysis of RNA extracted from both cell lines is necessary to 

distinguish between these possibilities.     
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In HCV-infected patients, quasispecies represent a heterogeneous spectrum of 

mutant genomes that arise due to the lack of proofreading ability possessed by the 

HCV-encoded NS5B polymerase (Martell et al., 1992). The finding that replication 

can be reconstituted from non-replicating genomes (Figures 5.5 and 5.6) could 

have implications for the maintenance of quasispecies pools in infected patients. 

For example, the infection of a single hepatocyte with two non-replicating HCV 

quasispecies may result in trans-complementation and therefore the formation of 

sites active in viral RNA synthesis. Additionally, recent studies have shown that 

release of virus can be rescued by complementation of the NS2 protein (Jirasko et 

al., 2008) and furthermore, that subgenomic genomes can be packaged by 

supplying the HCV structural proteins in trans (Ishii et al., 2008, Steinmann et al., 

2008). Therefore, trans-complementation may provide a mechanism to permit 

replication and packaging of quasispecies that harbour deleterious mutations. A 

further understanding of the interactions between distinct HCV genomes, detailing 

which mutations can and cannot be trans-complemented, may provide further 

insight into the replication strategies of quasispecies within infected patients. 
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6 NS4B Influences the Production of Infectious Virus 

Particles 

 

6.1 Introduction 

It has become increasingly apparent that the HCV NS proteins do not function 

solely in viral RNA replication but are also engaged in virus production. Assembly 

of viral particles is thought to initiate at LDs, intracellular storage sites for 

triacylglycerols and cholesterol esters (Miyanari et al., 2007). The viral capsid is 

composed of HCV core protein (see Section 1.2.2.2), whose association with LDs 

is critical for the production of infectious virus progeny (Boulant et al., 2007, 

Shavinskaya et al., 2007, Targett-Adams et al., 2008b). However, the recruitment 

of both NS proteins and viral RNA by core to LDs requires NS5A and disruption of 

NS5A-core association leads to a severe decline in infectious particle production 

(Masaki et al., 2008, Miyanari et al., 2007).  Furthermore, the helicase domain of 

NS3 is important for a pre-assembly step in virus production that is independent of 

its role in viral replication (Ma et al., 2008). Thus, NS proteins such as NS5A and 

NS3 do not solely facilitate RNA replication but extend their roles to the latter 

stages of the virus life cycle. 

To date, no role for the NS4B protein in virus production has been established. 

Therefore, our aim was to determine whether mutations within the NS4B C-

terminus, which did not affect replication, had any influence on the production of 

infectious HCV particles.  

 

6.2 TCID50 Analysis of JFH1 Mutants Harbouring Mutations 
Within the C-terminus of NS4B 

The mutagenic screen of the NS4B C-terminus had revealed 10 mutant SGRs that 

retained their ability to replicate viral RNA (see Section 4.3.1). Eight of these 

mutants (M1, M6, M7, M9, M10, M12, M14, M15) replicated to levels equivalent to 

a wt SGR and two mutants (M3 and M11) exhibited attenuated RNA replication, as 

judged by luciferase assay. To determine whether NS4B influenced virion 

production, each mutation was introduced into JFH1, a cDNA construct 

encompassing the entire viral genome that is capable of producing infectious virus 

particles (Wakita et al., 2005, Zhong et al., 2005). All 10 JFH1 mutants were 
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Figure 6.1 Insertion of NS4B C-terminal mutations into the genomic JFH1 
cDNA

The 266bp NS4B/NS5A fragment containing the mutations within the C-terminus of NS4B was 
released from the pGEM-4A/5AM1-M15 plasmid series using BamHI. The fragments were directly 
inserted between the corresponding restriction sites in JFH1, which contained the genome-length 
cDNA for strain JFH1. All constructs were screened for correct orientation of the BamHI fragment. 
This method was used to create 10 mutants containing individual mutations within the C-terminus 
of NS4B (depicted with a red M above). These JFH1 mutants were termed JFH1M1, JFH1M3, etc.   
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created by excision of 266bp BamHI fragments from the pGEM-4B/5AM1-M15 

plasmid series (see Section 4.2 and Figure 4.4, A), followed by insertion and 

orientation of the fragment between the corresponding sites in pJFH1 (Figure 6.1). 

RNA encoding the 10 mutants (JFH1M1, JFH1M3, etc) was electroporated into cells. 

The supernatant was removed from electroporated cells at 24, 48 and 72 hours 

and used to infect naïve cells. Cells were also electroporated with RNA from wt 

JFH1 (hereafter referred to as JFH1) and JFH1ΔE1/E2, a JFH1 mutant that is 

incapable of producing infectious virus particles due to an in-frame deletion of the 

E1 and E2 glycoprotein coding regions. These RNAs served as positive and 

negative controls respectively. Production of infectious virus was determined by 

TCID50 (median tissue culture infective dose) analysis, an assay determining the 

amount of pathogenic agent required to produce pathological change in 50% of 

the cells inoculated (Figure 6.2). TCID50 analysis revealed that cells electroporated 

with JFH1 RNA produced approximately 1.6 x104 infectious particles/ml by 72 

hours, consistent with previous reports (Pietschmann et al., 2006, Zhong et al., 

2005). In contrast, cells harbouring JFH1ΔE1/E2 RNA produced barely detectable 

levels of infectious particles and the TCID50 value for this mutant remained at the 

detection limit of 2.24 particles/ml over the 72-hour period (Figure 6.2). Seven of 

the JFH1 NS4B mutant RNAs (M1, M7, M9, M10, M12, M14 and M15) produced 

levels of infectious virus that were comparable to JFH1 and the amount of 

secreted virus steadily increased over the 72-hour time period. JFH1M3 and 

JFH1M11 RNAs produced approximately 2.4 x103 and 3.1 x103 infectious 

particles/ml respectively by 72 hours post-electroporation, almost seven- and five-

fold lower respectively than the titres produced by JFH1 RNA at the same time 

point (Figure 6.2). The reduced level of virus release exhibited by these two 

mutants is likely a consequence of attenuated viral replication, as observed 

previously (see Section 4.3.1). Interestingly, cells electroporated with JFH1M6 RNA 

generated approximately 7.9 x104 infectious particles/ml by 72 hours, five-fold 

greater than the levels observed with JFH1 RNA, and increased virus production 

was evident at all time points tested (Figure 6.2). The increased level of virus 

production exhibited by JFH1M6 was confirmed in several repeat experiments (data 

not shown). These data suggested that the Asn residue at amino acid 216 of the 

NS4B C-terminus influenced processes involved in the production of infectious 

virus particles. 

 

110 



JFH1 JFH1M3

103

104

102

105

TC
ID

50

106

JFH1M1 JFH1M6 JFH1M9JFH1M7 JFH1M10 JFH1M12JFH1M11 JFH1M15JFH1M14

24h
48h
72h

Daniel M Jones 						                                                                                                                                                                                                                                 Chapter 6

Figure 6.2 TCID50 analysis of JFH1 harbouring mutations within the C-terminus of NS4B

Huh-7 cells were electroporated with RNA from JFH1, JFH1∆E1/E2 and each JFH1 NS4B mutant (JFH1M1, JFH1M3, etc). At 24, 48 and 72 hours post-electroporation, cell 
culture medium was removed and 1ml was added to naïve Huh-7 cells for 72 hours. Infectious virus particle release from supernatents harvested at 24 (white), 48 (grey) 
and 72 (black) hours was determinded for each construct by TCID50 analysis. The values shown are an average of six data sets and error bars indicate standard errors.
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6.3 Characterisation of JFH1M6 

6.3.1 JFH1M6 Enhances the Production of Infectious Virus Particles 

TCID50 analysis had revealed that JFH1M6 enhanced the production of infectious 

HCV virions to a level greater than that observed using JFH1. To confirm this 

result, cells electroporated with RNA from JFH1 and JFH1M6 were harvested for 

Western blot analysis at 24, 48 and 72 hours. Additionally, the supernatant 

(containing virus particles) was removed from electroporated cells at 24, 48 and 72 

hours and 1ml of supernatant medium was used to infect naïve cells. As additional 

controls, cells were also infected with supernatant taken from cells electroporated 

with mutants that abolished (JFH1ΔE1/E2), decreased (JFH1M3), or had no effect 

(JFH1M1) on virus production (Figure 6.2). 72 hours post-infection, cells were 

harvested and NS5A was detected in both electroporated and infected cells using 

NS5A-specific antisera (Figure 6.3, A).  

NS5A could be detected at approximately equal levels for all viruses in RNA-

electroporated cells at 24, 48 and 72 hours, including the replication-attenuated 

JFH1M3 mutant. In infected cells, JFH1M1 produced levels of NS5A 

indistinguishable from those seen with JFH1, indicating that an equivalent level of 

infection was achieved with both viruses (Figure 6.3, A). In contrast, a diminished 

NS5A signal was observed in cells infected with JFH1M3 and NS5A was 

undetectable in cells inoculated with media harvested from JFH1ΔE1/E2. Importantly, 

NS5A was detected at all time points in cells infected with JFH1M6 and in greater 

quantities than observed for JFH1 (Figure 6.3, A). 

As further support for this result, cells infected in parallel to those used for Western 

blot analysis were probed using NS5A antisera and protein was visualised at 48 

hours-post infection (Figure 6.3, B). NS5A was observed in all virus-infected cells, 

with the exception of JFH1ΔE1/E2. Approximately equal numbers of infected cells 

were visualised for JFH1 and JFH1M1, while fewer NS5A-expressing cells could be 

detected with JFH1M3. However, a greater number of infected cells were visualised 

with JFH1M6 (Figure 6.3, B). The data obtained collectively through TCID50, 

Western blot and IF analyses confirmed that cells electroporated with JFH1M6 RNA 

produced an increased level of infectious virus particles compared to JFH1 RNA. 
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Figure 6.3 JFH1M6 enhances the production of infectious virus particles

[A] Huh-7 cells were electroporated with RNA encoding JFH1 NS4B mutants that decreased 
(JFH1M3), enhanced (JFH1M6) or had no effect on infectious virus production (JFH1M1). Cells 
electroporated with JFH1 and JFH1∆E1/E2 were also included as controls. At 24, 48 and 72 hours 
post-electroporation, cells were harvested for Western blot analysis with anti-NS5A antisera and 
1ml of cell culture medium was removed and added to naïve Huh-7 cells. 72 hours after 
incubation, the infected cells were also harvested for Western blot analysis. 2/1 cells harbour an 
autonomously replicating JFH1 SGR and were used as a positive control for NS5A detection. The 
hyper- (closed circles) and hypo- (open circles) phosphorylated species of NS5A are indicated. 
[B] Cells infected in the same manner described in [A] were fixed and stained using NS5A 
antisera and DAPI. Cells infected using 48-hour time point media are shown. Scale bar 
represents 10µM. [C] Huh-7 cells electroporated with RNA from JFH1, JFH1M6 and JFH1-GND 
were trypsinised and re-seeded 48 hours post-electroporation and cultured for a further 72 hours. 
Total RNA was then extracted from the cells and HCV RNA was quantified by qRT-PCR. The 
relative quantification (raw RQ) values represent a comparison of the level of viral RNA across 
the samples tested. The data in part [C] was kindly provided by G.Hope and P. Domingues.
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6.3.2 Replication of JFH1M6 RNA is not Enhanced in Electroporated 

Cells 

Measurement of luciferase activity had previously shown that the subgenomic 

version of JFH1M6, luc-M6GFP, displayed no increase in replication compared to 

luc-JFH1GFP (see Section 4.3.1). However, it was possible that the M6 mutation 

may increase RNA replication in the context of a full-length genome that did not 

contain GFP within the NS5A coding region. Such an increase in genome 

synthesis may account for the enhanced production of infectious progeny, 

meaning JFH1M6 may not influence virus production directly. To examine this 

possibility, total RNA was extracted from cells electroporated with JFH1 and 

JFH1M6 RNAs and HCV RNA was quantified by qRT-PCR (Figure 6.3, C). HCV 

RNA was measured in cells electroporated with JFH1-GND RNA (a full-length 

genome incapable of viral RNA replication) and Huh-7 cellular RNA was included 

as a further negative control. JFH1 and JFH1M6 RNA levels were greater than 

those measured in cells harbouring JFH1-GND (by 134-fold) and naive Huh-7 cells 

(by 1700-fold) respectively, indicating that the detected RNA resulted from active 

viral replication (Figure 6.3, C). In agreement with previously shown luciferase 

data (see Section 4.3.1), the quantity of viral RNA in cells electroporated with 

JFH1 and JFH1M6 genomes was approximately equal (Figure 6.3, C). Therefore, 

the enhancement of virus production observed with JFH1M6 was not a 

consequence of increased RNA replication.  

 

6.3.3 JFH1M6 does not Alter the Localisation of NS5A, Core or 

dsRNA in Infected Cells 

NS5A is thought to be responsible for the transfer of NS proteins and viral RNA to 

core protein situated at the surface of LDs (Miyanari et al., 2007). It is therefore 

possible that the rate and/or quantity of RNA distributed to core by NS5A could be 

a determining factor in the levels of infectious virus produced. To determine 

whether JFH1M6 altered the trafficking of RNA to core, the intracellular localisation 

of core, NS5A and dsRNA was examined in cells electroporated with RNA 

encoding JFH1 and JFH1M6 at 24, 48 and 72 hours post-electroporation (Figure 

6.4). At each time point in cells electroporated with JFH1 RNA, sites of co-

localisation were observed for core, NS5A and dsRNA in the cytoplasm (Figure 

6.4, A and B). Upon examination of cells harbouring JFH1M6 RNA, the localisation 
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Figure 6.4 JFH1M6 does not alter the localisation of NS5A, core or dsRNA

Huh-7 cells electroporated with RNA from [A] JFH1 and [C] JFH1M6 were fixed and probed using 
core and NS5A antiserum, J2 to detect dsRNA and DAPI at 24, 48 and 72 hours post-
electroporation. Enlarged regions for [B] JFH1 and [D] JFH1M6 are shown and areas of co-
localisation are indicated by white arrowheads. Scale bars represent 10µm. 
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pattern of core, NS5A and dsRNA at each time point was indistinguishable from 

that seen for JFH1 (Figure 6.4, C and D). Therefore, the enhanced production of 

infectious virus by JFH1M6 was not apparently attributed to an increase in the 

NS5A-dependent distribution of viral RNA to sites of core localisation. 

 

6.4 Introduction of mutation M6 into J6-JFH1 

6.4.1 Characterisation of J6-JFH1 

J6-JFH1 is a chimeric virus in which the coding sequences incorporating JFH1 

core to the loop region between TMDs 1 and 2 in NS2 is replaced with the 

corresponding sequence from genotype 2a strain HC-J6 (Figure 6.5, A). This virus 

is identical to a chimeric construct called Jc1, which produces virus titres that are 

significantly greater than those obtained with JFH1 (Pietschmann et al., 2006). To 

determine whether, like Jc1, J6-JFH1 displayed increased production of infectious 

virus compared to JFH1, cells electroporated with JFH1 and J6-JFH1 RNAs and 

growth medium supernatents were analysed by TCID50. Consistent with data 

published on Jc1, J6-JFH1 produced approximately 68- and five-fold more 

infectious virus compared to JFH1 at 24 and 72 hours respectively, and produced 

a peak titre of approximately 5 x105 infectious particles/ml (Figure 6.5, B). This 

increase in virus production was also evident upon examination of cell extracts by 

Western blot analysis, since a much greater level of NS5A was detected in cells 

infected with J6-JFH1, as compared to JFH1 (Figure 6.5, C, right-hand panel). 

Therefore, J6-JFH1 provided another infectious clone for further study of the role 

of NS4B in virus production.      

 

6.4.2 Introduction of M6 into J6-JFH1 Represses Infectious Particle 

Production 

Introduction of the M6 mutation into JFH1 increased the production of infectious 

viral particles by approximately five-fold by 72 hours post-electroporation (Figure 

6.2). To determine whether this increase in virus production could be transferred to 

a chimeric virus, M6 was introduced into J6-JFH1, generating J6-JFH1M6 (Figure 

6.6, A). RNA encoding J6-JFH1 and J6-JFH1M6 was electroporated into cells and 

infectious particles released into the supernatant at 24, 48 and 72 hours were 

used to infect naïve cells. 72 hours later, infected cells were analysed using the 

TCID50 method to determine virus titre (Figure 6.6, B). As found previously, J6-
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Figure 6.5 Characterisation of J6-JFH1

[A] Schematic representation of the chimeric virus J6-JFH1. In J6-JFH1, the JFH1 sequence from 
core to the loop region between TMDs 1 and 2 in NS2 (amino acids 1-864 in the JFH1 polyprotein 
sequence) is replaced with the corresponding sequence from the genotype 2a strain HC-J6. [B] 
Huh-7 cells were electroporated with RNA from JFH1 and J6-JFH1. At 24, 48 and 72 hours post- 
electroporation, cell culture medium was removed and 1ml was added to naïve Huh-7 cells for 72 
hours. Infectious virus particle release at 24 (white), 48 (grey) and 72 (black) hours was 
determined for each construct by TCID50 analysis. The values shown are an average of six data 
sets and error bars indicate standard errors. [C] At 24, 48 and 72 hours post-electroporation, cells 
set up in parallel to those described in [B] were harvested for Western blot analysis using anti-
NS5A antisera and 1ml of cell culture medium was removed and added to naïve Huh-7 cells for 72 
hours. The infected cells were then harvested for Western blot analysis. The hyper- (closed 
circles) and hypo- (open circles) phosphorylated species of NS5A are indicated.
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Figure 6.6 Introduction of M6 into J6-JFH1 reduces production of infectious 
virus particles 

[A] Schematic representation of the chimeric virus J6-JFH1M6, highlighting the position of the M6 
mutation within the NS4B coding region. [B] Huh-7 cells were electroporated with RNA from J6-
JFH1 and J6-JFH1M6. At 24, 48 and 72 hours post-electroporation, cell culture medium was 
removed and 1ml was added to naïve Huh-7 cells for 72 hours. Infectious virus particle release at 
24 (white), 48 (grey) and 72 (black) hours was determined for each construct by TCID50 analysis. 
The values shown are an average of six data sets and error bars indicate standard errors. [C] At 
24, 48 and 72 hours post-electroporation, cells set up in parallel to those described in [B] were 
harvested for Western blot analysis using anti-NS5A antisera and 1ml of cell culture medium was 
removed and added to naïve Huh-7 cells for 72 hours. Infected cells were then harvested for 
Western blot analysis. The hyper- (closed circles) and hypo- (open circles) phosphorylated 
species of NS5A are indicated.
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JFH1 produced high viral titres that peaked at approximately 2.3 x105 infectious 

particles/ml by 48 hours. Surprisingly, cells electroporated with J6-JFH1M6 RNA 

produced lower levels of virus at each time point compared to J6-JFH1 RNA and 

produced a peak titre of only 2.7 x104 infectious particles/ml, almost nine-fold 

lower than observed with the unmodified chimeric virus (Figure 6.6, B). Western 

blot analysis of cells electroporated with J6-JFH1 and J6-JFH1M6 RNAs revealed 

an indistinguishable level of NS5A, suggesting that replication of J6-JFH1M6 was 

not attenuated in comparison to J6-JFH1 (Figure 6.6, C). However, NS5A was less 

readily detected in cells infected with J6-JFH1M6 compared to those infected with 

J6-JFH1. Thus, J6-JFH1M6 was apparently compromised in its ability to produce 

infectious virus. 

The results presented in this chapter demonstrate that a single amino acid 

mutation at position 216 in the NS4B C-terminus can increase the production of 

infectious virus from JFH1. By contrast, a decrease in virus production is observed 

upon insertion of the same mutation into the chimeric viral genome J6-JFH1. 

       

6.5 Discussion 

Several investigations into members of the flaviviridae family, including BVDV, 

YFV, DV and KV, have contributed to a growing body of evidence demonstrating 

that the NS proteins encoded by these viruses contribute significantly to virus 

production (Murray et al., 2008). Recently, analysis of the latter stages of the HCV 

life cycle has become possible with the discovery that full-length genomes derived 

from JFH1 are capable of producing infectious virus particles in vitro (Lindenbach 

et al., 2005, Wakita et al., 2005, Zhong et al., 2005). Since that time, it has 

become increasingly apparent that, like other members of the flaviviridae, the HCV 

NS proteins are not only engaged in viral RNA replication, but also the production 

of virus particles. For example, NS3 (Ma et al., 2008, Yi et al., 2007) and NS5A 

(Appel et al., 2008, Masaki et al., 2008, Miyanari et al., 2007, Tellinghuisen et al., 

2008a) are required for viral replication, and are essential for, or at least contribute 

towards, the production of infectious virus particles. The results presented here 

reveal that NS4B also contributes towards virus production. 

In JFH1, mutation of a single asparagine residue at position 216 of NS4B was 

sufficient to increase production of virus by up to five-fold (Figure 6.2) and this 

effect was not due to increased replication of the viral genome (Figure 6.3, C). 

NS4B is a component of viral RCs, which provide the environment for RNA 
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replication and are recruited to core-coated LDs during infection (Miyanari et al., 

2007). RC components can modulate virus production, since amino acid changes 

within another RC protein, NS3, are able to rescue virus production in chimeric 

replicons that are otherwise defective in this process (Ma et al., 2008, Yi et al., 

2007). Virus assembly is likely to involve the engagement of viral RNA with core 

protein for packaging, a process that may be influenced by NS4B located within 

RCs. This influence could be direct, where NS4B may modulate RNA export from 

RCs to core situated on LDs. This hypothesis is strengthened by a study reporting 

that NS4B binds to viral RNA (Einav et al., 2008). Alternatively, the contribution of 

NS4B to virus production could be achieved indirectly, by influencing the 

behaviour of another protein such as NS5A. NS5A is a RNA-binding protein 

(Huang et al., 2005) and the transfer of RNA from RCs to LDs is mediated in an 

NS5A-dependent manner (Miyanari et al., 2007). Hence, the M6 mutation within 

NS4B may enhance the RNA transfer activity of NS5A, leading to increased 

assembly of infectious virions at LDs. While no differences in the localisation of 

core, NS5A or dsRNA was observed for JFH1M6 (Figure 6.4), the distribution of 

these proteins could be altered in a manner too subtle to be detected by IF 

analysis. Finally, phosphorylation of a single serine residue within domain III of 

NS5A is important for virus production (Tellinghuisen et al., 2008a) and the C-

terminus of NS4B can influence this modification of NS5A (see Section 4.3.4). 

Consequently, it is possible that the M6 mutation within NS4B modulates NS5A 

phosphorylation and thereby enhances virus production. Again, while no 

differences in NS5A phosphorylation were observed (Figure 6.3, A), the nature of 

any subtle differences in NS5A phosphorylation may not be detected by the 

methods used in this study.  

Although M6 leads to an increase in infectious virus production, the stage at which 

the mutation exerts its effect is unclear. There are at least three possible scenarios 

that could result in an enhanced level of infectious virions. Firstly, JFH1M6 may 

possess an increased rate of assembly compared to JFH1 and consequently more 

viral particles are secreted into the supernatant to infect naïve cells. Secondly, the 

same number of particles may be assembled for both viruses but those produced 

by JFH1M6 may be more readily secreted into the supernatant. Finally, it is 

possible that JFH1 and JFH1M6 assemble and secrete the same number of HCV 

virions but those secreted by JFH1M6 infect naïve cells more effectively. The 

egress of HCV virions from infected cells is a poorly understood process but is 

thought to be dependent upon the cellular machinery responsible for VLDL 
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secretion (Gastaminza et al., 2008, Huang et al., 2007a). Currently, no role for 

NS4B in this process has been established. Similarly, it is unclear whether any of 

the NS proteins actually form part of the secreted HCV virion itself, and therefore 

be capable of modulating virus entry. However, further investigation into the 

mechanism by which M6 enhances virus production could be conducted in future 

studies. For example, quantification of the ratio of intracellular and extracellular 

levels of infectious virus may provide clues as to whether JFH1M6 exhibits either 

increased assembly or increased secretion of virus compared to JFH1. Such 

analyses have demonstrated that p7 and NS2 are essential for virus production at 

a pre-assembly step (Jones et al., 2007).  

J6-JFH1 (also known as Jc1, Pietschmann et al., 2006) is a chimeric virus in which 

the core to the loop region between TMDs 1 and 2 in NS2 of JFH1 is replaced with 

the corresponding sequence from the genotype 2a strain HC-J6. J6-JFH1 is 

capable of producing a significantly greater titre of infectious virus compared to 

JFH1, particularly at early time points (Figure 6.5). The combination of J6 core and 

p7 increases the kinetics of viral release compared to a virus containing J6 core 

and JFH1 p7, suggesting that genotype-specific interactions between core and p7 

are important for virus production and release (Shavinskaya et al., 2007). 

Interactions between the structural and NS proteins may be generally important, 

since virus production can be restored in genotype 1a/2a chimeras (which are 

usually incapable of producing infectious virus) by introduction of compensatory 

mutations into NS2 and NS3 (Yi et al., 2007). These mutations are hypothesised 

to correct incompatibilities between the proteins of different HCV genotypes at 

sites of critical protein-protein interactions required for virus production (Yi et al., 

2007). Interestingly, introducing M6 into J6-JFH1 resulted in lower infectious virus 

production (Figure 6.6), whereas the same mutation enhanced virus production in 

JFH1 (Figure 6.2). Hence, our results suggest that mutations within the NS coding 

region can modulate virus production depending on the composition of the 

structural coding region. The conclusion drawn from introducing M6 into both JFH1 

and J6-JFH1 is that a genotype-specific interaction between the C-terminus of 

NS4B with core, E1, E2, p7 or the N-terminal region of NS2 is important for 

modulation of virus production. Further investigation into this hypothesis is 

necessary. For example, serial passaging of J6-JFH1M6 virus in cell culture may 

lead to compensatory mutations within the structural proteins that circumvent 

incompatibilities with NS4B. This would further define the importance of structural-

NS protein interactions for the production of infectious virus particles. 
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7 Identification of Cellular Genes that Influence HCV 

RNA Replication 

 

7.1 Introduction 

Small RNA viruses such as HCV encode a limited set of proteins within their 

genome, and thus rely on host cell factors to facilitate their replicative cycle 

(Moriishi & Matsuura, 2007). One method of identifying genes that influence HCV 

genome replication is to determine whether the silencing of individual genes by 

siRNAs has any effect on the level of HCV RNA synthesis. The use of siRNAs has 

revealed many proteins from a wide range of protein families that contribute to the 

HCV life cycle (Ng et al., 2007, Xue et al., 2007). 

To expand the scope of the project beyond studies on viral components, it was 

decided that a library of siRNAs (supplied by Ambion) targeting genes encoding 

cellular nucleotide-binding proteins would be chosen and screened. This class of 

proteins was selected in an attempt to identify cellular components that influenced 

replication and/or translation of HCV RNA. Thus, a siRNA library targeting 299 

cellular genes was selected (see Appendix 2). These genes principally encoded 

translation factors, ribosomal proteins, RNA-binding proteins and proteins involved 

in the IFN response pathway, since IFN reduces replication of the JFH1 SGR in 

Huh-7 cells (Targett-Adams & McLauchlan, 2005). For exploratory purposes, 

genes in other categories were also selected and included genes encoding 

proteins involved in cell cycle control and the cellular degradation pathway. By 

including genes from a wide range of cellular pathways, we hoped to identify novel 

processes involved in modulating HCV RNA replication.     

 

7.2 Production of a System Suitable for Screening a siRNA 
Library 

7.2.1 Selection and Characterisation of a Positive Control siRNA 

7.2.1.1 Selection of a Positive Control siRNA 

To verify the impact on HCV RNA replication resulting from the knockdown of 

cellular genes, it was important to establish a robust system for quantifying any 

effects. Previous investigations utilising siRNA technology have revealed that viral 
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Figure 7.1 siHCV targets the HCV IRES

A representation of the HCV IRES is shown (domains III and IV only) and the region targeted by 
the siRNA is highlighted in red. This siRNA was termed siHCV and targets the sequence 
consisting of the 3' end of domain III and the 5' end of domain IV. The sequence of this region is 
shown below the diagram in red and the sequence of the double-stranded siHCV is also 
presented. Each strand of siHCV is 21bp in length, including a 3' overhang of two nucleotides 
(tt). 
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replication is most effectively repressed when the RNA genome is targeted by 

siRNAs directed against the regions encoding NS3 (Kapadia et al., 2003, Prabhu 

et al., 2005), NS5B (Kapadia et al., 2003, Ng et al., 2007, Prabhu et al., 2005) or 

the 5’ UTR (Chevalier et al., 2007, Kanda et al., 2007, Kronke et al., 2004, Ng et 

al., 2007, Seo et al., 2003, Yokota et al., 2003). These regions harbour highly 

conserved sequences that are essential for their roles in polyprotein cleavage 

(NS3), RNA replication (NS5B and the 5’ UTR) and translation (the 5’ UTR). 

Hence, siRNAs targeting these sequences work more effectively than those 

targeting more variable HCV coding regions.  

The 5’ UTR is the most conserved part of the HCV genome and contains the viral 

IRES, a structure critical for cap-independent initiation of HCV polyprotein 

translation (Figure 7.1). The IRES harbours secondary and tertiary RNA structures 

and can be divided into four domains (termed I-IV). A siRNA that targets domain 

III/IV (termed si313) has been shown to be particularly effective at reducing HCV 

RNA replication (Chevalier et al., 2007). Furthermore, this region is conserved 

across several HCV genotypes, including JFH1. Therefore, a siRNA identical in 

sequence to si313 was synthesised and termed siHCV. The sequence of siHCV 

and the IRES region to which it would anneal are shown in Figure 7.1. 

 

7.2.1.2 siHCV Reduces Transient HCV RNA Replication 

To determine the optimal concentration of siHCV required to reduce viral RNA 

replication, RNA transcribed from luc-JFH1 was electroporated into Huh-7 cells. 

Immediately post-electroporation, cells were transfected with 50nM of a scrambled 

control siRNA or increasing concentrations (10-200nM) of siHCV siRNA and any 

effect on HCV replication was determined by luciferase assay 48 hours later 

(Figure 7.2, A). Introduction of the control siRNA resulted in an approximately 10-

fold decrease in luciferase values compared to untreated cells, likely due to 

cellular toxicity resulting from simultaneous electroporation and transfection. 

However, enzyme activity was reduced by a further 15- to 32-fold upon 

introduction of siHCV compared to cells transfected with the control siRNA. (Figure 

7.2, A). The most effective reduction in luciferase levels was observed with 50nM 

and 100nM of siHCV, which displayed 30- and 32-fold reductions in enzyme 

activity respectively (Figure 7.2, A). Based on these data, 50nM of siHCV was 

used in further experiments.  
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[C]

Figure 7.2 siHCV reduces transient HCV RNA replication in Huh-7 cells

[A] Huh-7 cells were electroporated with RNA encoding luc-JFH1, followed by immediate 
transfection with increasing concentrations of siHCV. Electroporated cells alone (no siRNA), or 
cells transfected with 50nM of a scrambled siRNA sequence (control siRNA) were also included 
and served as controls. At 48 hours post-electroporation/transfection, cells were lysed and 
extracts were assayed for luciferase activity. [B] Huh-7 cells electroporated with luc-JFH1 were 
set up in duplicate; one set of cells was transfected with 50nM of siHCV, while the second set 
was transfected with 50nM of a control siRNA. Cells electroporated with luc-JFH1-GND were also 
included as a negtaive control of HCV replicaton. Cells were lysed at 4, 24, 48 and 72 hours post-
electroporation and extracts were assayed for luciferase activity. For [A] and [B], all assays were 
performed in duplicate and average values are shown for each experiment. Error bars indicate 
the range of the values recorded at each time point. [C] Cells set up in parallel to those described 
in [B] were harvested for Western blot analysis at 4, 24, 48 and 72 hours post-electroporation. 
Extracts from each time point were probed for NS5A (with NS5A antisera), NS4B (with R1063) 
and actin detection served as a loading control.  



Daniel M Jones  Chapter 7 
 
To confirm that siHCV was effective over a longer time period, Huh-7 cells were 

electroporated with RNA encoding luc-JFH1 or luc-JFH1-GND and cells 

harbouring luc-JFH1 were immediately transfected with 50nM of siHCV or the 

control siRNA. Luciferase assays were then determined over a 72-hour period 

(Figure 7.2, B). In cells transfected with the control siRNA, luc-JFH1 expressed 

luciferase values that were 20-fold higher by 24 hours compared to the four-hour 

time point and enzyme levels remained high for the duration of the time course, 

indicating efficient replication of this RNA (Figure 7.2, B). By contrast, luciferase 

values at 24 hours were almost half of those displayed at four hours in cells 

treated with siHCV and, although luciferase values increased thereafter, they 

remained 10-fold lower compared to control siRNA-treated cells by 72 hours 

(Figure 7.2, B). Luciferase values for luc-JFH1-GND decreased over the entire 72-

hour period, indicating that this construct was incapable of replicating. 

To demonstrate further the effect of siHCV on replication of luc-JFH1, extracts 

prepared over 72 hours from cells set up in parallel to those described above were 

analysed by Western blot analysis (Figure 7.2, C). Cell lysates were examined for 

HCV-encoded NS5A and NS4B proteins and actin detection served as a loading 

control. NS5A was detected by 24 hours in cells containing luc-JFH1 and the 

control siRNA and NS4B became detectable by 48 hours post-

electroporation/transfection (Figure 7.2, C). In contrast, NS5A was not detected 

until 48 hours in cells harbouring luc-JFH1 and siHCV and was present in reduced 

amounts at 72 hours compared to results obtained with the control siRNA. NS4B 

was not detected throughout the time course (Figure 7.2, C). This reduction in 

HCV-encoded proteins was not due to differences in sample loading, as confirmed 

by probing for actin. Taken together, these results confirmed that siHCV was a 

potent inhibitor of transient HCV RNA replication in Huh-7 cells. 

 

7.2.2 Creation and Characterisation of a Tri-cistronic JFH1 Replicon 

The results gained through siHCV optimisation experiments suggested that 

electroporating and transfecting cells simultaneously was sufficient to decrease 

HCV RNA replication compared to those cells that were electroporated but not 

transfected (Figure 7.2, A, compare ‘no siRNA’ with ‘control siRNA’). Both 

electroporation and transfection are cytotoxic and the observed reduction in 

luciferase levels by the scrambled siRNA was likely due to the combined effect of 

both processes. Therefore, transfection of a cell line already harbouring a HCV 
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Figure 7.3 Creation of Tri-JFH1

[A] A schematic representation of the region encoding the Neo gene flanked by the HCV and 
EMCV IRES is shown (top) and the positions and sequences of the primers used to amplify the 
fragment (termed H-Neo-E) are indicated, with introduced non-viral sequences depicted in red. 
Restriction enzyme sites used for cloning purposes are underlined. H-Neo-E was subsequently 
introduced into the pGEM-T-Easy cloning vector, generating pGEM-H-Neo-E. [B] The H-Neo-E 
fragment was released from pGEM-H-Neo-E using EcoRI and BglII. Luc-JFH1 was also digested 
with EcoRI and BglII, thus removing the HCV IRES preceeding the luciferase gene. H-Neo-E was 
then inserted between these restriction sites, creating Tri-JFH1. [C] A schematic representation 
of the Tri-JFH1 SGR. Translation of the Neo gene is directed by the HCV IRES, whereas the 
luciferase gene and the NS coding region are each translated via an EMCV IRES. 
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replicon would be preferable, thereby bypassing the need for electroporation. 

Optimally, this cell line should contain a SGR harbouring a gene for drug selection 

as well as a reporter for quantification of viral RNA replication. Such cell lines have 

previously been established using HCV Con1 SGRs (so called tri-cistronic 

replicons, Supekova et al., 2008). Furthermore, pFK-I389neo/luc/Ns3-3’/5.1 (a tri-

cistronic replicon harbouring the neomycin gene, luciferase gene and Con1 NS 

region NS3-5B) was suitable for screening a siRNA library (Supekova et al., 2008). 

Using an identical strategy, a tri-cistronic replicon encoding the JFH1 NS proteins 

was generated and termed Tri-JFH1. Tri-JFH1 was firstly characterised in 

transient assays to determine its replication properties compared to luc-JFH1, the 

bi-cistronic SGR. The tri-cistronic replicon was then stably introduced into cells to 

yield cell lines that gave constitutive RNA replication.     

 

7.2.2.1 Creation of Tri-JFH1 

Tri-JFH1 required both the neomycin resistance gene and the luciferase reporter 

gene to be positioned upstream of the JFH1 NS3-5B coding region. Therefore, the 

HCV IRES, neomycin gene and EMCV IRES were amplified using neo-JFH1 as a 

template (Figure 7.3, A). This fragment (termed H-Neo-E) incorporated an existing 

EcoRI site at the beginning of the HCV IRES and harboured a novel BglII site at 

the end of the EMCV IRES. H-Neo-E was inserted into pGEM-T-Easy, producing 

pGEM-H-Neo-E (Figure 7.3, B). 

The luc-JFH1 replicon harbours a HCV IRES that drives translation of the 

luciferase reporter gene. The plasmid containing the replicon was digested using 

EcoRI and BglII, thus excising the HCV IRES. H-Neo-E was then released from 

pGEM-H-Neo-E using EcoRI and BglII and this fragment was inserted between the 

corresponding sites of luc-JFH1 (Figure 7.3, B). This strategy produced Tri-JFH1, 

in which the HCV IRES directs translation of the neomycin resistance gene and 

translation of both the luciferase reporter gene and the JFH1 NS coding region is 

directed by two separate EMCV IRES sequences (Figure 7.3, C). 

 

7.2.2.2 Characterisation of Tri-JFH1 

To determine whether Tri-JFH1 replicated, in vitro transcribed RNA from the 

construct was electroporated into both Huh-7 and U2OS cells. U2OS cells are 

derived from an osteosarcoma and support replication of luc-JFH1, although with a 
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Figure 7.4 Tri-JFH1 replicates transiently in both Huh-7 and U2OS cells

RNAs encoding luc-JFH1, luc-JFH1-GND and Tri-JFH1 were electroporated into [A] Huh-7 cells 
and [B] U2OS cells. Cells were lysed at 4, 24, 48 and 72 hours post-electroporation and extracts 
were assayed for luciferase activity. All assays were performed in duplicate and average values 
are shown for each experiment. Error bars represent range of the values recorded at each time 
point. 
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lower efficiency than Huh-7 cells (Targett-Adams & McLauchlan, 2005). U2OS 

cells were included in the characterisation of Tri-JFH1 as a possible alternative cell 

line for screening the siRNA library. Cells were also electroporated with RNA 

encoding bi-cistronic control replicons luc-JFH1 and luc-JFH1-GND, and luciferase 

activity was measured over 72 hours (Figure 7.4). As expected, luciferase levels 

derived from luc-JFH1 were 65-fold higher by 72 hours compared to the 4-hour 

time point, indicating efficient replication of this RNA in Huh-7 cells. By contrast, 

luc-JFH1-GND did not replicate (Figure 7.4, A). In U2OS cells, luc-JFH1 exhibited 

luciferase levels that never increased beyond those observed at 4 hours but did 

not decrease as rapidly as those seen with the GND control (Figure 7.4, B). 

Therefore, U2OS cells supported luc-JFH1 replication but to lower levels 

compared with Huh-7 cells, consistent with previously described data (Targett-

Adams & McLauchlan, 2005). Importantly, enzyme activity from Tri-JFH1 indicated 

a pattern of replication that paralleled luc-JFH1 in both cell lines, although 

luciferase values were slightly lower at each time point (Figure 7.4, A and B). 

These data indicated that Tri-JFH1 replicated transiently in two cell lines known to 

support HCV viral replication.  

 

7.2.3 Characterisation of Cell Lines Supporting Autonomous 

Replication of Tri-JFH1 

In parallel studies, it had been demonstrated that U2OS cells were more efficient 

for siRNA transfection compared to Huh-7 cells. For example, the siRNA-mediated 

knockdown of adipocyte differentiation-related protein (ADRP) was more efficient 

in U2OS cells compared to Huh-7 cells (J. McLauchlan, personal communication). 

Therefore, a U2OS cell line that supported HCV replication could be more 

sensitive for screening the siRNA library compared to a Huh-7 cell line. Hence, 

RNA encoding Tri-JFH1 was electroporated into both Huh-7 and U2OS cells, 

which were passaged in the presence of G418 for several weeks. These cell lines 

were termed Tri-Huh-7 and Tri-U2OS.  

To examine whether Tri-JFH1 replication could be detected after several weeks of 

passage, both cell lines were fixed and probed for the presence of NS5A and 

dsRNA (Figure 7.5, A). NS5A and dsRNA were detected in >95% of cells for both 

cell lines, indicating that Tri-JFH1 replicated following G418 selection in a high 

proportion of cells. Interestingly, some Tri-U2OS cells displayed a dsRNA signal 

only (Figure 7.5, A, bottom panel), whereas Tri-Huh-7 cells typically contained 
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Figure 7.5 Generation of two cell lines; Tri-Huh-7 and Tri-U2OS

RNA from Tri-JFH1 was electroporated into both Huh-7 and U2OS cells and cells were passaged 
for several weeks in the presence of G418. These cell lines were termed Tri-Huh-7 and Tri-
U2OS. [A] Tri-Huh-7 and Tri-U2OS cells were fixed and probed using NS5A antisera and J2 to 
detect NS5A and dsRNA respectively. Scale bar represents 10µm. [B] Tri-Huh-7 and Tri-U2OS 
cell extracts prepared at 4, 24, 48 and 72 hours were subjected to Western blot analysis for the 
presence of NS5A (using NS5A antisera), NS4B (using R1063) and actin. 
    

Tri-U2OS
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both dsRNA and NS5A (Figure 7.5, A, top panel). To confirm this result, cell 

extracts from Tri-Huh-7 and Tri-U2OS cells harvested at different times up to 72 

hours were examined by Western blot analysis for the presence of viral NS4B and 

NS5A proteins (Figure 7.5, B). Both proteins were detected at all time points in Tri-

Huh-7 cells and increased in abundance over the 72-hour period, likely resulting 

from cell growth. In contrast, a substantially lower level of NS5A was detected in 

Tri-U2OS cells and NS4B could not be observed at any time point (Figure 7.5, B). 

The different levels of protein expressed from each cell line were not a 

consequence of inaccurate sample loading as demonstrated by the detection of 

actin (Figure 7.5, B). The lower amount of viral proteins detected is consistent with 

the reduced level of transient HCV replication observed in U2OS compared to 

Huh-7 cells (Figure 7.4, B).  

These data indicated that the Tri-U2OS cell line gave a lower level of Tri-JFH1 

RNA replication compared to Tri-Huh-7 cells. Nonetheless, both cell lines 

supported constitutive replication of the Tri-JFH1 SGR.  

 

7.2.4 siHCV Reduces Tri-JFH1 Replication in Tri-Huh-7 and Tri-

U2OS Cells 

Previously, 50nM of siHCV had been sufficient to reduce HCV RNA replication by 

30-fold compared to cells treated with a control siRNA (Figure 7.2, A). To test 

whether this concentration of siHCV was also effective for reducing viral replication 

in the newly established cell lines, both Tri-Huh-7 and Tri-U2OS cells were 

transfected with 50nM of scrambled siRNA, or increasing concentrations (10nM-

100nM) of siHCV and HCV replication was determined by luciferase assay 48 

hours later (Figures 7.6 and 7.7, A). Importantly, no reduction in HCV RNA 

replication was observed in Tri-Huh-7 cells treated with the control siRNA 

compared to those that were untreated (Figure 7.6, A, compare ‘no siRNA with 

‘control siRNA’). This result indicated that the reduction in luciferase values 

observed with the control siRNA in transient assays (Figure 7.2, A) did not occur 

upon transfection into cells that gave constitutive HCV RNA replication. As found 

previously, 10nM, 50nM and 100nM of siRNA all potently inhibited HCV RNA 

replication in Tri-Huh-7 and Tri-U2OS cells (Figures 7.6, A and 7.7, A). Upon 

transfection of Tri-Huh-7 cells with 50nM of siHCV, a 20-fold decrease in luciferase 

activity was observed compared to control siRNA-treated cells (Figure 7.6, A). 
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Figure 7.6 siHCV reduces viral RNA replication in Tri-Huh-7 cells

[A] Tri-Huh-7 cells were transfected with increasing concentrations of siHCV. Tri-Huh-7 cells that 
were not transfected (no siRNA) or transfected with 50nM of a scrambled siRNA sequence 
(control siRNA) were also included and served as controls. At 48 hours post-transfection, cells 
were lysed and extracts were assayed for luciferase activity. [B] Tri-Huh-7 cells were set up in 
duplicate; one set of cells was transfected with 50nM of siHCV, while the second set was 
transfected with 50nM of the control siRNA. Cells were lysed at 4, 24, 48 and 72 hours post-
transfection and extracts were assayed for luciferase activity. For [A] and [B], all assays were 
performed in duplicate and average values are shown for each experiment. Error bars indicate 
the range of the values recorded at each time point. [C] Cells set up in parallel to those described 
in [B] were harvested for Western blot analysis at 4, 24, 48 and 72 hours post-electroporation. 
Extracts from each time point were probed for the presence of viral NS5A (using NS5A antisera), 
NS4B (using R1063) and actin detection served as a loading control. 
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[C]
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Figure 7.7 siHCV reduces viral RNA replication in Tri-U2OS cells

[A] Tri-U2OS cells were transfected with increasing concentrations of siHCV, or 50nM of a 
scrambled siRNA sequence (control siRNA). At 48 hours post-transfection, cells were lysed and 
extracts were assayed for luciferase activity. [B] Tri-U2OS cells were set up in duplicate; one set 
of cells was transfected with 50nM of siHCV, while the second set was transfected with 50nM of 
the control siRNA. Cells were lysed at 4, 24, 48 and 72 hours post-transfection and extracts were 
assayed for luciferase activity. For [A] and [B], all assays were performed in duplicate and 
average values are shown for each experiment. Error bars represent the range of the values 
recorded at each time point. [C] Cells set up in parallel to those described in [B] were harvested 
for Western blot analysis at 4, 24, 48 and 72 hours post-electroporation. Extracts from each time 
point were probed for the presence of viral NS5A using anti-NS5A antisera and actin detection 
served as a loading control. 
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Remarkably, 50nM of siHCV reduced enzyme activity by 45-fold in Tri-U2OS cells, 

more than double the reduction observed in Tri-Huh-7 cells (Figure 7.7, A).  

To determine the effect of siHCV over a time course, Tri-Huh-7 and Tri-U2OS cells 

were transfected with 50nM of siHCV or scrambled siRNA and luciferase levels 

were measured over 72 hours (Figures 7.6 and 7.7, B). Luciferase levels were 

consistently lower in both cell lines treated with siHCV compared to those treated 

with the control siRNA from 24 hours onwards. The greatest relative decrease in 

replication for both cell lines was at 48 hours post-transfection. At this time point, 

luciferase levels expressed from Tri-Huh-7 cells were 20-fold lower compared to 

control cells (Figure 7.6, B). Once again, luciferase activity was reduced to a 

greater extent in Tri-U2OS cells, where a 45-fold knockdown was detected in 

siHCV-treated cells at 48 hours (Figure 7.7, B). Furthermore, the effects of siHCV 

were sustained over a longer time period in Tri-U2OS cells compared to Tri-Huh-7 

cells. By 72 hours, luciferase values had recovered to only six-fold lower in Tri-

Huh-7 cells treated with siHCV compared to those treated with a scrambled siRNA 

(Figure 7.6, B). In contrast, Tri-U2OS cells expressed luciferase values that were 

still 30-fold lower than control cells by 72-hours (Figure 7.7, B). This result was 

reflected by Western blot analysis of extracts prepared from cells set up in parallel 

to those described above. Levels of NS5A (and NS4B in the case of Tri-Huh-7 

cells) were reduced in both cell lines when treated with siHCV (Figures 7.6 and 

7.7, C). Despite knockdown of viral replication, NS5A was still detected at each 

time point in Tri-Huh-7 cells. In contrast, NS5A was observed at four hours with 

treated Tri-U2OS cells, but was not detected thereafter (Figures 7.7, C). 

Combined, the data from luciferase and Western blot analyses revealed that viral 

RNA replication could be effectively and reproducibly reduced in siHCV-treated 

cell lines. Moreover, it was evident that the effects of siHCV were more potent in 

Tri-U2OS cells compared to the Tri-Huh-7 cell line. 

 

7.2.5 Knockdown of CKI-α Reduces Tri-JFH1 Replication in Tri-Huh-

7 and Tri-U2OS Cells 

Before screening with the siRNA library directed against cellular genes, both Tri-

Huh-7 and Tri-U2OS cell lines were validated further using a siRNA that targeted a 

cell gene implicated in HCV RNA replication. The cellular kinase CKI-α is involved 

in NS5A hyperphosphorylation and furthermore, knockdown of CKI-α by siRNA 
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treatment reduces both NS5A hyperphosphorylation and viral RNA replication 

(Quintavalle et al., 2006 and 2007). Hence, Tri-Huh-7 and Tri-U2OS cells were 

transfected with a siRNA targeting CKI-α and cell extracts were prepared for 

Western blot and luciferase assay analyses over a period of 72 hours (Figure 7.8).  

Levels of CKI-α were reduced in both cell lines transfected with CKI-α siRNA 

compared to those transfected with a control siRNA and the protein was more 

potently silenced in Tri-U2OS cells (Figure 7.8, A and C). Interestingly, although 

NS5A seemed unaffected in Tri-Huh-7 cells, a lower abundance of the 

hyperphosphorylated species of NS5A was detected in Tri-U2OS cells treated with 

the CKI-α siRNA compared to those treated with the scrambled siRNA (Figure 7.8, 

C). This result is in agreement with the notion that CKI-α is involved in NS5A 

hyperphosphorylation (Quintavalle et al., 2006 and 2007). Upon examination of the 

luciferase levels expressed by Tri-Huh-7 cells, HCV replication was unaffected by 

CKI-α siRNA treatment until 72 hours post-transfection. At this time point, 

luciferase activity decreased by two-fold (Figure 7.8, B). By contrast, luciferase 

levels were reduced by 48 hours post-transfection in CKI-α siRNA-treated Tri-

U2OS cells, indicating that Tri-JFH1 replication was inhibited earlier in this cell 

line. The decrease in enzyme activity was greater still by 72 hours and luciferase 

values were reduced by seven-fold compared to cells transfected with scrambled 

siRNA (Figure 7.8, D).  

These results confirmed that CKI-α is involved in HCV RNA replication, likely 

through disruption of NS5A hyperphosphorylation. Moreover, the data indicated 

that Tri-JFH1 replication could be reduced in both cell lines by a siRNA targeting a 

cellular gene. However, the effects on HCV RNA replication were more 

pronounced in Tri-U2OS cells. It is likely that two factors contribute to this 

observation. Firstly, a higher degree of RNA replication is detected in Tri-Huh-7 

cells as compared to Tri-U2OS cells. Secondly, Tri-U2OS cells are more efficiently 

transfected with siRNAs than Tri-Huh-7 cells.  

 

7.3 Screening of the siRNA Library in Tri-Huh-7 and Tri-U2OS 
Cells 

Following the above validation, the siRNA library was screened in both Tri-Huh-7 

and Tri-U2OS cell lines. Individual genes were targeted by three siRNAs 

complementary to different regions of their coding sequence and each siRNA was 
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Figure 7.8 Knockdown of CKI-α in Tri-Huh-7 and Tri-U2OS cells

[A] Tri-Huh-7 cells or [C] Tri-U2OS cells were set up in duplicate; one set of cells was transfected 
with 50nM of an siRNA targeting the cellular kinase CKI-α, while the second set was transfected 
with 50nM of the control siRNA. Cells were harvested for Western blot analysis at 4, 24, 48 and 72 
hours post-transfection. Extracts from each time point were probed for the presence of CKI-α, 
NS5A and actin detection served as a loading control. [B] and [D] Cells set up in parallel to those 
described in [A] and [C] were lysed at 4, 24, 48 and 72 hours post-transfection and extracts were 
assayed for luciferase activity. All assays were performed in duplicate and average values are 
shown for each experiment. Error bars indicate the range of the values recorded at each time 
point.  



Daniel M Jones  Chapter 7 
 
transfected at a concentration of 25nM. Therefore, the final overall concentration 

of siRNAs targeting each cellular mRNA was 75nM. siRNAs were transfected into 

both Tri-Huh-7 and Tri-U2OS cells seeded on 24-well plates (see Section 

2.2.12.1). Preliminary studies were conducted using a smaller number of cells 

seeded on 96-well plates. However, the results obtained using this approach were 

highly variable. The siRNA screen was performed in duplicate for both cell lines 

and luciferase activity was measured to quantify effects on replication and/or 

translation of the Tri-JFH1 SGR harboured within cells. 24-well plates included 

both positive (siHCV) and negative (scrambled siRNA) controls, each at a final 

concentration of 50nM. Cell viability was also measured for all siRNA-transfected 

cells using AquaBluer (see Section 2.2.12.2).  

The complete data set from the screen in both cell lines is shown in Appendix 2. In 

general and consistent with results presented earlier, luciferase values were 

altered by siRNAs to a greater extent in Tri-U2OS cells compared to Tri-Huh-7 

cells. For example, silencing of XRN1 (5’-3’ exoribonuclease 1) increased 

luciferase activity by ~50% in Tri-Huh-7 cells and 3.5-fold in Tri-U2OS cells (Table 

6) compared to controls. This observation agrees with the higher transfection 

efficiency achieved in U2OS cells. Given the difference in transfection efficiencies 

between the two cell lines, changes (either increases or decreases) in luciferase 

activity of >50% in Tri-U2OS cells and >25% in Tri-Huh-7 cells were selected as 

criteria for identifying siRNA-targeted genes that influenced viral 

replication/translation. Using these criteria, 65 genes were identified (Tables 1-8) 

and the average values for luciferase activity and cell viability are shown. For 

luciferase activities, the range of the values from which the average was derived is 

also depicted. All values are expressed as a percentage of the values obtained for 

cells treated with the scrambled siRNA. Silencing of these genes had a variety of 

effects and luciferase levels decreased (genes in red), increased (genes in green) 

or had opposing effects (genes in blue) in the two cell lines when they were 

siRNA-treated. However, the knockdown of many genes also decreased cellular 

viability, which was often more pronounced in the Tri-U2OS cell line. For example, 

silencing of RPL37 (ribosomal protein L37, Table 1) reduced cell viability to only 

81% in Tri-Huh-7 cells. However, knockdown of the same gene in Tri-U2OS cells 

lowered cell viability to 43.4% (Table 1). From the 65 genes shown, silencing of 

RPS7 (ribosomal protein S7) caused the greatest reduction in Tri-Huh-7 cell 

viability (52.1%, Table 2), whereas Tri-U2OS cell viability was reduced to as low 

as 34.4% when UBB (Ubiquitin B) was knocked down by siRNA treatment (Table 
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6). Therefore, those siRNAs that maintained cell viability values of >80% after 

siRNA treatment were selected as having specific effects on the Tri-JFH1 SGR. 

This reduced the list of cellular genes affecting luciferase activity in both cell lines 

to 15. These genes are depicted (shaded grey) in Tables 1-8. 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position 

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

RPL5 000969 P1_E7 17.1 (+/-) 0.2 82.6 32.8 (+/-) 13.6 68.1 

RPL7 000971 P1_E9 16.7(+/-) 0.7 66 42.4 (+/-) 8.8 45.5 

RPL11 000975 P1_F3 38.6 (+/-) 6.5 71.4 32 (+/-) 7.2 51.9 

RPL12 000976 P1_F4 59.6 (+/-) 5.2 78.4 25.2 (+/-) 5 58.7 

RPL13 033251 P1_F5 33.5 (+/-) 6.6 76 25.4 (+/-) 4.4 56.8 

RPL14 001034996 P2_F2 19.1 (+/-) 2.3 84.1 46.9 (+/-) 10.2 48.1 

RPL23a 000984 P1_G1 16.5 (+/-) 3.7 70.3 37.6 (+/-) 11.5 52.5 

RPL24 000986 P1_G2 31.2 (+/-) 3.3 80.8 28.5 (+/-) 9.6 46.2 

RPL27 000988 P1_G4 11.8 (+/-) 1.6 69.5 44.2 (+/-) 12.6 51.5 

RPL27a 000990 P1_G6 17.6 (+/-) 9.4 79.5 23.2 (+/-) 1.4 71.8 

RPL30 000989 P1_G5 19.5 (+/-) 11.1 70 26.8 (+/-) 10.1 51.5 

RPL31 000993 P1_G9 31.1 (+/-) 13.7 78.6 42.3 (+/-) 7.3 51.8 

RPL37 000997 P1_H2 43.1 (+/-) 10 81 38.4 (+/-) 10.6 43.4 

RPLP2 001004 P1_H6 18 (+/-) 8.2 63.7 9.3 (+/-) 5.5 52 

Table 1 Ribosomal proteins (large) 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position 

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

RPS2 002952 P1_H7 30 (+/-) 12.6 66.6 22.6 (+/-) 8.5 65.2 

RPS3 001005 P1_H8 14 (+/-) 7.2 59.1 14.6 (+/-) 7.4 55.8 

RPS3A 182777 P1_H9 11.3 (+/-) 6.9 67.1 14.4 (+/-) 7.6 44.5 

RPS5 001009 P1_H10 22.1 (+/-) 9.6 77.4 20 (+/-) 10.3 52.5 
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RPS7 001011 P1_H11 11.3 (+/-) 5.9 52.1 35.8 (+/-) 1.8 54.3 

RPS8 001012 P2_A1 3.9 (+/-) 0.1 75.4 9.8 (+/-) 2.5 62.4 

RPS9 001013 P2_A2 21.9 (+/-) 1.7 108.5 5.6 (+/-) 2 66.8 

RPS11 001015 P2_A3 34.1 (+/-) 12.4 95.5 15.2 (+/-) 3.9 57.9 

RPS14 005617 P2_A4 6.6 (+/-) 0.1 83.8 12.5 (+/-) 3 84 

RPS15 001018 P2_A5 9.7 (+/-) 1.4 84.7 9 (+/-) 2 45.5 

RPS15A 001030009 P2_A6 4.4 (+/-) 0.4 92.3 8.8 (+/-) 0.2 61.2 

RPS16 001020 P2_A7 2.5 (+/-) 0.3 82.2 6.5 (+/-) 2 63.6 

RPS17 001021 P2_A8 7.7 (+/-) 0.1 84.7 8.3 (+/-) 1.6 56.1 

RPS18 022551 P2_A9 4.4 (+/-) 0.6 75.8 7.6 (+/-) 0.1 51.1 

RPS19 001022 P2_A10 5.6 (+/-) 0.8 73.9 8 (+/-) 0.6 48.7 

RPS20 001023 P2_A11 8.4 (+/-) 3.2 74.7 4.7 (+/-) 2 55.5 

RPS21 001024 P2_B1 7 (+/-) 2.5 73.3 14 (+/-) 3.5 57.9 

RPS23 001025 P2_B2 7.7 (+/-) 2.3 88.9 8.8 (+/-) 2.3 49.2 

RPS24 033022 P2_B3 5.6 (+/-) 1.4 78 9.8 (+/-) 2.9 42.9 

RPS26 001029 P2_B4 6.6 (+/-) 0.8 73.3 7.4 (+/-) 2.4 61.6 

RPS27A 002954 P2_B6 4.1 (+/-) 0.9 82.5 6.6 (+/-) 2.6 67 

RPS28 001031 P2_B7 5.8 (+/-) 1.4 84.9 8.2 (+/-) 3.3 55.8 

Table 2 Ribosomal proteins (small) 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

EIF4A2 001967 P1_B3 165 (+/-) 5.4 109 232 (+/-) 18.8 83.6 

EIF4G2 001418 P1_B9 138.6 (+/-) 

13.3 

98 207 (+/-) 1.8 145.2 

EFTUD1 024580 P3_F4 136 (+/-) 14.6 93.4 257.3 (+/-) 26.1 75.4 

EIF3B 003751 P2_E2 14.5 (+/-) 4.5 92.4 34.1 (+/-) 8.3 79.1 

EIF3I 003757 P2_E6 35.6 (+/-) 6.3 106.1 8.3 (+/-) 1.2 59.1 

EIF3FP2 031943 P3_F8 60.9 (+/-) 7.3 82.4 49.2 (+/-) 13.3 75.4 

Table 3 Translation factors 
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Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

RNPS1 006711 P2_H9 129.6 (+/-) 0.6 99.4 209 (+/-) 41.1 82.7 

RBM25 021239 P3_E5 35.7 (+/-) 3 70.3 32.4 (+/-) 8.6 72.7 

HNRNPD 031370 P1_C6 58.9 (+/-) 11.1 89.1 34.3 (+/-) 2.3 103.6 

RBMS2 002898 P1_E5 64.2 (+/-) 14.2 100.5 29.7 (+/-) 6.4 99.9 

SRP14 003134 P2_C2 57.7 (+/-) 10.4 102.8 40.8 (+/-) 8.3 74.5 

RBM7 016090 P2_G7 128.2 (+/-) 

19.5 

92.4 47.5 (+/-) 0.3 75.2 

CPEB1 030954 P3_E11 55 (+/-) 7.7 78 168.5 (+/-) 9 53.9 

Table 4 RNA-binding proteins 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

ISG15 005101 P2_F10 127.5 (+/-) 9 102.9 354 (+/-) 57 92.6 

ISG20L2 030980 P3_F6 132.9 (+/-) 14 93.2 181.6 (+/-) 8.8 85.9 

PRKRA 003690 P2_D11 74.7 (+/-) 4.6 97.2 47.6 (+/-) 15.5 62.8 

Table 5 Proteins involved in IFN induction 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position 

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

XRN1 019001 P3_D3 154.7 (+/-) 4.9 99.3 350.7 (+/-) 26.4 94.7 

UBA52 003333 P2_C8 24.9 (+/-) 9.3 77.9 12.2 (+/-) 2.4 51.9 

UBB 018955 P2_C9 11.8 (+/-) 4.7 76.2 1.6 (+/-) 0.2 34.4 

UBC 021009 P2_C10 34.4 (+/-) 13.1 96 10 (+/-) 0.3 46.1 

Table 6 Degradation pathway proteins 
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Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. (NM_) 

Plate 
Position 

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

RBBP6 032626 P1_E1 52.4 (+/-) 11.5 90 44.9 (+/-) 6.7 81.6 

PDCD4 145341 P3_C2 58.9 (+/-) 11.8 105.5 27.3 (+/-) 4.6 87.1 

Table 7 Cell cycle control proteins 

 

Tri-Huh-7 Tri-U2OS 
 

Gene 
Accession 
No. 

Plate 
Position 

Luciferase 
(%) 

Viability 
(%) 

Luciferase 
(%) 

Viability 
(%) 

ACAP2 NM_012287 P3_B1 134.7 (+/-) 4.5 99.8 155.4 (+/-) 19.2 96.7 

ZNF575 NM_174945 P4_A5 42.9 (+/-) 6.7 64.8 22.8 (+/-) 1.4 43.4 

ZNF653 NM_138783 P3_G7 59.8 (+/-) 12.3 84.9 40 (+/-) 4.1 84.4 

- XM_203320 P4_A6 69.3 (+/-) 0.3 85.6 26.1 (+/-) 2.1 60 

- XM_497121 P4_C7 63.2 (+/-) 7.2 86.9 46.8 (+/-) 5.3 93.2 

TRMT6 NM_015939 P3_C10 136.1 (+/-) 20.6 96 48.2 (+/-) 4.6 93.9 

- XM_498389 P3_G10 74.8 (+/-) 12.1 84.2 164 (+/-) 22.2 83.8 

Table 8 Non-assigned proteins 

 

7.3.1 Genes That Increased Luciferase Activity In Both Cell Lines 

From the 15 identified genes, silencing of seven resulted in increased luciferase 

activity in both Tri-Huh-7 and Tri-U2OS cells. This result suggests that these 

genes encode proteins that are involved in inhibiting the replication and/or 

translation of HCV RNA and that this repression is relieved by gene silencing. The 

largest increases in luciferase levels were observed when targeting ISG15 (ISG15 

ubiquitin-like modifier, Table 5) and XRN1 (Table 6). In both cases, enzyme 

activity was increased more dramatically in Tri-U2OS compared to Tri-Huh-7 cells 

and luciferase values were increased by ~3.5-fold compared to control Tri-U2OS 

cells. Silencing of other genes increased luciferase activity to a lesser extent and 

included RNSP1 (RNA binding protein S1 serine rich domain, Table 4), ISG20L2 
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(IFN-stimulated exonuclease gene 20kDa-like 2, Table 5), ACAP2 (ArfGAP with 

coiled-coil, ankyrin repeat and PH domains 2, Table 8), EIF4A2 and EIF4G2 

(Table 3). 

 

7.3.2 Genes That Decreased Luciferase Activity In Both Cell Lines 

Conversely to those described above, knockdown of seven of the 15 genes led to 

a reduction in luciferase enzyme levels, implying that these genes promoted HCV 

RNA replication and/or translation. Although all of the small ribosomal proteins 

were apparently important, knockdown of RPS14 (ribosomal protein S14) 

dramatically reduced luciferase activity without lowering cell viability to less than 

80% in both Tri-Huh-7 and Tri-U2OS cells (Table 2). In addition, silencing RBMS2 

(RNA binding motif, single-stranded interacting protein 2, Table 4) and HNRNPD 

(heterogeneous nuclear ribonucleoprotein D, Table 4) led to significant decreases 

in luciferase levels with little effect on cellular viability. This effect was especially 

evident with RBMS2, where siRNA treatment decreased enzyme levels to 64.2% 

and 29.7% (in Tri-Huh-7 and Tri-U2OS cells respectively), yet cell viability barely 

deviated from 100%. Other proteins implicated in aiding HCV replication included 

RBBP6 (retinoblastoma binding protein 6, Table 7), PDCD4 (programmed cell 

death 4, Table 7), ZNF653 (zinc finger protein 653, Table 8) and an as yet 

undefined gene (Table 8). 

 

7.3.3 Genes that had Opposing Effects on Luciferase Activity 

One gene, TRMT6 (tRNA methyltransferase 6 homolog, Table 8) had opposing 

effects on luciferase activity upon silencing. Luciferase activity increased by 36% 

in Tri-Huh-7 cells treated with siRNAs targeting TRMT6 but was reduced by ~50% 

in Tri-U2OS cells treated in the same manner. This was the only example of a 

gene that had opposing effects in the two different cell lines without reducing cell 

viability to less than 80%. 

 

7.4 Knockdown of ISG15 and XRN1 can Increase HCV RNA 
Replication in Transient Assays 

As stated above, silencing of two genes, XRN1 and ISG15, led to the greatest 

increases in luciferase levels using Tri-U2OS cells, and enzyme activity also rose 
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Figure 7.9 Effect of silencing ISG15 and XRN1 on transient HCV RNA 
replication

RNA encoding luc-JFH1 was electroporated into [A] Huh-7 cells and [B] U2OS cells and cells 
were immediately transfected with 50nM of the control siRNA, or 75nM of siRNAs directed 
against ISG15, XRN1, or both genes (to a final siRNA concentration of 150nM). Cells were lysed 
at 4, 24, 48 and 72 hours post-electroporation/transfection and extracts were assayed for 
luciferase activity. All assays were performed in duplicate and average values are shown for each 
experiment. Error bars represent the range of the values recorded at each time point. 
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in Tri-Huh-7 cells, albeit to a lesser extent (Tables 5 and 6). To confirm the 

suppressive effect of these proteins in transient assays, Huh-7 and U2OS cells 

were electroporated with RNA from luc-JFH1 and then immediately transfected 

with 75nM of siRNAs targeting either XRN1 or ISG15. Additionally, cells were 

transfected with a combination of siRNAs against both genes (giving a final siRNA 

concentration of 150nM) to determine whether any synergistic effect on luciferase 

activity could be achieved by targeting ISG15 and XRN1 simultaneously. Cells 

were harvested over 72 hours post-electroporation/transfection and extracts 

assayed for luciferase activity (Figure 7.9).  

In Huh-7 cells, silencing of ISG15 and XRN1, alone or together, did not increase 

luciferase activity above levels observed with cells transfected with the control 

siRNA, except at 48 hours where ISG15 siRNA-treated cells gave a 50% increase 

in luciferase values (Figure 7.9, A). By comparison, luciferase values in U2OS 

cells were higher in all cells treated with siRNA for 24, 48 and 72 hours (Figure 

7.9, B). These data confirm that siRNA treatment is more effective in U2OS cells 

compared to Huh-7 cells. By 48 hours, ISG15 siRNA-treated cells yielded 

luciferase values that were over seven-fold greater than cells treated with the 

scrambled siRNA. The smallest luciferase activity increase in U2OS cells was 

observed when XRN1 alone was silenced, yet luciferase values were still more 

than two-fold greater compared to control cells at 48 hours. By 72 hours, luciferase 

levels in all siRNA-treated cells were approximately three-fold higher than the 

control U2OS cells (Figure 7.9, B). These results imply that ISG15 and XRN1 are 

involved in repressing HCV RNA replication in cells and silencing of the genes 

encoding these proteins allows the genome to replicate with greater efficiency. 

However, silencing of both genes simultaneously does not provide any synergistic 

effect. 

 

7.5 Discussion  

The aim of this part of the project was to identify cellular nucleotide-binding 

proteins involved in HCV RNA replication and/or translation. Aside from selecting 

the genes to target, a suitably robust system in which to screen the library was 

required. Suitable positive and negative control siRNAs, in addition to two cell lines 

harbouring tri-cistronic SGRs were created for this purpose. 

siHCV is analogous to si313, a siRNA complementary to the 3’ end of domain III 

and 5’ end of domain IV of the HCV IRES sequence located in the HCV 5’ UTR 
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(Chevalier et al., 2007). This siRNA was selected as a positive control for two 

reasons. Firstly, the IRES sequence targeted by siHCV/si313 is highly conserved 

and therefore unlikely to mutate during the passage of cell lines containing a HCV 

SGR. This was important, since a siRNA that differs from its target sequence by 

two or more bases is inefficient at silencing HCV replication (Randall et al., 2003). 

Secondly, siHCV/si313 has previously been characterised and its capacity to 

inhibit both HCV RNA replication and virus infection in cell culture has led to 

exploration of its potential as a therapeutic candidate (Chevalier et al., 2007).  

The initial plan was to screen the siRNA library in transient replication assays with 

the luc-JFH1 SGR. However, the data obtained during optimisation experiments 

revealed that the process of simultaneously electroporating (luc-JFH1) and 

transfecting (siHCV/control siRNA) cells simultaneously was cytotoxic and 10-fold 

reductions in HCV replication were observed even with the scrambled control 

siRNA (Figure 7.2, A). As an alternative approach, it was decided to create cells 

containing a tri-cistronic replicon. In this situation, cells would only require 

transfection with siRNA, thereby avoiding electroporation. Therefore, cell lines 

were generated using Tri-JFH1, a tri-cistronic JFH1-based SGR containing (i) a 

neomycin resistance gene for selection of cells (ii) a luciferase gene for 

quantification of HCV RNA replication and (iii) the NS3-NS5B region required for 

replication of the SGR (Figure 7.3). Two cell lines, Tri-Huh-7 and Tri-U2OS were 

created and characterised, which were able to maintain HCV replication under 

selective pressure. Tri-U2OS cells supported HCV RNA replication far less 

efficiently compared to Tri-Huh-7 cells (Figure 7.5, B). This reduction in replication 

was also evident for U2OS cells used in transient replication assays with luc-JFH1 

and Tri-JFH1 (Figure 7.4). U2OS cells do support HCV RNA replication, albeit to a 

lesser extent compared to Huh-7 cells (Targett-Adams & McLauchlan, 2005). 

Those cellular factors that determine the difference between replication 

efficiencies in the two cell lines are unknown. Consistently, siRNAs influenced 

replication and cell viability to a greater degree in Tri-U2OS compared to Tri-Huh-7 

cells. This could be due to several reasons. Firstly, parallel experiments in both 

Huh-7 and U2OS cells revealed that U2OS cells are more efficiently transfected 

compared to Huh-7 cells. Thus, more siRNA is probably delivered into U2OS cells, 

giving increased gene silencing. Secondly and as mentioned above, U2OS cells 

support lower levels of HCV replication compared to Huh-7 cells. Reduced 

replication may result from limiting quantities of cellular factors or differences in 

cellular pathways that contribute to viral genome synthesis. Thus, such factors or 
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pathways may be more readily suppressed by siRNAs in U2OS cells, giving a 

greater effect on HCV replication levels. U2OS cells may therefore prove to be 

more suitable than Huh-7 cells for conducting HCV-related siRNA studies.  

The contribution of cellular factors to HCV RNA replication was initially assessed 

by examining the effects of a siRNA targeting CKI-α. The HCV-encoded NS5A 

protein is a substrate for CKI-α, which is capable of hyperphosphorylating purified 

NS5A in vitro (Quintavalle et al., 2006 and 2007). Furthermore, CKI-α is involved 

in HCV RNA replication and silencing of this gene by siRNA treatment resulted in 

reduced genome synthesis (Quintavalle et al., 2006). Our results indicated that 

knockdown of CKI-α by siRNA treatment led to decreased NS5A 

hyperphosphorylation in Tri-U2OS cells (Figure 7.8, C), although no apparent 

effect was observed in Tri-Huh-7 cells (Figure 7.8, A). Additionally, viral RNA 

synthesis was reduced by seven-fold in CKI-α siRNA-treated Tri-U2OS cells by 72 

hours (Figure 7.8, D) but was only decreased by two-fold in Tri-Huh-7 cells 

transfected in parallel (Figure 7.8, B). Therefore, viral replication was apparently 

reduced in accordance with decreasing levels of hyperphosphorylated NS5A; this 

was particularly apparent in the U2OS cell line, whereas a more modest effect was 

observed in Tri-Huh-7 cells. These results confirmed that CKI-α influences HCV 

RNA replication, possibly through modulating the phosphorylation status of NS5A. 

The data also reconfirmed the increased sensitivity of U2OS cells to siRNA 

treatment compared to Huh-7 cells.     

The aim of the siRNA library screen was to identify genes that were required for 

HCV genome replication and or/translation. However, it became apparent that the 

system was also useful for identifying genes that suppressed these processes. 

The largest class of genes implicated in aiding HCV replication encoded subunits 

of ribosomal proteins, the organelles responsible for cellular protein synthesis 

(Table 1 and Table 2). Ribosomes consist of a small (40S) and large (60S) 

subunit, which together are composed of four RNA species and approximately 80 

distinct proteins. The 40S subunit mediates interactions between the anticodons of 

the tRNA and the codons of the mRNA, while the 60S subunit catalyses peptide 

bond formation in the growing polypeptide chain (Steitz, 2008). Domains II and III 

of the HCV IRES directly contact and position the 40S ribosomal subunit at the 

AUG codon for core protein, thus allowing cap-independent translation of the viral 

polyprotein (Honda et al., 1996a and 1996b). Therefore, it was unsurprising that 

silencing genes encoding ribosomal subunits resulted in reduced HCV RNA 
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replication and cellular viability. RPS14 was the only example of a ribosomal 

subunit that could be silenced without reducing cell viability to less than 80% in 

both cell lines (Table 2). Knockdown of RPS14 decreased luciferase levels 

substantially to 6.6% (in Tri-Huh-7 cells) and 12.5% (in Tri-U2OS cells), making 

this gene worthy of further investigation. 

The HCV IRES recruits the 40S ribosomal subunit to the viral RNA sequence in 

the absence of eukaryotic translation initiation factors (Pestova et al., 1998). 

However, eIF2 is required for correct placement of the initiator tRNA (Met-tRNA) 

on the surface of the 40S ribosomal subunit and the resulting eIF2-Met-tRNA 

complex is stabilised by eIF3 (Ji et al., 2004, Pestova et al., 1998). In support of 

this model, silencing of EIF3B, EIF3I and EIF3FP2 reduced HCV RNA replication 

(Table 3). However, cell viability values indicated that any reduction was at least 

partially due to cell death, likely arising from inhibition of cellular protein synthesis. 

Interestingly, silencing of two other initiation factors, eIF4A2 and eIF4G2, resulted 

in enhanced viral replication in both cell lines (Table 3). These proteins, along with 

others, comprise the eIF4F complex that recognises the modified nucleotide at the 

5’ end of mRNA in order to initiate cap-dependent translation (Fraser & Doudna, 

2007). Since these proteins are involved in the translation of cellular mRNAs, it is 

possible that their silencing results in an excess of free ribosomes, which are 

unable to translate cellular mRNA. Therefore, an increased quantity of viral RNA 

may be able to interact with these free ribosomes, resulting in enhanced HCV 

replication (Table 3). 

Several RNA-binding proteins were identified in the siRNA screen, including 

RBMS2, hnRNP D and RNPS1. Knockdown of RBMS2 specifically inhibited HCV 

RNA replication in both cell lines with no effect on cell viability (Table 4). This gene 

encodes a protein that binds to ssRNA molecules (Kanaoka & Nojima, 1994).  

Therefore, it is conceivable that RBMS2 is able to bind HCV RNA and facilitate 

replication. However, a lack of RBMS2 characterisation prevents any further 

speculation on the implications of such an interaction. In contrast to RBMS2, 

silencing of RNPS1 resulted in increased viral RNA synthesis. RNPS1 is a 

component of the cellular post-splicing complex that is involved in both mRNA 

nuclear export and mRNA surveillance. This system detects mRNAs with 

truncated ORFs and initiates nonsense-mediated mRNA decay (NMD, Lykke-

Andersen, 2001, Lykke-Andersen et al., 2001). It is difficult to speculate why a 

protein involved in this process would inhibit HCV replication. It is possible that 
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knockdown of RNPS1 results in decreased export of certain mRNAs that are 

involved in suppressing HCV RNA synthesis.  

Targeting the gene encoding hnRNP D decreased luciferase values in both cell 

lines (Table 4) and, following completion of the siRNA library screen, a published 

report has confirmed it contributes to translation of the viral genome (Paek et al., 

2008). In that study, hnRNP D functions as an IRES-specific cellular transacting 

factor (ITAF) that binds to domain II of the HCV IRES (Paek et al., 2008). The 

authors demonstrated that siRNA-mediated reduction of hnRNP D in cell lines 

containing mono- and bi-cistronic SGRs and JFH1-infected cells resulted in the 

repression of viral RNA translation but not replication (Paek et al., 2008). The 

results from the siRNA library screen are in agreement with the notion that hnRNP 

D influences the virus life cycle and luciferase levels were reduced to 58.9% (Tri-

Huh-7 cells) and 34.3% (Tri-U2OS cells) when hnRNP D was silenced (Table 4). 

However, our screen does not distinguish between effects on viral replication and 

those on translation, meaning further investigation would be required to determine 

whether hnRNP D is involved exclusively in translation of viral RNA, as suggested 

by Paek et al.  

Silencing IFN-stimulated genes ISG15 and ISG20L2 led to increased viral 

replication, particularly in the case of ISG15 where siRNA treatment enhanced 

luciferase levels to 354% in the U2OS cell line compared to control cells (Table 5). 

ISG20L2 is a 3’-5’ exoribonuclease that is involved in ribosome biogenesis (Coute 

et al., 2008), although any further biological function has yet to be determined. In 

contrast, ISG15 is a relatively well characterised ubiquitin homolog. Like ubiquitin, 

ISG15 is reversibly conjugated to cellular proteins via a series of steps utilising 

enzymes that activate, conjugate and finally ligate ISG15 to target proteins (Sadler 

& Williams, 2008). While protein ubiquitination has been demonstrated to drive a 

variety of cellular processes, the effect of ISG15 addition (referred to as 

ISGylation) to proteins is unclear. ISG15 is thought to act as an antiviral protein 

and various studies have demonstrated that it interferes with the life cycles of 

several viruses, including human immunodeficiency virus (HIV, Okumura et al., 

2006) and Ebola virus (Malakhova & Zhang, 2008, Okumura et al., 2008). An 

antiviral role for ISG15 is further supported by the fact that some viruses have 

evolved strategies to target cellular ISGylation, as seen with the NS1 protein of 

influenza B virus (Yuan & Krug, 2001). Cellular proteins targeted for ISGylation 

include the protein kinase PKR and the cytoplasmic helicase RIG-I (Zhao et al., 

2005), both of which are involved in the innate immune response to HCV infection 
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(Gale et al., 1997, Saito et al., 2008). Innate immune responses are typically 

triggered by the recognition of viral motifs known as pathogen-associated 

molecular patterns (PAMPs) and the RIG-I protein binds the polyuridine tract 

present within the 3’ UTR of HCV RNA (Saito et al., 2008). This leads to the 

activation of IFN regulatory factor (IRF3), upregulation of IFN-α/β production and 

further activation of IFN-stimulated genes. In contrast, dsRNA or the cellular 

protein PACT usually activate PKR, leading to its autophosphorylation and 

subsequent phosphorylation of the α subunit of eIF2, shutting down cellular 

translation initiation as a result (Samuel, 1993). These two proteins exhibit 

different mechanisms of viral suppression and both pathways are targeted and 

suppressed by HCV-encoded NS5A (Gale et al., 1998, Gale et al., 1997) and 

NS3/4A (Breiman et al., 2005, Tasaka et al., 2007). It is possible that ISGylation of 

RIG-I and PKR is a defence against their inactivation by HCV, thereby enhancing 

their antiviral effect. However, the precise mechanism by which ISG15 mediates 

inhibition of HCV replication is likely to be complex since at least 160 cellular 

genes modified by ISG15 have been identified to date (Zhao et al., 2005). 

One other gene worthy of note encoded XRN1, a 5’-3’ exoribonuclease that 

degrades RNA molecules (Muhlrad et al., 1994). This process is thought to occur 

within cytoplasmic processing bodies (Cougot et al., 2004, Ingelfinger et al., 2002)  

following uncapping of target RNA by the Dcp1:Dcp2 decapping complex. 

Silencing of XRN1 resulted in HCV replication efficiencies of 154.7% and 350.7% 

in Tri-Huh-7 and Tri-U2OS cells respectively (Table 6). These results suggest that, 

like mRNAs, HCV RNA genomes are degraded by XRN1. Viral RNA is uncapped, 

therefore association with the Dcp1:Dcp2 complex is presumably unnecessary. 

However, the mechanism allowing XRN1 to negotiate structured RNA elements 

such as the HCV IRES is unclear. It would be interesting to determine whether the 

cytoplasmic dots observed by confocal microscopy for dsRNA (Targett-Adams et 

al., 2008a), believed to represent HCV replication complexes, co-localised with 

those dots representing processing bodies (Cougot et al., 2004, Ingelfinger et al., 

2002). Even if this were not the case, it remains to be determined whether RNA 

decay is limited to processing bodies, or can occur within other regions of the cell. 

For example, the exosome, implicated in NMD, does not localise to processing 

bodies (Sheth & Parker, 2003). 

In conclusion, the siRNA library screen revealed a number of cellular proteins that 

are potentially involved in the HCV life cycle, either through aiding or suppressing 
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viral RNA replication and/or translation. The role of ISG15 in suppressing HCV is 

particularly interesting and further work is being conducted on this protein. 
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8 Conclusions and Further Perspectives 

 

8.1 Summary 

During the course of this study, several findings that contribute to the current 

understanding of HCV biology have emerged. The main findings are summarised 

below. 

(i) GFP can be inserted within the C-terminal coding region of NS5A, in the context 

of a JFH1-based SGR. RNA transcribed from this construct replicates efficiently in 

cells and permits live-cell analysis of NS5A. 

(ii) When expressed from a NS3-NS5B polyprotein, NS5A exhibits an ER-like 

distribution and localises to discrete cytoplasmic foci. NS5A displays low mobility 

in foci but has higher mobility on the ER membrane. This result was confirmed 

using SGRs containing photoactivatable NS5A (NS5A-PAGFP). 

(iii) Removal of NS4B from the polyprotein results in loss of NS5A within foci. In 

this situation, NS5A displays an ER-like pattern and is more mobile compared to 

when expressed from polyproteins that include NS4B. Thus, the localisation and 

mobility of NS5A is influenced by NS4B. 

(iv) From mutation studies, residues within the NS4B C-terminus are important for 

foci formation. As a consequence of blocking foci formation, NS5A no longer 

localises to these sites and exhibits increased mobility. NS5A 

hyperphosphorylation seemingly does not occur when foci production is abolished. 

(v) Based on analysis of NS4B mutations that prevented replication but did not 

disrupt foci formation or alter the properties of NS5A, NS4B appears to play a 

direct role in HCV RNA synthesis. 

(vi) At least for some mutations, NS4B can be trans-complemented, leading to the 

rescue of replication for defective SGRs. Replication can be also be reconstituted 

from two inactive SGRs harbouring lethal mutations within NS4B and NS5A. 

These SGRs appear to be mutually dependent upon each other for RNA 

synthesis. 

(vii) The C-terminus of NS4B influences virus production via an unknown 

mechanism. In JFH1, a point mutation resulted in viral titres being increased by up 

to ~5-fold. However, introduction of the same mutation into the chimeric J6-JFH1 

virus resulted in decreased production of infectious progeny. Therefore, the 
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influence of NS4B appears to be genotype-specific and suggests that the protein 

interacts with one or more of the core-NS2 components. 

(viii) U2OS cells are capable of supporting autonomous HCV RNA replication over 

extended time periods. Thus, there are alternatives to Huh-7 cells for identification 

of cell factors that support viral RNA synthesis. In the study presented in this 

thesis, U2OS cells support higher transfection efficiencies for siRNA screening 

compared to Huh-7 cells, facilitating the identification of cellular genes important 

for replication of the HCV genome.  

(ix) Several cellular proteins that influence HCV RNA replication have been 

identified, which are capable of enhancing and repressing genome synthesis. 

Repression of ISGs, particularly ISG15, resulted in substantially increased viral 

RNA synthesis. 

Some of the ideas and implications generated from the above findings are now 

explored in greater detail, including potential approaches to further these studies. 

Particular emphasis is placed on the continued investigation into HCV replication, 

through developing the techniques employed in this study. In addition, ideas 

concerning HCV quasispecies and treatment are also discussed.       

 

8.2 Applications of Technology to Examine HCV RNA 
Replication 

8.2.1 GFP and FRAP      

The properties of GFP (see Section 1.7.1) make it ideal for investigating the 

localisation and behaviour of proteins. In this study, GFP was inserted into domain 

III of NS5A and replicons harbouring the fusion protein were replication competent. 

Utilising IF and FRAP analysis, the GFP insertion allowed assessment of the 

interaction of NS5A with RCs. FRAP analysis provides a possible alternative to 

biochemical assays for measuring the interactions of proteins with other proteins, 

complexes or organelles. For example, NS5A was relatively immobile when 

localised to foci/RCs, suggesting that the protein is tightly tethered at these sites. 

Biochemical assays support this notion, since NS5A expressed alone could be 

extracted more readily from membranes, compared to protein expressed in a 

context where RCs would be predicted to form (Brass et al., 2002). While FRAP 

analysis is useful for defining protein interactions, it can also reveal the binding 

strength of such associations. For example, studies utilising D2 domains from core 

139 



Daniel M Jones  Chapter 8 
 
linked to GFP have shown that the domain from HCV strain HC-J6 exhibits lower 

mobility on LDs compared to the domain from JFH1, indicating that HC-J6 core 

binds LDs more tightly (Shavinskaya et al., 2007). These changes in mobility can 

be subtle, and it is doubtful they would be detected by other techniques typically 

used to analyse protein interactions, such as immunoprecipitation assays or 

membrane extraction methods. Thus, FRAP is a highly sensitive method and 

GFP-fusion technology means that it can be readily applied to the study of a wide 

range of biologically important proteins (Sprague & McNally, 2005). 

Improvements in FRAP-based methods could prove useful for determining the 

nature of association of HCV-encoded replicase proteins with membranes. For 

example, palmitoylation is a lipid modification of Cys residues that can promote the 

binding of proteins to cell membranes, as found with H-Ras trafficking (Kenworthy, 

2006). The contribution of palmitoylation to membrane association has been 

determined recently using FRAP laser beam-size analysis. This technique, unlike 

standard FRAP, uses two lasers to bleach different-sized cellular areas and can 

distinguish between fluorescence recovery by diffusion (movement of protein on 

the membrane) and recovery by membrane exchange (movement of protein 

between membranes and cytoplasmic pools, Henis et al., 2006). Assessing 

changes in diffusion/membrane exchange rates can reveal the contribution of 

amino acids to membrane association. For instance, it has been revealed that only 

one of the two palmitoylated Cys residues within the H-Ras HVR is required to 

stabilise its membrane interaction (Henis et al., 2006). Interestingly, HCV-encoded 

NS4B apparently undergoes palmitoylation on two C-terminal Cys residues and 

this lipid modification is suggested to aid interactions between the viral NS proteins 

during RC formation (Yu et al., 2006). Unlike H-Ras however, palmitoylation 

apparently had no effect on NS4B membrane association, although the method by 

which this conclusion was reached was not described (Yu et al., 2006). It would be 

interesting to further examine this observation using FRAP laser-beam size 

analysis. Here, the contribution of each Cys residue to NS4B membrane binding, if 

any, could be determined. In particular, this may help define the importance of one 

NS4B Cys residue (Cys257 in Yu et al., 2006) that undergoes palmitoylation, yet 

was dispensable for RNA replication in assays described in this study (referred to 

as M15, see Section 4.3.1).               
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8.2.2 Alternative Fluorescent Technologies 

While GFP-fusion proteins permit FRAP analysis as discussed above, the 

relatively large size of GFP (27kDa) means that tagging or insertion can also lead 

to a loss of function in the protein of interest. For HCV, the flexibility of NS5A is 

unique and no other protein within the NS3-NS5B coding region can tolerate GFP 

insertion without abolishing RNA replication (Moradpour et al., 2004b). Thus, 

smaller fluorescent tags may provide alternate means of tagging HCV proteins 

while retaining replicative function.  

One alternative approach would be the use of tetracysteine tags, which can be 

only six amino acids in length (Cys-Cys-Xaa-Xaa-Cys-Cys) and are capable of 

binding bi-arsenical derivatives (such as FlAsH [green] and ReAsH [red]) to 

produce fluorescence (Frischknecht et al., 2006). The small size of the motif 

coupled with live-cell compatibility means that tetracysteine tags provide an 

alternative for studying proteins that are sensitive to GFP insertion or tagging. For 

example, HIV budding is inhibited when the viral Gag protein (which constitutes 

the retroviral capsid), is tagged with GFP and this process can only be rescued by 

over-expression of unlabelled Gag (Larson et al., 2005). However, insertion of a 

tetracysteine motif within HIV-encoded Gag allows monitoring of protein 

localisation, while remaining competent for HIV budding (Rudner et al., 2005). 

Tetracysteine tags also offer other advantages over GFP fusion. Firstly, 

combinatorial use of FlAsH/ReAsH labelling is useful for ‘pulse chase’-like 

experiments, where newly synthesised protein populations can be tracked over 

time, as demonstrated with HIV proteins Gag (Perlman & Resh, 2006, Rudner et 

al., 2005) and integrase (Arhel et al., 2006). Secondly, labelling can be achieved 

concurrently with translation, independently of any protein maturation events that 

may be required to observe GFP (Campbell & Hope, 2008). Finally, FlAsH and 

ReAsH tags can be used to photoconvert diaminobenzidine (DAB), yielding 

electron-dense deposits that can be visualised by EM (Frischknecht et al., 2006). 

This opens up the possibility of examining proteins using light microscopy, and 

then correlating the analysis with that gained through EM observation of the same 

sample. For example, the technique has previously been used to show that the 

same tetracysteine-tagged connexins can be visualised by IF and EM within the 

same cell (Gaietta et al., 2002). 

Future studies on HCV may well utilise tetracysteine-tagged viral proteins. Indeed, 

such a motif has already been inserted into the core protein of JFH1 and this 
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construct is capable of producing infectious virus (Lindenbach, B., 15th 

International Symposium on Hepatitis C and Related Viruses, 2008). It would be 

interesting to determine whether such a tag could be inserted into the NS4B 

coding region without abolishing replication. In this study, we have shown that 

mutations, particularly within Region 2 (see Chapter 4) of the protein, can tolerate 

substitution without affecting RNA synthesis. Furthermore, the C-terminal end of 

NS4B Region 2 harbours a Asp-Cys-Pro-Ile-Pro-Cys motif. One possibility would 

be to mutate this genome segment to encode a Cys-Cys-Pro-Ile-Cys-Cys motif 

and determine whether RNA replication was affected. If such mutations could be 

tolerated, this might allow examination of NS4B localisation in live cells that 

actively replicate HCV RNA. Moreover, FlAsH/ReAsH and DAB labelling may 

permit visualisation of NS4B localisation sites by EM in the same sample. Such an 

approach may help define the nature of NS4B-induced RCs more precisely.    

Aside from labelling virus components using dyes as described above, exciting 

implications for virus study have recently emerged from the use of fluorescent 

semiconductor nanocrystals, typically referred to as quantum dots (QDs). QDs 

exhibit remarkable photostability and brightness (Michalet et al., 2005), allowing 

QD-labelled proteins to be tracked over extensive periods with little risk of 

photobleaching. Recently, conjugation of QDs to viral particles has provided an 

alternative method for investigating virion localisation. For example, QDs 

encapsulated within the virion itself (Dixit et al., 2006, Li et al., 2009), or 

conjugated to virus glycoproteins via antibodies (Agrawal et al., 2005, Bentzen et 

al., 2005) have been used to examine simian virus 40 (SV40) and respiratory 

syncytial virus (RSV). More recently, biotinylated acceptor peptides incorporated 

within the viral membrane of HIV virions could be labelled using streptavidin-

coated QDs, allowing virus particle trafficking to be monitored in live cells (Joo et 

al., 2008). To date, QDs have not been used to label viral proteins involved in 

intracellular events, such as genome replication. One possibility could involve 

insertion of a biotinylation motif within the C-terminus of NS5A, which could then 

be labelled using streptavidin-coated QDs. Insertion of such a motif into NS5A has 

previously been achieved using a domain of Propionibacterium shermanii 

transcarboxylase (PSTCD), resulting in a tagged NS5A protein that is 

metabolically biotinylated within cells (McCormick et al., 2006). Labelling of NS5A-

PSTCD would then require intracellular delivery of QDs, perhaps through 

microinjection. If technical challenges could be overcome (e.g. specific 
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incorporation of QDs), this approach may allow analysis of viral replication in live 

cells over extended time periods. 

 

8.2.3 siRNA and Alternative Approaches 

During this project, a siRNA library was used to identify novel cellular factors that 

influenced HCV RNA replication. In particular, ISG15 was identified as a protein 

apparently involved in suppressing viral RNA synthesis in both Huh-7 and U2OS 

cells. It would be interesting to determine the effect of ISG15 levels on HCV 

replication over longer time periods. Unfortunately, siRNA molecules are short- 

lived and therefore offer only transient inhibition of gene expression (Paddison et 

al., 2002). An alternative approach would be to utilise short hairpin RNAs 

(shRNAs), synthetic RNA molecules conceptually modelled upon cellular micro 

RNAs (miRNAs). miRNAs are not translated into protein but are processed to form 

short RNA duplexes with siRNA-like properties (Bernards et al., 2006). Several 

groups have produced retroviral, adenoviral or lentiviral vectors that produce 

shRNAs, and successful integration of the vector into the host genome can 

mediate persistent gene silencing in mammalian cells (Rubinson et al., 2003) as 

well as whole animals, including mice (Rubinson et al., 2003, Tiscornia et al., 

2003) and rats (Dann et al., 2006). Inducible systems for reversible temporal 

inactivation have also been developed. Here, a promoter that incorporates a 

bacterial operator sequence drives shRNA expression. Expression is blocked by 

the autonomous production of a repressor that binds the operator, thereby 

blocking transcription from the promoter. However, addition of a small molecule 

(such as doxycycline [Dox]) that binds the repressor (and therefore prevents 

binding of the repressor to the operator), results in shRNA expression. In effect, 

the addition of Dox induces shRNA production and consequently gene silencing 

and removal of Dox reverses this effect. Such inducible shRNAs have been used 

in cell culture (van de Wetering et al., 2003) and more recently in mice (Seibler et 

al., 2007) and rats (Herold et al., 2008). 

An inducible shRNA encoding ISG15 would be invaluable for analysing the 

apparent anti-viral effect of the protein. In this system, HCV replication could be 

monitored by silencing ISG15 production for varying periods of time. IFN could be 

administered to Dox-treated and untreated cells, meaning the individual 

contribution of ISG15 to HCV replication knockdown could then be directly 

assessed. Furthermore, it has recently become possible to infect mouse cells with 

143 



Daniel M Jones  Chapter 8 
 
HCVpp and HCVcc (Ploss et al., 2009). With further advances in producing small 

animal models for HCV infection, the effect of tuneable ISG15 silencing on HCV 

replication in vivo could perhaps be determined. This system could be applied to a 

variety of ISGs and the importance of each could be established. Such an 

approach may have important implications for HCV treatment. For example, 

although the current method of treatment for HCV-infected patients involves IFN-α 

administration, it is currently unclear how the compound eradicates the virus.  

Therefore, the studies described above may provide an important step in 

understanding the anti-viral mechanisms induced by IFN treatment, possibly 

improving prospects for a more effective HCV therapy. These types of study could 

be applied to other viral infections, since IFN has also been used to treat HBV and 

HIV (Chevaliez & Pawlotsky, 2009). 

 

8.3 HCV and trans-Complementation 

Previous investigation into HCV trans-complementation had demonstrated that 

NS5A was the only replicase component that could be supplied from a separate 

polyprotein (Appel et al., 2005a, Tong & Malcolm, 2006). In contrast, NS4B could 

not be trans-complemented in these assays. It is probable that this result arose 

from a combination of the limitations of the system used to analyse 

complementation (genotype 1 SGRs and selectable cell lines) alongside the 

particular set of NS4B mutants tested. Hence, the superior replication capacity of 

JFH1 offers a more robust system for the study of trans-complementation and may 

provide a useful tool for testing the complementation abilities of other NS proteins. 

Our results suggest NS4B harbouring mutations within its predicted C-terminal α-

helices may not trans-complement, compared to unstructured regions. This 

hypothesis could form the basis for the design of other mutations within NS4B that 

can be complemented in trans. If mutations within inaccessible areas of protein (as 

shown with the TMDs of NS4B) are incapable of complementation (Appel et al., 

2005a), producing a map of NS4B regions that can and cannot be rescued by 

functional protein supplied in trans may give further insight into its contribution to 

HCV RNA replication.  

Although the ability to trans-complement SGRs containing either non-functional 

NS5A or NS4B was tested, it would be interesting to determine whether a single 

SGR harbouring mutations within both proteins could be complemented. 

Complementation of a series of mutations is possible with KV, where replication of 
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defective genomes containing mutations in NS1, NS3 and NS5 can be rescued in 

trans (Khromykh et al., 2000). Similarly, more than one of the complementing 

NS4B mutations (those in M2 and M8) could be combined within a single RNA 

molecule to determine whether protein function could still be rescued under these 

conditions. Finally, it would also be intriguing to investigate whether two defective 

NS4B proteins were able to complement each other. If cells electroporated with 

RNAs carrying mutations M2 and M8 exhibited replication, it may indicate that 

distinct regions of the NS4B C-terminus are capable of trans-complementing each 

other, resulting in production of functional protein. This approach could also be 

tested for other regions of NS4B, such as the N-terminus. 

 

8.3.1 Implications for Quasispecies Maintenance 

In the assays described here, non-replicating SGRs containing mutations within 

either NS4B or NS5A were able to reconstitute replication. The ability to recover 

active replication from defective genomes has possible implications for the 

formation of RCs within HCV-infected cells. RNA synthesis from each of the 

genomes appeared to be mutually dependent, since they were unable to replicate 

individually in cells. One interpretation of the data is that NS4B complementation 

occurs within RCs (see model, Figure 5.9) and that both genomes are present 

within these structures. This possibility raises a question as to how many different 

RNA species can be incorporated within a single RC during its formation. In HCV-

infected patients, the virus circulates as a broad spectrum of heterogeneous 

genomes termed quasispecies. The results from this study suggest that viral 

genomes incapable of replicating individually may be able to survive in the infected 

host, via incorporation into RCs harbouring genomes that could provide functional, 

complementing proteins. Studies have shown that HCV genomes lacking the 

structural proteins can be packaged into virions via proteins supplied in trans (Ishii 

et al., 2008, Steinmann et al., 2008). Thus, it is possible that the proteins supplied 

from other functional quasispecies may maintain HCV RNAs containing both 

deletions and point mutations in structural and NS genes. It would be interesting to 

sequence HCV variants isolated from infected individuals, with the purpose of 

identifying mutations that would render SGRs replication-incompetent in cell 

culture. Identification of such mutants would imply that functional proteins supplied 

by replication-competent viruses are important for the survival of defective viral 

species. 
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If quasispecies persist through trans-complementation, this mechanism could have 

important implications for HCV therapy. In patients treated with telaprevir 

monotherapy, a sharp reduction in wt virus is seen, at which point pre-existing 

telaprevir-resistant variants become prevalent (Kieffer et al., 2007). These 

resistant mutations typically arise in NS3, the protein targeted by telaprevir 

(Sarrazin et al., 2007). Similarly, IFN-α and ribavirin combination therapy does not 

eradicate the virus in ~50-60% of patients infected with genotype 1 HCV strains 

(Soriano et al., 2009). Thus, viral quasispecies in some HCV-infected individuals 

may encompass viruses resistant to telaprevir, IFN-α and ribavirin. Indeed, viral 

breakthrough (HCV re-emergence) has been observed during the off-study period 

of patients receiving telaprevir, IFN-α and ribavirin triple therapy (Lawitz et al., 

2008). Breakthrough could be a consequence of trans-complementation between 

HCV quasispecies. For example, a low level of HCV replication might be 

maintained within RCs harbouring two populations of viral genomes; those 

resistant to telaprevir, and those resistant to IFN-α/ribavirin. In this scenario, triple 

therapy would select for these resistant viruses, which may then exchange 

between them the proteins responsible for conferring resistance. As with NS4B 

complementation, such events may be rare or inefficient, possibly accounting for 

the undetectable levels of HCV RNA during the treatment period (Lawitz et al., 

2008). However, this low level of replication could be sufficient to permit HCV 

breakthrough following cessation of therapy. Thus, assessing the extent to which 

HCV is able to maintain RNA replication by trans-complementation may be 

important for the future development of HCV therapies. 
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Appendices 

 

Appendix 1: Primers for NS4B C-terminal Mutagenesis 

Mutant Primer (5’-3’) 

F C ATC TGC GCG GCC ATT CTG GCC CGC CAC GTG GGA CCG GG 
M1 

R CC CGG TCC CAC GTG GCG GGC CAG AAT GGC CGC GCA GAT G 

F CTG CGC CGC CAC GTG GCA CCG GGG GAG GGC GCG 
M2 

R CGC GCC CTC CCC CGG TGC CAC GTG GCG GCG CAG 

F GTG GGA CCG GGG GAG GCC GCG GTC CAA TGG ATG 
 

M3 
R CAT CCA TTG GAC CGC GGC CTC CCC CGG TCC CAC 

 

F GGC GCG GTC CAA TGG ATG GCC AGG CTT ATT GCC TTT GC 
 

M4 
R GC AAA GGC AAT AAG CCT GGC CAT CCA TTG GAC CGC GCC 

 

F G ATG AAC AGG CTT ATT GCC GCT GCT TCC AGA GGA AAC CAC 
M5 

R GTG GTT TCC TCT GGA AGC AGC GGC AAT AAG CCT GTT CAT C 

F GCC TTT GCT TCC AGA GGA GCC CAC GTC GCC CCT ACT CAC 
M6 

R GTG AGT AGG GGC GAC GTG GGC TCC TCT GGA AGC AAA GGC 

F GGA AAC CAC GTC GCC CCT GCT CAC TAC GTG ACG GAG 
M7 

R CTC CGT CAC GTA GTG AGC AGG GGC GAC GTG GTT TCC 

F CT ACT CAC TAC GTG ACG GCG TCG GAT GCG TCG CAG 
M8 

R CTG CGA CGC ATC CGA CGC CGT CAC GTA GTG AGT AG 

F 
G ACG GAG TCG GAT GCG TCG GCG CGT GTG ACC CAA CTA CTT 

G 
M9 

R 
C AAG TAG TTG GGT CAC ACG CGC CGA CGC ATC CGA CTC CGT 

C 
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F 
G TCG CAG CGT GTG ACC CAA GCA CTT GGC TCT CTT ACT ATA 

AC 
M10 

R 
GT TAT AGT AAG AGA GCC AAG TGC TTG GGT CAC ACG CTG 

CGA C 

F CT GAG TAG GCT GGT TAT AGC AAG AGA GCC AAG TAG TTG 
M11 

R CT GAG TAG GCT GGT TAT AGC AAG AGA GCC AAG TAG TTG 

F CTT ACT ATA ACC AGC CTA GCC AGA AGA CTC CAC AAT TG 
M12 

R CA ATT GTG GAG TCT TCT GGC TAG GCT GGT TAT AGT AAG 

F CTC AGA AGA CTC CAC AAT GCG ATA ACT GAG GAC TGC CC 
M13 

R GG GCA GTC CTC AGT TAT CGC ATT GTG GAG TCT TCT GAG 

F GA CTC CAC AAT TGG ATA GCT GAG GAC TGC CCC ATC 
M14 

R GAT GGG GCA GTC CTC AGC TAT CCA ATT GTG GAG TC 

F C AAT TGG ATA ACT GAG GAC GCC CCC ATC CCA TGC TCC 
M15 

R GGA GCA TGG GAT GGG GGC GTC CTC AGT TAT CCA ATT G 

 

 

Appendix 2: siRNA Library Screen – Names and Data for all 299 

genes   

Plate 1 

Plate 
position 

Gene Full name 

A1 ADAR Adenosine deaminase, RNA-specific 

A2 CDC6 Cell division cycle 6 homolog 

A3 CIRBP Cold inducible RNA binding protein 

A4 EE1A1 Eukaryotic translation elongation factor 1 alpha 1 

A5 EE1A2 Eukaryotic translation elongation factor 1 alpha 2 

A6 EE1B2 Eukaryotic translation elongation factor 1 beta 2 

A7 EEF1D Eukaryotic translation elongation factor 1 delta 

148 



Daniel M Jones  Appendices 
 

A8 EEF1G Eukaryotic translation elongation factor 1 gamma 

A9 EEF2 Eukaryotic translation elongation factor 2 

A10 EIF2S1 
Eukaryotic translation initiation factor 2, subunit 1 

alpha, 35kDa 

A11 EIF2B1 
Eukaryotic translation initiation factor 2B, subunit 1 

alpha, 26kDa 

B1 EIF2S3 
Eukaryotic translation initiation factor 2, subunit 3 

gamma, 52kDa 

B2 EIF4A1 Eukaryotic translation initiation factor 4A, isoform 1 

B3 EIF4A2 Eukaryotic translation initiation factor 4A, isoform 2 

B4 EIF4B Eukaryotic translation initiation factor 4B 

B5 EIF4E Eukaryotic translation initiation factor 4E 

B6 EIF4EBP1
Eukaryotic translation initiation factor 4E binding 

protein 1 

B7 EIF4EBP2
Eukaryotic translation initiation factor 4E binding 

protein 2 

B8 EIF4G1 Eukaryotic translation initiation factor 4 gamma 1 

B9 EIF4G2 Eukaryotic translation initiation factor 4 gamma 2 

B10 EIF5 Eukaryotic translation initiation factor 5 

B11 EIF5A Eukaryotic translation initiation factor 5A 

C1 FBL Fibrillarin 

C2 ETF1 Eukaryotic translation termination factor 1 

C3 GRSF1 G-rich RNA sequence binding factor 1 

C4 GSPT1 G1 to S phase transition 1 

C5 HCFC1 Host cell factor C1 

C6 HNRPD Heterogeneous nuclear ribonucleoprotein D 

C7 AGFG1 ArfGAP with FG repeats 1 

C8 AGFG2 ArfGAP with FG repeats 2 
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C9 SP110 SP110 nuclear body protein 

C10 EIF3S6 
Eukaryotic translation initiation factor 3, subunit 6 

48kDa 

C11 ISG20 Interferon stimulated exonuclease gene 20kDa 

D1 EIF6 Eukaryotic translation initiation factor 6 

D2 MAZ Myc-associated zinc finger protein 

D3 RPL10A Ribosomal protein L10a 

D4 OAS1 2’,5’-oligoadenylate synthetase 1, 40/46kDa 

D5 OAS2 2’,5’-oligoadenylate synthetase 2, 69/71 kDa 

D6 OAS3 2’,5’-oligoadenylate synthetase 3, 100kDa 

D7 PA2G4 Proliferation-associated 2G4, 38kDa 

D8 MED1 Mediator complex subunit 1 

D9 PTBP1 Polypyrimidine tract biding protein 1 

D10 PURA Purine-rich element binding protein A 

D11 PURB Purine-rich element binding protein B 

E1 RBBP6 Retinoblastoma binding protein 6 

E2 RBM3 RNA binding motif (RNP1, RRM) protein 3 

E3 RBM4 RNA binding motif protein 4 

E4 RBMS1 
RNA binding motif, single-stranded interacting protein 

1 

E5 RBMS2 
RNA binding motif, single-stranded interacting protein 

2 

E6 UPF1 UPF1 regulator of nonsense transcripts homolog 

E7 RPL5 Ribosomal protein L5 

E8 RPL6 Ribosomal protein L6 

E9 RPL7 Ribosomal protein L7 

E10 RPL7A Ribosomal protein L7a 

E11 RPL8 Ribosomal protein L8 
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F1 RPL9 Ribosomal protein L9 

F2 RPL10 Ribosomal protein L10 

F3 RPL11 Ribosomal protein L11 

F4 RPL12 Ribosomal protein L12 

F5 RPL13 Ribosomal protein L13 

F6 RPL15 Ribosomal protein L15 

F7 RPL18 Ribosomal protein L18 

F8 RPL18A Ribosomal protein L18a 

F9 RPL19 Ribosomal protein L19 

F10 RPL21 Ribosomal protein L21 

F11 RPL22 Ribosomal protein L22 

G1 RPL23A Ribosomal protein L23a 

G2 RPL24 Ribosomal protein L24 

G3 RPL26 Ribosomal protein L26 

G4 RPL27 Ribosomal protein L27 

G5 RPL30 Ribosomal protein L30 

G6 RPL27A Ribosomal protein L27a 

G7 RPL28 Ribosomal protein L28 

G8 RPL29 Ribosomal protein L29 

G9 RPL31 Ribosomal protein L31 

G10 RPL32 Ribosomal protein L32 

G11 RPL34 Ribosomal protein L34 

H1 RPL35A Ribosomal protein L35a 

H2 RPL37 Ribosomal protein L37 

H3 RPL37A Ribosomal protein L37a 

H4 RPL38 Ribosomal protein L38 

H5 RPL39 Ribosomal protein L39 
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H6 RPLP2 Ribosomal protein, large P2 

H7 RPS2 Ribosomal protein S2 

H8 RPS3 Ribosomal protein S3 

H9 RPS3A Ribosomal protein S3a 

H10 RPS5 Ribosomal protein S5 

H11 RPS7 Ribosomal protein S7 

 

 

Plate 2 

Plate 
position 

Gene Full name 

A1 RPS8 Ribosomal protein S8 

A2 RPS9 Ribosomal protein S9 

A3 RPS11 Ribosomal protein S11 

A4 RPS14 Ribosomal protein S14 

A5 RPS15 Ribosomal protein S15 

A6 RPS15A Ribosomal protein S15a 

A7 RPS16 Ribosomal protein S16 

A8 RPS17 Ribosomal protein S17 

A9 RPS18 Ribosomal protein S18 

A10 RPS19 Ribosomal protein S19 

A11 RPS20 Ribosomal protein S20 

B1 RPS21 Ribosomal protein S21 

B2 RPS23 Ribosomal protein S23 

B3 RPS24 Ribosomal protein S24 

B4 RPS26 Ribosomal protein S26 

B5 RPS27 Ribosomal protein S27 
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B6 RPS27A Ribosomal protein S27a 

B7 RPS28 Ribosomal protein S28 

B8 SP1 SP1 transcription factor 

B9 SP2 SP2 transcription factor 

B10 SP3 SP3 transcription factor 

B11 SP4 SP4 transcription factor 

C1 SP100 Nuclear antigen SP100 

C2 SRP14 Signal recognition particle 14kDa 

C3 STAU1 Staufen, RNA binding protein, homolog 1 

C4 TARBP1 TAR (HIV-1) RNA binding protein 1 

C5 TARBP2 TAR (HIV-1) RNA binding protein 2 

C6 TFDP1 Transcription factor Dp-1 

C7 TFDP2 Transcription factor Dp-2 

C8 UBA52 
Ubiquitin A-52 residue ribosomal protein fusion 

product 1 

C9 UBB Ubiquitin B 

C10 UBC Ubiquitin C 

C11 EIF4H Eukaryotic translation initiation factor 4H 

D1 CNBP CCHC-type zinc finger, nucleic acid binding protein 

D2 ZNF143 Zinc finger protein 143 

D3 ZNF148 Zinc finger protein 148 

D4 ZNF161 Zinc finger protein 161 

D5 SLBP Stem-loop binding protein 

D6 CDK2AP1 Cyclin-dependent kinase 2 associated protein 1 

D7 TAF15 
TAF15 RNA polymerase II, TATA box binding protein 

associated factor, 68kDa 

D8 RBM10 RNA binding motif protein 10 

D9 UBL4A Ubiquitin-like 4A 
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D10 CDC45L CDC45 cell division cycle 45-like 

D11 PRKRA 
Protein kinase, interferon-inducible double-stranded 

RNA dependent activator 

E1 OASL 2’,5’-oligoadenylate synthetase-like 

E2 EIF3B Eukaryotic translation initiation factor 3, subunit B 

E3 EIF3C Eukaryotic translation initiation factor 3, subunit C 

E4 EIF3D Eukaryotic translation initiation factor 3, subunit D 

E5 EIF3F Eukaryotic translation initiation factor 3, subunit F 

E6 EIF3I Eukaryotic translation initiation factor 3, subunit I 

E7 EIF4E Eukaryotic translation initiation factor 4E 

E8 EIF2B4 
Eukaryotic translation initiation factor 2B, subunit 4 

delta, 67kDa 

E9 EIF2B3 
Eukaryotic translation initiation factor 2B, subunit 3 

gamma, 58kDa 

E10 EIF2B2 
Eukaryotic translation initiation factor 2B, subunit 2 

beta, 39kDa 

E11 EIF2B5 
Eukaryotic translation initiation factor 2B, subunit 5 

epsilon, 82kDa 

F1 EIF2S2 
Eukaryotic translation initiation factor 2, subunit 2 

beta, 38kDa 

F2 RPL14 Ribosomal protein L14 

F3 LRRFIP1 Leucine rich repeat (in FLII) interacting protein 1 

F4 LRRFIP2 Leucine rich repeat (in FLII) interacting protein 2 

F5 RPL23 Ribosomal protein L23  

F6 QKI Quaking homolog, KH domain RNA binding 

F7 EIF4E2 
Eukaryotic translation initiation factor 4E family 

member 2 

F8 EEF1E1 Eukaryotic translation elongation factor 1 epsilon 1 

F9 RBM39 RNA binding motif protein 39 
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F10 ISG15 SG15 ubiquitin-like modifier 

F11 EIF5B Eukaryotic translation initiation factor 5B 

G1 BZW1 Basic leucine zipper and W2 domains 1  

G2 ACAP1 
ArfGAP with coiled-coil, ankyrin repeat and PH 

domains 1 

G3 RBM19 RNA binding motif protein 19 

G4 HELZ Helicase with zinc finger 

G5 RBM8A RNA binding motif protein 8A 

G6 RBM12 RNA binding motif protein 12 

G7 RBM7 RNA binding motif protein 7 

G8 RBM6 RNA binding motif protein 6 

G9 RBM5 RNA binding motif protein 5 

G10 RBM14 RNA binding motif protein 14 

G11 ZNF238 Zinc finger protein 238 

H1 SYNCRIP 
Synaptotagmin binding, cytoplasmic RNA interacting 

protein 

H2 RNASEH2A Ribonuclease H2, subunit A 

H3 UBD Ubiquitin D 

H4 KHDRBS3 
KH domain containing, RNA binding, signal 

transduction associated 3 

H5 KHDRBS1 
KH domain containing, RNA binding, signal 

transduction associated 1 

H6 CUGBP1 CUG triplet repeat, RNA binding protein 1 

H7 CUGBP2 CUG triplet repeat, RNA binding protein 1 

H8 HBS1L HBS1-like 

H9 RNPS1 RNA binding protein S1, serine-rich domain 

H10 ASCC3 Activating signal cointegrator 1 complex subunit 3 

H11 RBPMS RNA binding protein with multiple splicing 
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Plate 3 

Plate 
position 

Gene Full name 

A1 ADAP1 ArfGAP with dual PH domains 1 

A2 RBM16 RNA binding motif protein 16 

A3 PDCD11 Programmed cell death 11 

A4 SNRNP200 Small nuclear ribonucleoprotein 200kDa 

A5 RBM34 RNA binding motif protein 34 

A6 LARP5 La ribonucleoprotein domain family, member 5 

A7 KIAA0664 KIAA0664 

A8 LARP La ribonucleoprotein domain family, member 1 

A9 PUM2 Pumilio homolog 2 

A10 DICER1 Dicer 1, ribonuclease type III 

A11 RPL13A Ribosomal protein L13a 

B1 ACAP2 
ArfGAP with coiled-coil, ankyrin repeat and PH 

domains 2 

B2 ZNF281 Zinc finger protein 281 

B3 RBM9 RNA binding motif protein 9 

B4 GSPT2 G1 to S phase transition 2 

B5 RPL36 Ribosomal protein L36 

B6 ZNF451 Zinc finger protein 451 

B7 ZBTB20 Zinc finger and BTB domain containing 20 

B8 RSL1D1 Ribosomal L1 domain containing 1 

B9 EIF2C1 Eukaryotic translation initiation factor 2C, 1 

B10 ZBTB32 Zinc finger and BTB domain containing 32 

B11 STAU2 Staufen, RNA binding protein, homolog 2 

C1 EIF2C2 Eukaryotic translation initiation factor 2C, 2 
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C2 PDCD4 Programmed cell death 4 

C3 RBMS3 RNA binding motif, single-stranded interacting protein

C4 BZW2 Basic leucine zipper and W2 domains 2 

C5 RBM15B RNA binding motif protein 15B 

C6 PURG Purine-rich element binding protein G 

C7 ZNF593 Zinc finger protein 593 

C8 TFDP3 Transcription factor Dp family, member 3 

C9 ZBTB7 Zinc finger and BTB domain containing 7 

C10 TRMT6 tRNA methyltransferase 6 homolog  

C11 ZFR Zinc finger RNA binding protein 

D1 RBM11 RNA binding motif protein 11 

D2 Custom XM_291128 

D3 XRN1 5’-3’ exoribonuclease 1 

D4 RBM28 RNA binding motif protein 28 

D5 LARP2 La ribonucleoprotein domain family, member 2 

D6 RBM23 RNA binding motif protein 23 

D7 ZNF692 Zinc finger protein 692 

D8 RBM22 RNA binding motif protein 22 

D9 ADAP2 ArfGAP with dual PH domains 2 

D10 EIF5A2 Eukaryotic translation initiation factor 5A2 

D11 BRUNOL4 Bruno-like 4, RNA binding protein 

E1 PCBP4 Poly(rC) binding protein 4 

E2 REXO1 REX1, RNA exonuclease 1 homolog 

E3 ZNF410 Zinc finger protein 410 

E4 PTBP2 Polypyrimidine tract binding protein 2 

E5 RBM25 RNA binding motif protein 25 

E6 GUF1 GUF1 GTPase homolog 

157 



Daniel M Jones  Appendices 
 

E7 BRUNOL6 Bruno-like 6, RNA binding protein 

E8 SELB 
Eukaryotic elongation factor, selenocysteine-tRNA-

specific 

E9 BRUNOL5 Bruno-like 5, RNA binding protein 

E10 IFIH1 Interferon induced with helicase C domain 1 

E11 CPEB1 
Cytoplasmic polyadenylation element binding protein 

1  

F1 AEN Apoptosis enhancing nuclease 

F2 RBM15 RNA binding motif protein 15 

F3 YTHDC2 YTH domain containing 2 

F4 EFTUD1 
Elongation factor Tu GTP binding domain containing 

1 

F5 LIN28 Lin-28 homolog 

F6 ISG20L2 Interferon stimulated exonuclease gene 20kDa-like 2 

F7 RBM30 RNA binding motif protein 30 

F8 EIF3FP2 
Eukaryotic translation initiation factor 3, subunit F 

pseudogene 2 

F9 EIF2A Eukaryotic translation initiation factor 2A, 65kDa 

F10 MGC3207 
Translation initiation factor EIF2B subunit 

alpha/beta/delta-like protein 

F11 RNASE7 Ribonuclease, RNase A family, 7 

G1 ZNF499 Zinc finger protein 499 

G2 LOC91431 Prematurely terminated mRNA decay factor-like 

G3 C12orf65 Chromosome 12 open reading frame 65 

G4 TDRD12 Tudor domain containing 12 

G5 ZNF276 Zinc finger protein 276 

G6 LARP4 La ribonucleoprotein domain family, member 4 

G7 ZNF653 Zinc finger protein 653 
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G8 TDRD9 Tudor domain containing 9 

G9 RNASE8 Ribonuclease, RNase A family, 8 

G10 Custom XM_498389 

G11 RPL10L Ribosomal protein L10-like 

H1 Custom XM_016093 

H2 ZNF362 Zinc finger protein 362 

H3 LOC649561 Similar to basic leucine zipper and W2 domains 1 

H4 ZNF342 Zinc finger protein 342 

H5 HFM1 HFM1, ATP-dependent DNA helicase homolog 

H6 DQX1 DEAQ box polypeptide 1 (RNA-dependent ATPase) 

H7 ZNF384 Zinc finger protein 384 

H8 EIF2C3 Eukaryotic translation initiation factor 2C, 3 

H9 EIF2C4 Eukaryotic translation initiation factor 2C, 4 

H10 Custom XM_113971 

H11 KHDRBS2 
KH domain containing, RNA binding, signal 

transduction associated 2 

 

 

Plate 4 

Plate 
position 

Gene Full name 

A1 MTIF3 Mitochondrial translational initiation factor 3 

A2 RNASEH1 Ribonuclease H1 

A3 Custom XM_171094 

A4 ZNF740 Zinc finger protein 740 

A5 ZNF575 Zinc finger protein 575 

A6 Custom XM_208320 

A7 Custom XM_497256 
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A8 Custom XM_497117 

A9 EIF4E3 
Eukaryotic translation initiation factor 4E family 

member 3 

A10 Custom XM_497370 

A11 Custom XM_370684 

B1 Custom XM_370893 

B2 Custom XM_371034 

B3 Custom XM_496717 

B4 LIN28B Lin-28 homolog B 

B5 LOC390282 Similar to hCG2040283 

B6 LOC390352 Hypothetical LOC390352 

B7 Custom XM_497376 

B8 LOC401677 Hypothetical LOC401677 

B9 Custom XM_377231 

B10 Custom XM_497339 

B11 Custom XM_377558 

C1 Custom XM_497758 

C2 Custom XM_498388 

C3 Custom XM_495963 

C4 Custom XM_496086 

C5 Custom XM_496711 

C6 hCG_1982709 Transcription factor Dp-1-like pseudogene 

C7 Custom XM_497121 

C8 Custom XM_497923 

C9 LOC442227 Hypothetical LOC442227 

C10 Custom XM_498260 

C11 Custom XM_498335 
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D1 Custom XM_498390 

D2 DDX19A DEAD (Asp-Glu-Ala-As) box polypeptide 19A 

161 
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