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Abstract 

This research is concerned with parametric vibration in composite beam structures with 

shape memory alloy elements. As a precursor to this investigation, a flexible steel beam of 

rectangular uniform cross-section is considered with a lumped end mass under a parametric 

excitation. A single frequency harmonic excitation in the vertical direction is applied to the 

system. As an extension of previsouly developed model by Cartmell (1990) and Forehand 

and Cartmell (2001), three nonlinear equations of motion, representing the first and second 

bending modes and the first torsion modes, are derived by recourse to the Lagrangian 

formulation. The variables in the equations of motions are 1( )u t , 2( )u t and 1( )t respectively. 

They are coupled together and various nonlinearities appear in the equations. The three 

equations are used to predict different parametric resonances of the form 

12  , 22  , 1 2   by application of the perturbation method of multiple scales. 

Expressions for the transition curves for the three resonances have been derived which 

show the regions of stable and unstable solutions in a detuning parameter-excitation 

amplitude plane. Very close agreement is obtained between theoretical and experimental 

results for all the three resonance conditions. Laboratory tests confirm that these 

instabilities are bounded in practice by nonlinear effects.  

To investigate the effects of shape memory alloy on the dynamical properties of a 

composite material beam structure, two shape memory alloy strips are centrally-bonded to 

a glass epoxy beam with a lumped end mass. The two SMA strips are theoretically pre-

strained and heated up to their full austenitic phase, and shown to generate large recovery 

forces due to this phase transformation. The forces are considered as compressive forces, 

and a theoretical model is introduced to evaluate the influences of the forces on the natural 

frequencies and the bending modes of the composite beam structure. The results show that 

the increase of the forces decrease the natural frequencies and reduce the excursion of the 

first and second bending modes. The beam system is then subjected to a vertical excitation. 

In order to utilize the Lagrangian formulation once again, the generalised forces 

corresponding to the generalised coordinates 1( )u t , 2( )u t and 1( )t are derived in terms of the 

SMA recovery force. The three equations of motion of the free lateral vibration of the beam 

system are then derived. Three different parametric resonances are also predicted. Further 
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study shows that the increase of the magnitude of the recovery force results in an increase 

of the instability region. 

An experimental investigation is conducted on two composite beam structures and each 

with an end mass, one with two centrally-bonded shape memory alloy (SMA) strips and the 

other with two diagonally-bonded SMA strips. The study suggests that when the strips are 

activated, the central-strip configuration can increase the natural frequencies of the 

bending modes noticeably more than the diagonal-strip one under certain circumstances, 

whilst the diagonal-strip configuration can easily be seen to change the frequencies of the 

torsion modes than the central-strip set-up.   
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Nomenclature 
 

l                              Beam length from the top of the base-clamp to the point where the  

                                        beam enters the end mass 

0l                                     Length from the top of the base-clamp to the centre of mass of the   

                                        end mass 
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m                                    Beam mass per unit length 
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1B , 2B                            Integration constants 

2p                                  Cross-coupling term 
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aF                                Recovery force generated in the SMA strips when they are activated 
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Chapter 1  

Introduction 

1.1 Motivation of the Research 

The vibration problem of a simple cantilever beam carrying a concentrated mass is of great 

interest to the practical engineers (Magrab, 1979). For example, the system may be 

considered as a model of a robot arm with a mass in its end effector. Such a structure under 

parametric vibration has been studied by many researchers and there are several 

reasonably accurate mathematical models available to the analyst for understanding and 

prediction of its mechanical vibratory response characteristics. One of these models was 

developed by Cartmell (1990) and further modified by Forehand and Cartmell (2001). By 

deriving the necessary kinematic relationships for combined bending and torsional motions 

for a flexible vertical beam with a lumped end mass, and with the beam undergoing an 

excitation in the least flexible plane of the structure, these papers discussed the accurate 

modelling of such a simple structure in the context of a nonlinear, multi-dimensional 

problem. Therefore, utilising this theoretical model, or a modified one for a similar system 

but under a different parametric excitation direction, helps in understanding this model 

more and expanding its usage. In addition, as extensive use of composite materials is made 

in aeroplanes, satellites, and the transportation industry, and as a wide application of shape 

memory alloys is potentially extant, due to their unusual characteristics, the enhanced 

control of vibrational responses of composite structures under parametric excitation, and in 

particular with the help of integrated shape memory alloy elements can be exploited.  

 

In this research, which starts by modifying the model of Cartmell (1990) and Forehand and  

Cartmell (2001), three nonlinear equations of motion are derived to predict the parametric 

resonances, for a flexible steel beam system under a parametric excitation. On the basis of 

this study, a glass epoxy (g-e) beam structure with two centrally-bonded shape memory 

alloy (SMA) strips under parametric vibration is studied, both analytically and 

experimentally, to provide an understanding of the SMA’s effect on the dynamic properties 

of the beam. Furthermore this research provides a concept for a diagonal configuration of 
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integrated SMA elements on beam structures for future study with a view to specialised 

mode control.     

1.2 Research Objectives 

This research proposes a new analytical model for the parametric vibration study of 

composite beam structures with centrally-bonded SMA elements. As a precursor to this 

investigation, based on the model by Forehand and Cartmell (2001), three nonlinear 

equations of motion, for a flexible steel beam with a lumped end mass under a parametric 

excitation have been derived by recourse to the Lagrangian formulation. The equations are 

solved by the multiple scales method and then the result is to predict different parametric 

resonances. The nonlinearity in this problem is considered. Furthermore, two SMA strips are 

centrally bonded to a g-e beam with a lumped end mass, in a similar configuration to the 

steel structure. The utilisation of two different techniques on the bonded SMA strips, 

generally known in the literature as the Active Property Tuning (APT) and Active Strain 

Energy Tuning (ASET) methods, are both investigated to explore the influence of the strips 

on the dynamical properties of such a composite material beam structure. In the APT 

method, changes in the stiffness of the SMA strips during their activation, which accordingly 

affect the property of the whole structure, are studied. The results are verified via 

experimental investigations followed by discussions. In the ASET technique, the high 

recovery force generated when the SMA strips are activated is modelled as compressive 

force acting on the g-e beam. In order to utilize the Lagrangian formulation once again, the 

emphasis is focused on the derivation of the generalised forces corresponding to three 

generalised coordinates, and these are defined in terms of the actual SMA recovery forces. 

The three equations of motions involving the three generalised coordinates and their 

corresponding generalised forces are consequently derived. By solving the free vibration 

equation of the g-e beam-lumped end mass structure subjected to a compressive force, the 

influence of the SMA strips on the natural frequencies and the mode shapes is investigated. 

How the SMA strips modify the instability regions of the structure under parametric 

excitation is studied by solving the three governing equations of motion. In addition, this 

research also presents a study of the beam structure in which the two SMA strips are 

diagonally bonded to the beam instead of centrally. The centrally-bonded and diagonally-
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bonded cases are compared and the results suggest that the diagonally-bonded 

configuration can play a role in controlling the torsion modes of the beam structure. 

1.3 Organization of the Thesis 

This thesis consists of eight main chapters. After this introduction, Chapter 2 presents a 

broad literature review related to the current work. Chapter 3 includes the analysis of the 

parametric vibration of a flexible steel cantilever beam of rectangular uniform cross-section 

with a lumped end mass under a single frequency harmonic excitation in the vertical 

direction. This chapter begins with the derivation of the equations of motion on the basis of 

Forehand and Cartmell (2001) model. Following this, an application of the multiple scales 

method is used to solve the equations. The different parametric resonances and their 

corresponding instability regions resulting from the solutions of the governing equations 

and experimental work are also explained in this chapter. An experimental study of the 

properties of two g-e beams, such as Young’s modulus and shear modulus, are discussed in 

Chapter 4. Investigations into the effect of SMA strips on the natural frequencies and the 

mode shapes of a g-e beam-lumped end mass structure are explored in Chapter 5 when 

both APT and ASET methods are implemented. Chapter 6 summarises the formulation of 

generalised forces induced in a g-e beam-lumped end mass structure under parametric 

vibration with two centrally-bonded SMA strips when the ASET technique is used. The 

coordination transformation of the recovery force vector, and the virtual work done by the 

force are handled in this chapter. Experimental investigation into the influence of SMA strips 

on the dynamic properties of two g-e beam systems are introduced in Chapter 7. One 

system is with two centrally-bonded strips whilst the other is with two diagonally-bonded 

strips. The thesis is concluded by the discussion of future work in Chapter 8.   
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Chapter 2  

Literature Review 

2.1 Parametric Vibration in Elastic Systems 

All mechanical engineering systems which undergo oscillatory motion are often described 

by a finite set of governing differential equations. If for some reason one or more 

parameters, such as the mass, damping, stiffness, appear as time varying coefficients in 

these equations, the system may be said to be subjected to parametric excitation, and this 

phenomenon is then called parametric vibration (Ibrahim 1978, Nayfeh and Mook 1979, 

Cartmell 1990). This is one aspect that parametric vibration differs from the familiar forced 

vibration, whose coefficients in the equations are all constant. The other difference 

between these two vibrations is that parametric vibration might occur in directions normal 

to the excitation, while forced vibration is understood to appear only in directions parallel to 

the excitation. Faraday (1831) was believed to be the first to observe parametric resonance 

on the free surface of a liquid. In his experiment, he noticed that the oscillation frequency of 

the surface waves in a fluid-filled cylinder under vertical excitation oscillates was twice the 

frequency of excitation itself. In the late 19th century, Rayleigh made his own series of 

experiments and confirmed Faraday’s observation. Melde (1859) performed an experiment 

on the vibrations of a string of which one end was fixed and the other attached to one prong 

of a tuning fork. He found that although the excitation was longitudinal, the string could be 

tuned to oscillate laterally at half the frequency of the fork. Not until 1954 were the findings 

made by Faraday and Rayleigh, from their experimental work, explained in mathematical 

terms. Benjamin and Ursell’s (1954) study yielded a system of Mathieu equations, for which 

there were zones of linear instability defined by the amplitude and frequency of the vertical 

excitation. Beliaev (1924) analyzed a column pinned at both ends undergoing an axial 

periodic load. He reduced the governing differential equation to the Hill-Mathieu form and 

his results showed the principal parametric resonance of the column, that is, the column 

could be made to laterally vibrate with the half frequency of the excitation, even though the 

axial load may be smaller than the static buckling critical force. Beliaev’s work has been 

extended. Later investigations incorporated such factors as different elastic members, such 
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as beams, rods, bars, etc; and various boundary conditions, inertia parameters, and 

different forms of excitations. Dugundji and Mukhopadhyay (1973) carried out a study on a 

horizontally-orientated cantilever beam subjected to vertical harmonic excitation of its base. 

The equations of motion were reduced to Mathieu equations. This caused combination 

resonance, with primary instability regions defined when exciting such that 

1 3F   and 2 3F   ( F is the excitation frequency. 1 , 2 and 3 are natural 

frequencies of the first bending, the second bending and the torsional modes of the beam, 

respectively), with the two modes oscillated simultaneously, each at its own frequency 

1 , 2 and 3 . This showed that lateral bending and twist could be excited by vertical base 

motion. Cartmell and Robert (1987) theoretically and experimentally investigated the 

response of a vertically-orientated cantilever beam with an attached end mass system 

subjected to a parametric excitation. They also found that the parametric excitation 

promoted a sum-type combination resonance involving two modes of vibration. Analytical 

studies of the parametrically-excited pendulum can be traced back to the work of Leven and 

Koch (1981). They identified that the pendulum behaved in a chaotic way under certain 

parameter intervals. Miles (1985) analyzed the response of a double pendulum system 

under a parametric excitation through the vertical translation of the pivot of the slower 

pendulum. In his work, the ratio of the natural frequencies of the two normal modes 

approximated 2. His results showed that when the lower mode was excited by a principal 

parametric resonance, the resulting motion may be either a simple (rigid-body) translation 

of the entire system or coupled oscillations of the pendulums superimposed on such a 

translation. Watt and Cartmell (1994) designed a single-degree-of-freedom parametric 

oscillator, onto which was mounted a simple mechanical power take-off device, so that the 

axial input motion could be converted to a paremetric resonance in the torsional system to 

transfer energy to an external load, hereby acting potentially as a mechanical power 

transmission. Cartmell and Roberts (1988) presented a study of a L-shape beam structure. 

The structure comprised a horizontal beam and a smaller vertical beam. The horizontal 

beam was clamped at one end and the free end was coupled to the vertical beam. Two 

combination resonances, involving the fundamental and second bending modes and the 

fundamental torsion mode of the structure, could be generated when the external 

excitation of the support was at a frequency in the region of the second bending mode 
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frequency of the system when it oscillated in the least stiff plane. In his experiment, Mullin 

(1993) linked three rods, one being attached to a pivot, represented as Fig 2-1, and 

demonstrated that the triple rods could be stabilized by vertical vibrations of their pivot, 

even though the rods were longer than their critical lengths. As an extension of this work, 

Champneys and Fraser (2000) proposed a theory for this phenomenon. They derived a 

formula, which could predict a bound on the frequency and amplitude of excitation with the 

purpose for the unstable column to be stabilized by harmonic excitation. Experimental 

investigation has been carefully carried out by Cicek and Ertas (2002) on a beam-tip mass 

and pendulum system under random excitation, shown in Fig 2-2. In this research, the 

system consisted of a flexible beam, one end fixed and the free end coupled with a lumped 

tip mass, and a mass-pendulum was attached to the tip mass. They noted from their 

experiments that when the ratio of the first natural frequency of the pendulum to that of 

the beam was tuned to 0.5, the beam’s mean-square response decreased, and the 

pendulum response increased, indicating an energy exchange between the two elements 

due to the autoparametric interaction between the modes of the system.    

  

 

2.2 Nonlinear Problems in Parametric Vibration   

Although the mechanics of vibrating systems subjected to parametric excitation are often 

described mathematically by a set of linear differential equations, this is, in general, the 

least precise model in the sense that such a formalisation can always be refined by the 

introduction of nonlinearity, so that the precision of its predictions is increased and its range 

 

Fig 2-1 An inverted triple pendulum 
(Mullin 1992) 

Fig 2-2 Beam-tip mass-pendulum system 
under random excitation (Cicek and Ertas 
2002) 
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of application is extended. Furthermore, the nonlinear model may introduce the means of 

explaining or predicting behavioural phenomena which are outside the limits of the linear 

theory. Nonlinearities may enter a model in many ways. Their origin may be geometrical, or 

material, or they may be associated with nonlinear forces or the physical configuration. Any 

component of the equations of motion may be nonlinearly affected: the inertia terms, the 

stiffness terms, the damping terms, terms describing external excitation, and the boundary 

conditions. Nonlinearities can be important – especially with resonance conditions that 

differ from those obtained from linear theory. There is a great deal of literature that has 

been published on the study of the effects of various nonlinearities on the behaviour of 

parametrically excited systems. The studies showed that nonlinearities could modify the 

instability regions and limited the peak amplitude response; that they could change an 

originally stable system to a catastrophic unstable state; and they could cause different 

types of resonance, i.e. subharmonic, superharmonic or combination resonances, for 

example. In addition to those resonances already mentioned, the internal resonance is said 

to exist in multi-degree-of-freedom systems. It is because nonlinearities may provide such a 

mechanism that energy imparted into one mode may under certain conditions be 

exchanged with other modes. This is called nonlinear mode-coupling. Modal interaction can 

be especially pronounced when two or more of the linear natural frequencies are related by 

integers or near-integers. Depending on the order of the nonlinearity such frequency 

relationships can cause the corresponding modes to be strongly coupled, and result in 

internal resonances.   

2.3 Solution Methodologies   

There are three commonly applied analytical methods for approximately solving nonlinear 

systems: the method of multiple scales, the method of harmonic balance and the method 

of averaging. The multiple scales method was discussed in a few well-known books (Nayfeh 

1973, Nayfeh and Mook 1979, Cartmell 1990, Thomsen 1997). It has been shown to be 

immensely useful for a wide range of nonlinear vibration problems. With this method, one 

generally assumes that the dependent variable(s) is (are) uniformly expanded in terms of 

two or more independent variables as 
1

0 1
0

( , ) ( , , ) ( ), 0,1,2
m

j
j m m

j

u t u T T T T j   




     . Here 



8 

 

the dependent variable ( , )u t  is a function of the multiple independent time variables jT , 

and these are referred to as scales. The variables jT  are generated with respect to real time 

t as j
jT t . Accordingly the time derivatives of the dependent variable(s) are expressed as 

follows, starting with the first time derivative 0T : 

0 1/d dt D D   , 2 2 2
0 0 1/ 2d dt D D D   , where /j jD T   . Upon substituting the 

expansion and its derivatives with respect to time into the original equations of motions and 

equating to zero the coefficients of like powers of   yields a series of perturbation 

equations. By solving these equations and eliminating the secular terms that cause 

unbounded perturbations gives the solution of the assumed form. With the method of 

harmonic balance, one assumes a periodic solution in the form of a harmonic series 

0
0

( ) cos( )
N

jx t A j t j   . The series is then substituted into the equations of motion, and 

manipulating the results to group coefficients of like frequency. Each harmonic is then 

balanced by requiring that like-frequency coefficients on each side of the equations satisfy 

equality individually. Usually all unknown constants are expressed in terms of jA and 0 , 

which are determined by the initial conditions. The application of this method can be found 

in literatures like Cheung et al (1990), Zhang and Huseyin (2001), Maple (2002) and Cai et al 

(2006). The method of averaging requires that the differential equations of the system be 

written in the standard form, in which the right hand side is regarded as a slight 

perturbation proportional to a small parameter  . With this method, the first step is to 

obtain the solution to the reduced linear equation by setting 0   in the original equation 

of motion. One then assumes that the nonlinear solution is similar to the linear solution 

with different time variations in amplitude a  and phase  . In systems with weakly 

nonlinear behaviour the nonlinear terms will not be strongly contributory to the particular 

characteristic, such as resonance conditions etc, it is implied that the changes in a  and   

are very slow. According to Krylov and Bogoliubov, by replacing the equations for a  and   

with their average values during one period of oscillation, a  and   can be determined 

through the integration of a  and   in one period. Bondarev (1970) used this method to 

solve the differential equations of nonlinear vibration of a rectangular plate. In the study of 

the motion of a straight bar with hinged supports and excited by a harmonic axial 
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displacement, the method of averaging was applied by Anderson (1975) to solve the non-

linear differential equations. The application of this method can also be found in the papers 

such as Hamdan (1990), Coppola (1997) and Basu et al (2007). 

Out of the above three methods, the method of multiple scales and the method of 

averaging are generally accepted as perturbation methods, that is, they work by applying 

small nonlinear perturbations to linearized solutions. Their application is restricted to 

weakly nonlinear systems, so the nonlinear terms should be small compared to linear terms. 

During their analysis of the perturbation method of multiple scales applied to the dynamics 

of weakly nonlinear mechanical systems, Cartmell et al (2003) presented a short discussion 

on methodologies for ordering of nonlinear terms, and specifically the treatment of the 

“small” perturbation and ordering parameter  . According to their research, one way to 

deal with ordering is to base it on physical meaning, leading to notions of “hard” or “soft” 

excitation, and “strong” or “weak” damping. “Hard” excitation and “strong” damping term 

might be expressed to zeroth order , and “soft” excitation and ”weak” damping term to 

first or second order  . In this case   can be seen as a convenient universal scaling 

parameter for different, apparently unrelated, quantities within the equation of motion, 

such as damping, excitation amplitude, and coefficients of nonlinear terms. The other way 

for introducing   is based on formal nondimensionalization of the dependent and 

independent variables, time for instance. In this case   is introduced as a 

nondimensionalizing parameter into equation of motion so that a dimensionless variable 

replaces the original dependant variable in the equation. Several publications in the 

literature show that by using this method plus some other ordering scheme required by the 

physical problem, the inertial nonlinearities are automatically set to higher order   (Watt 

and Cartmell 1994, example 2.3.1 in Murdock 1991). It is noted that ordering schemes 

described above under some situations are not always analytically derivable for all terms in 

the governing equations, and can be physically unacceptable. So it is important to proceed 

with caution though such an approach can possibly achieve accurate and meaningful results.   

2.4 Application of Shape Memory Alloy Elements on Elastic Structures 

2.4.1 Background 
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Composite materials have gained popular usage due to their wide applicability and 

economic benefit. They have excellent engineering properties such as light weight, 

corrosion resistance, high strength, stiffness, and control characteristics. Therefore, their 

uses are increasing broadly with application to structures in relevant fields such as the space 

and aviation industries, the transportation industry, sporting goods, medical instrument 

parts, and mechanical parts. Glass fibre reinforced composites can be very reliable 

engineering materials compared with other composites by virtue of a large technology base 

and experience in service (Mallick 1993). Epoxy resin as the matrix is widely used in the 

production of glass fibre composites due to its wetting power and adhesion to glass fibre, 

low setting shrinkage, considerable cohesion strength, adequate dielectric characteristics, 

and thermal properties. Because of the extensive use of composite materials, the guarantee 

of high durability and long-term performance of structural elements made of it is a very 

important issue. One of many methods used to achieve this objective could be the 

integration of composite materials with another class of high performance materials, such 

as shape memory alloys (SMAs). SMAs gained popularity since the shape memory effect was 

discovered in 1932, especially when the NiTinol alloy was developed in 1962. NiTinol is a 

commonly used shape memory alloy that contains a nearly equal mixture of nickel (55 wt.%) 

and titanium. NiTinol shows basically two significant effects: one is the spectacular thermal 

shape memory effect, its ability to “memorize” its original shape after deformed by heating 

the SMA above the characteristic transition temperatures. This phenomenon is caused by a 

phase transformation of the SMA microstructure from martensite to austenite when the 

transition temperature is reached. The transformation takes place at four characteristic 

temperatures known as Mf (martensite finish), Ms (martensite start), Af (austenite finish) and 

As (austenite start). A typical relation between temperature and martensite phase 

concentration is shown in Fig 2.1 (Liang 1990). Due to this effect, the material can recover as 

much as 8% strains. Large force is generated when the material is returning to its original 

shape. It is called the recovery force in this thesis. NiTinol can also show an amazing amount 

of pure elastic deformability (superelasticity). This happens when the material is at its full 

austenite phase. It transforms into martensite phase when a load is applied, and recover its 

original shape when the load is removed by means of a hysteresis loop. The process is 

shown in Fig 2-2. Unlike the shape memory effect, superelasticity occurs without a 
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temperature change. Due to these two unique charateristics, SMA components offer great 

capabilities for active control of the static and dynamic behaviour of overall integrated 

structures.  

 

 

2.4.2  Embedded SMA Elements in Elastic Composite Structures 

Rogers et al (1989) embedded SMA wires into composite plates by utilizing the phase 

transformation as a means to alter the static deflection and modal characteristics of these 

plates. With the same model, Rogers et al also presented the concepts of using SMA wires 

to control the natural frequencies and modes of vibrations of simply-supported plates. Zak 

et al (2003) investigated the changes in the fundamental natural frequency of a multi-

layered composite plate with embedded SMA wires. They found that the natural freqency 

largely depended on the plate geometry and the form of boundary conditions, but could be 

successfully controlled by an optimal selection of the geometrical parameters and material 

properties. Lagoudas and Tadjbakhsh (1993) formulated a flexible rod with embedded line 

SMA actuators in three dimensions, and studied the deformed shapes of the rod under 

repeated thermal actuation and the resulting shape memory loss due to the development of 

residual stresses. Baz et al (1995) showed that internally fitted SMA wires could successfully 

be used to control the natural frequencies of clamped-clamped composite beams. 

Furthermore, Baz et al (2000) also investigated the use of embedded SMA components in 

the form of strips for shape control of composite beams as well as the natural frequencies of 

such structures. Icardi (2001) studied, both numerically and experimentally, the bending 

 

Fig 2-4 Load diagram of the superelaticity 
effect (University of Alberta smart material 
and micromachines website, 2001) 

 
Fig 2-3 The phase transformation 
with temperature (Liang, 1990)           
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deflection of a laminated solid cross-ply cantilever beam with embedded pre-stressed and 

pre-strained SMA. His study presents a preliminary understanding of the shape control of 

stiff laminated composite structural members. Zhang et al (2006) presented two types of 

SMA-embedded cantilever composites to investigate the influence of both the SMA 

arrangement and the temperature on the vibration characteristics of the system. One 

laminated plate contained unidirectional fine SMA wires; another one was with an 

embedded woven SMA layer. Their results showed that at high temperatures, the natural 

frequencies in both the beams were increased significantly. Both SMA orientations could 

effectively control the systems’ damping as well. Thompson and Loughlan (1997) employed 

embedded SMA wires to enhance the post-buckling behaviour of laminated plate structures 

while under a uniaxial load. Their study showed that the activation of constrained pre-

strained SMA wire actuators, located on a laminated plate’s neutral plane, resulted in 

significant post-buckled deflection alleviation, even at load levels approximately three times 

the critical buckling value. Lee and Lee (2000) investigated the buckling and post-buckling 

behaviour of simply-supported and clamped composite plates with internally fitted SMA 

wires. They found that the activation of SMA wires could increase the critical load capacity 

of these composite plates. Lau (2002) studied the natural frequencies and damping ratios of 

a composite beam with embedded SMA wires. He found, with clamped-clamped boundary 

conditions, the actuation force of the pre-strained SMA wires increased the natural 

frequencies of the beam. It was because when the beam was fixed at both ends, the 

recovery force would generate a tensile force in the beam. The impact damage behaviour of 

carbon fibre/epoxy composite plates embedded with superelastic shape memory alloy wires 

was investigated by Meo et al (2005). They found that the ability of SMA wires to absorb 

kinetic energy during the impact due to their superelastic and hysteretic behaviour could 

increase the damage resistance of composite structures. Kang and Kim (2009) compared 

two kinds of glass/epoxy composites with and without SMA wires inserted in the neutral 

plane of the laminates, to identify the effect of SMA on their damage behaviour and residual 

strength subjected to low-velocity impact at low temperatures. In all these investigations 

the SMA components have been embedded in the host material, and the basic mechanism 

by which these SMA components affect the structure is either by producing in-plane forces 

or by changing its stiffness. However there are difficulties of using embedded pre-strained 
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SMA components with composite structures (Ni et al, 2007). For example, the large 

recovery stress of SMAs can pull SMA fibres out of the matrix; the interfacial failure 

between the SMAs and the matrix can occur because the fabrication process results in high 

residual stress within the SMA composites when cooled to room temperature; the 

complexity of the applications of the composite structures combined with the intricate 

nonlinear behaviour of the SMA itself makes analysis and design difficult . 

2.4.3 Externally-attached SMA Elements in Elastic Structures 

There are a good many reported instances in the literature of using externally-attached SMA 

actuators, consequent to two features: (1) better control authority as the SMA can be 

placed at different offset distances from the host; (2) much greater moment, generated by 

the actuation force from the SMAs in comparison to that in a composite structure with 

embedded SMAs with the same magnitude of actuation force. Baz et al (1990) designed an 

active controller by utilizing Nitinol actuators to suppress the vibrations of a flexible beam. 

In their work, the SMA wires were placed external to the beam and the controller was 

shown to work reasonably well on the first bending mode of the beam and could easily 

extend this to multi-modal vibration. Chaudhry and Rogers (1991) presented two 

configurations with external SMA wires fitted to a cantilever beam. One configuration was 

with a SMA wire attached only to two points, the fixed and free end of the beam; the other 

was that the wire passed through a few selective points on the beam. They demonstrated 

the possibility of using the configurations to induce deflections of the beam and thus the 

feasibility of using the configurations for bending shape control. In their paper (1997), Shu et 

al introduced a similar model to demonstrate shape control by an SMA wire on a cantilever 

beam. The wire was eccentrically mounted at the tip and at the foundation of the beam. Lu 

et al (2001) designed a cantilever actuator, which comprises a triangular corrugated core 

with SMA sheets as the two faces. Their work showed that the actuator could be made to 

operate against large restraining moments by using the constrained force caused by the 

SMA sheets due to phase transformation. Baz et al (1995) used embedded SMA wires to 

control the natural frequencies of a composite beam. The wires were embedded inside 

vulcanized rubber sleeves and placed along the neutral axis of the composite beam and 

could move freely during the activation. By utilizing the shape memory effect, the activated 
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SMA wires could increase or decrease the natural frequencies of the beam under certain 

conditions. Kim and Cho’s actuator (2007) consisted of two SMA wires attached to the tip of 

a bar symmetrically on both sides. Distinct from the more commonly used shape memory 

effect, Gandhi and Chapuis (2002) examined the effectiveness of pseudoelastic  SMA wires 

on the damping of flexural vibrations of a cantilever beam with a tip mass. Two SMA wires 

were symmetrically mounted to one end of the tip mass and there were angles between the 

wires and the beam. The beam was subjected to a harmonic excitation force near the tip. 

Their results show that the damping introduced by the SMA wires would increase for higher 

excitation-force amplitudes. The damping was also a function of the SMA wire cross-section 

area, wire length, and the angle between the wire and the beam, but independent of the tip 

mass.  

However, no investigations of the effect of SMA on the instability regions of a composite 

beam structure under parametric vibration have been studied when the SMA elements are 

externally bonded.  

2.5 Theoretical Investigations for Composite Beams with Integrated SMA 

Elements  

For the past decade, a substantial amount of theoretical and experimental research has 

been performed on the modelling of composite structures with integrated SMA elements. 

The first step of modelling is normally to determine the characteristics of the SMA 

components that underlie the classical shape memory effect and superelasticity. The 

characteristics can be determined by experimental measurements or from constitutive 

models. A large amount of papers on SMA models have been published. There are quite a 

few classical models in the literature, proposed and developed by Tanaka (1986), Liang and 

Rogers (1990) and Brinson (1993), Lagoudas et al (1994a,b) and Cartmell et al (2000), which 

are widely used by researchers in their SMA integrated composite beams. These models are 

also often used in conjunction with experiments. The second step of the modelling is to 

investigate the interaction between the SMA elements and the matrix by using either 

numerical or analytical methods, or both. In their studies of a cantilever beam with two SMA 

layers to control its natural frequencies, Chan and Levy (1996) applied the model developed 

by Tanaka to obtain the Young’s modulus and the recovery stresses of the two SMA layers. 
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Then the force balance condition in the individual layers and the beam, and their force 

interaction, was analyzed and the governing equation of the beam was derived from Euler 

theory. Finally, the expression for the natural frequencies of the beam, as a function of the 

Young’s modulus and recovery stresses of the SMA layers, was obtained. Epps and Chandra 

(1997) employed the model developed by Liang and Rogers to study the active frequency 

tuning of a composite beam. Analytically, a composite beam with embedded sleeves 

containing SMA wires was modelled as a beam on an elastic foundation which was 

dependent upon the recovery force developed in the SMA wires. Using this model, a free 

vibration analysis of the beam was carried out to examine the natural frequencies. Baz et al 

(1990) used the finite element method to model their beam dynamics with two external 

SMA wires. The thermal and dynamic characteristics of the SMA wires were integrated into 

the stiffness matrix, mass matrix and force vector. Shu et al (1997) did a nonlinear 

geometrical static analysis first to investigate the deformed shape of a flexible beam caused 

by an externally-attached SMA wire at its activation. They then used Lagoudas’ 

thermodynamic constitutive model for SMAs to obtain the actuation force, and finally both 

the beam and the SMA actuator were connected through an iterative scheme to translate 

an input electrical current history into the beam strain output. Their experimental results 

agreed well with the model simulation. The finite element method was used by Baz et al 

(1995) as well. In their element equations of motion, the element stiffness comprised three 

parts: the flexural rigidity of the beam element itself, the geometric stiffness that accounted 

for the axial and thermal loading from the SMA wires, and the elasticity of the SMA wires. 

Bernoulli-Euler theory was used to model the composite beam.  

2.6 Objectives 

 A study on a flexible steel beam structure under a different parametric excitation is to 

be carried out, the multiple scales method is to be used to solve the equations of motion, 

in order to investigate the parametric resonances and the effect of nonlinearity on their 

corresponding instability regions. Experimental work will be carried out to verify the 

theoretical results. 
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 A composite beam structure with two centrally-bonded SMA strips under parametric 

vibration is to be analyzed and tested, with the purpose of achieving enhanced dynamic 

control. 

 A composite beam structure with two diagonal-configuration SMA strips will be 

discussed and tested, intending to tune specialised modes of the structure and provide a 

preliminary reference for future work.  
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Chapter 3 

   A Steel Cantilever With an End Mass Under Parametric 
Vibration 

3.1  Introduction 

A cantilever beam under parametric vibrations has been considered by many researchers. 

Dugundji and Mukhopadhyay (1973) studied a thin, plate-like, cantilever beam, well below 

static lateral buckling under gravity and subjected to lateral harmonic excitation of its base 

in the stiff direction, and found that primary combination resonances, involving two degrees 

of freedom, were shown to occur near forcing frequencies, with each mode oscillating at its 

own natural frequency. Cartmell and Roberts (1987) used the method of multiple scales to 

investigate the same instability regions of a cantilever beam carrying an end mass excited in 

the plane of the largest rigidity, i.e. y-axis direction in Figure 3-1, and also extended the 

system to a third degree of freedom to generate another type of combination resonance by 

working to second order perturbation. Their work was extended by Ibrahim and Hijawi 

(1998) to examine the influence of random parametric excitation on such a cantilever-end 

mass system response. In his paper published in 1990, Cartmell unified the necessary 

kinematics and dynamics for the system. He derived the necessary kinematic relationships 

for combined bending and torsional motions of the beam and from these derived three non-

linear modal equations of motion by using Lagrange’s formulation in conjunction with the 

kinetic and potential energy functions. Forehand and Cartmell (2001) added further 

justifications to the model by Cartmell (1990), whilst also showing that there is a cross-

coupling term in the expression for the potential energy as a result of a two-mode Galerkin 

representation. In this chapter, the author investigates the excitation in the z-axis direction, 

shown in Figure 3-1, rather than excitation in the y-axis direction for the beam system. 

Three nonlinear equations of motion, representing the first and second bending modes and 

the first torsion modes are derived. A multiple scales analysis is followed to solve the 

equations of motion. A linear cross coupling term, which originally appears in the expression 

for the potential energy, and which propagates through to the lowest order perturbation 

equations, has been shown to be numerically negligible despite necessarily being ordered to 

o() in the perturbation analysis. Then, the consequences of the multiple scales analysis up 
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to the first order for three different combination resonances are explored, on the basis of 

this numerically justified simplification. Laboratory tests confirm that these instabilities are 

bounded in practice by nonlinear effects. In order to generate further combination 

resonances, a second order multiple scales expansion is investiaged. A considerable number 

of intermediate calculations are performed because of  the higher order of expansion and a 

full list of resonances from second-order perturbation equations are obtained.   

 

Fig 3-1 Physical representation of the steel system              Fig 3-2 An element of the beam in both   

(adapted figure from Forehand and Cartmell (2001))           its undeformed and deformed states 

3.2 Formulation of the Governing Equations  

In order to make the arbitrary lateral displacement coordinate ),( tzu and rotation 

coordinate ),( tz  separable in time and space, the Galerkin type representation involving 

functions of linear modes is required, such that  

                                  1 1 2 2( , ) ( ) ( ) ( ) ( )u z t f z u t f z u t                                                                    (1) 

                                                1 1( , ) ( ) ( )z t g z t                                                                              (2) 
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Thus three modes of vibration are to be considered, where 1( )f z , 2 ( )f z and 1( )g z  are linear 

mode shape functions relating to the fundamental and second bending modes and the 

fundamental torsion mode respectively. These functions are readily derived by means of 

Euler-Bernoulli beam theory (see Appendix 1). 1( )u t , 2 ( )u t and 1( )t are the corresponding 

modal co-ordinates of the three modes of interest.  

3.2.1 Expression for the Kinetic Energy  

As shown in Figure 3-1, point A  is an arbitary location along the beam, whist point B  is the 

centre of the end mass. When the beam system is subjected to combined bending and 

torsion, point A  will move to a new position, denoted as A  and point B  to B . The 

movement can be considered in terms of displacements u , v , w  and a twist angle  . It can 

be seen from Figure 3-1 that u represents lateral displacement in the Oxz plane, whereas v  

defines motion in the Oyz plane and w  is the vertical motion. The twist angle   defines the 

rotation about the deformed Z-axis shown in Fig 3-2. The displacements and twist angle of 

point B , i.e. the centre of the end mass, are denoted with 0-subscripture. The total system 

kinetic energy comprises the kinetic energy of the beam due to its bending in the x direction 

and the kinetic energy of the end mass due to velocity 0w  in the z-axis direction and 0v  in 

the y-axis direction, and the rotational kinetic energy of the end mass about the Z-axis. 

Forehand and Cartmell (2001) have derived the equation of the kinetic energy as                              

                                   2 2 2 2 2
0 1 2 0 0 0 0

1 1( ( ) )
2 2BT m u u W w v I                                                   (3) 

where 0m  denotes the end mass, 1u  and 2u  the modal displacement co-ordinates in 

bending, BW  the support excitation displacement, and 0I  the moment of inertia of the end 

mass about the deformed z-axis. 

3.2.2 Expression for the Potential Energy 

The total potential energy involves the strain energies due to bending and torsion, 

respectively and the gravitational potential energy of the end mass. It is given by  
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                                       2 2
0 0

0 0

1 1( ) ( )
2 2

l l
yU EI u dz cGJ dz m gw                                         (4) 

The above equation can be expressed in the form of equation (7), after the displacements 

0w  and  0v  are expressed in terms of the modal co-ordinates 1u  and 2u  using equations (39) 

and (41) from the paper by Forehand and Cartmell (2001). For convenience, equations (39) 

and (41) are re-written and re-numbered as here: 

                                                            0 1 1 1 2 1 2( )v t B u B u                                                                  (5) 

                          ' 2 2 ' ' ' 2 2
0 1 1 1 2 1 2 2 2

0 0 0

1 1( ) ( ( ) ) ( ( ) ( ( ) )
2 2

l l l
w t f dz u f f dz u u f dz u                                (6)                        

     

2 2 2 2 2 2
1 0 1 1 2 0 2 2

0 0 0 0

2 2 2
1 2 0 1 2 1 2 1 1 0

0 0 0

1 1[ ( ) ( ) ] [ ( ) ( ) ]
2 2

1[ ( ) ( ) ] [ ( ) ]
2

l l l l
y y

l l l
y B

U EI f dz m g f dz u EI f dz m g f dz u

EI f f dz m g f f dz u u cGJ g dz m gW

   

  

      

       
      

        (7) 

where GJ is the torsional rigidity of the beam about the z axis , assumed to be constant. 

Quantity c is the constant introduced into the stardard torsion equation (Timoshenko 1878) 

to deal with non-circular cross-section. It has been shown here that the modal co-ordinates 

1u  and 2u  couple in the expression of the potential energy. 

3.2.3 Equations of Motion 

Applying Lagrange’s equations in the form 

                                              
  

  
   iq

i i i

d T T U Q
dt q q q

                                                                   (8) 

where  

  1 1q u ;   22 uq  ;   13 q  and the generalised force 0
iqQ  for 1i   to 3. 

enables the governing equations of motion to be derived from the energy expressions 

T and U . 

The resulting equations are as follows.  
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2 2 2 2
1 1 1 1 2 1 2 1 2 1 1 2

2 2 2
2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1

2
1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2

2
1

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

2 ( ) ( )

cos( )(B

u B Xu Yu u u Y Xu Yu u X Xu Yu

u Z Xu Yu u Xu Yu Yu Zu B u B u

B B u B B u B B u RN gX u RS gY u

A t Xu Yu



   

    

      

      

      

   

   
   

  


2 ) 0

 

              

2 2 2 2
2 2 1 1 2 1 2 1 2 2 1 2

2 2 2
1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2

2
1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2

2
1

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

2 ( ) ( )

cos( )(B

u B Yu Zu u u Y Yu Zu u Z Yu Zu

u X Yu Zu u Xu Yu Yu Zu B u B u

B B u B B u B B u RS gY u RP gZ u

A t Yu Zu



   

    

      

      

      

   

   
   

  


2 ) 0

                             

             

2
1 1 1 2 2 1 1 1 2 2 1 1 2 2

1 1 1 2 2 1 1 2 2 1
0

[1 ( ) ] [2 ( )( )]

[ ( )( )] ( ) 0

V B u B u V B u B u B u B u
cGJQV B u B u B u B u

I

 

 

    

    

   

 
                            (9) to (11) 

 Here, the geometrical constants are as follows: 

2
1

0
( )

l
X f dz  , 2

1
0
( )

l
N f dz  , 2

2
0
( )

l
Z f dz  , 2

2
0
( )

l
P f dz  , 1 2

0
( )

l
Y f f dz   ,   

1 2
0
( )

l
S f f dz   , 1 1 1

0
( )

l
B l z g f dz   , 2 1 2

0
( )

l
B l z g f dz   , 0

0

mV
I

 , 2
1

0
( )

l
Q g dz  ,

0m
EI

R y , cos( ) 


B BW A t , where   is the frequency of the excitation.                           

See Appendix 1 for definitions of these constants. 

In section 3.1-3.2, the prime ' denotes differentiation with respect to z  and · denotes 

differentiation with respect to t .  

3.3 Analysis of the Governing Equations 

Equations (9) to (11) contain certain linear terms. If equation (9) is taken as an example, 

these linear terms are the inertia term 1u , the stiffness term 1( )RN gX u , rewritten as 

2
1 1u , the term 2( )RS gY u , rewritten here as 2

2p u , and the excitation term 

2
1 2cos( )( )BA t Xu Yu  


.The excitation term is a parametric excitation term as it appears 

as a time varying modification of the system parameters 1u  and 2u . Likewise, the stiffness 
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term in equation (10) is rewritten as 2
2 2u  and in equation (11) as 2

1 t . The rest of the 

terms in equations (9) to (11) are nonlinear cubic terms. These nonlinearities arise because 

of the use of equations (5) and (6), which describe the geometrical relationship 

between 1u , 2u  and 1 , 0v , 0w . A classical linear viscous damping term is assumed and 

inserted of the form 1
1

0

c u
m
  into equation (9) (again, here equation (9) is taken as an 

example), which we re-write as 1 1 12 u   .  

3.4 Treatment of the System Equations 

3.4.1 Ordering Scheme 

Having identified the non-linearities presented in this structure, we can progress to 

investigate their effects. The non-linearities can be treated through perturbation methods. 

To accomplish this, equations (9) to (11) need to be ordered by introducing the perturbation 

parameter  in a suitable manner. By assuming a nondimensionalisation scheme, where   

is arbitrary and of length dimension, two new bending coordinates are defined as 1 1 /u u  , 

2 2 /u u  . Similarly for the torsional coordinate 1 , we define the following, 1
1

1
V





 , 

where 0

0

mV
I

  and the quantity 
1
V

 has the unit of
2ML L

M
 . 1u , 2u and 1 are now all 

non-dimensionalized coordinates (noting that 1 in radians is itself dimensionless). The 

derivatives, obviously, come out as 1 1u u  , 1 1u u   and in the same 

manner 2 2u u  , 2 2u u  , 1 1V    , 1 1V    . Based on understood physical meaning 

in context, we consider the damping term and the excitation amplitude to be of magnitude 

order 1   and, that is B BA A
 

, 1 1  . The linear term 2p  is set to 2p  due to 

numerical explorations and eventual justification (see Appendix 2 for the reason and 

different factors which affect this ordering method). Substituting B BA A
 

, 11   and 

2 2p p  into equations (9) and (10), we obtain, upon cancelling through by   and tidying 

up: 
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2 2 2 2 2 2 2 2
1 1 1 1 2 1 2 1 2 1 1 2

2 2 2 2 2 2 2
2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1

2 2 2 2 2 2
1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

2

u VB Xu Yu u u Y Xu Yu u X Xu Yu

u Z Xu Yu u Xu Yu Yu Zu VB u VB u

VB B u VB B u VB B u u p u

    

       

         

      

      

    

   
   

  
2

1 2 1 1 1cos( )( ) 2 0BA t Xu Yu u       
 

        (12) 

   

2 2 2 2 2 2 2 2
2 2 1 1 2 1 2 1 2 2 1 2

2 2 2 2 2 2 2
1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2

2 2 2 2 2 2
1 2 1 1 1 1 2 1 1 1 1 2 1 1 2 2 1

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

2

u VB Yu Zu u u Y Yu Zu u Z Yu Zu

u X Yu Zu u Xu Yu Yu Zu VB u VB u

VB B u VB B u VB B u u p u

    

       

         

      

      

    

   
   

  
2

1 2 2 2 2cos( )( ) 2 0BA t Yu Zu u       
 

           

(13) 

In a similar manner, substituting the above expressions into equation (11) and cancelling 

through by   and V gives                                       

            
2 2 2

1 1 1 2 2 1 1 1 2 2 1 1 2 2

2 2
1 1 1 2 2 1 1 2 2 1 1

[1 ( ) ] [2 ( )( )]

[ ( )( )] 2 0t t t

V B u B u V B u B u B u B u

V B u B u B u B u

   

      

    

     

   
 

                                (14)       

3.4.2 Application of the Perturbation Method of Multiple Scales  

The ordered generalised co-ordinates, 1u , 2u and 1 , are written in asymptotic series form, 

2
1 10 11 12u u u u      

2
2 20 21 22u u u u      

                                                           2
1 10 11 12                                                   (15) to (17) 

The series are assumed to be uniformly convergent. The derivatives are also treated in this 

way,  giving,  up to second order, 

2
0 1 2

d D D D
dt

              
2

2 2 2
0 0 1 0 2 12 2 (2 )d D D D D D D

dt
                

where 0t T  and 0
n

nT T .  Then equations (12) to (14) are arranged so that terms of the 

same order of   are grouped together. Therefore we have,  

0 :           2 2
0 10 1 10 0D u u      2 2

0 20 2 20 0D u u      2 2
0 10 10 0tD                                             (18) 
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1 :    2 2 2 2
0 11 1 11 0 1 10 1 1 0 10 20 10 20

ˆ2 2 cos( )( )BD u u D D u D u p u A t Xu Yu            

    2 2 2 2
0 21 2 21 0 1 20 2 2 0 20 10 10 20

ˆ2 2 cos( )( )BD u u D D u D u p u A t Yu Zu            

                  2 2
0 11 11 0 1 10 0 102 2t t tD D D D                                                                      (19) to (21) 

2 : 

2 2 2 2 2 2 2 2
0 12 1 12 0 1 11 0 2 10 1 10 0 10 1 10 0 10 10 20

2 2
0 10 0 20 10 20 0 10 10 20 21

2 2
0 20 10 20 0 20 10 20 10 20

2 2 2
1 10 0 10 10 1 10

2 2 ( )

2 ( ) ( ) ( )

( ) ( ) ( )( )

2

D u u D D u D D u D u D u B D u Xu Yu

D u D u Y Xu Yu D u X Xu Yu p u

D u Z Xu Yu D u Xu Yu Yu Zu

B V D u B V D

 

  

       

    

    

  0 10 0 10 1 2 10 0 10 0 20

2 2 2
1 2 10 0 10 20 1 2 10 0 20 1 1 0 11 1 1 1 10

2
11 21

2

2 2
ˆ cos( )( )B

D u B B V D D u

B B V D u B B V D u D u D u

A t Xu Yu

  

      



   

   

 

2 2 2 2 2 2 2 2
0 22 2 22 0 1 21 0 2 20 1 20 0 20 2 10 0 20 10 20

2 2
0 10 0 20 10 20 0 20 10 20 11

2 2
0 20 10 20 0 10 10 20 10 20

2 2 2
2 10 0 10 20 2 10

2 2 ( )

2 ( ) ( ) ( )

( ) ( ) ( )( )

2

D u u D D u D D u D u D u B D u Yu Zu

D u D u Y Yu Zu D u Z Yu Zu p u

D u X Yu Zu D u Xu Yu Yu Zu

B V D u B V D

 

  

       

    

    

  0 10 0 20 1 2 10 0 10 0 10

2 2 2
1 2 10 0 10 10 1 2 10 0 10 1 2 0 21 2 2 1 20

2
11 21

2

2 2
ˆ cos( )( )B

D u B B V D D u

B B V D u B B V D u D u D u

A t Yu Zu

  

      



   

   

 

           

2 2 2 2 2
0 12 12 0 1 11 0 2 10 1 10 0 10 1 10 2 20

0 10 1 0 10 2 0 20 1 10 2 20
2 2

10 1 0 10 2 0 20 1 10 2 20

0 11 1 10

2 2 ( )
[2 ( )( )]

[ ( )( )]
2 2

t

t t t t

D D D D D D D V B u B u
D V B D u B D u B u B u

V B D u B D u B u B u
D D

      





     

      

  

  

 

            (22) to (24) 

3.5 Theoretical Analysis of the First-order Perturbation Equations 

Solutions to the zeroth order perturbation equations are, 

1 0 1 0
10 1 1

i T i Tu A e A e   , 2 0 2 0
20 2 2

i T i Tu A e A e   , 0 0
10 1 1

t ti T i TC e C e     .                        (25) to (27) 

Substituting these solutions into the first order equations leads to ( 2 1  )  
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0 1 2 0

1 2 0 1 0 0
1 0

1 2 0 1 0

2 2
( )2

1 1 1 1 1 1 1 2

2 2 2
( ) ( 2 )

2 2 2 1 1
0 11 1 11

2 2 2
( ) ( 2 ) (

2 1 2

2 2
2 2

2 2 2

2 2 2

i T i TB B

i T i T i TB B B
i T

i T i T iB B B

A Ai D A i A XA e YA e

A A AYA e XA e XA e
D u u e

A A AYA e XA e YA e

 

  


   

  



    

     

   

 
   

  
  

 
  

  

 

  

  
1 2 0

1 0 2 1 0 1 2 0

)

2 ( ) ( )2 2 2
1 1 1 1 1 1 2 2( 2 2 )

T

i T i T i Ti A i D A e p A e p A e



      



   

 
 
 
 
 
 
 
 
 
       

0 1 2 0

1 2 0 2 0 0
2 0

1 2 0 1 2 0

2 2
( )2

2 1 2 2 2 2 2 1

2 2 2
( ) ( 2 )

2 2 1 2 2
0 21 2 21

2 2 2
( ) ( ) (

1 1 2

2 2
2 2

2 2 2

2 2 2

i T i TB B

i T i T i TB B B
i T

i T i T iB B B

A Ai D A i A ZA e YA e

A A AYA e ZA e ZA e
D u u e

A A AYA e YA e ZA e

 

  


   

  



    

     

    

 
   

  
  

 
  

  

 

  

  
2 0

2 0 1 2 0 1 2 0

2 )

2 ( ) ( )2 2 2
2 2 2 2 1 2 1 1( 2 2 )

T

i T i T i Ti A i D A e p A e p A e



      



   

 
 
 
 
 
 
 
 
 
       

    0 022 2 2 2
0 11 11 1 1 1 1 1 12 2 ( 2 2 )t ti T i T

t t t t t t tD e i D C i C i C i D C e                            (28) to (30) 

Now the step is to consider how the first-order perturbation equations , i.e., equations (28) 

to (30) should be treated so that their paticular solutions do not invalidate the important 

underlying necessity for uniformity in the expansions, as assumed as equations (15) to (17). 

This uniformity is not likely to occur if certain terms are present in the above equations. 

Those terms are called secular terms. The danger of these terms will creat  disproportionate 

increase in the magnitudes of 11u , 21u , and 11 if they are not removed. Equation (28) is 

taken as an example, the eaiest way of tackling the secular term problems is to take out the 

resonant exponet terms, which only contain the term 1 0i Te   (noting the conjugates which 

contain 1 0i Te  ), in this case, the terms 1 1 12i D A and 2
1 1 12i A  . The terms 

1 0

2
( 2 )

1

ˆ

2
i TBA XA e 

, 1 2 0

2
( )

2

ˆ

2
i TBA YA e   

, 1 2 0

2
( )

2

ˆ

2
i TBA YA e    

might be resonant if 

12  or 1 2     or 2 1    . Likewise for the equation (29). The conditions 

22  and 1 2     and 2 1     will also generate further secular terms. 

12  and 22  are regarded as primary parametric resonances, while 1 2    and 

2 1     are termed combination resonances. 
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3.5.1 Non-resonant Case 

The non-resonance case is the case when  is away from 12 , 22 , 1 2  and 2 1  . In 

this case, the secular terms in equation (28) are only 1 1 12i D A and 2
1 1 12i A  . The sum of 

this two terms should be zero, expressed as follows, 

                                            2
1 1 1 1 1 12 2 0i D A i A                                                                           (31) 

Equation (31) is also called  the solvability condition because it is used to solve 1A  in general. 

Conventionally, one lets 11
1 2

iaA e  , so that, 1 11 1
1 1 12 2

i ia aD A e i e 


  . 

Here 1 1 1 2( , )a a T T  , 1 1 1 2( , )T T  and then, after substitution into equation (31), it can be 

separated into real and imaginary parts in order to obtain the modulation equations for the 

non-resonant case, 

                                        1 1 1 1 0a a      and  1 1 0a                                                            (32),(33) 

Here in the section 3.5 of this chapter, the prime denotes differentiation with respect to 1T .                                                                                                                    

Solving for 1a and 1 leads to,  

                                         1 1 1
1 10

Ta a e    and 1 10                                                              (34),(35) 

Where 10a , 10 are arbitrary constants.                                                                                      

With the solvability condition (equation (31)) fulfilled, a particular solution to equation (28) 

is obtained by adding in turn the responses to each of the remaining harmonic excitation 

terms. MathematicaTM code (see Appendix 3) has been developed to achieve this purpose. 

2 2 2
0 1 0 1 1 0 1 0 1 1 2 0 1 1

11 2 2 2 2
1 1 1 2

2 2
0 2 0 2 2 0 2 0 2 2

2 2 2 2 2 2
1 2 2 1 2 2

cos( ) cos( ) cos( )
2 4 2 4

cos( ) cos( )
2 2 4 2 2 2 4 2

B B

B B

X T T A a X T T A a p T au

Y T T A a Y T T A a

     
   

   
     

        
   

       

       
 

           

 

                                                                                                                               

                                                                                                                                                              (36) 
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Equation (34) shows that 1 0a   as 1T  , then 1 0A  , and from equations (15), (25), 

and (36) the stationary response for 1u  becomes 1 0u    if we only consider the zeroth and 

first order perturbation equations.  

Likewise for 2u , leading to, 

2 2 2
0 2 0 2 2 0 2 0 2 2 1 0 1 1

21 2 2 2 2
2 2 1 2

2 2
0 1 0 1 1 0 1 0 1 1

2 2 2 2 2 2
1 1 2 1 1 2

cos( ) cos( ) cos( )
2 4 2 4

cos( ) cos( )
2 2 4 2 2 2 4 2

B B

B B

Z T T A a Z T T A a p T au

Y T T A a Y T T A a

     
   

   
     

        
   

      

       
 

           

 

                                              

                                                                                                                                                                (37) 

After removing the secular terms and their conjugates from the right hand side of equation 

(28), the first order perturbation solution is 11 0  . 

3.5.2 Transition Curves for the Primary Parametric Resonance Case 

In this case 12     and its solvability condition is              

                                           1

2
2

1 1 1 1 1 1 1

ˆ
2 ( ) 0

2
i TBAi D A A XA e    

                                        (38) 

For determining 1 1 2( , )A T T , again like in the non-resonant case, we let 11
1 2

iaA e  , where 

1 1 1 2( , )a a T T , 1 1 1 2( , )T T  , Substituting of 1A  , 1A and 1 1D A  into equation (38) and 

separating the real and imaginary parts gives the modulation equations for the primary 

parametric resonance case as follows 

                                       2
1 1 1 1 1 1 1

1

1 ˆ sin( 2 )
4 Ba a XA T a   


                                           (39) 

                                   2
1 1 1

1

1 ˆ cos( 2 )
4 BXA T  


                                                          (40) 

Since slowly varying parameters (with respect to slow time scale 1T but not 0T ) appear in the 

above two equations, it is reasonable to assume that the amplitude is almost static in slow 

time. Therefore 
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                                                                          1 0a                                                                              (41) 

We also eliminate the explicit presence of time (in whatever time-scale form it is represented) 

and in so doing obtain an autonomous system by stating 

                                                                   1 12T                                                                         (42) 

The phase   is considered as the same way as the above amplitude by setting 0  . It is 

then clear that 12   from equation (42).   

Substituting equation (41)  and 12   into equations (39) and (40) yields 

                                             2
1 1 1 1

1

1 ˆ sin 0
4 Ba XA a 


                                                      (43) 

                                                     2

1

1 ˆ cos
2 BXA


                                                               (44) 

According to the identity whereby 2 2sin cos 1   , where sin , cos are from 

equations (43) and (44), this leads to  

                                                        
2

2 21 1 1
2 2

4 2( ) ( ) 1ˆ ˆ
B BXA XA

  
 

 
                                                 (45) 

And hence,  

                                            2 2 2 2
1 1

1

ˆ( ) ( ) (2 )
2 B
X A  


                                            (46) 

Equation (46) can be used to plot a stability chart for the primary resonance 12     in 

such a manner that the detuning parameter  is the ordinate and an excitation parameter 

2ˆ
BA   is on the abscissa. A stability chart can also be called a transition curve, a curve which 

divides the chart into areas of stability and instability as shown in Fig 3-3 for a specific 

system. A ( , 2ˆ
BA  ) coordinate outside the shaded area, when 1 0.001  , defines a stable 

response and within the shaded regions defines an unstable response. The coordinates on 

the curve are boundary stability.  
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In equation (46), clearly, we require, 2 2 2 2
1 1

1

ˆ( ) ( ) (2 ) 0
2 B
X A  


   , or, 
2

2 1 14ˆ( )BA
X
 

  , 

when 2ˆ 0BA   . 

In the case of the other primary resonance, in which, 22     it can be shown that,  

                                                  2 2 2 2
2 2

2

ˆ( ) ( ) (2 )
2 B
Z A  


                                                     (47) 

for which, 2 2 2 2
2 2

2

ˆ( ) ( ) (2 ) 0
2 B
Z A  


   , or, 
2

2 2 24ˆ( )BA
Z
 

  when 2ˆ 0BA   .  This is 

the equation for the transition curve for the primary resonance 22    . 

3.5.3 Transition Curve for the Sum-type Combination Resonance 

In this case we have, 1 2       

The solvability conditions are,                                                              

                                     
1

2
2

1 1 1 1 1 1 2

ˆ
2 2 0

2
i TBAi D A i A YA e    

                                            (48) 

                                                  
1

2
2

2 1 2 2 2 2 1

ˆ
2 2 0

2
i TBAi D A i A YA e    

                                       (49) 

Substituting 11
1 2

iaA e  , 22
2 2

iaA e  , 1 11 1
1 1 12 2

i ia aD A e i e 


  2 22 2
1 2 22 2

i ia aD A e i e 


  in

to the solvability conditions one obtains, upon separating real and imaginary parts, the 

following set of modulation equations:   

                                                       
2

2
1 1 1

ˆ
0

4
BA aa YCos                                                               (50) 

                                                      
2

2 2
1 1 1 1 1

ˆ
0

4
BA aa a YSin                                                     (51) 

                                                      
2

1
2 2 2

ˆ
0

4
BA aa YCos                                                               (52) 
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2

2 1
2 2 2 2 2

ˆ
0

4
BA aa a YSin                                                (53) 

here 1 2 1T       and ie Cos iSin                                                                                 (54) 

Equations 1 1 1
2

2

4
ˆ

B

aCos
A a Y
  

 


, 2 2 2
2

1

4
ˆ

B

aCos
A a Y
  

 


 can be obtained from equations (50) and 

(52) separately. Equating these two equations leads to 

                                         2 21 1 1 2 2 2
1 1 1 2 2 22 2

2 1

4 4
ˆ ˆ

B B

a a a a
A a Y A a Y
   

   
 

   
        

                                    (55) 

Equations (51) and (53) are treated in the same manner and the following is given 

                                                            2 2 2 2
1 1 1 2 2 2a a                                                                        (56) 

To achieve a steady state, the conditions are imposed that 1 2 0a a      , and hence 

1 2 0          according to equation (54), and finally   

                                                                  1 2                                                                            (57) 

Equations (55) and (56) are now used in conjunction with equation (57) to find 

                                               1 1
1

2 2 1 1

 


   
 


      2 2

2
2 2 1 1

  


   
 


                                          (58) 

Cos and Sin  are obtained from equations (51) and (52), and by using 

2 2 1Cos Sin    we find  

                                                             
2

2 21 1 1 1 1 1
2 2

2 2

4 4( ) ( ) 1ˆ ˆ
B B

a a
A a Y A a Y
   

 
 

                                           (59) 

Finally the equation for the transition curve is obtained by using equations (58) and (59) 

                                        

2 4 2
2 2

1 1 2 2 1 12
2 2

2
1 1

ˆ
( ) ( 16 )

16

BY A     
 


 


 

                                             (60) 
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 For which we require

2 4 2
2 2

1 1 2 2 1 12
2 2

2
1 1

ˆ
( ) ( 16 )

0
16

BY A     
 
 

 
 or 2 1 2

1 2
4ˆ

BA
Y


                                             

3.5.4 Difference-type Combination Resonance Case 

The difference-type instability is given by, 2 1       

Its solvability condition is:      

                                         1

2
2

1 1 1 1 1 1 2

ˆ
2 2 0

2
i TBAi D A i A YA e    

                                              (61) 

                                        1

2
2

2 1 2 2 2 2 1

ˆ
2 2 0

2
i TBAi D A i A YA e    

                                               (62) 

The procedure for solving equations (61) and (62) is like that in the sum-type combination 

resonance case. However, it can only be shown in this case that, 
2 2
1 2 2
2 2
2 1 1

a
a

 
 

  , and this has 

no physical significance because damping and natural frequencies are necessarily positive. 

Therefore in the case of 2 1       only trivial zero solutions are admitted. 

3.6 Theoretical Analysis of the Second-order Perturbation Equations 

The procedure for solving the second-order perturbation equations is explained as follows. 

First, the zeroth-order perturbation solutions (equations (25) to (27)) and first-order 

perturbation solutions (equations (36) and (37)) are substituted into the second-order 

perturbation equations (equations (22) to (24)), and they are re-organized in the same 

forms as in equations (28) to (30); Second, the secular terms that contain the term 1i te  and 

the conjugates 1i te   are removed. Finally the solutions are obtained by adding in turn the 

responses to each of the remaining harmonic terms. The resonances from the second-order 

perturbation equations are obtained when the coefficients to 1i te  equate to zero and so are 

the coefficients to 1i te  . The results are listed in Appendix 4. A detailed and complete 

treatment  for analyzing the second-order perturbation equations is available in Cartmell 

(1990).    
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3.7  Effects of Non-linearities 

The non-linearities which appear in equations (9) to (11) arise because we consider the 

small displacement in the Oyz plane, v . This displacement v  results from combined bending 

u and torsion   and it is expressed as  1 1 1 2 1 2v B u B u   . These non-linearities are referred 

as geometrical non-linearities. To see their effects on the problem, the linear part of these 

equations are written separately as follows 

2 2 2
1 1 1 1 1 1 2 1 22 cos( )( ) 0Bu u u p u A t Xu Yu           

 
 

2 2 2
2 2 2 2 2 2 1 1 22 cos( )( ) 0Bu u u p u A t Yu Zu           

                                                              

                         2
1 1 12 0t t t                                                                                  (63) to (65) 

Re-solving the three degree of freedom equations (63) to (65), which include the linear 

parametric and coupling terms, will yield the three parametric resonances 12  and 

1 2     and 22  . Solving the second-order perturbation equations (22) to (24) 

provides more resonances as explained in section 3.6. Most of them are generated by the 

non-linearities. These types of non-linearity are commonly neglected in practise because 

they are considered to be relatively weak when compared with linear terms. However such 

neglect cannot always provide a complete answer to all problems.  

3.8 Discussion of Theoretical and Experimental Results 

3.8.1 Theoretical Results 

A beam is taken as an example, with parameters as listed in Table 3-2. The following 

theoretical and experimental results are based on this case. According to equations (46), (47) 

and (60), transition curves for the above three resonances are plotted in Figures 3-3,  3-4 

and 3-5. Figures 3-3, 3-4 and 3-5 show the theoretical transition values for resonances 

12     , 1 2       and 22    . The horizontal axes are the detuning 

parameters  ,   and  respectively. The vertical axis is the excitation acceleration. 

Stable (or zero response) behaviour occurs outside the boundary of the curve whilst points 

within the curve define unstable, theoretically unbounded, modal responses. Points 
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occurring on the curve are known as transition values. In the three cases, the greater the 

degree of detuning the greater the level of excitation that is required to promote the 

instability; The effects of damping on the shape of the curves are highlighted. With 

increasing daming ratios, the unstable regions tend to move away from the frequency axis. 

That means that when the damping ratio is increased, it is more difficult to get into the 

untable zone. It is also noticed that the greater the damping ratio the narrower of the 

unstable zone.   

 

Fig 3-3 Stability chart showing the zoning for the principal parametric resonance 12     

 

Fig 3-4 Stability chart showing the zoning for the combination resonance 1 2       
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Fig 3-5 Stability chart showing the zoning for the principal parametric resonance 22     

3.8.2  Experimental Work  

Tests were carried out on a laboratory model to corroborate the theoretical results. The 

details of the model are given in Figure 3-6, with properties listed in Table 3-1. The rig 

consisted of a short flexible spring steel beam, which was driven by an electromagnetic 

shaker from a function generator and current drive amplifier. A rectangular lumped end 

mass of length 45 mm, thickness 16 mm and depth 15 mm, made of aluminium, was 

attached at the free end of the beam. A spectrum analyzer connected to a vibrometer 

control unit enables the identification of the beam responses through the signals which 

come from a laser vibrometer. The excitation of the shaker was monitored by means of an 

accelerometer tightly mounted on the clamping fixture. The list of the instruments used in 

the experimental investigations has been included in Appendix 6. The excitation 

accelerations displayed on the oscilloscope (in terms of volts) could be directly related to 

physical accelerations by a calibrated charge amplifier. Please see the flowchart in Figure 3-6. 

The first and second natural frequencies of bending motions were obtained by directly 

exciting the bending modes. To this end the beam was linearly excited in the x-axis shown in 

Figure 3-1 at the two natural frequencies of interest. Two peaks, with frequencies of 11 Hz 

and 137 Hz, were read from the screen of the spectrum analyzer. These frequencies were 

the first and second natural frequencies of bending motions respectively. The two 

frequencies are close to the frequencies from theoretical work, which are 11.3 Hz and 132.8 

Hz. The corresponding critical damping ratios i  for each bending mode were found from 

captured transient decays when the shaker was abruptly stopped following a resonance 
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build-up. For when 12  , the laser vibrometer picked up the first bending mode, while 

when 22  , the laser vibrometer picked up the second bending mode. The decays were 

stored in the oscilloscope and the slopes were measured at different amplitudes. The results 

are 1 0.001   and 2 0.0042  . Experimental points for the transition curves as shown in 

Figures 3-8, 3-9, 3-10, were found by selecting a range of frequencies on the function 

generator, and at each point the excitation level was increased very slowly until nonplanar 

motion commenced. To observe the nonplanar motion, the laser vibrometer was used again 

to catch the response signal and it was connected with the spetrum analyzer to display the 

reponse in frequency domain. The gain of the excitation was gradually increased until the 

peak of the natural frequency of the first bending mode appeared on the spectrum analyzer 

screen, which means the instability of the 12  roughly starts. Likewise, the appearance 

of the natural frequency of the second bending mode, of both the frequencies are for 

22   and 1 2     separetely. The excitation acceleration and frequency values were 

recorded for the above three resonances. The beam showed no nonplanar motion when the 

excitation frequencies are in the range of 2 1    . It is shown from Figures 3-8, 3-9 and 

3-10 that close agreement is obtained between theoretical and experimental results. It is 

also noticed in Figure 3-8, the experimental results fall outwith the theoretical curve. The 

possible explaination is that the damping ratio obtained in the laboratory is less than its real 

value. As dicussed above, transition curves tend to move upwards when damping is 

increased. However this only affects the middle part of the curve because the curve 

meanwhile becomes narrower when the level of damping is increased, which results in the 

experimental results will fall above the transition curve at the greater detuning points. The 

disagreement between the theoretical and experimental results needs further investigation.  
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6

 
 

Fig 3-6  Experimental rig. (1) shaker, 

(2) clamps, (3) beam,(4) end mass, 

(5) accelerometer, (6) enlarged end 

mass 
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Symbol l (m) l0 (m)    (kg/ m3) Wb (m) Tb (m) 

Value 0.128 0.1355 7800 0.025 7.2*10-4 

Symbol A (m2) m (kg/m) m0 (kg) Wm (m) Dm (m) 

Value 1.8*10-5 0.1404 0.031 0.015 0.016 

Table 3-1 Properties of the experimental rig 

Function 
Generator

Power Amplifier

Shaker

Rig Accelerometer Charge Amplifier

Oscilloscope
Laser 

Vibrometer

Laser Controller Spectrum 
Analyzer

1

2

 

Fig 3-7 Flowchart of  the response signal marked by 2 and excitation signal by 1 of the experiments 

 

Fig 3-8 Theoretical and experimental transition curves for 12    (experimental points 

dotted) 
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Fig 3-9  Theoretical and experimental transition curves for 1 2       (experimental 

points dotted) 

 

 

Fig 3-10 Theoretical and experimental transition curves for 22     (experimental 

points dotted) 
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 Chapter 4 

Experiments on Glass-epoxy Beams 

4.1 Introduction 

The mechanical properties of composite materials are conveniently studied from two points 

of view: micromechancis and macromechanics. In his book, Jones (1998) gave the definition 

of these two terms regarding the composite material study. “Micromechanics is the study of 

composite material behaviour wherein the interaction of the constituent materials is 

examined on a microscopic scale to determine their effect on the properties of the 

composite material. Macromechanics is the study of composite material behaviour wherein 

the material is presumed homogeneous and the effects of the constituent materials are 

detected only as averaged apparent macroscopic properties of the composite material. ” 

The procedures of micromechanics are used to predict the properties. Based on 

micromechanics analysis, a generally accepted expression for the tensile modulus of the 

composite materials in the longitudinal direction is one of the Halpin-Tsai equations (1969). 

                                                  11 11 11( ) ( ) (1 )f mE E E                                                                  (1) 

where the subscripts “ f ” and “ m ” denote the fibre (embedded) phase and matrix phase 

respectively. The volume fractions are  and (1 ) , respectively. 11E is the tensile modulus 

along the longitudinal direction. The beams in the present study are produced by the 

COMPOSITE INNOVATIONS Ltd. The material details are provided by this manufacturer as 

follows 

 Layup -- [0/90/45/-45/45/90/0] Ply area weight 466 g/m2 

 Fibre – EGlass 

 Resin -- Sicomin 8100 epoxy with 8824 standard hardener 

 Production volume fraction -- 50%±2% 

 Cure – Ambient for 10 hours and followed by 3 hours at 900C 

Table 4-1 reports some of the engineering properties of the beams also provided by the 

manufacturer. According to equation (1), the elastic modulus is calculated as 36.25 GPa, 

which is close to 36 GPa that the manufacturer supplied. However, micromechanical 



39 

 

analysis has its inherent limitations because the analysis requires a perfect bond between 

fibres and matrix. This will not happen in reality. Thus, micromechanical theories must be 

validated by careful experimental work. There are a few ways to obtain the tensile modulus 

for a rectangular cross-sectional glass epoxy (g-e) beam through experiments. This work 

considers two of them:  the three point bending test, and the bending tests for a cantilever 

and a cantilever with an end mass. Torsional tests are also introduced in this chapter to 

obtain the shear modulus for the beams.       

 
Fibre volume 

fraction 

Elasticity modulus 

(GPa) 

Density 

(g/cc) 

Poissons 

ratio 

Composite 50% ± 2% 36 1.85 0.26 

EGlass  69 2.56 0.2 

Epoxy Prime 20  3.5 1.2 0.37 

Table 4-1 Some of the properties of the manufactured glass epoxy beams 

Note: The elasticity modulus and Poisons ratio for the composite are measured in the 

longitudinal direction.  

4.2 Experimental Investigations  

4.2.1 Tensile Modulus 

4.2.1.1 Three Point Bending Test 

A rectangular cross-section beam denoted as beam 1, of width 13 mm, thickness 2.2 mm 

and length 150 mm, was tested using the three point bending test, shown in Figure 4-1. The 

test was performed on a Lloyds 1000 R tensile testing machine. In this test, the support span 

length was set to 100 mm and then adjusted to 50 mm and the tests were repeated. The 

beam was supported towards either end and loaded in the middle. The load F  was applied 

slowly so that the speed was 2mm/min. An AD converter and computer were used to obtain 

the load-deflection curves and the results are indicated in Figure 4-1. The equation 

requesting for calculating the tensile modulus E  is:  

                                                                         
3

34
L FE

dbh


 


                                                               (2) 
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where E is the bending modulus of elasticity in MPa. L is the support span;  b , the width of 

the test beam;  h , the thickness of the test beam. All these three are in mm.  F is the 

change in force in the initial linear portion of the force/deflection curve in Newtons. d is 

the change in deflection corresponding to the change in force F and is in mm. To get the 

bending modulus E , the linear relationship of the load and the deflection is guaranteed 

during the whole process.   

 

Fig 4-1 Beam geometry for three point bending test 

4.2.1.2 Bending Tests of Cantilever 

Two beams were tested as cantilever beams, beam 1, and beam 2. Beam 2 has the same 

width and thickness as beam 1, but with a greater length of 300 mm. One end of the beams 

was clamped in the vice grips. The set-up is shown in Figure 4-2. The beams were slightly 

perturbed at the free end in the most flexible plane, i.e. oxz plane in Figure 4-3 (z is the axis 

pointing into the paper), in order to excite the first bending mode. A laser vibrometer, its 

control unit and a spectrum analyzer were used to measure and record the natural 

frequency of this mode. The Young’s modulus was calculated by using equation (3). The two 

beams were tested in two ways depicted in Figure 4-2 a and Figure 4-2 b individually. One 

way was that end 1 was fixed and end 2 was free, while the other way was the opposite, 

end 1 was free and end 2 was fixed. 

2
4( ) EIl

Al
 


  
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2 4

4( )
AlE

l I
 


                                                                       (3) 

where E  is the Young’s modulus, in MPa.   is the first natural frequency of the bending 

modes of the beam  (rad/s) ;   the density of the beam  (dimensionless); A  the cross-

sectional area of the beam  (mm2);  I  moment of inertia of the beam cross section about 

the z axis  (mm4);  l  the initial gauge length of the beam, (mm) ; l , from which the value is 

obtained from knowledge of the boundary conditions. In this case, a standard Bernulli-Euler 

cantilever beam, 1.875104l   for the first bending mode of vibration (Rao, 2003).  

 

 

Fig 4-2  Cantilever  test 

 

                 

Fig 4-3 a Schematic of the cantilever beam                         Fig 4-3 b Schematic of the cantilever                   

                                                                                                       beam the other way around 

 

Fig 4-3 c Schematic of the cantilever beam with an end mass 
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4.2.1.3 Hammer Impact Test 

Beam 1 was also tested as a cantilever with an end mass using the hammer impact test. The 

experiment was to find out the natural frequency of the first bending mode of the system. 

The experimental set-up and procedure are explained in Chapter 7 section 7.1. After the 

natural frequency was obtained, equation (3) was applied to get the Young’s modulus but 

  was obtained through use of different boundary conditions; more details are given in 

Appendix 1.  

4.2.2 Results and Discussions 

1. The results from the three point bending tests are listed in Tables 4-2 and 4-3. This 

shows that the Young’s modulus for beam 1, using the three point bending test, was 

found to be 22.51GPa when the support span was 100mm, 9.32% bigger than 20.59 GPa 

when the span was 50mm.  

2. The results from the bending tests on the cantilever and the hammer impact tests are 

listed in Tables 4-4, 4-5 and 4-6. Table 4-4 shows that as for beam 2, when end 1 was 

fixed and end 2 was free the arithmetic average value of the Young’s modulus was 18.26 

GPa, while the other value was 16.16 GPa when end 2 was fixed and end 1 was free, 

11.5% smaller than 18.26 GPa. For beam 1, as seen from Table 4-5, the Young’s modulus 

for one configuration was 15.06 GPa and for the other was 13.19 GPa, which is 12.4% 

smaller than 15.06 GPa. The Young’s modulus from the hammer impact test confirms 

that beam 1 has the smaller value of the Young’s modulus, 13.19 GPa, as shown in Table 

4-6. 

3. There are a number of properties which could have affected the experimental results.  

 Random orientation of reinforcing fibres can give rise to off-axis loadings. These 

internal load paths can differ according to the experimental testing configuration. 

 The reinforcing fibres can be of different lengths, which can also affect the internal 

load paths and be configuration-dependent. 

 The compliance of the adhesive in multi-layered composite elements can also affect 

the values. 
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  Cracks, voids, impurities and misalignments, if there are some, can also contribute 

to the results. 

 The testing gauge length can have influence on the results as well. The influence of 

the testing gauge length on the mechanical properties of composite materials has 

been widely discussed. (Jones 1999, Pardini et al 2002, Chivavibul and Enoki 2003) 

They all found that the Young’s modulus had a dependency on the gauge length. One 

possible explanation is that the cracks, voids, impurities and fibrillar misalignments 

could give rise to a scatter in properties. Hence, the gauge region might not be 

uniformly stressed as it is supposed to be.  

4. In the later experimental investigations into the effect of SMA strips on the above 

mentioned beams, the bending tests of cantilever will be utilized for the same 

orientation of the beam, with and without SMA strips bonded to it.  

No. Fmax (N) d  @ Fmax(mm) E (GPa) Eaver(GPa) 

1 4.44 0.6 21.76 

22.51 

2 5 0.65 23.1 

3 6.88 0.8 23.92 

4 9.61 1.0 22.23 

5 12.96 1.25 21.53 

Table 4-2 Three points bending test on beam 1 when the support span is 100mm. 

No. Fmax (N) d  @ Fmax(mm) E (GPa) Eaver(GPa) 

1 60 0.8838 20.25 

20.59 

2 70 0.9714 20.3 

3 80 1.059 21.2 

4 90 1.146 21.05 

5 100 1.239 20.16 

Table 4-3 Three points bending test on beam 1 when the support span is 50mm 
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l (mm) 1af (Hz) 1bf (Hz) aE (GPa) bE (GPa) 

150 47.5 46.6 16.87 16.23 

180 33.0 32.4 16.88 16.27 

200 27.6 26.4 18.00 16.47 

220 23.4 21.2 18.94 15.55 

250 18.9 16.8 20.60 16.28 

Eaver(GPa) 18.26 16.16 

Table 4-4 Cantilever beam bending test on beam 2 

l (mm) 1af (Hz) 1bf (Hz) aE  (GPa) bE  (GPa) 

150 101 94.5 15.06 13.19 

Table 4-5 Cantilever beam bending test on beam 1 

Note: 1af , 1bf are  the first natural frequency of bending for the two systems shown in Table 4-2 a 

and Table 4-2 b respectively. aE , bE  are the Young’s modulus of the beam calculated from 1af  

and 1bf .  

l (mm) End mass 1f (Hz) E (GPa) 

112 

Made of steel, with 

width15mm, thickness 

15mm and length 70mm 

7.44 13.19 

Table 4-6 Cantilever beam bending test with an end mass on beam 1 

4.3 Shear Modulus 

4.3.1 Introduction 

The following experiment was designed to determine the modulus of rigidity. Utilising the 

test specimen with known geometry, this specimen could be twisted, with the values for 

torque simultaneously measured. To perform this task, a torsion testing machine was used. 

With the beam secured and clamped within the machine, one end of the specimen was 

twisted to certain angles, while the opposing end was kept straight by attaching it to the 

centre of an arm structure. This arm was held fixed throughout the procedure.  
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The ultimate goal, the determination of the modulus of rigidity, G, can be expressed by 
[Popov, 1978] 

                                                        3
T LG

wt 
                                                                              (4) 

Where T  is the torque applied in N·m, L is the gauge length of the specimen in meter,   is 

the total angle of twist in radians,   is the numerical factor for the twist of a shaft of 

rectangular cross-section. w and t  are the width and thickness of the cross-sectional area of 

the beam respective in meter. /T   is the slope of the linear portion of the curve when the 

torque is plotted against the angle of twist.  

4.3.2 Equipment and Procedure 

The MTS, 858 Mini Bionix®II material test system was used for this experiment. The system 

consisted of a loading unit with cross-head mounted actuator, a hydraulic power unit and a 

test controller channels (force and displacement). Two g-e beams made of the same width 

13mm and thickness 2.2mm, but with different lengths of 300mm and 150mm, were used 

respectively.  The specimen was secured in the torsion testing machine and set up vertically 

within two grips. The testing package, designed by MTS, was used to record, store and 

analyse the data. The apparatus was set to read zero degrees of twist and zero torque 

before the start of the test.  

 

 

Fig 4-4 Specimen set-up 
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 The twist rate was induced at 0.1 degree/second. The time between two adjacent recording 

points was 0.01s. The recording was done by continuous sampling. The twist started at zero 

degrees and ended at 15 degrees for the long beam of length 300mm, whilst for the short 

beam, the twist started at zero degrees and ended at 7 degrees. The selection of 15 and 7 

degrees was from the engineering experience to avoid damage of the bond between the 

glass and the epoxy. After the twisting angle reached 15 or 7 degrees respectively, the beam 

was twisted back to zero degrees to see if any hysteresis effects had taken place.  

4.3.3 Data Analysis and Calculations 

A torque and twisting angle chart is given as shown in Figure 4-6, and based on the data for 

angles and torques at each increment for the long beam. The black dots are the data when 

the beam was twisted from zero degrees to 15 degrees whilst the pink dots are those when 

the beam was twisted back from 15 degrees to zero degrees. From the graph, the 

relationship between the torque and the twisting angle are linear for both cases, and 

therefore the twisting was entirely in the elastic deformation region. Two trend lines were 

plotted in Microsoft Excel for both cases. The slopes are approximately 0.7115 and 0.6993 

respectively. The shear moduli were calculated by using equation (1) to give 4.11 GPa and 

4.04 GPa. The average of these two values, 4.075 GPa is considered to be the shear modulus 

of the long beam.     

       Long beam Short beam 

Width (mm) 13 13 

Thickness (mm) 2.2 2.2 

Length (mm) 300 150 

Gauge length (mm) 240 100 

  0.3 0.3 

Table 4-7  Lists measured and calculated dimensional data 
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Fig 4-5 Torque against twisting angles for the long beam   

The same analysis was undertaken for the short beam. The torque and twisting angle 

chart is shown in Figure 4-7. The black dots are the data when the beam was twisted 

from zero degrees to 7 degrees while the pink dots are those for the reverse twist.  The 

shear moduli were calculated in this case as 2.79 GPa and 3.78 GPa. The average value, 

3.285 GPa, is considered to be the shear modulus of the short beam. 

 

Fig 4-6 Torque against twisting angles for the short beam 

4.3.4 Results and Discussions  

The results found for the long and short beam from this experiment are different. The shear 

modulus for the short beam is 3.285 GPa, 19.39% smaller than that for the long beam, at 

4.075 GPa. The reasons for this might come from three aspects: one is within the testing 
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apparatus. As noted in the experiment, even with the bottom and top grips tightened on the 

specimen, there was inevitably still some relative movement between the grips and 

specimen. The effect of the clamps on the short beam was bigger than that on the long 

beam, as a bigger torque occured on the short beam for the same total twisting angle. 

Another possible one is that it is more difficult to set the long beam completely straight 

compared to the short one. The properties of the beams themselves, like impurities, 

misalignment and bondage between the fibres and the matrix, could also contribute to the 

difference.    
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Chapter 5 

Effects of SMA on the Properties of a Composite Cantilever Beam 

System with Two Centrally-bonded SMA Strips 

5.1 Introduction 

SMA components, in the form of wires, strips, etc. can be used to improve, or control, 

various dynamic characteristics of structural elements. For example, natural frequencies, 

modes of vibrations, damping ratios. SMA components are mostly utilised in two different 

ways (Baz et al 1995, Zak et al 2004). One way is the use of the Active Property Tuning (APT) 

technique. This technique is based on the changes in the Young’s modulus, or the stiffness 

of SMA over the phase transformation. Another is a technique called Active Strain Energy 

Tuning (ASET) method. In this case, the SMA components are placed in a residual strain 

state, which can generate large internal forces during their activation as well as changes in 

their stiffness. In this chapter, the dynamic responses of a centrally-bonded composite 

beam with an end mass, presented in Figure 5-1, are studied in theory with application of 

the APT and ASET methods. The composite beam structure was composed of two thin SMA 

strips, attached to a flexible g-e beam on both sides centrally and symmetrically from one 

end through to the other end, and a lumped end-mass, which was fixed on the free end of 

the beam and the other end was clamped. In the case of the APT method, the properties of 

the composite beam structure and the results for the natural frequencies are summarised. 

The influences of such factors like: the width and thickness of the SMA strips, the Young’s 

modulus of the strips are considered. When the ASET method is investigated, a simple 

theoretical model is introduced to estimate the natural frequencies and vibration modes 

when the SMA are activated and unactivated. In the model, the recovery force is modelled 

as an axial force acting on the beam, and the equation of motion of the free lateral vibration 

of the beam system is derived. Combining the boundary conditions of the composite beam 

system and its free vibration equation results in the natural frequency expressions of the 

bending modes of the system. The standard Euler mode shapes in conjunction with the 

orthogonality equation gives the mode shape functions for the composite beam system. 

Both the natural frequencies and modes are functions of  the recovery force and the 
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stiffness of the composite beams. The variation of the recovery force and stiffness of the 

composite beam on the variation of the natural frequencies and the mode shape functions 

are described. The composite beam system is assumed to satisfy the following conditions: (1) 

The beam is a Euler-Bernoulli beam; (2) The beam has a constant mass per unit length m ; (3) 

The beam has a constant flexural rigidity about y-axis, yEI , when the SMA strips are at 

certain temperatures; (4) The large recovery forces generated in the pre-strained SMA wires 

are considered as fixed value when the SMA strips are at certain temperatures; (5) The 

forces, generated by thermal expansion of the SMA strips and the g-e beam, are neglected. 

 

Fig 5-1  A flexible beam system with two externally attached SMA strips 

5.2 Application of APT Method 

5.2.1 Theoretical Approach to Determination of the Natural Frequency  

To get the frequencies of the bending modes, the flexural rigidity yEI , the cross-sectional 

area and the density of the composite beam need to be obtained. The system shown in 

Figure 5-1 can be modelled as a sandwich beam, in which two SMA strips enclose a glass 

epoxy core, as shown in Figure 5-2. 

To determine the flexural rigidity of the composite beam, the following approach is adopted. 

It begins with the calculation of the moment of inertia of the cross-sectional area of the strip 

1 about the y-axis, denoted as 1yI . By applying the parallel-axis theorem, 1yI is derived as   
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3
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The moment of inertia of the cross-sectional area of the strip 2 about the y-axis 2yI : 
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The moment of inertia ybI of the glass epoxy core about the y-axis is 

                                                               3

12
b

yb b
wI t                                                                                (3) 

The flexural rigidity of the composite beam is given by 

                                                        1 1 2 2  y s y s y b ybEI E I E I E I                                                         (4) 

 

Fig 5-2 Cross-section of the composite beam 

Then, in order to determine the density of the composite beam, the following is used 

                                                    1 1 2 2

1 2

( )s s s s b

s s b

V V Vm
V V V V

  


 
 

 
                                                      (5) 

Then, to determine the cross-section area of the composite beam, the area calculation is 

required 

                                                     1 2 1 1 2 2s s b s s s s b bA A A A w t w t w t                                             (6) 
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where the subscrips 1s , 2s  and b refer to strips 1, 2, and the g-e beam respectively. t , w , 

V , E and   denote the thickness, width, volume, Young’s modulus and density of the 

strips and the beam. 

Finally, to determine the natural frequencies of the bending modes of the composite beam, 

the following theory is used 

                                                             2( ) * )yEI
l A



                                                                     (7) 

The value of   can be determined from the boundary conditions of the beam, see Appendix 

1 for details. 

5.2.2  Results and Discussions 

It is assumed that the composite beam system under consideration has certain mechanical 

properties, presented in Table 5-1.  

 
Young’s modulus 

(GPa) 

Density 

(kg/m3) 

Width 

(mm) 

Thickness 

(mm) 

Length 

(mm) 

SMA 
Martensite 26.3 

6448.1 2 0.5 300 
Austenite 67 

End mass  2700 15 15 45 

Beam 25 1865 13 2.2 300 

Table 5-1 Properties of the composite beam system 

Results of the natural frequencies under consideration are presented in Figures 5-3 and 4, 5 

and 6 and Tables 5-2 to 5-7. In Figures 5-3 to 5-8, it is clearly shown that with certain width 

and thickness of the SMA strips, the natural frequencies of the composite beam increase 

when the SMA strips are activated. The increase is caused by the increase of the stiffness of 

the SMA strips, thus increasing the stiffness of the composite beam. These figures also show 

that the natural frequencies increase with increase of the thickness, with increase of the 

width of the SMA strips. This happening is due to the increase of the flexural rigidity of the 

composite beam when the thickness and width are increased. In Tables 5-4 to 5-7, when the 
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width is kept constant as 2 mm, the thickness of the SMA strips is increased by 40% from 0.5 

mm to 0.7 mm, then from 0.7 mm to 0.98 mm, then to 1.372 mm finally as shown in the 

first and second columns in each table. Consequently the increments of the natural 

frequencies are listed in the fourth column. The last four columns contain the results of the 

case when the thickness is kept constant as 0.5 mm, the width is increased one after other. 

The increments of the natural frequencies are listed in the eighth column. It is found that 

changes of the natural frequencies are more sensitive to the changes of the thickness than 

width. For example, in Table 5-4, f1 is increased from 5.636 Hz to 6.033 Hz by 7.04% when 

the thickness is increased from 0.5 mm to 0.7 mm by 40%, whilst f1 is only increased by 

4.36% from 5.636 Hz to 5.882 Hz when the width is increased by 40% from 2 mm to 2.8 mm. 

This phenomena is understandable because the thickness cubically changes the moment of 

inertia of the cross-sectional area of the strips about the y-axis, whilst the width does it 

linearly, seen from equations (1) and (2).     


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Fig 5-3 Influence of the thickness of SMA strips on natural frequencies of the 1st bending mode 

(width=2mm) 
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Fig 5-4 Influence of the thickness of SMA strips on natural frequencies of the 2nd bending mode 

(width=2mm) 
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Fig 5-5 Influence of the width of SMA strips on natural frequencies of the 1st bending mode 

(thickness=0.5mm) 
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Fig 5-6 Influence of the width of SMA strips on natural frequencies of the 2nd bending mode 

(thickness=0.5mm) 
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1 2s st t  

 (mm) 

f1 (Hz) f2 (Hz) 

Unactivated SMA Activated SMA Unactivated SMA Activated SMA 

0.5 5.636 6.643 64.551 76.088 

0.7 6.033 7.504 67.140 83.518 

0.98 6.692 8.845 71.836 94.941 

1.372 7.794 10.937 80.053 112.332 

Table 5-2 Influence of the thickness of SMA strips and the SMA activation on natural frequencies 

of the 1st and 2nd bending mode (width=2mm) 

1 2s sw w  

(mm) 

f1 (Hz) f2 (Hz) 

Unactivated SMA Activated SMA Unactivated SMA Activated SMA 

2 5.636 6.643 64.551 76.088 

2.8 5.882 7.192 65.457 80.042 

3.92 6.201 7.879 66.561 84.579 

5.488 6.608 8.723 67.867 89.590 

Table 5-3 Influence of the width of SMA strips and the SMA activation on natural frequencies of 

the 1st and 2nd bending mode (thickness=0.5mm) 

1 2s st t (mm) 

Thickness 

increased 

by (%) 

f1 (Hz) 

f1 

increased 

by (%) 

1 2s sw w  

(mm) 

Width 

increased 

by (%) 

f1 (Hz) 

f1 

increased 

by (%) 

0.5  5.636  2  5.636  

0.7 40 6.033 7.04 2.8 40 5.882 4.36 

0.98 40 6.692 10.92 3.92 40 6.201 5.42 

1.372 40 7.794 16.47 5.488 40 6.608 6.56 

Table 5-4 Comparison of the influence of the thickness and the width  of SMA strips on natural 

frequencies  of the 1st bending mode when the strips are not activated 
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1 2s st t (mm) 
Thickness 
increased 

by (%) 
f1 (Hz) 

f1 

increased 
by (%) 

1 2s sw w  

(mm) 

Width 
increased 

by (%) 
f1 (Hz) 

f1 

increased 
by (%) 

0.5  6.643  2  6.643  

0.7 40 7.504 12.96 2.8 40 7.192 8.26 

0.98 40 8.845 17.87 3.92 40 7.879 9.55 

1.372 40 10.937 23.65 5.488 40 8.723 10.71 

Table 5-5 Comparison of the influence of the thickness and the width  of SMA strips on natural 

frequencies  of the 1st bending mode when the strips are activated 

1 2s st t (mm) 
Thickness 
increased 

by (%) 
f2 (Hz) 

f2 

increased 
by (%) 

1 2s sw w  

(mm) 

Width 
increased 

by (%) 
f2 (Hz) 

f2 

increased 
by (%) 

0.5  64.551  2  64.551  

0.7 40 67.140 4.01 2.8 40 65.457 1.40 

0.98 40 71.836 6.99 3.92 40 66.561 1.69 

1.372 40 80.053 11.44 5.488 40 67.867 1.96 

Table 5-6 Comparison of the influence of the thickness and the width  of SMA strips on natural 

frequencies  of the 2nd bending mode when the strips are not  activated 

1 2s st t (mm) 
Thickness 
increased 

by (%) 
f2 (Hz) 

f2 
increased 

by (%) 

1 2s sw w  

(mm) 

Width 
increased 

by (%) 
f2 (Hz) 

f2 
increased 

by (%) 
0.5  76.088  2  76.088  

0.7 40 83.518 9.77 2.8 40 80.042 5.20 

0.98 40 94.941 13.68 3.92 40 84.579 5.67 

1.372 40 112.332 18.32 5.488 40 89.590 5.92 

Table 5-7 Comparison of the influence of the thickness and the width  of SMA strips on natural 

frequencies  of the 2nd bending mode when the strips are activated 

5.3 Application of ASET Method 

5.3.1 Natural Frequencies of the Bending Modes 

5.3.1.1  Expressions of the Natural Frequencies of the Bending Modes 
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The beam is subjected to an axial compressive force of 2 aF . By considering  the free-body 

of an element dz of the beam in lateral vibration shown in Figure 5-7, then if V  shear 

force, M bending moment, then /u z     slope and the deflection is  ( , )u u z t . From 

Newton’s second law, the dynamic force equation for vertical motion is, 

         

2

2

(2 )( ) (2 ) sin( ) 2 sina
a a

Fum dz V dV V F dz F
t z z


 

 
       

            
                       (8) 

Algebraically manipulating the above equation, neglecting the term 
(2 ) ) sin( )aF dz

z z


 


 
, 

and cancelling the term dz on both sides leads to,  

                                         

2 2

2 22 a
u V um F

t z z
  

  
            

                                                                    (9) 

and for rotational motion about the point O, the left end of the element shown in Figure 5-7, 

                                          ( ) ( ) 0M M dM V dV dz                                                                 (10) 

or    
MV
z





                                                                                                                                        (11) 

From elementary strength of materials the beam curvature and the moment M are related 

by, 

                                                                       
2

2y
uM EI

z





                                                                 (12) 

where yEI is the flexural stiffness of the beam. Combining equations (9), (11) and (12) gives 

the beam equation for lateral vibration subjected to the compressive force 2 aF . 

                                                          
4 2 2

4 2 22 0y a
u u uEI m F

z t z
  

  
  

                                                (13) 

The solution of equation (13) can be obtained using the method of separation of variables as  

                                                     ( , ) ( )( cos sin )u z t f z A t B t                                                  (14) 
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where is the natural frequency, A and B are constants, and ( )f z is an eigenfunction, 

which describes the mode shape of the beam at the frequency  . 

 

Fig 5-7  Lateral vibration of beam with axial compression 

Substitution of equation (14) into equation (13) gives 

                                                       2 2 0y aEI f m f F f                                                          (15) 

The prime denotes differentiation with respect to z . 

By assuming the solution ( )f z  to be 

                                                                ( )  szf z Ce                                                                            (16) 

where C and s  are constants then substitution of equation (16) into equation (15) shows 

the corresponding characteristic equation, which is,  

                                                               
2

4 22 0a

y y

F ms s
EI EI


  

 
                                                        (17) 

The quadratic roots of equation (17) are 

                                                     
2 2

2 2 1/2
1 2 2 2, ( )a a

y y y

F F ms s
EI E I EI


                                                     (18) 

which must be real.  
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Letting 
2 2

2 2 1/2
1 1 2 2( )a a

y y y

F Fms
E I EI EI

     , and 
2 2

2 2 1/2
2 2 2 2( )a a

y y y

F Fms
E I EI EI

      ,  or  

2 2
1/2

2 2 2( )
   a a

y y y

F Fms i
E I EI EI

, where 1 i .  Hence the solution of equation (15) can be 

expressed as 

                                1 1 2 1 3 2 4 2( ) cosh sinh cos sinf z C z C z C z C z                                     (19) 

The boundary conditions at the fixed end are (0) (0) 0f f   , so substitution of these 

conditions into equation (19) leads to,  

                          1
1 1 2 2 1 2

2

( ) (cosh cos ) (sinh sin )f z C z z C z z
   


                                        (20) 

 

Fig 5-8 Force analysis on the end mass (adapted from Forehand and Cartmell (2001)) 

5.3.1.2 Boundary Conditions at the Free End 

The sum of forces along the x direction being  zero leads to  

                                                         0 0( ( , ) ( ) )   NV m u l t l l                                                          (21) 
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where NV is the force that the beam end transfers to the end mass and it is given by 

                                                         cos 2 sin 2     N a aV V F V F                                        (22) 

where V is the shear force at the top of the beam,  is the angle between the tangent line 

to the beam at the top of the beam and positive z-axis. It’s worthwhile to mention the 

assumption again that a small displacement u is considered in this case. That means  is 

very small, therefore 

                                

( , ) tanz l
u z t

z
 


 


   sin   and cos 1                                           (23) 

Substituting equation (22) and (23) into equation (21) and rewriting it gives   

                                            0 02 ( ( , ) ( ) )aV F m u l t l l                                                                (24) 

 The rotation movement  of the end mass is represented as  

                                                   0( )GI M V l l                                                                              (25) 

where GI is the moment of inertia of the end mass about an axis through its centre, parallel 

to the y-axis.  M is the bending moment at the free-end point of the beam.  

The shear forceV and bending moment M can be expressed as normal in terms of the 

spatial derivatives of u , as follows: 

                       
3

3

( , )
y z l

u z tV EI
z 





                      

2

2

( , )
y z l

u z tM EI
z 


 


                                     (26) 

Substituting equation (26) into equations (24) and (25) yields 

                                               0 02 ( ( , ) ( ) )y aEI u F u m u l t l l u        at z l                                 (27) 

                                            0( ( ))G yI u EI u u l l        at z l                                                    (28) 

By using equation (14), equations (27) and (28) become, respectively, 

                                  2
0 0( ) 2 ( ) ( ( ) ( ) ( )) 0y aEI f l F f l m f l l l f l          

                                (29) 
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                                          2
0( ) ( ( ) ( ) ( )) 0G yI f l EI f l l l f l                      

                            (30) 

By substituting equation (20) and its spatial derivatives into equations (29) and (30) two new 

equations are obtained which can be used to find the ratio of 2C to 1C and to find the 

frequency equations. The natural frequencies of the beam system can be numerically solved 

for different values of the force aF  . The process is explained in Appendix 5 by using a 

specific example.                            

It is now to be determined whether or not the mode shape functions obtained from the 

above procedure are orthogonal. 

5.3.1.3  Orthogonality  of the Bending Modes 

As derived above, the eigenvalue equation corresponding to this beam for free vibration is 

equation (15). For clarification, it is rewritten here as 

                                                       2 2 0y aEI f m f F f                                                          (15) 

To derive the orthogonality relations for the beam, consider two eigenvalues 2
i and 2

j  and 

the corresponding normal functions ( )if z and ( )jf z , respectively, so that 

                                                     2 2 0y i i i a iEI f m f F f   
        

                                               (31) 

and 

                                                      2 2 0y j j j a jEI f m f F f   
         

                                           (32) 

Multiplying equation (31) by ( )jf z and equation (32) by ( )if z , integrating them both by 

parts twice over the length of the beam  and using the boundary conditions at the fixed end 

of the beam ( (0) (0) (0) (0) 0i i j jf f f f     ),  and finally subtracting them  gives, 

                          

2 2

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( )

l

j i i j i y j i y j

j y i j y i

a j i a i j

m f z f z dz f l EI f l f l EI f l

f l EI f l f l EI f l

F f l f l F f l f l

      

   

  



    

                       (33) 
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From equations (29) and (30) the term ( )f l can be expressed in terms of ( )f l and ( )f l as 

follows 

                    2
0 0 0 0( ) ( ( )( ( ) ( ) ( )) ( )) 2 ( ) ( )y G aEI f l m l l f l l l f l I f l F l l f l                       (34) 

Then, rearranging equations (30) and (34) and substituting them into equation (33) and 

further manipulation yields,

  

                        

0 02 2

0
0

( ( ) ( ) ( ))( ( )
( ) ( ) ( ) 0

( ) ( )) ( ) ( )

l i i j
j i i j

j G i j

m f l l l f l f l
m f z f z dz

l l f l I f l f l
 

                
                   (35) 

Finally, using the fact i j  gives 

                                  

0 0

0
0

( ( ) ( ) ( ))( ( )
( ) ( ) 0

( ) ( )) ( ) ( )

l i i j
i j

j G i j

m f l l l f l f l
m f z f z dz

l l f l I f l f l

               
                          

(36) 

Therefore, the mode shapes are orthogonal in the sense expressed as equation (36) though 

it does not look exactly like the usual solution for orthogonality  

because of the explicit presence of mass 0m and GI . 

Furthermore, these mode shapes can be normalized so that  

                         2 2 2
0 0 00

( ) ( ( ) ( ) ( )) ( ( ))
l

i i i G im f z dz m f l l l f l I f l m      
    1, 2,i               (37) 

With this normalization the mode shapes are non-dimensional. 

5.3.1.4 Mode Shape Functions of the Bending Modes  

Substituting the boundary conditions at the fixed end, ie. (0) (0) 0f f   and at the free 

end, expressed as equations (26) and (27), into the standard Euler-Bernulli beam mode 

shape function, expressed as equation (20), yields the ratio of 2C  to 1C  for certain 

magnitude of force aF . Finally,  using the orthogonality property of the mode shapes, in the 

form of equation (37) , gives the mode shape functions. One example is taken to describe 

the details in  Appendix 5 and the results are shown in the last part of this section. 
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5.3.1.5  Results and Discussions 

The SMA strips have two effects on the beam system during their activation. They generate 

recovery force and also increase the beam’s stiffness. In order to see the effect of the 

recovery force only, the stiffness is theoretically kept constant. Based on this assumption, a 

specific beam system is taken as an example. Its properties are listed in Table 5-1. Table 5-8 

shows the effect of force aF  on the different parameters of the beam system.  

aF   

(N) 

1f   

(Hz) 

1  

(m-1) 

2  

(m-1) 
1C  2C / 1C  2f   

(Hz) 

1   

(m-1) 

2   

(m-1) 
1C  2C / 1C  

0 5.636 3.832 3.832 1.028 -0.902 64.551 12.967 12.967 1.139 -1.006 

1 5.054 3.290 4.002 1.084 -0.876 63.742 12.786 12.987 1.147 -1.006 

2 4.391 2.715 4.213 1.113 -0.833 62.923 12.602 13.007 1.154 -1.007 

3 3.601 2.099 4.469 1.099 -0.755 62.092 12.416 13.028 1.162 -1.007 

4 2.569 1.404 4.768 1.036 -0.601 61.250 12.228 13.049 1.170 -1.008 

4.5 1.843 0.974 4.930 0.989 -0.457 60.825 12.133 13.060 1.173 -1.008 

5.028 0.0135 0.004 5.108 0.932 -0.002 60.372 12.032 13.071 1.178 -1.008 

Table 5-8 Influence of aF on the natural frequencies and mode shape coefficients  

Figures 5-9 and 5-10 show the variation in the natural frequencies of the first and second 

bending modes with variation in the magnitude of force aF . This indicates the decreasing 

nature of the natural frequencies as aF  increased, and shows the end load at which the 

beam buckles is 5.028 N when the length of the beam is 0.3 m. This is compared by the 

static critical load for the lateral buckling. 

The critical Euler buckling load for a cantilever beam is given by 

                                                                  

2

24
y

cr

EI
P

l


                                                                         (38) 

To avoid static buckling, the following condition must be satisfied 

                                          

2

0 0 2(2 cos ) (2 )
4

y
a a

EI
F m g F m g

l


                                                 (39) 
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Therefore, in this example depicted in Table 5-1, 

                                            
2

0
2 5.282 0.134 5.148

8 2
y

a

EI m gF N
l


           

This shows that the beam will buckle slightly more readily under dynamic loading than 

under static loading, as noted, the critical load under dynamic loading is a little less than 

that for static loading.  

The mode shapes under the effect of the force aF  are depicted in Figures 5-11 and 5-12. In 

order to see the to see the effect clearly, some parts of the two figures are zoomed in. It can 

seen that  force aF  reduces the excursion of the first and second bending modes.  

The force aF  can only affect the natural frequencies and the mode shapes up to the beam’s 

dynamic buckling.  

In practice, during the activation, the SMA strips not just generate internal forces as 

discussed above, they increase the stiffness of the composite beam too. This is because the 

Young’s modulus of the SMA strips increases, and therefore increases the Young’s modulus 

of the composite beam too. The increase of the stiffness increase the natural frequencies of 

the bending modes as well.  These two effects both need to be analyzed carefully.   
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Fig 5-9 Natural frequency of the 1st bending mode against the recovery force 
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Fig 5-10 Natural frequency of the 2nd  bending mode against the recovery force 

 

Fig 5-11 Shape of the normalised first bending mode against the recovery force aF , over 

normalised beam length l  
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Fig 5-12 Shape of the normalised second bending mode against the recovery force aF , over 

normalised beam length l  
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Chapter 6 

A Composite Cantilever Beam Structure with Two Centrally-Bonded 

SMA Strips under Parametric Vibration 

This chapter investigates the effect of pre-strained SMA strips on the instability zones of the 

system discussed in Chapter 5 when it undergoes a parametric excitation, as shown in 

Figure 6-1. As the SMA strips are very thin and narrow and do not change the geometry of 

the beam significantly, it is therefore assumed that the structure is such that the kinematic 

relationships for combined bending and torsional motions derived by Cartmell (1990) and 

Forehand and Cartmell (2001),  and also, from these kinematic relationship, the three non-

linear modal equations of motions, equations (9) to (11) in Chapter 3 by recourse to the 

Lagrangian formulation, can be applicable to this problem. To incorporate the two strips 

into the model, the generalised forces corresponding to the generalised 

coordinates 1u , 2u and 1 need to be derived in terms of the SMA recovery force, these being 

introduced into the model by SMA phase transformation. Modal coordinates 1u , 2u and 

1 correspond to the fundamental and second bending modes and the fundamental torsion 

mode. An analysis for the derivation of expressions for the recovery force as a function of 

generalised coordinates 1u , 2u  and 1  is presented in this chapter. Further study shows that 

the increase of the magnitude of the recovery force results in the increase of the instability 

region. 

6.1 Generalised Forces 

The recovery forces are considered as fixed values and act at the end of the cantilever beam. 

When the beam is subjected to combined bending and torsion, the force directions are 

changed in three-dimensional space.  This change is a function of the displacements ( )u l , 

( )v l  and ( )w l of the end point of the beam along the three axes x , y  and z . The physical 

displacements u , v  and w  can be expressed by the generalised coordinates 1u , 2u  and 1  

with the help of the kinematic analysis within the system. Finally a generalised force is 

obtained in such a manner that the work done by this generalised force equals the work 
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done by all  forces when its corresponding generalised coordinate varies infinitesimally and 

the other generalised coordinates are kept constant.  

 

Fig 6-1  A composite beam system under a vertical excitation 

6.1.1 Components of the Recovery Force  

In order to get the expressions of the generalised forces, the kinematic relationships derived 

by Cartmell (1990) are recalled here. Cartmell started with an element of a rectangular 

section beam. In its undeformed state, the element is referred to a three-dimensional frame, 

Oxyz, which is completely fixed in space, as shown in Figure 6-2. In a similar manner the 

deformed element, after combined bending and torsion, is defined in another frame, OXYZ. 

Unit vectors i j k  are associated with the frame Oxyz and I J  K  are associated with 

OXYZ. The transformation matrix from Oxyz to OXYZ is   

(cos cos sin sin sin ) ( cos cos cos sin sin ) (cos sin )
sin cos cos cos sin
( cos sin sin sin cos ) (sin sin cos sin cos ) cos cos

M
           
    

           

   
   
      

where  ,   and   are Euler angles.   is also the rotation angle about the deformed Z-axis. 

The recovery force is denoted by aF . Its vector in the Oxyz frame is [0 ,0 , ]a aF i j F k  when 

the beam is in its equilibrium state. The force acts on point E, which is where the beam 

enters the end mass. Once the beam starts to move, the force vector 
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becomes [ , , ]a x y zF F i F j F k , where xF , yF and zF are component forces of aF along the 

undeformed x-, y- and z-axis directions. In the OXYZ frame, the same force vector 

is [0 ,0 , ]a aF I J F K  because the force is acting along the deformed Z-axis. Now the problem 

becomes a coordinate transformation problem. Obviously with the transformation matrix 

M , one can get the following 

0
0

x

y

az

F
F M

FF

   
       
     

                    

Substituting the expression for M  into the above equation gives  

                                                                 (cos sin )x aF F                                                            (1) 

                                                                   (sin )y aF F                                                                   (2) 

                                                             (cos cos )z aF F                                                                  (3) 

 

Fig 6-2  An element of the beam in both its undeformed and deformed states (Fig 2 in Forehand 

and Cartmell’s paper (2001) )  

In order to determine the relationship between the three successive rotations and the 

actual physical displacements, Cartmell (1990) introduced a diagram which contained all the 

angles and the displacements. It is re-drawn as Figure 6-3 and only a few small changes to 

the symbols are made to relate them to Figure 6-2. First of all, he assumed ds was short 

enough to be regarded as a straight line. The prime ' denoted differentiation with respect 
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to s (linear displacement along the deformed Oz direction). He then examined the 

trigonometrical and geometrical relationships in the two triangles OCD and ODG and 

derived the following expressions.  

         
1/22 2

2

1 ( ) ( )cos
1 ( )
u v

v


   
   

  2 1/2sin
[1 ( ) ]

u
v







    2 1/2cos [1 ( ) ]v       sin v         (4) 

 

Fig 6-3 Diagram presentation of the relationship between the angles and actual displacements at 

an arbitrary point G. 

If the above equations (4) are substituted into equations (1) to (3), the equations for xF , 

yF and zF  will be cumbersome though highly accurate. For the sake of practicality, it is 

necessary to compromise the degree of accuracy by neglecting certain “small” terms on the 

grounds that they are of less significance than other “large” terms. The concept of smallness 

is discussed by Cartmell (1990) and Cartmell et al (2003). In equation (4), for example, 

2( )u and 2( )v are “small” compared with u and v , which are assumed to be small 

themselves, so they are approximated as follows 

                                              cos 1     sin u     cos 1      sin v                                       (5) 
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In reference (Cartmell 1990), the curvature about X-axis, denoted by 1k , was derived with 

the application of Euler-Kirchhoff-Love theory for rods (Love, 1944) and under the 

assumptions of small bending u and v . 1k is given by 

1k u v    

It is also justifiable to say that the beam is extremely stiff in the Oyz-plane in this case, which 

leads to another assumption that 1k is virtually zero. That gives us this equation 

                                                                     u v                                                                               (6) 

To satisfy equation (6),  needs to be small as well, given that uand vare small from the 

previous assumptions. Therefore it is possible to write 

                                                               cos 1           sin                                                            (7) 

Substituting equations (6) and (7) into equations (1) to (3) and neglecting weak terms, i.e. 

quadratic terms in this case, and rearranging them gives   

                                                                      x aF u F                                                                            (8) 

                                                                      y aF v F                                                                            (9) 

                                                                           z aF F                                                                         (10) 

Because the displacement u is small and the displacement v  is even smaller, the distance 

z up the z-axis and arc length s up the deformed Z-axis are approximately equal and can be 

used interchangeably. So u and v in equations (8) and (9) are also the differentiations of 

u and v  with respect to z . On this basis, as shown in Figure 6-3, two equations can be 

obtained as  

                                                        sin duu
dz

           sin dvv
dz

                                            (11) 

It is then possible to obtain the expressions for u and v  at the point of action of the force 

aF  acting point, i.e. the end point of the beam, point E as shown in Figure 6-4. It is clearly 
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seen that OCD and OAB , ODG  and OBE are similar triangles, which leads to the 

following expressions, on the basis of equation (11) 

                                                            
( )u lu
l

 
 
, ( )v lv

l
                                                              (12) 

Substituting equations (12) into equations (8) and (9)gives 

                                                                    
( )

x a
u lF F

l
                                                                       (13) 

                                                                    
( )

y a
v lF F

l
                                                                       (14) 

where ( )u l and ( )v l are the displacements of point E in the Oxz and Oyz planes respectively, 

and where l  is the length of the beam.  

The recovery force, aF , acts tangentially to the curvature of the beam and is defined at z l , 

therefore the assumption that it points to the origin is entirely acceptable for small 

displacements of the beam. This assumption does lose some of its validity as the 

displacements of the beam increase significantly. 

 

Fig 6-4  Schematic presentation of the relationship between the angles and actual displacements 

at point E, the end point of the beam 
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6.1.2 Expressions for ( )u l , ( )v l and )(lw  

First, the coordinate of the acting point of aF , point E when the beam deforms, needs to be 

clarified. As shown in Figure 6-2, the coordinates are [ ( ), ( ), ( )]u l v l l w l  because at point E 

z equals l . Distance l is the portion of the beam from the top of the base-clamp to point E. 

Deflection ( )u l  is easily obtained if z is replaced by l in the equation 

1 1 2 2( ) ( ) ( )u z f z u f z u  . 1( )f z and 2 ( )f z only depend on the spatial coordinate z , while 

functions 1u and 2u depends only on t . Hence 

                                                              1 1 2 2( ) ( ) ( )u l f l u f l u                                                           (15) 

To get the expression for ( )v l is more complicated. The origin of the displacement v  in the 

Oyz plane is due to combined bending and torsion. That suggests that the expression for v  

is supposed to be a function of u and . Forehand and Cartmell (2001) considered two 

points P andQ , along the deformed Z-axis, at distance z and z z respectively. Tangents to 

these two points intersect the plane z l at points Pand Q . Figure 6-5 shows the details.  

 

Fig 6-5 Geometrical relationships (Fig 3 in Forehand and Cartmell’s paper (2001))  
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An approximate expression can be proposed for v  as shown in Figure 6-5 (b) when the 

arc P Q  is treated as a straight line for small v and . 

                                       v P Q       P Q  defines the length of the arc P Q  .                    (16) 

Figure 6-5 (b) shows that  

                                                                  ' ' ( )P Q l z                                                                  (17) 

if the length of the both tangents is approximately l z .  

Appendix A in reference (Forehand and Cartmell, 2001) gives the proof for stating that  

                                                                                                                                                       (18) 

Combining equations (16)(17)(18) and the equation for the curvature about the y-axis 

2 /k d dz gives  

                                                                   2( )dv l z k
dz

                                                                    (19) 

Substituting the curvature equation 2
2 ''(1 )k u   into equation (19), and neglecting the 

3''u  term, and then integrating from 0z  to z l gives 

                                                                      
0

( ) ( )
l

v l l z u dz                                                         (20) 

Finally with 1 1 2 2''   u f u f u  and 1 1g  , ( )v l is expressed by the functions of the chosen 

mode shapes and the modal coordinates as 

                                            1 1 1 1 2 2
0

( ) ( ) ( )
l

v l l z g f u f u dz                                                            (21) 

This can be re-written in a simpler form 

                                                     1 1 1 2 1 2( )v l B u B u                                                                        (22) 

where 1g is the mode shape for the fundamental torsion mode, and  
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1 1 1

0
( )  

l
B l z g f dz    and 2 1 2

0
( )  

l
B l z g f dz                                                      (23) 

Under the assumption lll 0 ,The displacement w  relates to u  is given by the expression  

                                                       2 2

0 0

1 1( ) ( )
2 2

l lduw dz u dz
dz

                                                          (24) 

Using 1 1 2 2u f u f u  again in equation (24) gives 

                                    2 2 2 2
1 1 1 2 1 2 2 2

0 0 0

1 1( ) ( ( ) )) ( )) ( ( ) ))
2 2

l l l
w l f u f f u u f u                                       (25) 

6.1.3 Expressions for the Generalized Forces                                        

The elemental work done by the force aF  is expressed as  

                                            ( ) ( ) ( )x y zW F u l F v l F w l                                                           (26) 

( )u l , ( )v l , ( )w l are the displacements of the component forces xF yF zF along the x-,y-

and z-axis directions. If 1u has a virtual displacement of 1u and 2u  and 1  are held constant, 

we then  have the following  

                      
1

1

( )( ) u lu l u
u

 



     

  1
1

( )( ) v lv l u
u

 





         1
1

( )( ) w lw l u
u

 





                             (27) 

Substituting equations (27) into equation (26) gives  

                                               1
1 1 1

( ) ( ) ( )( )x y z
u l v l w lW F F F u
u u u

 
  

   
  

                                     (28)          

The right hand side part in equation (28) is clearly just 1 1uF u . 1uF is the generalised force 

corresponding to the coordinate 1u . 

The next problem is to get expressions for
1

( )u l
u




,
1

( )v l
u




and 
1

( )w l
u




from equations (22) and 

(25).  The results are listed as 
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                 1
1

( ) ( )u l f l
u





    1 1

1

( )v l B
u







     2
1 1 1 2 2

0 01

( ) ( ( ) ) ( )
l lw l f dz u f f dz u

u
 

    


            (29) to (31) 

Therefore, the expression for 1uF , after equations (13)(14)(10) and equations (29) to (31) 

are substituted into equation (28),  and taking the two strips, thus 2 aF , into account,  is,        

                        
   1 1 2 2 1 1 1 1 2 1 2 1 1

1 1 2
( ) ( ) ( )

2u a
f l u f l u f l B u B u B

F Xu Yu F
l l

    
    

 
          (32) 

where 2
1

0
( )

l
X f dz    1 2

0
( )

l
Y f f dz    

In the same manner, the expressions for the generalised forces 2uF and 1F are   

               
   1 1 2 2 2 1 1 1 2 1 2 2 1

2 2 1
( ) ( ) ( )

2u a
f l u f l u f l B u B u B

F Zu Yu F
l l

    
    

 
                  (33)                                                  

                                 
 1 1 1 2 1 2 1 1 2 2

1
( )

2 a
B u B u B u B u

F F
l

  
                                                       (34) 

where 2
2

0
( )

l
Z f dz   

6.2 Equations of Motion 

The equations of motion are derived by using Lagrange’s equations. Due to the small 

dimensions of the SMA strips, the expressions for the kinetic and potential energies, 

described as equations (3) and (7) in Chapter 3, are still applicable in this system. Hence,  

1
1 1 1

u
d T T U F
dt u u u

  
  

  
 

2
2 2 2

u
d T T U F
dt u u u

  
  

  
           

1
1 1 1

d T T U F
dt   

  
  

  
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      where        2 2 2 2 2
0 1 2 0 0 0 0

1 1( ( ) )
2 2BT m u u W w v I          

 

                        

2
0 1 0 1 2

2 2
0 2 1 0

1
2
1 1
2 2

y y

y B

U EI N m gX u EI S m gY u u

EI P m gZ u cGJQ m gW

         

     

 

Implementing the above formulas  leads to the following three equations of motion,              

2 2 2 2
1 1 1 1 2 1 2 1 2 1 1 2

2 2 2
2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1

2
2 1

1 2 1 1 2 1 2 1 1 2 1 2 1 2 1

1

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

( )2 ( )

( )(

u B Xu Yu u u Y Xu Yu u X Xu Yu

u Z Xu Yu u Xu Yu Yu Zu B u B u

Af lB B u B B u B B u RN gX AX u
l

Af l fRS gY AY



   

    

      

      

      

   

   
   

  

22
2 1 2

2
2 21 1 2

1 1 1 2

( ) ) cos( )( )

0

B
l u A t Xu Yu

l
AB AB Bu u

l l
 

   

  



 

               

2 2 2 2
2 2 1 1 2 1 2 1 2 1 1 2

2 2 2
1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2

2
2 2

1 2 1 1 1 1 2 1 1 1 1 2 1 1 2

1

[1 ( ) ] 2 ( ) ( )

( ) ( )( ) 2

( )2 ( )

( )(

u B Yu Zu u u Y Yu Zu u Z Yu Zu

u X Yu Zu u Xu Yu Yu Zu B u B u

Af lB B u B B u B B u RP gZ AZ u
l

Af l fRS gY AY



   

    

      

      

      

   

   
   

  

22
1 1 2

2
2 22 1 2

1 2 1 1

( ) ) cos( )( )

0

B
l u A t Yu Zu

l
AB AB Bu u

l l
 

   

  



 

                     

2
1 1 1 2 2 1 1 1 2 2 1 1 2 2

2
21

1 1 1 2 2 1 1 2 2 1 1 1
0

2
21 2 2

1 2 1 2 1

[1 ( ) ] [2 ( )( )]

[ ( )( )] ( )

2 0

I I

I

m B u B u m B u B u B u B u

BBcGJQm B u B u B u B u u
I l

BB B BBu u u
l l

 

  

 

    

    

  

   

                       (35) to (37) 

where 
0m

EI
R y  ,

 

0

0
I

mm
I

, 
0

2 aFA
m

  ,
 0

2 aFB
I

  ,and cos( )B BW A t 


 noting that   is the 

frequency of the excitation. 
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6.3 Analysis of the Instability Zones 

Following the ordering schemes described in Chapter 3 and application of the multiple scale 

method again yields the zeroth and first-order perturbation equations: 

 (Note: in this case, the term  1 2( ) ( ) /RS gY AY Af l f l l    in equations (35) and (36) is set to 

 1 2( ) ( ) /RS gY AY Af l f l l    because it is found numerically 

that    2
1 2 1( ) ( ) / ( ) /RS gY AY Af l f l l RN gX AX Af l l      

   2
1 2 2( ) ( ) / ( ) /RS gY AY Af l f l l RP gZ AZ Af l l        under certain conditions.  More 

details can be seen in section 6.5 in this chapter.)  

0 :                                       

2
2 1
0 10 10

( )( ) 0Af lD u RN gX AX u
l

      

                                       

2
2 2
0 20 20

( )( ) 0Af lD u RP gZ AZ u
l

      

                                                
2
0 10 10

0
0cGJQD

I
                                                               (38) to (40) 

 1 :  

2
2 21
0 11 11 0 1 10 1 1 0 10 10 20

1 2
20

( ) ˆ( ) 2 2 cos( )( )

( ) ( )( )

B
Af lD u RN gX AX u D D u D u A t Xu Yu

l
Af l f lRS gY AY u

l

           

   

2
2 22
0 21 21 0 1 20 2 2 0 20 20 10

1 2
10

( ) ˆ( ) 2 2 cos( )( )

( ) ( )( )

B
Af lD u RP gZ AZ u D D u D u A t Zu Yu

l
Af l f lRS gY AY u

l

           

   

2
0 11 11 0 1 10 0 10

0
2 2    t t

cGJQD D D D
I

                                                                           (41) to (43)

 

Solutions to the zero-th order perturbation equations (38) to (40) are: 

           
1 0 1 0

10 1 1
i T i Tu Ae Ae    

2 0 2 0
20 2 2

i T i Tu A e A e        0 0
10 1 1

t ti T i TC e C e              (44) to (46) 
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where 1 1 1 2( , )A A T T , 2 2 1 2( , )A A T T , 1 1 1 2( , )C C T T  , with 
2

2 1
1

( )Af lRN gX AX
l

     , 

2
2 2
2

( )Af lRP gZ AZ
l

     and 2

0
t

cGJQ
I

  .
 

Substituting the solutions of zeroth order equations into the first order equations (41) to (43) 

leads to  

  

0 1 2 0

1 2 0 1 0 0
1 0

1 2 0 1 0

2 2
( )2

1 1 1 1 1 1 1 2

2 2 2
( ) ( 2 )

2 2 2 1 1
0 11 1 11

2 2 2
( ) ( 2 ) (

2 1 2

ˆ ˆ
2 2

2 2
ˆ ˆ ˆ

2 2 2
ˆ ˆ ˆ

2 2 2

i T i TB B

i T i T i TB B B
i T

i T i T iB B B

A Ai D A i A XAe YA e

A A AYA e XAe XAe
D u u e

A A AYA e XAe YA e

 

  


   

  



    

     

   

 
   

  
  

 

  
   1 2 0

1 0 2 1 0 1 2 0

)

2 ( ) ( )2 2 2
1 1 1 1 1 1 2 2( 2 2 )

T

i T i T i Ti A i D A e p A e p A e



      



   

 
 
 
 
 
 
 
 
 
     

   (47) 

  

0 1 2 0

1 2 0 2 0 0
2 0

1 2 0 1 2 0

2 2
( )2

2 1 2 2 2 2 2 1

2 2 2
( ) ( 2 )

2 2 1 2 2
0 21 2 21

2 2 2
( ) ( ) (

1 1 2

ˆ ˆ
2 2

2 2
ˆ ˆ ˆ

2 2 2
ˆ ˆ ˆ

2 2 2

i T i TB B

i T i T i TB B B
i T

i T i T iB B B

A Ai D A i A ZA e YA e

A A AYA e ZA e ZA eD u u e
A A AYA e YA e ZA e

 

  


   

  



    

     

    

 
   

  
  

 

  
   2 0

2 0 1 2 0 1 2 0

2 )

2 ( ) ( )2 2 2
2 2 2 2 1 2 1 1( 2 2 )

T

i T i T i Ti A i D A e p A e p A e



      



   

 
 
 
 
 
 
 
 
 
     

(48) 

     0 022 2 2 2
0 11 11 1 1 1 1 1 12 2 ( 2 2 )t ti T i T

t t t t t t tD e i D C i C i C i D C e                                        (49) 

where 2 1 2( ) ( )Af l f lp RS gY AY
l

                      

When the same procedure of obtaining the expressions of the transition curves descreibed in 

Chapter 3 is followed, the transition curves for primary parametric resonances and sum-type 

resonance are expressed as follows 

                                                      2 2 2 2
1 1

1

ˆ( ) ( ) (2 )
2 B
X A  


                                        (50) 
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2 2 2 2
2 2

2

ˆ( ) ( ) (2 )
2 B
Z A  


                                                  (51) 

                                      

2 2 4 2 2 2
1 1 2 2 1 2 1 2

2 2
1 2 1 2

ˆ( ) ( 16 )
16

BY A       


   
  

                                         (52) 

The difference-type resonance is not possible in practise again because it requires either 

negative damping or negative natural frequencies. 

6.4 Results and Discussions 

The theoretical results are based on the values given in the Table 5-1  in Chapter 5. Table 6-1 

gives the different parameters of the beam system against the variations of the force aF . 

According to equations (50) (51) and (52), the transition curves for the primary and 

combination parametric resonances are plotted as Figures 6-6, 6-7 and 6-8. In these three 

cases, the damping ratios for the first and second bending modes are assumed to be 

1 0.001  and 2 0.003  . As expected, these curves show that the instability regions are 

increased  as the force aF  increases, because the natural frequencies decrease, if the effect 

of the force on the damping ratios is ignored for this analysis. The force aF  affects the 

transition curves up to the beam’s dynamic buckling. 

The above analysis is about the effect of the recovery force alone. If the changes in the 

stiffness of the SMA strips are included, and take place at the time of generating recovery 

forces, the beam becomes stiffer when the SMA strips stay fully in their austenitic phase, 

thus further increasing the instability zones.  If both the recovery force and stiffness changes 

are involved, then which one plays the main role needs to be discovered.  

aF   (N) X Y Z 2
1  2

2  2p  

0 3.196 -4.172 51.851 1222.72 163998 40.723 

2 3.237 -4.387 51.884 1319.77 156405 112.419 

4.5 3.297 -4.689 51.921 1297.61    146918 306.478 

Table 6-1 Influence of the force aF on the parameters of the system 
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Fig 6-6 Stability chart showing the zoning for the principal parametric resonance 12      
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Fig 6-7 Stability chart for the combination parametric resonance 1 2       
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Fig 6-8 Stability chart for the principal parametric resonance 22      
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Chapter 7 

Experimental Investigation of two Composite Beams with 

Integrated SMA Strips 

This chapter explores the influence of SMA strips by means of experiments on the 

properties, such as natural frequencies, damping ratio, instability zones, of two systems, 

system 1 and system 2. The two systems, a cantilever beam with two bonded SMA strips 

and an attached lumped end mass, are depicted in Figure 7-1 and 7-2. In system 1, two 

vertical strips are bonded to a g-e beam along the centre line on both sides symmetrically 

along its length, whilst in system 2, two oppositely orientated diagonal strips are bonded to 

the beam, one on each side. This chapter consists of two parts. The first part describes a 

hammer impact test conducted on both systems 1 and 2. In this test, the two strips were 2 

mm thick and the g-e beam was 132 mm long. The characteristic transformation 

temperature of the SMA strips, Af was 75°C. The lumped end mass was made of steel. In the 

second part, the dynamic mechanical properties of system 1 and 2 were investigated by 

measuring the first vibration mode. In this part, two thinner strips, with a thickness of only 

0.5 mm and a longer g-e beam, with a length of 270mm, were used instead. Af was 30°C in 

this case. In both parts, the effectiveness of the control ability of the SMA strips on the 

systems were determined by comparing the properties of the systems with and without 

SMAs, by comparing the properties of systems when the strips were activated and 

unactivated. Discussions are followed by the comparisons. 

7.1 Hammer Impact Test 

7.1.1 Descriptions of the Systems 

The SMA strips in this test are Nickel-Titanium (Ni-Ti) alloy manufactured by Memry GmBH 

in Germany. The engineering properties are listed in Table 7-1. The strips were bonded to 

the beam by using an epoxy resin adhesive. The properties of the system are described in 

Table 7-2. The adhesive consisted of a resin called “epidian” and the hardener was called “z-

1”. The resin and hardener were mixed 1:10 by weight. It took about 10 hours for the 

mixture to become solid. Once the strips were tightly bonded to the beam, one end of this 
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composite beam was wrapped up with insulating tape and then was clamped. The tape was 

used to insulate the strips from the clamps when they were heated by passing the electrical 

current. Two half masses were attached to the free end of the composite beam by means of 

screws. Finally the whole structure, two clamps, the composite beam and the end mass was 

fixed in a vice. The set-up for system 1 is shown in Figure 7-3.  The same procedure was 

applied to system 2. 

                   

                          

 

Chemical 
composition 

Ni 55.49 [wt-%], Ti bal [wt-%], C 310 [ppm],  
O 185 [ppm] 

Trans. temp [ºC] Af 75°C 

Density (kg/m3) 6448.1 

Thickness 2.0 mm 

Width 2.0 mm 

Table 7-1 Properties of the Ti-Ni strips 

Note: Bal means the balance to 100%; Ppm parts per million; Af is the temperature at which the 

phase transformation from Martensite to Austenite.      

 

Fig 7-1 System 1, a g-e beam with two  

central strips and an attached end mass 

Fig 7-2 System 2, a g-e beam with two  

diagonal strips and an attached end mass 
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Geometric dimensions  

Lb = 132 mm (system 1)          Lb = 132.6 mm (system 2)                     Wb = 13 mm   

Tb = 2.2 mm                              Wm = 15 mm                                            Dm = 15 mm    

Material properties  

bρ = 1865 kg/m3      mρ = 7800 kg/m3         Eb = 13.19 GPa              Gb = 12.24 GPa 

Table 7-2 Dimensions and material properties of System 1 and 2 
Note: The properties of the beam itself are labelled with subscript b , and the subscript m refers to 

the end mass properties. 

                               

Fig 7-3 Experimental rig for hammer impact tests 

7.1.2 Experimental Procedure 

The first set of experiments was intended to determine the natural frequencies of the 

composite beam in bending and torsion for system 1 and 2. The hammer impact test 

described in Chapter 4 was applied The excitation was provided by a small hammer, and the 

response signal was measured by a small, low mass, piezo-sensor. A modal analysis system 

with spectral acquisition software designed by LMS™ was used to analyze the results.  The 

geometry of the system for the hammer impact tests was shown in Figure 7-4. Altogether 

there were 16 points identified on the beam and two points, P19 and P29, on the end mass. 

The accelerometer was glued on the top middle surface of the end mass. Each point, apart 

from the two fixed points, P11 and P12, was impacted along the y-axis. To get better results, 

each point was excited six times and the average of the results from the six impacts was 

used for further analysis. The experiments were conducted on system 2 first with various 
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end masses.  There were 5 end masses tested. The lengths of the end masses were 50 mm, 

60 mm, 70 mm, 80 mm and 100 mm. The five different end masses were mounted to the 

beam in turn and all tests were carried out when the temperature of the strips were room 

temperature, about 20°C, were around 30°C and around 40°C to understand the influence 

of temperature on the natural frequencies. Table 7-3 tells the actural average temperatures 

along the strip length on system 2 with the five end masses. The test was then carried out 

on system 1 when only the end mass was used whose length was 70 mm. The last test in 

this part was done on the system 1 but without strips and the end mass had a length of 70 

mm too. Both tests were implemented under the above three different temperatures as 

well. 

       Temp(°C) 
 
L of the EM(mm) 

20°C 30°C 40°C 

50 20 29 37 

60 22 30 40 

70 20 29 40 

80 22 29 40 

100 23 32 42 

Table 7-3 Different  strip temperatures vs. the end mass length 

Note: EM is an abbreviation adopted here for end mass 

 

  Fig 7-4 Geometry of the system for the hammer impact tests 
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7.1.3  Results and Discussions 

(1)  As can be seen from Table 7-4, in the without-strip case, the natural frequency of the 1st 

bending mode is 7.44 Hz. In theory, the natural frequencies of the bending modes in the 

without-strip case that a cantilever beam with an end mass are determined by using the 

equation of 2( / ) * / ) / 2   yf l EI A .The value of   can be obtained from the boundary 

conditions, see Appendix 1 for details. Therefore, based on 7.44 Hz, the Young’s modulus of 

the g-e beam can be calculated as 13.2 GPa, which is much smaller than what the 

manufacture provided, 25.5 GPa. When the Young’s modulus is considered as 13.2 GPa, the 

above equation is applied again that the theoretical result of the natural frequency of the 

2nd bending mode is calculated as 167.22 Hz, close to the experimental result, 177.5 Hz.  

(2) The SMA strips have a strong effect on the properties of the system. If one compares the 

results in the without-strip case to those of the central-strip case, shown in Table 7-4,  the 

natural frequencies of the 1st bending, 1st torsion and 2nd bending modes are increased from 

7.44 Hz to 25.35 Hz by 240.7%, from 27.07 Hz to 39.44 Hz, therefore by 45.7%, and from 

177.5 Hz to 476.79 Hz, by 168.6%; Compared to the diagonal-strip case, the natural 

frequencies of the 1st bending, 1st torsion and 2nd bending modes are increased from 7.44 Hz 

to 22.03 Hz, by 196.1%, from 27.07 Hz to 41.92 Hz, by 54.9%, and from 177.5 Hz to 336.86 

Hz by, 89.8%. It shows that the SMA strips make the beam structure very difficult to bend 

and twist.  

(3) The parallel strips make the beam stiffer in bending and the diagonal strips make it 

stiffer in torsion as shown by the frequencies of the first and second bending modes 

decreasing from 25.34 Hz in the central-strip case to 22.03 Hz in the diagonal-strip case, 

476.79 Hz to 336.86 Hz, whilst the frequency of the torsion mode has increased from 39.44 

Hz to 41.92 Hz. This can be explained as follows: 

In system 1, when the beam bends to one side, the extension of the outside strip is assumed 

to be l as depicted in Figure 7-5. Therefore the extension per strip length is /l l , where l  

is the original length of the strip. The inside strip will contract l but the change per length 

is also /l l . In system 2, it is assumed that the system has exactly the same bending 

deflection as for system 1. That is, the extension of the outside strip along the central line 



87 

 

direction of the beam is l . The original length of the outside strip is 2 2l w , where w  is 

the width of the beam as depicted in Figure 7-5, and the new length after bending is 

2 2( )l l w   . Therefore the extension per strip length in system 2 is 2 2

l l
l w



. This is 

explained as follows, 

 

Fig 7-5 Geometrical changes in the SMA strips in system 1 and 2 when the beam bends  

The extension per length of the outside strip in system 2 is  

                                               
2 2 2 2

2 2

( )   



l l w l w

l w
                                                               (1) 

Expanding the sum quadratic part and moving out the term 2 21/ l w   yields  

                                           2 2 2 2 2

2 2

1 ( 2 ( ) )      


l w l l l l w
l w

                                       (2) 

Further manipulation gives 

                                
2

2 2 2 2
2 2 2 22 2

1 2 ( )( 1 ) 
    

 

l l ll w l w
l w l wl w

                                    (3) 
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2 2 2( ) / ( ) l l w  is very small, so neglecting it and cancelling 2 2l w  leads to 

                                                              2 2
21 1

 

l l

l w
                                                                        (4) 

Because 2 2

2 

l l

l w
is also very small, the expression 2 2

21 



l l

l w
 can be expanded by using 

the Binomial Theorem. After some modification, the final result is  

                                                                 2 2



l l

l w
                                                                                   (5) 

When 0w , the expression (5) becomes 
l
l

. That is the case of system 2, which gives a 

good check of the above method. 

The contraction of the inside strip per length is also 2 2



l l

l w
. It can be seen that in system 2, 

i.e. the diagonal-strip case, for the same bending of the beam the extension and 

compression strains are less than those for the central-strip case of  system 1. Consequently, 

the composite beam in the diagonal-strip case is less stiff and therefore has a lower natural 

frequency in bending. For the torsional mode,  the diagonal-strip case makes the beam 

difficult to twist and therefore increases the natural frequency in torsion. 

(4) For both the central-strip and diagonal-strip cases, as the temperatures increase the 

frequencies of the first bending, the first torsion, and the second bending modes all 

decrease. The following offers a likely explanation: as seen in the laboratory, the strips 

broke away from the g-e beam when the temperature was increased over 45°C. Because 

both 30°C and 40°C were below the transition temperature 75°C, the SMA strips didn’t show 

large variation in Young’s modulus due to phase transformation, only a stiffening effect of 

the two systems. The strips become softer and less stiff when the temperature increases, 

thus resulting in the decrease of the natural frequencies. The system where the length of 

the end mass is 70 mm is taken as an example, Figures 7-6, 7 and 8 show how the 

temperature affects the frequencies.  
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(5) As the length of the end masses increase, the natural frequencies of the first, second 

bending and the first torsion modes all decrease. It is because that when the length of the 

end masses is increased, the corresponding masses and the mass moment of inertia about 

the y-axis  increase, as shown in Figures 7-9 and 10. 

(6) As for the 40°C case, when the length of the end mass is 50 mm, 60 mm, 70mm and 80 

mm, the frequencies of the 1st torsion mode of their corresponding systems have been 

missed.  It was noticed in the lab that at 40°C, the SMA strips appeared to partially de-

bonded from the beam. It may be the reason why the observable torsion mode responses 

were prevented. 

Table 7-4  Experimental results when the length of the end mass is 70mm 

        Frequency 
 
L of the EM(mm) 

f1(Hz) f2(Hz) f3(Hz) 

50 30.34 68.24 445.29 

60 28.29 51.63 381.21 

70 22.04 41.28 336.86 

80 20.86 32.37 286.52 

100 19.33 23.74 221.17 

Table 7-5  Effect of the end mass length on the natural frequencies of the first bending, torsion and 

the second bending modes (20°C case)  

 

 without- 
strip 

with strips 
Central-strip diagonal-strip 

20°C 30°C 40°C 20°C 30°C 40°C 
f1(Hz)-1st 

bending 
7.44 25.34 23.66 21.35 22.03 21.53 21.18 

f2(Hz)-1st 

torsion 
27.07 39.44 36.25 31.88 41.92 38.97 36.53 

f3(Hz)-2nd 

bending 
177.5 476.79 458.73 421.81 336.86 333.05 330.81 
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        Frequency 
 
L of the EM(mm) 

f1(Hz) f2(Hz) f3(Hz) 

50 29.52 64.43 433.16 

60 28.12 48.76 377.48 

70 21.53 38.97 333.05 

80 20.62 30.99 282.92 

100 18.89 22.43 216.8 

Table 7-6 Effect of the end mass length on the natural frequencies of the first bending, torsion 

and the second bending modes ( 30°C case) 

        Frequency 
 
L of the EM(mm) 

f1(Hz) f2(Hz) f3(Hz) 

50 29.27  429.78 

60 27.62  377.49 

70 21.18  330.81 

80 20.02  279.07 

100 18.3 20.46 212.75 

 

Table 7-7  Effect of the end mass length on the natural frequencies of the first bending, torsion and 

the second bending modes (40°C case) 
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Fig 7-6 Effect of temperature on the natural frequency of the first bending mode  
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Fig 7-7 Effect of temperature on the natural frequency of the first torsion mode 
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Fig 7-8 Effect of temperature on the natural frequency of the second bending mode 

 

 Fig 7-9  Natural frequency of the first bending mode against the length of the end masses and 

the corresponding masses 
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Fig 7-10 Natural frequency of the first bending mode against the length of the end masses and the 

corresponding mass moment of inertia 

As seen from Table 7-4, the natural frequency of the first bending mode being taken as an 

example, f1 is increased dramatically from 7.44 Hz in the without-strip case to 25.34 Hz in 

the central-strip case, which is over three times bigger. This means the SMA strips has 

dominated the composite beam system, not just acting as  a means of changing the 

properties of the beam as expected. It was also noticed that the strips could not be heated 

up to Af in this case, therefore, the strips have not been activated to exhibit either their 

shape memory effect or pseudo-elasticity. So two new SMA strips were purchased with 

lower Af, and dimensionally thinner, to avoid the problem in which the SMA strips dominate 

the properties of the composite beam structure. The properties of the new SMA strips are 

listed in Table 7-8. 

Chemical 

composition 

Ni 55.49 [wt-%], Ti bal [wt-%], C 310[ppm], O 185[ppm] 

Trans. temp[ºC] Af: 30 °C 

Thickness 0.5 mm 

Width 2.0 mm 

Table 7-8 Properties of the new Ni-Ti strips 
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7.2 Testing of the SMA Strips 

7.2.1 Cycling Test 

To make sure of repeatable performance, the two SMA strips were subjected to 

thermomechanical cycling before any further tests. To cycle them, a material testing 

machine, Zwick Roell Z250 was used. Each strip was fixed on the grips of the machine and 

tensile tests were carried out. The force-displacement curves were generated through a 

textXpert software also provided by the Zwick Roell company as shown in Figure 7-11. The 

two strips were plastically deformed, seen from Figure 7-12 and then unloaded and 

electrically heated to its austenite finish temperature to recover the deformation. The 

temperature was controlled by regulating the electrical current supplied to the strip and 

monitored using a thermocouple. Extending the strips and then heating them above their Af 

constitute one cycle. This test was repeated 10 times and each time the strips could 

successfully go back to their original length. It showed they had good repeatable 

performance. 

 

           

 

Fig 7-11  Extension set-up of the strips           Fig 7-12 Force-displacement curve of the strips 

7.2.2 Young’s Modulus Test 

To compare the Young’s moduli of the martensite and austenite phases of the SMA strips at 

different temperatures, loading and unloading tests needed to be carried out. A simple test 

set-up was designed and built as Figure 7-13. The strip was clamped at one end and loaded 

by suspending a weight from the other end thereby deforming it. The displacement was 

measure by means of a dial gauge. A load-displacement line was drawn when the 
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suspending weight was varied, and its corresponding extension was recorded. The test was 

conducted at two temperatures, room temperature, 20°C when the tests were conducted, 

and the transformation temperature around 30°C in this case. To get the higher 

temperature of 30°C, the strip was heated by passing a constant electrical current, as shown 

in Figure 7-14. The two clamps were made from Teflon to insulate the strips from the 

current. The temperature was measured by a thermocouple. The temperature needed to be 

a bit higher than 30°C to ensure the whole strip stayed fully in the austenite phase, however 

not at too high a level in order to avoid thermal expansion. To choose a suitable current to 

reach 30°C , a few temperature-time history curves were made at different current levels as 

shown in Table 7-9, and then a current of 1.95 A was chosen. At a constant temperature of 

32°C the loading test was performed for the strip staying completely in the austenite phase.  

 

 

Fig 7-13 Test rig for force-displacement experiments 
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Fig 7-14 Current circuit 

 

Current (A) 
Starting 

temperature(0C) 
Starting 

temperature(0C) 
Duration (min) 

1.23 19 26 6 

1.57 19 30 6 

1.95 19 32 6 

2.31 20 43 6 

Table 7-9 Temperature against electrical current in force-displacement tests when the strips are 
activated 

In this test five different loadings were applied and their corresponding extensions were 

recorded. The loadings were converted to stress divided by the cross-section area of the 

strip ( /  F A ), and extensions to strain divided by the original length ( 0/l l  ). The 

strain-stress curves for both phases are shown in Figures 7-15 and 7-16. They are almost 

linear, thus conforming elastic deformations. The Young’s moduli were calculated to be 

16.68 GPa for the martensite phase, and 51.998 GPa for the austenite phase, which is 3.12 

times more than that for the martensite phase. The results might be smaller than the actual 

values. This is due to the fact that the displacements were measured over the whole strip 

length. If the fixed end of the strip move downward, the displacements measured would be 

smaller than the real ones, thus making the Young’s moduli smaller.    
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Fig 7-15 Strain-stress curve for the martensite  phase 
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Fig 7-16 Strain-stress curve for the austenite phase 

7.3 Experimental Investigations into Parametric Vibration  

The bending responses of system 1 and 2 under an initial condition by means of a transient 

excitation were monitored by a laser vibrometer. A vibrometer control unit connected to 

the vibrometer passed the response signals to an analogue spectrum analyzer. The natural 

frequencies were calculated by means of a FFT within this spectrum analyzer, and displayed 

as a linear frequency response plot, and identified by using a screen cursor. The obtained 

natural frequency was used to calculate the Young’s modulus of the g-e beam. The g-e beam 

was then marked at both ends to make sure the fixed and free ends always stayed the same 

in the following tests. Both system 1 and 2 were set up and the strips were heated up by 

using the simple electrical circuit in Figure 7-17.  One end of the SMA strips was fixed by two 
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clamps made of hard plastic in order to be insulated. The temperatures were measured by a 

thermocouple at four points along the SMA length. Likewise the natural frequencies were 

measured when the SMA strips were unactivated and activated. Their corresponding 

damping ratios were obtained by using the logarithmic decrement method.  The procedure 

to get the experimental points of the transition curve for when 12   was the same as 

that described in Chapter 3. That was, one selected a range of frequencies on the function 

generator, then gradually increased the excitation level, and recorded each excitation 

amplitude-frequency point once nonplanar motion was observed. The results are shown in 

Figure 7-18 and 7-19 when the strips were activated and un-activated for both systems 1 

and 2. 

 

Fig 7-17 Electrical circuit 

Table 7-10 lists all the natural frequencies of the fundamental bending mode and the 

damping ratios for both systems 1 and 2 when the SMA strips were activated and 

unactivated. The Young’s modulus used in the theoretical calculations for martensite was 

acquired from the experiment shown in Figure 7-12, 32.23 GPa. This is because when this 

value was used to calculate the natural frequency of the first bending by means of 

2( / ) * / ) / 2   yf l EI A combining the boundary conditions explained in Appendix 1 , 

the theoretical value of 6.4 Hz is the same as that from the experiment, seen from Table 7-

10. The ratio of Young’s modulus of austenite to martensite of 3.12, calculated from the 

experiments shown in Figure 7-13 is close to the generally accepted value, 3 (Liang and 

Rogers, 1990). Therefore this ratio was adopted and the Young’s modulus for austenite then 

became 100.56 GPa, which was used for  the following analysis in this chapter. The 

important results from this experiment are  below: 
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1. For both systems, the natural frequencies and the damping ratios are increased when the 

strips are activated. For system 1, the natural frequency is increased from 7.85 Hz to 8.2 Hz 

by 4.46%, and the damping ratio from 0.0092 to 0.0189, therefore by 105.4%. For system 2, 

the natural frequency is increased from 7.64 Hz to 8.03 Hz by 5.1%, which is higher than 

4.46% in system 1, however the damping ratio from 0.0208 to 0.0162 is decreased by 22.1%. 

2. It is noted that the natural frequencies did not change as significantly with the activation 

of the SMAs as the theoretical results predicted. As seen in Table 7-10, for system 1, the 

theoretical value is 10.052 Hz for the activated strips, much bigger than the value 8.2 Hz 

taken from the spectrum analyzer. This indicates that the Young’s moduli in austenite phase 

is not increased much when the SMA strips are activated. If laboratory results are only 

considered, the natural frequency of the system 1 with unactivated SMAs is 7.85 Hz. When 

the SMAs were activated, the frequency becomes 8.2 Hz. In this case, the Young’s modulus 

of the SMAs is increased by 25%. That is to say, the ratio of the Young’s modulus of 

austenite to martensite is only about 1.25, much smaller than the normal ratio 3~4. 

However the results agrees with Carballo et al’s finding in 1995. They conducted 

experimental investigations and showed that under dynamic conditions, the ratio of Young’s 

modulus of austenite to martensite of NiTi wires could be only 1.1~1.3,  much smaller than 

that in the static case. Tian and Wu (2002) also pointed out the that under different 

vibration frequencies, the modulus of austenite of some SMAs was just a little higher than 

that of martensite.  

3. The results of the damping ratio changes in system 1 and 2 when the strips were 

activated and unactivated also show that the changes in system 1 and 2 are very different. 

The variation of damping ratio under dynamic conditions has been studied by Carballo et al. 

(1995) and Wu et al (1995), Tian and Wu (2002). The both studies showed that the damping 

had a maximum peak during heating and cooling. The phenomenon that a maximum peak 

appeared in the damping-temperature curve during both heating and cooling was also 

discussed by. Moreover, they found that the peak values were in proportion to the ramp 

rate and in reverse proportion to frequency. None of the above studies show that the peak 

values had dependency on the transformation temperatures of the SMA.  
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4. The dynamic Young’s modulus and damping behaviour of SMAs need to be further 

investigated and so do their impacts on the dynamic properties of system 1 and 2. 

5. Figure 7-18 and 7-19 show that more input energy is needed to promote the instability 

for both systems when the strips are activated. The minimum acceleration needed is 

increased from 23.28 m/s2 to 78.48 m/s2 for system 1, and from 19.6 m/s2 to 35.7 m/s2 for 

system 2. It is understandable when the activated strips increase the natural frequency of 

the fundamental bending mode and its damping ratio.   

6. Figure 7-20 and 7-21 show that the offset of the transition curves for system 2 is not as 

great as that for system 1, when the SMA strips were activated. This shows that the 

configuration in system 1 affects the beam structure, related to its bending modes, more 

significantly than system 2. 

7. During the process of the experiments to obtain the instability zones, it was observed that 

the electrical currents dropped rapidly during the beam’s nonplane motion. For example, it 

could decrease from the start current, 2.2 A to around 1.09 A. The reason is likely to be the 

increase of the electrical resistance with an increase of the strain of the SMAs. (Furuya 1992, 

Airoldi 1997, Wu and Wang 1999) The variation of electrical resistance is also a function of 

temperature (Carballo 1995, Wu and Wang 1999). In the series of the transition curve 

experiments, each experiment normally last 10 minutes. During this span of the time, the 

temperature changes were noticed. The temperature measuring points along the beam are 

shown in Fig 7-22. The temperatures before and after the experiments are listed in Table 7-

11. 

8. There are other factors which might affect the results in some way:  

 The alignment of the SMA strip: the two SMA strips might not be symmetrical or shifting 

away from the central lines of both sides of the beam. 

 The adhesive: the adhesive needs about 10 hours to cure, after one experiment and 

before the next, the adhesive should be removed completely from the beam without 

damaging the beam. However, it was very difficult to remove all the adhesive. The 

proper way to remove the adhesive is to use a blunt knife to remove the thick layers of 
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the glue, carefully, not to peel the beam surface, then to use different grades glass 

paper to scrape it off thoroughly.  

 It is necessary to make sure every part of the SMA strips is tightly attached to the beam. 

 How much adhesive is used in the experiments is not clear and the amount of adhesive 

used along the whole length might be different. 

Systems Natural frequency (Hz) 
Damping 

ratio 

System 1 

With 
unactivated  
SMAs 

Theoretical 
Calculation 

7.699  

Experimental 
Results 

7.85 0.0092 

With 
activated 
SMAs 

Theoretical 
Calculation 

10.05  

Experimental 
Results 

8.2 0.0189 

Without 
SMAs 

Theoretical 
Calculation 

6.4  

Experimental 
Results 

6.4  0.0071 

System 2 
With unactivated  SMAs 7.64 0.0208 

With activated  SMAs 8.03 0.0162 

Table 7-10 Natural frequencies and damping ratios of the first bending mode of system 1 and 2 
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Fig 7-18 Transition curves when 12  with activated and unactivated SMA strips of system 1 
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Fig 7-19 Transition curves when 12  with activated and unactivated SMA strips of system 2 
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Fig 7-20 Comparisons of transition curves between the two systems when the strips are 
unactivated. 
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Fig 7-21 Comparisons of transition curves between the two systems when the strips are activated. 

 

Fig 7-22 Temperature measuring points 
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Measuring positions P1 P2 P3 P4 P5 

Before the experiment 30°C 30°C 30°C 30°C 28°C 

After the experiment 30°C 34°C 40°C 43°C 58°C 

 
Table 7-11 Temperatures of the SMA strips when the experiments on the transition curves 

were carried out. 
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Chapter 8 

Conclusions and Future Recommendations 

8.1 General Discussions 

The research described within this thesis has been concerned with the effect of two 

centrally-bonded shape memory alloy strips on the dynamic properties of a glass epoxy 

beam carrying a lumped end mass under a parametric excitation. As a precursor to this 

investigation, a flexible steel beam with an end mass under a parametric excitation was 

studied theoretically and experimentally. The equations of motion for three degrees of 

freedom have been derived based on the mathematical model developed by Cartmell (1990) 

and Forehand and Cartmell (2001). The nonlinear, coupled differential equations were then 

analysed by the Multiple Scales perturbation method up to second order expansion as a 

means of predicting different parametric resonances and obtaining expressions to describe 

the corresponding transition curves. Before these analyse, a proposal for perturbation 

ordering of a linear coupling term was presented. This linear term was placed at higher 

order on the grounds of appropriate numerical calculations, noting that the ordering 

scheme strongly depended on the geometry of the beam and the end mass.  

The influence of two centrally-bonded SMA strips on a dynamic properties of a flexible g-e 

beam with an end mass was explored. The SMA was used in both the APT and ASET regimes. 

With the APT method, theoretical evaluations of the natural frequencies of the bending 

modes were proposed. The influence of factors such as the width and thickness of the strips 

and the Young’s modulus changes in the strips, on the dynamic properties of the composite 

beam structure have been studied. With the ASET method, a theoretical model for 

evaluating the natural frequencies and the bending modes of the composite beam structure 

was introduced. The model considered the recovery forces, generated in the pre-strained 

SMA strips when they were activated, as compressive forces. How the force affected the 

composite beam structure was also investigated. 

When the ASET method was used, the dynamic responses of the composite beam system 

under vertical excitation were investigated. Intending to use the Lagrangian formulation, the  

author derived three generalised forces of the recovery force, corresponding to the three 
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modal coordinates of interest, lateral displacements 1u , 2u and a twist angle 1 . It was 

proceeded first by examining the force direction vector in terms of 1u , 2u and 1  in three-

dimension space, then to describe the generalised forces by using the Principal of Virtual 

Work. The governing equations of motion were solved by means of application of the 

multiple scales method, and different parametric resonances have been studied, along with 

the influence of the force on the resonances.  

An experimental study was carried out on two composite beam systems, one with two 

centrally-bonded strips and the other with two diagonally-bonded strips. Hammer impact 

tests were first conducted for both cases. The natural frequencies of the fundamental, 

second bending modes and the fundamental torsion mode were measured and the effect of 

the temperatures and the end mass were observed. By measuring the first vibration mode, 

the dynamic mechanical properties of both cases were investigated.  

8.2 Conclusions 

Three parametric resonances of the form 12  , 22  and 1 2     involving the 

fundamental and second bending modes have been predicted when the equations are 

expanded to first order by the method of multiple scales. Experimental results agreed well 

with the theoretical predictions of three possible resonance conditions. Laboratory tests 

confirmed that these instabilities were bounded in practice by nonlinear effects. 

By solving a second order perturbation equations, many other theoretical resonance 

conditions have been shown to be potentially capable of producing nonzero solutions, and 

these resonances were seen to be composed of various combinations of modal frequencies. 

In theory, with the APT method, the natural frequencies of the flexible g-e beam with an 

end mass and two centrally-bonded SMA strips were increased when the strips were 

activated. The natural frequency were also increased by increasing the width and thickness 

of the strips, and the frequency changes were more sensitive to the thickness changes 

rather than the width. 

With the ASET method, the analytical prediction showed that the natural frequencies 

decreased when the activation forces were increased. Increasing the forces resulted in the 



105 

 

reducing the excursion of the first and second bending modes. The model predicted that the 

composite beam buckled more easily under dynamic loading than under static loading. The 

theoretical results also showed that the instability regions were increased as the magnitude 

of the recovery forces increased.  

Experimentally, with the APT method for both the centrally-bonded and diagonally-bonded 

cases, the natural frequencies of the bending modes increased when the SMA strips were 

activated. It was also observed that the instability regions of the 12   resonance were 

decreased when the strips were activated. The increment of the natural frequencies of the 

bending modes were more in the centrally-bonded case than those in the diagonally-

bonded case. However, the diagonal-strip configuration could easily change the natural 

frequencies of the torsion modes than the central-strip one.   

The measured values of the natural frequencies in the centrally-bonded case through the 

experiments were lower than those predicted by the theoretical calculations. This is likely to 

be that when the strips were activated, the Young’s modulus in austenite phase under 

dynamic conditions, was not increased as much as that in the static case on which the 

theoretical results were based (Carballo et al 1995, Tian and Wu 2002). 

The damping ratio was increased in the centrally-bonded case when the strips were 

activated, however the trend was reversed in the diagonally-bonded case. This unusual 

phenomenon could be because the damping properties did not monotonically increase 

when the temperature of the strips increased under dynamic conditions (Carballo et al 1995, 

Wu et al 1995).  

The drop in the electrical resistance of the SMA strips was also observed when the 

composite beam was in its nonplane motion. The reason is likely to be the increase of the 

electrical resistance with an increase of the strain of the SMAs, explained by Furuya 1992, 

Airoldi 1997, Wu and Wang 1999. 

8.3 Future Recommendations 

 There is scope for further investigations into the variation of Young’s modulus, 

damping properties and electrical resistance of the SMA strips corresponding to the 
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change of temperature and the ramp rate, when the beam structure is under vertical 

excitation.  

 When the Active Strain Energy Tuning (ASET) method is utilised, in the centrally-

bonded case, the SMA strips generate high recovery force as well as changes in their 

stiffness during their activation. However, in this study, the recovery force decreases 

the stiffness of the composite beam structure at the same time. Therefore it would 

be interesting to find out an optimum way for controlling the dynamic characteristics 

of the beam structure with application of ASET technique. 

 A study of the underlying mechanisms of tuning the dynamic characteristics of 

parametric and autoparametric beam structures where the resonance conditions 

involve torsion modes would be advantageous when the diagonally-bonded SMA 

strips are used,  because the diagonal SMA strips can modify the properties of 

torsion modes easily and can introduce a torsion moment into the system, when the 

ASET method is utilised.  
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Calculation of the Mode Shape Coefficients 

A.1.1 Boundary Conditions at the Free End 

Forehand and Cartemll (2001) have derived the boundary conditions for the free end of a 

cantilever beam with a lumped end mass. For clarification, the conditions are re-written 

here, which are also equations (29) and (30) in reference Forehand and Cartmell (2001). 

                                                    2
0 0( ) ( ( ) ( ) ( ))YEI f l m f l l l f l                                          (1) 

                                                    2
0( ) ( ( ) ( ) ( ))G YI f l EI f l l l f l                                         (2) 

where   is the natural frequency of the mode and )(zf  is the standard Euler-  Bernoulli 

mode shape for a beam clamped at 0z   ( 0),0(),0(  tutu ). That is  

                                                )cosh(cos)sinh(sin)( 21 zzCzzCzf                          (3) 

where
YEI
m2

4 
  .  

A.1.2 Mode Shape Coefficients Analysis 

Upon using equation (3), we can get the following expressions  

                                         1 2( ) [ (cos cosh ) (sin sinh )]        f z C z z C z z                     (4) 

                                        2
1 2( ) [ (sin sinh ) (cos cosh )]f z C z z C z z                         (5) 

                                     3
1 2( ) [ (cos cosh ) (sin sinh )]f z C z z C z z                           (6) 

Substituting equations (4) to (6) into equations (1) and (2) leads to, respectively,   

0)]sinh(sin)sinh(sin)()cosh(cos[

)]cosh(cos)()sinh(sin)cosh(cos[
3

00
2

0
2

2

00
2

0
23

1





llEIllllmllmC
llllmllmllEIC

Y

Y




       (7) 
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0)]sinh(sin)sinh)(sin()cosh(cos[

)]cosh(cos)cosh)(cos()sinh(sin[
2

0
32

2

2
0

32
1





llIllllEIllEIC
llIllllEIllEIC

GYY

GYY




          (8)                                                                                                                          

From the Euler-Bernoulli theory of continuous beams,
A

EIY


 2 , where  is the density 

and A is the cross-sectional area of the beam. Denoting l   and  rewriting equations (7) 

and (8) yields         

0)]sinh(sin)()sinh(sin)()()cosh(cos)([

)]cosh(cos)()()sinh(sin)()cosh(cos)([

350040
2

500403
1

























llA
llm

lA
mC

lA
llm

lA
m

l
C

    (9)                              

0)]sinh(sin)()sinh(sin))(()cosh(cos)[(

)]cosh(cos)()cosh)(cos()()sinh(sin)[(

53
0

2
2

5
0

32
1















lA
I

l
ll

l
C

lA
Ill

ll
C

G

G

        (10)                                                          

where GI is the moment of inertia of the end mass about an axis through its centre, parallel 

to the y-axis, which has this expression 

                                                                  2 2
0

1 ( )
12

 GI m D W                                                    (11) 

D andW are the depth and width of the end mass, respectively. 

Then the following system emerges, 

                                                                








0
0

222121

212111

CaCa
CaCa

                                                          (12) 

where   is unknown.  

To have a unique solution of 1C  and 2C , the determinant of this system should equal to zero. 

That is,  

                                                               021122211  aaaa                                                    (13) 
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Solving equation (13) gives several numerical values of  , which correspond to the 

eigenvalues i . From i , the corresponding natural frequencies, i , can be found. Equation 

(13) can also be used to find the ratio of 2C to 1C . The ratio combined with the 

normalization equation can lead to the expressions of the mode shapes of the first and 

second bending modes. The mode shape coefficients can then be obtained on the basis of 

the mode shape expressions.   

A.1.3 An Example  

An example is taken to explain the above procedure. The feature of the system is listed in 

table A.1-1. 

   values 

Equation (13) is used to get solutions of . Setting different ranges for   in equation (13) 

yields different values. The first two are kept, corresponding to the first and second bending 

mode that we are interested in, marked as 1 and 2 . The numerical results are shown in Fig 

A.1-1 and Fig A.1-2 when the   value range is made as [0, 1.5] and [1.5, 4.0]. 

 

Fig A.1.1, Fig A.1.2   values against the determinant in the [0, 1.5] and [1.5, 4.0] range.                                              

                                                             1 1.05178      2 3.61829                                                 (14) 

 Ratio of 2C to 1C . 

Let us assume * 2 11 21

1 12 22

C a aC
C a a

    . Upon using equation (13) again and with the above   

values in (14) gives 
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                                                           *
1 1.06699C          *

2 0.98702C                                            (15) 

*
1C and *

2C are the ratios of minus 2C to 1C corresponding to 1 and 2  respectively. 

 1C  

Substituting l   and 
1

2*

C
CC   gives 

                *
1( ) [(sin sinh ) (cos cosh )] 1, 2i i i i

if z C z z C z z i
l l l l
   

                       (16) 

Reference (Forehand and Cartmell 2001) gives a detailed explanation that the mode shapes 

for bending modes can be normalized so that,  

                2 2 2
0 0 0

0

( ( )) ( ( ) ( ) ( )) ( ( )) 1, 2
l

i i i G im f z dz m f l l l f l I f l m i                        (17) 

The expression of ( )if z  in (16) and its first order derivative ( )if z  with respect to z and 

with equation (17) leads to   

                                                               11 1.0083C           12 1.06236C                                     (18) 

11C and 12C are the values of 1C corresponding to 1 and 2 , *
1C and *

2C respectively. 

 Mode shapes 

Substituting i , *
iC , 1iC  and l  into equation (16) and plotting the mode shape as a function 

of z gives Fig A.1.3 and Fig A.1.4. 

         

Fig A.1.3, Fig A.1.4 Modes for the first and second bending 
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 Name Symbol Value 

Beam 

length one (from the top of the 
base-clamp to the below end 
point of the beam) 

l  0.12 m  

length two(from the centre of the 
mass to the below end point of 
the beam) 

0l  0.1275 m  

density    7800 3/kg m  
Thickness bt  0.00072 m  
Width bW  0.025 m  
section-cross area of the beam A  0.025*0.00072 2m  
mass/meter  m A  0.1404 kg  
Young’s modulus E  201 GPa  
shear modulus G  79.3 GPa  

End 
mass 

mass of the end mass 0m  0.031 kg  

moment of inertia GI  61.243*10 2kg m  
width of the end mass W  0.016 m  
depth of the end mass  D  0.015 m  

Table A.1.1 Features of a beam system 

 Bending mode shape coefficients 

Hence, the coefficients are calculated as the follows 

2
1

0

( ) 6.4643
l

X f dz    2
1

0

( ) 1119.63
l

N f dz         2
2

0

( ) 86.9849
l

Z f dz   

2
2

0

( ) 131036
l

P f dz    1 2
0

( ) 5.5520
l

Y f f dz       6
1 2

0

( ) 5.0763*10
l

S f f dz         

 2
1

0

( ) 8.3333
l

Q g dz                           

 Natural frequencies of the bending modes 

Manipulations on YEIm /24   leads to 2( / ) * ( / )i i Yl EI A   . Here YEI is the flexural 

rigidity about the y-axis.  

                                                                    

3

12
b b

Y
w tEI 

                      
                                                (19) 
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1
1 81.06 12.90s Hz    1

2 959.26 152.67s Hz    

 Mode Shape of the torsion mode 

The general mode shape for a linear fundamental torsion mode is usually of the 

form: 1 1 2( ) sin cosg z E pz E pz  , where 1E and 2E are constants, /p Gg  , 

 being the material density, G shear modulus of the material,  natual frequency 

of the linear torsion mode.  

The natural frequency expression for this system is,  

                                                                0

m

GI
lI

                                                               (20) 

Where l is the beam length; 0I is the polar moment of inertia of the beam; mI is the 

mass moment of inertia of the lumped mass. They are calculated by using the 

following equations (21) and (22). 

                                                    3 3
0

1 1
12 12x y b b b bI I I t w w t                                          (21) 

                                                   2 2
0

1 ( )
12mI m D W                                                         (22) 

Substitution of appropriate numerical quantities in Table A.1.1 into equations (21), (22) 

and (20) leads to 322.34 10 1/ rad   , 32.24 10p   , 42.69 10pl   . 

Substitution of the boundary condition 1(0) 0g   leads to 2 0E  . Using the 

normalisation 1( ) 1g l  gives 1
1 1

sin
E

pl pl
  . Now the expression for the normalised, 

linear, torsional mode function is  

                                                1
1 1( ) sin zg z pz pz
pl pl l

                                           (23) 

So                    1 1 1
0

( ) 0.2036
l

B l z g f dz        2 1 2
0

( ) 1.5889
l

B l z g f dz     
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Appendix 2 

Ordering Scheme for Cross-Coupling Terms 

A.2.1  Abstract 

This appendix presents a summary of a proposal for perturbation ordering a linear coupling 

term. The linear cross-coupling term appears in the zeroth order perturbation equations 

when the normal procedure of using the perturbation method of multiple scales is followed. 

On the grounds of appropriate numerical calculations it can be shown that this coupling 

term may be weaker than the other linear terms in the zeroth order equations. Therefore, 

this term can then be placed a higher order, and the zeroth order equations turn out to be 

solvable. The aim of this appendix discusses this matter. 

A.2.2  Introduction 

The normal procedure of applying the perturbation method of multiple scales in the stability 

and dynamical systems is as follows (Cartmell et al 2003): “The linear terms are initially 

considered as strong terms compared to the forms of nonlinearity, or nonlinearities, and 

considered as the lowest order. The lowest order perturbation equations are normally 

expressed as 00
2

0
2
0  uuD  .The subscripts can be different dependent on the structure of 

the power series. The solution is expressed in complex form 00
0

TiTi eAAeu   , noting that 

  is an appropriate natural frequency of undamped vibration and that the overbar 

represents complex conjugacy. The amplitude A is determined by the process in which the 

secular terms are removed and then equated to zero. Once this stage has been reached, 

solutions can be obtained to higher orders of perturbation for each different resonance 

conditions. Finally, the perturbation solutions for the resonance condition of interest are 

recombined to give an approximate, but frequently very accurate, solution to the dependent 

variable(s) in the time domain”. For the case of Su and Cartmell (2008), when the above 

procedure is followed the lowest order perturbation equations, in this case the zeroth order 

perturbation equations,  are as given below  

020
2

10
2
110

2
0  UpUUD   
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                                                    010
2

20
2
220

2
0  UpUUD                                                 (1) 

These are not in the expected form, 

010
2
110

2
0  UUD   

                                                          020
2
220

2
0  UUD                                                          (2) 

where 1 and 2 are the natural frequencies of the first and second bending modes. 1U and 

2U are the corresponding modal co-ordinates. 2p is the cross coupling term extracted from 

the potential energy expressions after mode orthogonality has been implemented. 

Therefore, as required, the proposal for assigning the cross coupling term to higher 

perturbation order, and therefore changing the zeroth order perturbation equations into 

their usual format is discussed next.   

A.2.3  Numerical Calculations on 2
1 , 2

2  and 2p  

The expressions for 2
1 , 2

2  and 2p are as follows: 

                      2
1 RN gX        2

2 RP gZ         gYRSp 2                                      (3) 

where  

              0

YEIR
m


        

dzffS
l


0

''
2

''
1 )(

            
dzffY

l


0

'
2

'
1 )(

                                          

              dzfN
l


0

2''
1 )(     dzfX

l


0

2'
1 )(              dzfZ

l


0

2'
2 )(         dzfP

l


0

2''
2 )(                 

As seen from Equation (3), 2
1 , 2

2 and 2p are constants if the geometry, density and Young’s 

modulus of the beam and the end mass are given. Comparisons between 2p and 2
1 , and 

between 2p  and 2
2  are feasible. If 2p is much smaller than 2

1 and 2
2 , it may be 

considered to be indicative of a weaker term than 2
1 or 2

2 and therefore regarded to be at 

higher perturbation order. A few examples are taken to show that under certain 

circumstances, 2 2
1p   and 2 2

2p  can be satisfied in practise. The examples are based on 
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two types of beams and an end mass made of aluminium. Their geometries and properties 

are listed in Table A.2.1: 

 
steel 

beam 
glass epoxy beam end mass 

Width (mm) 25 13 15 

Thickness (mm) 0.7 2.2 15 

Density (kg/m3) 7800 1865 2700 

Young’s Modulus (GPa) 201 25  

Table A.2.1 Geometry and property of the two beams 

Results of numerical calculations for 2
1 , 2

2 , 2p  as well as 2
1

2 /p and 2 2
2/p  , are presented 

in Table A.2.2-5. 2
1

2 /p and 2 2
2/p  against certain factors are presented in Fig A.2.1-6. The 

influence of these factors on the results are: the material of the beam, the length of the 

beam l , the mass of the end mass 0m  and the moment of inertia of the end mass GI . To 

study the influence of the moment inertia GI , the width and thickness of the end mass are 

kept constant and equal as 15 mm. By increasing the length of the end mass, denoted by 

mL  , the mass is increased and so is the moment of inertia GI .  

l (mm) 2p  2
1  2

2  2
1

2 /p  2 2
2/p   

100 71.45 35911.3 7.24*10^6 0.199% 0.000987% 

150 71.06 11066.6 1.96*10^6 0.64% 0.00362% 

200 57.77 4677.15 7.03*10^5 1.24% 0.00822% 

250 46.64 2362.51 3.08*10^5 1.97% 0.0151% 

300 38.36 1338.16 1.55*10^5 2.87% 0.0247% 

Table A.2.2  Values of 2
1 , 2

2 , 2p , 2
1

2 /p  and 2 2
2/p   against the steel beam length 

( 0 18.2m g , 7 26.834 10 .GI kg m  ) 
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l (mm) 2p  2
1  2

2  2
1

2 /p  2 2
2/p   

100 66.08 17911.9 1.88*10^6 0.369% 0.00351% 

150 55.53 5267.55 4.63*10^5 1.054% 0.0120% 

200 43.3 2130.63 1.63*10^5 2.032% 0.0266% 

250 34.34 1032.59 7.14*10^4 3.326% 0.0481% 

300 27.9 562.32 3.62*10^4 4.962% 0.0771% 

Table A.2.3 Values of 2
1 , 2

2 , 2p , 2
1

2 /p  and 2 2
2/p   against the g-e beam length 

( 0 18.2m g , 7 26.834 10 .GI kg m  ) 

l (mm) mL (mm) 0m (g) GI (g.mm4) 2
1

2 /p  2 2
2/p   

100 

30 18.2 683.44 0.369% 0.00351% 

35 21.3 797.34 0.43% 0.00368% 

40 24.3 911.25 0.493% 0.00384% 

150 

30 18.2 683.44 1.054% 0.0120% 

35 21.3 797.34 1.25% 0.0127% 

40 24.3 911.25 1.440% 0.0134% 

200 

30 18.2 683.44 2.032% 0.0266% 

35 21.3 797.34 2.40% 0.0284% 

40 24.3 911.25 2.780% 0.0301% 

250 

30 18.2 683.44 3.326% 0.0481% 

35 21.3 797.34 3.92% 0.0517% 

40 24.3 911.25 4.536% 0.0549% 

300 

30 18.2 683.44 4.962% 0.0771% 

35 21.3 797.34 5.84% 0.0833% 

40 24.3 911.25 6.760% 0.0888% 

Table A.2.4 Values of 2
1

2 /p and 2 2
2/p  against the end mass length mL (steel beams) 
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l(mm) mL (mm) 0m (g) GI (g.mm4) 2
1

2 /p  2 2
2/p   

100 

25 15.2 569.53 0.166% 0.000929% 

30 18.2 683.44 0.199% 0.000987% 

35 21.3 797.34 0.231% 0.00104% 

150 

25 15.2 569.53 0.53% 0.00329% 

30 18.2 683.44 0.64% 0.00362% 

35 21.3 797.34 0.771% 0.00386% 

200 

25 15.2 569.53 0.99% 0.00761% 

30 18.2 683.44 1.24% 0.00822% 

35 21.3 797.34 1.49% 0.00878% 

250 

25 15.2 569.53 1.59% 0.0140% 

30 18.2 683.44 1.97% 0.0151% 

35 21.3 797.34 2.38% 0.0162% 

300 

25 15.2 569.53 2.31% 0.0228% 

30 18.2 683.44 2.87% 0.0247% 

35 21.3 797.34 3.46% 0.0264% 

Table A.2.5 Values of 2
1

2 /p and 2 2
2/p  against  the length of the end mass (g-e beams) 

 

Fig A.2.1 Influence of the beam length on 2
1

2 /p  



A-15 

 

 

Fig A.2.2 Influence of the beam length on 2
2

2 /p  

 

Fig A.2.3 Influence of the moment of inertia GI on 2
1

2 /p (steel beams) 

 

Fig A.2.4 Influence of the moment of inertia GI on 2
2

2 /p (steel beams) 
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Fig A.2.5 Influence of the moment of inertia GI on 2
1

2 /p (g-e beams) 

 

Fig A.2.6 Influence of the moment of inertia GI on 2
2

2 /p ( g-e beams) 

A.2.4  Discussions 

(1) In the above study, for both the steel and glass epoxy beams, the length range is from 

100 mm to 300 mm. The end mass is made of aluminium with the same width and 

thickness at 15 mm. The range of the length of the end mass is from 25 mm to 45 mm. 

As seen from Tables 2-5, the maximum value of 2p is only 6.74% of 2
1 , and only 

0.0888% of 2
2 , numerically much less than 2

1 and 2
2 .  

(2) As can be seen from Fig A.2.1-2, the ratios, 2
1

2 /p  and 2
2

2 /p increase as the length of 

both beams increases. 
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(3) As can be seen from Fig A.2.3-6, the ratios, 2
1

2 /p  and 2
2

2 /p increase as the length 

of the end mass increases. Therefore the ratios increase as the mass of the end mass 

increases, and in the same manner for the moment of inertia GI . 

A.2.5  Conclusions 

(1) For the above two beams shown in Table 1, under certain conditions, the ratios, 

2
1

2 /p  and 2
2

2 /p  are numerically small, so the cross coupling term 2p  can possibly 

be considered to be at higher perturbation order. 

(2) Such factors as the length of the beams, the mass of the end mass, and the moment of 

inertia of the end mass, all have an effect on the ratios, 2
1

2 /p  and 2
2

2 /p .  

(3) Such a comparison is hard to generalise definitively, and so if it does turn out to be 

physically unacceptable, then this convenient ordering scheme cannot be used.  
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Appendix 3  

MathematicaTM Programme for Solving 11u and 21u  in  

the Non-resonant Case 
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Appendix 4 

Resonance Derived from the Second-order Perturbation Equations 

The resonances derived from equations (22) to (24) in Chapter 3 are listed in Table A.4.1. 

Table A.4.1 List of resonances derived from the second-order perturbation equations 

Equation (22) Equation(23) Equation(24) 

External 

Forced 

Resonance 

Internal 

Resonance 

External 

Forced 

Resonance 

Internal 

Resonance 

External 

Forced 

Resonance 

Internal 

Resonance 

12

1
12  

12  

)(
2
1

12  

)(
2
1

12    

21 3
1 

21 2
1 

21 3
2 

t
3
2

1 

21 4
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t 221 

21 2   t

21 3   t

21 22   t

t 22 21 

t
2
1

1 

t  21

21   t

t 22 21 

21 22   t

 

22

2

12  

12  

)(
2
1

12  

)(
2
1

12  

 

 

t 22 

12 22   t

t 22 12 

t 2

t
2
3

2 

t
3
2

2 

t 22 

12 3 

12 4 

12 2   t

12 3   t

12 2   t

12 3   t

12 2 

12 2
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t
2
1

2 

12 2   t

t 22 12   

 1 t  

2 1
1 ( )
2t   

21  t  
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12  t
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3
1

21  t
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3
1

12  t
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Appendix 5 

MathematicaTM Programme for Natural Frequencies and Mode 

Shape Coefficients in Chapter 5 and 6  
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Appendix 6 

Lists of Instruments ---- Experimental Work 

The instruments used in the experimental work are listed below and their photographs are 

shown in Fig A.6.1. 

 Laser Vibrometer: Model Polytech OFV 303 

 Electro-dynamics Shaker: LDS Model V 455 

 Vibrometer Controller: Model Polytech OFV 3001 

 Power Amplifier: LDS Model PA 1000L  

 Spectrum Analyzer: HP 3582A 

 Charge Amplifier:  DJB Model RM/04  

 Function Generator: TTi Model TG 320 

 Oscilloscope: Tektronix TDS 1012B 

 Accelerometer: DJB A 23/E 

 Power Supply Unit: Palstar PS – 30M 

                                                        

              (1) Laser Vibrometer                                                                 (2) Electro-dynamics Shaker          

                                      

                 (3) Vibrometer Controller                                                       (4) Power Amplifier                               
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 (5) Spectrum Analyzer                      (6) Charge Amplifier                (7) Function Generator      

            

(8) Oscilloscope                                   (9) Rheostat                                         (10) Ammeter 

            

(11) Accelerometer                         (12) Power Supply Unit             (13) Thermo-couple 

Fig A.6.1 Photos of the instruments used in tests 


