
LHCb Distributed Data

Analysis on the Computing

Grid

Stuart Keble Paterson

Department of Physics and Astronomy
University Of Glasgow

Thesis submitted for the degree of

Doctor of Philosophy

September 2006

© S. K. Paterson, September 2006

PAGE

NUMBERING

AS ORIGINAL

Abstract

LHCb is one of the four Large Hadron Collider (LHC) experiments based

at CERN, the European Organisation for Nuclear Research. The LHC ex-

periments will start taking an unprecedented amount of data when they

come online in 2007. Since no single institute has the compute resources

to handle this data, resources must be pooled to form the Grid. Where

the Internet has made it possible to share information stored on computers

across the world, Grid computing aims to provide access to computing power

and storage capacity on geographically distributed systems. LHCb software

applications must work seamlessly on the Grid allowing users to efficiently

access distributed compute resources. It is essential to the success of the

LHCb experiment that physicists can access data from the detector, stored
in many heterogeneous systems, to perform distributed data analysis. This

thesis describes the work performed to enable distributed data analysis for

the LHCb experiment on the LHC Computing Grid.

i. " 4"
1t

I'le I to'.

i

Acknowledgements

I would like to thank Prof. David Saxon for the opportunity to work in the

Experimental Particle Physics group and PPARC for providing funding for

three years. My supervisors, Dr. Paul Soler and Dr. Chris Parkes deserve

great thanks for their help, guidance and support during this undertaking.

They have also had the unenviable task of reading and re-reading this thesis

during the past few months and I am very grateful to both of them for all

their efforts.

All of the Glasgow PPE group deserve some mention but I would like to

single out David Petrie, Kenny Walaron and Christian Shaw for putting up

with me from day one. I would also like to thank Dr. Caitriana Nicholson

and Dr. David Cameron for two excellent examples of how to write a thesis

in the field of Grid computing.
At CERN, I would like to thank Dr. Massimo Lamanna for allowing me

to work with the ARDA group. My time at CERN would not have been

the same without the steady contingent of U. K. Ph. D. students and I am

grateful to them for their company and friendship. I would also like to thank

Mary Elizabeth Shewry and Sue Cannon for their support during my stay in

Geneva.

Thanks must go to Dr. Elie Aslanides as well as the E. U. Marie Curie

Foundation for the opportunity to work in Marseille. I also owe a tremen-

dous amount to my `third' supervisor, Dr. Andrei Tsaregorodtsev for his

guidance, help and support during my time there. A big thanks must also go

to my predecessors Vincent Garonne and Ian Stokes-Rees whose work with

Andrei on making DIRAC a successful production system provided me with

an excellent starting point. In Marseille, thanks must also go to Andrei and

Julien Cogan for transporting me to and from work through prolonged bus

strikes. The administrative staff at C. P. P. M. were extremely helpful to me

during my time there, thanks especially to Helene Boyer and Fanny Lessous

for helping me overcome the language barrier in daily life in France.

All of the current DIRAC team deserve thanks, particularly to Dr. Andrei

Tsaregorodtsev, Dr. Philippe Charpentier and Prof. Nick Brook for their

advice and guidance. I would also like to mention Dr. Ricardo Graciani,

Dr. Joel Closier, Dr. Gennady Kuznetzov, Dr. Roberto Santinelli, Andrew

Smith and Adria Casajus who I collaborated closely with. In the Ganga team

I would also like to thank Dr. Ulrik Egede, Dr. Karl Harrison, Dr. Andrew

Maier and Dr. Jakub Moscicki for their input.

Finally I would like to thank my parents who have been a constant source

of encouragement. Without their support and belief in me over the years I

am sure that this would not have been possible.

111

Author's Declaration

This thesis presents work performed from 2003-2006 in the Experimental

Particle Physics group in the Department of Physics and Astronomy at the

University of Glasgow. The software distribution tests performed with Pac-

man in Chapter 2 are my own work. Although the current LHCb solution,

presented in Section 2.5.4, was developed at CERN the integration of this

mechanism into DIRAC was performed by myself. Whilst working in collabo-

ration with the ARDA group at CERN, I performed the first realistic analysis

using the EGEE gLite Middleware described in Chapter 3. I contributed a

significant fraction of the effort on the design and implementation for the

LHCb DIRAC production system to accommodate the distributed user anal-

ysis tasks as described in Chapter 4. I was the principal author of the Agent

Director and Agent Monitor services as well as the Software Distribution and
Threaded Computing Element modules. To enable the distributed analysis

tasks, I also modified the following modules: Job; Step; Module; Job Wrap-

per; Gaudi Application; Client; Matcher; and Data Optimiser. Using this

system I also explored several optimisation strategies that are described in

Chapter 5, along with my results from tests on LCG. Based on this work,

I made several policy decisions on how the Pilot Agent paradigm is utilised

in LHCb. My analysis of results from real users submitting distributed data

analysis jobs to DIRAC is presented in Chapter 6. To facilitate user job

submission, I was also the principal author of the DIRAC API. This consoli-
dates new and existing functionalities of DIRAC and forms the interface for

users, including the Ganga Grid front-end, to submit jobs to LCG for LHCb.

All of the results presented in Chapters 5 and 6, are my own work, unless

explicitly referenced. The data samples in Chapters 5 and 6 were obtained
from DIRAC through a Performance Monitoring service of which I was the

author. In addition I have contributed significantly to the establishment and
daily running of the system such as: initially setting up and maintaining the

DIRAC Analysis Service; installing the first public distributions of DIRAC

at CERN; as well as supporting and training users.

V

Preface

This thesis concerns the development of a framework to support distributed

data analysis in the Large Hadron Collider beauty (LHCb) experiment. In

Chapter 1, the field of Grid computing will be introduced. This will present

definitions of the Grid, an overview of distributed computing, and the po-

tential applications of Grid computing. The LHC Computing Grid (LCG)

and the treatment of data in a Grid environment will also be discussed.

The LHCb experiment and its computing model are described in Chapter

2, along with some discussion of software distribution on the Grid. The

progress made in the automation of the installation procedure for LHCb

software using Pacman is briefly discussed. Chapter 2 will conclude with a

discussion of the software distribution mechanism chosen by the experiment.
In Chapter 3, some of the paradigms for distributed analysis in LHCb

will be presented with a discussion of approaches used by other experiments.
This is followed by an outline of the first realistic physics analysis carried

out on the EGEE (Enabling Grids for E-sciencE) gLite framework prototype

with DaVinci, the LHCb analysis software.
Distributed Infrastructure with Remote Agent Control (DIRAC) was suc-

cessfully used during the 2004 Data Challenge for Monte-Carlo production

tasks and it was decided to extend DIRAC to accommodate LHCb user ac-

tivities. The DIRAC system and the work performed to extend the system

to accommodate distributed user analysis tasks on LCG will be described in

Chapter 4. The advances in the workload management paradigm for analysis

with computing resource reservation (by means of Pilot Agents) will be dis-

cussed in Chapter 5. This approach allows DIRAC to mask any inefficiencies

of the underlying Grid from the user, thus increasing the effective perfor-

mance of the distributed computing system. Several workload management

optimisation strategies will be presented that demonstrate results which are

not possible using the standard LCG Grid middleware.

DIRAC has since been successfully used to demonstrate distributed data

analysis on the Grid for LHCb and has since become the default mode of

submission for all LHCb Grid jobs. In Chapter 6, the system performance re-

sults are presented and the experience gained is discussed. Future directions

involving further development of DIRAC for user tasks are also described.

Finally, conclusions will be presented in Chapter 7.

Throughout this thesis, frequently mentioned components of the DIRAC

Workload Management System will be referred to in italics to improve read-

ability.

VI'

Contents

Acknowledgements i

Author's Declaration iii

Preface v

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 What is a Grid? 3

1.1.1 Definitions of a Grid 4
1.1.2 Computing Power on Demand 6
1.1.3 What is e-Science? 8

1.2 Overview of Grid Systems and Distributed Computing
.... 9

1.2.1 A Brief History of Grid Computing
........... 10

1.2.2 Emerging Standards
................... 15

1.2.3 Components of a Typical Grid
............ .. 18

1.3 Applications of Grid Computing
................. 21

1.3.1 Scientific Grid Projects
................ .. 21

1.3.2 Commercial Grid Projects
................ 23

1.4 Grid Computing Applied to Particle Physics
........ .. 23

1.5 The LHC Computing Grid 25
1.5.1 A Brief Overview of LCG 26
1.5.2 LCG Information System

................. 29
1.5.3 LCG Workload Management System 31

1.6 Data on the Grid
........ 33

1.6.1 Treatment of Data in a Grid Environment 33
1.6.2 The LCG File Catalogue 35

1.7 Summary
............................. 35

2 LHCb Software Environment and Software Distribution 37
2.1 Introduction to LHCb: Physics Aims and Detector

39
2.1.1 LHCb Physics Aims

39
2.1.2 LHCb Detector

41
2.1.3 From the LHCb Trigger to the Grid

43
2.2 LHCb Software: Gaudi, Gauss, Boole, Brunel and DaVinci .. 45

2.2.1 The Gaudi Framework
46

2.2.2 Data Processing Applications 49

2.3 LHCb Computing Model
51

2.3.1 Logical Dataflow and Workflow Model
51

2.3.2 Computing Model
54

2.4 DIRAC as a Production System 56
2.5 Software Distribution in LHCb

57
2.5.1 Software Distribution Assumptions 58
2.5.2 Virtual Machine (Paratrooper) Concept 59
2.5.3 Automating LHCb Software Distribution Using Pacman 60
2.5.4 Final Implementation: install_project. py 66

2.6 Summary
67

3 Data Analysis in a Distributed Environment 68
3.1 Paradigms for Distributed Analysis

69
3.1.1 Push versus Pull 70
3.1.2 Pilot Agent Paradigm 73

3.2 Requirements for LHCb Distributed Data Analysis 77
3.3 Overlayed Network Concept 79

3.3.1 Agents' Control
80

3.3.2 Use of Agents' Control in LHCb 83
3.4 Other Examples of Distributed Analysis

84
3.4.1 Distributed Analysis in ATLAS

.............
85

3.4.2 CMS Distributed Analysis with BOSS
86

3.4.3 Distributed Analysis in ALICE with AliEn
.......

87
3.4.4 Emerging Trends

.....................
87

3.5 Distributed Analysis Using DaVinci In the gLite Framework . 89
3.5.1 Using DaVinci with gLite

89
3.5.2 The gLite Framework

...................
90

3.5.3 Bs -+ J/kP4> Channel
92

3.5.4 Analysis Using gLite
92

3.5.5 Job Splitting and Use of the gLite Package Manager. . 94
3.5.6 Analysis Results and Experience

95
3.5.7 Evaluation of gLite for Distributed Analysis 98

3.6 Summary 100

4 Distributed Infrastructure with Remote Agent Control 101
4.1 Introduction 102

4.1.1 DIRAC Design Principles 103
4.1.2 Main Components of DIRAC 104
4.1.3 History of DIRAC 107

4.2 DIRAC Implementation: Software Tools
108

4.3 Services Framework
111

4.3.1 Security in DIRAC - DISET 112
4.3.2 Deployment 113
4.3.3 Reliability 115
4.3.4 Example: DIRAC Configuration Service 116

4.4 Agents Framework
117

4.4.1 Site Agents
. 118

4.4.2 Pilot Agents
........................

119
4.4.3 Example: Transfer Agent

120
4.5 Workload Management

121
4.5.1 DIRAC Job Wrapper 122
4.5.2 Underlying Database 123
4.5.3 WMS Services

124
4.5.4 Instant Messaging in DIRAC 129

4.6 Data Management 129
4.6.1 Storage Element 129
4.6.2 File Catalogue 130
4.6.3 Replica Manager 131

4.7 Information, Monitoring and Accounting
............ 132

4.8 Summary
133

5 DIRAC Workload Management 136
5.1 Introduction 137
5.2 Jobs in DIRAC 138

5.2.1 Creating Complicated Job Workflows for Users 139
5.3 Workflow of Jobs

.................... 140
5.3.1 Providing Access to Input Data

..... 145
5.4 Optimisation Strategies

..................... . 147
5.4.1 Resubmission

............ 148
5.4.2 Filling 149
5.4.3 Multi-Threaded Filling 150
5.4.4 Testing Framework 152
5.4.5 Results and Performance 153
5.4.6 Pre-emption and Future Optimisations 157

5.5 Comparison of Strategies with Previous Simulation 159

5.6 DIRAC, Condor and Condor-G 160
5.6.1 Condor

...... 162
5.6.2 Condor-G

........ 163
5.6.3 Gliding-In

............... 165
5.7 DIRAC Paradigms in Other Experiments 166

5.7.1 G1ideCAF
............... 166

5.7.2 Panda 167
5.8 Summary

................... 168

6 DIRAC Analysis Service 171
6.1 Introduction 172
6.2 Implementation of DIRAC Service 172
6.3 DIRAC API 174

6.3.1 Treatment of Input Data by LFN 174
6.3.2 Input and Output Sandbox Handling 176
6.3.3 Output Data

...... 178
6.3.4 Interface to LCG 180
6.3.5 Generic Gaudi Application Job 181
6.3.6 Interface to GANGA 182

6.4 Performance on LCG 183
6.4.1 Job Start Times 184
6.4.2 Total Job Times 185
6.4.3 Matching Times 187
6.4.4 Job Completion Efficiency

...... 188
6.4.5 Effect of DC06 Activity on Performan ce 192

6.5 DIRAC Analysis Usage 195
6.5.1 Frequency of Submission

....... 195
6.5.2 Size of User Jobs

........... 196
6.6 User Experience 198
6.7 Maintenance of Service

..... 200
6.7.1 User Training

......... 201
6.8 Outlook

...... 202
6.9 Summary

................... 203

7 Conclusions 205

A Glossary 208

B Complicated Workflows with the DIRAC API 215

C DIRAC Job State Machine 217

References 220

X11

List of Figures

1.1 Overview of the main components involved in the LCG Infor-
mation System and their interactions 30

1.2 Illustration of the LCG workload management components
used during job submission and their interactions 32

1.3 Overview of the treatment of data in a Grid environment ... 34

2.1 Aerial view of CERN and the surrounding region 38
2.2 The reoptmised LHCb detector 41
2.3 The data flow of the LHCb data processing applications ... 50
2.4 The LHCb user analysis cycle

54
2.5 The LHCb Computing Model highlighting the distributed,

multi-tier regional centre model 55
2.6 LHCb CPU requirements breakdown by processing activity

during 2008-2010 56
2.7 LHCb Disk and MSS requirements from 2008 to 2010

.....
57

2.8 Dependency tree diagram up to LCG tools
63

2.9 Dependency tree diagram up to Gaudi
.....

64
2.10 Dependency tree diagram up to data processing applications . 65

3.1 Illustration of the PUSH and PULL scheduling paradigms .. 70
3.2 Illustration of the PUSH model with the use of the Pilot Agent

paradigm 73
3.3 Matching times during LHCb DC04 activity 75
3.4 Illustration of the DIRAC Pilot Agent paradigm in use on LCG 76
3.5 Overview of the different kinds of computing resources avail-

able to LHCb
...... 80

3.6 Illustration of Agent deployment in an Overlay Network
... 81

3.7 Illustration of Agent interaction with Services in an Overlay
Network

.............................. 82
3.8 Analysis dataflow in the gLite Framework, from the perspec-

tive of the user 93

3.9 Reconstructed J/xF mass distribution after applying J/W se-
lection cuts 96

3.10 Reconstructed 1 mass distribution after applying J/W and 1
selection cuts 97

3.11 Reconstructed BS mass distribution after applying all selec-
tion cuts 98

3.12 Plot of the cosine of the transversity distribution cos 8t,. for all
selected BS events 99

4.1 Overview of the main components of DIRAC 105
4.2 The timeline of the main milestones and developments of DIRAC

to date 107
4.3 CPU usage on the machine hosting the DIRAC central services 114
4.4 Overview of the DIRAC Configuration Service 116
4.5 Schematic overview of the DIRAC Transfer Agent as used in

the Service Challenge 3 activity 121
4.6 Overview of the Job Management Services in DIRAC Produc-

tion WMS 124
4.7 Overview of the DIRAC Data Management System 132

5.1 DIRAC Job, Step and Module architecture 138
5.2 Structure of a multi-step job using the DIRAC API

.... .. 139
5.3 Outline of the DIRAC Workload Management System 142
5.4 DIRAC Workload Management on the Worker Node 144
5.5 Start times by mode for a total of 3000 jobs submitted to

DIRAC by 30 users
154

5.6 Mean start times for 10 experiments submitting a total of 3000
jobs to DIRAC from 30 users 155

5.7 Effect of optimising the workload on the level of the VO, versus
multiple users 156

6.1 Overview of treatment of input data by Logical File Name in
DIRAC

.............................. 175
6.2 Input / Output Sandbox handling as part of the job submis-

sion procedure in DIRAC 177
6.3 Treatment of output data files in DIRAC 179
6.4 A generic DIRAC API script for LHCb Gaudi-based applications182
6.5 Job start times on the DIRAC Analysis System for a sample

of 3000 real user distributed analysis jobs 184
6.6 Total job times for 3000 real user distributed analysis jobs

collected over a six month period on the DIRAC Analysis System 186

6.7 Matching times on the DIRAC Analysis System for 3000 real
user distributed analysis jobs collected over a six month period 187

6.8 Breakdown of results for 3000 real user distributed analysis
jobs collected over a six month period 189

6.9 Number of jobs running on the DIRAC Production system
during 2005-2006 193

6.10 Mean start times versus the number of submitted jobs sub-
mitted to the DIRAC Analysis System, during a six month
period 194

6.11 Number of jobs submitted to the DIRAC Analysis System

every two weeks over a six month period 196
6.12 Mean start time versus number of users submitting jobs to the

DIRAC Analysis System every two weeks over a six month period 197
6.13 Number of datasets submitted per job for 3000 real user dis-

tributed analysis jobs
198

6.14 Results of 500 jobs running over a total of 5000 datasets sub-
mitted to the WMS via the DIRAC API using Ganga 199

6.15 Efficiency of 500 jobs running over a total of 5000 datasets

submitted to the WMS via the DIRAC API using Ganga .. ". 200

C. 1 Primary job states in the DIRAC status machine where arrows
indicate the possible transitions

217

C. 2 Secondary job states in the DIRAC status machine where ar-
rows indicate the possible transitions 218

xv

List of Tables

1.1 Comparison of electrical and computational grids. 7
1.2 A sample of the many `©home' style Internet computing projects

and a brief description of their aims 12

3.1 Comparison of distributed data analysis systems 88

5.1 Number of Pilot Agents sent for each mode of submision ... 156
5.2 Comparison of the DIRAC WMS components and the ATLAS

Panda system equivalents 168

6.1 Effect of the DC06 activity on system performance 193

1. Introduction 1

Chapter 1

Introduction

In his 1983 Ph. D. thesis [1] entitled `Study of Load Balancing Algorithms for

Decentralised Distributed Processing Systems' Miron Livny stated:

Since the early days of mankind the primary motivation for

the establishment of communities has been the idea that by being

part of a group the capabilities of an individual are improved.

The great progress in the area of intercomputer communication

led to the development of means by which stand-alone processing

subsystems can be integrated into multicomputer communities.

Livny's assertion hints at the advantage of being an active part of a greater

whole, an approach that is mirrored in countries and governing structures of

the world today. As science has advanced over time, so too has the complexity

of problems being encountered by the academic community. Computing has

played an increasingly significant role in science over the years and scientific

communities have often been the driving force behind significant advances in

the field. In particular, the High Energy Physics (HEP) community played

a crucial role in the establishment of the internet as it is today through the

creation of the World Wide Web by Tim Berners-Lee in 1989.

1. Introduction 2

In the past, organisations would tackle computing problems through the

creation of individual supercomputers or large, local clusters of computers.
However, this solution is not ultimately scalable since the scope of current

and future computing requirements has increased beyond the level where all

necessary computing power can be provided at one single location. A new

infrastructure, capable of dealing with many distributed resources is required

and the solution is to be found in the field of Grid computing [2,3]. Livny's

words have special relevance here since the infrastructure for Grid computing

involves resource sharing on a large level as well as the establishment of

Virtual Organisations (VOs) [4], a new type of collaborative community to

utilise these geographically distributed resources.
Again, the HEP community is set to play an important role in the de-

velopment and demonstration of this new infrastructure. This infrastructure

is driven by the demands of the Large Hadron Collider (LHC) near Geneva,

Switzerland, set to come online in 2007. In this chapter, the concepts of
Grid computing will be presented in Section 1.1 with an introduction to dis-

tributed computing and Grid systems given in Section 1.2. Some of the many

applications of Grid computing will be mentioned in Section 1.3, with Grid

computing applied to particle physics being described in Section 1.4.

The LHC Computing Grid (LCG) project [5], that aims to provide the
distributed computing infrastructure for the LHC, will be outlined in Section

1.5. With shared computing resources all over the world, providing seamless

access to data, which may be stored in many different locations, becomes of

vital importance. The treatment of data on the Grid will be discussed in

Section 1.6.

1.1. What is a Grid? 3

1.1 What is a Grid?

In simple terms a computational Grid can be thought of as a collaborative

group of networked computers, communicating via the internet. Whereas

the internet provides seamless access to information held on computers all

over the world, the Grid aims to provide seamless access to computational

power and storage systems distributed across the world.

Many factors introduce complexity to the task of sharing computational

power and storage systems across national and institutional boundaries. A

non-exhaustive list includes:

" Heterogeneity which exists in computer hardware as well as operating

systems;

" Resource discovery as well as providing a fair share of resources for all

users;

" Ensuring security and traceability for owners of the Grid infrastructure;

9 The political nature of collaborating on a global scale i. e. each con-

tributing site could have different policies; and

" Assuring high availability of Grid resources.

While these issues present a formidable challenge, there is great potential for

Grid computing to cause a revolution on the same scale as the Internet has

in recent times, creating many commercial and everyday uses.
Grid computing is a complex and rapidly developing field and as such

many definitions of the term `Grid' exist. These will be examined in Section

1.1.1. The name given to Grid computing is not without meaning, a well
documented analogy exists with an electrical power grid and this is explained

1.1. What is a Grid? 4

in Section 1.1.2. The term `e-Science' is often used in the same contexts as

that of the Grid and this will be described in Section 1.1.3. The computing

trends leading to the field of Grid computing will be explored in Section

1.2, with an in-depth look at the key components of Grids and emerging

standards.

1.1.1 Definitions of a Grid

Answering the question `What is a Grid? ' is not as simple as it first appears.

In [6], Ian Foster presents a definitive three point checklist defining a Grid

as a system that:

1. Coordinates resources that are not subject to centralised control,

2. Uses standard, open, general-purpose protocols and interfaces, and

3. Delivers non-trivial qualities of service.

The first point implies that the computing resources of which the Grid is

comprised may have different access policies or rules governing their use. This

is symptomatic of the international, collaborative nature of Grid computing

where each participating site could have rules that should be followed, e. g.

a priority for local users. To be a Grid, issues such as security, membership

and payment [6] should be resolved as part of the system.
Without standard, open protocols and interfaces, as mentioned in the

second point of the checklist, a system could fall into the category of providing

specific services to a specific community. In this situation, users from another

community wishing to perform different tasks may not have the tools to

do so. Providing all potential users with distributed computing power is

vital for a Grid system. This implies a common infrastructure should be

1.1. What is a Grid? 5

in place to facilitate the use of available Grid resources, providing means to

address issues such as: authentication; authorisation; resource discovery and

resource access [6]. Some of the emerging standards in Grid computing will
be presented in Section 1.2.2.

As implied by the third point in the checklist, the components of a Grid

system should be used in a coordinated way to provide adequate response

times, high throughput of jobs and a quality of service to meet the complex

requirements of users. The main benefit of integrating many heterogeneous

distributed resources is to create a reliable, resilient system capable of pro-

viding computing power on demand.

The commercial potential of Grid computing has led to definitions from

companies such as IBM [7] that define the Grid as `using a set of open

standards and protocols, to gain access to applications and data, processing

power, storage capacity and a vast array of other computing resources over

the Internet', with further mention to the importance of users' quality of

service requirements in [8]. More examples are available from companies

such as Sun Microsystems [9] and Microsoft [10].

Another pioneer of the field, Rajkumar Buyya, defines the Grid [11] as:

Grid is a type of parallel and distributed system that enables
the sharing, selection, and aggregation of geographically distributed

`autonomous' resources dynamically at runtime depending on their

availability, capability, performance, cost, and users' quality-of-

service requirements.

All of these definitions are correct and so it is difficult to introduce a

universal statement that encompasses all of the present and future uses of
Grid technology. Other attempts have been made to define Grids by their
functionality or requirements [12,13]. However, for the remainder of this

1.1. What is a Grid? 6

thesis a working definition will be used that views a Grid in the context of

current global computing infrastructures such as LCG, explored in Section

1.5. An overview of the history of Grid computing as well as the typical

components of a Grid system will be described in Section 1.2.

1.1.2 Computing Power on Demand

In 1969, Kleinrock talked about the spread of `computer utilities' which could

`service individual homes and offices across the country' in the same way as

as electric and telephone utilities [14]. An electrical power grid does share

similar characteristics to the concept of a computational Grid. For instance,

electrical devices can be plugged into sockets, which provide a well-defined

quantity of power. The user of the device isn't concerned as to where the

power comes from, nor how it is delivered, only that the device receives

enough power to complete the task it was plugged in to perform. From the

perspective of the user, it is irrelevant whether the power was generated by

a coal, nuclear or hydroelectric plant, this heterogeneity is masked by the

power grid.

While the power grid analogy bears similarities to the computational
Grid, some of the points require clarification. Over forty years ago in [15],

several differences were highlighted and more recently they have been further

expounded in [16]. Table 1.1 presents a summary of the key differences

between electrical and computational grids.
While some of the differences described in Table 1.1 are obvious, several

warrant further discussion. Computational Grids must harness not only the

processing power of hardware resources such as individual Personal Comput-

ers (PCs) and site clusters, but must also deal with more complex resources

such as databases. Whereas any device with a plug may draw power from

1.1. What is a Grid? 7

Parameter Electrical Power Grid Computational Grid
Scope National Global
Resources Heterogeneous power sta- Heterogeneous compute re-

tions sources
Consumers Heterogeneous devices Heterogeneous software ap-

plications
Network Transmission lines, under- Internet connects compute

ground cables resources
Reliability Sophisticated protection Resource availability must

schemes and redundancy not be relied on, failures
exist must be dealt with

Ease of use Simple: plug and play Complex: no `universal
adapter' exists

Table 1.1: Comparison of electrical and computational grids.

the electrical power grid, there is no `universal adapter' for Grid comput-

ing systems. Many heterogeneous compute resources exist and it must be

possible for all to gain access to the Grid. Inter-Grid compatibility must

also be assured. Likewise, software applications running on the Grid need

an easy way to `plug in' to computing resources. Another important point

is security. On the electrical power grid circuit-breakers and fuses provide

protection. In a Grid environment however, providing a secure way for users

to run applications on remote resources, which they do not necessarily own,
is less clear. The issues regarding security on the Grid will be introduced in

subsequent sections.
It is fair to say that the added complexity of computational Grids limits

the effectiveness of the power grid analogy. However, the idea of computing

power as a utility is certainly appealing and could eventually become a reality.
This potential is only beginning to be realised with Grid computing but

with a steadily increasing requirement for computational power, fuelled by

experiments such as those at the LHC, Grid systems are set to become more

1.1. What is a Grid? 8

prevalent through necessity.

1.1.3 What is e-Science?

The drift towards ever increasing amounts of computing power is one of the

emerging trends in many fields of science today. Some examples of use-cases

in different disciplines will be explored in Section 1.3.

The desire to decouple those who manage compute resources from those

who utilise them has led to the creation of `e-Science'. It is possible to specify

e-Science as a field which aims to provide the necessary infrastructure to

match the increasing computing requirements of the sciences. Since Grid

computing aims to provide computational power to all users, regardless of

discipline, the two are inextricably linked.

Some of the main factors in the conception of e-Science include:

" Liberation of scientists from the task of maintaining and managing

compute resources;

" Provision of vast amounts of computing power across institutional, na-

tional and possibly international boundaries;

" Optimisation of the start times and efficiency of computational tasks;

and

" Provision of a simple, uniform way to perform task management.

For example, a scientist should not be concerned with how or where their

computing tasks run, only that they do run and with the highest possible
degree of efficiency. Whereas in the past, scientists would require familiarity

with several types of batch systems to run on local site clusters, the use of
the Grid enables uniform access to a larger amount of resources on demand.

1.2. Overview of Grid Systems and Distributed Computing 9

With many resources shared across the world there is a higher likelihood that

computing tasks can arrive at a site with available processing power.

A recent example of an e-Science project is Enabling Grids for E-sciencE

(EGEE) which involves `90 institutions in 32 countries world-wide to provide

a seamless Grid infrastructure for e-Science that is available for scientists 24

hours-a-day' [17]. The role of EGEE will be explored in the context of LCG

in Section 1.5.

1.2 Overview of Grid Systems and Distributed

Computing

This section aims to introduce the background to distributed computing,

which in turn has led to Grid computing. The complete history has too

broad a scope to cover here so only the trends leading to Grid computing

will be considered in Section 1.2.1.

Key to the develoment of Grid computing are the emerging standards

by which the vision outlined in Section 1.1.1 can be realised. Although

there are currently many Grids with different implementations and policies,

the drive towards a single global infrastructure requires open standards to

ensure compatibility. A description of the emerging Grid standards will be

presented in Section 1.2.2.

While many different Grid systems exist today, several common elements

are shared between them. An overview of a typical Grid system will be given
in Section 1.2.3.

1.2. Overview of Grid Systems and Distributed Computing 10

1.2.1 A Brief History of Grid Computing

Networked computers first arose more than forty years ago with the creation

of ARPANET (Advanced Research Projects Agency Network) [18]. This was

pioneering work which led to the first message being sent over a wide-area

network (WAN) in 1969.

During the subsequent decades, disparate local area networks (LANs)

were created that fuelled the desire for inter-network communication. Mech-

anisms were subsequently conceived to facilitate this such as Transmission

Control Protocol / Internet Protocol (TCP/IP) [19]. TCP allows the effi-

cient delivery of packets of data that are addressed and forwarded via IP. As

a result of the development of Ethernet [20] computers could easily be con-

nected to form a LAN. The adoption of TCP/IP as a network communication

standard led to the first steps towards the Internet.

The explosion of the Internet as we know it today also relied on develop-

ments such as the Domain Name System (DNS) [21] to resolve the readable

names of hosts to their numeric IP addresses. Other examples are HTML

(Hyper-Text Markup Language) and Uniform Resource Locators (URLs) un-
derlying the World Wide Web [22].

In the last twenty years, the lowering costs of computing hardware, in par-

allel with the development of high-bandwidth networking, has led to the shift
from building large mainframe supercomputers to clusters of PCs. These are
the circumstances from which distributed computing has emerged. The scope

of distributed computing includes the utilisation of any types of physically

separated compute resources and is too broad to discuss here. However, two

innovative developments in the use of networked computers, namely Internet

computing and Peer-to-peer (P2P) computing have special relevance to the
field of Grid computing and shall be examined below.

1.2. Overview of Grid Systems and Distributed Computing 11

Internet Computing

Many millions of computers are connected to the Internet at any one time

with a significant percentage having an idle CPU (Central Processing Unit)

[23]. Due to the prevalence of individual PCs at home, in businesses as well

as in institutions across the world, linking these resources together to form a
distributed computing pool is an attractive possibility, not least because this

computing power would otherwise go to waste. This is the aim of Internet

computing projects which utilise the so-called `cycle-stealing' paradigm. Cy-

cle stealing is perhaps a misleading term since legitimate Internet computing

projects work with the consent of owners. Participation usually involves in-

stalling some software which only makes use of the CPU when idle, e. g. as a

screensaver.

The first mainstream Internet computing project was Entropia [24] in

1997 whose remit included many problems of scientific interest. Amongst

other things, Entropia was used to identify the largest known prime number
[25]. Perhaps the most successful Internet computing project to date, is based

on the Search for Extra-Terrestial Intelligence (SETI) programme. SETI

relies on public support to search through collected radio signals to detect

intelligent life outside Earth. SETI@home [26,27] allows members of the

public to get involved by donating their idle CPU power with over half-a-

million PCs regularly participating.

Due to the widespread success of SETI@home, a plethora of other `@home'

style projects have appeared, some of which are described in Table 1.2. Many

Internet computing projects, including SETI@home, are actually based on
the Berkeley Open Infrastructure for Network Computing (BOINC) [28,29]

software which provides the infrastructure to support remote execution of
project tasks.

1.2. Overview of Grid Systems and Distributed Computing 12

Project Description
Folding@home Runs protein folding simulations to understand

diseases such as Alzheimers and Parkinsons [30]
Compute- Study side effects of chemotherapy, structure and
against-Cancer behavior of cancer cells and create better ways to

screen new cancer drugs [31]
Fight Assist fundamental research to discover new drugs,
AIDS@home using our growing knowledge of the structural bi-

ology of AIDS [32]
Einstein@home Searches for spinning neutron stars (also called

pulsars) using data from gravitational wave detec-
tors [33]

LHC@home Allows users to participate in the design of the
LHC by simulating particles in the accelerator [34]

Table 1.2: A sample of the many `@home' style Internet computing projects and

a brief description of their aims.

In recent times, Entropia has become a commercial venture and there

are now several companies offering the spare cycles of computers across the

world for profit, examples include: Parabon [35] and United Devices [36].

While Internet computing obviously has similarities to Grid computing

and demonstrates the effectiveness and importance of aggregating compute

resources, it is a special case of a more complicated problem. The software

used in Internet computing is purpose built and tends to be used for massively

parallel problems which can be split into more manageable parts. Internet

computing projects alone cannot support the execution of varied applications

and access to well defined services that are necessary in a Grid context. For

example, the LHC experiments require reliable access to data stored in many

different locations. The treatment of data on the Grid will be explored in

Section 1.6.

1.2. Overview of Grid Systems and Distributed Computing 13

Peer-to-Peer Computing

Today's Internet works using a client-server model where, for example, web

servers host webpages which are accessible via browsers acting as clients.
This is sometimes called a two-tier architecture since there are two types of

nodes: clients and servers. Servers are generally passive components which

wait for requests and issue a response once requests have been dealt with.
Clients, on the other hand, are active components that make requests and

wait for a response.

P2P computing involves each participating node acting as both a client

and a server. In this model, each member of the network adds to the capa-
bilities of the whole by providing processing power, bandwidth and storage

space. This makes such systems ideal for mutual file sharing e. g. audio,

video or other digital formats. P2P systems can be classified as centralised

or decentralised. In the centralised approach, a central server is employed to

keep information about individual peers and often responding to requests for

information by consulting a central index.

Examples of centralised P2P systems are BitTorrent [37] and Napster [38]

which both faced legal controversy over the sharing of copyrighted material.
Since then, other systems have emerged which deploy a decentralised P2P

system with encryption to ensure the anonymity of users, examples include

Gnutella [39] and Freenet [40].

It is important to note that the Grid does not aim to succeed P2P com-

puting. In fact there may be uses for P2P file sharing technologies in a Grid

environment. For example, P2P networks could be used to analyse remote
datasets by determining which datasets are the most utilised and distributing

them accordingly.

1.2. Overview of Grid Systems and Distributed Computing 14

Grid Computing

The precursor to Grid computing was known as `metacomputing'. This term

was introduced around 1990 and represented an effort to pool the resources

of multiple supercomputers [41]. With the advent of the Grid in the late

1990's [2], a concept with a broader scope than metacomputing emerged,

not only attempting to link supercomputers but many different compute

resources to realise the dream of computing power available as a utility. The

bridge between metacomputing and Grid computing was made through the

Globus Toolkit, described as `a Metacomputing Infrastructure Toolkit' [42].

The protocols and services of the Globus Toolkit are employed by many, if

not all major Grid projects today and shall be discussed in Section 1.2.2.

As Grid projects started to evolve, attempts were made to further classify

Grids according to their main function:

" Computational Grids for CPU intensive applications;

" Data Grids concentrating on the infrastructure to manage large amounts

of data e. g. storage capacity; and

" Service Grids focus on the coordinated, collaborative use of distributed

resources.

These classifications are starting to become superfluous today since many

of the current Grid systems exhibit the functionality of several categories.
LCG is one example, which combines elements of all three, and is described

in Section 1.5. The applications of Grid systems shall be explored in Section

1.3 and an introduction to Grid computing applied to particle physics will
be given in Section 1.4.

1.2. Overview of Grid Systems and Distributed Computing 15

1.2.2 Emerging Standards

The second point of Foster's Grid checklist in Section 1.1.1 highlights the

need for open protocols and interfaces. Open standards are essential to ensure

compatibility and provide a framework for Grid development. This section

will begin by outlining web services, an Internet standard on which some

Grid standards are based. The Open Grid Forum (OGF) and the Open Grid

Services standards will then be explored, followed by a description of Web

Service Resource Framework and the Globus Toolkit.

Web Services

As mentioned in Section 1.1.1, the Internet can be thought of as the `carrier'

for Grid computing and several emerging Grid standards employ web services

to ensure machine interoperability over a network. One of the main Internet

standards bodies is the World Wide Web Consortium (W3C) [43] headed by

Tim Berners-Lee. The W3C is engaged in the task of creating standards
for the web and has the official aim `to lead the World Wide Web to its

full potential by developing protocols and guidelines that ensure long-term

growth for the Web'.

Web services allow communication between applications that can be run-

ping on different platforms and written in different programming languages.

This is accomplished via a standard mechanism for all exchanges of data,

for example, using eXtensible Markup Language (XML). Another standard
is used for providing the means to access Web services, namely WSDL (Web

Services Description Language).

1.2. Overview of Grid Systems and Distributed Computing 16

Open Grid Forum

The two leading Grid standards organisations: Enterprise Grid Alliance

(EGA) and the Global Grid Forum (GGF) recently merged to form the Open

Grid Forum (OGF) [44]. By combining the expertise of both EGA and GGF,

the idea is that the OGF will form a stronger whole to accelerate progress

in defining standards and ensuring their adoption by the Grid community.

The OGF should also provide more cohesion between academic, industrial

and other communities involved in the field.

Two of the most well known Grid standards, Open Grid Services Archi-

tecture (OGSA) [3] and Open Grid Services Infrastructure (OGSI) [45] were

created by the GGF and will be explored below.

Open Grid Services

The concept of Grid services came about by trying to unify Web services and
Grid technology. OGSA is an architecture by which Grid services are defined.

In OGSA, each entity in a Grid environment becomes a service, allowing ac-

cess between components via a common framework. This includes everything
from storage and computing resources to applications and databases. OGSA

provides a common way to access many Grid services since standards such

as XML are used.
OGSI is a companion standard that formally specifies Grid services in

more technical detail. For example, OGSI defines interfaces and protocols
for the interaction of Grid services. The use of OGSI ensures interoperability

between Grids designed using OGSA.

1.2. Overview of Grid Systems and Distributed Computing 17

Web Services Resource Framework

The Web Services Resource Framework (WSRF) [46] was inspired by OGSI

and developments in Web services technology. For example, WS-Addressing

allows Web services to be accessed in a protocol independent way.

The advantage of a strong coupling between Web and Grid services means

that familiar Internet applications could be made to run in a Grid environ-

ment more easily. WSRF retained almost all of the functional capabilities

present in OGSI, while changing some of the syntax to accommodate such

Web service developments. WSRF led to a `refactoring and evolution' of

OGSI [47] and is likely to emerge as a Grid standard.

The Globus Toolkit

In many ways the history of the Globus Toolkit (GT) reflects the evolution

of Grid standards and the importance of Web services. For example, GT

Version 2 preceded many of the Grid standards described above and provided

an implementation of all core Grid services. GT Version 3 used the OGSI

implementation and the most recent version, GT4.0, has been developed

using the WSRF implementation.

The GT is an open source project developed by the Globus Alliance [48],

aiming to provide the necessary infrastructure for building Grid computing

systems and applications. The key areas in which the GT is involved include:

security, information services, data management and resource management.

Some elements of the GT shall be discussed during the overview of compo-

nents of a typical Grid in Section 1.2.3. The usage of GT components will

also feature when describing LCG in Section 1.5.

1.2. Overview of Grid Systems and Distributed Computing 18

1.2.3 Components of a Typical Grid

Having established the main concepts of the Grid and some of the emerging

standards, this section aims to provide an overview of the main components

required in a `typical' Grid system. Where relevant, common usage of the

GT infrastructure will be mentioned.

Security

Security is paramount when establishing a Grid system. Participating or-

ganisations, whether academic institutions, companies or governments must

at least be able to trace any misuse of resources. A security infrastructure

should ensure traceability and provide a robust system to deter those who

would seek illegal access to resources. The main requirements of a Grid se-

curity infrastructure are mechanisms for authentication, authorisation and

data encryption.
The Globus Grid Security Infrastructure (GSI) provides the current ba-

sis for Grid security and is based on the use of Grid certificates. These

certificates can be thought of as a passport or `digital identity' which use

public key cryptography to identify genuine users. Regional Certification

Authorities (CAs) issue certificates to users after a local Registration Au-

thority (RA) validates requests. Certificates use X. 509 format which is a

cryptographical standard for public key infrastructure (PKI). Each certifi-

cate has an accessible public part and a password-protected, private portion

which is used whenever a user needs to confirm their identity. For use on

the Grid, a user would typically create a proxy-certificate which is valid for

a finite time period. GT4.0 provides credential management services such

as MyProxyServer [491 to minimise unnecessary human involvement in auto-

mated operations. The issue of proxy expiration will be further explored in

1.2. Overview of Grid Systems and Distributed Computing 19

Chapter 6.

Information Service

Any Grid system must be able to access information about connected re-

sources. This is important in contexts such as testing the overall configura-

tion of the system, compiling resource usage statistics as well as providing

information for users and site administrators.

In Globus, the Grid Index Information Service (GIIS), sometimes referred

to as the Monitoring and Discovery Service (KIDS) provides information

about Grid resources and most importantly, their status. This can provide a

means for locating which resources are available and becomes essential when

tasks are waiting to be executed.

The LCG information system will be explored in Section 1.5.2.

Job Scheduling

When a trusted user wishes to execute an application on a Grid, the process

of identifying suitable resources for the job to be executed on is known as
job scheduling. Strategies for job scheduling in a Grid environment will be

discussed in detail in later chapters. The LCG approach to job scheduling

will be mentioned in Section 1.5.3.

The GT does not provide concrete mechanisms to enable job scheduling

although several elements such as the MDS, described above, could be used
to facilitate this.

Data Management

Data management in a Grid system can cover many aspects concerning stor-

age, retrieval and access to digital media. Tools must also exist in a Grid

1.2. Overview of Grid Systems and Distributed Computing 20

environment to facilitate data movement and replication between sites.
In GT4.0, the component which handles data replication operations is

known as the Data Replication Service (DRS). In practice, the DRS is rarely

used directly, with most Grids opting for a robust solution to data man-

agement issues based on file catalogues, see Section 1.6.2. While the DRS

offers tools for the discovery and replication of files, file catalogues can pro-

vide an internal record of data without explicit dependence on other Grid

components such as the information system.

The GT also provides tools for data movement, such as GridFTP (Grid

File Transfer Protocol) [50]. GridFTP is built on ordinary FTP but uses

GSI for user authentication and authorisation. GridFTP therefore provides

a secure, fast and reliable mechanism for data transfer on the Grid.

The treatment of data on the Grid will be discussed in more detail in

Section 1.6.

Job Management

Once a job has been scheduled to a particular resource, services are necessary

to allow job execution, job monitoring and output retrieval.
In the GT, a component known as the Grid Resource Allocation Manager

(GRAM) provides this functionality. In GT4.0, GRAM is available in both

Web services and pre-Web services forms to ensure interoperability between

systems running different versions of the toolkit.

The provision of services for dealing with many jobs, or a workload, is

an important theme of this thesis which will be elaborated upon in later

chapters.

1.3. Applications of Grid Computing 21

1.3 Applications of Grid Computing

In the early stages of the Internet, it is unlikely anyone could have imagined

the multitude of applications which are available today. The same will most

likely hold true for the applications of Grid computing. This section will

describe some of the current applications of Grid computing, focussing on

projects which are outside of HEP (since HEP will be the subject of Section

1.4). Grid projects with a scientific stance will be explored in Section 1.3.1,

whilst examples of other applications of Grid computing can be found in

Section 1.3.2.

1.3.1 Scientific Grid Projects

As mentioned in the introduction to this chapter, the complexity of problems

faced in many areas of science are fuelling the need for Grid computing. A

selection of projects making use of Grid computing in different disciplines is

presented below. All, to some extent, utilise the Globus Toolkit described in

Section 1.2.2.

The Virtual Laboratory Project

The Virtual Laboratory Project involves large-scale molecular studies on ge-

ographically distributed Grid resources [51]. This helps scientists in the field

of molecular biology to screen millions of chemical compounds to determine

their potential in the field of drug design. The screening of each compound
is expected to take approximately three hours on a standard PC [52].

1.3. Applications of Grid Computing 22

Earth System Grid

The Earth System Grid (ESG) [53] aims to provide a common grid envi-

ronment for climate research. The climate models used to simulate changes
in our global environment produce tens of Petabytes of data that must be

accessible for further analysis.

Grid Enabled Optimisation and Design Search for Engineering

The Grid Enabled Optimisation and Design Search for Engineering (GEODISE)

[54] project aims to build a state of the art design tool demonstrator for

large-scale distributed simulations involving fluid dynamics. Individual de-

signs, including their optimisations and simulations can approach Terabytes

of distributed data and hence require the use of Grid computing technologies.

International Virtual Observatory Alliance

International Virtual Observatory Alliance (IVOA) [55] is a worldwide ini-

tiative to create a virtual observatory utilising astronomical archives. This

involves the creation of tools, systems and organisational structures acces-

sible for all those taking part. The AstroGrid project [56] forms the UK

contribution to the IVOA.

HealthGRID

A Grid for Health, HealthGRID [57], aims to provide a synergy between bio-

informatics and medical-informatics. This would allow sharing of resources

and collaboration between those studying fields such as genomics, medical
imaging and modelling of biological structures. HealthGRID involves both

laboratories and commercial companies in a collaborative environment but

also offers the provision of computing power and storage capacity at cost.

1.4. Grid Computing Applied to Particle Physics 23

1.3.2 Commercial Grid Projects

The commercial sector has been heavily involved since the inception of Grid

computing. The economic potential of the Internet has continued to be

realised in recent times, with a similar level of interest expected for the

applications of Grid computing.

In the past few years several companies have begun to offer Grid tech-

nologies for business applications such as IBM [7] and Sun Microsystems

[9]. Further examples come from Internet computing such as Entropia [24],

Parabon [35] and United Devices [36] which offer software to establish Grids

within organisations and businesses. Grid consultancy firms have also started

to appear, these offer tailored advice on how to apply Grid computing to

the immediate needs of individual businesses. Examples include Gridwise

Tech [58] and GridSystems [59].

With large scale demonstrations of Grid technology, such as the LCG

infrastructure for the LHC in 2007, the commercial aspects of Grid computing

are set to grow significantly in the years ahead. An overview of LCG will be

presented in Section 1.5.

1.4 Grid Computing Applied to Particle Physics

The HEP community is a major driving force behind the development of the
Grid. HEP experiments, such as those at the LHC, will produce data on the
Petabyte scale which must be stored and made accessible to physicists for

further analysis. Many Grid projects are currently in existence to meet the

computing requirements of HER Due to the scale of this undertaking, many
Grid projects also support other scientific activities. A sample of these are
listed below.

1.4. Grid Computing Applied to Particle Physics 24

" GridPP The UK Grid for particle physics GridPP [60] currently links

17 U. K. institutions and is fully functioning. GridPP forms the U. K.

contribution to LCG, which is discussed in Section 1.5, and is also part

the larger, interdisciplinary EGEE [17] project. A recent proposal has

been made to extend the GridPP project and facilitate the exploitation

of available Grid resources [61] for use in particle physics. The vision

of GridPP is for the Grid to become the primary means of providing

compute resources to the U. K. particle physics community. Significant

expansion of resources is expected before and during the start of the

LHC, reaching an equivalent of 50,000 desktop PCs with over 20 PB

of accessible storage capacity by 2012 [61].

" GriPhyN The Grid Physics Network (GriPhyN) [62] is based in the

U. S. and aims to provide the necessary infrastructure for current exper-

iments in astronomy and particle physics to perform distributed, col-
laborative analysis of data. Along with the iVDGL and PPDG below,

GriPhyN has developed the Virtual Data Toolkit (VDT) to support

this task. The VDT includes basic Grid services and tools to support

working with distributed datasets in a Grid environment.

" iVDGL The International Virtual Data Grid Laboratory (iVDGL) [63]

aims to facilitate interdisciplinary experimentation in Grid-enabled,

data-intensive scientific computing in a single system. Based in the

U. S., the iVDGL also aims to aggregate heterogeneous computing and

storage resources in Europe and Asia.

" PPDG The Particle Physics Data Grid (PPDG) [64] is involved in the
development and deployment of production Grid systems for several
experiments in particle physics. PPDG is also working towards the

1.5. The LHC Computing Grid 25

integration of experiment-specific applications to run in a Grid envi-

ronment. PPDG is a joint venture between several U. S. laboratories

and together with iVDGL and GriPhyN, forms a collaborative trio of

U. S. Grid projects for physics.

" NorduGrid NorduGrid [65] is a European project which focusses on

the development, maintenance and support of Grid middleware known

as the Advance Resource Connector (ARC). ARC is freely available

and utilises other open source software such as the Globus Toolkit.

" OSG Open Science Grid (OSG) [66] is a project built and operated

by a consortium of U. S. universities and national laboratories. OSG is

comprised of an Integration and a Production Grid. The Integration

Grid is used as a testbed for new Grid applications and software whereas

the Production Grid provides a stable environment for intensive usage.

OSG is principally used for particle physics e. g. LHC experiments.

An intentional omission from the above list is LCG, currently the world's

current largest Grid, which will be described in the next section.

1.5 The LHC Computing Grid

The main mission of LCG [5] is to build and maintain a data storage and

analysis infrastructure for the HEP community that will use the LHC. LCG

provides Grid `middleware' to facilitate this. Grid middleware is the layer

of software that provides key services for security, information, data man-

agement and access to resources. Therefore, middleware is often thought of

as the `glue' that binds disparate resources together. LCG actively supports
Globus and uses the Globus-based VDT, described in Section 1.4 as part of

1.5. The LHC Computing Grid 26

the project middleware.

LCG is the primary production environment for the EGEE [17] project,

which aims to establish a Grid infrastructure for European science. EGEE

is leading a worldwide effort to re-engineer existing Grid middleware. For

example, LCG-2 middleware on LCG is in the process of being replaced by

gLite [67]. The EGEE gLite middleware will be discussed in Chapter 3 with

some important components mentioned below

In later chapters topics such as: the paradigms for distributed analysis;

different approaches to job scheduling; and possible strategies in order to

minimise the start time of jobs will be explored. This discussion depends on

an understanding of some LCG components, which will be described below.

Whether or not the implementations change due to shifts in the middleware

providers, the concepts should remain the same in the future.

The architecture and components of LCG are explained in much greater
detail in [68]. The goal here is to present a brief overview of the system, con-

centrating on the components that play an important role in the treatment

of jobs. The LCG Information and Workload Management Systems are two

such components and will be outlined in Sections 1.5.2 and 1.5.3 respectively.

1.5.1 A Brief Overview of LCG

This section discusses the key components of LCG, which will be the subject

of further discussion later in this thesis. These elements described here in-

clude: security mechanisms; the VO membership service; and a description

of storage element and computing element interfaces.

1.5. The LHC Computing Grid 27

Security

The importance of security for Grid systems was discussed in Section 1.2.3.

The security infrastructure for LCG must be robust in terms of design and

implementation, but also for deployment and operation. Authentication is

based on the GSI from Globus, using PKI based on X. 509 format digital

certificates. Regional CAs act as a trusted third-party that digitally signs

the certificate to confirm the binding of the individual identity to the name

and the public key [68]. VOMS, described below, is used to incorporate

information about the groups and roles of individual users.

Grid proxies are used to access Grid resources with a finite period of

validity. When longer-term proxies are needed, MyProxy [49] services can

be used to renew the proxy. Sites maintain Certificate Revocation Lists

(CRLs) to prevent unauthorised access to Grid resources from expired and

compromised user certificates. The Distinguished Name (DN) of a user is a

meaningful string which is encoded in all Grid certificates and proxies. This

can be used for accounting and further authorisation e. g. when accessing

storage systems.

Virtual Organisation Membership Service

The Virtual Organisation Membership Service (VOMS) [69,70] component

of gLite allows additional information about users to be incorporated in the

proxies which are used to access Grid resources.

This, information can include the VO of which the user is a member and

also any sub-groups. For instance, in an academic context, sub-groups could

include particular research groups or administrators of local systems. VOMS

is also used to encode roles and capabilities of users in order to define their

access privileges in a Grid environment.

1.5. The LHC Computing Grid 28

Storage Elements

A Storage Element (SE) is an abstraction of physical storage devices which

provide services and interfaces to access them. For example, SEs in LCG

provide access to the following: Mass Storage Systems (MSS), including ei-

ther disk cache or disk cache front-end backed by a tape system; GridFTP

service, to provide data transfer in and out of the SE as well as to and from

the Grid; and also local Unix, POSIX-like (Portable Operating System In-

terface) input/output facilities to the local site, providing application access

to the data on the SE [68]. SEs also provide a Storage Resource Manager

(SRM) [71] interface. SRM allows access to different MSS implementations

in a transparent way.

It is important to note that there is not a one-to-one relationship between

sites and SEs. In fact, a site may have several associated SEs depending on

the available resources located there. SEs also provide access control and

traceability based on the use of proxy certificates with a user DN, as well as

information about groups and roles provided by VOMS.

Computing Elements

In a similar way to how SEs present an abstraction of storage devices, Com-

puting Elements (CEs) provide an abstraction of compute resources. CEs

provide a set of services to enable access to different implementations of lo-

cal batch systems running on site compute farms. Each site establishes job

queues on the local batch system and the CE is used to access them through

the Grid.

On LCG, CEs provide the following services and interfaces: mechanisms

by which work may be submitted and monitored on local batch systems; and

publication of information, including accounting, through the Grid informa-

1.5. The LHC Computing Grid 29

tion system, which will be described in Section 1.5.2. CEs must also provide

authentication and authorisation mechanisms based on the VONIS security

model and ensure that user credentials, provided as Grid proxies, are used

to create appropriate local mappings by the DN.

Existing CEs on LCG are based on GRAM, part of the Globus Toolkit

described in Section 1.2.3, although a new gLite CE is set to replace this.

The gLite CE is based on a variant of Condor [72] which will be explored in

detail in Chapter 5.

Virtual Data Toolkit

The VDT originally developed by the GriPhyN and iVDGL projects intro-

duced in Section 1.4 is a collection of Grid middleware that can be easily

installed and configured. VDT is now used by LCG and the PPDG, with

both LCG-2 and gLite middleware components relying on VDT versions of

Condor, Globus and MyProxy software. Selected components of gLite such

as VOMS are also being added to the VDT.

1.5.2 LCG Information System

The LCG Information System (LCG IS) consists of services that publish and

maintain data concerning Grid resources. CEs and SEs publish informa-

tion, according to the Grid Laboratory Uniform Environment (GLUE) [73]

schema, that describes the resources available at a site and their current

state. GLUE is an information model for resource discovery and monitoring,

which is composed of attributes with a name, multiplicity, type, and descrip-

tion of the content. There are several equivalent implementations of GLUE

including an XML representation and LDAP (Lightweight Directory Access

Protocol) schema.

1.5. The LHC Computing Grid 30

The LCG-2 monitoring system is based on Globus such that CEs and

SEs each have a local Grid Resource Information Server (GRIS) which sends

information to the nearest GIIS. The GIIS then publishes this information

using LDAP to a Berkeley Database Information Index (BDII), which adheres

to the GLUE information model. The BDII is an LCG implementation of

the Globus GIIS based on the Berkeley Database with increased scalability.

Figure 1.1 illustrates the LCG IS components and their basic interaction. The

GIIS may publish information to several BDIIs which allows, for example, a

separate BDII per VO.

BDII 11 1 BDII

MIS GIIS
Site A "ý:

" GRIS ;"
"ý'"

SE GRIS Site B ýý":

GRIS % CE
"" CE GRIS

GRIS

" GRIS SE "ý"
SEý

ýý

Figure 1.1: Overview of the main components involved in the LCG Information

System and their interactions.

Both LCG-2 and gLite middlewares rely on the BDII for proper opera-

tion. However, the gLite information service implementation is based on a

Grid Monitoring Architecture proposed by GGF, called R-GMA (Relational

Grid Monitoring Architecture) [74]. R-GMA adopts a consumer/producer

model to represent the information infrastructure of the Grid. This works by

separating information providers and those which request information with a

central registry to mediate communication. R-GMA can use the same infor-

1.5. The LHC Computing Grid 31

mation providers which populate the BDII and is consequently interoperable

with the LCG-2 system.

The BDII is therefore a repository of information on the current state of
Grid resources and can be queried by other services such as those in the LCG

Workload Management System, described in the next section.

1.5.3 LCG Workload Management System

The Workload Management System in gLite is an evolution of the one in

LCG-2. However, the main components are very similar, so the LCG-2 Work-

load Management System (LCG WMS) will be described here. Both rely on

the BDII described in the last section as an information system and the gLite
Workload Management System will be interoperable with LCG-2 CEs. This

section will present an overview of the main components, omitting technical

details where possible. Discussion in future chapters will rely on an under-

standing of the concepts introduced here.

The LCG WNIS provides basic job management facilities such as job

submission, job deletion and monitoring and is also responsible for accounting

and error reporting. It makes use of Condor and Globus technologies and

relies on Globus GSI security. The user interacts with the LCG WMS using

a Command Line Interface or APIs (Application Programming Interfaces)

with tasks specified by a Job Description Language (JDL) based on Condor

Classads [75]. As shown in Figure 1.2, the LCG Resource Broker (RB) [76],

accepts and satisfies job management requests from clients in order to submit
jobs to a suitable CE and finally to a Worker Node (WN). A WN is a compute

resource (e. g. node of a batch system) that provides CPU power to process a
task. The user may interact with a MyProxy [49] server in order to prevent

proxy expiration whilst a job is running.

1.5. The LHC Computing Grid 32

MyProxy User
Server Interface

177-7177

Management Resource Information

S stem
Broker System

CE II CE II CE

WN LLd WN N

1WN
Figure 1.2: Illustration of the LCG workload management components used dur-

ing job submission and their interactions.

The LCG RB schedules jobs based on the Condor [76] centralised schedul-

ing mechanism. This shall be further discussed in Chapters 3 and 5, with

the decision made based on a matchmaking process. The RB accesses in-

formation about resources through the LCG IS, organised according to the

GLUE schema, and published through a BDII. Jobs are then dispatched to

appropriate CEs, depending on such factors as: job requirements; availabil-
ity of resources; and also any policies that are in place on particular sites.
Policies may be in place to give priority to local users on site resources or,

on the level of the VO, to provide a certain quality of service. For jobs with
input data requirements, the data management services of LCG are used to
determine suitable SEs and hence CEs for the job. This will be described in

the next section.

1.6. Data on the Grid 33

1.6 Data on the Grid

One of the most difficult challenges for HEP Grid computing is to provide

reliable and efficient access to input datasets. It is essential to the success

of the LHC experiments that physicists are able to access the data produced
by the LHC detectors. Distributed data analysis frameworks aim to provide

this means. A mechanism for enabling reliable access to datasets in a Grid

environment will be described in Chapter 5. This requires an understand-

ing of how data is treated on the Grid, which will be discussed in Section

1.6.1. The LCG File Catalogue (LFC) plays a crucial role in the handling of
distributed data and shall be introduced in Section 1.6.2.

1.6.1 Treatment of Data in a Grid Environment

In order to introduce the treatment of data in a Grid environment some

definitions are first required. All data is specified by a meaningful Logical

File Name (LFN). This is because every LFN has a certain number of replicas

which have corresponding Physical File Names (PFNs) associated with them.

These replicas may be at the same or different Grid sites corresponding to

different SEs. Each file may have several LFNs associated with it according

to user defined names. This is analogous to the use of SymLinks in a Unix

environment.

PFNs are also referred to as Storage URLs (SURLs) since their names

are determined by the Grid SE on which the replica exists. In order to access
files, Transport URLs (TURLs) are used. TURLs are temporary locators of
a replica which include a protocol determining how the files can be accessed
and understood by SEs.

Files must be uniquely identifiable on the Grid and the use of Globally

1.6. Data on the Grid 34

Unique Identifiers (GUID) facilitates this. GUIDs are 128-bit hexadecimally

grouped strings which provide a sufficient number of combinations to address

all files on the Grid.

This complex machinery is required since files on the Grid may exist in

many different geographically distributed storage systems. Figure 1.3 out-

lines the relationship between LFNs, SURLs, TURLs and GUIDs for a typical

file in a Grid environment.

User defined
II

Ij
Meaningful

labels With access
protocol

Figure 1.3: Overview of the treatment of data in a Grid environment. This

Figure shows the relationship between LFNs, SUI? Ls, TUI? Ls and GUIDs for a

typical file.

In practice, GUIDs are not user-friendly file names and it is clear why

LFNs are preferred. The complicated nature of addressing files in a Grid en-

vironment should be masked from the end user as much as possible. Chapters

5 and 6 will outline some of the steps taken to achieve this. In the context of

submitting jobs with input data requirements to a traditional batch system,

users would have to specify the exact PFNs (SURLs) on which to run. In a

1.7. Summary 35

Grid environment, the machinery should restrict users to only ever dealing

with LFNs

1.6.2 The LCG File Catalogue

The LCG File catalogue (LFC) [77] offers a hierarchical view of the logical

file name space and will be discussed in more detail in Chapter 4. The LFC

provides a LFN to SURL translation using file GUIDs and allows the deter-

mination of which site a given file resides. The LFC exposes an API that

provides Unix style permissions and POSIX Access Control Lists (ACL) to

define ownership. The LCG RB interacts with the LFC through the Data

Location Interface (DLI) in order to resolve the suitable SEs for the require-

ments of jobs. Metadata can be associated with file entries, e. g. informa-

tion about the file defined by the user. The LFC supports Oracle [78] and

MySQL [79] databases and can also be interfaced through Python.

In order to perform data management operations on files stored at SEs,

LCG has developed Grid File Access Library (GFAL). This is a POSIX-like

layer for access to Grid files via their LFN and provides familiar style of calls

to open, read, write and close files while interfacing to the LFC.

1.7 Summary

In this chapter, the basic principles of Grid computing have been described

and set in the context of experimental particle physics. The concept of the

Grid was presented in Section 1.1 along with some definitions and the idea

of computing power on demand, as a utility.
The history of distributed computing leading to Grid systems was pre-

sented in Section 1.2 along with some discussion of the emerging standards

1.7. Summary 36

in the field. Components of a typical Grid system were also mentioned,

highlighting the Globus Toolkit components which are commonly utilised.

Some applications of Grid computing were described in Section 1.3 where

increasingly prevalent commercial projects were highlighted. Grid comput-

ing projects focussing on particle physics were summarised in Section 1.4,

demonstrating that HEP is one of the main driving forces behind Grid com-

puting.

An overview of LCG was given in Section 1.5 with emphasis on compo-

nents which have relevance in the context of distributed data analysis jobs.

In Section 1.6, the treatment of data on the Grid was introduced. Accessing

datasets in a Grid envrionment is vital to the success of the LHC experiments

and the LCG WMS relies on the LFC for this.

In subsequent chapters, this thesis will further explore many of the con-

cepts introduced here. The next chapter will introduce LHCb (Large Hadron

Collider beauty) which is one of the four main LHC experiments. LHCb must

rely on Grid technologies to successfully store and access data from the de-

tector. In particular, the LHCb application software and computing model

will be discussed. Chapter 3 will highlight the paradigms associated with

distributed data analysis on the Grid, showing how the LCG resources de-

scribed in this chapter are utilised. Chapter 4 will introduce the system that

has subsequently been adopted by LHCb for performing distributed data

analysis on LCG. Optimisation strategies in order to minimise the start time

of user analysis jobs will be discussed in Chapter 5. The results of providing

an analysis service to real users will be presented in Chapter 6 and overall

conclusions will be given in Chapter 7.

2. LHCb Software Environment and Software Distribution 37

Chapter 2

LHCb Software Environment

and Software Distribution

The Large Hadron Collider (LHC) is based at CERN [80], the European

Organisation for Nuclear Research, in Geneva, Switzerland. The LHC is a

proton-proton collider with a 27 km circumference and will be the world's

most powerful particle accelerator when it comes fully online. Two proton

beams, each carrying bunches of 7 TeV protons, will travel in opposite di-

rections and collide at four points corresponding to the detectors of the

four main experiments: ALICE [81]; ATLAS [82]; CMS [83]; and LHCb [84].

Figure 2.1 highlights the four main LHC experiments, CERN, and the sur-

rounding region.

The Standard Model (SM) is the current theory that describes the fun-

damental properties of matter. Although this has been tested rigorously

over the years, many important questions remain unanswered. Examples of

potential discoveries within the scope of the LHC include:

" Particles acquire mass via the Higgs mechanism according to the SM. If

the mediating particle (the Higgs boson) exists, it should be detectable;

2. LHCb Software Environment and Software Distribution 38

Figure 2.1: Acrial r°i. r ru of the CERN and the surrounding r(gion. 7'he largest

ring is the LHC that has a circumference of 27kmn. The approximate locations of

the ATLAS. ALICE. CMS and LHCh experiments are also highlighted. This figure

is modified and reproduced from /NOJ.

" Theexistence of 5npersyninnetry, potentially leading to the unification

of the four fundamental forces:

" Further exploration of CP violation should place more stringent limits

u, u the SM and lead to a deeper understanding of the matter-antimatter

imbalance that exists in the universe to(lav: and

" Observation of the transition to a new state of matter (the quark-gluon

1)1N5iiia).

The LI1(experiments will test the SM at a new level of precision and are

in an excellent posit ion to explore possible new physics heyoncl the SCI. Of

the four main experiments, ATLAS and CRIS are 'general purpose' detectors

that attempt to encompass as broad a range of physics as possible. Whilst

A'1'LAS and C\IS have similar physics goals. their respective designs and
implementations are distinct. Of the remaining experiments ALICE is a

2.1. Introduction to LHCb 39

dedicated heavy-ion detector, studying strongly interacting matter at high

densities, whereas LHCb has been designed to study B-physics.

This chapter has two main aims, the first of which is to introduce the

LHCb experiment. This will include a brief discussion of the physics objec-

tives of LHCb and an overview of the detector in Section 2.1. The LHCb

software framework and data processing applications are examined in Section

2.2, with the computing model being described in Section 2.3.

Secondly, it is essential that application software is successfully distributed

to the WN where the job is executed on the Grid. This chapter will also de-

scribe work performed in evaluating software distribution mechanisms for use

by LHCb in Section 2.5.

2.1 Introduction to LHCb: Physics Aims and

Detector

The LHCb [85,86] experiment is a forward single arm spectrometer that has

been designed principally to study CP violation in the b-quark sector at the

LHC. The physics aims of LHCb will be explored in Section 2.1.1. This is

followed by an overview of the detector in Section 2.1.2. Lastly, the treatment

of detector data from the LHCb trigger to the Grid will be explored in Section

2.1.3.

2.1.1 LHCb Physics Aims

The two B-factory experiments, BaBar [87] and Belle [88], were the first to

observe CP violation with B-mesons. Other recent and ongoing experiments
in the field include CDF and DO at the Tevatron [89] where the heavier B-

2.1. Introduction to LHCb 40

mesons are accessible. CDF and DO recently made the first measurements of
BS oscillations [90] and also a precision measurement of the Bc mass [91].

LHCb is a second generation experiment which will operate at a centre of

mass energy of 14 TeV. With this large energy and high luminosity of the

LHC, a large statistics B physics sample will be available to LHCb. This

will allow measurements to be made to a higher precision compared with

previous experiments. In addition, LHCb will be capable of investigating a
larger number of decay channels than previously accessible.

The main physics aim of LHCb is to measure CP violation in a variety

of decays of B-mesons to place stringent limits on the consistency of Unitar-

ity Triangles derived from the Cabibbo-Kobayashi-Maskawa (CKM) quark

mixing matrix in the SM. With the high level of statistics available to the

experiment, it is possible for LHCb to analyse decay modes having small

branching ratios. Some examples of the results accessible to LHCb include:

" First measurement of CP violation in the Bs system;

" Precision measurement of the BS mass and width differences (Am3 and

orb/r8);

9 Observation of rare B decays such as BS -* jr; +µand

" Precision measurement of the angle ry of the unitarity triangle.

The nominal LHCb luminosity of 1032 cm-2s 1, is expected to produce

approximately 105 B particles per second [86]. However, the B hadrons of
interest for CP violation studies all have small (less than 10'4) branching

fractions and the bb cross section is two orders of magnitude smaller than

the total visible cross section [92]. Moreover, LHCb requires fast track recon-
struction with high efficiency in order to distinguish between the B decays

2.1. Introduction to LHCb 41

and the plethora of background Puns arising froth the proton-proton (ol-

lisions. Therefore, one of the biggest challenges for LHCh is to ensure a

selective and sophisticated trigger system. which will he described in Section

2.1.3. The design of the LHCb detector is explored in the next section.

2.1.2 LHCb Detector

Figure 2.2 shows a siele view of the LHCh detector that has the following

main components: the Vertex Locator (VELO), covering the region where

\\1

20m

Figure 2.2: Tlie reoptirn, ised LHCb detector. from [861.

(protons arriving from the left and right will eventually collide; the beam pipe;

the dipole magnet: the tracking sN, stehe (TT. T1-T3); two Ring Imaging
. el

Cherenkov detectors (RICHI. RICH2); the caluriinctcr system (SPD/PS,

EC'AL and HC'AL); and the union system (\I1-\15). The itriportauºt factors

for LHCb include: the ability to reconstruct the B production and decay

2.1. Introduction to LHCb 42

vertices; particle identification; and triggering. The main components of

the LHCb detector are further explored below:

" VELO The VELO is situated around the proton-proton interaction

point and is used to identify forward travelling tracks with a high im-

pact parameter and reconstruct primary and secondary vertices. The

VELO features a series of silicon stations situated along the direction

of the beam and is described in more detail in [93]. The VELO is

a principle component of the LHCb tracking system and information

from the VELO is also used in the trigger, to reject background decays;

" Magnet The LHCb magnet is shown in Figure 2.2. LHCb chose a

warm dipole magnet with a field strength of 4 Tm which is described

in more detail in [94];

" TT/T1-T3 The momentum of charged particles can be measured by

the amount they are deflected in the magnetic field and the tracking

detectors establish this via efficient track reconstruction. Data from

the Trigger Tracker (TT), Tracking Stations (Tl-T3) and the VELO is

used to make the trigger decision [92]. The LHCb Tracking system is

composed of a silicon based Inner Tracker and an Outer Tracker made

of gas straw tubes [95,96];

" RICH1/RICH2 The RICH1 and RICH2 detectors [97] are used for

particle identification, both are necessary in order to cover the whole

momentum range (between 1 and 100 GeV/c). The RICH detectors

use the Cherenkov effect to determine the velocity of charged particles.
This is used in combination with the momentum from the Tracking

system to determine the mass of particles;

2.1. Introduction to LHCb 43

" ECAL/HCAL The electromagnetic and hadron calorimeters (ECAL

and HCAL) [98] measure the energy and position of charged and neu-

tral particles. The ECAL measures electromagnetic showers of elec-

trons and photons. The HCAL is situated behind the EGAL and mea-

sures the hadronic showers of pions, kaons and protons;

" SPD/PS Two separate detection layers are placed in front of the

ECAL. These are the scintillator pad detector (SPD) and the preshower

detector (PS). The SPD and PS are used to determine how the elec-

tromagnetic shower from the ECAL evolves longitudinally, relative to

the detector; and

" M1-M5 All detectable particles except for muons are absorbed by the

calorimeter system [98]. Therefore a separate system, M1-M5 in Figure

2.2, is used to identify the muons. M1 is is placed before the calorime-

ters in order to decrease the error associated with particle scattering in

the calorimeter when measuring the momentum [99]. The remaining

muon detectors, M2-M5, are located behind the calorimeters as shown

in Figure 2.2.

The next section will discuss the LHCb trigger system, describing the

mechanism by which data is selected and eventually stored on the Grid.

2.1.3 From the LHCb Trigger to the Grid

The LHCb experiment plans to operate at a luminosity of 2x 1032 cm-2s-1,

which is a factor of 50 lower than the design luminosity of the LHC (1034 cm-2s-1).

As the luminosity increases, multiple proton-proton interactions occur in a

single bunch crossing. The background decays must be distinguished from B

decay vertices and the luminosity of 2x 1032 cm-2s-1 was chosen in order to

2.1. Introduction to LHCb 44

optimise the triggering of the detector. This was based on an optimisation

study in [85] that showed only 10% of beam crossings contain more than one

hard proton-proton interaction at a luminosity of 2x 1032 cm-2s-1.

LHCb will operate a two-level trigger [92,100] that includes: a hardware

trigger, Level 0 (LO); followed by a software trigger, the High Level Trigger

(HLT). The HLT is run on a dedicated farm of approximately 1800 CPUs.

The LHCb Trigger system must reduce the expected 40 MHz LHC beam

crossing rate to a value of 2 kHz [100] before moving the data to permanent

storage on the Grid.

The LO trigger will reduce the 40 MHz LHC beam crossing rate to 1 MHz

by only selecting events which contain decay particles with a high transverse

momentum (PT) larger than 2 or 3 GeV. This is because b-hadrons will

decay to a high energy lepton, hadron or photon due to their large mass.

The LO trigger reconstructs the highest energy hadron, electron and photon

clusters in the Calorimeters as well as the two highest PT muons in the Muon

Chambers. This information is fed to the LO Decision Unit to select events.

At this point, events can also be rejected based on global event variables such

as track multiplicities and number of interactions. Background decays from

other proton-proton interactions occurring within the same beam crossing

are called pile-up vertices. Pile-up vertices can significantly reduce trigger

efficiency and the LO trigger plays an important role in reducing this effect.

This is performed by a dedicated pile-up veto system consisting of three

silicon planes in the backward direction of the VELO.

All the necessary data from the LO trigger is stored at the 1 MHz output

rate so that the HLT algorithm can be processed. The HLT algorithm has

access to all the information from the detector. An important element of
the HLT is identification of secondary vertices using the VELO and tracking

2.2. LHCb Software 45

system. The selection is made after selection cuts for specific final states and

confirmation of the LO decision with greatly increased resolution [92]. The

former involves the results of HLT algorithms which determine the decay

chain of events and filter them according to specific selections. The HLT

reduces the 1 MHz output rate of the LO trigger to a rate of 2 kHz.

A full reconstruction of events passing the HLT is performed on the CPU

farm before sending the data to storage. During data taking, reconstruction

and first stripping of the data is expected to take place within a few days of

production [100].

Subsequent additional stripping phases and the re-processing of data is

expected to last for durations of one and two months respectively for data

collected over a year (107 seconds) of running. Stripping and re-processing

will take place at CERN and national-level computing facilities (Tier-1 cen-

tres) available to LHCb. The LHCb Computing Model, described in Section

2.3, will elaborate on these activities.

2.2 LHCb Software: Gaudi, Gauss, Boole,

Brunel and DaVinci

The LHCb software is described in detail in the Computing Technical De-

sign Report [100], a brief overview of the key components is given here.

An architecture-centric approach was adopted in order to create a resilient

software framework capable of withstanding changes in requirements and

technology for the lifetime of the experiment. The LHCb software is devel-

oped in C++. Section 2.2.1 will describe the Gaudi framework, a general
Object-Oriented framework that aims to provide a common infrastructure

and environment for the different software applications of the experiment.

2.2. LHCb Software 46

The main LHCb data processing applications which encompass the phases

from simulation to reconstruction and analysis will be introduced in Section

2.2.2 and are all built within the Gaudi framework.

2.2.1 The Gaudi Framework

The Gaudi architecture [101] was conceived to provide a software framework

useable by the entire LHCb collaboration for the simulation, reconstruction

and analysis of proton-proton interactions at the LHC. Physicists working

on LHCb typically write customised code for simulation, reconstruction and

analysis of data. Therefore, the software framework must be flexible enough

to support this activity without having all the specific requirements of the

user code in advance. In other words, it should be simple for the end user to

write any necessary code without having to duplicate functionality already

present in the framework because a particular use case wasn't considered.

To this end, many components have been identified which have specific func-

tionality and well-defined interfaces. Components interact with each other

through their interfaces and together provide all the functionality of the

framework.

In the Gaudi framework, software blocks known as ̀ algorithms' and `tools'

are elements that have well defined input and output data. A clear separa-

tion exists between data objects and algorithms. For instance, algorithms

and tools are what process the data objects necessary to perform event sim-

ulation, reconstruction and analysis. Whereas, data objects are containers of
data quantities such as vectors or matrices. This decoupling allows data ob-
jects to remain stable over time, and therefore algorithms can be developed

independently, at their own pace.
Data flow between algorithms occurs via the Transient Store. By distin-

2.2. LHCb Software 47

guishing between transient and persistent representations of data objects, the

Gaudi framework shields algorithms and tools from underlying technologies.

Algorithms can only see data objects in the transient representation. This

means that physics code can withstand changes to the technology employed

in the framework to store persistent data objects. For example, a change was

recently made from ROOT/IO [102] to POOL [103] without adversely affect-

ing the algorithms. This also means that it is relatively simple to implement

and test new technologies to optimise the framework.

There are three types of Transient Store in the Gaudi framework, which

correspond to different categories of data with different access patterns during

the lifetime of a job [100]. These include:

" Transient Event Store (TES) Event data is obtained from real or

simulated particle collisions and is handled by the TES on an event by

event level

" Transient Detector Store (TDS) Detector data that describes the

detecting apparatus is handled by the TDS for the duration of many

events

. Transient Histogram Store (THS) Statistical data derived from

processing a set of events is dealt with by the THS at the level of a

complete job.

Some of the experiment specific core software components within the Gaudi

framework are the LHCb Event Model, the Conditions Database and the

Detector Description, these are discussed in turn below.

2.2. LHCb Software 48

LHCb Event Model

The LHCb Event Model is defined as the set of classes (and relationships

between classes) needed to describe both simulated and real LHCb event

data [104]. The Gaudi TES is used to exchange event data inside the event-

processing loop. Algorithms simply retrieve their input data from the TES

and publish their output data to the TES without needing to know how their

input data was produced. This is made possible through the use of a tree

structure analogous to a Unix file system.

The same classes in the LHCb Event Model may be used for reconstructed

real data and reconstructed simulated data. This is accomplished by restrict-

ing relationships between classes to only those adjacent in the data processing

sequence. However, it is still possible to perform comparisons between ob-

jects which are distant in the processing chain through the use of tables which

can be accessed via association code.

Conditions Database

The Conditions Database (ConDB) aims to provide a means to handle infor-

mation regarding the current running conditions of the LHCb sub-systems

which may vary in time. Each condition will have an interval of validity

which can be superseded by a newer version. The Gaudi ConDB service

provides a framework for users to access conditions data.

LHCb Detector Description

The Gaudi Detector Description Service provides a full description of all
detector elements through the use of volumes. Logical volumes represent the

shape and composition of an object without reference to its position in space.
Conversely, physical volumes include the placement of an object in space and

2.2. LHCb Software 49

a top-level volume contains the whole LHCb detector, along with part of the

cavern it will be housed in.

Detector elements are stored and accessed via the TDS making use of

its hierarchical nature. Logical and physical volumes are used in order to

simplify the description of repetitive volumes. Information regarding the

material from which the volumes are made is also stored. One of the main

users of this service is Geant 4 [105] for the purposes of detector simulation.

2.2.2 Data Processing Applications

Data processing applications are collections of software packages, including

algorithms and tools, that are grouped in order to perform a particular task.

The data processing applications for LHCb are built within the Gaudi frame-

work, they share and communicate via the LHCb Event Model and make use

of the LHCb Detector Description. Each application is a producer and/or

consumer of data for the other stages. As shown in Figure 2.3, Gauss handles

simulation of events whilst Boole takes the `hits' generated by Gauss and ap-

plies the detector response. The digitization step also includes simulation of

the read-out electronics and LO trigger hardware. The resulting Raw Buffer

output has the same format as data coming from the detector.

Brunel is the reconstruction application and takes the Raw Buffer out-

put from Boole, or real data from the detector, as input. This produces

either a reduced Data Summary Tape (rDST) for use in production analysis,

stripping (see Section 2.3) or a complete DST for use in end-user analysis.

In both cases it is possible to output all events or only those corresponding

to a particular selection. The reconstruction is completely independent of

the Monte Carlo truth information and all access to this data occurs in a
dedicated phase which can be switched off when processing real data. This

2.2. I. IICb Software 50

1/ Physics e`
N RPEP

Detector PCondtions
Description Database stripped

___ ..
DST

imulation Digitization Reconstruction Analysis

Gauss Boole Brunel DaVinci

MC truth Raw Data I DST Analysis
Objects

Figure 2.3: The data flow of the LHCb data processing applications: Gauss:

Boob-: Brunel: and DaVinci. The Gaudi. framework underlies these applications

which, share and corcccrctarzcate Via the LHCb Event Model. from [1001.

guarantees that the , aide algorithriis can be ruii on both real and simulated

(17ita.

DaVinci is the LHCb analysis framework which further processes the

DST or rDS`l' output of Brunel to produce Analysis Objects. '['he (output of

DaViiºci can include: statistical or event data: histograms: and Ntuples (files

(oiitaaiiiing 1)1I ic5 objects) that can also be written for further processing.

The data processing applications are ste'credl' through job options files.

An application manager in the Gaudi framework controls which algorithms

are instantiated and when to execute them using the job option files. Tvpi-

(ally, inputs from a user are therefore algorithms, in the form of Dynamically

Linked Libraries (DLLs), and/or job options files. The Gaudi framework and

sýrý ices discussed ill Section 2.2.1. aikuig with the data processing applica-

tions above, make UI) the complete LHC'b software system.

2.3. LHCb Computing Model 51

2.3 LHCb Computing Model

The LHCb detector will generate approximately 1 PB of data per year when

it comes online. As well as the real data from the experiment, Monte Carlo

(MC) data must also be generated and stored. In fact, it is expected that

many times more Monte Carlo events will be needed than the number of

interesting events in the physics channels [100]. The amount of data is so vast

that no single institute can cope. LHCb needs to use all available facilities

across the entire collaboration in a distributed computing model through the

Grid [4,106].

The model adopted by LHCb involves the MONARC hierarchical system

of classifying sites [107]. The computing facility at CERN forms the Tier-0

centre, being supported by other facilities distributed across the world. Tier-

1 centres service a large region or country and Tier-2 centres do the same on

a smaller scale. The LHC Computing Grid (LCG) project [5] will provide all

the distributed computing resources for LHCb.

2.3.1 Logical Dataflow and Workflow Model

The processing of event data occurs in several well defined phases, the ter-

minology and outputs at each step are discussed below.

RAW Data

As mentioned in Section 2.1.3, data is collected and triggering occurs on

events of interest. RAW data are transferred to the CERN Tier-0 centre
for archiving and further processing. The data not passing the final trigger

selection are discarded at this point. The size per event of the RAW data is

25 kB [100].

2.3. LHCb Computing Model 52

Simulated Data

RAWmc data sets contain simulated hit information as well as `truth' infor-

mation and are produced from a detailed Monte Carlo model of LHCb. The

`truth' information records the physics history of the event which is carried to

subsequent steps for use in analysis. Simulated data sets are therefore larger

than real raw data (approximately 500 kB/event [100) but nevertheless have

an identical format to that of the real data and are processed using the same

reconstruction software.

Reconstruction

Simulated and real RAW data must be reconstructed in order to provide

physical quantities. The event reconstruction results in the generation of new

data in the form of the Data Summary Tape (DST). During reconstruction,

only enough data will be stored to allow the physics pre-selection algorithms

to run at a later stage. This is known as a reduced DST (rDST). The DST

format has a size of 75 kB/event and this is significantly lower for the rDST,

25 kB/event [100]. After the initial processing of data as described in Section

2.1.3, re-processing of the data is planned to occur once per year after the

data taking has finished and then periodically as required. In order to take

into account changing detector conditions such as alignment or calibration as

well as improvements in algorithms, the reconstruction step will be repeated

to regenerate new improved rDST information.

Data Stripping

Each channel of interest for LHCb provides a pre-selection algorithm in order

to identify suitable particles. The rDST from the reconstruction phase is

analysed in a production-type mode, which selects event streams for further

2.3. LHCb Computing Model 53

user analysis.

Those events passing the selection criteria are fully reconstructed to in-

clude all the information associated with the event. The RAW data is

also added at this point. The output of this phase is the full DST, which

contains more information than the rDST and has an approximate size of

100 kB/event.

To provide a quick means to access events of interest, an Event Tag Col-

lection (ETC) is created. This contains a brief summary of the characteristics

of each event, as well as results from the pre-selection algorithms. The event

tags are stored in files independent of the actual DST files.

User physics analysis is expected to be performed from the output of
this phase of data processing, using the full DST plus the RAW data and

TAG. Data stripping is expected to be performed four times per year, twice

associated with the reconstruction or re-processing of data and twice outside

these periods [100].

Analysis

Physicists will run their analysis jobs processing the DST output of the strip-

ping phase. Figure 2.4 outlines the user analysis cycle.
Physicists run on selected DSTs possibly using an ETC along with their

own algorithms. Typical outputs for user analysis include histograms, Ntu-

ples, statistical data in the form of a text file, or personal DSTs. Due to the

collaboratory nature of particle physics experiments, including LHCb, this

data could be shared by individuals in many different countries. Therefore,

it is necessary to make the outputs of analysis private whilst allowing the

sharing of data within a secure context.

2.3. LHCb Computing Model 54

0

.. Analysis Cycle

Se4eC d DST TAG

ýý

Use OST II 'NWpe II User TAG

Figure 2.4: I'he LHCh user analysis cycle. from /100J.

2.3.2 Computing Model

As shown in Figure 2.5. CERN is the central production centre and also

tikes the role of a Tier-1 centre. A further six Tier-1 centres have been

identified for use by LHCb these include: CNAF (Italy); FZK (Germany);

IN2P3 (France); NINHEF (The Netherlands); PIC (Spain) and RAL (United

hillg(Iorn).

In addition there are roughly fourteen Wier-2 centres mostly baSe(1 at

universities throughout Europe. The RAW data from the detector will be

stored at CERN with a further copy distributed across the Tier-1 centres

[100]. Product ion of stripped DSTs will occur at these sites and therefore

it is envisaged that the majority of the distributed analysis activity will

occur there. Tier-2 centres will primarily he Monte Carlo production centres,

vVitli the simulated data being transferred to CER\ and the Tier-1 site's for

storage.

2.3. LHCb Computing Model 55

Tier-2's " 1e ce"° ProOuctlon ffý

%t37 %ýal

Figure 2.5: The LHCb Computing Model highlighting the distributed, multi-tier

regional centre model, from [100].

Resource Requirements

LHC'h will need to utilise the resources of the Tier-O, Tier-1 and Tier-2 centres

in order to meet the required levels of CPU, disk storage and mass storage.

There will be it slow ramp-up)phase of the LHC during 2007. with 2008

being the first full year of data-taking. The projected CPU and storage

requirements' for LHCh during 2008-2010 [100] are shown in Figures 2.6 and

2.7. This assumes a year of data taking to he 10' Secon(l5 at the luminosity

10'32 CTTI-2S-1 Of 2x

As the experitneiit matures. the CPU requirement increases. It is also

interesting to note in Figure 2.6 that whilst the requirements of the Strip-

ping. Full Reconstruction and Monte Carlo activities are relatively stable,

the Analysis activity shows a steady increase over the three year period.
11 kSI2k is approximately equivalent to one single core 3 GHz processor.

2.4. DIRAC as a Production System 56

LHCb CPU Requirement 2008-2010

I
w a a
N
M

es

V

 2008
 2009

2010

Figure 2.6: LHCb CPU requirements bnakdown by processing activity during

2008-2010. Adapted from /100J.

Therefore. it is essential that a suitably scalable system is in place to deal

with these increases.

The LHCb experiment 1S exi)ecte(I to generate around a PetabYtE of data

per year. The Disk and Nhiss Storage System (MISS) requirements, shown in

Figure 2.7. reflect this and also the large amount of simulated data required

to be stored each Year. LHCb must integrate all of the available resources

to accomplish the necessary computing tasks. This means everything from

in(liViclnzil PC's to computing clusters and the LHC computing Grid.

2.4 DIRAC as a Production System

DistrihntV(1 Infrastructure with Remote Ag(I1t Control (DIRAC) was urigi-

nally created to provide LHCb with a set of tools for managing production

jolb for simulation and reconstruction.

During the Data Clialilenge in 2004 (DC01), DIRAC was used to generate

Analysis Stripping Full Monte Carlo
Reconstruction

2.5. Software Distribution in LHCb 57

LHCb Disk and MSS Requirements 2008-2010

v
O
a

E
I

12000

10000

8000

6000

4000

2000

0
2008 2009 2010

Year

-t Disk
{ MSS

Figure 2.7: LHC'b Disk and MSS Tiquih m(at. ti from 20o to 2010. Aduptcd

from [100j.

187 Million events constituting 62 TB of data, which was stored in 5 Tier-

1 centres [108]. Subsequent use of DIRAC led to a peak value of 5,500

simultaneous pro(1tlctioll johl comfortably running on LCG resources without

nearing the limits of the system itself.

Due to the successes of DC04. it was decided that DIB AC would be

used as a submission tool to the Grid also for analysis jobs. This decision

was based on the stability of the system as well as the efficiency which it

delivered for Grid jobs. The DIRAC system and how it was extended for

(listributed user analysis is the main topic of this thesis and will be described

in Chapters 4.5 and 6.

2.5 Software Distribution in LHCb

Even within the LHC'b experiment. several different platform, are ill use.

There is no guarantee that each university in the collaboration has the satric

2.5. Software Distribution in LHCb 58

operating system or hardware. With the advent of the Grid and an abun-

dance of distributed systems available, platform independent installation pro-

cedures are a vital element of a working system.

The software distribution mechanism for LHCb must contend with the

many different compute systems present on the Grid whilst also minimizing

the level of manpower required to maintain the service. Rather than solv-

ing the problem once for each type of platform, the approach taken was to

find a generic solution for all platforms on LCG. This should also accom-

modate changes that can occur to hardware and operating systems, without

necessarily having to update the software distribution mechanism.

When new releases of LHCb software occur, it is also vital to minimise

the human intervention necessary to support them. Ideally, the software

should be immediately available to be used on the Grid after a release, in an

automated manner.

The installation of software can either be performed from source, or a

binary based distribution. If binaries are available, they are normally the

optimal choice since no compilation is required. When binaries are not avail-

able however, installation from source can be necessary.

This section presents an overview of software distribution on the Grid,

with emphasis on LHCb. Software distribution assumptions are discussed in

Section 2.5.1 and the Virtual Machine paradigm is described in Section 2.5.2.

The work performed in evaluating Pacman for use in LHCb is mentioned in

Section 2.5.3 before discussing the final implementation in Section 2.5.4.

2.5.1 Software Distribution Assumptions

Several assumptions can be made for the LHCb software distribution mech-

anism running on LCG. Firstly, it is assumed that there is a flavour of

2.5. Software Distribution in LHCb 59

Unix/Linux running on the compute resource. Software being developed

on one platform is not by any means guaranteed to work on the multitude of
different systems across the world. The platform which is running at CERN

(currently Scientific Linux 3 with a GCC 3.2.3 compiler) is considered to be

the standard. Furthermore, it is assumed that any user DLLs will be com-

piled only for this platform at this stage. However, other platforms may be

supported in the future.

For running on an LCG Worker Node (WN) it is assumed that outbound

connectivity exists in order for the software to be installed, e. g. via Hyper-

Text Transfer Protocol (HTTP). To reduce overheads, the situation should
be avoided where large files, containing the software, are packaged with each
job.

Another factor is whether the computing resource is running with a 32

or 64 bit architecture. Since DIRAC is developed in Python, it has been

demonstrated to run successfully on both systems.

2.5.2 Virtual Machine (Paratrooper) Concept

The Virtual Machine concept is perhaps the cleanest solution to deal with

compatibility issues on the Grid. Instead of running applications on the

native system of a computing resource, this involves running one or more
instances of an operating system on the same CPU to create the illusion of

many smaller Virtual Machines. For the Grid, the beauty of this approach lies

in the fact that users could simply choose their platform when submitting

a particular job and always be guaranteed that everthing would work as

expected. One example of this paradigm in practice is the Xen [109] project.
The idea of making heterogeneous compute resources homogenous has led

to a quasi-Virtual Machine paradigm or `Paratrooper' approach being used

2.5. Software Distribution in LHCb 60

with DIRAC. This involves shipping compiler libraries along with a self-

consistent set of binaries which do not require any special environment. This

allows DIRAC to treat many flavours of Unix/Linux systems in a uniform way

when invoking software applications. The DIRAC approach works well for

LHCb because a flavour of Unix/Linux can be guaranteed on LCG. The only

problems which occasionally arise are due to missing or conflicting libraries

on some exotic platforms. Overall, this ensures that the LHCb Grid jobs are

fully equipped to `land' on a computing resource and automatically deploy

necessary software, like a paratrooper.

2.5.3 Automating LHCb Software Distribution Using

Pacman

This section describes the use of Pacman [110] to perform an automated

installation of the LHCb software from source [111]. This not only lends

confidence to the functionality and reliability of Pacman but provides at
least a starting point for those wanting to install from source, e. g. on non-

supported platforms.

Pacman: A Package Manager

Pacman is a package manager developed by Saul Youssef [110]. It has been

programmed in Python, developed on Cygwin, and hence is very portable.
There are many advantages to using Pacman for software installation and
these are discussed below. A collection of `tarballs' is kept in a web-visible

cache, each tarball contains the files needed for a particular package and each

one has a Pacman file associated with it. All of the necessary installation

instructions are kept in the Pacman files inside the cache, which is ideally

maintained by experts.

2.5. Software Distribution in LHCb 61

Installing Pacman is simply a matter of unpacking a tarball. After a

couple of trivial steps the user may then install any of the software packages

in the cache. Any dependencies are automatically recognised, resolved and

installed for the user and what once was a time consuming operation can be

reduced to executing one command. Through the Pacman approach, package

installation is configured once by an expert and their knowledge is passed to

those who need to perform the installation in a transparent way.

The usual information needed to install and maintain a software package

can be summarised as follows:

" Location of software e. g. a URL

" Correct release for desired platform, also whether updates or patches

are required

" Dependency on other packages

- Whether required dependents are already installed

. If root access is required

" Exact installation commands for the package

9 Any environment variables and paths that must be setup.

All of these issues are dealt with automatically by Pacman. Ideally the

end user should never need to execute more than one Pacman command for

any software installation. Pacman is a robust package, any problems are

easily diagnosed from meaningful error messages. Errors will only affect the

package it is installing at the time and any installation progress is saved so
that the user can restart on the package where they left off.

2.5. Software Distribution in LHCb 62

Why Pacman?

Pacman is a fully functional software tool, capable of performing the full

LHCb package installation from source. While alternatives exist they are

generally more limited in scope.

The RPM package manager [112], for example, requires a user to be root

in order to install packages, which severely limits the effectiveness of this

approach. Another popular package manager is Relink [113]. You do not

have to be root to use this and dependencies can be tracked. However, Relink

is aimed at system administrators. As such, there is a much more lengthly

installation procedure and the user must still go through the installation by

hand. Relink is useful for performing an installation once then transferring

this information to many other machines but lacks flexibility and ease of use.

While a number of other alternatives to Pacman exist, none of those

considered by the author have the same functionality, robustness and ease of

use. The installation procedure is trivial and the responsibility for successful

package management firmly shifts from the end user to the managers of the

Pacman cache. This is ideal for an international collaboration such as LHCb

where physicists must currently dedicate time to installing a rapidly evolving

collection of software packages.

Advantages Presented by Pacman

Pacman is very simple to install and can even manage itself as a package.
This means any updates for Pacman can be performed automatically. Back-

ward compatibility between versions of Pacman is assured and it is very

portable. The user does not have to be root and recursive dependencies are

automatically dealt with. If an installation fails, only the current package is

affected and Pacman stores any progress made. With clearly defined cache

2.5. Software Distribution in LHCb 63

Managers, then, is one point of contact when things go Wrong and the user

also has the benefit of an automatically generated index page [1111.

Having a regularly maintained Pacinaü cache for all of the LHCh soft-

ware and dependents is obviously advantageous for the simple reason that

dependencies Would very easily he tracked. At present, there seems to he no

cast/ IIletli<xl to (10 this, especially for institutes outside of CERN.

Summary of the Progress Made

A full installation of the LHCb software using Pacinaii was performed at

Liverpool and ScotGrid at Glasgow. From start to finish the full compilation

from source took around 23 hours on both systems.

Figure 2.8: Deprodency tree diagram. for all Pacinan automated parkaltes up to

LCG tools.

The LHC'h software rests on the Gaudi framework which in tuirti, sits on

2.5. Software Distribution in LHCb 64

to!) of the LCG tools. Tracking (lep)en(IeIi('1es can be challenging and it was

found that some of the sixty or so packages which were automated using
Pacii1<ul, while present ill the requirements files, are in fact not necessary for

the LHCb software. Figure 2.8 shows the full list of packages automated,

i11) to the level of the LCG tools. and the perceived dependencies between

thenl as taken frone the appropriate requirements files. This is inaccurate,

but highlights the fact that without appropriate doclnnentation, mistakes

can be II1a(1e.

Figure 2.9: Dependency tree diagram for all Pacrrran, automated packages ap to

Gaudi.

They next level of packages includes dli those up to (lit(1i. see Figure 2.9,

and this is folllowed by the LHCb core software along with DaVinci. Boole,

Brunel. Gauss and their dependents. in Figure 2.10. The top level package

is lheh-software which allows a full installation to he requested. This can

he updated so that when other complete versions of the software exists. the

head version is always returned.
P<ielnan is 2l versatile package manager, which is Conti iutuusly evolving to

accommodate new features. Installation of the LHCh software which once

2.5. Software Distribution in LHCb 65

Figure 2.10: Dependency tree diagram for all Pacman automated packages from

Gaudi up to the data processing applications. Note that the explicit dependency of

Da L uu'i. Boole, Brunel arid Gauss on Gaudi has been, removed for this figure.

was a very complicated procedure can be reduced to executing a few simple

Commands.

Use of Pacrnan in LIICb

Pacmaii Zia 1)ecii shown tc) be cry capable Of handling fully alItoýmatcd

installations and could easily he used for automating binary installations.

Unfortunately. the'n' ycrc' some l)robletn5 with rising Pacniatl for Windows

DOS-ha ed installations and do the nieVhmistii described in the next section

-vas

LHCb software installation using a new release of Pacnian is being main-

tairied 1iß- as ("olleaglie at Glasgow a.. ti a service for the LHCh community [1141.

A recent LHCb software training course [115] in C'am bridge utilised this

iiiechanisiii to temporarily install simulation software, froiii source, on sev-

2.5. Software Distribution in LHCb' 66

eral PCs.

2.5.4 Final Implementation: install_pro ject. py

As mentioned in the last section, Pacman was not officially adopted by LHCb

as a software distribution mechanism. Instead, the preferred solution was the

LHCb software distribution tool [116], instal l_pro j ect . py.

The first step in extending DIRAC for distributed user analysis was to

create a reliable and resilient software distribution mechanism for jobs on

the Grid. The LHCb software distribution tool [116], install_pro j ect . py,

was integrated into DIRAC to facilitate this. This exports the CMT [117]

structure based at CERN and relies on CMT for application setup and execu-

tion. Via DIRAC, install_pro j ect . py realises the Virtual Machine (Para-

trooper) concept in which applications can be invoked in an operating sys-

tem independent way and significantly reduces the manpower requirements

of LHCb.

When executing within DIRAC, software installation is completely trans-

parent for the user. From a user perspective, only the name and version of an

application needs to be specified in the job description. All software available

in the LHCb Release Area at CERN, is now also available to DIRAC through

this software distribution mechanism. This also means that DIRAC can im-

mediately utilise the most recent software without any human intervention.

Since install_pro j ect. py is developed in Python, it is easily compatible

with DIRAC, and the latest version can be retrieved as necessary at the level

of a job on the Grid. This is an improvement on the previous mechanism to

distribute LHCb software for use by DIRAC, since this required the manual

construction of each new software release. The software packaging at CERN

can now be relied upon without any intervention from a DIRAC point of

2.6. Summary 67

view, and little or no maintenance is required when new releases are made.

2.6 Summary

The LHCb experiment has been briefly described, with special emphasis on

the software and computing model. The main LHCb data processing ap-

plications: Gauss; Boole; Brunel; and DaVinci, are all based on the Gaudi

framework. The Gaudi framework has been created to provide the neces-

sary infrastructure in a way that shields the physics code from the actual

implementation technologies.

The tiered architecture of the LHCb Computing Model serves to provide

all of the distributed computing needs of the experiment. DIRAC is used

to integrate available resources in a consistent way and the extension of

the system for the distributed data analysis tasks will be described in later

chapters.

Pacman is a versatile package manager that is continuously evolving to

provide new features. Installation of the LHCb software, which once was a

very complicated procedure, can be reduced to executing a few simple lines.

With platform specific commands and complicated interdependencies, the

fact that Pacman is capable of managing such a complicated installation as

the LHCb software from source is very encouraging.

In the end, the LHCb software distribution tool, install_pro j ect . py,

was chosen to be integrated into DIRAC. This realises the Virtual Machine

(Paratrooper) paradigm through DIRAC and allows new releases of LHCb

software to become immediately available for use on the Grid.

3. Data Analysis in a Distributed Environment 68

Chapter 3

Data Analysis in a Distributed

Environment

There are many challenges in performing distributed analysis on the Grid.

One of the most important is how to deal with geographically distributed,

heterogeneous resources in a consistent way. With each site on the Grid

potentially having different access policies, different operating systems and

different hardware, it is imperative to adopt a system that can deal with

these, sometimes subtle, differences in a uniform manner. It is paramount

that physics analyses in LHCb should be able to be carried out using the

Grid; furthermore, use of the Grid should be transparent for users.
A key issue is how to provide reliable access to the required input data for

each job, via the available access protocols. This and other job requirements,

such as particular LHCb software versions, can vary on a job by job basis,

so the infrastructure must be in place to contend with this. Since physicists

will be configuring and submitting their own jobs, there is no obvious way

to predict this type of workload. It can therefore be considered chaotic in

nature. Nevertheless, analysis jobs are normally of the highest priority with

3.1. Paradigms for Distributed Analysis 69

respect to other computing activities in LHCb and are essential for users to

produce physics results and publications.

This chapter will describe the key paradigms for LHCb distributed anal-

ysis in Section 3.1, as well as the analysis requirements in Section 3.2. The

concept of using an Overlayed Network to aggregate disparate resources will

be introduced in Section 3.3. The approaches of the other main LHC exper-

iments to the distributed analysis activity will be discussed in Section 3.4.

The first attempt at realistic physics analysis using the gLite Grid framework

prototype will be described in Section 3.5, and some of the reasons for finally

choosing to extend DIRAC for the LHCb distributed data analysis activity

will be highlighted in Section 3.6.

3.1 Paradigms for Distributed Analysis

Some of the key mechanisms which result in high efficiency on the Grid as

well as other resources available to LHCb are discussed below. The first is the

PULL scheduling paradigm, which ensures that jobs are only sent to comput-

ing resources after the execution environment has been checked. This is based

on an idea first presented by the Condor Project [72], whereby resources are

utilised immediately when they become available. This is contrary to the

PUSH scheduling paradigm, which involves central optimisations, based on

global information about the system, to match jobs to resources.

The second is the Pilot Agent Paradigm, which involves sending an Agent

instead of a job to a computing resource. This means that failures can occur

to the Agent without affecting the job. In practice, the use of these paradigms

ensures that jobs are no longer sent to a computing resource with a decision

based on possibly incomplete, static information. Jobs are instead requested

3.1. Paradigms for Distributed Analysis 70

by an Agent on a computing resource, in a reliable and efficient way.

3.1.1 Push versus Pull

Job scheduling can be thought of as the process of assigning a particular

resource to a particular job. The two main approaches to job scheduling

can be referred to as PULL and PUSH. Whether referring to the Grid or a

batch system, similar components are involved. In general, we can consider

resources to be a heterogeneous set of clusters that belong to a local area

network (LAN).

Each cluster may have its own access policy and could place stringent lim-

its on the amount of resources to provide to each user or Virtual Organisation

(VO). To schedule jobs in this context, decisions are usually made with an

overall, global picture of the system, for example, the situation where one site

Clients

IGlobal Information
System

Clients

Services

Matcher fº
Task

Queue

Site III\ Site
Local Local

Scheduler Scheduler i
i

node node
i

node node

node
i

node

i

(a) PUSH

Agent --I F Agent
Site Site

(b) PULL

Figure 3.1: Illustration of the PUSH model in (a) and the PULL model in (b).

Solid lines reflect the task flow.

3.1. Paradigms for Distributed Analysis 71

is saturated and further jobs are sent there should be avoided. This would

clearly compromise performance. Another reason for this is the need to con-

trol individual sites. If for whatever reason, one site becomes unavailable, it

is necessary to prevent jobs being sent there.

Figure 3.1 (a) illustrates the PUSH scheduling paradigm. In this ap-

proach, clients submit jobs to a Global Scheduler that makes a decision

about which site to send, or schedule, the job. This decision is based on

information from a Global Information System that continuously monitors

all resources and reports on their current state. At any one time, in a global

system with shared resources, the availability of these resources can fluctuate

considerably. In the context of the Grid, site resources can be shared amongst

many independent VOs but also local users, which can have a higher priority.

Since the monitoring information is gathered centrally, it can be considered

as static information about a dynamic system, often being out of date as

soon as it is sent.

The problems associated with a PUSH based architecture are mainly due

to the incomplete picture of the system and the stability of the information

system. A Global Scheduler, such as a Resource Broker (RB) on LCG, must

resolve many complicated parameters to determine the best location for a

particular job. These parameters are used to build up a picture of the state

of many resources and can lead to complicated scheduling calculations. This

becomes even more difficult when trying to implement prioritisation of jobs

and quotas because this would place an additional load on the Global Sched-

uler. There is also the question of system stability, if the Global Information

System in the PUSH model were to fail, this would cause the whole system
to fail.

The PULL scheduling paradigm solves many of the problems associated

3.1. Paradigms for Distributed Analysis 72

with the PUSH system by design, and is shown in Figure 3.1 (b). In this

model, clients interact via services, which provide specific tasks associated

with the management of jobs. Not all services are depicted in Figure 3.1 (b),

which is just illustrating the concept. By placing agents close to resources,

jobs can be requested from a service and delivered to a free resource when-

ever it is available. Agents only request jobs when the resources are free

so there is no need for complicated scheduling algorithms to be performed.

Another advantage of this approach is that jobs can be stored in a central

task queue before being delivered to resources, allowing prioritisation policies

to be applied. The PULL approach allows access to all Grid resources in a

similar way to a batch system with a single task queue. Since the problem

of handling priorities and fair shares in a batch system has been solved for

a long time, this experience can be applied in a new context. The use of

remote Agents to determine the location of available resources is a consider-

able improvement since they always have an up to date view of the sites to

which they are deployed.

A simulated study of PULL versus PUSH was performed in [118] where

DIRAC, which realises the PULL scheduling paradigm, was compared to

a centralised scheduling approach. The results showed that for an ideal

system, there is a slight improvement on job scheduling via the PUSH model.
Unfortunately in practice, the `ideal' system is often unrealistic and it was
found that the system cannot adapt to common failures such as: network

problems; unavailability of services or power cuts. This is further discussed

in Section 5.5. Keeping a global view of a system that is continuously in flux

becomes more and more problematic and, with a dependence on a global
information system, the PUSH approach often does not scale well. On the

other hand, the PULL approach adapts well to changes in the system and

3.1. Paradigms for Distributed Analysis 73

does not depend on any centrally collected information about resources by

design.

3.1.2 Pilot Agent Paradigm

The Pilot Agent paradigm works in a complementary fashion to the PULL

scheduling mechanism. Consider Figure 3.1 (a) which highlights the PUSH

approach. Here, jobs are sent and scheduled to a particular resource based

on the static information from the global information system.

Clients

Matcher Task
--ýý,,.. " Queue

Global
Scheduler

Global Information
System

Site

Site

Lo cal Local
Sche duler Scheduler

Pilot
Agent ewe node rode

Pi lot Poa

Figure 3.2: Illustration of the PUSH model with the use of the Pilot Agent

paradigm. This effectively transforms a PUSH scheduling system into a PULL

scheduling system. With a central task queue, the implementation of policies and

quotas becomes possible.

Instead of submitting jobs to the Global Scheduler, it is possible to submit
Agents with exactly the same requirements. The typical requirements of a job

could include a specified CPU time or particular input datasets of interest.

3.1. Paradigms for Distributed Analysis 74

Agents are sent with these requirements as well as any policies that concern

the entire Virtual Organisation. One example of this could be information

about particular sites that should be banned. In this way, the Agent can

be scheduled to a particular computing resource whilst holding the job in a

central task queue. If necessary, multiple Agents may be sent for the same

job in case of failures.

LHCb has access to one computing Grid, LCG, which operates using

the PUSH paradigm. Figure 3.2 illustrates how the use of Pilot Agents

can transform a PUSH scheduling system into a PULL scheduling system.

Through the use of Pilot Agents on LCG, there is no explicit dependence of

the services on the Global Information system. Since the Pilot Agents pass

through the standard job scheduling mechanism of LCG it means there is an

extra degree of safety in their arrival at a particular Worker Node without

assuming it will be guaranteed to run successfully. In effect, this is a zero-

trust approach that, whilst ensuring a high efficiency, carries some overheads.

For instance, it is possible that Pilot Agents can be delayed and will not pick

up any jobs when they eventually start. This could create an unnecessary

load on the LCG Resource Brokers and is a potential drawback that will be

further explored in Chapter 5. Also, the time taken for the Matcher service

to assign a job to an Agent has to be taken into account.

Results from using DIRAC, which realises the PULL scheduling paradigm,

can be used to clarify the last point. Figure 3.3 from [119] shows results for

the DIRAC Matching times from the LHCb Data Challenge in 2004 (DC04).

The average matching time for Monte-Carlo Production jobs using this ap-

proach was 0.42 seconds over almost 60,000 jobs. This is an encouraging

result because the production jobs can typically run for 24 hours on a com-

puting resource and the matching takes a negligible amount of time in com-

3.1. Paradigms for Distributed Analysis 75

12'

I

Figure 3.3: Matching threes during LHCb DC04 activity for Monte Carlo Pro-

duction jobs running on LCG. from 119].

parison. Furthermore, it is worth rioting; that many thousands of jobs were

quelled arid thousands of
,
jobs were also running concurrently (luring DCD4.

This lends confidence to the system and also to the PULL approach. At this

stage, however, it still remains to be proved that the same method extends

to distributed analysis jobs, with more clemandin requirements and chaotic

usage patterns. This will be clarified in Chapter 6.

The need to have a central task queue for the implementation of priorities

and quotas, along with the advantages posed by this approach for aggregating

erneut System (W I\IS), which resources, led to the i(leil of a Workload Maim, -,

can be considered as a collection of services. Figure 3.4 demonstrates how

the approach from Figure 3.2 can be generalised for use on LCG. Recent

extensions to the DIRAC WMS, which facilitate this approach, are described

in Chapter -1. Clients now submit jobs to the DIRAC WNIS, which submits

Pilot Agents on demand in the form of LCG jobs. Multiple Pilot Agents may

be sent in case of failures.

... _ý ý 055 0.755 b IS . %)S LV75
match time (5) (non-linear sa)

3.1. Paradigiiis for Distributed Analysis 76

\V1iciu Pilot Ao('iit, arrive It as c c, ii1J>ntIn I-eswiI c ur V' w-kc'r Nuclc, t 11(v

then I, ruceccl to rcclnest it .
j()1) frOiii the \VMS. At this ImIlilt, the j(1, i" de-

livered ouiily- after the cticc ntiýýu c'iwirollilieilt lia lxeceii checked. This cii iiie,

that the lýýl> lias ta>'>'ivýýcl at a. rcýliiil)l(' rcýýutlrcc mid lins il verýý cxxI c"li<aiic o' toi

(0111!)l('t (' slicte". fl111V.

Job

DIRAC
Central WMS

k--ý--Pzt

LCG Resource
Broker

Job II Worker Node

Pilot
Agent

Figure 3.4: Iliu, sirrtfwi, of fh< DIR. -AC Pilot : lifr"itt JEnrmfiyit in us(on LCC.

Ih/.. ', is n 9i�nr'rali'oti01l of Fii/, iii 'L2 '117li. rrr c/i(rttS ivrfrrw'f rnitll /)Ili_4(' It'oikload

111arrurt(Irr. rnt b`ysic ill . 5ý ruirý. 5 and Pilot arc ., ubmill(d to t/rr L('(lir., uurr"r

13rokc r.

Finrther itscs of _Agent (" nitrul iii I, II('I) will be diticiis"ed ill the ((>Iii('XI

Of' l. ('(iii Secction 3.3.2. ", ill e . 1_('111, ill(' lx'iii_; -('iit, this ('Or I'111.1 11cr

t, 1>till litiýitN als. Se C'li<il>t('r T) fur IiuvV I Ills (uii(('l>t vVýNN lit li, ('(i mil e'xt('lld('d

fi)r (listril)nt('(l iiii 1vsip n, iiý tlic 1)lli_1(' infr<i, t

3.2. Requirements for LHCb Distributed Data Analysis 77

3.2 Requirements for LHCb Distributed Data

Analysis

As mentioned in the introduction to this chapter, analysis jobs are chaotic

in nature yet are often of the highest priority in the context of LHCb. In the

LHCb Computing Model [100], at least two full copies of the RAW data from

the detector will be kept, one at the CERN Tier-0 centre and one distributed

amongst the Tier-1 sites. The re-processed data (rDST) will be stored in the

same fashion. Distributed analysis will be performed mainly at CERN and

the Tier-1 sites using the stripped (DST) data. A full copy of the stripped

data will be stored at CERN and each Tier-1 site. Therefore, it is assumed

that jobs are sent to a site that has access to the data it requires. This serves

to reduce network overheads associated with transferring data for each job.

The policy of always sending the jobs to the data ensures a certain degree

of reliability on the Grid since only sites that officially provide resources for "

LHCb will have replicas of the data. Another important point is that all the

DST output of the stripping activity will be stored and made available on

disk at CERN as well as the Tier-1 sites [100]. This effectively eliminates

problems associated with efficiently retrieving small amounts of data from

Mass Storage Systems, something which they were not designed for. Ideally,

some redundancy should be in place to account for situations where, e. g. not

all data is available at one site. The infrastructure for distributed analysis

should be able to deal with these kind of situations dynamically. Currently

the system cannot transfer data automatically to satisfy the requirements of

jobs, however, work is ongoing to facilitate this.

In the context of LHCb, distributed analysis is a batch analysis but with

minimised response time. This is not an interactive, parallel analysis system

3.2. Requirements for LHCb Distributed Data Analysis 78

such as PROOF [120], but a prioritisation and optimisation of available re-

sources for LHCb. The aim is to provide a stable platform for analysis on

inherently unstable resources and therefore mask any inefficiencies of LCG

and Grid hardware from the user.

Jobs running on the Worker Nodes need to access services in order to

run successfully. The LCG File Catalogue (LFC) [77] must be contacted to

obtain information about the local replicas of any required input datasets.

It is most efficient to do this from the Worker Node since, in line with the

paradigm of Grid computing, there is no advanced knowledge about which

site the job will run at. Indeed, this transparency is something the infras-

tructure of Grid computing should provide. Access must also be possible

to the LHCb Conditions Database to provide information about the current

running conditions of the LHCb sub-systems, which may vary in time. The

jobs must also be able to contact the central workload management services

in order to provide, for example, monitoring information. It is therefore nec-

essary that computing resources on the Grid provide outbound connectivity
for LHCb jobs. This is still secure because the services being accessed are

well defined and Agents autonomously request them. Inbound connectivity

is not necessary however, since Agents do not provide services outside the

site where they are located.

In the LHCb Computing model [100], it is assumed that 140 physicists

will perform analysis, each submitting 2 jobs per week which will process

- 106 events per job, increasing to N 107 events for larger samples. These

jobs can be split into smaller `chunks' in order to be run in parallel. This

reduces the time in which results can be returned, but there are overheads in

terms of gathering the output of each sub-job in a useful way. The splitting of
larger jobs is something that places more of a burden on the Grid computing

3.3. Overlayed Network Concept 79

infrastructure since it means more jobs must be scheduled, monitored and

their outputs retrieved. A sufficiently scalable system should be put in place

in order to contend with this demand and allow submission of these jobs in

an efficient manner.

The output of analysis jobs can be an Ntuple-like object or `private'

stripped DSTs which will be analysed further on resources local to the physi-

cist. The estimated storage requirements for analysis are N 200 TB in

2008 [100], which is expected to grow linearly in the early years of data

taking. Therefore, the infrastructure for distributed analysis should also be

able to cope with efficient storage and retrieval of user output data.

3.3 Overlayed Network Concept

In order for all computing resources to be utilised to their fullest potential,

disparate resources must become aggregated in some way. Figure 3.5 illus-

trates the typical resources available to a Virtual Organisation such as LHCb.

These include: individual PCs; site clusters; and the Grid. Although LHCb

is only able to access LCG, the Grid will be discussed in a general sense here.

The resources displayed in Figure 3.5 are generally composed of many
different operating systems and hardware, but must be pooled together to

form a consistent set of resources in a transparent way, from the perspective

of the user. The question here is how to get these seemingly very different

resources to work together in a seamless manner? A possible solution is

through the use of Agents. Agents are intelligent pieces of code designed to

work in line with the PULL scheduling paradigm to facilitate job submission

and execution.

Through the use of Agents, it is possible to create an Overlay Network,

3.3. Overlayed network concept so

Computing Resources

Individual PCs Site Clusters Grids

ii

01

Figure 3.5: Oce'view of the differeri. t kinds of corrrputin. y resources available to

L HC'b.

making inherently heterogeneous resources homogenous. so that any resource

captured by a successfully deployed Agent is almost certain to be able to

rnii the jobs of LHCb. An Overlay Network can he simply thought of as it

layer on top of computing resources, which masks the complexity associated

with pooling them together. Once established. this layer can then he used

very efficiently for the computing needs it was created for. since the Agents

antonoinoiisly take control of the resource they are sent to on behalf of the

riser. Agents interact via central Services which deal with all common tasks,

including interaction with users.

3.3.1 Agents' Control as a Means of Implementing an

Overlayed Network

"1'hrurngh the clýýl>loti mýnt of Agents, close to the available resources, see Figure

3.5. a layer of Agents is formed. 'I'ltis is liigliliglhte(l in Figure 3.6, where the

AKeiºts laver serves to iiiask the underlying diversity of the layer helleat11.

3.3. Overlayed network concept 81

Figure 3.6: Through opportunistih drploynu n/ to computing resOlcrces, an Ovcr-

la; y Network of Agents is formed. This overlay network masks the underlying di-

versity of the layer beneath.

Although the Agents exist on different computing resources, being de-

ploved through different 1neans, they all become providers of resources in a

similar Inallner and caIi interact with Services in the same way. For instance,

on individual PC's. DIRAC Agents may be started 'hv hand or manually, as

a script. On the Grid. Pilot Agents may be nultonlatically seilt to resources

on behalf of a user. using the paradigms described in Section 3.1. and start

a DIRAC Agent which acts autonomously. I11 both these cases, Agents start

at r1 particular resource and. if possible_ will request jobs ill a similar way.

This laver of Agents therefore masks the underlying diversity of the disparate

resources beneath and presents a hoinogenous Set of resources to the Services.

Figure 3.7 illustrates the use of Services to manage the activity of the

Agents. This is the final layer in the creation of all Overlay Network. By

this po111t, all Agents mail he considered equal in the sense that they provide

resources for a particular user or job. The resources may differ considerably

3.3. Overlayed network concept

Computing Resources

Agents
Services

Service 2

A
A

A

Service 1A

Service 3
A

82

Figure 3.7: 1*., rr., runnii im 1(0r tri//ý sýrý'i<(. s to r. rr(ut(fluor tusks. flu 01'('/. la! J

Network transforrrra seerrtingly heterogeneous resources into a uniform, harnogenous

group of resources.

in terms of, for example. CPU power or geographic location but Services

can interact with there all in the same way. When agents have reached the

point where a resource has been 5uccessfiillV captured. they can interact with

Services in order to pick up and run jobs that have requirements satisfied by

the resource hidden beneath.

The key point of the Overlay Network Concept is to maximise the use of

the resources. once they have been snccessfiilly obtained. Through Agents,

resoýirees effectively go through a ncreeiiiflg process to ensure that there

is a very good chance of success when a job is eventually delivered there.

The Overlay Network is a dynamic entity since resource availability c an var. v

considerably over time. Furthermore. on the Grid there is normally a finite

period of time allowed once a resource has been captured. However, by

e nsuring the availability of the Services, individual Agents can come and go

without aclversehv affecting the whole system.

3.3. Overlayed network concept 83

There may also be further requirements placed on the Agents to ensure

that the resource is ready to receive a job. For example, by installing any

required software at the level of the Agent, the job can be saved from any
installation failures. These requirements can vary depending on the Virtual

Organisation in question. For example, a Bio-Medical VO may want to test

a secure connection to a remote database before allowing a job to execute

at a particular site. The specific ways in which LHCb makes use of Agents'

control shall be discussed below.

3.3.2 Use of Agents' Control in LHCb

As mentioned in Section 3.1.2 and highlighted in Figure 3.4, LHCb uses
DIRAC to send Agents to the Grid. Through the effective use of the Pilot

Agent Paradigm, the PUSH architecture of LCG can be transformed into a
PULL system which brings a greater efficiency for LHCb jobs.

The use of Agents to create an Overlay Network, as described in Section

3.3, results in a homogeneous view of heterogeneous resources. This serves to

reduce human intervention required to manage LHCb jobs and means that

heterogeneous resources can be dealt with in a uniform way.
LHCb also uses Agents' control on LCG in order to place further require-

ments on acquired resources before user jobs are executed. As mentioned in

3.3.1, it is possible for the software installation step to be delegated to Agents.

Therefore, Agents can receive jobs and install any software outside the scope

of the job itself. Should a failure occur, this also means there is some redun-
dancy in place since the Agent can fail with a meaningful error and the job

can be rescheduled. The software installation itself can take two routes. If

no software is available at a particular site, the DIRAC software mechanism
is employed, see Section 2.5.4. Alternatively, if the LHCb software has been

3.4. Other Examples of Distributed Analysis 84

pre-installed by an administrator, the Agent can simply set up this software

for immediate use. The advantage of the latter is an improved start-up time

and greatly reduced overheads for the site. A full binary distribution of the

LHCb software is approximately 1Gb in size: this storage requirement can

place additional load on the Grid for two main reasons. Firstly, the time it

takes for the download of binaries to each computing resource is time spent

occupying a resource without actually executing the job, and should be min-

imised. Secondly, when dealing with thousands of jobs, each having to install

software independently, it can become problematic for the sites to clean up

after each job and provide enough storage space to satisfy the running jobs.

Another use of Agents' control is to place requirements on jobs from

the resource, to be balanced with the requirements of a particular job, in

a two way `double-matching' mechanism. Jobs generally have some form of

requirements that should be satisfied by the resource before scheduling to a

site can be allowed. The double-matching mechanism means that, not only
does the job place requirements on the resource, in addition, the Agent can

be used to place requirements from the resource on the job. One example

of this would be requiring that jobs come from a particular user. This is

an important aspect of Workload Management and the implications will be

further explored in Chapter 5.

3.4 Other Examples of Distributed Analysis

Having described the key paradigms for distributed analysis for LHCb in

Section 3.1, the aim of this section is to highlight and briefly discuss the

main approaches taken by the other main experiments at CERN, namely,
ATLAS, CMS and ALICE. The four main experiments in the era of the LHC

3.4. Other Examples of Distributed Analysis 85

will each generate amounts of data on the scale of Petabytes. Therefore, all

the experiments must overcome the difficulties of running jobs on the Grid,

as well as other available resources, in a consistent way.

Distributed data analysis systems can be broadly classified into two main

groups, submission systems and front-end analysis systems. The distinction

here is that submission systems can be viewed as launch vehicles, seeking to

provide uniform access to many resources in an optimal way. On the other

hand, front-end analysis systems normally concentrate on local tools, e. g.
Graphical User Interfaces (GUIs), for users to configure and manage jobs.

The former will mainly be looked at in this section although many submis-

sion systems, including DIRAC, also tend to offer some of the functionality

pertaining to front-end analysis systems.
A detailed comparison of DIRAC with regard to other systems will be

given in later chapters. In this section, a conceptual overview of how the other

experiments intend to enable distributed analysis will be given, bypassing

some of the more technical details. Several approaches are in place for each

of the larger experiments, so what will be discussed here cannot be considered

exhaustive. In the next section there will be a more detailed evaluation of
distributed analysis using the gLite framework prototype.

3.4.1 Distributed Analysis in ATLAS

DIAL and Panda are two of the submission systems in place for ATLAS,

which will briefly be discussed in turn.

Distributed Interactive Analysis of Large datasets (DIAL)

Users interact with DIAL [121] through a user analysis framework. At

present, the only supported framework is ROOT [102] and the aims of DIAL

3.4. Other Examples of Distributed Analysis 86

are to extend this to allow submission to batch systems and the Grid in a

seamless way. The main component of DIAL is the Scheduler and its interface

may be thought of as a high-level job definition language.

Jobs in DIAL consist of an application specification, task and dataset. A

task in this context is how to configure the specified application. The DIAL

Scheduler can be thought of as a WMS which either runs a job directly, passes

it to another Scheduler or splits it by input data. In the latter case, jobs are

created for each sub-job and the Scheduler will concatenate the results. Each

job produces a result and the result of the original submission is available to

the user. A binding in Python exists for DIAL [122] although it is mostly

written in C++. DIAL realises the PUSH scheduling paradigm.

Production and Distributed Analysis System (PanDA)

The Panda system [123] began in August 2005 and has been inspired by

DIRAC. Panda has a very similar architecture to DIRAC and will be dis-

cussed in more detail in Chapter 5. Panda is also developed in Python and

adopts the PULL paradigm for job scheduling, including the use of Pilot

Agents. In the same way as DIRAC, Panda began as a production system

and is currently being extended for the distributed analysis activity.

3.4.2 CMS Distributed Analysis with BOSS

Batch Object Submission System (BOSS) [124] is a tool for batch job sub-

mission, real time monitoring and bookkeeping. BOSS is interfaced to many

schedulers both local and Grid, to provide seamless access to resources.

BOSS realises the PUSH paradigm through the use of schedulers such as

PBS, LSF or the LCG Resource Broker. BOSS provides logging and moni-

toring information and allows complicated job flows of multiple applications

3.4. Other Examples of Distributed Analysis 87

chained together. The ability to manage jobs with an arbitrary scheduler

means that Grid and non-Grid resources can be accessed in a consistent

manner. BOSS was successfully used in CMS Monte Carlo productions be-

fore deciding to extend it for the user analysis activity.

3.4.3 Distributed Analysis in ALICE with AliEn

Alice Environment (AliEn) was envisaged to provide the ALICE user com-

munity a transparent access to computing resources distributed worldwide

through a single interface [125].

The AliEn WMS is based on the PULL approach and is developed in

Perl. AliEn uses the concept of a central task queue and uses central ser-

vices to manage all the tasks. Computing Elements are defined as `remote

queues' which can send tasks to a single machine, a cluster of computers or

a computing Grid. These `remote queues' can be thought of as Agents.

Input and output associated with any job are registered in the AliEn File

Catalogue. This is a virtual file system in which logical names are assigned

to files [126], with a semantics similar to the Unix file system.
AliEn and its architecture has been taken as one of the fundamental

components on which to build the Enabling Grids for E-Sciences in Europe

(EGEE) Grid Middleware, this will be discussed in Section 3.5.2.

3.4.4 Emerging Trends

To summarise the main features of the systems described above, Table 3.1,

outlines the main trends. It is interesting to note that several of the systems
have adopted the PULL scheduling paradigm.

Of the systems considered, it also appears that Python is a popular choice.
The main reason for this is that Python is an interpreted language, designed

3.4. Other Examples of Distributed Analysis 88

for rapid application development and deployment. With no dependence on

specific compilers, the use of Python lends the system an implicit degree of

platform independence.

Experiment System Scheduling Agents Control Implementation

ATLAS DIAL PUSH None C++, Python
ATLAS Panda PULL Pilot Agents Python

CMS BOSS PUSH None C++, Python
ALICE AliEn PULL Remote Queues Perl
LHCb DIRAC PULL Pilot Agents Python

Table 3.1: Comparison of distributed data analysis systems.

Excluding DIAL, the remaining systems have been used for Monte Carlo

Production activities. The process of extending these systems by building

on previous successes lends confidence through prior experience.

Currently DIRAC and Panda make use of the LHCb Pilot Agent paradigm.
This is also being investigated by the other experiments due to the higher

efficiency demonstrated with jobs on the Grid. This will be further discussed

in Chapter 5.

Through the inception of A Realisation of Distributed Analysis (ARDA)

[127] project for the LHC, prototypes of distributed analysis systems have

been introduced for the main LHC experiments. In the next section, the

EGEE gLite Framework is evaluated for the LHCb distributed analysis ac-

tivity.

3.5. Analysis Using DaVinci In the gLite Framework 89

3.5 Distributed Analysis Using DaVinci In

the gLite Framework

This section describes work carried out between September 2004 and Febru-

ary 2005 to perform the first realistic physics analysis using the gLite Grid

framework [128] prototype. Firstly, an overview of how DaVinci [129] was

integrated with gLite will be given in Section 3.5.1. This is followed by an

overview of the gLite framework [67] in Section 3.5.2. Next, the example

analysis (Bs --- J/W1) carried out with gLite and DaVinci is described in

Sections 3.5.3 to 3.5.6.

The gLite prototype is a reduced version of the EGEE Grid Middleware

[130,131]. This follows a Service Oriented Architecture and utilises the AliEn

[132] file catalogue. DaVinci was introduced to the gLite framework and

subsequently a physics analysis on the BS --º J/'(I) channel [133,134] was

carried out.

Using the gLite package manager, analysis jobs were submitted to exploit

available Grid resources and test the framework. This required some addi-

tional effort but did lead to a successful use of the system. An evaluation of

the gLite Framework for LHCb distributed analysis will be given in Section

3.5.7.

3.5.1 Using DaVinci with gLite

DaVinci is the analysis program of LHCb, which is based on the Gaudi

Framework [135] and LHCb core packages [136]. Programmed in C++,

DaVinci is a collection of distinct packages that are managed using CMT

[117]. By using binary releases of the software, currently released as package

tarballs, the dependency on CMT can be removed.

3.5. Analysis Using DaVinci In the gLite Framework 90

In this way, DaVinci depends on five distinct packages, which include:

Gaudi; LHCb Software [136]; FieldMap [137]; ParamFiles [138], and Xm1D-

DDB [139]. The typical DaVinci user will generally only need to modify the

DaVinci package itself. This procedure is simplified through the use of op-

tions files which steer DaVinci. As such, any additional user-specific libraries

may be included using only the options files and the dependent packages may

effectively be ignored from the perspective of the user.

3.5.2 The gLite Framework

The first instance of the gLite Framework was the gLite prototype [140] which

uses the AliEn file catalogue.
As stated in [141], the gLite prototype was designed to accommodate an

iterative sequence of user interactions in an analysis context. After a review

of existing projects, AliEn [132] was chosen on the basis of showing the most

complete distributed analysis functionality. A re-factoring of AliEn and other

services into ARDA led to the creation of the gLite prototype.

The gLite Middleware prototype consists of the following core services
[142]:

" File catalogue

" Authentication module

" Task queue

" Meta-data catalogue

" Package manager

" Grid access service.

3.5. Analysis Using DaVinci In the gLite Framework 91

To access gLite, users must first have a valid X. 509 Grid certificate regis-

tered in a supported VO such as LHCb. This allows the user to become part

of a well defined group, sharing resources on the Grid.

An interactive shell is provided for users in order to access Grid services.

As described in [143], this shell is implemented as a client within which the

user can issue commands similar to those in a standard Unix shell. The

file catalogue is organised in a hierarchical way, which is similar to a file

system. This has advantages because familiar commands such as is and rm

may be used in a transparent way for the user. This masks, for example, the

relationship between Logical File Names (LFNs) and Physical File Names

(PFNs). Files may be added to the catalogue by either specifying a URL

or by adding a reference to an already existing file in an accessible storage

element.

Around seventy commands are available in the gLite shell. In principle,

these provide all the functionality necessary to successfully submit user jobs

and retrieve output. However, for the user, this is still very far from what a

standard Unix shell provides and the system can feel rather restrictive.

Jobs may be submitted from the gLite shell using a Job Description Lan-

guage (JDL) file that specifies an executable. For successful submission both

the JDL file and the executable must be accessible via the filesystem on the

Grid. In practice, the user must manually insert the JDL file and executable
file for each specific job into the file catalogue themselves.

In order to retrieve output from gLite to the local file system users must

execute a command that brings a copy of the closest PFN to a temporary

directory. From this the user can copy the file to their local directory.

The first release of gLite, Release 1, lost some of the functionality of
the prototype. The gLite management taskforce decided upon this course of

3.5. Analysis Using DaVinci In the gLite Framework 92

action during the 4th ARDA Workshop `The LCG ARDA prototype' (March

2005) in order to focus on key services. As a result, for example, the package

manager and Grid access service developed in the AliEn framework were

removed from Release 1.

3.5.3 BS --+ J/ cT) Channel

The LHCb experiment will investigate asymmetries in the decay of B and B

mesons, in order to understand the mechanism of CP violation in the quark

sector. The BS -+ J/W1 channel will have an annual reconstructed signal

yield of 100,000 events and is sensitive to new physics effects. This made
it an ideal candidate for performing a typical analysis using DaVinci in the

gLite Framework. The 100K events refers to the J/W -* iit decay (as does

the following analysis), there is an additional 20K J/' -4 ee events in the

sample that were not considered. After the initial BS --> J/WII decay, the 4)

subsequently decays into two K mesons (1 -º KK).

The final state of the BS --> J/»(P decay, consisting of two vector mesons,
implies that there are three contributions to the decay [133]. The angular

analysis is greatly simplified by considering the transversity basis [144] where

it is possible to disentangle the two CP even and one CP odd contributions

through the transversity angle (Bt,.).

The angular distribution allows the extraction of the CKM triangles prop-

erty Sry, which could signal new physics if a large enough value is detected.

3.5.4 Analysis Using gLite

The BS -º J/xP4) channel was chosen to provide a typical, generic base on

which to test the gLite framework. For the purposes of this analysis, DaVinci

v12r3 was deployed using binary tarballs of all dependants.

3.5. Analysis Using DaVinci In the gLite Framework 93

SUfpt ro Fý ý Run JDL FYe
User DaVmci DLLs

it

gLite Framework

mPý+ý Run Job
SanObox

Fnes

Ei:
r n

------------------------- --- -------- 8

Histogram s NTupbs

Figure 3.8: Datarlow daring an analysis job using Da Vinci through gLitc from a

(Lsrr's p(rsp(ctü'e. The user provides the files at the top and after adding them to

the catalogue, gLitc will return the output.

Figure 3.8 highlights the analysis (lataflow. from the perspective of the

user. A typical analysis using DaVinci involves the creation of user-specific

options files and algorithms as well as a large number of standard 0I)tiol's

files for configuration purposes. These serve as input to the gLite Framework,

along with a script to rin DaVinci and a JDL file to control job submission.

The latter two files are quite generic and could easily be standardised for

other LHCh users.

To use DaViiic"i in the Lite Framework it is necessarY to condense all of

the options files. This is most easily achieved using JOE. the Job Options

Editor [1451.

There are two options available at this point, one could use a single tarball

of all relevant software or could utilise the gLite package manager described in

Section 3.5.5. This ('lloi('(' only Illlj)a('ts on the script to TRII DaViuici and the

3.5. Analysis Using DaVinci In the gLite Framework 94

JDL file. Ideally, it is recommended that an LHCb administrator or super-

user would insert several versions of DaVinci into the gLite file catalogue

using the package manager. This would allow all potential LHCb users to

make use of a particular version without having to insert it themselves.

Once this is decided and all files are added to the file catalogue, job

submission is possible. gLite handles everything from the point at which the

user submits the job. One can observe the job status using the shell-like

behaviour inherent to the gLite prototype and then gather the output as

desired. For a typical analysis using DaVinci, output comes in three forms,

histograms, ntuples and the standard output from DaVinci.

3.5.5 Job Splitting and Use of the gLite Package Man-

ager

Job splitting is possible in the gLite Framework [146]. Inside the job de-

scription (JDL file) it is possible to specify a flag to enable splitting and this

results in a master job being created after submission. From this point, any

operations made on the master job will also affect the sub-jobs so, for exam-

ple, killing the master job would result in the termination of all sub-jobs.

Job splitting was applied to DaVinci jobs, although some problems did

arise. In the event of sub-job failure it is necessary to resubmit either the

failed sub-jobs independently or the original job again. At this point, there

is no mechanism in place to merge sub-jobs after completion, therefore using

this method of job submission was found to be overly user-intensive at this

time.

Instead of sending one large, manually constructed tarball of all the soft-

ware necessary to run DaVinci jobs it is preferable to take the individual

tarballs of dependent packages from the LHCb release area and insert them

3.5. Analysis Using DaVinci In the gLite Framework 95

into the gLite file catalogue. DaVinci in this sense directly depends on Gaudi,

Xm1DDDB, ParamFiles, FieldMap and the LHCb packages.

Inside the gLite prototype it is possible to insert tarballs as packages

with each having specific setup commands specified by the user. In this

sense it was possible to create the proper environment for the software to

run with each package being installed independently in different locations.

The structure of the packages is taken from that of CERN, so the tarballs

can be inserted directly from the LHCb release area.

By having an LHCb administrator to set up several versions of DaVinci,

a typical user would not need to be concerned with where the packages are
installed and how they are set up. There is little change to the environment
between versions of DaVinci so the mechanism in place is quite scalable. Sub-

sequent to the work presented here, the gLite package manager has evolved

to become more streamlined [147].

3.5.6 Analysis Results and Experience

The results presented here are based on a selection of BS events run on
DaVinci v12r3 in the gLite Framework using a 100,000 event sample. Figures

3.9,3.10 and 3.11 show the reconstructed J/W, 0 and BS respectively. The

overall selection efficiency of the BS was 8.2%.

As mentioned in Section 3.5.3, the angular analysis is greatly simplified
by considering the transversity basis. In this basis, the x-axis is defined as
the direction of the 4> in the J/T rest frame. The z-axis is perpendicular to

the 1 -' KK decay plane and the transversity angle (6t,.) is defined as the

polar angle of the positive lepton in the J/' rest frame [144].

The transversity distribution in Figure 3.12 shows a very good correlation

with the plot on page 12 of [134], which was obtained using a fast parame-

3.5. Analysis Using DaVinci In the gLite Framework 96

SELECTED J/)81(S) mau (GeV)

Mass (in ON/)

mean x011

Figure 3.9: Reconstructed J/ku rnass di-titr°ibution (in GeV) after itppiyiruj J/

selection, cuts, run over 100.000 events using DaVinci through the gLite Frame-

'ork.

terised `toy' Monte Carlo experiment. The resulting distribution shows what

olle would expect from the admixture of heheity states but some investiga-

tion into the event generator is required in order to determine that all states

are being accounted for.

The gLite \li(1(lleware prototype was very much in its infancy when (an-

rying out this analysis. Unfortunately the system could be down for a period

of claps or even weeks at a time die to many factors. The infrastructure was

prone to hanging and often needed to he rebooted. Getting real estimates of

system performance and efficiency was also llanil)erecl by issues of reliaal)ility

with individual commands rind job submission.

An attempt at robustness tests was made (submission of fifty' 25.000 event

jobs were seilt every (lay over several days) hilt iitifortunately the system

would either execute some or all of thejol)s sent or hohl(' at all dine to stability

issues. This was further compounded by the fact that new Worker Nodes

were being frequently added, and these did not always behave as was initially

3.5. Analysis Using DaVinci In the gLite Framework 97

SELECTED p4(1 020) mass (0eV)

1 1.02 1.04
IN ss (in G. Y)

Figure 3.10: Reconstructed (1) rr, ass distribution (in G(, V) after applying J/T

and P selection cats, run over 100,000 events using DaVinci through, the ! Lite

Framework.

expected.

CASTOR [148] access was also a problem. Originally all available datalsets

were picked alp without any issues but towards the end of this work the ws-

tem failed inexplicably and the cause of this was not determined. Another

issue was with the \\orker Nodes only having 20Gh disks. Unfortunately

this made it impossible to run over large numbers of datasets directly. This

effectively forces a user to either split their jobs themselves or via the system

(see Section 3.5.5).

Using the gLite prototype to perform user analysis required significant

rulrlitiollal effort from the user xvlierº compared to the use of standard kitch

systems. Unfortunately it often seemed to be unclear whether the user was

at fault or the svsteriº itself. There is ranch scope for improvement however

Mid when the system was working. results for the analysis were obtained.

3.5. Analysis Using DaVinci In the gLite Framework 98

SELECTED 8_90 mass (GeV)

Mass (1n GeV)

5.30

Figure 3.11: Reconstructed BS m a. ss distribution (ire GeV) after applying all se-

lection cats, run over 100,000 events using DaVinci through the gLite Framework.

The selection efjiriency for this was 8.2%.

3.5.7 Evaluation of gLite for Distributed Analysis

The -Litc prototype is it reduced version of the Grid middleware. This in-

frastructure was tested by carrying out a physics analysis rising the LHCb

DaVinc"i software on the Grid. The importance of this was two-fold. Firstly,

the tests were used to determine where improvements could be made to the

fraimiework. Secondly, the utilisation of Grid resources becomes increasingly

important as the start of the LHCb experiment approaches and it has beets

necessary for new mechanisms of analysis to he explored.

Overall, analysis is possible using DaVinci in the gLite Framework. When

the system works it can be relatively painless to use after a familiarity- with

the system has been established. However. since the system is experimental

there were some reliability- issues and teething problems. Notiethcless, large

jobs were successfiilly executed using the gLite prototype and this led to the

exploitation of Grid resources.

There was initially no direct Agents' control for the gLite Framework and

3.5. Analysis Using DaVinci In the gLite Framework 99

Cosine of Transversity An le
Mean 0.001497

.i +

0.6 0.8 1

Figure 3.12: Plot of the cosine of the transversit; y distribution, cos O, for all

selected Bti" ecvent. s. The distribution shows the projection of all contributions in-

cluding CP odd and CP even and shows a good correlation with the plot on page

12 of /1,14J which was obtained using a fast pararneterised 'toy MC experiment.

rilthort ha PULL model was envisaged as part of the gLite \VBIS, the systeiii

was initially based on a PUSH mechanism, which raises the possibility of

scalahility problems.

1'he limitations encountered when performing this analysis led to the de-

cision to extend DIRAC for distributed analysis rather than eise the gLite

Framework. Since DIRAC proved to be it success for production tasks (hiring

DC04. and features were being removed from the gLite first release ca. ncli-

clate, as mentioned in Section 3.5.2, it was felt that the already established

tools provided by DIRAC should be developed. This decision also meant

LHCb could use the same system for production and analysis for all avail-

able resources, including those outside of the Grid. It also allows LHCb to

remain in direct control of all Grid activity with no dependence on external

software providers.

3.6. Summary 100

3.6 Summary

This chapter began by introducing the key paradigms for LHCb distributed

data analysis. The first of these was the use of PULL instead of PUSH

'scheduling and the second was the use of Pilot Agents. It was shown that the

Pilot Agent paradigm can be used to facilitate the PULL approach, through

a PUSH system, as in Figure 3.2.

The requirements for LHCb data analysis were discussed in Section 3.2.

In the context of LHCb, distributed analysis is a batch analysis but with

minimised response time. This involves prioritisation and optimisation of

available resources for LHCb. The overall aim is to provide a stable plat-
form for analysis on inherently unstable resources and therefore mask any

inefficiencies of LCG from the user. Using the Overlay Network paradigm

described in Section 3.3, it is possible to achieve this.

Other examples of distributed analysis were discussed in Section 3.4. Sev-

eral trends were highlighted such as the use of Python to gain a degree of plat-
form independence and the use of the PULL scheduling paradigm. The other

experiments are also starting to adopt the Pilot Agent paradigm, which was
first realised through DIRAC. One example would be ATLAS with Panda.

In Section 3.5, gLite was evaluated for distributed analysis for LHCb.

Although the prototype was being investigated, reliability issues and impres-

sions of general ease of use led instead to the decision to extend the LHCb

Production system, DIRAC, for user analysis.
DIRAC makes use of PULL scheduling through the Pilot Agent paradigm

to increase the efficiency of LHCb Grid jobs. This is accomplished through

the Overlay Network of Agents, interacting via Services, which together make

up the Workload Management System. The DIRAC system will be described

in the next chapter.

4. Distributed Infrastructure with Remote Agent Control 101

Chapter 4

Distributed Infrastructure with

Remote Agent Control -
DIRAC

This chapter will describe the LHCb distributed workload management sys-

tem known as Distributed Infrastructure with Remote Agent Control (DIRAC).

Section 4.1.1 begins with a discussion of the design principles and philosophy

of conception. The main components of DIRAC are resources, services and

agents, which are key to realising the paradigms introduced in the previous

chapter. The interactions of these components are discussed in Section 4.1.2.

A brief history of the DIRAC project will be given in Section 4.1.3, and the

software tools chosen to implement the system will be described in Section

4.2.

The Services Framework will be discussed in Section 4.3. This will convey

how the software tools are used to securely deploy services in a reliable way.

Section 4.4 will describe the Agents Framework, focussing on the two main

types of Agent present in DIRAC and how they are utilised. A description

4.1. Introduction 102

of the Workload and Data Management components of DIRAC is given in

Sections 4.5 and 4.6. This is followed by an overview of the Information,

Monitoring and Accounting systems in Section 4.7.

4.1 Introduction

DIRAC is the LHCb Workload and Data Management system for Monte

Carlo simulation, data processing and distributed user analysis. The present

goals and scope of the DIRAC [149] project are to provide the LHCb Col-

laboration with the following:

"A robust platform to run data productions on all the resources available

to LHCb including individual PCs, site clusters and Grids;

"A means to distribute LHCb data as soon as it becomes available,

according to the Computing Model [100];

"A well controlled environment to efficiently run user analysis jobs on

the Grid; and

" Efficient steering, monitoring and accounting of all the LHCb activities

on the Grid and other distributed resources.

These goals have evolved over time. In fact, when DIRAC first started
it was with a rather reduced scope and this will be discussed in Section

4.1.3. The Pilot Agent paradigm outlined in the last chapter allows DIRAC

to realise the PULL scheduling approach on LCG, as described in Section

3.1.2. Through the Overlay Network concept, where Agents interact through

Services, the underlying diversity of the heterogeneous resources of the Grid

can be hidden from users. Both of these paradigms have been very influential

4.1. Introduction 103

on how DIRAC has been implemented and are naturally part of the system

by design.

4.1.1 DIRAC Design Principles

Following the paradigm of a Service Oriented Architecture (SOA), DIRAC

is lightweight, robust and scalable. This was inspired by the LCG/ARDA

RTAG architecture blueprint [150] and also the `Grid services' concept. The

latter was introduced through an architecture by which Grid services are

defined, Open Grid Services Architecture (OGSA) [3], as well as the Open

Grid Services Infrastructure (OGSI) [45] which is a standard to formally

specify Grid services in more technical detail.

Although DIRAC has been developed for the LHCb VO which will only be

using one Grid (LCG), the system has been designed to be independent of the

Grid being used as well as the VO using it. In order to establish some of the

design principles of DIRAC, two assumptions are made about applications

running on a Grid Worker Node (WN). Firstly, it is assumed that no root

privileges exist on the remote site and secondly, that none of the machines

are dedicated for LHCb use only. This means that the Grid resources are not

assumed to be owned or used exclusively by LHCb. Therefore, one of the key

design principles is to ensure a light implementation which is easy to deploy

on various platforms. Also, this should be non-intrusive since machines are

not necessarily administered for LHCb use alone.

One of the paradigms of the Grid is that users may submit jobs and not
be concerned with where these jobs execute: only that they do execute. For

this reason, the system must be easy to configure, maintain and operate.
The main goal is to minimise human intervention so that DIRAC can run

autonomously once installed and configured. Furthermore, it is important

4.1. Introduction 104

to ensure DIRAC can run in a platform independent way. To facilitate a

high degree of efficiency, the platform independence of the system should be

demonstrated for the various Linux flavours running on the Grid.

The use of standard components and open-source, third party develop-

ments is encouraged where possible. This ensures the system can sustain

a high level of adaptability. Therefore, a modular design at each level of

DIRAC has been adopted, which lends the system intrinsic flexibility. This

simplifies the process of adding new functionality since new modules can be

`plugged in' as required.

4.1.2 Main Components of DIRAC

The DIRAC software architecture is based on a set of distributed, collab-

orating services. Designed to have a light implementation, DIRAC is easy

to deploy, configure and maintain on a variety of platforms. Figure 4.1 out-
lines the relationship between resources, services, agents and clients which
form the main components of DIRAC. These will be briefly discussed in turn

below.

Clients

At this stage clients can simply be considered as submitters of jobs or re-

quests. Clients include the Bookkeeping Query Webpage [151], which re-

quests information about datasets and their replicas on the Grid. For dis-

tributed analysis and user production jobs, clients interact with the central

services via the DIRAC Application Programming Interface (API). This will
be further discussed in Chapter G.

For LHCb production tasks, the Production Console is used. This pro-

vides a general framework for the construction and management of produc-

4.1. Introduction 105

Figure 4.1: Orcrvu w of the main components of DIRAC: Resources: Seriuces:

Agents and Clients and how these components interact.

tion tasks and provides a GUI for users [152]. I'fiere is also a File Catalogue

Browser wich snakes use of the Data 1lanap; etneitt collwol1Ctit5 of DIRAC

which will be described in Scctiou 4.6.

Services

The Service's highlighted in Figure =I. 1 accept requests frone Clients and

Agents. The DIRAC Job Management Services will be described individually

in Section 4.5. They perform vital operations for production and distributed

analysis jobs, such its: uploading any necessary files for application steering;

and checking any requested input data is available.

The Configuration Service provides necessary site dependent information

4.1. Introduction 106

for Agents and will be described in Section 4.3.4. The Job Monitoring Service

keeps track of changes in job status. Similarly, the Bookkeeping Service will

log selected results to provide a history about jobs in case of failure. The role

of the Job Accounting Service is to provide statistics, in an automated way,

about success rates and the locations where DIRAC jobs are running. The

Message Service currently utilises Jabber and is outlined in Section 4.5.4. The

File Catalogue Service is used, for example, when outputs must be placed in

permanent storage, this will be discussed in Section 4.6.

Agents

Agents are deployed close to resources and form an Overlay Network as
described in Chapter 3. On LCG, Pilot Agents are deployed to Worker

Nodes via the Resource Broker, whereas on individual PCs and site clusters

this is done `by hand'. The use of non-Grid resources was more prevalent in

the early stages of the DIRAC project, which will be highlighted in Section

4.1.3.

Resources

As mentioned in the last chapter, DIRAC can integrate resources such as
Individual PC's, site clusters and Grids. This is reflected in Figure 4.1, with

the only difference from the perspective of Services being how the Agents are
deployed in each context.

4.1. Introduction 107

4.1.3 History of DIRAC: Evolution from Production

to Analysis System

The DIRAC project started in September 2002, Figure 4.2 illustrates the

major milestones and developments since then. The first production of NIC

simulation events using DIRAC was demonstrated in the autumn of 2002.

During 2003, DIRAC was first used for MC simulation event production

in the first Physics Data Challenge (PDC1). Over a two month period of

continuous running during PDC1, DIRAC was used to generate 40 million

physics events, corresponding to about 9 Terabytes of reconstructed data

[153]. For this, DIRAC made use of the DataGRID [154], which was the

predecessor of EGEE, as well as institutional batch systems running DIRAC

in a non-Grid environment (hereafter referred to as DIRAC sites).

Milestones DC04: First
PDC1: first large scale Distributed First
successful use of Grid analysis at all DC06

Production
massive

production run
for

production
LHCb Tier 1 sites

Start of
- DIRAC ------------- -------

DIRAC
--- -------

project
Review

Rewrite to DIRAC
incorporate extended for

Developments LCG tools distributed data
(DIRAC2) analysis tasks

2002 2003 2004 2005 2006 Time

Figure 4.2: The timeline of the main milestones and developments of DIRAC

to date. The project started in September 2002 and is presently being used for the

LHCb DC06 activity.

A complete rewrite of DIRAC was undertaken for the 2004 Data Chal-

lenge (DC04) in order to incorporate LCG resources that were available at

4.2. DIRAC Implementation: Software Tools 108

the time [149]. This resulted in the second version of the project, DIRAC2.

Some of the results of DC04 have already been shown in Section 2.4. This

was the first large scale use of the Grid for LHCb data production.

After the successful experiences with DIRAC in DC04, the decision was

made to extend the functionality of DIRAC to also include distributed anal-

ysis tasks in 2005. This resulted in LHCb successfully meeting an LHCC

milestone to perform distributed data analysis at all LHCb Tier-1 sites. The

work performed to extend DIRAC will be described below as well as in sub-

sequent chapters. In November 2005, a review of DIRAC was undertaken.

This has resulted in many useful recommendations for the organisation and

structuring of the project [149].

One of the key themes throughout the history of DIRAC is the increasing

use of LCG resources. During DC04, there were still several DIRAC pro-

duction sites in use. However, the primary mode of submission for LHCb

production and analysis jobs is now via LCG.

DIRAC is now the LHCb Workload and Data Management system for

Monte Carlo simulation, data processing and distributed user analysis for

LHCb, and is actively being used for the 2006 Data Challenge. Many of

the software tools used to implement DIRAC have been consistently used

throughout the project and this will be discussed in the next section.

4.2 DIRAC Implementation: Software Tools

This section provides an overview of the specific software tools used to im-

plement DIRAC and the motivation for selecting them.

4.2. DIRAC Implementation: Software Tools 109

Implementation Language

DIRAC is implemented in Python. Python was selected as it has the fol-

lowing key advantages over other common options such as C++, Java and

Perl. Firstly, Python is an interpreted language. This provides a degree of

platform independence which, for example, C++ does not exhibit. Java is

an interpreted language, although it is arguably easier to program in Python.

Unlike Perl, Python is a very readable language that facilitates a fast devel-

opment cycle when working in a group of developers. The speed of Python

has not been an issue for DIRAC thus far, and so it has been unnecessary to

rewrite any of the code to increase performance.

Remote Procedure Calls

Efficiently performing Remote Procedure Calls (RPCs) in a distributed en-

vironment is essential. This is the way in which clients can interact with

services on the Grid. Due to the heterogeneous nature of the computing

systems, from hardware to operating system, a standard for communication

between clients and services needs to be established. The two choices are

XML Remote Procedure Call (XML-RPC) protocol [155] or Simple Object

Access Protocol (SOAP) [156].

XML-RPC was chosen for use in DIRAC over SOAP. This was essen-

tially due to its simplicity and lightweight nature. Using HTTP (Hyper-Text

Transfer Protocol) for transport and XML for encoding, XML-RPC stores

information in key-value pairs which is very simple to implement and main-

tain. SOAP, on the other hand, is designed for the transport of complicated

(user defined) data types, which involves overheads due to the extra infor-

mation about what is being sent. It was felt that DIRAC did not require

the heavier machinery of SOAP and thus far, XML-RPC has been sufficient.

4.2. DIRAC Implementation: Software Tools 110

The XML-RPC protocol is available as a standard Python library and with

this simple, lightweight approach comes speed.

Security

The client-service communications are secured using the DIRAC Secure Trans-

port (DISET) framework [157] which is conformant with the standard Grid

Security Infrastructure (GSI) [158]. This will be described in more detail in

Section 4.3.1. The key elements are the use of XML-RPC transport over a

Secure Socket Layer (SSL) tunnel, with authentication being performed via

X. 509 certificates and grid-proxies.

Third-party Components

Job scheduling in DIRAC is achieved through the PULL scheduling paradigm

via a matchmaking service. This will be discussed in Section 4.5 but makes

use of Condor Classified Advertisements (ClassAds) [75]. These are struc-

tures which contain descriptions of the characteristics of the sender, used to

determine whether a particular resource is suitable for a job.

Another third-party component integrated into DIRAC is the Jabber

[159] instant messaging system which is used for reliable service-service com-

munication. Its potential use for providing job interactivity will be briefly

described in the context of the Agents framework in Section 4.5.4.

A MySQL database is used for maintaining all information for services

and jobs. MySQL [79] is a free, fast and reliable open source relational
database which is used in DIRAC to store information about jobs such as:
logging information; input / output sandboxes and task queues. The use

of the DIRAC MySQL database will be described in the context of WMS

services in Section 4.5. MySQL was chosen instead of more powerful com-

4.3. Services Framework 111

mercial alternatives, such as ORACLE [78], since the performance has been

sufficient so far.

The CERN CVS repository [160] is being used to maintain the code.

The code is structured in sub-directories broken down by their component

family. The distribution of DIRAC is made via a tarball (i. e. a. tar. gz file)

which contains the whole code base. Due to recommendations made in [149],

the packaging of the project has been changed so that only the necessary

code is deployable in the different contexts of use e. g. separate client and

WMS. The DIRAC distribution also includes some basic LCG software such

as a GridFTP client and LFC client. This is bundled in a Linux flavour-

independent way for use on sites that do not provide these tools by default.

The LCG file catalogue (LFC) [77] is now being used by DIRAC and is

queried as part of the job submission procedure. The decision to use the LFC

was based on experience with other file catalogues and this will be described

in Section 4.6.2.

The runic [161] set of tools has been used to enhance the reliability of the

services framework, which will be further discussed in Section 4.3.3.

4.3 Services Framework

Services in DIRAC are permanently running, passive components, which

respond to incoming requests from clients. Therefore services, unlike DIRAC

Agents, need inbound connectivity. This section presents an overview of
the services framework with consideration to three main topics: security;
deployment and reliability.

DIRAC implements a client-server architecture which exposes server meth-

ods via the XML-RPC protocol. In order to protect the system from misuse,

4.3. Services Framework 112

such as Denial of Service attacks and unauthorised access, it is imperative

that services are actively designed to combat these problems. The public

interfaces of DIRAC services have to be able to check the validity of all in-

put parameters and also provide access control for exposed methods, e. g. by

limiting the number of concurrent threads processing requests [149].

The deployment of DIRAC services aims to provide redundancy and reli-

ability. Currently, some of the central Services are running on stable servers

at CERN, Barcelona and Marseille. These are administered by respective site

managers. An overview of the DIRAC Configuration Service will be given in

Section 4.3.4 to illustrate these points.

4.3.1 Security in DIRAC - DISET

DIRAC Secure Transport (DISET) [157] is the security mechanism for DIRAC.

This is based on the use of X. 509 digital certificates and Grid proxies, both

of which are signed by a trusted Certification Authority (CA). DISET is an

extension of HTTP over SSL (HTTPS), which provides an enhanced, secure

XML-RPC client that is useable in the same way as the native Python XML-

RPC client. DIRAC clients only need access to a valid Grid proxy, CA public

keys and the Certificate Revocation List (CRL) in order to establish a secure

connection to services.

The process of making a secure connection has three main steps as out-

lined in [157]:

" Authentication;

" Authorisation; and

" Logging.

4.3. Services Framework 113

Authentication involves not only the client being recognised by the server

but also the server being recognised by the client. This communication is en-

crypted through SSL after successful identification, and the user is identified

through the Distinguished Name (DN) present in the certificate or proxy.

To perform authorisation of the client a query is made to the server via

XMI, RPC. The decision is made based on the server configuration with au-

thorisation rules based on user groups and roles, restricting access based on

the identity of the user. The groups and roles for users are defined within

the DIRAC Configuration Service, which is described in Section 4.3.4, and

are mapped to those present in proxies from the Virtual Organisation Mem-

bership Service (VOMS) [70]. The VOMS project [69] aims to provide infor-

mation about the operations a user is allowed to perform within the context

of their VO as well as their group and role.

4.3.2 Deployment

DIRAC services interact with three main components: clients, via the user

interface; running jobs; and Agents. The DIRAC services accept incoming

connections from these components and are either deployed centrally or run-

ning at VO-boxes, which will be described below. The central deployment

of services is accomplished on LHCb managed, LXGATE-class machines at
CERN. More information on the specific instances and deployment of DIRAC

will be given in Chapter 6.

The architecture of DIRAC allows the deployment of different services

on different machines. Where necessary, communication is possible via the

Jabber Instant Messaging service, discussed in Section 4.5.4. Load balancing

can therefore be accomplished by deploying services to different machines as

necessary. To date, however, it has been sufficient to deploy an instance of

4.3. Services Framework 114

the DIRAC central services to one machine without overloading it during

operations.

last day - User (FV utilization in X
3

20.

x

IO

0
OL OC 06 00 1:: J0 tE: QÜ

" CPUtl1ILPEKUSER aver: 9.49 NAx: 27.24 nv. 5.56
Curr, 12.99

Figure 4.3: CPU usage on the machine. hosting the DIRAC central services in a

2. hour period during the RTTC production in May / Junge 2005, from [162].

To illustrate this. Figure 4.3 from [162] shows the CPU usage on the

LXGATE machine where the DIRAC central services were deployed during

the LHCh Real Time Trigger Challenge (RTTC) production in May / June

2005. During this period, over 5000 simultaneous jobs were running, only

limited by the available LCG resources. This exhibits a far from critical load

on the server. An evaluation of the svsteI i for anticipated future requirements

of distributed data analysis jobs will be explored in Chapter 6.

VO-box Services

As mentioned above, DIRAC services are either deployed centrally or to VO-

boxes. A VO-box is a dedicated host at a Tier-1 or 't'ier-2 centre, which can

run critical LHCb VO services for the purposes of providing redundancy and

efficiency at the site. VO-boxes also provide load-balancing, whereby Tier-

2 and Tier-3 sites may access their local Tier-1 VO-box instead of relying

purely on central LHC'b services.

Eich experiment has its own requirements and specification for VO-boxes,

4.3. Services Framework 115

but for LHCb [163], these perform tasks such as retrying failed operations on
Grid WNs. One example is data transfer operations at the end of production

jobs. Transferring files to Grid SEs can be accomplished via the nearest

VO-box even if the central services are down. In fact, by delegating all data

moving operations to Agents deployed on VO-boxes, WNs can be freed ahead

of time, thus increasing the throughput of sites.

4.3.3 Reliability

Power cuts or system reboots have the potential to interrupt DIRAC services,

it is important to recover from these type of events in an automated way. The

reliability of DIRAC central services is ensured through the use of runit [161].

The services themselves run in user space and runit provides a `watchdog'

process in order to restart services in case of failure or system reboot. The use

of runit does require root access, at least for the installation and configuration

of the DIRAC services. runit also offers several time-stamped logs which

automatically track progress. These rotate in order to provide as much of the

recent logging information as possible. This eases the process of monitoring

and controlling the DIRAC central services.
For the developers of DIRAC, the use of runit means that the process of

creating a service also involves the provision of a short script detailing any

special setup instructions. These runit scripts are normally trivial to write

and constitute a negligible overhead on programmer time.

For extra redundancy and load balancing, the critical central services can
have mirror services. However to date, the times during which the DIRAC

services are unavailable have usually coincided with periods where LCG ser-

vices have also been affected. The potential strategies and benefits of mir-

roring the DIRAC WMS will be described in Chapter 6.

4.3. Services Framework 116

4.3.4 Example: DIRAC Configuration Service

To illustrate the principles of the service framework in practice, the DIRAC

Configuration Service (CS) [164] will be discussed here. The CS is an integral

part of the Information System for DIRAC and provides configuration infor-

mation for various system components such as Services, Agents and Jobs via

XML-RPC.

CS
Administrator

Set Parameter

Configuration
Service Master

Server

/'l "I \
Update �Update

Slave : '"

` 'Slave

Server : .ý Server

Get Parameter i ý'i
Get Parameter

Client
''

Client

``

Client

Figure 4.4: Overview of the DIRAC Configuration Service. This has a hierarchi-

cal structure where the Master Server updates the slaves on request. Clients can

access any of the servers to receive consistent configuration information.

A hierarchical structure was chosen for the CS, which is reflected in Figure

4.4. The main components here are the Master Server, Slave Servers and
Clients. In order to access all necessary configuration information, Clients

only need to have the URL of a CS server. There can be many geographically
distributed Slave Servers to provide redundancy and load balancing.

The Master Server keeps all configuration data organised in sections con-

4.4. Agents Framework 117

taining options with their values in the form of Microsoft Windows . ini files.

The information from the Master Server is published to all Slave Servers,

which are automatically notified whenever a change takes place. The Slave

Servers cannot change any configuration data themselves, in fact, changes

can only be made local to the Master Server. When the data changes, the

Slave Servers update their local copy and the same is true for Clients, which

exhibit the same behaviour. The Clients have a list of possible servers to

connect to, with each being tried in turn in the event of a failure.

The DIRAC CS uses a DISET command line interface to secure the sys-

tem against unauthorised changes. The CS is currently deployed with servers

running at CERN, Marseille and Barcelona, providing 100% availability to

DIRAC components. The CS servers are also deployed with a watchdog to

restart in case of failures.

4.4 Agents Framework

Services provide the means for Agents to communicate and perform tasks.

This is part of the Overlay Network concept described in Section 3.3. DIRAC

Agents are lightweight components which are easy to deploy, with Services

being passive components. Agents bring the whole system to life by sending

requests. For this reason Agents need outbound connectivity, but only to well

defined URLs. As an example, one such URL could be to the CS servers as

described in Section 4.3.4. This is secure by nature and eliminates potential

problems with firewalls. Agents are running in user space and do not require

any special privileges on sites. Since they are written in Python, only the

interpreter is required' for deployment.

In keeping with the modular nature of DIRAC, Agents can be thought

4.4. Agents Framework 118

of as containers of pluggable modules. These can be put to use in a custom

way, with several Agents running on the same site using a different set of

modules. The configuration of the Agent determines which modules are

used. The DIRAC Data management tools are based on `plugging in' a

module to perform a particular function, such as data transfer operations,

with the configured DIRAC Agent running on sites, see Section 4.4.3.

Agents make use of the DIRAC Computing Element to mask the hetero-

geneity of computing resources. This will be described in Section 4.4.1. It

allows Agents to form an Overlay Network and provides a consistent way to

execute jobs and interact with services.
There are two types of Agent in use in DIRAC, differing only in their con-

figuration and deployment. Firstly, Section 4.4.1 will describe Site Agents,

which are typically used outside of the Grid. Secondly, Pilot Agents will be

discussed in Section 4.4.2. Pilot Agents are submitted automatically to LCG

via the Resource Broker, as introduced in Section 3.1.2.

4.4.1 Site Agents

Site Agents, can be used outside of the Grid on individual PCs and clusters,
but also on VO-boxes. By obtaining a tarball of the DIRAC distribution, it

is possible to run an Agent via a script in user space on a site. The Agent

can run on individual machines or on a site gatekeeper host to provide access

to a site cluster. Site Agents in DIRAC are deployed and updated via human

intervention and run as daemon processes.
As mentioned above, Site Agents can be used for job steering on a local

cluster. Site Agents have further uses such as: data . management tasks on a
local Storage Element, discussed in Section 4.4.3; or for the bookkeeping of
jobs, where Site Agents can provide logging and accounting information to

4.4. Agents Framework 119

track progress.

A possible future direction is the use of Site Agents to set up a temporary

DIRAC site on individual PCs, with the consent of the owner, to provide

extra resources to LHCb whenever the PC is not in use. This would realise a

cycle-stealing paradigm, similar to SETI@Home [27] and BOINC [29]. Since

there is also ongoing work to port DIRAC to Windows, it could become a

useful way to secure additional resources for the experiment.

Computing Elements

In order for Site Agents to cope with many heterogeneous computing re-

sources, they are equipped with many different Computing Element (CE)

interfaces, all of which provide a standard API for job submission and mon-
itoring. This presents an abstract view of a batch system, having a local

scheduler and queues, where the CE is a head-node managing a cluster of
WNs.

DIRAC currently provides CE interfaces for the following systems: LSF;

PBS; NQS; BQS; Sun Grid Engine; Condor; Globus; LCG and stand-alone

systems [1651.

4.4.2 Pilot Agents

Pilot Agents run on Grid WNs and are submitted by the DIRAC WMS using

the credentials of the user. They reserve the resource for the immediate use,

requesting jobs from the WMS. Pilot Agents steer job execution as well

as operations needing to be performed after the job has finished such as

uploading of data to a Grid SE.

Resource reservation through the use of Pilot Agents creates the Overlay

Network described in Section 3.3, that masks the heterogeneity of the under-

4.4. Agents Framework 120

lying resources from the users of the system. Moreover, since Pilot Agents

are sent on behalf of the user, the door is opened to further optimisations on

the level of that user. In the past, the main purpose of submission systems

such as DIRAC was purely to deploy jobs to the Grid in as quick a manner

as possible. Now, however, it becomes important to optimise the use of the

resources once they have been captured by Pilot Agents. The possibility

of running further jobs for users on captured resources shall be explored in

Chapter 5.

The use of Pilot Agents also means that the DIRAC Task Queue is the

only waiting queue in the system. This allows the LHCb VO to impose

prioritisation policies in one place, something that the presently available

LCG tools cannot provide. Since distributed analysis tasks generally have a
higher priority than production tasks, this is an important way to ensure a

minimised start-up time for these jobs.

4.4.3 Example: Transfer Agent

This section discusses a specific example to illustrate the use of the Agents

framework. The DIRAC Transfer Agent [166] was used during the Service

Challenge 3 (SC3) activity in 2006 to integrate the DIRAC Data Management

Services to the gLite File Transfer Service (FTS).

This is illustrated in Figure 4.5, where the Request Database is populated

with transfer or replication requests. These requests can be made from a Data

Manager directly or via the DIRAC WMS from jobs. This will be discussed

along with the Data Management components in Section 4.6.

The Transfer Agent is deployed at the LHCb Tier-1 centers using runit,

see Section 4.3.3, and runs autonomously once configured. It periodically

checks the validity of requests and subsequently passes them to the FTS ser-

4.5. Workload Management 121

DIRAC Data File LCG File
Management Catalog Catalog

System Interface

Transfer Replica File
Transfer

Agent Manager Service

Request Transfer Network
DB

Transfer LCG Service
Manager Challenge 3
Interface ; Machinery

Figure 4.5: Schematic overview of the DIRAC Transfer Agent and integration

with FTS as used in the Service Challenge 3 activity, adapted firm [166].

vice. The infrastructure for this was developed by adding some new methods

to interface to FTS and to deal with bulk operations. The existing compo-

nents are still employed to use third party transfer in case of FTS channel

unavailability and for retries in the case of transfer failures. When a trans-

fer has been successful, the new replicas are entered into the file catalogue

(LFC).

4.5 Workload Management

As illustrated in Figure 4.1, the services in DIRAC comprise of the Job Man-

agement Services as well as several other key elements such as the DIRAC

CS and the Job Monitoring Service. The focus of this section shall be on the

components of the Job Management Services. In the next chapter, job work-
flow and possible workload management optimisations will be considered.

The DIRAC WMS realises the PULL scheduling paradigm whereby Agents

4.5. Workload Management 122

are requesting jobs whenever the corresponding resource is free. Agents steer
job execution on sites and jobs report their state and environment to the

central Job Monitoring Service for the purposes of logging. Job Agents run-

ning on sites and on Grid worker nodes create tailored Job Wrappers, which

are dynamically generated from templates, by providing job as well as site

specific data. The DIRAC Job Wrapper plays a crucial role in the WMS and

will be discussed in Section 4.5.1.

The DIRAC WMS is composed of a set of central services along with
Pilot Agents and Job Wrappers. Job scheduling occurs late with respect to

submission to DIRAC. This is because when scheduling occurs, the job goes

to a site or WN for immediate execution. Scheduling is achieved through the

Matcher service using Condor ClassAds [75].

Several components had to be extended, or newly introduced, to trans-

form the DIRAC production WMS to handle the increasing requirements of
LHCb distributed data analysis jobs. Underlying several of the main services
is the DIRAC MySQL Job Database (JobDB), which will be described in Sec-

tion 4.5.2. The key WMS services as well as the more recent developments

will be discussed in Section 4.5.3.

Jabber is used in DIRAC for communication between some of the WMS

components. This will be explored in Section 4.5.4, along with the possibility

of providing interactivity with running jobs.

4.5.1 DIRAC Job Wrapper

The functions of the DIRAC Job Wrapper will be discussed in detail in

subsequent chapters and is a key component of the DIRAC WMS. It performs

many tasks associated with the management of jobs such as:

" Transfer of input files to steer applications

4.5. Workload Management 123

" Invoking the job application

" Providing access to any requested input data files

" Collecting information regarding the job execution environment as well

as resource consumption parameters. These are passed along to the Job

Monitoring Service

" Transfer of small output files via DIRAC

" Transfer of large output data files to Grid Storage Elements.

The Job Wrapper also runs as a `watchdog' process, in parallel to the job,

providing `heart-beats' for the Job Monitoring Service.

If, for whatever reason, these jobs stop sending heart-beats, it is assumed

a problem has occurred and the job is marked as `stalled'.

4.5.2 Underlying Database

Underlying several WMS services described below is a MySQL database. In

DIRAC, this is not accessed directly but through the Job Database (JobDB)

class. This is a consistent API that makes the use of MySQL commands

transparent in order to mask the underlying technology. In this way, changes

could be made to the database without requiring significant changes to the

DIRAC code.

The database contains full information about all the jobs such as the job

description and status. It is also used to store primary job parameters, which

are those common to all jobs, as well as any extra job parameters specific
to individual jobs. The access to commonly used primary parameters is

optimised through the JobDB class.

4.5. Workload Management 124

The database could eventually migrate to a real SE but it is not clear

at this point how much the performance would be compromised. For safety,

the database is regularly backed-up, so the WMS can be completely restored

on the same or another machine. This is presently done `by hand' and could

be automated in the future. Automation would be particularly important in

order to `mirror' the MIS for extra redundancy.

4.5.3 WMS Services

In order to cope with the increasing requirements of LHCb distributed data

analysis jobs, the DIRAC Production WMS was extended.

Job
Submission

r-"- ---------------" - ----

Not cation
Queue

Job Receiver -., p. f Optimiser

L Service ;

ýº Optimiser
Job

Database

Matchmaker
Service

" ---------
4

Agent Agent Agent

tI tI tI
Computing Resources

Figure 4.6: Overview of the Job Management Services in the DIRAC Produc-

tion WMS from 165]. This was extended in order to cope with the increasing

requirements of LHCb distributed data analysis jobs. The current WMS is shown

in Figure 5.3.

Figure 4.6 from [165], highlights the Job Management Services in the

DIRAC Production WNIS before the extensions to support distributed data

4.5. Workload Management 125

analysis. The infrastructure in Figure 4.6 was deployed for a generic user,

namely the Production Manager, on behalf of LHCb. This section will

present an overview of components in the DIRAC WMS as well as the recent

developments made to support the distributed data analysis activity. The

services are secured via DISET as described in Section 4.3.1.

Job Receiver

The DIRAC Job Receiver assigns the Job ID, saves the job in the Job

Database and also uploads and saves the proxy of the user. An Optimiser is

notified in order to proceed to submission, depending on requirements of job.

This communication takes place via Jabber and will be explored in Section

4.5.4.

For the distributed analysis tasks, the most significant change in this

service is the introduction of security (via DISET). This allowed explicit use

of Grid proxies for authentication as well as further use in the Workload

Managment process.

Job Database

The Job Database interface is a thin layer on top of a set of SQL statements.
This interface also performs high-level operations such as adding jobs, remov-

ing jobs and bulk queries (e. g. for job monitoring). When jobs have been

successfully added, the JobDB changes their status to acknowledge this, al-
lowing further services to begin their tasks.

The JobDB was recently optimised to cope with the high demand for job

monitoring, data retrieval, and also to contend with the expected increase in

the number of users performing distributed data analysis.

4.5. Workload Management 126

Optimisers

The purpose of Optimisers in DIRAC are to allocate jobs to queues, sorting

them according to their requirements. The JobDB is used to retrieve the

requirements of the jobs.

The Optimiser FIFO (First In First Out) handles jobs without any input

data requirements, such as production jobs, and inserts them into a Task

Queue according to the order in which they were submitted.

For jobs with input data requirements, such as distributed analysis or

stripping jobs, the Data Optimiser checks the availability of all input data

files in the file catalogue. This can result in a meaningful failure if not all the

data is present at a site. If successful, the job is inserted into a Task Queue

along with a list of possible Storage Elements for job execution. DIRAC

Storage Elements will be described in Section 4.6.1. There is currently no

prioritisation policy in place for the submission of LHCb jobs, this will be

further discussed in Chapter 6.

Developments to the Data Optimiser were made to allow the use of the

LFC, see Section 4.6.2, in a secure way via a server certificate running on the

host machine. In cooperation with the LFC developers, optimisations were

made for bulk requests.

Task Queues

There are many Task Queues in DIRAC. In fact, there is one per set of job

requirements. This serves to drastically reduce the matching time for jobs

with similar requirements and has been demonstrated to be very effective for

production jobs, as described in Section 3.1.2.

Of course, too many queues can cause scheduling problems and this be-

comes important for distributed analysis jobs. A hierarchical organisation of

4.5. Workload Management 127

queues with respect to requirements was adopted to improve the matching.

Matcher

The Matcher service receives requests from Agents, checks available jobs

in the Task Queues and makes a decision based on matching the job re-

quirements with those presented by the Agent. This works via the double

matching mechanism, introduced in Section 3.3.1, which was put in place for

analysis jobs with many varied requirements. In Chapter 6, the results of

these developments will be explored with real user jobs.

The Matcher only responds to sites in a mask that contains the list of al-

lowed sites. The mask is managed by an administrator and makes it possible

to temporarily ban problematic sites whilst also serving as a security feature.

To ensure that jobs are only picked up once, the Matcher has a `semaphore'

mechanism in place when scheduling jobs to sites.

After the Matcher has scheduled a job, the status is updated and infor-

mation about the site is logged. The job is deleted from the Task Queue and

sent to the resource.

Sandbox Services

When a user runs an application on the Grid it may well be the case that

small files, i. e. less than ten Megabytes in size, are required for the purpose

of steering the applications. These files are collectively referred to as the

input sandbox. Likewise, the term output sandbox refers to similarly small

output files of a job, e. g. application log files, which do not require permanent

storage on the Grid.

At present, the DIRAC MySQL database is used for storing the input

and output sandboxes. To date this has been very fast and efficient with no

4.5. Workload Management 128

problems observed for small files. Larger output files are sent to permanent

Grid Storage. Policy decisions had to be made in the context of user jobs,

e. g. what to do when a specified output file is too large to be returned via

the Sandbox services. This is discussed in Chapter 6.

Agent Director and Agent Monitor

In Figure 4.6, the submission of Pilot Agents took place via an automated

`cron-job'. This was configured, initiated and maintained manually. In order

to minimise human intervention for distributed analysis jobs and to speed up

the submission to the Grid, the Agent Director and Agent Monitor services

were created. These have been implemented specifically for LCG, although

they have been designed to be easily adaptable to other Grids.

The Agent Director is an API for Pilot Agent submission to LCG. Pilot

Agents are sent as LCG jobs which first install DIRAC and then run an

Agent. The Agent Director uses the proxy of the user for submission to

LCG and can submit Pilot Agents for each job in the Task Queue.

The Agent Monitor is used to keep track of Pilot Agents submitted by

the Agent Director. Using a configurable time interval, the Agent Moni-

tor checks the status of the Pilot Agents and flags the jobs for the Agent

Director to submit further Pilot Agents as necessary. This is useful for pre-

venting unnecessary delays to jobs, such as when Pilot Agents become stuck

in long batch queues. The Agent Monitor is also essential for ensuring the

resubmission of Pilot Agents in case of failures.

The central deployment of Pilot Agents on demand from the DIR. AC

WMS has interesting repercussions for the distributed analysis jobs. This

will be discussed in Chapter 5. The Agent Director and Agent Monitor are

now the default mode of submission to LCG for all DIRAC jobs.

4.6. Data Management 129

4.5.4 Instant Messaging in DIRAC

Jabber has been successfully demonstrated for communication between DIRAC

services [159]. However, it's use has been limited to only one case thus far.

This is where the Job Receiver uses Jabber to notify the Optimisers when a

new job arrives. Based on recommendations in [149], this may be dropped

in favour of an XNIL-RPC messaging system. This alternative would require

some development but could naturally include the DISET security infras-

tructure.

Job interactivity, allowing job `spying' and remote job killing is an at-

tractive prospect which has been demonstrated using Jabber [159]. Unfortu-

nately, however, this is pending until a secure Jabber connection or alterna-

tive messaging system becomes available.

4.6 Data Management

The advent of the Grid has led to a necessary revolution in the treatment of
data, as described in Chapter 1. The Data Management System in DIRAC

consist of the following main components: Storage Element; File Catalogue;

and Replica Manager. These will be discussed in turn below.

4.6.1 Storage Element

The DIRAC Storage Element is an abstraction of the plethora of storage

resources available to the system. The aim is to determine which protocols

are available on a particular resource and ensure these protocols are used in

an efficient manner.

To this end, the DIRAC Storage Element uses a description in the Con-

figuration Service, defined in Section 4.3.4, to obtain the list of available

4.6. Data Management 130

protocols at a given site. Subsequent use of the named protocols relies on

plug-in modules, which represent various mechanisms of data access. The list

of available plug-ins includes: FILE, RFIO, FTP, SFTP, HTTP, BBFTP,

SRM and XMLRPC [166]. It also provides functionality similar to SRM

for protocol (TURL) resolution. This is important for providing access to

specified input data which will be discussed in Chapter 5.

4.6.2 File Catalogue

The file catalogue plays a vital role in the DIRAC system: for production

jobs it is essential to store data in an efficient and easily accessible way; for

distributed analysis jobs, it is necessary to efficiently access this data without
knowing in advance where the job is running.

When DIRAC was first developed as a production system there was no

obvious implementation available and so the system was designed to cope

with multiple file catalogues being used in a transparent way. By creating

a generic File Catalogue Client API for all File Catalogue services, each file

catalogue can be used interchangeably.

During the history of DIRAC, the following File Catalogues were incor-

porated [167]:

" LHCb Bookkeeping File Catalogue [151]

" AliEn File Catalog [132]

" LFC [77].

Out of the three catalogues, the LFC has been retained as the main cat-

alogue for LHCb. After exploring the LHCb Bookkeeping File Catalogue it

was decided that not all the necessary features were available, one exam-

ple being support for a hierarchical structure of entries. Nevertheless, the

4.6. Data Management 131

Bookkeeping Catalogue is still in use during production for redundancy and

reliability.

The AliEn File Catalogue was used during the DC04 activity and was

proven to work in a production environment. The AliEn shell was used to

create a binding in Python for DIRAC. AliEn was originally used to explore

use cases not provided by the Bookkeeping Catalogue but has since been

retired and replaced by the LFC.

The LFC was chosen since it provides all of the functionality necessary

for LHCb, after optimisation in close collaboration with the developers. A

Python binding to the LFC is shipped with the LCG middleware and this

is used to implement the API for DIRAC. It is planned to have one global

instance of the LFC catalogue with several read-only mirrors for redundancy

and load balancing.

4.6.3 Replica Manager

The DIRAC Replica Manager (RM) implements methods for the manipula-

tion of files on the Grid such as, get (), copy(), replicate() and register().

The DIRAC CS provides a list of active File Catalogues and these are used

for any requested operations. The RM will always choose the `best' replica,

meaning the closest available replica at the moment of access, using the pre-
ferred protocol. All operations performed on the data are logged to provide

a record for debugging.

The DIRAC RM has been used with all of the file catalogues described in

Section 4.6.2 and provides interfaces to all of the data management clients.
Figure 4.7 illustrates how the DIRAC Data Management components inter-

act.

The Transfer Agent, shown in Figure 4.5, is one possible data manage-

4.7. Information, Monitoring and Accounting 132

Clients

DIRAC Data File Catalogues --------- --- -------------------------------
Management

System Replica LCG File
Manager Catalogue

Bookkeeping
File

Storage
Element

Plugin Modules

SRM II GridFTP II RFIO II HTTP I "..

--------------- ------------ ----------------------

Physical Storage

Figure 4.7: Overview of the DIRAC Data Management System highlighting how

the main components (Storage Element, File Catalogue and Replica Manager) in-

teract.

ment client. Another is the `VMS, in the form of the Job Wrapper, which

uses data management components to provide access to specified input data.

This will be explored in Section 5.3.1.

4.7 Information, Monitoring and Accounting

The DIR, AC CS was introduced in Section 4.3.4 and forms the basis of the

information system for DIRAC. It is reliable due to servers running in several
locations and is 100% available. The DIRAC CS is used in many contexts

such as: delivering site specific information to the Job Agents on WNs; pro-

4.8. Summary 133

viding the RM with the list of available File Catalogues; and providing the

Storage Element with the list of available protocols.

The Job Monitoring Service is used at all stages of the lifetime of DIRAC

jobs to update status information and is one of the most solicited DIRAC

services. This changes job states in the JobDB directly and also updates

logging information in order to provide a complete history for each job. There

are two entry points to the Job Monitoring Service. The first is secure, for

writing, and the second is used for reading. Clients such as users through

the DIRAC API or WMS services such as the Agent Monitor interact with

the Job Monitoring Service. Information from the Job Monitoring Service

is also used to construct the DIRAC Monitoring Web Interface [168].

After the completion of each DIRAC job, a report is sent to the Account-

ing Service. This receives accounting information for each job and automati-

cally generates reports based on criteria such as: specific productions, having

a unique identifier; or different user groups, as defined in VOMS. Reports can

also be generated for a specified time period or a particular site. A visual

representation of these reports is published on a dedicated web page, in a

similar way as the DIRAC Monitoring Web Interface [168].

4.8 Summary

The purpose of this chapter was to introduce the DIRAC system. This

began with an overview of the history of DIRAC and the principles of design

in Section 4.1. This highlighted the main components of DIRAC (Clients,

Services, Resources and Agents). The implementation and software tools

used in DIRAC were introduced in Section 4.2.

The Services Framework was described in Section 4.3 which introduced

4.8. Summary 134

DISET, the DIRAC security mechanism. Services in DIRAC are designed to

be easily deployable, reliable and secure. As an example, the Configuration

Service was discussed in Section 4.3.4.

In Section 4.4, the Agents Framework was explored. This introduced the

two main types of Agent: Site Agents and Pilot Agents, differing due to

their methods of deployment. Site Agents have many possible DIRAC CEs

to cope with the many different batch systems in use. Pilot Agents are used

on the Grid and run jobs local to the Agent rather than managing a cluster

of nodes.

An overview of the WMS was given in Section 4.5, which described the

evolution and introduction of services to cope with the increasing require-

ments of LHCb distributed data analysis tasks. The DIRAC system was

previously used almost exclusively by the Production Manager for produc-

tion tasks but has now been made secure and capable of supporting many

users.

The Data Management Service was described in Section 4.6, highlighting

how the Replica Manager provides seamless access to multiple file catalogues,

with the LFC being retained as the main catalogue for LIICb. The SE in

DIRAC was shown to provide access to physical storage devices through

several protocol plugin modules.

The Information, Monitoring and Accounting systems were discussed in

Section 4.7, which elaborated on how the CS, Job Monitoring Service and
Accounting Service are used throughout the lifetime of jobs in DIRAC. The

CS provides information enabling jobs to access other services, for example,
determining the protocols supported by a local storage element.

The next chapter explores how the DIRAC infrastructure can be used

most effectively for LHCb distributed data analysis, focussing on the possible

4.8. Summary 135

workload management optimisation strategies. DIRAC will also be compared

to other systems, such as Condor and Condor-G, which share many of the

principles on which it is based.

5. DIRAC Workload Management 136

Chapter 5

DIRAC Workload Management

Having introduced the DIRAC system in the last chapter, this chapter will

explore possible workload management optimisation strategies, which result

in a high efficiency for LHCb user jobs. The DIRAC infrastructure for dis-

tributed analysis has been developed based on a successful production sys-

tem. Exposing the functionality of DIRAC to enable the construction of user

jobs is discussed in Section 5.2.

The workflow of DIRAC jobs will be described in Section 5.3, explain-

ing the role of each WMS component during the lifetime of user jobs, from

submission to completion. This will include a detailed description of how

DIRAC provides access to input datasets, which is essential to the success of

distributed analysis jobs.

Section 5.4 will present several optimisation strategies with the DIRAC

infrastructure. Since similar advances cannot be made with the available
LCG tools, these are DIRAC optimisations. Following this is a description

of how these strategies can be applied to maximise the usage of resources for

LHCb. Results are presented from implementing the strategies on LCG in

Section 5.4.5, with a comparison to a recent simulation study in Section 5.5.

5.1. Introduction 137

The Condor and Condor-G systems provide similar functionality to DIRAC

and a detailed comparison will be made in Section 5.6. A description of how

implementations of DIRAC paradigms are used in other CERN experiments

will be given in Section 5.7, with special emphasis on the ATLAS Panda

system.

5.1 Introduction

The DIRAC software architecture is based on a set of distributed, collabo-

rating services, as described in the last chapter. Designed to have a light

implementation, DIRAC is easy to deploy, configure and maintain on a va-

riety of platforms. Using the software distribution mechanism introduced in

Section 2.5.4, DIRAC can run LHCb jobs on all available LCG resources.

In Chapter 3, the paradigms for distributed analysis were explored. Through

the use of the PULL scheduling paradigm and the creation of an Overlay Net-

work of Agents, the DIRAC WMS provides the infrastructure to submit and

run jobs on the Grid in a seamless way. Pilot Agents submitted to LCG

request jobs whenever the corresponding resource is free. The WMS en-

sures that not only the requirements of the jobs are satisfied, but also the

requirements of the resource in a `double matching' mechanism.

Users submit jobs via the DI RAC API which will be described in the next

chapter. In the next section, the constituent parts and structure of jobs in

DIRAC are discussed. As a production system, the job framework in DIRAC

is capable of building very complicated workflows. However, user jobs do not

require the same level of complexity. For example, user jobs do not have to

report to the bookkeeping database, although this is essential for production

jobs, which require results to be centrally managed.

5.2. Jobs in DIRAC 138

5.2 Jobs in DIRAC

The DIRAC API provides the interface for users to submit jobs to DIRAC.

The specifics of this will be left to the next chapter and here the focus is on

the functionality which the DIRAC API encapsulates.

Jobs in DIRAC are composed of three classes: Job () ; Step () and Module ().

Figure 5.1 illustrates how objects of these classes are related.

Figure 5.1: Jobs in DIRAC are composed of Steps which in turn are composed of

Modules. In principle, any workflow (DAG) can be created using this architecture.

Jobs can be thought of abstractly as a set of complex operations. In

DIRAC, the main purpose of the Job class is to contain Steps. A Step is

defined as the smallest unit that can be executed to produce output files,

assuming the necessary input files are available. Likewise, the main purpose

of the Step class is to contain Modules.

Modules are smaller operations that can be tailored to perform a desired

function. In Figure 5.1, for example, two Modules form the Job. The first

Module installs any required software and the second executes the desired

application. Modules are reusable components that can be linked with each

other. Therefore, if the software installation module in Figure 5.1 were to

5.2. Jobs in DIRAC 139

fail, running the next Module to execute the application can be prevented.

Jobs may contain many Steps, each of which can execute different ap-

plications. Steps may depend on each other in a complicated manner and

are composed of Modules. Using these three classes as building blocks, any

topology of Steps can be created. Therefore, DIRAC Jobs can be thought

of as a Directed Acyclic Graph (DAG). The next section will explore the

construction of more complicated job workflo-vwws.

5.2.1 Creating Complicated Job Workflows for Users

The Production Console [152] uses the DIRAC Job, Step and Module infras-

tructure in order to create the complex workflows for production, reprocessing

and stripping jobs. Workflows are created locally, converted to an Xh1L job

description and sent to the W MS. Each workflow is made up of Steps, which

can be connected to each other via input and output files.

User
Production

----------- ----------- Gauss Boole Brunel

Module 1 Module 2 Module 1 Module 2 Module 1 Module 2

Software Execute Software Execute Software Execute
Installation Application Installation Application Installation Application

Figure 5.2: Structure of a multi-step job to run Gauss, Boole and Brunel using

the DIRAC API. Dashed lines indicate the processing chain.

The DI RAC API exposes similar functionality to the Production Console,

5.3. Workflow of Jobs 140

but is tailored for user jobs. In order for users to create their own workflows,

it was decided to open the functionality of DIRAC Steps. This allows users to

perform more complicated distributed analysis tasks, or private production

jobs.

By exposing functionality at the Step-level, user jobs can be created to

almost any specification. Figure 5.2 illustrates the structure of a typical user

production job. The DIRAC API provides users with custom Modules to

facilitate the construction of the workflow shown in Figure 5.2 (where dashed

lines indicating the processing chain). This example involves three steps:

Monte Carlo Simulation using Gauss; digitisation with Boole; and finally

reconstruction with Brunel. Appendix B contains a script that generates

this structure. The DIRAC API will be discussed in more detail in Chapter

6.

5.3 Workflow of Jobs

This section will describe the workflow of DIRAC jobs submitted via the

DIRAC API. There are two cases to consider: firstly, a typical user analysis

job with specified input data; and secondly, a user production job having no

input data requirement. This is an important distinction because the LHCb

Computing Model [100], discussed in Section 2.3, involves sending jobs to

the data without explicitly choosing the site in advance. This upholds the

paradigms of the Grid, introduced in Chapter 1, in which the main priority
for a user is that a particular job is successfully run, without needing to know

where the job has run. Distributed analysis jobs have a higher priority with

respect to other tasks, so it is imperative to minimise the start time of these

jobs.

5.3. Workflow of Jobs 141

User jobs are submitted to the WMS through the DIRAC API securely.

This is via the DISET [157] security infrastructure, described in the last

chapter. The Job Receiver service assigns a Job ID and saves the Job in

the Job Database along with the proxy of the user. At this point, if an

existing proxy with a longer lifetime is present in the system, this is retained.

Otherwise, the new proxy is saved and made available to existing jobs in the

system from the same user. Therefore, any previously submitted jobs in the

waiting state with an expired proxy are now able to run. The implications of

proxy expiration and possible strategies for proxy renewal will be discussed

in Chapter 6.

During the submission process, the Sandbox services ensure the upload of

any input files to steer the application. Figure 5.3 shows the DIRAC central
WMS services and interactions with LCG components. The Job Receiver

then notifies an Optimiser.

For jobs that do not have any input data requirement, this is the Opti-

miser FIFO. The same optimiser is used for production jobs, and corresponds

to a First In First Out policy. The Optimiser FIFO then inserts the Job into

a Task Queue, see Section 4.5.3.

For jobs with specified input data, the Data Optimiser is notified and this

proceeds to query the LFC for specified input data files. If not all the files

are available, this is the first possible point of job failure. Reasons for this

include:

" Files have been specified incorrectly;

" There is a problem with one or more replicas of specified files in the

catalogue; and

" Files are specified correctly, but not present in the LFC.

5.3. Workflow of Jobs 142

------------------------ Local

DIRAC API

lJob Sandbox
Monitoring

Central Receiver Services
Services S_NIC9

Data Task
)timizer Queue Job DB

Agent
4

Agent
-- Matcher

Director Monitor

Worker Node
LCG LCG
File Resource
atalo Broker Agent

Figure 5.3: Outline of t/u DIRAC Workload AIanugerrrerrt S; yste°nr irrr lu. dr. n. y the

e: cterrsion. s made for LHCb distributed data analysis tasks.

The LHC'h Data \taiiager is currently required to l(1(1 the missing files,. and

correct 1>roI>letlilt i(entries, ill order for affected jobs to proceed. This t. vpc

of failure accounts for some of the user experience described in Chapter 6.

If all the files are available. the result of querying the LlC is as list of

ou(' or more sllital)le Grid Storage Elements (SEs). This is entered into the

requirements of the job to he used for ntatclini; tking. 'I'll(- DatnOt, tinii.. rr

will t lien insert the Joh into a Task Qri. c"v, (.
Once a job enters the Task Qucuc. it is trade to be scheduled froill the

lx'rspectiye of the \V\IS.. At this point the .
4y W I)iimcto, 'sendls as Pilot : Agent

5.3. Workflow of Jobs 143

to LCG using the requirements of the job. The Agent Monitor checks the

status of the Pilot Agent, which amounts to monitoring a standard LCG job,

and triggers resubmission as required.

When a Pilot Agent successfully reaches a Worker Node (WN) it installs

DIRAC and runs an Agent, which requests a job from a particular user.

In fact, the Agent starts the Job Agent Module, which performs the job

request. The Matcher service matches the requirements of jobs, such as

possible SEs, to the properties of the computing resource presented by the

Agent. Since the Agent can also put specific requirements on jobs, this is a

`double match' procedure. Figure 5.4 illustrates the interactions between a

DIRAC Agent running on a Worker Node, the WMS central services, and

LCG components. Once a job has been delivered to the WN, any software

which is not already available locally is installed as described in Section

2.5.4. Links to any available pre-installed software are created local to the

job during the installation of DIRAC, see Section 3.3.2.

The Agent dynamically creates a Job Wrapper using information local

to the WN, which is then executed. The Job Wrapper downloads the input

sandbox of the job via the Sandbox service, and provides access to the in-

put data. The LFNs are resolved into `best replica' PFNs (SURLs) for the

execution site, see Section 5.3.1.

The job application is then invoked in a child process and a Watchdog pro-

cess is started in parallel to the application. The Watchdog process provides

`heart-beats' for the Job Monitoring Service. This also collects accounting

information such as CPU and memory consumption. If the application ceases

consuming CPU, the job can be marked as `stalled'. The Job Wrapper no-

tifies the Job Monitoring Service of the changes in the job state. At all

stages, the Job Monitoring Service is used as an interface to update the Job

5.3. Workflow of Jobs 114

CG File DIRAC

Catalog Central WMS

Grid
Storage
Element

Job Wrapper

Watchdog
Job Process

DIRAC Agent

Figure 5.4: DIRAC Workload Management, on the Worker Node.

illforuiation.

After the Jol) has finished, the Job Wraj)E)rr also handles the upload of

the output sandbox using the Sandbox service. The Sandbox is stored in the

Job Dato bau. Any specified output data will he uploaded to it predefined SE

at this point. The Job Wrapper may also receive messages through . Jabber.

HIM has been demonstrated in [1591, and discussed in Section 4.5.4. Once

the DIRAC Agent has finished, the Pilot Agent terminates gracefiilly, thus

frecinh the LCG resource.

If a I'ilOt Agent (1O('S not successfully r<et ri<'vc al jO1) after a re(plest toi

the \VMS, it again terminates gracefully to release the LCG resource. This

reduces the overhead associated with the use of Pilot Agents, which will he

further examined in Section 5.4. The reasons for a Pilot Agent not receiving

a
,
job include: not having any waiting jobs in the W\IS to pick up: and

5.3. Workflow of Jobs 145

scheduling failures, where the requirements of the resource do not match

those of the job.

The next section will describe how the Job Wrapper resolves input data

on the WN.

5.3.1 Providing Access to Input Data

For distributed data analysis jobs, it is essential that reliable access to input

datasets is possible on all available Grid sites. As discussed in Section 2.3.2,

LHCb distributed analysis jobs will mainly be run at the Tier-1 sites, with

data being available via disk. This does not exclude the possibility that

other sites, e. g. Tier-2 centres, maintain replicas of data that would also be

accessible for LHCb distributed analysis jobs.

The Tier-i centres available to LHCb collectively encompass lieteroge-

neous resources with different mechanisms for accessing data. The two most

common access protocols are RFIO (Remote File Input/Output) [148], and
DCAP (Data Link Switching Client Access Protocol) [169]. In order to re-

alise the paradigm of the Grid, both must be utilised in a seamless way

without prior knowledge of where a job will run.

The first approach taken for distributed analysis jobs was to download

all datasets local to the job on the Grid WN, using the Job Wrapper. The

application would be executed when all datasets were available. Whilst being

a reliable means to provide access to input data, this was also impractical.

Increased network overheads and limited space on the Grid WNs caused
failures with this approach. The method currently in place for accessing
data stems from the desire to have a working system whilst also being able

to incorporate any new LCG developments in a simple manner.
In the Job Wrapper, the first step is to determine the local SEs for the site

5.3. Workflow of Jobs 146

at which it is running. This information is obtained from the DIRAC CS. It is

important to note that there can be more than one SE for any particular site.

The local SEs are used to find the `best' replica for each requested input file.

This corresponds to a replica that is accessible through supported protocols

(currently RFIO or DCAP). SRM is the standard interface to storage for

LHCb [100], and the LFC is queried for replicas at local SEs. This returns a

list of SURLs.

At this point, the DIRAC SE class is used to automatically generate a

global TURL for each SURL. This is a temporary solution until the LCG

tools provide other reliable means to determine the TURLs. However, the

current mechanism works well for Gaudi-based applications and has resulted

in successful use of RFIO and DCAP to access files. Currently, any protocols

supported by POOL (Pool Of persistent Objects for LHC) [170 can be used,

although in the absence of these any affected datasets are brought local to

the job before execution.
An attempt was made to use `lcg-gt' (a component of the LCG Grid

middleware which utilises SRM) to stage specified input data files, with the

resulting TURLs being used directly. This has been put on hold since the

returned TURLs did not work inside the applications. Also, the functionality

to `pin/unpin' files was not available, this would ensure the persistency of

data files on disk. Therefore, if the returned TURLs did work, it would be

impossible to determine their period of validity.

The last step is to generate a POOL XML slice for the Gaudi applications

to be able to resolve the input datasets. The POOL XML Catalog is imple-

mented in DIRAC with a subset of the standard File Catalog Client API

described in Section 4.6.2. The Job Wrapper on the WN uses the Globally,

Unique Identifier (GUID) from the LFC and global TURL for each dataset

5.4. Optimisation Strategies 147

to construct the slice. This is subsequently added to the POOL XML File

Catalogue using the GUID, LFN and PFN. After this, the POOL XML slice

is exported as an XML file. The final step is to append the XML slice to

the options file of the user. This is done automatically before the application

starts to execute.

With the infrastructure described above, it is possible to run LHCb dis-

tributed data analysis jobs on the Grid. Another mechanism may be adopted

in the near future, which will be mentioned in Chapter 6. The possible opti-

misation strategies for using the DIRAC system will be explored in the next

section.

5.4 Optimisation Strategies

There are several ways to use the DIRAC infrastructure but the end goal

is to minimise the start time of user analysis jobs whilst ensuring a high

efficiency. The optimisation strategies explored in this section stem from two

developments. Firstly, the Agent Director and Agent Monitor services may

be used to define a policy on how Pilot Agents are submitted. Secondly,

the DIRAC Agent can be chosen to affect the mechanism by which jobs

are picked up from the WMS. As a result, it is possible to define modes of

submission `tuned' for the needs of specific jobs:

" Resubmission;

" Filling; and

" Multi-Threaded Filling.

These shall be explored individually below. It is important to note that these

are DIRAC optimisations and not possible with the standard LCG tools.

5.4. Optimisation Strategies 148

LHCb has several different `types' of jobs, with each having different

priorities and requirements. For example, a standard production job typically

lasts for one day, whereas an analysis job could be relatively short, e. g. under

one hour. Since production jobs take significantly longer, they also capture

a compute resource for longer, reducing the amount of available resources

for LHCb. Therefore, part of the ethos behind the DIRAC optimisations
described below is to maximise the usage of a resource, once it has been

captured.

Whilst these modes of submission would be most effective through the

optimisation of all available LHCb jobs, to avoid any violation of LCG se-

curity rules, the following optimisations must currently be performed at the

level of the user. In terms of workload management it will be shown that

this can be restrictive, see Section 5.4.5.

5.4.1 Resubmission

Resubmission mode means that the Agent Director is deployed to submit one
Pilot Agent that is tracked through the Agent Monitor. If a failure to this

Pilot Agent occurs, indicated by the LCG IS, the Agent Monitor will trigger

the submission of an additional Pilot Agent through the Agent Director.

This minimises the risk of jobs failing to start but does not optimise the

start time to a significant degree. For example, there is still a risk that the

single Pilot Agent originally submitted could enter a site batch queue and

wait for many hours.

After the Pilot Agent reaches the WN, it first installs DIRAC. After the
local execution environment has been checked, a request is made to the WMS

to retrieve a job. For Resubmission mode, one request is made after which
the Pilot Agent will terminate gracefully.

5.4. Optimisation Strategies 149

As mentioned above, a typical LHCb Monte Carlo Production job lasts

for approximately one day. The start time for this type of job is not as high

a priority when compared to other activities such as distributed analysis.

However, it is important that the job does start. In this case, the Resubmis-

sion mode is sufficient and has the advantage of not placing load on the Grid

by activating the submission of extra Pilot Agents unnecessarily.

5.4.2 Filling

The Filling mode is similar to Resubmission since the Agent Director is

deployed to submit one Pilot Agent, which is tracked through the Agent

Monitor. If a failure occurs, the Agent Monitor will trigger resubmission

of an agent through the Agent Director. The difference with submission in

the Filling mode is that multiple Pilot Agents can be sent up to a config-

urable maximum. Jobs remain waiting in the WAMS for a configurable time

period, before triggering the resubmission. After the maximum number of

Pilot Agents has been reached, no additional Agents are sent. However,

the configurable maximum value does not include Pilot Agents which fail.

Resubmission is triggered for those Agents.

Filling mode allows Agents to request several jobs from the same user,

only requesting a new job once the current one has finished. In this regime,

the Agent `fills' the computing slot allocated by LCG and therefore maximises

the resource usage. The Filling Mode can be implemented in two ways:

the DIRAC Pilot Agent can be configured to run several `one-shot' Agents,

with each making one request to the WMS; or one Agent can be started

that continues to make requests at regular intervals. The former will be

explored here since it is less intrusive, i. e. resources are only held when a
job is running. The latter is normally used for Site Agents, which generally

5.4. Optimisation Strategies 150

represent resources outside of the Grid with high availability.

With additional Pilot Agents sent, there is a higher chance that jobs will

start promptly. For example, Pilot Agents can be scheduled to different sites

and avoid batch queues. The additional Agents may also pick up subsequent

user jobs in Filling mode. In this case, subsequent jobs could potentially run

without the submission of any Agents.

The advantage of sending multiple Pilot Agents is that more requests to

the WMS are made when resources have been captured. Each request means

that a waiting job can be delivered for immediate execution on the WN. This

can significantly minimise the start time of jobs.

Filling mode is most useful for high priority tasks, such as distributed

data analysis jobs, and has less relevance for production jobs which have a

lower priority and can fill up an allocated slot themselves. It was decided to

make Filling mode the default mode of operation for the DI RAC Analysis

system, which will be described in Chapter G.

5.4.3 Multi-Threaded Filling

When a DIRAC Agent is started, there is a choice of possible Computing

Elements to choose from, which determine the behaviour of the Agent, as

described in Section 4.4. For example, an `InProcess' Agent will request one

job at a time on a particular site. A new `Threaded' Computing Element

was created that allows multiple jobs to run simultaneously on a computing

resource. When a job arrives at a site, the Threaded Agent checks how

many jobs are currently running. If this is less than the defined maximum,

the Threaded Agent starts executing the job in a new thread. When the

maximum is reached, no more jobs are requested until a running thread

finishes.

5.4. Optimisation Strategies 151

The Multi-Threaded Filling mode represents exploratory work based on

the assumption that, whereas production jobs are CPU intensive, distributed

analysis jobs are Input/Output (I/O) bound and therefore do not utilise the

full power of the CPU at all times during execution.

In a similar way to the Filling mode, Multi-Threaded Filling involves sub-

mission of multiple Agents using the Agent Director, with jobs waiting in

the WMS for a configurable time period before the Agent Monitor triggers

resubmission. The Multi-Threaded Filling mode also allows Agents to re-

quest several jobs from the same user but the difference here is that multiple

jobs can run at the same time on one WN. To allow for the many different

types of resources on the Grid and constraints such as available memory, it

was decided to limit this number to two jobs running in parallel on the WN.

Multi-Threaded Filling is principally useful for the high priority dis-

tributed analysis activity and serves to greatly reduce the start time of jobs.

In this regime, every Pilot Agent successfully reaching a WN requests up to

two jobs to run in parallel. Requests are made at regular intervals if only

one job is picked up initially. This also fills the computing slot by running

several `one-shot' Threaded Agents in a similar way to the Filling mode.

The real benefit of using a Threaded Agent is that the available resource

can be used extensively. Due to the unstable nature of running jobs on the

Grid, it is imperative to maximise the usage of a resource once it has been

obtained. The Pilot Agent mechanism allows effective resource discovery

and ensures any requested data is accessible for any particular job. The next

section will describe the assumptions and precautions taken for testing the

optimisation strategies introduced above on LCG.

5.4. Optimisation Strategies 152

5.4.4 Testing Framework

Measuring performance on the Grid is not an exact science, many external

factors can affect how jobs run. Some examples include:

" Load on the Grid, e. g. other experiment activities such as concurrent

production phases;

" Site availability, e. g. `draining' occurs before maintenance operations,

this prevents new jobs being accepted and reduces the total number of

available nodes;

" Site configuration problems resulting in job failures;

" High load on the Resource Brokers resulting in significant time lag

when submitting jobs;

" Time of submission, e. g. the response is slower during peak periods of

load on the system; and

9 Events affecting critical resources, e. g. power cuts and network outages.

Therefore, to tackle the general Grid `weather', the following precautions

were taken for the following performance study. Firstly, jobs were submitted

at the pace of the Resource Broker so that waiting times were not artificially

skewed, and job start times were measured relative to the submission time

to DIRAC. Without pacing the submission of the jobs to DIRAC, the dis-

tribution of start times is dominated by the time taken to submit all the

jobs through the LCG Resource Broker. This amounted to approximately 5

seconds per job between submissions.
Secondly, to ensure similar conditions for each experiment, multiple users

submit jobs in turn, with each user submitting with a different mode as

5.4. Optimisation Strategies 153

described above. With analysis jobs being chaotic in nature, testing on the

real system was carried out with each user submitting jobs using the same

algorithm and the same number of datasets. This ensures a fair comparison

between the different modes of submission. With each user submiting jobs

in turn, any temporary problems on the Grid affect each user in the same

way.

For testing the WMS, it was decided to create a workload that places the

highest load on the system. Since DIRAC has been proven to cope with long

Production jobs, a study of the various DIRAC modes of submission was

performed using short analysis jobs. This serves to test the other extreme

whilst also placing a higher load on the `'VMS.

5.4.5 Results and Performance

The results presented here based on a data sample of ten distinct experi-

ments of three users submitting one hundred jobs for each mode, with three

thousand jobs submitted in total.

Figure 5.5 shows the distribution of job start times for each mode of

submission. This shows a considerable improvement for the Filling and Multi-

Threaded modes when compared to the peak for Resubmission, which is

effectively the LCG benchmark result. The first LCG job to start occurs

at the nine minute region whereas many jobs for the other two modes have

already started. This highlights the power of maximising the responsiveness

of the system through the Filling and Multi-Threaded modes. With each job

in Resubmission mode requiring to be scheduled through the LCG RB, it is

clear why delays occur. The RB must perform complex calculations in order
to schedule jobs to sites in the PUSH approach. However, not all jobs in the

Filling and Multi-Threaded modes must go through this procedure.

5.4. Optimisation Strategies 154

250

200

H
n 150

E ioo
z

50

0

-- -Resubmitting
-- Filling Mode

Multi-Threaded

Rr

rr
f

1r" "r
f

rt
tt

`ts
1r
f ifr"

f it ýt

13579 11 13 15 17 19 21 23 25 27 29 31 33
Start Time (Mins)

Figure 5.5: Start times by submission mode for a total of 3000 jobs submitted to

DIRAC by 30 users.
"

The tails in the Filling and Multi-Threaded distributions are due to the

initial jobs at the start of the experiment that need first to reserve an LCG

resource. These tails normally diminish in the steady mode of operation. It

is important to note that all three thousand jobs completed successfully in

this test, so the real goal is now to minimise the start times.

Figure 5.6 shows the mean start times by experiment for the three thou-

sand jobs. This shows a clear improvement for the Filling and Multi-Threaded

modes and demonstrates reproducibility of the results.
These results show that even when LCG is performing well, there is a

significant improvement with the DIRAC optimisations. Furthermore, Table

5.1 shows that fewer Pilot Agents need to be sent for the Filling and Multi-

Threaded modes compared to Resubmission mode and so the load on LCG

can be reduced.
Comparing the number of Pilot Agents sent versus the number of jobs

5.4. Optimisation Strategies 155

18

x4

2

0

16

,. 14
H

12
C, E io
I

U,
C6
A
d

-f- Resubmitting

-t-Filling Mode

-- Multi Threaded

323456789 10
Run Number

Figure 5.6: Mean start times for 10 experiments submitting a total of 3000 jobs

to DIRAC from 30 users.

executed, Table 5.1 shows a reduction by a factor three for the Filling and

over a factor of four for the Multi-Threaded mode in these experiments. The

reduction factors depend on the amount of the available resources and on the

Job characteristics.

The standard method to cope with high priority tasks on the Grid is to

create `short' queues, in a similar fashion to a normal batch system. This

means that Grid resources are being allocated to serve jobs with a small

processing time, e. g. a few hours. As a result, these resources are often

idle, waiting for short, high priority tasks to arrive. The advantage of the

Filling and Multi-Threaded modes of submission described above, is that

no short queues are required in order to serve the high priority tasks. The

optimisation is performed through maximising the usage of the resources,

once they are obtained.
The experiments described here were performed using thirty distinct

5.4. Optimisation Strategies 156

Mode of Submission Number of Agents Submitted
Resubmission 1000

Filling 299
Multi-threaded Filling 238

Table 5.1: Number of Pilot Agents sent for each mode of submision for the

experiments in Figure 5.6, involving a total of 30 users.

users. Optimising the workload can only currently be performed at the level

of the user to satisfy the LCG security rules. Therefore, the results presented

in Figures 5.5 and 5.6 reflect the optimisation on a one hundred job basis. We

can conclude that optimisation at this scale is effective but not as powerful

as optimisation at the level of the VO could be.

Figure 5.7 shows the potential benefit of optimising the workload at the

level of the VO instead of the level of each user. In this experiment two

N
.O O
n
r. O
I-
d

.a E
3
Z

/VV

Multi-Threaded 1 User
-- Multi-Threaded 10 Users

600

500

400

300

f'
200

100

f
I

o =0

0123456789 10 11 12 13 14 15 16 17 18 19 20
Start Time (Mins)

Figure 5.7: Effect on the start time of jobs of optimising the workload on the

level of the VO, versus multiple users.

5.4. Optimisation Strategies 157

thousand jobs were submitted in Multi-Threaded mode. Half of the jobs

were from a single user (equivalent to optimisation at the level of the VO)

and the remainder were from ten distinct users. A clear improvement in

efficiency is observed in the first case.

The results in Figure 5.7 were produced using the same conditions as

those in Figure 5.5 and reflect the benefit of optimising the workload at the

level of the VO. Since Pilot Agents submitted for the single user (equivalent

to optimisation at the VO level) are able to pick up all of the jobs from that

user, it is more likely that jobs are waiting in the system when requests are

made. For the ten distinct users, each job was required to wait for the specific

Pilot Agents submitted with the correct credentials to start. The possibility

of sending generic LHCb Agents on behalf of the VO and using DIRAC to

choose the priority of tasks in the central queue will be discussed in Section

5.4.6. In these tests, the system was performing at 100% efficiency. Since

the testing occurred over a period of one day, factors affecting the provision

of an analysis service over a longer period of time are less prevalent. In the

next chapter, results from actual user jobs over a period of months will be

presented.

5.4.6 Pre-emption and Future Optimisations

With the Filling and Multi-Threaded Filling modes described above, jobs

being submitted to DIRAC have a chance of being picked up immediately,

without the submission of any Agents to LCG. This is due to Agents sub-

mitted for previous jobs from the same user which can make requests to the

WMS for other suitable jobs from the same user.

The term `pre-emption' is used where the application of policy, e. g. high

versus low priority jobs, results in DIRAC ensuring an optimised start time.

5.4. Optimisation Strategies 158

This was not directly explored due to the LCG security restrictions. However,

results can be inferred from those presented in Section 5.4.5. Looking at

Figure 5.5 and Figure 5.7, it is evident that in a steady regime, the start

times can be minimised.

As shown in the last section, the effect of the number of users on the

optimisations is significant. If it was possible to utilise all Agents of the VO,

for the members of the VO, including those for the production, stripping

and reprocessing activities, the start time could become negligible for high

priority tasks. For example, LHCb plans to run the production over extended

periods of time with thousands of production jobs starting and finishing

daily. By first checking if a higher priority job was waiting, before running

a production job, this would allow user distributed analysis tasks to run

in advance. Likewise at the end of a production job, assuming there is

sufficient time and resource left, an analysis job could potentially be executed

afterwards. The Multi-Threaded mode also makes it possible to run jobs in

parallel. In the future, this could allow low priority running jobs to be

suspended, in favour of running a higher priority job. The lower priority job

could then resume execution. From the LCG benchmark result in Figure 5.5

the mean start time is over 15 minutes. This delay may not be as significant

for a 24 hour production job but for a1 hour high priority analysis job this

constitutes an overhead of 25%. An improvement of 10 minutes has been

gained via optimisation at the 100 job level for each user. Hence, performing

this type of optimisation at the VO level could lead to a mean saving of over

15 minutes per job.

This activity is pending, however, until it is possible to send generic LHCb

VO Pilot Agents to the Grid. One future possibility for doing this securely

on LCG is via glExec. This is a component of the gLite Midddleware [67],

5.5. Comparison of Strategies with Previous Simulation 159

that will provide the functionality to switch user identities on the Grid WN.

If generic LHCb VO Pilot Agents become possible in the future, the

application of policy and priorities becomes simple to apply in the DIRAC

WMS due to the central Task Queue. There is already a lot of experience

with this for standard batch systems such as LSF [171] and Maui [172]. As

mentioned above, this solution would eliminate the need for dedicated short

queues and is not possible with the standard LCG tools.

5.5 Comparison of Strategies with Previous

Simulation

In a recent simulation study [118], the decentralised DIRAC approach was

compared to a centralised scheduling system. The model adopted in [118] is

slightly different to the real system above, although the results are consistent.
In this model, the centralised scheduling approach works by checking all

resource availability upon the arrival of a task and scheduling the job to

the least loaded resource. The DIRAC approach modelled here involves two

main cases of deployment. The first case is where Agents are deployed to

site clusters and make job requests, submitting jobs to the local scheduler

of that site when successful. The second case is where the Agents running

on the site query the matchmaker service and submit a Pilot Agent to the

cluster, wrapped in a simple task, which checks the local environment and

requests jobs from the WMS. The difference between the simulation and the

real system described above is that the Pilot Agents are submitted through

the standard Grid scheduling mechanism from the WMS.

In the ideal case, where the update period of the global information sys-
tern tends to zero, the simulated study showed an improvement for centralised

5.6. DIRAC, Condor and Condor-G 160

versus decentralised scheduling [118]. In Figure 5.5, the results from the real

system show that the ideal case is not the everyday experience and therefore

the situation exists where the benefits of decentralised scheduling become

significant.

From the simulation [118], a 50% improvement was observed with Fill-

ing mode for the average job start times when compared to the centralised

scheduling approach. Comparing this to the results in Figure 5.6, the im-

provement observed with the Filling mode for the real system is 58%, con-

sistent with the simulated results. The difference can be attributed to how

the Pilot Agents are being deployed and the configuration of the real Filling

Mode on the Grid.

One of the issues raised in [118] was that a large number of Agents in

the simulation terminate without picking up any jobs in the Filling mode,

which places an unnecessary load on the system. However, looking at the

total number of submitted Agents in Table 5.1, it seems the opposite is true

in the real system. The difference is due to how the jobs were submitted and

the variations in Agent deployment described above. With the deployment

of Pilot Agents on demand from the DIRAC WMS, the Filling and Multi-

Threaded modes actually reduce the load on the Grid.

5.6 DIRAC, Condor and Condor-G

The Condor [72,173] project shares many of the principles on which DIRAC

is based. In fact, DIRAC uses Condor ClassAds [75] for the purposes of

matchmaking as described in Section 4.2. The aim of this section is to give

an overview of the Condor project, with special emphasis on the similarities

and differences to the DIRAC approach.

5.6. DIRAC, Condor and Condor-G 161

While DIRAC has been designed to accommodate multiple Grids and

multiple VOs, the scope of the project currently only includes LCG and
LHCb. DIRAC focusses on providing services to a particular community
(VO) which overlays the infrastructure of the Grid, whereas Condor has a

broader scope which encompasses providing the Grid infrastructure [174].

In a similar way to DIRAC, Condor places no dependence on the as-

sumption that particular resources will work. This accommodates transient,

unforeseen failures such as network outages or site misconfigurations. In

fact, Condor has been designed with special emphasis on providing reliability

through responsible behaviour [175]. Condor realises the centralised schedul-

ing paradigm, where resources advertise their descriptions to a matchmaker

service through ClassAds [75]. A machine known as the `Central Manager' is

dedicated to job scheduling and periodically receives resource advertisements

and updates of status. The matchmaker service in Condor creates task and

resource pairs in order to determine where the job will run. This informs

the client and resource of a match and then the client proceeds to claim the

resource. At this point, the request can be authorised or rejected, in case the

matchmaking process was performed on outdated information. Therefore,

Condor machinery is used to overlay a more centralised scheduling system

on resources than DIRAC, which adopts the decentralised PULL approach.
The Condor project today [176] has several main elements. Condor and

the Condor-G agent for the Grid, are described in Sections 5.6.1 and 5.6.2,

respectively. Gliding-In, which shares similarities to the DIRAC Pilot Agent

approach, will be discussed in Section 5.6.3.

5.6. DIRAC, Condor and Condor-G 162

5.6.1 Condor

The Condor high-throughput computing system provides many of the ele-

ments which are also common to DIRAC such as:

" Job management mechanisms;

" Scheduling policies;

9 Mechanisms for the prioritisation of jobs; and

9 Resource monitoring and management [174].

The main contexts of use for Condor are in the so-called `high-throughput'

and `opportunistic' regimes. Similarly to DIRAC, Condor aims to optimise

the use of available resources and provide reliable access to these resources

over prolonged periods of time. In this high-throughput context, it is es-

sential that failures are dealt with effectively to minimise the effect on the

whole system. Opportunistic computing involves the utilisation of resources

without requiring total availability.

Condor offers some advanced features for job checkpointing [1761, which

increases fault tolerance and also serves to keep a record of progress made.
Condor also allows the possibility to migrate a job from one machine to

another based on the recorded checkpoints. These are useful features which

provide valuable redundancy during the processing of jobs. By comparison,
DIRAC does not support these features and relies on the rescheduling of jobs

in case of failures during execution.
Another area which suits the architecture of both DIRAC and Condor is

the utilisation of CPU through `cycle-stealing'. Condor is more developed

than DIRAC for this activity, and can be configured to run jobs on desktop

workstations when the keyboard and CPU are idle [174,177]. However, the

5.6. DIRAC, Condor and Condor-G 163

Condor approach does require machinery to be in place at all times to detect

the available resources and is therefore more relevant for individual organi-

sations or institutions. For example, outside of allocated computing slots on
Grid WNs, it would not be possible to have machinery in place specifically

for one VO on these resources.

The Condor high-throughput computing system can be compared to the

DIRAC Site Agent approach. Site Agents are typically used outside of the

Grid and are more suited towards individuals, organisations and institutions

for use on PCs and site clusters. As mentioned above, Condor offers more ad-

vanced features than DIRAC, but requires heavier machinery to be in place

to achieve this. Moreover, while DIR. AC overlays a decentralised system,

with Agents making requests for jobs through the PULL approach, Condor

overlays a more centralised architecture which is less scalable [118]. One

drawback of the Condor system, as mentioned in [175], is that there must be

a reliable network connection between submission and execution sites for the

entire lifetime of a job. The job is not lost completely if it is broken, although

a significant amount of work must be repeated. In fact, Condor-G was devel-

oped to deal with issues such as temporary network disconnections and will
be described in the next section. As discussed in Section 4.4, DIRAC does

not suffer from this feature and Agents only require outbound connectivity.

In DIRAC, the monitoring of `heartbeats' sent to the \VMS indicates that

jobs are still running, and it is configurable how long to wait before marking

a job as stalled and taking further action.

5.6.2 Condor-G

The Condor-G [178] system was built through collaboration between Condor

and Globus [48], with the result being a Grid-enabled agent for accessing re-

5.6. DIRAC, Condor and Condor-G 164

mote batch systems. As stated in [175], `resilience introduces complexity' and

Condor-G can cope with temporary network disconnections at the expense

of additional machinery being in place. Several components of Globus were

introduced to Condor-G in order to manage large numbers of jobs in a fault

tolerant way. These include: Grid Security Infrastructure (GSI); Grid Re-

source Allocation Manager (GRAM) and Global Access to Secondary Storage

(GASS).

The Condor-G agent has a user interface that allows the Grid to be con-

sidered as a local resource. In a similar way to the DIRAC API, described

in the next chapter, the Condor-G API permits users to submit, cancel and

monitor jobs as well as obtain detailed logs in case of failures [178]. In

contrast to the DIRAC approach, Condor-G deploys a running process on

the local machine to submit and manage jobs. DIRAC has no explicit de-

pendence on the Globus components integrated into Condor-G. All that is

needed is a valid proxy registered in the LHCb VO. In fact, once a DIRAC

job has been submitted to the WMS, there are no processes running on the

local machine by design.

With the DIRAC approach, the WMS takes care of all job requirements

as discussed in Section 5.3. The Condor-G agent aims to provide similar

functionality via the processes running on the local machine, such as: staging

I/O files or executables; and also monitoring and recovery from failures.

The Condor-G agent provides seamless access to many types of batch

system and is actually used by the LCG Resource Broker as a job submission

service [176]. For the purpose of providing a VO with services, DIRAC offers

a more lightweight approach that is less intrusive for users.

Condor and Condor-G have distinct advantages and disadvantages as
discussed in [175]. For example, Condor allows advanced environments for

5.6. DIRAC, Condor and Condor-G 165

checkpointing, resource description and discovery, whereas Condor-G aggre-

gates remote resources that do not have to be a Condor pool. The next

section describes how a combination of Condor and Condor-G can be used

in a complementary fashion.

5.6.3 Gliding-In

Gliding-in involves building a traditional Condor pool on top of a Condor-

G system [175]. The Condor software is packaged into a `glide-in job' and

passed to Condor-G, which uses GRAM to submit the jobs. The glide-in jobs

can also be a portable shell script [178], which retrieves Condor executables

from a central repository. In this sense, `glide-in jobs' perform the same

function as DIRAC Pilot Agents.

In the glide-in approach, the user estimates approximately how many

machines they wish to use [175] and then submit a number of glide-in jobs.

In DIRAC, the WMS handles the deployment of Pilot Agents automatically

through the Agent Director and Agent Monitor services. The number of

Pilot Agents submitted is determined on demand, depending on how many

waiting jobs are in the central Task Queue and the mode of submission. Both

approaches ultimately serve the same purpose by creating a personal pool of

resources that can execute the user jobs. The size of the pool is determined

by the number of Pilot Agents or glide-in jobs which successfully start on

the remote system. In both cases, the jobs terminate gracefully if no work is

available.

While the glide-in approach has many similarities to the DIRAC Pilot

Agent approach, heavier machinery is involved by establishing a Condor pool

on remote resources and more intrusive processes are left running by Condor-

G on the submission system. Furthermore, the establishment of a Condor

5.7. DIRAC Paradigms in Other Experiments 166

pool is overlaying a centralised approach to scheduling in order to aggregate

resources. The DIRAC PULL approach simplifies scheduling through the

use of Agents on resources. DIRAC, although lacking some advanced fea-

tures such as job checkpointing, provides the necessary functionality for the

LHCb VO by design. Since Pilot Agents are submitted on demand from the

WMS, a steady pool of resources can be maintained and managed for LHCb

automatically.

5.7 Implementation of DIRAC Paradigms in

Other Experiments

Some of the trends for distributed data analysis systems were discussed in

Section 3.4.4. In this section, two systems which exhibit similar functionality

to DIRAC will be explored. The first of these is the Collider Detector at
Fermilab (CDF) [179] production and analysis framework, G1ideCAF, which

uses the Condor Glide-In approach described in Section 5.6.3. The second
is the ATLAS Panda system which also aims to facilitate production and
distributed user analysis on the Grid and has been strongly influenced by

DIRAC.

5.7.1 G1ideCAF

G1ideCAF is based on the CDF Central Analysis Farm (CAF) [180], that

provides a CDF specific submission infrastructure on top of dedicated Condor

pools outside of the Grid domain. Since CAF was based on Condor the

decision was taken to use the glide-in mechanism on the Grid. The resulting

system, G1ideCAF [181,182], made some additions to the standard glide-in

5.7. DIRAC Paradigms in Other Experiments 167

approach. One such extension was a `glide-in factory', in order to create a

virtual private Condor pool in a similar way to the DIRAC Agent Director

service. Glide-ins are submitted on demand as new jobs arrive in the system,

analogous to the way in which Pilot Agents are submitted by the Agent

Director.

An interesting limitation with the G1ideCAF system, stemming from the

underlying Condor daemons, is that bi-directional network traffic was re-

quired with the remote sites. As a result, GlideCAF needs to be installed on

every Grid site of interest in order to access site resources [181]. Since the

DIRAC Agents only require outbound connectivity, this is a limitation that

DIRAC does not suffer from. It is also interesting to note that GlideCAF

uses a single CDF service proxy for all the glide-in jobs on the Grid. This

means that each Grid site has no way to trace the actual users and is not in

compliance, for example, with the LCG security rules. Before the extensions
for distributed data analysis, this was the way in which DIRAC operated. In

this regime only Condor, for G1ideCAF, or in the case of DIßAC, the WMS,

has complete knowledge of all users. G1ideCAF also expects to make use of

glExec, as discussed in Section 5.4.6, lending extra weight to the argument
for generic VO agents in order to minimise the start times of high priority

tasks.

5.7.2 Panda

As described in Section 3.4.4, the recent ATLAS Panda [123,183 system
has been strongly influenced by DIRAC. Panda has also been developed in

Python, utilises the PULL scheduling approach (including the use of Pilot

Agents) and has a very similar, service-oriented architecure to DIRAC. Panda

also started as a Production system and has been extended for distributed

5.8. Summary 168

data analysis tasks. There are further similarities with DIRAC, such as the

use of a MySQL database to store all job related information. A comparison

of some of the DIRAC and Panda components is given in Table 5.2.

DIRAC WMS Component Panda Equivalent
Task Queue Task Buffer

Matcher Broker / Job Dispatcher
Agent Director Job Scheduler
Job Database PandaDB

Table 5.2: Comparison of the DIRAC WMS components and the ATLAS Panda

system equivalents.

Similarly to DIRAC, Panda also has data management components. In

DIRAC, much of the data management infrastructure is part of the system

although in the case of Panda there is an interaction with the Don Quijote

Data Manager [184]. Both DIRAC and Panda also have a job monitoring
infrastructure. In a similar way to GlideCAF, the Panda system currently

runs using a single proxy [183].

More recently there has also been interest from the gLite [67] project in

DIRAC workload management approaches, such as the Pilot Agent paradigm.
In the future, it is possible that this will become the default mode of sub-

mission to the Grid.

5.8 Summary

The DIRAC infrastructure of Jobs, Steps and Modules was introduced in

Section 5.2. This allows the creation of any necessary workflow for LHHCb

through different topologies of DIRAC Steps, which form a DAG, described

in Section 5.2.1. The workflow of DIRAC jobs from submission to comple_

5.8. Summary 1G9

tion was examined in Section 5.3 with reference to the WMS components

described in the last chapter. The methods used to ensure reliable access to

input data were summarised in Section 5.3.1, with redundancy in place at

each stage in case of failures.

In Section 5.4, DIRAC workload management optimisations were de-

scribed, including Resubmission, Filling and Multi-Threaded modes. It is

important to note that these optimisations are not possible with the stan-

dard LCG tools.

Extending the DIRAC production system to cope with distributed data

analysis tasks has been demonstrated to be effective. From the results in

Section 5.4.5, it is also evident that a significant improvement on the job

start times could be obtained via optimisation of the workload at the level

of the VO, rather than the individual user. This could lead to an average

improvement of 15 minutes per job for the start time when compared to the

LCG benchmark result in Figure 5.5. Optimisations on the VO level could

become possible in the future through the use of the glExec component of

the gLite Midddleware.

The results obtained for the workload optimisations were compared to

a recent simulation of DIRAC in Section 5.5, which highlighted consistent

results when compared to the centralised scheduling approach.

In Section 5.6, the DIRAC system was compared to the Condor and

Condor-G systems, as well as the glide-in approach. The use of DIRAC

paradigms in other experiments was described in Section 5.7 with a compar-

ison to the recent ATLAS Panda and CDF G1ideCAF systems.

In the next chapter the DIRAC Analysis Service will be discussed, using

data from real user jobs. It was decided that the Analysis system would run

using the Filling mode based on the results in Section 5.4.5. The implemen-

5.8. Summary 170

tation and maintenance of the DIRAC Analysis Service will be described,

as well as possible future developments and a description of the experience

gained from operating the system.

6. DIRAC Analysis Service 171

Chapter 6

DIRAC Analysis Service

DIRAC, the LHCb Workload and Data Management system for Monte Carlo

simulation, data processing and distributed user analysis, was described in

Chapter 4. In particular, the extensions necessary for DIRAC to accommo-

date the distributed user analysis activity were highlighted. The results of

testing possible workload management optimisations were presented in Chap-

ter 5. In this chapter, the DI RAC analysis service for LHCb will be discussed,

starting with the current and future deployment strategies, in Section 6.2.

Users interact with WMS services via the DIRAC API, this is discussed in

Section 6.3. This section also describes some of the policy decisions that were

made for LHCb Grid users, e. g. limits on sandbox sizes.

The system performance on LCG is explored in Section 6.4, and data

from the real user jobs is used to explain analysis usage in Section 6.5. The

experience gained from having real users will be covered in Section 6.6 and

the strategies for maintaining the system will be detailed in Section 6.7.

Finally, the future directions of the DIRAC system will be summarised in

Section 6.8.

6.1. Introduction 172

6.1 Introduction

The infrastructure of DIRAC and possible workload optimisation strategies

were described in Chapters 4 and 5 respectively. This chapter will focus on

how the system is currently utilised. As a production system, DIRAC oper-

ated with a single instance of the WMS services on one machine. The decision

was made to create a separate instance of the WNIS for the distributed data

analysis tasks, which will be discussed in the next section.

In the study presented in the previous chapter a successful job completion

efficiency of 100% was obtained. These tests were performed over a period of

hours and therefore cannot be representative of the daily users experience of

the system. The results of real users and the performance of the DIFtAC sys-

tem over an extended period of time will be presented in subsequent sections.

This is intended to highlight the effect of problems that do not present them-

selves regularly but can still have a significant effect on the overall system

performance.

The data sample used is from the experience of real users submitting

jobs over a period of several months before and during the Data Challenge

2006 (DC06) activity. Since the LHCb production and analysis workflows are
distinct, the user analysis jobs are in direct competition with the production

jobs for the same resources.

6.2 Implementation of DIRAC Service

The current implementation of DIRAC involves two separate instances of the

WMS, one for production activities and the other dedicated to distributed

data analysis tasks. A third DIRAC instance exists for testing purposes

and is principally used by developers of the system. With separate `'VMS

6.2. Implementation of DIRAC Service 173

instances, it is important to note that production and distributed analysis

tasks are in direct competition for the LHCb allocation of LCG resources. In

the future, it may be necessary to have multiple machines for one instance

of DIRAC. As mentioned in Section 4.3.2, the service oriented architecture

of DIRAC allows services to be migrated to other machines if there are high

loads. However, a single server has been sufficient thus far.

The introduction of generic LHCb Pilot Agents would make a strong

case for implementing a single instance of DIRAC, since the production and

analysis workloads could start to be optimised in a mutually beneficial way.

As discussed in Section 5.4.6, this could lead to situations such as: running

distributed data analysis tasks before and after production jobs at suitable

sites; or halting a running production job in one thread and running a higher

priority task in another. The latter would depend on a secure messaging

system as described in Section 4.5.4, and the ability to switch the user identity

on the Grid WN. Another possible scenario would be to keep the WAMS

instances separate and use generic LHCb VO Pilot Agents to first poll the

DIRAC Analysis system for user tasks, before requesting a job from the

Production system. While LCG security issues must be resolved to facilitate

these optimisations, the potential gains for LHCb are considerable.
Currently, workload optimisations can only be made on the level of in-

dividual users to comply with LCG security rules. Therefore, the DIRAC

Analysis System operates in the Filling Mode, introduced in Section 5.4.2.

The next section will describe the DIRAC API by which users interact

with the WMS. This can be used in the same way for all DIRAC WNIS

instances, with a configuration option determining which one is used. For

CERN LXPLUS users, a shared installation of the DIRAC client is available

with an associated 'DIRACEnv' command in order to set up the environment

6.3. DIRAC API 174

correctly. This automatically points to the instance of the WRZS that is

dedicated to user tasks.

6.3 DIRAC API

The DIRAC API consolidates new and existing functionalities in DIRAC,

providing users with a transparent way to submit jobs to the Grid. The

DIRAC API is principally a scripting language but may also be used from

the Python prompt. It allows users to securely submit, monitor, retrieve and
delete Jobs. Input data is specified by LFN and the full complexity of the

treatment of data on the Grid, as outlined in Section 1.6.1, is masked from

the user. Exploiting the DIRAC Job, Step and Module topology, described in

Section 5.2, the DIRAC API allows users to construct complicated workflows
(DAGs) to perform, for example, private production tasks on a small scale.

In order to run user tasks on the Grid, several key elements must be

considered. Firstly, any input data requirements must be satisfied, which

will be explained in Section 6.3.1. Secondly, files needed for application

`steering', such as options files or DLLs, must be delivered to the computing

resource to successfully execute the task. This is achieved through a sandbox

mechanism described in Section 6.3.2. Lastly, the results of running a job,

e. g. output files, must be stored in the file catalogue (LFC) or transported

back to the user in an efficient manner, this will be explored in Section 6.3.3.

6.3.1 Treatment of Input Data by LFN

When a job is submitted to DIRAC with input data specified, the inner

workings of DIRAC ensure it arrives at a site that can access this data, as
illustrated in Figure 6.1. The DIRAC API automatically appends LFNs to

6.3. DIRAC API 175

the l1(1 options file used to steel the application. before o'xerirt i<uu ()It t lie

\V
.

User submits Local
job, specifying

LFNs -ý
DIRAC API

---- DIRAC API - --'
appends LFNs to
user options file

Determines

suitable SEs and
therefore execution

DIRAC Central WMS I---i LFC

sites for job

Resolves input data
local to computing

resource

Computing Resource
------------------- Distributed WMS

' Job
' Wra er

Figure 6.1: Overvietu of treatin. ent, of input data, by Logical Eile Name in D1ß. 4C.

'I 'he fall corn, pl(Xitýy of providing access to data in, a Grid environment is rna. Awd

fron, the user.

Oii e the job is on the W 'N, there is still some work to be done 11v the

DIRAC Job Wrapper as 111(, n in Section 5.3.1.1'liýý 11 Ilanislºi iu

Figure 6.1 is completely transparent froiºi the user perspective. All Ilw user

liee(l5 to he conccrule(1 with is the list of LFNs to be iuclnde(I in t lie j(ii).

DIRAC takes care of sending the lob to sites that have a ess to the datýi

and also resolves the LFNs local toI the site that executes the Jolt.

'1'hc mechanism described in Section 5.3.1 is a tcnipo ror. v suulittion. In tho'

fiiture, an SR1\I-Eiware version of Gaudi will he aviiIahl e. 'l'liis will a 111()w I lire

sfx'c"ificiitioti of LF: As or SU1Lti in the a pj)Ii("at i0 11 options file, that will be

resolved to TURLs at the execution site through the use of (. FAL (Grid File

6.3. DIRAC API 176

Access Library). From the perspective of the user, this will be a transparent

change and the DIRAC machinery will not require significant modification

to support the new mechanism.

6.3.2 Input and Output Sandbox Handling

A typical user job will have small (i. e. less than 10MB) input files in order
to steer the application as discussed in Section 2.2.2. These normally include

an application options file and any DLLs containing compiled source code.
In order to successfully run the job, these input sandbox files must be trans-

ported to the Grid WN or computing resource. Figure 6.2 highlights the

DIRAC sandbox mechanism. When a job is submitted to the DIRAC WNIS,

input and output files are specified via the DIRAC API. The Input Sandbox

service uploads the specified files from the user / local area and these are

stored in the DIRAC MySQL database until requested by an Agent. Once

an Agent has successfully requested a job from the WMS, the Input Sandbox

service transfers it to the computer resource (WN) so that job execution can

commence. All data transfers in this mechanism are performed using the

XML-RPC Protocol.

After a job is finished, the specified output files are transferred by the

Output Sandbox service to the WNIS, and again stored in the DIRAC A1ySQL

database. Job progress may be tracked in two ways: firstly, through the

DIRAC API; and secondly, through the DIRAC Monitoring web pages [168].

Once a job has completed, the Sandbox service is again invoked to return the

output to the local area of the user.
The Sandbox services could move to Grid storage in the future. However,

there are some concerns about this such as:

" This will be slower;

6.3. DIRAC API 177

TT
I DIRAC API

icentral Input Sandbox Service
WMS

Job MySQL
Database Database

cher output Sandbox Service ------

- ---------------- isthbuted WMS

Job
Wra er

Figure 6.2: Input / Output, Sandbox handling as part of the job . sabnri.. sswn pro-

rrd, arc in DIR, AC. All data transfers in this mechanism arc pci fo1°m. cd UU, sin. g thc

XML-RP(' Protocol.

" Extra dependency on LFC: awl

" Increased client-side interaction with Grid SE,.

This will he implemented rind tested. With the final clc(isiUli lxeüºh ui, idi'

based on performance. Another advalitag(' of the ("nrr<'iit ul('("hftiisui is the

avoidance of flooding Grid SEs with small files. Since Grid SEs are often

\1SSti. they generally (10 not cope well with sturiug; . uid provi(Iiug frequent

ii("("ess to ul11üV small file. The current ºrue(luulislu call also support large

sandboxes as discussed in the next section.

6.3. DIRAC API 178

Treatment of Large Sandboxes

The above mechanism is utilised for input and output sandboxes of less than

10MB. A protection mechanism is in place for input sandboxes over 10NIB

and it is possible to specify the input sandbox as an LFN via the DIRAC

API. This allows users to upload an input sandbox to Grid storage, and

the DIRAC Job Wrapper will automatically resolve and download this LFN

before executing the application.
When a user specifies output files for a job their size may not be known

in advance. To ensure no data is lost, whilst also protecting the DI RAC

MySQL database against overloading, users can specify output data files for

permanent Grid storage which will be described in the next section. In the

case of a specified output sandbox file exceeding 10MB, the file is instead

transferred and registered in Grid storage through the output data mech-

anism and notification is sent to the user through an additional file in the

output sandbox.

6.3.3 Output Data

When a user specifies output data for a job using the API, DIRAC submits

and executes the job as normal, although there is one extra step during the

job finalisation. Figure 6.3 shows the treatment of specified output data files

by DIRAC.

The same process is used for output sandbox files that exceed 10AMB,

with the decision being made by the DIRAC Job Wrappcr on the computing

resource. If the specified files are found after the job has finished, they

are automatically transferred to Grid storage and registered in the LFC. If

failures occur, for whatever reason, the missing files are reported to the Job

6.3. I)IRAC API IN

DIRAC API

Replica

LFC

Job

Monitoring

- Di------------------ stributed WMS

b Jo . -;
Wra er

Figure 6.3: '/'r(UtInrnt of oittpv. t data J-iir". ti in 1)1!?! ('. 1, anif output SflIIdbor fill..

arc also pu.. s. sril through this m1rh(mi.. w.

Illunilnri, 1. q. Srj. ric-c° , ºucl the JU>I) will f, ºil wit 11 a ºuc'. ºniugfºtI c'rnw tuc',., ºgr. t'UI

c'au"h mit put dill a tike . uc"c"c'sSfullV stored ill t he I. I'(' a tike wit lt ,º ui(aiiitºgftºI

uMuuc' is , cut via tlue Olitl)ttt , auclhU)X. which cmit, ºiu, IpcertinVut iufc)cºu, ºtiun

stich º,: size of file: IAN: awl tIu, Grid Sl: Uti which it is stored. This alh)ws

users tcý keel, track of their Grid files and call be it, ecl tu c"utitaiu iºº. tFliutions

fur ret ric'vat (A. t he files if desired.

'I'II ti(iltioý11 ill p1; 1 (' h) cope with u, cr uutl)iit data Ill('; is ,i

(; rid S1.: (lirr(tUýr\", with gronl) t 'I(I; %\rit(' access. lit IIt(flitill-c. this should
hoc(ut(' so(ttrr, wiI II (1(licit(' Owu('rs1Iil) (d1 tit(', at t 1tß' tt. e r ItweeI. 'I'Ile co I 1%. (. 11-

tiuºº Iisv(I h)t ný iSt('I. in.; tlu tilºý iý , ºý fýýllýýýýý:

6.3. DIRAC API 180

/lhcb/user/<INITIAL>/<USER>/<JOBID>/<FILE>

This allows the user to submit a job to the WMS with output data from a

previous job, specified as input data for the next. For example, private user

productions could produce DST files suitable for later analysis jobs. This

convention is mandatory and automatically prepended to all LFNs by the

Job Wrapper. In fact, the convention may be overridden but this is strongly

discouraged and could become restricted to a smaller group of trusted users,

specified through VOMS.

Due to the data being stored in the LFC, the user need not concern them-

selves over where exactly this data is. The only important thing for the user
is to note the LFN. In this way, users need never know the PFNs (SURLs)

of data files, and the complexity of handling data in a Grid environment is

therefore masked from the user.

6.3.4 Interface to LCG

The DIRAC API is entirely written in Python and there is no explicit depen-

dence on a LCG User Interface (LCG UI) if a valid proxy is already present.
However, to generate a Grid proxy, the commands `grid-proxy-finit' or
`vows-proxy-init' must still be used. In the future, it may be possible
for DIRAC to generate proxies on behalf of LHCb users for use via DISET,

although this is not currently in place.
Complications can arise with the DIRAC Client when users attempt to

access output data files in Grid storage, since this involves access to the LFC.

As discussed in Section 4.6.2, a Python interface to the LFC is shipped with
the LCG middleware and this is used to implement the Replica Manager in

DIRAC. In order to access the LFC without the presence of a LCG UI, a

6.3. DIRAC API 181

distribution of LCG tools, including the LFC Python interface, is maintained

as part of the DIRAC distribution. This also contains components such as

GridFTP that are commonly used to manipulate files in a Grid environment.

With a DIRAC Client installed on a correctly configured LCG UI, Grid-based

operations such as accessing files stored in the LFC are immediately possible.

However, to facilitate the use of DIRAC without the LCG UI environment,

a few extra steps are required during the installation of DIRAC to configure

the necessary LCG utilities.
Another important issue affecting LCG usage for both centrally main-

tained (e. g. on LXPLUS at CERN) and private DIRAC installations is

CRLs. On an LCG UI, CRLs are automatically kept up to date, although

for private DIRAC installations these must be periodically updated by hand.

This will be discussed further in Section 6.7, with other aspects of mainte-

nance.

6.3.5 Generic Gaudi Application Job

The DIRAC Job, Step and Module topology, described in Section 5.2, has

been `tailored' for user jobs with the equivalence demonstrated in Figure 6.4.

In this way a simple DIRAC API script transparently creates one module to

install application software, and another to execute the application, with the

underlying complexity hidden from the user. This infrastructure also nat-

urally accommodates redundancy, since failures during software installation

can be reported before the application starts to execute. If failures cannot
be recovered, the job can be automatically rescheduled.

The first few lines of the DIRAC API script import the relevant module

and create instances of the Dirac O and Job() classes. To specify user input

files, the default root location is taken as the directory in which the script

6.3. DIRAC API 182

dirac = Dirac()
job = Job()

job. setApplicahon('<Appl icatioru',

job. setlnputSandbox(['<Input File>?)

job. setlnputData(['<LFN 1>', '<LFN2>'])

job. setOutputSandbox(['<Output File>'])

job. setOutputData(['<File>])

jobid = dirac. submit(ob, verbose=l)
print "Job ID = ", jobid

Figure 6.4:
.4 ye nr i-ic DIR. AC API script for LHCb Gaudi-based applications

shown with the equivalent Job. Step and Module structure.

is executed. An application log fil(' is ? lJItOIIlaticatllý createcl by DIRAC and

can he returned in the output sandbox. Appendix B shows the DIRAC API

script required to create a more complicated workflow such as that shown ill

Figure 5.2.

6.3.6 Interface to GANGA

While it ! IldV be exploited directly by itsvrs, the DIRAC API also serves as

the interface for the Ganga. (Gaudi / Athena and Grid Alliance) [185,1S6]

Grid front-end to perform distributed user analysis for MCI). Athena is

the ATLAS software framework based on Gaudi. This common framework

between the two experiments allows for cooperation in the configuration and

management of tasks and. as such. Ganga is a joint project het-, een ATLAS

and LHC'h.

Ganga provides a seamless way to, 1ihcnit job, to several 'hackeu(lti'. these

include: LSF: PBS: LC'G: gLite: Condor and DIRAC. However. for LHC'h

6.4. Performance on LCG 183

Grid jobs, the default mode of submission is via DIRAC and Ganga makes

use of the DIRAC API to configure, submit and monitor jobs. The Ganga

client also offers a GUI, that will provide a seamless way for users to query the

LHCb Bookkeeping Database for LFNs, as well as client-side splitting of jobs

into smaller tasks. The functionality to support more complex workflows,

such as in Figure 5.2, is currently not available via Ganga. However, this is

anticipated in the future.

With Ganga submitting Grid jobs via the DIRAC API to the WNIS,

LHCb has a seamless system that allows users to transparently submit jobs

to batch systems, such as LSF, and the Grid. The DIRAC job status machine,

highlighted in Appendix C, is very refined in order, to aid in the debugging

of Grid jobs and improve redundancy. Ganga provides a simplified view of

this for the user, in order to mask the underlying complexity. Following the

paradigms of the Grid outlined in Chapter 1, users should not be concerned

with the finer details of what is going on behind the scenes, the priority is to

ensure jobs are successfully run.

6.4 Performance on LCG

As described in Section 5.4.4, measuring performance on the Grid involves

taking many factors into account, including: network outages; power failures;

and site configuration problems. The data sample used for this analysis is

from real user jobs' submitted to the DIRAC Analysis System over a six

month period, between February and August 2006. The tests performed in

Chapter 5 were obtained in a single day, and whilst the results yielded 100%

'This primarily consists of user analysis jobs but also contains a small number of private

user production jobs, which account for 3% of the sample.

6.4. Performance on LCG 184

job efficiency this is not necessarily representative of real user experience.

The focus of this section will be to reveal issues that can manifest over an

extended period of time.

6.4.1 Job Start Times

A good measure of system performance is the start time of jobs over an

extended period. The start time is defined as the time between submission

to the DIRAC `'VMS and the job starting to execute on an LCG WN. The

DIRAC Analysis system operates in Filling mode, introduced in Section 5.4.2.

Figure 6.5, highlights the job start times for 3000 real user jobs over a six

month period. On the whole these results are encouraging, with the majority

450

400

350

300

0
250

0

200

150

100

50

0

Figure 6.5: Job start times on the DIRA C Analysis System for a sample of 3000

real user distributed analysis jobs, collected over a six month period. The mean

start time, excluding rescheduled jobs over 24 hours, is just over 5 hours.

of jobs starting in under one hour. However, the secondary peak in Figure

OQ CO
fV (-w in C. co oNv t0 0mÖ fJ O %o co

.r fit w In to P. 0' O .r rm M0

Start Time (mina) (Non-Linear Scale)

6.4. Performance on LCG 185

6.5, where jobs have a start time of over 24 hours, requires further comment.

A mechanism is currently in place for services in the WMS to always

make use of the longest available Grid proxy. Each time a user performs an

operation, such as submitting further jobs to the WMS, the existing proxy

is checked. The existing proxy is replaced if it is valid for less time than the

newest proxy which is currently available. This means that if a user job fails

to start on one day for whatever reason, or the user submits jobs using a proxy

of very limited validity, the jobs can enter a waiting `proxy expired' state.

Subsequent operations can therefore recover these jobs through renewing the

available proxy. The side effect of this is that job start times can appear

to be more than 24 hours. This is also caused by users rescheduling their

jobs. Rescheduling means that the job is treated as new except for the job

identifier and, significantly, the time of submission.

Large job start times can also be the result of no available WNs on the

Grid. The effect of the DC06 activity on system performance will be explored

in Section 6.4.5.

6.4.2 Total Job Times

The total job time is defined as the time between submission to the DIRAC

WMS and the subsequent final reported job state, and can therefore be dom-

inated by the job start times explored in the last section. Since users decide

job parameters, including:

" Number of input datasets per distributed analysis job;

" Number of events for private MC production jobs; and

" Complexity of submitted algorithms.

6.4. Performance on LCG 186

400

350

300

250

200

E
Z Iso

100

50

Figure 6.6: Total job tiIncs for , v000 rrul user distributed analysis jobs collected

over a six month period on the DIRAC Analysis System. Users determine the

length of jobs via the complexity of algorithms and number of input datasets.

J'he mean total time, excluding rescheduled jobs over 48 hours, is approximately

10 hours.

The total job tunes are often chaotic in nature. illustrated in Figure 6.6.

The peak of jobs finishing in under one hour can be attributed to jobs

submitted with it small number of datasets as Well as jobs that fail sliortl.

after submission. An example of the latter can occur if the specified input

data is not available, after consulting the LFC. Such cases will he examined

in Section 6.4.4. with a breakdown of the causes for Job failures.

In a similar fashion to Figure 6.5, there is it peak of jobs lasting longer than

48 hours. which can be attributed to jobs that have been rescheduled. Other

factors to consider include temporary effects such as data access problems,

often caused)site nºisconfigitrations, which can delay running jobs.

o
Of}\> 1° '>> ýý" 1. "L" if ý} ý}

Total Time (hours) (Non-Linear Scale)

fi. 1. I'ei"k)rltl ance on LCG 187

6.4.3 Matching Times

Matching time is defined as the time between a Pilot Agent requesting a

Jot) from the \V\IS and the job being delivered to the computing resource.

LHCb Monte Carlo production jobs have fairly uniform requirements, nor-

II1? LllV III('lu(IiIlg it particular PLIIioiiilt of CPU tim e. as discussed in Section

3.1.2.

1000 -
900

800

700
600

500

E
400

L

300

200

100

Mean Match Time: 0.56 seconds

Figure 6.7: Matching times on the DIRAC Analysis Sys tern for 3000 real user

distributed analysis jobs collected over a six month period.

With uniform production jobs, using 1'ask Queues to enable job 5checlul-

ing is natural. However. distributed analysis tasks have chaotic requirements

and present a more demanding task for the Matcher service. Figure 6.7 shows

the matching times for 3000 user distributed analysis jobs. Comparing this

plot to the matching tunes for production tasks in Figure 3.3. reveals no loss

in performance with 96X of jobs being matched in under 2 seconds. More-

over, the nneaii matching times are consistent, with a value of 0.56 seconds for

Figure 6.7. compared to 0.42 seconds for Figure 3.3. The double-matching

o
ýfy 'L }OOUO UVJy'ý ýOý

OHO O. ff 'S ý ý0
Match Time (s) (Non-Linear Scale)

6.4. Performance on LCG 188

mechanism where Agents may also impose requirements on the jobs, reduces

the load on the Matcher service by making requests more specific.
Looking at the plots for start times and total job times in Figures 6.5

and 6.6, it is evident that the matching time is a negligible factor in the

overall lifetime of DIRAC jobs. Furthermore, this demonstrates that the

PULL scheduling paradigm originally employed for LHCb production tasks

scales well to the chaotic requirements of distributed data analysis jobs.

6.4.4 Job Completion Efficiency

Whilst individual short-term usage of a system may yield high efficiency,

temporary issues can arise over a longer period of time, affecting the success

rate of user jobs. Some of the user experience gained will be discussed in

Section G. G. However, in this section the focus will be on how the sample of
jobs fared over a six month period. Figure 6.8 illustrates the job completion

efficiency breakdown. Each of the cases in Figure 6.8 will be explored below:

" Successful (68%) Successful jobs are those that have entered the

final state without errors. This includes jobs which from a DIRAC

perspective are successful, but may not be a success from the user

perspective. For example, if a user does not specify the output data

file name correctly, the system will mark a job as failed although the

application has executed properly.

" Input data not available (10%) Jobs with input data requirements

can `fail' because input data is not available. This means either the

specified data is incorrect or there are inconsistencies in the file cat-

alogue. A common mistake is to specify PFNs (SURLs) instead of
LFNs, since users have experience with using PFNs on batch systems.

6.4. Performance on LCG 189

Results Breakdown of 3000 Job Sample

10%

68%

1%

Figure 6.8: Breakdown of results for 3000 real user distributed analysis jobs

cullcctecl 0 c'cF a six month Period from the DIRAC Analysis System.

The latter case where inconsistencies exist in the file catalogue is more

complicated and dominates the figure of 10V in the sample. Altho11b11

these entries have siihsegiieIltly beeil fixed. this is it time consuming

operation. Which must often be perfoniie 1 '1)y haii(1. In fact, these

jobs can be considered successful frolll the perspective of DIRAC, since

Pilot Agents are prevented from being sent to LCG unnecessarily. Al-

though the jobs cannot ruil immediately

11111 suc("essfii11y afterwards.

" Stalled (9%) A joh is marked as 'stalle« if the DIRAC Job Alon, ifor-

irry Scri'icc stops receiving 'heartheats'. Which are regular notifications

of the job being in an acceptable state. The main cause of this is clue

to user l)roXY expiration on the \\-\. Proxy expiration is a major issue

 Successful Input data not available
Stalled Failed to upload output data

 Failed to resolve input data Waiting

 Exception during execution Software installation failure

6.4. Performance on LCG 190

that requires further thought and will be discussed in Section 6.8. If

a user submits jobs with a `short' (i. e. default 12hr) proxy submitted

Pilot Agents may wait in a site batch queue for a significant portion

of this time before starting to execute. If the proxy expires while the

application is being executed, the job will stall. A simple solution for

users is to submit jobs with a proxy that lasts several days, however, it

is potentially dangerous from a security point of view for this to become

standard practice. Other causes for stalled jobs include: power cuts;

network outages; and also site misconfigurations. The latter are gener-

ally more subtle problems, sometimes only affecting a small number of

jobs at any one time. For example, major power cuts on the site level

are obvious to spot but more minor interruptions, affecting individual

WNs, become more difficult to identify.

" Failed to upload output data (7%) The failure to upload specified

output data is caused by the transfer and register operation to the

LFC failing. This can happen due to network outages, power cuts,

site misconfigurations, and also LFC availability. In fact, of the 7% of

jobs in the sample which failed to upload output data 94% occurred

during one day, when the LFC was unavailable. Therefore, 7% is not

representative of the high level of service over the six month period.

" Waiting (2%) Jobs which are in the `waiting' state have not failed,

they simply have not begun to execute. Waiting jobs are either: sub-

mitting Pilot Agents; waiting for Pilot Agents to respond; or have an

expired proxy. On further examination of the 2%, all had an expired

proxy and this can be attributed to the ongoing DCOG activity. The

effect of DCOG on system performance will be described in Section 6.4.5.

6.4. Performance on LCG 191

" Failed to resolve input data on the WN (2%) Jobs arriving at the

WN first install any required application software then resolve input

data as described in 5.3.1. The vast majority of the 2% of jobs failing

to resolve input data are due to transient site configuration problems.

For example, if available site protocols are not correctly set up, this

results in not being able to construct TURLs for the software applica-

tion to access input datasets. To recover from this type of failure, the

usual course of action is to ban those sites until issues are resolved and

reschedule affected jobs.

" Exception during execution (1%) This is perhaps the most difficult

error to debug, since affected jobs report no problems until failure.

Further examination of the 1% of jobs in this sample revealed that the

most likely cause of these failures is application failure. However, this

could also have been caused by power cuts.

" Software installation failure (1%) The software distribution mech-

anism, introduced in Section 2.5.4, has proven to be successful for both

production and distributed analysis tasks. However, this is not immune

to network outages, which prevent the transfer of binary distributions

to the WNs. All of the 1% of jobs failing in this manner appear to be

caused by network problems.

Most of the causes of failure examined above are consistent with the ex-

perience of running jobs on the Grid, however, the inconsistencies in the

LFC accounting for 10% of the sample requires further comment. LFC in-

consistencies can be attributed to the fact that the system is relatively new,

although does suggest that an extra mechanism to check catalogue entries

would be advantageous. Without this, it is unlikely that problems affecting

6.4. Performance on LCG 192

particular SURLs at individual sites can be discovered until users start to

run over all available datasets. The resolution of this problem should also be

automated to some degree in the future to enable swift recovery and allow

affected jobs to run as soon as possible.

Overall, the breakdown of causes for job failures is fairly encouraging.

Taking factors with temporary causes into account such as: input data not

available; failure to upload output data; waiting jobs; and the failure to

resolve input data on the WN, the efficiency becomes much higher. Also,

further examination of the stalled jobs in the sample showed that around 4%

of the 7% were due to job submission with a short-term proxy. Therefore,

an estimate of the efficency of the system, having omitting the temporary

problems from the sample, becomes 91% with the remaining 9% caused by in-

termittent power cuts and network outages, outside of the control of DIRAC,

over the six month period.

6.4.5 Effect of DC06 Activity on Performance

In order to establish the effect of DC06 on performance of the system, some
factors in the sample require consideration. For the job start times shown
in Figure 6.5, all jobs in the sample starting in over 24 hours were ignored.

Similarly for the total job times, shown in Figure 6.6, jobs in the sample
finishing in over 48 hours were omitted. While it is possible that these jobs

did have delays of over 24 and 48 hours respectively, in fact, the vast majority
have been rescheduled. The percentage of these ignored `rescheduled' jobs is

taken into account in Table 6.1, as another measure of system performance.
Figure 6.9 displays the number of jobs running on the DIRAC Production

system during 2005-2006. The sharp increase in usage during May 2006,

corresponds to the start of DC06. Therefore mid-May was used in order

6.4. Performance on LCG 193

Last Year Running lobs

Figure 6.9: Number of jobs running on. the DIRAC Production system during

, 2005-2006). A sharp increasc in usage is observed is May 2006, corresponding

to the start of the LHCb DC06 activity. The small number of `DIRAC jobs'.

corresponding to jobs using DIRAC. but outside of the Grid, is also shown.

to split the sample of itser (listribttted analysis jobs to determine how the

DC06 activity affects the performance of the system. The production and

analysis tasks are in direct competition with each other, since the ramp-up

of production tasks can saturate all CPUs available for LHCb on LCG. Table

6.1 highlights the changes in mean start time and total tirne for jobs before

and after the DCOG activity.

Parameter Before DC06 After DC06

PeI(eIlta g(' of Johl ill the siullI>he 29X 1`Z
\IeaIi Start Tillie (houi-s) 0.5 7.0

\IC2lll Total Tillie (hours) 2.6 12.8

Perceitabe of Rescheduled Jobs <0.5v 12V

Table 6.1: Effect of the DCO(i activity on the mean start time and total time of

jobs. Thi sample was split using mid-Mag as the starting point of DC06, from

Figure 6.9. and also takes into account the overall percentage of rescheduled jobs

in the sample.

It is clear from Table 6.1 that a drop in system performance is observed

corresponding to the DC'OG activity. In this regime, Pilot Agents siibniittcd

6.4. Performance on LCG 194

for (list ri})l lte(1 aiialvsis tasks frequently end up 111 long site batch (lucucs

before starting to run. regardless of how many are sent per job. As will be

explored in Section 6.5.1. the sample of distributed analysis jobs is domi-

nated by a peak corresponding to the large number of jobs in May from the

production system in Figure 6.9. To further analyse this effect, Figure 6.10

Shows the Illeall start till('", versus the number of SI11)lllitte(1 jobs. per da
.
N.

600

>co

aC0

3 3co
In

2CC
E

z

:p : 00 000

bq(Shrt Ti, *) (mini)

Figure 6.10: Plot of incarr start times yersus the number of submitted jobs sub-

rni. ttr d to the DIRAC Analysis System on a daily basis, during a six month period.

Rescheduled jobs tenth start times over 24 hours were omitted from sample.

While the majority of the days considered in Figure 6.10 show a reason-

able average start titele, the outlying points in the sample are dominated by

those which correlate with the start of the DC06 activity. A possible soht-

ti0I1 to this problem was IIIemltiomle(1 ill the last chapter and involves the use

of generic LHCb VO Pilot Agents. If it were possible for all Pilot Agents

sent hV Ineitlhers of the LHC'1) coininu lity, to potentially run jobs from other

members of the VO. it would facilitate the execution of higher priority tasks.

Log of the Mean Start Time vs. Submitted Jobs (Per Day)

6.5. DIRAC Analysis Usage 195

Furthermore, the production activity (shown in Figure 6.9) shows regular

use of LCG resources during DC06. Therefore, the steady number of Pilot

Agents sent for the production activity could be utilised by the higher pri-

ority distributed analysis jobs, offering a potentially negligible start time, as

described in Section 5.4.6.

6.5 DIRAC Analysis Usage

This section will examine the user patterns of data analysis using the sam-

ple of distributed analysis jobs submitted to the DIRAC Analysis System.

Section 6.5.1 will examine the frequency of submission of jobs in the sample

and detemine the effect, if any, of number of users on job start time. In

Section 6.5.2, the number of datasets submitted per job in the sample will

be investigated.

6.5.1]Frequency of Submission

Figure 6.11 shows the number of jobs submitted to the DIRAC Analysis

System over the six month period. The highest peak occurs at the start of

the DCO6 activity, during May 2006. Although the statistics are lower than

the numbers used for testing the optimisation strategies in Chapter 5, the

chaotic nature of real usage of the system is apparent.

To determine if a correlation exists between the number of users and start

times of jobs, Figure 6.12 shows the number of unique users submitting jobs

to the DIRAC Analysis System, averaged over two weeks for the six month

sample. This is plotted against the mean job start times averaged over the

same period.

While the statistics are relatively low, Figure 6.12 demonstrates that

6.5. I)IRAC Analysis Usage 196

I
E

Submitted lobs

. 6C0,

i

400

200

oco

Boo

600

400

200

0
02468 :C :24 :6 :8 20 22 24 26

Week (between February and August 2006)

Figure 6.11: Number of jobs submitted to the DIRAC Analysis System every two

weeks b tirr en February and August 2006.

the number of risers is independent of the start time (excluding the outlier

discussed further below). Oil further inspection of the sample, variations ill

the start time can be attributed to the DCOG activity. Each outlying point

c. g. -here the number of users equals 4.8.9.10 and 11, occurs after the

start of DCUG. The furthest outlying point in Figure 6.12 coincides with the

largest submission of johl in Figure 6.11 and is the triost strongly affected by

the apparent lack of available Grid resources.

6.5.2 Size of User Jobs

Olle ofttte lai-oe t deterutiuim, factors in the letigtIi of user jobs is the number

of specified input data-sets. Figure 6.13 shows the number of input clataasets

for each job in the sample. over the six month period. Jobs submitted with

no input (1atasets relate to private user production jobs. These ttiake use of

the DIRAC Job. Step and Module architecture, described in Section 5.3.1,

to construct the workflows.

6.5. DIRAC Analysis Usage 197

Mean Start Time vs. Number of Users (Per Two Week Period)

16 7

14

12

10

8
äE

6
i

4

2

Figure 6.12: Alean start time versus number of users submitting jobs to the

DIRAC Analysis System every two weeks between February and August 2006. Over

the period there was a total of 44 distinct users.

While Figure 6.13 comprises of jobs submitted by over 40 users, it is

remarkably ordered with a peak at 20 input datasets. With each LHCb

<lataset containing approximately 500 events, this suggests running over

10.000 events. As mentioned in Section 3.2, the LHCb Computing Model

[100] predicts that approximately 140 physicists will submit 2 jobs per weck

which will process - 10' events per job. increasing to - 10' events, for larger

samples. This corresponds to jobs submitted with between 2000 and 20.000

LHCb input data-sets. It is envisaged that these
.
jobs can he 51)lit into smaller

'chunks' in order to be run in parallel which. from Figure 6.13. appears to

he how users are proceeding.

0
1 10 100 1000

bg (Start Time) (mini)

6.6. User Experience 198

: 600

. 400

: 200

: 000 -

800

E
= 600

400 -

200

0

Figure 6.13: Number of data. >ets . submitted per job for over . 3000 real user dis-

tributed analysis jobs collected over a six month period on the DIRAC Analysis

System.

6.6 User Experience

()uutwitli the smripl ' considered iii Section 6.4. users have gained experience

of the system through individual use. Some of their results will be explored

in this section. Due to the extended time period considered in Section 6.4.4,

Mid the coincidence of analysis with production jobs during DCOG, the per-

formance is of lower quality than that found from the tests in Chapter 5.

Figure 6.14 shows the results of tests' [1S7] performed before the start

of DCU6. with Ganga submitting to the \V"\IS via the DIRAC' API. This

analysis comprised of 500 jobs running over a total of 5000 inl)irt clatasets,

which corresponds to 5 million events.

As Figure 6.14 shows. go'/(of results were hack in under 3 hours. After

'Testing performed by Dr. Ulrik Egede, Imperial College, London.

Number of Datasets (Non-Linear Scale)

6.6. User Experience 199

I
V

08

8
0.6

t
O
U. 04

02

I nnno
Time [s]

Figure 6.14: Rrsalts of 500 jobs canning over a total of 5000 datasets sabrnitted

to the WAIS via the DIR_AC API using Ganga. This analysis ran over a total of 5

million ci, cnts, from /187J.

four hours this rose to 95cl with the last 51/(completing after 10 hours. The

delay of the last 5% of jobs was caused by temporary file access problems

at one of the LHCb Tier-1 sites. The efficiency of the sample, shown in

Figure 6.15. is defined to encompass the submission. rnmiing. and retrieval

of output. through the DIRAC API, all working as expected.

the job completion efficiency, shown in Figure 6.15, was measured at

951A with the remaining 5(X due to inconsistencies in the LFC (similar to the

observation in Section 6.4.4). For the last 5%, the jobs failed meaningfully

before any Pilot Agents were submitted to the Grid. From the perspec-

tive of DIRAC'. this test can be seen as 100% efficient since after the LFC

inconsistencies are resolved. the remaining jobs are free to execute.

Another study aas carried out })V five University of Cambridge surn-

Hier students [188]. using Ganga to submit jobs via the DIRAC' API to the

\V\IS. With no prior knowledge of Grid coii piting, the summer students

successfully utilised the Ganga-DIRAC system to submit jobs to LCG in a,

transparent way. Over a period of three months. 75 million events were pro-

(('ss e(l with around 5.500 jobs submitted to the sYstein. This Yielded similar

6.7. Maintenance of Service 200

5% : Date not found
02% : Site problem
95%: Success

Figure 6.15: F Jfu u ncy of 500 jobs ranhiing over a total of 5000 datasets sabmit-

f((1 to the R A1S via the DIRAC API using Ganga. This analysis processed a total

of 5 million e rc pi ts. from [1871.

results with a final job success rate of 95c% after taking into account errors

such as LFC inconsistencies.

6.7 Maintenance of Service

I IIis 5e t i(ii will 1)re iIt aII overview of the issues relating to the maii it en it ii(-(,

of the DIR AC analysis service. As mentioned in Chapter 4. services Ili the

DIRAC \V\IS are managed via the runit tools. which ensure a high degree

oI reliability. Occasionally however. Power cuts c'RI1 affect the hosting Ina-

chine to such all extent that r unit cannot recover normal service completely.

Currently, the DIRAC \V\IS will remain in this state until maintenance is

performed 'hV hand'. Olle option to consider is \V\IS 'Mirroring, where a

backup instance of key central services could come into play only when the

1)riII1P11'y instance is unavailable. A backup instance of the \t MIS has not })eell

required thus far. so development on this is pending until deemed necessary.

As mentioned in Section 6.3.4. CRLs must he maintained in order to

preserve access to LCG resources. The current Inechianislll Ineaiis that all

6.7. Maintenance of Service 201

DIRAC installations must have access to the latest CRL in order to perform

Grid-based operations. For DIRAC public installations, e. g. on LXPLUS,

there is a centrally updated CRL. However this becomes more cumbersome

for individual users and in both cases can result in obscure failures when an

out of date version is being used.

The issue of proxy expiration was touched upon in Section 6.4.4. A

solution to renew short-term proxies has been attempted through MyProxy

Server [49]. However this mechanism places an extra burden on users in

order to get started on the Grid. The temporary solution to `pipe' longer

term proxies with jobs has been sufficient up to this point for distributed

analysis jobs to solve this problem. However, a more formal mechanism

should be established in the future. One option would be for the DIRAC Job

Wrapper to monitor the remaining time on the proxy of a running job. A

request to the WMS for an extended proxy could then be made using only

the existing proxy as a credential. This could be fully automated and would

shield users from the problem. However, this may duplicate the functionality

of MyProxy Server and could result in fresh security concerns. If negligible

start times could be guaranteed for all jobs, perhaps proxy expiration would

not be as pressing an issue.

6.7.1 User Training

User training is one of the most important aspects of maintaining a ser-

vice for a community. An LHCb software training course was held at the

University of Cambridge in February 2006 [115]. The participants included

LHCb collaboration members and the five summer students whose results

were described in Section 6.6. This was essential to encourage users to use

the Grid whilst also building confidence in the system. The format of the

6.8. Outlook 202

training course involved an equal balance of lectures and practical activities.

This resulted in users with no prior Grid knowledge successfully running

jobs on LCG. Encouraging feedback was also gathered from users about the

Ganga-DIRAC system.

6.8 Outlook

The project to develop the DIRAC Monte Carlo Production system for users

to perform distributed analysis on the LHC Computing Grid has been very

successful, and a working system has been released and is under use. How-

ever, there is still much work to be done and some possible future develop-

ments are described in this section.

As the number of users increases, so too does the number of use cases

which must be accommodated by the system. One such example is Event

Tag Collections (ETCs) that require reliable yet sparse access to many more

datasets than standard analysis jobs. Access could be governed by a POOL

XML slice, similar to that currently used to resolve input data, as described

in Section 5.3.1, although extra mechanisms should be in place to ensure a

high degree of success through redundancy, and a means should be introduced

to handle ETCs during job submission.

Another emerging issue from the experience of users in a Grid environ-

ment is the desire to run application software outwith that provided as stan-

dard by the VO. Although the current mechanism for software distribution

scales well for the Gaudi-based applications of LHCb, it may be necessary in

the future to support additional software. One example would be support-
ing stand-alone ROOT. The LHCb software depends on a particular version

of ROOT. However, there is no current support for running ROOT on its

6.9. Summary 203

own. A centrally maintained Pacman cache could be one solution to support

additional software in the future.

As the start of the LHC approaches, the number of users, but also the

frequency of usage, is set to increase significantly. In the saturated regime,

where production and analysis jobs are competing for available Grid re-

sources, it becomes paramount to establish effective priority mechanisms.

In parallel with the increase in users will be an increase in the number of

submitted jobs. Therefore, it is also essential to have a management system

for user storage quotas on the Grid. For LHCb, policies for both these cases

can naturally be applied inside the DIRAC WMS.

The arguments for LHCb VO generic Pilot Agents have been made through

the exploration of optimisation strategies in Chapter 5, and the effect of the

DC06 activity on system performance in Section 6.4.5. If this becomes avail-

able in the future, only minor modifications would have to be made to the

system in order to reap the potential benefits.

6.9 Summary

In this chapter, the current and future deployment strategies of DIRAC were

explored in Section 6.2. This was followed by an introduction to the DIRAC

API in Section 6.3 by which users, including the Ganga Grid front-end, in-

teract with the system to perform distributed data analysis for LHCb. The

system performance results from a six month period were presented in Sec-

tion 6.4, highlighting factors which become significant over long periods of
time such as power failures and network outages. This also showed that the

DCOG activity had an adverse effect on system performance with production

and analysis jobs competing for the same resources.

6.9. Summary 204

The patterns of user analysis were discussed in Section 6.5, and some real

user experience mentioned in Section 6.6. Issues with the maintenance of the

system were mentioned in Section 6.7 and future developments were discussed

in Section 6.8. The DIRAC infrastructure for supporting distributed analysis

activitites in LHCb is in place. Real users are starting to utilise and, more

importantly, benefit from the system.

7. Conclusions 205

Chapter 7

Conclusions

High energy physicists are driving much of the development of the computing
Grid. When the detectors of the LHC experiments begin taking data it will
become essential to have reliable and secure access to this data. Further-

more, this data will undergo further re-processing as the reconstruction and

analysis requirements of the experiment evolve. Distributed data analysis
immediately becomes a high priority task and is essential to the success of

the LHC experiments.

Since no single institute has the compute resources to handle the unprece-
dented amount of data on the Petabyte scale from the LHC, resources must
be pooled to form the Grid. Grid technology aims to provide seamless access

to computing power and storage capacity across the world. It is the task of
Grid middleware to present a uniform view of heterogeneous compute sys-
tems to the experiments software as well as transparent access to available

resources. Issues such as where jobs run, or on which storage elements data

resides, should be masked from users. The start time of user jobs should also
be optimised to ensure results are returned to users as soon as possible.

Perhaps the first item to consider when running software applications

7. Conclusions 206

on the Grid is how to efficiently distribute the software. The mechanism

introduced to DIRAC and described in this thesis, has proven to be very

efficient for LHCb software applications and presented a more flexible option

than the alternative Pacman approach also considered here. It remains to be

seen whether another mechanism is necessary for supporting software outwith

the main LHCb data-processing applications.

The EGEE gLite framework prototype was used to perform the first real

physics analysis. Although the prototype was in its infancy during this test-

ing, performing user analysis for LHCb was possible. However, this required

additional effort from the user when compared to standard batch systems.

At the present time, LCG middleware is the basis of all Grid production and

analysis for the LHC experiments.

The development of DIRAC for distributed analysis in LHCb has pro-

vided a stable and efficient framework for researching and exploiting the

possibilities of the Grid for data analysis. The paradigms for distributed

analysis such as PULL scheduling and the Pilot Agent approach, realised by

DIRAC, have proven to be highly successful. For example, this has allowed

the principles of workload management to be applied not only at the time of

user job submission to the Grid but also to optimise the use of computing

resources once jobs have been acquired. The investigation of workload man-

agement strategies showed that it is possible to achieve a negligible start time

for higher priority distributed data analysis jobs on LCG. In the saturated

regime, where no resources are available, this may depend on the possibility

of sending generic LHCb VO Pilot Agents or switching the identity of jobs

on the WN in the future.

Results from real users show that system performance can be affected

when in direct competition with the ongoing DCOG production activities.

7. Conclusions 207

It was found that the efficiency of jobs over an extended period of time

was 91%, although higher efficiencies have been observed in shorter time

frames by individual users. The DIRAC system is now the default mode of

submission to the Grid for all LHCb user jobs, and usage is set to increase

in the near future. The real test will begin when the first data from the

detector becomes available and it is important that users build confidence in

the system beforehand. In order to achieve this user training sessions have

been held and future sessions are planned.

The DIRAC system requires further development in order to cope with

use cases such as Event Tag Collections. The system must also be capable of

applying a priority mechanism to ensure fair sharing of LHCb Grid resources.

A management system for user storage quotas on the Grid must also be in-

troduced in order to cope with user output data. While future improvements

will undoubtedly occur, real LHCb users are already starting to benefit from

the use of DIRAC to perform their distributed data analysis tasks on LCG.

Furthermore, the extension of DIRAC to accommodate the distributed data

analysis tasks, has begun to unlock the potential of the Grid for LHCb users.

A. Glossary 208

Appendix A

Glossary

This appendix contains an alphabetical list of all acronyms used throughout

the thesis, their descriptions and the page number on which they were first

used. Since the use of acronyms is prevalent in the field of Grid computing,

this is designed to improve readability.

ACL Access Control Lists, 35

ALICE A Large Ion Collider Experiment, 37

AliEn ALICE Environment, 87

API Application Programming Interface, 31

ARC Advance Resource Connector, 25

ARDA A Realisation of Distributed Analysis, 88

ATLAS A Toroidal LHC ApparatuS, 37

BDII Berkeley Database Information Index, 30

BOINC Berkeley Open Infrastructure for Network

Computing, 11

BOSS Batch Object Submission System, 86

A. Glossary 209

CA Certification Authority, 18

CAF CDF Central Analysis Farm, 166

CDF Collider Detector at Fermilab, 166

CE Computing Element, 28

CERN European Organisation for Nuclear Research,

37

CKM Cabibbo Kobayashi Maskawa, 40

ClassAds Classified Advertisements, 110

CMS Compact Muon Solenoid, 37

ConDB Conditions Database, 48

CPU Central Processing Unit, 11

CRL Certificate Revocation List, 27

CS Configuration Service, 116

DAG Directed Acyclic Graph, 139

DC04 Data Challenge 2004,56

DCOG Data Challenge 2006,108

DCAP Data Link Switching Client Access Protocol,

145

DIAL Distributed Interactive Analysis of Large

datasets, 85

DIRAC Distributed Infrastructure with Remote Agent

Control, 56

DISET DIRAC Secure Transport, 110

DLI Data Location Interface, 35

A. Glossary 210

DLLs Dynamically Linked Libraries, 50

DN Distinguished Name, 27

DNS Domain Name System, 10

DRS Data Replication Service, 20

DST Data Summary Tape, 49

ECAL Electromagnetic CALorimeter, 43

EGA Enterprise Grid Alliance, 16

EGEE Enabling Grids for E-sciencE, 9

ETC Event Tag Collection, 53

FIFO First In First Out, 126

FTS File Transfer Service, 120

Ganga Gaudi / Athena and Grid Alliance, 182

GASS Global Access to Secondary Storage, 164

GFAL Grid File Access Library, 35

GGF Global Grid Forum, 16
GIIS Grid Index Information Service, 19

GLUE Grid Laboratory Uniform Environment, 29

GRAM Grid Resource Allocation Manager, 20

GridFTP Grid File Transfer Protocol, 20

GriPhyN Grid Physics Network, 24

GRIS Grid Resource Information Server, 30
GSI Grid Security Infrastructure, 18
GT Globus Toolkit, 17

A. Glossary 211

GUI Graphical User Interface, 85

GUID Globally Unique IDentifier, 34

HCAL Hadron CALorimeter, 43

HEP High Energy Physics, 1

HLT High Level Trigger, 44

HTML Hyper-Text Markup Language, 10

HTTP Hyper-Text Transfer Protocol, 59

I/O Input/Output, 151

iVDGL International Virtual Data Grid Laboratory,

24

IVOA International Virtual Observatory Alliance, 22

JDL Job Description Language, 31

JobDB Job Database, 123

LO Level 0,44

LAN Local Area Network, 10

LCG LHC Computing Grid, 2

LCG IS LCG Information System, 29

LCG UI LCG User Interface, 180

LCG WMS LCG Workload Management System, 31

LDAP Lightweight Directory Access Protocol, 29

LFC LCG File Catalogue, 33
LFN Logical File Name, 33

A. Glossary 212

LHC Large Hadron Collider, 2

LHCb Large Hadron Collider beauty, 36

MC Monte Carlo, 51

MDS Monitoring and Discovery Service, 19

MSS Mass Storage System, 28

OGF Open Grid Forum, 15

OGSA Open Grid Services Architecture, 16

OGSI Open Grid Services Infrastructure, 16

OSG Open Science Grid, 25

P2P Peer-to-peer, 10

Panda Production ANd Distributed Analysis, 86

PC Personal Computer, 6

PDC1 Physics Data Challenge, 107

PFN Physical File Name, 33

PKI Public Key Infrastructure, 18

POOL Pool Of persistent Objects for LHC, 146

POSIX Portable Operating System Interface, 28

PPDG Particle Physics Data Grid, 25

PS Preshower Detector, 43

R-GMA Relational Grid Monitoring Architecture, 30

RB Resource Broker, 31

rDST reduced Data Summary Tape, 49

A. Glossary 213

RFIO Remote File Input/Output, 145

RICH Ring Imaging CHerenkov, 42

RM Replica Manager, 131

RPC Remote Procedure Call, 109

RTTC Real Time Trigger Challenge, 114

SE Storage Element, 28

SETI Search for Extra-Terrestial Intelligence, 11

SM Standard Model, 37

SOA Service Oriented Architecture, 103

SOAP Simple Object Access Protocol, 109

SPD Scintillator Pad Detector, 43

SRM Storage Resource Manager, 28

SSL Secure Socket Layer, 110

SURL Storage URL, 33

TCP/IP Transmission Control Protocol / Internet Pro-

tocol, 10

TDS Transient Detector Store, 47

TES Transient Event Store, 47

THS Transient Histogram Store, 47

TT Trigger Tracker, 42

TURL Transport URL, 33

URL Uniform Resource Locator, 10

A. Glossary 214

VDT Virtual Data Toolkit, 24

VELO VErtex LOcator, 42

VO Virtual Organisation, 2

VOMS Virtual Organisation Membership Service, 27

W3C World Wide Web Consortium, 15

WAN Wide Area Network, 10

WMS Workload Management System, 75

WN Worker Node, 31

WSDL Web Services Description Language, 15

WSRF Web Services Resource Framework, 17

WWW World Wide Web, 1

XML eXtensible Markup Language, 15

XML-RPC XML Remote Procedure Call, 109

B. Complicated Workflows with the DIRAC API 215

Appendix B

Complicated Workflows with

the DIRAC API

This appendix contains a script used to perform a private user production job

using the DIRAC Job, Step and Module infrastructure through the DIRAC

API. The following script creates the workflow outlined in Figure 5.2 where

<VERSION> should be replaced by appropriate values. The commands

within triple quotes are appended to the respective options files before exe-

cution of the application. Sample input and output file names are added to

illustrate the processing chain.

from DIRAC. Client. Dirac import *

dirac - Dirac()
job - Job()

step - Step()

step. setApplication('Gauss', '<VERSION>')
step. setInputSandbox(['Gauss. opts'])
step. setOutputSandbox(['Gauss <VERBION>. 1og', 'GaussHistos. root'])
step. setOutputData(['Gauss. sim'])
step. setOption("""
Giga. PrintG4Particles - 0;
ApplicationMgr. OutStream +- { "GaussTape" };
GaussTape. Output - "DATAFILE. 'PFN: Gauss. sim' TYP-'POOL_ROOTTREE' OPT-'REC'";
PoolDbCacheSvc. Catalog -{ "xmlcatalog_1ile: NevCatalog. xml");

B. Complicated Workflows with the DIRAC API 216

MAA)

job. addStep(step)

step2 - Step()

step2. setApplication('Boole ', '<VERSION>')
step2. setlnputSandboz(['Boole. opts'])
step2. setOutputSandboa(['Boole_<VERSION>. log', 'Boole. root'])
step2. setoutputData(['Boole. digi'])
step2. setOption("""
ApplicationMgr. OutStream +- { "DigiWriter" };
ApplicationMgr. EvtMax - -1;
HistogramPersistencySvc. OutputFile - "Boole. root";
PoolDbCacheSvc. Catalog -{ "xmlcatalog_file: NewCatalog. xml" };
EventSelector. Input - {"DATAFILE='PFN: Gauss. sim' TYP''POOL_ROOT' OPT='READ'"};
DigiWriter. Output - "DATAFILE - 'PFN: Boole. digi' TYP-'POOL_ROOTTREE' OPT-'REC'";

job. addStep(step2)

step3 " Step()

step3. setApplication('Brunel', '<VERSION>')
step3. setInputSandbox(['Brunel. opts'])
step3. setOutputSandbox(['Brunel <VERSION>. log', 'Brunel. root'])
step3. setOutputData(['Brunel. dst'])
step3. setOption("""
AppllcationMgr. OutStream +- { "DstWriter" };
AppllcationMgr. EvtMax = -1;
HistogramPersistencySvc. OutputFile - "Brunel. root";
EventSelector. Input -{ "DATAFILE='PFN: Boole. digi' TYP='POOL-ROOT'
PoolDbCacheSvc. Catalog -{ "xmlcatalog_file: NevCatalog. xml" };
DstWriter. Output - "DATAFILE='PFN: Brunel. dst' TYP-'POOL_ROOTTREE'

job. addStep(step3)

OPT-'READ'" };

OPT-'REC'";

jobid - dirac. submit(job)
print "Job ID - ", jobid

C. DIRAC Job State Machine 217

Appendix C

DIRAC Job State Machine

This appendix illustrates the DIRAC joh state machine'. The state machine

Figure C. 1: Primary job statc. s in. the DIRAC statu. , nachirr mh. erc arrotas

indicate the possible tp , tsztions.

has been designed to be very refined in order to aid in the dobugging of Grid

''J'hauks to Dr. Philippe C'harpentier for cuuipiliiin Figures C'. 1 and C'. 2.

C. DIRAC Job State Machine 218

.
jobs. This also serves to irnl>rovc recl1urclancV since particular calitir- of fail-

irre can he iclerrtified and acted upon. DIRAC johti have both a 1whnary aucl

secondaryjob state. Figure C'. 1 outlines the primary jot) states where 'Re'-

ceived' indicates initial submission to the \VMIS. The secondary job saws are

shown in Figure C'. 2. Rather than explaining each individual state, Figures

C. 1 and C'. 2 are included simppl to illustrate the nrauv possible outcomes

of running Grid jobs. as well as the importance of correctly iclentifYing each

arse. Secondary job states presort a irlore fine-grained view of how the job

Figure C. 2: S': rondarri job stcit(S irz the DIRAC StatvS i,? ach. i. nc whc rc arrows

irrdicatc the passible transitions. The colours used reflect corresponding pr rnary

job states in Figure C. I.

i5 procce(IiIlg. This includes, for example, the ; tivitV of the DIRAC Job

ll/VOJ)per. Both primary and Se(oII(la, rly states are reported (Irving the life-

C. DIRAC Job State Machine 219

time of a job to the Job Monitoring Service and this information is also used

to construct the LHCb DIRAC Monitoring pages [168].

References 220

References

[1] M. Livny. Study of Load Balancing Algorithms for Decentralized Dis-

tributed Processing Systems. PhD thesis, Weizmann Institute of Sci-

ence, August 1983.

[2] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[3] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems

Integration. Technical report, Global Grid Forum, 2002.

[4] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of Su-

percomputer Applications, 15(3), 2001.

[5] The LHC computing grid project - LCG. http: //lcg. web. cern. ch/

LCG/.

[6] I. Foster. What is the Grid? A Three Point Checklist. GfIDtoda, y,
1(6), 2002.

[7] IBM. http: //www. ibm. com.

References 221

[8] IBM Corporation. IBM Solutions Grid for Business Partners. Helping

IBM Business Partners to Grid-enable applications for the next phase

of e-business on demand, 2002.

[9] Sun Microsystems. http: //www. sun. com/service/grid/.

[10] Microsoft. http: //www. microsoft. com.

[11] R. Buyya. Grid Computing Info Centre (GRID Infoware). http: //

www. gridcomputing. com.

[12] Z. Nemeth and V. Sunderam. Characterizing Grids: Attributes, Defi-

nitions and Foundations. Journal of Grid Computing, 1(1): 9-23,2003.

[13] W. E. Johnston. A Different Perspective on the Question of What is a
Grid? GRIDtoday, 1(9), 2002.

[14] L. Kleinrock. Quoted in UCLA Press Release. http: //www. 1k. cs.

ucla. edu/LK/Bib/REPORT/press. html, July 1969.

[15] M. Greenberger. The Computers of Tomorrow. The Atlantic, May

1964.

[16] M. Chetty and R. Buyya. Weaving Computational Grids: How Anal-

ogous Are They with Electrical Grids? Computing in Science and
Engineering, 4(4): 61-71,2002.

[17] Enabling Grids for E-sciencE (EGEE) project page. http: //www.

eu-egee. org/.

[18] J. M. McQuillan and D. C. Walden. The ARPANET Design Decisions.

Computer Networks, 1(5), August 1977.

References 222

[19] V. Cerf and R. Kahn. A Protocol for Packet Network Intercommuni-

cation. IEEE Transactions on Communications, 22(5): 637-648,1974.

[20] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed Packet

Switching for Local Computer Networks. Communications of the A CM,

19 (5): 395-405, July 1976.

[211 P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034,

November 1987.

[22] T. Berners-Lee, T. Bray, D. Connolly, P. Cotton, R. Fielding, M. Jeckle,

C. Lilley, N. Mendelsohn, D. Orchard, N. Walsh, and S. Williams.

Architecture of the World Wide Web, Volume One. W3C, (Version

20041215), December 2004.

[23] M. Mutka and M. Livny. The Available Capacity of a Privately Owned

Workstation Environment. Performance Evaluation, 12,: 269-284,1991.

[24] Entropia. http: //www. entropia. com.

[251 Entropia. Researchers discover largest multi-million-digit prime using

entropia distributed computing grid. Press release, Entropia, Inc., De-

cember 2001.

[26) SETI@home. http : //setiathome . berkeley. edu/.

[27] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. W'Verthimer.

SETI@home: An Experiment in Public-Resource Computing. Com-

munications of the ACM, 45(11): 56-61, November 2002.

[28] BOINC. http: //boinc. berkeley. edu.

References 223

[29] David P. Anderson. BOINC: A System for Public-Resource Computing

and Storage. In 5th International Workshop on Grid Computing (GRID

2004), 8 November 2004, Pittsburgh, PA, USA, Proceedings, pages 4-

10,2004.

[30] Folding@home. http: //folding. stanford. edu/.

[31] Compute Against Cancer. http: //computeagainst cancer. org/.

[32] Fight AIDS@home. http: //fightaidsathome. scripps. edu/.

[33] Einstein@home. http: //einstein. phys. uwm. edu/.

[34] LHC@home. http : //athome . web . cern . ch.

[35) Parabon. http: //www. parabon. com.

[36] United Devices. http: //www. uniteddevices. com.

[37] BitTorrent. http: //www. bittorrent. com/.

[38] Napster. http: //www. napster. com/.

[39] Gnutella. http: //www. gnutella. com.

[40] The Free Network Project. http : //freenetpro je ct. org/.

[41] C. Catlett and L. Smarr. Metacomputing. Communications of the

ACM, 35: 44-52, June 1992.

[42] I. Foster and C. Kesseluran. Globus: A Metacomputing Infrastructure

Toolkit. Intl J. Supercomputer Applications, 11: 115-128,1997.

[43] The World Wide Web Consortium (W3C). http : //www. w3c . org.

[44] The Open Grid Forum (OGF). http: //www. ogf . org/.

References 224

[45] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,

T. Maquire, T. Sandholm., D. Snelling, and P. Vanderbilt. Open Grid

Services Infrastructue (OGSI) Version 1.0. Technical report, Global

Grid Forum Drafts, 2003.

[46] I. Foster, J. Frey, S. Graham, S. Thecke, K. Czajkowski, D. Ferguson,

F. Leymann, M. Nally, L. Sedukhin, D. Snelling, T. Storey, W. Vam-

benepe, and S. Weerawarana. Modeling Stateful Resources with Web

Services. Whitepaper, May 2004.

[47] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,

D. Snelling, and S. Tuecke. From Open Grid Services Infrastructure

to WS-Resource Framework: Refactoring and Evolution. Whitepaper,

March 2004.

[48] The Globus Alliance. http : //www. globus. org.

[49] James Basney, Marty Humphrey, and Von Welch. The MyProxy Online

Credential Repository. In Software: Practice and Experience, volume

35(8), 2005.

[50] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and

S. Tuecke. GridFTP: Protocol Extension to FTP for the Grid. Global

Grid Forum Internet-Draft, March 2001.

[51] The Virtual Laboratory Project. http: //www. gridbus. org/vlab/.

[52] Rajkumar Buyya. The Virtual Laboratory Project. IEEE Distributed

Systems Online, 2(5), 2001.

[53] Earth System Grid (ESG). http: //www. earthsystemgrid. org/.

References 225

[54] Grid Enabled Optimisation and Design Search for Engineering

(GEODISE). http: //www. geodise. org/.

[551 International Virtual Observatory Alliance (IVOA). http: //www.

ivoa. net/.

[56] AstroGrid. http : //www. astrogrid. ac. uk/.

[571 HealthGRID. http: //www. healthgrid. org/.

[58] Gridwise Tech. http: //gridwisetech. com/.

[59] GridSystems. http: //www. gridsystems. com/.

[60] GridPP. http: //www. gridpp. ac. uk/.

[61] The GridPP Collaboration. GridPP: development of the UK computing

Grid for particle physics. In J. Phys. G: Nucl. Part. Phys., 32 (2006)

N1-N20 doi: 10.1088/0954-3899/32/1/NO1.

[62] GriPhyN - Grid Physics Network. http : //www. griphyn. org/.

[63] iVDGL - International Virtual Data Grid Laboratory. http: //www.

ivdgl. org/.

[64] Particle Physics Data Grid (PPDG). http: //www. ppdg. net/.

[65] NorduGrid. http: //www. nordugrid. org/.

[66] Open Science Grid. http: //www. opens ciencegrid. org/.

(67] The gLite project page. http: //glite. web. cern. ch/glite/.

[68] The LCG Project. LHC Computing Grid. Technical Design Report

CERN-LHCC-2005-024, CERN, June 2005.

References 226

[69] Virtual Organization Membership Service (VOMS). http:

//hep-project-grid-scg. web. cern. ch/hep-project-grid-scg/

voms. html.

[70] R. Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca dell'Agnello,
Akos Frohner, A. Gianoli, Käroly Lörentey, and Fabio Spataro. VOMS,

an Authorization System for Virtual Organizations. In Grid Comput-

ing, First European Across Grids Conference, Santiago de Compostela,

Spain, February 13-14,2003, Revised Papers, pages 33-40,2003.

[71] Storage Resource Management Working Group. http: //sdm. lbl.

gov/srm-wg/.

[72] The Condor Project. http: //www. cs. wisc. edu/condor/.

[73] S. Andreozzi. GLUE Schema Implementation for the LDAP Data

Model. Technical Report INFN/TC-04/16, INFN, September 2004.

[74] The EGEE Collaboration. EGEE Information and Monitoring Service

(R-GMA): System Specification. Technical Report EGEE-JRAI-TEC-

490223-R-GMA. SPECIFICATION-v2-r0, CERN, July 2004.

[75] Nicholas Coleman, Rajesh Raman, Miron Livny, and Marvin Solomon.

Distributed Policy Management and Comprehension with Classified

Advertisements. Technical Report UW-CS-TR-1481, University of
Wisconsin - Madison Computer Sciences Department, 2003.

[76] EDG Work Package 1. WP1- WMS Software Administrator and User

Guide. Technical Report DataGrid-01-TEN-0118-12, CERN, 2003.

[77] LCG File Catalogue (LFC). http: //lcg. web. cern. ch/LCG/.

References 227

[78] ORACLE. http: //www. oracle. com.

[79] MySQL. http: //www. mysql. com/.

[80] CERN, the European Organisation for Nuclear Research. http: //www.

cern. ch/.

[81] ALICE -A Large Ion Collider Experiment. http: //aliceinfo. cern.

ch/.

[82] ATLAS -A Toroidal LHC ApparatuS. http: //at1asexperiment.

org/.

[83] CMS - Compact Muon Solenoid. http: //crosinfo . tern. ch/.

[84] LHCb - The Large Hadron Collider beauty experiment. http: //tern.

ch/lhcb/.

[85] S. Amato et al. LHCb technical proposal. CERN-LHCC/98-4,1998.

[86] R. Antunes Nobrega et al. LHCb Reoptimized Detector Design and

Performance TDR. CERN-LHCC/2003-030,2003.

[87] BaBar experiment. http: //www. slac. stanford. edu/BFROOT/.

[88] Belle experiment. http: //belle. kek. jp/.

[89] Fermilab Tevatron. http: //www-bdnew. foal. gov/tevatron/.

[90] DO Collaboration, V. Abazov, et al. Direct Limits on the Bs Oscillation

Frequency. In Phys. Rev. Lett., 97, (2006) 021802.

[91] CDF Collaboration, A. Abulencia, et al. Evidence for the exclusive

decay Bc+- to J/psi pi+- and measurement of the mass of the Be

meson. In Phys. l? ev. Lett., 96 (2006) 082002.

References 228

[92] LHCb Collaboration. LHCb Trigger TDR. Technical Report

CERN/LHCC 2003-031, CERN, 2003.

[93] LHCb Collaboration. LHCb VELO TDR. Technical Report CERN-

LHCC-2001-011, CERN, 2001.

[94] LHCb Collaboration. LHCb Magnet TDR. Technical Report

CERN/LHCC 2000-007, CERN, 2000.

[95] LHCb Collaboration. LHCb Outer Tracker TDR. Technical Report

CERN-LHCC-2001-024, CERN, 2001.

[96] LHCb Collaboration. LHCb Inner Tracker TDR. Technical Report

CERN-LHCC-2002-029, CERN, 2002.

[97] LHCb Collaboration. LHCb RICH TDR. Technical Report CERN-

LHCC-2000-037, CERN, 2000.

[98] LHCb Collaboration. LHCb Calorimeter TDR. Technical Report

CERN/LHCC 2000-036, CERN, 2000.

[99] LHCb Collaboration. LHCb Muon System TDR. Technical Report

CERN-LHCC-2001-010, CERN, 2001.

[100 LHCb Collaboration. LHCb Computing TDR. Technical Report

CERN/LHCC 2005-119, CERN, 2005.

[101] LHCb software architecture group. GAUDI LHCb Data Processing

Applications Framework. Architecture Design Document LHCb 08-

064, LERN, 1998.

[102] R. Brun and F. Rademakers. ROOT - An object oriented analysis
framework. Nuc. Inst. Meth. in Phys. Res A, 389 (1997) 81.

References 229

[103] D. Duelmann et al. The LCG POOL development and production

experience. In IEEE-NSS Rome2004, October 2004.

[104] M. Cattaneo et al. The new LHCb Event Data Model. LHCb-2001-142,

2001.

[105] Geant 4. http: //geant4. web. cern. ch/geant4/.

[106] Ian Foster and Carl Kesselman, editors. The Grid 2: Blueprint for

a New Computing Infrastructure. Morgan Kaufmann Publishers, Inc.,

2004.

[107] M. Aderholz et al. Models of Networked Analysis at Regional Centres

for LHC Experiments (MONARC). Phase 2 Report CERN/LCB 2000-

001, CERN, 2000.

[108] J. Closier et al. Results of the LHCb Data Challenge 2004. In CHEP04,

2004.

[109] Xen virtual machine monitor. http : //www. cl. cam. ac. uk/Research/

SRG/netos/xen/.

[110] S. Youssef. Pacman homepage. http: //physics. bu. edu/"youssef/

pacman/.

[111] S. Paterson. Software Distribution for LHCb using Pacman. LHCb

Note 2004-066, August 2004.

[112] RPM Package Manager. http : //www. rpm. org/.

[113] Relink Project Homepage. http: //sourceforge. net/projects/

relink/.

References 230

[114] LHCb Installation Procedures. http: //lhcb-comp. web. cern. ch/

lhcb-comp/Support/html/NEWInstall. htm.

[115] LHCb-UK Software Training. http: //www. hep. phy. cam. ac. uk/

lhcb/LHCbSoftTraining/2006/.

[116] LHCb Software Distribution Tool. http : //lhcbpro j ect . web. cern.

ch/lhcbproject/dist/distribution. html.

[117] CMT homepage. http: //www. cmtsite. org.

[118] Vincent Garonne et al. Evaluation of Meta-scheduler Architectures

and Task Assignment Policies for high Throughput Computing. In The

4th International Symposium on Parallel and Distributed Computing.

University of Lille I, July 2005.

[119] I. Stokes-Rees et al. Developing LHCb Grid Software: Experiences and

Advances. In UK e-Science All Hands Meeting 204, September 2004.

[120] G. Canis et al. PROOF - The Parallel ROOT Facility. In CHEP06,

2006.

[121] DIAL. http: //www. usatlas. bnl. gov/-dladams/dial/design/.

[122] D. Adams, T. Maeno, K. Harrison, G. Rybkine, and D. Liko. DIAL:

Distributed Interactive Analysis of Large Datasets. In CHEPOG, 2006.

[123] D. E. Kaushik et al. Panda: Production and Distributed Analysis Sys-

tem for ATLAS. In CHEP06,2006.

[124] C. Grandi et al. Evolution of BOSS, a tool for job submission and

tracking. In CHEP06,2006.

References 231

[125] ALICE Collaboration. ALICE Computing TDR. Technical Report

CERN-LHCC-2005-018, CERN, 2005.

[126] ALICE Collaboration. ALICE Computing Model. Technical Report

CERN-LHCC-2004-038, CERN, 2005.

[127] The ARDA Project. http: //lcg. web. cern. ch/LCG/peb/arda/

Default. htm.

[128] S. Paterson. Distributed Analysis Using DaVinci in the gLite Frame-

work. LHCb-2005-057, August 2005.

[129] DaVinci - the LHCb analysis program. http: //lhcb-comp. web. cern.

ch/lhcb-comp/Analysis/default. htm.

[130] EGEE. EGEE Middleware Architecture. EU Deliverable DJRA1.1

EGEE-DRJA1.1-476451-vl. 0,2004.

[131] EGEE. Design of the EGEE Middleware Grid services. EU Deliverable

DJRA1.2 EGEE-DRJA1.2-487871-vl. 0,2004.

[132] AliEn homepage. http: //alien. Gern. ch/.

1133] G. Raven. LHCb technical note. LHCb-2003-118,2003.

[134] G. Raven. LHCb technical note. LHCb-2003-119,2003.

[135] The Gaudi Framework. http: //lhcb-comp. web. cern. ch/

lhcb-comp/Frameworks/Gaudi/.

[136] LHCb core packages. http: //lhcb-comp. web. cern. ch/lhcb-comp/

Frameworks/LHCbSys/default. htm.

References 232

[137] Magnetic Field Map. http: //lhcb-comp. web. cern. ch/lhcb-comp/

Frameworks/DetDesc/default. htm.

[138] Parameter files. http: //lhcb-comp. web. cern. ch/lhcb-comp/.

[139] Xml Detector Description Database. http: //lhcb-comp. web. cern.

ch/lhcb-comp/Frameworks/DetDesc/default. htm.

[140] gLite Prototype Testbed. http : //egee- j ral . web . cern . ch/

egee-jral/Prototype/testbed. htm.

[141] Architectural Roadmap towards Distributed Analysis. Technical Re-

port CERN-LCG-2003-033, CERN, 2003.

[142] J. Andreeva et al. The ARDA Prototypes. In CHEP04,2004.

[143] B. Koblitz et al. First Experience with the EGEE Middleware. In

CHEP04,2004.

[1441 A. S. Dighe. Proceedings of UK Phenomenology Workshop on Heavy

Flavours and CP Violation. In J. Phys. G: Nucl. Part. Phys. 27, pages

p1341-1344,2001.

[145] Gaudi/Athena Job Options Editor (JOE). http: //ganga. web. cern.

ch/ganga/user/v2/JOE/UserManual. html.

[146] gLite Prototype Documentation. http : //egee- j ral . web . cern . ch/

egee-jral/Prototype/Documentation/glite_tutorial. html.

[147] P. Saiz. AliEn documentation. http: //alien. cern. ch/Alien/main?
task=doc\§ion=PackMan.

[148] CASTOR project. http: //castor. web. cern. ch/castor/.

References 233

[149] J. P. Baud, -P. Charpentier, J. Closier, R. Graciani, A. Maier, and

P. Mato-Vila. DIRAC Review Report. Technical Report LHCb-2006-

04 COMP, CERN, 2006.

[150] T. Wenaus et al. Architecture Blueprint RTAG Report. Technical

Report CERN-LCGAPP-2002-09, CERN, 2002.

[151] LHCb Bookkeeping Facility. http: //lbnts2. cern. ch/BkkWeb/Bkk/

welcome. htm.

[152] J. Closier, G. Kuznetsov, G. Patrick, and A. Tsaregorodtsev. DIRAC

Production Manager Tools. In CHEP06,2006.

[153] A. Tsaregorodtsev et al. DIRAC - Distributed Infrastructure with
Remote Agent Control. In CHEP03,2003.

[154] The DataGRID Project. http: //eu-datagrid. web. cern. ch/

eu-datagrid.

[155] XML-RPC Protocol. http: //www. xmlrpc. com/.

[156] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,

H. Frystyk Nielsen, S. Thatte, and D. Winer. Simple Object Access

Protocol (SOAP) 1.1. Technical report, W3C Note, 2000.

[157] A. Casajus Ramo and R. Graciani Diaz. DIRAC Security Infrastruc-

ture. In CHEP06,2006.

[158] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer,

and V. Welch. A National-Scale Authentication Infrastructure. IEEE

Computer, 33(12): 60-66, December 2000.

References 234

[159] I. Stokes-Rees, A. Tsaregorodtsev, and V. Garonne. DIRAC

Lightweight Information and Monitoring Services Using XML-RPC

and Instant Messaging. In CHEP04, September 2004.

[160] CERN CVS Repository. http: //www. Gern. ch/cvs.

[161] runit -a UNIX finit scheme with service supervision. http: //smarden.

org/runit/.

[162] A. Tsaregorodtsev et al. DIRAC, the LHCb data production and dis-

tributed analysis system. In CHEP06,2006.

[163] LHCb VO-box Requirements. https: //uimon. cern. ch/twiki/bin/

view/LHCb/LHCbTaskForce#VO_Boxes.

[164] R. Graciani Diaz and A. Casajus Ramo. Configuration Service Docu-

mentation. ECM-UB, June 2005.

[165] V. Garonne, A. Tsaregorodtsev, and I. Stokes-Rees. DIRAC: Workload
Management System. In CHEP04,2004.

[166] A. C. Smith and A. Tsaregorodtsev. LHCb Data Replication During
SC3. In CHEP06,2006.

[167] A. Tsaregorodtsev. DIRAC Data Management System. LHCb Techni-

cal Note, 2005.

[168] LHCb DIRAC Monitoring. http : //lhcb. pic. es/DIRAC/Monitoring.

[169] dCache project. http: //www. dcache. org/.

[170] POOL project. http: //lcgapp. cern. ch/project/persist/.

[171] LSF. http: //www. platform. com.

References 235

[172] Maui Scheduler. http: //www. supercluster. org/maui.

[173] Condor-G. http: //www. cs. wisc. edu/condor/condorg/.

[174] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-

puting in practice: the Condor experience. Concurrency - Practice and

ETperience, 17(2-4): 323-356,2005.

[175] Douglas Thain and Miron Livny. Building Reliable Clients and Servers.

In Ian Foster and Carl Kesselman, editors, The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann, 2003.

[176] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the

Grid, chapter Grid Computing: Making the Global Infrastructure a
Reality, pages 299-335. John Wiley and Sons Inc., December 2002.

[177] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor -a hunter

of idle workstations. In Proceedings of the 8th International Conference

of Distributed Computing Systems, June 1988.

[178] James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven
Tuecke. Condor-G: A Computation Management Agent for Multi-
Institutional Grids. Cluster Computing, 5(3): 237-246,2002.

[179] The Collider Detector at Fermilab (CDF). http: //www-cdf
. fnal .

gov/.

[180] CDF Central Analysis Farm (CAF). http: //cdf caf . fnal . gov/.

[181] S. Belforte, S-C. Hsu, E. Lipeles, M. Norman, F. Wurthwein, D. Luc-

chesi, S. Sarkar, and I. Sfiligoi. G1ideCAF: A Late Binding Approach

to the Grid. In CHEP06,2006.

References 236

[182 M. Norman, S-C. Hsu, E. Lipeles, M. Neubauer, F. Wurthwein, I. Sfi1-

igoi, and S. Sarkar. OSG-CAF -A single point of submission for CDF

to the Open Science Grid. In CHEP06,2006.

[183] Panda project page. https: //uimon. cern. ch/twiki/bin/view/

Atlas/PanDA.

[184] Don Quijote (DQ2) project page. http : //www. triumf . info/hosted/

atlas-triumf/index. php/Don_Quijote.

[185] Gaudi/Athena Grid Alliance. http : //ganga. web. cern. ch/ganga/.

[186] U. Egede, K. Harrison, D. Liko, A. Maier, J. Moscicki, A. Soroko, and
C. Tan. GANGA -a Grid user interface. In CHEP06,2006.

[187] U. Egede, V. Garonne, A. Maier, J. Moscicki, S. Paterson, A. Soroko,

and A. Tsaregorodtsev. Experience with distributed analysis in LHCb.

In CHEP06,2006.

[188] GridPP News. Cambridge undergraduates run LHCb analysis on the
Grid. http: //www. gridpp. ac. uk/news/-1149863627.881156. wlg,
June 2006.

1GLASGOW

UMV RSrrY
LIBRARY

