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SUMMARY

The concern of this thesis is algorithms for solving the

following constrained optimisation problems:

(P1) "Maximise (concave) (ﬂp) over p= {p = (p1,...,pJ):pj?z O, :{p,] — 1} "
y=|

(P2) "Maximise (concave) ¢(x) over the polygon

PU) = {x = x(p) =Tpu; © b= (pyeenspy) €}

(The set (1=.{u1,...;ui} contains the vertices of the polygon and

might be a discretization of a continuous space.)

(P3) "Maximise (concave) ®(©) over {e = (8, -"59) ¢ Q.2 0, Coe= b})

where C is a matrix of order sxt, rank(C) = s".

Problem (P2) is a special form of (P1). Problem (P3) is

a generalisation of (P1), but can be an example of (P2).

Chapter 1 opens with a 1list of examples but is mainly
devoted to an outline of the optimal linear regression design ﬁroblem.
This can be viewed as an example of (P2), taking“uj = v:v%,
x(p) = M(p) =;§Pjvjv3 ,where vj is a vector of length k,JM(p) 2
matrix of order kxk., This dictates that the criteria principally
studied are functions of the matriﬁ'D = AM#(p)A’,'where A is of
order s»k, rank(A) = s, and the null space of M(p) is contained in
that of A. The most general criterion considered is
Kp) =j¢%(p) = —tr(LDt),'where t>0 and L is a nonnegative definite
matrix of order sxs. When t#1, L is always taken to be the identity

matrix o

Adopting the fterminology of the design context, we refer
to p as a design and define the support of p, denoted by Sup(p), as
that subset of {l.to which p allocates positive weight.

Chapters 2 for (P2) and 3 for the design problem are devoted

to a derivation of optimality conditions. The emphasis is on a

differential calculus approach in contrast to a lagrangian one. An
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important tool is the directional derivative Fq,x,y) of QK-) at x
in' the direction of y, and also a normalised directional derivative.
P;operties qu4ﬂx,y) are enumerated, differentiability is éxpressed
in terms of it, a concept of constrained stationarity is defined and
optimality theorems for (P2) are derived in chapter 2.

In chapter 3,F4,',') is derived for standard design criteria.
These can be nondifferentiable but, in general they satisfy a concept
defined as support differentiability. Optimality theorems are derived
for both the differentiable and the nondifferentiable cases. Lagrangian
approaches are also reviewed., ¥xamples yielding explicit solﬁtions

are examined.

The remaining chapters are devoted to the main topic of

algorithms with chapter 4 settling some preliminaries.

Algorithms of various types are considered. for (P1), (P2).
Some new classes are proposed, others are reviewed, minor improvements

occasionally suggested. With the exception of some cutting plane

algorithms which are examined at the end of chapter 4, these algorithms
aim to identify for (P2) an optimising p*, as opposed to an optimising x¥%,
It is not the intention to make rigorous comparisons between these
algorithms although some empirical results are reported af the end of
chapter 7. In contrast a three-stage Composite Algorithm is a

proposal made in the light of a key discussion in the concluding

sections of chapter 6.

This proposal forms one of two main outputs of the thesis,
the other being to report in chapters 8 and 9 some results concerning

a conjectured monotonicity of a particular algorithm,

An iteration of the first stage algorithms, studied in
chapter 5 and called vertex direction algorithms, takes a step towards
or away from a vertex., These can identify a small subset of

containing Sup(p*).

The third stage algorithms are of the constrained steepest

ascent and Newton-Raphson type and are mainly appropriate when Sup(p*)
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has been identified. These are studied in chapter 6, the former
type of iteration'being'derived for (P3) in particular.

The second stage of the Comﬁosite Algorithm recommends
a technique which can cope with a (L containing a small number of
vertices not in Sup(p*). One recommendation in chapter 7 is an
iteration of the form

_(r+1) (2). r5(x)

o o_ ' X d. -

pJ | Pj h( 3 y SI‘)
ﬁhefe 'dgr) = ac;é/apgr), SI_ igs a free parameter and h(- ,-) is g
function enjoying particular properties, including that of being

positive.,

It is for the case h(d,S) =:d§ and for special values of &,
that theoretical and empirical results concerning monotonicity are
reported, in particular for functions enjoying two p?operties of
d%(p), namely positive derivatives and homogeneity of degree (-t).
The theoretical results are aided by establishing links with the
EM algorithm and by proving a moment inequality.

Various matrix results are also derived in several

chapters.

A final chapter (10) considers generalisations in various

directions and contains further results relating to monotonicity.

J

\
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CHAPTER 1

A CONSTRAINED OPTIMIZATION PROBLEM:; EXAMPLES

§ 1.1 A Problem
This thesis is primarily concerned with how to solve
the following problem: |
(P1) "Maximise a function ¢J(p) on the probability simplex

< !

The equality constraint ij = 1 renders the problem a
nondegenerate constrained optimisation problem, the full constraint

region being a closed bounded convex set.

Many examples of (P1) arise in the field of statistics.
YWe list & few to start with.

Fx 1.1.1 Possibly the simplest example is that of finding the
maximim likelihood estimators of the probability parameters of
a multinomial likelihood. The likelihood is of the form

plp) = c@pp™ - g7
*

The optimum of course is P, = Oj/ﬂ , =209,

Ex 1.1.2 A second example which has received a lot of attention
recently is that of estimating the mixing parameters (probabilities)
of a mixture distribution given data y,,eee sY,+ The simplest
example of this would arise when the component probability models

fj(y) of the mixture are themselves free of any unknown parameters.
Then the likelihood is

‘}'3(?) =t {J;:; F_;'E(‘.é Lﬂ

J

The recent literature includes Smith and Makov (1978),
Murray and Titterington (1978) , Dempster, Laird and Rubin (1977) .

Ex 1.,1.5 Another example arises in the field of paired comparisons.,

suppose J treatments T1,..;,T are compared on a pairwise basis,

J

ni;j comparisons being made on treatments Ti and Tj’ i< j., Assume that

in any single comparison of Ti and Tj there is a probability TI’:ZLj that Ti



| will be preferred to T (l:,é j), the same for sl1 such peirwise
comparisons,with Tr‘;j + “n:J 1. Let °1.] denote the observed
number of times that T is preferred to T (14 3) a,nd assume that there

is no ties so that, :f'or i<j, 01.] + oJl_ = nij' Assuming also

independence between each palrm.se comparison,the likelihood for the

data would be
L6 = ) G

Many models suggest that T'J is of the form

"rr {pi/(p + p } P >0, JSee Bradley and Terry (1952) Devidson
(1969), Bradley (1965) This relationship however only defines the
Ps 's relative to each other,for it would follow that

‘[cp /(cp + ¢p )} In order to find a particular set of p.'s

corresIJondlng to the maximum likelihood estimator of T, 13> ,& restriction

mst be imposed on Zp,,and }:pi = 4 is a natural choice. Finding the

corresponding estimates of the pi's requires solution of (P1) with
ﬂ{.j ‘ 3
¢(P> :..-IP ) —l—,:(PL+FJ) ) Q{_.:.zai_j

Ex 1s1s4 A final example is contained in Morgan and Titterington
(1977). They seek to solve (P1) for the case

b(p) = ._=_, = { /C"P)}

The solution yields maximum likelihood estimates under a
particular case of quasi-independence in a contingency table whose
diagonal entries are elther missing or excluded from consideration.
Quasi~independence states that only fo;r some 1 and J can the cell
proba'bllltles P (Zip = 1) be factorised into the form p = &, 'b

in contrast to full 1ndependence in which such factorlsatlon holds

for all i and Je

The sbove example arises when the mover-stayer model of
Blumen, Kogan and McCarthy (1955) is postulated for the transition

probabilities of a J-state Markov chain. This implies that the
conditional probabilities of state change are

P:}‘i = Pj/(1 - Pi) ), 19é J

This therefore proposes quasi-independence for all ist j,
namely, that Pij =[qui/(1 - pi}’ i £ J, for some probability vector
Q49QpseecyQre |



Note thet making partial use of the constraint Zp
the function qb(p) can be rewritten as

1.1.1 (l-"l)(f’) -._” | / (F) ) £, (p) =t§;P~b .
cF tEL

It is possibly not surprising that problem (P1) crops up
in various forms in the statistical literature given that probabilitiss
are not infrequently parameters of probability models. This of course

1s paerticularly so in the cese of likelihoods for categorical data.

Other examples arise in the form of the following more

general problem.,

(P2) “Solve (P1) for @p) = JAx(p)} for some given function (- )

where :x(P) 2 J,u_;, R UyyoonyUy being a given set of points.,

Equivalently maximise \4}(:::) subject to X belonging to the convex
polygcan )9((.[) with the finite set of vertices (U = {u-

1 ' '?“’””LL]JSJ
((,L).__{x:}c—xq::) ZJJ}PEP}
Note that we could alternatively state that x(p) = 'EF(u) }

where u is & random variasble assuming the value uj. with probability
Pj'

While (P2) clearly yields a particular type of example of

(P1) we can conversely view (P1) as a paerticular case of (P2), namely

that which takes uj to -be the unit vertex ej.

Another example of (P2) can be the following clear generalisation
of (P1).

(P3) "Maximise a function _@6), S= (6,)--- Je_{_) , subject to

(i) Bj?-o, (ii)Ce=b whereCis an s*t matrix of rank s."

Clearly (Pi) is a particular case of (P3) and viewing (P3)
in this light, that is,as a generalisation of (P1), it might be appropriate
to replace ﬂ-) by é(-), This is done in chapter six.

Horever the feasible region may define a finite polygon p((,()

for which vertices will be some of the following intersections; namely,




~ the intersections of the region C© = b with (t-s) of the regions 9 = 0,
If this is so, we then have in (P3) a particular case of (P2) and it is
natural then-to replace Eﬁ(') by*@%‘). This is done in chapter ten.

One such occurrence of (P3) would arise when testing linear
hypotheses about the parameters in multinomial models for categorical
data. These parameters are of course probabilities so that the constraint
C8&= b must either include as a component that lfe-'= 1, where 1 is
a vector whose components take the value 1, or state that various
- subsets of the components of © should sum to unity. We will consider.
an example of such a linear hypothesis and discuss (P3) in the last
chapter. In a strange way we now can effectively have (P3) as a
particular case of (P1).

Yet another example of (P2) will be seen to be a general

optimal linear regression design problem, This we will study in the

ensuing sections of this chapter.

We thus have a wide range of examples of (P1) and (P2), a
justifigation for our study; and the need for a study of how to solve
these problems is that typically they do not possess explicit solutions.
Numerical teohniques must be employed. It is the remit of this thesis
to study algoritth'whichhave been formulated for finding an optimising
p* particularly in the case of (P2) and also to propose a further class
of algorithm,

ﬂWhy'nei algorithms? One general argument is that there is
a dearth Qf numerical thecniques for the solution of constrained
optimisation problems. An argument that (P2) in particular requires

gspecial treatment, is the following one,

Problem (P2) differs in a number of ways from other examples
Of (P-1), S'llCh 8.5 Examples 1.1.1,lll’1l1l4l

(i) One may only be interested in an optimising x* as opposed
to an optimising p*, x* = x(p*),
(ii) While there may be a unique optimising x* there could be
many optimising p¥*'s.
(iii) Frequently an optimising p* may put p* = 0, i.e. the optimum
- lies on the boundary of }3



In contrast there is almost certainly & unique optimising p*
in the case of exainples 1e1e1 to 114 (certainly in the case of
exj.1.1.1), otherwise the parameters would be inestimable. Furthermore
p* certainly does not lie on the boundéry of P in the case of examples
1ele1,1.1.2,1.1.4 and it is unlikely to do so in example 1.1.3 assuming

n»*d.

In such & case we ef'fectively have a simpler constrained

optimisation problem, a problem having one active constraint, the

simple linear equelity _ij = 1, It would seem that it should
J=1
be a simple matter to devise a simple neat modification to standard

unconstrained optimisation techniques to take account of this.

Techniques as we shall see can be similarly devised for

finding an optimising x* in the case of (P2).

However it would seem that standard nmumerical techniques
cannot be so neatly modified to cope with optima which explicitly lie

on boundaries of constraint regions.

It is for this reason that algorithms have been formilated
for finding an optimising p* in the case of (P2), in particular for
the optimal linear regression design problem. It is this problem in
fact which has motivated our study of (P2), and this is why we consider
the design problem in detail for the remainder of this chapter; while

examination of algorithms will not begin until chapter four,

"‘iThis section closes by observing some of the properties of
examples 1..1.1",..,1.1.1.. that will be seen to be relevant later.

(a) A11 four :f'unctidns are homogeneous including example 1.1.4 when
teken in the form 1.1.1. VWith hindsight this is not all that
surprising since independence is a common assumption in the
formulation of probability models.

Of interest to note is that the equality }:pj = 1 is an inflormative
constraint to impose on a function satisfying the homogeneity condition
that 95(c.p) = ctCﬁ)(p). Study ?S(p) subject to ij = 1 and one has an
informed picture of the general behaviour of 9')(-) on the positive

quadrant at least.



(b) With the exception of exampie 14143 the functions have positive
derivatives as is evident from the following respective expressions
for ng/épj:._

(1) dplo./p.}

(11) pp)] TGS o500} f

(i11) P(p)ior/p. -5:{_;_“,-5/(?..*&)}
(iv) ‘}b(P){('/ P'DE:“-“ G2 Eﬂfi}

(E Ay
In the case of example 1.,1.5 there will typically be both positive

and negative derivatives when p 1s 1n the positive quadrant because
ZP:— ng/apr-:o , & consequence of the fact that (,f)(p) is a homogeneous
function of degree zero.
(¢) In some instances the functions are concave.
The latter property is nice in that it guarantees the existence
of a unique maximum while the first two properties, not important in

themselves, prove basic ingredients in the formulation of an algorithm.

The design criteria that will be considered and also the particular

example of problem (P3) to which we referred will also be seen %o
enjoy (a) and (b).



§1.2 Optimum Linear Regression Design
| The concept of an optimum regression design arises when an

observable univariate variable y bhas the probabili;by model P(‘é )u‘) e )'t)

where in particular | }
.R. )y ek) ’
J = {'fl Cx g ﬁ(x)} -~ - =~ -)’fh@t)}

The K components of © are unknown parameters of interest,

© = (}3

while T is a set of nuisance paranmeters.,

The quantity X, possibly a vector, is a regressor variable

whose value is restricted to a closed bounded space %, called the

design space, which will typically be contimuous but can be discrete.

The functions f.'j(x), J = Ty00eyM are of known bounded form,
The regression is linear for the case m =k 1if y depends

on v and © only through the linear mean.,

1.2,1 E(y) = v'8 .
In order to obtain an observation on y, a value for x

mist first be selected from X. It is assumed that X can be set to any

chosen value in X without error.

Given this control over the selection of X,a natural question
to consider is at what values of x should observations, say n, on y
be taken in order to obtain a 'best'! inference or as reliable an

inference as possible for all or some of the parameters ©.

Such a 'best! selection of X values or allocation of the n
observations to the elements of X is termed an optimal design or

optimal regression design.

The mode of infeerence must first be decided upon. For the
moment let us suppose that it is point estimation. 1t will be seen

that the solution proposed for this case will hold good for other modes

of inference too.

Tt is desired then to choose n values ( XpyeegX, ) =X

to yield 'best' point estimates 9(1) of some or all of the parameters O.



Clearly this poses an optimisation problem. As we shall
now see the standard mathematical formulation is to approximate it
by & particular case of (P2). Rigorous referencing will be deferred
. to a summary on the literature of optimum regression design in |

section 1.5.

Suppose by some method of p01nt estimation the estimator
8(5) of © is obtained. Typically the components 2) (x) will be correlated.
Arguably then the kxk matrix D{éC } E{E(&) e][_@@’l) =1 }
the dispersion matrix of @(x) about &, contains information about the
accuracy of Q(x) not only in its diagonal elements which of course
measure the mean squared deviation of J(-:‘E) from Qj , but also in its

of'f-diagonal cross product deviation terms. Generally speaking the
"smaller" D[@(;;_)f the better the accuracy of @(_}_c_) N

A best x must in some sense make D{é(g)} small. However
this matrix will typically not only depend on x but also on 8 and T so
that a best X would depend in particular on the very parameter vector ©
f'or whose estimation an optimal design is sought. This is particularly
so in the case of nonlinear models, that is, models in which the means

are not linear in the unknown parameter G,

One exception though is given by least squares estimation
in the case of the linear model 1.2.1 with the addition of some
assumptions Jjustifiying the use of this method of estimation.

Assume the model 1.2.1 and let s denote the observation
obtained at x; so that E(1.)= v e .._{_—} (<), 5,0, - - - ;H . ‘_)i Cetimom.
1t is of note that typically there will be several equalities between
the xi's, more than one observation being taken at the same x wvalue,
Suppose also that Fyseeesy aTe independent random variables with

common variance 02 . The yi' s then satisfy the standard linear model

1.2.2 E(Y) = {(=>te DY) = "L, |
where Y = (y“yzj...,yn)',x: (x1,x2,...,xn)', L(z) is the (nxk) matrix

2

whose (i,j)th element 1is fj(xi) and D(Y) denotes the dispersion matrix
of Y.

Least squares estimators are a conventional choice for this
model having the optimality of being best linear unbiased. They are

solutions of

1243 [{_( )Lbcﬂetvc) = L)Y



Consider the case in which it is desired to estimate all k
parameters, Then ;_c_ mist at least have been chosen to ensure that
[L‘(;)L(J_t)] 'is nonsingular, in which case there 1s only one ‘solution
to 1.2.5, namely
1,20 B(x) = \__l_'(:'_ﬁ.)L(.éE.)]hlL.'Czc_)\(.

Given that E{B()\=6 the matrix D{8(x)] is in fact the

dispersion matrix of é(:_c_) and has the familiar form

-1
1.2.5 D{8(x)} = o [L'GI(2)]
It therefore does not depend on © and depends only on the
additional parameter 0-2 ,in that each of its elements is proportional
2

too~. It is therefore possible to determine a priori, an X which
makes D{O(x)] "small", namely an x which makes the k«k matrix
[L_'C?.E)L(ZC-)] large in some sense.

This has given definition in principle to the linear
regression design problem. In the next section the problem is examined
in more detail with a view to simplification and streamlining, a
process which results in expressing it in the form (P2). Examples
of criteria which 'maximisge! (—_(_'(zc_}L(:_r,)] will be given in section 1.4.
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§1.3 Simplifying The Design Problem

51.3.1 A first éimplificaticn is that it is unnecessary to continue
reference to.the regressor variable x. The basic model of formula,
1.2.1 states that E{y) = v'® where v = {_f (x),...,f (x)} for some
x e ¥. Clearly this is equivalent to stating that F_(y) v'© where
ve U for some closed bounded k-dimensional space U. In relation
to x, U= {v:v = {f,l(x),...,fk(x)y y X € X} « That is U is the
image under the vector function f = (f,l,...,fk)’ of X.
U will be referred to as the design space.

From now on

Typically U/ will be continuous but a second simplification
is to assume that U is discrete. A !justification' for this will be

given later on in this section.

Suppose then that a discrete LS consists of J distinct
vectors v,',...,vj.. Then the basic model is
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