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SUMMARY 

The concern of this thesis is algorithms for solving the 

following constrained optimisation problems: 

(P1) "Maximise (concave) 4(p) over P_ [p 
= (p1,..., p3): p, >, 0, 

Ep, 
_ i} tt. 

(P2) "Maximise (concave) q1(x) over the polygon 

ý(ýý _ [x = x(P) _2: P. u. =P= (P1,..., p3) EýJ}n 

(The set i1= [uj, 
... ,u Jj contains the vertices- of the polygon and 

might be a discretization of a continuous space. ) 

(P3) "Maximise (concave) J(6) over {e = fie,, , et) e. >- o, Ce = 6} 

where ,C is a matrix of order sxt, rank(C) = s". 

Problem (P2) is a special form of (P1). Problem (P3) is 

a generalisation of (P1), but can be an example of (P2). 

Chapter 1 opens with a list of examples but is mainly 
devoted to an outline of the optimal linear regression design problem. 
This can be viewed as an example of (P2), taking ui = vivý, 

x(p) = M(p) =. tpivivý)where V. is a vector of length k, M(p) a 

matrix of order kxk. This dictates that the criteria principally 

studied are functions of the matrix D= AM (p)A', where A is of 

order sxk, rank(A) = s, and the null space of M(p) is contained in 

that of A. The most general criterion considered is 
«(p) =0 (p) _ -tr(LDt), where t >0 and L is a nonnegative definite 

matrix of order sxs. When t ý1, L is always taken to be the identity 

matrix, 

Adopting the terminology of the design context, we refer 
to p as a design and define the support of p, denoted by Sup(p), as 
that subset of U. 

-to which p allocates pöeitive weight. 

Chapters 2 for (P2) and 3 for the design problem are devoted 

to a derivation of optimality conditions. The emphasis is on a 

differential calculus approach in contrast to a lagrangian one. An 
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important tool is the directional derivative Fq(x, y) of l(") at x 
in-the direction of y, and also a normalised directional derivative. 

Properties of Fx, y) are enumerated, differentiability is expressed 
in terms of it, a concept of constrained stationarity is defined and 

optimality theorems for (P2) are derived in chapter 2. 

In chapter 3, Fq(", ") is derived for standard design criteria. 
These can be nondifferentiable but, in general they satisfy a concept 
defined as support differentiability. Optimality theorems are derived 

for both the differentiable and the nondifferentiable cases. Lagrangian 

approaches are also reviewed. Examples yielding explicit solutions 

are examined. 

The remaining chapters are devoted to the main topic of 

algorithms with chapter 4 settling some preliminaries. 

Algorithms of various types are considered, for (P1), (P2). 

Some new classes-are proposed, others are reviewed, minor improvements 

occasionally suggested. With the exception of some cutting plane 

algorithms which are examined at the end of chapter 4, these algorithms 

aim to identify for (P2) an'optimising p*, as opposed to an optimising x*. 

It is not the intention to make rigorous comparisons between these 

algorithms although some empirical results are reported at the end of 

chapter 7. In contrast a three-stage Composite Algorithm is a 

proposal made in the light of a key discussion in the concluding 

sections of chapter 6. 

This proposal forms one of two main outputs of the thesis, 

the other being to report in chapters 8 and 9 some results concerning 

a conjectured monotonicity of a particular algorithm. 

An iteration of the first stage algorithms, studied in 

chapter 5 and called vertex direction algorithms, takes a step-towards 

or away from a vertex. These can identify a small subset of 

containing Sup(p*). 

The third stage algorithms are of the constrained steepest 

ascent and Newton-Raphson type and are mainly appropriate when Sup(p*) 
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has been identified. These are studied in chapter 6, the former 

type of iteration being derived for (P3) in particular. 

The second stage of the Composite Algorithm recommends 

a technique which can cope with a IL containing a small number of 

vertices not in Sup(p*). One recommendation in chapter 7 is an 
iteration of the form 

P(r+1) c . p(r)h(dCr), 9) 
313r 

where dar) aý/apjr), 5r is a free parameter and h(-, -) is a 
function enjoying particular properties, including that of being 

positive. 

It is for the case h(d, S) = d6 and for special values of 5, 

that theoretical and empirical results concerning monotonicity are 

reported, in particular for functions enjoying two properties of 
ýt(p), namely positive derivatives and homogeneity of degree (-t). 

The theoretical results are aided by establishing links with the 

EM algorithm and by proving a moment inequality. 

Various matrix results are also derived in several 

chapters. 

A final chapter (10) considers generalisations in various 
directions and contains further results relating to monotonicity. 

j 
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CHAPTER 1 

A CONSTRAINED OPTIMIZATION PROBLEM; EXAMPLES 

S1.1 A Problem 
This thesis is primarily concerned with how to solve 

the following problem: 
(P1) "Maximise a function i(p) on the probability simplex 

PS 

The equality constraint Zpj =I renders the problem a 

nondegenerate constrained optimisation problem, the fill constraint 

region being a closed bounded convex set. 

Mary examples of (P1) arise in the field of statistics. 
We list a few to start with. 

Ex 1.1.1 Possibly the simplest example is that of finding the 

maximum likelihood estimators of the probability parameters of 

a multinomial likelihood. The likelihood is of the form 

0(r) = c(o)p" r°ý °s. 
s PS 

The optimum of course is P=a 

Ex 1.1.2 A second example which has received a lot of attention 

recently is that of estimating the mixing parameters (probabilities) 

of a mixture distribution given data y,,..., yn. The simplest 

example of this would arise when the component probability models 
fl(y) of the mixture are themselves free of any unknown parameters. 
Then the likelihood is 

n 

The recent literature includes Smith and Makov (1978), 

Murray and Titterington (1978), Dempster, Laird and Rubin (1977). 

Ex 1.1.3 Another example arises in the field of paired comparisons. 
Suppose J treatments T,,..., TJ are compared on a paimrise basis, 

nib comparisons being made on treatments Ti and Tj, i<J. Assume that 

in any single comparison of Ti and T. there is a probability that Ti 
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will be preferred to Tj (i-4 j), the same for all such pairwise 

comparisons, with ij + I. Let oij denote the observed J3. - 
number of times that Ti is preferred to Ti (i L j) and assume that there 

is no ties so that, for iej, oij + oji = nij. Assuming also 

independence between each pairwise comparison the likelihood for"the 

data would be 
0JL 

. r(-i) lam; «, 
Many models suggest that ij is of the form 

ij =f 
(pi + pjj, pi-N0. See Bradley and Terry (1952), Davidson 

(1969), Bradley (1965). This relationship however only defines the 

pi's relative to each other for it would follow that 

j= 
{c pi 

l(cp 
-+ cp. ý)]. . In order to find a particular set of pi's 

correspönding to the maximum likelihood estimator of ýj, a restriction 

must be imposed on 2: pi, and Xpi =I is a natural choice. Finding the 

corresponding estimates of the pi's requires solution of (P1) with 

T n"- ý 

L 

Esc 1.1. A final example is contained in Morgan and Titterington 

(1977). They seek to solve (Pi) for the case 

The solution yields maximum likelihood estimates under a 

particular case of quasi-independence in a contingency table whose 
diagonal entries are either missing or excluded from consideration. 
Quasi-independence states that only for some i and j can the cell 

probabilities pij(Y-Zpij = i) be factorised into the form pij = azbj, 
in contrast to full independence in which such factorisation holds 

for all i and j. 

The above example arises when the mover-stayer model of 
Blumen, Kogan and McCarthy (1955) is postulated for the transition 

probabilities of a J-state Markov chain. This implies that the 

conditional probabilities of state change are 

p3ji = pJI(1 - pi) 
.1ij 

This therefore proposes quasi-independence for all i j, 

namely, that pij =[gjpil(1 - pil, i4 j, for some probability vector 

g1,, q21.. o, qj. 



3 

Note that making partial use of the constraint Epp = 1v 

the function 4(p) can be rewritten as 

It is possibly not surprising that problem (Pi) crops up 
in various forms in the statistical literature given that probabilities 

are not infrequently parameters of probability models. This of course 
is particularly so in the case of likelihoods for categorical data. 

Other examples arise in the form of the following more 

general problem. 

(P2) "Solve (P'1) for «(p) 
= kKx(p)} for some given function ý(- ) 

where x(p) Pj ul, ..., u . being a given set of points. 
Equivalently maximise 4J(c) subject to = belonging to the convex 

polygon } C(ý with the finite set of vertices Lt 
S t, !1Tý 

Note that we could alternatively state that x(p) ='EP(u)) 

where u is a random variable assuming the value uj with probability 

Pr 

While (P2) clearly yields a particular type of example of 
(P1) we can conversely view (P1) as a particular case of (P2)ß namely 
that which takes ua to-be the unit vertex eý. 

Another example of (P2) can be the following clear generalisation 

of (PI). 

(P3) ' aximise a function 6) , 
6= (6, 

ý- --- ""JiD ,) subject to 
(i) ; 0, (ii) C9 where C is an snt matrix of rank S. " 

Clearly (P1) is a particular case of (P3) and viewing (P3) 

in this light, that is, as a generalisation of (P1), it might be appropriate 

to replace J. ) by ý(-). This is done in chapter six. 

Ho". Tever the feasible region may define a finite polygon )D((() 

for which vertices will be some of the following intersections; namely, 
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the intersections of the region Ce=b with (t-s) of the regions A. = 0. 

If this is so, we then have in (P3) a particular case of (P2) and it is 

natural then to replace ýi(-) by ý(-). This is done in chapter ten. 

One such occurrence of (P3) would arise when testing linear 

hypotheses about the parameters in multinomial models for categorical 

data. These parameters are of course probabilities so that the constraint 

CO =b must either include as a component that 0=1, where 1 is 

a vector whose components take the value 1, or state that various 

subsets of the components of e should sum to unity. We will consider 

an example of such a linear hypothesis and discuss (P3) in the last 

chapter. In a strange way we now can effectively have (P3) as a 

particular case of (P1). 

Yet another example of (P2) will be seen to be a general 

optimal linear regression design problem. This we will study in the 

ensuing sections of this chapter. 

We thus have a wide range of examples of (P1) and (P2), a 
justification for our study; and the need for a study of how to solve 
these problems is that typically they do not possess explicit solutions. 
Numerical techniques must be employed. It is the remit of this thesis 

to study algorithms which have been formulated for finding an optimising 

p* particularly in the case of (P2) and also to propose a further class 

of algorithm. 

. 
Why new algorithms? One general argument is that there is 

a dearth of numerical thecniques for the solution of constrained 

optimisation problems. An argument that (P2) in particular requires 

special treatment, is the following one. 

Problem (P2) differs in a number of ways from other examples 

of (P1), such as examples 1.1.1,..., 1.1.4. 

(i) One may only be interested in an optimising x* as opposed 

to an optimising p*, x* = x(p*). 
(ii) While there may be a unique optimising x* there could be 

many optimising pi's. 
(iii) Frequently an optimising p* may put pý = 0, i. e. the optimum 

lies on the boundary of P. 
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In contrast there is almost certainly a unique optimising p* 

in 'the case of examples 1.1.1 to 1.1.1. (certainly in the case of 

ex. 1.1.1), otherwise the parameters would be inestimable. Furthermore 

p* certainly does not lie on the boundary of 
p in the case of examples 

1.1.1,1.1.2,1.1.4 and it is unlikely to do so in example 1.1.3 assuming 

n>J. 

In such a case we effectively have a simpler constrained 

optimisation problem, a problem having one active constraint, the 

simple linear equality Ep. = 1. It would seem that it should 
3=1 J 

be a simple matter to devise a simple neat modification to standard 

unconstrained optimisation techniques to take account of this. 

Techniques as we shall see can be similarly devised for 

finding an optimising xT in the case of (P2). 

However it would seem that standard numerical techniques 

cannot be so neatly modified to cope with optima which explicitly lie 

on boundaries of constraint regions. 

It is for this reason that algorithms have been formulated 

for finding an optimising p* in the case of (P2), in particular for 

the optimal linear regression design problem. It is this problem in 

fact which has motivated our study of (P2), and this is why we consider 

the design problem in detail for the remainder of this chapter; while 

examination of algorithms will not begin until chapter four. 

'. This section closes by observing some of the properties of 

examples 1.1.1;.., 1.1.4 that will be seen to be relevant later. 

(a) All four functions are homogeneous including example 1.1.4 when 

taken in the form I. I. I. With hindsight this is not all that 

surprising since independence is a common assumption in the 

formulation of probability models. 

Of interest to note is that the equality Epj =1 is an informative 

constraint to impose on a function satisfying the homogeneity condition 
that «(cp) =c 4(p). Study 0(p) subject to ýp 

j1 and one has an 
informed picture of the general behaviour of 0(-) on the positive 

quadrant at least. 
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(b) With the exception of example 1.1.3 the functions have positive 
derivatives as is evident from the following respective expressions 

for ý/ 
P' 

(i) 4(FAQr f pr1 
(ii) 4(P){ J1 fý(yý)Iý" P; (; 1z)}I 

L- j 

ý111ý ýýP/{ýr(Pr 

5A 
rsl `PrtPS/ 

(iv) ý(P*'f 
Pr, 

L$A 
L, r 

} 
`-Prl' Ln 

rJ J4 
`ý 

In the case of example 1.1.3 there will typically be both positive 

and negative derivatives when p is in the positive quadrant, because 

Pr /apr= a consequence of the fact that ý(p) is a homogeneous 

function of degree zero. 
(c) In some instances the functions are concave. 

The latter property is nice in that it guarantees the existence 

of a unique maximum while the first two properties, not important in 

themselves, prove basic ingredients in the formulation of an algorithm. 

The design criteria that will be considered and also the particular 

example of problem (P3) to which we referred will also be seen to 

enjoy (a) and (b) 
. 
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ýF2 Optimum Linear Regression Design 

The concept of an optimum regression design arises when an 

observable univariate variable y has the probability model' p (y ) 
Lr, @ý't) 

where in particular 

The k components of A are unknown parameters of interest, 

while 'C is a set of nuisance parameters. 

The quantity x, possibly a vector, is a regressor variable 

whose value is restricted to a closed bounded space 
), called the 

design space, which will typically be continuous but can be discrete. 

The functions fi(x), are of known bounded form. 

The regression is linear for the case in =k if y depends 

on v and 9 only through the linear mean. 

1.2.1 E (tj) _ ßr'8 
In order to obtain an observation on y, a value for x 

must first be selected from I It is assumed that x can be set to any 

chosen value in X without error. 

Given this control over the selection of x,, a natural question 

to consider is at what values of x should observations, say n, on y 

be taken in order to obtain a `best' inference or as reliable an 

inference as possible for all or some of the parameters B. 

Such a 'best' selection of x -values or allocation of the n 

observations to the elements of ) is termed an optimal design or 

optimal regression design. 

The mode of inference must first be decided upon. For the 

moment let us suppose that it is point estimation. It will be seen 
that the solution proposed for this case will hold good for other modes 

of inference too. 

It is desired then to choose n values (xý, x2, .. Jx 1) =1 
to yield `best' point estimates 8(x) of some or all of the parameters E. 
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Clearly this poses an optimisation problem. As we shall 

noW see the standard mathematical formulation is to approximate it 

by a particular case of (P2): Rigorous referencing will be deferred 

to a summary on the literature of optimum regression design in 

section 1.5. 

Suppose by some method of point estimation the estimator 
8(xx) of e is obtained. Typically the components 

6. (x) will be correlated. 
Arguably then the kxk matrix D{6(Y) = E{[ÖC) -6]LOCxý-6]ý 
the dispersion matrix of 

Ö(x) 
about G, contains information about the 

accuracy of 
e(x) 

not only in its diagonal elements, which of course 

measure the mean squared deviation of 
8. (x) from 8., but also in its 

J-J 
off-diagonal cross product deviation terms. Generally speaking the 

"smaller" DýB(x) the better the accuracy of @(x) 

A best x must in some sense make D6(x)) 
small. However 

this matrix will typically not only depend on x but also on 8 and t so 
that a best x would depend in particular on the very parameter vector 6 

for whose estimation an optimal design is sought. This is particularly 

so in the case of nonlinear models, that issmodels in which the means 

are not linear in the unknown parameter @. 

One exception though is given by least squares estimation 
in the case of the linear model 1.2.1 with the addition of some 

assumptions justifying the use of this method of estimation. 

Assume the model 1.2.1 and let yi denote the observation 

obtained at xi so that E. (ß'S 
4) =AL= Cx 

, ý-fkCx Z) L 

It is of note that typically there will be several equalities between 

the xi's, more than one observation being taken at the same x value. 
Suppose also that2 

1,..., yn are independent random variables with 

common variance c-. The yi's then satisfy the standard linear model 
1.2.2 E (Y) ={ _C)}6 ' 

D(Y) = cý2- Zn 
) 

where Y= (y1, y2,..., yn)', x = (xi, x2'..., xn)', L(x) is the (nxk) matrix 

whose (i, j)th element is fj(xi) and D(Y) denotes the dispersion matrix 

of Y. 

Least squares estimators are a conventional choice for this 

model having the optimality of being best linear unbiased. They are 

solutions of 

1.2.3 [L'(X)LCxý6CX) _. LCx)i 
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Consider the case in which it is desired to estimate all k 

parameters. Then x must at least have been chosen to ensure that 
EL' (x)L(x)] i. s nonsingular, in which case there is only one 'solution 

to 1.2.3, namely 

1.2. lf ýýx) . [ý ýC'-`)L( )1 Cc '(. 

Given that E{6LX)j=6 the matrix D[6( )l is in fact the 

dispersion matrix of 
6(x) 

and has the familiar form 

1.2.5 D{6 Cx )} = vý [L'ýx )11ýcýý-I 

It therefore does not depend on 0 and depends only on the 

additional parameter 
c in that each of its elements is proportional 

to a?. It is therefore possible to determine a priori, an x which 

makes b{6Cx)ý "small", namely an x which makes the kxk matrix 
ýL`ýx)º-ßx)1 large in some sense. 

This has given definition in principle to the linear 

regression design problem. In the next section the problem is examined 

in more detail with a view to simplification and streamlining, a 

process which results in expressing it in the form (P2). Examples 

of criteria which 'maximise' L'_(X)L(x-)1 will be given in section 1. lß. 
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S Simplifying The Design problem 

51.3'. 1 A first simplification is that it is unnecessary to continue 

reference to'-the regressor variable x. The basic model of formula 

1.2.1 states that E(y) = v'6 where v =. [f1(x),..., fk(x)l for some 

xeM. Clearly this is equivalent to stating that E(y) = v'6 where 

vcÜ for some closed bounded k--dimensional space Ü. In relation 

to x, U= [v: v= {f1(x) 
, ..., fk(x)ý' ,xa. That is V is the 

image under the vector function f= (f1,..., fk)' of )f. From now on 
V will be referred to as the design space. 

Typically Ü will be continuous but a second simplification 

is to assume that Ü is discrete. A 'justification' for this will be 

given later on in this section. 

Suppose then that a discrete U consists of T distinct 

vectors v1,..., v3. Then the basic model is 
r= 06, ire ) -e 11 =ý-, Lr"- ýýr 

In order then to obtain an observation on y, a value for v 

must first be chosen from the T elements of If to be the point 

at which to take this observation. That If is taken to be discrete 

suggests that this can be done without error. 

The design problem can now be expressed more concisely. At 

which of the points vj should observations be taken and, if n observations 
in total-are allowed, how nary observations should be taken at these 

points in order to obtain 'best' least squares estimators of 9? 

Suppose we take ni observations at vj, nj >- 02 

n. Note that the possibility that n. =0 is included. What 
J=1 jJ 

values of the nj produce the best least squares estimators of G? 

As we have seen the n3 . must male 
[L(x)LCxý1 

or, in an 

obvious notational change , 
[L(r)L(n)5)'big' in some sense n =(n, ýnzý - sý_ 

It is now possible to obtain neater expressions for this 

matrix 
[L'() L(n)] 

. 
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Suppose the vector Y, in the linear model tý C"(') =[L 
is*such that the first n1 components are the observations taken at 

v1, the next. n2 are those observations taken at v2 and so on. 

z -: LS Then L(n) is such that L' (n) = [' : L! :-----t 

where Li is the (ný x k) matrix each of whose rows is vj'; that 

is 
ý 

C. 
= [vj. vi .... vi [ (nj columns) and hence 

C(n) L()=L Lý 

Two expressions can be obtained for the (kxk) matrix 
L Lj which yield two corresponding expressions for Lý(n)L&) 

Since 

! ý. Cols. 
J 

J It. fb WS 

we have 

1.3.1 

and proceeding further 

L. L. _ . ss JjJJ 

L'. L. _ r. n-. r' 
J .1 .1J 

�J 
where DJ is a (JxJ) matrix all of whose entries are zero except 

the .3 diagonal element which takes the value ni and Vj can be 

any (kJ) matrix whose j t`" column is vi . 

In particular 

1.3.2 L=VD. V 
J1J 

where V is the matrix [v1 v2.... VJ]. 

Let the matrix M(n) denote L(rý) L(r±). Then the following 

two expressions are obtained for M(n). 
T 

1.3.3 M(n) _Ynv v' 
j_t JJin. . 0, Tn. =n jJ--J 

1.3.4 M(n) = VNVI 
(J n integer 

where N= diag{+ý1ýfl 
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Further M() = nm(p) where 

1.3'. 5 M(P) = p3vývý 
or 

; =., r'0 Lpi =1 

1.3.6 M(p) = Vpv, npj integer 

where p. = nS n and so is the proportion of observations taken at' 

vj and, P ps1 

The matrix M(p) is one that we will deal with often mainly 

in the form of equation 1.3.5, occasionally in the form of equation 

1.3.6. Clearly in the former form it is a particular case of the 

x(r) of (P2), namely M(p) =F-p. uj, where uý _ As with 

x(p)) so also with M(p), we can regard the proportions pj defining a 

probability distribution on V. Then formula 1.3.5 defines M(p) 

as an expectation, namely 

1.3.7 M(p) = EP vv'j 

where P(v = vi) = pj. 

Of course MM(p) is a symmetric matrix. 

Returning again to the design problem it is clear that 

it can be regarded as either choosing n to make M(n) large or as 

choosing. p to make M(p) large since, for given n, M(p) is proportional 

to M(n). 

More prominent now are the constraints on the problem. The 

nj must be nonnegative integers summing to n. The pj must be rational 

proportions or fractions summing to 1, with the proviso that npj 

be an integer. 

The problem in fact is a constrained integer programming 

type problem and in the design context is described as an exact 

design problem. Typically integer programming problems are difficult 

or at least laborious to solve even without additional constraints 

mainly because the theory of calculus cannot be used to define the 

existence of or to identify optimal solutions. Furthermore a solution 

would have to be worked out separately for different values of n. 
By the nature of the problem then, no formula for an optimal exact 

design could be devised that would express it as a 'function' of n. 

Nevertheless one could not avoid having to solve such a problem if, 

for given n, one doggedly chose to seek optimal no's directly. 
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However if the approach first seeks optimal pi's then 

some mild relaxation of the rigidities of the above problem can be 

employed. This is to relax the restriction that the p3 be rational 

or that np3 be integer. Require only that p be a probability vector 

and seek ap which makes M(p) 'big'. 

This is a simpler or more flexible problem to solve and 

yet one that is not much visibly different from the original. It 

is clearly another example of (P2) as the following formal statement 

illustrates. 
s 

(Plf) "Solve (P1) for ý[M(p)j where M(p) JJ 

for some given function (i(") 
with a matrix argument. Equivalently 

maximise ý(Il) over ._IM: M= M(P) p c- p} ", 

In the notation of (P2) x=M, u= vvý , both (kxk) 

symmetric matrices. 

In the design context (P) is known as an approximate 

discrete optimal design problem. Examples of suitable functions 

l{1(M) will be given in the next section. 

Note that it is an optimising pT as opposed to an optimising 

M that we wish to discover. 

Such a solution p*j is referred to as a4- optimal design. 

Naturally enough an approximate solution that would be 

proferred to the original exact design problem would be np*, rounded 
to a 'nearest' exact design. Hopefully this would be near a fully 

optimum exact design. 

From now on we consider only the approximate discrete 

optimal design problem and think of a design as defined by a set of 

weights or probabilities ppj being assigned to v3 E U. It 

should be noted that some authors record a design in the following 

more complete manner 

vI V2 v3) 

PI P2 PJ) 
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Such a design may put weight pj = 0. In particular as 

we'have observed for (P2) we may have pý = 0. 

Definition 1.3.1 Support of a design 

The support of a design p is defined to be those vertices 

in Ü enjoying non-zero weight under p. The support of p* is the 

support of the optimum. The term will also be used in reference to 

the general problem (P2). 

We define some further terminology which will be maintained 

throughout this thesis. 

(i) Sup(p) denotes the support of p. Hence Sup(p) cÜ 
(Sup(p) 

cU in the general case). 
(ii) n{Sup(p)j denotes the number of vertices in Sup(p). 

(iii) VP. denotes a matrix-whose columns are the vectors in Sup(p), 

while their corresponding non-zero weights are the entries of 

the diagonal matrix P. 

We note the following further formulae for 11(p). 

Suppose t{Sup(p)j =t so that 

Sup(p) _{ v1NV 1, --------, vi IV 

V= [v.. 
" v... 

P 
vQ 

Pp = diag[p. 
) 

where p. >0) Vp is (knt), Pp is (tut)., rank[(Pp)} = t. 

In general rank (P) =P 
lSup(p)j 

We have of course 
sP=ý. ý 

t. J 
but appealing to forsula 1.3.6 we also have 

1.3.9 M(P) PPP 
P 

Further since Pp is a square matrix of full rank it follows that 

1.3.10 " rankLM(p)1 = rankt(Vp)}. 
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Finally in concluding this section we recall formulae 

1.3.7 for M(p) and note that (Ply. ) could be restated as seeking a 

probability distribution p* on the set If which maximises (g p) = IjJ4M(p )j 

where M(p) = EFJLc/j '. We will now make use of this observation. 
A similar version of (P2) could of course be invoked. 

61. 
.2 Consider now the case of if continuous. What will be 

an optimal solution in this case? Clearly the practical problem will 

still demand an exact design as a solution. Note that an exact design 

would confer a discrete probability distribution on U. It would 

allocate weights (rational weights) say to a finite set of 

points 1f_ {v,,..., vdl in Ü 
and zero weight to all other points 

in If. 
. 

However it will be no less difficult to discover an optimum 

exact design in this case than in the case of 
V discrete. Again an 

approximating problem comes to the rescue. It is called the continuous 

optimal design problem and is simply the extension of the approximate 
discrete optimal design problem taken in the form mentioned at the 

end of the last section. The problem is 

(P5) "Find a probability measure p*( ") on the continuous space U 

which maximises ý 
p) = (Pk)J(p)1 where 

i(P) = P(vv') =fW , dP(Lr) 

A continuous analogue to (P2) could be similarly defined. 

'- One might have thought that the solution to this approximating 

problem would be of no practical value, that an optimising p*(") 

would be a continuous probability measure on 
U 

and that (P5) would 
thereby be a seemingly more difficult problem than (Pif) to solve. 

However, as we shall see, Caratheodery's theorem guarantees 
that at least one solution to (P5) is always a discrete solution. 

It is time to study some properties of the matrices 1(p) 

where p is any probability measure. 
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(i) Let nZ denote the set of nonnegative definite symmetric matrices. 

Then M(p) E ýID 
. 

*This is to be expected since the original matrix 

M(n) is a dispersion matrix. The symmetry is obvious, while the 

simple argument, 

x«M(P)x = xEPtvv'jx = P- X'vv'X} _E 
[(X'v)21 

neatly establishes the nonnegative definite label. 

That hi(p) is of order k-k but symmetric means that it can 
be represented by a point in k(k+1)/ 2 dimensions as opposed to k2 

dimensions. 

(ii) Let _ 
[M(p) :p is any probability measure on Üj 

Let pv be the probability measure that puts unit weight at the point 

vEV., Hence N(pv) = vv' . Clearly vv' E. M and in fact .J. is 

the convex hull of the set {vv' :v r- Ü 1. 

We can now appeal to Caratheodexy' s theorem. 

Caratheoderyts Theorem 
4 

Each point M of the convex hull JTL of any subset U. of 

n-dimensional space can be represented in the form 

4%+t n+I 
M ýo 

jJJd3O 
ý°L 

"= 
I ''ýý ElL 

If M is a boundary point of the set then «+ 1ý 
can be put to zero. 

Such representations are not unique. 13 

It follows that each M6 has at least one representation 

of the form 

pjvjv' ,3 

where J z[[k(k + 1)/2] +11.3 unless bi is a boundary point of 
in which case J k(k + 1)/2. It will be seen, for the design criteria 

which we will consider, that an optimum M must lie on the boundary 

of. . 
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Typically J will be smaller than the above limits. If 

J4k then M will be singular since then the rank of M can be at most J. 

Thus we have that any 'continuous' design measure and in 

particular any 'continuous' optimal design measure can be replaced 

by at least one finite discrete probability distribution and so we 

have a justification for having initially assumed V discrete, for such an 

optimal design will have a discrete finite support. This optimal 

support we could regard as the design space. However, typically 

Sup(p*) will not be known except in some instances when it, or some 

finite discrete subset of 
V 

containing it, can be identified using 

intuition or, geometrical or symmetry arguments. 

In general problem (P5) is that bit more difficult than 

(P4. ) in that, typically, Sup(pY) must in a sense be computed, 

possibly only approximately, as a prelude to determining pT and this 

is essentially done by some of the algorithms which we will consider. 

Given that we need to use algorithms to solve (P4) and 
hence (P5) it is arguable that there is no need to justify assuming If 

to be discrete. Any programmed numerical technique must discretise a 

continuous space; if solutions are not discrete, numerical techniques 

will only produce discrete approximations. Effectively design 

algorithms will work with discrete fps, containing approximations, 

as indicated below, to the optimal support Sup(p*). 

An ideal discretisation would seem intuitively to be some 

form of "uniform grid" on a continuous If 
, but typically this is 

difficult to determine when V is an image under some f of some 

In practice the discretisation that is used is the image under f 

of a uniform grid on TL. 

Whatever discretisation 1% of a continuous V that is 

used haaever, it will inevitably be the typical case that 1J 

will exclude points of a true optimal support)L . The optimal 

design for Up 
, which is what we would have to compute unless the 

initial UD is altered, will then not be that for V. Clearly 

though if is a fine enough grid on U then the former should 
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be a good approximation to the latter. Recipes exist however for 

modifying a 
Vo toi as it were, a better approximation to Sup(p*) 

with an accompanying modification to a current design on Üý. 

From now on we will almost always assume that a design 

space V is discrete. 
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S1.1 Choice Of Design Criteria; Their Properties 

s1. '. '1 The standard design criteria are now examined. In this 

section we consider the case when interest is in inference about 

all of the parameters 0 of the linear model 1.2.1. The matrix 

14(p) must therefore be nonsingular and hence positive definite. 

Three main maximising criteria have been formulated for 

this case these being D-optimality, A-optimality and E-optimality. 

The corresponding J) -functions requiring maximisation over -AIL 
are 

D-optimality: qJD(M) 
= ln4dei(M) =- 1"(clat(M-')3 

, 
A-optimality: l/JA(A) = -trace(bi 

1) 
= -tr(hi 

1) 

E-optimality: 

where denotes the largest eigenvalue of A. 

A further criterion which will be discussed later is 

L-optimality: IM 11) = -tr(L 1d 1) 

where L is kxk and nonnegative definite. 

Clearly to maximise any of these functions over , is to 

look for an M(p) that is 'big'. The first three criteria have the 

following more specific inference improving motivations. 

The A-optimal criterion has the simplest interpretation. 

It seeks to minimise the sum of the variances of the least squares 

estimators or their average variance (A for average). 

That of E-optimality is seen in the light of the result 

that since non-singular bi(p) and hence its inverse is a positive 

definite symmetric matrix then 

A. (i, 2 
1) 

= Amax{b'M 
l(P)b 

Qx: 
=1 

In fact any normalised eigenvector corresponding to ý ýM ýý 

is a maximising b. 

Hence, since 
6 (b'2` 1(p)b) is proportional to the variance 
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f r\ 
of b, 9., the E-optimal criterion seeks to best estimate that linear 

combination 14) of the 0 
. 
's which is worst estimated among comparable 

linear combinations satisfying the normalisation constraint that the 

coefficient vector b have unit length. 

Various motivations for D-optimality exist. These extend 

beyond the idea of point estimation and all fall into the realm of 

explicit joint inference. Possibly the most practical and most 

obvious one is when the mode of inference simply seeks to identify 

a subset of the parameter space that is most strongly suggested by 

the data to contain the true value of the parameters Q. Such a region 

would, for the model E ýYý °ý ýMýp)1e D(() = S� take on, either 

exactly. or approximately, the shape of an ellipsoid of the form 

ý: ýe-e)CM(p)ýýQ-Q)ý1<ýY)} for some critical value k(Y). This would 

be the case whether one used the methods of classical or likelihood 

inference with the additional assumption that the vector Y has a 

multivariate normal distribution or whether one used-the principle 

of Strong Evidence that is yet to appear in the literature. 

The smaller such a region of inference the more informative 

is the data. The D-optimal criterion chooses M(p) to make the 

volume of the above ellipsoid smallest because it is-the case that 
]1-riz this volume is proportional to [detEM(P) 

Other motivations for D-optimality lie in hypothesis testing 

under a normal linear model, though these would be equivalent to 

taking the ellipsoid above to be a classical confidence ellipsoid. 

One other criterion, which appears in the early design 

literature, falls into this category when interest is in all the 

parameters and is known as G-optimality (G for generalised variance). 
It is not though a matrix motivated function of M(p) but, as shall 
be seen in chapter 2, it has been shown to be equivalent to D-optimality. 

It seeks to minimise the maximum over If of v'M-1(p)v. Since 

a 
? 

v'M 
1(p)v 

is the variance of v'Q, which is the estimate of the mean 

of y at y and hence 6ýv'ZM (p)v_ + 11 is the variance of a 

predicted value of y at v, it seeks to predict as well as possible 
the worst predicted value of y. 
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We have then three alternative criteria excluding G-optimality. 

Separate treatment of them however proves unnecessary for they, or 

to I mappings of them, are special cases of 

7't(M) = l(jfk)f, 
(M t)j+rt_ 

That D and E-optimality emerge as particular cases is due 

to the respective facts that for positive definite M 

W sqý . 1,11 j/k 
y M)l 

and 

(ii){ 1p M)} 
while A-optimality is clearly equivalent to the case t=1. 

Results (i) and (ii) can be proved directly in a number 

of ways. In particular they can be established by a proof analogous 
to that which would prove the two corresponding moment results, below, 

of which, interestingly, (i) and (ii) are particular cases. 

Suppose x is a discrete positive valued random variable 

with probability distribution given by P(x = x, ) = qi, i=i,..., k, 

where xi > o, q3. > 0, Eqi =I. Let f (ý) _{ ECi )} 
. Then 

k 
(i) Lt IF 

(i; ) Lf [-f &e) -v ýXýý 
. 7.00 

For a proof see Bechenback and Bellman (1961, p. 16). 

Since the eigenvalues >1,0 
0 .. *Xk of 14 

1 
are positive, 

k 
11 being positive definite, and tr(M t) 

= fixi the above matrix 

results are corollaries which arise in the case r= 1/k, xi =i 

It was Kiefer (1974) who observed the above generalisation 

which of course has the advantage of making possible a unified 
treatment of D, A and E-optimality. The function 

ý(pý _ -tr[M -t (p)] 

will appear frequently in the ensuing chapters. 
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1. .2 Suppose now that we are interested in inference about only 

a subset of site s of the parameters in the vector e of the linear 

model 1.2.1,, or more generally about the s linearly independent 

combinations A8 Where A is an (s'k) matrix of rank s. 

Again for improving inferences about d comparable to 

those considered for 9a good design will be one which makes the 

variance-covariance matrix D(q) of least squares estimators 

of a small. Only designs p under which d is estimable can, of 

course, be contemplated. However it is possible that the complete 

vector e may not be estimable under such a design. 

Consider that the least squares equations for 0 are 
from 1.2.3 

1.4.1 2j(, ) e= L(n) v=g 

The vector A then will be inestimable if the matrix M(p) 

is singular for then there will be multiple solutions 8 to 1.4.1. Of 

course, it is possible for this to be the case and that a unique 

solution is suggested for oC by 1.1 .1 as the mathematics below will 
bear out. 

However., we first explain from a practical design point 

of view how a singular M(p) can arise under a design suitable for c(. 
Recall formula 1.3.9 that M(p) = VpPPVp and let vSSup(p) 

j=t 

so that Vp is kxt. Then from 1.3.10 we have 

rank[M(p) = ro. hký(Vp) 

Now if e were to be estimable then M(p) must be non- 

singular as stated before. A necessary condition then for this is 

that, t>k; i. e., the design p must put weight at a minimum of k 

points in U and in fact at a set containing k linearly independent 

points in order to have rank{(V p 
)ý = rank[ (p)ý = k. 

At the other extreme suppose we were only interested in estimating 
the one linear combination °' = e'A for ea vector 
(i. e. A= c', s= 1) and suppose that e If. Then a design 

which we might consider is the design pC which puts all weight 

at c and so has Vp =CYt=1. Thus 14ýpýý is singular. In some 
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instances p. will be an optimal design. Similarly if we wish to 

estimate s linear combinations d= AO, it can be that a suitable 

design p need only take observations at s linearly independent points 

in Uý in which case t=B. Certainly t must be at least s but could 

be smaller than k in which case M(p) is again singular but the t 

points must contain s linearly independent points in order that 

rank{M(p)} ? s. 

We turn now to the mathematical detail. According to 

Graybill (1969, Theorem 7.3.1, p. 142) or Searle (1971, Theorem 8, 

p. 28) the set of all solutions to 1.4.1, if solutions exist, is 

given by 

1.4.2 A= ('I-)M (? )9 -'- 
[- M ýiM(P)]h 

for any h and for any generalised inverse M -(p) of M(p). 

Note that a generalised inverse of a matrix M is any matrix 
M satisfying 1MM = M. This does not define M uniquely if M is 

singular. One particular example, of which we will make particular 

use, is that unique matrix M+, known as the Moore-Penrose generalised' 

inverse, which not only satisfies MM+M = M, but also M+MM} = M+ and 

symmetry of (MM}) and (M}M). 

From 1.4.2 it follows that a solution to A is given by 

1.4.3 =(1/n)AM (P)g + A. - aM (P)M(PX h 
Now, if there is to be a unique then it must be the case 

that 

1.4.4 AM('p)M(p) =A 
in which case 

Hence 
E (ý (i/A)I\K-(p)LQ L )G 

_ ýº/A)JA t'1 (P){A M (P)i 6= Ae =0 

and 
p(ý) _ 

(c/n)AM I)Lýn_)L(+ý)M Cp)A'/n 

°ýFýM CP)ý'M( Mýr)Aýýn2 

. AMC p)M(P)} M (F)Aýý - aý2 A K(F) AI /r, 

Hence 

1.4.5 p(ý^) °ý AM (P) A. 
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Some further consequences including properties that we 

would expect of D(Q ) can be derived from the following implication 

of 1.4.1i-. 

Equation 1.14.. 1- may be rewritten as 
1.4.6 A= Y'M(p) 

where Y' - Al (p) for any generalised inverse. 

Hence, for estimability of c<., M(p) must belong to 

_ 
III: M E1Wand A= Y'M for some Yland more generally if some 

matrix M is to be the matrix of a design under which a is estimable 
then it must be that MEf ft n AA 

- 

Consequences of 1.4.6 to which reference will be made are 
the following: 

Consequence (i) {M(p)J 
=0 A-z = 0., A.. e. n[M(p)j E-i 7L(A) 

where rl(B)) denotes the null space of B. 

Conseauence (ii) Equivalently any vector u which is a linear 

combination of the columns of A' is also a linear combination of the 

columns of 11(p), i. e. )[i (p)1 3 A(A') where }R(B) denotes the 

range space of B. In set terminology we have that 

AIw ýt = ý2(P) d' 
idE Ekj 

where Et denotes t-dimensional Euclidean space. The result follows 

from the symmetry of M(p) using the argument 

u= Alb u . 4(p)} d where d =Yb. 

Consequence (iii) A consequence of (ii) is that 

rank [14(p)3 , rank 
[(A)l 

as we have already observed. 

Consequence (iv) The matrix AI C(P)A' is nonsingular since 

rank[All (p)A'j =. Z rank[(A)}, rank[M (P)}} = rank(A) =s 
by dint of the facts that rank[M-(p)J , rank 

f M(p)} (See Graybill 
(1969), Theorem 6.6.8) and that, from (iii), rankf M(f)1 ,i (A). 

Consequence (v) For any LEA the matrix AMA' is the same for 

any generalised inverse ?J. This follows since Abi A' = Y'M? MY = 
Y' LSY. In particular AM A' = MCA' . 
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Consequence (vi) For any M cand for any v in the range space 
)(M) of M the vector AM -v is the same for any generalised inverse 

M. Sinne v-E R(M), there exists w such that Mw ="v. Hence 

AM v= AM Mw = Aw by an appeal to equation 1.4.4-. 

Consequence (vii) We finally note equivalent statements to (i) and 
(ii). Recall from 1.3.9 and 1.3.10 that M(p) = VpPPV' where 

rank1M(p)j = ranký(Vp)}. It follows from Corollary 5.4.1.1 of 

Graybill (1969) that Y[M(p)} 
= )(Vp) and equivalently there is 

equality between their orthogonal complements, namely R M(p)J = n(V'p). 

Further since the columns of Vp make up Sup(p) then )Z(Vp) 
= L[Sup(p)ý 

, 
the linear subspace spanned by Sup(p). Hence to offer estimability of 

.= Ae a design p must be such that 

R(A') G L[Sup(p)] 

This states that the coefficient vectors (the columns of A') 

of 6 in the linear combinations (= AO must be linear combinations 

of the support vectors of p. Intuitively this is sensible, for then 

each component of cC is linear in the terms v'e for ve Sup(p) 
, and 

since estimability of the latter is guaranteed, then so is that of °c. 

Equivalently the orthogonal compliment of L{Sup(p)) should 

be contained in)l(A) i. e. 7L(V' 
p) 

= n(A) 
. 

61.4.3 We finally turn to optimal design considerations. Clearly 

the claim must be that 'best' least squares estimators of -C= Ae 

will be provided by designs which make AMC(p)AI small among M(p) 

satisfying 1 
. 

4.!. 

Specific criteria which have been proposed include designs 

which maximise 4(p) 
= (f. [M(p), A} for i=D, 

-AE, 
L where 

oDt12, Ai = - -ýn 
Jet {A Vi-A, i 

(PA{143 Aj = - tr{A p4-All 

(P 1, i, Al 

where L is sxs and nonnegative definite. 
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Clearly these are generalisations of 
1(1i(M) for i=D, A, E, L 

and enjoy corresponding generalised statistical motivations. In 

another analogy one to one mappings of the first three are, special 

oases of i 

t{M, 
Aý =- 

[(us) 
tM AW)- 

The definition of the fourth criterion is possibly 

unnecessary since the constraint that L be nonnegative definite, needed 
to ensure that it is sensible to minimise 

L{Z, 
4, Aj, means that 

L= B'B where B is txs, rankL(B)} = t. Thus 

However equally 

Al Al for L= Is 

Also 

1/1A]M, A} = 1h/L(M) tr{(Ll )} for L= A'A. 

The criterion in fact is linear in M and the class of such 

criteria is discussed in detail by Fedorov (1972), Tsay (1976a). 

, qEý A particular case of 
ýL (M) is given by L= M(q) =Yq jv jv1 

which could be regarded as a prior distribution on the design 

space. If M= IC' then 
ýL(1) 

= EqivJ1 CI V3 

which for M= M4(p) is proportional to a weighted average of the 

variances of the least squares of the parameters °Cý = vie 

The observation that qj11, f, A 
,= 

t/ M, AB) suggests, of course, 
L_ A2 

that the criterion [Li, Aj is concerned about inferences relating 
to o(= ABe . This suggests further restrictions concerning L, 

namely that we should have )l(i) n(AB) and more generally that 
7L(MI)Gn(A'LA) for general L. 

The criteria tP. h., A1 for i=D, L, E will be respectively 

referred to as DA - optimality, LA optimality, EA- optimality. 

Vie now consider two particular cases of the matrix 'A and 
their implications for t) [ M, Aý 
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(i) The variable t in 1I1){M, X41 only comes into play if s >, 2j 

for if A is ('1"k), as in A= c' where c is (k-1), then 

IV M, c'} c' Mc for any t. 

This criterion is known in the literature as c-optimality. 

To maximise 4(p) = JJ[M(p), c'} is to minimise c'bi (p)c 

which for a given p is proportional to the variance of the least 

squares estimator c'On of c'e 

Recently Pukelsheim '(1979) reviews this criterion 

extensively. 

(ii) If we are interested in estimating only the first s parameters 
61,...; 6s of 0 then the relevant value of A is EIs 

: 0] where 

Is is the s-s unit matrix and 0 is the s %(k-s). zero matrix. 

It follows that 

AMA' = 11 
the leading s"s matrix in the partition 

>12 

Chi ý12 ýM ý22 

Let the corresponding partition of M(p) be 

M11 M12 

(p) = 
ml 12 M22 

. 
We now illustrate that if M(p) satisfies the conditions 

1.4.4 or 1.1 
06. guaranteeing estimability of 61' ..., Bs then the 

sxs matrix iS11 is nonsingular and singularity of M(p) will only 

arise if 2,22 is singular. We do this by showing that 

rank {(2, ' 11 
)3 

rank[(M)l = 

Let M1= [1111 11121 

ý -. id2 

= SY 

s+ rank ý(M22)1 

'M2 
[ßr12 M221 

M_M(r). 

so that 
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Now the condition that MY = A' = 
EIs :0 for some Y 

implies that M1Y =I Hence (2!, ) R(IS) and thus rank1(Y, ) , s. 

Since M1 is sxk and sk we conclude that rank{(M1)}= s. 

Now appeal to corollary 12.2.20.1 of Graybill (1969). 

This states that )(M12) 3(M. 
11) for any nongegative definite 

matrix M. It follows that R(M1)and hence that 

rank 
[(M11)ý 

= rank{(M1)j = s. 

To establish the second condition above we first show 

that there exists a matrix C of order sk(k-s) which is such that 

the sxs matrix 
11,11 

- CM22CI is nonsingular. 

By theorem 12.2.20 of Graybill (1969) there exists for 

any nonnegative definite matrix 1a matrix C which is such that 

CM 
22 =- 1412. In fact C= X1X2 where M= XX' and X' = 

[Xll: X2 ] 

relates to an appropriate partitioning of X. 

Now from the equation 2: Y = A' we have, for an appropriate 

partition IYl : Y21r of Y, that 

Aid Yý + Aý12Y2 = IS 

MI 2Yl + }; '22Y2 =0 

It follows that 1412Y2 =- C1d22C' Y1 by the argument 

2d 
12 

Y2 =- Ch422Y2 = CM 
2Y1 =- Cm22C' Y1. Hence we have 

that 

(2: 
1 

CM22C' )Y1 = Is 

thus establishing nonsingularity of (M11 CM22C') in view of the 

fact that it is of order sxs. We can therefore conclude that 

rank (M11 - 0.! 22 C') = S. 

To establish the result rank[(2`)j =s+ ranký(1 1.22)1 consider 

that 
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Is C M1 1 M1 IiS 0 Mil - CM22C' 0 

0 Ik-s 1'12 -M22 Lot Ik-s 0 M22 

Denote the product on the left by N: Clearly 

rank[(N)l = rank[(M1 i- CM22C' )} + rank 
[(M22)1 

=s+ rankI(M22ý 

IC 
s 

Now the matrix 0 Ik-s is an upper triangular matrix 

with non-zero diagonal entries and so is nonsingular with a consequent 

rank of k. Thus rank{(N)J >, rank{(M)}. 

Finally 

Isc ß`i11 

0 Ik-s 

and so by a similar argument 

- CIA22C oo IS 0 

0 
22 k-s 

rank[(M)ý > rank{(hid - CM22C' )} + rant: (1i22) 

Hence the desired result is established. 

A distinguishing feature then of condition 1.1.6 in this 

context is that it implies nonsingularity of 1111. Only then is 

estimability of (D 1,.... 36s and nonsingularity of the dispersion matrix 

of their least squares estimators guaranteed, a matrix which in 

this case is (M) 
ý. Nonsingularity of the matrix W)fl can in 

fact be established in the following way. 

Let P, orthogonal, denote the eigennatrix of M. Then 

P11 P12 T0 P11 P21 

2. ý = PDP' =xx 
P21 P22 0S P12 P2 

T0 

where D0S is the diagonal matrix containing the eigenvalues 

of M, and T is nonsingular and partitions are such that leading matrices 
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are of order scs. Then 

P11 

M+ PD{P' = P21 

Hence while M11 

orthogonal, the matrix P1 

r1 
P12 Tr 0 Pi i P21 

xx 
P22 0 S+ P12 P2 

_ P11TP11' (k})11 = P11T 1P, 
11' Since P is 

1 is nonsingular and hence so is (1011. 

We now derive a simplified expression for the matrix 
AMA' when A =[i : 01 . 

Rhode (1965) derived the following counterpart partition 

of a generalised inverse of a partitioned symmetric matrix. If 

tr 
11 M12 

M 
"112 Y122 

then 

R 
M= 

11M12R_) 

where 

R_ 1111 - N12M 
22M12 

= Ai11 -ß1s12rr 22M21 

1225 11) 

m 
22 + M-2211'128 M12j4 

22 

This, of course, is similar to the partition of the 

inverse of a nonsingular matrix. Whatever formula is employed for 

R, M. 11, M 
22 the above is always a generalised inverse of M. 

However employing R+, 11+il, hf+22 need not render 14- = M+. An 

exception to this occurs if R is nonsingular, this being sufficient 
to guarantee l. 4 LR` = 1f and symmetry of 121-j 11-11. In turn a 

sufficient condition for nonsingularity of R, established by Rhode) 

is that 15, E i be of full rank and rank{(M: )? = rank{(M11)} + rank(M22)1. 
We have already shown that this is satisfied by L! = M(p) if M(p) 

satisfies condition 1.1-. 6 for A= [Is 
: 01 . We thus obtain the 

simplification 
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1 
1 . 4.7 Am A' = (Y7-) 

I, =R= R-1 = 
tyli 

- M1? 22M21 
F- 

I M11 - M12M 22M21}ý 

The latter step follows since AMA' = AMA' under 1.4.6. 

The particular case of maximising OD(M, A) is therefore 

equivalent to maximising - 
log@det[M11-1S, 12ä+22M21t ,a criterion 

which is traditionally known as Ds-optimality. 

A further particular case of l/J jM, A} clearly arises 

when A=I. the function 4)[M, AA becoming k'(11). All the 
t. 

particular criteria considered above, or one-to-one mappings of them., 

are therefore particular cases of LP f14, Aj 

Kiefer (1974) contemplates a wider class of criteria 

still in 

i'!, A L, m, r} _ kLX (A+A mI 

and in 

(4J[M, A, L, m, r _ -jfrýLx(A2, SAýýmýrr 

These though, in particular the latter, have less obvious 

statistical motivation. 

1. . Some properties of lJt{1L, Aj are now examined. The functions 

(/4M, A, L, m, r} and also possess them in certain 

circumstances.. 
(a) The function (Jt [11, Aj is 

(i) concave on the set )D of positive definite matrices when 

of course M is nonsingular and If =M'. 
(ii) increasing on }J; i. e., if Mi, ) M2 (i. 

e. {it, 
- 1,12( c- 

then 
I-L 

M- 
I 

AJ > lpý{1 2, 
Aý 

(iii) such that ý(p) 
= JJ[M(p), A} defines a function which 

is homogeneous of degree -1. 

(b) Also the D-optimal criterion is invariant under a linear 

transformation of the design space. 
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Kiefer (1974) painstakingly establishes (a) (i) and (a) (ii) 
) 

in' particular concavity of Y[M, A, L, m, r} and ýjM, A, L, m., r} under 

a range of restrictions on L, m, r. These cover the particular case 
lelll, Aj . Also other authors have established concavity for 

specific criteria; namely, Silvey (1974) for DS optimality, Sibson 
(1971ia) for DA-optimality, Ford (1976) for D-optimality, A-optimality, 

E-optimality and for other criteria as well. 

It therefore would seem sufficient to briefly outline 
Kiefer' s proof of concavity for l1J [bi, AA , or equivalently 

t 
convexity of 

- 
QM, Aý = 

{(1/s) 
tr(Dt)}`1 

,D= Abi A' 

His general approach is to find an increasing function 

G{ ". ý such that lýltý14, AJ] is convex. Three main results 

play a part. 

(a) The matrix D= Ati-'A' is convex in }d EBD. This is a consequence 

of the result that, for M1, M2 E)OJD + (1-- V, )2�21 I >- 

[rc M, + (I-oC)M2 ,, 
See Ford (1976), Fedorov (1972). 

(b) Let Ai(M) denote the ith largest e igenvalue of Me )OP. 

Then ýA. (M) is convex in M; that is, if 

ai + (i-ý )%i(M2)', 
. 

bi. _. 
{ýCM1 (1- °ß)M2} 

then, for M M2 e ýý] 
, it is the case that 

MM 

ai Zbi 
,m1,2,.... , k, 

with equality in the case m=k. See Fan (1.959) and Beckenbach. 

and Bellman (1961, P-75). 

TM 

Hence ci (a. ) ý-6(b 
where '6(") is a convex L=1 1 Lýý Z 

function. 
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(c) The function xt ,t, 1, t<0 
Ö(X)= 

-xt 0 st -1 

is convex on the positive real line. 

A function G{- f 
t(M, 

A)} , convex in M over }CJ) 
, is 

generated by a hierarchical application of these results. We note 

that for t=I convexity follows immediately from the result 

involving matrices MI and h2 in (a), while concavity of D-optimality 

readily follows from a parallel result to that in (b); namely, for 

M1, M2 E 
. 
PD 

I. r -% °t r '1 - °t 

detI ýc Mj + (1- . c)M ]M J. > 1cletj(Mý) ctdet{(as2)r, ^, M 

for m=1,.. ßk, where Mm is the leading (nxm) submatrix of M. See 

Bechenback and Bellman (1961, P. M. 

The other properties are more easily dealt with. 

The "increasing" property (ii) of (4i Li, A) would seem to 

readily follow from the result that A1(NI )3 Ai(2S2) if MI } M2, 
Ai(h) being the ith largest eigenvalue of M. See Beckenback and 

Bellman (1961, p. 72). It is this property which guarantees that an 

optimal b must lie on the boundary of A. 

The homogeneity property is basically a consequence of 

the linearity of Li(p) in p. 

The invariance property of D-optimality can be easily seen 

to follow, from formula 1.3.6 for M(p). Suppose U= {v1, 
.. 1vjl is 

transformed to (= ýw1, 
.., wjý under the linear transformation 

Wj = Hvj, H is (k=k). Then a design assigning weight pj to w has 

design matrix. 

M(p) = WFri' 

= HVPV' H' 

where V, W are respectively kxJ matrices whose jth column is v., wj. 

Hence 

det{i (p)}- = det (VPV' )K t det (H)]2. 
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Some comments on these properties are in order. 

Concavity on M of course means that those MJ''s maximising 
&[ 

, As over form a convex set. There may though be several 

p* such that M* = M(p*) even if there is a unique maximising M*, 

an observation we have made with respect to the general problem (P2). 

While this isa desirable property, the "increasing" property and 
the homogeneity prove more useful in the formulation of an algorithm 

and with hindsight are properties to be expected. The former is 

really a manifestation of the fact that we selected criteria with a 

view to making hi(p) "big". An optimal M(p*) must therefore be "bigger" 

or at least as "big" as any other matrix M(p). It would seem reasonable 
to claim that M1 is at least as big as M2 if M1 M2. This relation- 

ship is. certainly satisfied by iii = 1M(p), i=1,2, when n1 >, n2 

for a given-design p. The matrix 
2M1 is the covariance matrix of 

the least squares estimator of the parameter 6 of the linear model 
1.2.1, obtained from a sample of size n1, i=1,2, each sample 

allocating the same weight to vi (assuming ip. integral). Clearly 

the larger sample corresponding to the matrix M1 is more informative 

about 6. It follows that this must also be true in the case 

Mi = M(pi) if M(P1) S(P2) " 

A particular consequence or reflection of this "increasing" 

property-is that the function «(p) 
= LJJ L1(p), Aj has positive 

derivatives, as is evident from the formulae at the end of this 

section. Examples 1.1.1,1.1.2,1.1.4 have already been seen to enjoy 
this-property. 

These same functions also enjoy the homogeneity property. 
In this design context it is a property which really must hold because 

there is a certain arbitrariness in changing from the real constraint 

L n. =n of the exact design problem, where n is the available 
L=1 "Z 

IT- 
number of observations, to the constraint ? p, = 1 

of the approximate design problem. Why not 

a' 
F p. = c? Clearly the "optimum" ni, suggested by an optimal p for 
jl 
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a given n, should be independent of the choice of c. The homogeneity 

property implies this. If p* is optimal for c=1 then bp* is 

optimal for c=b. 

To conclude we note-that in the ensuing chapters we shall 

take the following clearly equivalent criterion to ýJrd(p), Aj 

as our general design criterion; namely 

«p) _ -trtAM 
(p)A't 

9t , >O. 

This is a homogeneous function of degree (-t) and, as 

shall be seen, has the positive derivatives. 

ý(p)A'L M'(e)i'l AM 11e ýf M(p) is nons,,. Ylar 
aý ap. = 

týMt(P)A'ýAM}(p)A' AM+ýP), sj .ýE L[S, P(P)}3 

where L{Sup(p)} is the linear subspace spanned by Sup, (p), while 

aýfa4ý =o if vj ? L{Sup(p) 

where 
/aP 

= 
L{ {Cýll 

t Ee. J - 
ý`pýý/ F- 

(C. 
u-t Vecroc-J 

Elo 

Note that jpja4/3pj = txtr(AM}(p)A')t 

a consequence of the homogeneity of cb(p). 

In particular if A=I so that p) = -tr[M 
t(p)) 

,- then 

J/c pý = tvM 
(t s 1) (P)v 

As we have said these two features of 
q5(p), homogeneity of 

negative degree and positive derivative, will rise to play an important 

role in the formulation of an algorithm. 
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Optimal Regression Design -A Review 

To conclude this chapter we give a brief description of 
the chronological development of optimal regression design. 

The first recognisable contribution in the field seems 
to be that of Smith (1918) in which she calculated optimal designs 

for polynomial regression models with what was in effect the 

G-optimal criterion in mind. She did not have the benefit of matrices, 

only tedious algebraic tools. 

There then appears to have been no further work in the 

field until a cluster of papers in the 1940's; these being Wald 
(1943), Hotelling (1944), Rao (1946) 

, Mood (1946). Wald' s paper 
is a founding one. 

The subject finally seems to take seed in the 1950's, 

contibutions including Box and Wilson (1951), Elving (1952), Chernoff 
(1953), de la Garza (1951f), Elving (1955) Ehrenfield (1955), 

de la Garza et al (1955), de la Garza (1956), Guest (1958), Kiefer 
(1958,1959), Elving (1959), Raghavaro (1959), Kiefer and Wolfowitz 
(1959). 

These early papers were inevitably very specific. They 

have a particular criterion in mind and also a particular regression 

model, i. e. particular forms for the regression functions fi (x). 

The regression models were often polynomial regressions on the 

interval. (0,1) or (-1,1) or were determined by weighing experiments. 

Finally the problem as a whole had to be such that. analytic solutions 

could be derived. They were therefore free to consider the appropriate 

continuous design problem when X was continuous, and it was not 

natural to express the problem explicitly in terms of the transformed 

design space lf= f(YE). 

Kiefer is by far the foremost contributor in the field. 

His 195B paper proved to be the prelude to over twenty publications 

some joint with others, the last as recently as Kiefer (1978). Not 

surprisingly he made the first major breakthrough in the field. Kiefer 

and Nolfowitz (1960) proved the equivalence of D-optimality and 
G-optimality but more importantly as a result they derived a necessary 

and sufficient condition for D-optimality. We will see the details in 

the next chapter. 
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This left the way open for the study of more ambitious 

problems and more importantly made possible the formulation of 

algorithms for the computation of D-optimum designs. However this 

was not immediately realised. Problems considered were still fairly 

specific including polynomial regression but possibly in several 

variables and sometimes with extrapolation in mind. See Hoel 
(1961a, 1961b, 1965a, 1965b), Hoel and Levine (1964), Clark (1965), 

Atwood (1969). See also Studden and Van Armin (1969) for optimum 
designs in the case of a spline regression model. On a more general 
level an almost successful attempt though was made to extend the 

equivalence theorem to the Ds-optimal criterion by Karlin and 
Studden (1966). 

The challenge to formulate an algorithm was not taken up 

until Fedorov (1969) and Wynn (1970) devised almost identical iterative 

schemes for D-optimality. From this point on the subject has developed 

rapidly mainly on two fronts; namely, the formulation of further 

algorithms and the extension of the results of D-optimality to more 

general criteria. Authors who have formulated iterative schemes 
include Fedorov, Wynn, Atwood., Silvey, Titterington, Pazman, Sib son, 
Tsay, Wu. Details will be given in later chapters. 

Whittle (1973), Kiefer (1974) were, apart from Karlin and 
Studden (1966), " the first to extend the results of D-optimality. 

They both generalised the Equivalence Theorem. Other authors include 

Silvey and Titterington (1974), Sibson (1974a) 
, Silvey (1974), 

Felluran (1974), Fedorov and Malyutov (1972). Also more recently 
Pukelsheim (1980) has solved the design problem in the case of 

t the general criterion l/J4IM, A} _ -tT{AZ4 A'ý 
. 

This essentially completes our review. It is only a 

skeleton and it must be emphasised that we only had in mind an 

optimum linear regression design problem. There are other topics 

in the field of design. There is that of optimum design in the case 

of nonlinear regression models. As we have said, a crucial change 
from the linear to the nonlinear design problem is that the matrix 

D {6(x)l then depends in a non-simple way on all unknouvn parameters. 
It is not possible therefore to determine an optimal design a priori. 
A sequential approach is needed. See Ford (1976), White (1973,1975)0 
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Another problem that has been studied in regression design 

is that of designing to discriminate between models. See Atkinson and 
Cox (1974), Fedorov and Atkinson (1975), Fedorov (1975,1978), Hill 

(1976). Studies of this type to some extent attempt a response to a 

valid criticism of optimum regression design, namely that one can 

rarely if at all, fully know the true model. 

We have not made reference to the subject of classical or 

factorial designs. These of course formulate linear models. One would 

not naturally view these as linear regression models �but one can of 

course do so. It is natural to consider whether or not these are 

optimum regression designs with respect to some of the criteria of 

section 1.4. See Ford-(1976), Kiefer (1975a). 

Finally optimum regression design has been considered in 

a Bayesian framework. See Brooks (1972,1974,1977). 

The above is a very brief summary of the field of optimum 

design and by no means has the literature been exhausted. Extensive 

reference lists are contained in St. John and Draper (1975), Fedorov 

and Malyutov (1972), Fedorov (1972), Fellman (1974), Ford (1976), 

Hill (1976), Ash and Hedayat (1978), Federer and Ballam (1972). 

Fedorov (1972) has been until recently the only English 

text on the subject of optimal regression design. 

Ash and Hedayat. (1978) is a review paper introducing. a special 

issue of Communications in Statistics on Optimal Design Theory. The 

contents were contributed by Meng; Fedörov;: Kiefer; 

Kurotschka; Silvey; Titterington and Torsney; Studden; Wu. These 

therefore are among the most recent publications. 

We conclude by concurring with Ash and Hedayat that, while 

Fedorov's book is important, there has clearly been a need for 

a more contemporary text on optimal regression design. We therefore 

welcome the appearance of the monograph, Silvey (1980). 
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CHAPTER 2 

CONSTRAINED OPTIK ALITY, GEI XRAL 

6 2.1 Introduction 

The aim of this chapter is to determine conditions under 

which a p"- will be optimal for problem (P2). 

First we note that there are two approaches which we 

could adopt in solving (P2). Vie could seek out an optimising p* 
directly or first determine an x' maximising Ax) over P(%() and 
then find a p* such that x(p*) = x*. The former approach, which in 

the main we will adopt, would require conditions explicitly 

defining an optimising p*. 

Of course, whatever approach we use, conditions defining 

the optimum of a constrained optimisation problem need to be defined. 

The conventional approach to such an exercise seems to be to employ 

lagrangian techniques, an approach which is developed in Vihittle's 

text "Optimization under Constraints" (1971) and which is used in 

Rockafeller's book "Convex Analysis" (1970). Often this may well 

be the only feasible approach. However, the following back to basics 

pictorial scenario can lead to simple p'-defining optimality conditions 
in the case of problem (P2). 

Consider the problem of the constrained maximisation of a 
function t(x) subject to xe5, Sa closed bounded continuous subset 

of n-dimensional space, of which (P2) is an example. 

The function IK") will sketch out a 'n-surface over S, a 

single peak mountain if qi(x) is strictly concave on S. a valley if ý(x) 

is convex on S, if such can be the case. Clearly one must be at 

a highest point on the (P-surface in 3 if one is at a maximising x*. 
Such an x* may or may not lie on the boundary of S. 

Suppose S had the form of the following two dimensional 

region 

DI 

Da DI 

ý X} 

Figure 2.1 
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Consider the case when x'`. = x1 and hence lies in the 

interior of S and imagine a walk over the surface beginning at 

x*. Then one cannot move uphill whatever direction one takes. In 

particular for a given direction Di one cannot move uphill whether 

one moves off in that direction or about turns and moves off in the 

opposite direction TI.. 

Suppose now x* = x2. One now may vialk uphill from x` if 

the direction of the walk takes one immediately out of S as in the 

case of D2. However, one still cannot do so if the direction does 

not immediately lead out of S as in the case of D2 and of DI and 
Dj. Note that the pair D1, DI illustrate that it can be the case 
in n dimensions that one immediately remains in a set S both when 

one moves off in a particular direction DI or in the opposite 
direction DI from a point x2)even though x2 lies on the boundary of 
S. This of course will not be true for all directions and need not 

hold for any direction as in the case of the boundary point x3. 

A converse picture can obviously be drawn if x* is to be 

a minimising point in S. 

For the case when 'y'(x) sketches a continuous surface this 

picture can be given familiar expression using the tools of calculus. 
In particular the phrase 'cannot move uphill from x- in a given 
direction' will mean that the 'rate of change' or derivative of qi(") 

at xJ must be nonpositive in that direction. Hence we would have that 

the derivative of '(") at a maximising x* must be nonpositive in any 
direction which leads immediately into S from x"= and, in particular, 

in all directions from an interior point x* of S. 

Typically this nonpositivity will mean strict negativity 
in the case of a direction into S from a boundary point x^`, when the 

direction, as in the case of D2 in figure 2.1I, is such that the 

opposite direction leads immediately out of S. Typically the derivative 

in the opposite direction will be positive. 

Derivatives at a maximising x* may also be strictly negative 
in directions leading into S whether x° is a boundary point or not, 
if ý(" ) is not smoothly changing at x° (not 'differentiable' at x--). 
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In particular derivatives at x* may be strictly negative in a pair 

of'opposite directions which both lead immediately into S. such as 
DI, D. in the case of x*. = x1. and of xw = x2. The derivative at 

x* = x2 may well also be negative in the direction D2. 

However, if P(") is smoothly changing at x in all 

directions then a distinguishing feature is that, in contrast to the 

above, the derivative of 4(") at x* rust be zero in a pair of opposite 

directions which both lead immediately into S. A function cannot 

change smoothly and have negative derivatives (or positive derivatives) 

in both of two opposite directions. A maximum x° must enjoy some 

features of the familiar property of stationarity. 

This completes the introductory argument. site have used 

some ideas or terms loosely., in particular "derivative in a direction". 

We define a directional derivative in the next section and formalise 

the above picture on optimality in later sections of-this chapter. 

First, we note that several approaches in the spirit of the 

above, using a directional derivative, exist and various authors have 

brought them to bear on the design problem in particular; namely, 
Kiefer (1974), Silvey (197 4)., Whittle (1973). 

Both Whittle and Rockafeller also include the definition 

of a directional derivative in their afore-mentioned texts 
)Whittle 

(1971) and Rockafeller (1970). Yet neither author makes much use 

of the concept in determining optimality conditions and moreover 

there is little evidence of it in other literature on constrained 

optimisation. As we have said earlier the emphasis is on the use of 

a1 agrangian approach. 

At first sight it seems surprising that the concept of a 
directional derivative has not been more fully developed and has 

not been applied to optimisation problems, constrained optimisation 
in particular. However, it may be that its application Brill only 
lead to simple optimality conditions in a particular type of problem 

such as (P2). 
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S2.2 A Directional. Derivative F. 
6x, y) ; _. neral Properties 

X2.2.1 In defining a directional derivative we adopt the convention 

employed by Whittle (1973). Then he had a general design criterion 

in mind. 

Definition 2.2.1 Directional Derivative 

The directional derivative of a function q(-) at a point x 

in the direction from x to the point y is defined to be 

40 

assuming that the limit exists. 

The choice of notation is due to a convention which regards 
this derivative as specifically a Frechet derivative. Occasionally 

we will use the notation Fq)(x, y) when there is a need to emphasise 

which function is under consideration. In another context concerning 
influence curves the term F(x, y) has been referred to by Andrews et al 
(1972, p. 30), as a Von Vises derivative. They refer to Von Mises (191f7) 

. 
See also Hampel (1968,1971), Eplett (1980). 

Whittle (1971) also uses the following alternative but 

equivalent definition, as does Rockafeller (1970). 

Definition. 2.2.2 

The directional derivative of a function q(") at x in the 

direction of the vector m_ is defined to be 

LXSM) 
O{tý{, Xt-EMi-ý, Cx)]/ý 

Clearly F(x, y) = 3(x, m) where m=yx, while '(x, m) = F(x, x+m). 

It will be seen that definition 2.2.1, which allows the 

direction E, of interest, to be determined by a point y as above, is 

the more useful and indeed leads to a generalisation of some standard 

calculus. 

We could at this stage state an optimality theorem, 

but this-will be postponed until later. 

2.2.2 A number of properties of F(x, y) are collected together 

in this and the next section. 
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(G1) Sensibly the definition confines attention to that 'curve' 

sketched out by the 4-surface over the 'line' joining x and y, namely 

the values of f(f) for o' £-t where f (E) = kýý Ct-0" +Ey ; 

If it existsýF(x, y) = f+(0), the right hand derivative of f( at 

zero. Provided the value of +- is alloyed, (see Whittle (1973), Silvey 

(1974))., F(x, y) does exist if ý(") is concave (so that f"(o)<o for 

all x, y) and if ý(") is finite. This is so because the latter conditions 

guarantee that the function ýý(E) 
-f (o)le is a monotonic 

nonincreasing function of o- f-- I. 

Let c3(ß) = f(E) -f(o) . If ý (") is concave then g(E) is 

concave over 4ts£ý I and passes through the origin. Let o E< I. 

Then {( 
-£j)/c 

j are weights, (c-A, A) such that 

Hence 5C£, ý %ýý-. X)SCo) +. \SCex) = and so 5C£ß)%s, 

Hence s(¬ )/£ is nonincreasing in f. over o'--i and so F(x, y) = ög(E)(£ 

is bounded from below if ý(") and hence 9(") is finite. A lower 

bound is given in (G4). 

(G2) F(x, y) = G(x, y-x) 

where 

Mio 
This is the standard Gateaux derivative and Kiefer (1974 

used this concept in his design theory though he did not call it a 

directional derivative. It would not be appropriate to do so. 

Certainly it does not benefit from concavity of tJ)(x). However this 

representation of F(x, y) in terms of G(", ") proves useful. Again 

the notation GT(x, z) may be used. 

Note that G(x, e. ) =ä tJi/ , the right hand partial 
j 

derivative of ý(") with respect to the jth component of x, ej 

being the jth unit vector. 

(G3) If x, y e S, where S is a convex set, then so does t(t - i) x +- E -which 
is clearly an advantage if one wishes F(x, y) only for x, ye S. 

In contrast G(x, y) does not particularly benefit from such convexity. 
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(C) F(x, y) >- ý(y)--ý(x) if «") is concave. 
Vie have from the discussions in (Gi) that 

F(x, y) .> g(c)/E when osEt 
Cgjfc-£}x+Ey 

(G5) F(x, x) = 0, a desirable property since no change is effected 
in q(") if one does not move from x. In contrast G(x, x) = F(x, 2x); 0. 

(c6) Intuitively F(x, y) in some sense measures the rate of change 
in ti(-) at x in the direction of y. This is emphasised by the relation- 
ship in property (G1) that F(x, y) = f+(0). However it does. so in 

units of measurement which depend on the distance between x and y. 
F(x, y) depends on this distance as well as on the said rate of change. 

To move from point x in the direction of point y is to move 
from point x in the direction of the vector m=y -x and hence in 
the direction of the vector cm, c>O. Passing along the full length 

of the vector cm from x we would, according to the theory of vectors, 
arrive at the point jx+c(y-x)} as the following vector diagram 
illustrates. 

Y ý. ý 
ý ýy ý-ý) 

x. -, 

Figure 2.2.1 

Hence F[x, x+c(y-x)} measures the rate of change in lýJ(") 

at x in directions which remain the same for all positive c. 

Not surprisingly we obtain, 

Fýx x+ c(., j-x) £ örLp4Ci-ý)x + £. [z{ (, j-r>] -(Pcx)ýIE 

y ýL[(ýJ{x 
+ c. (y-x)1 

- lý1(x]ý£ 

-s -syo }- Lp(c)]f sý 
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that is 

2.2.1 F ýx, x + c(y - x)} = cF(x, y) 

This dependence on c indicates that F(x, y) cannot be thought 

of in any absolute sense as THE derivative of or rate of' change in l/J(") 

at x in the direction of y. To identify a quantity of such a nature 

we need to decide on a 'correct' value for C. 

What precisely is the 'rate of change' measured by an 

ordinary derivative of a function of one variable g(x). The right 

hand derivative 
Lt 

F- -1, öýE 

is the amount by which a linear approximation to g(-) at x, valid 

in the region (x, x +S), S> 0, (the tangent plane to g(") at x in 

that region) will change for a unit increase in x, i. e. a step of 

one unit in the direction of x increasing. This argument holds good 
in both of the following pictures. 

ýýý r 
Xz 

Figure 2.2.2 

Recall now that F(x, y) = f(0) where f(¬) =l1 -E +( 
)X + EyJ, 

Since f+(0) is the amount of change induced in the linear approximation 
to f(") at 0 by a unit increase in £, it follows that F(x, y) defines 

the amount of change induced in a corresponding linear approximation 
to '(") at x by a step towards y, the magnitude of which is the 

distance between y and x, namely 

This suggests that we should calculate F(x, y) only for a 

y which is a unit distant from x. Certainly g+(x) = F9(x, x + 1) in 

the case of a single variable function g(-). The problem however 

is that we will be presented with ay of interest which will not 
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typically be a unit distant from x. Such ay must be scaled up or 
down appropriately. Clearly the solution is to choose the constant 

above such that (o (y-x) }" has unit length, namely c such that c'_ (j f, lj M ýy_x 
This creates the normalised directional derivative 

=F )/J 
Of course this uses only one particular norm. A more 

general normalised directional derivative would be 

F (x, 

where A is symmetric nonnegative definite. This normalised version 

will be made use of later. 

This completes the list of general properties, the remaining 

comments recording some relatives or generalisations of F+(x, y). 
(i) A converse concept would be the directional derivative of tý1(") 

at x as x is approached from the direction of y; namely 

L--t L(t+s)x 
_ sý'ý - LP (xfl/g 

" ýýho 
However 

-t 

f: ý0 

a result which is to be expected. 

F(x, y) will clearly enjoy properties analogous to that 

of F(x, y). In particular 
g 

(x, x - 1) = g'(x), the left hand derivative 

at x of a function g(") of one variable. 
(ii) An offspring of F,, (x, y) defines higher order directional derivatives 

of l(. ) at x in the direction y, namely, 

F, )! 
c-f(E)rck 

Iýýot ý{E) = ý1{Ci-ý)ýc + eyý 

(iii) je-term Gý(x, z) clearly enjoys a parallel generalisation in the 

term G 
((x, 

z) below, but it also extends to the other term 

G 
)(x 

z1,..., zn), and to combinations of them. 

U, (x 2) =d g(E)/d_61 + , 3(r-)= ý(X+EZ) 
Lap >> ýa"5c£,, , E4a£, 

The case Gr 
)(x; 

ei ,..., e. ) identifies higher order partial 
1k 

derivatives of «. ) at x, ej being the jth unit vector. 
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Differentiability Defined; Further Properties Of F(x, y) 
ý2. 

.1 So far we have not made any assumptions about differentiability 

as has been emphasised by the several occasions on which we-elected 

to be specific and state results to hold for right hand derivatives. 

A function need not be differentiable at a point x in order that it 

should have well defined directional derivatives in all directions. 

Whittle (1971, p. 61) quotes the following picture in support of this 

Figure 2.3.1 

The picture illustrates the following, as stated by Whittle, "that 

a function could have a discontinuity in slope at a point x although 

sloping away from this point in a perfectly smooth fashion in any 

given direction". 

However differentiability plays an important simplifying 

role in the calculus of optimisation and this is no less the case here. 

We now proceed to redefine the concept in terms of F(x, y). 

Of course the idea is that, at x, (j1(") should be smoothly 

changing in all directions. A more precise definition is that, at x, 

the I/1-surface should just touch or possibly "cross in parallel" 

a unique linear hyper-plane, the tangent plane to T(") at x) or the 

supporting hyperplane at x if the two surfaces do not cross. 

This plane would then provide a linear approximation to ""N at x 

in any direction, so that the linear approximation to I(") at x which 

it would suggest in the direction of y and in the opposite direction 

would be the "same" apart from adifference in sign. 

For two surfaces to coincide in such a manner they must 
have some common characteristics at the point of contact x. In particular, 

apart from sharing a common value they must be changing at the same 

rate otheriise they will not be in parallel and will definitely cross. 
They must have common first derivatives, partial, directional, 

Gateaux or whatever and hence whatever properties are enjoyed by 

the derivatives of one function at x must be enjoyed by those of 
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the other function. 

Consider then the form of the directional derivative of 

a linear function L(x) = a'x +b 

F(x) 5) = 1t [['-I')« £(5-X)} - L-(x)]/ ýj 
Lf-, tECXI[x 

CLI( -") = cl - CJýc = LCD) - LCx 

Similarly G(x, y) = a'y, and the vector of partial derivatives 

is a L/3 x-a. 

This suggests that for 4i(") to be differentiable at x it 

must be that 

F(x, y) = 
(y 

- x)'d for all y 
or 

G(x, y) = y1 d for all y 

where d= 2lPl3x d= (d1, 
.. 9dn)' ,d_ýf 

fixj 
. 

The condition on G(x, y) is a familiar definition of 
differentiability. If we were to accept this as such a definition 

an equivalent and as we shall see a more useful form would be 

definition 2.3.1 applied to any function )1(") 
. However, we restrict 

application-of the definition to only concave functions to accord 

with Rockafeller (197(), P. 244). 

Definition 2.3.1 Differentiability (of a concave function) 

A concave function '1(- ) is differentiable at a point x if 

2.3.1\a) F( ) 
Lcr4rý Yýjc F(x,! ) 

-i- - CT- 
)Ft 

-j) 
2x) 

or 
2.3.1 (b) 

These two conditions are equivalent as we shall see below. 

The latter, clearly the simpler, states that G(x, y) must be linear 

in the second argument y, while in general this need not be the case 

with F(x, y). 

52-3.2 A whole host of properties foll ow fron this definition. 

All of them assume differentiability at x and that xES. 
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(D1) G(x, Y) = y'd since y 

änd dý _ý i/2 _ G(x, e1) . 

Conversely suppose G(x, y) = y'd for all y 
Then 

` 
G'CXý LCryr, 

= 
CLýr 

ýG. r)/ý J 
ýýry 

rd - 
ýýrG ýxjy 

rJ 

Hence condition 2.3.1(b) is equivalent to requiring that G(x, y) = y'd. 
Of interest is that, according to theorem 25.2 of Rockafeller 

(1970)p. 2LJf), a sufficient condition for 2.3.1(b) to hold in the case 

of concave functions, is that the n two-sided partial derivatives 

exist at x and are finite. 

(D2) F(x, y) -= G{X, Y - X) = G(x, y) - G(x, x) _ (y - x)' d 

i. e. F(x, y) = m'd ,m=y-x 

If, as in the design context, we regard th? argument of 
the function ý(") as a symmetric kxk matrix A, then this result can 
be re-expressed in the form. 

F(A, B) = trace [(B 
- A)Vt(1(A)j 

whereVY(A) is the kxk matrix whose (i, j) 
th 

element is 

(D3) A proof that 2.3.1(b)_implies 2.3.1(a) is, 
F(x) 

C-ýrýr) 
ýCxJ 

Lýryr) - 
ýTýXJXA 

ýcrýXý y r) - 
ýs>x> l 6ý 23 1(b) 

V-C 

A proof that 2.3.1(a) implies 2.3.1(b) is 

ýC Ltrj FL Yf X -i Cry rJ 

F(M" x) -F 
ýcrl-CxJyr) ++ Lcý 

)Fýxý ý (6y z3 IC4ýý 

_ c, IF (-, r !A r) + )FCxJ? _x) 
(by G5) 

_" Crý Fýx 
Jx> "ý' i-C'C'/ C-J 

# 
CxJ. ZX)? 

c 
ýx x+y 1 

Cý 
z3 Ic4)) 

cF) ýl 
Lc 

(D4) F(x, 2x - y) = 2F(x: x) - F(x, y) + 
ý(2 

- 1) - 1ýF(x, 2x) 

i. e. F(x, 2x - y) = -F(x, y) (by G5) 

or F(x, 2x - y) = F(x, y) 
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This really is the distinguishing feature of differentiability 

from nondifferentiability; that, as you pass through x in the direction 

of y, the rate of change in [[J(-) should be the same on the approach to 

and the departure from x. In the case of a function g(x) of a one- 
dimensional variable x, a consequence is that there is no need to 

distinguish between right hand and left hand derivatives for 

ýoLLStxtý, -5ýX>ý1ý >Lt 1L5CxtE>_9tx, 
ýIýJ 

(D5) If c, =1 then clearly F(x, Sc, y, ) F(xý y rý , 
This proves to be a very useful result for us, for suppose 

S= FýLLý, then if L3 e 

then x(cjý ýc LL. ýýC .3 '5 3o. 

2.3.2 
ý"F (x) ý- ýýý F(x., 

Note that the result would be true at any differentiable 

x whether or not x e) ýLLý. It only requires that y E) (ý. Also 

the constraints q.? 0 could be relaxed. 

We note also that this condition might only hold for certain 
types of y, say y such that Sup(q) c Sup(p) in the case x= x(p). 
We will see an example of this later. 

This possibility might seem more reasonable when it is 

considered that we can regard x(p) as an element of the convex hull 
}J(W)of any arbitrary finite discrete set W such that Sup(p) 5 W. The 

above linearity may not hold for y= x(q) where q assigns non-zero 

weight to ((J_Sup(p)} 
. Conceivably this could also be the case if q 

assigns non-zero weight to a particular subset of Sup(p). This suggests 
that we should use the phrase ' ý(") is differentiable at x(p) with 

respect to IL or 
W 

or Sup(p)' as the case may be. Only very occasionally 

will we use this phraseology, when it seems necessary, although strictly 
it is lacking in mathematical soundness. 

We will not consider particular cases of 2.3.2. 

If S =)3 and ý(-) is a function of pcthen 

From this we obtain that 
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Ir- L-f Gý( ? ej) - C-9, cr, P) 
1 

Ai 
This result however also follows directly from (D2). A particular 

case of which we will make use is 

2.3.3 

Note that if 

Considering 5=. l. we conclude that 

_P) 
M(CL Kti-F{M str'j . FjM( 

In a final example we take S=C 
, 

the cuboid in n-dimensional 

space with, for 11>0, the 2n vertices Zi(+1, {1,,,,, -1) which in the 

limit as 11 -3 ° would yield the whole n-dimensional space. Let uý 

denote one of these vertices. Then 

f (x ck .\= 
GC> j ýý -G 

ýxýXý 
J ý/ 

i. eo 

2.3.4 F(x, 
ý (-j) - ýýx; } Mýý`ý'A)xa 

(D6) For S= P(U) 
, Q, F ILS I=o 

This is so since Fý x(p)j U.; l =F 

In particular FM (p)ý -j j' i=o 

+7e note two particular consequences of this result. 

(i. ) For at least one ur E- Su (P) 
ý 

FýxLp),, u-rj >o while for at 

least one s& SýpCPi FL"CP)ý sý o, unless F£x(p), uý =o 

for all u.. E Su-P(,? ) 

(ii) If a vector m is such that EMS =o0i. e. ! 
r. =o , where 

I is a vector of 1`s., then 

2.3.5 F x(r) 7c(? ) 

Proof , -- (? ) -t- ý: v-%-. &" = xCc) _ 'E Ci uý q, = tMi 'L. I 

ý". 

ý6, D5) {ý x`Pýý X" 
1.. 1 l+ 

LµJ -; 

I 
PJ IF x- 

I 
ýýý } 

! LMG " Lx `-PýJ 
LL. 

1ý 

This result is of'relevance in the formulation of algorithms 

for solving (P2). 
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(D7) If S =)J((I) then 

FCxý)-ý, ýý F(xu)_t=(x ES JT 

F 
ES 

F J) 

we have 

and hence 

The proof is elementary. Since y= x(q) for some q e)3 

ýýýF(xju ') 

F( ýx , The results folloi7 since and the bounds can be 

attained by taking y= u* and y= u* respectively. 

(D8) For S= )U-), 1'SF(x)y) = 0) yESF( ,, 3) ` o. 
ts C- 

This follows from (D6) and (D7). 

(D9) An explicit solution can be obtained for the value of m 

which maximises '(9, G+ m) =d 
/fr.; 

AM subject to Cm = 0. The 

solution can be 

2.3.6 U-N _{A -a - A-C' (C A C') CÄd (d = aý (be) 

In view of 2.3.5, d could be replaced by F when C=I, 0=p. 

It is also the case that 2.3.6 can minimise 
I 
cbCe)+-dom -("''1. M)/2 

subject to Cm = 0. 

These results are relevant to the formulation of an 

algorithm for problem (P3) and in the case of C= l' for problems 
(Pi) and (P2). 

This completes the list of properties. 
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S2.1+ Constrained Stationarity Defined 

We have already said that differentiability plays an 

important simplifying role in optimisation. This is so because 

differentiability of a point x"` demands in the case of unconstrained 

optimisation that xW can be a stationary value if it is to be an 

optimum. It can also prove to be the case in a constrained optimisation 

problem that a differentiable point x" requires to be what we will call 

a constrained stationary value. In the case of problem (P2) this 

leads to simple optimality conditions. 

In this section we concentrate on defining the simple 

concept of constrained stationarity and a complete list of formal 

optimality theorems will be given in the next section. However 

we mention the first of these after defining some terminology. 

We repeat formally an assumption vre made in section 2.1. 

Assumption 2.4.1 

Assume S to be a closed bounded continuous subset of n 
dimensional space. 

An example is 9= P((L). 

For any xES let SxyBx denote the following sets 
2 

04 .1 
Sx =ýs: Iý ES ar%cL 3>OS. t. 

ýLýI -cCýX +mCyý ESforOL °ý ý °ly 
ý 

ý)x±. cyJ5 for oLoc`icy} 2. lf. 2a B. 
" y= yc S a., d. 3y >o st ý[CLZ E 

The set S is that collection of points yES such that 
x 

the path x to y remains immediately in S. The set Bx is the set of 

points y such that if one moves from x towards y or in the opposite 
direction one stays immediately in S. 

By boundedness and closure of S we mean respectively that 

the elements of S are finite and that the resultant points of closure 

are included in S; they are the boundary points. Continuity of S 

will be guaranteed if the set 3X is nonempty for each xeS, 
including boundary points. 

If x is an interior point of S then Bx = Sx = S. 

If x is a boundary point then 
(i) SX may or may not be a strict subset of S; see respectively 

x2, x3 of figure 2.1; if S is convex Sx =S for all xeS. 
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(ii) Bx may or may not be empty; for x2, x3 of figure 2.1, B 

is nonempty, B. is empty; if x were to lie on a linear 

boundary plane to S, then Bx would contain only other boundary 

points; if S is convex. then Bx reduces to 

!. 2b BX ={y: "ý eS ei, -+xd 3&>0s. t. ES fý 0 -z :c. 2. - 

The set Bx could be thought of as defining 'S-internal 

approach to x paths'; that is, a path through x, whose direction is 

such that the immediate approach to x is contained in S. This is the 

case for paths through x in the direction x to y for yE Bx. 

Conversely the set (Sx -Bx) defines 'S-external approach 

to x paths'; that is, paths through x, whose direction is such that 

the immediate approach to x is outside S; S is not entered until 

arrival at x. 

Theorem 2.1.1 it constrained local maximum 
The point x* is a constrained local maximum of 

tP(x) 
on S 

if 

F, p 3) odyE5, :, 
or equivalently, 

CES". ý' 

The truth of this theorem is self evident, provided the 

practical interpretation of Fý xf, y) as a rate of change is accepted. 
It is simply a restatement in mathematical language of the condition 
that q(") must decrease away from x' along paths leading immediately 

into S. No conditions are imposed on F(x*, y) for Lj e 

i. e. those y's such that the direction xM to y leads immediately 

out of S. 

A reversal of the inequalities would define a constrained 
local minimum. 

The theorem however is of little practical value. This 

though would be true of a corresponding theorem for an unconstrained 

local optimum for we have not made any assumption of differentiability. 
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Theorem 2.4.2 

If x* is 'a differentiable point of q(-) and is a constrained 
local maximum of t(-) on S then 

F(x*, y) =0 for all yeB. 
Proof The set Bx* defines those y's such that the direction x to y 

and the opposite direction both lead immediately into S. Such an 

opposite direction is in particular the direction x* to (2x* - y). 
Hence while (2x* - y) may not belong to S it must be, for all small 

positive ý3, that /3Lrj c Sl ý- -IX -t . 

From 2.2.1 F(x) u-) = f3 F ýX s) 

From (Dlf) F cx4t, Lj) _-F 
(Xc*, 22-ýý _-F (x ; v-) 

From theorem 2.4.1 F Cy) o 

and F CX-* 
-) i0 

===; > F (x* Ls) L 

Hence we must have F(x*, y) = F(x*, 2x* - y) = 0. 

This shows that a local maximum x- of ti(-) in S) must, if B 
x" * 

is not empty, be an example, of the following. 

Definition 2.4.1 A Constrained Stationary Value 

A differentiable point xES of 0(") is a constrained 

stationary value of ((") with respect to the set S if 

F(x, y) =0 for all yE Bx 
, 

assuming the set BX is not empty. 

Theorem 2. .3 

A constrained stationary value x of t(-) with respect to 

S must be. one and only one of the following; a constrained local 

maximum in S. a constrained local minimum in S. a constrained saddle 

point with respect to S, a boundary point which is none of these. 

These types have the respective definitions 

(a) o ýf y ßx 
(ii) F(X)y) 0VE (SX- 

13 

(b) (i) F ý(x, 
j) o '/ E Bx 
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(c) (i) For at least one, ýj j3Y 0F (x, 
-y) 

OT- 

(ii) No condition on F(x, y) ,yE 

(a) W Fczý{Xý yý 0V LS EB 
or .. >i 0V 

(ii) ß,, t32 E S'-9, s. -L-. 

There is no need for a formal proof. In the case of (a), 

(b) and (c) conditions (i) are a version of the usual second order 

conditions needed to define the appropriate type of stationary 

point in a function of one variable. They must be satisfied here in 

the stationarity associated 's-internal approach to x paths'. The 

conditions (ii) are necessary extra boundary associated 'first order' 

conditions which must be satisfied by the appropriate directional 

derivatives along the 's-external approach to x paths'. 

Class (d) acknowledges that while the right second order 

conditions for a local maximum or a local minimum may be satisfied 

along paths x to y having an 's-internal approach to x', it may be 

that the right 'first order' conditions will not be satisfied along 

all paths x to y having an 's-external approach to x'. 

Theorem 2.4.4 

Suppose S= p(L() and that x(p) ES (p &}P) is a 

differentiable point of 0(-). Then x(p) _ Fp 
ju. 

is a constrained 

stationary value of t(. ) with respect to S'ifand only if 

2.4-. 3 FýxýP%, "a p wV. en Pý> o ý. e. uý e 5"P (P). 

Proof We require to shoo that 2.1.3 is necessary and sufficient 
to guarantee F{x(p), y} =0 for all ye Bx(p), which, since S is convex, 

can be taken in the form 2.4.2(b). Let x= x(p) throughout. 

Necessity We show that USE ß3 Lff pr >0 

CC7E oCr> O 5. 
&. 

) 
ZC = 

E(I )X-a-c. Lr1 ES -for 0 ,° r=Z-(c- 
ff 

Ir 
' 

We will have z=L j3ýY 
I /3r = L{-`c)P, - -, _ ?, + 

/3` = (14- P` 
J 

1. r. 

Clearly Lf3ý =I and ý3ý3o for C , while if P, =o . 
But if F, >Oo ýnr oc oc ýL 

°r 
r= 

P, ) >O. 

So for y_a3 
y/ 

>O st. ýýýl{°&) -eCy1 ES . 
5or 

0 teC ety ýJ1 Pr>O. 

e. ut-e ßX JK ßr70 
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We note that this illustrates that x(p) is a boundary 

point of )((LL) if at least one pr is zero. 

Sufficiency Let a typical y 
We first short that E B. Le 3 mcý> o 

for o< icy i% =O wtiencuer p_ =o 

We will have Z= I's J 
,, 

j3ý . (t + .. ) p. - X. = P. +ý (e. - Z5. ý 

Clearly I ýý =I. Also it follows that 

(a) f3; =o (b) 
/©, -c' . 

ýý 
=oa. LCý 

ýe+ue ý3 co .fW. 7o, -c. >o ire wLLc-L. case 
"J J 

ýJ 
JJ 

2 Sý 'J ßx 

(c) /3 >o ýf K>oc pJ > ýý >o wl-t-(e O 

Result (b) illustrates that it is necessary and results 
(a) and (c) illustrate that it is sufficient to put 0 whenever 

3 
pJ .=0 

in order to ensure /s3o for small «c >o under which condition 

z&S and hence t& ßz 

The sufficiency of 2.4.3 now follows from the fact that, 

since x is differentiable then for y= x(26) 1 
F(xýý)- 1 F{x(p)1u .Q 

Under 2-4-3 we will certainly have FýxýP)ý x(ö) =O 

= 0. if =0 whenever p, 

Corollaries 

(i) If S= A) Li(p) is a constrained stationary value of (J1(") 

with respect to JL 

2. I.. 4 FýM (P)ý s j' -o wke pý 'o. D 
(ii) If S= pý p is a constrained stationary value of ý(") with 

respect to P i-ff 

/l 2.1 .5 öCpaýs - 
iPý 

x'3'3/ 

(iii) Take S=C as in (D5) and suppose that 11 has been chosen 

so large that x is an interior poii_t of C, in which case x =Yp, uj 

where p >o for all 2n vertices u. = M(}Hence if x 
is to be a stationary value we will want Y (x--I M)aý/ax- o 

for all 2n vertices whatever h. is. Clearly under certain regularity 

conditions on q(-) this will be true iff 

c7ýc7xý =O ýýý1 - ýn 
Q 
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This then recovers the condition for an ordinary unconstrained 

stationary value. 'Hence in definition 2.1.1 or at least in equation 

2.4.3 we have an explicit generalisation of the latter. 
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ý 2. Optimality Theorems 

ý 2.5 .1 We are now in a position to state a series of optimality 
theorems. Their truth is, in the main, self evident in the-light 

of the results of the previous section. Assumption 2.4.1 is maintained 
zl 

and is as in Theorem 2.4.3. 

Theorem 2.5.1 

The point x' is a constrained local maximum of 
O(x) 

on S if 

F (x 
1y)zoS -9 

that is 

w. ax F (ýc 
y) =0"U 

yE SX 

This is a restatement for completeness of theorem 2.4.1. 

Theorem 2.5.2 

If x^ is a differentiable point of t1("), then it is a 

constrained local maximum on S if 
(i) x is a constrained stationary value of ý(") on S 

(assuming the set B. is nonempty) such that 

Fý2ý(x ,L)0 
'`ý 5E gx 

(ii) FCxý`, `ý) so d `ý ECX Q 
This is just a restatement of the appropriate part of 

Theorem 2.4-3- 

Corolla ry: If B is nonempty then wta.; r- FCx 
, -6) -0) 

a consequence of the strict stationarity of x*. Q 

These are theorems on local maximality, but of course 

typically, as in (P1) and (P2), we desire to establish global 

optimality on a feasible region. In order that we could conclude 
that a global maximum had been identified we would require further 

knowledge about q(-), such as that there could be only one local 

maximum, a unique x" satisfying the appropriate theorem. Such of 

course is the case if ý(") is concave on S. a property which usually 

goes hand in hand with convexity of S. 

If S is convex then Sx =S and q1(") will be concave if 

: E0 for all x, y&S. 
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Theorem 2.5.3 

If S is convex and +(x) is concave on S then x°" maximises 

on S i. ff 

FCxýyý Lo ýyES 
L. 12. ana. x F-CxJ L<0 

CES 
An alternative but equivalent necessary and sufficient 

condition is that 

F(yj X) o dyES 
Le. +KZ, n FC`iý x") 10"Q 

yE5 

The first condition clearly follows directly from the 

preceding theorems and it is one which is expressed in a similar 

vein to the picture presented in section 2.1. It states that we must 

not immediately start to climb if we move from xT towards any point yc -S. 
It is for us the more natural viewpoint from which to express. necessary 

and sufficient optimality conditions. 

However concavity allows of the second set of conditions via (Gt), 

for if we are on a single peak 4i-surface then we cannot start to go 
downhill if we move from any yeS towards x*. If the concavity of 

ý(" ) 

is strict then we will have F(y, x*) >0 for y x*. The result has 

been included mainly for interest and completeness although use of it 

will be made in section 11.3.3. 

Theorem 2.5.4 

If S is convex, %4(x) is concave on S and x* is a differentiable 

point of q1(") 
) 

then x* maximises 0(-) on S if 
(i) x* is a constrained stationary value of P(") on S, assuming 

the set Bx* is nonempty and 
(ii) F(x*, y) L0 for all yE(S - Bx;; ) 

Corollary If B 
x- 

is nonempty then r. ax F(x 
, y) = o. ci 

xy ES 

Note these conditions stem from those of the first part 

of theorem 2.5.3. There is no Istationarity analogue' of the 

alternative conditions there. Differentiability of x* does not 

make it possible to simplify them. In general they will be a more 

complex set of conditions. 

The truth of theorem 2.5.4 is fairly clear. So also is 

that of the other theorems as vie have said, Apart from the stationarity 
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conditions they are little short of a restatement in mathematical 

language of conditions necessary for a maximum. They will only be 

of practical value if they suggest an explicit solution for x' , 
and that is unlikely if x* lies on the boundary of S. The optimality 

conditions they define are infinite. If we employ numerical techniques 

to compute the optimum and the solution they suggest is in fact the 

correct solution, it may not be easy to verify this. These observations 

may explain why the directional derivative has not played a more 

prominent part in constrained optimisation. 

The above criticisms can also be made of the next theorem 

but not of the succeeding one. 

Theorem-2-5.5 

If S= p((() and (Xx) is concave on S, then x(p*), pr Eýý 

maximises ý(") on SUf 

i. e. ) 
cc o << d (4)c- S 

p 
An alternative but eauive. lent condition is that 

F{x(-L)/ XCP )j >- 0 
i. e. Ep F{ 

_, > e) "Q 
ý 

Theorem 2.5.6 Vertex Direction Optimality Theorem 

If S =)D(cL), lj1(x) is concave on S and x(p*) is a differentiable 

point of (IX -), then x(p^) maximises qi(") on Sif 
(i) Ff(p) u- 

"i_p wken 
P>O 

Proof By theorem 2.5.4 x(pM) must be a constrained stationary 

value and by theorem 2.4.4 the conditions (i) are necessary and 

sufficient for this. 

Let y= x(q) = ýqjuj. We require to show that condition 
(ii) is necessary and sufficient to ensure the condition of Theorem 

2.5.4 that F(xw, y)1ýzO for all yE (S Bx ). 

It is clearly necessary, and sufficiency follows by the 

argument, 
5- 

Ff xCctii _E `L, Fj>c(f ), ,' Fýx(F' ýý `ý1 L O. Q 

Clearly we have here a much more powerful theorem than the 

others, specifying a finite set of optimality conditions. It should 
be easy to check whether or not these are satisfied by a postulated 

solution obtained by numerical techniques. Differentiability though 

is an essential requirement. 
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Corollary (i) 

If S =.! "ls 

point of 4J(") then 

(i) 

(ii) F1M(e), vivýý 

Corollary (ii 

O(M) is concave on M and Y( P'"`) is a differentiable 

M( P'"`) maximises ý(") on Aff 

=0 when >o pi 

iý: Owhen p =o a 

If S=R, ý(r) is (weakly) concave on )0 and p"` is a 

differentiable point of ((-) on ? 
)then p* maximises 0(-) on)O iff 

F11 ZqSý -k 0 

(ii) ýq//Pýk 4 
.. p=o0 

Corollary (iii) p* solves m; n mLK FLx(p), yj} 
4E)ß yey( ) 

Proof 

From (D7) jux { FCzý `ý)} 
y E)ýýü) ý_ý -r 

Clearly wýaý 
{ F{xCP'ý)ý ý; =O LL 

Consequently b'rrI F1 

From (DS) "'a" {Fix (e 
, y} >oP. 

y E. P(u) 

Thus p* attains what is a lower bound for other p. Q 

Theorem 2.5.6 was in fact derived by Whittle (1973) but 

only with a general optimum design problem in mind. So also did 

Kiefer (197k) though using the Gateaux derivative. \u (1976) 
-derived 

it by appealing to the Kuhn-Tucker theorem in a more general setting 

than the design problem. The latter is admittedly a standard result 

in constrained optimisation but it is not one that is conventionally 

stated in terms of directional derivatives. 

In the design context the result was referred to as the 

General Equivalence Theorem. This derives from the fact that, in the 

of the D-optimum version of (jl("), corollary (iii) establishes the 

equivalence of D-optimality and G-optimality. This follows since, 

as we shall see, we then have FýM(e), ý' - ýr'Mýý(ýý -k(, ýk 
ýM(r = k} 

Hence corollary (iii) implies that p= solves 
"ý 

PE/ 1 _x_3 

which is the G-optimal criterion mentioned in section 1.4. Kiefer 

and Wolfowitz (1960) derived this result directly thereby proving 

theorem 2.5.6 for D-optirnality as well, and this was the first 

appearance of the theorem. 
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Other authors too have derived the general theorem but 

using Lagrangian Theory and Duality. We look at an example of this 

approach for completeness. 

2. .2 The concept of duality imagines that to a primal maximisation 

problem there might correspond a dual minimisation problem in that 

the tyro problems would share a common optimum or achieve their 

optima at the same point, and that this could be established by a 
'duality theorem' without knowing the common optimising value or 

point. This clearly might shed further light on the optimum of either 

problem and may provide in the dual an easier problem to solve. 

. Sibson (1974-a) and Silvey and Titterington (1974) have 

respectively established dual problems and corresponding duality 

theorems for DA-optimality and for a general design criterion. 

Also Silvey (1972) and Sibson (1972) were the first to consider duality 

in the design context; for the D-optimal criterion. "Fukelsheirý 
(1979 

, 1980) too has considered the concept in depth with particular 

application to design. His work illustrates that there can be several 

duals to an optimisation problem. Hence there may exist a most 

informative dual or one that is simplest to solve. 

The principle of the lagrangian approach to constrained 
t optimisation is essentially to replace the constraint problem by an 

unconstrained optimisation problem in higher dimensions whose solution 

contains, as a component, a solution to the constrained problem. 

Whittle (1971) develops the theory of this approach 

extensively discussing strong and weak lagrangian principles and 

conditions under which these hold. 

Silvey and Titterington (197tß) established the following 

duality theorem, though in the design context only. They adopt a 

lagrangian approach to the solution of the dual problem, it being a 

constrained optirisation. This is typical of duality theorems. An 

appeal to a theorem of ; Ihittle (1971 establishes the duality and 
thereby obtains conditions for a solution. 

Erle present the theorem for problec, (P2), for which their proof 

carries over. 
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Theorem 2. ý., j 

Let ý(") be a differentiable concave function on S 

Let x* = x(p*) -Yi F, solve the primal maximisation 

problem of maximising qi(") over S. Then x* solves the dual minimisation 

problem of minimising « x) subject to F(x`, uj)`O. 

Moreover Ff -(P 'A-; =o L-ý p>0 . 0- 

Iffe will not prove the theorem but make the following cop-ients 

on the proof. 
In the light of the knowledge that F(x, y) is a directional 

derivative, and given concavity of tl1(") on S. the result may seem 

rather self evident. The theorem therefore makes more sense ifve 

partially imagine that we do not realise that F(x, y) is a directional 

derivative, for that is effectively the position in which authors 

were placed when establishing earlier duality theorems for specific 

criteria such as D-optimality; see Sibson (1972), Silvey (1972). 

That this attitude should be adopted is reinforced by the 

fact that the proof only requires to make use of the condition that 

F(x*, uý)ýO, and subsequently to: assume the differentiability condition 
2.3.1 on F(x, y), and finally the result that F(x, x) = 0. We can stop 

short, if only marginally, from concluding directly from the first 

two results that F(x'`, uý) =0 if >0 . It is because of this that 

the last sentence can be included as part of the theorem which is 

therefore a stronger one than theorem 2.5.6. If the only conditions 

on the optimum of the primal problem were that F(x*u. )&O then it is 

conceivable that there may exist an x such that x )O(CC) 
j 

Fýr, LL B) o 

and 0(x)ß c/i(x" ), in which case the primal and dual problem would not 

share a common optimising x'. Assuming differentiability a direct 

appeal to 2.3.1 with the help of 'Whittle's theorem establishes that 

this cannot be the case. 

The conditions necessary for valid application of the 

latter theorem further imply that Ffv , uff =0 if pý>O. 
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92-5.3 For completion we quote the following three additional 
theorems. 

Theorem 2.5.8 
(i) Suppose p* solves (P2) for (, = {u, 

ti,..., uj J. We say then that p* 

is optimal for [(. Then pM is optimal for any (L) such that 

Sup(p*) c CO ` Lt 

(ii) Let P be a probability distribution on fit. so that p. Then 

a necessary condition for P to be optimal for (L is that f be 

optimal for Sup(-). 13 

Theorem 2.5.9 

Suppose (_ [u1, 
... uJ} is a subset of n-dimensional 

euclidean space En and that p* is optimal for L(. Let E Eý be 

such that u Sup(p ). Let W= [Sup(P*) U Regarding p` 

as a probability distribution on (O let p*(W) denote the weight 

assigned to weW by p* so that p*(u) = 0. For any probability distribution 

on (J let w(p) =Y- F(w) s-o that x(P ). w(p), Let P' be optimal for 
Weto 

Then >- tKx(p jJ=(P w(p in general. However if ý(-) is 

differentiable at -QFP) with respect to id then p4=p 

T=tXwCp W) ) u- k= Ffx( % Lt ý<o 13 
The truth of these theorems is either self evident or their 

proofs are elementary. Implicit use of part (ii) of Theorem 2.5.8 

will occur frequently while we now make use of theorem 2.5.9. 

Theorem 2.5.10 

Let 
U 

be a compact set. Let ' denote the set of probability 

measures on U and let e(U) denote the convex hull of U so that 

XC- e(L( ) týf- x= x(p) EP(-) for some p(") c- Let }, be 

the set of finite descrete probability distributions on U. and for 

F. E P,,, let Sup(p) =I U-r= (4 . -p(u) > oý . Call Sup(p) the support of p. 
Assume t (-) is concave on Then 

(i) For any xee 
tU, ) 

3x=x 
(P) 

CP C- Y-Sd 
. 

(ii) 
For- E1 7C X(p ý 

º^taxe. r«SeS 
ýý"ý 

on l 
ý`ýc/ 

11 

xXCPýý C-d Or 
III`ff 

FýXCrý), X(pý`)}> C- 
(iii) If for p) x(p) is a differentiable point of q)(") then 

x(p -) me_Yimi ses (ýJ(" } on C( (, Q , - 

ywith equality in the case of ue 
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Proof Part (i) follows from Caratheodery's theorem and this 

justifies the restrictions thereafter that pe)? ) 
In 

fact in the case ucE we could have restricted the set p 

to those p's such that Sup(p) contains at most (n + 1) points. 
Part (ii) then follows from theorem 2.5.5. 

Part (iii) could be given a direct proof analogous to that 

of theorem 205.6 or the following alternative. 
If x(p'ý) is to maximise ti(-) over ('(( C) then we must have 

l. p{x(P )t>, lp{xw(P x)3 where xw(f `) maximises t (") over any subset 
W of U.. In particular p* must be optimal for its support which 

is the case ff F{ x(p)) a=o for all LL E Sup(p' ), and also the 

above must be true for U -[Su-P(P) U [U 
, where LL E u, but -. 4 S4p(p ), 

However from theorem 2.5.9 we have, for this particular case of L; 

that YL w(p *) - 7'[)c (Pý} = t1J{xcP 
, P-* -'P'p ", ýff 

FI (P *) 
`" 

F(p 
, 

u} o 

Hence the theorem. 

In part (iii) of this theorem we clearly have a continuous 

analogue to theorem 2.5.6. However its only practical, value can be 

that it may yield explicit solutions for an optimising p*. If as 
is generally the case numerical techniques must be used to find 

p* then one is forced to discretise ; thereby generating a 

particular case of (P2) for which theorem 2.5.6 is the test of 

optimality, although admittedly this is a particular case of theorem 

2.5.10. The following more general consequence than theorem 2.5.6 

is sometimes useful. 

Corollary 2.5. '10.1 

Let the set in theorem 2.5.10 be a bounded convex set 

with a finite set of extreme points U__ ku, 
ý, .. ýuJý. Let p^ be a 

solution to the optimum in that theorem. For at least one p^', 
Sup(p*) CU; a pr solving (P2) for this Lt. 

Proof 

If pT solves (P2) then x= x(p CIF maximises 

over ) (W; but here (. ý_ ý(iý) 
_ ý(LL) so that x maximises ß(- ) 

over e(u) 
, Hence the result. Q 
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CHAPTER 3 

CONSTRAINED OPTII, LITY IN DESIGN 

63.1 Directional Derivatives Of Design Criteria 

§3.1.1 So far we have not considered the evaluation of directional 

derivatives for any specific function. This should not be difficult 

in the case of simple functions such as those of section 1.1.1, since 

their partial derivatives are simple and differentiability makes 

available the formula F(x, y) = (y-x)'d. However the design criteria 

being functions of matrices are more complex and they can be 

nondifferentiable. 

Since F(x, y) = G(x, y-x) we consider evaluation of G(x, y). 

Some general rules would be useful. Davies (1974) has determined 

the folloraing: 
(a) Let h(x) = af(x) + bg(x) 

Then Gh(x, y) = aGf(x, y) + bG9(x, y) 

(b) Let denote a 'multiplication' operation which satisfies 
ýyýt L)z= yý z rt ýalý z and bA Cz, -* ,)=yz, +- j4 z., but need 

not be associative or cummutative. 

Let h(x) = f(x)*g(x) 

Then Gh(X, Y) = f(x)*Gg(x., Y) + Gf(xsY)''g(x) 

(c) Let h(x) = f{g(4 

Then Gh(x, z) = Gf(y, w) 

where y= g(x) and w=Gg (x, z ) 

Special cases of (c) are: 
(d) Gh(x, Y) = G9(x, y) x df(Y)/dy} 

where dfý`3ýdy = 
(f(y + X) C, C, I) 

(e) Let f(y) be linear, that is f(ax + by) = af(x) + bf(y). 

Then Gh(x, y) = f{Gg(x, y)l 

These results hold good in the case when the functions 

h, f, g and their arguments are vectors or matrices. 

'11e now proceed to sketch out hour to derive the directional 

derivatives of the design criteria 1(") of section 1.4., which depend 

on the matrix M! h'. Firstly Table 3.1.1 is a list of particular 
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ancillary derivatives of which we will make use. All the results 

were derived by Davies (1974). The variables 1i, N are kxk matrices. 

TABLE 3.1 .1 

-f CM) 
(i) M 

(t 

(111) ýý 
CL 

(` 
+ 

(iv) [uý/k) (M)] 1/t 

(v) (k f (Nº) 

(vi) ýýýdefcM>ý 

Gý (Mý N) 

N 

N. j ) 
NJ =M NM (i) 

) 

tit t (M{-INýLCýfkýEr (Mýý r 

tý¢ 
(m)'Tr(NM-, ) (61 

`U), 
f>a) 

+r (N M- I) (6, C"), (d)) 

3.1.2 We need to derive one further major result. 

Lemnaa. 1 .1 
If 1` is nonegative definite and the nullspace )1(1,11) of 

I, i is contained in that, A(A), of A, then the function g(M) = AM+A' 

has directional derivative 

F (MI, N) = AM, +AI A)J'+X CX' M}A' 

where A, M, ri, X, and further matrices B, Y, Z, T, P1, P2, P satisfy the 

following relationships. 

(i) xx' =N 
;s ortýoýoý4( (ii) P- (P, -. P, ) 

ý{ 
( P.: Pte) rT OM 

L]() 
"Pý T týiýonaý ý 

: oASncýtx( 

(iv) x= 
(P P)(YI YP "x z= P'x Z% )z 

(v) C =Z - Z(ZZ')-ýZ 
CV1ý 

= BP, 
' 

,B=AF, 

Some notes 

Note I Clearly the elements of T are the non-zero eigenvalues of l' 

and the columns of PI are the eigenvectors corresponding to these, 

while the columns of F2 are eigenvectors corresponding to the zero 

eigenvalue. 
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Note 2 If N= 1'(q) Jfl then N= VQV' where Q= diag { q1, ... ' qJ 
j 

Hence we can take X= Va1/2 where Q1/2 = diag[ f1ý--- j-ýý 

whether or not qj=0. 

Tote Particular consequences of the above relationships are 

6T-ýßý = AM}Aý RT-'Y = AM}X 

These follow since 
(P1: P-) 

M 
(ý-r-' 

-Loo Pz 

- Note 14. We have particularly specified L`. + 
as opposed to any other 

generalised inverse. This is for simplicity. However the null-space 

conditions of the lemma imply, of course, that Ala+A' = AM-A' . 
Thus F9(MI, N), as stated in the lemma, must also be the value of the 

directional derivative of AM-A'. In general though,, Fg(1. S, N) will 

not be the same function of 1r as it is of M+. 

Proof of lemma Davies proceeds as follows 

Let ý"ýE _ «- E) M -+ £X Xý Tý _ (ý - ý)T Y Y' 
. 

We have 1, T2 =0 from which it follows that AP2 =0 since (is) - 
n(A). 

Hence 
ME 

(P, : Pz) T i 

£1Y/ EZZ/ P. 
and for o--F-<- % 

ýM+A = 
ß(-r: 0) -ra r-'f zl(3' [£ZY' 

£ZZ'1( 
Now use Rhode (1965) and the fact that T£ must be non- 

singular in an argument analogous to that which derived the simplification 
1 . 4.7 of Abt'-A' in the case A= [I :s 0] to obtain that 

fý M£ A' <B[-£Y z`(z z`){Z Y'] ßi 

ß [T - £T £ C'Y I 

6 [T-' 
o(e)] ß' 

= ßT+ E BT ß' ß-rYCY/7-13' off[) 

=A M}A' +s(4 M}A' -At t+X c X' M+A' -t- o (£ ) Hence 

A'-AT, 1, > C X' M+R' I -+- 4) (£) [ CA4EfAI-A r'I A ̀ý£ _ En m 

tom. Fg(Mý Ný -[Q 

Addendum By a similar argument 

G9(MIN) AtýýXCxM Äý. Q 
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We now list some corollaries 

Corollary (i) If M is nonsingular G(M, N) Vif: 
ýI1ý` ýA' 

. 
Proof It follows that T is of order k-k and hence P2, Z strictly 
do not exist or could be regarded as zero. Then C=I and of 

course 1. M+=}d1. a 

Corollary (ii) If A=I and 1` is nonsingular so that g(M) 
then G(i, I) I1) =-M1 IM-1 13 

Corollary (iii) Let M, N M= L4(q), N= M(r); r, q Eý. 

, Suppose 11 is singular. If Sup(r) L[Sup(q)] where L (Sup(q)} 

is the linear subspace spanned by Sup(q), the support of q; then 

A M+N M+A "- 

( (M, N) = AM 4 Al- A M+N MÄ1 
Proof In the meaning of formula 1.3.9 

VPV` 
qqq 

Now orthogonal P= (PIP2) is to be such that for T nonsingular 

diagonal 

and hence 
/ 

P' Vý P 

Since Pq is positive definite this will be so iff P2 'V 
q=0. 

That this 

is so under the conditions of the lemma can be seen from the considerations 

of consequence (vi) of formula 1.4.6. 

Since R(1) = R(q), the columns of Vq, i. e. the support, 
Sup(q), of q, belong to R(M). The latter is the orthogonal complement 

of )1(M) which is spanned by the eigenvectors corresponding to the 

zero eigenvalue of 11, i. e. the columns of P2. Hence P2'Vq = 0. 

In general P2'x =0 ifs' xE R(I: ) and hence here., P2'x =0 iff 

XE R(Vq) = LtSup(q)) . 

Consider nor N=].! (r), Sup(r) L {Sup(q)} 
. Again in 

the meaning of formula 1.3.9 

N=VPV' 
rrr 

Hence N= XX' where X= VrPr1/2 and so Z=P, X = P2Vr p 
r1/2 
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Nov,, Sup(r) CZ L {Sup(q) implies that the columns of Vr 

belong to 'L {Sup(q) and hence by the preceding argument P2Vr = 0. 

It follows that Z=0 implying C=I and hence XCX' = N. 

Hence the result. 
a 

Note that no value was specified for n4Sup(q)). 

The result could also be shown to be true by a similar 

argument for any nonnegative definite M, N such that R(N) C R(M) 
. 

Corollary (iv) Fg (M., N) = G9(IS, N) - G9(I, M) for I; nonnegative definite. 

Proof Clearly M satisfies the condition imposed on the matrix N 

at the end of corollary (iii), namely that R(N) C (I, ý) . Hence 
Äý 

-RVL c. 
g(MýMý _ -Am 

We have already claimed, for general 11, that 

G9(MýNý _- AMXCX! M}Fly 

Hence the result. Note however that, while this implies 

Gg(M, N-M) _ Gs9(M)N) 

it does not necessarily follow that G9(Li, N) is always linear in N. Q 

Corollary (v) 
ýý ! M-IA/ Me nos, l5wlar. (M AM e ss1 a) E 

11ý 
i4 rt- 

`b) ;f M(`t_)JLr r'I = AM}(, 
-)A 

AM(, t) L'. MC A 
-f Q. =oE Lý5"Qýti)J 

ýc) FJMCý)i if 

Proof Case (a) follows directly from corollary (i) taking N= vj vj. 

If qj> 0 then vi E sup(q) and hence vj E L[Sup(q)} . Case (b) then 

follows directly from corollary (iii), for if vi eL fSup(q)j, then 

vj. vý is a particular case of the matrix N= i(q) there. Case (c) is 

obtained as follows. 

Clearly we can take X= va . and hence Z= PIv3.. Thus Z 

is a vector and so the matrix C is a scalar, namely C=l -Z (zZ) z 

Since Lr. ý Lf S t)1 ,P+o' 
and if Zr0 then it is 

the case that 
CZZ') = 2ZX6 Z Z) 

Thus C= 1-1 = 0. Hence the result. 0 

It was reported in Note 4 which followed the stating of 

lemma 3.1.1, that Fg(L, id) must define the directional derivative of 
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Al A' at L: towards 11. In particular then (b) and (c) must define 

the directional derivatives, t �ards the vertices v. vý, of AI,: -(q)A'. 

In fact, in an exception to the case of general Id, we can replace 
X (q) by V'_(q) in (b) and (c). Under the null-space conditions of 
the lemma, equation 1. ) .6 is satisfied. Consequence (v) of that 

equation tells us that All+(q)A' = Ali(q)A' , while, when e L{Ste(t)}, 

it follows that vj .e 
R(i (q)) and so, from consequences (vi) of 1 . 4.62 

AM}(q) vi = AM-( q) vj" 

3.1.3 We now make use of the above results to derive the directional 

derivatives for standard design criteria. Particular use is made of 

rule (c); that is, if ý(M) 
= f{g(M )} 

, then 

Gj (r`') 

We take g(M) = Ate}A' amd always assume that M (and N) is nonnegative 

definite so that we make use of the formula 

F (MN) = 9(M, N) - 5(Mj M) . 
1. The general trace criteria 

M) --b-[ (M)}, o G, ý, 
(M, H =-tt45 CM)"G(MN)} dyl, ý) 

E-fýý(AM+AAMXcx'M+Fl'1 

Gý (M) M) _ E" C--{(A 
Hence 

F, 
ý, 

(M)N) =-t k{(RMÄ )1 
MXCXM+R'} - -ý-(AMtAý)ý 

{ 

In particular 
t-º f 

tr 
ýAM ýR) AM ýNM ýAý --&(RM'R') 'Mý. s, gý(a 

(i(+)F(M,, N) _t M= (ti), N=M(*) 
ý, 

{(RMtA') FIM+N M1'}- trýAM+ýi) 
{Sti? 

ice) ý"lsýPý`ý)ý 

If M is nonsingular 

q. rIM-IA'(AM 'A') 

M- týýM- JA= 
zk 

Yore generally t :f 

; ýMt(P)Fl ýAM(P)A) 
AM(p) -+ 

(AM+(r)n 
,P 

_oý v eL[ (ý)ý 

I(A M (P)R) if pi = o, ;ý L[5 UT 
A 
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2. Dh-optimality 

ý(M) 
=-1, geJtt"{9(M)} G, 

-(M)N) -tr{9'(M)" g(M)N)} öy (v, ) of Tble 3.1") 

_ --r¬(AMýA'iAM xCX'MAI} 

Hence 

F, p(M)N) _ ýýýýRM+Aýý AM+XCXýM+Aý -s 

In particular 

+, {(A M-"A') Am -'NM 

F(M, N) 
AMN M}A, 

If bi is nonsingular 
. 'M-'4 (A KA) AM' 

JJ 
More generally 

M(P)A(A m (p)AI) AM (o 
[M) 

I 

M . CASI., la., - 

M(9-) 

A= Zk 

"ý P, >O or 

_SJ 

3 
JE L{Sur(A 

lf pý = 0., tr. ý Lls, F(r)i 3 

3. LA-optimality 

q)(M) 
-ýr{L(Arý+Aý ) CSýýMýNý _ -fim{L"G9ýMýNýý 6yý�)ýT0.5i{ 3i ißt=. 

_ ýr{LAMtXCXMt '} 

-' GZjJ &1) M) L (A M+A'N 
Hence 

y (N) 
= -6- 

CLA M+X C X' M+A' }- fr-{L AM fl')S 

In particular 

M'A')} jfMNMn' -{L (14 
F,, (MAN) 

-ýLAM4NMýA'j - -f4L((M*F}') 
M`M(-i)/N=M(r) 

If M is nonsingular 

FEIM, ur 
More generally jsý M (P)AL fl M+(p) - tý{ýýAM+(P)flýý 

Pf 
öJE 

Fý[M 
A' 
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4. C-optimality ý() (M) 
=_c r/'Mýa sýacaý 

Taking A= c' and t=I in the results for the general 
trace criteria we obtain 

F. (M)N) 
= c'M+XCX'M+c -cc 

In particular 

-C 1'I c }/ý yýc, sý aauýar CMNM -1c 
N) 

C'M+NMc - c'týIc 
M= Mýýtý N M(() 
5-P(-) 141-POO1 

If 1+ is nonsingular 

Flp(M1 ýLr/1 _ 
(j/M-lc)z 

- c'M-ýc 
Yore generally 

1 

1 

- C/ M+(P) 1 ýf P; _ ýý ýýS ýCPýJ 

5" EA-optimality 

Consider now the case = -Amaz{9(M)} 
This is less straightfor, "rard to deal with. Consider first the function 

3,1 .1 
f(M) 6 ! Mb 

S6=i 

Suppose that A(M) has a multiplicity of q=1. Then 

there is a unique b solving the above maximisation, namely the 

normalised eigenvector corresponding to X,. (M) 
. Denote this by b^ (}M) 

. 
Assume also that (M 

+c-N) has multiplicity I and let b*(I. t + ell) 

be the counterpart of b*(M). 

Lemma. 3.1.2 

Assume for any matrix A that 

L Lý(M 1- e N)j 
/R[ 

6*(M +E N)] =L6 M)1 A 6*(M) a (e) 
Then 

(MýNý =[6(M)ýNýýM) 

Proof 

It follo; vs from the assumption made in the lemma that 

f(M+ E N) -fiM)ýýE = Cý (M)]'NL (M) o(e) . 
Hence the result. o 
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Consider now. the case when X. M) has multiplicitly q>1. 
There is then more than one optimising b*(M) in 3.1.1, namely any 

normalised eigenvector corresponding to A (M) 
; in particular 

i 
any linear combination b*(M) = E>. d, of q orthonormal eigenvectors Z=1 I 

41 

b,, ..., b corresponding to X i'M) with I to ensure 
q 

b-' (M) is normalised. 

Note that if bi and b. are two (orthogonal) eigenvectors 

of a matrix 1.1 then 6- f L=o; bi, b . are M-orthogonal. Hence 

[6 (M)1 M 6ý(M) 2 6`M bý 

Let B denote the set of all optimising b~`(M). 

Suppose that a (! ̀ 'l+ EN) has multiplicity 1. Then it 

would seem that it would be the casein the light of lerrma 3. '1.2) that 

3.1.2 G-(M, HA 6'NL. 
bE)3 

A similar result should hold if 
M 

(M; 
-EN) has 

multiplicity larger than 1. 

Let us suppose that 3.1.2 is true. Consider now 
O(M) _- x"'JA W{ ') = -+[(M )l 

. 
Let a now denote the multiplicity 

of ý AMW) and let denote the set of all normalised 

eigenvectors corresponding to i1ýýXýAM R. Using rule (c) in the form 

Fý(Mj N) = Cý(Mj N-M) Gýýg(M)J -(M, N-M)} 

we obtain 
F (M) N) _-m 

{z &(MN-M)zJ 
zEFý 9 

that is, 

3.1.3 Fqj (M 
J 

N) { z' [A MtA c x'M+R'J z 
2Eis 

lie note then that in the case 1! nonsingular 

3.1.4 fp(M) N) _--I z'A M'(M- N)P'1zi 
2E ia- 

This agrees with the derivation obtained by Kiefer (1974) 

for nonsingular I' although his formula was 

3.1.5 F (Ml N) QAM AM-N)M'lQ} 

where Q' = 
[bý. 

""" bqý , b1, ..., bq beine qo Luhonorral. eigenvectors 

(AM W) 
. corresponding to > 

, ax 
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The agreement between the two formulae can be seen as follows: 

A (AM-W) 
ota, x 

that is, 

3.1.6 ý CAM 11') - '%4" býýý 
. 3 

Vie have already observed that {Ai bi will, if ý: 71\j = 

define another normalised eigenvector corresponding to 

so that an optimising A for 3.1.6 appears to provide, in z=2:, \j6- 

an optimising z for 3.1.11. 

Further simplification of 3.1.3 derives from the fact 

zE '+ that for zAMAz = X,, jAtAtA'). 

.'. 
Fý'q-, =-ZX 

JA M+W') - z' A MAX C X`fýItq `Z } 

that is, 

F, ý(M, N) iAM1X&P A? 
ZEý 

( 
similar argument would yield &q, (M) N) A MAX G 

In particular 

_ze. 

{ zA M IN M-1 R i1 
- , \, ýCAM-11l') )M 

F(MN) M= R), N^ M(r, 

If M is nonsingular 

Fj 
(M 

Ls' = 
ZEA 

z 1JJ Lr: 
Lvy J 

Yore generally 

ar. 
_Qx 

(A M-W) 

afl (v ') 

2; s'M}(r)A'z} -a 
ýAM+(ý)A' 

F'j1 IJd 

Fý-1k 

if p >0 or 

.týJ 
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Support Differentiability; Regression Design 
Optimality Theorems 

3.2.1 we turn now to consider some optimality theorems for the 

design criteria of the previous section; the need to do so being, 

that non-differentiability can occur. The matrix AM+A' (and hence 

functions of it), is in general not overall differentiable, as is 

evident from the fact that G(?, `, Ir) depends on N through the matrix XCX'. 

The necessary full linearity of G(I, i, N) in N, in general, 

only . obtains in the case of DA-optin lity, c-optimality and ý ((''1)=-fýtýM 

if M is nonsingular, while, even if the latter is the case, the 

generalised E-optimal criterion will typically be non-differentiable 

if the multiplicity q of , \�ýiýM fl is larger than 1. This is 

clear enough from Kiefer's formula for FF, (I. t)N) given in 3.1.4. 

Typically, only if Q is lxs, which requires_q = 1, will the necessary 

linearity obtain, for then is simply the 

scalar QA MI fr 
-NýM-IA'QI . 

However we have seen in the case of DA-optimality, LA-optirr. ality, 

e-optimality and -tr(AM+A')t, a restricted linearity of 
G(M, I) in N; namely, for Y_ M(p)E%ý 

, 
G(M, N) is linear on the set 

{N :N -M(r) Sup(r) G LýS-p(p) 
. 

Definition 2.7.1 Support Differentiability 

We say that a function qi(LI) has support differentiability 

at 11 = 1, (p) if G(1,11 N) is linear on the set [N =N =M(, -), Sp(, ) c I- [Sup&)I I 

That is, l1(") is "differentiable at M(p) with respect to L{Sup(p))". 

In retrospect the above criteria must enjoy something 
like this property since for them full differentiability fails if 

and only if G is inestimable; that is, if Z, 1(p) is singular. 

Consider the following notion. 

The linear model 1.2.1, E(y) = v'6 , is eouivalent to 

3.2.1 E(y) _ -'ö 

where w, ö are of length k'>k with ö' = (o' 
, j3') for arbitrary j3 

and w' = (v', 0'); that is, the last (k'-k) components of W are 

zero and, hence are redundant for y does not depend on )S ; observations 

on y will never yield information about /3. 
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However in principle an appropriate expansion of lS 

will define a 'design space' L for 3.2.1, such that any design matrix 
M, (p), corresponding to a 'design p on W', will be of the form 

M (P) O Mk, (P) 
0 0] 

Always r': 
w(p) will be singular with the resultant loss of 

'full differentiability'. Clearly though 'full differentiability' 

under 1.2.1 at nonsingular i: 4(p) is a particular 'support differentiability' 

under 3.2.1 at 1, `ß(p). 

53.2.2 We now consider what can be achieved in respect of 

optimality conditions under the possibility of nondifferentiability 
in the design context. 

Of course the problem is that we will not have available 
the simple finite set of optimality conditions which, under the design 

version of theorem 2.5.6, vie would have at our command at differentiable 

1: 71(p). At best this theorem can only identify non-optimality. In 

principle we must test the optimality of a postulated solution by 

checking for the conditions of the design version of theorem 2.5.5. 

However one would have thought that support differentiability 

might point the way to a simple test of optimality and indeed this 

does lead to some simplification. For instance we can derive a theorem 

specifying a finite set of sufficient conditions for optimality. They 

are hovrever not necessary conditions. . kt best the theorem can in some 
instances identify an optimum while in other instances it will identify 

non-optimality. As yet there still remains the task of identifying a 

simple enough finite set of necessary and sufficient conditions 

although Silvey (1978) and Pukelsheim (1979,1980) have come close to 

a solution. It could be said that the latter has established a 
finite set of necessary and sufficient but invisible conditions; he 

has established the existence of such a set. 

Not surprisingly other authors have considered the problem. 
These include Karlin and Studden (1966), Atwood (1969), Sibson (1971x) 

Silvey and Titterington (1973), Fellman (1974). However in general 
their results are too complicated to be of practical value and we 

will not report their work. 
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We will confine ourselves to an appraisal of a collection 

of theorems which includes design versions of theorems 2.5.5 and 
2.5.6, two simple theorems defining sufficient optimality conditions 
based on support differentiability and finally the theorems of Silvey 

and Pukelsheim which are the most recent in the literature and have 

been closest to a simple solution to the underlying problem. 

3 . 2. 
Theorem 3.2.1 Suppose ý-Vi 

jP E)ý1 

If LP(M) is concave on m and M(p*) is a differentiable point of 
then M(p^) maximises- l/1(-) on . iff 

Ff M 

(ii) F M(r ) 
ý 

tý 
}LO 

wý, cý ý3 o 

This follows directly from theorem 2.5.6 and is more 

properly the general equivalence theorem. C1 

We now consider an example which illustrates that the above 

conditions do not guarantee optimality at a nondifferentiable M(p). 

The example was considered by Silvey (1971F). 

Ex. 3.1.1 The design space is U= [,,, ; ;? _ 
{(I, o); (4-, i)l(Lt-, z)l} 

. 
The criterion is c-optimality with c= (i, o) /, so that 

F{M(r) 
C'mE L{S'. '-P(p) 

ýý s) /-C, MS(P)c LrS `MCP 
} 

Consider the design p= (i) oj oý) 

M(, )_[' 0] = M+(F) 
Sý-kP(P) _{ý} L{5 e(p)} ={x=(",, ý)1 z=oi c1M}( P)y_=x ic11, 

Ä(P) c=1 

Hence z- .x. o 
xx 

-I xý$p 

Therefore F{Mý? 
,=o -iý -i respectively for j=1,2,3 and so 

the conditions of theorem 3.2.1 are satisfied, except, of course, 
that 1. ß(p) is not a point of differentiability. 
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Consider now the design q= (oýýcfl-ýCý In the terminology 

of * lemma 3.1 .1 

N=M (`tl 
=ýIz, 

[0 

(o -ý)1Cit :kJ LS 4A 4- 3K J 

X=I 4 If "o 
lo/ C3 jI --Ll 

Z=(. ý2 -KT , 
ZZ'ý (! 

t. -3C') ý 
CZZ/)+. ýc-_3oc)-1 

= Y, 7-' = 4_ 
) 

D=Xcx' = xx'- 

FM (r), M (9-)l _ ý'M+r) D M+(P) - C. M+(P) C- 

> O) d [z713S,, "y1391 

This latter derivative was also obtained by Ford (1976) 

by an alternative method. That the derivative can be positive is 

evidence of the non-optimality of M(p). 

Theorem 3.2.2 Assume V 
and 

A 
as in theorem 3.2.1. 

If t (i, I) is concave on then III(p*), for P 
Fps 

maximises lý( on m iff 

F {M (PG ), M (t) }oVEp 
that is, 

'ax 
Y 

FIMCPý MCam) ic-L o. E 

This follows directly from theorem 2.5.5. Q 

We now state a design version of theorem 2.5.10. 

Theorem 3.2.3 
Let 

U 
be a compact design space. Let denote the 

set of probability measures on c_ and let JL denote the convex 
hull of the set fu': sE 141 so that MEA iff 1,, ' = 2; d(p) = EPýstrll 

for some p(") E )II. Let ý? 
fd denote the set of finite discrete 

probability distributions on I and for p pý let Sup(p) _ L 

Call Sup(p) the support of p. Assume cj1(" ) is 

concave on . 
il 

. Then 
c 

(i) For any ME . 
rc 

,M=M 
(Pý pe 7"A 

(ii) For e fld I! ` = M(p*) maximises q)(- ) on AC iff 

Ff M(N ), M(p)1 oyre )Ofd 
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(iii) If for p* e )0 
, M(p*) is a differentiable point of ý(") 

then M(p*) maximises l! 1(") on me iff 

f= 1 M(P o Lr EU 

with equality in the case of Lr E Sup(p```). Q 

A proof would be analogous to that of theorem 2.5.10 and 

would use a design version of theorem 2.5.9. We have already used a 

corresponding analogue of theorem 2.5.8 and will further do so in 

the next section. 

Again the practical value of theorem 3.2.5 is that if 

part (iii) applies this can yield explicit solutions for p'` or 

verify the optimality of an indirectly derived 'formula' for pT. 

We shall see this in the next section. 

If however p', ̀ is obtained numerically then in the case of 

differentiable Li(p'°) theorem 3.2.1 is the one to which we shall 

appeal, the design space having been discretised. 

Again the following analogue to corollary 2.5.10.1 

sometimes proves useful. 

Corollary 3.2.3.1 

Let the set 
U in theorem 3.2.3 be a bounded convex set 

with a finite set of extreme points Lf =[ v1,..., vj}. Let p* 

be a solution to the optimum in that theorem. If l(i) is increasing 

on the set of nonnegative definite matrices then for at least one 

p*, Sup(p', ') c V; a p* solving the design problem (P4. ) for this Ü. 

Proof Since p* E we can restrict attention to discrete 

probability distributions on 
V. 

Let M= 
ýýý C Ls 

where v, 
ý.,.., 

m are distinct elements of 
U if. Since defines the 

extreme points of U we will have 

3' s 
L Uj j ýý _ý Lj 

Hence 

M= ýcL 
ýýý Ll 

,r where 

L ýS sdj =i ýl S 
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Consider ` ý, LL 

where 

,z ý Now 1Sx= y%`.. (C 

x M" X= 
(F-,.. 

XLT. - <x M- X. j=i LJ . 1) I- 

Hence x'M x> xIM x, 

and the matrices M. - L`: 
i, 

11 - I` are nonnegative definite. In consequence 

Now 
s 

jid)ii <j )i =1Pj 

Hence M= M(p) with Sup(p) c 1J and hence we have shown that to each 

discrete design q on V there corresponds a design p on v such 

that 4J(") takes on a larger value at the design matrix ].,, (P) of p 

than at that of (j. Hence the maximus of C") over c must be given 

by the maximum of ql(") over ._[M' M= Er{tV'I 
JFE 

jJ M 

In practice then we can regard U as the design space. 

We now obtain some slight simplifications of theorem 3.2.2 

in the case of the standard design criteria. 

Theorem 3.2.1 
+ 

Assume U 
and 

A 
as in theorem 3.2.1. Let I (M) X,, (A M 

Then L{(p) ,Pep, maximises li(M) on : {-f 

v&OX G{M(r ), M(t, )} = G{M(P ), M(j' )l 
CL E 

i. e. G[M(f; )ý M(i) `L Ep 
OR if f 

Gf m(i), M(f") - GSM(, t), M(-t) ýV CL EP 
Proof The result follor: s from theorem 3.2.2 when we note that 

Ff M(r), M(cÜ} = G{r'º(p), M(%)j - G{M(P)jM(P)j 

a consequence of corollary (iv) of ler. -=a 3.1.1. As we have said this 

does not imply differentiability. a 

It is to be noted that equality in the first two conditions 

of the theorem may only be attained when q= p*. In contrast a 

stronger result can be proved for the other design criteria. 
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Theorem 3.2.5 
Assume U and 

Ras in theorem 3.2.1. 

Let q)(L) be the DA-optimal or c-optimal criterion or 

(I1(1, ß) - Then 2, i(p*) , p° E, maximises qi(M) on iff 

)D 
Gf M(Q ), M(a)i = C-f M `ýý 

i' 
yE P(P ̀ ý 

. q -c 

Proof These functions again enjoy the property that 

Ff M(P)jM(ci)} = G{M(p), M(ct. )S - GAM(P), M(p)J 

Hence conditions as in theorem 3.2.3 must hold. In particular we 

must have 

fA, Lm G2Mý(iýMCti)ý GLM(PýýMýPý 
E 

. Equality however must be obtained here for vj e Sup(p*), 

since the functions listed enjoy support differentiability. If p'` 

is to be the optimum for the whole design space 'then 
it must be 

the optimum for its own support. Regarding the latter temporarily 

as the design space, so that we now have full differentiability at 

Y(p^`) on the appropriately redefined J 
, and appealing . to theorem 

3.2.1 vie conclude that 

F{ M(ý ýý ýý =Ocýe Sup(v ) 

Hence the theorem. 13 

Kiefer (1974) obtains results similar to these two 

theorems and also the result that p* is that value p' which 

minimises su G{M(P% M(F)j under a general condition. This 

is that on . 
/ý. -{M :M&Jl P(M), 4j it be the case that 

t(J(P. I) = P[H(1d)} 
' where H(") is positive, homogenous of positive degree h, 

and continuously differentiable in a neighbourhood of A, and where 

P(") is strictly decreasing and continuously differentiable on 

H(. 1v11) while loges{P is convex in Also still q(?: ) or some 

function must be concave on . 
l, 

53.2. The -above two necessity theorems though slight simplifications 

of theorem 3.2.2 are still not of much practical value. In contrast 

the next two theorems are much simpler but they are however just 

sufficiency theorems. 

The first theorem covers DA -optimality and c-eptir 3ity. 
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Theorem 3.2.6 
If the null space of I. L. = 111(p*) is contained in that of A 

then a sufficient condition for IL to maximise 
ý1(t: ) _- &ýA M}Aý) 

over A is that 
3.2.2 -ýý(AMF1 = 

(AMA) 

This includes c-optimality if we take t=1 when A= c`, and DA-optirality 

is covered by the case t=0 when 

Proof We require to sho; that this condition guarantees the 

condition of theorem 3.2.5, namely that 

3.2.3p 

For any 11 such that )J') L- h) we have, in the notation 

of lemma 3.2.1 t-r 
& ýMý N> _ -&- 

(n MTh' H MtX C X' M+A'1 

where, in particular, N=W)C=I-D0= Z'(Z Z'rZ 

hence 
_ 

G (M, N) _ Eý(A MBA )t- ýA 
NI N ICI+A A M}X D X'M4+9 ýJ 

Nov, the matrix XDX' is nonnegative definite and so can 

be expressed in the form RR' . Taking I. 1 = I, (q) = qwwý. vie obtain 

&(N)M(ýý) _ ýýý ýýM RýýAM+Aý) ÄM+ý 
--t-{R 

1M+Al(fIM+A/) Amp, 
J-ý 

The last term on the right is positive and hence 

G- (M M (� 0.. x. ,5 
C_A'(ß M`A'lt-1A Ms ý{ 7- E 1)ji)J 

that is 

ýýýCs MýM(qý MAýflMAý AM 3.2.4 

Now particular cases of II(q) are of course the vertices 

v . v'. of 
A 

and we have e-. JJ, rM+CPý r ýH 
MA(P) A ý) A M+CPý ur. ýr EL ýSýPLP)ý 

JJ0 
JI 

Hence the inequality in 3.2.1- may well be strict, whatever 

p, be it p=` or not. This though will not be the case if e LýSýýCP)1 

where v., is any solution to Yka-z Lr. 
' MA rý M A) AM ýr JjX 3K ?*J 

a condition which will be guaranteed under 3.2.2. This follows from 

the support differentiability of l (}: ) for it is because of this 

that 3.2,2 can occur at pes. It cannot occur at any other p and it 

need not occur at pM. 
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The global p' must of course be optimum for its support 

ana so appealing to theorem 3.2.1, as in the proof of theorem 3.2.5, 

we have 
ýA M Aýý =- ,, 

-AI(AM ý\t-ý MI jVP 

If for any M= M(p) the corresponding equalities do not hold then p 

cannot be optimal for its support and hence cannot be the optimal p°. 

Equation 3.2.2 will not hold if v is not given positive 

weight by p, -- but if it does hold then v, =vi for any v such that 

*J 
PS > 0. 

Equality in 3.2.2. and the resultant equality in 3.2.1 

will guarantee 3.2.3. Li 

The next theorem covers the generalised E-optic l criterion. 

Theorem 3.2.7 

If the null space of IL = I,. (p*) is contained in that of A 
+, l then a sufficient condition for I. to maximise lU(11) "_ - ýH0. 

X(A 
NJ aJ 

is that for some normalised eigenvector z corresponding to ý,. 
_JA 

M# A 

3.2.5 
".. 

(AM fl) >v -x ýR ZzAM Lfý 

S 
If equality holds in 3. Z. 5 then 

3.2.6 ý, (A M, A') _ ýýM Azz AM4 ýi P>o. 

Proof In principle we have to prove that 3.2.5 guarantees the 

conditions of theorem 3.2.1, namely that 

G-(M*, M(ti)) `- G(M-X, Mý V 
tiEp ; 

that is, for M(q) = Pi = XX' we have to prove that 

3.2.7 ZAM XCx Mt n'2- t- , ýý, 
axißM 

1 

where ý`` is the set of all normalised eigenvectors corresponding 

to 
Clearly 3.2.7 will be true if for some zF5 

3.2.8 zRMXcx1M/z a, (AMA' 

Now since, in the notation of lemma 3.2.1, C=I-D, 

D= Z'(Z7')+Z, the left hand term decomposes to 
ZAM N M*A/z - z'AM91 XDX M-1 Az 

iA MN M A'Z 

ZAM ý'MAZ N=;; 
J 

Hence 3.2.8 will follow if 
2+/tI Iq ýtiý AMA MBA Z 
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This in turn will be true if 3.2.5 holds 

Equality'in 3.2.5 implies 3.2.6 since for any vector z 

P s. 'M+Arz2-! 1Mx 
V. - 2. 

'flM1, M., M Art 
= 2`AM-X, 

Ar 

,Jd# Hence z' R M+A z. K -' s M` A12-2! AM ýv. bit ZE AM tr 
,ýs5 Fl Z= a,,, 

x AMA Aý D 

Note that 3.2.6 is not a consequence of support differentiability, 

for the directional derivatives Ft2(p), vivý1 depend on the terms 

ý'Mti 
zz AM1') M=M (p) 

. Only if a common Z, say z, solved 

m-z ! AWN M /1ý2 for all IT = M( q) EJ1 would support differentiability 
2 Ehe 

obtain, and this z would then satisfy the conditions of theorem 3.2.7. 

5 3.2. 

" Theorems 3.2.6 and 3.2.7 prove sufficiency of conditions 

3.2.2,3.2.5,3.2.6 for optimality. Unfortunately they are not 

necessary conditions although they can certainly be attained. 

Theorem 3.2.1 illustrates for instance that condition 3.2.2 holds 

when a whole design space of J- k points forms the support of the 

optimum. Empirical investigations have also discovered 3.2.2 to hold 

in many other examples. 

A counter example to necessity of the latter is very 

simple though. Suppose a design space is ={ Ii) äI where 

s= (Ij o) and Take A= c' _ (1,0 as in R)c. 3.2.1 

so that the criterion is c-optimality and we take t=I. We show 

that p 
Let q= 91 This for o-E si defines all other possible 

designs. 

u-<<; 
1 _ Do 

ö] and from the results of : x:. 3.2. '1, F 

and hence Ff Mý)) M(ý_)j _- -o for all qo Hence p is optimal. 

The countering of the necessity cf condition 3.2.2 is 

complete sehen we note that (ýýM+(P' 
c) = DC :L and there was no 

restriction inposed on x� 
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However intuitively it would seem, if only because of 

support differentiability, that surely conditions similar to 

3.2.2,3.2.5,3.2.6 would prove both necessary and sufficient for 

optimality. Indeed this is the case for as we have said Pukelsheim 

establishes the existence of such a set. Also Silvey obtains 

corresponding conditions for a general class of functions which in 

some instances are necessary and which he believes are necessary 

more generally. 

We examine Silvey's results first. Consider that one 
further rather neat way of establishing optimality of a nondifferentiable 

x* = x(F-) E )O(Lt) for concave qJ(") would be to find a differentiable 

z such that qJfx(p*)l _ J(z) and which satisfied F(z_, ui )40. Then 

of course 

3.2.9 Ff zýI _ Yý ýL, F(z, L-J) <- a 
and so less interestingly we have established the optimality of x' 

and of 2 if z- E }P(LC) 
" 

However, as we noted in (D5) of section 2.3,3.2.9 does 

not require differentiable z to belong to }3(LL) and provided the 

concavity of ß(") extends appropriately beyond }D(LL) the above 

conditions will still establish the optimality of x from such a z. 

Silvey (1978) discovered the form that such az should take in the 

case of functions 1 (M) = f(AM A') . His result is the follcming. 

Theorem 3.2.8 

Assume f is concave on JL= fm 
=ME nD 

I 
%1(M) c 71(Fl)ý 

. 
Recall that 1T E1 is such that Y't, S =A for some Y. Let M. C- A A1)1A 

be singular with rank r and let (M) be the set of matrices H 

of order 'k x (k-r) which are such that M. * = Mr, + HH' is nonsingular. 
Then a sufficient condition that 14J(M_) be maximal over . at M, 

(= 
M/ 4r% 

is that there exists an H r- Y(M4) 

Proof 

Clearly I: satisfies conditions implying that 

(IJ(M )=f (AMM A', f (AMA') for all I.! 
, 
fº1 

. Optimality of M 
i followis since (M 4-HH/ 

ý is a generalised inverse of Y. when 
HEi 61Q. See Searle (1971, p. 23). Hence AM, -, A' = AM A'. Q 
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Bote that for 0 (M) 

FCM L Lr') .. ý'M, ýxACAM 
A') AMA --r(AM Aý 

Hence the result says that a sufficient condition for 

optimality of M is that for some generalised inverse MK of M. of 

the form M= (M 4 H14")-I) H (M) it should be the case that 
!kW 

3.2.10 -E r 
(ý iý* A ýý 

wt4x , 7'M A'(A M ºýýý AML 

Clearly we have in 3.2.10 a sufficient inequality condition 

similar to 3.2.2, although one which has the disadvantage that it is 

invisible; one has to find an hR from the many generalised inverses 

of 1I . Silvey however reports that it is also a necessary condition 
in the case of DD-optimality and k1 (M) _ -fýýi9M r1ýý He believes 

it to be necessary more generally. In fact this is true for 

- trtAM rý ýý Pukelsheim obtains necessity in the case of 
4)(M)= 

He also obtains a necessary and sufficient condition similar to 

3.2.5 for the generalised EA-optimal criterion. 

Pukelsheim's result uses the notion of a t-contracting 

generalised inverse of a matrix. He proves the following theorem 

in Pukelsheim (1980). 

Theorem 3.2.9 

Let M-, = M (p-"`) e . 
1Y1 ̂ Jv1A 

. 
(a) In order that 2: 

* maximise ý(1;: ) =- ýý-[(A M+Fl'ý{ _- 6-[(A MA ýýý 

in the case -I-+-- it is necessary and sufficient that there exist 

a g-inverse (generalised inverse) G of M which satisfies 

3.2.11 ý; 
'G A (a M A'ý AGj (A M4 j .;, s 

If optimality holds then every t-contracting g-inverse 
G of M satisfies these inequalities, and if these inequalities are 

satisfied then equality holds for all points of support of every 

optimal design p*. 

(b) Let 
lr _ 1/A r«t fl A/ = (A M- A/ 

XM0. 

X 
'`M 

üY` " 

ýM[LY 

- 
Let ý denote the set of all normalised eigenvectors corresponding 

to i\ . Let S denote the set of matrices I zz' :zrýI 
In order that i:., maximise aK4Y ýAM}fl O1 it is necessary 

and sufficient that there exist a g-inverse G of I and a matrix 
E belonging to the convex hull of S which satisf; r 

3.2.12 ý' GA/EAGr <_ \(A M+-A') 
,j =I ---, 

If optimality holds then for every ao-ccntracting g-inverse 
G of 111 there exists a matrix E in the convex hull of S sct_sfyir. g 
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these inequalities, and if these inequalities are satisfied then 

equality holds for all points of support of every optimal design p,. Q 

'7hat is a t-contracting g-inverse G of 1_?. The definition 

is linked to a dual problem. We note only that such a generalised 

inverse G of M satisfies the condition that 

MG-(() CCCC Rk c'N< < 

and N solves a dual problem. Thus Pukelsheim's approach is a duality 

one and so we will not pursue his proof. Clearly he has established 

a finite though invisible set of optimality conditions similar to 

those that would hold in the case of differentiability. Note that 

if E ctý ZS Zý for zý Eý with E=i then E= -zz. ' where z= aý 

A. EX. =1 and so in equation 3.2.12 we have a condition similar 
to conditions 3.2.5,3.2.6. 

Accepting Pukelsheim's result it is now possible to 

establish the necessity conjectured by Silvey above because Pukelsheim. 

shows that there always exists a t-contracting G-inverse of M of the 

form G= (1: + HH')-1 with H of the appropriate type, when Mc- , 
M, nA 

This completes our list of results on optimality. �e 

conclude with the following comments. 
(i) In the light of theorem 3.2.6 for qJ(M) = --1-(AM A') 

a check for Pukelsheim's test of optimality need only be considered 

at a design p if p is optimal for its support, i. e. if 
/Mt-- ) A'(11W(, )fl)ý-ýAM+(P)ý d>o 

The check will then only be necessary if the inequality 

ý'M+CýýA MýCý)Aý)t-ý MA(P) s >-L-(Ar11(r)AI)t 

4 
-Sup(t)} and does not hold for any zero weighted holds for some 

e L[S-f(p)j . This is a consequence of the support differentiability 

of LN'm). 

(ii) We will typically determine postulated optimal designs using 

iterative procedures. If such a procedure is sensible we should feel 

confident about the optimality of the point of convergence even if 

a check for Pukelsheim's condition does prove necessary. Such 

confidence could be based on the properties of 
JJM(p)} 

at the 

approaching iterations to the proposed solution, p 
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In particular suppose vie have support differentiability 

and that p is optimum for If,, L[Sup(p)i 
. Vie have to decide 

whether or not weight should be put at any of the remaining nonsupport 

5o points. Suppose art ¢ L[ Sup(p)} but that at a late iteration ft 
O 

but small. Then, if F{M(F ), 
to rt' o, this strongly suggests 

in the light of theorem 3.2.1 that we should have o_ 

This idea will be considered in more detail in section L-. 3. 

This type of information could also be obtained from F(Ni) } 

or F(N) f) where, for small £>o, 

Nj = CI - .) 
MCP) -t- Ehr N= (i-F-ýM(r) rE IM(ti) 

where q shares out the weight E. equally between those L[SýýýP) 

In particular if then the 

condition .F, +. f-I ++ -ý A) A NA (fl Ni 4 

would strongly suggest that it should be that o. 

Note that while -L-(ANS t 
-týAas -ý o it can be that 

3.2.13 LZ NA (A N A') A N+s ýýM PýAýýArrt+(ý)A) F} M (P)`r 
£>p JjJ1J 

Hence, while the left hand term might be smaller than 

the right hand term could be larger than 

The justification for these ideas is that if qJ(") is 

differentiable at 4(-)M4- for all small Eo then 

it must be that 

3.2.14 LC F{(t-E')M(P) - ý' Ms ý'} 
E -', C> 

whether or not ii(p) is a fully differentiable point of i (") 
. 

Result 3.2.13 and 3.2.11 are not inconsistent since, if v. 4 l-ýSý, P(P)S 
then F M(P)1 does not involve the right hand term of 3.2.13. 

(iii) Suppose we opt to chech Pukelsheim's condition. A disadvantage 

is that there is the problem of finding a suitable G. Hor, can this 

be done? First vie note that Silvey (1978) hints at an iterative 

scheme for finding, if one exists, an H satisfying his condition. 

An additional comment, of interest, is that in the case 

of the EA -optimal criterion Pukelsheim's result seems to suggest a 
further example of problem (P1). The matrix E in condition 3.2.12 

requires to be of the form IP. for some z. E. For a given 

generalised inverse G of L this condition will certainly be satisfied if 

"'7'en' 
( 

T_ V'z7_'z I'll) AGr. f-- \,. 
_, 

(AM 
* 

A') . 
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The minimising p'.. solves (P1) for s'dA'(i p`z. l') A Gv-. , 
It'might be possible to formulate an iterative scheme for finding 

a suitable G. and . zz' by combining Silvey's proposal for finding a 
1 

matrix G of the form (11", + HH') with iterative schemes for 

solving (PI). This is admittedly a rather speculative suggestion. 
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Examples Of Optimal Designs 

3"3.1 In these sections we derive the solution to some optimal 

design problems for which explicit solutions can be obtained, quote 

the solution in other cases to which we will refer and mention some 

related results. 

First two examples of functions ý(p) are quoted which offer 

explicit solutions to (P1) and which have a form which particular design 

criteria lP{K(V)j take on in specific circumstances. 

Ex. 3.3.1(i) 

The solution to (P1) is given by pj' _ i/T . This function 

is the form which the DA-optimal criterion would take on under a 
design p which assigns weight to every point in a design space If 

consisting of J_=5<_k linearly independent vectors v1,.., Vi. 

From 1.3.6 

M(, ) = vp\J, 
where V= Lam, s] has rank(d) = s, while this is the full rank 

value of P= ding{ Pt" -"-rt. Hence by theorem 6.2.18 of Graybill (1969) 

_ 
(\j, )+p+V-ý- _ (v+)/ p-, v+ 

schere by theorem 6.2.16 of Graybill) V+ _ 
(V i\j lv I. 

Hence 
AM+(P) Ar =NN 
ýr 

where \N A(v \J) v is s}s. Therefore 

Ldeiýlý/ý] 
z=-c 

"r p PS)- 
ýýc= ýdat I W)T 

This illustrates that the DA-optimal design on s linearly 

independent points (A being of order sxk and of rank s) assigns 

weight ifs to each point. In particular this is the case with DS - 

optimality, while by taking A =7k we can conclude that the D-optimal 

design on k linearly independent points assigns equal weighting ilk 

to each point. This could also have been established by observing 
that since V is then kxk Tie have 

d, + ýM (r) = act(P) _[ate(A] 
which is therefore a particular case of 

ý-(P) _ CEP, F. -- r) o 
These results are useful in practice for often it is the 

case that the support of a B-optimum p'' consists of k points and 
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similarly with DS-optimality, DA-optimality. 

Biore generally it has been established that a D-opt'. p" 

satisfies pi e= tfk when Sup(p*) contains more than k points. Similarly 

a DA-optimum p* satisfies Pýt=1/5 . We will prove this result later 

in section 9.1. 

x. 3.3. J1(ii) 

l Fl /a P-ý a. 70 
1 =1 J 

t/(L-+I S Iltt+ 
The solution for (P1) is p. _ cL. 

/ 
Q_ 

J i#l 

as a check of the 
. conditions of'theorem 2.5.6 will verify. Since 03(P) 

is a homogeneous function of degree (-t), these conditions are 

equivalent to 03P 
--t43(ß . 

Several examples of design problems are particular cases 

of (b3(º) " 
Suppose that the design space consists of k linearly 

independent points vI, v2,..., v]`, so that 
M(Pý. VPV 

where V= [vlv2..... vkl is k-k nonsingular, P= diag {p,, 
.., pk . 

Then 

P , V-ý(V-, ýý 

where a` = w1w., w. being the ith column of (V-') '. 

If the k design points were orthogonal, that is vL' Lr =aeTi 

so that V'V =D= diag[d, s.. sdkj , di = vjvj, and if t were 

integral then 
Dt-t p V/ 

since the matrices D, P commute. For example, 

M3(P) _ LVPv')3= VPV1VPV'VPV' = VPDpopV' =VD2P3\1'. 
hence , 

= tr{ P` D, -, V -i (1( i-s) 

-t 

Vli 

-Et .)g 
where a-, = d. W w. 

_ > 

Similar reductions of -&c(l M}(p)A) can be made under 

corresponding conditions. In particular if the design space consists- 
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of s linearly independent points then 

-ýý{ý}M}CP)A/} = -&r{p'W'W} 

where \'i is as in example 3.3.1 . 

3.3.2 We note D-optimal designs for two classes of regression 

models. 
(a) polynoraial regression; the regression is 

Vie have a standard continuous design space. Fedorov 

(1972, p. 88,89) reports that the discrete D-optimum design is unique, having 

as its support the k roots of the polynomials (i-x Pk_ICx) where 
PN) is the kth Legendre polynomial 

x1 C-ý) (zk-ýý, )ý x N_ kýz k tVC� lk Ck -: Z-)1 

ýCk-IYZ 

,k odd 

Since Sup(p^') contains k points the D-optimum design on 

it assigns weight (1/k) to each of these. In the case k=5 we 

obtain the simplification 

-xý) Pi 
, ý(x) = (s/z)ý, (7XZ-3)(1 -x2) 

so the support of p* is given by x3 [F " 65S 

Fedorov also reports unique solutions to the D-optimum 

design for polynomial regression when the constant variance assumption 

is replaced by Var(yx) = -2 /V-) where \(x) is of known form. Again 

Sup(p*) consists of k points for four different examples of '(x). 

(b) trigonometric regression; the regression is 

=s'e REV 
Cox) 

x'x 

\i V= 
tr_ 

(w 
--- --- w1 ki w=c 

&X) w 
ý k/ i 2r : zr+l 11 

Fedorov (1972, p. 96) reports that any design assigning equal 

weighting to a support containing at least 1: equally spaced points 

in Co,, z, r) is D-optimum e. g. 

StiP(P) - irx= x=2ý(i-ýýýn +Qý ý_ý Vin; ýºýk=z.. týýxý+qý2rr1 

As a consequence any designI D-optimum for a given value of rn 

is D-optixnurn for smaller values of m. 
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63.3.3 we now examine some consequences of a geometry of D-optir. iality 

which is given more prominence in the duality approach to optimal 
design. 

The conditions of theorems 3.2.1,3.2.3 imply that p* is 

D-optimum for V ={v1,.., vj or for V 
continuous if 

S-p(º ) 

Since }'(p') this says that the points in Sup(p::: ) 

must lie on the boundary of the ellipsoid kk 
, 

which is centred on the origin, while the non-optimal support points 

should typically lie inside E(p^`). Of course for the general problem 
(P2) sie can similarly say that Sup(p*) must lie on the boundary of 
R (? ) = {, ) : Ff xr'), y} 01 and that this set should otherwise contain lt 

We will refer to this later in respect of an algorithm. However the 

set E(p*) is a particularly simple transformation of the corresponding 

set R(p`) and, in combination with the known D-optimum solution on a 

support of k points; can help to derive or shed light on D-optimum 

designs. Vie consider two examples. 

Ex. 3.3.3(1) Suppose Ü is an ellipsoid, say V=[ Lr-' Lr'N L, s cI . 
Clearly a D-optimum design p'` must be such that E(p ) coincides with U. 

In vier of the above conditions this will be the case if 

M '(r `) = (klc)N 
_) 

M(P) = Cc/k)N-' . 
This can be achieved by a p* with a particular type of 

k_ point support. 

Suppose Sup(p) _ 
{vl,.., vkl and that p, = 1/k, which of 

course must be the case if p is to be at all optimal. Then in the 

meaning of formula 1.3.9, Vp = [vj..... vkk is of order kkk and 
Pp = (1/k)Ik, and hence 

MCA)=(/kýV 
Hence if p is to be p" we must have iG N_, 

Since NE PD wie : rill have N-'=- 4LD' where the 

columns of orthogonal Q. are the normalised eigenvectors of I3, and D 

is diagonal, with entries the corresponding positive eigen-values. 
Hence the solution is to chcose Sup(p) such that 

_, /Z 
, 12-D 
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This implies that 
Yv-L 

D'/2 
ýC. 

RD 
º/2 

C6 

1' 
pHVP cD CL Q. QD = J- 

and hence that the support v1,..., vk must be such that 

Any design p then which assigns weight 1/k to a set of k 

orthogonal points and in fact N-orthogonal points lying on the 

boundary of 
U is D-optimal. So also is any convey. combination 

of such designs. 

In particular suppose N=I, c=I so that U is the unit 

sphere and suppose k=4. Let 

vý = (1,0,0,0)' 

v2 = (0,1,0,0)' 

v, = (0,0,1) 0)' 

vv _ (0,0,0,1 )' 

v5 = (. 5, . 5, . 5, . 5)' 

v6 = (. 5, . 5, -. 5, -. 5)' 

v7 = (. 5, -. 5, . 5, -. 5)' 

v8 = (. 5, -. 5, -. 5, . 5)' 

Then for any X EEO, la the design p allocating weights 

in the manner 

1 A14 X14 ýj4 X14 iº-ý)fý* ýý-ý)ýýr -ý`ýlýt ýi-ý)'ý 

is D-optimum for U 
and of course for Sup(p) = [v1,.., v8} 

:. 3.3.3(u) The following is a more realistic problem. Suppose 

that a design space 
V 

consists of (1. + i) points. There are two 

possibilities. Either Sup(p*) =V or one. of the design points is a 

nonsupport point in which case p assigns weight (1/k) to the remainder. 

In total there are (k+2) different possible optimum supports. However 

it is possible to identify the correct support set. 
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In viel, of the invariance of the D-optimal criterion 

under a linear transformation of 
U 

we can without loss of generality 

assume that U={ e1,..., ek, y} where e1,.., ey are the k unit vectors 

and y= (yj,.., yk)t. 

We first prove a subsidiary 1ennia. 

Lemma 3.3.1 

Let S denote the unit sphere (:? s 

space Ek. 

Proof 

result 

Let R- ýX =CXý, , xk) X'X >ti 
ýzX 

- x'xý iý . ý- "-ýk} 

Let R. 
J_{X= 

(" -... xk)I :(-)>I})J=; ----, k- 

These (k. +2) sets form a partition of k-dimensional euclidean 

First the following diagram for k=2 well illustrates the 

) 

Figure 3.3.1 

The set R is the shaded region bounded by the unit circle 

and the hyperbolas j X? - ýýý =I and hence lying 'between' 

S and RI and R2. 

It is clear that RnS= 4' and that RAR=4. '; e need 

to show that R. S= 4' 
,RR`j . 

Suppose 'x 4 I. Then xz +, zx'X z With equality 

only if -x j=1. 
Hence RJ 

.^S= 

Now suppose that (2z 
"-x 

`X) 1 2x$ ýi+ x`xý " Then 

C ý- , >tt Hence C+ x'xý z+2F zxL L$ X. +t 
Thus Pin Rý=ý, ý ti . 
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Finally the union of the (k+2) sets must be Ek since 

either XXtI or the reverse or since the inequality 2x, -c ,t> 

either holds for j=1, or for j=2,..., or for k, or does 

not hold for any j. 11 

In conclusion a point y= (y,,.. 
jyk)' must belong to 

one of these sets and only to one of them. i""e can now prove the 

result of interest. 

Lenrna 3.3.2 

Let p* denote the D-optimum design on U= {e, 
ý,..., ek, yý 

Then 

(a) y 4' Sup(p) iff 

(b) e. ý Sup(p `) iff 

(c) U= Sup(p) iff 

ye 5 

yc Rý, j=I. ,...,, k 

' &R 

Proof Part (a) is simple. The uniform weighting D-optinum design 

on {e 
1,..., ey3 has M(p) _ (i/k)I. Hence if y'y Ll then 

Hence the conditions of theorem 3.2.1 are satisfied. Conversely 

if y4S then p is not optimum and further it must be that e Sup(p ), 

for no other feasible optimum design can exclude it from its support. 

The proof of (a) and (c) is as follows: 

Let AI be the k'-k matrix 
t('s, 00 

O 

-ýSk 
ý'J 

iO01 

Then A1y = e1, A1ej = ej, j=2,..,, k; i. e. A, 
1maps 

y, e21..., ek} onto {e1,.., ell while e is mapped onto 

z0 = A1el 

11 Then 2 
/ý2, 

_ 
(* 

ýý 
I 

-ý. 
Y 

y- and hence zý ES iff yER 
? tor: if ziES then by appealing again to the invariance property 

of D-optic lity we can claim that Sup(pe) excludes eI and that p" 
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is the uniform design on { e2,... ek, yl. Conversely if zj¢ S then 

this cannot be the optimal design and moreover, again it must be 

that e16 Sup(p*), for-no other feasible optimum design can exclude 

e1 from its support. 

Similarly z. = (A. e. ) ES iff yeR, where A. maps y onto ej 

and ei (i IL j) onto itself. Hence we can conclude that 

e3 i Sup(p*) iff v5 E R, 

Part (c) follows since if S and R. then ER, and, 

since Ü is the support for the only other possible optimum design. 

Hence the lemma. 

The lemma could be applied to an arbitrary set of (k+1) 

vectors by say taking y= V-1 vk+l where V= [v1.... vkl, although 
the matrix inversion may be undesirable. 

There still may be the necessity to evaluate p* for while 
the optimum has been found if Sup(p*) is one of the k-point subsets, 
this is not so if Sup(p*) = If. It would seem that such a p* 

must be determined numerically except in special circumstances. 

If { v1, v2,.., vk+1} _{ el,.., ek, y} then the equations 

u,, =k, of theorem 2.7.1, simplify to 
ý 

pi --j 

and 

where 
z 9- =L ýý Pj 

Simple though these may seem, an explicit solution appears 
to elude them in general. 

13 

One exception is the case y= (yl,.., yl, ) where 

y 
J =}x, =tý - ýk then P= 

k*t 
Ckx 

-týý< 2-ýý P= Lk-ýýxZýkx -t 
ýý=tý 

, 
k. 

Another instance of an explicit solution is seen below. 
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S 3.3 .k Wynn' s example 
We end by citing what has norr become a rather celebrated 

example and which originated in 'Wynn. (1970,1972). 

This takes k=3 and 
U= [v123 v4} where 

and so we have a particular case of the probler. considered in the 

previous section. In fact thoughynr_ had in mind the more realistic 

regression model 
(aý 1= 

ýr 
ý6 

cr EJ 

where W=ýx =Cx,, Xý xý) = x, =ý, Cx1, x3) Eý 

where Q is the quadrilateral with vertices 
However. UI is clearly a bounded convex set with extreme points 

v1, v2, v3, v4o An appeal to corollary 3.2.3.1 establishes that 

Sup(p) V. 

Tie note that for ý/ _ [ýý ux 3] 

0 
V-1 

BIZ 

, Iz ý'ý o 

and hence that y=V (-a) 3J J 3/2) ER. 

Hence by lemma 3.3.2 Sup(p'`) = 
U. Calculation of p~ 

is ho;; ever simplified by employing symmetry arguments to justify 
+. Making the appropriate substitutions in the equations 

Ls M ý(Pý 
-3, an explicit solution can be obtained; namely 

P ti ý3z 
P '3 

9132 I0/32 

Many authors have since made use of this example and we 

also refer to it in several contexts. Indeed its use is so widespread 

that it is deserving of an evaluation of I.! 1(p) 
for general p. 

Let j`'l(ýý =M= {""'ýý ' ýýýý 
=N 

Then 

m11 

m12 = m21 

m13 = M31 

m23 = m32 

(p1}p2+p3+p4) _i 

(-pl-p2 +p3+2p4) 

(-pl+p2-p3 +2p4). 

(pl -p2-p3+4p4 ) 

rn22 = m33 = (p1+p2+p3+4p4) =1+ 3p4 

det(?: I) = 42p1p2p3+ 62p1p2p4+ 62p1p3p4+ 82p2p3p4 
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n11 = (4P1 P2+4p1 p3+16p2p4+16p3p4 )/det (M) 

n12 = n21 = (4P1P2+4P2P4-12p3p4)/det(M) 

n13 = n31 = (4P1P3+4P3P4-12p2p4)/det(M) 

n23 = n32 = (4P2P3-9p1p4-3P2P4-3p3P4)/det(M) 

n22 = (4P1P2+9P1p4+4P2P3+P2P4+9P3P4)/det(M) 

n33 = (4p1P3+9P1P4+4P2P3+9P2P4+P3P4)/det(M) 

We will make use of these formulae later. That for det(M) 

is an illustration of the fact that det[M(p)} is a polynomial of degree k 

in the components of p with the format that the coefficient of the term 

pi . XP .. x..... kpi 
., 

where it is , has the typically positive value of 
k 

{det(V)}2, where V= [v 
iv l. :.... v l. 

], while all other possible 
ýzk 

terms have zero coefficients. See theorems 1.1.1,1.1.2 of Fedorov 

(1972, P'. -15). This renders dettM(p)} a homogeneous polynomial of 
degree k with positive coefficients. 
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CHAPTER 1ý 

ALGORITB_S, SOME PRELIMINARIES 

514. '1 Introduction 

As has been already stated it is typically not possible 
to evaluate an explicit solution p* to problem (P2) or in particular 
to derive an optimal regression design explicitly. Iterative 

techniques must be employed and so special algorithms have been 

devised particularly for the design problem, though also for other 

examples of (P1). With one exception vie will consider these in 

subsequent chapters. 

The main concern in this chapter is to consider a fei, 

points about algorithms, some general, some particular to our problem. 

Recall first that in chapter 1 we have indicated why there 

is a need for special algorithms. It is assumed that we wish to 

identify an optimising p*. Typically p* will lie on the boundary of 
p (Lk). Certainly this will be the case if U 

or V is a discretisation 

of a continuous space. 

The problem is that we do not know Sup(p'*')., : otherwise we 

could take CL to be the latter, in which case the only active constraint 

would be Ypý = 1. It should be simple enough to devise modifications 
to standard iterations to ensure this constraint. 

However coping with boundary constraints such as p >. 0 

cannot be so readily achieved, although attempts to use standard 

algorithms have been made. The iterative technique considered at 
the end of this chapter is a particular example. Conceived for the 

design context it, however, first finds an optimising I.., which is 

indirectly guaranteed to belong to A. There is therefore an 

additional problem of finding p' such that f,! (p*) = 1. i:,, 

Really what this serves to derncnstrate is that algorithms 
for constrained optimisation are to scm. e extent thin on the Ground. 

Yiu,. a numerical analyst, has acknowledged these points to 

the extent of making his own contribution to the design problem. See 

i: u (1976,1978a, 1978b). This vill be considered later. 
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S. L, 2 Basics And Motivation Of An Algorithm 

-SA-M An algorithm for an optimisation problem is of course a 

sequence of successive approximations to a solution x^`. One makes 

an initial guess x0 to x* and tries by some means or other to derive 

'from xO, a hopefully improved approximation x1. Then by the same 

means a further improvement x2 is derived from x1 and so on. 

A sequence xo, xl............. . is thus generated in the 

belief or hope that the sequence will converge to the optimum x^) 

or at the very least will be such that for some finite r, xr _- Xý`. 

One may require to-add the qualification that x0 be 'near' x-. 

'7e consider now some general ideas for formulating an algorithm 

for the problem of maximising a concave function ý(x) over a set S. 

In the above sequence we will have x, +, = g(xr) for some 

function g(") implicit or explicit in form. A specific function 

g("} will define an, algorithm. that sort of function g(") will make 

for a good algorithm? 

Given that we are considering the maximisation of a 

concave function ij("), it would seem that it should suffice to have 

P(xr., ) - q)(K, ) 
, or that this ineouality should hold almost al-aays. 

At the very least there should be an upward trend in the values 
/J(x0), l1(x1), ý(xd 

...... . In conventional phraseology vie would 

wish the algorithm to be a hill climbing technique. Concavity 

guarantees that there are no wrong hills to climb. 

We must also., have iterates remaining in the feasible 

region, i. e. xr 6 S. 

There are various ways in which we could derive an xr+1 

from an xr, for which we could believe (Huch) more often than not 

that qJ(xr+1) . '(x). we consider some nog;. 

(a) We could take xr+1 to be that value which ra xir ses a simple 

approximation to ((-) at, xr, subject to x,,.,, E S. A Taylor 

series expansion readily springs to mind. 
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(b) Similarly xr+1 could be-detertnined by a restricted but simple 

maximisation of li(-) about xr; for example, find Zr to maximise 
(x 

+z) over the set 
S'= {7, 

- (' 
, 

-z)ES} set 2r 

Clearly we will have ý(xr+1) -c (xr) 
. 

(c) Suppose xr = xr, the value maximising 0(-) over some subset 
Sr of S or some approximation Sr to S. In the light of --e, expand 
Sr to some larger subset Sr+1 of S so that Sr CSI c- S. or derive 

an improved approximation 5r+, ß to S. Then take x1 to be the maximum 

of f (") over Sr+i 0 If Sr cS1 we will again have >' ft-, ). 

In the case of problem (P2) we would be adopting this. 

approach if we were to solve (P2) for a well chosen subset 
I. % of 

U. 

Then for U1, U2,..., where } augments Ur by the addition of 

one or more of the vertices excluded by U,. 

In any instance above when we have ý(x > ý(xr), 

then, if ý(-) is concave, it must be that F(xr, x > 0, and this 

must be true even in those instances when the former inequality is 

not satisfied, if the technique employed is a sensible one, for this 

is the only reasonable definition of the latter, that F(xr, xr+I)> 0. 

Hence we could devise iterative techniques which chooses 

xl using the latter as a criterion. This can be done by looking 

around for a direction mr in which to step from xr, mr being chosen 

then to satisfy F(xr, xr mr)> 0. Then it is necessary to decide on 

the magnitude C(r> o of the step to be taken in the mr direction. 

Thereby 
X= xr 't- 0(mr ýr= 

0) 1ý 2ý - -- ---- 
r+i 

(Note that in this notation rr, are are defined for 

The chosen mr muss be such that (xr+ amr)ES , for all 

small positive oC . 
We will have r (xr)xr+ii) > 0.1 since F(xr, 

-xr+i 
)= v'rF(xx,, xr±nr) . 
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In the case of problem (P2) a convenient way of determining 

mr is to discover 'a point yr E )O(u) toviards which it is good to 

move, namely a point yr such that F(xr)yr) > 0. This defines 

mr as mr = yr xr so that 

x= (1-a 
r)x - -C'y r4% rr 

Optimal choices of yr could be a value of y which solves 

or nearly solves either i- F(x,, y) or yE5 FA(x, y) . If it 

is difficult to determine such optima but easy to identify a subset 

of y's such that F(xr, y) > 0, then we might opt to take yr to be 

a value from this set. A particular example of approach (a) will be 

seen to fall into this general class. 

A converse approach could be to identify a point yre 5, 

away from which it is good to move from xr. A formula for mr is 

then in 
r= 

xr-y r, so that, still for ar > 0, 
x. 

r- 
_( 1+-C )xr 

- -C '- 

If we are to have r(xr, xr mr) > 0, it must be that 

_(xr'2xr yr)> 0. At differentiable xr this will be the case if 

F(xr, Yr) < 0. 

. 2.2 The choice of °Cr is clearly important. At the very 
least we must have xr{1S . If S is convex then this will mean 
that c(r must satisfy cý 7r where ýcr>o is the smallest value 

such that °ý^^r) S for all -c > dr This is assuming that 

F(rr, xr +m 
r) 

>0 and. that (x, y-0 %r') eS for small positive °t. 
An optimal choice would clearly be that value °ýý which 

solves 
11 I. 4.2.1 h. axL f, Lse P(xr -t- d+Nr) OJG- pc oc s är 

We note that we will also use the notation =cýýý)ý ý CMS) 

to denote the above terms or ýZr when Mý _" (yam - xýý . 
For the latter case consider zr(i% yýý = (º - 2f)xýý Syr . There 

will be a largest value 0 ) and a smallest value (, 3, 
) ( 

> o) 

such that zr(r, yýý S for 
, 

and Ö> ýyrý In teens 

of these 

4.2.2 (yr 

Clearly 4 . 2.1 is a one variable function maximisation, 

namely for a= (ý/ýX to(Mr) . If ý(") is strictly concave then so 
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is -f(c) and °r must be unique. Either or 
If' i(") is differentiable at (Xr+aMý) for then the latter 

will be the case if and only if f(a) has a (unique) stationary value 
in (o, d, ') 

.. This will be a possibility, since f >o when 
F(x 

r ,xr +m 
r 

)>0. 

It follows then that 
4.2 

.3 
oC11 == n, 

", C C` 

)° r/ 

where (r denotes the smallest positive solution, if solutions 

exist, to the equation 

4.2.4 f'Ca) =o 

If no " solution exists then c<, =q, and 4 . 2.3 would still 
be defined if we let ar=c in this instance. 

Of interest is that equation 1.2.4 is equivalent to 

1. }. 2.5 X+ýiaý Xý+ýmý a1 
I 

That this equation should be satisfied by mar in the 

case would in fact follor; from theorem 2.5.2, taking S there 

to be the set. {x :x= xr+ý. ýý, ýýýc < dr . As' with other differentiable 

' interior' maxima, cýr. must be, a, constrained' stationary value of f (" ). 

The equivalence however has the following more direct 

derivation. 

By definition, for any 

IE > 
Hence 

t-(ötiýKrI 7 
(ýJýJLt't ÖMý1ýIý CS 

rJ £O 

while 

F+[Xri-U JC tßMrý 
i/ILXr+OMrj*j. 

So we obtain that 

I\Jr 

In particular 
4.2.6 

- /'') = 
(I 

-Ö)-IF[(I -*)Xr + 
'6y-)'3, 

J 

"- yr_xr 

while ar will satisfy 
`l`L 

FpE( q 

Fý, E( I+ dr) xr [r_ yr- 
)jl-0f 

v-, = xr - yr- 

Consider again Z, 
_(öý 

ýý) = (ý-öJJ)xý* 2Sýr and consider 
the equation 
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4-. 2.7 F`', CZrýö 
`fir) 'jr] =O 

ý- 
T 

Let iSr(yýý denote the smallest positive solution to 

4.2.7 or +Do if such does not exist, and let ör(yýý denote the 

numerically smallest negative solution to 4.2.7 or -°o if such 

does not exist. Then it follows from above that 

yt 

Mph 
{r, )ýý, 

The only advantage really in drawing the above observations 
is that we will already have evaluated the formula F,, (X 3) while, 
in some instances, explicit formulae may be more readily derived for 

the solution to equation 4.2.7. Silvey (1971f, p. 9) also noted that 
4G, ) had to satisfj this equation in a particular case of the 

algorithm which will be considered in chapter 5. 

However we will not always be able to make use of 4.2.8. 

Advantages would be gained from an exanination of the solutions of 
4.2.7 only in the following instances, assuming q(") concave and 
differentiable. 

(i) If explicit formulae do exist for its solutions then we will 

be able to identify either that ý ýya is one of those solutions 
or that dýýý 1= oCrýýr> 

(ii) If we can identify that no solutions to 4.2.7 exist then 

it must be again that 

(iii) If no explicit formulae exist for any solutions to 4.2.7 

but we can establish indirectly that L)(") must have a constrained 

stationary value of the above type, then we could solve the equation 

numerically by means such as Newton-Raphson techniques. pie would 
have an instance of this if we had F(xr, yr) >0 and could establish 
that (xr) 

. An example of this occurs in the design 

context. 

Failing such information the only sensible action would 

seem to be direct numerical solution of 4 . 2.1 for which efficient 

algorithms such as Golden Section or Armijo techniques exist. The 
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early stages of such calculations may identify the information 

assumed in (iii). 

However any numerical computation that might be required 
in identifying an-optimal may be considered not to be worth 
the effort. 

Two other methods of choosing have been employed in 
r 

the design context. 

Suppose it were the case that the point yr chosen to 

determine the direction mr was such that y, E S, tJ(tsr) > qj6x, ) 
. 

Then one may opt to take Xr+1 = yr. If qi(") is concave on convex S, 

then it-must be that F(xr, yr)> 0, so that mr = yr xr and we 

are selecting --, = I. 

A variation on this is that in the case of L-optimality 

Fedorov (1972) obtains for a particular type of yrE 5, satisfying 
F(Xr'yr) > 0, an upper bound d- C,. Q on the range of values a 

such that kp[x, -} > ýtx, ) 
. This bound 

and in view of concavity is then such that ý(Q 

Fedorov recommends taking °cr = f3äýýýý) for some f3 satisfying o -p 1. 

Failing these possibilities or lacking knowledge of them 

we might simply determine the sequence -c, in the following arbitrary 

manner. Choose, a-priori, a sequence PC, I P2,...., such that 

o< (6rß I or oe- ?r 'ý- I and take c(, _ /3, -ýý . This in-fact is a 

convention adopted in some particular cases of the class of algorithm 
to be considered in chapter 5. These always have ate= I so that °1, r=ýr 

The restrictions on /3r are supplied as insurance that 

D< c'( < ýý 
. Ho, rever clearly Pr cannot be just any random number 

in (0,1). On its choice will depend the attainment of convergence 
to x*. Certainly it is possible that cJJ(x 1) < '4J(xr) . In the 

case of the algorithms mentioned above, for which ;(=r1, it has 

been shown that conditions necessary for convergence are that 13 --ý o 
r Er 
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54.2.3 This completes our general comments. The algorithms 

which we will consider for problem (P2) fall into one or other of 

the above categories although these clearly are not mutually 
exclusive or exhaustive. The algorithms were originally formulated 

for the design problem. It is worthy of mention that when some 

of them were initially formulated, a specific criteria, mainly 

D-optimality, was under consideration and the directional derivative 

tool was not yet visible. 

We will maintain the notation used above for the next 

few chapters. 

In particular xr will denote a current iteration, xr+1 

the subsequent iteration. The values yr'mr, «r( 
r> 

0) and s will 

be such that 

4.2.9 s=F (X 
j 

yr//I Fýxr L3 
(So tL *5ct ý/ 

Výr =5 (yr - xrý 4.2.10 

4.2.11 
ri rr 

4.2.12 0- Sdr1Xý + ýSKrý j 

that is 

4.2.13 = -, " X7 f, 3 rý r4l rrr t- 
t' 1= 

4.2.11f. xr "i 
(1 + r) r- r 

`fir L+ F(c ý511 Z- C) 
J 

If the function P(") has a matrix argument, 11 
r, 

11r+1 will 
denote current and subsequent iterates while s, Nr will be such that 

4.2-15 S=F (Mr) Nr, )/l F(Mr,, Nr)I 

4.2.16 N1'+1 (1-SKr1Mr + ýsar/ýr 

that is 
/ 

" 4.2.17 M, 

_,, `ý-ý(r1Mr 
+ drNr ýý F"r N, 

) 
>O 

4.2.18 1 lry' _ 
(1 +-4r//)Mr Fl/M, K, l `O 

If problem (Pi) is under specific consideration, p(r), 

p(r+1) will denote current and subsequent iterates while q(r), 

m( 
r), 

s will be such that 
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4.2. j9 
S= 

VP(r) )IIFdPC, )' 
4(, 

) 

4.2.20 
p'(r) -- l. 

514 
ri 

F, -, 
) 

l\ 

4.2.21 
p(r4l) 

C 
ý 

) 
elMC-) 

4-. 2.22 cri .) 

that is 

4.2.23 Pcrý, 
) o-) 

r 
cr> 

l 

4.2.24 p 
ýr41" 

1 
_ 

[r) (i 
^C 

) (, ) 
- 

1, 
Ct 

F c«) >O 

1. -c c) :o 

We will of course require that p(r+l)e) , i. e. that 

A necessary and sufficient condition for the latter in 

view of 4.2.20 is that > MýrI= o which in turn will be the case, in 

view of 4.2.19, if ý Typically we will have E 
if direct selection of q(r) has been the method adopted by which to 

(r) 
m 

r) 

Since P, +1) Cý) + of -c, j ,r, 
be guaranteed if 

(a) > QC-Y( rv[rýJ "t', >O 
JJ/J 

Cr) fir) [. -l (b) 
GCS cD 

/ý_ 
M ., 

ýen 
., cp 

1i ý' d 

then condition (i) will 

a-& ýf 

Condition (a) will always be satisfied if we already 
have the restriction c, >o 5 while condition (b) is not always 

guaranteed. 

r+ý 
To summarise., we will have Pý E iff o 

and if we keep the magnitude «, 
- of the steplength belc7a the bound, 

4.2.25 (Cr-)) 
°CM&-)f 

Cam)/1 

`I \ 
M. 

n. <O JJ 

Equivalently we will have Pe-1)c iff I and P 

if we keep the magnitude of the steplength dr belcti; the bound 
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4-. 2.26 ýý) 
_ 

.ý- pCam) 
Cam) 

qCam) pl>O 

JJ 

or 

/C) ýý Cam) Cr) 
_ 

Cam) 1 / Cr) 1.2 . 27 M dgl `i =e; l4; 
co C 

Pý J `f i= `ý- a 
ra 

It is easy to see geometrically or pictorially the 

necessity for these upper bounds aý . Condition 4.2.25 guards 

against overstepping in the following way. If the weight p j, 
under a design p, at vertex uj, is larger than the weight gj, under q, 

at uj, then a step from p in the direction of q is. a step that leads 

to a reduction in the weight at uj. Since (t-oc)P; -r acLý =o 
implies that c' = pj/(-tj - Pýý , the value ýC1 in 4.2.25 is the shortest 

such step that will just put to zero the weight at, at least one such 

vertex, so that any larger a step would-induce negative components 
( 

in pýý . 

In the case'`of (P2) or (P3) rte will have the relationships 

xr= x(p 
), Mr-=M(pc-') 

, and if q r)E P, 
y= ac(ti"), 

Nr- M(gtr') . We will Maintain the latter notation even if q(r) 

satisfies only 
J 

Hence for the terms %r)j iiýdefined in relationship 

to equation If . 2.7 we will have iSr rýyýý 'r (Nr) 

Finally it follows that 

r Cr)J =a 4.2.28 CL 
[r) Cr) [r) (ri [r)/ 

J3 

As we have said, with one exception, the algorithms that 

vie study for (P2) will always see]: an optimising p'' directly. This 

means that they will pass through a sequence p(0), p(1)ß p(2)'...... 
They will thereby generate a sequence xr, Yr only indirectly 

through the above relationships. 
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64. Considerations Specific To Problem (P2) 

54.5-1 Initial Approximations 

The starting value x0 or pýC) is important to an algorithm 

for any optimisation problem. Convergence to the optimum will stand 

or fall depending on the chosen value. In the case of problem (P2) 

it is convenient to view the making of this choice as requiring two 

decisions. 

The first is to decide on Sup(p(o)). The answer to this 

will depend on the type of algorithm which we employ, an option 

which in turn will largely depend on 
U 

or 
V. It right seem that 

we should take Sup(p(C)) to be U 
or 

V. Certainly this will be a 

sensible choice when J is relatively small, while it will indeed be 

an essential choice in the case of some algorithms. 

However this will not be a sensible choice when U is 

large, in particular a discretisation of a continuous space, rihen 

: u-o(n) is likely to be a small subset of 
U. Particularly in the 

case of the algorithm of the next chapter vie-will require to make 

a subjective decision about Sup(p(o)), choosing it to be a small 

subset of a large If. In the contexts in which we are prepared to 

use other algorithms, the choice of Sup(p(0)) w ll be fairly clear. 

The choice of p(0) is more obvious, In the absence of 

any information about p° it seems natural that p(O) should allocate 

uniform weights to its support points so that we have the neutral 

p(0) = (11J) 
... , 1/J) if Sup(p( )=U. 

A final point is that almost always it will be essential 

trat 1ý1(") be differentiable at x(p(O)) or 1{(p((3)) . As we shall 

see it will only be wise to invite nondifferentiability if Sup(p: ) - 
is known and this indicates that x(p'`) is nondifferentiable, and 

this only in the case of a function t (") enjoying support differentiability. 

S L. .2 Stonpine Rules 

It would seem from the appearance of theorem 2.5.6 that 

a reasonable stopping rule at a differentiable p(r) would be to 

stop if 
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ýR htaoC FLýc(r 1u 
.ýL5 

IIý i sýsT ý 

for some appropriately small 8 710. 

In fact such a rule is given much stronger weight by the 

following theorem proved by Silvey (1971f) for the design context. 

Theorem 4.3.1 

Let Lt _ 
{u, 

, .. ujj and let L(") be concave on P(U) 

If l (") is differentiable at x(p) and if, for So, FLxýr)ý LLý1 s 

at all e Lt 
, then ý[X(ý), '- ý[xcp ý1- s 

Proof Since tý1(") is differentiable at x(p) we have 

r Cx CPi, x(? 4)1 
=Yf FCX(P), "jl 6 

The result trivially follows by appealing to (G4)' of 

section 2.2.2 to claim, in view of the concavity of (/J("), that 

Hence if we stop according to (RI) then we can claim 
"to be within 9 of an optimising p". 

If a design criterion enjoys support differentiability 

then we could similarly argue that a realisation of the condition 

'] S (R2) 
Pi 

ö FEM(P, r, )) 
J 

indicates that p(r) is a good approximation to the optimum on 
Sup(e(r)), whether or not p 

r) 
is overall differentiable. While 

this does not guarantee that p(r) solves (P4) for the full set 
if x, Tj 

, we may well believe that p'= has been identified 

if the zero weights which have given rise to the lack of overall 
differentiability have been arrived at by the follo. iing process. 

51.3.3 Setting weights to zero 
As we have said before we have in problem (P2) a constrained 

optimisation problem whose solution p-' may lie on the boundary of 
the constraint region. This will certainly be the case if U 

or 
U 

is a discretisation of a continuous space. Then J is large and many 

optimum weights will be zero. Convergence to such an optimum would 
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be slow by any of the algorithms which we will consider but could 

be speeded up by formally setting weights to zero. Again theorem 

2.5.6 suggests that the following would be a judicious rule'to 
(adopt 

at a differentiable prý . 

(R3) tC 
Seý p 

ý`l 
O T=EX1O), 

1 
[r ) u1 

a»d 
ii £ 

12 

ýr SaýE 5ýaýl E, 
ý 

z>0ý 5dj E1 Ez= of 

If the tiro conditions in (R3) hold it would seem likely 

that Pt= o. 

. 
Again the rule would still be reasonable if q X-) enjoyed 

only support differentiability at p(r) since attention is focused 

only on those vertices ut such that Per-, >0 

Note that we could regard an application of (R3) as a 

change from one example of (P2) to another. We have eliminated one 

of the vertices and as it were have passed from one set of vertices 

to another with a smaller value of J. 

Of course one would always have to keep in mind the 

possibility that p >o , that we had wrongly set zero weight on ut. 

11here differentiability makes it appropriate the value of 

FEx(p"'), Q 
should still be examined for (some) subsequent 

iterates or at least for a postulated optimum. Vie rust clearly 

be careful about setting weights to zero. How vie have arrived at 

a satisfying rule (R3) will be important and this will be 

considered in due course. 

Collapsing clusters 

When a set 
u 

of vertices or a design space 
U is a 

discretisation of a continuous space then v; hat are called clusters 

can form. 

Recall from section 3.3.2 that the D-optimal design 

for the polynomial regression model 
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1S 

E(, 
3 

\/23 
EIy 1= ýr A 

! 
sLx) ýr t(1 xxx x4) -I x) 

xý 1 
111 (x) Cx) )Jl 

X -1 -O3 

1 
I/S I I/c ý'S rrS 

(V 
3/ =O 6SS) 

However the D-optimal design p, 
obtained numerically 

for the model 

is 

x 
Lt 

I] y(x) 

It -1 -"66 "6S O 65 G6 

IA* f 
x - . 200 -ass' "115' "200 -Its . 095, "2oo 

The set 
UD 

containing J= 201 points would be the usual 
discretisation of. v. 

However the two optima are clearly different. The design 

p*' has a larger support than p* although in this instance the two 

supports happen to share points in common, namely those corresponding 
to That this is possible here is because ÜD 

contains 
these support points of p'. In contrast 

if 
D does not contain the 

two points of Sup(p*) corresponding to x=*J--314 . This must 
dictate a difference between the two optima. 

At the same time though one would expect the two designs 

to be similar, and this indeed readily appears to be, the case in view 

of the fact that Sup(p*°"`) seems, as it were, to have opted to replace 

each of the values X=t 31h by the cluster of two points belonging 

to UD which lie on either side of then. In fact the weightings 

of the two designs leave one in no doubt that they are counterparts.. 

. here their supports share points in cornon they allocate 
the same weights, namely 1/5 = . 200. Where a point of Sup(p'`) 

corresponds to a cluster in Sup(p*'`), the weight of the former seems 

as it were to have been shared out among the points in its companion 

cluster, for (. 115 + . 085) = . 200 = 1/5; and the sharing has not 
been arbitrary for 

ýýý ("zo0) C ("115) ("65) +( "oB5)( 66ý _ "6SLt- =. (3ý-t 

Consider the convex conbination of the points in a cluster for which 
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the convex weight of a point is proportional to its optimum weight 

under p-. '. Then the latter result says that we have this convex 

combination approximately equal to the clusters counterpart point 
in Sup(p ). 

In general optima on continuous spaces Lf 
or 

U 
and 

corresponding optima on discretised versions of such spaces will 
be different but related in the above fashion. They can only be 

identical if UD 
or 

UD 
contains the whole support of the optimum 

p" for u 
or V. 

Typically then, when calculating an optimum on a discretisation 

of a continuous space clusters will eventually form and a natural 

suggestion is that, at an appropriate iterate p(r), a cluster should 
be replaced by a convex combination of the above type based on p(r) 

and that all the weight under p'rý at the vertices in the cluster 

should be allocated to this new single vertex. See Fedorov (1972, plOO) 

or At-rood (1976a, 1976b, 1980). 

Clearly this is a device aimed at obtaining a solution 

as simple as the optimum on the continucus space and as a result 

must speed up convergence. It has the sane effect as does setting 

weights to zero, namely we pass to an alternative example of (P2) 

with a different set of vertices and a reduced value of J. 

We note that if vie used a finer discretisatior than above, 

clusters may be larger than two vertices and this would also seem 
to be a likely event if a regressor variable x was a vector. The 

above rule though for collapsing clusters would still be applicable. 

64-3.5 Differentiabilit 

The main point to make here is that all of the algorithms 

which we will consider assume differentiability at xr or p(r). This 

is not as serious a restriction as it might seem, at least in the 

design context when we can have support differentiability. 

However nondifferentiability should not be courted too 

early. Certainly an initial p(C) should when possible be differentiable 

and since nondifferentiability in the design context arises when 
the support of a design contains fewer than k vertices we should 
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be less inclined to set weights to zero or collapse clusters if 

this would mean passing to such a support. Only if we are convinced 

either on theoretical grounds or from early calculations that the 

optimum lies in such_a direction should we commit ourselves to 

nondifferentiability. This is clearly sensible for a number of 

reasons but a particular consideration regarding putting weights to 

zero is that there is, as we shall seeno simple way of going back; 

that is, while we can proceed further in this direction by setting 

more weights to zero, thereby further reducing the support, we shall 

see that none of the ideas forming the basis of the algorithms to 

come will provide us with a simple rule for identifying, at a non- 

differentiable p(r)a vertex with which to augment the support of 

P 
(r) 

if it were thought necessary to do so. 

Sie may then persist in retaining through successive iterations 

some weight at a vertex when we might otherwise have chosen to 

eliminate it. Fedorov and Tukey (1976) make some formal recommendations 

of this nature for the design context. See also Atwood (1976b). 

When can we be convinced about passing to a nondifferentiable 

point? We have discussed relevant issues in section 3.2. Vie might 

further say that if our calculations proceed in a sensible way 

then we could have confidence about taking such a step. The follo, ving 

might be considered a sensible approach. 

64.3.6 Algorithms for all types 

We have said that we will consider various algorithms. 

Inevitably these vary in attribute. Some are simple computationally; 

some in appropriate circumstances are highly efficient but heavy in 

computation, requiring the inversion of JxJ matrices; some in contrast 

can cope with large values of J; some do not like non-support points. 

Each algorithm has advantages and disadvantages depending 

on the particular case of (P2) under consideration. We therefore 

have no intention of drawing any rigorous comparison between 

iterative schemes. In contrast we shall recommend a composite scheme 

which would use two or three of the algorithms which we will consider. 

The idea is that as we gradually eliminate vertices as in sections 

4.3.3 and 4.3.1-, and thereby reduce the value of Jý we could switch 
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from an opening algorithm which copes easily with large J or with 

large numbers of nonsupport points to one of the more efficient 

algorithms. _ 
The ideas then of sections 1.3.3 and 4.3.4 are not 

just merely cosmetic. It will be important to bring down the value 

of J as much as possible before we contemplate inverting JXJ matrices. 
The idea will be considered in more detail once we have studied 
the said algorithms of the ensuing chapters. First we now consider 

a type of algorithm to which most of the above does not apply since 
it does not generate a sequence of designs p(r) only a sequence of 

values xr or design matrices 2`. 
r. 
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51, 
x. 1 Cutting Plane Algorithms, An Atypical Class 

51ý. .1 Cutting plane algorithms are appropriate for the maximisation 

of a nonlinear concave function ý(") over a convex set or subject 

to linear inequalities. They generate a sequence of approximating 
linear programs. That this is possible can be seen on realising 

that maximising a concave function q1(x) over a set S is equivalent 

to maximising the variable y subject to y ý(X) for all xeS, 

which in turn is equivalent to maximising y subject to the constraints 

that the ordinate y should lie belo.: the supporting hyperplanes to 
4i(-) at all xr5; a linear programming problem v ith infinitely many 

constraints)or an infinite linear program with possibly some additional 

basic linear inequality constraints. 
Kelley (1960) perceived that the solution to such a problem 

could be realised by a sequence of finite linear programs. The 

progression from one linear program to the next is best described 

diagrammatically. Consider the following picture. 

li 

x 

Figure 4.4.1 

From the linear program "maximise y subject to the constraint 
that y lie below lines Cl and C2" proceed to the more accurate linear 

program "maximise y subject to the constraint that y lie below lines 

Cl, C2 and C3"-, the additional line C3 being the tangent to (J1(. ) at 
the current optimising value of the independent variable x. This 

additional constraint cuts off some previously possible optimum 

values for y including the current one. A full linear program 
does not require to be solved each time since the dual simplex 

algorithm makes possible efficient updating of the current solution 
to accommodate additional constraints. 
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Wolfe (1961) proved convergence of this procedure in a 

general context but further concluded that convergence would be 

improved by adopting as the additional improving constraint not 
that suggested above, but a weighted linear combination of current 
linear constraints, the weights being their lagrange multipliers. 
If qi(") is quadratic this process leads to the exact solution. 

t Further improvement would be obtained by deleting constraints that 

become redundant or slack as does (C1) in figure 

Note that the method would fail in the following case 

5 

x 

Here we have a function L1(x) with d(a)= ý(b) _ -°° . Consider 

maximisation of t41(x) over [a, b]. Suppose the initial approximating 
linear program is 'maximise y subject to the constraint that y lie 

below line Cl'. The solution to this linear program in [a, b] occurs 

at x=b. This suggests the asymptote 'x = b' as the additional 

constraint and thereby we do not obtain a new approximating linear 

program. 

S4. 
_. 

2 ? dost of the above is in fact outlined by Sibson (1971fb) 

where he proposes using a cutting plane. algorithm for the D-optimal 

criterion. He considers three approaches and we shall see that this 

criterion is particularly amenable to such algorithms. 

Computing D-optimum solutions in this way was first proposed 
by Sibson and Kenny (1975) and this would seem to be the first 

instance of using a cutting plane algorithm for solving (P2), which 

should in principle be amenable to the approach if t))(. ) is concave. 
Similarly with (P1) if cp(") is concave. 
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The first of Sibson's proposals considers D-optimality 

in its explicit form and is aimed at finding a p*. He takes 

5(P) = f[M(P)] 
J ýb(M) = loyedet(M) 

There is no unusual difficulties in applying the method 

except that it could fail as outlined above since at singular 1. ß(p) 

IP{M (4 =- 00 . However Sibson realised that this could almost 

always be avoided by including the additional (linear) constraints 

Fj i/k ,j =I) - ---"j 7 it being justifiable and sensible any way 
to do so since 

P 
ilk ý as we observed in section 3.3.1 . J 

That this device can guarantee avoidance of singular 
11(p) follows because any design matrix M(p)g with p such that 

p iE i(k j- i)- - jý is a convex combination of what Sibs on and 
Kenny call extremal designs. The latter are designs assigning 

uniform weighting to the points in their support, their supports being 

all those subsets of V containing k points. If such a support 

consists of k linearly independent points then its extremal design 

is D-optimwn for that support and of course the associated design 

matrix is nonsingular. Further all exüresnal designs and any convex 

combination of them will define nonsingular design 

matrices iff all k-point subsets of U form a basis for V. 

Sibson further states that if the optimum is given by 

one of these extremal designs then this modified version of the 

algorithm will identify it in a finite number of steps. If a 

non-extremal design is optimal then ý 
e- i pfk and hence eventually 

these additional constraints will become slack. 

Sibson's second proposal is based on eliminating the 

constraint EPA=I 
. This he does by considering the lagrangian 

appropriate to such a constraint., na-mely 

L(P) = c(P) + -k 
(i 

- YP) 

For D-optimality A= ka kno�n constant, and hence an 

equivalent problem to the D-optitial version of (PI) is 

'maximise L-(1) = cý(p)+ k(i - EP) su ecf o pj > o' 
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Concavity of 
ý(p) and linearity of IFP, guarantee concavity 

of L(p) and the constraints are linear inequalities. A cutting 

plane algorithm can be formulated also incorporating the constraints 

ilk ' which will clearly find a p". 

Sibson points out that the linear approximations in the 

above two approaches will be different and it is not clear what the 

relative efficiency of the two methods will be. 

The answer to this latter query would seem though to be 

clear for any criterion 4(p), other than that corresponding to 

D-optimality. The second proposal would seem the more complex 

since typically the lagrange multiplier will not be a known constant 

but will depend on p*. If ý(") is differentiable at'-, p* then 

_ ýPý4/zpjI? =pes 

However it still may not be an easy matter to employ 

a cutting plane algorithm on other examples of (P1) particularly 

for other design versions of the problem. In general we will not 

have information on pT that could be utilised to avoid failure of 

the method. We do know that in the case of DA-optinality 

and, xwhile the set of matrices M(p) such that P K- I is again the 

convex hull of extremal designs)it still could be that 

dct[A M+(PýAýý -ý 19 
even although Ps 1/S , 

for the latter °9e j 
conditions will not always guarantee that -YI[M(p)) C- n(A). 

S4.4.3 Sibson's last proposal for D-optimality is a cutting plane 

algorithm which differs from the two above in that it does not find a 

p'` but IS 
I (p} 

" 

In Sibson (1972) he proved as a duality theorem that the 

solution to the problem 'maximise = logäet(N) oucr NE )D 

subject to ýN k' is N* This proved a conjecture 

of Silvey (1972). 

This dual problem is a maximisation of a concave function 
"N Lr on a convex set subject to linear inequality constraints since j 

is linear in N. Sibson proposed solving it by a cutting plane algorithr:. 
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Again it is an approach which does not readily extend 

to other criteria. In vier of theorem 2.5.7 a corresponding dual 

for the general problem (P2) would seem to be 'maximise (j1(:: ) subject 
to F(x 

, u. ) 250 ', assuming «, ) is differentiable at xx« . However 

only if F(X, -i) depended on x only through being linear in a one to 

one function h(-) of x, i. e. F(x, tL, )= LJ [t, (x)J , would we have 

the necessary linear inequality constraint ingredient for subjection 

to a cutting plane algorithm. At differentiable x, 

and so depends on x through two components . 

Gribek and Kortanek (1977) however get round this difficulty 

by using the alternative necessary and sufficient condition of 

theorem-2-5.5 for optimality of x(p*) in (P2); namely that 

I- 'cCF) ' x( P*)l ° -ýoý all x(p) E p(«) 

In view of theorem 3.2.1 this further reduces to 

C-[M (p), M(p )] 3 G[M(p), M(p)1 

in the case of all the design criteria of chapter three whether or 
( not is differentiable at 1: p). 

If hoe. ever ti(") is differentiable at Li(p) then G["ý M(Q 

is linear in 1-'(p*) and the above states that 1(p*) should minimise 
GEM&), N] with respect to N subject to G[M(f), N] ' GLM(P) M(P)1 

for all pj, a constrained minimisation of a multilinear objective 

function)the constraints being linear inequalities. 

Gribek and Kortanek formulate two very elaborate algorithms 

for the design context, one for L1(") closed on A and one in which 

M(p) is normalised with respect to a matrix norm for general qi("). 

For the former they state that a cutting plane can still be found 

at a point where kp(-) is finite. In general they prove convergence 

under a wide set of assumptions. 

These algorithms are designed to discover M(p'ý) rather 

than p' although Gribek and Kortanel: say that they could be altered 
to find p--. This would ho , ever obscure the basic ideas in the 

algorithms. Indeed an advantage in seeking Ei* as Sibson 
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(1974b) points out is that if ý(" ) is strictly concave on 1k 

then 2`_=' is unique 'whereas there may be infinitely many optimal p"" so 

The practical design problem though desires to knov a p* and thus 

we would require to go on to solve the equation, 

M Pte) =M 5LL63ecf fo ?ý=I, pj -o. 

. While this 

can be solved by linear programming type methods, lack of knowledge of 
Sup(p') would be a hindrance. 

To conclude we observe that ?., u (1976) in a comparison 

of algorithms says that if a cutting plane algorithm is viewed 

as a sequence of maxim satioris over a sequence of polygons containing 
the polygon )0(U) or m, then some of the other algorithms that 

we are about to study can be viewed as a sequence of maximisations 

over a sequence of polygons contained in p((I) or m or as 
interior polygonal approximation methods. 
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ctAPTErt 5 

FORWARD AND REVERSE VERTU; DIRECTION ALGORITHMS 

Definition, General Comments 

This first class of algorithm for finding a pw is tailor 

made for problem (P2). The vertices {u1,..., ujj are the basic 

ingredients of that problem. without which it clearly lacks def`inition_. 

This is also the case with these algorithms. Their distinguishing 

feature is that an iteration consists of moving towards or, in some 

instances, atiwray from a vertex. They were originally conceived irJ the 

design context, although \7u (1976,1978a, 1978b), who originated 

the phrase `vertex direction', suggests that they are similar to 

methods' devised by Frank and Wolfe (1956) for quadratic programming 

problems. The basic principle then, in terms of the notation of 

section 4.2, is that we select a vertex u to be the oint y towards 

which or away from which to move from from xr = x(p(r ). 
r 

Referring to the equations 4.. 2.7,..., 4.. 2.25 we therefore 

have for 

5.1.2 
res 

or 
(. -ý)x 4--ýý F rrrt 

(X,, 
ý 

tiO 

5.1.3 
C' + °c r) xr - dý tit ý c' `ýt, p 

i 

where ýcT> o is the magnitude of the steplength taken. 

Similarly in the design context when ut = vt vt' we will 
have for 

5.1.3 s= F(M, 
) -t- 

5.1. t. 

or 

5.105 M rf I ýI + ýLýý (`ýjr - '(r st `mot lNir 

`rLr-ý) >o 

st `rte LQ 
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This will mean that if xr = x(p( r)) 
, Zir 2, ß(p( r) ) 

ýT . 5.1.6 (i - c. 

or 
(r) ( 

5.1.7 Q= 

Hence in the notation of section 4.2 q(r) = et, this 

being the tth unit vertex in J dimensions. 

From 4.2.26,4.2.27 vie then have that the upper bound 

on the steplength is 

F1XL. }>o 
J, )t 

5.1.8 -p)-ý) F{ Xr Z 

Finally from 4.2.9 or 4.2.28 

5.1.9 -ix = t) 
Ios 

' 
FIx, 

) t! 
>o 
e- 0 MAI- -6, ( Q-, ) 

', 
ýTL 

- V, )I ý)F Ix, 
J 

16 

The above will still be denoted by in 
the design context when ut = vt vt 

If F(xr, ut) >0 we will refer to ut as a forward vertex 
direction and ut will be called a reverse vertex direction if 

F(xr, ut) < 0. 

This defines the basic terminology. There remains the 

central issue of deciding on a rule for selecting ut and the choice 

of cc r* 
These will be discussed in section 5.3 where a number of 

suggestions for ut will be rade. ')one general issues are examined 
in the meantime. 

(i) It would not al ays be possible to opt for the above type of 
iteration. An essential implicit assumption is differentiability 

at xr)although support differentiability would suffice at p(r) 

with the exception in the design context of a p(r) which is opt1ral 

for L {Sup(p(r))} (1 V. 
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If tý1(") is differentiable at xr then it is easy to see 

that either of the above options would be available to us except 

if xr is optimal. At a nonoptimal differentiable xr there must exist 

at least one vertex uk such that F(xruk)-, 0 and at least one vertex 

ui such that �u. 
)40. <0. In factlas observed in (D7) of section 2.3, 

there must exist at least one pair uy, ul E Sup(p(r)) in this category. 

Further in viel; of the differentiability at xr it mould follow that', 

F(xr, 2xr uL) = -F(xr, u2)? 0. Under these circumstances the iteration 

xr+i above can be defined and is sensible since gas vie have already 

observed, it will be sensible to move towards yr if F(xr, yr)> 0 and 

sensible to move from differentiable xr in the direction opposite 
to yr if F(xr)yr) 1- 0. This is assuring (xr+ -c mr) C (LL) for 

small positive cc , mr =-±(yr-a r), -ahichever the case may be. 

(ii) Note that if we Imow p(O) .1 
then c; e will kno:; p(r) throughout 

and assuming convergence, the algorithm w ll thereby identify a 

postulated p:. Discussion on the choice o£ pýý} will be deferred 

until section 5.6. 

(iii) Further viewing (P2) as a particular case of (P1) it emerges 

from 5.1.6,5.1.7 that the distinguishing feature, with respect to 

(P1), of such an iteration is that it makes a change in only one 

of the weights,. namely that of ut, apart from a proportional change 

in the others. More precisely if F(xr, ut)> 0, when, from 5.1.8, 

we must have -C <1, it removes a proportion d of the weight at r r 
those (other) vertices belonging to Sup(p(r)) a. nd assigns the total 

removed Zieight to u, . If F(xr, ut)40, when, from 5.1.8, we must 

have 
r< 

{p r)/(1-ptr)) 
2 it removes weight ýCrý1-ptr)lj` Ptr)ý 

from u and distributes it proportionately to those other vertices 

of Sup(p(r)) according to their weights per) . This highlights two 

important points. 

First to offer a suitable for. rard werte direction, u need 

not belong to Sup(p(r)) but if weicht is to be removed from u, 
tthen 

: -! e must have uE Sup(p(r)) . There must be vreiöht at u if any 

is to be removed for if ptr) =0 then p(r-1) _- dr and then p(r}ý') f P. 

This is also clear from 5.1.8 since we v. ould have ýCr(ut) =0 if 
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per) = 0, F(xrut) <0 and so it would be that (xr+t mr) pý((ý for 

any small positive d if it (xr ut). 

Secondly in view of the fact that any weight removed 

from ut is distributed only among the support points of p(r), we 

could not consider taking a reverse vertex direction step at every 

iteration xr unless we knew that Sup()') Sup(p(O)). Typically 

this would require that Sup(p(o)) =CL. 

(iv) That an iteration of the form 5.1.1 can still be defined at 

an xr = x(p(r)) offering only support differentiability and where 

p 
r) is. not optimal for its support., follovis by the same argument as 

in (i), namely that there still must be at least one pair 

uk, ul E Sup(p(r)) such that F(xr, uk) > 0, F(xr, ul) - 0. 

Further since, in the case of those design criteria of 

section 3.1, which enjoy support differentiability, we have 

F{M(P), 11=- Gf M(F), f"(P)j if vý 4 L{Sup(p)j , and since G(l, l) >0 

in such instances, it must be that F{?; I(p(r)),, rký}>0 iff 

k L{Supt pý r, ý }. 
J 

Suppose now, in the case of such a design criterion, 

that p(r) is optimal for L 
{Sup(e(r) )} 

. Then F{Pi(e(r)) , vj vj 'I0 

with equality if per) 0 and with strict inequality if v LtSup(p(r)) . 

In such circumstances, even if p(r) is not the solution p- to (P2), 

an iteration of. the form 5.1.2 carrot be defined for there is no vý 

such that F[ 7(p(r)), vi v> 0 and no v, E Sup[p(r)ý such that 

r 
{?:: 

(pý r)) 
, vivi'} ' 0. Put verbally there is no vertex to yards 

which to move and no suitable one fror! which to move away from xrJ 

and even if it were sensible to move away from avi4L 
[Sup(p(r) )j 

lach of differentiability means that it is not guaranteed that 

FSl ýp(r))., 1 (p(r)) 
- vi v' }> 0. Any iteration from 1: (p(r) 

must move 

in a direction which is neither towards nor away from a particular 

vertex. 
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(v) ', by this particular type of simplified algorithm? Almost 

certainly other algorithms not restricted to vertex directions would 

be more powerful. Vie will see however a role for this type' of 

technique in that it can roughly identify Sup(p~-), an advantage 
if J is large as when 

U 
or 

V is a discretisaticn of a continuous 

space. 

Also in the design context itera. ticns of the form 5.1-4,5.1.5 

are much simpler to execute than other iterations. , 7e will see 

that in the process of selecting vt )either we will wish to evaluate 

F{M 
r, vjvA for all j, or possibly to evaluate 

ý(") 
at the different 

possible values that I, 1r71 would take if vt is allowed to ranee over U. 

Almost certainly we will wish to evaluate (ýl() at Li 
r}1 

for the 

selected value of vt. Consider that for the criteria of section 3.1 

the quantities F(Y, 11) depend on M1 through If or IF 
1. Hence 

if it is nonsingular then in general a full inversion of 

I:; 
r+1 = (1- sýýýMr + (5- 

` 
is reouired. Hoy: ever if Ir =vtvt' then a 

matrix result makes possible a simple update of ff 
1 fron I, 

1. As 
r+ r 

a result simple updating of l41(I: 1 
F(M 1, vtvt'} is also -possible 

in the case of Dh-optimality and LA-op timality) since for these criteria 

the two 'quantities F(I', vjvdepend simply enough on 11-i if 

LI is nonsingular. Also explicit formulae for optimal steplengths ocr 

can also be derived by use of this matrix result in the case of these 

two design criteria. öle derive these results in the next section. 
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.2b Iatrix Result And Some Useful Corollaries 

65 2.1 The following matrix result simplifies fairly substantially 

execution of_a vertex direction algorithm in the case of DA=optimality 

and LA-optimality. 

Lemma 5.2.1 

Let G. f{ be kek matrices and let a, b be kxl vectors 

which satisfy the relationship 
5.2.1 G =1. I+ab' 

(a) If Ii is nonsingular then 

5.2.2 det (G) = 
[1 + a' L 

1bJKdet (t') 

(b) If also G is nonsingular then 

5.2.3 G1 =1., i-1 - (Mab'111)/(1I +a'1: 
1b). 

Proof This is theorem 8.9.3 of Graybill (1969). He does not 

give a formal proof although establishing (b) is trivially done by 

checking that GG-I = Iýwhile in theorem 8.1 .3 he proves (a) for Li =D 

where D is a diagonal matrix. His proof though is cumbersome since 
it appeals to the basic expansion of det ("). Graybill also devotes 

theorems 8.3.3,8.5.2 and 8.5.3 to this particular case of G. 

From theorem 1.6.8 of Graybill there. exist nonsingular 

matrices P, Q such that 

PMQ =T 
Hence M=PQ 

while 

where c= Pa- 
,d=0,6 and hence c' d a' 1 1b. 

Since we then have 

aet(U) = [ctt-(P), ýt (Q )] -'a ±E ý- cß'1 
we need to shave that det[I + cd' =1+ c' d. 

That this is the case follows from the fact that (I + cal) 
has two distinct eigenvalues, namely I with multiplicity (h-1) and 
(1 + c'd). This in turn is a consequence of the fact that these 

eigenvalues exceed those of the matrix (cd') by a value of 1. That 

a 
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the lütter matrix is of rand. I means that it has only one non-zero 

eigenvalue wich trivially is c'd. 

This simple lemma will be seen to have wide ranging 

implications for us. Ire will be able to use it several times over 

mainly because the form 5.2.1 of G is one which is 'preserved' under 

matrix multiplication as is evident in the above proof and also 

under matrix inversion, for 5.2.3 states that G=N+ cd'. 

In view of the fact that formula 5.1.1 states that 

I"Ir+i (i - M, + (s-ýýý tt, a consequence of opting to ' change' 

only one weight, the lemma is clearly a potentially useful result 

to a vertex direction algorithm in the design context. We will also 

see in section 6.1 that it can in fact play a simplifying role in 

other algorithms which change all the weights simultaneously. 

Corollary 5.2.2 

Lemma 5.2.1 is true with signs reversed as is seen by 

Putting b= -c. 
Let Z(öý ýr) _ -ZS)M + 

-'d) M,, -W u- cr 

The follo: ving. equations are easily verified derivations fron lemma 

5.2.1. They assume nonsingularit of 2`: and, where necessary of 

Note that if 1' =1 (p(r)) is nonsingular then so is 7, '6 
r 

when Ö= Soi OL oCr L ýcý( ý for then p=. C' -S) 
P` 

-ýSe{ is a 

design for which Sup(p) Sup(p(r)), which must contain k linearly 

independent design points. 

5.2. E (I -ö) El-6 +6 r'M aet CMi 
5.2.5 z'ýý5, L37) = M-' '6 M-', r,, ' 

__ 
M- I 

5.2.6 lam- Z. (2S ýrý = 
=- iS ýs' Nl ýZý 

That these results are useful to D-optimality and to 

r. -optimality cannot be in doubt, but this does not only derive from 

their simplicity. They depend on the vector yr =2 
lv 

which has to 
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be calculated any. -,, ay in the evaluation of G(1`., vv') . In fact the 

expression for each criterion includes this derivative as a terry. 

Other�ise the dependence on w is through at least one of the terms 

UW'ýLJ LLJ, t7`w. as is the case with the following expressions for 

the respective G{Z-1(6, v), vv'j terms which will be useful in the 

evaluation of optimal steplengths. 

5.2.7 Z- 1(Y, 
u-) Lr, 

5.2.8 V- ' Lr 

Lore generally 

5.2.9 ýýZ 
66) 

t) ß 

5.2.10 cr 
(16, 

Lr, 6-) j 

- tr' Ml,, -/Ft - -6 , -6(5- ' M-1v-1 
2 

- ýr M zur/ 

C -, K) Cý-ý)[t -, 6 -1-6 Lr" -ý'- I 

- (1 -6) (-, 6)[ -6 -+. 16 ý M-ýsý' 
In theory these latter two equations with QQ replaced 

by ZTý°ýýý t} could be used to evaluate G{I. I, vývý' ) for all V. 

in the case of D-optimality) and they could also, along with corresponding 

)s ö =±°L be expressions for W Z2ýS Lrt 

similarly used in the case of n-optimality. However having updated 

171.1 from Irk by means of 5.2.5 it would be more efficient in general, 

to calculate the vectors vtý = I. 1 vi and the appropriate scalar r+i 

products vi 'wi or vi . 
'wi . 

65.202 The above results are fairly well lmovm. They are 

particular cases however of corresponding results for DA-optimality 

and LA-optimality which are just as simple but which are less common. 
They are direct consequences of the folloý., ing corollary to lemma 

5.2.1 

Corollary 5.2.3 

Let G. K be kxk nonsingular matrices; A, B be s-k matrices, 
H an sKs matrix and a, b be k-i vectors -uhich satisfy the relationships 

5.2.11 G= 1.1 + ab' 

5.2.12 H= AG 
1B' 

(a) If (bl, 1B') 
is nonsinGular then 
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5.2.13 det (B) ={I - 
1cQ Mt' (AM-'ß'Y ßßM'51/E +`Lr"1'b1ý-c(rt(FlMV). 

(b) If also H is nonsingular then 

5.2.14 N-i =AM IBS +A 
M-' B')-[A M-ý 

-+- Q M"' 6- 

Proof These results are corollaries to lemma 5.2.1 because the 

matrix 11 has the form of the matrix G as we now see. From 5.2.3 

H= Fl M-' - 
M^I0.6' M_1 

ýº [I t cý' M-'6 j 

=A M-'B' -A 
1Yl b 

_N- /3 c d' 

where N= F}MA6, 
,c= i9M äý=6M ýb p =[I + äM-1 bý 

Lemma 5.2.1 therefore yields expressions-for det (H) 

and 11 -1 in terms of N, c, d, /3 from which equations 5.2.13,5.2.14 

fallo; r. a 
The relevance of this result to us is that the DA-optimal 

and LA-optimal design criteria are functions of the nonsingular 

matrix (A3 1A') 
at a nonsingular 1i, v hile the Gateaux derivative of 

the former depends on the inverse of (AI 1A'). Recall that for 

these criteria G(LI, vv') takes the respective values v'Li 
I 
A(A1. i 

'k')-RAJ Iv 

and v'M 
IALA'? 

S 
'v. 

We now quote counterpart equations to those 

of statements 5.2.1, ..., 5.2.8. They follow from corollary 5.2.3 

with the aid of not a little algebra in some cases. 

Let 

w=I; 
lv 

gv 

1 -1 -1 -1 -1 g 5.2.15 h= (ýI'` k') = tA1 A') A1;: 

x= g' h= v' I, i1 A' (J. ' 1 
A') -1At -1 v 

y=v'w=v'1i1v. 



134 

ýý, dot A ZýC2S ý1Aý 
ý -ý +ýsy-isx]d-t(AM 11) 

5.2.16 [º -u -1 Zs ý, ] 

5.2.17 ýFl 
, r)l A'] _ (t -'s)[ArMCA']-'+ ö (1-6)1,1ý'! 3-äXý 

5.2.18 +r LA(ö, L-)jA 

5.2.19 , )j A' [A fZ I(ö, 
LT)j f'] A{Z ý'() 

- ý1 - 25)x/[0 --6 4- - ýS + iS y-ö X)] 

5.2.20 X11 Fl'L AZ ý(ý'v\l 
s=5L 3/E 16 I_ -v-- W 

Again the usefulness of all five expressions derives not 

only from their simplicity I 
but also from the fact that they depend 

on terms, namely iv, g, hI which will have to be calculated anyway ir 

the evalution of directional derivatives. The particular use to 

which we can put the first three equations is in updating the values 

of corresponding terns from one iteration of a vertex direction 

algorithm to the next, while the last two, as we shall now see, are 

of a form which makes it possible to evaluate explicitly the optimal 

steplength for such an iteration. 

Recall that an ascertainment of the existence or otherwise 

of explicit forms for optimal steplengths requires examination of 

equation 4.2.7. Here this equation becomes 

5.2.21 F{ (öi ) 
%s. s 1=0 

In the case of DA-optimality this becomes 
i 

5.2.22 A'[A[ZA*6,,. r)} a'] a{z '(ý, s)ý LT-- -s=o 
that is 

5.2.23 [C-2S)x]k-2S}iSyXt-ö+öy-Öxý1 -S =0 

In the case of Lk -optimality 5.2.21 becomes 

5.2.24 
{7^1(öý 

it> (ý ýL A[Z_ýýý -)I t-r - -Lr{L 11{Z_1(6) ýr)I nil =0 

that is 

9` -3 
2} 

'6 DTI LAM IAli 
5.2.25 Lt - 2i+ ö`ý1 (1-16)(1 - ö+ Ziy) (I- ö) 
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Both equations 5.2.23 and 5.2.25 reduce to the form 

5.2.26 
(o.. 2i2 -; -- 6+ -)/d(iS) =o 

In the case of D1 -optimality vie have 

6:; c+ zs(ý-n) 
c= (x-s) = F(M, -I') 

In the case of Lh-optimality we have 

LAM-'ASS] 

C= Lý --LT{LAM'A'] = F(M1 ur. r) 

cy]z a(S) _ (ý-ýs)D -'6 
If real solutions exist to 5.2.26 they must clearly be 

solutions of 

5.2.27 Q( )= aÖz-}6V+-c =O 

This of course has the roots real or others se 

5.2.28 X_{-b+ 5z- c }, rzp. ) Öz =-S-I, 
J 1- 4ý 

/(z4} 

It is possible though, when these are real, that only 

one of them or possibly neither or them would be a solution to 

5.2.26. 

Suppose novr that are both non-zero solutions to 
} 5.2.26 for z(lS, .e must identify the 

smallest positive solution and the largest negative solution or 

which of the latter does not exist. Clearly it will be a simple 

matter to do this. -Ilu ever in some inst_: CCM we can identify in 

advance which of l,, Ö, is Örýt and so on. This can be done by 

making use of the result that '6 _ c/ =ýF MT st 
}f 

and 

also of the fact that if F(M vtvt) > 0, in which case 

then one of the solutions ö1, d must in general lie jr (O, J) 

The latter result is due to the fact that in pereral 
for det(JJ A') and (P(?: ) =- tr[L(AI; i}A' )1 

, 
L%ý7`(ý6, 

IS'l->-p° as U-' 1" Since kP(') is concave in both 
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cases it must be that F-(Mr c') -, 0. 

More precisely the following are possibilities. 

It could conceivably be that a=b=c=0 in which case 

any Ö is a solution of 5.2.26,5.2.27. 

I: Iore realistically equation 5.2.26 will have no (real) 

solutions in the following instances; if a=b=0, c 0; if 5.2.27 

has no real roots; if , (W) does have real roots but fully cancels 

with the quadratic d(Ö) in the case of D? -optimality or with a 

quadratic factor of the cubic d(s) in the case of LA-optimality; 

or if a=0 and the term (bK + c} cancels with one of the factors of 
d('6) . 

The equation will have only one solution in the following 

instances: if a=0 and the term (b+ c) does not cancel as above; 

if 5.2.27 has a double root without Q(X) fully cancelling as above; 

or if 5.2.27 has two distinct real roots but one of the resultant 

factors of Q(ii) cancels with a factor of Q). 

Finally the equation will have two real solutions if 5.2.27 

has trio distinct real roots and neither of the resultant factors of 
q(S) factors as above. If c=0 then one of the solutions is zero 

but then this should be the case since c F(M 
, ýs s`) = F{ 7-(0,, -r)' Lrir'ý 

'. ie will encounter examples of most of the above. 

Yihichever obtains hov: ever, we can clearly identify it by 

checking the values of a, b, c and the roots of 5.2.27. Then taking 

we can identify the optimal steplength from I;: (p(r)) 

to or away from vtvt'. Vie require to appeal to 5.1.9 and to the ideas 

enumerated at the end of section 4.2. 

In particular if there are no solutions to 5.2.26 then we 

should take ýcr(0rt) . If zero is a solution or if Qýýýýd(iSý =o 

for all then we should take aC ýstý =o, i. e. we should not take 

a step from 2. (p(r) towards or may from vtvt' . This is clear enough 

in the former case since by dint of concavity zero must be the 

maximising value of A in 4.2.1. If any Ö is a solution of 4.2.26 

then -( could in fact be any value d >o subject to 
(r+1) 

D) _ 
((I-, ) pco ,Z or L+ec)p ` ý- oc et belon in to F. 
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This is because the criterion qJ(") is constant on the 'line' running 
through 2; I(p(rý. and vtvt'. No change in the value of ý(" ) will be 

achieved by such a step. Ho-;,, ever in the absence of any other 
information it would seem sensible not to take such action)but to 

take a vertex direction iteration corresponding to an alternative 

vertex to vt assuming p(r) p. 

If F(l, ir, vtvt') >0 then ((") at first increases away 
from 11r towards vtvt' before turning dovrn to achieve the limiting 

value of -- . Since nonsingularity of 111r guarantees that of 

Z, OX 
I s. ) and hence differentiability of ý(. ) at Zr C6 7c 

the function f(6) = ý{Zr(ZS, L'rmust have a stationary value in 
(0,1) 

. By a similar argument if FLY' 
r, vtvt' 

j40 then neither öý 

nor ö can lie in (0,1). This would be true whether or not the above 
limit held. 

That t IZ, (6, CS-t)j --> -- as iS >1 is not" surprising� and 
this is in general true for all design criteria. Z, (1, -r, ) is the 

design matrix corresponding to the one point design p with 

Sup(p) ={ vt}, which in general will not guarantee estimabili ty of 

oý . Ae save in the exceptional case of A= c' , vt =c. The criterion 
is then c-optimality for which L=1, s=1, x=y= tr [L(A1: ` 

IA')j 

and for vt =c, g'Lg = y`, and, whether viewed as a particular case 

of DA-optimality or of LA-optimality, 

ýý 
ýc 

luJ t/, 
Cý Zr 

l ('6j 
c) C 16 

Returning to determination of ö,. this can 
be done as in the following instance. If F[ r, vty' 

}> 0Ithen 'sie have t 
that one of ö, 

)ö e (° II) and hence at least one of then is positive. 
If further a>0 so that ö,, ö6 >o, then both roots are positive with 
16 and hence 0<<L and 2Sý (t) =ö while 2ST ývtý is undefined. 

Proceeding in this way, and allowing for the possibility that 
') =0, we obtain, with c-F CM 

rj* Yrt 

=d-�=- 
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5.2.29 

4 (, ý; ) _1 

u CL >o F(M -`TJ >o 

ö ii CL c o, F( Mr) t t, ) 
>c. 

F ýMrý 1Týý o mint-iSz If 0. -> 0 

min{-ý , CL o, ) ̀ mot`-t') co öý.. 
2 o 

ý)Iý1 ()i FCC 
ITS ITt -0O, ) 

(5 '0 

-t 

/ 

Cr)l ýt r) /1- ýt 
J. 

ý CijZ 
- L#. cu) -Q 

Suppose now either as a result of one factor of Q(6) 

cancelling with one of d(ö) or because a=0 that equation 5.2.26 

reduces to a linear equation 
0., 6 

- 0. z -O 

with therefore the unique solution 
16 0.2'0., 

In view of concavity this can be zero iff F111r, vtvt' 
1=0. 

By arguments analogous to the above we will have 

.Z1 CL, 

. 2.30 pC ýr ,ý«Ql4 // 
`1tM it ýr Loa4o 5 =- 

,1l r) t tý _ 

{ýý /ýý 
_ ýt ýý\ `, f ý= 

Cý" 
rý ist ýr{ JýO, a lay >o 

Such cancelling happens in the case of D-optimality and 

in the case of c-optimality for vt = c, when this criterion is 

considered either as a particular case of DA-optimality or of 

Lh-optir:. ality. 

In this latter case x=y= c',. c so that in the 

DA-optimal case 

QCM) = Cý-º)Cý-ý)z 

1`ße must note that if y=1 then Q(ZSý f d(ýý =0 for all 

. that is any 6 is a solution of 5.2.26ß and so Ff Z(15, c) cc' ^ 0ý 

and the criterion takes the constant value of I on the 'line' through 

Y (P) and cc' . 
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:. e have already considered this possibility at nonsingular 
11 and concluded that in the absence of further information we should 
take ýtý (%jt) =o 

However if y. --I- I the factor (ö-i) is clearly common to 

both Q(6) J(6) 
. Remove it and we have aI = a2 = (y-1) and hence 

=1 whatever the non-zero value of y. There is thus never any 

negative solution here. 

If we view c-optimality as a particular case of L-ortimality 

(L = I) the additionally have tr{L(A1:: 1!! ') = y, 9' Lg =- f and we get 

which will have exactly the same implications. 

7e conclude that for vl =c 
U 

l 

`fi't) - ýir)/`/l_ ýir)\ 
't 't 

J 

if F(Mri `s--t t) >O 

LrLrý\ LO rý -c -c J 
if FýM` vtLt) O 

The D-optimal criterion is that particular case of 
DA-opti , 

lity for which A= Ik, s=k. In consequence x=y and 

we obtain 

Q(6) _ (ä-I)[k(y-1)6 - (Ls-k)] 

,L (6) _ (1-6)(1-W-1-Xy) 

Again the factor (ö-1) is common to both. However if y=1, 
then, for all ýS 

, 
QW/46) L- o' as should F(I:, vv') . There is 

therefore no solution to 5.2.26, in which case, for Z(X, v) = Zr(ö, vt) 

we should have 

Bote that it is Possible that y- crýjý 
ýýPýLT 

iE- 1. 

Take V= [(1,0)t, (0,1)', (x, x )ý}, 

F=( 1/3,1/3,1/3), so that 

+x2 x2 

1.: (P) = (IM 
}2 1+x2 
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and for v , v'1 
1(P)v 

= 6x2/ 9+ 2) ,1 if ýxl X 3/2. 

Excepting the case y=I then 5.2.26 will have in the case Z(6, v) = Zr(6, vt) 

the unique solution 

5.2031 Ký Ml, -r, t- kJý{k (ýý MýI`ýt 

If FC.; 
rwtvt') 

>0 then we do have oe '6, (ß)z-1 since Y, M, Ls- k 

implies both that ('M 1r- k) e- 
(k 

t'Mr-1t - k) and also that 

kr 

Similarly 
r tý >I if I since then 

r-r 
( Mýý k) e- 

(k 
t'M, ' 

-k) 

Appealing to 5.2.30 we obtain 

CJtM, -1 Cr. 
k) 

Lkl 
Mr LT, 

01 
ýf F(Mrý 

Y 
týl >O 

5.2.32 °ýýýýt)= k- M- II 
f Ic VM ýr ck kýýtM-ýý -Iý º cfý trf 

rtt 

This could have been more readily derived by equating 
to ?:, the expansion given for t 

ý1(ö) Tr in equation 5.2.7. 

Fedorov (1972), among others derived 5.2.32, but by a 
direct maximisation of the expansion given for det [Zr (2% Lrjj in 

5.2.4. He noted (p. 114. ) that the optimising 
ä 

satisfied 

{I{ZrI ý. e, )t =k. 

Using exactly the same approach for DS -optirality Atwood 
(1973) obtains a quadratic equation in terms of (3 = '61(1-16) for 

the optimal stepleneth' in the particular case F(i: 
r) vtvt') > 0. 

He also established that in this instance 

{'{Zr(« mot/ A, 
[ý [Zr' 

`. r ) 
ýrý A, 

ý 
n lzrlýr 

t/I ts "fi 
4ý`rt/ 

` 

Finally again using this approach for L. -optimality 

in the case A=I, Atwoo1 (1976e. ) obtains an eruation for ö exactly 

of the for,:, Q(ö) Id (6) =o where Q(ö) is the same quadratic as in 

5.2.26 but nc; r which in view of 4 . 2.6 in 

what should be the case. 
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hile, in vie:: of the equivalence theorem the two authors 

must have found the equalities which they observed intuitively 

appealing, they did not fully realise why these equalities should 

hold. They did not however have the directional derivative tool at 

their disposal then. 

This completes the results concerning vertex direction 

al orithr, s that vie wish to derive fror lemma 5.2.1. They are 

restricted to the above criteria and a crucial assumption in applying 

the lemma to these algorithms is that 1, 'r = i: (p(r)) should be non- 

singular. ; chile we must have this for D-optimality and .: -optima? ity 

it need not be the case that 1(p) be nonsingular for the general 

DA-optimality or L1-optirality criteria. 

'-r e vill still however in general select p(O) such that 

1_(p(0)) is nonsingular and while could ensure at succeeding iterates 

that 1. 
r 

be nonsi ng-ular., we will see later that we maybe happy to i asn 

r, 
the timing of such a step being such that v; e would to a singular 11 

subsequently wish to use an algorithm not of the vertex direction 

type. IJoreover ;., e can still have a simpler than usual task in 

in evaluating LI I or M+ 
'whatever algorithm :: e use, as shall be seen r+j 

in section 6.1. 
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S5.3 axam r'1es Of Vertex Direction Algorithms 

e no-k consider some examples of vertex 

, 7e have to decide both on a method for selecting 

which or away from which to move from iterate xr 

formula for the steplength -zr' wr -> o 

direct-lon alr, orlthmr,. 

z vertex td; ards 

= x(p(r) ), and on a 

As has been said the bptinai choice ý (üýý of , is given 

in 5.1 -Bland we have just seen instances when we can evaluate this 

eyplicitly)but typically numerical techniques would be required for 

its -evaluation. In the case of a for,; ard vertex direction algorithm 

we 1 ovi that ýCr(uýý l= ýý(k{ý and hence rust solve equation I . 2.7 

w. ith Z (öý u) = ZT(isJ 4{) = (i-ö)xr+i; 
, so that vie could determine tee, (1-) 

by solving the latter in (0,1) using Tierton Raphson techniques. In 

the case of a reverse vertex direction the best course of action 

mould be to solve 4.2.1 using techniques such as Golden Section. 

ITov. ever it was for a fcr, iard vertex direction a Dori thm 

that the concept of arbitrary step? en-ths .; as ccnceived; 
i. e. ecr = /3,4, (ut) for an arbitrary* but reasonable -preassigned value 

P, in oL Far- I. This puts in the case of af oraard vertex 

direction. The choice of P, will be exam ned in section 5.6. 

However vie choose -t, pit will typically be a value 

a depending on ut. In this context either -1, (Ext) _g (ut) 

or a4, (ut) _ La. ) 

ire will denote a vertex direction algorithm by 

where ut indicates the type of vertex to be selected. Hence vie 

will typically be referring to algorithm \i{ (at or algorithm t 

V{ tj P'Z'(kt)j or algorithm yf t ýý if ut is a foraard vertex 

direc Lion. 

Recall that the basic iteration is 

xr+t Z'L{rýý+ 

where 
ý, 

"°tri`ýt)} Xr +{ ýýýýt) .4F 
ýxr, utý >6 

Z 
CtLO r-1 '1, (u-Oýut 0 
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'. ýe no,: present a not exhaustive list of suggestions on 

ho;, to choose ut fron Ll = 
{u,, 

..., ujj 
(or 

vt from V_ tv,, 
..., vj}). 

Let xr = x(P(r)) , I. 
r = -(P(r) 

Let 

5.3.1 

fur 

} 

U. {s 
cJ 

; CL , FC--, LL; )>o 

FCx1 ý; ) o} 

1 3) 
E SLLP(P", ) 

, 
F(Mrý 5 ýýý o 

A first selection is 

P) 
= the vertex which solves 

5.3.2 u(2) 

P) 
_ 

Clearly 
u tL tf 

Max, 
LL a . eCär 

(t., n -IF(%u; )} u"c- Ur 

Mcoc 
r 

ýLLW) 

Secondly 

u(4) = the vertex which solves 

lu(5) 5.3.3 

u(6) _ 

m&x 4{ FACx, -, u, )} LLJ Lir 

F' , jýi 
j Euc 

�cr } 
rr 

Clearly " 
U. = 

QCs) 

The following are choices for which an arbitrary steplength 

is appropriate 

LLC`, cT ý(Zl 
h'r°ýrýýU)`l, 

1'rýFFý`. ý`/LLGt)\/ 

U\7/ - (z) 

JJ 

L 

`r i 

"`" 

J 

5.3.4 l 

(8) llý) 
4 

Cl 
ßr`ýrý61L1)1jl fýyr7 f ýr`CrCti 4)) ) 

U. ,T 
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fu(9) 

= the vertex which solves 

5.3.4 
u(i 

o) 
= Max (contId 

jE Ur 

u(11) = Max 
LL. 4E 

I Lc} UU 
irr 

Clearly 

(11)= LL19, (pZ f ßr r( 
k>)S) > tfj(ý LR °4(u-ctol ) l 

C'o, 

1 

The follo; ýin- are choices for which an optimal steplength is 

appropriate 

l-t'i 
lý 

Lý 
ý/ýlýT CýCI)\1\ ýýZ F, 

a[ýýlluýýýJ 

u(12) (1) 

> 1` J(J C 

LL 

u(13) = 
u(t 

J(ý 

. f 

5.3.5 u(1 
ý= 

the vertex which solves n {ý 
lýýZ{mac ýýý)ý)} 

LL E Jr 

u(15) = max 
E Cfr 

u(16) = rýý { 
LLS 

>1j Clearly 
114 it 

/Z 
ý3Cýý14)\ 

`>T /ý(ýdKý4ClSý\ 1 

ts) u(16) =Tl 
j) `1J/ 

In the design context the notation will change to 

výý) ... 
(16) 

Obviously the above cannot be a! exhaustive list. Each 

is clearly optimal in some sense, some being more pptimal than others, 

with V{u(16) 
, 

A*(u(16) )) being such that J(x. 
1) is larger than 

that for any of the other u(ff) Kote that there need not be a unique 

u(J) for any j. . 
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Of course the more oDtiral ones may demand more computation 

and this will certainly be the case if (uý has to be evaluated 

numerically. Hence the variety of choices. In general it will be 

simpler to evaluate F(xr, uj) than qJ(t-e, (u-j)j) and the former has 

to be evaluated any, -; ay to test for optimality. 

All choices require a maximisation or minimisation over 

a finite set. If this were large one may settle for a ut satisfying 

weaker conditions than those of the u(j)y that would have been our 

choice. -Also with a view to cutting down on computations we might 

ot to determine u(4) or u(5) as opposed to u(6) and similarly with 
(16) 

u 
9) 

, u(10) J u(11) and with u(11f) .9 U(15) )u 

V. re nor., consider the origins of some of the above u( 

and comment on them. 

The idea of a (fonaa-rd) vertex direction ai eorith. ^ seems 

to have been conceived and only used in the design context and the 

first such recommendation was for D-optimality. Independently both 

Fedorov (1972) (see earlier references in that text) and : iynn 
1 (1970, '1972) recommended v and they did so despite the fact that 

they did not have the directional derivative tool at their disposal. 

Vkrynn used V[v(1), 1/(k+r+1)1 while Fedorov, realising that the 

optimal steplength could be evaluated explicitly, favoured 

'4 . r(l) ýT Cý"ý)I 
. iynn also employed Vtv 1,1/(k+r+1)1 

: in the case 

of DS-optimality while Atwood (1973) recommended v{ vc'3, 
-9 

-X 11 in view of his quadratic equation for finding f3 _ -c /t- "X 

This choice of v(') has since been a predominant one in 

the design context and is about the simplest choice, its identification 

not requiring much extra computation in vie-.., of the fact that, as we 
have said, F(T-11 

r, 
vi vi') must be calculated any; ray to test for optimality. 

Several authors have considered 
+ (I) 

, 
Pri with an general design 

criterion in mind as shall be seen in section 5.6. 

The choice kP) is one which at differentiable hr has the 

superior credential that it solves max P(xr, y) as seen in (D7) of 

section 2.3. 
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ij 
One r.. iGht have thou`ht then that as a result u) and u 

would be the same, that is that C= (xr, u 
b) ß(5f-- U- always, 

for at differentiable xr-ý >0. 

If u(') maximises r(xr, y) with respect to y then surely 
Cl) 

However this is only Guaranteed to be the case if 
C2e p(LL) for the maximisation is restricted to yE 

It need not be the case that C7_x, 
- u -(L)) E )3(U). That we will have 

is f 
Cxrj 

LL")) >f() xr-1- oL Mr/ 
l 

Mf - Xr (`) for OLo ýaýmr)" A 

design exanple illustrates the point. 

Tate U to be jynn's design space quoted in section 3.3.1-. 

That is U= 
v1)v21 v3)v 

j 

and let p= (1/4 1/4 1/4 1/4)'. For j=1,2,3,4 respectively 

Fý1. I(p), vjvj'ý -1015/152,8/152,8/152,88/152. Therefore v() = vv 

V(3) = v(2) = v1'while ; c(v(2)) = 11/4(1-1/iV= 1/3. Finally 

= -ýFýM(r)ýý iý = (1O4/152), ( and 
(101 152}ßc (31;. +24)152 if o 4- '- 113. 

This seems an undesirable feature, one due to the dependence 

of F(x, y) on the distance between x and y. 

Possibly because it satisfies the above raxirýisationýu(1) 

has been erroneously referred to as a steepest ascent direction. See Atwood 

(1976b)., In view of (D9) of section 4.3, a 'steepest' ascent direction is not a 

vertex direction. Had it been otherTlise there mould not have been 

the need, -justification or scope for a range of alternatives as 

extensive as the above list. Choice u(4) might be viewed as a 

compromise; the steepest forward vertex direction (with res-cject to 

the norm or its generating matrix A). `;, u (1976) appears to consider 

u(ff in certain circumstances. Te rill see below though, that u( 

Still, in the case of D-optimality, still seem to be a superior 

choice than u(41). '. e would similarly refer to u(5) as the s Leepes l+ 

reverse vertex direction. Clearly u(6) selects the steeper of the 

two directions corresponding to u(4) and u(5). This may be superior 

ou t 
(ff) 
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The above ;. Lisconcepti on may alternatively be due to the 

fact that in the case of D-oDtiriality v(1)v(9), v(14) are identical 

so that V v(1), jar and Vvj9), orý, generate identical iterates 

and so do ý%ýv(ý}, ýT(v(ýýý and 
V{v(14), d(v(14))} 

This is easily seen from the fact that in 5.2.1 

detjZ, (-6, ý)ý +ic ýM-r % ý\det (1-7). This depends on 

only through the term 3ýM1 r. = G{Mýý) j' and in fact is proportional 

to the linear term {i 
-ö-öC, 

(M, 
) j ý' 

this z. ill be maximised over If +- 
Hence for a Given o 6y 

' t 
It is also because of this that, for a given Le Uý the value of ö 

which maximises det4Zr(2S+ 3)c over o öI also depends on v. 

it being (i 
ýlM only through G-(M Lr ) 

-I -I 
o k)/k(LrIi`11rI Lf. 

} 
rI ) 

Hence det{Zr(ý, Ur, 
) is simultaneously maximi sea over and o_ 6t 

r 

by the pair 
CINý (ýsc'ý) for any v0 v; hich solves mi 

sEU 

If v(j) is a forward vertex direction then in general 

Vfv(9), Pj is superior to Vp(j), Mile 

is superior to V{v(j) ,l 
(S) 

It is this which suggests that 
P) 

is a better choice 

than vý 
ý 

in this D-optimal case. 

It is also the case for this criterion that v(2) = v(10) 

ah-. rays and consequently v(3) = v(1) . 

However such equivalence will not hold in general as 

is readily seen in the case of r_-ottimality where trLZrO ; not 

only depends on v. through G( : 
r, vv, ` tut also tl �ou_r7l: the ter;! s 

vj'I1,1vß. Iyrn (1970) also observe. that I v( ý), 1/(k1r+1) and 

V1v(19), 1/(I_+rT1)l ; could not be the same in the case of D5-optimality. 

He points out that Silvey (1969) effectively selects v($ý for : -., hut 

is an exa. rple of c-optimality. 
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The above discussion so far has been concerned with 

for;, ard vertex directions. The idea of a reverse vertex direction 

was first mooted by Atwood (1973). He did not ho, ever consider the 

idea that one might a priori opt to move in a reverse vertex direction. 

Anyway as we have noted one could not consistently choose such a 

direction at every iteration unless Sup(p(°)) 2 Sup(p°-). Atwood 

in fact suggested Výv(12) -C (v(ý2))I for D-optimality. In general 

the algorithms which are based on UN, u(6), UM, u(8), u(12) , 

U(13) , u(16) adopt the policy of sparingly choosing a reverse vertex 
direction, when to do so seems more optimal than to opt for a converse 
forward vertex direction. 

Apart from an idea of Ford (1976) which will be considered 
in the next section no other author has developed the concept of a 

reverse vertex direction. 
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55.4 Bi-vertex Direction Algorithm 

This iterative procedure does not take a vertex direction 

step at each iteration. Instead it adopts the slightly more complicated 

policy of simultaneously moving towards a vertex which would define a 

forward vertex direction and away from a vertex which would define a 

reverse vertex direction. By this we mean that 
x-" = 

[I 
- X'-, -/ 

for some positive P1 , P2 which ensure that x ,, c }2(C() 
, where 

F(x, 
) i) >0 LL E Su-r(? ') and 0. Such a step then 

makes a significant change in only two weights, apart from a 

proportional change in the others. 

Ford (1976) first conceived the idea and had in mind 
(us, ut). _ (u(1) 

, u(2)). We consider first his approach to the 

choice of P1 , p2. Let 

Lt- 
N) 

"z) 
S) t) -L-(- OZ)j xr 

ISa 

Ford aims to find W. 
, 

ö2 to maximise lýJ {Zý ý2% i i) uS )4 

subject to (ý, 
- `62) < I. 

One would expect -4)ö,. >o and also, if the concavity of 
ý(") extends appropriately beyond )3(U), we should have F(X, 

) yr) >o 

where %. = Zr(0 
)ö 

; 
Sýýt) at least if u, us are well chosen. 

Note that it need not be that y'e ))(J) but we will have yr = x(q(r)) 

where ý')= I. It would be natural, given the choice of ö1 
2, 

to take an optimal step in the direction of yr and if F(x, 
-) yr) 0, 

then we' will have 

xr+ý -r -ý lyý1xr 
[ý`ýrýýyr 

5.4.1 

Lr `` 1Lý 

It must be that 

5.4.2 R'r 
(yr) i -f F (x, 

p, 
) 

>o) 

ýýýýr) ýf ýrCyr) i 
since if uur¬ ) (W then the solution to 4.2.1 for 

Mr =yr xr must be given by aýMrý I 

Ford derives explicit formulae for d1, ý2 in the case of 

D-optimality. That this is possible is due to the fact that by 
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talce arpealin Uo lemma 5.2.1 we obtain ' for 

Zr(w, Z2 

l 
tr J) 

1, 
- 

I[, 

-M 
r 

U Cr -I 
155 

-I tr LT, - 
l( 

that 

2t 

k 
5: 4.3 

_ D, 02d, 
d'60 

+U UZcL2 

f 

G2 
12. 

where öo l- ý2S - ö'zý 
> 

d1 sM, s 
dý - ý' Mme' `s- i `lýz` U Mý1 - 

Sinilar updates could be obtained for relevant terms 

in the case of D optimality and LA-optimality. Indeed that this 

is so is the reason for contemplating this type of algorithm. 

Ford first fixes x and solves the derivative 

equations of the lagrangian to obtain explicit expressions for 6jt)? iz 

in terms of x. Substituting in 5.1.3 he equates the derivative of 
the function f(x) thus obtained to zero. This requires the solution 

of a quadratic; the solution which maximises f(x) can be identified. 

As a result 
f 

are defined by a hierarchy of expressions and 
it is not clear that we will always have '6 

Ö>0 or even that 

-6 I for there is no constraint that x satisfy x<1. The 

solution Yi. 
z in this respect then is an unconstrained one and 

from the above must be a stationary value of 

rý 

By an a rpument analogous to that establishing that 4.2.4 

and 1.2.5 must have a common solution, it must be here that 

F'1l [Zý C öý` Ö* sZ (2% öS J= UV 2S iS 
T 1,2) 5J 'C r)ijl ºý z 

This will be true iff solve 
}o 

5.4.4 r, Zr1) 6z) s, `rtý s 5, 

C 
These of course are equivalent to eauatinL the ordinary 

partial derivatives with respect to ý, '6, to zero. In the case of 
D-optimality they become, with Kr II, 

5.4.5 , r'[i-ý2F, -2S, ) r'i +ö1 s' -öýýrT 
'ý k S=s -t 
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Clearly these could be simplified by twice appealing to 

leire a 5.2.1. In general both will simplify to quadratics in 

This should also occur in the case of DA and Lit -optirnality. - 

In view of Ford' s results, equations 5-4-5 enjoy a 

solution in explicit form. This may also be true of DA- and L -optimalit,, T. 
Hovever it does not seem any simpler to derive ý directly from 

5.1.5 than to obtain them by Ford's method. 

Our main reason for pointing out that Ford's tip, Ö1 

must satisfy 5.4.4 is that this serves to shed light on results he 

obtains in two examples in which he takes (vs, vt) = (v(1), v(2)). 

T 

BY. 5.4.1 
Again we consider Wynn's design space i. e. 

Lv1, v2, v3, v 41 

For p(O) = (1131113,, 113,0)', v(') = v,... v(2) = Va , 

ö= 10/32, 'd, = 5/32, ZO(ý , 
6ý 

j ', (1)j Lrcz>) _ýi Lo)\ 

where o(0) = (1/113,9/32,9/32,10/32) which not only belongs to 

but is in fact p*. 

Mc. 5.4.2 
Here U= Iv1, 

v2, v3, v41 

For P(C)). = (1/4,1/4.1/4., 1/4)., v(1) = v1 or v2 or v3, v(2) =v 

0,0.6, Z0 61 `ýc' `-('")J = `ý(4C. 5) 
, 
where 

X2/532/532/5, 
-1/5)' 

ýp 
3 FiP(0) 27 /35>0 /35 >0 

o(q(O)) = ; CO(a(O)) = 5/9 and henceýýron 5.4.1, 

PP) = (1/3,1/3,1/330) = P''- . 

I? ote that the iteration reduces to taking, the optimal 

step in the reverse vertex direction vý2ý. 1a so v(3) = výýý 

So in these wo examples we have identified the optimum 
in one step. Clearly this can only occur if 

x= Zoýýý 

for some ; ö2 and this will only ce the case if the weiYh is 
(under 

pCý of all vertices except u3 , ut are, relative to each other, 
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in the same proportion as the weights of those vertices under pY. 

Suppose x", does satisfy the above. Then we will not 

necessarily identify it in one step. Only if ut and us are included 

in the support of p* are rte guaranteed to do this, for then 

s1=o and, that ö, 
ýöz 

is the solution to 

5.4-4, is clear. 

However if o, as nigh t be the case, then typically 

Ff% )) utJ <o and cannot solve 5.4.4. Then 

/ V, c Zol2Sý1Ö s`Li) solves only 

subject. to öC2S, 
ýiSý s, tý E )D(%C) and is not a corresponding 

unrestricted maximising value. 

In this case vie will only ideýýtify x-*' = x(p, ) in one step 

and y=Z (W* 
xuu 

if x'~ lies on the 'line' runnin ; through xo o1, 
x1=, 

1 0 

This as the case in example 5.4.2. Possibly this will 

always be the case with D-ontimali t; ,a manifestation of a r. ropert r 

similar to the equivalence of 
P) 

and uý 
9ý 

, mayoe a generalisation 

of that equivalence. 

However it would seem likely that in general x. * will not 

lie on the above line)in which case vie will not pass to x'- from x0. 

The iteration 5.4.1 would still be in general a sensible one to take, 

though it is conceivable that a greater increase would be obtained 
by taking the optimal step tor; ards us or the optimal step array from 

ut. 

Ford acianc: iiedges that choices other than (u(1), u(2)) 

for (u 
s. 

ut) could be employed. Another reasonable choice might 

be (WO U(5)). Those u(j) thou; h, which require evaluation of 
Y(") in their identification, would be less natural choices. 

Still assuming F(xr, ks) > o', F 
r, t)ý0 other simpler 

examples of bi-vertex; iterations include 
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5"i+. Y+1r ü5 -alt i) 
`fir xr LL5 - LLt 

l 

and more generally 

5.4.6 '6z t 

where 

satisfy 

are 

Oi l 
U2 > 

chosen 
O) 6, 

in some way 
- 

ýz LI 

other than 'optimally' and 

For example vie might take 

ý1 
= ý` 

rýu5) 
Dý UZ 

ýý`xr)ýtl 
b/ 

where b=F Lxr tos, +IF (xr) týl 

In both cases We w ould then take 

x. (i'-ýc ýx + yr z -- m n1 =j -x with -C->0 chosen by 
. r-, rrTrrjrrr) 

one of the methods already considered either or 

Tote that selection 5.4.5 simply svritches iveif-ht oC from 

ut to us. This is a technique used to compute e:: act designs. 

The above suggestions as well as further improvements 

on vertex direction algorithms suggested by Atwood (1973), St. John 

and Draper (1975) and in fact the basic vertex direction -algorithm 

will be seen to be special cases of iterations to be considered in 

chanter 7. 
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Sj5.5 On Convergence Of Vertex Direction AlForithns 

pie report now on the literature on convergence of 

vertex direction algorithms. Iany authors have contributed' but all 

in the design context. 

Flynn (1970) and r edorov (1972) rove convergence respectivel y 

of V[v(1), 1/(k+r+1)j and of V(v(1), 
ý, (v 1))j for the case of 

D-optimality. '. 7yi-in (1972) proves convergence of the former technique 

in the case of DS -optimality. _A -gain for D-optimality A tuood (1973) 

proves convergence of V{v(7 ,t 
(v(7))l while redorov (1972) proves 

the same of V{v(1) , F3 dr(v(1) )ý in the case of Z-ontimality, there 

a ý3 and is an upper limit which he derives for the range 

of values of such that qJ{ III + ýc (ý I- Mr)} > LP(Mr) . Tray (1977) 

suggests that convergence also holds for a modification to öcr(. Ly 
C`') 

These results are rather particular having a specific 

type of criterion in mind and also, rrith the exception of V yr_n' s 

technique, the iterations concerned are monotonic in which case 

proof of convergence will be easier. 

There is though an extensive literature on convergence 

of arbitrary steplength procedures in the case of a general design 

criterion. This however is only for the case of v(') . It was 

for vý that the notion of taking cC = ý3ýT (crý`ýý 
, where o ý3< < 

and 13e)/3, 
_, 

P2 -- - is a predetermined sequence, was originally _ 
conceived. Then \_ I) "T- IaV. 

Necessary conditions for convergence in this case appear 

to be that (i). 0 as r-4 and (ii) pr the latter 

condition preventing convergence before reaching the optimum. They are 

conditions quoted in proofs of convergence by Fedorov (1972), 

Fedorov and Yalyutov (1972), T say (1976b), `; Tu and 'ýTynn (1978). Other 

contributors include Paznan (. 974a) and Silvey (1971). 

The latter' s result is in fact riot a demonstration of 

convergence. Instead he sho",: s that it V{, 
(, ), 

ßýdr(v(ýýýý is used 

with f, satisfying (i) and (ii) above, ±hen it is the case that 
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p(r) p for some finite r. the following is a generalisation of 

his theorem applicable not just to vertex direction algorithms and 

not just to problem (P2). 

Theorem 5.5.1 

Suppose that a function 1(-) is bounded and concave 

on a bounded convex set S and thatý;; ith a view to maximising hi(' 

on S)a sequence of iterates is defined by the relationship 

: )Crt 
I= 

It 
--r, 

('s I 
-, -t" 

P (. 3 )] yr. 

where yr eS, F (x, 
) 

ýr'`> 0, -eT (`! ýr) = f3r`Zr L3, ) 
. 

for j3, a given number satisfying o- 13r I. 

Lei S= FLXr >°1 

If (i)f3T 0 as r -ýý and (ii) Y p, then for some 

Proof Appealing to a Taylor series expansion 

i-: here zý =o(. ýr L 3r)ý . 

Igo°r )6r 
F&T, xI- where mr= 

, 

and so is such that ; cr(mr) = I while if Fýt 
rýýo then F(xT, x+Mýý>o. 

Thus ýp 
`x"r+t) - 

ý(C, ) 
- 13rF(7-1-) , X,, +rÄr) + zr 

J 

and now since, by boundedness of S, must be finite vie can 

claim that zr = 0((3, ) and conclude that z, //3, -o 4» r -t, - 

In consequence 
T\ 

(: 
[T-tl \ 

C2Cr 
\ ps ý(JCS, s+MSJ -1- Za 

T S=O JJ S=O 

Let Jý =LMx, -f- 
ME5 `L 

rUý 
, 

: =-I 
'r 

ýXr 
7C, + J/>cj. 

and let F, solve M ra 

Mr) >S, Suppose that there exists 
9 

such that for every r F(x x 

Then there raust exist 1, such that for each selected 

y satisfying F (xý t)>o F(xr R, > -F(x, xý+ r; ýr 
)>C6. 
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Hence 

13 
S=0 S=0 

-> 00 ms r-- 

since 3l jsS > as r ->P° , because ZýS diverges and S/PS -i 0. 

Therefore if (ý(xo) is finite which we can ensure then 
gJ(xr) -; w as r -4°°1vrhich is impossible since gj(xr) is bounded 

above by the finite maximum l/l(x). 

Hence there cannot exist aS satisfying the above and the 

result follows since any c3'v solving y ax IF (x, 
ý y) must be such 

that yr = xr+ mr for some -m 

The theorem says that the necessarty conditions for 

optimality will be attained by an iteration of the above . type. Clearly 

it is a fairly general result. However it does not guarantee that 

any specific algorithmic rule will enjoy the result for it assumes 
that at each xr we will be prepared to move towards one of the current 

Y's satisfying F(xr, y) > 0. The rule used to select yr may preclude 

all the values in 'J, if that were nonempty. ', Oe v, -111 see this to be 

so in the case of algorithms for problem (P2) at a point x(p(r))' 

where p(r) is optimal for its support. Vie have noted in the design 

context that we could not take a for. vard vertex direction iteration 

in the case of a criterion enjoying support differentiability at a 

p(r) which is optimal for L{Sup(p(r))j AU. No vertex would then 

belong to 

Of course the theorem indicates the remedy in such instances, 

namely to adopt some other rule (temporarily) that will take yr=y 

for some yEr. For instance when it is possible we right take a 
fox- and vertex direction iteration. At a differentiable p(r) some 

vertices u. will always belong to ýr ý: i th 5= p(U) 
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ý5.6 The Initial SuDnort 

Sie consider now the choice of pýýý 
In. section 4.3.1 we discussed starting values and indicated 

that, in the case of the algorithms of this chapter, we would wish to 

take Sup(p(O)) to be a small subset of a large (discretising) U, 

with theproviso that x(p(0)) or 1. r(p(0)) be points of differentiability. 

Also p(o) allocate uniform weight to its support points. 

de have in mind for;; ard vertex direction algorithms in 

particular. Certainly there is no doubt about the feasibility of 

such algorithms proceeding from such an initial design. B their 

very nature these algorithms can augment a current Su (33 (r') by to) 

one vertex. Of course we would require to take Sup(p )=V if 

reverse vertex direction iterations only were to be considered. 

However why the desirability of such an initial approximation? 
Primarily because Sup(p"=) will almost certainly be a- small subset-of 

a large U. Also it is the case' that convergence of forward vertex 
direction algorithms is sla, -z, particularly when arbitrary steplengths 

are taken; and moreover it is likely to be slower the more non- 

optimal-support points there are in Sup(p(0)). 77hat might have seemed 

a natural choice, namely to take Sup(p(0}) to be U, is an initial 

support which contains all non-optimal-support points. It is 

also one for which the calculation of the design matrix 11(p(°)) and 

subsequent I: (p(rýý could be time consuming and unnecessarily so if 

Sup(p') is a small subset of 
U. 

I An ideal would then seem to be that Sup(p(0)) should 

contain as few points as possible. In the design context the constraint 

of differentiability on }i(p(O)) requires that Sup( 
(0)) 

contain k 

linearly independent vertices. Thus Y; e take Sup(pt°)) to be k such 

points. The empirical results at the end of this section suggest 
this to be an open minded choice. 

We note that a natural choice of ak poi nt Sup(p(O)) in 

the case of a regression model, vrhen the design sr-ace 
U is a 

discretisation of the image f(X) of a continuous space X, ý: ou ld be 

derived from a uniform grid which identifies k: points of X. The 
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grid should include boundary points of 
)'. If the latter is a 

finite interval on the real line the grid consists of k equally spaced 

points including the end points of 

If Sup(p(0)) does contain k points then a p(0) which 

distributes weight uniformly to its support points assigns weight 

1/k to each of them. This clarifies ':, ynn' s choice of /3, =I 
ýCk 

* +ýý 

in the case of v(1 
). 

Then for r=0,1,2, ... 

In particular p(i) _ (I- PO) p(O) + ß0v( with P0 = 1/(k+1 ). 

The weights under p(r) are then the relative frequencies with which 

a vertex is selected as the forward vertex direction, with inclusion 

in Sup("p(O)) being regarded as such a selection. 

Of course the choice of such a p(o) does not mean that 

convergence will be good. Sup(p(C)) will still inevitably contain 

non-optimal-support points, while for early iterations Sup(p(r)) 

will inevitably contain others. Convergence will be retarded because 

the effect of weight allocated to a non-optimal-supr"ort point will 

linger on in view of the fact that, at each iteration of a forward 

vertex direction algorithm, there is only a normalising proportionate 

decrease in the weights of all or, of all but one of, the current 

support vertices. Reverse vertex direction steps, in making a 

decisive reduction in sleight at a vertex, can therefore speed up 

convergence dramatically. 

Ho-,,., ever there are some favourable results to report on 

the initial behaviour of Wynn' s original algorithm V Lv(') 

when calculating D-optimal designs in a number of examples. 

Consider first the discretised trigonometric regression- 

design space 
ýr 

={x=C: ) xý 5 ; ý(w 
)ý Cas to-mx-) E 

.Xd={O 
"01, "O21) ) 

1} 
. 

In the case of D-optinality 

Sup(p =) = [V(x) :x= . 08, . 09,08, . 73, "7 -, 11. 
these points having respectively the optimal weights . 22,. 03,. 25, 

. 17,. 08,. 25. 
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algorithm was started from a series of 112 

initial designs. In each case Sup(p(°)) c apprised four linearly 

independent vertices with p(O) assigning weight 1/4 to these. 

These initial supports were those corresponding to the following 

subsets of XL; {O, 33,. 67,1l, 1.97, 
"98,. 99,. 11; each of the 15 

subsets of size 4 of the set 0,. 2,. 4,. 6,. 8,11; each of the 5 subsets 

of size 4 of the set 
[x, x+. 2, x+. 4, x+. 6, x+. 8} for each of the 19 

values x= 

At each iteration the algorithm selects- avertex towards 

which to move. In each case the algorithm wes run until four points 

were selected at least ten times, presence in Sup(p(0)) being 

regarded as one selection, and in each case the index Z of the 

iteration, from which the algorithm selects only members of Sup(p. 1) 

or their immediate neighbours, was observed. Here Z is the index of 
the iteration from which the algorithm selected only vertices in the 

set 
ýv(x) :x= . 08, . 09, . 38, "73, . 714-, 1, . 07, . 10, . 37, . 39, . 72, . 75, . 99,11. 

The frequencies f(Z) of the various values which Z 

achieved over the 112 examples is as follwrs: 

Z: 13456789 10 11 12 14 

f(Z) :151 20 11 26 9 12 15 10 11 

The unique instance of Z=I occurs in the case of that 

might have seemed the unlikely set j0,. 2,. 1; _, 1j. The single occurrences 

of Z= 12, Z=1!. occur respectively with the sets £. 37,. 57,07,07}, 
{. 08, . 1ý8, . 68,0881 both of which seem fairly moderate. In fact both 

these sets would have yielded Z=9 had the algorithm not selected 

v(x) for x= . 06 at the 11th iteration in the first case and for 

x= . 36 at the 13th iteration in the other case , and note that both 

these vectors are immediate neighbours but one to members of Sup(pe) . 

The set [0,. 33,. 67,1} yielded Z=5 as did the set 
{0,. 2,. 8,1] while the set {. 97,. 98,. 99,1) yielded Z=8 which is particularly 

respectable considering that this initial support is somewhat extreme. 

rp ;, ical features throughout the different runs were the 

foilo, ýing: 
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(i) the vertices v(x) for x= . 08,. 38,. 73,1 were always the first 

four to be selected at least 10 times the number of iterations needed 
to achieve this ranging from about 50 tc 80. 

(ii) often the optimal support point corresponding to x= . 09 was 

not selected while that for x= . 74 was selected fairly infrequently. 

(iii) of the immediate neighbours v only x= . 37 persists in 

being selected in late iterations with x= . 07 being commonly 

selected in very early iterations; the other immediate neighbours 

viere rarely selected at all. 

Clearly the evidence is that, whatever, 3up(p(C)) the 

algorithn takes only a few iterations to identify the members of 
Sup(p') and their immediate neighbours or more loosely to identify 

clusters containing the members of Sup(p ). On average Z=7.4 

which is about 21: iterations. 

Similar results occur in other examples; for instance, in 

the case of the finer discretised trigonometric design space 

xe )j _ 
ývý 

ý= 
(x, x2, sin1rx , cost-, rx)' 1 

pfd = {o,. 001,. 002,...,. 99s,. 999,13 

Nov; Sup(p"°) =I v(X) :x= . 082, . 083, . 3B'ß, . 73 -, . 735,1 1. 

One would have thought that the algorithm would take longer to identify 

clusters as above in this example, but with 
0 

Sup(P( 
)={ 

v(x) :x=0, . 334-.,. 667,1 ý, Z=1I. 

Finally consider the discretised polynomial regression 
design space 

IS = v(X 
-) 

= (1, r., x23 ... 'x 
-ý)' :xF di 

)1d = -1, -. 99,...,. 99,1} 

71ith Sup(p(O) taken to be the k vertices v(x) which 

correspond to the set of k equally spaced values of x in d which 



includes the index Z achieves the values 7,8,6,9,6,2 

respectively in the cases of k= 1f 5,6,7,8,9. 

These results suggest three ideas. 

(i) One right simply use a for"rard vertex direction algorithm: 
initially in order to identify Sul; (p*) at least to within nearest 

neighbours. This is an idea to which we will return at the end of 

chapter 6. 

(ii) If one is to persist in the use of a forrard vertex direction 

algorithm in order to identify p: ', then convergence might be marginally 
improved by the follo, ý: Ting. Run the algorithm for so long and then 

put to zero the weights of those vertices not recently selected, while 

scaling up the weights of the other vertices. 

(iii) This third notion returns to the choice of 5up(p(°)). The 

above empirical results seem to imply that if weight is assigned, 
in an initial support, to a small number of non-optimal-support 

vertices, the effect is much the same whatever vertices are chosen. 
We have the design context in mind, partly with a vievi to avoiding 
the inversion of an initial design matrix 1.: (pN). 

Imagine that the design space U= v1, ..., vvj is augnented 

to W= { v1, ..., vJ, tv, ý, ..., týýI where v1i = cei, e1 being the it's' unit 

vector. Let p" be the optimal design on V. Then this will be the 

optimal design on td if F{T: ', (p-:: ) 
, Y1ii7 '}40. If p" is differentiable 

this implies that 

Jý5 `- G M(f )M(P*) 

Clearly this will be true if c2 is small. 

Suppose that interest is in all the parameters so that 

Sup(p`) must contain at least k of the vg's. Our suggestion is to 

choose c such that c2 is small and to t_1, ce Sup(p(O)) to ne 

Thus we have 

Having started a vertex direction al-orit}hrm from this i ri ti--l 

approximation one would restart as above. This mould be a;. a point 
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by which time at least k of the v. 1 s had been selected. The weights 

at the vertices w. would be -eut to zero. J 

Better still one could employ the folloiing k bi-vertex 

direction iterations initially. At iteration r=1,..., kßswitch the 

weight 1/k at some rrt e Sup(p(r)) to some vs 4 Sup(p(r)), vrt, vs 
being chosen to satis restricted versions of one of the criteria 
defining u(1),..., u(1-. For example take vs to be the vertex 

1 
solving ma-X 

{Ftn(P'), 
vvý' t and take v:. to be the vertex 

Min ý, 
ýF{2,: (p(r))ý. 17 T1 solving ý UTc Er(P) I 

Note that if 11(p 
(r)) 

is nonsingular then, ir. the latter case, 

ißt = cep where et solves 
ce 

ES ý(e1 G[m(p(r)), eiei'fl " 

Vuchkov (1977) has proposed the following suggestion for 

D-ontinality. He takes c=1 and at the first k iterations he chooses 

v ,e to solve St 
Max c) C(eýýý (Ijk) 'JI Ci I k)e`eý 

J; suPCP') 
<< e Sur(p 

and switches the weight 1/k: at et to vs. Since lemma 5.2.1 yields 

a simple expansion of this function it is easy to find vs, et ands 

since he is maximising the determinant at each stage he must',, after 
the k steps, have transferred the k weights (1/k) to k linearly 

independent vg's, a design for which the design matrix is nonsingular. 
His idea however would not be so easy to apply in cases where 

evaluation of the criterion (1X ) was not simple. One based on 
directional derivatives would be easier to apply, but may require 

appropriate restrictions to guarantee producing a nonsingular design 

matrix after k switchings of weights. 

This completes our discussion of vertex direction algorithms. 
We close by restating that on empirical grounds they seem to have the 

useful property of being able to ouickly identify clusters containing 
the members of Sup(pe) o 
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CHAP'T'ER 6 

CONSTRAINED STEMIEST ASCENT AND IIE%TrON RAPHSON TYPE ALGORITHLS 

S6.1 Further 1Satrix Results 

Before we turn to consider the algorithms to which this 

chapter is devoted, vie consider first some matrix results which have 

relevance to all of the algorithms that we have yet to study. This 

is so because all of them, in contrast to vertex direction algorithms, 

make significant changes at each iteration to all of the weights of a 

current support. In the design context this would seem to dictate a 

full inversion of the design matrix M(p), if that is nonsingular, at 

each iteration, the benefits enjoyed by vertex or bi-vertex direction 

algorithms, as a result of lemma 5.2.11, being unavailable. However 

the following results, further consequences of that lemma, suggest 

that comparable benefits can be available to what we might refer to 

as multi-vertex direction algorithms. 

Lemma 6.1.1 

Suppose that the design matrix where 
3_iý JJ 

J>, k, and also the matrix Vk = [v1v2..... v[ are nonsingular, and 

that pj> 0, j= Then 

60101 p1 _ jw s M-IýI �J =1 JJ1! 

rihere the t. are scalars and the w. are kx1 vectors such that 
JJ 

1 

6.1.2 
as_, 

w. _ (wLitr w 
ý . 3L 

r for n= '1,2,..., J Proof Let 
j 

Hence 
Mn= M for n=2, ..., J 

i 

MýPý MT--Mr to `ýT 
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Appealing to lemma 5.2.1 in the case n>k we have 

M1 nM)M 

Assuming that W wý for some tj, wý we then have 

= 
L-E. 

w_ w 
n=i JJj 

where 
-º Cil 

f% ` ir- L'LJL j`1 us. 
Lýt 

Vý MC� 
i) ýIý _rp ºýýý (`ýý ý1 

]ý 
Ln ti 

The lemma is established rohen we note, from 1.3.9, that 

IT k= VkPkVk' , Pk = diag{pI 

Since Pk, Vk are of order kxk nonsingular, we have 

- 
ýWýpilz- 

"unk Q 

We make some comments on the lemma. 

(i) With hindsight the result may seem a fairly natural sequel 

to the results derived from lemma 5.2.1 for vertex direction iterations. 

However it does not appear in the literature although there would seem 

to be a continuous analogue well hidden in Pazman (1974b). He does. not 

however dwell on consequent computational advantages of his result 

although these would, of course, be less clear in the continuous 

context. 

In contrast, from the above discrete results we can derive 

updating formulae both for 
, 
147.. i(p)j and for Gtll(p), vi v in the 

case of D-optimality and A-optimality. 

(ii) In view of the sequential nature of formulae 6.1.2, such updating 

rules will only be advantageous for small J. How small? For J= k+1 

they will be most advantageous. Indeed for such a case one could argue 

that the above result bestows on an algorithm, which, at each iteration, 

makes disproportionate changes to all of k+1 weights, the same benefits 

as do the updating formulae of section 5.2 on vertex direction algorithms. 
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As a rough rule there may be little advantage in utilising 

lemma 6.1.1 if J> 2k. This is suggested by the fact that any kxk 

matrix 11: _ 1411U-12..... mk12 where rn is a kx1 vector can be expressed 

as k` 

where ej is the jth unit vector. 

Thus nonsingular Li can be inverted by k successive appeals 

to lemma 5.2.1, a method which is recommended by numerical analysts. 

Often, as has been said, the size J of the optimum support 

is small, J=k or (k+1) or in the case of a discretised design space 

J= 2k-2. 

(iii) The lemma of course demands that M(p) be nonsingular. 

However the following analogous result holds for Li{(p) 

which assumes that nonsingularity of M(p) is due to the fact that 

J. k. 

Lemma 6.1.2 
J 

if 2! (p) _ IF ý where pj>0 for all j and where 

ýviv2...... vjJ, then 

6.1.3 

where 

6.1.1f. 

Proof 

T 

=. 

a 
P5 

lwý wZ 

From equation 1.3.9 

: r] V(V'V' 

MLPý =výýTýT 

where Pd = diag{p1, p2,..., p3}, and so rank (PJ) = J. 

From theorem 6.2.18 of Graybill (1969) 
ýM 

(p) 

- Lv" )PJ' \/ J, 

and from theorem 6.2.16 of Graybill (1969) 

} ýýT)-ý )- ( v, ý 
Hence the result. 
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(iv) The above toto lemmas together make the following result 

possible. 

Lemma 6.1.3 

For J> s let bi(p) _ pj where pj>0 for all j, 

and suppose that ný1s(p) n(A), where A is of order s«k. Let 

Pr M gy(p) cTzk ýý k (V 
k) .k 

FýMtýP)Aý 
, 

S` 1ý ýk(VTý. T 

where Vk = Lv1,..., vkl , vi = [v1,.... vv1. 

Hence B is nonsingular and B=s. 5 

where g, = Awl, and tj, wj are defined by 6.1.2 or 6.1.1 as appropriate. 

Then assuming that Gs gs1 is nonsingular we have 
s I 17- 6.1.5 ß^ = 

where 
ý -S 

6.1.6 --ýT 

The proof is a direct appeal to lemma 6.1.1. 

Clearly the relevance of this result is that it can yield 

1: 3 

updating `formulae for DA-optimality and for LA-optimality, comparable 

to those of section 5.2 including updates of G[M(p), vjvj'} for 

each j. However again such formulae will not always be computationally 
the most efficient. 

(v) A point, which we have not yet emphasised, is that the main 

reason why these lemmas can yield more efficient evaluation of 

relevant terms, is due to the fact that the vectors 1vkI or 
[ßt1, 

.... v1J} or 
kh1, 

..., hs} do not depend on p. They can therefore 

be the same from iteration to iteration, provided corresponding weights 

are not put to zero; for example in the case of lemma 6.1.1 we would 
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slant pýr) >0 for 1 ic: j k. If however such weights are put to zero 
then the matrix Vk, VJ or Gs would have to be redefined and appropriate 
inverses or generalised inverses recalculated. This may be. unavoidable 
in the case of lemma 6.1.2, but when it is known that the optimum 

support must consist of at least k or s linearly independent vertices 
then, judiciously chosen, the matrix Vk or Gs should remain the same 
throughout. One such choice of Vk is likely to be the matrix whose 

columns are those k vertices most frequently selected by a long enough 

series of forward vertex direction iterations. The matrix G could be 
5 

similarly chosen. This anticipates a proposal to be made at the end 

of this chapter. 
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Constrained Steepest Ascent Iterations 

ý 6.2.1 The algorithms which we consider in this chapter for problem 
(P2) are in the main suited to sets U. = 

fu1,..., ujl which contain 

only a few vertices which are not in the support of an optimum. In 

one instance we really must have U= Sup(p*). 

The first class of iteration, which we look at, adopts a 

fairly natural choice of direction. Consider the maximisation of a 

function ý(") over a (convex) set S, when t(") is concave on that set. 

Intuitively an optimal direction in which to move from an iterate xr 

is in that direction mr in which p(") is increasing most rapidly from 

x subject to (x +d mr) S for all small positive °.. Thus 
r 

7C. 
--t 

=r tdºýý 
ýr 

where 'r >0 can be chosen according to any one of the rules which 

we have already considered. It is arguably more natural to choose 

'r optimally in this instance. 

We call the direction mr a direction of constrained steepest 

ascent. Clearly the directional derivative tool must be able to 

identify such a direction. However we have already observed that, 

since F(x, y) depends not only on the rate at which li(") changes at x 

in the direction of y, but also on the 'distance' between x and y, 

then the direction of of constrained steepest ascent is not, in the 

case of convex S, given by m= *-x, where y* solves max F(. x, y). 
yE5 

In particular, in the case of problem (P2), u(1) cannot be claimed 

to provide such a direction. A constrained steepest ascent m* must 

maximise a normalised directional derivative, namely FA(x, x + m), 

subject to (x + .c m) eS for all small positive o. 

Consider the problem of maximising a function i(e) subject 
to just the linear constraints Ce =b . Suppose that e, satisfies 
Ce, =b. Then it is necessary that Cm_=o if it is to be guaranteed 

that Cerh1 = bý 9= 9ý4-e- . If further all the components of Or 

are strictly positive, then so also will be the components of Q,. 
i,, 

for small positive d. If though one of the components of e were 

zero, and if the corresponding component of p., were negative, then 

the corresponding component of 6r-+l would also be negative if >O 
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}fence if 

er Es =10=(6�----; Q' : 911 > 0, C6=6} , then the constraint CM- o is necessary and sufficient to guarantee 

that 0, 
}t 

c- S for small positive 9( . This however is not the case, 

if the strict inequality e. >0 is replaced by 0ý 0. The following 

lemma then restating formula 2.3.6 quoted in(D9) of section 2.3 is 

guaranteed to state a constrained steepest ascent direction for 

problem (P3) only in the former case. It views (P3) as a generalisation 

of (P1) and so we relabel as CS(-), the objective function gi(-), of (P3). 

Lemma 6.2.1 

Suppose C") is differentiable at the value G. Then the 

direction m* which maximises F (6,6 
+ M, _ ý!! M/ 'Aw subject to C+A=o 

can be given by 

6.2.1 + r{1 L-A C'(CAC'YC. A dJ 

whichever makes FA(e, 6 .. - M) > 

The vector d has components dj = 250/3e; 
, 

Assume the matrix C to be of order tXJ with rank(C) = t. 

If our only interest were problem (P1) or (P2) we would 

only need to consider the case C= 11. However we will wish to 

consider general C in chapter 10. We establish the lemma by follaving 

a proof used by Wu (1976) for the case C= 11. 

Proof Let f(m) 

We require to maximise f(m) subject to Cm = 0. 

However the function f(m) is homogeneous of degree zero. 

To restrict ourselves to a particular solution we need to impose a 

linear constraint on in. If vie take this to be d'm =I our problem 

becomes eauivalent to 

6.2.2 'minimise m'Aci subject to dm = 1, Cm = 0' 

i. e. 

6.2.3 'minimise m'Am subject to Bm = g' 

where B=Cg=0 is the txl zero vector. 
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This is a quadratic programming problem with linear constraints. 

Recall that A must be such that x'Ay defines an inner product. 

Typically A 'rill be nonsingular and hence positive definite �but 
tiiu 

proceeds with the possibility in mind that A might be singular. We 

shall see this to be the case for some reasonable choices of A. 

Using a Lagrangian approach we consider 
L( = M'1TM -z 

(BM-3l 

Equating the derivatives with respect to m and into zero 

we obtain the respective equations 

6.2.4. Am = B'. 1 

6.2.5 
. Bm =g 

Again using theorem 7.3.1 of Graybill (1969) solutions, 

if they exist, to 6.2.4 are given by 

6.2.6 in =Ä (B'X) = (A -A 
- I)z for any Z. 

Haaever if this is to be such that Bm is uniquely equal to 

g then we must have BA -A =B or equivalently that 

6.2.7 R(B')ý ý(A) 
, 

where %A) denotes the range space or column space of A. 

It therefore follows that 

6.2.8 (BA-B') X= g 

Once more using Graybill's result 

3/)-5 + 
[(B Fl ß/) (BA ßI) - T] , for any y, solves 6.2.8. 

Substituting in 6.2.6 we obtain 

6.2.9 m=Aß, (ßÄ ß') 5+ Fl ß`ýýBA ßýý (ßA ßýý-Týy + ýA A -=ýz . 
Putting y=0, z=0 vie obtain the particular solution 

6.2.10 m=A B'(BA-B') g 

Property 6.2.7 will certainly hold if A is positive definite 

in which case any solution must take the form 6.2.10 with A^ =A1 

See theorem 8 of Searle (1971, p. 26). 



171 

If 6.2.7 does not hold, Rao and Mitra (1971) proceed as 

follows: 

From G. 2.4 

Am + B'Bm = B'X+ B'Bn 

that is, 

6.2.11 (A + B'B)rz = B'(X+ g) ' Bin =g 

Now X B') C )R(A + B'B) and hence 

m= (A 3'3) ß' (, k +- 9) 

"g= ßM = ß(a k ß'a) 9) 

= (A-r--9) _ [ß(A 1-ß'ß) ß'] 5 

m CR+8'ßý ß (A4-ß'B) 13'1 

_ {Gý5 
In fact Rao and Mitra (1971) prove in their theorem 3.1.1 

that a necessary and sufficient condition for m= Gg to minimise 

m'Am, where A is positive semidefinite, subject to Bm =g is that 

BGB' =B and (GB) 'A = AGB 

Tlu (1976) references these results. 

Assume that 6.2.10 is a solution. Substituting for B and g 

we obtain 

ý, =Ä Cc' ý) cAc' cA- o 
a'Ä c' d'Ä L 

CO L'L 

tc b 

(t 

ý6) 

A-6 A-C I LL 

where, using the results of Rhode (1965) that were outlined in 

the derivation of equation 1.4.7, 

6c 
'A d- XA C'(Cfl C')_C Ad 6.2.12 d 

- b(CÄC`) CA -L 

Hence 

6.2.13 M- bP-d. -R C'(Cf1 C')CA d] 
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Note that in the above argument we have made use of the 

fact that b is a scalar. 

If a40 then b= a-1 and so clearly 6.2.13 defines an m 

satisfying the constraint d'm = 1-1 0. 

However suppose that b might be negative and recall that 

d'!, / M'AM is homogeneous of degree zero so that if m maximises 
f(m) subject to Cm = O)then so also does tm for ta positive scalar. 
We can therefore drop 16! and treat the solution as 

6.2.14 M* =±A (A, c, a) )A 
(A 

, C, 60 =Äd- A-C I(c A c') Cna, 

choosing the sign according as a >0, a <0 to ensure d'm* >0.13 

In the case C=1' (A, _Ad. -AI( 1' A I) I'A cL 

CLcLA-C), - -L'A 1 

The term 
_11A71 

is now a scalar and unless it is zero 
(11A71)- = (1'Ä 1)-1 so that 

6.2.15 1, (A d) = Act - Aý fl al(ý ýfl 
. ,) 

It also follows that an alternative solution to 6.2.14 is 

6.2.16 m- (A d) , (A d)-(! 'A- !) fl L - 
(I' A k) Ai. ý , 

Recall that in view of 2.3.5 we can replace d by F. 

With problem (P1) in mind we will denote by S(A, -(r) the 

'steepest ascent' algorithm which takes a step t. (r in the direction 

m(r) = 'm(A, 1', d(r) ). 

S6.2.2 

We now make some notes on the result. 

Note (i) If all matrices of which generalised inverses have been 

taken are nonsingular then ire have 

which is positive as shall be seen in Note (ii). 

Hence 

,, -, 
* 

== Ä'd - H-'C'(CA-'C') -1CA 'd. 
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Note ii) If A is singular there is not a unique A-. Since A 

is symmetric it would seem desirable to demand the same of A and of 
(CA-C')-. VIu elects to use the Moore-Penrose A} which has the 

advantage of being uniquely defined and nonnegative definite. If 

one also uses (CA+C')} then a >0. This follows because for 

z =(A 
)'I" d/H_ C(A+)'I' 

z`Z - z'141(0 HI)Hz - z. 'Oz 
.D =_-Hf(HH1)}H. 

ºt 
The matrix N (H H is ideenpotent since 

NHº) HN (N }=ýH + 
Hence so also is D which is therefore 

nonnegative definite. 

In general, forany nonnegative definite matrix fý 

W, _ Ad - AC'(CAC")C A& 
satisfies d'm > 0. 

11ote iii The following result of interest for its own sake would 

seem to illustrate that in general a >0 if 6.2.7 holds. 

The result is that if R(C') c)Q(A) then m(A, c., d) solves 

the problem 'maximise q(m) subject to Cm = 0' Sphere Q(m) is 

the quadratic 

q(-) - «e) + CC 'm - (J. z) M'Fq r. J 
If A is nonnegative definite then CZ(m) is concave. 

The term 4(e) could be any number and d any vector but 

the idea of course is that q(m) should be an approximation to ý(6+ý+) 

in which case d would be the gradient vector of cß at 6 and A= -H, 
H being the hessian matrix at 0. In fact Atwood (1976a, 1980) derives 

the following result for A= -H. 

An appropriate lagrangian is 
L(I NJ 

ýCe) 
+ cl 

M 
m'rr nA - h1/C . "ý 

Equating derivatives with respect to m and N to zero sie 

obtain the equations, 

1 
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If )ý(C')c R(A) then a particular solution is given by 

the following now familiar argument: 

VA = A-(d - c`r) 

C'F') =o 
N ýcA C'ý CA d 

rn Ad - ÄC(CA^C') Cfl ä- , &(r1, C, d). 

This then generalises Atý,, ood's result and, as he observes 

since Cm =0 for m=0 and Q(m) is concave, it must be that 

Q(O) = c(6) < Q{+A(A)C. 
)d) . If in turn «(6) is concave it must 

be that F, [e O+ M(RC)dý = d(A, C, dý /O4= o" 

Note that we require only }R(C') (A), which is not quite as 

demanding as 6.2.7. Atwood also derives a solution when the latter 

condition does not hold but we will not pursue this. 

Note (iv It can be the case that a=0. In this case b can be 

any real number. However more importantly it follow that 

dtm(A, C, d) =0 and hence neither m(A, C, d) nor any multiple of it can 

satisfy the constraint dm = 1. Similarly with m(A, d) . 

In the case of C= 1' this will happen if all components di 

of d are equal, indicating optimality of A. As a consequence the 

constraints I'm =0 and d'm =I are inconsistent. However it is 

then the case that -m(Ad) or m(A, 1', d) = O, which is what the value of 

m* should be at an optimal 0r: We note that a= det[(3A^ß'}/«Fý Iý 

in this case., so that a=0 implies singularity of BA B'. 

For general C it will again be the case that, at an optimal 
0 maximising O(e) subject to 09 =6, m"* should be zero in which 

case d'm* -0 1. 

However a=0 implying d'm =0 can still occur at non- 

optimal G. In particular this can occur in the case C=1 if A is 

singular and A= A{. This simply means that no multiple of m(A, C, d) 

or m(A, d) will satisfy the constraint d', n = 1. This may be as above 
because Cm =0 and d'm =1 are a priori inconsistent) or it may be that 

6.2.7 is not satisfied, or possibly 6 is not a point of full 

differentiabilityialthough f(m) would then not be (0 
,e+ n). 
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Whatever the reason 6.2.14 cannot define a direction of 

constrained steepest ascent at non optimal a. If e is differentiable 

we have only. identified a constrained stationary value with'respect 
to the line running through 6 in the direction i m(A, C, d). If q(") 

is concave this stationary value can only be such that a step in 

either direction cannot lead to an increase in 4J("). However this 

should rarely occur and rather than attempt to evaluate the correct 
formula for m* Tlu (1976) contemplates in the case C= j', Ar =Al 

a step in the direction of +m(A, C, d), a device presumably as simple 

as any other for extricating oneself from such a position. 

However at such ae we are in a position anticipated 
in the. discussion to lemma 5.5. x. A better alternative would be to 

adopt some other simple rule for choosing mr, a vertex direction 

iteration if possible or one of the rules of chapter 7. 

S6.2-3 We have not considered the choice of the matrix A. Wu 
(1976,1978a) reconmends the following choices in the case of problem 
(P2), C=Y. 

A, = u'u ,u= E-' U-z - us1 
6.2.17 Aý =Z 

5 ý} 

The choice Ai is such that m'A1m is the length of the 
J 

vector . Clearly it is a choice which takes full account of 

the nature of the feasible region p((0) of (P2). ß'7u chooses to regard 
this as yielding the steepest ascent direction. 

The case A2 =I describes as a gradient projection method 
for the resultant m` is 

rn*-a-ät 
where (E-d. )fJ. Clearly m is the projection of the gradient J 
vector d on the space 1'n = 0. It is therefore a constrained steepest 

ascent direction obtained by a projection of the unconstrained steepest 

ascent direction vector d. In general m(A, 11, d) could be regarded 

as a similar type of projection. 
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The choice A2 means that we normalise F. ýp 
; cL) = Fqjý c(P)ý X (q)} 

by the length of m= (p-q). It takes note only of the fact that we 

have a function ý(p) for which we wish to solve (P1). The resultant 

m^ in no way depends on the vertices {u,,..., uji. It ignores the 

fact that or as flu puts it, it ignores the geometry 

of p(U) 
. 

The choice A3 is a compromise betveen Ai and A2. Wu describes 

the resultant m as a diagonalised constrained steepest ascent. He 

also refers to it as producing a normalised gradient projection 

direction for now m~ has components 

JJJdd1` `` 

which is a projection onto the space I'm =0 of the vector 
{di/(u1'ui),..., dJ/(uJ'uj)I', which in turn can be viewed as a 

normalisation of the gradient vector d. 

It is not entirely clear what the above choices of A suggest 
for the design context when p(U) 

=3k and u= vi vj',, except that 

A= A2 =I would again be a possible choice. We consider the following 

matrices. 

a 
I. -L jJ 

6.2.18 as =LL; ý 
, 

i/ 
2 

----- ýý 
ýý 3ý2 

+ CO- )I ý ; 2)12 

where vý. is a vector whose components are the squares of those of v.. 

The problem is that we can view the matrices vj vj ' in 

several guises. In view of their symmetry we could regard them as 

vectors or points in k(k + 1)/2 dimensions, or ignoring the symmetry, 

as points in k2 dimensions. Finally we could simply regard them as 

functions of the vectors vj, these being of length k. 

If vie adopt the first of these viewpoints then A4 would seem 
to be the counterpart of A,, for m'A4m is the length of the vector 

whose components form the upper (or lower) triangular part of the 

matrix Imi vj vj '. Similarly m'A5m is the length of the k X1 vector 

whose components are those of the latter matrix. VIu (1976) would 
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appear to be in favour of A5, for, as a normalised gradient projection 

choice, he favours A6 which is a diagonalised version of A5, as is 

A3 of A,. 

The above are choices of a constant matrix A. It might 

seem natural that one would select the same A. at each iteration. 
i 

However this must be qualified as outlined in the next subsection 
6.2.1+, and, anyway, it is conceivable that it would be possible to 

choose a different A from one iteration to the next in an advantageous 
if not an optimal fashion. One may select a different A, for instance, 

as a means of moving from the sort of position considered in Note (iv) 

of subsection 6.2.2, while it would be achieved most naturally by 

letting A depend on p; that is, A= A(P). A number of algorithms 

conceived by alternative approaches do in fact select directions mr 

such that mr = m{A(p(r)), d}. The matrices A(p) include 

A7(P) = 
[diag(P1, 

..., PA), 

6.2.19 A 8(p) = -H(p) 

A9(P) =- diag[h11(P),..., h3J(P)} 

where H(p) = 
{hij(p)ý is the hessian matrix of c(p). 

The case A7(p) corresponds to an algorithm which will appear 
in chapter 7, while the choice A8(p) has already been heralded in 

Note (iii) of subsection 6.2.2. The direction m4-H(p), It., dd is 

the direction which maximises the quadratic approximation to ý(") 

at p in the direction of m, a result which Atwood (1976&, 1980) derived. 

The choice of A8(p) would be a conventional choice of varying A and Wu 

calls the-resultant technique a quasi-Newton method. 

As a simplification of A8(p), Atiood (1980) suggests 
A9(p). Of interest is that Atwood (1980) also considers the case of 

a design criterion at a singular matrix L(p) when full differentiability 

might fail. He contemplates the possibility that the hessian matrix 

might also be singular then, thereby implying a singular A. 

Also of interest is that in the case of H nonsingular 

m(-H 
1.1', 

d) and more generally m(-H 
1, C, d) are directions of iteration 



178 

suggested by full Neviton Raphson iterations for maximising 

LCP, Xý - (P) + ý`ý CP- 6) 

which would be the lagrangian for maximising 4(p) subject to Cp = b. 

We have. 

, 6L/aP =d+ CAA , Z)L/aX - cP - b, 
and the second derivative matrix of L is given by 

H&)cý 
ýýCPý -cO 

If H is nonsingular and CH-'C' is nonsingular then 

_Z 
(P) H-4C'(C H-'C')-i Dz CPý = ýc -1c'C H_ý _ (c lI 

where 
Z(P) - H-'- u-'C '(C H-'C'VC H -' 

) 
14 = H(p) 

. 
Full Newton Raphson iterations for p and A 

are 

_v- C IT P_D, 16 c. ý 
CL 

P 

. 
If Cp(r) =b these equations express 

p( 
I) 

as a function of p(r) only; namely they imply 

Taking now H= H(p(r)) we have 

cr+, ) _ c-) -( c-, )CL -- H-1C'. 1cr) _ N-1C'(C -'C') 1C N-IC') ý(-) 

ý(r' -/ ý(r)\ f 
cr) 

'What we have in fact is the iterative rule for iterates 

5 _NýPc iý1 under 

Titterington in a private communication derived this result 

for D-optimality, that is, «(p) logQdetý(M(p))ý, C= 11. He also 

quotes in Titterington (1977) the examples of A listed above. He also 

suggests A9(p) as a simplification of A$(p). As alternative simplification 
in the case of D-optimality, he also considers 

A10(p) = k2ld 

A11(P) = kxdiagldI(P),..., dj(P)j 
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where dI(p),..., dj(p) are the components of d, di(p) = vý'M 

The motivation for these two particular choices is that h (p) = -d? 
(p) 

, JJ "J 
while at D-optimum p°`, di(p *) =k if pý > 0. We know then the diagonal 

of the Hessian at the optimum. It is A10(p), and should be an 
improvement on A9(p) . Proceeding from the fact that for D-optimality 

G, I M(P) M(4 = k, possible generalisations of A, 
0(p) , A, (p) to other 

criteria might be 

A12(p) = G2, 

A13(p) = Gxdiag[d1(p),..., dj(p)ý 

where G= Gq M(p 
jM(p)1 . If c (p) = 

ýýI. I(p)j is homogeneous of 

degree (-t) 
ý then G= -t C (p) 

. 

It is to be noted hwiever that, if A= cD for scalar c, 
then iterates under S{A, 1I are iterates under S[D, 1/ c}. Hence for 

A= h10(p), A12(p) iterates under S[A, 1ý are respectively iterates 

under S[I, d} , ýC = (1/k)2, (1/G)2, while for A =A, I 
(p) 

, A13(p) 

iterates under SýA, 1j are respectively iterates under S{D, "e} , 
-(= 1/k, 1/G, where D= diag[d1(p), ..., dj(p)j . Clearly if optimal 

steps are to be taken such a constant is superfluous. 

Of course allowing A(p) to depend on p means the calculation 
+ 

of h1 (p) or A(p) at every iteration, and A(p) is a matrix of order 

JXJ. This was the reason for considering the diagonalised versions of 

H(p) above. An alternative moderating choice in the case of A(p) 

nonsimple, would be to take A to be A(p(p)) or to change A only at 

every nth iteration. Such conventions are common in Newton-Raphson 

techniques; using H(p(0)) throughout a sequence of iterations is 

particularly common. 

An ideal choice of constant A is probably A= -H(p*) if this 

were lmor, vrn. Alternatively if some features of H(p*) were kno rn, this 

might suggest modifying H(p(0)) to a better choice. This is what 

motivated the choice of A, ()(p) above. 
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S6.2. The above results provide a rule for selecting m(r) at p(r) 

when (P1) is under consideration, namely 

where d(r) has components di 

We must still decide on the value of the steplength dr. 

This can still be chosen by any of the rules we have previously 

considered. However it is possibly more natural here to take ý. C_ 
iý x'ý, 

which is what Wu opts to do. Almost always though this will require 

in the design context direct numerical solution of 4.2.1. 

Thus this employs the steepest ascent algorithm S tA, 

We conclude this section with the following discussion. 

It is important to note that the only restriction imposed 

on m*, in lemma 6.2.1, is that Cm* = 0. or I'm* =0 if (P2) is under 

consideration. 

If p(r) is on the boundary of )0, it is therefore possible 

that for any c'0. Indeed this could conceivably 

be true of both '(c, f1 d<<ý) and of 
{ ýýýý - ýc--A 

(11, i', aýrý) 

Because of this the results of this section are in practice 

applied in the following modified fashion. Hamely let mir) =0 if 

p(r) =0 and otherwise let mir) be defined by the formula m(A, 1', d(r)) 

by temporarily imagining that, in (P2), IL is Sup(p(r)) and hence 

that J is the size of that support. The matrices Aj, Ai (p) are 

correspondingly restricted. This approach is implicit in Wu's discussions 

and is also the way in which we will apply other algorithms. 

Of course the choice of Sup(p(r)) must be made carefully. 
Ideally Sup(p(r)) should also be Sup(p-). In practice we could let 

Sup(p(r)) or Sup(p(o)) be determined by other simpler algorithms such 

as vertex direction techniques. Vie then gain the advantage of keeping 

J relatively small. 
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Note that if we put the weight at a current support point 

to zero then we must redefine the value of J and also the matrix A. 

Hence even if that is 'constant' A-' or A} must be recalculated. 

This will also be the case if we conclude that Sup(p(r) 

excludes support points of the optimum p*. A vertex direction or 

some other iteration must then be taken to augment the current support, 

before continuing with the steepest ascent iterations corresponding 
to the revalued J and A. 

Note also that in the case of problem (P3) only that 

submatrix of C corresponding to the current support would play an 

active role in the formula. 

Wu applied some of the above schemes to a number of examples. 
His results will be reported at the end of chapter 7. 
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(c) these directions satisfy here (-Q) is the 

hessian matrix and the points m0'11 ... 'm(,, -1) 
are said to be 

(4-conjugate, from which it follovis that they are linearly independent 

(see Luenberger (1973, p. 169)). 

The above sequence then has been obtained by taking what 

is in fact, an optimal step of unit length in the successive directions 

moymi,..., mit-V 

A similar result holds for any arbitrary set of Q-conjugate 

directions, but the optimal steps need not now, be of unit length, 

for if m0, ..., mn-j are Q-conjugate then so are c0m0' ", cn-1mn-1 for 

any constants c0,..., an-1 The result is that the sequence ýxr} 
, 

+ 11 
where Xrrý r -er 

ýý +, \ "Ar ) 
-C `'µß) 

69rwýrýý` 
rQt r) gr=ar) 

attains the optimum x* in the n steps. See the Conjugate Direction 

Theorem of Luenberger (1973, p. 170). 

It is natural to consider if the directions mo, m,,.. Imn-J 

could be chosen optimally. Luenberger (1973) proposes the formula 

`Mo go 
6.3. E 

. ýrrl ýrti ýýrr`r 

'"tom Q''`r) 

This is called the conjugate gradient algorithm. The 

directions mr are generated sequentially as the method progresses, 

and are conjugate versions of the successive gradients obtained, in 

contrast to unconstrained steepest ascent which would move only in 

the direction of the current gradient vector. 

Luenberger shays that these choices of nr are q-conjugate, 

and that 

6.3.2 

See the Conjugate Gradient Theorem, Luenberger (1973, p. 174). 

That these nr depend on the gradient vectors gr suggest 
that they must be a good choice. In fact the optimum could be reached 
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in less than n steps. Unless the optimum has been obtained gr is 

orthogonal to the subspace generated by mo1.. 3mn_1 and hence is 

linearly independent of these. 

6 6. .2 These latter optimality considerations are not too important 

for the. quadratic problem but they are important for the unconstrained 

maximisation of a nonquadratic concave criterion ý(-), for it is 

natural to suppose that a corresponding approach would also work well 

in such a case especially when quadratic approximations are usually 

good in the region of an optimum. Of course we cannot hope to reach 

the optimum in n steps. 

Various conjugate gradient algorithms have been proposed 

for nonquadratic maximisation problems, all based on the idea of 

cycles of n conjugate gradient directions. 

One is based on the quadratic approximation idea and simply 

mimics the above formulae but with q replaced by (-Hr), Hr = H(xr) 

being the hessian matrix, so that (-Hr) is nonnegative definite if 

l4(-) is concave. 

The iteration is 

xrt-1 = Xr + Ctrmr 

where 

Mnk - Bak k= oý ºý Zý - . -- 

- ! 
nk+ftº) 

} Cnk+t) (nkttl t= OJ 1) - --J (nk+t+i) 
6.3.3 

A- 
(`ýt+l Nr'"ýr/f 

\Mr 
HrVac'/ 

qtr =- (9ýwA 

Hence at the first iteration and at every nth iteration 

thereafter a steepest ascent direction is taken while at the other 

iterations an 'H 
r -conjugate gradient direction' is taken. The steplength 

chosen is suggested by the optimal steplength for the quadratic case 

though it will typically not now be optimal. ! or will the simpler 

formulae 6.3.2 for a, )/I, obtain. 
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A disadvantage of the iteration 6.3.3 is the need to 

calculate Hr at each iteration. i th a view to simplification the 

Fletcher-Reeves method takes 

6.3.4 

where a (+ý is the optimal unconstrained steplength in the direction 

VI r. 

Other variations scale d own this choice of 6, to 

6.3.5 

where c>1, " or to 

6.3.6 Pr =- E-1-1 s , 
)/{ c, t5r-ý)ý 

where c. is a variable or adaptive choice of scaling factor, its 

value being chosen according to the current value of some criterion 

such as FA(xrý xr- + 'Q 

S6.3.3 These ideas have been concerned with unconstrained optimisation, 

but Luenberger (1973) says that analogues of conjugate gradient methods 

or Partan could be generated by handling constraints through reduction 

or projection. We consider these ideas now and in the next section. 

The former is based on the idea of temporarily substituting 

for a suitable subset of the variables y in terms of the remaining 

ones z according to the constraints. The above methods are then used 

on the gradient vector with respect to z to decide on a direction of 

iteration. The elements of y and z interchange as need be. 

. Vlu opts for the projection approach. The idea is that 

we project the above directions onto the constraint space to which 

direction vectors must belong, assuming that the current iterate is 

feasible. As we have seen this space would be Cm = 0,1'n =0 if 

the main constraints are CG = b, ý'p = 1. as in the maxxinisations (P3), 

(P1) of a function q)(") 
. 

We redefine some notation. Let D(r) replace mr, d(r) 

replace gr in the formulae above, so that with no;; n=J 
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(Jk) 
ß(3k) 

r C3k+t) 
D 

t3r cl -L cr 

If problem (P1) is under consideration we wish to project 

D(r) onto I'm = 0. The relevant orthogonal projection is of course 

63.8 , nti O CCV-) -5 
(ý) I 

where D(r) is the average of the components of D(r). 

Hence 

6.3.9 �, t C. -) = VIL 1. 
/_ 

1 1' ) Cl)) D1 . 

If our intent is to take A=I then this formula selects 

the constrained steepest ascent direction for that choice of A at. 

r= Jk for then D(r) = d(r) and so is the orthogonal projection of 

the unconstrained steepest ascent direction d(r). 'iiu uses 6.3.9 

in a number of numerical examples with the Fletcher Reeves conjugate 

gradient approach in mind employing various choices of the scaling 

constant c and also an adaptice Cr sequence. ade will consider his 

results at the end of chapter 7. 

For general A we would clearly opt for the direction 

-*mfA, J', d(r)} at r= Jk. It seems more natural then to adopt, for 

all r the alternative projection. 

_ '. m( A, 6.3-10 (YX Cr) 

and for general C the projection 

6.3.11 Crl _ r, (f}' C-' D"), 

One might also entertain the formula 

6-3-12 
_ 

ýýcrt')' 
rl 

4-d(rt1)I/ýdýr)ý 

13ý l 

Vie note that for the case A=I, y'ru (1976, p. 41) shows 

that if l3r -o then F is not smaller than 

F{ »', pC-) and hence must be positive. 

We will denote a conjugate gradient algorithm selecting 

direction 6.3.9 or 6.3.10 by C(A, /3r ,c). 

Again a basic assumption must be that Qýrý > o" 
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6.4 adapting Unconstrained Iterations; Solving Equations 
S6.4.1 Suppose we know Sup(p*) . Without loss of generality suppose 

that Sup(p*) = U. Suppose also that (0(") is differentiable or enjoys 

support differentiability at p*. Then the following is true. 

Firstly we know from theorem 2.5.6 that the solution p* 
to problem (P2) solves the equations 

64.1 -0, _; -- -ýs 

Furthermore not only have the constraints 
P 

>-a been 

rendered inactive, but also the follciving lemma is true. 

Lemma 6.4.1 

Suppose that (/l(") is differentiable at x(p) : --Z pjuj and 

suppose that p solves 6.1f. 1, thenIassum: i-ng GjxLp),. x(p)j-. c) 

Proof At differentiable x(p) vie have 

Thus 6.4.1 implies that 

Hence Pý G ý'ý(p), ý; =G{ x(P)ýxCP) ýý P; ý 

However in general 

Hence we have 
Gý s (P), x CPS ý` Cý P, "ý , 

and the result is proved. 13 

These observations clearly alter problem (P2) to a much 

simpler optimisation problem, an unconstrained one. It is natural 
to consider other algorithms for solving (P2), namely to employ 

standard techniques such as Newton Raphson or Fletcher Powell to 

solve 6.4.1. With a view to speeding up convergence though vie 

might consider modifying the iterates of such techniques to ensure 

that E pi " 

Ifs in the absence of further infozmationjvie take pýo) = IIJ 

then since pý >0 one would expect iterates p(r) such as these not to 
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stray far from the feasible region p for problem (PI), and indeed to 

remain in p if all p are not too small, although, as we shall see, 
typically there will also be negative solutions to 6.4.1; that is, a 

solution p such that some pj are negative. 

Even when one is not sure that Sup(pw) and « are the same, 

when say it is possible that L( might contain at most one or two 

vertices not in Sup(p-~),, one might contemplate setting out to solve 
6.1.1 using iterates as above with pro) = 11J. For if it is the case 
that Sup(p -) c- this will manifest itself in the emergence of 

negative iterates, assuming that these converge, in view of the fact 

that there then can be only negative solutions to 6.4.1. If iterates 

turn negative and persist in remaining so, or assume large negative 

weights. it can reasonably be concluded that Y 
. 

does contain non- 

optimum-support points. In general one would require to switch to 

another algorithm although)as we shall see from empirical results in 

section 6.1i.. 2, one might be able to identify the non-optimun-support 

points from the iterates themselves. It should be emphasised that 

this approach should only, if at all, be considered if one is sure 
that (V_ contains at most one or two non-members of Sup(p---'). If 

we are entirely vague about the members of this set it would be 

better to employ some other algorithm at least initially. This theme 

will be reconsidered in section 6.5. 

The contents reported in section 6.1.2 are the results of 

using adapted and unadapted Re-aton Raphson iterates to solve equation 
6.1.1. There are various possibilities that could be employed to 

adapt or constrain. an iterate of a techni ue for an unconstrained 
(problemIto 

iterates prý which satisfy ý pýrý _ 1. 
0 

Suppose that pýrý =I and let mr denote the unconstrained 
direction in which a standard technique would step from p(r). Let 

xr+1 be the subsequent unconstrained iterate that would emerge from 

the step that the technique would take in the direction mr. The value 

of that steplength is not important. 

Two simple possibilities spring to mind. These are, adapting 
by means of projection and, adapting by means of dilation. The former 
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we have already considered in the previous section where the idea 

of reduction was also mentioned. Three suggestions emerge. 

(i) By projection we mean projecting mr onto I'm = 0. Let m(r) 

be the resultant mapping of mr. Then take as before 

Pýr-týý ` 
ýCr)} ý MCc'1 

The most natural procedure to use is an orthogonal 

transformation so that m(r) = mr-nr1_ where mr is the average of the 

components of mr. We have however seen other alternatives in the 

previous section, namely mr) =+m(A,: Ll, mr)& 
( 

(ii) By dilation we simply mean to take 

p(r+1)rt(ýýY 

This has the advantage that if the components of xr}ý are each positive 

then p(r+l) e)0. 
One might consider other transformations of x, +1 onto 1'p = 1. 

(iii) As a variation on the latter one could let 

Then iýýrý _ and a possible iterate ils 
{{!! 1 

Cr) Cr) Cr) C*)1 
C-°Crýp +°Cr Fý(P ý( l 

art 1) 
_1 

PC r) -r cCr) 1F 
Cri) 

ci 
11p 

ýr `1pJ 

The numerical results of section 6.4.2 include reports on 

the performance oI suggestion (ii) when used to adapt Newton Raphson 

iterates to solve equation 6.4.1. 

Let f(p) be the vector whose jth component is F{x(p), u. and 

let D(p) be the matrix whose (i, j) 
th 

element is äF{x(P)ý uýýýr7Pý 
Then unmodified Newton Raphson iterates satisfy the relation 

6. i{. 2 aCr-tIi _ PCr) -d 
I` 

l 
cr)). I(PCc)) 

. 

Thus under suggestion (ii) dilatedd ; 3e"ýrton Raphson iterates 

are defined by the relation 

6.4.3 
ýLr'tý) _ 

ýc 
)D /ýýrlý /_[r)1 ýf 

[ (r)_ b 
1( "VWý )J} 

J lP J // 
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Of course these formulae require again the inversion of 

a J'J matrix at each iteration, nan(ýy D(p(r)ý. ö)standard simplifying 

convention is then to replace D_ (p by D (p(), while secant 

methods would replace the former by some other constant matrix. 

We note that an alternative to Newton Raphson techniques 

for solving equations are Gauss Seidel techniques which would not 

. incur the above problem. One example of such a technique does the 

following)as described in Ortega and Rheinboldt (1970). Cycling j 

through the values 1 , 2,..., J in turn solve numerically for pj the 

single equation. 

F{x(p), u j} =0 

while holding the other components. p1 fixed at current values. Clearly 

we could adapt such a technique as above. This procedure would change 

significantly only one weight at each iteration and so would enjoy 

the same benefits that vertex direction iterations derive from lemma 

5.2.1 in the design context. 

56.4.2 Vie now report the results of using iterates 6.1 .2 and 6.1 
.3 

to solve equation 6.4.. 1 in design contexts, that is equation 6.4.1 

below. 

The results are mainly for D-optimality with some additional 

results for A-optimality. The equation 

6.4.1 F{, i(p) , vwi'i =0 

becomes respectively equations 6.4.5,6.4.6 in these tyro cases, 

6.4.5 vß'1' 
I(P)vi 

- k= o 

6. Z.. 6 vi`i. 
2(p)vi 

- t'{M l. )l -O 

Not surprisingly these equations have several solutions. 

Examples are the following ones. 

Ex. 6.4.2(i) Take U= 

Equation 6.4.5 has the three solutions 

p= `8/9, (Ji'FO/6,6J'11)/6, 
-2/9) and p= (1/32,9/32,9/32,10/32) and 

possibly others. The latter solution is of course the D-optiml design. 
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Ex. 6.1.2(ii) Take If= [(1, o, o)', (o, 1, o)', (o, o, 1)', (4,5,6)', (3, i)5)'I" 

Two solutions to 6.4.5 are p=(. 359,. 213,. 229,. 767, -. 569), and 

p=(. 651, -. 318,. 629, -. 139,. 178). There is no positive solution in 

this case, as one vertex, namely (3,4,5)', does not belong to the 

support of the D-optimum design. 

Ex. 6.1f. 2(iii) Now take l. f ={ e1,..., ek, x1 }, 
x; 0, inhere ej is 

the kx1 unit vector, while I is a kx1 vector of 1's. Vie can quote a 

wide class of solutions to 6.1.5 here. For any tE0,1,2,..., kj 

there can be one or two solutions p= p(D) of the form 

(+ D)/zk ,i= Ij - --, t 
P` 

(I 
- D)/Zk 

%ý_ 
ýt+l)j - ---) k -? 

k}i 1k+(k-z-h)D1/zk 

Solutions can only be of this form all owing for the variation 
that any t of the first k pi's could be assigned the value (1+D)/ 2k. 

The quantity D is given by 

_zýýk- z-t)(k-ýý -i- 
I 

x4(k-zt)2+-ýk ýk-z) 
- ýk-zt)Z x+I 

D= týk-ztýZxz -1 
ýfýk- )xZ 

-{I+ 2-t- (t-1 )A, -1)Ck-zt)} ýk Ck-2t)xZ= i 

These values of D definitely render p(D) a solution of 
6.1.5 provided pi 0 for i= Is... 2(k+1). 

Particular results are as follows. 

(a) If x=I there are two solutions for each t=2.,.. )k-2 and k>., 4., 

namely 

P. =- C-e- 

and 

(b) In the case t= k-1 or t=I and k. 3 there is the one solution 

2 

Pk - [(k-zýX + ýý/ýk [Ck-2)ß"z i] I Vk+I _- (k-1)k[(k-z) X-I. 
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(c) In the case t=k or t=0 there is the one solution 

ý. _ 
/V, 2 

- I) lý -kj ýkt _ýkxz 1)J k -I) lx I/k . 

When `xl>t% this identifies a D-optimal design while it is still 

a solution to 6. ).. 5 in the case ýXý= I% although pk{1 = 0. Another 

instance of this possibility is seen in the last example. 

Ex. 6.4.2(iv) Finally take k=4 and 

e3:, (. 5, . 5, . 5, . 5)' , 
(-. 5. -. 5, . 5, . 5)' , 

(--05, . 5, -. 5, "5)' 
(-. 5,. 5,. 52-. 5)1, (-05,05,. 5,. 5)1. 

Here there is an infinity of solutions to equation 6.1.5, 

namely p= (A3x)A, \, r., r, r, io) with A{-r = 1/4. 

Consider now employing iterations 6.4.2 or 6.1 
.3 taking 

pýo) = 1/J, j=1,..., J. The following issues are of interest. 
J 

(1) If solutions to equation 6.1.1 or 6.4.4 are also solutions to 

the appropriate example of problem (P1), will such iterations converge 

to one of these solutions? 

(2) Will such iterations p(r) tend to satisfy p3r)> 0? 

(3) How will such iterates behave when no solutions to 6.4.1 or 
6.4.4 solves problem (P1)? 

Vie have only empirical results to offer. Clearly if Sup(p*) =Uý 

then we would expect almost always, that iterations 6.1 .2 or 6.1 
.3 

would converge to p° and further, that per) >0 for each j'r, if no 

optimal weights are too small. Not a few examples could be quoted 
to bear this out. In the case of D-optimality examples are iterations 

6.4.3 in each of the following cases. 

(i) V as in example 6.4.2(i) for which p. p* _ . 125. 

(ii) V= f(x, 
x2, sin2Trx, cos2rx)l: x= . 082,. 083,. 381., 0734,. 735,15 

for which p? . 07688. 
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(iii) Ü= {(i, 0,0,0)'s(0ý1ý0ý0)tý(O, O, 1, o)', (0,0,0,1)', ("75,. 75,0,0)t 

(. 75,0,. 75,0)''(. 75,0,0,. 75)''(0,. 75,. 75,0)'(0,. 75,0,. 75)' 

(0,0,. 75,. 75)'1 

for which pý 7 3/20 = . 067. 

(iv) U_{ (1, x, ý, x2, x2Ixlx2, x2)' : xi = -1,0,1 ;i=21 for which 

J=9, k=6, p> . 08015. This U is the support of the D-optir! um 

design for quadratic regression in trio variables x1, x2 over 

with a constant terra. 

(v) U= 2'xx 
: xi = _i, o, l :i=1,2,3} 

-. 1.0.0,0,0,0,0,0,0,0)j for which J= 26, k= 10, 

p, . 01895. This is the analogue in three variables of 

the space Ü in the previous example. 

Finally in the case of A-optimality examples are iterations 

6-4-3 in the following three cases; Jas in (i) and Ü as in (iv) 

above and also Ü= [(1,0,0)', (1,1,0)', (1,1,1)'1. 

P 

These results not withstanding it is of course likely that 
ýrý 

will be negative for some r if p* small. The following gives 3ý 
some minor indication of when negative iterates are likely to occur. 

Consider the space IS of example 6.4.2(iii) for. which. k =4 

namely J_ 
, 

(0,0)0,1)'., (x, x, x, x)'I, x 0. 

In the case of, D-optimality and also c(p) tr[1i t(p)c 
, 

If = Sup(p-) if x 1/2, but p5 will be small if x just exceeds 1/2; 

for x= . 55, "54, "53,. 52,. 51 respectively p5 = . 055,. 0L5,. 035,. 021,. 013. 

Only for x >, . 55 do iterations 6.4.2 remain positive. In the cases 

x= "54,. 53,. 52, p5')e- 0, while both p(51), p(52) are negative when x= . 51. 
The case x= .5 is of course particularly interesting here)for then 

p=(. 25,. 25,. 25,. 25,0) solves equations 6.1.5,6.4.6 and also equation 
6.4.1 when p(p) trtLI t(p)s 

. Not surprisingly p5(r) is always 

negative when using iteration 6.4.2 to solve equation 6.1.5. 
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Other examples of this type arise when, with k=4, 

Ifs _e , e2, e3, e , 
(. 5,. 5,. 5). 5)', (-. 5,. 5,. 5,. 5)'A and when 

If= Vu (. 5,. 5, -. 5, -. 5) In both these cases a solution to 

equation 6.4.1 puts pý = 1/4, j=I.. 2. -3y4 and pý = 0, j-5., and in 

both cases, with p(0) = 11J, per) is negative for j-> 5 under iteration 

6.4.2. 

Other instances vrhen negative iterates are realised are in 

the case of a vertex whose optimal vieght is . 037 and in the case of 
tiro points whose optimal weight is . 002. 

Before concluding this discussion of the first two issues 

with a final example, it is of relevance to the third issue to note 
here that in all of the above examples, including those when optimal 

weights are zero, we always had pýrý > -0.1, in fact pýrý >ý -. 08. 

The example we now Trish to consider concerns the space 

of example 6.4.2 for which J=9. For any Xrp such that A +-V = 1/4 

p= (X 
)X , 

x,., r, N, N, Nro) is a solution to 6.1 
.5 and hence there are 

an infinity of D-optiral designs, those for which )-'. 
-O. Hoi, rever, 

starting from pý0) = 1/9 to solve 6.4.5, iterations 6.1.2 behaved as 
follows. Firstly p(rý is negative for r=1,2 and then is approximately 

zero for r--, 3. The behaviour of the other components is distinctive. 

For r=1,..., 5, p0ý pýr)> 0, while 
these inequalities are reversed for r=6,7,8,9. The solution converged 
to takes \= . 4563, t j= -. 2063. That this is not a positive solution 
is disappointing, but also disquieting is that the iterations fluctuate 

markedly despite the fact that for r. >3, p(r) is a solution correct 
to at least three decimal places. For r=3,4,5,6,7,8,9, p(r) is 

approximately the solution corresponding respectively to 

X= -. 375, -. 375, ". 683.,. 651,. 554,. 456,. 456. Admittedly this example 
is a severely testing one. 

We turn new to the third issue. This is of relevance because, 

as has already been suggested, ne might consider using iterations 

6.4.2,6.4.3 when we are not entirely rely sure that V and Sup(p'*-) are 
the same. If, starting from po= 1/J, iterates adopt non-negligible 

j 
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negative values and persist in doing so it will be reasonable to assume 
that Sup(p-: '), Ü. The results below suggest that such a conclusion 

could be reached at the earliest iterations. 

The follo'ving four design spaces consist of four vertices 
in the case k=3. In each instance the first three points form 

the D-optimal Sup(p*). 

V= {(i, o, o)''(o, 1, o)''(o, o, 1)''(. 3'. 2, . i)'] 

>>ý. ý. 

Lf = (4,3,2), .. 11 
'(i, 

0,0)' } 

It it I 

There are therefore no positive solutions to equation 6.1.5. 

In each case, with p(ý0) = 1/4, iterations 6.4.3 turned negative 
immediately and remained so. The minimum of the four components of 

p(1) are respectively -. 11, -. 40, -. 23, -. 39 in the four examples. The 
(2) 

are -. 31. -. 23, -. 12, -1.08. minima in the case of p2ý 

These results together with the observation that pýr) > -0.1 
in the examples on convergence to a positive solution suggest that 

a not unreasonable rule might be to conclude that Sup(p') c 'U if the 

inequality pýr)c -0.1 is realised. This rule was in fact employed in 

the results reported in section 6.5. 

To end this discussion it is of interest to report the 

solution'to which iterates 6.4.3 converged in the above four examples. 
These were respectively 

p* _ (-. 239, -. 131, -. 01i. 1,1.1.10) 

pý° _( -417, -395, -375., -. 186) 

p* _ (. 34-2,. 397,. 365, -. 105) 

p'` = (-. 2591-1.020., -. 634., 2.913) 

Convergence then, from p(jC) = 1/4, is to a solution which 

allocates "weights" with a common sign to the members of Sup(p--), 

thus forcing the weight of the one non_-merzber of that support to be 

opposite in sign in view of the constraint 1'p = 1. 
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In fact in all four e( jples p(l) shared the same sign 

structure as p^`. So also did pr for each r in the first and 
fourth cases. 

Another instance of this phenomena occurs in the case of 
the space U of example 6.4.2(iv) for which k=3, J=5= (k+2). 

In this case the first four points form Sup(pe). There is again only 

one non-optimal support point. Two solutions to equation 6.4.5 were 

reported. One solution contained exactly two negative components, 
but from pýO) = 1/5, iterations 6.4.3 converged to the other solution, 

namely p=(. 359,. 213,. 229,. 767, -. 569)" 
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A Composite Algorithm 

In the previous sections of this chapter vie, as previously 

said, have been considering algorithms suitable for sets of *vertices 

which do not include large numbers of non-optimal-support points, some, 

as in the case of using adapted Newton Raphson in the solution of 

equations 6.1.1, only suitable when the set of vertices forms the 

full support of the optimum while others, such as diagonalised versions 

of constrained steepest ascent, conjugate gradient or quasi Newton, 

will tolerate or operate fairly efficiently in the presence of a small 

number of non-optimal support vertices. Also the more complex of these 

schemes requires the inversion of a JxJ matrix at least once, and even 

if this is not required at every iteration, a matrix of lower order 

has to be inverted every time a vertex is eliminated. 

Clearly use of such procedures, i. e. no non-support tolerated 

or small non-support tolerated, will only be possible if we can identify 

a subset of the vertices which contains a subset, if not all, of Sup(p'`), 

and a small number if at all of non-optimal support points. 

Fortunately it would appear from the empirical results of 

section 5.6 that while the convergence of a vertex direction algorithm 

can be slow, it can quickly identify most if not all of Sup(p'`). It 

would be reasonable to conclude that the set, which we will denote by 
U- 

(1)., of, for some T. those T vertices selected most often or given 

large weight after a suitable number of iterations will belong to 

Sup(p*)) and would also form the full support of the optimum on (L(') 
. 

On the other hand a set of vertices IL less rigorously chosen than 
U(1) could contain most if not all of Sup(p^') and a small number of 

non-optimal support points. One would want LL. to include those vertices 

regularly selected., often and not so often, initial iterations excepted. 

One might also include the neighbouring vertices to these when the 

complete 
(J 

= {u,, 
..., ujj is a discretisation of a continuous set. 

The less rigorous the selection of LC, the more we would expect the 

support of the optimum on IL to be a proper subset of U. 

Suppose we select a U. Then in theory we apply one of 

the procedures that will tolerate a small number of non-optimal support 

points being prepared to put weights to zero according to the rules 
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of section I. 3.3. We continue applying this procedure until the 

optimum p' on L. 
- is determined, or at some point when all non-support 

points of Ti" have been identified we might switch to one of-the more 

efficient algorithms. If we have chosen U well then ^` should be 

the optimum for LC = (L 
" If however-g'-_: A how then do we proceed. 

ale are then in a position which is more likely to occur if we opt for 

a set like (1M described above. 

For generality hoirever let «(1) be an arbitrary subset 

of L( 
= 

(d. Suppose that we find the optimising pC1) on 
«(1) by 

some technique or other. (If (Z(, 
) is the set considered above we 

would use a 'no non-optimal-support tolerated' procedure such as 

adapted Newton Raphson for solving equations 6.1 .1 or 6.4-4). We 

check for the optimality of p 1) on LL = 
L(. If pý 1) p* how do 

tigre proceed? 

This is a circumstance which vie have already considered in 

several places including the discussion following lemma 5.5.1. We 

must adopt some other algorithmic rule to select a direction in which 

to move from P'(, ). The following suggestion is a variation on a 

fort7ard vertex direction choice. 

The suggestion is to improve C( 
(1) to the set 

U)-SP icon "I `L, ' Fjx( p) LPsI >o, u ELL Cý) s' 

Now find 12), the optimum on j 
2) and repeat. 

This procedure generates a sequence of designs p--`t), t=1,2,.. 

corresponding to subsets (1ý1) U(2),.. 
' 

u(t) 
of LL 

_ {u1,.., uJ}, 

the design being the optimum on 
ClW. The subsets are defined 

by the relation 

t+i) 

As a consequence the sequence, tý)ý ,t=1,2,..., is 

monotonic nondecreasing. It would seer, that p'(t) should converge to p^ . 

,. 
() is The essential features in passing from U(t) to LL(tliT 
1 

j that non-support points of pt t) in U(t) 
are eliminated and Su4p , 
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is t'h n augmented by one other suitable vertex. We have an "eliminating/ 

augmenting" procedure. The idea has the following geometrical 

motivation. 

Assume that Ud= {u1, u2,..., u3I is a subset of real n 
dimensional space Rn, so that x(p) E Rn. For any differentiable 

X(P) ) 
let R(p) =[ uL E 

«' : F£'c(P)/ `{j `- o} . Since T- P Fk x (p)eu ý=0, 

then typically the sets R(p) and 
Ui intersect; some fT lie 

outside R(p). One exception is R(p=') for then F{x(p )., 
w' 

o with 

equality if e Sup(p*). Hence Sup(pe) lies on the boundary of R(p*), 

and so R(p*) circumscribes 
U3. This suggests that R(p=') is in some 

sense a smallest set containing 
U 

j- This shall be seen more clearly 

in the case of D-optimality. 

Consider no; "r the set R(p 
t)) where p t) 

is the optimum 

for some subset 
(I( 

t) of 
(ý. If ui .E 

Sup(p*) then ui will lie on 

the boundary of R(p"t)),, while u typically lies inside R(ptt)) if 

uý 
[L1(L) 

- Sup{t) 
J. 

However if pt t) p'"` then there must exist 
ýl 

some ui 
ýi(t) which lies outside R(ptt)). Expansion of R(p*(t)) is 

necessary if it is to circumscribe 
(4. 

Intuitively an improvement would be to expand R(e`(t)) 

to include on its boundary that ui farthest from R(ptt)), which one 

might interpret to be u(I). Such an improvement would be R(p t'1)) 

when 
1(t}i) 

= 
{Sup(p*(t)) 

e {u(' )J}. 
Clearly one might argue that * an 

alternative to 
P) 

is farthest from R(p'*(t)). 

If still p,, ': ( t+, ß) p' one repeats the argument. 

This picture of the procedure may make it appear ponderous 

and inefficient. Certainly the latter will be the case if (, («O 

is chosen arbitrarily. In particular if 61(`) 
contains many vertices 

which are not support points of p*, then the sequence will be long with 

vertices being brought in and later discarded and uossibly vice versa. 
I: ote that all vertices not in ýt) 

would have to be considered in the 

selection of the augmenting vertex. 
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Suppose however as originally suggested that the initial uýýý 

contains only support vertices of p*, and in fact only those vertices 

allocated large weight-by p*. Then intuitively R(pf(1)) must almost 

circumscribe (La. Hence the same must be true of R( *(t)), 

t=1,2,.... It must be that R(p^`(t)) is only a slight expansion of 

R(p" (t_, ß) 
), the augmenting vertex not lying far outside R(p*(t-1)) . 

Given such a closeness between R(p'*-`(t_1)) and R(p*(t)) it would seem 

that those vertices which lie on the boundary of the former will also 

almost certainly sit on that of the latter. That is, given the above 

initial choice of one would have thought that almost always we 

would have Sup(p *ý(t)) = 
-(t) for each t. At no stage then would 

support points of p"' be discarded to be brought in later (again) and 

no non-support vertices of p' would at any stage be included. The 

procedure would successfully identify the remaining support points of 

Sup(p'). It would be just an "augmenting" procedure or at least an 
"(eliminating)/Augmenting" procedure. Also one would expect 

similarities in thew eightings under p- (t) p-(t-1), suggesting 

that pý should be based on p-'^ We will see at the end of 

this chapter evidence to support the above conjecture in some examples 

arising in the design context. 

It was in the design context that the above geometrical 

argument was first proposed, by Silvey and Titterington (1973). Then 

the set R(p) can be restated to be R(p) = {Lr e Rk : FýM(P), sýýý 0 
1, 

E(p) = )ýpi vjvj' and now the set R(p) and the design space 

If = Vd = ýv,, v2,. 00, vJ intersect for p p', ̀, while R(p) just 

circumscribes U. Some vj lie inside R(p), some lie outside and 

the above ideas carry over with uj replaced by v j, 
1(t) by V( 

t) . 

Silvey and litterinGton had D-optimality in r-And in ; vrhich 

case R(p) _ fr F Rk: cri M '(? ) 
,rk an ellipsoid., centre the origin. 

A duality theorem of Sibson (1972) establishes that R(p*) is the smallest 
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such ellipsoid containing 
UJ. ihat iss suppose that the matrix N 

is such that the set {-Lr r. Elk: Lr'Nss < contains ifd. Then the 

smallest such set is given by N= 1ir1(p `) . 

It was the geometry really of this result which suggested 
the above "(eliminating)/Augmenting" procedure to Silvey and Titterington. 

They prove convergence of the procedure for this D-optimal case. 

Note that in the case of design criteria depending on the 

matrix All+(p)A', where A is of order skk, rank[(A)J= s, we know that 

the support of p* contains at least s vertices. Hence we must take 

.T>s, and moreover Ü(1) must contain at least s linearly independent 

vats. If A=I then one advantage of taking T=k is that explicit 

solutions for p 1) are available in-the case of A-optimality and 

D-optimality, PT, ) being (1/k,..., 1/k) in the latter case. 

Wu (1976) also uses the procedure in his computations, but 

with some modifications. He does not go as far as computing p-(t). 

Instead he opts for a vertex direction iteration if it becomes clear 

that he is close enough to p' (t) to ascertain p°' (t) p*. He thus 

takes a vertex direction step from an approximation pý 
t) to p(t) . 

He does so if, for some Fo >o 

where p(r) = p(. 
t) and m(r) is a constrained steepest ascent direction. 

He appears to consider not only u(1) but also u(4) of 5.3.3" 

He is also prepared to settle for a ui for which F[x(k(t)), ui I is 

large if the computations in finding an optimal u(1) is time consuming. 

He considers several possibilities for making such a choice including 

choosing ui such that F{x(p(t)), ui1 >S for some 8>0 or choosing 

ý3 t ui such that F{x(p(t)), ujý ßf3 Fýx(p(t)), u(1)f where 0 

Finally he opts for an optimal step from pý 
tý to his chosen 

uff, and he contemplates a number of standard algorithms for computing 

these. 
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Wu (1976,1978b) also provides various convergence results 

relating to his resultant global algorithm for general criteria. He 

does not though, indulge in any discussion about the choice'of the 

initial U 
M. 

Which of the above ts: o options are better, the approaching 
from below or forward method using the "(eliminating)/Augmenting" 

procedure based on a confident identification of a subset (J 
1) of 

Sup(p~: ), or the approaching from above or backward method based on 

a confident identification of a small subset U of the vertices, but 

one which is big enough to contain Sup(p: -). 

On balance the latter approach would seem better. From the 

outset the computations with the "(eliminating)/Augmenting" procedure 

are more complex, for there is no point in adopting this approach 

unless the more efficient algorithms are used to calculate p (t). 
In contrast, with the backward approach, one could start out using 
the computationally simpler but less efficient diagonalised versions 

of the steepest ascent or Newton methods, while clearly having available 
the option of s! itching to one of the more efficient algorithms. 

There is one further argument in favour of the backward 

method in the design context. We know in the case of design criteria 
based on the matrix A}, ý(p)A' that the optimum can be nondifferentiable, 
having a support consisting of fewer than k vertices. However it would 

seem undesirable to invite nondifferentiability too early. The for-vard 

method could not in general proceed from an initial 1J(, 
ß) containing 

T <-k points. While the optimum p*(, ý) on V(ý) could be found by 

the above methods, if the criterion enjoys support differentiability, 

we would not in general be able to identify an augmenting vertex if 

it is suspected that p-`(t) --74 p*, for then Ff Id(p' (t)), v, v, ' 

-G(M*, M*) 2 11- = lt)), for all v, 4 L [Sup(p'`(t) )ý 
. 

The choice of the back-riard method in fact envisages a 
three stage procedure, namely opening with a vertex direction algorithm, 

switching to an intermediate algorithm and finally turning to a high- 

powered technique, the three methods satisfying the follc-ý: ing. 
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(i) The vertex direction method as we have seen can be slovr to 

converge but is computationally able to cope with large numbers 

of vertices. 1: iost importantly though, it can quickly eliminate most 

of a large set of vertices as optimum support points. 

(ii) The intermediate method should ideally be one that can cope 

with a small number of non-optimal-support points and can take in its 

stride the further elimination of vertices when weights are formally 

put to zero using the rules of section 1.3.3. As a consequence it may 

not be high-poiered, although it should be more efficient than vertex 

direction iterations. 

(iii) The third stage method should be one that is suited to finding 

the optimum on a set of vertices which include no non-optimal-support 

points. It should be high-powered such as adaptations of Newton-Raphson 

techniques. Its efficiency would be impaired if applied to a set of 

vertices which did contain some non-optimal-support points. 

If appropriate an added extra could be to collapse clusters 

of points before passing from the intermediate method to the final 

method. 

We are therefore contemplating the f ollo. iing four-stage 

composite algorithm. 
A COMPOSITE ALGORITHM 

Stage Techniaue 

I Vertex direction method 

2 Intermediate method 

3. Collapse clusters 

L,. High-poiered method 

Hence there ;,, ill be no determined effort to compare different 

types of algorithms although some empirical comparisons are reported at 

the end of chapter 7. 

We have already discussed vertex direction algorithms in 

detail. Also we have illustrated ho-,,; to adapt standard high-puaered 

iterations for corresponding unconstrained problems, when the only 

active constraint is 2 p. = i, as is envisaged at the third stage. 
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We have further suggested that some of the simpler steepest 

ascent, quasi Newton algorithms might make suitable intermediate 

stage methods. However there can be a disadvantage with these methods 

when a weight is set to zero. The inner product matrix A will 

require to be redefined and if it is not diagonal its inverse will 

require to be recalculated. 

However minor these difficulties may be, in the next 

chapter we propose other possibilities for intermediate stage methods 

and general ideas for formulating these. 

First we conclude this chapter with some results illustrating 

Silvey and Titterington's "(eliminating)/Augmenting" procedure in 

action, in the design context. 

Recall that the principle of this technique is to select 

a subset of the desi ri space and to find p', ̀(, )) the optimum 

on Then subsequently we calculate pt the optimum on the 

set Uý 
tý with 

V(ý+ýý = Su? ýQCfj u{ý ýý 
ýý)) E 

(ý 
EU: t={MýPct)ý, o 

{J 

This procedure was used to calculate D-optimal designs in 

several examples. In each case the initial set 1J consists of k 

linearly independent vertices so that p'`(, ) assigns weight 1/k. The 

augmenting vertex is taken to be vý 
ýý 

, that which nn. xini ses 

F{M(p'' (t)) , vv' over V. 

We consider again the case of the discretised trigonometric 

regression design space 

ý_ ývw 
= (x, x2, sin 2rrx, cos 2Tx) :x c- 

)Ed = ßo,. 01,. 02,..., 099,1}, 

for which Sup(p'') _ 
{v(x) :x= . 08,. 09, "38,. 73,. 7-, 11. If 

U(1) = 
{v(x) 

:x=0,. 33,. 670ý, the "elininatin/augmenting" procedure 

realises the sequence 
Uý 

t) _ 
{v(x) 

:xe M(t) for the s ets 
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listed in Table 6.5.1. 

The initial set 
J(I) is not a good choice, containing as 

it does only one member of Sup(p'-). As a consequence the procedure 

does not perform efficiently. On nine occasions non-optimal-support 

points are the augmenting vertices. Subsequently they have to be 

eliminated as do the three non-optimal-support points in V(1). In 

consequence the number of points in V(t) fluctuates. The five elements 

of Sup(p--) not in V(1) 
are the 7th, 1 Oth, 12th, 13th, 14 th augmenting points. 

Consider now the discretised polynomial regression design 

space. 

V= ýv(x) 
= (1, x, x2,..., 

x -1)' :x c- -yd}3 

d= 
[-1, 

-. 99, -. 98,...,. 99,1J. 

In the case k= 1f, Sup(p') _ 
[v(X) x= t"i+s, t 11 

I 
If ý(I) = {v(x) :x= ±- 33., -±I 

j the procedure realises the sequence 

Jf(t) 
._ 

{V(x) : x& X(t)j for the sets )C(t) listed in Table 6.5.2. 

Again Vis 
not a wise choice although it contains two 

points of Sup(p-'). Twelve augmentations are necessary and there is 

the following unfortunate feature. The element of Sup(p") corresponding 

to x= . 4l is the 7th augmenting vertex. However it is subsequently 

eliminated in the formulation of 
U(10) 

and has to augment again at 
the last stage. 

We note that in the calculation of p" (t) , for each t, 

the dilated Newton Raphson iterates 6.4.3 were initially used in 

these two examples and in the remaining examples below. Of relevance 
to the above examples is that the test pýr) e- o"i successfully identified 

when Sup(p-`(t)) was a strict subset of U( 
L1). - 

k7e have reported the above results to give an impression 

of ho.; the procedure behaves, but its use was only contemplated 

assuming U(, 
) c Sup(p^'). 
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: 'E'hen V(ý) consists of the k vertices in Sup(p*) with the 

k largest optimal weights then no non-optimal-support points are 

employed as augmenting vertices in the case of the trigonometric 

regression design space., and in the case of the polynomial regression 

design spaces for k=1,5,8. The procedure successfully adds in those 

elements of Sup(p°-) which are not in Ü(, 
) without any eliminations. 

In the cases of k=6,9 of the polynomial example, respectively one 

and two non-members of Sup(p~`) are employed as augmenting points. In 

each case the points are immediate neighbours of elements of Sup(p*). 

In the case of k=7 Sup(p"-: ) contains exactly k vertices, there being 

no clusters, so that U(1) 
= Sup(p-) under the condition imposed on 

the choice of U(1) 
0 

We conclude this discussion by recording that we identified 

this choice of U(, 
) in each example by employing Wynn's vertex 

direction algorithm '4v('), 1/(k+r+i)l until its iterations had moved 

towards or "called" k vertices at least 10 times, presence in Sup(p(0)) 

being regarded as one ""call". Sup(p(0)) consisted of the k vertices 

v(x) corresponding to the set of k equally spaced values of x which 
includes the end points of Xd, and p(0) allocated equal weights to 

its support points. 
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TABLE 6.5.1 

. 5r. tt 

1 {0,. 33,. 67,13 

2 [0,. 13,. 33,. 67,1} 

3 {0,. 13,. 33,. 67,. 77,1} 

4 {0, 
"13,. 43,. 77,1 

5 [0,. 06,. 13,1I 

6 [. o6,. 13,. 35,. 4.3,. 77,1- 

7 } [. O6,. 35,. 4.3,. 71,. 77,1 

8 1.06,. 35,. 4.3,. 71,. 74,11 

9 1.06,. 10,. 35,. 43,. 74-, 11 

10 [. 06,. 10,. 39,. 74., 11 

11 (. 08,. 10,. 39,. 74,15 

12 {. 08.10,. 37,. 39,. 74-, 1 

13 {. 08,. 37, "39,073,. 74,11 

14. {. 08, . 37, . 38, . 73, "74-, 11 

15 [-08., 
-09., -38, -73,,,, 74,11 
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TABLE 6.5.2 

tx t) 

1 t-1, 
-. 33,. 33,1} 

2 E-1, -. 33,. 53,11 

3 {-1, -. 49, -. 33,. 53,1} 

4 {-1, -. 49,. 40,11 

5 t -l, -. 49,. 40,. 46,11 

6 {-1, -. 49, -. 42,. 46,1} 

7 41-1, -. 46, -. 42,. 46,1} 

8 {-1, -. 46,. 44,1} 

9 {-1, 
-. 46, -. 44, "44,11 

10 t -l, --46, --44y-45,11 
11 {-1, -. 45, -. 44,. 45,1} 

12 4-1, -. 45, -. 44,. 44,. 45,1 
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C11A. PTý'R j 

INTER Eli LATE ALGORITIII": S 

S7.1 A First Class Of Algorithm 

ßj. 1.1 We now consider some ideas for formulating an algorithm 
for problem (P2) which is less complex computationally than 

steepest ascent or adapted Newton Raphson, but not as simple as a 

vertex direction algorithm. By less complex is mainly meant that 

inverses of JXJ matrices at each iteration is not required. 

Still the algorithm should aim to identify an optimal 

P% and we are still thinking of the approach which, for some m(r) 

or some q(r). derives iterate p(r+1) from p(r) according to the rule 

P fi ý(r) MCA) ßCr) t ý, MCr) 
/MLr). 

O' Ff 

fr+ 1) 
Tt 

f' -- Krl ýýCr) + dr ýr) ,i q- l 
Ft P(r) I CI 

J 
, Cr)l >O 

0+ý 

r/ lCr)ý 
. ýr G%º'ý FS 

I 

zý)l 

l. 
c)} L c>0/ 

lLflf/ 

We want a computationally simple formula for m(r), q(r). 

Consider from 2.3.5 that, under the restriction I'm 
(r) 

= 0, 

it is the case that 

jT7 7.1.1 ýCr) , PC- 
ir 

r<( r)=/ f-t. 1 
ýý{ xý , 4 J-(, 

Clearly, for the given values of Fx(p(r)), uthere will be many 

choices of m1,.... mjrý which will guarantee that the directional 

derivative here is positive. The formula 7.1.1 makes it fairly 

easy to identify suitable m(r). Our problem is more one of deciding 

which of. these should we select. Clearly some will be 'better' 

than others, the 'best' being constrained steepest ascent, but 

we wish to exclude selection both of the latter unless it is simple, 

and also of vertex direction iterations. 

In principle our choice must be arbitrary, though obviously 

one would try to determine it or. the basis of some restricted or 

indirect optimality considerations, or choose it to have some 

intuitively desirable features. Hoaever such criteria will not 

usually be enjoyed by just one m(r) and must themselves be an 

>_, '.. itrary choice. 
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We consider now, s, and in the next section, some examples 
(r) 

reasonable mrý or q 
(r) 

Let 
LL 

= 
lu, 

) --- - -, j 
'A3J 

llr 

ur 
=F LL. . UL; E ýLLp 

`C 
(r) 

J 
ýý YýPCc'/ý ýj 

}LO1 

Let I3 VUV denote similar terms in the design context. 

S7.1.2 A first suggestion 

o 
7.1.2 o 

'O 

is to choose m(r) such that 

ýt.. E 

U- 
I- 

-else . 

+II(rýý is In vie, -., of 7.1.1 this clearly guarantees that F(p(r), p(r) 

a sum of positive terms. Clearly many rn(r) will satisfy 7.1.2. 

The suggestion has the motivation that, if F(x(p(r)), ut1> O, it would 

appear that we wish to move towards or nearer to ut, which is done 

by increasing the weight at ut and vice versa if F (x(p(r) )'ut 0. 

A more natural conclusion from this picture goes further and suggests 

that the larger IF(x(p(r)), 
ut 

l 
the larger should be m(r); that is 

the larger should be the move, nearer or farther, from ut as 

appropriate; one might though argue that Fýx(p(r)), ut3 should be 

replaced by FA[x(p(r)), uti in this argument. 

. 
The folloýring are examples which fall into this class or 

which partially satisfy the above picture, and which in some instances 

have in principle been recommended in the design context. 

r 
FL xýP`rýý LL- 

7.1 .3r 

O Gtý"C rs. n- SG 

J 
ý drttýeýý 
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7.105 
0 

LL.. _" 
(`) 

LL 3E -C Er 

r 
at4t ýn-St 

Cý) 
1 u. = "t 

7.1.6 
o cýL. ý. ý. 

n 
re 

where Dr 

r 

X(ýý'')ý Ff 
ar 

We make some comments on these. 

(i) The last suggestion is in fact the bi-vertex direction 

considered in section 5.4. while suggestion 7.1.1 is a variation 

of an improvement suggested by St. John and Draper (1975) to Atwood's 

Lrý1zý in the case of D-optimality. Under this vertex 
direction scheme the optimal step is either taken towards v(1) or 

away frcm v(2)ß whichever leads to the largest increase in J("). 

If the latter option is the one which is adopted, i. e. v(12) = v(2), 
then under V1 ýZ1 - 

v 

`(Lr(12ý) the weight which is removed from 
(2) 

is distributed among all of the remaining support points of 

p. St. J. &D, recommended 
(r) 

in a manner proportional to per)-- vj v(2) 
that the removed weight should be allocated only to those ui .E Sup(p(r)) 

such that F{x(p(r)), u0 and in a manner proportional to the 

values of these positive F{x(p(r)), uji. This is then an iteration 

in the direction of 7.1.4 where the steplength is fixed by the 

value of 

While this may be as reasonable a manner as any for 

selecting a non-optimal steplength, yet it is not clear that the 

value obtained would compare with a steplength derived directly 

fror m(r) by one of the methods discussed previously. Certainly 

there is no guarantee that St. J. &D. 's lýlýý(p(ý))} will exceed 

[X(p(r) )j " 
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(ii) Suggestion 7.1.5 is a complementary one to 7.1. ). It 

is a direction in which weight, added to a vertex, is removed only 

from those support vertices such that F [x(p(r)), 
uni L O, and in a 

manner proportional to the numerical value of these negative 

directional derivatives. It is an 'improvement' or. a forward vertex 

direction iteration. Now we cannot necessarily let the (optimal) 

steplength)that the vertex direction would have taken towards u(1)ß 
determine the steplength in the direction m(r) as above for we 

then may pass out of the feasible region P 

(iii) Suggestion 7.1.3 is clearly a fusion of 7.1.4 and 7.1.5 

and would seem a more sensible choice, if one is going to adopt 

a multivertex direction 'improvement' on a vertex direction iteration. 

There is little computationally to choose bet-; een 7.1.3,7.1.2, 

7.1.5. 

(iv) Atwood (1973) also suggests improvements to vertex direction 

iterations including the folloiing special one which could be shown 

to define an m(r) similar to the above. In the case of DA -optimality 
it is known that p 1/ s. If then pýr) > 1/ S. remove the weight in 

excess of 1/s from such u. 's and redistribute it among the other 

design points. He did not suggest any particular method of distribution 

but again it wo ld be appropriate to distribute only to those u. 

such that F xýp'r)), uýý > 0, and in a_manner such that_no 

taugmentedi weight exceeds 1/s. The case s=k is D-optimality. 

(v) Variations on 7.1.3,7.1.4,7.1.5,7.1.6 would be obtained 
by replacing F(" ý ") by FA(-)-); by replacing (} by Ur 

or by 
{CZ u wý where r 

is a subset of ums- ýý and finally by 

replacing u(1), u(2) by other appropriate vertices. 

(vi) The condition 'Ir(r) =0 is ensured in 7.1.3, ..., 7.1 . 6, 

c. -) because ýý =I ~Cr' -l 

Lt. C- (t uEU, 

If vie coo replace Ctý by U it is of interest that 7-11.6 maximises 

r (r) rr F 
,p +mý 

ý 
over m(satisf'yin. these "--i o conditions. 
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(vii) A general rule for devising m(r) satisfying 7.1.2 is given 
by 

Q1 ýSxýPýr1\ LL. 
ýt 

J+ ýT E LLr 

r . Jll t Jý 
ý JJ/ r .1_ 

7.1.7 mýý = g{ -} 5ý ýf ,fF ýc- 
0 aLcrwtsc 

where g(") is any function such that g(x) >0 if x>0, g(x) -- 0 if 

x e-0 while gr =iý 
*% 

{ Ft 

gr = 5ý ýý 
} 

It would seem desirable to impose the restriction that g(") be 

monotonic increasing or be at least nondecreasing. Clearly 7.1.3,.., 

7.1.6 are particular cases of this. 

Again one might extend Ur or replace F(-)" by FA( "ý" ý. 

(viii) A choice of q(r) corresponding to 7.1.2 is given by 

q(r) such that 1 q(r) 1 and 

) 

(r) + 

p 
fir J__ 

7.1 
.8 

CL. G aCý1 Lf lt E ý/ 
1r ý1 IJ 

L0 tYtýLr4tLSE 

Clearly m(r) = q(r)-p(r) satisfies 7.1.2 so that F(p(r), q(r)) >0 

and one would take p( r+1) 
_ (1-0" )p (r) } 

Tq(r) r 



214 

S7.2 Further Classes; A Positive Covariance 

57.2.1 A second rule which will guarantee that 7.1.1 is positive 
is 

Rule 7.2.1 Choose m(r) to satisfy 

(i) jm(r) = 0, (ii) mir) =0 if FLx(p(r)), uj 0 and uý Süp(p(r))ý 

and (iii) assign non-zero values to at least two of the remaining 

components of m(r) in such a way that if ui has the nth largest 

Ftx(p(r)), uamong vertices corresponding to non-zero components 

of n(rj then mir) is the ntll largest among these non-zero components 

of m(r); or is at least as large as (n-1) of these components. 

That this ensures that 7.1.1 is at least nonnegative 

is seen as follows: 

Vie have from 7.1.1 
F` Tc", Pcýý cri _L xý yý tL 

=1 

where n is the number of non-zero components of m(r), xj is the jth 

largest of these, yJ . is the jth largest among the corresponding 

vertex directional derivatives so that 

11xý. 
I\ n 

Also 
-T XL _Y rl =o 

.tifi, 
C- 

, 

'r)ýµ[r) 
- 

Sý F 
Yl 

vhere S(n) is the sample covariance of the pairs (x1, yi. ),..., (xn, yn) 
xy 

n i. e. for ý, ý 
ýZ 

etc., 

An elementary derivation establishes that 

SXý+'' 
fi(t 

X t+l "C J t+ý t 
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Hence for x1<x2 ,..., -`xn, y1 y2 , """, yn 

SS(t) for t=2,..., n-1 and trivially 
P) 

= 0. 
xy xy xy 

Part (iii) of the rule could equivalently be restated by 

replacing Fýx(p(r))Pu by 
4x(p(r)), 

uj?, This follows either from 

, ujl x(P(r)). the fact that F{x(p(r)), ujý = Gtx(p(r)). x(p(r) 

or more powerfully fron the fact that for any m(r) 

T 

J -ý 

`here d. 

What the rule is advocating is a very particular scheme 

of ensuring vihat we must have in general for any direction m(r) 

in which we opt to move; namely that, in vie,,,, of the requirement 
that 1'm(rý = 0, the sample covariance or correlation between the 

mir) and the qx(p(r))u, j 
or between the mýr and the x(p(r)), u 

must be positive. 

Clearly directions 7.1.3,.., 7.1.6 are particular instances 

in which the conditions of rule 762.1 are satisfied. However the 

rule suggests a less restricted m(rý than these for it allows of an 

m(rý which could remove weight from a vertex u-. such that F[x(p(r)), u >o 

or vice versa. Such u. though would typically have numerically 

small Ffx(p(r)), u61 and so we should be less convinced about the 

status of such vertices. An example that could do this is 

m(I, j, d) ; that is 

d. -äu. E Sup(p(r) ) 
7.2.1 

m(r) JJ 
J0 

otherrise 
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Generalisations of 7.2.1 which will also fall into 

this category are 

LL c- 

7.2.2 r. =o4 

and 

7.203 
o 

where Fý = F[x(p(r)), ujý, g(") is a nondecreasing function 

and gd, 5r are appropriate averages ensuring 1'm(r) = 0. In the 

case g(x) =x both reduce to 7.2.1. 

57.2.2 The following generalisation of Rule 7.2.1 is one to which 

a number of iterations enjoying alternative motivations conform. 

Rule 7.2.2 Choose m(r) = Bz 
(r) 

where B is a diagonal matrix, 
B= diag[b,, ..., bdj, bj 0 such that (i) m(r) = I'Bz(r) = 0, 

(ii) jr) 
=0 if Ftx(p(r) ), uff 0 and u Sup(p 

(r)) 
and 

(iii) assign values to the components of z(r) as in (iii) of Rule 

7.2.1. 

This may not seem a particularly intuitive rule but 

again the motivation is that this guarantees positive covariance 
between the mir) and Ffx(p(r"), u. 

ý. 

We now have 

Pýrý P(ý) Mic)ý =L 6i. XLyZ. FL 

where n is the number of non-zero components of z(r), xý is the jth 

largest component of zyj is the jth largest among the 

corresponding vertex directional derivatives, so that x1 4 x21 ".. "1ý_ xn 

yl y2 .... yn. Also jIt = cý b; Z 
(F-) 

=. YfnC'I =0. Hence 

ný 

Ft p, 
Cr) Cri } 

cc) 
- 

(L 

K Lo: X ýj 

VN 

where w.. 6. /ý ý ýS 1>0 
and ý"'. _I ý`"`x` =- 0 
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Hence we have 

F pc'), PCr) { VWACr) `c1. /X 
ý\ {JJJ 

where C(x, y)-is the covariance between the discrete random variables 

x, y with the joint probability distribution 

(xJ 
_: 
ý) 

p otýtrwýSý 

For such a distribution 

Let C(x, y) denote the covariance between x and y given that 

xc tx,, 
..., xtJ, yc 4y1, 

..., yt}; that is 

LLr. 

where L- 
L 

1. =1 

and Etýxý 

are the corresponding conditional expectations. 

t Let also Q `mot-4-ý 
/L 

/i--ý 

Then it is the case that 

CCtý1)Cýc 
j ýý _ 

ý+ Q> 
' {c 

5 `ý) f E-t-4, 

Hence 
ý1)(x, 

Y) ,0 if Ct(x, y) 30 and xt+1Et(x), 3't+1'' Et(y) 

Trivially C-1)(x, y) =0 and hence Ct)(x, y) 0, t=1,..., n , 
if 

xl x2ý ; ..., :L xn, y, ý y2s 3 ..., <_yn and clearly C(x, yý = Cný(x, y) . 

We are contemplating then m(r) s of, say, the form 

7.2.4 iý0 

where b0 >0 and 'increases' with Fý - Ffx(p ), uff or with 

da =Gj =G[x(p(r)), uj J 

Fsamples include m(A, 1', d) for positive definite 

A= diag[a,,..., ajj which as we have already said provides a simple 

enough formula for m(r), namely 
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6: Fixed Point Directions And Algorithms 

57-3.1 Conditions corresponding to Rules 7.2.1 and 7.2.2 for 

selection of a q(r) towards which to move and away from which to 
(move 

from prý are respectively. 

Rule 7.3.1a, Choose q(r) such that (i) 1'q 
(r) 

= 1, 

(ii) qtr) =0 if Fýx(P(r)), ujlc0, uj ý Sup(P(r)) 

(iii) m(r) = q(r) - p(r) satisfies the remaining relevant conditions. 

Rule 7.3.1b (i), (ii) as above and (iii) with m(r) _ p(r) - q(r). 

Clearly the suggested mrs of sections 7.2.1,7.2.2 

define 'q(r) 
s satisfying rule 7.3.1a. However the resultant q(r 

may have negative components. This is not so with the following 

suggestion. 

For some positive function h(z ýs) s; hich, for fixed S, is 

nonaecreasing in the first argument 7-,, take q(r) to be the vector 
(. z ýý} whose components are 

7.3.1 

where either 

or Z. 3 

Per) k (a. g)/ i 

d.. = öýýd Pýýý i 

rr/ 

_ipi 

, L\2i. 

1g) 

uL. ý1 
J 

If for fixed 8, k(z g) is nonincreasing in z then this 

defines a q(r)E)0 satisfying Rule 7.3.1b. 

Clearly the advantage of the extra variable or free 

parameter b is that 7.3.1 defines not just one but a whole range of 

possible q( r) 
t 

s. 

Tak±ng the two cases together we have 

7.3.2 rh 
(r) 

_ 

(L( C'-) L/-2.. >0 

P ry- 
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and so the resultant iterative rule is 

cremt) 
(-. 4, ) 'r) 

-i- ºCýýýý k (2-) ) aýýäZ >O 

7.3.3 l 

We note the following about such iterations 

(i) An iteration can change the weights of only the current support. 

(ii) In consequence p(o) must assign non-zero weight to all points 

of U or 
U 

under consideration; Sup(p(())) _ 
LC 

or 
U 

(iii) If z=d or z=F, 7.3.3 will be well defined at a p(r) at 

which only support differentiability is enjoyed. 

(iv) Xf p(r)ep then p(r) is a fixed point of the mapping 

p(r)--ý q(r)r k. (z, ä)c if the zj , 
i. e. dj or Fj corresponding to 

the support points of p(r) are all equal. Hence p' and all optima 

solving (P2) for subsets of 
CC or 

U 
are such fixed points, and these 

will be the only ones at a given & if is strictly monotonic in 

z for that S. 

Vie might refer to the m(r) of 7.3.2 as a fixed point direction. 

pie will denote an algorithm employing the iterative rule 7.3.3 by 

FPf h(z, 8), °ýrj 
We study examples of such a scheme in the remainder of this 

chapter and in chapters 8 and 9. 

ý .2 In this section we examine some properties relating to 

FP{ºý (Zý ä)ý -c 
} 

when for z=d or z=F k(z ä) = exp{S 5(z)j , rohere 

g(z) is nondecreasing in z. In particular we will see some nice 

properties relating to the free parameter S. First some examples. 

The resultant q( r) = q(rýý. (2,5)j night be 

7.3. E ßtC-) 
C 

3=P, 
r)ý(d.; 

L 

ýF`ý 7.3.5 ýý 
= Pýr) e'ýP {ä 50=j) Pi- cý8,3 

7.3.6 Cj = 
Cr) Fr) 'a 

cr) 2 
7.3.7 

ý; 
1, 

r>exlý(5 Fý Pýý{ FL 
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The function g(z) must of course be defined at all the 

possible values of d. or F.. The function g(z) _ G% z will not 

satisfy this in respect of the F. some of which must be negative at 

nonoptimal p(r). Ho; rever, if a function 4(p) enjoys positive derivatives 

dj) then 7.3.4 will be defined in this instance. The resultant q(r) is 

r r) co-) Z/ 

y 
c_) S 

7.3.8 Rs = Ps cc-) ýL 

which was a proposal of Silvey, Titterington and Torsney (1978). 

Since g(z) is nondecreasing then expýS g(z. )j is nondecreasing 

or nonincreasing according as S> 0, ä-0 and so 

Ci(. 
) j ýS 

9C2) Z Cr-) SO 

(r) 
LSP, 

7'309 
PCB) _ CC IL SSCZ) 

> 

sO 
while 

pCr*i) 

L ,J1`li 
7.3.10 

1 Cl i-Kr/ PU-) ar 
)( 

e6( 
3(7-)j 5O 

If we take =I in the case of 7.3.8 the resultant m(r) 

is m4A(p), j''dý, A(p) _ 
[dia1p1, 

'ePj1" 

Let c{ -esSCZ'} denote the vector with components 

S 
ci-JSSýZ)1 e-`els`j(Zýýý 

where z.. d" or 2ý = F. CL. 

cl - ýe 
G-G. = GýýxiP), while = Fý ýc(p)ýýý . 

We now enumerate some properties of -Cie 
sg(which 

are 

generalisations of results quoted in Silvey, TitteringSton and 

Torsney (1978) for the case 5(z) =kz 

(i) If 0 and pEp then C1e 
SýC2, 

(±) If pj >0 then cP whether or not pE )0 
. 

(iii) Let ü(1), ü(2) respectively masiril se and minimise Fýx(Pi, 

over Sup(p(r) , y(p) _ p, u, . Let e(j) be the unit vertex such 

that j=1,2 and let xýc[e 2)ý} =L ; ýJýeýS(z) 

Then 
5c (z) 

ýc cI- "_cz, °° s5- 
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CX-S 
equivalently q ýSgCZý -> evo 

suggesting that cI-e8 rj sketches out an 'arc' in 

Hence vertex direction iterations can be viewed as a 
cam) sq Ce case of FPJ c(_ special 

The folluaing picture is suggested by the result 

9-12sgC-Z-)I curue 
,,. ýý 

Figure 7.3.1 

The shaded region is the set of points to which we 

could move from p by a step towards or away from 9_{e 
&g 2. ) j according 

as b'0,9 '- 0. 

(iv) Vie repeat again that a step tavirards or away from cj es9cZý 

will change the weights of only the current support but will be well 

defined at p(r) enjoying only support differentiability. We must 

have Sup{p(O)J = 
U. 

s>Oä>O 
`v) 

r 9ýZý 
J} 

Lo, öO 

(vi) The latter has already been established of course. However it 

would follow from the following seemingly respectable property by 

appealing to the fact that., in view., of (i), it is the case that for 

pe )0, F 4t F, -t{esgCZ)jj=O at S=0. The result is that: 

Lemma 7.3.1 
If dj: 0' j=1,... ßd then F{P)-L{es9(2)}ý is nondecreasing, 

in S S. 

The condition that 4la Pj >, o is one that we have observed 
to be satisfied by the design criteria and the other examples of 
CO considered in chapter 1. 
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Proof ýýL Pý `1 es9CZ - ýPd 

Epf d exýýSg(z) 
s- 

ýP (d) 
EPA e`PlS-, (zA 

= fCs) 
-E 

(d) 

where the expectations are with respect to the joint probability 
distribution 

PS , 
(L 2)= (CL. 2 ; =-t, ---ýs 

0, ctL-erwiSC 

which implies the marginal distributions 

1 PS 
4pi 

)z 
7-; 

S 

o . else o ýLse P Cdý 

l 
Now -t ý 

cc, )) 

where Eý{dt3CZý ýý{s9czýý 
/EP{ 

ýL eýctý{SgCz)ý} 

Since di > O, the factor formed by the ratio of the two 

moments is nonnegative so that vv e require to show that f2(1) > f2(0) . 
Now 

+1 i (-0 - Ej 9Cz)1, d - Ej 9Cz)k Gam{ l'dl 

where q is the joint probability distribution 
/ 

`Llcýý zý =t cltexý1 5 Sý-)}I Ep `iý eý`P{s3(z)1 

Hence 

which in view of the results of section 7.2.2 is nonnegative for 

z=F or z=d. Clearly this result would be true for z=d, d 

continuous and g(") nondecreasing. Shohat (1929) derives some 

relevant inequalities. 

The result of course does not contain any implication 

about a value of S corresponding to a direction q {e'5*j"j to-aards 

or away from prof steepest ascent since Fp)ýýes5C2'}J is not 

normalised. 

(vii) Assuming ?Ep then in view of (i) and (v) it must be that 

f{ýsyýZýýt > ý(Q) for small positive s 

LJ< 
cý(P) z or small negative 
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(viii) While for all p e)0 , (z-je 
sg(Z)j 

=p at S=0, in the case 

g(z) strictly monotonic and cS 0, pE )D is a fixed point of the 

mapping p --3 q {e 9(2ý 1 if and only if the z. , 
i. e. di or Fi 

corresponding to the support points of p are all equal. Hence p° 

and all optima solving (P2) for subsets of 
U 

are these fixed points. 

.' We no.; consider some points concerning the implementation 

of Fp[ C, I--S. 5 Czý 1i 
, rrý 

'. 7e must choose the value S, of 8 at iteration r and of 

course «Cr. 

For simplicity the approach wem consider is that chosen 

by Silvey, Titterington and Torsney (1978). This is to take L- 

small and positive and to choose ar = 1. The argument for this 

is that, in view of (vii) of section 7.3.2, this should roduce 

a monotonic increasing sequence 
ý(p(r)), the iterates ptr) being 

7.3.11 a(rt) - 
ý') e>Cý{äýgCz)}} läß 

«i ) 

We are thereby using FPIe which'in vier of (viii) 

of section 7.3.11 
gis 

fully a fixed point algorithm. 'We have 6r as 

it were replacing 4 
r" 

In contrast if we take 
r-0 

then we must decide more 

formally on the value of the steplength of the consequent move away 

from r){ 2Xp{Sr3(2 

How small should we choose positive r? 

In chapters 7 and 8, when taking z=d, g(d) 
E. 

and so, h(dj, Sr) = dj 
., and when considering a particular function 

c(p), we postulate a value of Sr which in some instances satisfies 

cq, `, j(. eS, 
Vz)j1 gp) and may do so more generally. 

however in the absence of such analytic results the 

following are suggested. 

-4 (i) An ideal choice might seem to be to choose 9, 
-=8 where 

r maximises with respect to 9, Typically 

would need to be determined numerically. 
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(ii) Choose where S maximises Fý 

over Sr > 0. Again Sr would need to be determined numerically, 

but these calculations may be less complex than for cS. )particularly 
in the design context, since they do not require to evaluate the 

criterion. 
Note that if we were to contemplate negative sr we might 

take S=s where this maximises 
IF ý 

ý'C'3 rL) 0 
? 9C21 

(iii) Keep &, at a constant value while that maintains monotonicity 

and change its value when monotonicity fails. For example, take 

Sr = sp r=0,1,2j. t. , where t is such that monotonicity would 

fail at r=t+I if Instead choose s and 

maintain at this value for r t+2, changing it only to a current 

optimal value if its use were to induce failure of rnonotonicity, and 

repeat. 

(iv) Choose to be a predetermined sequence. Clearly 

this is a counterpart to arbitrary selection of steplengths. 

Clearly one could propose other objective methods of 

selection of 9, 
-. 

Silvey, Titterington and Torsney (1978) considered both 

(i) and (iii) referring to them respectively as adaptive and non- 

adaptive selections. This was for the case g(d' = 1, (4 
, that is 

ý(d) ý) = dd. 

In these üro instances the sequence 
ý(p(r)) is guaranteed 

to be nondecreasing and is bounded above if 4(p': `) is finite. Hence 

the iterates p 
(r) 

should converge unless these become undefined at a 

nondifferentiable point then support differentiability is also lacking. 

It is not clear though that such convergence would be to p`. 
The iterates may converge to a subontimurn. This may well happen if 

vie are over-ready to set weights to zero. Ha. -; ever the f ollo7ing 

suggests that convergence to p"' may not usually be impeded by lack of 

differentiability. 



226 

In section 3.2.5 it was established that for c= (1,0)', 

, 
', the c-optimal design on the design space 

V= {v,, v2 , vý (1 0) 

v2 = (X1., $2) 1 OX2 0,1s P" _ 
(1) 0)' . 

All observations should be taken at vI. 

Let p= (pl, p2)' be any design such that pi 0, i=1,2. 

Then 
'C Xý 

Mzz ýý ZC 
X2ý 

2ý CP) =z MCP - 
P1 Pz -pzX, =s (P, PzxIý , 

-2 d.. 0 

Hence, if p3. 
r) 0, i=1,2, we have 

P=f 
P, p2 i a-ý sýýý°ý )Z 

Hence if g(") is increasing so that 9Li f(ps<<ý)'1 SC') and if >o 

then p, rý 
. It would seem likely that p1r) should converge 

to 1. 

In fact if we take g(d) = In(J), so that 

(i-) Cr) äý / Cis ýr cr) dsý 
(1 

J ({ pt dý +- ýý a then clearly p pes. 

The optimum is reached in one step. 

This is of course a very simple example with no suboptima, 

but p* is. a one point design which one might argue enjoys the worst 

features of any design; nondifferentiability and degenerate support 

differentiability. 
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S7-1+ Empirical Comparisons 

62. L. 1 We now report some empirical results on the performance 

of some of the algorithms which vie have discussed in this and 

previous chapters. The following six algorithms are in the main 

compared. 

Let d(r) denote ac IV, pýTý, 

I: Algorithm V{ ti `' ; 
°< (mac"ý J, fý vrýood' s (1973) vertex direction 

method. See equation 5.3.5. 

S{Zý°ýr(I) ; that is, gradient projection with II: Algorithm 

(r) Crl CI-) 

MI. =d-d. See section 6.2.3. 

IIIa: Algorithm CJZ, /8, J 
1-trý} schere m(r) is giver. by equations 

6.3.7,6.3.8 with f3,, ^ dcrt, ) dcýtý)/zacýý äcrý 
. 

This is a conjugate gradient projection scheme. See section 6.3.2. 

IIIb: As in Ma but with 3r = 
crfil)ýýr+ýý/ZO dCrýCL 

IV: As in Ma but with ý3ý . riOdcr+l)/ýý dcr)CL(r) 

where Cr takes the values 64,32,16,8,4,2,1 according as 

FQ 
jv 

)vc, ý is in 0.001,1/640), [11/64.0,1320). [1 320,1160), 

[1/160,1/80) 
2 

[1/80,1/40), 11/1r0,1/20)., 1/20, °a) . 

V: Algorithm F Pf 

Cr) Sr 

VI: Algorithm F PýCd ) I} where r is chosen according to 
(iii) of section 7.3.2. 

These viere used to compute D-opti^el and k-optinal designs 

in the follo: ring exannrles. The set V denotes the design space. 

ExamDle I 1J ={v1, v2 , v3, v 

(1,2,2, )'i 3k = 3,. J = 4. This is space. 
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^, ý Example 2= [v1, v2, v3V4' with v1, v2, v3 as in example I but 

with v4 = (1,2,3)'. 

Example 3 U3 
= 

ývI, 
v2, v3, v4 with v21v3, v4 as in example i but 

with v1 = 

Example 4 U4 
_ ', 

I, J= 7" 

Example 5 -5 = If {(l, 
-1, --1,2)'1 ;k= 41 J=8. 

This additional point has zero weicht at the optimum for 

both D- and A-optimality. 

Exajimnle 6 V6 
= (1,0,0,0,0,0)1, (0,1,0,0,0,0)'(0)031,010,0)', 

(1/2,1/2,0,1 1; -, 0,0)', (l/2,0,1I/2,0, 'I/4,0)', 

(0,1/2,1/2, o, o, 1/4. )', (1/3,1/3,1/3,1/9,1/9,1/9)'}; 

k=6, J=7 

: ample 7 An example with k=4, J= 10, the design space 
U7 

consists of the four unit vectors plus 6 points inside the unit sphere. 
Both the D- and A-optimal designs assign weight 1/1 to each of the 

unit vectors. 

In examples 1,2,3,4,6 Z% 
= Sup(p-) for both D- and A-optimality, 

and in fact3excepting example 4, is the support of the optimum 
design for some familiar types of regression model. 

In examples 1,2,3 this could be E(,: ý) = e, + Q >C, + e3Y2 

where (i, x1, x2)' =v belongs to the quadrilateral v. ith vertices 

v1, v2, v3, v1, . An appeal to corollary 3.2.3.1 verifies this. 

In example 6 the model is 

el%I +02xý +e x3 +-04x1 i+ QSxýx3 ; 66x2 3, ahere 

xI) xz) x3 a p) xi+x24 x1_1 . Kiefer (1975b) slowed that an optimal 

design is supported. at the barycentres of this simplex: 
(1, o, o)t, (o, 1, o)t, (o, o, 1)', (1/2,1/2,0)t, (1/2,0,1/2)t, (o, 1/2,1/2)1, 

(1/3,1/3,1/3)'. 
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57.4.2 The results reported below in respect of algorithms 

I, II, IIIa, IIIb, IV were reported by YTu (1978a). Those in respect 

of algorithms V-and VI were reported by Silvey, Titteringtori and 

Torsney (1978). 

In all, except examples 1,2 3 pý0) = 1/J. 

In the exceptions ', 7u took p' 
0ý 

_ (1/3,1/3,1/3,0) which is 

not feasible in the case of V and VI. Hence in order to make 

comparisons possibleýp(0) was taken to be (. 33) . 33, "33, "01) in 

these two cases. 

In view of the fact that U= Sup(p'`°) in examples 1,2,3, 

this means that the initial support has, at some stage, to be 

augmented by a vertex direction iteration in the case of II, IIIa, 

IIIb, IV. Vlu employs one of the rules which were reported in 

section 6.5. For some E. > 0,0 - [3 1, he augments the support 

at iteration r if Fýý p, Cr) P+- 4ýr ( `r')j by choosing 

av such that Fý{ 
j' 

/3 Ff He 

takes an optimal step in this vertex direction. He does not report 

his value of fo or p, though there can be only one vertex, namely v4, 

with which to augment Sup(p(0) ). 

In the case of algorithms V, VI weights were set to zero 

in accordance with the rules of section 4 . 2.3 taking t, _= o" of " 

In table 7.4.1, for D-optimality, and in table 7.4.2, for 

A-optimality, are recorded, by example and algorithm, the number of 

iterations required to achieve F, {M(pCO), Lr C`)L%-Ct)j } 
. 1, . 01, . 001. 

Not all algorithms were used in all examples for the two criteria. 

The initial value selected for b 
0, namely So, in the case of VI, is 

also given. 

The same information is also recorded in Table 7.4.3 in 

respect of algorithm FP(ds , 1) for each of 8= 
. 1,. 2,..., 2.1 Frhen 

used to calculate the D-optimum design in the case of example I. 

For each S, p(jo) = 1/L.. Also recorded for S= 
. 5,. 6,..., 2.1 is 

the number of iterations required to achieve I1`: 

for n=1,5,6. For 2.2 the algorithm does not converge. 
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There are also some further miscellaneous results to 

report. 

Miso i Using algorithm FP(d1) with pý0) = 10 to compote 

D-optimal designs, the condition, Fý IMýpýýýýý is . 001, 

was realised in one iteration in the cases 

U8 
= V(X) = (1, x, x2, x3)' :x 104-5, }1 

U9 = v(x) = (1, x, x2, x3, x4)' : x=0, ±. 65, ±. 66, }1 

iasc (ii) Using algorithm FP(d1/2,1) with pý0) = 1/1j. to compute 
the 'c-optimal design on U, 

ý for c= (0,1,1)' 
, 
FJl, i(p(r)) ,} . 001 

was achieved in 6 iterations; p" _ (1/2,0., 0., 1/2) at which only 

support differentiability obtains. 

Yisc iii) Wu reports that for examples I and 3 V{v(I) 
, Wt*(v(I) )} 

takes respectively 109 and 66 iterations to achieve 

FjL: (p(r)), vO)v(1)t 
i 

!L . 001 in the case of D-optimality. In example 2 

this is still not achieved by the 160th iteration, Fý1; i(p(r)), v(ý)v(ý) 
being . 001,92 at this point. 

Yisc (iv) 'tTu also used Sf, A6, dr (m(r))I which takes 

ýc 
mýr) = m(Aý, ýI, d ký = diag (vi v,, )2, 

..., 
(v1' v. r)2ý 

(See equation 

6.2.8), i. e. mir) is the normalised gradient projection direction, 

to compute the D-optimal designs in examples JI 2 3. The number of 
iterations required to achieve , {{(p(r)), 

v(1)vý1 `- . 001 range 

from 6 to 14. 
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TABLE 7.4.3 

Entries are the number of iterations taken by FP(dS , i) 

to achieve F[], '(p(r)), v(i) V 
(I) i1 

10-n , when calculating the 

D-optimal design for example 1. 

Ns 
1 2 3 4 5 6 

.1 19 81 162 

.2 9 40 80 

.3 6 27 53 

.4 5 20 39 

.5 4 16 31 4.7 63 83 

.6 3 13 25 38 52 68 

.7 2 11 21 32 44 58 

.8 2 9 18 28 38 50 

.9 2 8 16 24 33 43 

1.0 1 7 14 22 29 38 

1.1 2 6 13 19 26 3tß 

1.2 2 6 11 17 23 31 

1.3 2 5 10 16 21 28 

1.4 2 5 9 14. 19 25 

1.5 2 4- 9 13 18 23 

1.6 2 5 8 12 16 21 

1.7 3 7 11 15 19 23 

1.8 3 7 13 19 23 31 

1.9 3 11 19 27 33 43 

2.0 5 19 29 41 55 70 

2.1 9 39 71 95 123 161 
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Q-4.3 Discussion 
(i) As \7u observes it is clear that IV the adaptive conjugate 

gradient method is fastest. Methods IIIa, IIIb, the tyro conjugate 

gradient methods, slightly improve over II, the gradient projection 

method. 

(ii) At-rood's method I is slowest among I, II, IIIa, IIIb, IV 

but it is only initially slower than V and VI. It needs fewer 

iterations than the latter to achieve 
(M(p(r)), 

v(1)v(')'I= . 001. 

7u reports that in all of the examples in which it was 

used more of the iterations adopted a reverse vertex direction step. 
In example 4 with D-optimality out of the 64 iterations, 52 involve 

subtracting weight from only one vertex. The figure for example 6 

with k-optimality is even more dramatic. Pone of the 30 iterations 

involve adding weight to only one vertex, an occurrence which can 

only be possible if Sup(p(O)) = Sup(p--). In view of the fact that 

<, (v ý)) can be evaluated explicitly in case of D- and A-optimality 

. Zu suggests the use of V{v(ý2), (v(ý2))} in these two cases for J 

of small or moderate size. This would extend to D optimality and 
LA-optimality. One might consider instead algorithm 

Výv(3), , *(v(3) )j (see equation 5.3.1since these tvro algorithms 

are identical in the case of D-optimality. 

(iii) Vie consider now algorithms V and VI and also FP(ds 0). 

There are two impressions here. On the one hand FP(d, 1) and V 

achieve some respectable results but more often than not all three 

are slow to converge. The ultimate convergence of FP(db , i) is 

slow for every 9 in example 1. 

We consider the first impression though. Some of these 

good performance are attributable to a specific result. This is 

that when the criterion is D-optimality and when SuD(p°) consists 

of exactly k (linearly independent) vertices, algorithm FF(dr1'1) 

will pass exactly to the optimum, p'ý = 1/k, in one step from an 
iterate p(r) for which Sup(p(r))= Sup(p). See section 8.2. 
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The performance of V in example 6 is an illustration 

of this. At iteration 9 the last non-optimal-support point was 

eliminated and then the optimal 6'10 =I leads at once to the optimum. 

Note also in Table 7.1.3 that FP(d, 1) achieves 

F[1S(p(iv(1) v(1)1ý XO. 1 and also the performance of the same 

algorithm in the two spaces of 1isc. (i) 
. 

In the latter two cases though (and also in the first 

case) we do not have p(l) exactly equal to pF. However the following 

general approximation is suggested which clearly could be viewed 

as an extension of the above result. 

The spaces 7 and 
U$ 

are respectively for k=3,1+ 

the set Sup(p'"`) where p^' is the D-optimum design on the discretised 

polynomial regression design space 

if ( 
=ýv(x) = (1, x,..., x 

1''-1) 
:xc Xat fý d= t-1, -. 99,...,. 99,1 . 

Now if Xd is replaced by its continuous analogue, the 

interval [-1,1I, the resultant optimising p' has a support of k 

points, and p* assigns these weights 1/k. Some of these k points 
however have been replaced by clusters of tvo points in Sup(p*), 

and p assigns a total weight of 1/k to each cluster and to each 

other point. Interestingly it is the case, for both V7, Ü8, 

that p assigned approximately weight 1/2k to each point in a 

cluster and weight 1/k to the remaining points. Similar results 

would appear to hold good in other regression models. In general 

when the space U is the support of the D-optimum design on a 
discretised one-variable regression design space, it seems likely 

that under FP(d, 1), the iterate p(l) will be as above, and furthermore, 

that this design will be a rough approximation to p' in that p(l 

comes mildly close to attaining the conditions for an optinum. The 

components though of p(i) might not be a good reflection of those 

of p*. In the case of Uß the sy-mne tric p(i) assigns 

x=0, . 
65,. 66.1 the weights ( 

. 2000 . 1000,10003 . 2000), while the 
1 

!L design p^ which achieves F{1`(p; ), v 
1) 

v(1ý 
} 10_6 assigns the 

comparaöle weights (. 2000,. 1153,. 08117,. 2000). In contrast for 
11(') assigns x= . 4lß 1 the weights 7, Ps ýt5ý (. 1250,. 1250,. 2500) 

while the corresponding p: assigns the respective weights 
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(. 01910,. 23090,. 25000). 

A more general result as shall be seen in section 8.5 

is that « 
p(r+1)) ? O(p(r)) 

under 11P(t i) in the case of D-optimality. 

The strength of this result is indicated by the fact that ýo >I 

in all examples. Also always >I. In addition F? (ds 
, 1) proved 

to be monotonic for all the powers 6 in Table 7.43. 

It is also the case that algorithm FP(d1/2,1) which, 

as reported in 11isc. (ii), performed favourably in finding a 

c-optimal design for example 1, is monotonic in the case of LA optimality. 
A proof will be given in section 9. Furthermore this too can 

attain the optimum in one step in specific circumstances. See 

section 8.2. 

However these results not withstanding, copvergence of 

r(d, 1) , FP(d1/2,1) is typically slow, although 7u (1978a) expects 

the former to perform favourably with I (the gradient projection 

method) and also with normalised gradient projection. It may be 

however that initial performance of these and of F'ý't (ds 
2 1) for 5 

near I will be comparable. Note from table 7.1.3 that, in example 1, 
r 

the latter achieves Fqfr(p r ), V(i) v1j0.1 in two iterations 

for and, as already mentioned, it achieves 
the same in one iteration when 6=1, faster than any of the other 

algorithms. 

Since FP(d6 , i) is slaw to converge for every S in example I 

it is not surprising that VI is also slow to converge. It is unlikely 

even that S0 will be a power that would yield fastest convergence. 
The evidence of section 7.1;. 2 is that it is likely to prove too large 

a porker to persist with. Note the dramatic reduction from 2.5 to 1.1 

in the one example in which 9 had to be changed. 

However it is disappointing that V is not much of an 
improvement on VI. The reason for its slo.: convergence would seem 
to be that the optimal power settles into an oscillatory sequence. 

For instance in example 3 for D-optimality this sequence is 
1- T £2.5,1-40-90.4,, 2.0,1. lf, 1.9,1.5 Note that ä, >1. 
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Other algorithms, such as steepest ascent, it is known 

exhibit similar behaviour and no doubt modifications of the parallel 
tangent and possibly of the conjugate gradient type would be 

improvements. 

Clearly the optimal form of tF'I(cP) 11 ;; ould take 
41 

where 9 achieves fastest convergence. Table 7.1.3 suggests a5 

of 1.6. However vie of course cannot Imow A compromise might 

be to change at an appropriate point from V to F'P(d6 , 1) where 
is the average of the last few optimal r's. 

This would be an 
improvement similar in spirit to parallel tanjent. In fact in the 

case of example 1, algorithm V when started from p(jC) = 1/1,. realises 

the following sequence of approximate optimal pourers 1.. 65,1.55,1.65, 

1.65,1.75,1.65,1.65,1.75,1.65 . Averages of say any sequence of 

three of these is just below 1.7 which is clearly close to 5 above. 

Naturally improvement would also be gained, by taking optimal 

stenleng 
ýý) ths, be it FP{) 

S, 
or FP{ýcJcr)_ýs`ý dý 

which iwe employ. 

For instance using to calculate the D-optimum design in 

example 1, only eight iterations are required to achieve 
o. oooos l`J, 

Such a remedy however removes from the simplicity of 

FP(ds , 1). It is to be noted that both V and VI enjoy good initial 

convergence, as does FP(d6 , 1) for 8_ 
. 7,..., 1.6 in the case of 

example 1. They at first climb as quickly as any of the other 

methods. Arguably FP(d, 1) is initially quickest of all the algorithms 
in example 1. This is good enough if we maintain the recommendation 

that these algorithms be used as intermediate methods. That is, 

for large U 
or large If they be used as a sequel to vertex direction 

techniques, a prelude to (adapted) Newton Raphson or Fletcher Puxell 

methods. 
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CHAPTER 8 

ON YONOT0i; ICI`'Y OF A FIXMD, POII3T E: LGORITHI.! FOR AGdL CRITERION 

58.1 A Yonotonicity Conjectured 

It is the concern of this and the next chapter to prove 
in some instances and to suggest in others that algorithm F''t ds, 1}, 

for solution of problem (P1), generates a monotonic sequence 
ý(p ) for a particular value 9, the function ý(p) satisfying among 

other conditions, the basic requirement for use on this algorithm, 
that dj = a4%a rj >O 

In particular in chapter 9 'e will prove that monotonicity 

obtains' for &= 1/2 in the case of LA-optimality, while in this 

chapter we will see that S=I attains this in the case of D-optimality 

and in the case of some of the functions qS(p) of examples 1.1.1,..., 

1.1.4. 

In chapter 9 we will also present empirical evidence to 

suggest that monotonicity is achieved by 8= 1/(t+1) in the case 

of ýýPý 
=lt Mýýýý A ýt{MýAj =--t-(i9M+fl' For the case A=I this 

was conjectured by Torsney (1977). 

Meanwhile in this chapter some theoretical results will 
be derived which suggest, though do not prove, that &= 1/(t+1) 

would guarantee monotonicity in the case of a function ý(p) 

enjoying a particular property of 1p, týM(p)jAý , namely a function 

Cý(p) which is homogeneous of degree (-t) as well as having the 

necessary positive derivatives. 

Actually algorithm FP f Iýý ýSýýdr ogres it existence to 

the fact that it was proven, by Fellman (1974, theorem 3.1.5), that 

-(-e12 
11 >' O(p) for the particular case c-optimality, of 

LA-optimality. He is not though concerned with formulating an 

algorithm. However his result first lead Silvey, Titterington and Torsney 
(1976) to consider rfd, i} for D-optirality, in the belief, as proved 
justified, that this too would be monotonic. It was only thereafter 

that they proposed rr[d(r))S 1 as outlined in the previous chapter. 
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Admittedly establishing that a particular value 
9> 0 

achieves monotonicity need not not be of great practical importance; 

FPtd S 
'Ij may still converge painfully slowly. However intuitively it 

would follo r, if 4(e) is concave, that FP(ds, 1} will also be 

monotonic at least for o'--T. One would also expect the same 

property of FPeýýZý I} Such information could be potentially 

useful. 

The justification for this assertion is the more general 

claim that, if ý(p) is concave, one would expect (P{ -es962)}j 
to be unimodal in .S or possibly just nondecreasing in S. The 

properties of section 7.3.2 lend credence to this 

suggestion. In particular one would expect unimodality in the 

case of cß{(P) _-f, ß since, in view of the fact that 
{e65(2)J converges to a unit vector as bt we will in 

general have ýý{ ýýes9ý2ý - -ý - 00 as g> °ý 

Whether or not it was useful to search for a proof of 

monotonicity in the instances listed, the quest lead to the discovery 

of several interesting results. 
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S8.2 Some I.; otiyating_ Results 

58.2.1 Consider the effect of &= 1/(t-1) and of other values of 
in the case of the following simple functions which were seen, in 

examples 3.3.1(1) and 3.3.1(ii), to be special cases of standard 
design criteria: 

`ý, -ý 
(F) = CP, P- -Pk iC: 01 k>Z 

IMF) _-CCe,? .. 05> > 
k 

ý3 
- p3o) 

L= l 
PC 

k 
-t q. 

C- 
It 

532 

t >0J k; a 

-- >o 

In particular c1 is a special case of detf M(P 
ý4 of 

-det{RM+(P)A'l and 
t' ý4 of 1J1týM(P)J Aý ý --E-{ Pi M(P) A'r 

These cases arise tiihe--a J=k or J=s, J the number of points in the 

design space. All four functions are concave and homogeneous with 

positive derivatives. The degrees of homogeneity are respectively 

k, -s, -t, -t. 

The "optimal designs" under c 2' 
ý3, cßß take 

(1/k), (1/s), (1/k), (t+, )/(! )3 
respectively. 

Consider L1$ ý2 and 03. 

_ (tt ý) w/Pi 
-L- PS 

Hence 

Thus 
n 1-n +1 1-n ný(tt ii I- n lap! 

Let J denote the number of components in p for these three 

functions, so that J=u, s, k respectively for C, ý21 ý3 and 
in consequence pý = i/J. 

Suppose that algorithm FP{d 1ý rrere employed with, in 

the case of 
ýI 

and 
02,6 

=n and, in the case of 
ý3,6 

= rý/(t+1) . 
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Let p. =p and let pl and pm denote respectively 
jJ 

the minimum and maximum among the pi's, and assume the indices 1 and 

m to be unique. 

We will have 

and the following is easily verified. 

(i) If n=I, p(r) = p* for all r; that is, the optimum is 

attained in one step. 

(ii) If 0n 4- 2, Lt p(r) = p^ . r-ý 

(iii) If n= 0ý p(r) =p for all r. 

(iv) If n= 2j, p(2r) = pý p(2 
1ý 

_ P-1 for all r= 091ý2.,... j 

where p1 is the vector whose jth component is 
{p. ýýleLand 

s 

so the iterates p(r) oscillate bebieen two values. 

(v) If n<0, Lt p(rý =e, the nth unit vector. 
r- m 

(vi) If n>2, p(2r) = em, Lt p(2r+1) = el, so that p(r) 
r -14.11 - 

eventually"oscillates between cm and C 

Coinciding rather well with this latter result is the fact 

that algorithm FPtd ,Ij failed to converge for 8, > 2.2, as reported 

in section 7.1.2, when calculating the D-optimal design for the 

space ýf -1)', 
(1)2,2)'} 

,a space for 

which J= k+1. 

Simple modifications to (v) and (vii) hold if either the 

maximum or the minimum over j of pj is not unique. We would obtain 

convergence to or oscillations betvieen uniform designs on the 

relevant set of points. 

The function ý4 exhibits similar behaviour. In particular 
1/(t+1) attains the optimum in one step. 
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Consider 

Other simple functions exhibit similar phenomena also. 

V, 

This is homogeneous of degree t, has positive derivatives 

and would be the form of (Pt(p) = 4--r ý M(p)j on an orthonormal design 

space. It has an optimum at pi = 1/k which is a maximum for 0- -L- :!; = I 

in which range ý5 is concave, while it is a minimum for t --i in 

which range c) 5 is convex. 

We have 

ps I) cc 

Hence S= -1/(t-1) attains the optimum in one step. Note 

that this potter is positive or negative according as t >I or t< II . 
In fact it is really an extension of the corresponding b= 1/(t+1) 

for ý3(p) 
. 

It is these instances of a particular power attaining the 

optimum in one step for these simple functions which lends credence 

to the idea that the same power might yield monotonicity at least 

in the case of the design criteria, of which the simple functions 

are special cases. 

6 8.2.2 What law if any determines such a power? The functions 

considered viere all homogeneous. The degree of homogeneity is 

clearly the determining factor in the case of functions ý 
3, 

ý4 

and ý5, but what of ý,, b2 where b=I is the relevant power 

but the degree. of homogeneity is k, -s respectively. The following 

would seem to be the governing rule. 

8.2.1 

Suppose that a function 4', p) is such that 

aý p 

where the functions fo(p) do not have any further (natural) common 

factor depending on p. 

Then it is only the functions fo(p) and not c(p) which will 

affect the value of q{d9 however vie choose 6. Due to normalisation 
jd93 does not depend on c(p). 
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Now homogeneity of 
ý(p) implies of course the same of 1/ö p, . 

Almost certainly both c(p) and fo(p) will also be homogeneous. Let the 

common degree of homogeneity of the fo(p) be h. Then 

8.2.2 9= -1/n 
is a possible rule for identifying special powers like the above. 
It proposes a value of 6 which renders pj[fi (p)]S a homogeneous 

function of degree zero, a sort of normalising effect. This would 

seem to be the. defining feature of the values of S which achieved p'° 

in one step. 

As well as 0, and 2 
there are other nondegenerate 

instances of functions ý(p) giving rise to 8.2.1; for example when 
O(p) i's a power [g(p)] n 

of a homogeneous function g(p) and when 

i(p) is a product of homogeneous functions. Considering the latter 

case suppose that 

M 

8.2.3 ýiPý _` .15 
(p) 

, 

where c is a constant and gi(p) is a homogeneous function of degree hi. 

Then a natural expression for 24/3Ps is given by 8.2.1 where 

c(P) _ ý'CP) 

and 

8.2. E fýýPi 
i[{agýýP)ýaP; 3IgýýP)1 , 

which is homogeneous of degree h= -1 since is homogeneous 

of degree (ha_ 
-1) . From 8.2.2 sie obtain the suggestion S=I the 

same as for c: 1 and [ß 2. 

In fact both ý1 and ý2 are special cases of 8.2.3; 

m=k, gi(p) = pi yields 4, a= -c, m= sq gi(P) = Pit yields 0 
2- 

So also are the functions c(p) of examples 1.1.1,1.1.2,1.1.3 

and 1.1.1+ of chapter 1, the latter taken in the form of equation 1.1.1. 

of degree (h 1). From 8.2.2 we obtain the suggestion S=I the 

same as for c: 1 and 0 
2. 

Actually 4 is a particular case of the rultinornial model 

of example 1.1.9 and 9= I also attains the optimum in one step for 

that model. 

Further it has been shown by appealing to the theorj of the 

E; algorithm of Dempster, Laird and Rubin (1977) that this same 8=I 
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achieves monotonicity in the case of the maximisations of examples 
1.1.2 and 1.1.1. . See Morgan and Titterington (1977) for the latter 

and Dempster et al (1977) for the former. 

Finally we note that the monotonicity i; hich, we have already 

said obtains when using S=I in the case of D-optimality can be 

proved by sheaving that thenýFP[d, l is another ELI algorithm, the 

criterion being taken in the form dettM(p)1 . This and further 

relationships between FP[ds, 1j and the Et` algorithm will be pursued 
later. 

For the moment we note that in these results we have evidence 
that the suggestion in 8.2.2 can produce a monotonic algorithm. As 

has been said we believe that a particular instance when this is so 
is the case of -tr 

(AM+(p)A')t 
,t >0. This is homogeneous 

of degree (-t) and is neither a product nor power of homogeneous 

functions. It therefore most naturally satisfies 8.2.1 with 

c(p) = 1, fo(p) = and hence, h = -(t+1), so that 8.2.2 suggests 
5= 1/(t+i) . Note that this would suggest S= 1 at t=0 which 

corresponds to DA-optimality when s, 2, A being of order s-k, and 
hence to D-optimality when A=I. 

'chile it is inconceivable that recommendation 8.2.2 would 

produce monotonicity in any homogeneous function with positive 
derivatives 

, rre can however, obtain a condition, with related results, 

which is sufficient for E= 1/(t+1) to achieve monotonicity in the 

case of maximising a general function which has positive derivatives, 

and which is homogeneous of degree (-t), whether or not the function 

is a product or poser of homogeneous functions. 

Certainly for t large one would expect monotonicity to 

obtain whatever the function «p) for then 5= 1/t+1 is small. 
Tr o examples when this choice would ignore recommendation 8.2.2 

but would suggest a "smaller than necessary pujrer" are the foll -, ng: 

(1J ý(Pi = 2(Pý; Shen t=s, 1/( t+1) = i/(s+'I} 

(ii) 06(P) = -(det i'(p)j -1; since dettL(p)l is a polynomial of 
degree ]: with positive coefficients 

(see theorem 1.1.2 of Fedorov 
(1972) this is homogeneous of degree -Y so that t=k, 1/(t+1) = 1/(k_+1). 
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In both cases c(p) I and 1 is known to achieve 

monotonicity, and this is the power which rule 8.2.2 would select 
for c2(p) and for ý6(p) when detj (p)j _ (p) 

. In fact' S=1 

would attain the optimum in one step in the latter instance and in 

the case of 42(p)ß and it is in the light of this fact that to ignore 

rule 8.2.2 and to opt for S= 1/(t+1) in these examples is to select 
too small a po, ver. However one could conclude monotonicity of 
8= 1/(t+l) from that of 6=I if ý, ýq[ds}j is unimodal in E. 

8.2. We end this section with the following discussion. 

Vote that recommendation 8.2.2 may select a negative 5 

yielding a monotonic decreasing sequence 4(p(r)), as in the case of 
ý5 when the positive degree of homogeneity t is in the range (0,1), 

and thereby an algorithm which finds a minimum of a homogeneous 

function with positive derivatives. 

Usually we wish to maximise concave functions such as 
the standard design criteria and minimise convex functions. Selection 

of a negative & by rule 8.2.2 should reconcile with this as the 

following observations suggest. 

First the basic definition of homogeneity that 
qS(cp) 

= ctc/(p) imposes concavity or convexity on each line running 
through the origin , 

for the function ct is convex increasing, concave 
increasing, convex decreasing respectively in the ranges t >1, 

oct. I, t1-0. 

The next lemma establishes some stronger relationships and 

makes use of the following two properties of a function cp(p) which 
is homogeneous of degree h: 

(i) 'O/ . is homogeneous of degree (h-i) 

(ii) =k (P) 

Lemma 8.2.1 

Suppose that a function c(p) does not change sign on the 

positive quadrant, that its partial derivatives have a common sir--, n) 

and that ý(p) is either concave on the positive quadrant or is 

convex there. If further the function is ho,;, ogeneous)then the degree h 
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of homogeneity and. the sign of «(p) determines both the sign of 
the derivatives and which of the two properties concavity or convexity 
it has. 

Proof Assume pi>0. 

(i) Since E FL aýIa FL k4 (P) 'ýaPý has the same sign as k«p) 

(ii) Similarly 4since the derivatives 

of c(p) are homogeneous of degree (h-i). It follo-,; s that the 

particular quadratic form pH p= 14-1)ý(P) 
, where H is the matrix 

of second derivatives. of 4i(p). Hence, restricting X to the positive 

quadrant, x Nx has the same sign as Iý (h-i (p) 

From these two results it follows that 4(p) is 

(a) convex increasing if h >1, /(p) >0 

(b) concave increasing- if 0? c h c1,4(" )>0 

(c) convex decreasing if h40, «(") >0 

(d) concave decreasing if h>1, cp( 0 

(e) convex decreasing if 0. h'- 1, «(") c0 

(f) concave increasing if h40, ý(") - 0. Q 

Note that the general design criterion 4 (ýý _ -ta-ýA M}(PýAý} 

falls into the last category with h= -t. 
ýie have then a variety of functions here, but we do not 

propose to keep all of them in mind. 
We will concentrate on the use of FP[d11 with 

1/(t+1) in the case of solving problem (P1) for a function 4(p) 
ý 

which has positive derivatives, is homogeneous of degree (-t) and, 
in particular examples, is typically concave. 
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A Moment Inequality 

The quest for a proof that FP(ds, 1j is monotonic for 

1/(t+1) in the circumstances outlined above has led to the 

discovery of some moment inequalities. 117ith hindsight this is not 

particularly surprising, for one of the standard properties of 

a 
c(p) 

which is homogeneous of degree h is that 

8.3.1 ir4/ PL= M(P) 

If we restrict p to p this becomes 

8.3.2 ýpý-ý (P)l = h4(p) 
i 

where f(p) is a discrete random variable with the probability 

distribution 

Pi 

Further if býAfj >o then f(p) is a positive random 

variable and so it is possible to define the discrete positive 

random variable g(p) = [f(p)1S whose probability distribution is then 

p4 5(P) =14IaP. 31s 
ý- 

Pj 

satisfying 
EQ[9Cp)]-9 

As we have said, to study the behaviour of any homogeneous 

function in the positive quadrant, it would suffice to study its 

behaviour on the subset [p : Pý= 4-I for any positive constant a. 

Choosing a=I gains the benefit of results in the theory of moments 

and may lead to the suggestion of new results in that area. 

In particular to prove that (F) =p 
(r+1 

cý >- where 
) 

as one would wish to do if monotonicity is to be 

established, is) in view of 8.3.2) to prove that 

ýý, {f (N)J ], [EA +(ý) }J if h>0 

C 41 11 
if h-0 

and i(r) 
ýf 

(X) will both be discrete positive random variables if 

c1+/6P`> o for all pep. 

The search for such a proof in the case of our conjectured 

rnonotonicity has led to the discovery of the following len. *. a. 
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Lemma 8.3.1 
Let x, y 'be two positive random variables and let (a)., (b), 

(c), (d), (e), (f) denote the following mutually exclusive and 

exhaustive conditions on two numbers r and n: 

(a) : 0cr&n 

(b) : r>n>0 

(c) : n>O, r40 

(d) n. r'-0 

(e) rn0 

(f) : n' 0, r>O 

(i) 

(ii) 

(iii) 

The folla, ring is true 

If under (a) or (d) E(yn) [E(x')E(yn-r) 

then E(xn) >. 

If under (b) or (e) E(yn) 

then E(xn) s"} 

If under (c) or (f) E(yn) 

then E(xn) {"i 

n 

This could be summarised in the form of a "multidimensional 

statement" with an obvious convention for its interpretation as 
follows: 

If 
1E(x r 

8.3.14. E( Yn) 

)E(y under (a), (b), (d), (e) 

E(xr)E(yn-r) under (c), (f) 

then 

8.3.5 E(xn 
E(xr)E(yn ) under (a), (c), (d), (f) 

) 

<-E(x r )E(yn-r) under (b), (e) 

Proof The result follows from two appeals to the result that 

for any positive (discrete) random variable z the function 

r, 
t I/ t 

Li( ý) . 
[E(z) is nondecreasin, in t. 
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Lore particularly vie appeal to the consequence of this 

result that 

x 8.3.6 ý( 

This is scmetimes referred to as Liapounov's inequality. 

We proceed as follo; -, s: fro;., 8.3.6 

E(tj) 
jl) under (a), (b), (f) 

" (c), (d), (e) 

Hence 
r))^/C- ý) 

under (a)., (b)., (d)., (e) 

ý " (c), (f) 

or 
^/(. -r) E under (a), (b), (d), (e) 

" it (c), 
(f) 

Therefore by as sunption 8.3.4 

E ý^r r) "I("-r) EýxrýECn under (a). (b), (d), (e) 

- -" ýý (c), (f) 

and hence 

ýjz- (t 
ý/A-r))`l under (a), (b), (d), (e) 

it c f 

or 

rLE `ýCn r)JS r 
/(^ r, 

E Cx> under (a)., (b)., (d), (e) 

(c), (f) 

Hence 

E 
8 3 7 

under (a), (c), (d), (f) 

. . " (b), (e) 

Again appealing to 8.3.6 we have 

(Xý, ) 'ý^ > fEýxrý 
under (a)., (c), (e) 

(b), (d), (f) 

Hence 

ý-(X� 
[" [E(xl} 

under (a), (c), (d), (f) 

n (b) 
s 

(e) 

that is 
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r- 
E ('c') (X") :E (x`)tE (c 

L "ý 

under (a), (c), (d), (f) 

11 (b), (e) 

and sofrom 8.3.7 

E`xr) E-7 ( rt r, 
J under (a), (c), (d), (f) 

(b), (eý 0 

Corollary 8.3.2 

If under (a) or (d) a(y") ECxc) E(yC"-r)) 

then E(x^) >E (y^) 

The result is obvious and states that vie lmo-a the direction 

of the inequality between two moments if a further subsidiary 
inequality is satisfied. It is this particular result of which use 
is made, in an attempt at proving the conjectured monotonicity. 
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158.1 A Sufficient Condition A Stationary Value And Related Results 

SB-4-1 Let . 
ý= p 

(r) 
,L=p 

r+' where p 
(r) 

,p 
r+1 are successive 

iterates of algorithm FP[ds, ij, S= 1/(t+1), in the solution of (PI). 

Thus 

If the algorithm is monotonic then 

8 . 4.2 Cý('L ) a) 
. 

Lemma 8.1 .1 
Assume that ý(p) has positive derivatives and, for t>0, 

is homogeneous of degree (-t) 
. Let X, t be related by 8.4.1. Then 

a sufficient condition for the inequality C ('ý) > ý(X) to be satisfied 

is the inequality. 

8.4.3 

where s ilCtt, ý fýCt+, ) 
8.4.1; 

Proof We appeal to c orollar, r 8-3.2. 

Let x and y be discrete positive random variables with the 

probability distributions. 
Ice, A 

P4 Pq 

Then in view of the homogeneity of ý(") 
, 

Hence cýC t) >4 O') if and only if 

8.4.5 N")t i 

Take n, r in lemma 8.3.1 to be n= t+1, r=1, in which 

case condition (a) is satisfied. Hence, from corollary 8.3.2, a 

sufficient condition for 8.4.5 is the inequality 

ido1i t Ct*. ) 

The proof is complete when we observe that 

0 
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9 8. lß. 2 The result then, suggests replacing the burden of 

establishing 8.1.. 2 by that of proving 8.4-3 for 'CA related by 

84.1. 

In fact we can obtain some interesting and relevant results 
if we regard --E(A IV) 

as a function of X for fixed arbitrary V. 

Lemma 8.1-. 2 

Let ý(p) satisfy the conditions of lemma 8.1 .1 and 1et 
ý\, 

N) be defined by 8.4-4. Then 

(i } --ýF-(\ I N) is homogeneous of degree zero in X. 

(ii} --, EýCt'(t =- tý(r) 
(iii) (A(N) is stationary with respect to A at rt =. 

Proof Part (ii) we have seen above and part (i) is a consequence 

of ýZo/? kj being homogeneous of degree -(t+1) . Part (iii) is 

trivial also. 

Hence 

a-iý7 a 
tI(ttt) ei fa -L- «-t-t l) 

ýý aý; ýaaa. aas} Yý t' ý 

1 11 
V3 

.1s 
0 

Clearly this result lends credence to the tantalising 

prospect that has a minimum at A_r whatever N is, which 

of course would imply 8.4.3 and hence 84.2. We will in fact see 

an example of such a minimum in chapter 9, namely for 

ýt(p, =-t 
ý, in the case t=1, while for other t We will 

see empirical evidence in support of 8.4.3 for "t, k satisfying 
8.4.1, evidence which is wide ranging enough to suggest that such 

a minimum exists for other t. Of minor interest is that in the 

special case of the function ý3 of section 8.2 we have trivially 
(r\ INý =ýNIN) for all such that . 

ýý o. 

If N were a minimum of --E(Alp) one night have thought that 

this would be due to convexity of -ik(Alp) ,a property which in turn 
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might derive from concavity of 
ý(p). If this is so it is not easy 

to prove, nor are the necessary second order conditions for to be 

a minimal turning point, easily verified. 

However clearly such a minimum is unlikely to exist for 

all 
O(p) 

satisfying the relevant conditions, nor is it a necessary 

condition for 8.14.3 to be satisfied by A, 't related by 8.4-1. In 

the next subsection (subsection 8.4.3) we obtain further results 

which lend some support to the possibility that the latter might 
be true, while in section 8.5, when discussing the E. 1 algorithm, we 
derive a condition which is sufficient for inequality 8.4.3 to be 

satisfied by A, ": for 't=r 
, where N is any value, in which case N 

does mininise -VA with respect to A. Also we obtain a further 

stationary value corresponding to this additional sufficient condition. 

8_13 One approach of more practical value which might lead to 

establishing whether or not a particular poser S (& 
= t/Ctti)) 

will render I? [d9.11 monotonic, would be to attempt derivation of a 

range of values of -S yielding monotonicity. Assuming the argument 

at the end of section 8.1 to be valid, this would simply require, in 

the case of a concave C (p), a positive upper limit on such positive 

values. Certainly we know from (vii) of section 7,3.2 that small 

positive b must yield monotonicity. If such an upper limit exceeds 
1/(t+1), our conjectured monotonicity is established. In fact we 
have already reported in section 7.4.3 such a range of values with 

such an upper limit. 1! onotonicity obtains for &5: 2.1 when FP{db ,1j is 

used to calculate the D-optimum design for the space 
L1 (1, 

-1, -1)', 
(1, 

-1,1)', 
(1,1, 

-1)', 
(1,2,2)'}. 

Clearly a study of the behaviour of ýýcL{db1} is called 
for, but lemma 8.3.1 suggests also a comparison with a generalisation 

of the function ]TT(Alp) 

Now let A= p(r) and t(n) = p(r+1), -uhere p(r) , p(r-1) 

are successive iterates of algorithn r /(t+1) 
, in the 

solution of problem (PI) 
. 
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Thus 

8.4.6 

Let x and y be discrete positive random variables with 

the probability distributions 

Pr{ JC PrItj ={r 
/ö'ý (ti)}týLt-t 

t) 
_ ,ý Tt) 

. 

Then as derived for the case m=I in the proof of lemma 

8. Lf. 1. 

E () 
4: 

0 

&41-olq 
(+41 

- 

Li c 44A 
L L 

Now monotonicity for a given m requires f1(m) -f0. 

Relevant results are 

(1) f (o) =5 (o) ýz(t ý I) = fo 

(U) f'(o: _ 

z. A3 /aAý1ýt4e/a X. 1 - ý; {a , /aas}ý ýaý [aý/a A; . J 

We have already encountered this covariance which is 

positive by the results of section 7.2.2. Thisw ould also follow 

from the convexity of xk66 and the concavity of kLx) 

Z`le already 1o1 that f I' 
(0) should be negative, so we 

have established the same of f2'(0). 

(iii) From lemma 8.3.1 and corollary 8.3.2 it follows that, if, 

for any m satisfying o then f [M <_ f &t) < ýo . 

(iv) From lerne. 8.3.1 it follows that, if, for any in larger than 

(t+1), f1(n) <f2(m), then f2(m) > f0. 

Implications of these results are as follo: °rs: 
(a) Since fl (0) = f0 and fI' (0) . 0, then f1(m) < f0 for small positive 

m, a result which we already know0 
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(b) Since f, (0) = f2(0) = f0 and fI' (0) c 0, f2' (0) < 0, both functions 

are decreasing, at zero, away from a common value, but, since 

f, '(0) _ tt/(t+'I)} f2'(0), f1(m) is doing so at a slower rate than 

f2(m) . For small m then, f1(m) > f2(m) . So, although we have 

fj (m) --f0 for small m, the condition, f1(m) f2(m) , which is sufficient 

for f1(m) <f0, is not satisfied at such m. 

(c) In view of (iii), f2(m) cannot exceed fo in the range 0e- &(t+1) 

unless f, (m) does so. The curve f2(m) cannot cross the horizontal 

f0 before f, (m) in that range, or stay above f0 if fI(m) does not. 

(d) The curve f2(m) does cross f0 at m= t+'I assuming that this is 

not a maximal turning point of f2(-)' 

Of interest is whether or not fI(m), f2(m) cross in (O, t+I), 

for we will then have a range of values of m for which the sufficiency 

condition fI (m) < f2(m) for f, (m) em- f0 will become operative. 

Clearly the above results are not conclusive either way 

on this question. 

There is the possibility that they do not cross, an 

occurrence which might seem more likely if vjq¬dsc is unimodal 

and converges to -°° as tends to , as in the case of 

Cýt(P) _-{ AM+((>) A'f 
. Then f, (m) must have a minimal turning 

point and thereafter f, (m) --f +m as m --) °° 

However at least f2(m) is not increasing at zero away from 

a common value with f1(m) and we have an undisputed requirement only 

on f2(m) to cross the horizontal f0 in (O, t+i), namely at m= t+1. 

This obviously increases the chances of the two curves crossing. 

In the case of we have 

and f1(1) = f2 (1) = t. 
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This is the function #3 
of section 8.2. 

We have a crossing at the value of m=1, which we saw 
in that section to achieve the optimum in one step, and the other 

results of that section suggest that f1(m) will not cross f0 until 

after m=2. 

f 
This function is also a particular case of ({(F, )_ 

, 
As we have already said, we All see in chapter 9, that f1(1) < f2(1) 

in the case t=1, so that the functions must cross at some point 

prior to m=1. It is reasonable to expect the same of c t(p) 
at least for t near to 1. We will encounter empirical evidence that 

it is true for any t. 

For small t we might also expect fI(m) not to cross f0 

before m=2. The empirical results reported in Table 7.4.1 for 

D-optimality, which corresponds to t=0 here, lends-weight to this 

claim. 

There emerges three pictures from these discussions. 

-fo 

(i) 

M 

-FO 

() 

M 

-Fo 

Cliff 

M 

Figure 8.4.1 

c"' 

pI VII 



257 

Graph (ii) might correspond to t small, graph (iii) to 

t large. Monotonicity obtains for m=1 if a 41 in graph (ii) or 
if b41, c> JI in graph (iii) 

. 
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58.5 Relationshin Between FP[d9 11 And The EK Algorithm 

68-5.1 In this section a link bet}; een the EM algorithm and FPýd 

is exposed, which provides further support that the latter is monotonic 

for b= 1/(t+1) under the conditions previously postulated. 

A monotonic iterative scheme itself, the EM algorithm 

gras conceived or crystallised by Dempster)Laird and Rubin (1977) for 

contexts in which there is missing data. 

Considering such a context let y denote data actually 

observed and let x denote what would have been the complete data. 

For complete generality Dempster et al express the relationship 

between"y and x by stating that y= y(x), for some many to one mapping 

y(x) from x to y, a notation which can include instances when the 

missing data might be of an 'implicit' form. In many instances of 

course we would more naturally allocate an explicit representation 

to missing data, denoting it by z say, so that x= (y, z). 

Denote the likelihood of x by f(xje). It is naturally 

desired to determine the maximum likelihood estimator of 6 with 

respect to the likelihood of y. The E? 11 algorithm proceeds as follows. 

Let e(r) denote a current iterate. The next iterate is 

the end result of evaluating an expectation (E-step) and then solving 

a maximisation problem (1,1-step), namely: 

E-itep: compute QCA /e)=E lý ýýx ý 6} 
Iyý1 ýrý 

h'-step: 
-choose 

6ý 
ý to be the value which solves wax q(ajE3 

The conditional expectation of k 1xJO) given y which 

forms the E-step is thus evaluated on the assumption that Bithin 
the conditional distribution of x given y, e is kmovrn to be 

whereas G is left unspecified within f(xj"). The expectation is 

therefore a function of e and G, and the ricxirAsation forming 

the M-step has intuitive appeal in that it is a modified na inisa tion 

of the log-likelihood of the complete data xo 

The following theorem, due to Dempster et al implies that 

the algorithm is monotonic. 
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Theorem 8.5.1 

Let )c(x I y, e) denote the conditional distribution of x 

given y and denote the marginal distribution of y by 9ty1G) so 

that 

fcXle) _ (x)y)e) 
Let 

N(ýýI o' - E{i^k(xlý, e')J y, o} 
L-(e) _ AgCýle) 

(in 
the above context we wish to maximise g (y e) or L (e') 

If q(01 I 6) Q(g I A) then L (Af) } L(e) 

Proof Q(6ýý(: ý) = 0ý 4-{Iný(yleýýý`3ý@ 

t-i (e' e) -- L (e) 

so that l 
L (G') -L (e) =ý QCe' I G)- Q(o e)j N ý0" ý e) - Fi(e 1ýýJ 

Now 

1 W1 0) -H (e I e) -E1I, 
1 k Cx ly, e1) 1l 

`) 6 
k(xl, ý, e) 

Hence by Jensen' s inequality (-Ath 
equality if and only if 

k(x 1Lj) 8') k (x [i, 0) -. e) 

E. }(p'ß) - H(6 j8' e')/k(xýy, ßýýI 
}e 

i^r k(x[ý o') k (x (y, o) d, 
k LX `3'ý 8i 

Hence the result. Q 

`. Monotonicity of the EM algorithm follows since, by choice 
ýrtli ýr / Q6Ie )) %Q (6 Ieý for any O. 

The theorem clearly establishes a stronger result than was 

necessary to establish the latter monotonicity. In consequence 
Dempster et al were prompted by it to formulate a Generalised 

r: i algorithm or GE.,. Corollary 8.5.2 readily Icllc, rs from the theorem. 

Defn 8.5.1 

AG .I is an algorithr for which the recursion is 

9( +1)_ M(ß&T1\ 
/ where L! (") is so,.. e function such that 

Q(T ý ýei ý 
lA) 

"J Qje le) 
. 
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Corollary 8.5.2 

Let eP maximise L( e). For every GIT, the followtinG is true. 

(a) L{ M (eý`) _L (ep`) 

(b) QýM($ )1e"' }- oa(e*Ie*) 
(c) k(x 1-3, M(e )) _ 

k(xJ i Jed) -. e. 

(a) M Loy`) = e" O 
5 8. .2 We now consider a number of examples with the following 

features 

(i) the function is linear in z so that the E-step 

simply consists of replacing the missing z by E(z` yý 0ý~'ý 

(ii) the parameter e is a probability vector p so that the 

likelihood 5(ylP) of the observed data is a function ý(p) 
and the 

maximum likelihood estimates PML is a p* which solves (Pi) for this 

function. 

(iii) the EIa algorithm reduces to FF[d, 1ý thereby establishing 

monotonicity of the latter. 

Ex. 8.5A Consider first in a slightly modified form the example 

used by Dempster et al (1977) to introduce the Ii algorithm. 

The example is based on data reported by Rao (1965 pp 368-369). 

The complete data set would have been (x1, x. 2 )x3, x,, x5) 

the cell counts in observations dravin from a 5-cell multinormal 

for which the probability vector is of the form 

Pz/4, p, /4), P. Pte' ° ý, +Pz= 
so that 

f(X, )= e(x) (1/2) (1/4)n-xI(pý)x+xSýP. 3+x4 

where n= x1+x2+x3+x4+x5. 

Dempster et al expressed this in terns of 1r, here 

-r)(IL-TO = P, , P;. 
The Hissing data was xI and x2. Only (y1 y2 y3 y1) _ 

(x1+x2, x3, x4)x5) were observed for which the likelihood is 

ý(P) - SCyýP) =c O& +Pl/tt) y' (P; L I4-)j ""'t CP1/4) 
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Clearly f(x, P) is linear in z= (x1, x2) so that the E-step 

mould replace x, ßx2 by 
E (X, I `3) =E+P, 

CO /4) 
1 
(r-) 

E(x? I`3) 
= E_ ("; L 

Iy, i=CýI'rý/4)fCj +- 
C')/4) Xar) 

The tS-step fairly simply takes 

5(r-r1) _ 
C-) 

X1r 
Cr) Cr + i) / Cr) l 

1 

(? 
SJ `z +xl+Xr+ 

57 
Pz 1X3+Xý/ý-x3+Xýt+XS/ 

so that 

ý1Cctiý _ P'T)L1ý L 
4- 

zýýý/ýP)+ 

Hence 
L 

(rt lý fir) ýr ý Cr' A Cr'J 

for 4(p) has the positive derivatives 

tý2'ýy 
ýýýºý/ýZ+Pý, 

% 

ýaPz 

- «p)[- y3l 
fr 

Hence 1? 1d, 1ý is monotonic in the case of-the above 
but note that this is not homogeneous. However we would 

obtain a homogeneous function by substituting 'I' by C? +P 
iz 

namely the function 

14) 

C5 
`/ J^iy1 pilye+y1 (P. )' L 

It would seem likely that FF'[d, 1j would also be monotonic 
for this flinction, and note t hat, since it is a product of homogeneous 

functions power rS =1 is what rule 8.2.2 }Mould select as seen from 

8.2.1f. 

Ex. 8.5.2-. This is the problem referred to in Ex. 1. '1,4. 

The observed data y are the off-diagonal elements ni. 

of a JxJ contingency table. It is postulated that for ij 

where p1i is the conditional probability of the (i, j)th cell, given 
that it is in root i and given j -4 i, while p,, ..., PJ are unlmos: n 

probabilities. Maximum likelihood estimates of the latter are 
desired. The likelihood of y conditional on the totals A" 

is proportional to 1 
_` 

3zn.. T C. Ri 
-TF `ý _P', - ý 

i=1 J=l jni J 
i$ j 
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TT 
where " C. _ Z: ALJ 

ý 
RL=E ALj 

} 

We have 

q(V){cj 1P, Ri1<<-P; ) 
so that 

8.5.1 

Clearly the missing data are the diagonal- entries, so 
that z= (n11, 

..., njj) while x= [n..: i=1, ..., J, j_ 'I, ..., J 

The above conditional probabilities are implied by the 

following full independence model for the complete table: 

Cz-F -ý- P_ Ct- 
S ýý S rt. 

j 

where 
7g1, 

.. ýqJ is e further set of probabilities, 

rL, (PA) 

The model states that cell probabilities satisfy 

Pr LT1S 

- 
ýr ýtýJ) _ (rýs)1 r4s = grPSICI -i ch 

T1 
rs 

Note however that the marginal distribution 9(t3le) determined 

by this J(x (e) will not be the above (p) 
. 

For a complete data set vie would have 
TT 

P; - n-3 fn 
)`LL = nZ, In L. 

'H'i 
The I. "-step thus employs the iteration 

Cr) Cr) 

4- Cam) 8.5.2 Cý) (IN 
*-L 

cr 
Tr 

Cr) 
c1 

t* 
1 8.5.3 1=^+ LL 

R' 
`n 

Rt 5-i 
/ c-=, 

1 

Since (ATNIG) is clearly linear in z we wish to replace 

nü by Ej Qy,, 6ý at the 3-step. As Y organ and Titterington (1977) 

observe there are-three options available to us. A formula for this 
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expectation can be derived by first conditioning on the roe. sums 

or on the column sums or on the cell totals of the complete data 

table. 

Employing the first option is to observe that 

. ." Ps 
Thus 

E{ ex JJ 

I 
nJ1 6Cr) nj. 

Cr' 

EfnJJl eCr)1 PCr)tE(A ', e'r'T 4- RJ"ý lS1l 

_-% En1". c"I ?, PCr)/(l- Pi. 
)) 

Jj. 
This implies 

ýrý 

Substituting into 8.5.2 we obtain 

[ttlý_ Icj -F P. ( «J 
-CJ/]/`1- 

`j 
r, ) 

xcz 
CL)II (t - 

Cr) 

which in view of 8.5.11 is to employ the rule 

'PS 

Thus FPtd$ ij is monotonic for the above ý(p) 
. Again 

this is not homogeneous, but again we have a homogenised form of 

(ý(p) in equation 1.1.1, which is a product of-homogeneous functions. 

If we adopted the second of the above options vie would 

conclude that 

CY Cý am) 8.5.5 n.. = E{ eCC ýý- c. am) 

as 1 

The resultant D` iteration would reduce to FP [d, 1j for 
ý(q) with nib replaced by nji. 

Adopting the third approach vie obtain simultaneous 

linear equations for ýI 
ýý e`ý' . 

First we note that 
ly ecýý _ 

cr)C 

ST 
where n =Z E nýý . : enzce 

C,, I 
acrd 

_ DtCc) 
ct' 

s 
E(ILL1ý', Gc") + sýJIt ll ý «I J 

, here jý(_ C. _YR. =- 
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In c onseauence the solution is given by 

F, being a J-. 1 vector whose t component is E ++ ýý ecru 

D diag { ? ýý rý>---- 
>ýý ss and 1 is a Jx1 vector of ones. 

Appealing; to lemma 5.2.1 we have 

E= N{D -- 
ZD)/( - D) i )ý I= N0.1 /(t D 

. 
L) , 

In consequence 
/11 

c.. ) c') 8.5.6 ^E9=N tt - Pý `ý i 

Vie brill consider the resultant. E iteration in section 10e3. 

Ex. 8.5.3 Recall example 1.1.2. There the function 

L=1 .1 
ýi 

gras introduced. The functions fl(y) are component probability models, 
ý(p) is the likelihood of data y1,.., yn independently obtained from 

a mixture of these distribution, and maximum likelihood estimates of 
the mixing weights are desired. 

Dempster et al (1977 analyse this problem in detail, the 

missing data being lack of knowledge of the component distribution 

from which each observation yi comes. That is, we do not know 

the Jxl vectors z 1,..., z n )where zi e ., the j `'h unit vector, if 

yi comes from fl(y) . 

From the point of view of the .1 algorithm we can let 

the component distributions depend on uni-mo-an parameters 
Thus we have 6 =(PI 'r), z= (z,,.., zn) 

x= (Y1, 
.. 3y , z1, ..., zn) 

z. have the joint probability distribution. 

PA (5L1t) , ? '_ -J ,3 _� - --) 3 
O ýýse 

from which it follo rs that 
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T 

t=ý 

and hence that 
S 

"c}_-ýLs(` 
1 

. 5LI'r) es t-ýýýtCy; ýYý 

Also 

o of en'rise 

Equivalently 

Z 1"p t Z, L, e 

where b 
-P 

=( I" p, I-.. Pz )-- --) 1- p, 
)' 

) -f-(y` 
I-t) 

_(-ý, (y` -% ---- --- ) 

Assuming independence between (y, 
l zl), .. 

`. 

'(yn)ýO it 

would follow that 

ins 

and hence that 

8.5.7 F 
-t I, f ýý-r 

where 5-1 (P, 'tý _ T- E 
C=r 

(?, 't) 
, 

At the E-step we replace zi by 

-c rl 

while at the I, -step with Pcr') ,. e would choose 

& Cr-rt)j 
P cr* 1) ) to be the values 

(ý 
ý 
P) which maximise the right hand 

side of 8.5.7. 

Thus 2'will depend on the nature of 
f(y I'ý)., 

assuming 

that there are parameters 2". If not de,. ete OC, Itry from the above. 

; Whichever of these two instances obtains we will have 

respectively, 

äo508 

J i: 1 

59 
Crtý) 

// 
I 

CL " P. Q" 
`ýGr)\ 

0. Cpýr, ) 

J /1 

where 3- `I 

lCýcýý 
L Cr)\ 

_ ýV"'i 
%( ýy I ý} 

Cri 1! r1 r{'ý{%y` 
ýtCý)) 

C'-) 6. ý, 
J 
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and so ,\ 

"T4LCP`r''tcI n. týl 
ý 

This latter result is a consequence of the fact that this 

is the expected value of the sum of the components of the zi. , which 

sum must be n. 

It also has another erplanation)for in the case of both 

s $05.8; 8.5.9 with ýi(p) 'i) in the former case vie 

have 
Cr+I) 

_ 
Cc) C. 1 Cam) Cr) 

pý pýýaýs1 Lýapc 

with IC= t Cr) 
as appropriate. This is so because 

and in viers of the fact that (p) is a product of n 
'functions 

each linear in peso that it is homogeneous of degree n) vie have 

= ^ci1(p) 

In the case when 2- is absent vie again have the EM algorithm 

reducing to FP ýcl, l1 . 

98-5.3 The latter monotonicity of FPjd, 1j could in fact have 

been established by an appeal to the result proved by Baum and Eagon 

(1967) for the relevant «(p) is a homogeneous polynomial with 
S 

positive'coefficients. So also is det(I: (p)) where M(p) =3L 

for 

det{M(pýj 1detjM(c 
to Sk 

where Sk is the set of `70 1 desi;, 7is' q such that 

(i) '; Up(q) contains exactly l: points. 

(ii) q= (g1, assiri: s the same weights to its. sujport points 

k 
as does p 

(hence L4 `- iý 
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From 1.3,9 vie have 

where Vq is the kxk matrix whose c olurns are the subport points of 

q and where D(q) = diagtq,, ..., qlý. Hence 

ýtýM(qýý _ 
ýclif(vqý4, Qz tiý 

and so det 1, ß(p) is a homogeneous polynomial of degree k. 

Baure and Eason proved explicitly for such a polynomial 
ý(p) of degree n, that 

rohere 

This establishes monotonicity of FPtd, 1Ij since the 

homogeneity of degree n implies that 

This rnonotcnicity in the case of D-optimality can also 
be proved in other ways. An appeal to another moment inequality 

\7hich is a special case of a result of Kingman (1967) concerning 
Radon-! kodyn. derivatives obtains the result; see Titterington (1976). 

The nonotonicity can also be obtained by presenting the relevant 
PP[d, 11 algorithm as an M! algorithm for pseudo missing and observed 
data. Silvey (1977) established this. 

However it is not natural to view det {M(p)}" 
as a function 

proportional to a likelihood �but such a device, and also Baum and 
Eagon's result, suggests that there might exist a more general result, 

of which , theorem 8.5.1 would be a particular case, and whose 

application to a function ý(p) would have implications for 

FP{d, 11 and possibly FPýds, 1 . 

In fact Baum et al (1970) prove such a result, although, 
like Baum and Agon, they viere motivated to do so by a statistical 

problem, namely that of estimating the parameters of chat they 

called a probabilistic function of a I:: arkov chain. Dempster et al 

expressed this particular problem as a mixture problem in which 
the indicator variables z. viere not independent and identically 

distributed but followed a L: arkcv chain. 
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The proof of Baum et al's result is outlined below for an 

appeal to it does have implications for FPýds. 11. Further evidence 

supporting the conjectured inequality of earlier sections-of this 

chapter can be obtained. 

Using the notation of Dempster et al. Baum et al (1970) 

proceed as follows. 

Let r(-) assign finite measure to a space 
Y. Let (G) 

be a positive function on a subset of Euclidean space. Let 

P(e) =f fCx le)=Lrc) ýCe' e) -f ýý fcx le`)ý-ýCxýeýýý, ýxý 
Theorem 8.5.3 

if Qg(ß' I6) - Qs(o16) then P(AI) > PC() 

Proof 

where 

Since sýCxýO)c(ý(x)ý ( an appeal to Jensen's inequality 

obtains that 

I""t+c e)ý --Cx(O) dp(x) 

CxýA) pe) 

ý^ f (ýýC" ) c(je) aN(x) t)ý 

P e)}-ý 
j{I" 

im ei)- 1, -fC- (x) 
x- 

This proves the theorem. 13 
Baum (1977) points out that theorem 8.5.1 follows as a 

corollary by observing that 

äX xE X-C') 

Y- 

where (y) is the set of x' s vihich nap onto y. 
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On balance then, this is a more general result than that 

of Dempster et al. Certainly the proof cannot naturally' exploit any 

property that might result fron the function f(xIO) being a 

likelihood of data x with a component missing. 

Baure et al (1970 also consider the algorithmic implications 

of their result. Like Dempster et al they recognise that the 

sequence P(eer)) would be nondecreasing where 6cr+ýý M Cgcý)\ 

for some function 1i(0) such that Qß CM (e), )) r 

They also think of choosing O to be the value of e which 

maximises Qa (O A) and they show that when ®= P(") _ 00, 

where ý(p) is a homogeneous polynomial with positive coefficients 
that the resultant algorithm is FP {d, 1 , thereby deriving Baum and 
EaC. on's result as a corollary. 

From theorem 8.5.3 we can also derive an inequality 

which is sufficient for the truth of 

8.5.10 1where 

t Ct+, 
J-x 

and ý(p) is a homogeneous function of degree -t with positive 
derivatives. This would prove nonotonicity of Fr 

in the case of such functions. 

Lemma 8.5.! f. 
For a function 4(p) as above let 

4: 1, cl) 
37 

QY(, \ IA) _ dz-- 
If Qr, 6i`' I X) % Qp (A` ý) 

' 
then (ý I r) (O IV) 
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Proof 

for then 

The result folloi-rs from theorem 8.5.3 by taking 

_{ tJ ----- Jý 
8 

P (x' _ Y'x (N) 
Q 

, 
(X'\A) = QNC, ý (ý, ) Q 

Corollary 8.5.5 

A sufficient condition for inequality 8.5.10 to be true is 

clearly the inequality 

805.11 . 
Qý, C. l1N) QYýNýNý A 

Clearly as with inequality 8.5.10., it would seem inconceivable 

that 8.5011 should be true at all Xi for any function ck(p) satisfying 

the necessary conditions, and we have no examples to quote. Instead 

the following result is reported which suggests that 8.5,11 may 

fairly often be true. 

Lemma 8.5.6 

Let p) be a homogeneous function of degree (-t) ctith 

positive derivatives and let cj(X(N)=Qr(XIp) . Then 

as a function of 
A, has a stationary value at ý. _ ý. 

Proof 

5cxV) where 

fýCý> _ , ýýClaýý) CýaNý) 
"Cý) - 1J( Hence 

5C? "INý = 

Thus 
; ýýýat'ý)f Yý)W 

s 
L-I 

I)Mtj 13 
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CH r9 

ON LIONOTOI? ICITY OF A FIXED POINT ALGORITJTI 
A11D OTHER COIISIDERATIOIIS FOR A DESIGN CRITERION 

S9 Introduction, Upper Bounds On-Iterates And Optimum Weights 

In this chapter we concentrate mainly on the design 

criterion 

ýý P`A 
-fir{AM r)A'Jt ý -ý >o C 
-1ýdotf AMC )Aý =o 

If A=c putt=l. 

In section 9.3 we establish for the case t=I that 

algorithm FP(d 
s 

, 1) 
1b= 

t/Ct t t) , is monotonic for this criterion, 

vzhile"in section 9. - some empirical results, supporting this claim 

for general t, are reported. Some useful matrix results are 

established in section 9.2. 

From section 3.1 relevant formulae are 

d_aO 9j(P, A)t) ?3>o, -t >0 

gj (? ) A) 0) p. >ot=o, J 
where 

4i(P) A, tl = "; i`'ýýP)Ä [A M}(PýAýýt_I A M+CPý 

4ý ýP _ý t) _: M (e) v 
Hence, for t>O, the function of section 8.3 is 

-r Il(+-f 1) t'Cf + I) 

9.102 (A 
p) 

j=i 
Aj tgj(a. 

) A) t)] `l9j (F'ýA. 
" -01 

Vie seek to establish, where possible.. the inequality 

9.1.3 

We can then appeal to the folloiing consequences of 

leira 8.4.1 to claim monotonicity. 

Lemma 9.1 .1 
Aj[ 

then 00 l Aj ý,, 0t(}`I A) wl. eýe- 

9.1.1 Ai Eq A"n"-t)] LýiC4L('XýA){)1 0 
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This would prove monotonicity for all t>0 and would 

therefore imply rnonotonicity in the limit as t-'O. 

The following discussion also illustrates what would 

be another consequence of 9.1.3. 

We have already reported that in the case of DA-optimality, 

P t/s , when A is of order sick and rank-[(A)) = s, while we have 

shown, in section 3.3, that F pj =o when Sup(p*) contains s 
linearly independent points. This criterion corresponds to t=0 

above, and the case A=I, s=k yields D-optimality. 

Atwood (1973) and Sibson and Kenny (1975) proved this 

result for D-optimality. Atwood also proved it for Dg-optimality 

but using different proofs for the case ! (p'`) singular and non- 

singular. The following proof does not require to make such a 

distinction and merges and extends the approaches used by these 

two sets of authors. 

Lemma 9.1.2 

Let M(p) _ Fj jand assume that the matrices 1`. (p) and AM 

might be singular. It is the case that 

9. P`ýNýýPis i 
sý ý 

9.1.6 ý'M+(P)A[AM+(P)Aý] A0-M (r) 

9"1.7 M (r)A[AM+(r)A' ANI r) , j. JJl 

Proof 

(ý) s'M+(P) PAP) M(F)ri(P)ý 
Lr. 

m4 

LT-. 

Hence 9.1.5. 
Sibson and Kenny used this argument for I'(p) nonsingular. 

(ii) Trivially 9.1.6 is true if A= c' 'where c is kx1 and c'N}(pýý 
} 

is 'singular', that is, c'M}ýP)c =o1 for then [c'Mt 

For any k+ 

+12 

ý' Mý6P) A'[A 1`rlý (r nA M+(P) P'l (P) BM () rj 
where , /Z 

M}/zCP) 

B ý,, ýý' (P) A' LAM}(P) A'1tq Mýý (P) . 
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The matrix B is idempotent, hence so is (I-B) which is 

therefore nonnegative definite. 

Hence 

ýtMt/z(r) T- ß1M+/2(P) ,>o 

LF. ' Mr/; L( p) B Mt/Z(p) cr. < <r3/ M+(p) . 
Atwood used this result for the case of Ds-optimality 

as in corollary 9.1.2.1 below, but only for the case of 1%1(p*) non- 

singularý and of course 
W(P )A 

nonsingular. 

(iii) Clearly 9.1.7 is an immediate consequence of 9.1.6 and 
9.1.5.13 

We can now draw the following conclusions. 

Corollary 9.1.2.1 

Let p* be DA-optimal. Then P 
i/s. 

J 

Proof The result is clearly true if P`= o. If P >o then 

9jýPý; Ago) =S. Hence from 9.1.7 psi. This, of course, is 

uninformative if s=1.0 

Corollary 9.1.2.2 

Let 'ý-(. 1) be defined as in equation 9.1.1. When t=0 

1c (, k) . º/s 
Proof We have 

J 

by 9.1.7. The result follows since 

[(MA')'nMA(X) MCA) N7A)A'] 

13 

Hence for D-optimality iterates under FP{d)'S confine 
themselves to a subset of 

p known to contain p^`, namely {p: (Pý, 
ýýs) Pýý /s 

. 
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It is possible that a similar result obtains for 

general t. 

First vie note the following point. In 9.1.5 and in 

9.1.7 there is stated an upper bound on the values respectively 

of p gj(p)L) o), p Qj(p 
, 
H)o) . The bound can in fact be attained 

by any design p which assigns uniform weighting to s linearly 

independent vi 's (and for which 
n(M(P )) R(A))- 

It was established in section 3.3.1 that such a design 

is Dk-optimäl for its support. Thus when Pý _ Is 9 (p, Fq, o)=sý P_ 
j4ýýp, 

A, o)= I. 

This suggests the following generalisation. 

Lemma 9.1.3 

Let M=f -x 
[pi 

and let p' be 

maximal for ? 
t(p)A) 

Then 

; (F /)I/(++I) 
Pi 

Proof At >o HcnCe M. Q 

1(ýtt lý 

Clearly this result is informative only if i 
It seems likely that this could be the case. Certainly 

PjD33CP., A, -0] 
' 

PýC4ýCp, A, t)J 
) 

Z [Y- pi-(? ý(Fj 
Here we have used the fact that for a positive random 

variable x, [EE (x`)I/r is nondecreasing in r, taleng x to have 

, fCt-t the probability distribution Rx= [4 (? 
', 

Aj )J i=Pj 

It may also be that the bound in is attained by a design p 

which is optimal for a support of s linearly independent points. 

That is, that 

M= [- 4ý - 1, q)] - 
the maximum being present since p would not assign uniform weighting 
to its support points. 
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We will not pursue these speculations and end by recording 

a further generalisation. Clearly we could have stated a more 

general result than that in lemma 9.1.3 by replacing 1/(t-! -1) by a 

general power 9, but for 6= [/(t+') we can prove the following result. 

Lemma 9.1.1 

Let m be as defined in lemma 9.1.3 and r. (, \) as defined 

in equation 9.1.4. If inequality 9.1.3 is true, then 

r ýý) G MSC- fit ) 
Proof Clearly T (\) º"`/ýýýýG1iý, 1ýAýtýlý/ý{, 

ý) 

If 9.1.3 is true then, in particular, 

7 jp) 
-'--(-E( IPte) = --tit 

that is 

C4ý (A, A, -E)1 x C9j CP Aý ý)] >' -±c 
JiJJ 

ý1 ý`ýý 
`I 

AJ -/j - 
ýt 

Now Q, (P" A1-tý -c with equality if 
3>o 

Hence 

and so 

EA3 Epi (, \, qý-t)] I 
/(t+. ) [Q iPA, t1ýl 

ctý, ):! 
"- I \i [4 CA, {)]110- 

f')( { )4-la-fl) 

Tl\- -01 t/(-&+ 1) 

.) 
E9S 11" >- - 

Thus 
i/Lf- I) 

Hence the result. 
ti. If inequality 9.1.3 is true, then iterates under 

FP{d s A, s respect upper bounds Ymovm to be satisfied 
by p*. 
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X2.2 Some Matrix Results 

We now prove some matrix results. We shall make use of 

one of these-later. The first is ancillary to the others. 

Lemma 9.2.1 

Let A and B be kxk symmetric matrices. Then A and B 

commute if and only if they share the same eigenvectors. Equivalently 

9.2.1 AB = BA 

if and only if 

9.2.2 A= PDAP B= PDBP 

where P is an orthogonal matrix and DA, DB are diagonal matrices. 

Proof Graybill (1969) in his theorem 12.2.12 proves this result. 
That 9.2.2 implies 9.2.1 follows by the orthogonality of 

P and from the clear commutativity between diagonal matrices. The 

argument is 

AB = PD, ýPIPn6PI = PDADBPI PDBDAPI = PDQPrPDý4PI = 13A 
. 

A proof of the converse is simple if we assume that each 

eigenvalue of A has multiplicity 1. Assume x is the unique 

normalised eigenvector corresponding to ý. Then only multiples of 

x can satisfy the equation Ax- = Ax 

Now 
Ax = A\x 

-_ý 1Ax=A ßz 

A(ßx)_-\ (ß x) . 

Thus Bx is an eigenvector of A corresponding to X 
and so 

in view of the assumption of multiplicity I it must be that E 3x = rx 
for some N. Hence x is an eigenvector of B. 

The latter conclusion need not necessarily follow if 

has multiplicity larger than 1. Then there will be more than one 

orthogonal matrix P such that A= PDAP' or P'DpP =A where DA is 

diagonal. It is then necessary to show that at least one of these 

orthogonal matrices will also give the diagonalisation P'BP = DB)for DB 

diagonal. Not all of them need do so. The proof is involved and not 

particularly informative and so we will not report it. 
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A consequence of the lemma is that the matrices Mr, ,, 
s 

commute and that M, Lir1 commute for nonnegative definite M. A 

possibly less obvious case is that 214, ld} commute. More generally if 

nonnegative definite A, B commute then so do Ap, Bq. 

We now prove a matrix result of which we shall make use. 

Lemma 9.2.2 

Let A, B be nonnegative definite kgk symmetric matrices and 

let x be a kx1 vector. Then 

(i) (, n x)'/Z. (" ge), l: , 'A x. 
If further A and B commute, then for 1/p + 1/q =I 

(ýý) x1 x/1 X6 x/1 
[ 

it= x'ABx ,{i 

with the further qualification in the case p'. 0 that A, B be positive 

definite and that x is not an eigenvector of A or B. ' 

Proof 

(i) Let y= Ax, z= Bx and by the Cauchy-Schwarz inequality 

ýX, 4 ), 2'. P6 
-)I/z yýý)I2- Lz! ý'ý 

>ý yi^ xfl x 

(ii) The follming proof appeals to 9.2.2 and then nicely appeals 

to the standard Holder inequality. 

(X' Fl ")1'p. 
(' B'Q-1 = 

(x' p L'r p' )` 
. 

(x' P C8 P . 
)'Iý 

= 
C5ýDA`ý) 

'Cy Ds y) = 
Px 

1Q 
`ýP k2 ýIt 

where y= (Yl,..., yk)t, DA = diag {dA1,.., dpi etc. 

Hence by the standard Holder inequality, which is 

applicable since dAi, dBi 3 0, we have 

I-P 
k 

zlý z/ý >i 

.I? L- 

and the result follows since 
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k 
2ý L14 sriºº, 

°tR``ýý - `JDgD 5 =xPDAPPDg Y =XA6>c- . 

The extra conditions imposed in the case p&O are 

necessary because the Holder inequality would then demand 
IT 

OL 'L OL > 

Clearly this result is a slight generalisation of the 

Holder inequality, a matrix Holder inequality. Subsequent to 

obtaining the above. proof it was found that Shisha and Mond (1967) 

also provide a proof of the result, but theirs is an indirect approach 

with part (ii) of the lemma following as a corollary and almost 

an afterthought of a much more general result on complementary 
inequalities. In particular they do not appeal to the standard 
Holder inequality. 

Bechenbach and Bellman (1961, p. 70) also prove a complementary 
inequality to part (i) of the lemma in the case A, B commuting. They 

derive an upper bound on (xfA2x)(x/B2x) in that case. 
Other inequalities are particular cases of the lemma. For 

en-ample , 
for A positive definite., 

(x'Ax)(x A -1x) > (x'x)2 

is an inequality referred to by Bechenbach and Bellman (1961, 

theorem 13, p. 70). 

A corresponding matrix version of the Minkowski inequality 

can be established in a similar way. 

Lemma 9.2.3 
Let A and B be nonnegative definite kxk matrices and 

let x be:. a kxl. vector. Then 

i) /61 

If further A and B commute then 

(. 't -P.,, -1-P Bx 

with the further qualification in the case p<O, that A and B be 

positive definite and that x is not an eig envector of A or B. 
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Proof 

(i) Let y= Ax ,z= Bx and y= (yIs""Pyk)' 
,z= 

(zl,.., zk)'. 

Then appealing to the triangle inequality 
ýfZ l'Z 

[X' ýfl zx] +'+ Zý1 
kI /z 

k , 'a kz 112- 
+ zý L 

2. 
_ ýx A)+ (x g xý 

(ii) From 9.2.2 

B=P (DR{ D PI 

ýA}BJ=P(DAýDs)PP' 
Hence 

- 
[z P(DA + 0,31P"1 

' 1-p 

k- /p 
z (cZ + 

'LL 
'3 

T- I 

L gý1 
Thus by the Minkowski inequality, which is applicable 

since Ä`? 0ý Bý o, we have 

(' zP1 

[X ýAýgý x1 
I-IF 

J 

The result follows since 

1'2)ýdÄý = y'DA 5= x' Pp DA P1 'A 

and similarly for B. 

We close this section by recording an example of non- 

commuting matrices A, B which violate part (ii) of lemma 9.2.2. 

Take 

o 
A=I 

IIB =ýo o1 

D 

These matrices are idempotent. Hence 
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DC, A ix 
= xý 11 x Üh) ýX 4 x1ýz 

iqt2 x Dr- =x Fax = xl 

Bli x 

xIA 6x= xl (X1-Ix42. 

Taking x2 = -x1 /2 we then have 

I -F CI_ 

>C Ux -Zz xl 

and 

(Z 3ý) 
-C-2I ýZ ýJ 

x, for- 
p 3/2 
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Analytic Results On Monotonicit_y 

69-3.1 We are now in a position to establish the following 

result. 

Lemma 9.3.1 

In the case of the LA -optimality criterion the inequality 

ýF: (Olr) >. fNji) is true when ri(A) 6 AA" 

Proof The LA-optimal criterion is 

O(F) _- -L - LL 
[A MtýPý A, 

for L nonnegative definite, and of course the degree of homogeneity is 
(-t) for t=i. Its first derivatives satisfy 

aý/aPý M(r)ALAM+ýp)i P; '0 

the latter form due to the fact that L can be expressed in the 

form B'B, so that C= BA. 

We therefore have 

3j: Cý A, C'c M}(A) MG-') CC M+(N), S-1h/z 
ýýJ yJýýI 

.iJ 
where 9. =CM (A) r zi .=C 

MUr. 
-3 

Appealing to the Cauchy-Schwarz inequality 

J "J J 

ýa>CCMCN) 

- ýr c ýC- N) M(A) Mt(A)} 
T-[ A'L H M+(N) M(A)M}(a)ý 

LA M(X) 
IL A MA(N)n'I = -ý(r) 

The last steps of the argument appeal to equation 1.1.. 4 

to claim that M(A)M+(>)AI =A ;f M(X) E An - 

The lemma follows since T(f j 
N) _-). Q 
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We have thus established the condition sufficient for 

the inequality 4(2) ý(A) to be satisfied where 
t: = 

\ý 
(2výx 07 

optimality and hence that algorithm FP{d 
ý1} 

is monotonic for LA_ 

and in particular for the A-optimal criterion 

=- _b--{ M ̀LP)? 
The above proof is a generalisation of that used by 

Felluran (1974) to establish the same result for the particular 

case of c-optimality. 

9.3.2 Consider now the particular case of when 

A=I, namely 

`%7e record some results in connection with possible 
s 

monotonicity of FpId, II with for this criterion. 

Lemma 9.3.2 

Assume Then if nonsingular I. I(A) and 

nonsingular t, I(p) commute the inequality T(Alp) >-j(pip) is 

satisfied. 

Proof We have 

where p= t+1, (1/p+1/q) =I 
By part (ii) of lemma 9.2.2 

ý(A frý 3ý ; 'M S(A)M-t(N) 

JJ J) 

_ ±Y LM 
t(ý) MC )M A)} 

Of course this is not a particularly useful result since 

typically the assured cor. utativity between II(A), M(au) will not 

be justified. ' Only if the design space 
V were to consist of k 

orthonormal vectors would the latter hold for all auf, for then 
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Li(p) = VPV' ,. 
where P= diag[p1,.. y pp and V is a k. k orthogonal matrix. The 

design points are then normalised eigenvectors common to all design 

matrices, in which case we have the necessary and sufficient condition 

for comnutativity. 

If M(X), I: 1(p) do not commute then a proof that 1AIp) -T(yIN), 

if that be true, cannot appeal to part (ii) of lemma 9.2.2 in respect 

of 9ý(AIN) , as in the above proof, for it is not guaranteed that 

the result in part (ii) of that lemma will hold for A= M-'(A) 

B= M-{(N) 
, x- - '; . -p = t+ I. 

However the following lemma offers the possibility that 

lemma 9.2.2 could still be instrumental in establishing the truth 

of EC? P) ' 3i: '(P) N) . 

Lemma 9.3.3 
1'(t0 

Let ý(XINý = týXi'I ct+. ýý) ý1 M ýt+ý/. )JZ 
' 

while for nonnegative definite N let 
ýf 

N) =t ýýý [ý M (aý ;ýN ýý 
If (i) N commutes with 1; 1(A) 

(ii) RCN) _ LPf M-ý(r)} 
(iii) 

then ýýI Ný % 

Proof The result. is fairly clear. We will have 1 1(A) 
and Nt 

cornnuting, and so appealing to part (ii) of lemma 9.2.2 in exactly 
the same way as in the proof of lemma 9.3.2 we will have 

(A 
, 

N) X) Nth . -ý - 
ýN{ý 

. 
Hence the result in view of the assumed eoualities in 

(ii) and (iii) and a clear implication is that no such matrix N 

can exist if the inequality ý(xf r) ? ýsft) is not satisfied. (] 

Still the result may not seen of much practical value. 
However the problem of finding a suitable 11 if one exists takes on 
the following simple form. 
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Since M(\) and 14 are to commute we must have, for P an 

orthogonal matrix 

M(X) = PD, \P' , 
N= PDP' 

where D;, ,D are diagonal matrices whose entries are the respective 

eigenvalues of l. i(A), N. Standard results are 

NS =P DS4ýý 
k5 

sk rsr 

where ui = P'vi = (u. 
i,.., ujk)' 

Hence we have the apparently simpler problem of establishing 
the existence of k numbers d,,.., dk satisfying, for given matrices 
I, I(ýý , 2, I(N 

9-3.1 -e ý t4m- z &ý. -tol 

and 

. 3.2 ± a. [M.. uff. ý. 
j -1 J. 

Clearly this imposes just two restrictions on d,,.. ydk 
suggesting that there should be more than one real solution when 
these exist) i. e. when in fact One would have 

thought that this would have made it easier to establish the 

existence of such a solution, although admittedly we wish to do 

this, not by assuming, but as a means of verifying the truth of the 

inequality ý(\ p) a Ii) for the particular case t(A) 

Vie have no analytic results to offer in this respect, 

only the empirical results of the folloýing two examples in which 

solutions were found for the quantities d,, *. ) dk' 
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a. 9 . 3.2.1 

Taking the design space to be 

V-= 
f (t)O) 

`o, 
t), 

`Z, 
1)J - 

(Lr, 

) 
110,3 

' 

so that J=3, k=2, letting A= (1/1,1/4,1/2) and taking t=2 

we have 
4 

M (X) 
_} 

[c9 

t . 3j 

Hence IA(A) =(PDA" P'), vrhere othogonal P and diagonal D. are 

12_ 
ý] 

=i 
(1 °1 

and 

s1M-3(a)ß = 267(1; /11)3 

Lf- )3 
,-= 1065N/11 

3 M-3ýý\ 
3= 5(4.11)3 

Finally t(X) of 9.1.4 is given by 

} 2 (A) = (267)1/3L(267)1/3+(1065)1/3+2(5)1/3 

z(A) = (1065)1/3/ f It } 

T- T (A) = 2(5)1/3/{ .. } 

Taking values d1, d2 which satisfy 9.3.1, 

9.3.2 are given by 

dý + ciz ý" 326 {_ ýrM ýýý 

and 

2111 
[(267)1/3. [`/5X4d1+d2)1z13 

+(1065) 
1/3 

K 
E/ a3+4d2)12I3 +2~(5)1/3. 

[5dß 1z)3 
= 2(5.706) 

A solution is given by dI = 0.8931. 

Ex 9 . 3.2.2 
Wynn's design space is adopted here 

U= (1ý-1ý-1)ýý(1ý1ý-1)ýý(1,11)', (1,2,2)' _ v1v2"v3`74- 

so that J= 41 k= 3- With A= (1/4)1/4)1/4)1/4) 

LE II 

M(X) =(i/i) 173 

3 "7 

so that 

M (X) P D, P" 
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, ice where orthogonal P and diagonal DA are with c={2 11(, /11-3)} 

P- 1/J2- c1 -C 1 DA = 

"1 ö 
o (7+, /t1 

00 

0 

0 
(7 ii /t1. 

and taking t=3 

L5-11 M-3 (A) 
=l9SO 

(y-/38)3 

`rte = 3ý s3 = 2ý-Cý 2"S 413 $Y 

M 3ýýý 
sý = 584 ý4 ý38ý3 

Thus 2(A) of 9.1.4 is given by 
3 

C-I (ýi) = (ISg0ý1I31890)1r 2-V-(5-gLt3/-3J 

Taking values of d,, d2, d3 which satisfy 9.3.1)9.3.2 are 

given by 

d2+d2+d3 = 2.0701386 = tr 1. -2 (ý) 

and 

2/38 (1880)1/3 [(1/ /2 11X(3 --ß)d2 -:. (3 +'ß)d3Jj 
2/3 

+ 2(2762.75)1/3 
[ /`2 F W4 ! d3 + (J11-3) d2 + (J11+3) d3 

}2/3 

+ (584)1/3[(1/C2j11)ý{(9j11+29)d2 + (9 11-29)d3l1ý3 

=2x2.00784-770 

', A solution is given approximately by d1 = . 05, d2 = 1, 

Note that if - ai(r`N) in this particular context 

when we have A=I, then since A is a probability vector the inequality 

states that, while we nay not have the inequality 

' -t/Ct+ ) ['M'x ) s]; M (r) , 
fl >- sM _'C\) M( re) 

L-r 

satisfied for every j, we do have it satisfied on 'average'. 
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59-3.3 Recall that the general function of interest in this 

chapter is 
4 (r I A) _- 

[AM7r)A'} 

and that then 
%I1 1) 

where 

= j'M}(r)A'[FIM'(r)A'] pMt F)s 

In the latter section 9.3.2 we considered only the case 
A=I, the reason for this being that [j())s, ±)] D3SCV)a: 

)-t 

then takes the form ýz ßpxýý'p(xýC4xýý't 
, and it was then natural to 

consider the possibility that lemma 9.2.2 might provide a means of 

establishing that (\INý>. ý(NIýý 
. For general A however 

i L, -t 1) týCt ri) 
does not readily take on 

that form. Nevertheless we can still enlist lemma 9.2.2 in much 
the same way as does lemma 9.3.3. 

Lemma 9.3.4 
Assume that N(A) is nonsingular and let be as 

above while for nonnegative definite (k-k) N let 

(Ný -L, Nf 
C+4 s) (1) ;ý-L; N 

If 

(i) N commutes with 1I(A) 

(ii) q(N) = -ýý{A M-ýCN)A }t 

( ±±) A CA, N1 _ TICa J N) 
then 

The proof is clearly the same as for lemma 9.3.3. Q 

It is possibly less natural to consider using this approach 
for general A and there is the disadvantage that it can only lead 

to establishing the desired result for ncnsingular Y (A). 
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Of course it need not be necessary to establish that 

for r= ^C(X), where 

'r, (, \ ý-a, (;: ) ý /aa, )' YxiN/aA`) 

by an approach that somehow or other makes use of lemma 9.2.2. 

However no further analytic results have been obtained. We believe 

though that the latter inequality is true and present empirical 

results in section 9. l which support this belief. 
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2.1 Empirical Results On 2donotonicity 

In the following sets of examples, algorithm 
F P[d. b 

i}., 6= '/6t-0) is monotonic from p(o) _ (1/J, 
..., i/J) ; 

Firstly monotonicity obtains in the following instances 

when A= Ik. 

(i) V= {(1, 
'1s-1)', 

(1s-1s1)'s(1s1s-1)1, (1,2,2)11. for t=0,1,2,..., 30. 

(ii) Ü(1., 2,3)', (1,3,2)'s(3,5, zf)for t_0,1, 

ýii1)U={ (1. Os0)', (1s120)for t=0,1,2,3,.., 6. 

(iv) U={ (1, -1, -1)', 
(1,1, -1)', (1, 

-1, -1)', 
(1,2,2)'s(1s1s1)'s(1, o, o)', 

t, (is0S 

(1.2.1)'} for t=0,1,2., 3, /f,...., 12. 

U 
=C 

(1, O, O, O)1 , 
(O, 1, O 

(. 75,0,. 75,0)''("75,0,0,. 75)''(o, "75,075,: o)'1o,. 75,0,. 75)' 

(0,0, . 75, . 75) 1 for t=O, 1,2,3,1. 

(vi)-u ={(1s0., os0) t�(os'902O)'s(oeo 130) ', (0,0y0.91) '9(. 1.,. 2,. 3,. l-)', 

. 1)1, (. 9,. 2,. 2,. 1)''(. 3,,, 3,. 3,. 3)` ,(a5,. 7,. 3,. 2)' , 
(. 6,. 1,. 3) 

(. 4,. 4-,. 5,. 5)'} for t=0,1,2,3,4,5,6,7,8,9. 

(vii)v={(1, x, x2, x3)' :x for t=0,1,2,3. 

(viii)U={ (1, )c, x2, x3, x4)' :x=0, ±. 65, ±. 66, ±1} for t=0,1,2. 

(ix)Zf = (1, x1, x2, x1, x, x2, x2)' : xi = -1,0,1, i=1,2J for t= 0s1s2j3)Lt-3... 313.2 
(x)U =. (1, x1, x2, x3, xI, x2, x3, x1x2, x1x3, x2x3)' : xi = -1, o, 1, i=1,2,3}-{e1f, 

for 
.t=0,1,2,3,4. 

Of course in these cases monotoricity is known to obtain 

for t=0,1. The next set of examples considers other choices of A 

in which case monotonicity has only been proved for t=1. 

For each of she cases t=0,1,2,3,4,5 and for each of the 

three choices of y, 

1 0 1 p 0 0 

A= 0 1 A= 0 0 A= 1 0 

0 0 0 1 0 1 
, ý , 
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ronotonicity obtains in the case of the two design spaces 

(i) U= ý(1,1, 
-1)t, 

(1, -1,1)', (1,1, -1)', 
(1ý2ý2)ý J 

(±l) U =l(1,2., 3, )', (3, J, 2)', (5, 
., 3)t} 

Also monotonicity obtains for each of t=0,1,2,3,4,5 in 

the case of 11 
U ={ (1,0,0)', (0,1,0)', (0,0,1)'}and A=1 -1 

10 

Finally we report the following results concerning the 

truth or otherwise of inequality 9.1.3. In all the results the 

matrix A=I. in which case 

The inequality 3E(ýIN) =T(Vjp) has been proved true 

in the case t=I. It is also true for (A''r) _ (p r> 
,p 

r+1 ) for 

each iterate p(r) of FP(, -6,1), 
9 

=1/(t-1) in the following 

instances: 

(i) in the case of tJ for t= 

both when p0ýo) = . 25 and when p(0) = . 01, pýo) = . 33, J=1,2,3. 

(ii) in the case U ={(1,0)', (0,1)`, (2,1)`} for t. = 2,3, when 

P10) = P2O) _" 25, P(0) _ . 5. 

Also in the case of this last space and when t=2 and 

p_ . 5,. 3s . 2) the inequality, XA(p') > ý(t +) 
, is satisfied by 

all nondegenerate probability distributions A. 
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S On Computing E-Optimal Designs 

Some comments on the Ek optimal criterion 

46, (PIP) _ -AM - AW(f)A'} 
are in order. 

As was observed in chapter 3)this criterion lacks 

differentiability and support differentiability if the maximum 

eigenvalue of A1'3}(p)A' has a multiplicity in excess of 1, and this 

is the case whether or not 111(p) is singular. 

The lack of even support differentiability means that it 

will not be easy to devise numerical techniques for finding py . Now 

even iterates of an algorithm which changes only the weights of a 

current support may be undefined. 

However, as has been observed, the function 

fiz(FI11) (ý j5)ß A III 
-L A M+ 

t 

which does enjoy support differentiability, is such that 

t ±- f (PIA) _" Jr) , 
This suggests that for t large, p*(t) should be a good 

approximation to p*(-), where p*(t), p°`(---, ) are respectively, 

maximising values for (Pt(FjA), cAv, (rtA) . It would seem that we 

should have p*(t) -ý p (oo) as t --; >°° . Certainly f{p ýf)IA} f (PiA) 

for all p, so that we must have 
{Lt 

{ý 

The advantage of the above relationship is that the 

support differentiability of ct(? 1A) means that we can, with a 
little care, evaluate p*(t) using the algortihms already considered. 

For large t though, convergence may be exceedingly slow, particularly 
in the case of FP{&s, Iý S= Iýýt+') 

Consider the case A=I which corresponds to the E-optimal 

criterion 
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6 Of relevance to FP{d, 11 is the terra 

Lri 

is orthogonal, D= ding [d1, 
.. ,d. 

In general for each j 
SIC*4 

p ({+I)9ýuý 

For large t then, p(r+1) will be only a slight modification 

o" ý(r) under F Pjas, I}, S= iýCf{ 1) . Use of S> 1/(t+1 might alleviate 
clzis, or use of FPfda^<-Oýj may be essential. Similar -, comments will be 

,. rue of other algortihms. 

Note however that if vj is orthogonal to the eigenvector 

corresponding to XM, {M AP then the above limit does not hold. An 

extreme example of this would arise if the design space 
V 

were to 

consist of k orthogonal points vl, .., vk. Then 

1,1(p) = J' = QDM t 

ti hers V= [Vl..... Vk], Q= V(VtV)r1/2, D= (Vtv)1/ '(V'v)h/2; Q is 
orthogonal, D is diagonal. 

In this instance the terms Q(p, I, t*(1) will not in 

general have a common limit as t -'°° , which suggests that we could 

let t go fully to that limit in 9.1.1. However sie are considering 

an example for which an explicit solution is available. Since 

D= diag { v, v, p,, .., vkvkpJ; } tire have 

3 

If p* is to maximise this then p* must solve 

min max 
{ (vývSpj)_1 and so solves max min 

I 
vývjpj The 

p 
k 

Solution is given by 

ý` ýýý 

Since tr {Mt (P)} we have 

, ind so we do have p'`t) - py (ý) = p* as t --ý°°. 

tfý) k -týCf+i) L Cý'ý ) 
ý-ý ``ý 
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In the case v1 = (2, 
-1, -1)', v2 = (1,0,2)', v3 = (6,15, -3)' 

(P, P2, P3) _ ("45,. 5,. 01), since v, v1 = 6, v2v2 = 5, v3v3 = 270; 

(vivi)-1 = 10/27 = . 37037. Compare this p* = pwith the 
i=1 

values of p*(t) in Table 9.5.1. There is evidence there that for 

relatively small t sie have in p^(t) a reasonable approximation to 

p*(m) . 

Consider also Vlynn's example, the design space being 

U={ v1, v2, v3, v41 = 
{(1, 

-1, -1)', 
(1, 

-1,1)', 
(1,1, 

-1)', 
(1,2,2)'1. 

From symmetry considerations it is clear that p2 = p- under E-optimal 

px. It is then possible to obtain a simple explicit formula for 

Under a design p of the form p= (p1, q, q, p4) , where of 

course 2q = 1-pl-p4, we, have 

(2P4 -P1) (2p -p1) 

2, '. (P) _ (2P4-P1) (I+3P) (2p, 
ß+5pß 

1) 

(2p4P1) (2P-ß +5P -1) (I +3pß) 

In consequence 
2 lý 

a±{M(o - ýI] =[zýt-r1-r) 
(P, +ýr 

Hence 11(p) has e igenvalue s 

Az 
l ýi =i 

(Z 
C'1 +8 P4 t ýl - ýi/3ý[6Pý - 

ý1± c@/-X. 2 pt_ 
2. 112- 

Clearly then 

IM I(F)j _f I(r . Now 

VS 
{ý im (P)3 = rt-n 

Uz (P) 
_I o-{ F7 = . Z>, 7-i, V1E L42) V(ý] 

. lp d', 

It would appear that the values p""( t) in Table 9.5.2 , 

which were obtained using FP {db 
, 11, &= 1 /(t+1) 

, 
(ronotonically, 

as 

reported in the previous section), are approximately of this form 

for t36) w1hi1e they are exactly so fort 26. 
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TABLE 9.5.1 

t 
I 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

PI* t) P2(t) P3(t) -cP"( t)/il 

. 44553 . 48805 . 06614.6 0.27988 

. 4+5284- . 51137 . 035793 0.31577 

. 4.5370 . 52018 . 026113 0.33147 

. x+5359 . 52482 . 021582 0.34020 

. 4-5331 . 52769 . 018998 0.34574- 

. x-5302 . 52964. 017341 0.34957 

. 4.5275 . 53106 . 016192 0.35237 

. x+5252 . 53213 . 015350 0.35450 

. 45232 . 53297 . 014708 0.35619 

. 45214 . 53365 . 011+202 0.35755 

. 45199 . 53421 . 013794 0.35867 

. 45186 . 53468 . 0131.57 0.35961 

. 45174- . 53508 . 103176 0.3604.1 

. 45164 . 5354-2 . 012936 0.36110 
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TABLE 2.5.2 

tI P1(t) 

I 

2 

3 

4 

5 

6 

7 
8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

21f 

25 

26 

27 

28 

29 

30 

. 19107 

. 21051. E 

. 21921 

. 22366 

. 22621 

. 22771 

. 22853 

. 22901 

. 22921. 

. 22931 

. 22932 

. 22928 

. 22924. 

. 22920 

. 22921 

. 22926 

,, 22940 

. 22966 

. 23008 

. 23072 

. 23161 

. 23286 

. 23451 

. 23666 

. 23924- 

. 24z1r1- 

. 24-516 

, 2k-816 

. 25106 

. 25380 

j =2,3 
Pýý ýý 

. 31050 

. 317-5 

. 32051 

. 32235 

. 32357 

. 321+$ 

. 32521 

. 32580 

. 32629 

. 32672 

. 32705 

. 32734- 

. 32755 

. 32772 

. 32782 

. 32785 

. 32781 

. 32765 

. 32736 

. 32691 

. 32626 

. 32534- 

. 321.10 

. 32250 

. 32056 
. 31939 

, 31613 

, 
31386 

. 31170 

, 
30965 

P *(t 

. 18794 

. 15456 

. 13976 

. 13164 

. 12665 

. 1233+ 

. 12104 

. 11939 

. 11818 

. 11726 

. 11657 

. 11604 

. 11565 

. 11563 

. 11516 

. 11503 

011499 

. 1150c- 

. 11519 

. 11546 

. 11588 

. 1161+7 

. 11728 

. 11835 

, 11963 

. 12107 

. 12258 

$124-08 

. 12553 

12690 

Pp 

0.79767 

0.82284 

0.83914 

0.85203 

0.86317 

0.87315 

0.88223 

0.89053 

0.89810 

0.90499 

0.91125 

0.91693 

0.92207 

0.92671 

0.93092 

0.93474 

0.93820 

0.94135 

0,94422 

0.94684- 

0.94924 

0.95145 

0.953-' 

0.95535 

0.95709 
O. 95ß70 

0.96019 

0,96159 

O 9b28ß 

096409 
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CHAPTER 10 

GENERALISATIONS OF PROBLEMS AND ALGORITMAS 

510.1 Introduction 

Up until now we have considered primarily problems (p1) 

and (P2). One distinctive feature of these problems is that of 

maximising a function ý(p) subject to p being a probability vector. 

Also typically the function «(p) was concave and certainly in all 

examples considered the function ý(p) had positive derivatives 

which made it possible to employ algorithm FP{J' I1. 

We now examine some generalisations both in problem and 

algorithm. In particular we consider three sources of such 

generalising: 

(i) by relaxing the assumptions on cj(") including that of 

positive derivative: 

(ii) by discussing a fusion of FP{d-ý I} and of algorithm 5{A, d} 

(iii) by considering in more detail problem (P3), that of 

optimising a function (e) subject to several linear 

constraints Ce =6,, d AJ >, o. 

In short we consider respectively extensions via 

generalising ý(p), generalising FPfL', i1 and generalising the 

constraints. 
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5,10.2 Relaxing Assumptions On ý(p) 

510.2.1 The primary concern of this section is to consider how 

we might proceed to solve (P1))when the function cb(p) does 'not 

enjoy the properties which have been enjoyed by the functions we 

have so far considered. In particular vie have in mind that the 

function might not have positive derivatives everywhere. It may 

then be that « p) is more likely not to be concave. If so the 

recommendations below can only claim to find a constrained stationary 

value p* of ý(p), subject to p°ý e. We will be assuming that 

/(p) is differentiable. 

The point about such a possibility is that algorithm 
FP{ct a, 

(I. or FP{-LCdr} could then be undefined. Of course other 

algorithms would not be troubled by negative' derivatives such as 

FP{tiid, s), 11 , and in particular FP{exp[Sy(d), l}. However there 

are some interesting empirical results, mainly concerning monotonicity, 
s 

to report in respect of a modification of FP{ds, I} ; namely FP{Idl, 1}. 

The function 4d( does not enjoy one of the properties 

recommended for h(d, s), namely that it should be non decreasing in d. 

However a motivation for considering (di 
s 

lies in the fact that, 

since p* must still be a constrained stationary value, we must have 

and so if ý(p) is homogeneous of degree (-U) then we still have 

ý_ -týCPý 
fP>o 

ýýaP" 

'J 

Hence at the optimum all derivatives corresponding to 

nonzero p share a coon sign, assuming that these derivatives are 

nonzero. 

a ter- o Suppose that pý >0 for all j and that 20/j 

Then) at p'`, all derivatives share a common sign and it is to be 

expected that the same will be true at all p in a region about p*. 

If an initial p(O) lies in this region and if A") is concave in 

the region, one might expect subsequent iterates to remain 
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in the region under a reasonable algorithm. If this is so with 
FP{IdIs, I} then this should enjoy properties which FPW, i} 

enjoys in a comparable positive derivative context. In particular 

monoticity might obtain for specific values of s. 

Of course finding such an initial p(o) may not be easy, 

possibly requiring a search, and identification will be even more 
difficult if some optimal weights are zero. Note however that 

if, for some j, ao/apj is consistently out of step in sign with 

other derivatives, this may suggest that pý = 0. 

Clearly it would be more sensible to employ at least 

initially some other algorithm such as FPf expEEg(d)j , 
i} . 

However it may still be that FP{(dls 
, 11 ! would converge to p* from 

p(o) = (1/J,..., 1/J), and we have empirical results to report in 

this respect. In general though if FP{Id()l1 does converge; it 

is only guaranteed that it will converge to a point p which is 

such that the derivatives t/3F, 
, corresponding to support points 

of pare equal in numerical value. There may still be differences 

in sign among these derivatives. This will certainly be the case if 

F. 4/aP, =0, a condition which would hold if 0(") is homogeneous 

and q5(p) = O, or if 4(p) is simply homogeneous of degree zero, as 
in the case of example 1-1-3. Neither FP{ds) I nor FP[ Idly, I} 

in contrast withisay FP{ecp((c ), i} , can converge to a point p 

such that 3ýt3fj =0 for pj> 0, and hence neither algorithm can 

converge to a p* if 0(p°`) =0 and «(") is homogeneous, unless 

as contemplated in 8.2.1 we have 

10.2.1 aý /a 
pj= (P)f; (P) 

and c(p) =0 but fo(p) 0. The latter will almost certainly be the 

case if c(p) _ 
[[(p)] m or if c(p) =C 4(p)] m. If when >0 the 

terms (f, (P)I share a common nonzero value, then convergence to p 

could obtain, since FP{1d(6 11 would reduce to FP{If is I} 
ý where 

f= (f1(p),..., f3(p))I. We have empirical results to report on 
this specific point. The discussion has been proferred in anticipation 

of these results. They have been obtained in two examples. 
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S10.2.2 In this first example the function «(p) is one which 

was used as a design criterion for a problem which arose in a 

chemical context. The following, three parameter, linear regression 

model described the relationship between the viscosity y and the 

concentration x of a chemical solution. 

10.2.2 E(y) = Alx + ex, /= 
-r &'X ocx iL o-z 

It was desired to estimate A3 as independently of 

and A2 as possible. 

There are two fairly obvious approaches to this problem, 

namely to design to reduce near to zero either covariances or 

correlations between appropriate least squares estimators. Adopting 

the covariance approach we would wish to solve problem (P1) for 

10.2. C=- 'M+00 

since I cL M (p)bI is the numerical covariance between a 6ýs 6CýLs 
' 

Clearly 10.2.3 is a generalisation of the c-optimal 

criterion. A further generalisation which springs to mind is 

10.2. E -ýfý{AMý(P)B}1ý 

where A, B are sxk matrices each of rank s. 
It is not entirely clear what properties other than 

homogeneity of degree (-1) are possessed by 10.2.3. Certainly 

its derivatives which, at nonzero p., are 

aCý/aýj =ä M(P)6 0. M(e) ; ;' M*(j, )6 Am 

need not. always be positive. Note that they are of the form 10.2.1 

with 

c (p) =C ýCe)] 
,f (ý) M 7) ; ý' NI (P) 6. 

I'm. 

In the case of c-optimality algorithm FP{d 
'I} is 

known to be monotonic and iterates under this scheme have the definition 

Pof' 
C`Cr ýtY (ý 

Jý 1_ PCr) 
I 

ßr 1 1ýýýCr'ý JI 

zz 

This suggests using algorithm FP{IfI'A , IS to solve 

problem (PI) for 10.2.1. This was tried both in the case of the 
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above regression model, taking the discretised design space to be 

x= . 02(. 02). 20 so that J= 10, and also in the case of S7ynn's 

model 
E( 

Jl =eJJE_! 
ýs 

l 
Ji 

)1l 
LF1 

J 

where v1 = v2 = v3 = vv = (1,2,2)'. 

In the case of the regression model three choices of the 

vector a were considered, namely a_ (1,0,0)', a= (1,1, O)t, 

a(=)(-1, '1,0)' while in each case b= (0,0,1)'. In each instance 

p ý0 = (1ý'ý ýý"" 
. 

In the case of ti: ynn's model two choices of the vector 

were entertained namely a= (1,0,0)', a= while again 
b= (0,0,1)' and pýo) = (1/4,1/4,1/1f, '1/1. ) for both cases. 

In all cases the iterations were monotonic and convergent 
(though not to the optimum in one instance) and a'1S+('p)b retained 
the same sign throughout. Convergence was again slow. 

Consider the chemical example. In the case of all three 

choices of a, the point of convergence seemed optimal, and in each 

of the three cases at least eight derivatives (the same eight 

derivatives) shared a common sign, the same sign at all iterates. 

The derivatives a? /e P3 , öý/aQy which correspond to x= . 06 and 

x= . 18 were sometimes out of step. Initially at p(0) all derivatives 

shared a common sign in each case, but, in the case of a= (1,1,0)', /apy 

changed sign to remain consistently out of step with the others, 

while this was the case with both aý1a P5 and WaP, in the other 
two choices of. a. However in all three cases the point of convergence 

assigned zero weight to x= . 06 and x= . 18, and in fact their weights 

were put to zero in early iterations using the criteria of section 
l.. 3. Convergence was always to a 3-point design, roughly 

x= . 02,. 12,. 2 in the ratio 2: 2: 1. 

Consider no the V'ynn examples. These are interesting in 

that, for both choices of the vector a, there exist designs p such 

that a'744(p)b = 0. For instance the design p= (2/9,3/9,3/9,1/9) 
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n 
renders 1: (p) diagonal so that Cov( 8i, O 

j) = 0, i j, in which 

case a'Lf (p)b =0 for any a, b, a= (a1, a2, a3)I'b = (b1., b2, b3)', 

such that, for each j, at least one of aj, bj is zero. The latter 

is the case for the given choices of a, b above. 

The two covariances Cov( 61,3) and Cov( O21 63) would 

also be put to zero by any design p such that 

-pl+p2 p3+2p4 =0 

pl -p2-p3+ßp4 = 0. 

This is so because these are respectively the elements 

m13, m23 of the matrix 1«p) as was reported in section 3.3.1. The 

matrix I. ̀(p) is then of the f onn 

m11 m12 0 

M(p) =m0 12 m22 

00 r'33 

and K -1(p) or M+(p) will also partition in this form. This guarantees 

that the above two covariances will be zero and hence so also will 

a'1f (p)b if a= (1,0,0)', b= (0,0,1)' or a=b= (0,0,1)'. 

There are clearly many designs p satisfying the above 

two equations. These include the nonsingular design p= (3/16,5/16,4/16,2/16) 

and the singular design (1/2,1/2,0,0). 

1/2 

In the case of a= (-1,1,0)', algorithm FP{lfý 

converges to this latter design and happily both a'6, b'6 are 

estimable under it since a= -(v1+v2)/2, b= (-v1+v2)/2. 

In the case of a= (1,0,0)' the algorithm does not converge 
to any of the optimising p*'s. The point of convergence is the 

design p=(. 19,. 30,. 35,. 16) at which fj = . 78427, 

f3 .= a'I 
1(p)vivýi1 1(p)b, 

with f1 and f3 being negative, while 

a'1 
1(p)b 

= -0.051818. 'We have already anticipated that this could 
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happen. It is not clear that there are differences between these 

two examples which explain convergence to the optimum in one and 

not in the other. It may be a question of estimability. Under 

the design p= (1/2,1 2,0,0) the terms fj are (f1, f2, f3, f4) _ 

(-1/2,1/2,0, -1/2). Hence this p would be a fixed point of the 

algorithm. However A for a= (1,0,0)', is not estimable under 

this design. There may be no optimising design p~ which would be a 

fixed point of FP {If I' I23 
and would offer estimability of 

Qi$ý bý6 . Vie will not pursue this. 

We note in conclusion that the alternative correlation 

based approach would seek to solve (P1) with 
0(p) = {'arM ()b}ý/{4 M`(P)4 6'M}(P) b} This is a product of 

homogeneous functions and 

zg'ý`'ý*O ; 'r-ýM+iP)6 {a {b'M p) 
LaM Cý) b Cý Mt(Q)4 6W (p) 6 

_ MCP) f Ca) 
a 

Possibly I would render FP{ If I) 11 monotonic. 

610.2. The second example exhibiting negative derivatives arises 

in a statistical context, the function «(p) being a transformed 

multinomial likelihood. The problem also illustrates generalisations 

with respect to constraints and hence, details will be deferred until 

section 10.3.4. Save to say that it was desired to maximise a positive 

homogeneous function, whose derivatives could be negative, subject 

to the variables in its argument being positive and satisfying a 

linear equality constraint. At the optimum none of the derivatives 

could be negative since none of the variables could be zero. Starting 

from an initial p(0), which was particular to the problem, an 

appropriate generalisation of FPLIJIs, 11 converged monotonically 

to the optimum for 0 S& 0.11- and did not encounter negative 

derivatives. 
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9 10.3 Generalising The Constraints 

-610-3.1 
As a problem exhibiting a generalisation of constraints, we 

consider problem (P3). We have already touched on this problem in 

chapter 6, viewing it there as a generalisation of (P1). Now we restate it as 
(P3) : "Maximise a function t (19), 6=(6... et)' 

)subject 
to 

(i) Aj >o, (ii)Ce =b where C is an s�t matrix of rank s" . 

As was said in section 1.1 this problem can define a 
further example of problem (P2), namely one in which the vertices 

u, ,.. uj would be those of the following intersections which belong 
to the constraint region; the intersections of the plane C e=b with 
(t-s) of the regions e 

. =O. We would wish then to solve (P2) 

for LJi{v(01 eýP) Fj Ili , Hence the reason for relabelling as 
the objective function ýR -) of (P3). 

Discussion of conditions under which such a reduction of 
(P3) to (P2) is possible, is deferred to section 10.3.5. Prior to 

that examples will be encountered which will illuminate that discussion. 

Of general interest for the moment is that, as vie shall see, 
other reductions of (P3) to either extensions of (PI) or to problems 
which are effectively (P1) can also sometimes be established. 

The relevance of such links between (P1), (P2) and (P3) 

is that our primary concern is again in the formulation of algorithms 
for (P3). These links will suggest an immediate answer., namely any 
algorithm which has been formulated for (P2) applied to the appropriate 
reduction of (P3) to (P2) or (Pi). 

S 
Of particular interest to us again is the use of 

FP-Cd 
) 1} 

,d= 
d1, ... , d3, d ;, e note here the general 

result that if 

O(p) - iýýeýP)} ) e(P) = ýPý J 
then 

aý/app _ 
I. [aq, 1ae' = Gý, {e(P)ý ýýý 

The iterative rule for p under 
FP{ds, 11 therefore 

transforms as Co11o. is 
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eýt c-) (_) 
s 

cam) cam) 
s 10-3.1 

a 

Hence 

Ls. i 
cr+t) cr'1 s 

--ý] 
[y 

P Cr' 
10.3.2 0 

[LLLaý1 /ö eCr, 

CLi [. a ý{lae 

This is a partial restatement of 10.3.1 in terms of e. 

In general it is not possible to substitute for each individual pj 
in terms of 0 since there need not be a unique p satisfying 

e- e(r) F. r. "j . 

In practice of course it would not be of interest to 

derive 10.3.2. One would simply first find p° and then evaluate 0= 8(pý, 

It is of interest to do so here since the application of 
s 

FPýd 
)I} to the solution of (PI) or (P2) for other reductions of 

(P3) to these problems) suggest different iterative rules for 6. 

We derive these in the next sections with special cases being 

studied first. 

510. .2 fie consider first the simplest case to deal with. This 

has s=1 and is the problem: 

(P6) "Lla: ximise '(e) subject to (i)O3 o 

where c= (ci,.., ct)' and c>0. " 

The choice of b=I and the restriction ci .>0 is without 
loss of partial generality since n', 9= b can be transformed to 

Wie= i)c; >o if a1,..., at, b are nonzero and enjoy a common sign. 
The possibilities of some negative c j, of cj=0 for sozae j, and of 
b=0 will be commented on later in a general context. 
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There is a fairly natural approach to reducing this 

particular version of (P3) to (P1) 
. Let pj=cjej and sie wish 

to solve (P1) for ý(p) = t(p1/c1,..., pt/ct) . This problem is 

also identical to solving (P2) where the vertex u. has one nonzero 
i 

component, its jth component which is (1/c. ). 

If l (") is homogeneous with positive derivatives, then 
4(") also enjoys these properties. The positive property is clear 

from the formula aý/app atP/aj , and in view of the one to one 

correspondence between p and 6 in pj =cj 6j, iteration 10.3.2 

simplifies to 

%% _6 cr) c'-) ['-Ö) (r) (, +. ) 
10.3.3 " eJ .= eJ . c1 . 

[aý/aeý ] A< <i ý/a 

An initial 6(O) corresponding to p(, 
O) 

_ 1/t is 
[off 

10-3.4 

Results of applying this iteration in an example satisfying 

the necessary conditions are reported in section 10.3.4. 

£10, A second special case of problem (P3) takes b=I and 
takes C to be a matrix which has exactly one positive entry in 

each'column, the remaining entries being zero. If the variables 
6,34003'At are suitably labelled then C will have the form 

xxxxooooo0 000 
ooooxxxoo 000 

C_`. 00 o)XX o 000 

000 
0 o)0cx 

where X denotes a positive value. 

This means that the variables e,.... . At are partitioned 
into s mutually exclusive and exhaustive subsets 

O 
I,... )OH s and 

the s constraints in CE) =6 comprise constraints of the type 

considered in the previous section, one applied to each subset 
@H 

i only. 
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Put this way there seems a much more obvious approach to 

numerical solution of (P3), namely to apply iteration 10.3.3 to 

each subset 
OH 

i. 
This has the impression of viewing (P3) as 

requiring the simultaneous solution of s problems, each of which can 

be reduced to an example of (P1) or (P2). Certainly this would be 

the case if P(6) were to factor into s functions, the mth function 

depending on 
@m 

only. 

The constraints can be restated, as below, in terms of 

some coefficients c,,.. yct and two. sets of labels iI" i2.,...; iS and 

j1' jz*, " ", "js where i1 =1 jm = im+ 1 -1 for m =1, ..., 
(s-1) and 

t. They become 

k=ý� 

Iterations under the above suggestion are then given by 

-10-3-5 
(r-1)= `, sCad'/ae`_, Is k kSýaýi'ýöek)1s 

-LM 

for m=1,..., s; I=i,..., jm. 

This iteration is clearly quite different from 10.3.2. 

The following example confirms this. Take s=2, t= )- and 

1 1 0 0 
c= 

0 0 1 1 

so that the constraints reduce to 6, + Az= I0 -r 64= I. 

The full constraint region is then the set 
S`{ (0, 

) 021) 03 , 
e4) : 19 j'O 10 

B1 .- gte =), 63 -- 64 'I) 

which is a polygon with vertices 

uý _ (i, o, I, 0)' 

(0,1,0,1)' 

these being the intersections of CO =? with the two planes e1 = Ot 

Aj =0 for (i, j) respectively. 
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That S is such a polygon follows from the fact that 8E5 

satisfies 9 ZQj-j for any probabilities p,.,.., p satisfying 

p (A3_ 62) + p4 ý 

px = 8ý - py ) P3 - ez I'of 

maxt0, ( e2+ A4)-1} V rein{02, Ojf1 . 

That (( 62+ 8)-11 is no larger than either of A2,84 follows from 

the fact that G. >- 0, e2>- 0,01+ ß2 =1 implies 2-1) e- 0ý and 

03 %0, e0, e3+0 
4=I 

implies (e4-1)'- 0. 

Consider now that the iterative rules 10.3.2,10.3.5 

imply respectively the following formulae for AI 
( r+1 

ýrý Cr) o tr) 

" 

Cr% ýr> 

S 

(r t lý 
1 

r> [a q)/a o, -} +Iz [a ý'Ia l+a Ala e 

and 

17`r) a 
/a 

e`r' 
s 

e`r) a ý/ aelr'ýý -+ 
ez'[a ýýýez >ý 

11t 

ý( 

1] 1 

On the whole 10.3.5 would seem the more natural iteration. 

In the following example it defines an EN algorithm when 9=1. 

Recall example 8.5.2 which concerned square JxJ contingency 

tables with missing diagonal entries. Suppose a probability model 

proposes- independence for such a table. Denoting the entries by 

n. , the `Likelihood conditional on N= ýýý"" is given by 

Tsn.. 
-TFTF 

sN 
P 

ý 
k k j=1iýt k=1 

- 
ý°ýi 

1ý il ýdkl ký 

Y., here 
T 

* ý# Note 

N=C. _ R.. 
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To find maximum likelihood estimates of q, ß we Trish 

to maximise ý(0) with respect to B, subject to 
T 3- 

-<j % 0, Pi 3"! -ý J`I 
T- Pi =1ý 

ý=1 a 

that is, subject to (i) 0 O. : 0, (ii) Ce=I where 

o1 

C= 
r 

where 1, Q are JX1 vectors of l's and 0's respectively. 

We have 

l'J /q Cý 
+-N 

Ii 

aý ýI 
- ý°ýkPk] 

/Bill 

Under 10.3.5 with 9= 1 iterative rules are 
(ri i, 

J (r) 

T 
Cam) Cr1 

01 c 

C) VtT= 
II (r+lý [r1 (r) 

T 
Cr) (r 

These simplify to /; 
\3 

+ Cý It -hak k1_ ;e 
Pt C, 

a= Nah B. 
J 

k {N-(, rPjrý+c [I - F--(k ß ]J( N 

C') 
f3ý 'r 

Imbedding the problem in an EM algorithm context the 

appropriate model for a complete table is one which proposes full 

independence. The likelihood is then 

S- U -3ýý 
fCn I 

ýC RN1 Iflkkl 
"" 

(°(, 
! -i) 
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Since the 

the E-step replaces 

shown to be given b 

(r1 
kk 

natural logarithm of this is linear in nib 

n, by its current expectation. This was 

y equation 8.5.6, namely 

CrI fir) 
r Cr) Cr) 

N`ýk(ýk [L-ýiýx 

The 111-step uses the formula 8.5.2,8.5.3, namely 
crt 1) (r) +ý / (rl (nkk 

+ Ck) 

1 /L 

(nkk 
t Rk) 

which trivially reduce to the above. 

610-3. We turn now to more general C satisfying the necessary 

conditions of problem (P3). 

There does not seem any natural analogue to iteration 

10.3.5 unless the constraints GO =b can be transformed to constraints 

of the type considered in section 10.3.3. 

The following however is an alternative approach which 

may reduce (P3) to an example of the special case (P6) considered 

in section 10.3.2. 

Suppose without loss of generality that 

1 ,h b= 
0 

Denoting, the ith row of C by di the constraints C0=b are then 

given by .. i 

of iA-0l 

These can be restated as 

ý1I0= i d0 d6 

dýA =O 

Finally these transform to 
ýý6 =L 

cýp 0 

/5 

ýý 
ýh 

t= (M+I)) 
)5. 

_ z/ __.. M 

, here o1 = d1, ei = ai d1 for i=2,..., m, ci = di for i= (m+1),... s. 
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The suggestion we now make is to delete the last (s-1) 

constraints by substitution for, say, the last (s-1) of the BJ sJq 
in terms of the remaining 6iIs. This would transform the problem 
to an example of the following problem. 

(P7) "Maximise T(e) subject to (i) 8 0, j=1,..., T; 
(ii) r-'6 =I where c= (c,,..., cr)'; (iii) L1(A)>, 0, 

where Li(6) is a linear combination of e, 
ý, ..., 'IT. " 

Clearly this is similar to problem (P6) of section 10.3.2 

but differs from that in two respects; the constraints (iii) are an 

additional feature and there is no requirement that cj > 0. The 

latter is not guaranteed when (P7) is the above reduction of (P3) 

(in which case T= t-(s-1), 1= s-1), nor is P(-) guaranteed to have 

positive derivatives. 

However suppose that in the original problem (P3) the 

parameters 0j, j=i,..., t, are strictly positive at the optimum, 

as would be the case if they are probability parameters for a. 
likelihood. Then with respect to (P7) the constraints (iii) will be 

slack at the optimum. (If it emerged that Li(e) = 0, then we have 

a constraint of the form Qie =0 which could be dealt with as above. ) 

The optimum 6` will almost certainly be the optimum subject to only 

constraints (i) and (ii), and, if cj >O )we effectively have an 

example of problem (P6) to solve. 

The latter possibilities were realised in the following 

example which is the one to which reference was made in sections 
10.2.3 and 10.3.2. 

The example arises in a statistical context, the particular 
instance of problem (P3) being that of determining the maximum 
likelihood estimates of the cell probabilities of a square kxk 

contingency table, under a hypothesis of marginal homogeneity, assuming 

a k2-cell multinomial model for the cell entries o... ij 



311 

The likelihood therefore satisfies 
kkkk 

CL Li L- 

The hypothesis of marginal homogeneity states that 
kk 

10.3.6 .ý 
'+j 

L_ 
Lam. JJ 

that iss there is equality between the mth row sum probabilities 

and the mth column sum probabilities. 

The problem of course is to maximise L0(q) subject to 

these k constraints and to the constraint FEt.. =i, as well as .., o. 
Clearly this is an example of (P3) with t= k2 ,s= k+1. However 

the resultant matrix C has rank equal to k. Given the constraint 
E: Y: -Li,, =1_)one of the constraints in 10.3.6 is unnecessary. The last 

say can be omitted and a further simplification derives from the 

fact that the parameters qmm cancel out in 10.3.6. The hypothesis 

of marginal homogeneity makes no claim about these parameters. As 

a consequence their maximum likelihood estimates under the hypothesis 

and under the multinomial model are the same nnamely o /n 
)n=ZL0 

We can therefore reduce the above problem to the follu ing 

kko.. 
"1., iaxinise f (-C) = if TE `LSýl 

zßj 
subject to (i) 9.. >0 

kk--k 
TT cL. -[I °., ý)/ý 6o i=1 jýý ýJ 

(M-ý 

`$j 

kk 
E 9-1w% z7- 

Again this is an example of (P3) with t= k2-k, s=k and 

now the matrix C has rank s. 

Consider the case k=3. Then the fäll constraint region 
is the set 
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S=j (q, 
12, q13, g21., q23, g31, q32) qo_j >0, 

q12+q13+q21 23+q31}q32 =b, 

g12+q13 g21-"31 =0 

q21+q23 q12 q32 =0} 

This is a polygon with vertices 

(1/2, O, b/2,0,0,0)' 

u2 = (O, b/2,0,0, b/2,0)' 

u3 = (0%0,0, b/2,0, b/2)' 

uu _ (W3, o, o, b/3, b/3, o)' 

u4 _ (o, 1/3, b/3, o, o, b/3)' 

However employing the recommendation that we deal with the 

constraints (ii)(b) by substitution, relevant formulae can be 

q31 = q1 2+qß 3-9.21 q32 = q21 +q23-9.1 2 

The function f(q) then becomes 

_[ 
l_ 0I 013 ZI z3( 

l031 / 
032 

X23/ 
- ciiz `ßi3 Uzi z3 

`ýýýt 
ýý3 z� l 

ýz1ýis ýý-2, ) 

and also 
33 

CL 
ýZ 

t Zýi3 t ýzl t zýý3 

t ý- J 

Replacing (g12, q, 3, q21, q23) by (0 
VO2,03, Al) we have the 

following final reduction of the original problem. 

ul, ayi ise ((eý = e'9z3e3zi s* 0- e3) (e-, + eý -e '\ 
ý 

subject to (i) 6iß 0i=1,.., 4. 
l' I 

(ii) c'e =1, (1/b, 2, /b, 1/b, 2/b)' 
ºI 

(iii) ( @1-- 62 63) > 0, (9 
3+0 4- 61) > 0. 
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Clearly this is an example of problem (P6) since ci > 0) 

but with the extra constraints (iii). However the latter must be 

slack at the optimum since all optimum qi must be strictly' positive. 
If an initial 6(0) satisfies constraints (iii) then hopefully 

iterations under formula 10.3.3 would satisfy the same conditions. 

That G(0) suggested by 10.3.4 is in this category for 

here it suggests 

e(°) =e 
(°) 

= b/4 3 

Isý 

Since e, (O) 
= e3(o) we have 

81 
(0), 

0 
2 

(0)-, 
9 

3 
(0) 

= 82 
(0) 

>o 

e(o)+ e 
(0) 

-e 3 

The following alternative 6(0) also satisfies the 

equation e1 
( 0» 

=6 3(0). 

A special case of marginal homogeneity in a square 

contingency table is that of symmetry. The table conforms to a hypothesis 

of symmetry if qij = qji. Maximum likelihood estimates under. such a 
hypothesis are given by Zý`ý 

Taking these as initial approximations 
4Oj) 

to the 

maximum likelihood estimates q1ý under marginal homogeneity suggests 

in this particular example 

10.3.7 e1(0) = g102) = (o12+o21)/2n 

0 (0) 
2 = q13) = (o13+o31)/2n 

0 (0) 
_ 

(0) 
q = e(0) 

3 21 1 

G (0) 
= q(0) 23 = (o +0 )/2n 

23 32 
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It is conceivable however that iterations under 10.3.2 would 

be undefined for derivatives are 

(ýJfýe1 1 -4- 
03t 

- 
C) C 2- 

l eý eýýez-. 03 e+6, 
ý-6i 

aý/aez = vXe){fý °'3 + °31 

O; 
t 

*03 
+- 

032- 

(P(e) 
_+ 

032 
T e4 G3-t e4-el 

These derivatives particularly the first and third could 

conceivably be negative; only these could be negative if constraints 
(i) and (iii) are satisfied. However '(6) is a homogeneous function, 

a product of homogeneous functions. Also if constraints (i) and (iii) 

are satisfied it is a positive function. Hence, because Go, all 

derivatives are positive at the option since from theorem 2.5.6 they 

are given by 

a ýýa e=N 

33 

where N=) 01 is the degree of homogeneity. 
i' 

If then derivatives are positive at 
4 0), 

one would expect 

the sane at subsequent 6(r) 

The latter proved to be the case for the following data 

set on the unaided distance vision of 7477 women aged 30 - 39, 

contained,. in Plackett (1974) (See pages 22 and 61). 

Grade of Grade of Left Eye 

Right Eye 'Highest Second Other 

Highest 1520 266 190 

Second 234- 1512 510 

Other 153 4 264-8 

In fact Plackett had the data in the form of a 4x4 table, 

the "other" category being subdivided into a third and lo; rest grade. 
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The hypothesis of marginal hornogeneity'is a natural one 

to consider for these data) and Plackett obtained maximum likelihood 

estimates under it for the 1x11. table using a Newton Raphson'technique 

applied to a lagrangian which preserved the constraints. 

Note that the observed frequencies are large. As a 

oonseouence the likelihood L0(q) must be a relatively flat surface 

suggesting an ill conditioned hessian matrix. This may explain 

why some difficulty was experienced in trying to use a Newton Raphson 

technique which differed from that used by Plackett. 

However no great difficulty was experienced in implementing 

iterations 10.3.3. Relevant details are as f ollorrs. 

4(e) - eý 6o. 0290' aý34 e 1o 01+ e2_ e3)153( 03+ 91+7 9 )444 

1-(5680)/(7477) = 1797/7477 

Initial approximation 10.3.7 was used. 

No negative derivatives were incurred, the constraints 
(iii) were never violated and monotonicity was obtained for 

O. 1, O. 2,0.3,0.1.. 

The iterations converged to the point 

(e, e2, e3, e)_ ("03371, . 02268, . 03313, . 06.06) 

which yields the folloving expected frequencies for the table. 

1520 252.02 169.62 

247.74 1512 479.00 
173.90 474.72 2648 

These would seem to be the desired optimum values. They 

are comparable to the expected frequencies Plackett obtained for the 

corresponding )'I table. 

Again convergence was slow. Of interest is that in the 

cý,:. e of the 3X3 table the case 8=0.5 just simply produces a 

creasing sequence of ý(e)) values. It is not clear why this 



316 

happens. It imposes a relatively small upper limit on the values 

of 5 yielding mono tonicity, considering that P(6) is a product of 

homogeneous functions. Possibly larger values of b would have 

achieved monotonicity had initial approximation 10.3.4. been employed. 

510-3.5 We now turn to a brief discussion of the conditions under 

which problem (P3) can be reduced to an example of (P1) or (P2). 

We also comment on some other points concerning (P3). 

Of particular interest is to establish conditions under 

which the convex constraint region 

5 ={e. 0; >, a 3 _, j__-_, -t3 Ce=6i 

assumed nonempty, is a polygon or simplex with a finite set of 

finite vertices. 

We wish to ascertain when there belongs to S, at least 

two distinct intersections among the intersections of the plane 
C8 =b with (t-s) of the regions 6- =o. 

This will certainly not be the case if b=0 for then 

the origin is the only such intersection. 

It will also not be the case if C has a column of zeros, 

say the last. Then C6 =6 imposes no constraints on et and so 

S is infinite. 

Suppose then that the latter is not the case and assume 

without loss of generality that 

S- M 

Then a sufficient condition for vertices of the above 

type to exist would seem to be that at least one of the first m rows 

of C should contain only positive values. Suppose the first r=, 

satisfies this. Then c, 8=1 is a constraint of the type 

considered in problem (P6). Its intersection with the positive 

quadrant is the "triangle" with vertices (1/c 
j)aj , where e, is 

the j `'h unit vector and ý; =C- Since S is the inter- 

section of the remaininE linear constraints in Ce=b Stith this 

finite traingle)then S will have the desired structure, assuming S 

contains more than one element. It follows that this will also be 

the case when the matrix C does not have a positive row among the 
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first in rows, but the constraints C6=b can be transformed, by 

taking linear combinations, to constraints DG=J- which do satisfy 
the condition. The special case considered in section 10.3.3 is 

an example of this. 

It may be that the latter is a necessary condition 

if S is to be a finite simplex, but we will not pursue this. There 

may be some general result which is of relevance. Possibly Davis 

(1952,1953,1954) is informative in this respect. 

We consider some other points. 
(i) Suppose b=0 and we choose to deal with the constraints 

CB=o by substitution as in section 10.3.4. We thereby transform 

the problem to one of maximising a function ý((D) subject to 0i> o 

plus some additional inequality constraints. If though it can be 

established that all constraints are slack at the optimum then we 

essentially have an unconstrained maximisation problem. However if 

the function t(e) is homogeneous one would tiish to employ the 

I. constraint 16 

(ii) Suppose C does have at least one column consisting of zeros. 
Then problem (P3) is of the form. 

(P8) "Maximise [1( ai 
16 2) subject to 

(i)e>o Q>1 9 

(ii) De, =6 
where D has no zero columns. 

If the set )Del= 
b} is a finite polygon 

then numerical solution of (P8) could be achieved by combining 

algorithms of . 
the type sie have been considering applied to Q, with 

unconstrained iterations for 62, cycling between iterations for 

01 and iterations for 62 perhaps. 

(iii) Suppose the constraint region for problem (P3) is not a 

polygon. Then it must be infinite and in principle the numerical 
techniques which have been discussed in earlier chapters are not 

available to us. However S is still convex and it will be the case 
that we could view S as the limit of a finite polygon. We can 
therefore use theorem 2.5.6 to establish first order conditions for 
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a differentiable finite optimum as the folloviing example illustrates. 

Consider the problem 

"Maximise ý( 0 
1, 

@2) subject to e.., >, o cct ex- A, _I 

The constraint region is those points in the positive 

quadrant which lie on the line Az = 6t ý 

I 

It is therefore given by 
NL± 

o( 
. uzM) 

ý(ý 
4 (Mý is the convex hull of the tho points u= (5 o)' uz- ( tthere 

\ 1) zý, MGM-I , 

Any E)D(LL, ) z(Mý satlisfies 

e= -p, (ý`1) , -ý _jv1) z(M) where 

ey 
Hence 

For M large enough we will have E 
Iu, 

ý z(M) where 

G* is a'ýfinite maximum. If ems` is differentiable then by theorem 

2.5.6 

F,,, ( eý LL I) =o Fý (e 
ý ý(M) =o 

Equality will obtain in both cases since e'" will not lie on the 

boundary of F(at) z(M)) for large enough Y. 

Using the general results 

LLJ = Gý 

ý, ý 
(«� CL) _ aVae 

tp(J> 
u) 
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we obtain 

f1(64, L) Mf (M) 

where 

-f(M) 

=ý- -_ M)1 qJ a U, a M-T, 
(Mýýýa + (ý 

- Ml aeý .J ae1 

M ä6 Ný äe 

Hence for L large enough must satisfy f. (Mý =0 ýj=i,:. 
Nov . let II- ° and 

(M) >°- 
(j 

+ 

. 
In fact f(M)-ý o as 11ß- for any finite G. This is 

a consequence of F(A) ý(M)) depending on the distance bet%veen 

e and z(M). 
The implication though from the second limit is clear. 

The first order conditions on G', is that 

10.3.8 a ý%a eý a ý/ae =o 

This is also obtained by what is the more natural approach 
in this simple example, namely to substitute for say 62 in terms of 
A,. First order conditions are then given by 

10.3.9 f ý(e) =o 
where 

fCa) _{o, 
e, £) =e ßzCe) _ -e 

Since it follows that we have 

that 10.3.8 and 10.3.9 are equivalent. 

In more complex examples establishing first order conditions 

by using theorem 2.5.6 as above may be as simple an approach as any. 
A further consecuence of the argument, that the solution 0'` to an 

example of (P3) with an unbounded constraint region, belongs to a 
finite polygon )O(M) for large R:, is the folly ling. The maximum of 
l/(') over ? (m) also occurs at G° and this is an example of (P2). 
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ý, e could consider then using any algorithm v, hich has been formulated 

for (P2) if we were convinced that 0P was an interior point of 
)D(m) 

. 
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Si0. A Fusion Of Algorithms 

In this section we extend some thoughts of Titterington 
(1977). He proposed a fusion of algorithms FPýd6ý and Sf 

for problem (PI). 

Recall that the constrained steepest ascent direction can 

be given by 

(A+ 

Titterington suggests consideration of 

( 10-4.2 Mz = [A+ - Aýi 1ýA 

and he also considers 

10.4.3 _{ A+ - AC'(U+CkAV1 d 

with problem (P3) in mind although he assumes (CA}C') to be non- 

singular. 

Extending this approach one might consider 

Such a direction of iteration is a fusion of algorithms 
FP{ti(4,9), ocr} and Sf Ajccc} in the case of C= 1'. It includes 

a wide class of algorithms. Denote by Alg{ , -(3 the algorithm 

which takes a step -( in the direction . 

Titterington notes that FPfds Ij and A1g(+n 
, *(j are 

the same ýswhen 
'ý 

diag[p. , .. )pjj and ct a= (tPý 
. The 

sarge, is true if A_ _ 
rF dý)diagf p, ..., pjj and °l 

We have already seen it to be advantageous to alla. v A to depend on p. 
This illustrates that we might also allow it to depend on S. 

Titterington also notes that Alg fAd can for an 

appropriate choice of A. become a vertex direction algorithm if 

We have already seen this to be the case with FP[dst} and more 

generally with FP[exp[So )] 13 _ °d -F, 
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It is not the intention to claim that any of the above 

directions is in any sense optimal. In the main though one would 

expect them to be reasonable directions in which to move. This should 

certainly be the case for S near I in the case of a2, m. However 

it is not in general guaranteed t hat F{ p, pd>o. 
For instance it is only guaranteed that md>o for all S>o if 

A is nonnegative definite diagonal. 

If it does emerge that ^'c(< o, there is, hoiever, no 

great problem. We can take a step in the direction of in 

which case we are employing algorithm Alg{i mi, -(j 

Titterington in fact suggests, as a further generalisation 

of m2) taking A nonpositive definite and S<o) in which case wZd 
is more likely to be negative. 
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910. A Generalisation Of (P2) 

Vie end as we began; namely by citing a generalisation of 

problem (P2). This illustrates a wider class of problems requiring 

solution of (P1). An example is given. The use of theorem 2.5.6 

is seen again. 

Consider first the design problem (P4). This was referred 

to as a particular explicit example of problem (P2). Hcwever 

regarding the design points v1, ... #vj as a basic set of vertices, we 

could view (P3) as seelang to solve (P2) not for the vertices 

vj,.., vj but for a one to one transformation of these. A slightly 

more general formulation of (P2) is suggested by this, namely 

(P9) "Solve (P1) for ý(p) 
= ý{x(p)} where for a given set of 

vertices 
V= {v1,.. -, VJ} and for a one-to-one function G(-), 

3 II 

x(e) = E{G(ý)ý _P G(ýrý- 

The design problem, of course, is an example of this 

which takes G(v) = vv' . 

This formulation suggests the following generalisation. 

(P10) "Solve (P1) for j(P) =tp[xi(A X2(P), """, xn(P)} where 

for a given set' of vertices 
U={ 

v1, .., vvj and for one-to-one 

p G( ýý 
ýý 

functions 1('), i=I,..., n xý(P) _ EfG(u- 
J=j 

This however could be vievied as a particular example of 
(P2); namely that which takes uj G1(vý), G2(vj), ..., n(v. )} 

. This 

points out hoer to use theorem 2.5.6 to derive first order conditions 

for an optimising p* for (P10) 
. This is illustrated in the following 

example, considered by Silverman and Titterington (1980). They seek 

to solve (P1) for 
O(F) 

'- I-sr acff Mo(P)} 
> 

where 

Since 

M0(r_; 
they seek to solve (P10) for 
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n=2 
ý(X1, x2) _ -logedet[IJ{(X1, x2)j1 

0XVxA 
= X1-x2x2 

X1 is a kxk matrix 

x2 is a kK1 vector 

G1(v) = vv' 

G2(v) =v 

ui ._ 
(vivý, vý) 

With a view to deriving first order conditions for the 

optimising p~` we evaluate the directional derivative of the matrix 
N {(Xl, 

x2)1 at X1, x2 in the direction of Y1, y2. 

Nf[(t-E)X1 FYI 
ýý-E> z+E`'2]I 

-E X +E -E x+e/ 

r\i 
=x+ E(Y -Xýý iý1li+ Eýyz Z 11 

Hence 

_ 
(Y1 

- J1 Jý 

-ý 
(Y, 

- Xi - (yam-x\x2 -"- ýý 1J ý 
1. .i 

xi 
-4- r=(y - 

Xlz 2/+6 (y xl xý + Ex -x 
vii, 

- 

+E( -xýXy2-" 
1 

aS E-> 0. 

Thus the function Nt(X,., x2)1 has directional derivative 

l1V 
:L-X, 

t32, 
-Z xL 

_ 

(I 

I- 
yýy21 - 

Xl ßx2l / -ý 
A% zý-yxz 

xzxz 

= N{(Y., -4- (yam-X)(yz x )ý 
. 

Now using the result that T(YIßx2) has directional derivative 

F (X, 
x,, 

) (1, ýJ - 
+r{'V (X, 

) 
X IFN 

we obtain 

-k- &{N-I(X, 
ýxýýNCYý "z) - cyx-xýiýCN ý(X�zs)1cyz-xý. 
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Now take (Y1, y2) = u3. Then 

LY. Lr Ls. LT: YýJyz 
iJJd 

T' us 

F1 (Xi x2)ß `L3 `k-( -- - x, 
) ( -xý 

Appealing to theorem 2.5.6 we conclude that first order 

conditions for a maximum are 

kC 
3 

Silverman and Titterington let this result be suggested 
by a duality theorem which establishes that the solution to the 

problem of finding a vector c and matrix 11 to maximise det(TN) subject to 

k 
J 

is given by C=v, Td = Lr1(p) . The solution defines the ellipsoid 

0::, .;. 0 ct content which contains V= {v,,..., vJi. 

These first order conditions can also be obtained from 

trheore., 2.5.6 by an alternative route. Titterington (1975) has 

shown that the solution p* to problem (P1) is the same in the following 

two instances 

ko = Co = 
and 

c(P) - kect {M Cp) 
where 

W. w ui - 
The second problem is a straightfor1tard D-optimal design 

problem in (k+1) dimensions. Vie already lmow from theorem 2.5.6 that 

first order conditions on p` are 

>O 

10.5.2 vij 
4 1 (1<41\ 

l 

Conditions 10.5.1 and 10.5.2 are equivalent since 

to 
M03 

J/ 

A 

r) -=(, y -'( 

03 (r 
- 

-7) 
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Titterington (1975) also shows the same p' to be 

Da-optimal for s ='k with respect to the design space W= I rt1,9v1J 

i. e. p' solves (P1) for 4(p) = ý3(p) = -logedet 
{All (p)A'} 

, 

A= IIk: j. This is so because under the transformation w'. = (vß, 1) ) 
the above ellipsoid becomes a central cylinder, i. e. a cylinder 

with axis passing through the origin. Silvey and Titterington (1973) 

established that a DS-optimal problem and the problem of choosing 
a nonnegative definite symmetric sxs matrix A and a matrix 
B, sx(k-s), to maximise logdet(A) subject to 

/f1, 
U 

are duals with related solutions. The second problem is referred 
to as a"thinnest central cylinder problem. The solution defines that 

smallest central cylinder, ellipsoidal in the first s ootaponents, 

which contains the design space 
U. 

These discussions illustrate that an optinisation problem 

can possibly be expressed as an example of (Pl0) in more than one way. 

A generalisation of the original problem is to solve 
(P10) for 

}t ýixý, Xýý _ -tom{A N 

X% - x, x2 

Certainly for N(X1rzc2) nonsingular it would appear that 

F, pf 
(X�- ), (yý) yxý} _ 

=t i' LA N-I(x, , x, ) A, 1+ - -ý- i [F} Nk, Xa/A 
] -. A NXx -ý 1 

(y}_xZ>ýýN , (X', xýý Lý 
N i(X1, 

xz)A, 
f-ýAýN_(X1,, ý( 

z-, ýz) 

Taking Y yxý =; ý. ýr. . tL. X. "zý 
(M(1, ) 'r 

('h) [(a, ý), "ii = 4r[AMo(r)Aý1 -C` J)'Mý(r)A'[AMo(i')Aý A : (P) ( -a). 
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Clearly any of the algorithms which have been considered 
f or (P2) can be used to solve (P10) 

. If there is more than one 
(PiO) variant of a problem then this may suggest more than one 

variant of a particular type of algorithm. 

Silverman and Titterington employ the "Eliminating/ 

augmenting" algorithm of Silvey and Titterington (1973), which 

we considered in section 6.5. This will be the same for the 

above two variants of (P10). It proved to be highly efficient in 

the examples they considered, for which J was large but k=2. 

Titterington (1976,1978) also considered iterations under 
FP(d, 1)" for the two problems. These are (p(r), p(1+, 

)) 
_ (A Z) 

where, respectively for the problems, 

10.5.3 'r = \- [- ýo ý Mo Gk)E - `IC)ý/k L a5 
and 

10.5. E (, ý W 

3(k+ 
ý) . 

Note that the matrix L0(p) is nonnegative definite since 

/M t) L- Lr 

Jl 

Hence under 10.5.3 Tj >0 if "ý, ,0 

Note also that since Li 
0 

(p) = Y(p)-w', lemma 5.2.1 could 
be used to express I"So1(p) in terms of k -I (p) 

. We have already 

considered extensively possibilities for a simple updating of 
1i 

gy(p) 
asap changes from p(r) to p(r+'). These will have analogues 

in the case of M (p). 

Titterington reports that iterations under 10.5.3 were 
faster to converge than under 10.5.4.. ?. onotonicity we 1mow to obtain 

under 10.5.1. Titterington reports strong empirical evidence for it 

under 10.5.3 also. 
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Of interest finally is that with respect to 
ý(p) 

=C 1(p) = -logedetf{Mo(p)jý formula 10.5.4 defines iterates 

under FP{h1(d, 1), 1}, where h1(d, S) = (d+1) 
, while, with respect 

S 

to q(p) 
= ý2(p) _ -logedet[{M(p) 

jJ, formula 10.5.3 defines iterates 

under FP[h2(d, 1), 1 j, where h2(d, 9)= (d-1)6; 
. 
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