
on the automatic construction of eragram translators with minimal

read/write storage reouirement.
---- ----- ------- -----------

by

Majid Azarakhsh

A thesis submitted to the University of Glasgow in
accordance with the regulations for the award of the
degree of Doctor of Philosophy.

I

ACKNOWLEDGEMENTS

I would like to thank Professor D. C. Gilles and

Pahlavi University for giving me the apportunity to.

study for a higher degree.

I would like to express ny sincere thanks and

appreciation to Mr. D. G. Jenkins who supervised this

workp for his continued support and interest ' which

were of great value in bringing this thesis to

completion.

I also thank all members of the staff of

the Computing Science Department of the University of

Glasgow who have helped me in so many ways.

Majid Azarakhsh

ý. ýaýý

CONTENTS

CHAPTER 1: INTRODUCTION

Motivation

Philosophy

2: APPROACH

Principles of the approach of KHAR

Grammar and Formal Definitions

Notational System

Conventional Compilation Process

Lexical Scanning in KHAR

Syntax in KHAR

Conventional Semantic Processing

Semantics in KHAR

Code Generation

3: DESCRIPTION OF KHAR

The recogniser and the graph encoder

Preparation of input to the KHAR system

Code Name File and Code Name File Index

Internal Form of the Source Program

Encoding

Fixed Codes and Variable Codes

A practical example

4: SYNTAX CHECKING & ERROR RECOVERY

Syntax Graph

Transition f, latrix

Valid elements of a Transition Matrix

Checking technique used in KHAR

i ý

Formal algorithm

An example

Error recovery

Specific Actions

An example of their use

Error States

General Action

Summary of Error Actions

5: SEMANTIC PROCESSING & CODE GENERATION
1,

The Semantic Mechanisms of KHAR

Semantic Actions

Semantic Checking in PL/O

Pass 1: syntactic processing

Pass 2: dealing with manifest constants

Pass 3: checking variables

Pass 4: checking procedures

Attriobute Propagation in Expressions

Code Generation

6: THE INTERFACE TO KHAR

Syntax Languages

The General Syntax of SL Languages

Graph of the General Syntax

Language Symbols of SL

Separation of SL and Language Keywords

Use of pointers in Transition Table

Special Actons SAl to SA12

Syntax Graph for SLO

Transition Table for SLO

Action Table for SLO

Coding of SL1 in SLO

The End-State Symbol

Description of the Statements

Actions

Syntax of SL4

Syntax Graphs of SL4

Coding of SL4 in SLO

7: IMPLEMENTATION

Outline of prototype

Transition Table (TT) and Action Table (AT)

Structure of TT

Structure of AT

Files and Programs Used

Files used in the system

Programs used in the system

Processes used in the system

8: DISCUSSION & CONCLUSIONS

Size

Simplicity and Extensibility

Portability

Clear and flexible Interface

Definition of language semantics

Potential for development

Applicibility to Programming Languages for Microprocessors

Conclusions

ADDITIONAL MATERIAL: LISTING OF THE KHAR TRANSLATOR SYSTEM ;

I
I

ABSTRACT

We present a translator system, KHAR, which is designed to use a

minimum amount of read/write storage in environments where this is a

scarce resource. The system may be used for languages which are L. L. M.

We describe the system and use its application to the checking of

-the syntax of a machine oriented language, AML/1, to illustrate KHAR's
I

handling of syntax and error recovery and similarly, use its

applicationto the checking of the semantics of Wirth's mini-language,

PL/0, to illustrate KHAR's handling of semantics. We show, too, how

features not found in PL/O can be handled.

The interface to the KHAR system provided for the

designer/implementer of a language is a set of semantic graphs, after

Cordy, to which may be added error recovery and code emitting actions.

These graphs are encoded in a development of BNF, called here, Syntax

Languages. The linearized graph, with its actions, is translated into

two sets of tables, one to drive a push-down automaton to recognise

the CFG of the language, with cross-linkage to the second which

defines the action to be taken at that point in the syntax. These

actions operate on registers and a read-only stack, which handle

integer numbers as the encoded form of language symbols. The

simplicity of this mechanism is due to the multipass nature of KHAR.

We compare this simple mechanism with those used by Cordy.

We report on the degree to which KHAR meets its design objective

of minimizing work storage requirements.

We also note the applicability of KHAR to research in language

design, because of its clear and flexible interface. We discuss the

portability of the KHAR system and its implications for the production

of compilers for microcomputers. We also compare the features of KHAR

with a compiler writing system.

CHAPTER 1: INTRODUCTION

MOTIVATION

At the start of this work, the need for small, multipass

compilers to work in small background partitions within on-Line, tire

critical, process control systems was known to exist [PIERCE]. As no

clear candidate existed, or exists, for a standard real-time language,

any method adopted would have to be language independent and, if

possible, portable. Secondly the necessity to research language

designs for use by electrical engineers moving from logic subsystems

to microcomputer subsystems is urgent. High level languages such as

PL/1 and PASCAL are inappropriate unless severely sub-setted.

Any language seeking to be of use to engineers must allow direct

access to the byte and multiple length features typical of

microprocessors while imposing the necessary conditions for

reliability, say, type checking, restriction of access to variables

and code structures. Such a language, called A Microprocessor

Language, is under development CJENKINS]. The development process

consists of the production of a series of refined languages, AML/1,

AML/2 and so on. Refinement requires the use of each language by

engineers to generate feedback to the designer. Since subjective

factors are highly important, the language design must be quick to

implement, be able to respond to user feedback, while at the same time

providing good error recovery and reporting from the outset, for,

otherwise, the language would be unusable and no feedback obtained.

Good languages, such as PASCAL, were designed to run on large

machines [WIRTHa] and the majority of implementations of PASCAL still

are for large machines. The smallest known implementation at present

is one for the PDP-11 which runs in a 16k word machine. It is thought

that this compiler is capable of compiling itself in a 56k byte

machine [PUG]. This may be contrasted with the CORAL 66 compiler for

the-INTEL 8080 which runs in 48k byte. Neither would satisfy the need

to make a high level language available on a typical development

system for a small electronics company investigating microprocessors.
I

A reasonable starter kit might be expected to contain, say, 8k of RAM,

but upto 32k byte; of ROM. If a translator system were made available

which was low on work space, yet used relatively little code, relying

on tables held in ROM or pageable into RAM as required, a range of

Languages could be made available economically.

PHILOSOPHY

This, thesis presents the results of re-applying table-driven

methods to the construction of a complete translator scheme, in which

the actions of each pass are encoded as entries into tables for

interpretation by a single "translator engine", a "donkey" engine,

which laboriously translates source code into object code while

consuming as. little work space as possible. This engine has been named

KHAR, the Farsi for "donkey".

t

The desire to be able to develop stand-alone "good" compilers was

advanced as one reason for adopting a multipass-approach. A second

issue is that of portability: a "good" electrical engineering language

must be rapidly adaptable and transportable as new microprocessors

appear on the market. The general issue of portability and one

specific approach to it, the "abstract" machine, is discussed by Poole

in EBAUERed]. The PASCAL compiler produced by the Free University of

Amsterdam - generates optimised code 'CTANENBAUMb], which is

interpreted by a machine EM-1, designed to be portable across a range

of microprocessors. A similar approach, to use pseudo-code as a step

in the production of machine code was presented by EPASKO].

r

These approaches just outlined are examples of the use of

intermediate abstract or virtual machines to map the programming

environment and accessible abstract machine of PASCAL onto different

actual hardware. The implementation of the AML sequence of languages

cannot use this approach since the virtual machine manipulated by the

programmer must be the same as the actual underlying hardware. Ile

require a high-level Language whose virtual machine manipulated by the

programmer is as close to the actual machine as prudence and security

of design permit. We thus present the KHAR system first in terms of

such a language, the first of the AML series, AfL/1. AML/1 is, in

fact, a context free language since its specification calls for no

semantic checking. Thus it is ideal for presenting the basic features

of KHAR before considering a language of the first type, PL/Q, which

has been described in CWIRTHb].

The cost of implementing a new language is high, since the "state

of the art" is to use the error recovery technique proposed by Amman

CAM ANJ. This is used in both the Vrije and Celfast compilers for

PASCAL. Study of the presentation of the PL/O compiler in Ck4IRTNb]

reveals the amount of effort required to code the compiler for this

minimal language on an interpreted abstract machine designed for the

language.

An alternative approach to the use of a conventional compiler is

to use a microprocessor, as discussed in CTANENBAUMa7. One

undesirable feature is that the syntax of the language may have to be

altered to make the task of writing the I1L/1 macros possible CBROWNa]

CBROWNb], an influence which appears in the design of AML/1

[JENKINS]. The addition of any type checking and any attempt at error

recovery complicates the task enormously. As a result, it becomes

comparable to that of writing a conventional compiler.

Table driven compiler techniques are not a recent or new

development. KHAR, however, is table driven throughout: that is, not

only in syntactic checking, semantic and code generation actions but

also in error recovery. Notably, the error recovery and reporting are

driven by the syntax information. Conventionally, major attention has

been paid to the syntax phases of compilation when considering table-

driven methods. Wirth discusses this CWIRTHb), and this was the

basis of Glennie's pioneering work CGLENNIEJ. Cordy CCCRDYJ has

introduced semantic graphs as a means of defining the semantic actions

to be taken by a semantic phase of a compiler, given that the input

stream is guaranteed to be free of syntactic errors. This table driven

approach has been included in the system described here, although in

KHAR the number of semantic primitive operations can be reduced due to

the multi-pass approach adopted.

As discussed by Bauer in IBAUERed], and by Wirth in CW'IRTNb], a

systematic method can be used to derive the coding of a translator

from the grammar of its language into the code for a suitably defined

abstract machine. Both state that error recovery cannot be treated in

such a systematic way and that ad hoc methods are required,

necessarily requiring an understanding of the errors most likely to be

made and of the syntax of the language, so that sensible recovery can

be attempted.

Error handling and recovery in an efficient manner has been

attacked using table-driven methods by James [JArES]. Currently, for

production PASCAL compilers, the method of Amman [AMMAN] is adopted,

which has definite limitations and involves the programming of the

explicit addition of symbols to the "follow set" on entry to a

procedure written to recognise a non-terminal of the language. The

approach to error, recovery in KHAR is to allow the designer to define

error recovery productions. No problems arise over semantic

information as discussed in CGRIES] since KHAR rigidly separates

syntax and semantics.

The system is constrained to accept Languages with an LL(1)

grammar. LL(1) grammars and their application are discussed by

Griffiths in ECAUERed]. Here, it is enough to say that

a) they make table driven methods useable,

b) error recovery is simpler since even a small degree of "look ahead"

provides sufficient redundant information to enable good recovery,

c) automatic syntax improving techniques (e. g. Foster's SID)

[FOSTER] exist to improve grammetrs so that they are LL(1),

d) LL(1) languages are easier to read and use [HOARE].

This last point is of great importance when the final design

objective of KHAR, its use in language design, is considered. As

remarked by watt [WATTb], one of the most useful tools available to

designers and implementors of programming languages has been the

Context Free Grammar(CFG). A CFG is capable of defining a large part

of the syntax of a typical programming language, and the existence of

a wide variety of syntax-directed parsing techniques CGRIES] has

facilitated the construction of efficient deterministic parsers from

such syntax definitions.

He remarks further that CFGs are deficient ' in two respects.

Firstly, they are incapable of defining context-sensitive syntax

features. Secondly, they provide no expl4cit means of linking

semantics to syntax. One approach to this problem has frequently been

adopted in translators, that is, a set of "semantic routines" is

provided, and names of semantic routines are inserted in the RHS of

production rules, an approach conventionally associated with top-down

parsing.

The KHAR system uses this approach, KHAR itself being a table

driven recogniser of a CFG, which may have verbs placed at appropriate

points of the grammar. Our work relies heavily on the use of the

syntax graph, as in CWIRTHb] and the semantic graph, as introduced in

ECORDY].

However, we have minimised the number of verbs (actions) required

and simplified the internal structure of the semantic mechanism of

KHAR by dealing with semantics (context sensitivities) one aspect at a

time. This simplification arises from the multi-pass philosophy

S

adopted throughout the work. The meaning and implications of context

sensitivities are defined in terms of a semantic graph with the

necessary actions added at the appropriate points. This has the

advantage that the designer is constrained to describe these

sensitivities one at a time and thus the user can find out the exact

way in which a sensitivity is handled.

CHAPTER 2: APPROACH

The objective of this work is to construct a flexible and

portable translator system for a variety of high level programming

languages to be implemented on small computers.

We also intend to generate this system in such a way to be able

to use it for real time applications and to be highly configurable

both in terms of its compile time environment and in terms of the

object machine for which it compiles any particular language.

Regarding the efficiency of the intended translator system we are

more concerned about the space requirement of any compiler produced

rather than its run-time demand.

Some of the programs in this system are executed only once for

each language implemented. Their task is to create a few files before

any source program can be run. These are permanent files as long as

no change is made to the language.

The basic approach to this work is that of Kernighan and

PLauger[KERNIGHANI; a system is constructed of a sequence of sub-

processes each of which consumes as input the output of its

predecessor, if any.

i

PRINCIPLES OF THE APPROACH OF KHAR

In our approach we aim to break the compiling process into as

many separate processes as possible. Ideally, every separable task is

to be carried out by a process with one input and one output stream.

We aim to reduce the maximum memory requirement in any pass of the

compiler to a minimum and make it possible to use computers with

little available read-write storage. A process might itself be set up

to read one

Ir

more input streams in a prelude or setting-up phase.

Thus the general model of the work can be illustrated as shown in the

following figure.

I

I -source program
1

_, __1

ý
ý

I
1

----ý

ii

0

0

intermediate file E---'

I
I I j-----ý

---)-I process nII-
code < --------- ýýý

This shows a number of subprocesses which transforms a stream of

symbols (which can be understood by the programmer as a program) to a

stream of symbols which is a program for the actual machine.

I1 -T ----ý1
----ýI process 1II

I IE-----I
III
ý"T I

II
1F---- I intermediate Me
II

I
ii table

-ýý process 2
Ii iE-----i of

ý
infor-

intermediate Me F---- I'mation

.ý
ý
ý

The input consumed by one process is the output of a previous

i i

process and is the concrete linear representation of a data structure.

I

This data structure is transformed into output in some specified way

by the process, that is through the execution of some set of

instructions, a program or a procedure. The table of information on

the right of the figure given above is a set of files associated with

processes. S

It should be noted that this base of information changes state as

the result of the process. The individual processes may need access

to only a subset of the information in this table and access is

controlled accordingly.

These processes numbered 1-n can either be the execution of

distinct programs or several executions of the KHAR machine each

controlled by a different syntax graph, or under the control of one

graph, with KHAR operating successively in each of three of its four

modes. (Modes 1,2 and 3 are used to translate programs, and modes- 1

and 4 used to encode transition and action matrices by translating

syntax graphs encoded in one of the SL languages.)

We do not show the syntax graphs in the figure since they are a

separate set of structures determining the processes. We show this

aspect of the system more fully in chapter 3.

GRAMMAR AND FORMAL DEFINITIONS

All Language is based on a vocabulary. For programming languages

the elements of this vocabulary are called "language symbols" or

"language keywords". For each of these languages is defined a set of

rules or formulas which define the set of well-formed sentences.

These rules are called productions because they determine how a

formally correct sentence of the language is produced.

A grammar G(Z) of any programming language of this class is

defined to be a nonempty finite set of productions. Z must appear as

left part of at least one rule and is called the distinguished symbol.

Those symbols appearing as a left part of the rules are called

nonterrninals and the other symbols are called terminals. Therefore

the vocabulary 'V' of a language is the union of its terminals and

nonterminals. We will use underlined angular brackets '<I and '>' for

nonterminals to distinguish them from terminals.

We only consider those languages whose grammars satisfy the

following rules :

1) The initial symbols of alternative right parts of productions (the

director symbols). must be disjoint. (The initial symbol of A is the

set of all terminals that can appear in the first position of

sentences derived from A.)

2) For every nonterminal symbol A, which generates the empty sequence

'e', the set of its initial symbols must be disjoint from the set of

symbols that may follow any sequence generated from A. (This point

is discussed by Griffiths in ch 2. b of CBAUERed] and by Wirth in

EWIRTNb].)

NOTATIONAL SYSTEM

To describe these productions we need a notational system, or in

other words a metalanguage- a language in which we can describe

another language. The notation we use is called codified Backus-Maur

Form (tBNF). It presents an exact explanation of the language

construction. These notations are as follows:

1) underlined braces { and } are used to enclose

multiples from which a choice must be made.

Expressions may be presented vertically like this

<label part>

<const part>

0

a

.

or horizontally like this

{ <Label part>l<const part>l ... }

(note the meta symbol 'vertical stroke'

between expressions)

2) underlined square brackets C and] enclose

optional statements or expresions such as C label :]

3) three dots "... " indicate repetition of preceding

item, one or more times.

CCPIVEPlTIONAL COMPILATION PROCESS

A compiler or, better, translator, is a program which accepts as

its input, a source program written in some high-level language, such

as Algol 60 or FORTRAtd, *and produces as its output, the appropriate

code for a specific computer. This output is called the "object

program". This process is traditionally divided into analysis of the

source program and then synthesis of the object code.

In the simpler analysis part, the compiler accepts the source

program, discards those parts of the source which are not to be

compiled (such as comments) and transforms the source into tokens.

The source program is now a linear string of symbols, the input

characters having been grouped into tokens of the language such as

language symbols, identifiers, etc.

The compiler also builds several tables of information during the

analysis part for the definitions of the new tokens, (for example

identifiers >. These tables are used during both analysis and

synthesis phases.

After the execution of these lexical tasks, the source program

has been converted into its basic tokens and is ready for syntax and

semantic analysis, in which the string of tokens is scanned using the

syntax rules, the tokens are grouped in order to make sentences of the

corresponding language and, usually simultaneously, a complete

semantic check of the source program is performed. Runtime storage

and addresses are then allocated to variables and the internal

representation of the program is used to produce assembly or machine

language of the target computer by the code generator. This code

generator is the hardest task in a compiler, the most systematic

approach presented in the literature being that of [WILCOX]. A fuller

discussion may be found in CGRIES] or CEAUERed].

LEXICAL SCANNING IN KHAR

Source text is read as a. string of characters, each basic symbol

of the language is recognised and this will be passed to the output

file in an internal form, that is to say, as an integer number.

Language symbols i. e. reserved words, standard names, special

symbols etc. are represented by predefined codes. User-defined

identifiers, constants and integers are represented by an index into

the appropriate dictionary, plus an offset (2000,3000,) which

identifies their class.

This encoding minimises the overhead in transmitting information

between processes, as it allows the rest of the processes to operate

with fixed-length symbols rather than variable length strings of

characters.
I

It is good communications practice to use the shortest encoding

for the most frequent bits of information encountered. Programming

language design, properly, takes no account of this since it has other

wider concerns. In KHAR a form of intermediate text is used which is

chosen after balancing the requirements of readability (to aid

development) and compactness (to save space).

In principle further research could be undertaken to determine

the most effective form of encoding for the system based on known or

measurable statistical information about programs written in each

language, but we do not consider this further here. Integer

representation requires two bytes of storage at most for each code in

read/write storage and between 3 and 5 characters on backing storage,

(including the space separating integers).

SYNTAX IN KHAR

As remarked in CWATTa], a CFG grammar serves as a means of

communicating both between the language designer and the programmer,

and between the language designer and the implementor. Watt states

that a well designed CFG can similtaneously satisfy all the

requirements but that, unfortunately, typical programming languages

are not strictly context-free. Examples of features of a typical

Language which defy description by CFCs are the correspondence between

declarations and applications of identifiers, and the compatibility of

formal and factual parameters. In a programming language- with

generalised data types, even type compatibility cannot be defined by a

CFG.
I

Watt argues that "syntax" should be extended to cover all

criteria for well-formedness of a program which can be determined

algorithmically. Our view is-the contary, that "syntax" encompasses

precisely those features of a language that can be defined by a CFG

and checked by a context-free parser. In KHAR we deal with "context

sensitivities" by including in KHAR a limited set of semantic and code

emitting verbs, which can be placed where required in the linearized

form of the syntax and then using semantic graphs, which are syntax

graphs augmented with semantic actions, ECORDYJ, to define the

behaviour of KHAR so as to produce a pass of the "compiler" which can

deal with a particular context sensitivity.

The advantages of this approach seem to us to be that KHAR need

use only one stack of integers to handle semantics as contrasted to

the algorithm presented in CWATTb] which requires the stack to handle

contexts, expressed as sets and,. further, that specific sensitivities

are described graphically and individually to the user of the

language. Again, as we shall see, this approach produces a much

simpler semantic mechanism than those of CCORDY].

This graphical approach contrasts with the formalisms of two-

level grammars and extended affix grammars, but, of course, is

unlikely to bear the burden of the proof of correctness which is the

distinguishing property of the latter CWATTa]. However, the

presentation in CEOCHMAN] of a compiler writer shows the advantages of

the separated, graphical presentation which results in KHAR.

Further, we observe here that designer and implementor are the

same person in the KHAR system, since the definition of the graphs can

be encoded, translated by the system, and used to carry out a

compiling process for his language.

Gries discounts some error recovery techniques since they involve

semantic information being discarded which does not occur in this

approach since no semantic content has been handled. So a wide range

of methods could be applied because of separation of the checking of

syntax and semantics. This has not been developed in KHAR but as was

remarked above, error correction can often be achieved by using an

existing production or by adding a few error productions. This allows

the designer to concentrate on language definition at the separate

levels and to ignore the error problem, although he can improve

performance by adding error productions if he wishes.

I

SEMANTICS

Semantic analysis is a part of compilation which comes between

2.10 -

syntax checking and code generation for the purpose of checking the

semantic structure of the source program.

To check for semantic correctness we need information about

attributes of all identifiers, which are found in the declaration

part of the source program. In semantic processing we use information

tables which we created in the process of encoding the symbols in

internal form. These tables contain information about identifiers,

integers andi character strings. In this process some semantic

information such as attributes, addresses, dimensionalities and so on

will be collected and added to these tables which will be referenced

at a later time in the same process, to check for semantic errors.

For each identifier we have one entry in the table and the amount

of information we need for that, depends on the type of that element,

therefore we have variable length entries in the table. For Algol-

like languages in which procedures may be nested, the same identifier

may be declared in different procedures and each such declaration must

have a unique table entry associated with it.

Each time an identifier appears in the input stream, it carries

some information. This information will be checked against the

information we have already in the table by our semantic operations.

SEMANTICS IN KHAR

Four kinds of semantic operation are presented in the semantic

charts of ECORDY]. These operations, which provide different kinds'of

actions are :

1) l ormal Operation,

2) Parametrized Semantic Operation,

3) Emitting Semantic Operation and

4) Semantic Choice Operation.

Tables, stacks, queues and so on are called "semantic data

structures". The operations are called "semantic operations" and

together a semantic data structure and its associated operations are

refered to as a "semantic mechanism".

The semantic operations, named above, are meant to provide a

complete set for accessing and managing a semantic data structure, and

the operations on any of the data structures are restricted to these

four classes. This restriction makes possible a generalized automatic

chart interpreter.

Semantic mechanisms which are commonly needed in producing a set

of semantic charts for a programming language are discussed. These

are :

1) symbol table mechanism,

2) type stack mechanism,

3) count stack mechanism and

4) address fix mechanism.

The multipass structure of the KHAR system reduces the mechanisms

to one, plus a group of registers. The operations on the single stack

are fewer in number and are distinguished by having no knowlege of the

attributes of identifiers. This is discussed fully in chapter 5.

CODE GENERATION

In KHAR we are dealing with a language in which the programmer

desires to control the code exactly, this being a design objective of

the system. Thus code generation is simple as the high-level language

must map one for one into the machine order code. This mapping may be

constrained by our semantic typing and some orders, especially

transfer of control orders, hidden by the flow of control structures

of the language. At the other extreme, say, PASCAL, we may generate

code for any suitable intermediate pseudo-machine CPASKO]

CTANENBAUFib]. We have, at present, generated code for a high-level

assembler (AML/1) and PL/O CWIRTHb).

CHAPTER 3: DESCRIPTION OF KHAR

We describe the KHAR system by presenting the structure of the

system and briefly presenting its processing of syntax and semantics,

before presenting the designer's interface, the information stuctures

and process involved in converting the external representation of a

graph or program to an internal one, carrying this through to a

practical example of the use of this interface for AML/1.

KHAR consists of a pushdown automaton, which traverses the syntax

graph, coupled, via the obeying of verbs, to a pushdown transducer.

Errors are dealt with by error productions. Since KHAR deals

separately with syntactic error recovery and the other tasks, error

recovery can be often achieved by using an existing production in the

language. This is done for PL/O where the emphasis is on the

semantic checking and code emission tasks. The pushdown transducer is

similar to that of Cordy CCORDY] but is structurally simpler since

only one aspect of the semantic task is dealt with in one pass. For

example, at no time does KHAR access tables of information about

identifiers. All transmission of semantic or environmental information

is via semantic tokens emitted by a previous pass. Error situations do

not have to be defined. Semantic checking is achieved by defining

acceptable syntax graphs for valid combinations of types and

operators. Transmission of information up and down the Abstract Parse

Tree is achieved by successive alternating passes through two

complementary phases to check the semantics of expressions. The only

- -3.1-

information placed on the stack of the transducer is in the form of

the internal code for tokens. This enables the handling of

considerable programs within modest read/write store requirements.

Diagram A shows a primitive KHAR system.

This structure requires that the language designer constructs the

driving tables by hand. Effectively he has to machine-code KHAR. This

is an unacceptable interface for general use, and undesirable for the

development pork on KHAR. We clearly require a translator from an

external representation to an internal one, as discussed in CW'IRTHbJ.

This gives the revised diagram, B.

These diagrams follow on the next page.

Diagrams A&ß

driving
tables

encod ing

process

I

Diagram A

I'

KHAR r--->c o de

dict ionaries

language
description

Irans l alorE
I

driving
Fables

program encoding
process

KHAR
A

dictionaries

code

We now have to supply the translator. Wirth gives the PASCAL

coding of a compiler which recognises a modified ENF to construct the

data structure required to drive a syntax analyser for a Language. In

the KHAR system, we use the primitive version, supplying a hand coded

pair of tables, to implement a zeroth version of a Syntax Language (or

SmaLL Language), SLO, and add table building actions to ! CHAR. SLO has

the smallest possible syntax and allows access to the minimum features

of KNAR needed to allow the definition of tables for a Larger Language

with error recovery, SLI. This successfully minimised the encoding

which we had to do by hand to about 140 integer codes. SL1 was used to

define successive versions of SL as facilities were added to KHAR. The

present interface to the KHAR system is by using SL4. These SL

Languages are more fully described in chapter 6. Diagram C, on the

following page, now presents a picture of the KHAR system set up to

translate AML/1 CJENKINS].

Diagram C

H
0
-4 H
0 ý
H
tn

i ý

.ý oÜ
O
0

...

ýpp

--

.Nü0 (" 0
...
0
ý

,0Q

p Q..
R .w

Ei

ý
Z
A
ý --ý

D
.« ýýý

0)ö ö0 ý

0ý

...
ýý

'0 ri i0 0 LL
A ...

7

7

r+- Q,
0ý

._ý
0-
ýý

ý

.... .ý ._

- 3.5 -

KHAR can deal with languages which have a context free

grammar(CFG), such as A1L/1, in which no semantic knowledge is needed

to parse sentences successfully, in one pass. The system up to this

point is only concerned with establishing that the syntax of the

program is correct, and syntax here is used in its narrowest sense. As

remarked by Watt in the introduction to his thesis CWATTa], practical

Languages do not have Context Free Grammars. We see this easily enough

by inspecting the syntax of PASCAL as given in CJENSEN] or CWIRTHb],

and find it true also of PL/O CWIRTHb]. We see immediately productions

like

<typeidentifier>:: =<identifier> and

<callclause>:: =<CALL><procedureidentifier><; >.

We thus have to modify the syntax of PL/0, the language used to

demonstrate the treatment of semantics in the KHAR system in this

thesis (chapter 5) to remove this semantic intrusion to produce the

syntax of a CFG. We use the version of the system outlined so far to

check the syntax of a PL/O program.

To deal with the semantics of PL/0, and any other language, we

focus our attention on one particular aspect of the semantics and draw

a syntax diagram with actions placed to deal with that aspect. This is

then translated so as to drive KHAR to form a pass of the "compiler"

that the KHAR system will become for PL/O.

This approach allows a designer of a language to focus attention

one aspect of it at a time, and also allows a user to see the effect

of a feature of the language specification by inspection of a diagram.

/

Where the internal structure of KHAR is too simple to permit full

semantic checking , as in the propagation of leaf attributes up the

abstract parse tree of an expression, we define two passes through

KHAR. A previous pass has appended every identifier with its type.

These two passes then run alternatively, the first amending the

presentation of the first (operand, operand, operator) triple

encountered so that the second pass can use a simple syntax graph to

check for the, valid (operand, type, type) combinations. The approach is

discussed in more detail in chapter 5.

We emphasise that this multi-pass approach makes it unnecessary

to include in the KHAR machine itself any concept of "type". In fact,

KHAR never requires to handle the representation of the attributes of

objects in a program. Comparision of types as implied above is

achieved by seeking to match the symbol read from the input stream

with the current expected token. That these may both represent "REAL",

or one "REAL" and the other "INTEGER", is of no consequence. That

(REAL, REAL, +) is valid in ANSI FORTRAN and (REAL, INTEGER, +), not, is

not included in KHAR. It is expressed by including the branch *-REAL-

REAL in the syntax graph of the second of these two passes and

omitting *-REAL-INTEGER and *-INTEGER-REAL. We need only state what is

valid. The properties of KHAR as a recogniser will do the rest.

Further, since each pass, or group of passes, deals with one aspect of

a language, semantic errors of the same type are reported together,

which should assist the user in program debugging.

We note also in passing that' error recovery actions are also

included in KHAR so that error recovery is under the control of the

language designer and the majority of syntax errors are reported in

one pass. We discuss error checking in chapter 4.

Our picture of the KHAR system as set up to form a PL/O compiler .

is now as in Diagram D, on the following page.

The syntax graphs and actions for each of these passes are, of

course, all defined using SL4.

I We discuss syntax graphs and our basic checking technique in

chapter 4.1

ianram

t0
(0
N

ý i2.

UY
ý
ý
0
ci.

(1

0
t2.

M
a
0
0.

N
(}
N
0
ý

ý
tQ
0 a

ý U 0U

ý

. ý. üÖ
-0 '0 +' e+-

to
to
0
i2.

ý
J
t1.

i

i

-u i. "*-% .a0 82. E
a- fl.

Q

Y

i

s

a _
14

CY.
a

ý
C

Ir

-o
0
U
C
®

iC

a

ý

$C

ý
ý

.. ý

L.
0
C
0

....
. ý. ý
V

....
ý

ý

ý
0
CD
ý

...
. ai
L
0
t2.
®
L

L
0 L
L
0

L
0

4-

Ü0

üý

0
.. ý
0

v

I

PREPARATION OF INFORMATION TABLE TO BE USED IN CODING THE SOURCE

LANGUAGE SYht? OLS

For each language to be used by our system, we need to prepare

two sets of information. These are the "language keywords" and the

"language syntax". We call them the Language Symbol Data (LSD) and

the Transition Table Data (TTD) respectively. The former, LSD, is made

from the terminal symbols used in the language syntax and the latter,

TTD, is the information derived from the syntax itself, that is from

the transition matrices of the language. Eoth of them have their own

special syntax in data preparation, which we explain separately.

Language Symbol Data

The set of elements on the top of columns in all transition

matrices of a language is called "the valid elements of that

language", or "language symbols".

For each programming language we group terminals according to the

classification, (reserved words, ... triple character delimiters),

given above, and call it "language symbol data". This data is a

string of characters divided into groups, starting with the associated

fixed code for each group and one group following the other. Each

construct or symbol, however, is sepecrated from the next by at least

one blank or newline and the same applies to the associated group code

number encountered in the beginning of each group.

The layout of this data is as follows:

------)1 fixed code I---------- I

a subset of the items of
end fi e- rE----I the language keywords ýE--

fixed code II associated to the
proceeding fixed code

Each item of the language keywords is to appear in one and only

one of the above subsets so that each has a unique code. These

subsets can appear in any order as long as they are preceded by their

fixed codes. The number of different parts is- not fixed.

It is in this file that we introduce the symbols which may start

comment and terminate comment. They come under the fixed code, 17.

For example in the symbols of the language Algol W we may write

17 comment ; or in Pascal

17 (* *) These two symbols are separated by a

blank and can be any character string. The length of this string

could be up to the maximum length of identifiers in the language.

This means in process of encoding of the source text, the system

reads and copies all characters until it finds the "comment-start"

symbol, the first symbol after fixed code 17, then reads and ignores

until it finds "comment-end" symbol (the second symbol after fixed

code 17).

It 'is also in "language symbol data" that we introduce constant

string ends, "start constant string" and "end constant string"

symbols. So any number of characters appearing between these two

symbols are considered as one constant string and will be coded to a

single internal code. If the "end const string" symbol is itself a

part of a constant string it must be typed two consecutive times

inside the constant string. For example if these symbols for a

programming language are START and END then
i

write(START iENDEND is the symbol to end a const. string END);

could be a write statement to output

"EtJD is the symbol to end a const. string"

In this data, the fixed code, '0', as shown in the table of fixed

codes, means "comment". So any text appearing in the data after '0'

is treated as comment. A typical example of this data follows which

belongs to the programming language AFL/1. Please note that the

separator between symbols is at least one blank and the format is

free.

0 from this line until the first semicolon encountered
text is treated as comment and is ignored by the
program which uses this data.

The following are the keywords of the AML Language.
Numeric fixed codes are :

1 for reserved words.
2 for standard functions.
5 for single character delimiters.

17 for comment ends.
18 for constant string ends.

100 for end of file.

1
abdgx
at do if in
end out ref rep
body byte call code data else here main proc then
bytes while
define
endcall endcode endproc program
endprogram

2
cc cs ge gt hi le Ls lt
mi ne pl ra sr vc vs

5
(CC>;,:)])
=I

17
(* *)

18
of go

100

There is a program to read this data and make two files, the

"code name file" (CNF) and the "code name index file"- (CRIF), which

are permanent files for their corresponding language.

CODE MAME FILE & CODE NAME INDEX FILE

CNF is constructed so that it has only one blank as a separator

between symbols, and the group codes are not located along with the

information. The group codes are separately located in the first

column of the two dimensional array CMIF which is simultaneously

created to access the information in the Code Name File. The second

column of this table contains the pointer which locates the start of

each group of information according to the corresponding group code

from column one of the table while the third column contains the

starting code for each group.

The codes in column three of this table take into consideration

the complete symbol within the grouped information. These codes are

based on an arbitrary starting code, the "base-code".

This information on CNF accesed via CNIF, regarding the various

symbols found in programming languages, is then used to code the

symbols encountered in the source programs.

Similarly the symbols located in the transition matrices are

replaced by the codes determined from this information and the-same

applies to the transition tables of the SL languages.

To find what code should be associated with any symbol, the

following steps are to be considered

1) a check is made to see-if the first character is alphabetic.

Two possibilities may occur :

a) the first character is alphabetic in which case we form a tentative

idea that the symbol may be in any of the first four groups in CNF.

b) The first character is not alphabetic in that case the symbol

falls in one of the other two groups i. e. group with fixed code 5 and

6. If case (a) happens all four groups may be searched one after the

other , if required, until such times that the symbol is matched,

otherwise the symbol is treated as a user's specified identifier.
I

Althougý a similar procedure would be undertaken in case (b)

above, by considering the length in characters of the source symbol

first, and one of the two groups can be skipped right in the

beginning. While the matching of symbols is continued, the relevant

code information from case (b) is continuously updated so that by the

time the search is completed the appropriate code is also determined.

In this way the digital coding of the symbols is accomplished

automatically and can very easily be altered. Any alteration in the

base code will be accounted for automatically in determining the

subsequent codes.

INTERNAL FORM OF THE SOURCE PROGRAM

As we mentioned in previous sections, standard names and special

symbols will be coded as 3-digit integers. Integers apearing in the

source text are put in the dictionary of integers and in their

places the appropriate code. Integers are coded from 1000 to 1999 ,

that is their index plus 1000.

I

Users' defined identifiers are coded from 2000 to 2999 and

constant strings from 3000 to 3999.

ENCODING

This encoding is done in six steps. The input to step one is the

source text and the output from step six would be the internal form of

the source text. Each step, (other than the first), takes the output

, of the previous step as its own input. The steps are in the following

order :

1) delete all commentary and code the newline character;

2) code all constant strings and integers;

3) code standard names and user's defined identifiers;

4) code triple special-characters;

5) code double special-characters;

6) code single special-characters.

The output from step six is a sequence of integers.

FIXED CODES AND VARIABLE CODES

The vocabulary T of terminal symbols of languages we consider can

be categorized as follows :

a) Reserved Words (RW)

b) Standard-Procedure-Identifiers (SP)

c) Standard-Function-Identifiers (SF)

d) Standard-Constant-Identifiers (SC)

e) Single-CHaracter-Delimiters (SCHD)

f) Double CHaracter-Delimiters (DCHD)

g) Triple-CHaracter-Delimiters (TCHD)

(We assume that in the class of languages we use, there exists no

symbol consisting of more than three special characters.)

These can be assumed to be classes or groups and a code can be

asigned to each in order to identify them.

The assigned codes to the above classes of objects remain

invariant for all the programming languages we consider. Three types

of coding arise as undernoted.

1) Fixed codes as shown in the table on the next page. Although the

choice of these codes is arbitrarily associated to the language

constructs, we assume that for our purpose they remain invariant for

all the programming languages to be considered in the work.

FIXED CODE MEANING
undefined (in code files)
comment delimiter (in Language-Synbol Data)

1 reserved word
2 standard-procedure-identifier
3 standard-function-identifier
4 SL-reserved-words
5 single-character-delimeter
6 double-character-delimeter
7 triple-character-delimeter
8 identifier in general
9 constant identifier

10 function identifier
11 procedure identifier
12 type identifier
13 variable identifier
14 field identifier
17 comment delimiters
18 constant string delimiters
19 unsigned integer
20 constant string
21 transition matrix
22 state number
23 valid element
24 action number
25 nil symbol
26 any symbol

100 end file
999 end line

2) Semi-fixed codes which change from one language to another but

are fixed within one language, e. g. codes for language symbols.

3) Variable codes which change from program to program, e. g. user-

defined identifiers.

The code association is accomplished automatically by a program,

called "codefite-maker", starting from a base-code.

We reserve all one-digit and 2-digit integers for use as fixed

codes, all 3-digit integers for semi fixed codes, 4-digit integers

for variable codes, and have defined 100 as the base-code. It should

be noted that this is arbitrary and can be readily changed to increase

space efficiency.

A PRACTICAL EXAMPLE

When we want the system for a particular language L:

1) Switch the system to SL language;

2) Write a program in SL for the Language L;

3) Compile and execute this program,

(this builds up tables which control the recognition and

parsing of statements in L);

4) Replace previous tables by these new ones and the system

is ready for the language L.

In this part we explain how to prepare the system for AML

language. ALL details are included and can be used as a pattern for

using the system. Finally we do some changes in the syntax of AMYL and

see the consequent and necessary changes in the system.

AML, Programming Language

AML is a high level assembler designedCJENKINS7, to relieve the

programmer from some of the tedium of knowing the exact syntax

required to use the addressing modes of the microprocessor via the

manufacturer's assembler.

The, following table gives the grammar of Af'L/1 in BNF.

<program>:: =PROGRAM<identifier><location><program body>ENDPROGRAM

<program body>:: =(DEFINE<identifier>=<constant>)*
CDATA<data brick>Ef1DDATA}*
(PROC<identifier>BODY<block>Ef1DPROC)-*
MAIN<block>ENDMAIN

<data brick>:: =<identifier><location><declarations>

<location>:: =HERE<at clause>

<at clause>:: =AT<number><suffix>

<suffix>:: =BIQIDIH

<number>:: =<digit>{<digit>}*

<digit>:: =112131415161718191OtAIBICIDjEIF

<declarations>:: =BYTES<size>I{BYTE<identifier>}*I{REF<identifier>}*

<size>:: =<integer number>j<string>

<string>:: ="<printing character>{<printing character>)*"

<block>:: ={<statement>}*

<statement>:: =<simple statement>I<while statement>I<if statement>

<simple statement>:: =<code brick>l<call clause>

<code brick>:: =CODE<target machine assembler>Et: DCODE

<call clause>:: =CALL<identifier>ENDCALL

<while statement>:: =WFIILE<cond>DO<block>REP

<if statement>:: =IF<cond>THEN<block>{ELSE<block>}END

<cond>:: ={<simple statement>}<conditional test>

We first construct a set of syntax graphs from the grammar, (we

assume that the reader is familiar with the rules of graph

construction). For each nonterminal we may have one syntax graph. It

is a good practice to reduce the number of graphs to as few as

possible by merging them together. That is if a nonterminal is only

used once in the syntax graphs of other nonterminals, we replace it

by its graph. Also it is better to replace the nonterminals by their

graphs if they have a small syntax graph even if they are used a few

times. This minimizes the amount of information we need to keep and

also reduces the compilation time.

Figures 3a to 3c show the syntax graphs of this language.

FIGURE 3a Matrix 99 for AFL/1

ý

I

HERE

PROGRAM -->i denL --ý-ýAT-->1971,

DEFINE" i den E ---> =------>cons E on E

DATA--), 1987ýENDDATA

PROC---> i denE --> C96]->ENDPROC

L->MAIN--->C967 ENDPROGRAM ---->

FIGURE 3b Matrices 98,93. and 97 for, AML/1

98
ident

->HERE

AT -aC97]--'V>BYTE---> i denE a

k->BYTES ---3s i ze----

ýiREFmai f den E

93
Ii dent

str ing

97
number 0

D [->

h-> H

ý6--J

N

ýc
FIGURE 3c Matrices 96,95 and 94 for AML/1

r-->[95]

->NHILE >[94]-ADO f967 REP

ý

CIF 1947->THET, I-4C967 , END--J

ELSE-->C967

95
CODE

F 26 1-->ENDCODE

'CALL-->i dent ->ENDCALL -J

'ý'

91

CE CS VS
I

The terminal symbols are represented by their denotations and

non-terminals by placing their name within square brckets, (C]). Graph

number 99 shows the production of the distinguished symbol of the

language.

To every graph we assign a code number starting from 99

downwards. Code 99 is devoted to the main graph and the allocation of

graph codes to the other graphs is otherwise free.

The table below shows the codes associated with these seven

nonterminals:

Nonterminal Graph code
1) Program 99
2) Declaration 98
3) Location 97
4) Statement 96
5) Simple statement 95
6) Conditions 94

-7) Size -. 93

In each square box of the above graphs also is written the

appropriate graph code next to their nonterminal names. The next

table is also useful which shows the number of occurrences of each

nonterminal in the other graphs.

Syntax Graph Number of Occurrences

99 -

98 once in 99

97 once in 99 and once in 98

96 twice in 99 and
three times in 96

95 once in 96 and
once in 94

94 twice in 96
93 once in 98

J

CHAPTER 4: SYNTAX & ERROR RECOVERY

In this chapter we discuss the use of syntax graphs, and the

intermediate step in their encoding, the transition matrix. We give

the algorithm used to check syntax graphs, supported by an example

before discussing error recovery and its encoding.

SYNTAX GRAPH

We always represent the given syntax of a language as a set of

graphs, the so called "syntax graph", as in [WIRTHb].

We assign a label to each graph, from 99 down to 50. This allows

for 50 graphs.

Label 99 is devoted to the main graph. Allocation of labels to

the other graphs is otherwise free, but conventionally from 98

downwards.

It is useful to make a table of occürrence, of nonterminals in the

set of graphs. This has been done for the graphs of language AML/1 in

the previous chapter.

This table shows that the graph 9E is only called once in the

graph 99 and it is thus more efficient to include it in that graph

and have one graph fewer.

The set of elements, terminals and nonterminal symbols, appearing

in a syntax graph is the "valid elements" of that graph and

consequently, the union of all of these sets is the set of "language

symbols".

Valid elements of a syntax graph are connected by directed lines.

For each point of these lines there exists at least one destination.

Two points having the same destinations are called "the same condition

points". A piece of line consisting of such points is called a

"state-line".

While in a state, the set of elements which may appear as the

next terminal or nonterminal it the input stream, to cause a change of

state are valid elements of that state. We have a function to take

the state number and return these valid elements. We will see this

function later.

For each syntax graph there exists one "initial line" and one or

more "exit lines". The initial line is the line which comes to the

graph and terminates at one or more alternative elements within the

graph. (Ile call these elements the "initial symbols" of that graph.)

We allocate number "0" to the "initial Line" and call this the

"initial state" and EXIT to exit lines and call each of them an "exit

state". The allocation of state numbers to state lines is otherwise

free.

Syntax graphs have to be translated into a data structure. To

do this in the KHAR system, we use the transition matrix as an

intermediate step in preparing the input to the translator.

Transition Matrix

In order to translate syntax graphs into their appropriate data

structures we first interpret each graph to a transition matrix. This

is best explained through an example. Therefore we translate one graph

from AP1L/1, say syntax graph 98, to its corresponding transition

matrix.

We refer to directed lines as states and these are already

numbered on the graphs, so we know how many states we have, say m.

Also we can count the number of valid elements of the graph, say n.

First we draw an mXn matrix. Assign valid elements to the columns

and state numbers 0 to m-1 to rows. In this particular example we

have 7 states, 0 to 6, and 6 valid elements, vis:

"BYTES", "BYTE", "REF", "IDENT", "STRING" and "ENDDATA", since "size"

ý(matrix 93) is "IDENT" or "STRING".

A line leaves each valid element of each state. This line is

either an "exit line" or a "state line". In case of a state tine, it

has a state number and, according to the state we are in, we call

this the "next state".

So, for each state i, we have some valid elements and,

corresponding to each valid element, there is a next state or exit

code. In our example the valid elements of state 0 are

"BYTES", "BYTE" and "REF" and the corresponding next states are

3 and 5 respectively.

0

To fill the elements of row i of a transition matrix we put the

corresponding next states under the appropriate columns. Then the set

of elements corresponding to these columns are valid elements of that

state. The other elements of this row would be empty. We do the

same for all rows and we have a transition matrix for that graph. tie

associate the graph number with its transition matrix and call it the

"matrix number". The corresponding transition matrix of graph 98

would be the following matrix.

BYTES I BYTE REF I IDENT STRING ENDDATA

--I-------I-------I-----i-------I---------I---------I 01 135
--I-------I-------I-----I-------i---------I---------I ý221
--i-------I-------I-----I-------I---------I---------I
21II EXIT
--i-------I-------I-----I-------I---------i---------I 3114
--I-------I-------I-----I-------I---------I---------I
43 EXIT
--I-------I-------I-----I-------I---------I---------I
si61
--I-------I-------I-----I-------I---------I---------i
61 IsI EXIT

(fig 4, transition matrix number 98)

This is not the final form of our transition matrices. There is a

"syntax-error action part" for each state to be used for error

recovery and also associated with each valid element of each state

there would be some semantic and code generation actions.

These actions will be added to the. above example matrix after we

have discussed these topics.

However, the linearised form of the graph can now be shown as:

I

98 C0 (EYTES>1; BYTE>2; REF>5);

1 (IDENT>2; STP. ING>2);

2 (ENDDATA>EXIT);

3 (IDENT>4);

4 (BYTE>3; ENDDATA>EXIT);

5 (IDENT>6);

6 (REF>5; ENDDATA>EXIW]

This syntax corresponds to code such as (scanning from "I"):

DATA string I BYTES "A CHARACTER STRING" ENDDATA

DATA space I BYTES size ENDDATA (* size is a manifest constant *)

DATA workl ý BYTE a BYTE b BYTE c BYTE d ENDDATA

DATA refs ý REF index REF top-of-stack ENDDATA

We also show where actions can be placed by showing a code-

emitting action and an error recovery action. This latter is the worst

possible, it just stops the scan. Semantic actions are discussed in

chapter 5 while we consider Error Recovery in the second part of this

chapter.

We show part of this linear form with error recovery actions

added as well as code emitting actions in the following diagram.

98 E 0(BYTES>1; BYTE>2; REF>5 ? STOP);

1(IDENT>2lemit(" rmb ", css.);

STRING>21emit(" fcc /", css., "/", nl, " fcb 0" ? STOP);

0 ... 00

"STOP" is the error recovery action, placed after a "? " at the

end of the state. The verb "emit(.........)" is one of the semantic

and code generating actions we have access to in K14AR through the SL

Language. As we show in chapter S, "STOP" is correct in state 0, which

only needs a durm y action, but it is of no use in state 1. The correct

action is given in chapter S.

VALID ELEMENTS OF A TRANSITION MATRIX

The valid elements appearing on the top of columns in transition

matrices fall in one of the following groups :

1) Language keywords: these elements appear exactly as they are and

would be coded automatically by a program using the language keyword

file;

2) nonterminals or transition matrices: these are already coded to

matrix numbers 99 to 50 as mentioned before;

3) identifier:

4) constant string:

5) integer:

6) nil symbol:

7) anything symbol. -

For groups 3 to 7 above we put the fixed code obtained from the

table of fixed codes, (chapter 3), into the matrix.

If we have fixed code 26 (anything-symbol) in a transition

matrix, this is placed in the rightmost of the used entries in a row,

so that it is encountered after any specific symbols expected in that

state.

CHECKING TECHNIQUE USED IN KHAR

For each language we have one or more matrices: of these one is

the main matrix, matrix 99. The matrices are used by KHAR to check

the syntax of any source program written in the corresponding

programming language.

For each matrix we have one entry point, the first state of

that matrix but there may be an exit from any point in any state of

that matrix. Associated with any valid element, terminal or

nonterminal, within any state there is a pointer to another state of

the same matrix.

The program execution begins with access to the first valid

element of the first state of the main matrix, and stops by exiting

from this same matrix. The other matrices may be called, directly or

indirectly, from this main matrix.

We have two types of valid elements; either they are terminal

symbols in which case the source symbol will just be checked-with

that, or they are nonterminals (a matrix-number). In the latter case

before entering this new matrix, the source symbol will be checked

with the initial symbols (the director symbols) of that matrix and if

it does not match with any of them the next valid element of the

current state will be checked against the current source symbol but if

a match occurred, checking continues by pointing to the beginning of

the new matrix. Upon the exit from this new matrix, access is

-4.7-

regained to that point of the previous matrix from which access was

transfered. This recovery is achieved by using a stack for the

accessing information. Information is pushed onto the stack on

entering a matrix and popped off on exit.

The process always expects the source symbol to match with one of

the valid elements of the current state. If a match occurs the next

state is the state indicated by the entry after that valid element.

Another source symbol is read and access is transfered to the new

state and the same process continues until the "end of file" occurs or

the source symbol does not match with any of the valid elements of the

current state, and an error occurs.

As soon as an error occurs scanning of the input text is no

longer controlled by the syntax graph alone. The error actions

accessed by placing verbs in the error action entry in the table

direct the scanner to take the error action chosen by the language

designer.

The errors are caused by unexpected, missing or wrongly spelt

symbols. A good compiler should find all errors in a source program

and correct as many of them as possible to reduce the number- of

submissions of ajob before it is finally completed. For other errors

which the compiler can not correct, it should be able to determine

how to continue the analysis when these errors occur. For this

process the term "Error Recovery" is used.

In this system we have one general action and some special

actions which we use as the error action part-of states in transition

matrices.

The error actions can be general for all the different states of

all the matrices or different error actions can be added to each

state. In the latter case usually the recovery is quicker than the

first case.

Each state terminates with an error action part, which also

serves as the "end of state" marker. That is, we check the source

symbol with
Ialid

elements from the start of the state and if it does

not match we check it with the next valid element in the table and

carry on until we reach the error action part. Then we know the symbol

has been checked with all the valid elements of the current state and

an error has been detected.

As we mentioned earlier, when the expected symbol is a matrix

number the program syntax checker, before entry to this new matrix,

checks the current symbol with the valid element of the first state of

that matrix and enters if and only if a match occurs. It is obvious

here that when we enter a new matrix the current source symbol will

definitely match with one of the valid elements. In other words, we

can not have an error so that an error part is not needed. The main

matrix is an exception to this. Conventionally, we use "STOP" as a

dummy action to satisfy the syntax of SL.

We give on the following page the formal algorithm.

FORMAL ALGORITHM

push entry point to matrix no. 99 onto stack;
read first symbol; end of program: =FALSE;
WHILE matrix on stack AND NOT end of program DO
BEGIN

WHILE NOT exit AND NOT end of program DO
BEGIN

IF entry in transition data under pointer indicates end of state THEN
BEGIN

IF NOT looking for director symbol in first state of matrix THEN
BEGIN report error and call error recovery action END
ELSE
BEGIN

return (via stack) to point of departure in transition data
from which entry was made to this matrix and access next entry;
pop stack

END
END
ELSE
BEGIN

IF symbol under pointer into transition data (the expected symbol)
is a matrix code THEN

BEGI
IF this stack is not already on the stack as unsatisfied goal THEN
BEGIN

push value of pointer onto stack; {used to recover this point of
departure into matrix} access new goal matrix via index table to
matrices; {record another matrix as an unsatisfied goal on the stack)
level: =level +1

END
ELSE access next expected symbol in this state

END
ELSE {not matrix code, could match current symbol}
BEGIN

IF current symbol matches symbol under pointer, the expected symbol TbE
BEGIN

IF next state NOT EXIT THEN access next state, finding new symbol
ELSE exit: =TRUE;

level: =O; {sets all matrices on stack as satisfied goals}
read next symbol

END
ELSE

access next expected symbol in current state
END

END
END;
IF NOT end of program THEN (exit from matrix has occured)
BEGIN

recover point of departure from stack; pop stack;
IF next state is EXIT THEN exit: =TRUE
ELSE
BEGIN

access next state to find an expected symbol; exit: =FALSE
END

END
END.

ý'"ý

AN EXAMPLE

We describe the action of the algorithm for the small matrix

described above. Consider the following program which satisfies the

syntax of APIL/1, but has no practical meaning, and make reference to

the transition matrix given on the next page, which is part of the

encoding of graph 99 for At1L/1.

PROGRAM example HERE
DATA work space HERE

BYTE work 1.
ENDDATA
MAIN i CODE ENDCODE
ENDPROGRAP

IIIIIIIIIIII
IPRGGRAPIIIDENTI ATINEREI 971DEFINEIDATAIPROCI 981MAIN

---I -I- I---I - 01 1ýIýIII
---ý-------ý-----ý---ý----ý---ý------ý----ý----I---I----ý- ... -ý 11 121ýýýIýIýýý
--- i ------- i ----- i --- i ---- i --- i ------ i ---- i ---- i --- i ---- i-... -i 21 11

-i-I- I- ... -ý 3
---ý-------ý-----ý---ý----ý---ý------ý----ý----ý---ý----ý- ... -ý

48I 13 23

---I-------1-----ý---ý----ý---I------ý----I----ý---ý----ý- ... -ý 56III
1-------I-----1---I----I---1------i----I----i---1----I- ... -1 6(ý

---I-------I- ---I---1----I---1------1----1----I---1----1- ... -1 7j14
---1-------1-----I---1----I---1------I----I----I---I----1- ... -I 8 9II
---I-------1-----I---I----I---1------I----i----I---I----I- ... -I 9 1101351 I
---I-------1-----1---i----1---1------1----1----1---1----I- ... -I 10 111
---1-------I-----1---I----I---I------I----1----1---1----I- ... -1 11 IIII1 121
---I-------1-----I---I----I---I------1----I----I---I----1- ... -I
121 IIIII 8131 I
---I-------1-----1---1----I---I------I----1----I---I----1- ... -I 13 1I

---I--
1 96 1 ENDPRCGRAh'I

---I --- I----I -----------I - 23 24 (1

---ý- ----ý----I -----------I- 24 11 24 1 EXIT .1 ---I -- ---I ----I -----------I-

33
--

---ý-------ý-----ý---ý----ý---ý------ý----ý----ý---ý----ý- ... -I 35 1IIIIIII1 121 II
---ý-------ý-----ý---ý----ý---ý------ý----ý----ý---ý----ý- ... -I 36
---ý- .

The index to the matrix number 99 is pushed onto the stack and

the first symbol "PROGRAM" is read. The outer WHILE loop is entered

since neither condition is FALSE, note that "end of program" is set

- 4.12 -

TRUE by encountering the "end of file" sentinel code while expecting

another language symbol: it is an error condition. The inner WHILE

loop is also entered. The entry in the transition data first accessed

corresponds to PROGRAMM so the ELSE part of the IF statement is taken.

As the symbol under the pointer is PROGRAM, the ELSE part of the IF

statement in the ELSE part is taken. The first symbol read- matches

PROGRAM so the next state entry is examined. This is the same as the

entry in the transition matrix under PROGRA1 so that the next state is

1. The THEN clause of "IF state NOT EXIT" is taken so that this next

I state is accessed.

The next symbol "example" is read and the inner WHILE loop

repeated since both conditions are still TRUE. The flow of control

follows the same path as just described and "example" matches IDENT.

This moves access to state 2 and the same flow occurs until the "IF

current symbol matches symbol under pointer" statement is reached,

when the ELSE part is taken and the next expected symbol in the

current state is accessed. The loop is, repeated but now a match

occurs, state 4 is accessed, and the next symbol, "DATA", is read.

The loop is repeated, with a match occurring which takes access to

state 8, and the next symbol is "work space"; the loop is repeated,

"work space" matches IDENT, stae 9 is accessed and "HERE" is read; on

Looping, HERE does not match "AT", the first expected symbol so the

next symbol in the current state is accessed, and on looping, this

does match so state 35 is accessed, and the next symbol BYTE is read.

On Looping, the ELSE part of the first "IF" is taken again but

the THEN part of the next "IF matrix code" statement is obeyed.

i

The point of departure is pushed onto the stackand the first state of

matrix 98 accessed via the the index table. The register, level, is

increased by one to indicate that a matrix which is a potential goal

has just been placed on the stack. The loop is repeated so that the

usual ELSE... ELSE route is followed. This does not result in a match,

as the first expected symbol is BYTES so the next expected state is

accessed. The loop is repeated and results in a match as this symbol

is BYTE. The next state is not exit so the next entry is used to

indicate stab 3; level is set to zero showing that a director symbol

of matrix 98 has been found, and the next symbol, "work l", is read.

The loop is repeated resulting in a match with IDENT and the

accessing of state 4. The next symbol is now ENDDATA. The loop is

repeated, with no match, since BYTE is expected. The next symbol in

state 3 is therefore accessed, which is ENDDATA so that on the next

loop a match occurs. out the next state is EXIT so exit becomes TRUE

and the next symbol t1AIN is read.

The IF NOT end of program encountered on leaving the inner WHILE

loop has its THEN clause obeyed, so the point of departure is

recovered from the stack which is then popped. The next state entry

associated with this entry point to 98 is examined and is 12. Access

is made to the first expected symbol in this state, DATA. Since the

entry point to 99 is on the stack and end of program is FALSE, the

outer WHILE loop is repeated; the inner WHILE is entered and a match

made with P1AIN in state 12. The state 23 is accessed and the next

symbol read, CODE.

11

On looping, the expected symbol is found to be a matrix number,

96; the departure point to 98 is stacked, level increased by one, and

the first expected symbol. WHILE, of matrix 96 accessed via the index

table. On looping, there is no match, and the expected symbol IF

accessed; again, no match is found, and matrix 95 is accessed as the

next expected symbol. On looping, the matrix departure point is

stacked, level increased and the first state of 95 accessed, giving

CALL as the expected symbol.

On looailg, CALL is not matched, as the current symbol is CODE,
I

and access made to CODE. A match occurs on the next loop and results

in 3 becoming the next state. The next symbol is read, ENDCODE, and on

looping, matches since this is the only expected symbol in that state.

The state code after ENDCODE is EXIT so exit becomes TRUE, and the

next loop exits from the inner WHILE loop, level having been set to 0

to show that matrices 96 and 95 are now satisfied goals, that is, a

member of a director set has been matched.

The point of departure into 95 is recovered and the next state

entry for 95 is found to be EXIT; exit becomes TRUE. On looping, the

same flow of control occurs, so that the next state entry after 96 is

accessed, the stack popped, but the entry is 24, does not equal EXIT,

and the loop is obeyed again, with only 99 left on the stack, exit

being FALSE. The symbol to be found, however, is matrix 96 so the

complete process described above from "On looping, the expected symbol

is found to be a matrix number" is repeated until CODE becomes the

expected symbol. Since EP: DPROGRAPI is the current symbol, there is no

match, and the next expected symbol is accessed. As this is 0, end of

state, on looping, the "IF ... end of state" statement has its THEN

clause executed (for the first time)
and the "IF NOT looking for

director symbol" statement obeyed. Since we are seeking a director

symbol, the ELSE clause is executed, and the point of departure into

95 recovered from the stack, which is popped and level is decremented

(so that only one matrix remains as an unsatisfied goal) and the next

entry accessed as the expected symbol. On looping, this "IF NOT"

statement is obeyed again since the end of state marker, 0, lies under

the pointer. The departure point into 96 is recovered and the next

entry in that state accessed, the stack being popped and level

decremented, becoming 0. The accessed expected symbol is EUDPROGRAF1

so, on looping, a match occurs. The next state is EXIT, so exit

becomes TRUE, and, on Looping, the innert: FIILE Loop is Left.

As exit caused the termination of the loop, the "exit from

matrix" part of the "IF NOT end of program" statement is obeyed. The

point of departure is recovered, the stack is popped and becomes

empty. The accessed next state is EXIT so exit becomes TRUE. On

looping the outer WHILE Loop is left since the stack is empty, and

execution concludes with reporting that the analysis is finished.

ERROR RECOVERY

A possible implementation of error recovery could be made- by

writing the appropriate error message and accessing an indicated state

in an error recovery table where the error recovery process reads

source symbols one by one, ignoring them until a specific symbol is

read. For example ignoring symbols until the end-of-statement symbol

is found. This is often called "panic mode" recovery. In this case it

fails to report further failures in that statement, if any, and also

may cause many other errors. For example if an error occurs in "VAR"

statement in PASCAL program and we ignore to the next semicolon at the

end of that statement, we have ignored some identifiers and wherever

they appear in the rest of program they are undefined and will cause

new errors. Sometimes in many compilers it occurs that because of a

single error several error messages will be generated which should be

suppressed in the error recovery process.

After detecting an error a good compiler should try to determine

what correct symbol had been intended initially. For example if in a

PASCAL program the reserved word VAR be misspelt, usually all the

identifiers will be undefined, whereas it could be checked for a

misspelling of one of the reserved words valid at that state and there

is a good chance it would be corrected in the right manner.

In our error recovery, we have one general action and some

specific actions. Each of these actions may be used for each of the

different languages we implement. These error actions are, in effect,

some very flexible tools which may be employed. These tools are like

features of a programing language, in that they are very flexible.

Because of the simplicity of KHAR and the flexible interface provided

via the SL languages, one can simply add his own new features to the

system and use them.

These error actions are accessed by calling an action interpreter

at the point in the formal algorithm where an error'is detected.

Either one of the specific actions or the general action may. be

called. Their action is described in the following sections.

SPECIFIC ACTIONS

Reserved words, or "verbs", in the SL languages are used to call

the error actions of the KHAR machine. They are as shown in the

following table.

Action treaning

GO

STOP

succ

LOOP

96 to error state, see below

stop checking

point to next source symbol

go to another state, stay in that state, read and ignore

source symbols until one of the valid elements of

that state appears in the input stream, then go to

appropriate state.

AN EXAMPLE OF THEIR USE

The usage of these error actions will become clear by an example.

In our previous example we made a transition matrix from syntax graph

no. 98 of Ah1L/1. This matrix is not complete and in case of error the

program syntax checker would stop. It needs some more information to

be able to continue. Therefore we add error actions to each state of

that matrix. We discuss the action added for each state seperately.

State 0:

There will be no error in the first state of our

transition matrices. For these kinds of states which do

not have errors we place the action STOP as a dummy error

action to satisfy the syntax of SL.

State 1:

In this state we expect either "identifier" or "string".

If any error happens we check for ENDDATA or one of the

elements valid after exiting from this matrix. As table

no. 4 shows, the graph of this matrix is called only once

in graph 99 and by refering to that we see that the follow

elements of this matrix are

DATA PROC INTERRUPT MAIM

So we have a set of symbols and corresponding to each of

them there is a next state. We read and ignore the source

symbols until one of the elements of this set appears,

then we know our next state. In the case of ENDDATA we

access state 2 of this matrix. ENDDATA is a valid element

in that state and its corresponding state is EXIT which

means exit from this matrix.

In the case of the other elements of the set we force exit

from this matrix. To this effect we introduce a new

column for the "nil" symbol (code 25) and place a new

state 7 in the matrix. Its only valid element is this

"nil" symbol for which the next state is EXIT.

The "nil" symbol causes a refinemement in the behaviour of

- 4.19 -
ý

KHAR. "Mil" matches any symbol but no new symbol is read

as the next symbol. Thus the use of "nil" makes a key

difference in the treatment of ENDDATA and the other

keywords on which recovery is made. Since a match with

"nil" occurs after the scanner has read one of these, this

symbol is still the current symbol and may be used to

satisfy the syntax of the outer graph from which 98 was

called.

State 2:

In this state we expect the "Et'DDATA" symbol and the

corresponding next state is EXIT. 86t if the current

symbol did not match we will not loose much if we go out

of this matrix and leave the error recovery to take place

in the matrix from which we were sent here. To do this we

just add an exit code under the column of the "nil" symbol

so that if there is no match with ENDDATA, exit will

occur. This state will never produce error, so the error

recovery part of that is the same as state '0', that is

STOP.

State 3:

If any error happened in this state we search for BYTE and

go to 4, EtJDDATA and go to state 4, or for one of the

follow symbols (as the error action part of state 2) and

go out of this matrix.

State 4:

The same as state 3.

State 5:

State 6:

State 7:

Very similar to state 3 but we replace BYTE by REF.

We take the same action as state 5.

There would be no error in this state as its only element

is the "nil" symbol.

To put these error actions in the table we place the appropriate

language keywords and SL verbs and symbols in the linearized form of

the matrix, as shown briefly in chapter 3. Eut at this stage to show

these error actions in the matrix we use symbol '>' to link symbols

with their next state and ', ' to separate the alternative symbols. So

the error action part of state 1 can be written as

"ENDDATA>2, DATA>7, PROC>7, INTERRUPT>7, NAIN>7"

and, after putting the error actions into the matrix 98, it would be

as follows:

IBYTESIBYTEIREFIIDENTISTRINGIENDDATAI 25

-I ----- I ---- I --- I ----- I ------ I ------- I ---- I -------------
nl 11315 STOP
-I-----I----I---I-----I------I-------I----I-------------
1I 22 ENDDATA>2,

II DATA>7, PRCC>7, II(I INTERRUPT>7,
III MAIN>7

-i-----I----I---I-----I------I-------I----I------------- 2I I EXIT EXITI STOP

-i-----I----I---I-----I------I-------I----I-------------
31 I4 BYTE>4,

ENDDATA>4,
II DATA>7, PROC>7,

INTERRUPT>7,
II wAIN>7

-I-----I----I---I-----I------I-------I----I------------- 41 13Ii (BYTE>4,
ENDDATA>4,
DATA>7, PROC>7,

II INTERRUPT>7,
I MAIN>7

-i-----I----I---I-----I------I-------I----I------------- 5I 'I I6I(REF>6, EtlDDATA>6,
I DATA>7, PROC>7, III INTERRUPT>7,

I r'AIN>7
-I-----I----I---I-----I------i-------I----I------------- 61 I15 IREF>6, Et! DDATA>6,
III DATA>7, PRCC>7, III INTERRUPT>7,
III r°A I N>7

-I-----I----I---I-----I------I-------I----I-------------
71 11111 IEXITI STOP

ERROR STATES

An alternative implementation of adding error action parts to

transition matrices is to add "error states" to the matrix, and to add

the set of follow symbols to the head of the matrix. Since these

matrices are an intermediate representation between graph and encoded

form, we used a compressed representation which shows these additional

states and symbols, together with any of the ordinary symbols of the

matrix used in error recovery in an "error matrix". Access is made to

the indicated error state when an error occurs, and the entries in

these states direct the scanning process back to a normal state in

which recovery will occur.

In the following diagram we show matrix 98 together with its

error actionI 'matrix in complete form.

BYTES BYTE ý REF ý IDENT STRING ENDDATA

--I ------- ý------- ý----- ý------- ý--------- ý---------- ý------
013ý5 STOP
--ý-------ý-------ý-----ý-------ý---------ý---------ý------
122 GO>7
--ý-------ý-------ý-----ý-------ý---------ý---------ý------
2 EXIT GO>8

--ý-------ý-------ý-----ý-------ý---------ý---------ý------ 34 GO>9

--ý-------ý-------ý-----ý-------ý---------ý---------ý------ 43 EXIT GO>9

--ý-------ý-------ý-----ý-------ý---------ý---------ý------ 56 GO>10
--ý-------ý-------ý-----ý-------ý---------ý---------ý------ 6ýý5ý EXIT GO>10

lEPyDDATAIBYTEIREFIDATAIPROCIINTEPRUPT114AIPJI 26 1 25 1

--ý-------ý----ý---ý----ý----ý---------ý----ý----ý----ý
71 21 JEXITJEXITJ EXIT JEXITJ 71

--I -------I ----I ---I ----I ----I ---------I ----I ----I ----1 81 I11111 JEXITJ
--I -------I ----I ---I ----I ----I ---------I ----I ----I ----1 91 4(41 JEXITJEXIT) EXIT JEXIT) 91
-I ------I ----I ---I ----I ----I ---------I ----I ----I ----I 101 616 JEXITJEXITJ EXIT JEXITJ 10 1

Note that the "anything" symbol, 26, is always used to force

Looping in an error state until a symbol is read and matched.

To send the pointer to an error state after error detection we

have action "GO". For example at the end of state 2 we have "GO>8"

which means "go to state 8 for error recovery".

Separating error action parts from the states and putting them

into error states is useful when the same action patrs are repeated

for several states. We can adopt a mixed policy. If an action is used

once we leave it in the state but if it is used several times we

introduce an error state and use the GO verb.

GENERAL ACTION

The use of error states and the GO verb allow the user of KHAR to

introduce the kind of error recovery used in CAPirAUJ, an improved form

of "panic action" in which a set of symbols is kept in existence on

which recovery may occur.

The technique of CAP'P1AP1] is such that recovery can only take

place on a symbol within the current non-terminal or on a symbol

within a non-terminal from which this one was called. Thus

substantial sections of valid text can be skipped in certain

circumstances.

r

The general action uses an appropriate normal state within the

matrix as an error recovery state. This is possible because of KHAR's

rigid distinction between syntax and semantics. The verb LOOP is used

to access a state for use in this way. The use of the state is

exactly as in the normal syntactic scan except that encountering the

end of state is not the signal for taking error action, but to read a

new next symbol and repeat the scan from the beginning of the state.

Since this state may contain non-terminals, and so on, the follow

set on which recovery may occur is augmented automatically by all the

director symbols of these nonterminals.

SUMMARY OF ERROR ACTIONS

USE n

the state "n" should be an error state;

LOOP n

"n" is any normal state within the matrix, not an error

state;

GO n

this action forces access to another state without

recovery;

EXIT

forces exit from the present matrix to the calling point,

with recovery left to the higher level;

STOP

stops the process of syntax checking;

SUCC

read the next symbol and resume scanning as indicated.

CHAPTER 5: SEMANTIC PROCESSING & CODE GENERATION

We have already outlined the approach we take in the KHAR system.

In this chapter we discuss the actual mechanism used in KHAR to handle

semantics (oricontext sensitivities). We then show how these are

applied by shöwing their use in the production of a compiler for PL/O.

This covers most of the semantic problems encountered in a block

structured language but not the propagation of attributes up the

abstract parse tree of an arithmetic expression, as PL/O has only

integer variables. We illustrate this problem by considering the

semantics of expressions in a language such as ANSI FORTRAN.

THE SEMANTIC MECHANISMS OF KHAR

The expression "semantic mechanism" was used in CCORDY] to cover

a semantic data structure and the operations upon it. His first

example of such a mechanism is the symbol table mechanism. He asserts

that

1) it is universally used,

2) contains name of object,

3) contains its data type,

4) indicates its structure, variable, array, procedure, etc.,

5) contains addressing information, and

6) contains auxiliary information, dimensionality or number of

parameters.

Typical operations upon the symbol table are given as

1) enter name,

2) enter address, and so on, one for each attribute.

This immediately brings us to the difference between the approach

of KHAR and that of conventional compilation. In KHAR we do not

construct a symbol table. We do have dictionaries of identifiers,

: strings and constant denotations but the objects handled within KHAR

are the integer indices into these dictionaries. Thus KHAR has no

symbol table in the sense of CCORDY].

The mechanisms of KHAR are:

1) A symbol stack

this is a stack, the elements of which are integer

variables; as we shall see, items may be pushed onto or

popped off the stack; the structure is a read-only stack,

rather than a push-down store, in which only the top

element would be accessible.

2) Current Source Symbol register (CSS)

this is a register whose content is the last symbol read

from the input stream by the recogniser, it is used in a

read-only manner;

3) A Register (RG)

this is a working register whose contents may be set using

" the SET verb from a range of sources, or may be

incremented or decremented;

4) A Label register (LABEL)

this is used to provide a set of integer values which are

used to generate unique labels;

5) A Level register (LEVEL)

this is incremented or decremented to provide a level

count within a block structured language, used to generate

level, address pairs for the PL/O machine;

6) An Index register (INDEX)

this register is used to index into the stack, and is set'

by the use of the SCOPE or SEARCH verbs;

7) Top of stack register

this is used to access the top of the stack, it is not

explicitly available to the user of KHAR.

SEMANTIC ACTIONS

We may now describe the semantic actions or verbs which operate

upon the semantic structures of KHAR.

MARK

This action increases LEVEL by one and puts "F'ARK" on the

stack.

FLUSH
A

This action removes all entries down to and including the

MARK from the, stack, and LEVEL is decremented by one. If

MARK was not found on the stack, the stack pointer is set

to 0, and LEVEL becomes 0.

SCOPE, SEARCH & CHECK

These three actions have similar syntax as shown in SL4.

Each one has one argument and two sets of actions. One of

these two sets of actions will be carried out depending on

the result of the SCOPE, SEARCH or CHECK action. "SCOPE"

first searches if the argument is matched with one of the

elements down to the last "mark" put on the stack, and

accordingly, if found the first set of actions is obeyed,

otherwise the second set of actions would be done. This

verb is used to check for duplicated declarations..

"SEARCH" searches the complete stack for a match with its

argument.. Otherwise, it behaves just like "SCOPE", and is

used to locate declared items on the stack.

Both these actions change the value of INDEX so that

values pushed onto the stack next to the matched symbol

may be accessed.

"CHECK" just checks the argument; if it is not zero the

first set of actions is carried out, otherwise, the

second.

POP

This action removes items from the stack. POP by itself

removes one item, "POP, O" removes all items, and "POP, &'

removes "n" items.

PUSH

This action places one item on the stack. PUSH RG puts the

contents of RG on the stack, PUSH CSS, the current source

symbol, PUSH LABEL the current value of LABEL, PUSH LEVEL,

the value of LEVEL and PUSH alone the value of the

following symbol, an. integer value which is either an

integer, as written, or the index to an encoded item.

SET

This action alters the value of the working register RG.

SET RG pops a value off the stack into RG, SET CSS places

the current sorce symbol into RG, SET LABEL and SET LEVEL,

the values of LABEL and LEVEL, while SET +n adds "n" to

RG and SET -n subtracts "n" from RG. SET alone, as for

PUSH, places the value of the following symbol in RG.

SEMANTIC CHECKING IN PL/O

Semantic checking in PLO is done in three passes. In the first

pass we concentrate'on "CONST" part, in the second pass on "VAR" part

and in the third pass on procedure calls. The Linearized SL encoding

is given in the supporting material, LISTING OF THE KHAR SYSTEM.

PASS 1: syntactic processing

This pass checks the syntax of PL/O and outputs expressions in

- 5.5 -

postfix notation. We do not show the syntax diagrams seperately as

I

they are
repeated

with the addition of semantic actions in the

following sections. The only actions placed in the linearized coding

are the error correcting actions and may be seen by inspecting the

appendix.

PASS 2: dealing with manifest constants

In matrix 98 each time on entering [block], we "mark" the stack

and upon exit we "flush" the stack, that is to remove all entries down

to and including the "mark". For each identifier, we use SCOPE to

check if it. is declared already. If it is, we use ERROR to output a

message. If not declared at this level, we push the identifier,

actually its index, onto the stack. For each constant identifier

encountered we push two entries onto the stack, its code and its

value. For other identifiers, we push the code and "0", as a "don't

care" marker.

When we are in "factor", we SEARCH the stack for identifier

entries. If the matching identifier has zero as a value above its

code, then it is not a constant in that scope. Remember that constants

are represented by indices to their denotations. If the value is not

zero, then it is used in EMIT to replace the identifier code,

otherwise we emit the current source symbol. Note that we set RG to

EMIT so that symbols are copied unless otherwise required by the

semantic action.

We report an error if any of the constant identifiers on the

stack appears

in "VAR" part,

as a procedure ident in matrix 98,

at the left hand side of ": _" in matrix 97, or

after "CALL" in matrix 97.

i

We tabulate the actions for the pass and then present the graphs

with the index number of the action placed to show where it would be

carried out.

Semantic Actions: Manifest Constants

0. set 0

1. mark

2. set css

3. scope rg(error(Ln, ": ", rg., " declared"); push rg push css;)

4. scope css(error(ln, ": ", css., " declared"); push css push 0;)

5. flush

6. search css(;;)
check %index+l(epror(ln, ": ", css., " const in LHS");;)

7. search css(;;)
check %index+l(error(ln, ": ", css., " not a procedure");;)

S. set emit

9. search(;;)
check %index(check %index+l(emit(%index+l);;);;)

10. emit(css)

11. emit(css) set emit

t"1

^^
. iý4

0?
a7

. Pl

(0
.a E

N

C
ý

00

0)

z 0 U

"`E

"`

le

64-3

-0
...

a a

T

ýýý .4

.ý

I

I

",

d'

ý
C
m

.. U
ý

W

IL

S

I-
H
X
W

- 5.8 -

ý
Z
W

1
�i's

11
00

(C) T
. dJ

c

...

K-

Z
W
z

T c-I n
ft&j c
ý0

Gý
0

-ý -a t3 C
-+' 0
NU

u. u

Z
H
m

- 5.9 -

O
O

T

n
G
0

... N

L
CL
X

u

0

f

11
r-ý ^

11
v

>n

>v
ýý 413

If

- S. 1s -

95

F-->'E'

L. _1J. -.. _J

94

*Clerm7 Ltermi<

---ýCfact or7

93

Cfacýor7 344-
\

liE-

I

0
-> ident --

9

number--
10

I
8
->

ýC[expression]
--ý0)-

I

PASS 3: checking variables

As in pass 1, in matrix 98, each time on entering Eblock], we

MARK the stack and on leaving, we FLUSH.

For each variable identifier encountered we use SCOPE to check if

it is already on the stack. If found on the stack, there is an error,

"variable identifier redeclared", but if it is not found, we push that

identifier on
I
ýthe stack with "1" above it, to mark it as of interest.

Report an error if any of the variable identifiers on the stack

appears

in "CONST" part in matrix 98,

as a procedure name in 98, or

after "CALL" in 97.

Report an error if "ident" before ": _" in 97 is not on the stack,

i. e. it is not declared and marked with "1". All other identifers will

have been marked with "0" as in the first pass.

i

Semantic actions: Variable Identifiers

1. mark

2. scope css(error(ln, ": ", css., " declared", nl); push css push 0;)

3. scope css(error(Ln, ": ", css., " declared", nl); push css push 1;)

4. Rush

5. search css(;;)
check %index(

check %index+1(; error(Ln, ": ", css., "cannot appear in LHS"););
error(q, ': ", css., " undeclared");

I)
I

6. search(;;)
check %index(

check %index+l(error(ln, ": ", css., " not a procedure");;);
error(ln, ": ", css., " undeclared");

7. search css(; error(ln, ": ", css., " is not defined", nl);)

®
. II E

a

N

ý
G
m

ý
ý

z 0 0

00

0)

m
. ýa
C
@i

-o
...
ý

1 LGý, '

.ý "`

S

a

Ll
-Ak

-S. 14 --

-I
n
. 34
ü
0

ß

R1

.0

ý
H
>C
[tJ
Ih

L]
z w

i
'A:.

ý

(C)

"i

."...

Lf)T
iý

ftAj CJ
Q1 J

"'d Q
"- U

T

Z
W
ZO
ra

n C
0

. r..

.. a C
0
ü

u

H

T
- 5.15 -

Cterm] A

C Lerm7 ý-ý---+t-ý
I

_ý

CfacLor]

[foe Lor]

ýý

-ý i den L-

number

7
A

-=-ý)ý ýC----: -)Cexpress i on]

I
ý

il
f ý/ýý

u v

n

v

-> tw

* 11

(C)
(3)

- S. 17 -

PASS 4: checking procedures

As in previous passes, "mark" and "flush" the stack before

entering and upon the exit each time a [block] is encountered in

matrix 98.

Push procedure identifier on the stack if it is not already

there, and if it is, report an error that "procedure identifier is

redeclared". We mark other identifiers as of no interest.

Report an error if any of the identifiers of interest on the

stack appears -

in "CONST" part in matrix 98,

in "VAR" part in 98, or

before ": =" in 97.

Report an error if the ident after CALL in 97 is not on the

stack, i. e. is not declared or is declared but marked as not of

interest.

Semantic actions: Procedure Identifiers

1. Mark

2. scope css(error(Ln, ": ", css., " declared", nl); push css push 0;)

3. scope css(error(Ln, ": ", css., " declared", nl); push css push 1;)

4. flush

5. search css(;;)
check %index(

check %index+l(error(ln, ": ", css., " is a procedure name");;);;)

6. search(;;)
check %index(

check %index+1(; error(ln, ": ", css., " is not a-procedure"););
error(ln, ": ", css., " undeclared");

Matrices 99 & 98

L
m

.Q E

C

ofi

"%

NI

ý ý
.a

"1 ý

"%

e

n
.x U
0

.ý

. tl Li

.ý

M

º 'ý''

.ý
'o
ý

ä
a

ý
H
X
W
A

Platrix 97

r, - 0)

0
Z
w

i y

- 5.21 -

Z
L1J
z
ý--

T
O
Q

T

Matrix 96

i

11.

vý

i ýi
-Me

výý
u

ý

I
i

95

Matrices 95,94 & 93

-.. >+

L-->... _,

[term]

94
--ý[factor]

A

[factor] ý*<---ý

93

idenL=

number

C--ý, Caxpress i on7 ;NI

Cterm]

ýý . -<J

-`ýýý nL. ol

nC. G' - `ý ýr

> c(Q_ (4')
ý

- 5.23 -

ATTRIBUTE PROPAGATION IN EXPRESSIONS

As outlined in the introduction to this chapter, PL/O does not

require that attributes be propagated within the Abstract Parse Tree.

We therefore discuss this problem for a language with similarities to

ANSI FORTRAN.

We assume that an earlier pass of KHAR has emitted reverse

polish, or post-fix, code and has appended type tokens to the

identifiers in expressions. As in CCORDY7, we assume that expressions

are bracketed in some convenient way.

The attributes of the leaves (identifiers) have to be propagated

up the tree so that semantic checking can take place. This is done by

repeatedly scanning the linearized expression from left to right,

dealing with one (operand, operand, operator) triple at a time. As

language surveys have shown CTANENBAUMb], the majority of expressions

are very simple, so this Labourious approach will only occasionally

result in heavy overheads. We present a simple example and then give

the corresponding semantic graphs.

Consider the expression

-W+x*Y+Z.

We assume that it has been translated into an internal form which

might be externally represented as

+++ W REAL -- X REAL Y REAL *+Z REAL + ---.

Note the use of -- to represent unary minus and the start-of-

I
,

expression, end-of-expression markers, +++ and ---.

We give the semantic graphs and actions for the two passes below,

while explaining the action of the passes here.

The first pass transforms our example to

+++ < -- W REAL >X REAL Y REAL *+Z REAL + ---.

I

The action of the semantic graph is to stack identifiers with

their types until an operator is encountered but emitting operands and

their type further than two deep as it does so. If the operator is

monadic it is emitted followed by its operand, else it is followed by

two operands. In either case this prefix fragment is bracketed by "<"

and ">". Then the rest of the expression is copied until "---" is

reached and emitted.

The action of the second pass is to match the bracketed prefix

operator and its operand(s) with a syntax graph and semantic (code

emitting) actions. The syntax graph defines the valid combinations of

operator and types. The actual identifiers can be ignored. The second

graph gives the checking needed"for a language which requires explicit

type changing. The effect of this on our example is to produce

+++ W REAL X REAL Y REAL *+Z REAL + ---.

Repeating the two scans gives,

first,

and, then,

+++ W REAL <*Y REAL"X REAL >+Z REAL + ---

W REAL TEMP REAL +Z REAL + ---.

- 5.25 -

V,

A third pair of scans gives

+++ <+W REAL TEMP REAL >Z REAL + ---

and

+++ TEMP REAL Z REAL + ---,

which, in turn, gives,

+++ <+Z REAL TEMP REAL > ---

and

+++ TEMP REAL ---,

which becomes on the second scan

TEMP REAL

and is no longer an expression, since it is not bracketed as such.

Note that we rely on the syntactic processing to detect and

report errors. We can also place code emission actions in the error

action part of the matrix to repair the error to allow further

processing if we wish.

We tabulate the actions for the two passes and then present the

graphs.

Semantic Actions : first pass of attribute propagation

1. push css

2. emit(% 2, Z1) pop

3. emit(``/. 3)

4. emit("<", css, %2, Zi, ">")

5. emit(Z4, '3, "<", css, %2, %1, ">")

6. emit("<",, css, '4, %3, '2, X1, ">")

7. emit(%3, %4) push css

8. emit(css)

Semantic Actions : second pass of att rim propagation

1. push css

2. emit(%1, "real")

3. emit(%l, "int")

4. emit(%1, css)

5. emit("temp", css)

6. emit(css)

i
First Pass : Matrices 89 & 88

"I

r

G
...

ý

ý
0

Wt

Il
1.1
ii
ýý

(0 Lý

00

00

n
00
0?

4

00

-T c 0

-3.28

It

"'
ý

0
.0 0
ý. ®
ý. 0
u

..,,.
-a 0 c 0 ý

. ý4

ft.

v 0.

ý

ý
ý ý
v -0

-i
lý
L.
Q ! "'

.00
oa
ýa

t 0
~ 0

w"
-a ai

0C
Ca

ý' E

M

T

(0

L
0

4.63
0
ý

0.
0

U
w ý
ý

Second Pass : Matrices 89 & 88

A

to

iý

(0

I
I
I

ý

G
. «.

.G «N
ý
C
0

0

(Ii ai It

ýýý

ýJ.. J l
I- äQ I-
z ti wz H1G tL H

ti
W" ..

. 1J
ý
ý
-u ...

i
T f___

__

11th

- 5.29 -

a c

it

1

,.. -

s .0

a c 0
co

c0

rn 00

I

CODE GENERATION

We now discuss code generation in terms of generating code for a

simple assembler for the PL/O machine, that is, we assume a two-pass

process which will generate code addresses. A simple' assembler could

be constructed as two KHAR passes but we take the discussion of

assembly code as sufficient for the work at this stage.

The placling of the code emitting actions in the syntax is derived

by inspection of the compiler code in CWIRTHb].

The use of the KHAR semantic mechanism to build the information

needed for code emission echoes CCORDYJ but, again, the separation of

the semantics out from the emission simplifies the graphs and the

understanding of what is happening.

The method uses the register LABEL to generate labels for use in

transfer of control instructions, and LEVEL and RG to construct the

address information on the stack required to generate storage

references. A triple (CSS, LEVEL, RG) is pushed onto the stack for each

identifier encountered in the VAR part. The triple is located using

SEARCH when the load or store order is generated while scanning

<statement>.

CHAPTER 6: THE INTERFACE TO KHAR

As was introduced in chapter 3, the interface to KHAR for the

language designer is a Syntax Language which he will use to encode a

linearized form of the syntax graph and error recovery actions, etc.,

needed fora particular pass.

We discuss the Syntax Languages in general, then present SLO in

detail, giving the hand coded tables needed to implement SLO, having

first discussed the Special Actions which are all that may be used in

SLO. We then present the linearized graph for SL1 which is translated

using KHAR set up for SLO to produce the more useable SL1. We then

show the syntax of SL1 and coclude the chapter by presenting that of

SL4, the current interface to KHAR.

SYNTAX LANGUAGES

In this part we introduce a family of languages SLO, SL1,...

designed for creating the transition table and the action table of

any other language we may implement.

One of the key ideas in the design of SL series is to make

possible the automatic creation of these tables. The transition table

and action table of at least one of SL languages must be made

manually and we do this for our smallest language in the SL series,

SLO. Using SLO we may define the SL1 tables' which may be created

I

automatically by SLO and so on. Eventually SL(i) is suitable as the

user's interface to KHAR. That is to say that SL(i) language can be

improved to produce SL(i+1), to deal with the features of a new

language to be implemented.

A program in any SL is the linearized form of syntax information,

semantic information and code emitting actions for a language L

according to the syntax of SL, a linearized form of the transition

matrices of the language L.

A program in SL has one or more blocks bounded in curly brackets

and "}" with the following structure :

{

main block

other blocks

}

"lain block" is the information constructed from the main

transition matrix and "other blocks" contain the information from the

other matrices, each of which has a similar layout to the main block.

Each block has one or more compound statements bounded by square

brackets "C" and "]". Each compound statement has one or more simple

statements and one syntax-error action part, bounded by parenthesis

"(" and ")". Blocks and compound statements are all labeled. The

labels are numeric.

,,

- 6.2 -

THE GENERAL SYNTAX OF SL LAIGUAGES

<program>

<main block>

<block>

<state>

:: ={<main block>C; <block>... }

:: =<block>

:: =<matrix label>C<state>C; <state>...]

:: =<state label>(C<statement>C; <statement>]...]

? <syntax error actions>)

<statement> :: =<valid element> > <state Label>

[, <semantic actions>]C I <code emitting actions>]

<matrix label> :: ="integers between 99 and 50 "

<state Label> "integers between 0 to number of states"

<valid element> :: _ "all Language symbols"

<syntax error actions> :: _ " depends on which SL(i) is being defined. "

[semantic actions] :: ="as defined in chapter 5"IERRCRIEMITI

[code emitting actions] :: =[special actions]l[semantic actions]

[special actions] :: =SA1ISA21 ISA111SA12

Different SL Languages vary only in the three nonterminals

<syntax error actions>, <semantic actions>, and <code emitting

actions> used in the overall syntax of the SL series. For SLO these

three nonterminals are as follows.

[error syntax action] :: = STOP

[semantic action] :: = empty

[code emitting actions] :: =[special actions]

GRAPH OF THE GENERAL SYNTAX

. 41 df

CN

T
-4.) -0

.... 9)
.. _. ý
Oý
ý-"

,0 A

"N
.N p .o -4-3
aýU Nö

I. 1

--

OD

c
-ý-ý N
.ýý
"- 0

Ua

0
U

"%

W
M

v.

T
�"I

XN

.ýa ý. ý
. i. ý

.. 6. j .. Q "ND öE

.ý' NG

Li

T xý. 0

EC

- 6.4

1

1 ", .

LANGUAGE SYMBOLS OF SL

4
The present language symbols of SL are:

tab ni In sp rg css set pop push emit error label

sa0 sal sat sa3 sa4 say say sal sa8 sa9 salO sail sa12

use find go or stop-get unget loop exit

check search flush index level mark scope

5

w I "[-@ (
+*]}<>?,. /

SEPERATIOM OF SL KEYWORDS & LANGUAGE KEYWORDS

In our small language we have a set of keywords used in its

syntax. As mentioned earlier a program in SL is the linearized form

of a language syntax and it contains all keywords of that language.

So the system to be able to compile an SL program should know both

sets of keywords. These two sets of keywords are unchanged (except

when we add a feature to the language SL in which case we update the

set). The other set is the keywords of the language for which we

intend to set up our system. We concatanate these two and call

it "keywords". SL keywords always come first. This ensures that the

codes for SL keywords are always,. the same.

USE OF POINTERS IN TRANSITION TABLE

In our transition table each valid element is followed by three

pointers: i

1) pointer to the same table to indicate the next state;

2) pointer to semantic actions;

3) pointer to code-emitting actions.

If any of the last two pointers is zero, it means there will be

no such actions for that element.

However if the valid element was a matrix number the case is a

litte different as follows

1) the same as above

2) pointer to, either, type of action before entering the matrix

3) pointer to either type of action after entering the matrix.

SPECIAL ACTIONS SAO TO SA12

These are the only ones available in SLO. They may, of course,
I

be used in all other SLs and in any programming language if necessary.

sao

SAl

This is the null action, used to satisfy syntax of SLO.

Changes the state numbers to their actual addresses of the

beginning of the appropriate state in transition table. This is done

at the end of each block in an SL Language at the time of code

emitting.

SA2

This is normally called after each state number is read. The

action is to remember starting point of the current state in

transition table.

SA3

This puts the current symbol on the first avalable item of the

array transition table.

SA4

This changes the sign of the "next state symbol" and puts it in

the transition table array, so that at the end of current matrix they

are recognized (as they are negative) and changed to their actual

address by action SA1.

SA5

This action remembers the beginning of each matrix and

initializes all elements of "state addresses" array into a negative

number.

I

SA6

This action comes at the end of the last block in an SL program,

counts the number of matrices, records matrix codes with the address

of the beginning of each of them in the transition matrix, records the

length of transition matrix, writes transition table on the

appropriate file, and writes the action table on its file.

SA7

SA8

SA9

Puts the current symbol on the action table.

Puts the "next state" on the action table.

Puts a zero on transition table.

SA10

SA11

Puts a zero on action table.

Puts the current pointer of action table on transition table.,

- 6.8 -

SA12

Put "rw-stop" on the transiton table. This is the only syntax

error action in SLO.

Syntax error action

In this part for SLO we have no syntax error recovery. Any error

causes the compilation to stop at that point.

SYNTAX GRAPH FOR SLýr

. i1
4)

x
c N

T A

T
041

... ý

ow I
>-..

I
ý4,

-'U) ac
-0
0 e.
m "1
CL U
W0

(^, J

0% 'ý

T t..
mm

"+ý si QE
. 4J '
yC

u

T XL.
... _ 0
L Sl

. ý. ý ý

0'
EC

"%

:f

ý

ý

e6l
- 6.10 -

TRANSITION TABLE FOR SLO

1 36 > 76)
99 37 42 77 82
0 38 0 78 0
102 39 0 79 22

0{ 40 0 80 0
16 41 1 81 1
20 42 22 82 ; 3 34 43 48 83 18
40 44 0 84 0
51 45 10 85 0
6 21 46 0 86]
7 12 47 1 87 92
80 48 1 88 0
93 49 62 89 0

10 0 50 0 90 0
11 1 51 12 91 1
12 C 52 ; 92 ; 13 18 53 30 93 6
14 0 54 0 94 0
15 0 55 15 95 0
16 0 56) 96 }
17 1 57 82 97 998
18 22 58 0 98 0
19 24 59 29 99 26
20 0 60 0 100 0
21 6 61 1 101 1
22 0 62 27 102
23 1 63 68
24 (64 0
25 30 65 18
26 0 66 0
27 0 67 1
28 0 66 27
29 1 69 68
30 23 70 0
31 36 71 18
32 0 72 ;
33 8 73 30
34 0 74 0
35 1 75 20

0

I
i

ACTION TABLE FOR SL/O

37
00
1 stop
20
3 sal
4 sat
50
6 sa2
70
8 sa3
90

10 sa4
11 0
12 sa9
13 sal
14 0
15 sa9
16 sa9
17 0
18 sa7
19 0
20 salO
21 0
22 sa9
23 sa0
24 sa10
25 0
26 sal,
27 sa6
28 0
29 sa9
30 sa9
31 sa9
32 sa0
33 0
34 salt
35 sa10
36 0
37

SYNTAX GRAPHS FO
-r-

On
0. ý

P1atrix* 99 -'j

tQ

T
CD
ý

0-
^

«ý ý

-T o ý ._ 0.41
-o. -4.3 oö
_.. o OýU
>--

a

Na

T L
dý

-+1 S1
oE
ýc

u

T XL
'-0
Lý

.ýE
EC

"%

. "%

- 6.13

1
@J

XN
Oý
.. O

. «-

>ý
No

n

'1 1

C161

I

tlatrix 93

Ö

ý C9

4-t
ý

ý
ý

ý
....

0
>

ý

0
Z
H
LL-

-t

Qý

0

- 6.14 --

Matrix 97

~....... co
ýý. ý

- 6.15 -

CODItJG OF SL1 IN SLO

The following is a complete program written in SLO, for our

present small language, SL1.

{
99 C 0((>1);

1(21>2Isa1 sat);
2(C>3);

); 3(22>41sa2
4((>5);

); 5(@>12(sa9 sail; 23>61sa3
6(»7);
7(22>8Isa4);
8(I>9Isa9 sail; ; >1l sa9 sa9; a>12Isa9 sa9 sa9 sail);
9(97>l0IsalO);

10(; >11; a>12Isa9 sail);
11(23>6Isa3);
12(98>13IsalO);
13()>14);
14(; >3; 3>15);
15(? >exit(sal sa6; ; >1)

3;
98 C O(exit>exitlsa7; stop>exitlsa7; go>1Isa7; find>21sa7);

1(22>exitlsa8);

"2(>3Isa7; 25>3);
3(23>4Isa7);

); 4(go>5Isa7; >31sa7; 23>41sa7
5(22>61sa8);
6(or>21sa7; 25>exit)

97 C 0(saO>OIsa7; sal>OIsa7; sa2>OIsa7; sa3>Olsa7; sa4>Olsa7;
sa5>Olsa7; sa6>Olsa7; sa7>OIsa7; sa3>OIsa7; sa9>OIsa7;
saiO>QIsa7; salt>Olsa7; sal2>OIsa7; 25>exit)

.}
]

THE END-STATE SYMBOL

We choose a special character which is rarely used in programming

languages and assign it as "end-state" in the '--, -SL languages.

In this implementation we use "? " as our end-state symbol.

If it happened that "? " was one of the valid elements of a

language in use, we may change that to another character, if we like.

The ambiguity arises only if'we have "? " as the first valid element

of a state. For example in the following SL statement

5(end>3; ? >1 ? stop)

the first "? " is recognized as a valid element because after "; " we

expect valid element but the second one is end-state because it is not

preceded by a "; ". But in the following SL statement

5(? >4; end>5 ? stop)

after "(" we can have either valid element or end-state followed by

syntax-error-actions. So having read the first "? " there is an

ambiguity if this is end-state (that is if this state is an error-

state) or a valid element. Using "\" before "? " takes its special

meaning, (end of state symbol). So if "? " is to be used as the first

valid element of a state it should be-preceded by a "\".

DESCRIPTION OF THE STATEMENTS

All statements in an SL program have the same layout. Being in a

particular state we expect the current source symbol to match with one

of the valid elements of that state and the "next state" after that

valid element is the address of another statement where we can find

the next expected symbol.

The error action part at the end of each statement is for error

recovery if none of the valid elements matched the current source

symbol.

A valid element in statement can be

a reserved word

an integer

an identifier

a constant string

a matrix label

a statement label

any special action

null-symbol

any-symbol

I

A "next state" in statements is an existing statement label:

I
,

ACTIONS

The actions are listed here but the majority of them have already

been explained elsewhere. The chapter is indicated.

USE

Described in chapter 4.

succ

Described in chapter 4.

STOP

The whole process would stop, see chapter 4.

LOOP n

See chapter 4: "n" is any state number in the same transition

matrix.

GO n

See chapter 4; "n" is ariy state number in the same transition

matrix.

i

POP, PUSH & SET

These three actions are semantic actions described in chapter 5.

EMIT and ERROR

These two actions have the same arguments. The difference is that

"EMIT" outputs on "output-file" and "ERROR" outputs on "error-file".

They can have any number of arguments seperated by commas, in

parantheses Arguments and meanings are as follows :

CSS

outputs the current source symbol

RG

outputs the content of register

"constant string"

outputs the pointer to "constant string"

%n
0

outputs the n'th. element down the stack.

XINDEX

outputs the element in the stack accessed by the current

value of INDEX.

%INDEX+n

%INDEX-n

outputs the element +/- n from that accessed by INDEX.

If the argument is followed by a full-stop then the actual,

, symbol would be output.

For example

EMIT CSS

outputs the internal code of current source symbol but

EMIT CSS.

outputs the actual symbol.

NL

outputs a new line

SP

outputs a space

LN

outputs the Line number

TAB

outputs "tab"

SYNTAX OF SL4

SL4 is the current interface to KHAR. We present its syntax as a

set of graphs and give its encoding in SL1.

SYNTAX GRAPHS

Matrix 99

.. 1.. 1 f

W.

^üý

ý. O

ý.. '
ü

`t7ý
Ü1a

.... 4) I1
-E
ow >-

0
ý

0

rr

CD
C

e.

.ýý
"- . OU

ýO
.a O
U

06-

ý. xy
0C L. '''

O
*om

ýß cý
ýý No
Nc

",

XL

. ij E

ß3
Ec

ý. ý. ý. ý.. "1

LVJ ý
T

. 22

1

Matrix 98

i.

.. 0

c
1
m

0
N

O
C'

r4

ÖHÜWW Öý H
IY

c~nwcýnä°cD
wc

TTTT TýN TT

Ii

n
(0
C1)
u

iy.

. 41
C
4)
E

....
4)

"O
.. ý

.. r 0

LJ..
ý

Matrix 97

I

N
qp.

F"`cýn

0

0

mmý

AQ
L. i L Li ý

OU tl. l U!
-+JMü3 >G

tý C6LWU 0
*1R ý-- _1 U .. _t ýU

K--1

1 CY.
t- o H LY

i Y.
W LiJ

IT,

ý.. W
W
U3 ý..

0. J
0-i
aý

- 6.24--

ý
ý

a z A

(Y. U

ii

TT

ri U)
0)
I

1
. iý
C
ý
E
m

...
0

-o
.. ý

0

0

ý
ýý

ftý

r; *Iýw

mJ

Matrices 96 & 95

-ýx-----;.)1C957

-ýCSS

3RG

r-ýºconsi-sir t ng

NL

SP

LN

TAB

0

T
Integer

INDEX T

ýý "_. ý

3Lýý

I

- 6.25 -

CODING OF SL4 IN SL1

{
99 C 0((>1 a go 18);

1(21>21sa1 sa2 a go 16);
2(C>3 a go 18);
3(22>41sa2 0 go 18);
4((>5 O go 18);
5(? >17; 23>61sa3 a go 18);
6(»7 ägo18);
7(22>81sa4 a go 18);
8(, >91sa11; I>11lsa9 sail; ; >131sa9 sa9;

? >171sa9 sa9 sa9 sail a go 18);
9(97>101sa10 a go 18);

10(1>11lsa11; ; >131sa9; ? >171sa9 sa9 sail a go 18);
11(97>121sa1O O go 18);
12(; >13; ? >171sa9 sa11 a go 18);
13(23>61sa3 a go 18);
140>15 a go 18);
15(; >3; 3>16 @ go 18);
16()>exitisa1 sa6; ; >l 0 go 18);
17(98>141sa1O a go 18);
18(0 find); 22(go 4 or 23>22 go 7 or)J go 16)

J;
98 C 0(stop>exitjsa7; get>Olsa7; unget>Olsa7; loop>1lsa7;

go>1lsa7; use>1lsa7; find>21sa7 a exit);
1(22>exitisa8 a exit);
2(23>31sa7 @ exit);
3(>2; go>41sa7 @ exit);

];
97 1

5(26>61sa7
6((>7
7(97>8
8(; >91 sa7
9(97>10

10(; >11Isa7
11()>0

25>exit a
1(96>0 a
2(%>31sa7; 26>Olsa7 a
3(26>Olsa7 @
4(%>51sa7; 26>61sa7 @

4(22>5Jsa8 a exit);
5(or>21sa7; 25>exit 0 exit)

O(eMit>1Isa7; error>1lsa7; push>21sa7; set>21sa7; pop>O sa7;
27>OIsa7; flush>OIsa7; search>41sa7; check>41sa7;

a
a
a
a
a
a
a

exit);
exit);
exit);
exit);.
exit);
exit);
exit)

exit);
exit);
exit);
exit);
exit);

1;
96 C 0((>lisa7 a exit);

l(%>21sa7; css>5jsa7; rg>51sa7; 20>51sa7; 26>61sa7 a exit);
2(index>31sa7; 26>51sa7 a exit);
3(+>41sa7; ->41sa7; 25>5 0 exit);
4(26>51sa7 a exit);
5(. >6lsa7; 25>6 0 exit);
6(, >llsa7;)>exitlsa7 @ exit)

}

CHAPTER 7: IMPLEMENTATION

Two versions of the KHAR system were developed. The first was on

an ICL1904S in PASCAL and the second on a DEC PDP11/40 written in the

C language, a derivative of BCPL. This second version relies on many

of the features of the UNIX operating system, in particular, the file

system and the ability to write command macros. This enables the large

number of files involved in the use of KHAR, see below, to be handled

by providing commands for-the user.

It must be emphasised that the present version is a prototype

designed for use in the research, and to explo4t the UNIX environment.

The main aim of the implementation is to enable the study of the KHAR

passes and the development of the primitives required.

It is therefore different from the final form required for its

intended working environment in several ways.

OUTLINE OF PROTOTYPE

First, all the information held in the file store about a program

and the language is read from the serial f4Les of the UNIX filestore

into a simulated indexed random file organisation. This information

would be retained on backing store in a stand-alone system using

floppy discs.

Second, all possible KHAR actions, error recovery, semantic,

etc., are available in each pass. The discussion concluding chapter 5

- 7.1 -

showed that only a few passes, principally code generation, needed to

access these files except when reporting errors.

Third, the present KHAR machine contains a full set of trace

statements, which can be selectively enabled to give a full trace of

the behaviour of the machine. This has proved to be of great value in

tracing errors.

The implementation has attempted to be as simple-minded as

possible. Only one recursive procedure call is made, and no use is

made of local variables. Thus the basic code of the machine does not

require that a procedural language with recursion be used. This means

that little overhead is imposed and the machine is easily

transportable.

The main components of the KHAR machine are the recogniser, the

algorithm of which has been described, and the action interpreter,

which uses the case statement of C to parse the linear action code

when an action is called for. Each action is implemented as a separate

segment of code. Actions are easily added and can be made available to

the user via the SL languages.

I

Transition Table (TT) and Action Table (AT)

These tables of information are interpreted by KHAR to parse and

emit code for the appropriate language. This is an important part of

the system and all syntax checking, semantic checking and code

emitting revolves about it. Once these tables are made for our

smallest language in the SL series by hand, we are able to create

them automatically for the succeeding languages. These two tables are

arranged as atone dimensional array of elements. In the following

section we give the structure of these tables.

Structure of TT

Suppose we have m matrices in the language, then TT consists of m

parts and we have pointers to beginning of each part. Each part

consists of a number of states, all with the same structure. In the

figure on I`t`page'-,, -7.7 we have enlarged one state, in which a

number of "valid element part"s is followed by a "0" to indicate the

end of a state and followed by a pointer to a syntax error recovery

part in AT. Each valid element part in TT has four elements

1) a language symbol, valid at this point. r

2) a pointer to another state of the same table, for use if this

element matched the current source symbol.

3) a pointer to AT for semantic actions.

4) a pointer to AT for code emitting actions.

Although the system includes these in the table whether they are

- 7.3 -

required in a "sub pass" or not the structure could be subdivided if

further space reduction were needed.

Sometimes the error recovery part of a few states in a transition

matrix is the same. In that case instead of repeating that part at the

end of each state we put it in one state at the end of the matrix,

calling it the "error state" and refer to it from the other states.

"Error state" has no valid element and in TT it consists of two

elements, a "0", which can not match anything, and a pointer to AT.

l

A State of "TT"

matrix
numb4r
matr, ix
number

matr ix
number

"TT"

state
0

state
I

9

state
n

a

0

0

stat®
0

state
1

Structure of "AT"

The structure of "AT" is simpler than "TT". It consists of 'a

number of "action parts". Each has some actions followed by a "0" to

indicate the end of that action part. The pointers to this table from

TT are to the start of these parts. Execution of an action part

terminates on encountering the "0". The diagram on the next page

shows this.

II
The Structure of "AT"

one state

of "TTu

valid
element
n©xE

sLata

i

0

0

valid
eIemenI
next

sLote

0

11 AT«

4.

CICAion SI

2

0

0

acL ioný

0

FILES & PROGRAMS USED

In this part we explain the programs and the files we use in the

system.

A complete listing of the source programs is given in the

additional material, LISTINGS OF THE KHAR TRANSLATOR SYSTEM.

FILES used in the system

In this system we use 26 files as follows

1) *codename-file (code name file)

2) *cnindex-file (code name index file)

3) *define-file (define file)

4) *cndefine-file (code name define file)

5) nocomment ('all comment removed)

6) const-file (constant file)

7) nostring (all strings encoded)

8) cs-file (constant string file)

9) csindex-file (constant string index file)

10) intgr-file (integer file)

11) noidentifier (all identifiers encoded)

12) id-file (identifier file)

13) notriplechar (all triple characters encoded)

14) nodoublechar (all double characters encoded)

15) code-file (code file)

16) action-rw-file (action reserved word file)

17) *define-rw (define reserved word)

18) *ttable-file (transition table file)

19) *ttdefine-file (transition table define file)

20) *ttaction-file (transition table action file)

21) *ttcsindex-file (transition table constant string index file)

22) *ttcs-file (transition table constant string file)

23) output-file

24) error-file

25) lang-sym (language symbols)

26) any (text)

this file is any input text for which we wish to convert all

its basic symbols to their corresponding codes.

We refer to the above files by their numbers, 1 to 26. Only

those files whose names are preceded by an '*' are permanent to the

system and the others are temporary files.

File 16, action-rw-file, consists of all the reserved words used

in syntax-error, semantic and code-emitting actions, and is made by

hand. That is, these'are reserved words used in our small language,

SL.

File 25, is also made by hand and it consists of all the symbols

used in the language we wish to implement plus all the symbols used in

our small language. Apart from these two files (16 and 25), the

others are made by executing programs in the system, which are

explained in the next section.

PROGRAMS used in the system.

There are 14 programs used in the system. In this section we

explain their tasks, the files they use and the files they create. We

refer to these programs as AS, ... , N.

program A

This program reads the "language symbols", file 25, and makes

three files

1) codename-file (1)

2) cnindex-file (2)

(these two files are explained in chapter 3)

3) define-filet (3)

On this third one we write the lengths of the first two files and the

base-code. We append more information to this file in the other

programs.

program B

In chapter 6 we saw that the terminal symbols of a language can

be categorized into different classes. This program reads files 1 and

2 then appends some information to file 3, such as the number of items

in each class, the position of that class in file 2 and so on. For

those classes of objects which are not present in the language,

negative numbers are placed for the number of items in that class.

Also this program creates file 4 on which "code-name-table length",

"base-code" and "number of code names" are written. This information

is needed in program N.

program C

This program using files 1 and 2 finds out the comment delimiters

of the language. It then reads source text, deletes all comment and

outputs the remaining text on file 5.

programs D and E

These two programs are very similiar. They both read and write

the -same files. Their main task is to find the constant string

delimiters of the language, find constant strings in the input text

and replace them by their codes. The actual constant string is put in

a dictionary. To distinguish between these codes (which are numbers

between 3000 and 3999) and the actual integers used in the text we

also have to code integers simultaneously along with coding constant

strings. But there are files like "language symbols" or "transition

table data" in which the integers used are codes themselves, and we do

not wish to code them again. This is why we have two similar programs.

Program D codes all integers along with constant strings while program

E leaves integers as they are and only codes the constant strings.

program F

This program reads file 7, replaces all standard names and user

defined identifiers by their codes and outputs the result on file 11.

Also it puts all user defined identifiers on file 12.

program G

This program will check files 1 and 2 to see if any triple-

character special symbols (symbols made from three special

characters), exist in the " language and if so it reads file 11,

replacing all triple-character special symbols by their codes and

outputs the result on file 13.
r

program H

This program codes double-character special symbols in the same

way as program G did for triples.

program I

This program codes all single-characters left in the text and

finally creates file 15. On this file we only have integers. '

program j

There is a file of all those reserved words which are used in

syntax-error recovery, semantic and code emitting actions used in our

small language. This file is called "action-rw-file" and numbered 16.

We arrange for this file to be coded using programs C through I. Now

we have "action-rw-file" and its appropriate code file, file 15. This

program reads these two files and writes some "constant definitions"

to be included in program M. As an example, suppose we have our

action file looking as follows:

nl sp rg

and its appropriate code file as

132 135 139

the output of this program would be as follows

#define nl 132

#define sp 135

udetine rg 139

which are constant definitions valid in the programming language "C".

program

The transition tables of all the languages we implement are made

automatically by program N, except for the smallest language in the SL

series which is made by hand. Once this is done we have the

transition table for this language (SLO) in table in file 15. This

program reads this code file, and outputs it on file 18 with the

actual structure usable by program N.

program L

This program is used to make the action table of our smallest

Language in SL series as in program K.

program M

This program reads file 6 and amends some constant definitions on

file 19.

program N

This program has 4 modes

1) syntax

ýhecking

2) semantic checking

3) code emitting

4) transition table making.

In mode 1 the program reads source text (which is now converted

into integer numbers), from "code-file", and using the transition

table, checks for syntax validity.

We use mode 2 when there are no syntax errors and mode 3 when

there are neither syntax nor semantic errors.

PROCESSES USED IN THE SYSTEM

In this system we have the following processes each using a

sequence of programs.

Process

Executing programs A and Q. This process is used each time a

change is made to "language symbols".

Process 2, Coding

As we explained earlier, there are two ways of coding a file

1) code all symbols: in this case we execute programs C, D, F, G, H

and I; C reads the input text and I terminates with having file 15,

all codes.

2) Code all symbols but integers. We do the same as above but we use

program E instead of D.

Process 3

Code "action-rw-file" using process 2 (do not code integers), and

then execute program J. File 17 is made at the end of this process.

This process is used after any change. in "language symbols" or our

Small Language.

Process 4

Code transition table of SLO and then execute program K. This

process terminates with having transition table of SLO made with

exactly the same structure as those made automatically by program N.

Process 5

'Code "action table data" of SLO and then execute program L. This

process creates the "action table" for SLO, with the final structure

usable in program N.

CHAPTER 8: DISCUSSION & CONCLUSIONS

We first discuss the extent to which KHAR meets the objectives of

the research as regards the use of working storage, and the overall

size of the system.

We then consider how the multipass approach leads to a simple

structure for KHAR, which in turn gives it both extensibility and

portability. The need to have a clear and flexible interface for the

language designer is discussed.

The multipass approach adopted, together with the graphical

location of semantic actions within the syntax of a language, defined

as operations on a simple stack mechanism leads us to consider the

potential of this approach for the definition of language semantics.

We reconsider the limited range of languages for which KHAR was

intended in the light of its flexibility and suggest that the approach

might be extended to languages such as PASCAL, or into other fields of

application.

t: e conclude by considering the appl4cation of KNAR to the

compilation of languages for microprocessors.

SIZE

The present KHAR implementation occupies about 12000 bytes of

code, with 2000 bytes of constants, and requires 16000 bytes of

working storage. Only 4000 bytes of this working storage are required

for the KHAR machine itself. The remainder is used for data which can

be kept on secondary memory. The encoded graphs for PL/0, including

code generation, require about 7000 bytes, and may be regarded as

read-only colnstants.

Thus, we estimate that a working compiler for PL/0 could be

implemented using 24k bytes of ROM for the fixed tables and code of

KHAR. 8k bytes of RAM would leave about 6000 bytes free for program

text and dictionaries, since KHAR uses less than half its work space

in compiling PL/0.

SIMPLICITY & EXTENSIBILITY

The semantic mechanisms proposed in CCORDY] for SP/6, a severe

subset of PL/1, consist of a symbol table, modified to behave as a

stack, and three other stack mechanisms, one of which also used

entries of the same class as those in the symbol table. The mechanisms

consist of four stack structures and over 50 semantic actions defined

for the structures. This is an order higher than KHAR. Cordy has to

take account of type within his mechanisms, and introduces semantic

choice actions, which choose which path to take. We avoid semantic

decisions based on knowing within KHAR the type being handled. We

reduce the choice to "care" or "do not care" about the type of object

being handled in the pass. Further, the outcome only affects the

semantic action taken, not the path through the graph. Thus our graphs

are a reduced form of those in CCORDY].

The effect of this is to introduce complexity into the graphs

rather than into the internal structure of KHAR. This complexity can

be handled successfully because of the multipass approach adopted.

Thus use of KHAR to act as a translator for a language with new

features, say, an additional type, COMPLEX, does not reouire the

introduction of new mechanisms or semantic actions into KHAR.

For example, at one stage in the consideration of attribute

propagation within expressions, we considered the introduction of a

new primitive to operate on the stack. However, careful

reconsideration of the problem showed that syntax graphs and a set of

semantic actions could be defined using the existing basic operations

to handle this extension.

The most significant changes between AML/1 and PL/O are the

introduction of scope and the need for type-checking. These changes

required the change of KHAR from a machine capable of generating code

for a language with a CFG to a machine capable of generating code for

a typed, block structured language. The change required the addition

of six new operations defined on the stack, and the ability to index

the stack, that is, MARK, FLUSH, SCOPE, SEARCH and CHECK, together

with the INDEX register and its use in other actions. These features

were added to KHAR in about eight- working hours, requiring the

addition of 60 or so lines of code to the program of KHAR. The syntax

of SL was redefined and the SL translator (or table builder)

recompiled within this time.

PORTABILITY

We have implemented KHAR using global variables, so that the

stack mechanism of the C Language is used for subroutine entry and

return only. The depth of nesting used is below eight. Thus the

coding of KHAR as it stands demands only a minimal support from the

hardware for nesting of subroutines.

The data structures in KHAR are all one-dimensional integer

arrays. Thus a simple machine architecture with limited indexing

capibility should be able to support the KHAR machine.

The only other hardware requirement would be inexpensive

secondary storage, capable of random access from KHAR.

The final requirement for portability would be a version of KHAP.

written in a language supported by itself. The code generation passes

would be redefined to generate code for the new machine and the system

recompiled.

CLEAR & FLEXICLE INTERFACE

The interface to KHAR is essentially graphical and its encoding

only requires a knowledge of the syntax of SL and the semantics of the

simple KHAR mechanisms.

The interface itself is completely Independent of the language

used to implement KHAR, and thus remains invariant across

implementations.

I

The flexibility of the interface, and the minimal nature of the

semantic mechanisms available to the designer, requires skill in the

use of the system on the part of the language designer. Once these are

mastered, the semantic graphs produced, as claimed in CCORDY], become

a ready means of communicating the exact semantics of the language to

its users. Indeed, Cordy claims the use of semantic graphs to be

superior to other means of achieving this.

I

DEFINITION OF LANGUAGE SEMANTICS

The reliance on PASCAL to express the semantics of a language

defined using an LL(1) affix grammar in [BOCHf1AN] produces a textual

definition which can only be read if one understands PASCAL. Also,

semantics and code generation are considered together, although the

details of the latter are concealed by the use of a procedure

"generate" which has to be supplied by the user of the compiler

writing system. The result is that it is hard to see what the semantic

meaning is.

We consider that the essentially graphic nature of the

presentation of semantics in KHAR, and the individual refinement of

the semantics imposed by the multipass approach, make it possible for

both designer and user to select an aspect of semantics and isolate

its effects precisely.

Further, KI4AR implements a language once it has been expressed as

a set of SL "programs" and translated so that a definitive

implementation is immediately available. The translator may well be

relatively inefficient but it is available as a standard by which to

judge other compilers for the language.

POTENTIAL FOR DEVELOPflENT

We feel that there is considerable potential for development

based on KHAR. Our experience shows that a minor change in KHAR makes

a wide range of application possible. The system was intended to deal

with relatively simple and small Languages, approximately subset-s of

PASCAL, but with low-level operations on the machine architecture,

rather than the more abstract operations of PASCAL. KHAR can be used
0

to translate such languages.

We suggest that KHAR could be adapted to tackle the problem of

strict checking of user defined scalar types, which has been avoided

in PASCAL, and to handle the evaluation of constant expressions at

compile time.

A possible approach to the former is to use the special (table-

building) actions of KHAR, which are available at all times, to

construct at compile time an additional type checking pass or passes

derived from the type declarations in the program. This extension is

well beyond the original objectives of the work but the possibility

has been noted.

The evaluation of constant expressions at compile time would be a

simple extension of KHAR if only integer arithmetic were allowed. The

stack mechanism would need to be extended by adding arithmetic

operations to KHAR and the corresponding operators to SL. A technique

similar to that suggested for checking the type of expressions shold

be sufficient.

APPLICABILITY TO PROGRAMMING LANGUAGES FOR MICROPROCESSORS

The problem of language design for microprocessors has been

briefly outlined in the introduction. In summary, we may say that two

conflicting design goals have to be attained. The language must

provide the user with access to all the features of the machine yet

provide him with all the protection which can be given by a modern,

high-level, language.

Yet another aim of the designer is to make the language useful

for the programming of more than one microprocessor. If he succeeds in

doing this, then the user will have lost the semantic clues given to

him by the peculiarities of the assembler about the semantics of the

machine for which he is programming. We think that the ability to

introduce separate definitions of the semantics appropriate to

different machine architectures as separate passes, associated closely

with the code generation for that machine, which exists in KHAR, would

allow the language designer to check the static semantics of the

program by defining an appropriate pass.

I

0

I

CONCLUSIONS

This work on KHAR which began by reconsidering compiler

technology to achieve a highly multipass translator system has

resulted in a system which, although not fully extended in this work,

both will be useful in research into the design of high-level

Languages for low-level programming, because of the clear interface

provided for the designer, and will provide a translator system for

such languages which has a low read/write storage requirement.

I

I
,

REFERENCES

taMMAra]

Amman, U., "The Method of Structured Programming Applied

to the Development of a Compiler", International Computing

Symposium 1973, A. Gunther et at, eds., (Amsterdam:
I

Norti-Holland, 1974), pp93-99.

CBAUERed]

Sauer, F. L., & Eickel, J., eds., Compiler Construction,

An Advanced Course, 2nd ed., (Berlin: Springer-Verlag,

1976).

CßOCHNIANN]

Boch. rnann, G. V., & Ward, P., "Compiler Writing System for

Attribute Grammers", Comp J vol 21 no 2 pp144-148

CQROWNa7

Brown, P. A. "The N. L/1 Macro Processor", Comm ACM vol 10

Oct 1977, pp618-623.

[©ROUNb]

Brown, P. J., "Macro Processors and Software

Implementation", Comp. J. vol 12, Nov 1969, pp327-331.

CCORDY]

Cordy, J. R., "A Diagrammatic Approach to Programming

Language Semantics", Technical Report CSRG-67, (University

of Toronto, Computer Systems Research Group, 1976).

- references. 1 -

CGLENNIE]

Glennie, A., "On the Syntax Machine and the Construction

of a Universal Compiler", Technical Report No 2

(AD-24o512), (Carnegie-Mellon University, 1960).

CGRIESJ

Gries, D., Compiler Construction for Digital Computers,

(New York: Wiley 1971).

[HOkRE]

Hoare, C. A. R., "Hints on Programming Language Design", ACM

Symposium on principles of programming languages, (Boston

1973).

CJAIIESJ
.

James, L. R., "A Syntax Directed Error Recovery Method",

Technical Report CSRG-13, (University of Toronto, Computer

Systems Research Group, 1976).

CJ ENlCINS]

Jenkins, D. G., "A Microprocessor Language: version 1",

private communication, (Dept. of Computing Science, Univ.

of Glasgow, 1976).

CJ ENS EN]

Jensen, K., & Wirth, N., PASCAL User Manual and Report,

Lecture Notes in Computer Science, vol 18, (Berlin:

Springer-Verlag 1974).

CKERNIGHAN7

Kernighan, 13.14., & Plauger, P. J., Software Tools,

(Reading, tMlass.: Addison-Wiley, 1976).

- references. 2 -

CLECARPIE]

" Lecarme, 0., & Bochmann, G. V., "A Compiler Writing

System, User's Manual", (Departement d'Informatique,

Univ. de Montreal, Dec 1974, revised July 1975).

CPASKOJ

Pasko, H. J., "Pseudo-Machine for Code Generation", Tech.

Report CSRG-30, Univ. of Toronto, 1973.

[PIERCE]

Pierce, R. H., "Source language debugging on a small

computer", Comp J vol 17 no 4 pp313-317 1974

CPUGJ

Pascal Users Group, DEC PDP-11 (ESI), Implementation

Notes, Pascal News, nos 9& 10, p83, Sept 1977

CTANEN©AUMa]

Tanenbaum, A. S., "A General Purpose P Sacroprocessor as a

Poor Man's Compiler-Compiler", IEEE Transactions on

Software Engineering, SE-2, vol 2, June 1976, ppl2l-125.

ETANENBAU"b]

Tanenbaum, A. S., "Implications of Structured Programming

for Machine Archtecture", CACM vol 21 no 3 pp237-246,1978

Ck'ATTa]

Watt, D. A., "Analysis Orientated Two Level Grammars", PhD

Thesis, Univ. of Glasgow, 1974 -

CwATTb]

Watt, D. A., "The Parsing Problem for Affix Grammars", Acta

Informatica, vol. 8 no 1 ppl-20 1977

I

- references. 3 -

[WILCOX]

Wilcox, T. R., "Generating Machine Code for Nigh-Level

Programming Languages", PhD Thesis, Cornell University,

1971.

C6lIRTHa]

Wirth, N., "The Prr9ramming Language Pascal", Acta

Informatica, vol 1 pp35-63,1971.

[w'IRTH]

Wirth, N., Algorithms + Data Structures = Programs,

(Englewood Cliffs, 14. J.: Prentice-Hall, 1976).

- references. 4 -

