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Abstract 
This thesis contains the formulation, development and initial tests of a computer 
model for the prediction of fully three dimensional turbulent free surface flows 
typically found at localised areas of river systems. It is the intention that the model 
will be used to predict flow situations which are fully three dimensional. The model 
is, therefore, tested against a fully three dimensional test case of flow in a two-stage 
meandering channel. However, the model is not intended simply to be for 
computing flows in meandering river channels. Rather the model is intended to be 
used in a variety of problems which are outlined in the thesis. 

A comprehensive literature review of other relevant mathematical model studies is 
given and practical aspects of mathematical modelling of fluids in civil engineering 
is summarised. The need for the present model is argued. Particular consideration 
is given to the representation of turbulence in the physical system and the 
numerical solution method used to solve the mathematical system. The numerical 
method proposed draws on existing -research however it introduces some novel 
concepts. It is contrasted with the well known SIMPLE algorithm. Importantly, 
the present model is demonstrated to be superior to traditional finite volume codes 
for time dependent problems. The need for an operator splitting approach to cope 
with the advection terms is highlighted. 

The Reynolds Averaged Navier-Stokes equations form the basis of the physical 
system. The Reynolds stresses are represented by two different stress-strain 
relationships: (1) a linear relationship and (2) a non-linear relationship. These 
relationships rely on an eddy viscosity and a turbulence time-scale which are 
calculated from two characterising turbulence quantities, a velocity squared scale, 
k, and an inverse length scale, t. These quantities arc computed from differential 
transport equations. Non-linear strcss-strain relationships are relatively new and, 
it has been argued by their originators, require application to several different 
problems to fully ascertain their potential for future use. The author addresses this 
demand by applying them to two new problems. These are flow in a plenum 
chamber and open channel flow over a backward facing step. 

The equations are solved by an operator splitting method which, it is argued, 
allows for an accurate and realistic treatment of the troublesome advection terms 
at low spatial resolutions. This is thought to be essential since for three dimensional 
problems owing to computer time limitations achieving grid independent solutions 
with low order schemes is at present very difficult. The advantage of the present 
approach is demonstrated with reference to a simple one dimensional analogue. 
Traditional discretisation methods are shown to be poorer than the present method 
at small time steps ( advective Courant numbers less than unity ) and highly 
inaccurate at high timesteps ( advective Courant numbers greater than unity ) 
particularly at low spatial resolutions. The conclusions of this study have serious 
repercussions for researchers using traditional finite volume codes for unsteady 
flows although the consequences for steady flow computation are not clear. A 
method for dealing with the Oldroyd derivative terms in the non-linear model is 
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also suggested. The pressure-velocity coupling is achieved by means of a projection 
method which involves forming a Poisson equation for the pressure. The Poisson 
equation is solved by a preconditioned conjugate gradient method. The method 
represents the free surface with a rigid lid assumption which presently limits its 
applicability however many flows in civil engineering can be simulated with this 
assumption. 

Because of computing overheads the model is intially applied to two dimensional 
problems to ascertain its usefulness. The model is tested with reference to a 
benchmark solution proposed by the IAHR. Both linear and non-linear turbulence 
models are tried. The mean flow field and turbulence fields are shown to be 
predicted at least as successfully as other numerical codes using the linear model. 
When the non-linear model is tried -better predictions for the level of the turbulent 
kinetic energy are forthcoming. The model is further tested by application to 
several situations of importance in civil engineering, including: open channel flow 
over a backward facing step, flow in a settling chamber and flow over a slot. This 
last problem is particularly important and exhibits some of the mechanisms which 
occur in the cross-over region in a meandering two-stage channel. Modelling the 
important mechanisms are therefore treated in detail. Interestingly flow 
mechanisms are shown to be highly dependent on the aspect ratio of slot. A full 
understanding of these mechanisms is argued to be an important pre-cursor to 
understanding the cross-over region in a meandering two stage channel. 

Finally, a fully three dimensional application is presented. Over bank flow in a 
single meander two-stage channel is modelled. The three dimensional simulation 
sheds some light on the physical processes occurring in such systems. The 
cross-over region is the main focus of attention. The computations show that, in 
agreement with experiment, a vigorous explusion of the main channel fluid occurs 
with a consequently large proportion of the main channel fluid ending up on the 
flood plain. The model predictions for the surface elevation compare favourably 
with experimental results predicting local maximums in the main channel 
immediately before the flood plain bank and local minimums immediately after the 
bank. Unfortunately, certain features are not predicted by the numerical model. 
Noticeably, the recirculations in, '- ý- the - main channel in the cross-over region are 
not reproduced although a reverse flow at the channel bed is observed. This flaw 
in the results is almost certainly due to an inadequate grid resolution. Plausible 
predictions for the turbulent kinetic energy distribution are also obtained which 
suggest that turbulence generated by high velocity gradients in the cross-over 
region is carried onto the oncoming flood plain. The results so far are promising 
although clearly more research has to be done. The most important areas of future 
research are therefore outlined. 
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1.0 Chapter I Introduction 

1.1 Background 

In recent years the use of numerical methods for solving engineering problems in 

hydraulics have become very popular. Improved computer hardware, its low cost 

availability and greatly improved user interfaces are the primary reasons*for this. 

Mathematical descriptions of engineering problems previously considered too 

complicated to be tackled are being re-evaluated in light of this. At both the high 

performance computer level mainframes and supercomputers ) and the low 

performance computer level desktop computers ) these advances in speed and 

useability seem set to continue at pace, see figurc 1. These advances in 

computability must be tempered however, at least in river engineering, with the 

uncertainties prevalent in most river hydraulics problems. After all the solution to 

any problem is only as good as the most questionable step in the calculation. The 

uncertainties in a river engineering problem arc considerably higher than in 

aeronautical or mechanical engineering fluid mechanics problems. In these 

disciplines the problem geometry is usually man-made, therefore regular and may 

be specified with reasonable confidence. Similarly, the boundary conditions are 

generally straightforward and therefore introduce little or no error. This is not so 

in river engineering problems which are set in the natural environment, usually 

take place over longer timescalcs and in many cases arc intcrlinked with 

probabilistic hydrological predictions. In addition most river beds are mobile and 
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our present understanding of how the changing bed forms affect resistance is 

far from complete. 

Despite these difficulties there are certainly instances when it is berieficial to learn 

from the research that has been done in the ref"ined modelling fields of aeronautical 

and mechanical engineering computational fluid mechanics. In particular many 

problems in civil engineering involve complex three dimensional flow fields which 

interact strongly ( and non-linearly ) with the associated turbulence and scalar 

fields ( temperature, concentration, of species etc). Examples of such flows are, 

flow over a slot or steep-sided trench, secondary flows in channels, plumes and jets 

in the near field, hydraulic jumps, short crested waves, breaking waves and 

localised flow at hydraulic structures. The non-hydrostatic pressure field in these 

situations prevents, or at least casts some doubt on the validity of, the StNenant 

or two-dimensional depth-averaged analysis which have focussed the attentions of 

civil engineering researchers for the last three decades. The non-uniform velocity 

in the vertical and lateral directions and the associated secondary motions in planes 

normal to the main flow direction are typically taken account of by correction 

factors, mixing coefficients, effective dispersion terms or lumped resistance 

coefficients. While these simplified approaches have an important place as 

predictive tools they are, undoubtedly, an approximation. Models based on them 

may be suitably calibrated ( i. e. adjustment of the empirical coefficients ) until they 

give reasonable results but, often, in doing so the underlying physics is 

conveniently 'forgotten'. The danger of forgetting the underlying physics : has ýie'h'ý' 

highlighted by Townson (1991) and a similar argument (albeit in a slightly 

different context) has been expounded by Samuels (1990). Basically, this process 

of calibration should not be continued outwith reasOnable'limits where different 

physical laws should be adopted. The limits however are not clearly defined and 

can often be liberally interpreted and then ingeniously justified. The alternative 
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then is to move to, the other end of the modelling spectrum. That is, to include 

much more theory in the model formulation in the hope that more flow physics 

will be correctly reproduced. In general, the more underlying theory included in 

mathematical models the more universal its application. Unfortunately, they will 

also tend to be more computationally demanding. Finding a balance between 

computational requirements and accuracy of results ( or physical realism ) is a 

recurring question in computer modelling. A persisting no-go area of 

computational river engineering is the prediction of very localised highly three 

dimensional flows which are still the domain of physical models. It is the intention 

of this research to explore the development of models for these situations. 

1.2 Aims of the Research Project 

The aim of this research project was to begin the development of a computer code 

for three dimensional numerical modelling in river applications. This was the first 

stage in a longer term research strategy of the Department of Civil Engineering at 

Glasgow University. The work was inspired by the Science and Engineering 

Research Council (SERC) funded programme on the Flood Channel Facility 

(FCF) at HR Wallingford and the perceived need by the river engineering 

community to have available a numerical model capable of simulating these flows. 

The intention of the research was more general however in that it was decided to 

develop a code capable of application to other localised. three dimensional problems 

as well as the two stage channel investigations of the FCF programme. 

Initially the possibility of using or adapting one of the commercially available 

three-dimensional hydrodynamic codes such as PHOENICS, FLUENT or 

HARWELL-FLOW3D was investigated. Following an initial literature review this 

option was ruled out for the following reasons: 
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1. Each of these codes come from a background of mechanical engineering and 

their development has therefore largely ignored parallel developments in civil 

and environmental engineering. Only now is this being rectified. These codes 

adopt turbulence models based on the early turbulence modelling research of 

Launder and Spalding at the Imperial College Department of Mechanical 

Engineering although in updated form. These models may be too advanced or 

not advanced enough for civil engineering problems but this has not yet been 

fully quantified. 

2. These codes are based on traditional finite volume methods ( SIMPLE or 

one of its derivatives ) which have been around since 1972. The initial literature 

review revealed that it may be more advantageous-to investigate the suitability 

of other algorithms reported in the literature, most notably those based on the 

work of the Los Alamos Group ( e. g. Amsden and Harlow (1970) ) and the 

operator splitting ( or fractional step ) approach of of the Electricite de France 

( e. g. Viollet, Benque and Goussebaile (1983) ). Independently, each research 

group has developed or adopted an algorithm and then tended to concentrate 

on its application. There appears to be little consideration given by research 

groups to other completely different methodologies once they have a code that 

'works'. This means that research groups may not be aware of the differences 

between their codes and other available codes. This has been addressed, to 

some extent, in this thesis by outlining the advantages of the present approach 

( operator splitting ) over traditional finite volume methods. This is highlighted 

in chapter 6. 

3. Published results comparing experimental and numerical results for relatively 

simple cases show varying degrees of agreement, although the investigators use 

similar numerical methods and turbulence models, see section 6.3.2. In most 
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cases the differences can be attributed to subtle differences in the codes, or in 

the grid used. There are also instances in the literature where I nýisapplication 

on the part of the users has resulted in erroneous results. This leads to the 

conclusion that it would be unwise to base a three year research programme 

on the use of a computer code of which one's understanding of its operation is 

limited by documentation in users manuals. The same conclusion applies to the 

Department's plans to extend the programme beyond one PhD programme. 

4. In the U. K. computational fluid dynamics (CFD ) community fully three 

dimensional simulations are carried out almost exclusively with variants of the 

SIMPLE algorithm (a traditional finite volume code ). Only if different 

research groups adopt different numerical algorithms to solve the same 

problems will truly independent verification of the underlying physics result. 

It will be demonstrated that traditional finite volume discretisation of the 

advection terms is not always suitable, see chapter 6. 

The decision was therefore taken to develop a new three-dimensional code. This 

will of course contain certain limitations when compared with the commercially 

available codes, but at least the limitations will be fully understood. In addition, 

however, it provides the opportunity to implement algorithms which may prove 

better than the existing codes. 

The specific research objectives of the project were therefore to: 

1. Undertake a literature review extending to all branches of engineering to 

identify a suitable solution algorithm to achieve the simulation of the flows 

described above. 
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2. Develop a numerical code for the solution of the fully three dimensional 

Reynolds Averaged Navier-Stokes equations. The model should be capable 

of simulating fully three dimensional turbulent flow with a free surface as 

would be found at localised river features and hydraulic structures. 

3. Critically review the treatment of the advection terms which are known to be 

troublesome. Identify a suitable treatment of the terms. 

4. Critically review turbulence models applied to other engineering problems. 

Select those suitable for the aims of this project and verify these against data 

scts from simplificd tNvo-dimcnsional problcms rcprcscntativc of civil 

engineering problems. 

5. Apply the code to a fully three dimensional flow problem to ascertain its 

usefulness. 

It was decided at an early stage that the certain features- would be outwith the 

scope of the current project and form part of future model developments. These 

led to the following recommendations: 

1. To develop the code using rectilinear elements rather than curvilinear. This 

decision was taken as it was believed that the feasibility of the coding should 

be demonstrated first using the simpler rectilinear formulation. 

2. The computer used for the present purposes in this project was the IBM 3090 

mainframe available at Glasgow University. During the project it was 

recognised that this machine was reaching the end of its useful life, indeed it' 

is to be decomissioned in July, 1994. Significant improvements in computer 

speed could be achieved by porting the code to a more modern machine. 
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However, this would' have seriously detracted from the present research effort 

since time would be required to mount the code on a new machine. It was 

therefore decided to accept the limitations of the IBM mainframe and for this 

project to concentrate on hydraulic and numerical aspects of the problem. 

Upgrading to a more powerful computer could form part of a follow on project. 

3. To initially represent the free surface using the rigid lid approximation. An 

algorithm for tracking variations in the free-surface would have required an 

upgrade of the computer facilities, see (2) above. 

1.3 Review of River Engineering 

River Flows and Engineering Problems 

Flows which enter the river system from direct surface runoff and through ground 

percolation are continually varying. Likewise, where flow leaves the system - at the 

sea - the water elevation is continually varying owing to gravitational effects of the 

moon on the large water mass in the oceans. With these boundary conditions 

estimated civil engineers are required to predict water levels and flow rates 

throughout the river system and the effects of changes made to the river. It can be 

appreciated that river engineers are never dealing with exactly steady, uniform flow 

despite the large number of solution techniques based on this assumption. Many 

engineering predictions are concerned with river modification works. For example, 

if a bridge is placed at some point in the river system, what effect does that have 

on water levels upstream and downstream ? How will sediment erosion and 

deposition characteristics alter ? Will the dispersion characteristics of the river 

change? 
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Since early times the river engineer has been concerned with the prediction of water 

quantity and its distribution. Predictions of water quality received little or no 

attention. This is because society was more concerned with the supply of water 

and the control of flooding with their more immediate effect upon human lives 

than with the safe and clean disposal of waste waters. There has, in the past, been 

a notion that rivers and estuaries have an infinite dilution potential because of 

their enormous volume. In recent years this idea has gradually lost credence and 

society has come to appreciate that wastewater disposal to the hydrosphere must 

be properly managed. Falconer (1992) gives reasons for this change in public 

perception. The role of civil engineers has had to change accordingly with 

predictions of water quality now required for most new river and estuary 

developments . This has a very important effect on engineering research. This is 

because for water quality predictions there is a much greater dependence on the 

turbulence representation than there is for water level and flow predictions which, 

for the most part, can be conceptualised adequately as a balance between bed 

friction and the action of gravity through the water surface slope. In order to make 

more accurate predictions of solute mixing a better understanding of turbulence 

characteristics will be required. Mathematical models of solute transport will 

similarly benefit by adopting more sophisticated turbulence closures, Falconer and. 

Li (1992). 

1.3.2 Traditional or Non-computer Based Design Methods 

Computer based solutions are discussed in chapter 2. However, before doing this 

it is interesting to review some of the traditional or non-computer based solution 

methods. 

Rivers are much longer than they are broad or dee'p. Traditionally therefore they 

have been considered as one dimensional bodies. Classical equations describing 

Chapter I Introduction 8 



steady, uniform river flow have been proposed in different forms at different times 

but they more or less say the same thing : the component of water weight acting 

down the slope is balanced by the resisting force due to friction generated at the 

river bed and walls, Henderson (1966). For a short reach of channel bx, with 

cross-sectional area, A, and a mean boundary shear stress Tbacting over the wetted 

perimeter P, the resisting force is YbbxP. The weight of this element is pgAbx thus 

the weight component in the flow direction is pgARSO where So is the slope of the 

channel ( which must be small for the above to hold true ) and g is the 

gravitational acceleration. Equating these gives Yb = pg(-A-)S.. This simple P 
model is, at present, entirely theoretical. To proceed, however, we must postulate 

how Tb relates to the mean flow velocity. In doing this empirical relations are 

introduced. If the mean boundary shear stress depends on the mean kinetic energy 

per unit volume as can te shown by dimensional analysis then, 

f _L p U2 = pg( 
A )SO 

2p 

In the above model U rep'rcsents the mean flow velocity in the channel and f is a 

roughness parameter obtained from experimental observations. The boundary 

shear stress is sometimes described by an pseudo-velocity termed the friction 

velocity, -Lb- = U*2. For an infinitely wide channel the ratio A/P equals the flow 
p 

depth, h, and for a pipe of diameter, D, flowing just full the ratio A/P becomes 

D/4. If the pipe-flow becomes pressurised then the slope must re-defined as the 

hydraulic gradient of the piezometric head. For pipes therefore it is convenient to 

study the empirical parameter, 4f which is equivalent to A, the Darcy-Weisbach 

coefficient. The behaviour of this parameter has been studied extensively for pipe 

flow, but has led to some confusion by having two friction factors, one being four 

times the other. Indeed f and A are both referred to as the Darcy-Weisbach 
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coefficient in different literature sources although strictly only ). is. Re-writing 

equation 1.1 in terms of flow velocity, 

) 
-S" 

or 

U=Cý R-S, [1.3] 

where R= A/P, the hydraulic radius, and C= V2glf is a friction coefficent. 

Expressions for C have been proposed in different forms over the years, by Chezy 

in 1768, Manning in 1891, Colebrook-White in 1939 and Williamson in 1959 

among others. These contributions are all described by Henderson (1966). The 

friction cocfficent, C, is taken to be constant or a function of the cross-sectional 

geometry and the boundary roughness, see table 1. In table In is the Manning's 

roughness coefficient and k. is the Nikuradse equivalent sand size. 

Originator Expression for C 

Chezy Constant 

Manning R116 
n 

Colebrook-White 
2g 

-f where f= A14 and A-1/2 = -21qg(l4.8R1k, ) 

Williamson 26.4(R/k, )1/6 

Table 1. Expressions for C: Fully developed rough turbulent flow over a fixed bed 

Re-writing in terms of discharge, Q, instead of velocity, 

Q=CA J-3-0 [1.4) 

or 
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K., [S-0 [1.5] 

where K is known as the conveyance of the river channel. An equation like 1.5 is 

usually the first recourse of a civil engineer dealing with a river problem. Their 

use in isolation is limited, however, since exactly steady, uniform flow, over a fixed 

bed almost never occurs in practice. They do however provide a first 

approximation which allows the design process (which is generally trial and error) 

to begin. 

Where the river is steady but non-uniform then the discharge, Q, is constant but 

the water depth changes with distance. The problem then is to determine the water 

level throughout the river system subject to an imposed water level at some point. 

A fuller description of this calculation is given by Henderson (1966). In brief it 

may be shown by considering an energy balance befween two sections of a 

gradually varying river channel that, 

2. Q2 + hl, + z, - -2 2gA 2 2gA 2+ Z2 + 6x9f [1.61 

12 

where 

Sf =A Vg(Sf II Sf 2) [1.7] 

and a is an encrgy corrcction factor, h is the rivcr dcpth, z is the bcd clevation and 

Sf is termed the friction slope and represents the rate of energy loss per unit 

distance. It may be manipulated from equation 1.5 or a variant thereof by 

assuming that friction characteristics are the same in uniform and non-uniform 

flows. AvgO is some averaging function the simplest being arithmetic averaging, 

A vg(xl , x2) "- 0.5 x (xl + x2) [1.8] 
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although other averaging functions may be be more appropriate to different kinds 

of gradually varied flow profiles, Laurenson (1985). It will be appreciated that if 

the water depth is known at one section then equation 1.6 may be solved to 

provide the depth at another section since the bed elevations are known and the 

areas and friction slopes may be written as functions of the flow depth. This 

process may be continued in a piecewise fashion until the river profile is 

established. 

There are however reaches of the river where the above theory has to be modified. 

The basic resistance equation described above does not perform well in predicting 

the resistance characteristics in natural river sections which have a main channel 

in which the river flows most of the time and flood plains which are us ly only 

inundated during periods of high precipitation. When this flood plain ý inuýdation 

occurs the flow characteristics of the river can change quite drastically especially 

if the main channel is not aligned with the flood plain direction. This is the norm 

for natural channels. In such cases the standard resistance equations have to be 

modified to take account of this. Traditional methods involve dividing the channel 

into compartments, computing the conveyance of each compartment and then 

summing to obtain the total channel conveyance. These concepts are illustrated in 

figures 2 and 3. These traditional treatments for channels with floodplains have 

been shown to be unreliable often resulting in errors of as much as 30% in flow 

predictions for a given depth, Myers and Brennan (1990). Therefore in recent 

years a research programme, aimed at understanding the principle flow 

mechanisms and producing practical guidelines for prediction calculations, has 

been carried out at Hydraulics Research, Wallingford and a number of 

Universities in the U. K. under the auspicous of the Science and Engineering 

Research Council. The full conclusions of this research programme arc not 

recapitulated here instead reference is made to Ackers (1991) who reviews 

Chapter I Introduction 12 



available methods and produces design recommedations. More elaborate computer 

based solutions to this problem will be dealt with in chapter 2. 

The uniform flow analysis is strictly only valid for long straight rivers. Of course 

real rivers are not like that and contain many localised deviations from this ideal, 

for example at river bends or at river structures (bridges, weirs, pipeline trenches, 

groynes etc). These points on the river are termed 'transitions' by Henderson 

(1966) who defines them as usually short features which produce a local change in 

the state of flow. Although short, such transitions may affect the river for a 

significant distance upstream and downstream. At these points zones of 

recirculation may form and secondary motions may become significant. Although 

river bends sometimes occur in isolation and therefore could be considered a 

'transition' this is unusual and more commonly they tend to occur in a series of 

quasi-periodic meanders and therefore constitute a slightly different case. Willetts 

(1991) and Sellin, Ervine and Willetts (1992) give some insight into this problem 

and suggest possible solution strategies. Figure 4 shows some of the important 

mechanisms of over bank flow in meandering channels. 

For the general case of localised non-uniform, non-fully developed flow, which may 

be caused by natural or man-made river geometries, a different approach to 

quantifying energy losses is therefore required. Such regions are traditionally 

treated by replacing equation 1.6 with a local loss formula which has been derived 

experimentally for the particular river structure. For example at a bridge, figure 

5, Yarnell's classic equations may be used, see Henderson (1966). Other examples 

of localised flow laws are given by Henderson (1966) or Chow (1959). The problem 

with such empirical laws is that although many experiments have been undertaken 

there are so many different types of bridge configuration and different settings in 

the river due to local bathymetry that a completely universal equation cannot be 
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produced. The same, of course, goes for any type of river structure. In addition to 

relying on these empirical equations for stage-discharge relationships we also have 

to rely on these studies to give some indication of the localised effects at the 

structure ( bed shear stresses, local velocities etc ). Therefore, if the actual structure 

being designed differs from the configuration of the classical studies ( and usually 

this is inevitable owing to the local bathymetry) then unreliable predictions would 

result. These problems are therefore usually resolved by recourse to physical model 

studies. 

The foregoing is a brief summary of traditional design methods in river 

engineering. The description is by no means exhaustive but gives a flavour of what 

has been possible in the past. Other problems which can be approached by a hand 

calculation have been i6mitted, in the interests of brevity ( in particular unsteady 

calculations - flood routing, tidal calculations ). Henderson (1966) or Chow (1959) 

give full descriptions. Fischer et al (1979) describe some hand calculations for 

solute transport problems. It is worth pointing out that despite the rapid advances 

in computer software and numerical methods these traditional methods have 

served civil engineers well for many years and will continue to be used routinely in 

design offices. They may seem simplistic compared to the complex computer 

models which arc now abundant but as a first approximation they are often 

adequate for predicting flow and water levels. They have been less successful in 

solute transport predictions where there is less confidence in the physical laws 

adopted and there is a consequently greater variance in the model coefficients. 

They are generally poor for calculating localised effects and recourse is usually 

taken to a building a physical model of the situation, Samuels (1985). A recent 

example of this eventuality is given by Kaya and McInally (1991). Physical models 

are expensive and inflexible. In addition it is often particularly difficult ( if not 

impossible ) to incorporate the correctly scaled level Qf turbulent mixing. They are 
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less favourcd now in comparison to mathematical models for many applications 

although there are certain circumstances where they are the only alternative. They 

also have an important advantage in public relations. The non-expert, who is 

generally financing hydraulic improvements, usually finds it easier to accept that 

a small scale model of a river or estuary behaves like its larger prototype than an 

abstract set of equations. This intuition is not well founded and will lessen as 

computer modelling matures but it still is a consideration. 
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2.0 Chapter 2 Review of Numerical Models for 

River Engineering 

2.1 Background to Computer Based Design Methods 

The invention of the micro-chip has resulted in a technological revolution which 

has affected many areas of society and is continuing to do so. The techniques 

available in river engineering and environmental management have changed 

dramatically. Early computer based solutions include Preissmann (1960) in one 

dimensional modelling and Platzmann (1958) in two dimensional modelling but it 

was during the 1960's and 1970's that computer modelling began to make great 

strides. Abbott (1993) classifies the 'rive generations' of computational hydraulics 

and their historical development. There arc, ýat present, several commercial 

software packages available for one and two dimensional hydrodyflamic and water 

quality modelling. One dimensional models are used, primarily for studying rivers 

and the two dimensional models have found much application in sea and estuary 

modelling. Two dimensional models have found less application in modelling of 

natural river channels. Willetts (1991) suggests that the results obtained when two 

dimensional depth averaged models are applied to meandering rivers with 

floodplains are 'fortuitous' and Cunge (1989), in a keynote address, suggests that 

there are a limited number of circumstances in which a Wo dimensional model 

may be applied to a river engineering problem since, 
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.... when a river engineering problem cannot be approached by a I-D schematisation, 

most likely it includes 3-D features (such as helicoidal secondary currents) which 

should be taken into account and typical 2-D hypotheses of horizontal velocities are 

not sufflicient ..... 

There is also an increasing concern that for pollution transport problems, 

particularly if the pollutants are not neutrally buoyant, then only three 

dimensional models can truly represent the phenomena. Indeed two dimensional 

depth averaged models can give very misleading results as discussed by Thorn 

(1993). He presents a case study of a warm water discharge from a power station 

where the results obtained from a depth averaged model and the results from a 

three dimensional model arc in sharp contrast and would ]cad to very different 

design recommendations. This study highlights the false economy of employing the 

less expensive two dimensional models when they are really not applicable. It also 

shows that the choice of using a two dimensional or using a three dimensional 

model for a particular study is not always obvious a priori. 

Over the same time period that civil engineers were concentrating their efforts on 

the development and application of one dimensional and two dimensional depth 

averaged models mechanical and aeronautical engineers were using computer 

models to study the complexities of fluid turbulence and its effects on mechanical 

engineering problems. In order to do this they have had to develop numerical 

procedures for solving the mathematical systems governing these flows. The two 

schools of model development seem to have developed almost independently 

providing a wealth of literature on the subject. There is now evidence in the 

research literature that these two schools of thought may be converging with civil 

engineering researchers including more sophisticated turbulence models into their 

codes, Falconer and Li (1992), while mechanical engineering researchers are 
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adapting -their numerical algorithms to the application to civil engineering 

problems, Reeve and Hiley (1992), and Rajar (1992). 

In summary, one dimensional river models are ( and will remain ) the workhorse 

in the civil engineering design office. When their use becomes untenable or at least 

questionable owing to the complexity of the local flow field then suitably calibrated 

two dimensional models, although not strictly representing the flow physics, may 

provide some additional predictions. However when these also become inapplicable 

recourse is usually made to physical models. The aim of this research is to provide 

a viable numerical model alternative to physical models for the case of highly 

localised three dimensional flows. 

2.2 Review of Present River Models 

This review is chiefly concerned with studies, of flows with a free surface as this is 

the main area of this research effort. The'representation of the turbulent stresses 

has not been treated in detail in this chapter since the models that are described 

here could in theory be implemented with a variety of different turbulence models. 

Therefore, detailed discussion of turbulence modelling is postponed until chapter 

4. The models in this chapter are set apart by other more fundamental differences. 

This review has been split up into three model categories. Models that assume 

hydrostatic pressure, those that do not assume hydrostatic pressure and models 

that assume fully developed flow. Strictly the fully developed flow model is a 

sub-category of both hydrostatic and non-hydrostatic flow models, however, its 

relevance to river engineering warrants it a separate treatment in this discussion. 
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2.3 Hydrostatic Models 

The Navier-Stokes equations are most often found in civil engineering in a 

simplified form, the commonest simplification being that the vertical momentum 

equation is reduced to a statement of hydrostatic pressure, i. e. neglible vertical 

motions. Models that assume hydrostatic pressure are termed shallow water 

models since, asIt will be demonstrated, they should only be used to simulate 

shallow water waves whose celerity is given by 
, 
fg--h where h is the water depth. 

There are basically three alternatives for modelling shallow water waves: area 

averaged river models, depth averaged models and quasi-three dimensional models. 

2.3.1 Assuming a Hydrostatic Pressure 

In this approach the vertical momentum equation is reduced to, 

09P P9 az 
Natural co-ordinate system 

by neglecting the local and advective acceleration terms as well as neglecting the 

Reynolds stress gradients. Neglecting these terms reduce the universality of the 

model. If this assumption is made, and further it is assumed that the fluid is well 

mixed thoughout it depth, i. e. the density is uniform, then equation 2.1 may be 

integrated to give pressure as a linear function of the depth below the water 

surface, 

P= Pam. + P9(l - [2.21 

where Patm is the atmospheric pressure at the water surface, ?I is the water surface 

elevation above some datum and z is the depth below the datum. This means that 

pressure may be eliminated as a dependent variable in favour of water elevation 

and the pressure gradients in the horizontal momentum equations become 
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independent of the vertical co-ordinate. This greatly simplifics the equations at the 

expense of generality. The question remains: when is it valid to assume hydrostatic 

pressure ?A rough indication may be given by an order of magnitude analysis 

which weighs the importance of vertical accelerations against gravity. Liggett 

(1975) has carried out this order of magnitude analysis and concludes that in order 

for the assumption of hydrostatic pressure to be valid, -L' must be less than some LO 2 

assigned tolerance value, where h. is some representative depth and L,, is some 

feature length. This assigned tolerance value depends on the problem and also on 

the accuracy the user is prepared to accept but some general guidelines may be 

obtaincd by considcration of lincar wavc thcory. The cclcrity of 
_4- 

lincar 

oscillatory wave is given by, 

/ gL 21rh 
c=V T- tanh(-) 

Ir L [2.3] 

as surnmariscd by Townson (1991). The cclcrity of a shallow watcr wavc ( 

hydrostatic pressure ) is given by, 

cshallow ý -., 
rg-h [2.4] 

by 

obtained from 2.3 letting 1- 
tend to a small number. Therefore, the ratio of the 

AL 
celerities calculated by these two formula is, 

tanh((2irr h 

cr h 
T) [2.5] 

21r - LI 

Thus for the hydrostatic pressure assumption to be valid to within 2 percent ( 

cr = 0.98 ) the ratio of the water depth to wave length must be less than 0.055. 

This places a restriction on the range of waves that may be modelled with any form 

of the shallow water equations. 
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If the flow phenomenon is not an oscillatory wave but has significant vertical 

motions a different way of testing the validity of hydrostatic pressure assumption 

must be defined. Following Liggett (1975), 

WO ho 

iio- LO 
[2.61 

where w. is a typical vertical velocity and g, is a typical horizontal velocity. Thus, 

instead of basing the accuracy criteria on h,, IL,, it may be possible to base it on 

w. lu,. Thus to assume hydrostatic pressure with an accuracy of 2% the ratio of 

vertical to horizontal velocity should be less than 5%. This criterion merely serves 

as a very rough indication and more work is required to categorically prescribe 

limits where hydrostatic models may be applied and when fully three dimensional 

models should be used. However it does give some indication of the validity of the 

hydrostatic pressure assumption. 

2.3.2 Area Averaged Models - One Dimensional River Models 

These models are the workhorse of the civil engineering hydraulics industry. 

Indeed there are several computer packages available which are based on this type 

of model. In addition to the hydrostatic pressure assumption these models assume 

that only the strearnwise component of horizontal velocity is important so that 

equations describing conservation of mass and momentum in only one dimension, 

along the river's longitudinal axis, are required. A formal derivation of the 

physical laws which these models are based on is given by Yen (1973) in which the 

Reynolds Averaged Navier-Stokes equations are averaged over the river 

cross-sectional area. These laws are ( adapted from Yen (1973) ), 
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Conservation of Alomentum 

In these equations Q is the river discharge, ?I is the water stage, B is the flow top 

width, q is the lateral inflow per unit length, A is the flow area and R is the 

hydraulic radius. In these models, Tb and P are empirical parameters which must 

be specified. Tb is often termed the mean boundary shear stress but perhaps should 

be renamed the mean effective boundary shear stress because in practice it is only 

rarely determined by the value of the bed roughness alone. It is replaced in the 

above equation by some functional relationship which relates it to the river 

discharge derived from equation I. I. P is a momentum correction factor which 

takes account of the fact that the velocity distribution over the cross section is 

non-uniform. These variables represent the effects of turbulence in a lumped 

parameter sense. Boundary conditions usually consist of specified flow 

hydrographs at upstream boundaries and specified water stages ( which may be 

tidally varying ) or rating curves at downstream boundaries although alternative 

boundary conditions are possible. These equations, when furnished with suitable 

initial conditions may be solved by a numerical method to give flows and stages 

throughout the river. This is not described in detail here. Cunge, Holly and 

Verwey (1980) give a fuller description. 
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These models are well proven and appear to work well for what they were designed 

for, i. e. calculating the stage and flow thoughout river systems. They do not, 

however, give much detailed information at local points on the river. At certain 

points of the river, e. g. bridges or local expansions or contractions, the equations 

as given above are not representative and local empirical laws must be applied. 

This is similar to what must be done in traditional solutions at these points and 

therefore has the same consequences, see section 1.3.2. 

2.3.3 Depth Averaged Models 

When both horizontal velocity components are important but strong vertical 

mixing is promoted by bed roughness, leading to an almost uniform velocity in the 

vertical, then it is possible to derive a depth averaged form of the Reynolds 

Averaged Navier-Stokes Equations. For a description of the depth averaging 

process, see Wark (1990). The depth averaged equations may be written in a 

natural co-ordinate system, 

aty 
+ 

aull 
+ 

avh 0 [2.9] 
at ax ay 

Conservation of Alass 

JUh b +fl[-L(UUh)+-L(U-Vh)]+gh-ý-+-'-v-+F --L[-LTx+ 
' Ty]=O (2.10] 

Of ax ay xpxp ax ay 

Conservation of Momentum in X Direction 

0 Vh a17 'rb y + 
2-- (TUh) + -Vh)] + gh o- +-+ Fy - Ty, + Tyyl =0 [2.11] 

at ax pxv ay yy 

Conservation of Momentum in Y Direction 
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q is the water elevation, Uand V are the depth averaged velocities in the horizontal 

directions, fl is the momentum correction factor, h is the water depth, Tb. ' is the bed 

shear stress in the horizontal directions, F,,, represents some external body force 

and T, T., y, etc are the horizontal stresses. These are described in more detail in 

chapter 4 where turbulence modelling is introduced. Appropriate boundary 

conditions are specification of flow or water elevation, some combination of the 

two or some relationship describing the flow at water/land interfaces ( zero flow 

normal to the land and some relationship between flow and stress tangential to the 

land ). 

This type of model has been applied by Platzmann (1958) for predicting storm 

surges in lakes, Leendertsee (1967) for predicting the effects of underwater 

explosions, Kuipers and Vreugdenhil (1973) for a variety of steady state problems 

including river channels and Falconer (1984) for flow and water quality prediction 

in tidal embayments. 

Natural river channels tend to have very irregular courses. The river banks 

meander in a quasi-periodic but irregular line often with the river width varying 

simultaneously. Although there are studies in the literature which utilise a 

cartcsian computational grid and therefore approximate the river bends with a 

staircase like boundary, Vreugdenhil and Wijbenga (1982), it may be more 

appropriate to use a technique which can take account of the irregular geometry 

with less approximation. Candidates for this are the finite element method, as 

applied by Samuels (1985) or Su, Wang and Alonso (1980), applying a finite 

difference technique to the shallow water equations after transforming them to a 

suitably boundary fitted co-ordinate system, Wijbenga (1985), or a finite volume 

procedure, Lai and Yen (1992). These are only examples of what has been 

achieved - there are many other studies in the literature using this basic model. The 
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work of McGuirk and Rodi (1978) deserves mention as one of the earliest 

applications of a more sophisticated turbulence model to the depth averaged flow 

equations however this will be discussed more fully in chapter 4. 

These equations appear to work well for vertically well-mixed, nearly horizontal 

flow in which the horizontal velocity components are nearly uniform in the vertical 

and there are neglible vertical motions. However, as mentioned in the previous 

chapter, this cannot always be assumed particularly in highly localised river flows. 

J 2.3.4 Quasi-Three Dimensional Models 

The equations used are the continuity equation, the x and y direction momentum 

equations and the hydrostatic relation. Sometimes it is advantageous to 

non-dimensionalise the equations in terms of the water depth. Most applications 

of these models so far have been for water bodies with large horizontal dimensions 

compared to the depth such as lakes and estuaries. However, there have been 

some studies of river channels. Liggett (1969) has applied this type of model to 

computing lake circulation. Falconer, George and Hall (1991) also describe an 

application of this type of model to a shallow, homogeneous lake. Lecndertse 

(1973) has applied this type of model to computing flow and water quality in seas 

and estuaries. Van der Kuur et al (1989), present a version of Leendertse's basic 

scheme'in a boundary fitted co-ordinate system and have used it for simulating 

flows in tidal bays. Koutitas and O'Connor (1980) has used a quasi-three 

dimensional model to investigate wind driven circulations in Thessalonki Bay. This 

study highlights the difference bctwccn various turbulence models for calculating 

the vertical shear stresses due to turbulent mixing. Blumberg and Mellor (1983) 

have proposed a model of this type for computing flow and water quality in open 

seas and Galpcrin and Mellor (1990) have applied the same model to predicting 

river-estuary system circulations. Blumberg, Galperin and O'Connor (1992) have 
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further applied it to computing velocity profiles in river channels. Hall, Shionoand 

Falconer (1992) have presented a quasi-three dimensional model which they have 

applied to an idealised tidal embayment and claim grca ter computationally 

efficiency than other three dimensional models currently in use. A quasi-three 

dimensional model has been introduced by Janin, Lepeintre and Pechon (1992) 

which is based on an operator splitting approach utilising the finite clement 

method. Benque, Hauguel and Viollet (1982) describe the application of a 

quasi-three dimensional model to computing flow patterns in a river channel with 

a skewed trench with gently sloping sides. Recently Ammer and Valentin (1993) 

have applied the quasi-three dimensional equations with the finite element method 

to river flows with floodplains. The preliminary results presented were not very 

encouraging but clearly this approach with suitable refinement and improvement 

should eventually provide a useful quasi-thrce dimensional river model. Shimizu, 

Yamaguchi and Itakura, (1990) have applied a hydrostatic pressure three 

dimensional model to predicting flow and sediment transport for in bank 

meandering channels. Their results highlight the importance of computing the 

pressure driven secondary motions for sediment transport. 

Once again only a selection of applications of these quasi-three dimensional models 

is given. These models allow the prediction of a wider variety of flows than the 

depth averaged models. They provide more flow information and allow for a more 

realistic treatment of vertical mixing however they are not applicable when vertical 

accelerations become significant and/or when the stress gradients in the vertical 

become important. In the selection of studies given above various levels of 

turbulence closure have been adopted ranging from zero to two equation models. 

These will be discussed in chapter 4. 
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2.3.5 Width Averaged Models 

Finally, for completeness, width averaged models are briefly considered. These 

models are a simplification of the quasi-three dimensioial models when the flow 

can be considered uniform or nearly uniform over the channel width. The 

quasi-three dimensional equations can then be averaged over the channel width. 

For a fuller description see Hamilton (1974). This type of model has found use in 

application to nearly prismatic tidal channels which are stratified due to a salt 

wedge intrusion. 

2.4 Non-Hydrostatic Models 

The equations upon which these types of model are founded are presented and 

explaincd in chaptcrs 3 and 4. 

Due to computing overheads many studies have not retained all terms in the 

Reynolds Averaged Navier-Stokcs equations where they could reasonably be 

argued not to be important. Therefore the model equations were not fully elliptic 

in all directions. Parabolic and partially parabolic equations have been employed 

more often than the fully elliptic ones. Another device which allow these type of 

models to be studied with less computational effort is to study the case of a flow 

in an infinitely wide channel when the problem reduces to a two dimensional 

problem in the vertical plane. It, however, retains many of the characteristics of the 

fully three dimensional problem, notably the non-hydrostatic pressure distribution 

and the interaction of all the turbulent stresses. In non-hydrostatic models the 

vertical momentum equation is retained in its entirety. This introduces two 

problems: (1) How do you solve for pressure ? and (2) How do you treat the free 

surface 
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2.4.1 Pressure Solution 

Various algorithms for the pressure solution have been proposed in the past. 

Patankar and Spalding (1972) and Patankar (1980) desc; ibe what has come to be 

known as the' SIMPLE algorithm. The algorithm has several offshoots ( 

SIMPLER, SIMPLEC, PISO) but they work on approximately the same principle. 

Fletcher (1988) describes the method. Using a guessed pressure field the 

momentum equations are solved to estimate the velocity field. The amount by 

which this velocity field deviates from satisfying the continuity equation is then 

used as a source for calculating a correction to the guessed pressure field which in 

turn is used to make a better attempt at solving the momentum equations. This 

procedure is repeated until the solution converges. The algorithm used in the 

present model is not based on the SIMPLE algorithm but rather is based on a 

projection method. This algorithm is described in detail in chapter 5. 

2.4.2 Free Surface Treatment 

In these models there are two commonly used treatments 'of the free surface 

dynamics. In the rigid lid approximation the free surface is replaced by an artificial 

plane surface parallel to the horizontal axes at some defined equilibrium water 

elevation. A non-zero pressure is allowed to, develop at the surface and this in 

some way represents the height of water that would be present if the surface was 

completely free. Thus the effect of the free surface on the internal flow is captured. 

However, it will be appreciated that there is some amount of fluid above the rigid 

lid that is omitted. McGuirk and Rodi (1977) and Leschziner and Rodi (1979) 

suggest that the rigid lid approximation is valid as long as the superelevatcd regions 

are not greater than 10% of the total channel depth. The commonly used 

alternative to this is a surface tracking procedure which has been proposed in 

various forms and is computationally much more demanding. Most free surface 
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tracking models are related in some way to the original work of Harlow and Welch 

(1965). In this method, which became known as the Marker and Cell (MAC) 

method, they suggested that the fluid could contain many marker particles whose 

co-ordinate position is recorded. These particles could then, at each timestep, be 

moved according to the local fluid velocity components. Using the new 

co-ordinates of these particles a new fluid region could be assigned in terms of the 

Eulerian computational mesh. This procedure was found to be computationally too 

demanding and subsequently was replaced with a different method which was 

similar but less demanding of computing time. In this method, the Volume of 

Fluid (VOF) method, Nichols, Hirt and Hotchkiss (1980), instead of marker 

particles each computational cell was assumed to contain some fraction of fluid, 

F. Thus full cells had F equal to one and empty cells had F equal to zero. Cells 

with some fluid had ', 'F less than one but greater than zero. -' 
The F variable could 

then be advected as a Lagrangian invariant according to, 

(IF ýF 
+F 7+u _L_ + w. 

ýF 
=0 T ax ay ay 

where (u, v, w) are the local fluid velocities. Once F is known throughout the 

domain then the mesh may be reconfigured. The advantage of the MAC and VOF 

method is that they allow arbitary unrestricted deformation of the fluid including 

the casc of wavc brcaking. If the simulation of wavc brcaking is not rcquircd thcn 

a simpler procedure is the height function method (HF), Hirt and Nichols (1981), 

in which the new free surface is computcd as the hcight, H, above some datum by 

the following expression, 

aH +u . 01, + V-Lll- [2.13] at ax 49Y 
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at each timestep and then the mesh reconfigured. These surface tracking 

approaches appear to require fairly fine meshes and this may lead to high 

computer times.. 

2.4.3 Three Dimensional - Rigid Lid 

In this and the following section fully three dimensional problems are considered, 

that is, when there are significant motions'in all three co-ordinate directions. Baker 

(1974) presents a finite element method model for predicting flow and pollutant 

transport in a idealised natural river channel. The model is based on the Reynolds 

Averaged Navier-Stokes equations in stream function-vorticity form but uses the 

parabolic flow assumption to simplify the problem. A simple zero equation 

turbulence model is employed and plausible results are obtained. Unfortunately 

there does not appear to be any follow up studies using this model. Rastogi and 

Rodi (1978) describe an early application of a three dimensional hydrodynamic 

model which uses the rigid lid assumption. They solve the Reynolds Averaged 

Navier-Stokes equations in primitive variable form ( velocity and pressure ) in 

three dimensions with a relatively sophisticated two equation model of turbulence. 

They apply the model to the prediction of flow and heat in a rectangular river 

channel subject to a heated co-axial slot discharge at the channel centre. 

Importantly, they adopt a simplified form of the equation s, the fully parabolic 

form, which although computationally efficient does not allow the prediction of 

recirculations in the streamwise direction. Leschziner and Rodi (1979) present an 

extension of the method to a partially parabolic case where the pressure terms are 

taken elliptically yet the other diffusion terms are taken parabolically. With this 

extension and also the introduction of a mixture of cartesian and cylindrical polar 

coordinate systems the model can be applied to the case of in bank flow in a 

idealised channel bend. Demuren and Rodi (1986) further enhance this model by 
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introducing a transport equation for a neutrally buoyant pollutant in addition to 

considering a higher order treatment of the troublesome advection terms. They 

restrict their investigation to in bank flows in which they assume that no 

recirculation in the strearnwise direction occurs. They consider both single and 

multiple meander geometries., Demuren (1989) has also incorporated a sediment 

transport model. Demuren and Rodi (1983) present a fully elliptic version of the 

model of Rastogi and Rodi (1978) for predicting the effects of a side discharge into 

a rectangular channel. This study highlights the importance of using higher order 

treatments of the advection terms for advection dominated flows. Miyata and 

Yamada (1992) present a model which they use to predict flow patterns in a bay 

with an island. The fully elliptic three dimensional equations are used. They utilise 

a very simple turbulence model which is not entirely appropriate, however, they 

argue that it at least produces the correct flow phenomena. There arc many 

important studies that, like Miyata and Yamada (1992), only produce these so 

called phenomenological results. The use of a rigid lid is an approximation here 

since the free surface is tidally varying however since the depth of ocean being 

modelled is very much larger than the tidal range plausible results may be 

obtained. Novelli, Dekeyser and Fraunie (1992) also present a full elliptic three 

dimensional model for predicting ocean circulations but they incorporate a more 

sophisticated two equation model of turbulence. They also allow a 'mesh vertical 

deformation' of the surface according to the kinematic condition thus the rigid lid 

assumption is relaxed somewhat. 

There appears to be few applications of the fullY elliptic three dimensional 

equations with the rigid lid approximation to localised river modelling in the 

literature. This is mainly due to computing overheads but may also be due to 

inadequaces in the rigid lid approach since in many river problems the free surface 

varies steeply. The study of McGuirk and Rodi (1977) gives some indication of the 
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range, of validity of the rigid lid assumption but clearly more research is required 

in this area to ascertain comprehensively the limitations of the rigid lid assumption 

for various flow configurations. 

2.4.4 Three Dimensional - Free Surface Tracking 

If the rigid lid approach is considered invalid then some form of surface 

determination algorithm must be employed. Three dimensional computations of 

fluid flow with free surface tracking are rare in the literature. This is because, in 

addition to the computation that must be done in the internal fluid, the new 

position of the free surface at each timestep must be computed and the 

computational mesh reconfigured appropriately as discussed e'arlier. Nichols and 

Hirt (1972) present a model which employs the height function method for free 

surface tracking. The model is applied to the problem of wave propagation in a 

rectangular channel and to computing free surface flow around submerged 

obstacles. The fluid is assumed inviscid by arguing that, the inertial forces arc 

balanced by the pressure and body forces. In a -river engineering context a study 

worthy of mention is the one by Davis and Deutsch (1980) in which they model the 

flow through a Parshall flume in three dimensions using the VOF method for 

surface tracking. This problem is essentially a balance between inertial, body and 

pressure forces so that the treatment of the turbulent stress terms is not crucial. 

The model predicts flow patterns and water surface elevations over a Parshall 

flume at various flow rates. Miyata and Nishimura (1985) present a model based 

on the MAC method for simulating non-linear waves around moving ships. As in 

the previous study the treatment of the turbulent stresses is not considered 

important. - Miyata, Sato and Baba (1987) consider the same problem in a 

gencralised boundary fitted co-ordinate system. Miyata (1986) considers the same 

model for flow conditions which involve wave breaking. All these models are 
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computationally demanding because they are three dimensional' and involve a 

surface tracking procedure. To also include a more realistic turbulence 

representation would make this situation worse and this may be why very simple 

turbulence representations ( if any ) are used. Indeed these studies have often used 

a numerical treatment of the advection terms which is known to introduce a high 

level of numerical diffusion. Presumably, therefore, the results can only be 

considered to be phenomenological. 

2.4.5 Two Dimensional - Vertical Plane Modelling - Rigid Lid 

Many of the vertical features ( non-hydrostatic pressure, vertical shear stress 

gradients etc ) can still be studied without resorting to fully three dimensional 

modelling by studying vertical plane problems. This may be appropriate if lateral 

variations can be assumed negligible. There have been many more studies of this 

type than of fully three dimensional problems probably because of the lower 

computing times required. Among those vertical plane studies that employ the 

rigid lid assumption are Alfrink and Van Rijn (1982) who use this type of model 

for simulating flow over a steep sided trench. They employ a two equation model 

for representing the turbulent stresses and solve the equations on a boundary fitted 

grid with an operator splitting approach. The vertical plane model with a rigid lid 

has also been used by Mendoza and Shen (1990) and Sajjadi and Aldridge (1993) 

for studying the flow characteristics over river bed dunes. Different turbulence 

closures are used in each investigation. The vertical plane model has found much 

application in modelling the characteristics of settling tanks and mixing chambers 

owing to the two dimensionality of the flow field, Zhou and McCorquodale (1992), 

Lyn, Stamou and Rodi (1992), Stamou, Adams and Rodi (1989) and Lyn and 

Zhang (1989). These studies, however, seem -to concentrate on improving the 

accuracy of solution and including more physical processes for the, steady state 

Chapter 2 Review of Numerical Models for River Engineering 36 



Tase. There is a need, however, to look at long term unsteady simulations in these 

water and wastewater treatment plants. This is discussed further in chapter 6. ' 

2.4.6 Two Dimensional - Vertical Plane Modelling - Free Surface Tracking b 

The two dimensional version of the models in section 2.4.4 are much more 

amenable to computation 4 ̂Indeed Lemos (1992) has carried out this type of 

computation on a personal computer. He has studied wave breaking using the 

VOF method for surface tracking and has also further developed the model to 

incorporate a two equation model of turbulence. Heinrich (1992) has used a similar 

technique for studying non-linear waves generated by submarine and aerial 

landslides. Kothe and Mjolsness (1992) have also used this technique with some 

computational enhancements to study low speed flow problems in mechanical 

engineering. They use a simple zero equation turbulence model. 

2.5 Fully Developed Flow Models 

Fully developed flow models are models of flow in which there are no changes in 

the longitudinal direction. Therefore, they compute the velocity, turbulence and 

shear stress distribution for a given cross-scctional shape, boundary roughness and 

uniform bed slope. These models have found much application in river engineering 

providing practical predictions as well as enlightenment on the flow and turbulence 

mechanisms in natural and man-made river channels. They are strictly only 

applicable to fully developed flow conditions when the channel is long and straight 

enough to allow a longitudinal equilibrium ( uniform flow ) to be reached. They 

provide much better predictions for gross flow properties for two-stage river 

channels than traditional uniform flow formulae however it should be noted that 

their range of applicability is strictly no greater than the uniform flow formulae. 

It should bc possiblc to introducc ad-hoc corrcction factors to takc account of 
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non-uniform flow as can be done for the traditional formula, however, this should 

be done cautiously. These models are based on simplified forms of either the three 

dimensional equations or the two-dimensional depth averaged equations. They arc 

simplified to the case of steady fully developed steady flow in a prismatic channel 

by assuming that all velocity derivatives in the x-direction arc zero as are all 

temporal derivatives. If the secondary motions are ignored also ( usually in depth 

averaged models ) then the lateral and vertical velocities arc assurnmed zero also. 

Haque (1959) gives a formal discussion of the fully developed depth averaged flow 

problem while Gosman and Rapley (1980) give an excellent account of the general 

principles of the fully developed three dimensional flow problem. 

2.5.1 Fully Developed Depth Averaged Flow Models 

These models utilise the two dimensional depth averaged equation set 2.9-11 with 

the simplifications noted above. With these simplifications introduced the model 

equation becomes, 

+ 'Tb x1 LI T gh 
9" 

xy = 
49x pP Dy 

[2.141 

If U, the water elevation is written as the sum of the water depth, h and bed level 

7, and it is assumed that the water depth is constant along the river's longitudinal 

axis( uniform flow) and the water elevation is constant along the river's lateral axis 

then, 

ah 
=0 0 and -L- =- So CMe channel slope) x Ox 

Thus the depth averaged fully developed flow equation simplifies to the following, 

- ghSO + -I- 
I a- T=0 

p lox p 'ay XY 
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-Equation 2.25 and variants of it have beeen used to predict the lateral velocity 

variation and bed shear stress in compound channels by various investigators, see 

table 2. Equation 2.25 has been solved by different numerical methods, for 

different dependent variables ( depth averaged velocity, U, or unit flow, q) and 

using different closures for the bed and lateral shear stress terms. In all these 

attempts the lateral shear stress term has been treated with an eddy viscosity 

closure, 

T,, y =h 71 aU 
lay 

[2.16] 

although different methods of computing the eddy viscosity have been proposed. 

The different lateral shear stress expressions constitute the turbulence model and 

are discussed in more detail in chapter 4. 

Chapter 2 Review of Numerical Models for River Engineering 39 



Investigator(s) Dependent Variable Eddy Viscosity (T) Numerical Solution 

Vreugdenhil 7, assumed constant finite difference 

and NVijbenga 

(1982) 

Wormleaton T, c6AU finite difference with 

(1988) Newton-Raphson 

iteration for 

non-linearity 

Shiono and U 7, Ihu* finite analytic 

Knight (1988) 

Wark-, Samuels q Uh Tt Ahu* finite difference with 

and Ervine Newton-Raphson 

(1990) iteration for 

non-linearity 

Keller and Rodi U T, given by k-& model finite volume 

(1988) 1 

Table 2. Investigations for uniform depth averaged flow in compound channels: 

) has been termed the lateral non-dimensional eddy viscosity with values given by 

Fischer ct al (1979). c is a constant, 6 is a length scale related to the the shear layer 

width and AU is the velocity difference across the shear layer, Wormleaton (1988). 

2.5.2 Fully Developed Three Dimensional Flow Models 

This type of model has been applied to compound channel flow by Krishnappan 

and Lau (1986), Kawahara and Tamai (1989), Prinos (1990), Naot, Nezu and 
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--Nakagawa (1993), Lin and Shiono (1992), Prinos, (1992), and Cokljat (1993) 

among others. This type of model, has also been applied to simple channels by 

Naot and Rodi (1982) and Younis and Abdellatif (1989) who also considered its 

effect on sediment transport predictions. Nearly all applications of this type of 

model have used virtually the same numerical solution technique which is outlined 

by Krishnappan and Lau (1986). The numerical method is based on the SIMPLE 

algorithm suitably simplified for the parabolic flow case. A selection of some of 

these studies are detailed in table 3. 
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Investigator(s) Numerical Turbulence Model Comments 

Method 

Krishnappan and Parabolic Algebraic Stress Comparisons with experimental data 

Lau (1986) Finite Model (ASM) indicated that the model could predict 

Volume discharge, velocity distributions and 

bed shear stress distributions 

adequately. No detail was given on 

secondary motion prediction. 

Cokljat (1993) Parabolic Reynolds Stress Results indicated that the both 

Finite Transport Model turbulence models could predict 

Volume (RSTM) and secondary velocities, turbulence 

Non-linear k-z quantities, discharge, velocity 

(NKE) model distributions and bed shear stress 

distributions very well with the RSTM 

superior. 

Lin and Shiono Parabolic Algebraic Stress A scalar transport equation is also 

(1992) Finite Model (ASM), solved to represent a pollutant and 

Volume Non-linear k-s model perhaps not surprisingly significant 

(NKE) and linear differences are observed between the 

k-& model linear k-z model ( no secondary 

motion ) and the other two models 

which predict secondary motion. 

Naot, Nezu, Parabolic Algebraic Stress Comparisons with experimental data 

Nakagawa (1993) Finite Model (ASM) indicated that the model could predict 

Volume secondary velocities, turbulence 

quantities, discharge, friction factors 

and bed shear stress distributions very 

well. 

Table 3. Investigations for fully developed three dimensional flow 
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" These studies deal with the prediction of secondary motions induced by the 

non-equivalence of the normal Reynolds stresses. The main focus of these studies, 

therefore, lies on the turbulence representation employed which is discussed more 

fully in chapter 4. Two interesting studies of fully developed duct flow which is 

very similar to open channel flow prediction warrant mention owing to the 

different numerical solution approach taken. Gerard (1974) and Baker and 

Orzechowski (1983) both use the finite element which may or may not be more 

efficient for accurately modelling complex geometries. 
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Figure 6. Typical fully developed depth averaged flow model results 
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Figure 7. Typical fully developed three dimensional flow model results 
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3.0 Chapter 3 Foundations for River Hydraulics 

3.1 Physical Laws 

To describe three dimensional flows mathematically we require one continuity 

equation and dynamic equations in each of three orthogonal directions. There 

follows a brief summary of the derivation of these equations. Firstly, the 

co-ordinate system is introduced, then the concepts of conservation of mass and 

momentum are describcJ mathematically. Finally, the relationship between stress 

and strain in a fluid is outlined. 

3.1.1 Coordinate System and Control Volume 

The physical laws will be derived in terms of a right handed rectangular Cartesian 

coordinate system, see figure 8, in which the x axis aligns with the streamwise 

direction of the river, the y axis takes the lateral direction across the river and z 

axis aligns with the vertical direction. The coordinates are measured relative to a 

stationary frame of reference and have corresponding velocity components U, V 

and W. 

There are two approaches to the analysis of fluid mechanics problems. In the 

Lagrangian. approach individual fluid particles are followed and the fluid 

properties of each particle are determined at any instant in time. In the Eulerian 

approach interest is fixed on a specific region in space. The fluid properties are 
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prescribed throughout space and time and information on flow conditions at fixed 

points is obtained. The Eulerian approach is adopted here. The fixed region is 

called the control volume and for the following derivation it is an infinitesimally 

small cube in the fluid. The distinction between the Eulerian and the Lagrangian 

viewpoint is an important one - some difficulties may be lessened by switching 

from one viewpoint to another for the purposes of numerical discretisation. 

3.1.2 Underlying Assumptions 

The following equations are derived for the specific case of water flow in a clear 

river, i. e. the fluid is assumed incompressible and of constant density, p, 

throughout. It is important to highlight this assumption as the equations ( in 

particular the stress-strain relationships ) are often presented in a more general 

compressible formulation which is then simplified. It is also assumed that the bed 

of the river remains fixed and the spatial variation of atmospheric pressure can be 

neglected. 

3.1.3 Conservation of Mass 

Consider the infinitesimal element in the middle of a river with dimensions R, 6y, 

and R. which is shown in figure 9 along with the velocity components. The rate 

at which mass enters the control volume must equal the rate that mass leaves since 

the density remains constant in the control volume. Thus, 

Mass flow rate in - Mass flow rate out = 

p1 uby6z + v6x6z + w6x6y 

- (by3z(U + au öx) + öxöz(v ax 
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ov IV , - ý- 6y) + bxby(W + -M 6z) 
ývy 49Z 

Simplifying and dividing through by the element mass pbx5y 3z gives, 

au + Iv + -ýW = -Fx- ey öz 

This is the equation of continuity for an incompressible fluid of uniform density 

which may be written in a concise cartesian tensor notation ( see AppendiX A) as, 

a uj 

OXJ =0 [3.2] 

The Continuity Equation 

3.1.4 Conservation of Momentum 

A further analysis based on Newton's Second Law provides the other physical 

laws. Since momentum is a vector quantity it must be conserved in each of the 

three orthogonal directions. The following is a derivation of the conservation of 

momentum equation in the x direction only. The momentum equations for the 

other directions follow directly. 

Newton's Second Law states that 'a body will remain at rest or in a state of 

uniform motion unless acted upon by some unbalanced force'. For a fluid control 

volume, see fligure 9, this may be stated as 
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Rate of change 

of x momentum 

of a fluid element 

Unbalanced force on 

the element in 

the x direction 

Taking each contribution to momentum increase in turn and considering a small 

time increment 3t, 

1. Temporal change in momentum 

Rate of increase in x momentum 
= p6x6y6z 49U 

of a fluid element 
at 

2. Advective change in momenttun 

Net momentum flux into a fluid element = (Momentum out - Momentum in) 

Momentum in = p[6y6z(Uo + 6x6z(UP) + 6x6y(UH01 

Momentum out = p[6y6z((ULO + 6x )+ 6x6z((Uk) + ax 

by 
a(UP) 

+ bx6y((U, P) + bz auw 
ay Oz 

thus, 

Net momentum flux into a fluid element = p6x6y6z[ 
"UU + 'OUV + 'OUW 
ax ay az 

Thus the net rate of increase in x momentum is, 

pöxbybz [ 
au 

+ auu + auv + apuw i-t ax ay az 1 
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Turning now to the unbalanced force on the element as shown in figure 10. There 

are two kinds of force to be considered: body forces which are distributed 

throughout the element and surface forces which act on the element surface as a 

consequence of its interaction with its surroundings. 

3.1.4.1 Body Forces 

For the present only a general body force per unit volume shall be assumed. So for 

the x direction the body force is 3x3y6zf,,. This aspect shall be discussed further 

in section 3.1.4.3. 

3.1.4.2 Surface Forces 

We can express the surface forces in terms of the stresses acting on the faces of the 

element. To identify the particular stress component a double subscript notation 

is adopted. The first subscript indicates the direction of the normal to the plane 

on which the stress acts, and the second subscript indicates the direction of the 

stress. Thus normal stresses have repeated subscripts, whereas the subscripts for 

the shearing stresses are always different. Referring to figure 10, the contribution 

duc to normal strcsscs is givcn by, 

L9a" bY6Z1 (c. ä7-- )- cx, ] 

which is, 

40axx 6X)6y6z 
ax 

The contribution due to shear stresses on an xz plane is given by, 

6x6z[ (ayx + ap'l 

which is, 
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aayx 
6Y)6xbz 

ay 

The contribution due to shear stresses on a xy plane is g; ven by, 

6x6yj +)- crzxj oz 

which is, 

aazx 
bz)bx6y 

49Z 

Combining these forces gives the total force due to surface stresses, 

Dorx, 
+ 

aay, 
+ 49ax ) 6x6y6z 

ax Ily az 

Combining this with the rate of increase of momentum expression, the body force 

component and cancelling 3x, 3y and 6z gives the differential x momentum 

equation for an incompressible fluid, 

apu + ap uu + ap UV + apuw aorx, + 
a4cryx 

+ acrzx +f at ox dy az ýX- oy az jx 

The y and z momentum equations follow a similar derivation giving the complete 

momentum equation set, 

49P U+ DPUU 
+ 49puv + 

Opuw acrxx 
, 

acryx 
+ 

acrzx 
+f 

ax ay az ax 49Y az x 

V+ ap VU 
+ 49P VV 

+ 
ap vw 49axy 

4- 
aayy 

+ 
acrzy 

ax 5ýv 49Z ax dy oz 

aPW 
+ 

aPWU 
+ 

OPWV 
+ 

aplvw 
- 

Ocr" a. 7y- 
+ 

aazz 
+ fz 

at ax ay Oz Ox IOY Oz 

The above equations arc known as the 
_ 

Navier-Stokes equations. 

The equation set may also be 
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written compactly in tensor notation noting that the stress tensor must be 

symmetrical, White (1991), 

49P U, 49P Uj U, Oajj 

at + axi oxi + [3.3] 

Ile Euler Dynamic Equations 

3.1.4.3 The Body Force Vector 

In 3.3, fi is termed the body force vector. It may be written out as a vector of body 

forces, 

fx 
f, fy [3.4] 

f, 

This term represents the effect of the environment on the bulk matter of the fluid. 

Body forces may include gravity, Coriolis and buoyancy forces. In a natural 

co-ordinate system where the z axis is pointing directly outward from the earth the 

body force vector due to gravity alone would be, 

0 

fl 0 [3.51 

P9 

It is often more convenient to work in a different co-ordinate system however when 

dealing with rivers. In this system the z axis is pointing directly perpendicular to 

the river bed if the river bed can reasonably be assumed to follow a straight line. 
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In this case the velocity field is now in the new axis directions. If the river bed 

makes an angle 0 with the horizontal then the body force vector due to gravity is, 

pg sin 0 

fi 0 [3.6] 

pg Cos 0 

To retain generality the body forces in the following are represented by a general 

gravitational field, 

P9x 

f! pgy 

-Pgz- 

or, 

f, = pg, 

3.1.4.4 The Stress Tensor 

[3.7] 

[3.81 

In 3.3, aq is termed the stress tensor. It may be written out as a three by three 

matrix of stresses, 

a'X aXY CX2 

aij ayX ayi "YZ [3.9] 

-(Fzx azy llzz- 

Depending on the orientation of the axes relative to the river these stresses may 

be referred to as strcamwisc, lateral or vertical. This will be clarif"icd in future 

sections where their relative importance is discussed. The internal stress tensor 

represents the short range forces exerted on the fluid element boundaries as a result 

of its interaction with its surroundings. 
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'ffxx 4, xy O'xz 

crij Ilryx OYY Illyz [3.101 

_crzx 4rzy 4,22- 

The stress tensor is made up of normal stresses ( uj i =J) which lie on the main 

diagonal and tangential or shear stresses which make up the remaining matrix ( 

aij býj ). It is often more difficult to visualise the normal stresses. The effects of 

the shear stresses are somehow more apparent since they are the most important 

stresses in many flow situations including simple boundary layers. The normal 

stresses, however, are also important and civil engineers should be aware of their 

contribution. Part of the reason for the normal stresses receiving less attention is 

because often the only normal stress considered important is pressure. It is 

therefore convenient at this point to separate aq into the sum of an isotropic part 

( pressure ) and a deviatoric part ( whose components are zero in a motionless fluid 

aii = _P6 ij + Tij 

In the expression above P is the mechanical pressure, 64 is theý Kronecker delta 

defined as the elements of the identity matrix and Tg is the deviatoric stress tensor. 

Substituting equation 3.11 into the Euler equations 3.3 gives Stokes' equations, 

. 9pu, Op Uj U, ap OTij 

+++ pgl [3.121 at x X, OXJ I 

Equation 3.12 is quite general and appficable to any type of fluid, providing the 

stresses can be estimated. 
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3.1.5 Viscous Stresses 

The equation set 3.12 is indeterminate. Before we can apply these laws to some 

fluid system we must reduce the number of unknowns bý making some assumption 

about the viscous stresses. 

3.1.5.1 The Fluid at Rest 

Firstly from the definition of a fluid, the viscous stresses must vanish if the fluid 

is at rest. Thus all shear stresses are zero and the normal stresses become equal to 

the hydrostatic pressure, 

Tij = [3.13] 

Substituting equation 3.13 into equation 3.12 and setting all velocities to zero gives, 

I ap 
T -Fxl [3.14] 

Equation 3.14 may be integrated, defining the pressure to be some reference value 

( say zero ) at one unique point, to give a hydrostatic pressure field, denoted by 

F9 

9x X+ gy y+ 92 Z= 91 X, [3.15] 

It is therefore sometimes convenient to work with an effective pressure, 

pF [3.161 T-T 

P [3.17] p 6ri 

which is the actual pressure, minus the hydrostatic pressure so that, 

I ap 
P axt 

[3.181 
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since, 

bF af OF 
ax = 9x -T=9 -T = 9z v z z 

[3.191 

If this is done it must be remembered that this effective pressure field is now the 

pressure field minus the hydrostatic pressure field. 

In a moving fluid the stress terms arc mobilised and must be estimated. 

3.1.5.2 Stress - Deformation Laws 

A fluid element undergoes deformation in four different ways: translation, 

rotation, dilatation and shear strain. Referring to figure 11, consider a fluid 

element with corners ABCD which is initially square and deforms in time bt to the 

position A'B'C'D'. We are interested in the rate of deformation and will restrict 

the study to the dilatational and shear strain rates which are the strains which 

actually distort the element and thus cause a viscous stress. We find that da and 

dfl can be related to the velocity derivatives thus, 

lim 9v dxjt 
da = (tan-1 ax )= av dt 

öt-0 dx + 2u dxöt ex 
ax 

lim 
ou dybt 

dfl = (tan-' 
OY 

-)= 
OU dt 

6t -+ 0 dy + i-V dy6t ay 
ay 

Now considering shear strain which is defined as the average decrease of the angle 

between two lines which are initially perpendicular in the unstrained state then the 

shear strain increment is -L(da + dfl ). The shear strain rate is therefore, 2 

+ av + 1-U) CXY ý2 dt dt 2 Ox ay 
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Similarly the other shear strain rates may be derived, 

z= -L( -Ow + Ov 
-L( Ou + 2-1v) F-Y 2 49Y Oz 2 az ox 

By analogy with solid mechanics the strain rates are symmetric, i. e. Ej = Ejj . 

Considering now dilatational strain which is defined as the fractional increase in 

length of the horizontal side of the element. This is given by, 

t, xdt = 
(dx + ! 

-U dxdt) - dx 
ax = c9 U dt 

Lix dx 

with similar expressions for the other two directions. Thus the dilatational strain 

rates are, 

au 49v aiv 
£. xx ý ax yy - ey zz - az 

Taken together the extensional and shear strain rates may be written as the 

symmetric tensor, 

exx Exy Exz 

=17 
ul u 

Eij ryx "yy ty2 ( 
2-- 

+ 
2u- 

[3.20] 2 Oxj IOX, 

- czx t ZY ezz - 

Viscosity is the property of a fluid which relates applied stress to the resulting 

strain. For most common fluids the applied stress is a unique function of the strain 

rate, 

txz = fic2) [3.21] 

For certain simple fluids, including water, the relationship is linear or Newtonian, 

Txz oc cxz or rxz = 2, uex, [3.22] 
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where y is the constant of proportionality termed the coefficient of viscosity. If the 

functional relationship is nonlinear then the fluid is termed non-newtonian. A 

simple but effective approach to non-newtonian behaviour is the power-law 

approximation of Ostwald and de Waele, White (1991), 

.v=2, 
u(cxy)n Tx 

where y and n are material parameters and, in particular, 

n<I pseudoplastic 

n=I Newtonian 

n>I dilatant 

[3.231 

The importance of non-linear stress-strain relationships will become apparent 

when discussing -turbulence modelling. For water, however, the relationship is 

newtonian with the coefficient of viscosity often taken to be 1.0 X 10-3kg/m s-I in 

civil engineering practice. Note however that the cocfficicnt of viscosity is a 

thermodynamic property and so varies with temperature and pressure. 

Tij = u( 
a ul 

+ 
auj 

(3.241 
. OXJ OX, 

Substituting this relationship into the momentum equations, 3.12, assuming 

constant molecular viscosity and constant density and making use of the continuity 

constraint gives, 

a U, 
+a 

uj U, I ap a2 ul 
+g [3.25] 

at +T -7x-l v -ýx x DXJ la-l 

ne Dynamic Equations 
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where v is the kinematic viscosity, p1p. Note that 3.25 represents three equations, 

see Appendix A. Equation 3.25 together with the continuity equation 3.2 describe 

the motion of many fluids including water in a river. However, they are highly 

non-linear and tremendous difficulties exist in integrating them in this form. These 

difficulties will be discussed in chapter 4. 

3.1.6 Boundary Conditions 

There are basically four boundaries to be considered for a river. These are: inlet, 

exit, free surface and wall or bed. Normally only a finite portion of a river will be 

modelled. Whether the portion is several thousands of miles long or only a few 

metres long it will be a finite portion with a beginning and end. Conditions must 

therefore be specified at the beginning and end of the reach which allow it to be 

decoupled from the rest of the river. The inlet and exit boundary conditions are, 

therefore, computational details which are dealt with in chapter 5. 

At the free surface there are two conditions to be satisfied. Firstly, the kinematic 

condition that any particle on the free surface remains there or the particles 

upward velocity equals the motion of the free surface. This is expressed 

mathematically as, 

Dh c9h +U -Ch +V t9h -D7t '- 
t9 , ax OY 

where h is the distance above some reference datum. Secondly, the dynamic 

condition, that the normal and shear stresses between liquid and air must be in 

balance. Finally, conditions must be specified at any solid-liquid boundary, i. e. the 

channel bed and walls. This boundary condition was laid down by Stokes (1845) 

who suggested that fluid next to a wall stuck to it, i. e. a no slip condition, or, 

UTA NGENTIA Lý0 
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and that the wall is impermeable so, 

UNORMA Lý0 

The foregoing physical laws are the foundation for solutions to the problem of river 

flow prediction. However, as already stated they cannot be applied directly as they 

stand owing to the phenomenon of turbulence. This is addressed in the following 

chapter. 
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Figure 9. Mass and momentum balance 
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4.0 Chapter 4 Turbulence and its Representation 

4.1 Laminar and Turhulent Flow 

The equations derived in the previous chapter were, 

a uj 
0 

axi 

ne Continuity Equation 

and 

a ul a uj U, I ap a2 ul 

X, X., ax, 55ý 
++T -ý =v -ý + 91 [4.2] 

at IOXJ I 

Ile Dynamic Equations 

As already stated these equations describe flow in a river. However, the equations 

are highly non-linear and in practice give rise to the phenomena known as 

turbulencc. 
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Turbulence is a highly irregular motion of fluid particles when the fluid is forced 

'too hard'. Of course, hard is a relative term. Jn practice we categorise how hard 

a fluid is being forced by the ratio of inertia forces to the stabilising viscous forces. 

When this ratio is below some critical value the flow is said to be laminar, the name 

'd appears to flow in thin laminae which glide deriving from the fact that the flu. 

over each other. When the ratio is above the critical value the fluid becomes 

unstable and the laminae break down into a fluctuating random motion. The 

change between the two flow regimes is not as well defined as described above and 

in fact there is a transition region. Reynolds (1883) was the first to quantitively 

demonstrate this difference between laminar and turbulent flow and demonstrated 

that this laminar flow becomes unstable when the non-dimensional ratio pUL/y ( 

which became known as Reynolds number, P, ) is approximately equal to the 

critical Reynolds number, R,,, i,. The flow is in a transition regime ( in which the 

turbulence is not fully developed and thus still depends to a lesser'extent on the 

molecular viscosity ) between Xd, and RFDT, the fully developed turbulence 

Reynolds number. In the Reynolds number U is a characterising velocity, L is a 

characterising length scale. The magnitude of Pj, 
- varies with the flow 

configuration studied and thus the choice of the characterising dimensions, 

however for a river channel, taking L to be the hydraulic radius and U to be the 

area averaged velocity, Pj, is about 500. The flow can usually-be considered fully 

turbulent at about PIFDT equal to 12500, French (1985). When the flow is fully 

turbulent it is disorderly, unsteady and apparently unamenable to deterministic 

analysis, see figure 12. 

4.2 Representing Turhulent Flow 

If the flow is turbulent then it will consist of eddies of various sizes ranging from 

the dimensions of the fluid domain ( typically say the flow depth in a river ) down 
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to the smallest eddy size which may be of the order of hundredths of a millimetre. 

This is the so-called Kolmogorov length scale ( LK " (V33/U3)1,, 4 ). In the above 

expression v is the kinematic viscosity, which is 
julp and 6 is the shear layer width. 

The range widens with Reynolds number so that at higher Reynolds numbers there 

is a larger spectrum of eddy sizes to be resolved. The eddies are constantly moving. 

Clearly, the computational discretisation in space and time required to model such 

a flow and resolve all the detail would have to be fine enough to resolve the ýf' 

smallest eddy but cover a large enough extent to represent the flow structures of 

engineering importance. The limitationsof computing the effects of turbulence can 

be demonstrated by considering turbulent flow in a river. For a section of river 

that is 10 kilometres long, 100 metres wide and 5 metres deep with an average 

velocity of 0.2 m/s, the smallest eddy containing significant energy may be about 

0.1 millimetres. There are therefore, 100,000,000 x 1,000,000 x 50,000 significant 

eddies to be computed. If we further assume that we could get away with 5 

computational points in each co-ordinate direction per eddy ( which is probably 

underresolved ) then there will be 51x5xIO18 computational points in our grid. At 

each point we would have to store u, v, w and p and compute with one continuity 

and three momentum equations. Suppose now thatwc could compute the future 

values of the variables with no iteration thus we would probably require 100 

floating point operations per point per timestep, Emmons (1970). Thus we would 

have to do about 6xlO22 computations per timestep. At the time of writing, a fast 

parallel supercomputer may be able to complete 8,000,000,000 floating point 

operations per second (FLOPS). Thus to complete one timcstep of our calculation 

would require 250,000 years. Clearly even with highly efficient numerical models 

this approach is not, at present, an option for practical engineering predictions and 

is unlikely to become one in the foreseeable future. 

Chapter 4 Turbulence and its Representation 66 



4.2.1 Full Simulation 

Despite the daunting example given in the previous section this approach which is 

termed full simulation or direct numerical simulation hr-s been attempted at least 

for much lower Reynolds numbers over much smaller domains. For example, 

Spalart (1988) has simulated the turbulent boundary layer on a flat plate with zero 

pressure gradient for Reynolds numbers ( based on the momentum thickness ) up 

to about 1410 by solving the time dependent Navier-Stokes equations with a 

spectral method. In this simulation 10 million mesh points were used. When the 

results at these points were correlated over time and space, Spalart was able to 

verify the following results: 

1. Friction factors accurate to within 5% 

2. Velocity profiles that verify the logarithmic wall law 

3. Accurate estimates of Reynolds stress and rms fluctuations of both velocity 

and pressure 

Although the flows considered were barely turbulent, Spalart's results are very 

important. It is anticipated that this approach will become an important area of 

research particularly as computers become ever faster and larger. Its usefulness 

will probably be for calibrating, validating and even designing simpler turbulence 

models rather than for actual engineering calculations. 

- 4.2.2 Large Eddy Simulation Models (LES) 

A less computationally demanding approach is to use a computational grid that 

resolves only the 'large' eddies and represents the effect of the 'small' sub grid scale 

eddies with an empirical model. it is argued that as the eddies under consideration 
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get smaller they tend towards a more isotropic character allowing a simple sub-grid 

scale model to be applied. Lesieur (1993) gives a state of the art review of LES. 

Thomas, Williamsýand Leslie (1992) seem to be leading advocates of this approach 

in civil engineering in the United Kingdom. This approach must be three 

dimensional and unsteady and so requires very large computational resources. It 

therefore appears to be limited to simple geometries and boundary conditions. 

Despite these drawbacks, LES has been able to reproduce some of the large 

transient turbulent eddies that occur at the floodplain interface in compound 

channels, Williams (1992). Williams (1992) speculates that the ability to compute 

these motions makes the technique a more effective prediction tool than any other 

presently used turbulence models. This view is shared by Grass (1992). 

4.3 Reynolds Proposal 

Consider the section through a typical river shown in figure 13 which includes a 

representation of some of the tubulent eddies. Figure 14 shows the time trace of 

the velocity in the x direction at point A at two different resolutions. Different 

physical processes occur at different timescales. For example, a tidal river in the 

British Isles may experience flood waves with a period of 24-200 hours and M2 

tidal variations of the seaward water level with a period of about 12.5 hours. The 

bed, which is usually mobile, may be evolving at a timescale of months or years. 

The omnipresent turbulent fluctuations may occur with a period of the order of 

seconds. Other turbulent events, such as turbulent bursting and the large transient 

eddies mentioned in the previous section which are produced at the interface 

between a faster flowing main channel and a slower moving flood plain, have a 

larger time period. However these events should also be considered to be turbulent 

fluctuations for the present purposes since their period is much smaller than the 

period of the mean flow quantities. Amsden and Harlow (1968) give further 
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consideration to the dividing line between the 'large' and 'small' turbulent 

fluctuations. Fortunately engineers are not usually interested in these fluctuations 

per se ( impinging jets being the notable exception ) but rather are interested in 

their influence on the mean flow quantities. 

Reynolds (1895) suggested that any quantity (U, V, W, P) in a fluctuating field may 

be separated into a mean part and a fluctuating part, 

U=u+ I/ V=v+V, [4.3] 

IV =w+W, P=p+P, 

where, 

ýto +6r 
Q dt [4.4] 

and bt is large compared to the period of the fluctuations but small with respect 

to the period of the mean flow quantities (Q). Substituting 4.3 into the 

Navier-Stokes equations 4.1 and 4.2 and taking the time average of the resulting 

equations noting the following laws of averaging, 

f=0f=0 j9- = j9- 

fi=o 

f +9 f +k 

Of Of 
os os 

fg 0f+g=f +i 

Of Of 
as as 

we arrive at the Reynolds Averaged Navier-Stokes equations, 
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a uj 
L9xj 

[4.5] 

The Continuity Equation 

and 

au! LI uj ul -i ap 02 ul 
+ (- Widi) + gi [4.6] 

axi -a. -x-, axi axi OXJ 

The Dynamic Equations 

Note now that these equations are written in terms of ui which is the time averaged 

quantity. These equations differ from the Navier-Stokcs equations in the 

introduction of the terms -u', u'j. These terms are due to the fluctuating motion 

present in turbulent flow. The molecular stress terms are present but they are 

usually insignificant compared to their turbulent counterparts in civil engineering 

hydraulics problems. The Reynolds averaged Navier-Stokes equations arc a more 

practical foundation for the simulation of river flows. 

4.3.1 Reynolds Stresses 

If we compare Reynolds equations with Euler's equations we see that the terms, 

u1jull, are analogous to a stress tensor, 
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- Ute - UY - UV 
upilli - Vl/ - VY - v'w' [4.71 

- 
717- 

- 
; 77 

-wW, 

Because of this analogy these terms, which are really momentum transferred by the 

fluctuating motion, are called Reynolds Stresses. ' There is now a closure problem 

in the equation set since there are four equations and ten variables ( as the stress 

tensor is seen to be symmetric ). To proceed it is necessary to have some way of 

representing the Reynolds stresses. The choice of representing these stresses is 

termed turbulence modelling. 

4.4 Turbulence Modelling 

Much of the existing knowledge of turbulence modelling has stemmed from 

research in the ficIds of aeronautical and mechanical engineering. Traditionally 

civil engineering research has adopted much simpler mathematical descriptions of 

turbulence. This has led to an accessibilty problem for civil engineers and civil 

engineering researchers which has been addressed by the IAHR (1992). Nallasamy 

(1987) gives an excellent review of turbulence modelling butthe terminology and 

the examples of computations in this report tends to stem from a more mechanical 

or aeronautical engineering background. Rodi"s (1980) report on turbulence 

modelling certainly has more of a hydraulic flavour but also suffers from a 

terminology problem with a certain level of knowledge and notation assumed. 

In thefollowing sections turbulence modelling is discussed generally, however, 

differences between depth averaged, quasi and fully three dimensional turbulence 

modelling will be highlighted. 
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4.4.1 Zero Reynolds Stress Models ? 

The simplest model of the Reynolds stresses would be simply to treat them as zero. 

Although this seems a rather gross over-simplification in fact this approximation 

has apparently been used successfully in many applications mostly depth averaged 

but some fully three dimensional. The success of these applications stems from the 

fact that for the phenomena being modelled the momentum diffusion was simply 

not important compared to other terms in the equations although poor numerical 

treatments of the advection terms introducing an artificial viscosity may have 

compensated for inadequate ( or non-existent turbulence models ). 

In depth averaged models the success of these 'zero Reynolds stress models' can 

be attributed, in certain flows, to the relatively small contribution of the lateral 

momentum diffusion compared to the influence of the strong vertical momentum 

diffusion promoted by the bed roughness and represented by the bed friction 

terms. Lean and Weare (1979) demonstrate this and quantify when these terms 

were important. Subsequently, Babarutsi, Ganoulis and Chu (1989) extended the 

analysis and introduced a dimensionless number which they suggest distinguishes 

three flow regimes shallow, intermediate and deep. In shallow flow they suggest 

that the bed friction dominates whereas in deep flow there is little bed influence 

therefore lateral turbulent stresses are crucial. In intermediate depths both bed 

and lateral terms influence the flow. Presumably, therefore, shallow flows would 

be acceptably modelled using a zero Reynolds stress model while deep flows always 

require an accurate estimate of the Reynolds stresses. The necessity for 

representing turbulent shear stresses also depends on the application. Where it is 

important to predict zones of recirculation ( typically pollution or sediment 

transport problems ) then their modelling is important whereas for predicting the 
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changes in tide propagation or flooding problems then their representation may not 

be so important. 

Depth averaged applications which adopt a 'zero Reynolds stress model' include 

Townson (1974) for tidal propagation and Townson and Donald (1985) for storm 

surge prediction. Samuels (1985) has used a zero Reynolds stress model in 

considering meandering two stage channels. Supercritical flows are often modelled 

with no turbulence model, Bhallamudi and Chaudhry (1992), as are dam break 

models, Elliot and Chaudhry (1992). Fully three dimensional applications which 

contain no turbulencc modcl includc Davis and Dcutsch (1980). 

4.4.2 A Stress-Strain Relationship for Turbulent Flows 

Boussinesq (1877) arbitarily proposed that the Reynolds stress terms may be 

assumed instantaneously linearly proportional to the mean strain rate tensor in a 

way analogous to larninar flows. 

au - u'w' = v' 
az [4.8] 

The coefficient of proportionality, v,, is termed the eddy viscosity in analogy with 

the molecular viscosity found in the laminar expression. Boussinesq's proposal was 

not givcn in a tcnsorially invariant form. The gcncral cxprcssion is, 

vt2Djj - 
WkWk 

[4.91 
3 

S'j 

where 
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u ul j D, j -L (-L- + -L) [4.10] 2 Oxj Ox, 

is the mean strain rate tensor based now on the time averaged velocity field. The 

second term on the right hand side of equation 4.9 is necessary so that sum of the 

normal stresses is always positive in an incompressible flow which is a physical 
I- 

requirement, T u'iu'i ýý 0). The problem is now one of specifying the value of the 

eddy viscosity which, it will be apparent, is not a constant like its larninar 

counterpart. Intuitively, one feels it should be higher where there is stronger 

turbulent mixing but the problem is to express this quantitively. 

In models of large areal extent which are less influenced by shear layers it may be 

adequate to assume a constant eddy viscosity throughout the domain of study. 

Typically this has been used in models of lakes. Falconer, George and Hall (1991) 

used this approach in modelling shallow lake circulation. It is common in 

quasi-three dimensional flows to represent the vertical shear stresses with a refined 

turbulence model while the horizontal stresses are represented in a more 

phenomenological fashion. Note that for the depth averaged applications the mean 

strain rate tensor is based on the depth averaged velocity field. 

4.4.3 Models Based on Algebraic Formula 

In a fully developed infinitely wide open channel the eddy viscosity distribution is 

givcn by a parabofic distribution, Frcnch (1985) , 

Vt ý-- KU 
* 

Z(l -Z 
h [4.11] 
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with maximum, 

max *hI*h 
vt KU T -y ý KU T [4.12] 

at mid-depth and average ( over the depth ) 

v avg = _I vmax = KU 
*h=0.067u*h [4.131 13'T 

where z is the distance above the bed. The friction velocity is given by 

b 
p _ -L- U* = ,ý where Tb is the bottom shear stress and may be calculated by some 

appropriate empirical friction law. - Therefore as a first approximation either 

constant values of the eddy viscosity based on 4.13 or depth varying values based 

on 4.11 have been tried even when the flow is not strictly fully developed, Sauvaget 

and Usseglio-Polatera (1987). Prandtl (1925) proposed a closure for the Reynolds 

stresses which * for fully developed boundary layers does remarkably well in 

representing the experimental data. He suggested that, in analogy with the kinetic 

theory of gases, each turbulent fluctuation could be related to a length scale and a 

velocity gradient, 

49u clu - uw' = (const. )d,., w,... = (const. )(1 jz-)o -äz-) ZZ 

The length scale, 1, is termed the mixing length and represents some mean eddy 

size. A comparison of Prandtl's expression 4.14 with the Boussinesq expression 4.8 

shows that it may be thought of as a formula for the eddy viscosity, 

u Vt = (Const. )p A [4.151 oz 

A more general expression is required for non-boundary layer flows, 

vt = (ConSt. )12 
,, 
/(-DijDlj) 
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The model is completed by relating the mixing length to the gross flow features. 

By dimensional considerations we may see that the mixing length hypothesis may 

by thought of as suggesting that, 

(const. ) x length scale x velocity scale 

so that the velocity scale originally taken by Prandtl was the product of the mixing 

length and the velocity gradient. In hydraulics several alternative suggestions for 

the mixing length have been tried including Sauvaget and Usseglio-Polatera (1987), 

1= min [ 0.2Kh, KZ, Kh(1 - -1) 1 [4.18] h 

where min[x, y, z] means the minimum of x, y and z. Alfrink (1982) suggests an 

alternative form, 

I= KZ if Z <0.25h 

I=0.25Kh otherwise 

[4.19] 

The advantage of the mixing length proposal is primarily simplicity. The mixing 

length proposal is disadvantaged through the need to prescribe a priori the length 

scale throughout the domain of interest. At best this is probably an inexact science, 

the prescription of the mixing length being relatively reliable for simple boundary 

layers but near impossible for complex recirculation zones. In addition no account 

is taken of the history effects, i. e. the fact that stronger eddies generated upstream 

may be swept with the mean velocity downstream to thus influence mixing there 

is not accounted for. 

Chapter 4 Turbulence and its Representation 76 



4.4.4 Models Based on One Differential Transport Equation 

In an effort to somehow take account of history effects in the flow and also to 

provide more turbulence information for validation ar. d enlightenment, Prandtl 

(1945), proposed that instead of taking the product of the mixing length and the 

velocity gradient as the velocity scale a more direct measure of the turbulence 

should be chosen. The new velocity scale was chosen to be the square root of the 

turbulent kinetic energy, ý-k. 

,I (-tl2 +-I VP2 + W, 
2) 

= ý- w1u/I [4.20] 

The eddy viscosity would thus be given as, 

Vt cxIx , 
fk [4.21] 

where c'. is a constant. The advantage of this proposal is that it is possible to 

theoretically derive an exact transport equation for the turbulent kinetic energy, 

k, by considering energy relations in turbulent flow. Unfortunately the derivation 

of this equation introduces new higher order correlations which must be 

represented as functions of the mean quantities. The modelled form of this 

equation which has been adopted for use in practical predictions is, 

Dk a vt ak Oul 
9 J) T-t -jx: ("57 Txj )+ 

jk Oxj [4.221 
Advection Diffusion Production Viscous Dissipation 

The shorthand notation for the advection operator has been adopted, 

Dý aýk 04 
+ 

ový 
+ 

owo 
[4.23] Dt it- + ax loy tiz 
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In order to identify the length scale it is assumed that there is a constant rate of 

energy transfer from the energy containing eddies to the small scale dissipative flow 

structures. This is the turbulent energy dissipation rate, E. With this assumption 

the dissipative time scale of the large eddies is, 

c>c 

The energy transfer from the large structures of the inertial range is a mechanism 

due to the non-linear advection terms, so that T may be assumed to be 

proportional to the time scale of the large eddies, 

k 1/2 

thus, 

k 312 
oc e 

which may be substituted in 4.22 giving, 

Dk 0 vt -Ok k 3/2 
-IIe,, 

, jX-, ( --j, -k 7T + U'121J) 7x-, - 
[4.24] 

Advection Diffusion Production Viscous Dissipation 

The rate of change of k is governed by the advcctive transport due to the mean 

velocity, the diffusive transport due to velocity and pressure fluctuations, the 

production of k by interaction of the Reynolds stresses and the mean velocity 
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gradients and the dissipation of k by viscous action into heat. This approach has 

been tried by Koutitas and O'Connor (1980) for computing three dimensional wind 

induced flows in a coastal bay. They conclude that it has advantages over simpler 

and more complex models for this particular application. 

The advantages of this 'one equation' approach is the limited inclusion of history 

effects and the firmer base in theory. The disadvantage is that a length scale 

distribution must still be prescribed throughout the domain a priori. 

4.4.5 Models Based on Two Differential Transport Equations 

The length scale of the energy containing eddies is subject to transport processes 

in the same way as the kinetic energy. This fact, combined with the desire to avoid 

having to prescribe the length scale a priori has encouraged researchers to try to 

formulate a second differential transport equation for the turbulent length scale. 

In fact the length scale is rarely used itself but rather a variable proportional to it 

has been adopted. Several different variables have been suggested for the second 

differential equation with the most popular being t, the rate of dissipation of the 

turbulent kinetic energy. The fact that t appears as the last term in the k equation, 

I. e., 

k 312 
[4.25] 

has probably contributed to this adoption. Although a theoretical transport 

equation may be derived for E, Tennekes and Lumley (1972), it contains complex 

correlations whose behaviour is little understood and for which fairly drastic 

modelling assumptions must be introduced to provide a useful form. The equation 

contains terms representing convection, diffusion, generation of vorticity due to 
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vortex stretching connected with the energy cascade and a term representing the 

viscous destruction of vorticity. In its modelled form it is, 

--! 
ýC 

w 
Ul Dt vt 

-Cr )+ Cls j) - CUE Dt axi & Oxj k OXJ [4.26] 
Advection Diffusion Generation- Destruction 

With k and c computed the eddy viscosity is given by, 

cp pxk 
312 

x [4.27] f dC u& 

or, 

[4.28] 

Equations 4.26 and 4.28 combined with equation 4.22 and the Boussinesq 

assumption 4.9 represent a k-& turbulence model. A number of constants are 

required for the k-t model. These have been obtained with reference to observed 

data. They are given below. 

CP Cis CZ, Ojj a, 

0.09 1.44 1.92 1.0 1.3 

Table 4. Model Constants for Standard Linear Model: Rodi(1980) 
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This model manages to predict the level of the eddy viscosity, at least to an order 

of magnitude, in many flows of interest in civil engineering. However, Younis 

(1992) describes several situations when this model fails to produce the correct flow 

behaviour which can be traced to inadequacies in the modelled equations. Some 

of the drawbacks of the standard k-t model ( e. g. erroneous prediction of the 

normal Reynolds stresses ) can be attributed to the underlying Boussinesq 

assumption. For computational reasons modellers have clung tenaciously to the 

model modifying it in an ad hoc manner to enable better predictions for the 

particular flow of interest to them. Younis (1992) comments that this type of 

model is likely-, to remain one of the most popular for practical applications for 

some time. It is the simplest model that does not require specification of a length 

scale throughout the domain. 

4.4.5.1 Considerations for Depth A veraged Modelling 

In depth averaged models it it common to prescribe the depth averaged eddy 

viscosity from 4.29, 

(cons[) xuxh 

velocity scale length scale 
[4.29] 

where values for the constant has been given by Elder (1959). Alternatively, the 

constant may be chosen from other data, Fischer et at (1979), or calibrated to fit 

observed data. 

Depth averaged versions of the k-c model are available. They are similar to the 

equations presented above but include extra terms which account for the bed 

generated turbulence. On this point it is worth mentioning recent work of Chu and 

Barbarutsi (1989) and Booji (1989). These investigators have independently 

suggested that the original depth averaged form of the k-t model, Rastogi and Rodi 
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(1978), does not predict the correct weighting between production of turbulence 

due to horizontal velocity gradients and production of turbulence due to the 

presence of the bottom. They suggest alternate ways to correct for this but seem 

to have gone unnoticed by the other researchers, Falconer and Li (1992). 

4.4.6 Non-Linear Stress-Strain Relationships 

The Boussinesq assumption is flawed by the assumption that the stress and strain 

are in local equilibrium. There have been several attempts to relax this 

assumption, by analogizing turbulent flow with non-Newtonian laminar flows, 

Rivlin (1957), by reference to continuum mechanics and invoking invariance 

constraints and other consistency measures, Speziale (1987), or by reference to 

statistical theories, Yoshizawa (1993). 

The rationale that underlies non-linear models basically says that the Boussinesq 

assumption 4.9 is really a Taylor expansion restricted to terms of the first order, 

Baker and Orzechowski (1983). By extending the expression to include higher 

order terms more accurate predictions may result. 

4.4.6.1 Baker and Orzechowski (1983) 

In this model the Reynolds stresses are represented as, 

- , ijk + vt 2 Dij + C2vtT(2 Dij) 2 [4.301 

1- 
'Tk- (u'iu', )ai3ij [4.31] 

where T defined earlier. The constants ai arc given a's a, = C, and 

a2= a3= C3. 
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C, C2 C3 

0.94 0.067 
1 

0.56 
1 

Table 5. Non-linear IVIodel Constants: Baker and Orzechowski (1983) 

The expression for the Reynolds stresses is seen to be similar to the linear model 

with a further non-linear addition. In this particular non-linear model there is no 

isotropic part, i. e. the non-isotropy of the normal Reynolds stresses is taken 

account of by fixing their level with constants. This may limit its application unless 

it is modified in some ad-hoc way. This model is relatively simple and numerically 

robust. It gives plausible results in predicting turbulence driven secondary motions 

found in uniform channel flows, Baker and Orzechowski (1983), and also results 

in better predictions for the recirculation zone size at backward facing steps, 

Benocci and Skovgaard (1988). The treatment of the anisotropy of the normal 

Reynolds stresses is not completely convincing theoretically, however, and this is 

perhaps why there are very few applications of it in the literature. This is 

unfortunate as it is considerably simpler than other non-linear models. 

4.4.6.2 Speziale's Alodel (1987) 

This model is much more complex than the previous non-linear model however the 

theoretical development of it is considerably more rigorous. 
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- ulidj --z - -! köij + v, 2 Dij + 4CDc�vIT(DiD�j - D�, D�, bij13) 3 [4.32] 

00 4CEiý, vtT(DIj - Dmm6ijl3) 

The constants CD and CE are equal and have been assigned the value 1.68. In these 

expressions, D, is the Oldroyd derivative, which is, 0 

0DI uj 
Dij (Dij) Dkj - Dkl [4.331 OXk OXk 

where, 

D (Dij) = 
O(Dij) 

+ 
Oul (Dij) 

[4.34] Dt Ot ax, 

and T is defined earlier. This model is composed of an isotropic part, the linear 

model and an additional non-linear part. The anisotropy of the normal Reynolds 

stresses is taken account of in a more general way than in the previous non-linear 

model. 

This model has been applied by Speziale and Ngo (1988) for the computation of 

re-circulating now over a backward facing step and by Basara and Younis (1992) 

for this and other recirculating flows. Speziale (1987) has considered its use for the 
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computation of turbulence driven secondary motions in square ducts. Younis and 

Obdellatif (1989) have also considered its use for computing flows in square ducts 

and the consequences for sediment transport. Younis (1991) has considered its use 

for two-stage channels and compared it with a Reynolds Stress Transport Model. 

Cokljat (1993) has also considered the use of this type of model for computing 

secondary motions in ducts and channels. Hwang, Zhu, Massoudi and Ekmann 

(1993) have considered its use in predicting swirling flows. 

4.4.6.3 Other Non-Linear Models 

Pope (1975) suggested a 'more general effective viscosity hypothesis** for two 

dimensional problems. However Pope (1975) suggested that its extension to three 

dimensional flows was probably impossible owing to the difficulties in the algebraic 

manipulation. The model has therefore found little application as yet in practical 

problems, a notable. exception being the work of Schnell (1988). Recently Spcziale 

and Gatski (1993) have extended Pope's analysis using computer aided 

mathematics software to produce a three dimensional model formula. This will no 

doubt rekindle an interest in this type of model. Craft, Launder and Suga (1993) 

have also introduced a non-linear model which retains terms up to the third order 

in the stress-strain constitutive relation. Despite this being the first stage in the 

development of the model, promising results are obtained forabout a third of the 

computational time required of a full Reynolds Stress Transport Model. 

4.4.7 Discussion of Non-linear Stress-strain Relationships 

The use of non-linear turbulent stress-strain relationships is a relatively new 

development and their usefulness has not yet been fully established. They require 

slightly more computational work than the linear stress-strain relationship ( 

20-30% depending on the implementation ) and whether or not this extra work is 
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justified is a still a matter for debate. - The extra computation required, however, is 

still much less than that required by more complex models and also they may 

implemented into a Navier-Stokes solver relatively easily, Speziale and Ngo (1988). 

In addition they require less storage space which may be important for large 

computational grids. 

Certainly they allow the simulation of certain physical processes that can simply 

not be achieved with a linear model, in particular the reproduction of turbulent 

driven secondary motions in non-circular channels, Younis and Obdellatif (1989), 

and Baker and Orzechowski (1983). They also appear to give better predictions for 

the separation length in separated recirculating flows, Speziale and Ngo (1988). 

However, there are also studies which maintain that no clear advantage could be 

established for non-linear models over linear models, Hwang, Zhu, Massoudi and 

Ekmann (1993). Indeed there are also studies that conclude that slightly erroneous 

predictions may be forthcoming, Benocci and Skovgaard (1988). The success of 

these models seems to be problem dependent ( or even grid dependent). What can 

bc said with ccrtainty is that thcsc modcls look promising but many morc 

applications of them are required to establish their usefulness. There is certainly 

research needed to establish a robust numerical method for handling the Oldroyd 

derivative terms in Speziale's model as numerical problems have been reported, 

Speziale and Ngo (1988), Benocci and Skovgaard (1988). One possible strategy for 

this is suggested in chapter 5 although it is acknowledged that this problem may 

deter the general adoption of this particular model for practical problems. The 

extension of Pope's (1975) more general effective viscosity method to three 

dimensions, Speziale and Gatski (1993), is likely to focus interest in this type of 

model. 
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4.4.8 Reynolds Stress Transport Models (RSTM) I 

A transport equation may be derived for each individual Reynolds stress, and is 

presented below to demonstrate its complexity, 

D au; I/i 
-6-t (ZIIU'j) UjUk + 714 1- 21 [4.351 

'au 

09xk 49Xk aXk OXk 

'DWI 
+ 

"Ij 
)- L-ý- I U'iu'jWk 

49dluj 
+L (6 ykul + 6! ktlj)l axj ax, 'OXk 'bXk p 

Equation 4.35, which actually requires seven model equations since the stresses are 

symmetrical, contains higher order correlations which must be replaced by known 

( or predictable ) quantities. This modelling of the terms constitutes a Reynolds 

Stress Transport Model (RSTM) and is, at the time of writing, the state of the art 

in turbulence modelling research. This type of model may be difficult to use for 

complex problems due to convergence difficulties. Younis and Obdcllatif (1989) 

suggest that it is not practical for river engineering problems due to its required 

computer storage and time requirements. Craft, Launder and Suga (1993) state 

that there are \'countless 
complex problems where the application of these type 

of models will not be applicable this century. 

4.4.8.1 Algebraic Stress Models (ASM) 

These models are simplifications of the Reynolds Stress Transport Model. For 

some years, these have been seen as a lower cost alternative to the RSTM offering 

a limited amount of the physics of the RSTM at much reduced computation. 

Despite much research effort and several promising results they have not emerged 

as a practical alternative to RSTM. While in 2D parabolic flows they have 

sometimes been successful, in elliptic flows they have led to poor predictive 

accuracy and a highly stiff equation set which causes severe convergence 
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difficulties, Craft, Launder and Suga (1993). Younis and Obdellatif (1989) have 

commented that they are unlikely to be practical for river engineering. 

4.5 Boundary Conditionsfor Turhulent River Flows 

Boundary conditions are required at the bed and free surface to solve the system. 

Although, in theory, the same boundary conditions as described in the previous 

chapter are applicable the mesh required to resolve the steep velocity gradients 

close to the wall would be far too demanding of computer resources. In addition 

the flow close to the wall is not fully turbulent and the above turbulence equations 

are not strictly applicable. For these reasons, it is convenient to terminate 

computations close to the wall where certain universal wall laws are assumed to 

be valid. 

4.5.1 Near Wall Turbulent Flow Characteristics 

The first computing mesh element is within a layer where it can be assumed that 

the flow follows the logarithmic law of the wall. Therefore, it can be assumed that 

the fluid shear stress is equaivalent to the wall shear stress, 

IOU, 
ax, =u lu*1 [4.36] 

_ýFb p where u* is the friction velocity (= -I- ) and, 

Un 0 [4.371 

In the above expressions the subscript n means normal to the wall and -r means 

tangential to the wall. For the turbulence quantities it is assumed that local 

equilibrium prevails ( Production =z) giving, 
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u [4.38] 
vlc-; 

iu*i 3 

KZ [4.39] 

In order to apply the above a value of the friction velocity, u*, is required. There 

are several alternatives for its evaluation. Commonly a logarithmic wall law, 

equation 4.40, is solved iteratively for u* by using the velocity at the first internal 

grid point at the previous timestep or iteration, 

+=I uV ln(Ez+) if z+ > 11.63 [4.40] 

u+ = z+ if z+ < 11.63 

and u+ = u, lu*, z+ = zu*1v and E is set according to the following criteria, 

Wall Type E 

Hydraulically Smooth 9.0 

Intermediate exp(KB, ) 
where k, + 

B, = (5.5 + 2.51n(k, +))exp[ -0.062(ink, +)31 

+ 8.5(1 - 8.51 -0.062(lnk, + )31) 

HydraulicaUy Rou 30 
k4- 

Table 6. Wall Friction Relationships: Smooth to Rough 

where k, + = -L--u* and K is the von Karman constant taken here to be 0.4. These v 

wall laws have been proposed by Launder and Spalding (1974). The expression 

for B, given above has been obtained by Saijadi and Aldridgc (1993) by best-fitting 

a curve to the data of Nikuradse (1933) although other suggestions have been given 

Naot (1984) or Krishnappan and Lau (1986). k, would have to be estimated with 
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help from tables with a knowledge of the bed material or calibrated with reference 

to field data. However, for natural mobile river beds this procedure would be 

fraught with difficulty. 

Bed Matcrial k CM. 

Brass, copper, glass, perspex 0.0003 

Asbestos cement 0.003 

Plastic 0.003 

Bitumen lined ductile iron 0.003 

Galvanised iron 0.015 

Slimed concrete sewer 0.6 

Table 7. Typical values of Nikuradse's equivalent sand grain size 

For field calibration a procedure similar to that described by Krishnappan (1984) 

may be useful. Presumably, for fully developed rough turbulent flow a friction 

factor of the following type could also be used, 

u 
*2 fu2 

T [4.41] 

Indeed, this is commonly used in quasi-three dimensional models, Blumberg and 

Mellor (1983) although in fully three dimensional computations wall laws appear 

to be more popular. This may simply be because of the differing applications of 

these models. 
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4.5.2 Free Surface Turbulent Flow Characteristics, 

The rigid lid assumption is adopted in which the free surface is replaced with a 

ficticious frictionless lid at some equilibrium height. This concept has been used 

with much success in the past, where the free surface is reasonably flat, Alfrink 

and Van Rijn (1983). Alfrink and Van Rijn (1983) suggest that the rigid lid 

U 
approximation is valid as long as the Froude number -ýgT ) is low. There are 

many circumstances in river engineering where these assumptions could reasonably 

be assumed particularly when considering short lengths of channel. A problem 

may come in its practical application in defining an equilibrium level where the 

rigid lid is to be placed. In the computational cell closest to the free surface a 

pressure is computed and the magnitude of this, in some way, represents the height 

to which the water surface could rise if the surface were free. In any event, the 

effect of the free surface on the internal flow is taken account of. It is assumed that 

the fluid shear stress at the surface equals the surface stress which in the absence 

of wind is zero, 

L9 
ý1 OX, ,=0 [4.42] 

Zero mass flux is assumed normal to the free surface, 

Un ý [4.43] 

For the turbulence quantities symmetry conditions have often been used, Stamou, 

Adams and Rodi (1989), 

Ok 
[4.44] 

. Oxn 

as 
=0 [4.45] ax, 
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however there is evidence that, at least for simple boundary layer flows, that the 

length scale of the turbulence is reduced at the free surface as evidenced by the 

eddy viscosity returning to zero, see figure 14. Krishnappan and Lau (1986) have 

suggested a formula relating i: at the free surface to k at the free surface ( kf ) 

through an effective length scale ( yf ), 

Cf k 3/2 
f 

3 /4 Yf 
K Cý, 

[4.46] 

where Cf is a constant and yf is the distance between the free surface and the 

nearest internal grid node. Naot (1988) suggests a boundary condition for & at the 

free surface which does not rely on an effective length scale, 

CIE 
- 3.5 62 

OX, k 3/2 [4.47] 

which may be more useful when an effective length scale cannot be defined. 

Recent experiments, Nelson, McLean and Wolfe (1993), see figure 15 have 

indicated that for complex bed topographies and lower relative depths the 

turbulence characteristics are not as simple as for boundary layer type flows and 

in this circumstance applying a symmetry condition may be no worse than 

applying one of relations above. In addition, because of the other uncertainties 

prevalent in civil engineering computations, it may be that the boundary conditions 

on the free surface turbulence may not be the critical factor in determining 

accuracy and this may be why the simpler symmetry conditions have often been 

adopted in geophysical applications, Ushijima, Shimizu, Sasaki and Takizawa 

(1992) or Finnic and Jepson 
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4.6 Strategyfor a Three Dimensional River Model 

On the basis of the previous chapters a strategy for developing and applying a 

three dimensional river model has been devised. The strategy focuses on the 

following points: 

1. Model to be based on the fully elliptic three dimensional Reynolds Averaged 

Navicr-Stokes Equations. 

2. Turbulence to be represented by a two equation model to avoid the need to 

prescribe a length scale throughout the domain a priori. 
_ 

Linear stress-strain 

relationship, 4.9, to be adopted initially but to investigate the possible 

applications of a non-linear stress-strain relationship, 4.32, by studying 

representative two dimensional problems. 

3. Free surface to be represented by a rigid lid initially although future 

developments to allow for a relaxation of this restriction. 
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Laminar Flow 
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Turbulent Flow 

Figure 12. Laminar and Turbident Flo,, N 

I Ime 

I, igure 13. Time Trace of Velociq in a Rker at Point A 
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5.0 Chapter 5 The Present Model 

5.1 System of Equations 

The system of equations describing the flow were derived in preceeding chapters 

as, 

49uj 
axi 0 

The Continuity Equation 

[5.1] 

Oul au 
492U + F 7ui + 

Of 
(- Wiwi) + g, [5.2] at axj ax, axjaxj axi 

Tle Dynamic Equations 

w1ul 2k 6ij + VI(-Lul + 
oui 

[5.3] J3 axi lax, 

k 

Turbulent Closure Assumption One - Linear stress strain relationship 
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2 k6ij + vt 2 Dij + 4CDc,, vT(DiDj - D,, D,, 6ijl3) [5.4] -3 

00 4CEcý, vtT(Dij - D,, 6ijl3) 

k2- 
c 

D(Dij) au, 'ouj 
D D- Dkj - ki li Dt Oxk ÖXk 

Turbulent Closure Assumption Two - Non-Linear stress-strain relationship 

Ok + 
Lujk Vt k aul 

_=_! 
L (_ _L_ )+ Wiwi) [5.5] at Oxi 49Xj Crk OXj "Xi 

Transport Equation for Turbulence Kinetic Energy 

Lui ö( -t OF +8 Aui 
- 0 

C2££) oxj DXJ £ Oxj k (CI. ( - lIxi 
[5.6] 

Transport Equation for Turbulence Kinetic Energy Dissipation Rate 

5.1.1 Boundary Conditions and Model Constants 

The boundary conditions have been def"ined in chapter 4 and are summarised 

below. 
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Boundary Normal Tangential k 

Type Velocity Velocity 

Net Specified U, =0 Specified Specified 

Outlet Computed Computed Ok 
=0 =0 ex. OX. 

Bed or Wall U. =0 
auý 

Vt U U* 
U*2 k 

-jc: 

1 U* 13 

xx. 

Free Surface U. =0 
OU, 

0 _Lk_ = 0 -if-- =0 ax. . 49XII ax. 

Table 8. Summary or boundary conditions 

where u* is defined in chapter 4. 

The model constants are given below. 

Cp Cit c24 0, % £F, CD CE 

0.09 1.44 1.92 1.0 1.3 1.68 1.68 

Table 9. Model Constants 

5.2 Mathematics of the Equations 

Partial differential equations may be catcgorised as elliptic, parabolic or hyperbolic 

by considering their form. Typically, elliptic partial differential equations 

represent an equilibrium problem, parabolie partial differential equations represent 

a diffusion type problem and hyperbolic differential equations represent a wave 
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propagation problem. The full Reynolds Averaged Navier-Stokes Equations ( 5.1-7 

) do not fall into any of the categories defined above. If certain limiting 

assumptions are made however it is possible to reduce them to one of these simpler 

forms. These different forms are usually solved by different numerical methods. 

That is, a numerical method that works well for solving an elliptic problem will not 

neccesarily work well for solving a parabolic problem and will almost certainly not 

be the best method for a hyperbolic problem. This fact is crucial to the solution 

method which is implemented in this research. The present method recognises that 

different terms in the equations deserve different numerical treatment and so 

advocates a splitting of the differential operators and solving them in distinct steps 

using an appropriate method. It is argued that this approach produces more 

accurate, more robust code. 

5.3 Solving the Hydrodynamic Equations 

There are two difficulties associated with the solution of the incompressible 

Navier-Stokes equations which are a recurring theme in the literature. Firstly, the 

treatment of the advcction terms and secondly the pressurc-velocity coupling. One 

of the most well known techniques, the SIMPLE algorithm, has already been 

mentioned in chapter 2. This algorithm, a traditional finite volume approach, will 

be shown to be subject to certain limitations particularly for unsteady problems. 

In the following the shorthand notation, 

[ Differential Expression I 

is used to indicate some kind spatial discretization process (which could be finite 

difference, finite volume, finite element, etc. ). Finite differences are used at all 

times for the temporal discretisation. 
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5.3.1 Co-ordinate System and Grid Aspects 

The simplest and least computationally demanding solutions are those in cartesian 

co-ordinates. Of course these solutions are less accuratL. in the boundary regions 

where curved boundaries must be approximated by a rectangular 'staircase' of 

computational cells, McGuirk and Palma (1992), see figure 16. The physical 

equations may be transformed into another general coordinate system which is 

chosen to fit the boundary, Viollet, Kcramsi and Bcnque (1981). The code 

described here uses a cartesian co-ordinate system. It is envisaged that a future 

development of the present model will involve using a non-orthogonal grid system 

and this has been borne in mind during the present coding effort. Having chosen 

a co-ordinate system there now remains the question of the discrete placement of 

variables on the grid. 

This problem has been considered in some detail by Shih et al (1989). Figure 17 

shows some alternatives for the placement of variables on a computational grid. 

Figure 17(a) shows the placement suggested by Harlow and Welch (1965) and later 

adopted by Patankar and Spalding (1972). Figure 17(b) shows the placement used 

by Rhie and Chow (1983) and Majumdar, Rodi and Zhu (1992) and rigure 17(c) 

shows the placement used by Pracht (1975), Viollet, Benque, and Gousscbaile 

(1983), Albanese, Grasso and Meola (1984) and Kim and Benson (1992). The 

advantages and disadvantages of the various grids are summariscd in the table 

below. In particular we note that grid arrangement 17(a) is poor for 

non-orthogonal grids and also requires an accuracy lowering averaging of velocities 

when computing the advection terms. The alternative grids however suffer from 

problems of a pressure-velocity decoupling -which manifests itself by producing a 

chequerboard pressure solution. This will be discussed further in section 5.3.5. The 

grid arrangement 17(b) ( the collocated arrangement ) allows for the accurate 
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treatment for advection and diffusion, it has good properties for non-orthogonal 

grids, however artificial boundary conditions for the pressure solution may be 

required, indeed Alfrink (1981) shows how this type of variable arrangement may 

lead to an inconsistent equation set. The grid arrangement 17(c) has been adopted 

here because it allows for an accurate treatment for advection and diffusion, it has 

good properties for non-orthogonal grids, it does not require boundary conditions 

for pressure, and has easy indexing. The weak possibility of chequerboarding 

must, however, be dealt with. 

Variable Advantages Disadvantages 

arrangement 

17(a) No chequerboarding, no Poor for non-orthogonal 

need for pressure boundary grids, accuracy lower for 

conditions. advection. 

17(b) Good for non-orthogonal Chequer-boarding may 

grids, useful for computer occur, Require 'artificial' 

indexing ( ease of boundary conditions for 

development ) pressure. 

17(c) Good for non-orthogonal Weak possibility of 

grids, accurate for advection, chequer-boarding 

ease of computer indexing, 

no pressure boundary 

conditions required 

Table 10. Summary of grid types: Present model uses 17(c) 
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5.3.2 Overview of Solution Technique 

The method that is advocated here is a fractional step or operator splitting method. 

The solution proceeds in two steps: the advectior -diffusion step and the 

pressure-velocity coupling step. 

Step 1- Advection-diffusion 

aux n aujul Ui - Ui 49 At -ý I- + t- (- [5.7] 
DXJ I 

where [] represents a discretisation operator. 

Step I is discrctiscd in an cxplicit-implicit manner, 

aux n0 uj ul Ui Ui 
In + _y ,/, laux [5.81 at -ýýX-j oxi I ý) 

which may be written as two sub-stcps since the advection term is taken explicitly, 

- un 
At 

'Oujul 
In [5.9] 

DXJ 

aux N 
At 

Ui Yi-u, ý) laux [5.101 OXJ 

This is readily seen by substituting equation 5.9 into 5.10 to return equation 5.8. 

Thus, the advcction terms of the momentum equation are treated explicitly and the 

diffusion type terms are treated implicitly. The advcction terms, equation 5.9, are 

solved with a third order method of characteristics. A method of characteristics 

solution appears to be the only way in which accurate unconditional stability can 

be achieved at low grid resolutions. It will be shown in chapter 6 that at high 
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courant numbers ( greater than I or 2) traditional finite volume codes, despite 

implicit temporal differencing, have tremendous difficulty resolving time dependent 

problems at low spatial resolutions. Treating the advection terms in this way also 

means that the matrix that has to be solved for u, -x is structurally symmetric since 

the advection terms, which generally must be unsymmetrically differenced 

upwinded ), have been taken on to the right hand side. This has been noted by 

Viollet, Benque and Goussebaile (1983). A structurally symmetric matrix is much 

easier to deal with numerically than an unsymmetrical matrix. The stress terms, 

equation 5.10, at least for the linear model present no numerical difficulties and 

are therefore treated with a fully implicit central differencing. The non-linear 

model introduces some additional complexity and requires special treatment. This 

is discussed in section 5.3.4. 

Step 2- Pressure-Velocity Coupling 

The method which has been adopted here for the pressure-vclocity coupling is a 

projection method which has been used in different forms by a number of 

researchers including Alfrink and Van Rijn (1982), Viollet, Benque and 

Goussebaile (1983), Kim and Moin (1985), Peyret (1983), Fortin (1972), Huffenus 

and Khaletzky (1981) and more recently by Kothe and Mjolncss (1992). The 

method has recently been favourably re-assessed by Perot (1993). The pressure 

velocity coupling is algorithmically similar to the SMAC method due to Amsdcn 

and Harlow (1970). 

The velocity field at the auxiliary level does not, in general, satisfy the continuity 

equation (5.1). This auxiliary velocity field must be corrected, so as to produce a 

velocity field at the future time level which satisfies continuity. 
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n+l aux Ui - Ui ln+l [5.111 
At Ox, 

where 0= p1p + 113u', u'i - gixi. This pressure field at the future time level is 

computed from the following Poisson equation for the effective pressure at the 

future time level which may be derived by taking the divergence of equation system 

5.11 assuming incompressibility at the future time level. 

Pressure Solution 

49U 
1 -0 0 

In+1 =I171 aux [5.121 
oxiaxi At axj 

Equation 5.12 implicitly assumes continuity at the future time level, 

clu J 
axi [5.13] 

This is explained in detail in section 5.3.5. Equation 5.12, which is elliptic in 

character, is replaced with a standard symmetrical differencing and then solved 

with a preconditioned conjugate gradient method. 

5.3.3 Treatment of the Advection Terms in Step I 

The advection terms are, 

aul 
+ 

ýU-jul 
Tt axj 

which may be written, by virtue of the continuity equation, in a non-conservative 

form as, 

0 ul + uj 
a u! 

=0 (5.151 Tt axj 
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Consider the u velocity only, 

au 
++ au + [5.163 -äi ex ay az 

This partial differential equation may be written as a four ordinary differential 

equations, 

du 0 dt [5.17] 

dx dy dz [5.181 dt dt dt 

since by the chain rule, 

du ou 49U 49X + Ou 
-LY + 2-u 09Z 71 1 t- + "ý X- at ay at Oz at 

The ordinary differential equation set 5.18 indicates that flow information travels 

along streamlines or characteristics. Figure 18 shows a typical characteristic curve 

in one dimension for simplicity. Therefore to compute u at the future time level 

two steps are involved. For the characteristic curve that passes through the point 

where we wish to find u: 

Compute the position of the characteristic foot by solving equations 5.18. In 

general, this will not be at a grid point. 

2. Find the value of u at the characteristic foot by interpolation. This corresponds 

to the value sought by virtue of equation 5.17. 

Ul, m, n ý U(x", yn, zl) [5.201 
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-The subscripts show that ý is being evaluated at grid point l, m, n. In the present 

code a simple Euler's forward differencing has been used to solve 5.18 for ( 

Xn, yn, Zn) , 

x n+l xn 
At [5.211 

y n+l yn 

At 
[5.221 

z n+l 
-zn= Wn [5.231 

At 

giving, 

xn=x n+l 
- At un [5.24] 

n n+l At VII [5.251 

zn=z n+l _ A, wn (5.261 

where (x"+I, y"+', x") is the co-ordinate position of the point where the u value is 

required and (xn, yn, zn) is the co-ordinatc position of the foot of the characteristic. 

This method is adequate for problems with smoothly varying velocity fields, 

Casulli (1990). The advantage of this lagrangian approach is that the backtracking 

procedure can be extended over many elements allowing simulation at Courant 

numbers greater than unity. In order to achieve this, accurately, it may be 

neccesary to break the total trajectory from (xn+', yn+', x, -+') to (xn, yn, zn) into a 

series of segments'each of which is contained within one cell of the computational 

grid. This backtracking is carried out using the known velocity field ( un, vn, wn 

and if a velocity is required at a non grid point then it is interpolated linearly ( in 

space and time 

Having determined the position of the characteristic foot an adequate interpolation 

is then required to determine Various alternatives are possible and will be 
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discussed further in chapter 6. In the present code a third order polynomial is 

fitted to the points surrounding the required interpolation point. The coefficients 

of the polynomial are evaluated by identifying the values if u at surrounding nodes. 

Close to the boundary the degree of the polynomial is downgraded. Note that this 

interpolation is required for the three components of velocity. 

A stability analysis for this type of scheme is given by Pirroneau (1982). Here the 

more intuitive reasoning is suggested that upwinding is driven backwards 

according to the courant number and thus the point of interpolation is always 

within the domain of influence. The method is applied to the non-conservative 

version of the advcction terms ( equation 5.15 ) and therefore doubts have been 

raised over the conservative properties of lagrangian schemes. Recently, however, 

Roache (1992) and Garcia-Navarro and Priestley (1994) have independently 

suggested different ways of constructing characteristic schemes that are 

conservative and this may render arguments over conservation redundant. The 

method will be further explained in chapter 6 where its superiority over a 

traditional finite volume method is demonstrated. 

5.3.4 Treatment of the Diffusion Terms in Step 1 

The Reynolds stresses are often represented with a Boussinesq eddy viscosity 

approach. This could be thought of as a Fickian type momentum diffusion model. 

For that reason, the stress terms are often termed the diffusion terms although, 

particularly for the non-linear model, they are not the simple diffusion envisaged 

by Fick (1855). This type of partial differential equation is better treated with a 

different numerical method from the advcction terms since there is no physical or 

numerical reason to treat this term in an unsymmetrical fashion. As mentioned in 

chapter 4 the Boussinesq eddy viscosity model is used for many engineering 

problems despite growing concern over its reliability. One of the main reasons for 
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- its enduring success is that it is numerically well behaved. The discretisation of the 

stress step is, 

aux Ui 
At 

Ui [5.271 
49xi 

In the present research two stress-strain relationships have been tried. Ignoring the 

isotropic part 
1- k which may be absorbed into the effective pressure variable, the 3 

- uliulj*vialoric term may be written, 

deviatoric 
- Uiwj = vt 2 Dij 

or 

-r-rdeviatoric 
- will, = vt 2 Dij 

00 4CDc,. vtT(DimDmj - DmD,,,, 6ijl3) + 4CE4ý, vT(Dj - Dm, 6ijl3) 

When these relationships are substituted into equation 5.27 the following general 

expression is produced, 

aux - 
ui - Ui au! 

At 1 --2-- (Vt ýA+ Is] [5.28] 
49xj axi 

where the stress expression is separated into momentum diffusion like terms and 

other terms which will be termed source terms, S. Note that for a constant eddy 

viscosity model, when v, does not vary in space, the source term is zero by virtue 

of continuity. 
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Relationship for S in diffusion equation 

- u1i U, j 
k, imi,. 

Linear 
OUj 

Vt Ox, 

Non-Linear v, 
au, 
-+ 4CDc,, vT(D,. D. i - D. ýD. 6,13) + 4CEc,, vT(bu - 

b.. 6,13)) 
, ax jx 

Table 11. Source terms due to stress terms: 

These source terms introduce some difficulties into the numerical method of 

solution which will be addressed shortly. An implicit treatment of this step is 

recommended to avoid the stability restriction, 

aux 

1 

Ui Ui 43 (vt 'Oui )Iaux + ISlaux [5.291 
At Tx Tx 

j 

Spatially discretising the diffusion terms on a uniform grid, figure 19, and for the 

moment considering only the ul velocity, denoted by u, 

1 41 (vt 49U )Iaux 
oxi Oxi 

xa aux au 7 

n( UI+Imn - ulpunxn n( Uýlýgn - Ul-1, m. n 
VI AX 

)- VI AX 
» 

aux aux a aux U, ux 
(vn( 

Ul, m+ln - Ulmn n( mn 
Ay t AY 

)- vt _ AV 

aux aux aux 
n( Ulmn+l - Ulmn 

n( UITn Yl^n-I 
(v, I Az I Az Az 

[5.301 

whcrc i, m, n rcprcscnt the grid point indices. Substituting this into equation 5.29 

and gathering all terms at the future auxiliary level, 

+a + a, +, + a, 
-1) f; + b,, 

+, + b,,, 
-, 

+ Cn+l cn ul 
'n 

[5.311 x 
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au x aux - a, + I ul+ I'm n-a, - I ul-lmn 

uaux 

aux aux + ISlaux cn+l Ul, m, n+l - Cn-lulmn-I -'ý ulmn 

whcrc, 

nAt vt nAt vt 
a, + 2 AX 

-2 
AX 

vn tAt 
nAt v , b, +, 2 

b,,, 
-, AY 

- 2 AY 

v nAt 
t v nAt 

t 
cn+l 

Az 2 Cn-I 
Az 2- 

In the above expression i,, is evaluated at appropriate points using the known value 

at the present time. Unfortunately, this implicit treatment links all values at the 

future time level in a matrix which must be solved to furnish the answer. However, 

because the advection terms have been dealt with explicitly and are now part of the 

right hand side the matrix is sparse, symmetric and positive definite. This 

considerably improves the chances oý obtaining a solution. There are basically. two 

alternatives for solving this equation: direct or iterative methods. A direct method 

would mean solving the simultaneous equations by Gaussian elimination however 

standard Gaussian elimimation would be highly inefficient since most of the matrix 

contains zcros. 

Therefore, a point iterative method has been implemented here because: 

1. iteration in necessary because of the non-linearity 

2. Iterative methods take complete account of the sparsity pattern 
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3. Point iterative methods are more efficient for irregular regions 

4. The method is relatively easy to extend to boundary fitted co-ordinates 

The method employed to solve is a straightforward Gauss-Seidel relaxation 

method. This is represented below with the superscript k+I meaning the present 

iteration and the superscript k meaning the previous iteration. 

( aux I 
u Mn)k+' 

p, 
1. ý lmn + Sauxlk [5.321 

(Uaux k k+l 
al+ 1+1,, nn) + a, -I(Ua-u, 

xm,, ) 

_I ")k+ 
(Ua; x 

uaux 
k 

Ua; x C. +I( I.., M, ? 1+1) + c,. 
-, 

( 
,, -, 

)k+l 

where, 

++a, -, + b, +, + b. 
-I + c, +, + c,, -, 

Using this formula repeated sweeps through the computational mesh are carried 

out until convergence is achieved. Convergence is assumed when the normalised 

rcsidual, 

Normalised Residual = 
max Iu k+l 

-ukI 
Domain 

UO 

falls below some stopping criteria, where u,, is some typical value. A typical 

convergence curve is depicted in figure 20. Hageman and Young (1981) suggest 

that this is an acceptable iterative method for this type of problem because, 

1. For many cases a stopping criteria of 10-4 or 10-5 is adequate for reasonable 

accuracy. 
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2. - If the dependent variable is not changing rapidly with time then the result from 

the prcvious timc-stcp is a good initial condition for starting itcration. 

3. The convergence rate is a function of the chosen timestep, At, so this becomes 

an adjustable parameter to aid convergence. 

A relaxation parameter has been introduced, 

( aux k+ (Uaux k+ n( ( aux k+l 
_( 

aux)k Ul )actulal = ul ) ul [5.331 

where, 

0.0 < rl < 1.0 

1.0 < fl < 2.0 

92 may be set to values less than one when convergence difficulties are encountered. 

The source terms were estimated with the most recent estimate of the auxiliary 

velocity flicld at the previous iteration. The complete expression for the Reynolds 

stresses according to the non-linear model are given in appendix B after Speziale 

and Ngo (1988) in which use was made of the continuity equation to simplify 

them. The Oldroyd derivatives are numerically troublesome. Some insight into 

their behaviour may be obtained, however, by noting that they contain advective 

terms describing the advection with the mean velocity of the mean strain rate 

tensor. This means that the Reynolds stresses depend not only on the strain at the 

point in the fluid where the stress is being evaluated but also on the strain 

upstream of this point. The Oldroyd derivative terms contain the expression, 

D(Dij) O(Dij) 
+ 

Oul (Dij) 
Dt Tt- OX, 
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which describes advection of the mean strain rate tensor, D,,. Where these terms 

have been retained in numerical models the treatment of these terms have all been 

attempted with symmetrical numerical discretisations of greater or lesser order, 

Speziale and Ngo (1988), and Benocci and Skovaard (1988). Symmetrical 

discretisations are not appropriate for advection terms and some form of 

upwinding should be employed. In the present work a simple first order upwinding 

was employed in the discretisation of these terms which is physically more correct. 

Of course a higher order treatment would be better ( e. g. third order ) but this 

would involve a larger computational molecule and therefore was not adopted 

here. 

5.3.5 Treatment of the Pressure Terms and Continuity in Step 2 

The basic principle of this step was described in an earlier section. Here a more 

detailed description of this step is presented. Although described in two 

dimensions for ease of notation the same principles have been used for the three 

dimensional implementation. 

The auxiliary velocity field obtained from the advection and diffusion steps does 

not satisfy continuity. We still have to apply the pressure gradient correction, 

n+l aux Ui - 1ý 
.=I- 

49ý ln+l [5.341 At OX, 

in order that continuity at the future time level is satisfied, 

7 jn+I 
au 

lIxi 
[5.35] 

in two dimensions ( see figure 21 ) the discrete approximation for continuity at the 

future time level is given by, 
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au. 7 In+I 11 n+I n+I n+I n+I 
gx e- (uß + u6 (u. uy A [5.361 

22 

(Wn+l + Wgn+l) _ 
n+l + W6n+l)l _L (wy 

Az 22 

Now, 

n+l aux At n+l n+l n+l (Ocn+l + '01 (Ob + Oe UP - Ax 2 

n+l aux At n+l n+l + pn+l) ( 
i( 

h U6 = U6 - -Xý- 2 
0ý + ol )1" 

n+l aux At ( _L(on+l + kn+l) _L(, pn+l + kn+l)) u 11 u 0' -TiT 2be2d 

n+l aux At I n+l + g+l) 
-. 
L(on+l 

-t on+l)) uy uy Ax 
(22d9 

and, 

n+l aux At (on+l + pn+l) (on+l +1 wil Wfl - -IT 2bc2'+ 'py )) 

Wn+l aux At I n+l n+l I n+l n+l W6 - -EZ-- ( -T (44 
e+ -Pý )- 7T (Oh +01 )) 

n+l aux At (_L(, kn+l + on+l) _L(on+l + pn+i)) wa ý wa - Az 2b2de 

n+l aux At (I (on+l + on+l) _ _L (on+l + on+l) wYwY -Xz- 2de29h 

Substituting the above expressions into the discrete continuity equation and 

re-arranging gives a discrete Poisson equation for pressure at the future time level, 

k, on+l + k2(k? '+' + k, (kn+l _ 
k2ým+l [5.371 abcd 

4 on+l _k 
+1 6n+l + n-rl ke2 oy + k, 

g 
k2lkh 

k, ýn+l =1 aux 1 wt D; 
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where, 

k, =12+12 k2 ý12 
'- 

-12 
4Ax 4Az 2Az 2Ax 

The above represents a nine point discrete operator approximation to the Poisson 

equation sometimes called the diagonal square discretization. In fact, what has 

been done here is the discrete analog of the pressure-velocity coupling described in 

differential terms in section 5.3.2. Here the nine point discrete operator 

approximation shall be termed A20"'. The alternative ( and more commonly used 

) five point operator will be denoted AjOn+I , 

I on+l + on+l + Al, kn+l =-b [5.381 -ýZ2 
AX 2d 

lp 
+1 +I kn+l 

Az 2h 

2+2), Pn+l 
AX 2 Az 2e 

Since the A2operator is derived by rigorously satisfying the continuity equation at 

the future time level it follows that using this operator would be strictly mass 

conserving in the finite difference sense. Indeed this is the case and the A2 operator 

is preferred for this reason. However the A2operator has a problem associated with 

it in that for certain cases ( Ax = Az ) the nine point operator reduces fo the five 

point diagonal square shown in figure 22, The five point diagonal square operator 

has no direct coupling between adjacent pressure cells (e. g e and f). This can lead 

to an uncoupling and the pressure solution developing in to two distinct solutions 

when Neumann boundary conditions like, 

a-0 
an 
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are used for the pressure, Viollet, Benque and Goussebaille (1983). There is no 

possibility of this 'chequerboarding' occurring if the usual A, discrete Poisson 

operator is used since a direct coupling exists between adjacent pressure cells, see 

figure 22. However the A, operator does not result from a consideration of 

conservation of mass. We therefore choose to approximate the Poisson operator by 

a weighted average of the A, and the A2operators with the weighting factor chosen 

so that if there is a danger of pressure uncoupling occurring then we weight the 

Poisson approximation towards the A, operator. 

A-0 ý 1&10 + (I - I)A20 [5.39] 

If A is equal to 0 then the Poisson approximation is equal to the A2 operator and 

if A is equal to I then the A, operator results. In practice A is set as close to 0 as is 

possible without inducing chequerboarding. Generally, it cannot be predicted a 

priori whether or not uncoupling may occur and therefore the weighting factor 

must be determined by numerical trials. The use of the A factor would be more 

significant if a boundary fitted grid transformation is used. This A-approach has 

also been advocated by'Viollet, Benque and Goussebaile (1983) and may be seen 

to be in the same spirit as the momentum interpolation of Rhie and Chow (1983) 

commonly used in collocated grid finite volume approaches. 

The resulting pressure matrix is symmetric and positive semi-definite and is 

therefore efficiently solved by a preconditioned conjugate gradient method. If the 

pressure equation is represented thus, 

Ax 

then the conjugate gradient algorithm is, 

o Let k=0, ro = b-Axo and po = ro 
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0 For k=0,1,2,3,... until convergence. Compute the vectors xk, rk and Pk from 

k+ I -'= Xk + OckPk where Llk= rT rk1 PTAPk 

rk, l = rk- akApk 

Pk+l ý rk+l + flkPk where flk = rr+lrk+llrrrk 

This is a standard numerical algorithm and may be found in most reference texts 

on numerical methods, e. g. Mitchell and Griffiths (1980). A relatively simple 

preconditioning has been adopted, namely preconditioning by diagonal scaling. 

Therefore the actual system solved is, 

M-lA-x = M-lb 

where M-1 is the preconditioning matrix and here is the diagonal of A. Other 

preconditionings are possible and may in certain cases prove more efficient. In 

particular, Kershaw (1978), demonstrates the usefulness of an Incomplete 

Cholesky Preconditioning and suggests it results in a 200 times faster convergence 

than a block iterative method. However concerns over the stability of the 

Incomplete Cholesky Preconditioning have encouraged the simpler and more 

robust diagonal scaling to be used here. The convergence is monitored by 

examining the residual, 

T Res2 = rk+lrk+l 

and the maximum normalised change in pressure at each iteration, 

Pdel = max( 
aPk 
Xk 
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These are both plotted in figure 23. Interestingly convergence is often tested by 

checking whether Res2 < tol, where tol is some prescribed tolerance e. g. 10-8 or 

some other form, Larabi and De Smedt (1994). As can be seen from figure 23 this 

may not be the best parameter to monitor since the Res2 convergence curve is not 

monotonic exhibiting a rise after decreasing steadily, at least for this type of 

preconditioning. Convergence can only be concluded once this rise has been 

passed. This characteristic of the curve has also been observed by Kightley and 

Jones (1985). It can be noted from figure 23 that until this rise has been passed 

Pdel will not decrease monotonically. Therefore a more suitable convergence 

criteria would be Pdel < tol. This type of convergence criteria is thus recommended 

for preconditioned conjugate gradient solvers. 

The velocity correction for pressure ( i. e. application of equation 5.11) completes 

the calculation of the hydrodynamic variables. 

The same analysis may be carried out for the three dimensional case however the 

working becomes rather tedious and so this has not been detailed here. The logic 

is identical however. 

5.4 Solving the Turbulence Equations 

In solving the turbulence equations we note that they are of a similar form to the 

momentum equations, i. e. they contain advcction, diffusion and other differential 

operators. For the advection and diffusion parts we use the same methods as used 

for the momentum equations. For the source and sink terms a more appropriate 

treatment is required. 
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5.4.1 Treatment of Advection and Diffusion 

The method used is identical to that used in solving the momentum equations. 

An exception is adopted following the suggestion Leschz,. Ier and Rodi (1981) who 

point out that the accuracy with which we treat the advection terms in the 

turbulence equations is not generally crucial, since the source terms are usually 

more important. A spurious negative value for the turbulence variables due to 

advection error is strictly unacceptable, leading to instability. This may occur with 

the cubic interpolation therefore the lower order but strictly bounded linear 

interpolation for the advection of the turbulence variables is adopted. 

5.4.2 Treatment of Turbulence Source and Sink Terms 

Source terms in a differential transport equation represent a mechanism that 

increases the amount of a dependent variable whereas sink terms represent a 

mechanism that decreases the amount of a dependent variable. The source and 

sink terms in the turbulence equations are, 

o9k Prod 

Source Sink 
[5.40] 

Source and sink terms for Turbulence Kinetic Energy 

cl, T Prod - cý, T& [5.41] 
Source-Sink 

Source and sink terms for Turbulence Kinetic Energy Dissipation Rate 

where 

- 49u, 
Prod Wizlj) 6 axi 
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and -ul, u1j. is given by the expressions 5.3 or 5.5. Numerically, these terms are 

treated between the advection and diffusion stages. The sink terms, Le the negative 

ones, can be troublesome. Consider the following simpler equation, 

OT 
aT at 

where a is positive. If this equation is discretised explicitly, 

a7' At 

Re-arranging this gives, 

7'+' = 7( 1- Ata) 

Taking TO as the inital value of T the future values are given by, 

Ata) 

T2 = Tl(l - Ata) = 
e(I 

- Ata )2 

Giving for the general case, 

To( 1- aät)Ar 

The analytical solution is, 

T(t) = 70.7at 

i. e. an exponential decay. The numerical solution only behaves like the analytical 

solution when aAt is small (<<I) and in fact becomes unstable if aAt > 2. This 

stability condition has led to this type of equation being termed 'stiff'. To achieve 

unconditional stability, implicit formulations are generally recommended for 'stiff' 

equations. Consider an implicit formulation, 

r+l -r At =- a7'+' 
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Re-arranging and taking TI as the initial condition means that, 

Ti = 
7-0 

(I + Ata) 

TI TO 
+ Ata) (I + Ata) 

Giving for the general case, 

N 1-0 

(I + Ata) 

Note that with this formulation instability cannot occur since the denominator is 

always greater than I so that an exponential decay occurs as in the analytical 

solution. The same problem does not occur for source terms and they may be 

represented explicitly. So the turbulent source terms have been treated explicitly 

and the sink terms implicitly, 

0+1 -0= [prodln -IF I"kn+l [5.421 2i-t T 

tn+i _n cl, [-±-Prodln - C2, [-Llntn+l [5.431 
kk 

These equations may be rc-arrangcd to give, 

k n+l =I -)(kn + At[Prodi") [5.441 
I+ At[ c In k 

n+l )(, n a, + Atic, Proaln) [5.45] 
1+ AtC2 

el -ý- Ink 
k 

Notice that k and t can never become negative (which is a physical requirement ) 

since the denominator is always positive. This treatment of the turbulent sink 

terms is also recommended by Amsden and Harlow (1968), Lemos (1992) and Lee 

(1992). 
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5.5 Boundag Conditions 

The boundary conditions for the Navier-Stokes equations are very important and 

have been the source of some controversy in the literature, Gresho and Sani (1987). 

The boundary conditions are summarised in table 8. Velocity boundary conditions 

may be specified directly where the velocity is known or indirectly by specifying the 

velocity gradient which is related to the shear stress at the boundary. This is 

conveniently done during the diffusion step by setting the appropriate coefficient ( 

a,,,, a, -,, b,,,,,, b,,, -,, c,,,,, c. -I 
) to zero and introducing the known bed stress value 

on the right hand side. 

The operator splitting, however, means that boundary conditions are required for 

the intermediate variables at the auxiliary level. The relationship of these 

boundary conditions to the boundary conditions at the n+I level must be 

addressed. Equation 5.11 advances the auxiliary velocity field, mqux to the final 

velocity field, ui,, +' It is possible therefore at boundaries to use this relation working 

backwards to determine u,,, - in terms of un+', Perot (1993), 

aux n+l in+l Ui 1ý- + At[ -ýO- [5.461 ax, 

The required pressure gradient may be derived from theoretical considerations, 

Alfrink (1981). However investigators have found from many numerical 

experiments that for the component normal to the boundary the use of a 

homogeneous pressure gradient boundary condition is also often acceptable, 

Alfrink (1981), Huffenus and Khaletsky (1984). This may be thought of as a 

computational boundary condition rather than a physical one. The use of a 

homogeneous pressure boundary condition makes computational if not physical 

sense since if the normal velocity is specified at a boundary then a pressure 

boundary is not actually required, Patankar (1980). Therefore the neutral 
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homogeneous boundary condition is acceptable, Patankar (1980). In this way 

boundary conditions may be derived that satisfy the pressure solution and the 

velocity solution. So it is assumed, arbitarily, that the normal velocity boundary 

conditions for the auxiliary field to be equal to the final normal velocity, 

aux n+l Un Un 

giving, from 5.11, a homogeneous pressure boundary condition for the pressure 

solution, 

an 

Equation 5.11 suggests that for the tangential velocity, 

n+I aux 
±-P 

,, +I UT - Ur = OX-1 [5.471 

Differentiating to define in terms of velocity gradients, 

aun+l quaux T -00 
, +1 n+l 

- At 'o [- -ýX- I=0 [5.48] 
, 9xn oxn loxn 'r Txn 

assuming the normal homogenous pressure boundary condition. So that a velocity 

gradient ( or stress ) boundary condition may be applied at the auxiliary level 

equivalently as for the whole step, Baron, Benque and Coefe (198 1). 

Additionally, at one point in the solution domain a reference pressure must be 

specified. 

The turbulence boundary conditions are simpler than the hydrodynamic. Either 

Dirichlet or Neumann conditions are applied during the diffusion step. 
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5.6 A ccuracy 

The way the numerical method is formulated is of first order temporal accuracy 

overall although second and higher order methods can be derived, Schutt (1989) 

or Perot (1993). First order temporal accuracy is apparently acceptable for 

hydraulic engineering problems, there being many examples in the literature of its 

use, McGuirk and Islam (1987), Benque, Cunge, Feuillet, Hauguel and Holly 

(1982) or Falconer (1985). In the present application the method has been used 

with boundary conditions fixed in time and the solution is thus advanced to a 

steady state. The transient solution is therefore of no interest here and the 

temporal accuracy is not important. It is interesting to note a serious 

misunderstanding in designing numerical models based on theoretical accuracy. 

It is important to make sure the numerical method produces physically realistic 

solutions which are also accurate. Trying to achieve a certain order of theoretical 

accuracy often leads to unphysical solutions. This has been realised to our cost in 

the past. Leonard and Niknafs (1991) show how a spatially fourth order accurate 

scheme results in a worse solution than a third order scheme for an advection 

problem. Likewise, for depth averaged two dimensional models it is probably more 

crucial to avoid the "A. D. I. Effect' than to achieve ( in theory ) higher order 

temporal accuracy to improve solutions at large timesteps, Wilders, van Stijn, 

Stelling and Fokkema (1988). 

Defining when the steady-state solution has been achieved is a rather subjective 

matter, Roache (1972). A normalised residual was defined for a variable ? 1, 

Normalised Residual = 
max I jj n+I - 11 n Domain 

170 

where q, is a typical value of the variable. A prudent practice is always to monitor 

convergence curves of which examples are given in figure 24. Convergence can be 
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concluded if this normalised residual becomes less than a prescribed tolerance 

which, rather worryingly, ranges in the literature from 10-3 to 10-1. In this study 

it was taken to be 10-1 for the two dimensional applications and 10-3 for the three 

dimensional applications which was the best that could be achieved within a 

reasonable computer time. For all runs the grid was constructed in a trial and 

error fashion. Thus, the grid refinement and the placement of boundaries was 

systematically changed to check that the grid was adequate. Fortunately, some 

guidance was available from previous studies. Where a similar problem had been 

tackled by other researchers it was checked that the grid used in the present study 

was of a comparable refinement to that used in the previous studies. It will be 

demonstrated in chapter 6, however, that the present numerical treatment of the 

advection terms results in very low numerical errors in comparison to other 

schemes particularly for low grid resolutions which adds further confidence to the 

numerical results. 

5.7 Stability 

As explained earlier the present numerical method is not restricted on grounds of 

formal stability to a certain time step value. This is demonstrated in chapter 6 with 

reference to a simple one dimensional analogue. However, for accuracy in the 

complete Reynolds Averaged Navier-Stokes applications it was decided to set the 

timestep to the value suggested by the courant condition, 

At <[I+I ]-I Two Dimensional [5.49] AX Az 

or 

vw At <+E, +y 1-1 Three Dimensional [5.50] AX Ay Az 
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because of the non-linearity of the problems. Hauguel (1987) suggests that for the 

accurate treatment of strong non-linearities courant numbers close to unity are 

preferred. The treatment of the non-linear model source terms may require that a 

limit is imposed on the timestep since advective terms are involved. Further work 

is required, however, to confirm this. 

5.8 Computer Aspects 

At the outset of this research project, an IBM 3090-VF mainframe was available 

and all development and computer runs took place on this machine. Runs were 

carried out as CPU limited batch jobs which meant that in some cases it was 

necessary to run the-job to the CPU limit and then take the results of this run as 

initial conditions to a further run. For the three dimensional model this process 

had to be repeated several times. This tactic was useful for the two dimensional 

runs also. In particular, wher, a problem was approached initially it could be run 

with the linear model and a more robust linear interpolation for the advective 

terms. The results of this run although of low accuracy served as smooth initial 

conditions for the future high accuracy runs. 
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Figure 16. The 'staircase' approximation 
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Figure 17. Alternative grids and variablc placement 
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1-igure 18. Characteristic ('tjrNe-. 
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Figure 19. Computational Cell for Stress Terms 
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Figure 20. Comerglence Curve for Gauss-Seidel Operator for Stress 
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Figure 21. Computational Cell for Pressure Calculation 

Figure 22. FiNe point diagonal square and associated uncoupling problem 
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6.0 Chapter 6 Numerical Tests and Model 

Verification 

Before applying the model to a fully three dimensional flow "phenomenon it was 

thought prudent to test the numerical method against simpler problems that were 

less demanding of computer time. This served several purposes: 

1. It allowed an evaluation of the treatment of the advection terms. 

2. It tested the validity of the Navicr-Stokcs solver. 

3. The linear turbulence model implementation could be verified. 

4. It allowed for an understanding to be built up about the behaviour of the 

numcrical mcthod. 

5. The value of the non-linear turbulence stress-strain relationship could be 

assessed. 

6. The flow mechanisms in these simpler problems could be studied. 

Firstly, the treatment of the advection terms were examined with reference to a 

simple one dimensional analogue. Next, four two dimensional test cases were 

chosen for evaluation of the code. The first comes from the field of nuclear 
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engineering and has served as a test case for many codes. The other three are 

problems relating to civil engineering. The final problem, flow over a slot, is a 

simplified sub-system of the cross-ovcr region in a meandering two stage channel. 

6.1 Pure Advection Tests 

The numerical treatment of the advection terms has been found to be highly 

important and is, therefore, a recurring theme in the literature. In this section, 

therefore, it has been decided to compare the present method of discretisation with 

traditional finite volume methods for the simple but challenging case of one 

dimensional pure advection. A numerical method which performs poorly for this 

simple test case must be used with caution for the full equation set. Advection 

terms appear in the momentum equations, the turbulence transport equations and 

also in any equation describing the transport of a quantity by the mean velocity 

field. It is not the intention to describe in detail the various alternatives for 

discretisation here but 'rather to provide a brief, up to date summary of the 

numerical problem, to view the problem from a different perspective and 

consequently to advocate the approach adopted in the present model. Reference 

will be made to other work where full details may be found of the other numerical 

treatments. 

The advcction terms describe mathematically the transport by the mean velocity 

fleld of some physical property ( momentum, concentratinn of chemical or 

biological species, turbulence quantity etc ). The advection term looks something 

like, 

ac 
+ -! 

U-ZL 
5-t axj 
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where c may be velocity ( uj ), turbulence quantity (k or z ), concentration of 

chemical or heat etc. In one dimension it may be re-written, dropping the tensor 

notation and assuming a constant uniform positive velocity, 

ac 
+ -IC Wt Ox [6.2] 

It is paradoxical that such an apparently simple equation ( which has an easily 

found analytical solution for many problems) gives rise to extreme difficulties when 

its solution is approached numerically. In this section this equation will be 

examined by numerical experiment so that the treatment of advection may be 

examined in isolation. In this way the analysis will not be clouded by other terms 

as would be the case if the full equations were examined. In addition note that it 

is the linear advection that is examined here where c is some scalar value. 

There are essentially two methodologies in the discretisation of this problem 

although they may, in certain limiting circumstances, produce the same algebraic 

formula for the unknown variable at the computer coding stage. 

6.1.1 Eulerian Methodology 

The Eulerian methodology, favoured in flnite volume and finite element codes, has 

been popular in the past since all physical processes can be dealt with at the same 

sweep of the computational mesh. The Eulerian methodology may proceed to 

replace the advection equation 6.2 with a finite difference or finite volume 

discretization without a full consideration of the physical meaning of the advection 

equation, 

n+l n n+l n+l n- n Cl - C, 
+ UO( 

CR - CL 
+ U(1-0)( 

CR CL 
[6.31 At Ax Ax 
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where the notation refers to figure 25. The superscript represents the time index, 

and the subscript represents the spatial index. For this particular case the time 

dependent finitc volume discretizations and time dependent finite difference 

discretizations amount to the same final formula, Roache (1972). 0 is a temporal 

weighting factor. Common values for 0 are 0 which results in a fully explicit 

mcthod, and I which rcsults in a fully implicit mcthod. It may bc shown that 0 

must be greater than or equal to 0.5 to produce unconditionally stable forms, 

Vreugdenhil (1989). The main difference in these methods comes in the calculation 

of the face values, ( cL, cR ). Some of common diffcrencing schemes are given 

below, 

Scheme Formula for Right Face Value, cR Reference 

Central (Cl + C"O 2 
Patankar (1980) 

Roache (1972) 

Upwind C, Patankar (1980) 

Roache (1972) 

QUICK (c, + clj) -I (cjj 2c, + cl-1) 28 
Falconer and Chen 

(1992) 

SMART (c, + cj., j) - CF(cjj 2c, + cl-1) 2 
Gaskell and Lau 

CF given by non-linear formula (1988) 

Table 12. Implicit Schemes: See figure 25 

Upwind and central differencing are sometimes termed first generation methods 

since they have been around the longest. They are. plagued however by numerical 

errors which result in either an artificial diffusion or unphysical oscillations which 

destroy the solution when either the advcction is strong and/or there are steep 
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gradients in the dependent variable distribution. There have been several 

suggestions of ways to avoid these errors, however they have not been universally 

successful. Leonard (1979) suggested an alternative discretisation, Quadratic 

Upstream Interpolation for Convective Kinematics, for the face values. This so 

called QUICK differencing has been greeted favourably by computational fluid 

dynamics researchers, however for unsteady formulations there are some concern 

that in certain circumstances it fails to produce convergqd results, Fletcher (1988). 

A possible reason for this is suggested in section 6.1.3.2. If these schemes are 

implemented fully implicitly, that is, if all terms at the new time level are actually 

taken at the new time level then these schemes are unconditionally stable. For the 

QUICK and SMART schemes this results in a pentadiagonal matrix structure for 

the general case, whereas for the central and upwind ( or hybrid schemes )a 

tridiagonal matrix results. The tridiagonal matrix involves less computation and 

therefore some researchers have ( for QUICK and SMART ) taken the curvature 

terms (cl, l - 2c, + el-1) explicitly in order to preserve the tridiagonal matrix 

structure. This is sometimes described in finite volume applications as transferring 

the curvature terms into the source term. In this approach however the scheme is 

then only conditionally stable, Falconer and Chen (1992). This option appears to 

be favourcd despite the stability limitation. 

Among the explicit schemes ( which can be demonstrated to be conditionally stable 

) the QUICKEST scheme proposed by Leonard, (1979), and the scheme described 

by Takacs (1985) are to be recommended. Indeed for Courant numbers less than 

one they are markedly more accurate than implicit schemes. These two schemes 

may under certain circumstances be shown to be equivalent. Explicit schemes are 

more physically suited to the pure advection problem since they do not require 

downstream boundary conditions for pure advection which is a physical and 

mathematical requirement. Some explicit schemes are outlined in table 13. 
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Scheme Reference 

Linear Upwind Roache (1972) 

Leiths Method Roache (1972) 

QUICKEST Leonard (1979) 

Third Order 

Lax-Wendroff 

Takacs(1985) 

Table 13. Explicit Schemes: Theoretical Stability Analyses Suggests Conditional Stability - Courant 

numbers less than I 

6.1.2 Lagrangian Methodology 

The Lagrangian methodology, in con, -Arast, takes account of the physical nature 

of the advection equation before numerical discretisation and therefore, it is 

argued, is intrinsically unconditionally stable. The partial differential equation, 

ac 
+u 

ac 
=0 [6.4] Tt ax 

may be re-written as two ordinary differential equations, 

dc [6.51 dt 

and 

dx [6.61 dt 

since, by the chain rule, 

dc ac ac 49X [6.71 wt- -Tt + w- at 
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This expresses the fact that c remains constant along characteristic curves which 

have slope, 1/u, and is shown graphically in figure 26. Therefore to compute c at 

the new time level two steps are involved. For the characteristic curve that passes 

through the point where we wish to find c, i. e. ( xn+I ): 

1. Compute the position of the characteristic foot by solving equation 6.6 

2. Find the value of c at the characteristic foot by interpolation which equals the 

value at the characteristic head by virtue of equation 6.5. 

n+l n ýXn+l - CXn 
=0 [6.81 

At 

n+l n CX n+l = CX n [6.9] 

Equation 6.6 may be solved by any method suitable for for ordinary differential 

equations. For the linear problem described here the characteristics are straight 

lines and the step is trivial. The extension of the method to non-linear problems 

i. e. the Navier-Stokes equations ) means that the characteristics will not be straight 

lines, Benque, Ibler and Labadie (1980). In the present code a simple Euler's 

forward differencing has been used taking u from the present value at time, tn, 

x n+l 
-xn= un At 

giving, 

xn=x n+l 
- At un 

[6.101 

[6.111 

where xn+I is the x co-ordinate of the point where the c value is required and xn is 

the x co-ordinate of the foot of the characteristic. This method is adequate for 

problems with smoothly varying velocity ficlds, Casulli (1990). The advantage of 

this lagrangian approach is that this backtracking procedure can be extended over 
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many elements thus allowing simulation at Courant numbers greater than unity. 

Having determined xn an adequate interpolation is then required to determine c,,.. 

The simplest approach is a linear interpolation, see figure 26, given by, 

c"= acn + (I n 
xc- a)cB (6.121 

where, 

xn_ XB 

XC - XB [6.13] 

and xB, c are the x co-ordinates of the grid nodes around the point of interest. 

Unfortunately this approach, although strictly bounded, introduces an error 

something like artificial diffusion. Greater accuracy can be achieved by utilising 

cubic interpolation over four grid points. This is achieved by fitting a cubic 

equation over the four grid points surrounding x", 

32 
c(x) = a3x + a2x + alx + ao 

The coefficients ( a) are evaluated by identifying the values if c at the four nodes 

A, B, C and D. If during the backtracking procedure an inflow boundary is 

reached then backtracking is terminated and the inflow value is required to set 

c.,.. The extension to two dimensions is straightforward, indeed this lagrangian 

approach is genuinely multi-dimensional. Firstly, the backtracking requires the 

solution of two ordinary differential equations, 

dx 
u [6.151 dt 

dz 
=w [6.16] dt 

Once the point 
( Xn, Zn ) is established an interpolation is again required. For two 

dimensions a incomplete bi-cubic surface over 12 points ( see figure 27) is fitted. 
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C(X, Z) -ý 000 + aOlX + a02X 
2+ 

a03X 
3 [6.17] 

al()z + a2oz 
2+ 

ajoz 
3+a, 

lxz 

al2XZ 2 al3XZ 3 a3lx3Z + a2IX2 Z 

The coefficients ( aj are evaluated by identifying the values if c at the twelve nodes 

shown in figure 27. Close to the boundary the degree of the polynomial is 

downgraded. The analysis can be extended to three dimensions in a 

straightforward manner. 

The Lagrangian approach consists of two very simple computations which are 

highly suited to implementation on vector or parallel computer architectures. 

For the complete Navier-Stokes solver three such advection equations must be 

solved for the three components of velocity however it will be appreciated that each 
I 

has the same characteristic curve so the backtracking to find the foot of the 

characteristic need only be done once. If transport equations are solved for 

turbulence or other scalars then these will likewise follow the same characteristics. 

6.1.3 Results of Different Schemes 

To demonstrate the advantage of the present approach in contrast to the 

traditional finite difference/volume approach a simple one dimensional analogue 

is used. In this example problem some scalar quantity, c, which will be termed the 

concentration, with a narrow Gaussian distribution is advected in a uniform 

positive velocity field, u, with no stabilising diffusion. This process is described by 

equation 6.4 which may be thought of as some scalar travelling through a channel 

reach with mean velocity u. The Gaussian distribution is given'by, 
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(x- xý, 
2 

C(x) '-2 crnax e(_ 02 
[6.181 

where c,,,,,, is the maximum value of the concentration, x, is the position of the 

centroid of the distribution and a2 is the variance of the Gaussian distribution. 

The analytical solution is easily obtained since the initial distribution simply moves 

in the x direction with the mean fluid velocity, u, unchanging in shape. Thus 

equation 6.18 may be used with the xc suitably translated. In the test case chosen 

here the distribution has a standard deviation, cr = 1.94Ax. This is a very severe 

test case with the difference between the maximum and zero discretised over about 

4 grid spaces. 

The simulation time was chosen to allow the distribution to move 45AX. The 

velocity was the same for all runs 0.45 m/s. The space step, Ax, was also kept 

constant 200m. The Courant number was set therefore by altering the timestep. 

Thus to achieve the same simulation time less time steps were required as the 

Courant number increased. 

Equation 6.4 was solved by six Eulerian schemes ( four implicit and two explicit ) 

and by a Lagrangian scheme with two different interpolations ( linear and cubic 

). The Eulerian schemes used are the implicit central scheme, Fletcher (1988), the 

implicit upwind scheme, Fletcher (1988), the implicit QUICK scheme, Falconer 

and Chen (1992), and an implicit SMART scheme, which is similar to the QUICK 

scheme except the curvature factor is evaluated with a non-linear formula due to 

Gaskell and Lau (1988) instead of being set to -L as in the QUICK scheme. These 8 

schemes have been tried with 0 equal to 0.5 and also with 0 equal to I which is 

more common practice in finite volume codes. Two explicit schemes are also used 

QUICKEST which is described by Leonard (1979) and a third order 

Lax-Wendroff method described by Takacs (1985). The characteristic method, 

Chapter 6 Numerical Tests and Model Verification 144 



advocated in the present research, is also tried with both linear and cubic 

interPolation. 

6.1.3.1. Courant Number Less Than One 

Figures 28(a) and 28(b) and figures 29(a) and 29(b) show the results obtained 

using the implicit schemes with 0 equal to 0.5. for a Courant number of 0.45. 

These results show the problems with the simple upwind and central differcncing 

schemes. Notably, the upwin4 scheme results in an artificial diffusion and the 

central scheme results in spurious unphysical oscillations. Note that the hybrid 

method which is described by Patankar (1980) is a hybrid of these two schemes. 

Leonard's QUICK interpolation leads to an improvement in the prediction of the 

peak value but incurs a phase error which manifests itself in producing a spurious 

unsymmetrical undershoot. The SMART scheme corrects this undershoot 

producing a bounded solution however the -solution is slightly unsyrnmetric. 

Patankar (1980) recommends that 0 be set to 1. This practice is common in finite 

volume applications and therefore simulations were undertaken with 0 equal to 1. 

These results are shown in figures 30(a) and 30(b) and in figures 31(a) and 31(b). 

These results show that setting 0 to I leads to a severe damping of the solution. 

Although QUICK and SMART are slightly better than upwind and central even 

they produce unacceptable solutions to this particular problem. A similar 

conclusion has been drawn by Falconer and Chen (1992) for Courant numbers less 

than one. 

Computations with the explicit QUICKEST schcmc and the explicit Takacs 

scheme are shown, in figures 32(a) and 32(b). These results show a considerable 

improvement in accuracy and physical realism over the implicit schemes. Both the 

amplitude and more noticeably the phase errors are smaller. Symmetrical solutions 

are obtained however a small undershoot is observed. 
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The lagrangian methods perform as well as the explicit schemes for Courant 

numbers less than one resulting in low amplitude and phase errors, see figure 33(a) 

and 33(b). Note that with linear interpolation a bounded solution is obtained 

however a rather large false diffusion is evident. With cubic interpolation, although 

boundedness cannot be guaranteed, much more accurate solutions are evident. In 

fact for this particular case the QUICKEST scheme, the third order Lax-Wendroff 

scheme and the lagrangian scheme with cubic interpolation gave identical results. 

This is interesting since it suggests that QUICKEST somehow has some lagrangian 

traits. 

6.1.3.2 Courant Numher Greater Than One 

The real benefits of the lagrangian approach, however, become apparent when 

simulations are attempted at Courant numbers greater than 1. Note that the 

QUICKEST scheme and the Takacs scheme could not be applied to these 

situations since these schemes are only stable for Courant numbers less than one. 

The unconditionally stable implicit schemes (upwind, central, QUICK, S MART) 

give very inaccurate results whether with 0 equal to 0.5 or 1. When 0 equals 0.5 

unphysical oscillations again appear ( figures 34(a) and (b) and figures 35(a) and 

(b) ) and when 0 is equal to Ia large numerical diffusion is evident ( figures 36(a) 

and (b) and figures 37(a) and (b) ). In fact, as the Courant number is increased 

the artificial diffusion grows proportionally. Interestingly, the traditional finite 

volume formulation with the QUICK scheme was also used for further tests which 

included a significant diffusion term and a higher grid resolution. These runs 

indicated that when the Courant number was greater than one then these serious 

errors persisted. 
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In constrast, the lagrangian schemes ( figure 38 ) give even better results for larger 

timesteps. This is because for a given simulation time larger timesteps means fewer 

timesteps and this means fewer interpolations for a given simulation. At each 

interpolation solution accuracy degrades and so fewer interpolations means greater 

accuracy. 
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6.2 Flow in a Plenum Chamber - Boyle and Golay (1983) 

In this and the following sections the complete Reynolds Averaged Navier-Stokes 

solvcr is applicd and tcstcd for two dimcnsional problcms. 

At the 9th meeting of the I. A. H. R. Working Group on Refined Flow Modelling 

of Flows held at Cadarache (24-25 January, 1985) a test case for turbulent cavity 

flows was proposed for which research groups could submit numerical solutions. 

The test case was based on the experiments of Boyle and Golay (1983). Seventeen 

contributions were forthcoming based on a variety of numerical methods and 

turbulence models. Because of the previous research on this problem it was 

decided that this would serve as a useful test of the present code. 

The principal flow mechanisms are described by Boyle and Golay (1983). The flow 

field is dominated by, a large recirculation zone occupying most of the model 

domain. Experimental LDA measurements were taken by Boyle and Golay 

(1983). 

6.2.1 Geometry, Grid and Boundary Conditions 

The geometry is shown in figure 39. The results presented here have been obtained 

with a uniform grid of 35 x 49 with Ax = Az = 0.5 cm.. This has been shown in 

figure 39 also. The inlet boundary conditions for the test case are suggested by 

Bouffinicr and Grandotto (1987) and arc summarised below. 

u=0 cm/s 

80.0 cm/s. 

k= 250 cm 2/S2 
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t= 1250 cm 
21S3 

The material of the chamber was perspex and therefore walls were assumed to be 

hydraulically smooth. 

6.2.2 Results 

The linear turbulence model was used first to compare the code's performance 

against other codes which also used a linear model. Figures 40 and 41 show the 

results of the present model and the results of another research group who tackled 

the bcnchmarking exercise, Goussebaile, Jacomy, Hauguel and Gregoire (1987). 

The present model's k values have been normalised with respect to U. 2 The velocity 

vectors show an encouraging agreement, both models predicting the center of 

recirculation at about (x =I1.5, z = 8.1). This prediction is also in line with other 

contributors to the benchmarking exercise, Bouffinier and Grandotto (1987). The 

trends in the turbulent kinetic energy fields are also very similar, predicting four 

areas of local maximum. 

The model predictions have also been compared with the experimental results of 

Boyle and Golay (1983) at the three levels A, B and C which are depicted in figurc 

41. In figure 42 a satisfactory agreement can be observed for the velocities 

however in figure 43 the model predictions for the turbulent kinetic energy are seen 

to be well in excess of the observed values. However, this was also observed by 

other research groups using the standard k-t model, Bouffinicr and Grandotto 

(1987). The problem appears not to be numerical in origin but rather a 

fundamental problem of the physics of the standard k-t model. Specifically, in 

regions of flow curvature, tubulence shear stress and intensity are reduced by the 

curvature when the angular momentum of the flow increases in the direction of the 

Chapter 6 Numerical Tests and Model Verification 149 
i4. 



radius of curvature. They are increased when the angular momentum decreases 

with radius, Gibson, Jones and Younis (198 1). The standard k-r model is incapable 

of reproducing this phenomena. 

In an effort to improve the predictions the non-linear model has also been tried for 

this problem. The results with the non-linear stress-strain relationship appear to 

be an improvement on the linear relationship in some respects. In figure 45 the 

level of turbulence kinetic energy ( computed as the average of the normal 

Reynolds stresses ) appears to be in much closer agreement with the observed level 

although no actual agreement in the trend could be claimed. The improvement in 

level is encouraging none-the-less. Computations of this flow with an algebraic 

stress model and with a Reynolds stress transport model also predict a lower level 

of turbulent kinetic energy M better agreement with the experiment, Huang (1986). 

There are no other computations of this flow in the literature with Speziale's 

non-linear stress-strain relationship to confirm or disqualify this result. However 

in a study of backward facing step computation, in which the recirculation zone is 

very highly resolved, Thangam and Speziale (1992) demonstrate that within the 

recirculation zone a lower turbulence intensity is predicted by using a non-linear 

model in contrast to a linear model. In fact they predict that within' the closed 

streamlines of a recirculation zone the square root of the normaliscd normal 

Reynolds stress predicted by the non-linear model may be about three-quarters the 

value predicted by the linear model, 
F2 ; T2- 

2 U2 U0 
6 0 

0.75 
U6 

- IlVon-Untar 
u 

ILJnear 
22 

Very roughly this implies that, 

21 2 ti 2k 

U2 
]Non-LJnear -- 0.56 1-0.56 1 T2 

U2 
JUnear 

000 
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within the closed streamlines of a recirculation zone. Of course, this is an 

approximate analysis ( assuming that w" ) but none-the-less it adds 

confidence to the present predictions which show a similar improvement. Further 

study is, however, required. 
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6.3 Open Channel Flow over a Backward Facing Step - 

Nakagawa and Nezu (1987) 

This problem represents an application of the model to a flow of civil engineering 

interest. Although there have been many computational studies of closed channel 

flow over a backward facing step there have been very few of the corresponding 

open channel case. The L. D. A. experimental measurements are detailed by 

Nakagawa and Nezu (1987) who present 5 sets of experimental data referenced 

STI to ST5. In each experiment flow was subcritical. The case examined here is 

ST3. The experimental conditions are given in table 14. 

U. ý, cm. /s U. 2 cm. is Rý F, X, 111, 

29.2 
11 

22.1 
1 

23400 
1 

0.22 
1 

5.2 

Table 14. 
- 

Hydraulic Parameters for experiment ST3 after Nakagawa and Nezu (1987): 

6.3.1 Geometry, Grid and Boundary Conditions 

The geometry is shown in figure 46. A uniform grid of 100 x 51 has been used with 

Ax = 0.4 cm. and Az = 0.2 cm. and this has been shown in figure 46 also. The 

inlet conditions are assumed to be fully developed channel flow, I 

In( z 
ZO 

w=0 

U*2 

"fic A 
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*3 
= 

IuI z 
KZ (1-7) 

with u* and z, chosen to reproduce the experimental inlet velocity profile as closely 

as possible. Smooth wall laws are adopted at wall boundaries and the free surface 

is treated as a symmetry plane. 

6.3.2 Model Results and Discussion 

Figure 47 shows the velocity vectors within the recirculation zone predicted by 

both the linear and n. on-linear models. The velocity field predicted by the linear 

stress-strain model indicates a reattachment point at about 4.4 step lengths, 

resulting in a underprediction by about 16%. This is perhaps slightly better than 

similar predictions for the corresponding closed channel flow case. Figure 48,49 

and 50 show the linear model predictions for turbulent intensity defined as the 

square root of the normalised normal Reynolds stress in the x direction. Within 

the recirculation zone at less than about 3 step heights, agreement with experiment 

is generally poor. Nakagawa and Nezu (1987) show that their measurements are 

less accurate within this region and this may partly contribute to this discrepancy. 

Outside of the recirculation zone beyond about 5 step heights downstream the 

turbulence intensity predictions show a better agreement but a general 

underprediction. These trends agree with Basara. and Younis (1992) who examined 

the closed channel case. Figure 51,52 and 53 show the non-linear modd 

predictions for the normalised Reynolds stress. Again these show a general 

underprediction in this region. These results are again consistent with predictions 

for the closed channel case e. g. Speziale and Ngo (1988) or Basara and Younis 

(1992). 
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Figure 47 shows that the non-linear model predicts a velocity field with a 

reattachment point at about 5.2 step lengths, which is indistinguishable from the 

experimental measure. It would be wrong to conclude from this one case that the 

non-linear model gives exact results. However, it is reasonable to conclude that the 

non-linear model results in an increased prediction for the recirculation region. 

Figures 54,55 and 56 show the predicted turbulence intensities with the non-linear 

model. These are a marked improvement on the predictions with the linear model 

beyond about 3 step heights. The normalised Reynolds stresses, figures 57,58 and 

59 show a similar improvement. These results are again consistent with predictions 

for the closed channel case e. g. Speziale and Ngo (1988) or Basara and Younis 

(1992). They suggest that, as in the closed channel case, the improvement in 

predicting the turbulence intensities contributes to an improved prediction of the 

mean flow field. 

The following table summarises some previous attempts at predicting recirculating 

flows ( closed channel flow over a backward facing step ) with both linear and 

non-linear models. The experimental measurements of this case are due to Kim, 

Kline and Johnston (1980). They observed a recirculation length of 7.0 step 

heights. 
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Investigator(s) Advection Grid Linear Model Non-Linear 
Differencing 

Model 

Speziale and Ngo Central 166 x 73 5.5 6.4 

(1988) (Cartesian, 

non-uniform) 

Basara and Younis Upwind and 76 x 32 5.5 6.3 

(1992) Power Law (Cartesian, 

non-uniform) 

Benocciand 2nd Order 61 x4l 5.7 7.4 

Skovgaard (1988) Hybrid (Cartesian) 

Thangain and Speziale Not specified 200 x 100 6.4 6.9 

(1992) (Cartesian, 

non-uniform) 

Table 15. Predictions for the recirculation length in step heights: Experimental results from Kim, Kline 

and Johnstgn (1980) 

As can be seen from previous studies there is still some uncertainty over the 

application of both linear and non-linear models. Indeed, Lee (1992) using a finite 

element method and a linear model of turbulence predicted the recirculation length 

to be 7.1 step heights as compared to the measured value 7.0. The prevailing 

uncertainties appear to be related to grid ref"inement or numerical discretisation. 

Despite these discrepancies the present results add weight to the argument that 

predictions for the mean velocity field and the turbulence quantities can be 

improved upon for flow over a backward facing step by adopting a non-linear 

stress-strain relationship rather than a linear strcss-strain relationship. The 
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non-linear relationship results in a better prediction for the recirculation length 

probably because it results in a better prediction of the Reynolds stresses ( both 

normal and shear ). There is uncertainty over the predictions close to the step and 

within the recirculation zone however these may be because of inadequate 

experimental measurements and inadequate grid resolution within the recirculating 

zone. 
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6.4 Flow in a Settling Tank - Iman and McCorquodale 

(1983) 

In Europe and North America most water and wastewater treatment plants 

involve at least one stage of sedimentation. The design of sedimentation tanks has 

traditionally relied on empirical equations derived from physical experiments. 

These physical experiments are greatly simplified from reality where surface wind 

effects, solar heating, variable influent temperature and unsteady loading 

conditions may prevail. Computational fluid dynamics has therefore been seen as 

useful tool for examining such systems to aid in real designs. There have been 

several applications of Reynolds Averaged Navier-Stokes Solvers to this problem, 

Zhou and McCorquodale (1992), Lyn, Stamou and Rodi (1992) and Lyn and 

Zhang (1989) among others. This research, however, appears to be concerned with 

refining steady state simulations despite the fact that the loading on such water 

and wastewater plant is often unsteady. There is a growing concern, Wallis (1993), 

that for obtaining discharge consents treatment plant operators will have to satisfy 

discharge consents that require an accurate estimate of the time varying effluent 

quality. Perhaps therefore efforts could be concentrated on obtaining long 

unsteady simulations over a typical plant operating cycle rather than on obtaining 

more accurate steady results. The present numerical method is more readily 

extendable to the long time unsteady simulations than the others proposed in the 

literature since it allows the accurate simulation of steep concentration gradients 

at large timesteps. 

However, before going on to study such long term unsteady simulations the present 

code must be verified against available steady flows in settling tank geometries. 

Therefore, the code has been applied to the problem studied experimentally by 

Iman and McCorquodale (1983). Unfortunately, only the longitudinal velocities 
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were measured and therefore with no turbulence data to test against it was decided 

to only considcr the lincar turbulcncc modcl. 

6.4.1 Geometry, Grid and Boundary Conditions 

Figure 60 shows the experimental geometry. The experimental tank was 73 cm 

long and 11.95 cm deep. The inlet height was 5 cm. The flow through rate was 

109.4 c Ms' per cm. width. A uniform grid of 10 1x 51 was used with Ax = 0.73 

cm. and Az = 0.239 cm. This is also show in figure, 60. The inlet boundary 

conditions have been suggested by Celik, Rodi and Stamou (1986) who studied this 

problem with a finite volume code. 

Uinlet "-,,: 21.88 cm1s 

Winlet ý-- 0 an1s. 

2 2/S2 kinlet : -- 0.2 Uinlet ,, ": 95.75cm 

linlet = c. (0.5h, ) = 0.225 cm 

giving 

33 
tinict '= C412 684.2 CM21S3 

Smooth walls were assumed which is reasonable since the low velocities observed 

in such tanks mean that roughness elements rarely protrude beyond the laminar 

sub-layer. The free surface is treated as a rigid lid symmetry plane following 

Stamou, Adams and Rodi (1989). 
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6.4.2 Model Results and Discussion 

Figure 61 (a) shows the velocity vectors predicted by the model. The model predicts 

the length of the primary recirculation zone to be 41 cm. which is in excellent 

agreement with the measured length of 42 cm. Encouragingly the model also 

computes the presence of a much smaller secondary recirculation zone at the tank 

base outlet wall. The ability to capture this detail is no doubt important in 

calculating accurately the "dead zone' effects of the tank. The normalised 

turbulent kinetic energy field is shown in figure 61(b) and, as may be expected, 

shows turbulence generated at the shear layer at the inlet and a further region of 

high turbulence at the outlet. It also predicts, however, a large region of lower 

turbulence beyond the recirculation zone and before the outlet. This area of lower 

turbulence will allow settling to take place. The normaliscd eddy viscosity field is 

shown in figure 62(a) and is similar to the one predicted by Stamou, Adams and 

Rodi (1989) in that a region of high viscosity occurs in the primary recirculation 

zone and also close to the outlet. The average value of the normalised eddy 

viscosity -T 
Vt ) is about 0.01 which is in reasonable agreement with Stamou, 
0 UO 

Adams and Rodi (1989) and is the same order of magnitude as that calculated by 

Schambcr and Larock (1980) despite their geometry being slightly different. The 

variation in the eddy viscosity shown in figurc 62(a) again highlights the danger 

of using simpler models which take the eddy viscosity to be constant. The turbulent 

Icngth scalc is also shown in figure 62(b). 

The model has also been compared quantitively with the experimental velocity 

measurements. These are shown in figurcs 63,64 and 65. A good agreement is 

observed in particular the model appears to resolve the steeper velocity gradients 

at inlet and outlet very Nvell. 
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The results of the model application to steady flow in a settling chamber are very 

encouraging and suggest that the extension of the method to long term unsteady 

simulations is to be recommended. 
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6.5 Open Chafinel Flow over a Slot 

Sometimes, in river modification works a trench is dredged across the main flow 

direction either for laying pipelines or as a sediment trap. A knowledge of how 

flows in' the trench will behave is therefore required in order that the trench may 

be adequately designed or so that its effect on the rest of the river may be 

predicted. The study of slot flows is therefore important in its own right, however, 

Jasem (1990) highlights the similarities between the mechanisms in an open 

channel flow over a slot and the flow in the cross-over region in a two stage 

meandering channel. For this reason Jasem (1990) chose to study open channel 

flow over a slot experimentally. Unfortunately, only a mini-propellor was available 

for velocity measurements and no turbulence data was collectcd. 'Never- the. less, 

Jasem. (1990) was able to show some of the main trends in slot flows and, in 

particular, to demonstrate significant differences depending on the aspect ratio of 

the slot. Jasem's (1990) water elevation profiles at varying aspect ratios are shown 

in figure 66. Fujita, Michiuc and Hinokidani (1991), Fujita, Komura and Kanda 

(1993) and Fujita, Kanda, Komura, Yano and Morita (1993) have studied open 

channel flow over a slot using a flow visualisation technique combined with a 

correlation method. Their results have further indicated a significant dependence 

of the flow structure on the aspect ratio of the slot. Some of their observed velocity 

ficlds arc shown in figurc 67. Thcrc is vcry littlc high quality data availablc for this 

problem despite, as will be demonstrated, our current lack of understanding of this 

flow phenomenon. Alfrink and Van Rijn (1982) have considered numerically the 

flow over a trench with sloping sides which is similar to slot flows. 
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6.5.1 Geometry, Grid and Boundary Conditions 

The inlet conditions are, 

z 
in(T) 

Win ": -- 

u 
*2 

(1 

.,, 
fc 

A 

u3Z 
7 -ý_) -in - KZ 

(1 
- 

u* = 1.48cmls 

z� = 0.00075cm 

where u* was estimated from IgýSlz since a channel slope is defined and z. chosen 

to reproduce the experimental inlet velocity profile as closely as possible. The 

depth of flow on the shallow regions is 1.6 cm. S, was 0.0014 giving an average 

friction velocity of 1.48 cmis. The free surface is treated as a symmetry plane. 

Three geometries were considered representing three different slot aspect ratios (5, 

10 and 20). These are shown in figure 68, For the smallest aspect ratio a grid of 

101 x 29 was used with Ax = 0.5cm. and Az = 0.2cm.. A grid of 101 x 19 was 

used for both the aspect ratio of 10 and 20, with Ax 0.5cm. and Az = 0.2cm. 

for the aspect ratio of 10 and Ax = 0.5cm. and Az 0.1cm. for the aspect ratio 

of 20. 

6.5.2 Model Results and Discussion 

Predicted velocity Vectors arc shown in figures 69(a)-(c). The velocity vector plots 

concur qualitativcly with the experimcnts of Fujita, Michiuc and Hinokidani 

(1991). Importantly they demonstrate that it is not correct to assume that if the 
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forward facing step satifies -I- >5 then one can assume that the re-attachment H, 

will occur within the slot. In fact, reattachment does not occur even at an aspect 

ratio of 10. This is on one hand surprising since if the forward facing step is at 

infinity J. e. the backward facing step problem, then reattachment has been shown 

to occur at between 5 to 7 step heights downstream from the step. The effect of the 

forward facing step may be to promote flow acceleration close to it and thus to 

drag forward the recirculation zone. This is an important conclusion and 

contradicts earlier suggestions by Jasem (1990). It has become obvious that more 

experimental and numerical studies of free surface flow over slots are required. 

Predicted turbulence quantities ( turbulent kinetic energy, turbulent viscosity and 

turbulent length scale ) are shown in figures 70 to 72. In particular note the wake 

effect, i. e. for small aspect ratios turbulence generated at the slot shear layer is 

carried forward onto the shallow zone. Although an exact comparison with free 

surface elevations is not obvious the pressure in the surface cell suitably normalised 

has been plotted in figure 73. This in some way represents the trends expected in 

the free surface if the surface were free. The trends arc similar in particular at 

larger aspect ratios the jump in the free surface at the forward facing step is more 

pronounced and the rise over the slot more elongated. 

The ramirications for two-stage meandering channels are worth mentioning. Slot 

flows are very similar to the cross-over region in such systems. All experimental 

studies of meandering two stage channels have been with main channel aspect 

ratios less than 10, Wark (1993). These values are typical of British rivers although 

natural river bathymetries are quite different from the slot case. None-the-less, 

understanding of the expa nsion/con traction flow at a slot will greatly aid in 

understanding the flows in two-stage meandering channels. It is likely that the 

main channct aspcct ratio will play a crucial rolc. Furthcr, cxpcrimcntal and 
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numerical studies of slot slows are therefore encouraged. The present results may 

act as a starting reference for such studies. 

6.6 Conclusions fi-oin Initial Numerical Trials 

The pure advection tests may suggest why traditional finite volume codes e. g. the 

SIMPLE algorithm with QUICK differencing, may fail or produce highly 

inaccurate solutions at large timesteps ( Courant numbers greater than I) if used 

for unsteady computations or used in unsteady mode with steady boundary 

conditions to produce steady state results. Of course, this depends on the 

importance of the advection terms for the particular application. If the advection 

terms are small then their errors are correspondingly small however if they arc 

significant then their errors are also likely to be significant. In the full 

Navier-Stokes equations errors in the momentum advection terms may be obscured 

by the other terms also present ( e. g. the pressure gradient terms ) however these 

terms may adjust erroneously to compensate for errors in advcction. 

There is still a great deal of uncertainty as regards accurate advection computation 

in CFD applications. The present treatment or a method similar to it is 

recommended for use in unsteady applications. Researchers using variants of the 

SIMPLE algorithm for unsteady simulations are encouraged to try implementing 

a lagrangian type algorithm for computing the advection terms. 

The two dimensional simulations have been very valuable for assessing the 

adequacy of the numerical model. The results are encouraging and have shed new 

light on these problems. All these two dimensional studies could be extended. The 

non-linear stress-strain relationship has been demonstrated to be a useful one 

although further testing is recommmended. In particular: 
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The present model is at least as good as other models when used with a linear 

stress-strain relationship. 

2. In strongly recirculating flows non-linear stress-strain relationships may 

provide better predictions for the level of turbulence than linear relationships. 

3. As for the closed channel case, open channel flow over a backward facing step 

can be better modelled using a non-linear stess strain relationship. Longer 

recirculation lengths are predicted because more accurate predictions for the 

turbulent stresses are forthcoming. 

4. The present model provides excellent predictions for steady flow in settling 

tanks. It is recommended to extend its use to the unsteady case. 

5. The model has shed some new light on flows in slots. Clearly more 

experimental and computational work can be done in this regard. 
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Results for Pure Advection Tests 
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Figure 26. Characteristic Curves in One Dimension 
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Figure 28. Results from Implicit Schemes - Upwind, Central 
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Results for Cavity Flow - Boyle and Golay (1983) 
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Open Channel Flow over a Step - Nezu 
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Flow in a Settling Tank - Iman and INIcCorquodale 
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Open Channel Flow Over Slots of Varying Aspect Ratio 
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7.0 Chapter 7 Three Dimensional Applications 

7.1 Overview 

In this chapter a fully three dimensional application of the model is attempted. It 

is anticipated that the results will be limited because of the treatment of cur vCd 

boundaries with the staircase approximation. Exactly how this effects the solution 

is not obvious and this simulation may shed some light on this type of boundary 

approximation. In addition limitations of computer time and storage mean that a 

relatively coarse grid has been adopted. Despite the higher order treatment of the 

advection terms it was felt that this grid may not be sufficently refined to capture 

all of the flow features. None-the-Icss this exercise is important because: 

0 The experience of attempting this simulation will identify deficiences in the 

present model and in particular may suggest suitable grid requirements for 

future computations. 

The results will demonstrate some of the main flow features known to occur in 

such systems and therefore it is believed that the present model, with further 

development, will be able to be used in a predictive mode. 

It is interesting to get an idea of the computational requirements of fully three 

dimensional models. Table 16 shows some other recent studies. 
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Investigator(s) Grid Details Computer CPU Time Computer 

Type 

McGuirk 70 x40 x 25 40 hours CPU over a period AINIDIIAL 

and Palma of a month 470/V8 

(1992) 

Henry, 24 x 24 x 24 Over 7 hours CPU ( rough lBNI 3090 

Collins and estimate Mainframe 

Ciofalo 

(1991) 

Henry, 24 x 24 x 24 Over 0.5 hours CPU Cray 2 

Collins and 

Ciofalo 

(1991) 

Table 16. Summary of some other fully three dimensional model applications: k-z model for turbulence 

and traditional finite volume method 

The present study uses a grid 61 x 49 x 17. 

7.2 Flow Mechanisms in Meandering Two-Stage Channels 

Certain flow mechanisms have been identified as important in meandering 

two-stage channels, Sellin, Ervine and WHIMS, (1993). 

1. There: is a very strong interaction between the the flow in a meandering main 

channel and the over-bank flow on the floodplains. This interaction is 

characteriscd - by net mass transfer between the main channel and the 

floodplains. The lateral shear stress ( zero net mass transfer), so vitally 
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important in the straight channel case is insignificant in the meandering main 

channel case even for relatively low sinuosities. The mechanisms arising from 

the cross-over flow region driven by horizontal shear are much more important. 

This has consequences for the success of certain turbulence models. In 

particular, it may not be necessary to have such a refined treatment of the 

normal Reynolds stresses since clearly the pressure gradients may be so 

influential. 

2. A consequence of the horizontal shear in the cross-over region the channel flow, 

enters the bend with a secondary circulation contrary to that which would be 

due to the bend alone. 

3. This circulation persists at least for half the bend. It heightens the tendency for 

the flow curvature to fail to match the bank curvature because the necessary 

pressure gradient to curve the flow cannot easily develop when the flow is 

contained by the banks. As a result water from the channel cross-section at the 

bend apex (including water from the channel bed) escapes on to the 

downstream floodplain immediately after the bend. 

This process invites water from the upstream floodplain to plunge vigorously 

not at the channel bank but near the channel centre-line. This 'process 

continues for a considerable part of the cross-over ftion. 

Detailed water level measurements indicate that the free surface is far from 

plane. This reflects the existence of several zones of flow curvature. There are 

also several zones of acceleration and deceleration. These arc associated with 

expa nsion/con traction phenomena postulated by Ervine and Ellis (1987). 
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6. Flow expelled from the main channel, e. g. at the cross-over region, will carry 

with it scalars ( turbulence, sediment, pollutant ) into a wake region on the 

floodplain downstream of the cross-over. 

The flow mechanisms that are seen to occur have certain consequences for the 

success of three dimensional models. In particular: 

The strong vertical motions suggest that adopting a hydrostatic pressure 

distribution may lead to unquantifiable errors. A more prudent analysis would 

be to initally allow for a non-hydrostatic pressure field and then to proceed to 

the simpler hydrostatic hypothesis checking whether its adoption significantly 

degrades solution accuracy. 

2. Flow reversal will occur in the primary flow direction and therefore only a fully 

elliptic version of the Reynolds Averaged Navier-Stokes will be appropriate. 

3. The rigid lid approximation will probably be a satisfactory initial hypothesis 

since supcrelevations of the water surface above the equilibrium level ( uniform 

depth ) are less than 2.5% which is lower than the 10% value suggested by 

McGuirk and Rodi (1977). 

4. Clearly the most significant turbulence phenomenon is the strong turbulence 

generation at the cross-over region. Its representation is probably the most 

crucial factor in the turbulence modelling. Since it is primarily a strong 

horizontal shear layer a two equation model of turbulence with a linear 

stress-strain relationship will be a suitable first step. 

5. A suitable computational grid is likely to be a critical factor in the successful 

modelling of these flows. In order that all circulations are captured, 
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particularly in the main channel cross-over, a very fine grid may be required. 

This may require significant computer resources (storage and speed). This is 

an interesting paradox of numerical modelling. Adopting models with more 

dimensions, e. g. three dimensional instead of two dimensional or two 

dimensional. instead of one dimensional, means that computer time required 

increases. However, it does not only increase because a more complex model 

has been adopted. It further increases because now more features (eddies) can, 

and perhaps should, be resolved. This is an important fact which has not been 

appreciated in the past leading to erroneous conclusions. 

7.3 Description of the Present Problem 

The test case geometry is taken from Kiely (1989) which is more amenable to 

numerical testing than the SERC FCF geometries. The geometry is more well 

conditioncd, i. e. the aspect ratio of the main channel and the floodplains is not as 

large as the FCF- Whether or not this means the experimental geometry is a better 

approximation to reality or not is not the issue here. What matters is that the 

experimental geometry is easier to model numerically. The experimental set up is 

depicted in figure 74. It is basically a single meander with main channel flow depth 

8 cm, and flood plain depth 3 cm.. The experimental setup included Ion straight 9 

sections before and after the meander to allow the flow to attain fully developed 

conditions before and after the test section. This could not be replicated in the 

numerical model since the grid required would be too large. The total width of the 

channel is 120 cm. and the width of the main channel is 20 cm. The bed slope is 

set at 0.001 and the flow rate is 14.1 litres/sec. The sinuosity is 1.25, the aspect 

ratio of the main channel is 4 and the depth ratio is 0.38. Sometimes direct 

comparison with the data of Kicly (1989) could not be made conveniently, owing 

to the differing ways in which experimental measurements and numerical 

Chapter 7 Three Dimensional Applications 224 



predictions are presented. In these cases the numerical predictions were compared 

with other experimental data for geometries, with similar relative depths and 

sinuosities to Kiely (1989). The other results used for qualitative comparison were 

Schroder, Stein and Rouve (1991) and one of the S. E. R. C. Series B experiments. 

7.3.1 Grid and Boundary Conditions 

Because the geometry is a single meander the same procedure was adopted as Rodi 

and Demuren (1986), i. e. inflow velocity and turbulence quantities were set and 

outflow values were computed. The pressure was set to a reference datum at the 

outflow section and the pressure was computed throughout the channel in a effort 

to simulate the effect of the free surface gradient on the flow field. A relatively 

coarse grid was adopted, figure 75, which was cartcsian and so had to be chosen 

to closely approximate the real geometry in a staircase fashion as also tried by 

McGuirk and Palma (1992). 

The inflow velocity profile adopted was a very simple approximation to the 

experimental values. Ideally one would wish to'carry out a fully developed flow 

calculation as described in section 2.5.2. to provide the inlet profiles. However, in 

this case the u velocity was simply set to 40 cm/s in the main channel and 20 cm/s 

in the floodplain. Turbulence parameters were computed using the following 

formulae, 

U*2 

/Cy 

where, 

ýg- -hS,, 
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and h is the flow depth. The turbulent energy dissipation rate, c, was then chosen 

to give a turbulent viscosity of, 

Vt KU 

The crudity of these approximations for the inlet quantities is recognised. 

However, it is felt that as a first approximation these will at least be the correct I 

order of magnitude. 

7.4 Results 

The results are presented in a semi-quantitive fashion in the same spirit as 

McGuirk and Palma (1992). All results are presented from a viewpoint looking 

downstrcam. 

7.4.1 Primary Velocity Field 

The velocity profiles in the lateral direction at several flow depths are shown in 

figure 76 for sections 25,31,35 and 39. These correspond to the first bend apex, 

two sections in the cross-over region and the second bend apex respectively. The 

bankfull level is at 5.0 cm. The results of Kiely (1989) are shown in figure 77 for 

section A, B and C. These correspond to the first bend apex, the cross-over region 

and the second bend apex respectively. Some of the mechanisms appear to be 

reproduced. In particular, figure 76 shows: 

1. The velocities in the main channel are lower than on the floodplain. 

2. The velocities on the floodplain increase with depth above the floodplain. 

3. There is a transfer of fluid from the main channel to the floodplain. 
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4. For the downstream section in the cross-over region and at the downstream 

bend apex the velocity profile has a minimum mid-way between the main 

channel and the edge of the floodplain. This is evidence of the wake effect 

observed by Kiely (1989). 

The complexity of the results make them difficult to visualise. To aid in the, 

interpretation a streamline plot was constructed. This shows in figure 78 that some 

streamlines continue down through the main channel while others move out onto 

the floodplain. This verifies the observations of Sellin, Ervine and Willetts (1993). 

7.4.2 Secondary Velocity Field 

A direct comparison of the secondary velocity field is difficult owing to the way in 

which experimental data was collected along a dog-leg section in the cross-over 

region, Kiely (1989). As an alternative therefore, the secondary velocity field was 

compared qualitively with the results of Schroder, Stein and Rouve (1991). They 

show how, with cross-sections perpendicular to the floodplain walls, the 

longitudinal and lateral velocities may be resolved into components perpendicular 

to the mean flow direction. Both are shown in figure 79. The comparison appears 

disappointing since the numerical model results give no cicar indication of the same 

secondary flow structure as experiment. A rcvefse flow is observed at the channel 

bed but a downward plunging flow is not reproduced at the channel ccntrc. Kiely 

(1989) also found it difficult to isolate the secondary flow structure owing to the 

dominating effect of the fl6w expulsion onto the floodplain. The vigorous 

iexpulsion of main channel water onto the right flood plain is captured. The flow 

structure is dominated by the vigorous expulsion*. of main channel water onto the 

flood plain. This prevents the plunging flow from occuring. Inadequate grid 

resolution is almost certainly the reason for the numerical model's inability to 

resolve this feature. 
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7.4.3 Water Surface Elevation 

The total pressure in the surface cell is separated into a uniformly sloping 

component due to the gravitational force and a deviation from this constant slope. 

Figure 80(b) shows the deviation from the uniform slope. Figure 80(a) shows a 

contour plot of depth from one of the S. E. R. C. Series B experiments. 

Qualitatively, these results are very encouraging. The comPutations show, in 

agreement with experiment, regions of maximum water level within the main 

channel immediately prior to the floodplain just after the bend apex. These are 

followed on the floodplain by regions of minimum. This provides, for the first time, 

mathematical evidence that the expansion contraction flow, postulated by Ervine 

and Ellis (1987) occurs in such systems. This phenomenon has previously been 

verified by experiment but had not been verified numerically. This is an important 

capability of the model as it will be possible to evaluate energy loss coefficients 

from the results. This will enable the computation of coefficients for simpler 

conceptual models of meandering two stage channel flow, Wark (1993). 

At either end of the meander away from the main channel curvature, the surface 

smoothly returns to a longitudinally uniform slope. 

7.4.4 Turbulence Characteristics 

A direct comparison is not Possible owing to the way Kicly (1989) has defined 

turbulence intensity. However utilising the fact that the normaliscd kinetic energy 

is roughly equivalent to the square of the turbulence intensity some observations 

can be made. Figure 81 shows Kiely's measured turbulence intensity and the 

model prediction for the normaliscd turbulent kinetic energy both at 1.0 cm above 

the floodplain bed. A favourablc comparison between the two plots is observed. 
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Note that only the normalised turbulent kinetic energy contours above 0.01 are 

plotted which would correspond to turbulence intensities of 10% (0.1). 

Turbulence is generated most noticeably at the cross-over region where the velocity 

gradients are strongest, c. f. the slot flow. The turbulence generated here is carried 

on to the floodplain with the mean flow expelled from the main channel. This leads 

to higher turbulent mixing in this region. This is the wake effect observed by Kiely 

(1989). 

7.5 Conclusions fi-oin Results 

Basically, the model manages to predict some of the mechanisms occuring in a 

two-stage meandering channel system but fails to capture others. The surface 

pressure ( water elevation ) characteristics are captured favourably, as is the wake 

effect. In particular, expansion/con traction phenomena postulated by Ervine and 

Ellis (1987) has been shown mathematically to occur. The turbulence quantities 

a: re also predicted well considering this is the first attempt. In addition the model 

predicts correctly that a large portion of the main channel water ends up on the 

floodplain. 

A disappointing trend emerges, however, when the velocity results are considered 

in detail. Overall the model overprcdicts the cxplusion of main channel water onto 

the floodplains. This manifests itself in the primary velocity field by 

underpredicting the main channel velocities and over predicting the flood plain 

velocities. It is observed in the secondary velocity field by the producing a 

secondary flow which is dominated by the cxplusion of water onto the floodplain. 

This mechanism dominates the secondary flow field thus inhibiting the 

recirculation predicted by experiment. It is believed that the coarse grid in this 
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region (5 or 6) grid points across the main channel does not help matters in this 

regard. The question must be addressed however, why does the model 

underpredict main channel velocities and over predict flood plain velocities 

The answer lies in the staircase approximation to the main channel skewed section, 

see figure 82. This approximation introduces a high artificial roughness in the main 

channel by basically producing lots of small elements which protrude into the flow. 

Lemos (1992) has previously identified this limitation of the staircase 

approximation. The artifical roughness induced in the main channel leads to lower 

velocities there. To satisfy continuity, however, the floodplain velocities are 

artificially enhanced by a spuriously high explusion. There are two ways that this 

problem could be overcome. Firstly, a much finer cartesian grid could be adopted 

which would approximate the non-aligned walls with smaller errors. However, a 

much better ( though more complicated ) solution would be adopting a boundary 

fitted transformed co-ordinate system. Simply adopting this transformed grid 

arrangement is not sufficent in itself. The grid would still require to be highly 

discretised in the cross-over region to capture the slot type recirculation. However, 

the mean flow could be better computed since the artificial roughness would not 

be present. The type of grid arrangement which would be best would probably be 

one which follows the dog-leg arrangement of typical experimental set ups. Figure 

83 gives a possible example. 
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Figure 82. Staircase approximation 
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Figure 83. Possible grid for future study 
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8.0 Chapter 8 Closure 

8.1 Sitnimmy of Work and Conclusions 

As discussed in the previous chapters there is a need for a model that can be used 

to predict localised fully three dimensional flow fields at river transitions. This 

complex flow may be caused by natural river features, Over bank flow in 

meandering rivers, or man made structures, bridges or weirs etc. Such a model 

would be useful for studying localiscd three dimensional flow patterns, dispersion 

characteristics, scour potential and thus aiding in the design of local river 

modifications. There are very few studies in the literature which have been aimed 

at producing such a model or even suggesting its viability although to be fair the 

computer resources for such a model have, until now, not been available. 

This research was concerned with beginning the development of such a computer 

code for simulating free surface river flow to aid in the prediction of local three 

dimensional effects. It has concentrated on the hydrodynamics. The development 

work drew on studies in aeronautical and mechanical engineering. These disciplines 

have, in past research, been concerned with more sophisticated representations of 

turbulence and mixing characteristics and have not adopted the hydrostatic 

pressure assumption, common in civil engineering. 

The work undertaken for this project has been, 
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1. A review of existing research in computational river engineering concluded that 

an area where more effort could be made is in the numerical prediction of very 

localised fully three dimensional flow features. 

2. For this reason a fully three dimensional code has been devcloped which may 

form the basis of such a predictive procedure. 

3. A two equation model of turbulence has been implemented to compute the 

eddy viscosity. Both linear and non-linear stress-strain relationships have been 

examined for modelling turbulence stresses. 

The numerical treatment of the advection terms has been re-examined. 

5. The model has been applied to both two dimensional (negligible lateral effects 

) and three dimensional problems. 

Conclusions Regarding Numerical Methods tý 

Formulations of traditional finite volume methods presented in the literature 

preclude the use of a lagrangian formulation for the advection terms. Chapter 6 

demonstrates that there may be advantages in adopting the lagrangian 

formulation. Specific conclusions regarding numerical methods are: 

1. Traditional finite volume discretisations of unsteady transport equations result 

in significant numerical errors in the advection terms ( even with QUICK 

differencing ) for Courant numbers greater than one. 

2. Traditional finite volume discretisations of the unsteady advection terms with 

0 equal to one ( even with QUICK differcncing ) result in a severe smoothing 

of steep profiles for all Courant numbers. 
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3. The present lagrangian numerical method has been shown to be superior in its 

treatment of the advection terms to traditional finite volume methods for 

accurate simulation of unsteady events at advective Courant numbers in excess 

of unity. 

4. In dealing with the. stress ( or diffusion ) terms an unsymmetrical differencing 

upwinding ) of the Oldroyd derivative terms in the non-linear model is 

recommended. 

5. The convergence of preconditioned conjugate gradient solvers should be tested 

by monitoring Pdel the change in the dependent variable at eacý iteration 

instead of the Res2 the residual of the linear system 

8.1.2 Conclusions Regarding Turbulence Modelling f") 25 

A comParison of the linear and non-linear turbulence models indicated that: 

For strongly recirculating flows a non-linear stress-strain relationship will 

improve predictions of the level of the normal Reynolds stresses. 

2. A numerical study of open channel flow over a backward facing step has 

reached similar conclusions to other investigators studying the corresponding 

closed channel case. Namely, the linear model underpredicts the size of the 

re-circulation region by about 15% and also underpredicts turbulence stresses 

beyond the recirculation zone. A non-linear model will improve both of these 

defects. 

3. While, the non-linear relationship does improve predictions of the mean 

velocity field and turbulence quantities its adoption must be tempered by other 

practical factors., The question yet to be answered is: Is the non-lincar 
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turbulence model or even more complex models useful in civil engineering 

practice where the uncertainties are an order of magnitude higher than the 

experimental studies used for testing ? Further application of linear and 

non-linear relationships is recommended. 

8.1.3 Conclusions Regarding Two Dimensional Applications 

Other tests in two dimensions using only the linear model suggested that: 

1. A numerical study of slot flows has revealed a lack of understanding of this 

type of flow. Specifically, it appears that the flow mechanism is quite different 

from the backward facing step problem and it is wrong to conclude that if the 

forward facing step is beyond 5-7 step heights downstream of the backward 

facing step then rc-attachmcnt will occur within the slot. More experimental 

and numerical work can be done in this regard. This work is rather urgent 

since the existing data on slot flows, Jasem (1990), has already been 

incorporated into an empirical predictive procedure for discharge assessment 

in two-stage meandering channels, Wark (1993). No doubt this procedure 

would benefit from more accurate slot data. 

2. The model adequately predicts the steady flow mechanisms in a settling 

chamber and therefore it is recommended to extend this to examine long term 

unsteady simulations since the present numerical method is more amenable to 

using large time steps. 

8.1.4 Conclusions Regarding Three Dimensional Application 

The three dimensional simulation was succesful in capturing the following: 

1. A vigorous explusion of water from the main channel onto the floodplain. 
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2. Trends in the water elevation surface. 

3. The wake effect, i. e. a minimum velocity on the floodplain midway between the 

main channel and the floodplain Avalls. 

4. Higher turbulence levels in the wake. 

The three dimensional simulation did not convincingly capture the the secondary 

motions in the cross-over region. 

Some general conclusions regarding the three dimensional simulation of two stage 

channels are: 

More Nvork is required on the fully three dimensional simulations. Initial 

results are promising in some regards and disappointing in others. The 

staircase approximation will probably hamper future application of the model 

to two-stage meandering channels and the move to a boundary flitted grid 

system should be undertaken. 

2. Regarding appropriate turbulence models for overbank flow in two stage 

channels the present study is inconclusive since the numerical effects have such 

a bearing on the final results. However, it appears that research efforts should 

initially concentrate on obtaining accurate grid independent solutions for a 

wide variety of geometries and flow rates with a linear two equati on model of 

turbulence before ( if ever ) moving on to Reynolds Stress Transport Models. 

Although it can be argued theoretically that the RSTM captures more flow 

physics, in practical terms these features may not be significant. Sellin, Ervine 

and Willetts (1992) suggest, when considering both low and high sinousitics, 

that, 
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The co-flowing lateral shear stress ( zero mass transfer ), so injzuential in the 

straight channel case, is insignificant at both the sinuousities here. The 

mechanisms arising from the cross-flow and driven by horizontal shear layers are 

much more important ........ 

The more complex turbulence representations may be important, however, for 

sediment and solute transport computation. 
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Appendix A- Tensors and Tensor Notation 

Scalars and vectors are a special case of a more general quantity called a tensor 

of order m and which is made up of 3m components. So a tensor of order 0 has 30 

i. e. I component -a scalar value. A tensor of order I has 31 Le. 3 components -a 

vector. Vectors are usually represented with a single, index-, for example, velocity, 

Ul u 

ui U2 V 

U3 IV 

or the position vector, 

X1 x 

xi X2 Y 

X3 z 

A tensor of 2 has 31 i. e. 9 components and is represented with two subscripts, for 
/I 

example, the stress tcnsor, 

Tll T12 T13 

Tij 'r2l T22 T23 

'r3l T32 T33 

Txx T XY Txz 

TTT YX yy YZ 

TZX T ZY TZZJ 

Tensor notation is a useful aid when discussing fluid dynamics since it abgreviates 

some rather long winded expressions. When indices are repeated this implies a 

summation, for example, 

UjUj --'ý UIUI + U2U2 + U3U3 ýU2+v2+w2 

or, 
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au, aU1 
+ 

aU2 
+ 

aU3 aU 
+ 

ÖV 
+W _L ax, ax, aX2 aX3 öx ay az 

This may be combined with a single otheninýexj as in the momentum advection 

terms for example, 

aui 
ui 

represents, 

au au ý au 
u ax +v DY +- öz 

av + av + av ax ay az 

aw 

+ a1v + a1v 
ay az 

Differential operators may be represented tensorially also, for example the gradient 

operator operated on a scalar gives a vector, 

a 
axi 

means, 

OP 

ax 
ap 
ay 
ap 
az 

The divergence operator operated on a vector to give a scalar, 
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giving, 

m 
axi (U) 

au 
+ av + aw äx- ay az 
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Appendix B- Speziale's Non-linear Stress-Strain Relationship 

In tensor notation, Speziale's non-linear stress-strain relationship is, 

v, 2D-. - 
2 k6ij + 4CDCvT(DIDj - D,,,, D,,,, 6ijl3) 

li 3 

00 
+ 4CECý, vtT(Dj - D,, 6ijl3) 

Vt T C/I E 

0 D(Dij) u 
D, 

j 
aul 

Dkj -J Dki 
Dt OXk OXk 

Here the full two dimensional expressions are given for the stresses, following 

Speziale and making use of the continuity equation to simplify. 

au 

+ aw () az 

Stress - W! 

2 au 
-Tk+ 2vl ax 

21 aU 2 

c,, vTI(CD - 
2CE)(lu-) + CD - 2CE)( 

3 ax az 

CD - CE)('ýU 
OW 

+ (-I- CD + CE)( -Lw 
21 

2 az ax 4 ax 

4CEC,,, vT(u - alu a2w 

ax 2 
az 

2 

stress - W12 
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2k+ 2v aw 
T, az 

w aw 
)2 +2 cvtT[(CD - 2CE)( CD - 2CE)( -) 3 az 7 ax 

2 
+U 

I- 
CE)( 

au aw 
CD -I- CD + CE)(-L 

TZ Tx 4 Oz 

4CECvtT(w 
a2W 

U 
a2U 

az 2 az 2 

Stress - u'w' 

Vi( au + aw ) öz ax 

- 4CEcuvtT( au aw 
+ au Ow ) az az ax ax 

2CEC,, vtT[u( alw a2W a2U a2U "ý -2 
Z-2 

)+ W( -2 - -ýX-2 
x az 
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