
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Burns, Sharon (2007) Direct conversion of methane under non-oxidative 
conditions. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/1132/ 
 
 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



Direct conversion of methane under 
non-oxidative conditions 

UNIVERSITY 
of 

GLASGOW 

Sharon Burns© 

A Thesis Presented to the University of Glasgow for the 
Degree of Doctor of Philosophy 

January 2007 



Abstract 
The catalytic conversion of methane into more desirable chemicals is an area of immense 

interest. This is a consequence of the high relative abundance of methane. This work 

explores the conversion of methane into hydrogen and benzene under non-oxidative 

conditions. The experimental work undertaken has focused on two main objectives: to 

improve the stability and reactivity of the methane dehydroaromatisation catalyst, 
Mo03/H-ZSM-5 and to understand more fundamental aspects of the Mo03/H-ZSM-5 

catalyst. 

It has been observed that both the hydrogen and benzene formation rate profiles are similar 

for Mo03/H-ZSM-5 based catalysts in methane dehydroaromatisation. In all cases the 

H2: C6H6 formation rate ratio is higher than expected, which is an indication of coke 

formation. The relative constancy of the ratio implies that the benzene formation and 

hydrogen producing side reactions decline at similar rates. 

On comparing the catalytic activity of Mo03/H-ZSM-5 with Pd/H-ZSM-5, it was observed 

that these two catalysts exhibit little similarity in behaviour. This implies that either Mo2C 

is not the active phase of molybdenum in Mo03/H-ZSM-5 or that there are uncertainties in 

the comparisons that can be drawn between Mo2C and Pd within this system. Pd/H-ZSM- 

5 was found to be an active methane decomposition catalyst, where the hydrogen produced 

was free from any COx co-products. The carbon deposited on the catalyst during the 

reaction is in the form of carbon nanotubes with a "herring-bone" structure. 

To try and improve the catalytic performance of Mo03/H-ZSM-5 in methane 

dehydroaromatisation doping with additional metals was investigated. Promotional effects 

were observed for Fei+, A13+ and Ga3+, the impregnation solutions of these dopants were all 

acidic. Doping with iron increases benzene formation rates at longer times on stream, 

aluminium doping was also seen to increase the benzene formation rate, although 

reproducibility effects were observed with this dopant and gallium doping was seen to 

result in reduced catalyst coking. TEM images of both Fe and Al doped catalysts reveal 

that some of the carbonaceous deposition on these catalysts is in the form of carbon 

nanotubes. Doping with Co2+ and Ni2+ was not seen to produce any promotional effects 

(aside from an initial high hydrogen formation rate). 

Phosphorus doping in the form of a phosphomolybdic acid precursor leads to lower 

catalytic activity. When 5wt. % phosphorus was added to a ready prepared 3%Mo03/H- 



ZSM-5 catalyst, activity was suppressed and hydrogen was observed as the sole gas phase 

product before the evolution of trace amounts of carbon oxides at longer times on stream. 

A 5wt. % P doped MoO3 sample was observed to produce hydrogen as a result of 

carburisation. In this case carbon oxides were obtained simultaneously with the H2 

maximum. Post reaction XRD of the bulk P/MoO3 material revealed a mixture of 

molybdenum carbide and molybdenum phosphide. 

A novel method for the production of phosphides through the reduction under methane 
from the corresponding phosphate doped oxide has been observed. Although, the 

preparation of phosphides via reduction of phosphates using more reactive hydrocarbons 

i. e. propane and propene, as the reducing agents has proved more difficult. 

A study on the activation of Mo03/H-ZSM-5 dehydroaromatisation catalysts using Al K- 

edge EXAFS in conjunction with 27A1 MAS NMR found that there is a significant 

distortion of the tetrahedral framework Al environment, with Al species being drawn 

towards molybdenum centres. In-situ FTIR verifies that molybdenum remains in the +VI 

oxidation state under the conditions employed in the EXAFS experiments. 

27A1 and 29Si MAS NMR experiments conducted on H-ZSM-5 and Mo03/H-ZSM-5 

catalysts demonstrated that there is an extraction of framework Al upon incorporation of 

Mo species into H-ZSM-5. The appearance of a sharp signal in the 27A1 MAS NMR 

spectra of Mo03/H-ZSM-5 catalysts is notable. This implies that such species are "liquid- 

like" in nature and may be present as either highly disordered species or possibly as 

hydrated cations. 
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1 

1 Introduction 

1.1 General background 

Natural gas exists in gaseous form or as a mixture with oil in natural underground 

reservoirs all around the world. It is an abundant, low cost carbon based feedstock. 

Methane is the primary component of natural gas and it is a greenhouse gas. It is the 

simplest and most stable hydrocarbon molecule, and its conversion into more useful 
compounds has been studied extensively in both homogeneous and heterogeneous 

catalysis' 1. The challenge that faces catalytic chemists is to develop a route to more 
desirable chemicals in the conversion of methane that is efficient, commercially viable and 

most important environmentally benign[21. 

1.1.1 Methane activation 

Extensive research on methane activation over the past several decades has resulted in both 

indirect and direct routes of methane conversion. A schematic representation of different 

methods of activating methane adapted from reference['] is shown in Figure 1.1-1. The 

direct route involves the generation of hydrocarbons from the coupling of methane in 

either oxidative or non-oxidative conditions, while the indirect route generates 

hydrocarbons via intermediates, which come from methane reacting with steam or 

oxygen[ 11. 

Syngas (CO + H2) 

" By steam reforming of CH4 

" By partial oxidation of CH4 

" By oxy-steam and/or CO2 

reforming of CH4 

Carbon and Hydrogen 

C2+ Hydrocarbons 

" By OCM 

" By high temperature coupling of CH4 

" By two step CH4 homologation 

MethanoUformaldehyde, 
Methane 

carbon disulfide, methyl 
chloride 

Syngas --> Methanol --> Hydrocarbons 

I 
Hydrocarbons or Oxygenates (by FT-synthesis) 

Figure 1.1-1 Schematic representation of different methods of activating methanel'1. 
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Thermodynamic constraints on reactions where all the C-H bonds of methane are broken 

i. e. CH4 reforming into synthesis gas or CH4 decomposition, are far easier to overcome 

than reactions where only one or two C-H bonds of methane are broken 

At present, steam reforming of methane is the primary route of methane conversion (CH4 + 

H2O ---)' CO + 3H2). This process is highly endothermic and results in the formation of 

synthesis gas that can be further processed into methanol and ammoniP1. The methanol to 

gasoline (MTG) process can then be utilised for the production of gasoline[41. 
Alternatively, synthesis gas can be directly processed into hydrocarbons via the Fischer- 

Tropsch process[3' S]. Steam reforming of methane is by far the most researched route of 

methane conversion but it is an expensive process to produce hydrocarbons in this wayl']. 

In homogeneous catalysis, it was first reported as early as the 1970s that methane could be 

converted into higher hydrocarbons via the homologation reaction in a superacid 

medium [61. More recently, the direct conversion of methane to higher hydrocarbons has 

been extensively studied in heterogeneous catalysis. In the early eighties, the oxidative 

coupling of methane (OCM) was first reported by Keller and Bhasin[71. The products of 

the reaction are ethane and ethylene. The reaction is normally carried out at atmospheric 

pressure and temperatures ranging between 900 and 1200 K. Since the report by Keller 

and Bhasin this reaction has been extensively researched with many developments being 

made (8,91. The OCM reaction has become one of the most pursued topics of research in 

methane activationl11. However, no catalyst has been able to meet the conditions required 

for industrial application, as no catalysts were found to have a selectivity to C2 higher than 

80% and per pass C2 yield greater than 25% (C2 products are easily further converted into 

the undesired CO, species formed due to the presence of oxygen in the feed). Therefore 

the research for this route has gradually diminished and other routes were investigatedE' 01. 

In view of the fact that the conversion of methane with the aid of oxidants is 

thermodynamically more favourable than under non-oxidative conditions, methane 

conversion with the aid of oxidants has received far greater attention than that under non- 

oxidative conditions[1 1]. 

1.1.2 Direct conversion of methane under non-oxidative 

conditions 

As already mentioned, the direct conversion of methane under non-oxidative conditions is 

thermodynamically unfavourable. However this alternative approach to methane 
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conversion has generated considerable attention over recent years. A particular advantage 
for this route compared to oxidative conversion is the absence of pathways to CO, 

involving gas-phase oxidants. In addition, it can also be seen as a possible pathway to 

generate hydrogen. 

Two research groups in particular, van Santen and co-workers, and Amariglio and co- 

workers, simultaneously and independently discovered a two-step procedure for the direct 

non-oxidative conversion of methaneý12-141. They both reported that the first step consists 

of contacting methane with dispersed metallic particles leading to hydrocarbonaceous 

residues, which in the second step are hydrogenated off yielding higher hydrocarbons. The 

two groups' procedures differ in the following ways: (1) the relative temperature of the 

first step and (2) the partial pressure of methane applied. The van Santen group use a two- 

temperature cycle. Dissociative methane adsorption takes place on a silica supported 

transition metal catalyst (Ru, Rh or Co) at 700 K, and then hydrogenation is carried out 
below 400 K and at atmospheric pressure. The Amariglio group carry out the two-step 

procedure under isothermal conditions and at a moderate temperature on Pt (including 

EUROPT-1), Ru and Co, e. g. 533,433 and 553 K respectively, using methane and 

hydrogen sequentially at atmospheric pressure[12' 14] Under the conditions applied, 

thermodynamics prevent the direct formation of ethane (as well as, propane and butane, 

which are also products of the reaction) from methane, therefore to avoid this 

thermodynamic limitation, van Santen and co-workers operated the process at two different 

temperatures (14]. The Amariglio group overcame the thermodynamic limitation in the 

isothermal process by removing hydrogen from the surface in the first step at low 

pressures, where high flow rates of methane were used, and then supplying it in the 

hydrogenation step at 1 bar. van Santen and co-workers suggested that methane first 

dissociated on a precious metal to form a carbide and hydrogen, then the carbide is 

hydrogenated to form hydrocarbons. In this case C-C bonds were suggested to form 

during the hydrogenation step [14]. Temperature-programmed surface reaction (TPSR) 

carried out after the chemisorption step showed that there were three different types of 

carbonaceous species on the surface. The highly active Ca phase was held accountable for 

the formation of higher hydrocarbons. Cy, which was unreactive, and gas-graphitic in 

nature, had a tendency for methane formation at higher temperatures. Cß had intermediate 

activity producing mainly methane with very small amounts of C2+ hydrocarbons. 

Amariglio and co-workers suggested that C-C bonding could take place between H- 

deficient CH., formed during the first step of methane chemisorption, while hydrogen 

saturated the C2 precursors in the second step and removed them from the surfac[15-181 

This two-step route has been found to be possible over many oxide or zeolite supported 
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transition metal and bimetallic catalysts, such as Cu-promoted Rh/SiO2, and Co-Pt/NaY"9- 
21] Solymosi et al. demonstrated that a Cu-promoted Rh/SiO2 catalyst resulted in an 

enhanced formation of C2H6 and that higher hydrocarbons were observed in the two-step 
process 

[211. 

Regardless of all the considerable research efforts driven towards two-step CH4 

homologation, its low efficiency is the main limitation to further developing it as a 

commercial process "". Nevertheless, these studies increased the knowledge of methane 

catalytic chemistry. 

Thermodynamically, it is more favourable to convert methane into aromatics than it is 

olefins, as shown in Figure 1.1-2, reproduced from reference["]. 
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Figure 1.1-2 Thermodynamics of direct conversion of methane under non-oxidative 
conditions. 

The preparation of a multi-functional catalyst in order to prevent the use of a two-step 

process has been proposed by several research groups. A patent filed by Mitchell and 

Waghorne indicated that if methane was passed over a M/M'On/M"O multi-component 

catalyst where M is a precious metal, M' is a VIB element, and M" is an IIA element, at 
[22] 977 K for 30 min, benzene could be detected. More recently benzene has been seen to 

be produced by the dehydrogenative coupling of methane without the use of oxygen in the 
[z31 feed gas over a Pt-S04/ZrO2 catalyst 

In the early nineties, Wang and co-workers reported on the dehydroaromatisation of 

-0-CH4=C + 2H2 

-0--6CH4= C6H6 + 9H2 

-}2CH4= C2H4 + 2H2 

methane (MDA), for the formation of aromatics (mainly C6H6) under non-oxidising 
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conditions in a continuous flow reactor on Mo/H-ZSM-5 catalysts [241 and this system is 

described in more detail below. 

1.2 Dehydroaromatisation of methane under non- 

oxididative conditions 

1.2.1 Introduction 

The MDA reaction, which is generally run at ambient pressure and temperatures of ca. 973 

K and above, is equilibrium limited with the limit of conversion being 11.5% at 

atmospheric pressure and 973 K1251. As well as producing aromatics, MDA also produces a 

significant amount of hydrogen per benzene molecule produced, as shown in Equation 1-1. 

6CH4 -* C6H6 + 9H2 Equation 1-1 

In certain niche applications, this reaction could be of interest as an alternative to the 

conventional route to hydrogen, methane steam reforming, Equation 1-2, which is highly 

endothermic and is usually operated at 1173 K: 

CH4 + H2O -* CO + 3H2 Equation 1-2 

Since the initial reports of the MDA reaction by Wang et al. there have been many other 

research groups interested in this reaction and promising progress has been made, mainly 

by the groups of LunsfordE26 291, IchikawaE3o' 3 '], Solymosi[323 and Iglesiaý33' 34] 

The most important findings of the reaction to date are summarised below: 

1. Mo03/H-ZSM-5 is a bi-functional catalyst, with both the Mo and zeolite 
components very necessary for the MDA active catalysts. 

2. There is an induction period in the early stages of the reaction. 

3. Carbonaceous deposits are formed during the reaction, which lead to catalyst 
deactivation. 

4. Various strong interactions occur, such as, those between the framework Al of the 

zeolite and the Mo species. 

In the early stages of research in MDA Xu et al. J241and Lin et al. 1351 used the GC analysis 

method to monitor the exit stream using flame ionisation and thermal conductivity 
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detectors. Both research groups ignored the carbonaceous products, which were formed 

during the reaction. However, at a later date, Lunsford et al. quantitatively corrected for 

ý29ý coke formation using N2 as an internal standard. 

1.2.2 Catalyst choice and preparation 

The catalysts employed in MDA are generally zeolite supported. Wang et al. reported that 

methane could be converted to benzene with a selectivity of 100% and a conversion of 
1.4% over the zeolite H-ZSM-5. Furthermore, they demonstrated that by loading the 

zeolite with Mo or Zn cations that the methane conversion was greatly enhanced[24]. 
Mo/H-ZSM-5 is a bi-functional catalyst since both the Mo species and the Bronsted acid 

sites of the zeolite are necessary components of an active catalyst. Although the zeolite H- 

ZSM- 5 does show a little activity for MDA this activity is greatly enhanced with the 

incorporation of molybdenum. It has been shown by Ichikawa et al. that the Si02/A1203 

ratio does have an effect on the formation rates of benzene. Maximum activity for MDA is 

observed for the H-ZSM-5 supports with Si02/A1203 ratios of ca. 40[361. Wang et al. were 

the first group to report the production of hydrocarbons other than benzene including 

[291 naphthalene and toluene. 

Generally all research groups have prepared the Mo/H-ZSM-5 catalyst by the impregnation 

method using (NH4)6Mo7O24.4H20 as the precursory"1. It is believed that when the 

catalyst is calcined, the Mo containing ions, which are present on the external surface of 

the zeolite from the previous stage of impregnation decompose into MoO3 crystallites. 

Some of these crystallites migrate into the channels of the zeolite and interact with the 

Bronsted acid sites. The appropriate temperature for the catalyst calcination is reported as 

773 K to allow the migration of Mo ions and interaction with Brensted acid sites"]. 

Recently, a Mo/H-ZSM-5 catalyst for MDA was prepared by microwave heating[371. It 

was reported that catalysts prepared by microwave heating exhibited a greater selectivity 

towards benzene than catalysts prepared by conventional heating methods. They attributed 

the better catalytic performance for catalysts prepared by microwave heating to more Mo 

species being located on the outer surface of the catalyst. The findings of this study are 

contrary to the idea that shape selectivity is important[381, the shape selectivity of MDA 

catalysts is described in more detail later. 

Since the MDA reaction was first reported there have been many transition metal ions that 

have been tested for methane activity, including, Mo, W, Fe, V, Cr, Re, Cu and Zn. The 
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most effective metal ion precursor for the zeolite is molybdenum and the trend in activity 
in methane conversion is as follows: Mo> W> Fe> V> Crý271. Mo/H-ZSM-5 has been the 

most well studied catalyst for MDA. It has been reported that the most favourable loading 

of MoO3 on ZSM-5 for MDA is in the range of 2-6 wt. % MoO3 loadings greater than 6% 

lead to blockage of channels and dealumination of the zeolite and therefore a loss in 

catalytic activityý1'1. 

MDA catalysts are in general prepared by impregnating the transition metal ions onto the 

zeolite support. Weckhuysen et al. demonstrated from x-ray photoelectron spectroscopy 

(XPS) that transition metal suboxides are formed in all impregnated samples, except, 

Mo/H-ZSM-5. For this catalyst Mo2C was observed. The authors concluded that different 

[281 transition metals will have different active phases that are responsible for the reaction. 

From reviewing the literature, many research groups agree that H-ZSM-5 is the best 

support for MDA. However recently, Bao et al. [391 have reported that Mo/H-MCM-22 

catalysts prepared by the impregnation method showed better catalytic performance with 

higher benzene selectivity (ca. 80% in maximum) as well as a better tolerance to 

carbonaceous deposits, as compared with the Mo/H-ZSM-5 catalyst. 

Zhang et al. have studied methane aromatisation over Mo-based catalysts supported on 

different types of zeolites, zeotypes and mesoporous materials [381. They found the 

activities of various Mo modified catalysts to be in the following order: 

Mo/H-ZSM-11 > Mo/H-ZSM-5 > Mo/H-ZSM-8 > Mo/H-ß > Mo/H-MCM-41 > Mo/H- 

SAPO-34 > Mo/H-mordenite - Mo/H-X > Mo/H-Y > Mo/H-SAPO-5 > Mo/H-SAPO- 11. 

Zhang et al. linked the catalytic performance to the structure of the zeolites and came to the 

conclusion that silica-alumina zeolites with two-dimensional structures and a pore size 

near to the dynamic size of benzene (0.59 nm) are good supports for Mo-based catalysts in 

MDA. They report that materials with pore diameters smaller than that of benzene, such as 

SAPO-34, are not able to hold benzene in their channels. This results in the active phase 

for methane aromatisation only being supplied to the external surface, resulting in more 

ethylene being produced and the selectivity of benzene being lowered. Solymosi et al. 

have studied catalysts prepared from different molybdenum precursors (MoO3, Mo2C, 

K2M0O4 and MoO2) and supports (HZSM-5, A1203, Si02, MgO and Ti02) [32' 40] They 

found that a KZMoO4/HZSM-5 catalyst exhibited lower methane conversion than the 

Mo03/HZSM-5 catalyst. From studying the various supports they found the best support 
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was HZSM-5 and that the method of catalyst preparation affected the performance 
dramatically. 

1.2.3 Induction period 

It is well accepted that at the early stage of the MDA reaction that there is an induction 

period before the aromatisation occurs where molybdenum oxide species are reduced by 

methane into Mo2C and/or MoO,, Cym'm. The research groups of Solymosi and Lunsford 

showed by XPS that it is MovI ions that are reduced by methane which lead to these new 

species and that they are accompanied by the deposition of carbonaceous cokes. They 

suggested that molybdenum carbide provides the active site for ethylene formation from 

methane, while the acid sites of the zeolite catalyse the subsequent conversion of ethylene 

to benzene. It was suggested that the molybdenum carbide species are most likely highly 

dispersed on the outer surface and that some of them reside in the channels of the zeolite. 
After the initial induction period, a benzene selectivity of 60-65% at a CH4 conversion of 

[29 7-12% was achieved with the Mo/H-ZSM-5 catalyst° 32,40] 

It is thought that Mo2C is the species responsible for the activation of methane. Ma et al. 

carried out temperature programme surface reaction studies on cobalt catalysts supported 

on H-MCM-22 and Mo catalysts supported on Ti02. They were able to show that neither 

catalysts were capable for complete MDA since, Co/H-MCM-22 does not have the unique 

properties shown by Mo2C to activate methane while Mo/Ti02 cannot complete the 

aromatisation reaction as it does not contain any Bronsted acid sites, which are crucial in 

MDA reactions E391. Mo/H-MCM-22 was reported to have a longer catalytic lifetime than 

Mo/H-ZSM-5, which was attributed to its stronger ability to accommodate more 

carbonaceous deposits than Mo/H-ZSM-5. Mo/H-MCM-22 also undergoes an induction 

period where the Mo species are transformed into molybdenum carbide during the 

induction period. Therefore this group used Mo/H-MCM-22 as an alternative to Mo/H- 

ZSM-5 to investigate this activation study. 

Using in-situ 'H MAS NMR spectroscopy to study proton species over Mo/H-ZSM-5, Bao 

et al. reported that when the temperature of the MDA reaction was at or below 873 K, only 

a small decrease in the Bronsted acid sites could be observed [411. However, after increasing 

the temperature to 973 K, the colour of the catalyst changed from blue-white to black, 

indicating the formation of molybdenum carbide (or coking). Along with this observation, 

the intensity of the signal of Bronsted acid sites at ca. 4.0 ppm decreased dramatically 
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instead of increasing. This was reported as confirmation that the Mo species keep in 

contact with the framework Al through two oxygen bridges. 

Ichikawa and co-workers investigated the active structure of the Mo/H-ZSM-5 catalyst 
using molybdenum K-edge EXAFSt361. Their studies indicated that the molybdenum oxide 

species are highly dispersed in the internal channels of H-ZSM-5. They also showed that 

the zeolite supported molybdenum oxide is converted with methane at ca. 955 K to 

molybdenum carbide (Mo2C) clusters. 

Iglesia et a1[42]. prepared a Mo/H-ZSM-5 catalyst by the solid-state reaction method and 

studied the location and change of the Mo species during the preparation process in more 
detail. The catalyst was made by this method rather than the conventional method of 
impregnation for this study as it is reported to be easier to determine the location of the Mo 

species. They reported that MOO, species migrated onto the external surface at ca. 623 K. 

Then at temperatures between 773 and 973 K, the Mo species migrated into the channels of 

the zeolite via surface movement and gas-phase transport, exchanged at the acid sites and 

reacted to form water. They assumed that each Mo atom replaced one H+ during the 

exchange, based on the amount of water that was evolved during the exchange process and 

the number of residual OH groups detected by isotopic equilibration. Using this 

stoichiometric measurement along with requirement of charge compensation, Iglesia 

proposed that the exchanged species consisted of a ditetrahedral structure of (Mo2O5)2+, 

which interacts with two cationic exchangeable sites. It was reported that the 

(Mo2Os)2+species are reduced by methane at the initial stage of the reaction and form small 

MoC,, clusters. Iglesia and co-workers used near edge X-ray absorption to characterise the 

Mo species on Mo/H-ZSM-5 treated under various conditions. They estimated that the 

MoCk clusters are ca. 0.6 nm in diameter and contain about 10 Mo atoms. 

It is commonly agreed that there is an induction period in MDA, where Mov, species are 

reduced by methane to molybdenum carbide, mainly yielding H2O, CO, CO2 and H2. After 

the induction period, CO and light hydrocarbons i. e. ethylene and ethane, along with 

benzene, toluene and naphthalene are formed. 

1.2.4 Carbonaceous deposits and deactivation 

Carbonaceous deposits are formed during the MDA reaction. These carbonaceous deposits 

are a major obstacle for further process development. Lunsford et al. observed surface 

carbon using XPS[261. They saw three different types of surface carbon on an active Mo/H- 
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ZSM-5 catalyst; these are described in more detail in Chapter 4. The authors reported that 

the carbon species that gradually covers both the surface of the zeolite and the 

molybdenum carbide phase formed during methane activation is a hydrogen-poor sp 
hybridisation or pre-graphitic-type of carbon, and suggest that chains of the type 

-(C=C)p may be precursors in the formation of graphite. This type of carbon is stated 
to be responsible for catalyst deactivation in MDA. 

A 13C MAS NMR study carried out by Xu et al. details the carbonaceous deposits formed 

on Mo/H-ZSM-5 after the MDA reaction [431. They report that there are two kinds of 

carbonaceous deposits. The first kind is located on the acid sites of the zeolite and lowers 

their quantity. The acid sites are stated to be necessary for the transformation of ethylene 
into aromatics. The second kind is located on partially reduced molybdenum species, 

[a3] which are responsible for the activation of methane and the formation of ethylene 

Since the study by Xu et al. was reported, other similar studies have been reported. 
Temperature-programmed surface reaction (TPSR) of CH4, temperature-programmed 

reduction with H2 (TPR), temperature-programmed oxidation (TPO), temperature- 

programmed reaction of CO2 (TPCO2) and thermal gravimetric analysis (TGA) have all 
been used to characterise the carbonaceous deposits on Mo/H-ZSM-5 and Mo/H-MCM-22 

after reaction [44 61 These studies conclude that there are at least three different types of 

coke: carbidic coke in molybdenum carbide, molybdenum-associated coke and aromatic- 

type coke on acid sites. Post-reaction treatment with H2 and CO2 demonstrated that H2 

may only react with coke which is burnt off at high temperatures in the TPO experiment, 

whereas CO2 is able to remove both low and high temperature carbon deposits. It was also 

suggested that TPR followed by TPCO2, or TPCO2 followed by TPR can both only 
[aa] partially reduce the amount of coke on a Mo/H-ZSM-5 catalyst 

Lunsford et al. reported that the pre-formation of Mo2C on H-ZSM-5, without an 

associated coke deposit, did not fully eliminate the induction period. On this basis, they 

suggested that the clean surface of Mo2C might be too reactive to form higher 

hydrocarbons and therefore that a coke modified Mo2C surface may be the active species 

. in the formation of ethylene [291 

Recently, Zhang et al. [471 carried out an investigation on the coke accumulation and 

deactivation of Mo2C/H-ZSM-5 in MDA. This study was conducted using a physically 

separable Mo2C/a-A1203 and H-ZSM-5 mixture. From TGA analysis of the post-reaction 

samples, they showed that the build-up of coke occurred mainly on H-ZSM-5. They 
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concluded that the coking which reduces the activity and selectivity of the Mo2C/H-ZSM-5 

catalyst in MDA is largely present on the Bronsted acid sites of the zeolite. 

On the basis of the literature, it can be summarised that there are different types of carbon 
deposits formed in MDA and they affect the catalyst in different ways. These are, 

molybdenum carbide, which is formed during the induction period and is widely believed 

to be responsible for the activation of methane, CH,, associated with Mo2C, and finally the 

formation of coke, which leads to catalyst deactivation. 

A recent publication by Lin and co-workers has shown that the coke formation on Mo/H- 

ZSM-5 can be effectively inhibited by hydrothermal post-synthesis of H-ZSM-51481. The 

hydrothermal post synthesis treatment was reported to develop mesopores in the parent H- 

ZSM-5 along with decreasing the acidity of H-ZSM-5. 

Ichikawa et al. [491 have shown that Mo/H-ZSM-5 can be regenerated after the MDA 

reaction by treatment using NO in air (1/50 vol/vol). They demonstrated that this 

procedure increased the removal of coke compared to when NO/N2 was used to regenerate 

the catalyst. They found that when using NO/air that all the coke could be removed from 

the catalyst 100 K lower than when NO/N2 was used. They proposed the following 

mechanism for the regeneration: 

2NO + 02 -* 2NO2 

NO2 + [coke] --> NO + N2O + N2 + CO, + H2O 

1.2.5 Interactions between the TMI component and the zeolite 

support 

As both the calcination and reaction temperatures are high at ca. 773 and 973 K 

respectively, several interactions between the zeolite and the TMI components may occur 

during the preparation stages and during the reaction itself. These include interactions 

between Mo species and acid sites, between Mo species and framework Al of the zeolite, 

the reduction of molybdenum species by methane and the carbonaceous deposits which are 

formed during the reaction. The latter two were described previously. 

The interaction between the Mo species and the zeolite can be split into two. Firstly there 

is the interaction between molybdenum and the acid sites of H-ZSM-5, and secondly there 
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is the interaction between molybdenum and the framework Al of H-ZSM-5. A study 

carried out by Xu et al. using XRD and BET measurements on the Mo/H-ZSM-5 catalyst 

revealed that the molybdenum species are highly dispersed in the channels of H-ZSM-5, 

resulting from the interaction between the molybdenum species and the zeolite[24]. They 

also reported that this interaction led to a decrease in the crystallinity of the zeolite 

component of the catalyst. 

The same group also investigated the interaction at different stages of catalyst preparation 

using FTIR spectroscopy, differential thermal analysis (DTA) and NH3-TPD[50,51] They 

reported that if Mo/H-ZSM-5 was calcined at an appropriate temperature such as ca. 773 

K, the Mo species would interact with the Brensted acid sites and some of them would 

move into the channel. If the calcination temperature is too high, such as ca. 973 K, then a 

strong interaction occurs between the Mo species and framework Al. This was reported to 

result in the formation of Mo042 species, which are stated to be detrimental for methane 

activation. Xu et al. also studied the active molybdenum species by combining the 

aqueous ammonia extraction method with XRD, BET, NH3-TPD and TPR. They reported 

that the specific surface area decreased with increasing Mo loading and that the Mo species 

prefer to deposit on the strong acid sites of H-ZSM-5[51. The aqueous ammonia extraction 

results indicated that there are several kinds of Mo species deposited on the surface i. e. 

octahedrally coordinated MoO3 crystallites, Al2(Mo04)3 and Mo042- species. 

Xu et al. went on to further study this interaction using 27A1 and 29Si MAS NMRE501. Their 

results revealed that there is a strong interaction between the framework Al of H-ZSM-5 

and the Mo species. It was shown that the framework Al in the zeolite could easily be 

extracted by the introduction of molybdenum species, and that the extractability was seen 

to increase with increasing molybdenum loading and calcination temperature. If the 

calcination temperature and/or molybdenum loading were too high then the entire 

framework Al of the zeolite would be extracted so that the catalyst would deactivate. 

NH3-TPD studies have demonstrated that after the introduction of Mo species onto H- 

ZSM-5 that a new type of acid site develops [521. Lin et al. studied the structure of Mo/H- 

ZSM-5 catalysts with various molybdenum loadings using XRD, IR, TPR and NH3 uptake 

experiments [351. They reported that both the BET surface areas and the acidity of the 

catalyst decreased with an increase in Mo loading. 

Using FTIR, Lunsford and co-workers have reported that after the introduction of Mo 

species onto H-ZSM-5, the impregnated Mo species are located in the vicinity of the 
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hydroxyl groups [27,291 
. 

Howe and co-workers conducted a study comparing Mo/H-ZSM-5 

catalysts as prepared, calcined at 773 K and/or 973 K and after reaction using FTIR, 27A1 

and 29Si MAS NMR and Mo K-edge EXAFS experiments [53]. They found evidence for 

migration of Mo species into the zeolite pores from comparing the infrared spectra in the 

v(OH) region. Impregnating their H-ZSM-5 sample with ammonium heptamolybdate 

caused some attenuation of the 3740 cm -1 band, which confirmed the location of the 

initially adsorbed molybdenum on the external surface of the zeolite. EXAFS 

measurements at the Mo K-edge revealed that the Fourier transforms of the EXAFS from 

the three samples were all different. 

It is clear from the findings mentioned above that there is a significant interaction between 

Mo species and the H-ZSM-5 zeolite and that these interactions have a crucial effect on the 

catalytic performance. 

1.2.6 Pre-treatment and additives 

As previously mentioned, during the MDA reaction coke deposition on the catalyst occurs. 

The conversion of methane rapidly reduces after a couple of hours due to the coke deposits 

on the catalyst. There have been several attempts to improve the catalytic activity either by 

modifying the catalyst itself or by altering the reaction conditions, i. e. by the inclusion of 

additives in the feed gas. These alterations made, are only briefly described in this section 

as they are described in the introductory sections in more detail in the subsequent chapters 

of this work. 

To suppress the coke formation on Mo/H-ZSM-5, Ichikawa et a1. E54I have conducted 

experiments where 5.4% H2 and 1.8% H2O have been added to the methane feed gas. 

They found that when H2 and H2O were added together to the methane feed that there was 

a greater suppression of coke compared to when H2 or H2O were added separately. 

Ichikawa et al. showed that by incorporating an additional metal ion, for example, Fe or 

Co, into Mo/H-ZSM-5 that the catalytic activity can be enhanced. Another modification of 

MDA that optimises the reaction is addition of CO and/or CO2 in the methane feed [551 

TPO experiments were used to demonstrate that addition of CO or CO2 in the methane 

feed reduces the amount of coke formed on the catalyst's surface[561 

Recently, Iglesia and Lacheen [571 have demonstrated that the stability of MoC,, /H-ZSM-5 

catalysts can be improved by adding CO2 to the methane feed gas in low concentrations. 
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They propose that CH4 reacts with CO2 exclusively at the beginning of the bed, this 

reaction occurs via scavenging of surface C* and inhibits C-C bond formation. After CO2 

is completely consumed, pyrolysis products are formed at lower yields as a result of H2 

formed in the C02-CH4 section, H2 was suggested to increase the rate of hydrogenation of 

surface species preventing formation of carbonaceous deposits. 

1.2.7 Active sites and proposed reaction mechanisms 

Currently, there is not a thorough understanding of the reaction mechanism of MDA. 

However, there have been several kinds of active sites and reaction mechanisms proposed. 
In the first report of MDA, by Wang and co-workers it was suggested that the activation of 

methane over H-ZSM-5 and Mo/H-ZSM-5 was initiated via the carbenium ion mechanism, 

with MovI species or protonic sites acting as a hydride acceptor: 

CH4 + MoVI -f CH3+ [Mo-H]v 

CH4 + H+ (s) --* CH3+ (s) + H2 

Xu et al. suggested that ethylene was the intermediate of the reaction, which further 

oligomerised to form benzene[24' 25] From XPS measurements they showed that 

molybdenum ions in the fresh catalyst were in the +VI valence and that during the MDA 

reaction, reduction of Mov' to Mov to Mot" occurred. Xu et al. subsequently proposed the 

following reaction mechanism: 

1. In the initial stage, methane conversion involving heterolytic dissociation of the C-H 

bond: 

MOVI(=0)3 + H6--CH35 +- MovI(=0)3 + H- + CH3+ (1) 

2. Ethylene formation involving Mo active sites in either +IV or +V oxidation state: 

2H- + Mori(=O)3 -4 MoI'(=O)(-O )2 + H2 (2) 

MoIV(=O)(-O-)2 + CH3+ - MoI"(=O)(-O)(-OH)(=CH2) (3) 

Molv(=O)(-O)(-OH)(=CH2) + CH3+ -* Mo" (=O)2(-OH)(-C2H5) (4) 

Mo" (=0)2(-OH)(-C2H5) -> Mo"v(=O)(-OH)2 + C2H4 (5) 
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The initial induction period before the formation of benzene was also noticed by Wang and 

co-workers [521. They proposed that a Mo phase transformation took place at the early stage 

of the reaction and that the new Mo phase was perhaps molybdenum carbide. They 

subsequently proposed the following mechanism: 

CH4-ýC+2H2 (1) 

MoO3 + H2 -* MoO2 + H2O (2) 

MoO3 + 3C -f MoC + CO + CO2 (3) 

MoO2 + 3C -º MoC + 2CO (4) 

Lin and co-workers suggested that the conversion of methane was catalysed by the Mo 

species inside the channels of H-ZSM-5 together with the strong acid sites of the zeolite[24]. 
It was reported that this process would form CH3' free radicals, which would dimerise to 

form C2 hydrocarbons. Then ethylene could cyclise to form benzene with the aid of 

protons of H-ZSM-5: 

MoOx/ H+ 
CH4 CH3 + H' (1) 

2CH3' 
MoOx 

C2H4 + H2 (2) 

H+ 
3C2H4 - C6H6 + 3H2 (3) 

Solymosi et al. [32' 581 examined a Mo03/Si02 catalyst and deduced that in the first stage of 

the MDA reaction that CO, CO2 and H2O were produced from the reduction of MoO3: 

3MoO3 + CH4 = CO + 2H20 + 3MoO2 (1) 

4MoO3 + CH4 = CO2 + 2H20 + 4MoO2 (2) 

These reactions are then followed by the dehydrogenation of methane on the partially 

reduced catalyst: 

CH4 + O(s) = CH3 + OH(s) (3) 

20H(s) = H2O + O(s) (4) 
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or decomposition of methane, 

2CH3 = C2H6 (5) 

2CH2 = C2H4 (6) 

C2H4 + CH3 = C3H7 (7) 

C3H7 +H= C3H8 (8) 

Solymosi and co-workers believed that ethane was the key intermediate for the formation 

of benzene, which was dehydrogenated to ethylene on the catalyst surface. In further 

studies, examining a K2MoO4/H-ZSM-5 catalyst, they suggested a similar mechanism. 
However, they proposed that the coupling of CH2 species was the main reaction pathway 
in the ethylene production. Using XPS they showed that Mo2C was formed on the used 

catalyst and they regarded this as the active site. They also investigated the catalytic 

performance of unsupported and supported Mo2C and suggested that, as well as Mo2C, the 

presence of some other Mo compounds i. e. MoO2, were also required for methane 

CH[40] activation and for the formation of ethylene from CH, fragments 

Pierella and co-workers carried out an investigation on the conversion of pure methane and 

natural gas with different purity of aromatic hydrocarbons [591. They proposed that pure 

methane was converted to aromatics over Mo containing catalysts via the following 

schemes: 

CH4 + Mo/H-ZSM-5 -+ CH3 ++ [Mo-H] 5+/H-ZSM-5 (1) 

CH3+ + Mo/H-ZSM-5 --* Mo=CH2/H-ZSM-5 (2) 

Mo=CH2 + CH4 - C2H6 -* aromatics (3) 

Mo=CH2 + Mo=CH2 -4 C2H4 -p aromatics (4) 

Mo=CH2 coke (5) 

CH4 + coke + Mo/H-ZSM-5 ---+ aromatics (6) 
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They proposed that for natural gas containing some hydrocarbons that the main reaction 
mechanism could be as follows: 

C2+ hydrocarbons + Mo/H-ZSM-5 -* C2+ carbenium ions (1) 

CH4 + C2+ carbenium ions -p aromatics (2) 

C2+ carbenium ions -º coke (3ý 

CH4 + coke -' aromatics (4) 

Ichikawa et al. showed using Mo K-edge EXAFS and TG/DTA/Mass techniques that 
molybdenum oxide on H-ZSM-5 was converted by methane at 923 K to molybdenum 

carbide clusters with the evolution of H2 and COE601, then C6H6, C1oH8 and C2H4 were 
formed. These results suggested that molybdenum carbide on Mo/H-ZSM-5 is an active 
species for the catalytic methane aromatisation. Ichikawa and co-workers proposed that 

methane is activated on molybdenum carbide sites to form CH, and C2 species, which may 

migrate at the interface of the ZSM-5 acidic support, followed by the aromatisation of the 
C2 intermediates to form benzene, toluene and naphthalene. 

To summarise, it has been shown that there have been several proposed mechanisms for 

MDA. From the suggested mechanisms it can be seen that, in particular, the elementary 

reaction pathways are speculative. Currently, there is not any direct experimental evidence 

for these proposed mechanisms. 

1.3 Zeolites 

The following section has been included in this chapter so as to give a general background 

on zeolites. H-ZSM-5 is one of the main components of the MDA reaction and is 

extensively investigated in this thesis. Therefore, it is appropriate to give some detailed 

information about zeolites in general. 

Zeolites are microporous crystalline aluminosilicate solids with well-defined structures. In 

general they consist of silicon, aluminium and oxygen in their framework and cations, 

water and/or other molecules within their pores. Zeolites are complex, they comprise of an 
infinitely extending 3-dimensional four connected framework of A104 and Si04 tetrahedra 

linked by the sharing of oxygen atoms. Each AIO4 has a net negative charge and is 
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balanced by a cation. The primary structural units, A104 and Si04, join together to form a 
wide variety of cages and rings known as secondary-building units, (SBU)ý611. SBUs found 
in zeolite structures are shown in Figure 1.3-1 taken from reference (62]. 

The final zeolite structure comprises of grouping of the SBUs. It is the way in which these 
SBUs join together that give rise to the vast number of different zeolite frameworks that 

exist. The framework structure of zeolites with types ZON (ZAPO-M 1), PAU (Paulingite) 

[631 and VFI (VPI-5) framework are shown in Figure 1.3-2 taken from reference 

Figure 1.3-1 Secondary-building units found in zeolites[621. 

Figure 1.3-2 ZON (ZAPO-MI), PAU (Paulingite) and VFI (VPI-5) framework 
1631 structures. 
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The framework of zeolites contains channels and pores with molecular dimensions. The 

pore sizes range from 0.3-0.8 nm and subsequently zeolites are classified according to their 

pore dimensions. The pore dimensions of a few well-known zeolites are shown in Table 
[64] 1.3-1, taken from reference. 

Zeolite I Pore Dimensions, nm 
Erionite 0.36 x 0.52 

Zeolite A 0.41 
ZSM-5 0.51 x 0.55 

Faujasite 0.74 

Table 1.3-1 Selected zeolites and their pore dimensions[64] 

These pore dimensions enable zeolites to be used for specific applications. The principal 

applications are ion exchange, desiccants, gas filtration, cracking for gasoline products and 
[6a1 shape selective catalysis 

Although zeolites are classified according to their pore dimensions they can be further 

classified depending upon their Si/Al ratio. With increasing Si/Al ratio the stability of the 

crystal framework increases. Moreover, a zeolite is more stable in the presence of a 

concentrated acid when the Si/Al ratio is high compared to those with low Si/Al ratio and 
[6a] vice versa for basic solutions 

1.3.1 Zeolites - natural and synthetic 

There are two classes of zeolites. The first class of zeolites occur naturally as minerals. 

Natural zeolites possess many applications ranging from gas adsorption, ion exchange to 

water treatment. For example, clinoptilolite, formed from the devitrification of volcanic 

ash in lake and marine water millions of years ago, has a channel size which enables it to 

act as a molecular gas sieve and selectively adsorb toxic gases such as ammonia. The 

second class are synthetic. These include, ZSM-5 which was developed by Mobil Oil in 

1972[651 and has many applications ranging from a catalyst in organic reactions to 

[6 11. petroleum refining 
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1.3.2 H-ZSM-5 

While there are many zeolites and zeotypes, one of the most well known is ZSM-5. The 

structure is referred to as pentasil based, this is because the tetrahedra combine to form a 
ring consisting of five oxygen atoms (pentasil units). These five ring-building units lead to 

the lattice structure arranged in a ten-ring way[611. The 3-dimensional structure of ZSM-5 

[631 is shown in Figure 1.3-3 taken from reference. 

Figure 1.3-3 3D structure of [631 
. 

The pore structure of ZSM-5 is shown in Figure 1.3-4, taken from reference[661, there is a 

set of linear pores having diameters of 0.51 x 0.56 nm, which are perpendicular arranged to 

zigzag pores with a diameter of 0.54 x 0.56 run. 

Figure 1.3-4 Schematic representation of the intracrystalline pore structure of ZSM-5100 
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1.3.3 Zeolites and catalysis 

At present, one of the most important applications of zeolites is catalysis. Zeolites as 

catalysts are advantageous since they have a high density of catalytic sites and are stable to 

high temperatures, with decomposition temperatures ranging from 700 to 1300°C. 

One of the beneficial properties of zeolites as catalysts is their acidic properties. The 

catalytic activity of decationised zeolites is attributed to the presence of acid sites arising 

from the A104 tetrahedral units in the framework. These acid sites can be either of the 

Bronsted or Lewis type. The synthesis of zeolites is normally conducted using Na+ ions 

for balancing framework charges, but these can easily be exchanged for protons by 

reaction with an acid. This results in the formation of surface hydroxyl groups, i. e. the 

Bronsted sites. However, if the zeolite is not stable in an acid environment, it is common 

that NH4+ forms, heat is supplied to drive off the ammonia, additional heating removes 

water from the Bronsted sites, which leads to the formation of the Lewis acid sites. A 

scheme for the formation of these sites is shown in Figure 1.3-5, taken from reference [64] 

The surface of zeolites can therefore display either Brensted or Lewis acid sites or both 

[64] depending on how the zeolite has been prepared 

Bronsted acid form of zeolbe 
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Figure 1.3-5 Scheme for the generation of Bronsted and Lewis sites in 
[64] zeolites. 
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Some of the most important reactions in which zeolites can act as catalysts are acid- 

catalysed cracking, isomerisation and hydrocarbon synthesis. They can support an 

extensive range of catalytic reactions including acid-base, metal induced, as well as 

oxidative and reductive reactions. Underpinning all these reactions is a zeolites' ability to 

act as a shape selective catalyst, which makes them so remarkable as catalysts. This type 

of reaction involves the unique microporous nature of the zeolite, where a steric influence 

is applied to the reaction by the shape and size of a particular pore system. These reactions 
[61take place within the internal cavities of the zeolite ° 64] 

Zeolites can exhibit three different types of shape selective catalysis, reactant-selective, 

product-selective and transition-state-selective catalysis. Reactant selective catalysis is 

when only molecules with dimension less than a critical size can enter the pore of zeolites 

and reach the catalytic sites. Product-selective catalysis is when only products less than a 

certain dimension can leave the active sites and diffuse out through the channels. 

Transition-state-selective catalysis is when certain reactions are prevented because the 

transition-state requires more space than is available in the cavities [64]. The three types of 

shape selective catalysis that a zeolite can exhibit are shown schematically in Figure 1.3-6, 

[641 reproduced from reference 
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Figure 1.3-6 Shape-selective catalysis: (a) reactant (b) product and (c) transition state. 

Shape selective xylene isomerisation can be carried out using the zeolite, ZSM-51671. ZSM- 

5 contains channels, which permits molecular diffusion if the size of the molecule is 

1641 suitable. Figure 1.3-7 taken from reference, illustrates the property of zeolites which 

leads to them commonly being called molecular sieves. For example, it can be seen from 

the figure that iso-paraffins are too large to enter the pores of zeolite A, whereas, straight 

chain paraffins fit. 
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Figure 1.3-7 Pore dimensions of zeolites and critical dimensions of some hydrocarbons [641 
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1.4 Summary 

As previously mentioned, the conversion of methane into more desirable chemicals is an 
area of immense interest as a consequence of its high relative abundance. However, its 

stability makes any conversion process challenging. In the future it is most likely that the 

world will move away from a fossil fuel era and into a hydrogen economy. Thus in the 

meantime it is useful to build a link between the fossil fuels and hydrogen by producing 
hydrogen (which is a clean burning fuel) from methane (which is a greenhouse gas). 

The direct conversion of methane under non-oxidising conditions can be seen as a pathway 

which bridges the fossil fuel energy era with the incoming hydrogen energy era since 
hydrogen is a product of methane conversion along with other basic chemicals such as, 
benzene. Therefore the development of MDA is a potentially important process for 

hydrogen production, together with aromatics. 

Substantial effort has been undertaken in developing active and selective catalysts for 

MDA, although they have almost exclusively concentrated on aromatics production, as 

well as understanding the bi-functionality of Mo/H-ZSM-5 and the nature of the 

carbonaceous deposits formed during the reaction. It is generally agreed that during the 

reaction, methane is first activated and dehydrogenated into CH, species, which will 

oligimerise into C2 species on Mo2C and/or MoOXCy species on the external surface and/or 

in the zeolite channels, these C2 species then oligomerise further and cyclise into aromatics 

on the Brensted acid sites of the zeolite. It is also well accepted that there is an induction 

period at the early stages of the reaction, which results in the transformation of 

molybdenum oxide to molybdenum carbide. 

Catalysts have been observed to suffer relatively rapid deactivation, which has been 

attributed to coke formation. One of the major obstacles for a better understanding and for 

further development of MDA is the carbonaceous deposits, which are formed during the 

reaction. 

It is hopeful that with the ongoing research in this area, along with the advancement of 

heterogeneous catalysis and materials science in general, that our understanding and 

knowledge of MDA will enhance and may lead to the development of an efficient, clean 

and commercially available process. 
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2 Experimental 

2.1 Introduction 

The experimental techniques employed in this work are presented in three discrete 

sections. These sections are as follows: catalyst preparation, catalytic testing and catalyst 

characterisation. 

2.2 Catalyst preparation 

Several catalysts were prepared for this work, they are predominantly molybdenum oxide 
loaded onto the zeolite H-ZSM-5. As mentioned in Chapter 1, the most active catalyst 

reported for the MDA reaction tested to date is Mo03/H-ZSM-5. The standard catalyst 

used throughout this project is 3wt%Mo03/H-ZSM-5. 

Various modifications have been made to the Mo03/H-ZSM-5 catalyst in this project, such 

as varying the precursor of molybdenum oxide, altering the loading of molybdenum oxide, 
doping with additional metals and changing the support. 

Other catalysts/materials that were prepared for this work were designed to be tested either 

independently and/or in conjunction with the standard catalyst. 

2.2.1 H-ZSM-5 type catalysts prepared by impregnation 

Most catalysts prepared for this work were made by impregnating H-ZSM-5 (Catal, Si/Al 

ratio = 40) to incipient wetness with an aqueous solution containing the required metal 

cation, precursor salt (for every 1g of support ca. 1 ml of deionised water was used). The 

resultant slurry was slowly dried at 353 K for 24 h before being calcined in air at 773 K for 

16 h. Catalysts that have been prepared in this way are listed in Table 2.2-1. The 

quantities of materials used in the preparation for ca. lg of each catalyst are given in Table 

2.2-1. These quantities were scaled up depending upon the quantity of catalyst required. 

H-ZSM-5 based catalysts containing more than one metal were prepared by consecutive 

impregnation. The first stage involved incorporation of the molybdenum component onto 

H-ZSM-5 as described above, the next stage involved impregnation with the second metal 

precursor salt. After each stage, the resultant slurry was slowly dried at 353 K for 24 h 
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before being calcined in air at 773 K for 16 h. Catalysts that have been prepared in this 

way are also listed in Table 2.2-1. 

Catalyst Precursors Quantity (g) 
ZSM-5 

Quantity 
O 

3%Mo03/H-ZSM-5 (NH4)6Mo7O24.4H20 0.0368 0.9800 
8.7%Mo03/H-ZSM-5 (NH4)6Mo7O24.4H20 0.1104 0.9400 
14.2%Mo03/H-ZSM-5 (NH4)6Mo7O24.4H20 0.1840 0.9000 

3%MoO3-Co/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
Co(NO3)2.6H20 0.0152 

3%MoO3-Ni/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
Ni(N03)2.6H20 0.0151 

3%MoO3-Al/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
Al(NO3)3.9H20 0.0196 

3%MoO3-Fe/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
Fe(N03)3.9H20 0.0210 

3%MoO3-Ga/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
Ga(N03)3. xH2O 0.0134 

3%MoO3-Ag/H-ZSM-5a (NH4)6Mo7O24.4H20, 0.0368 0.9800 
AgNO3 0.0088 

3%Pd/H-ZSM-5 Pd(N03)2. xH2O 0.0649 0.9350 
a dopant metal ion/Mo molar ratio of 0.25 

Table 2.2-1 ZSM-5 (Si/Al ratio = 40) based catalysts prepared by impregnation. 

2.2.2 H-ZSM-5 type catalysts prepared by physical mixing 

Mo03/H-ZSM-5 based catalysts prepared from physical mixtures were also used in this 

work. The catalysts that were prepared from physical mixtures are listed in Table 2.2-2. 

These catalysts were prepared by making a mixture of the required amount of H-ZSM-5 

(Catal) and molybdenum trioxide (Analar). The catalysts were calcined at 773 K for 16 h. 

The quantities of materials used in the preparation of ca. Ig of each catalyst are given in 

Table 2.2-2. 

Catalyst Precursors Quantity(g) ZSM-5 
Quantity 

3%oMo03/H-ZSM-5 M003 0.0300 0.9800 
8.7%Mo03/H-ZSM-5 M003 0.0900 0.9400 
14.2%Mo03/H-ZSM-5 M003 0.1500 0.9000 

Table 2.2-2 ZSM-5 (Si/Al ratio = 40) supported catalysts prepared by dry mixing. 



Sharon Burns 2006 Chapter 2,28 

2.2.3 Phosphorus containing catalysts prepared by impregnation 

Table 2.2-3 lists phosphorus-containing catalysts that have been prepared for this work. 
All of the catalysts were prepared using the incipient wetness impregnation technique (for 

every 1g of support ca. 1 ml of deionised water was used) and using the same drying and 

calcination conditions as those given in Section 2.2.1. The quantities of materials used in 

the preparation for ca. 1g of each catalyst are given in the table below. 

Catalyst 
ZSM-5 

Precursors Quantity(g) Quantity 
O 

5%P-5%MoO3/ZSM-5a (NH4)6Mo7O24.4H20, 0.0613 0.9800 
NH4H2PO4 0.1857 

5%P-3%MoO3/ZSM-5b (NH4)6Mo7O24.4H20, 0.0368 0.9800 
NH4H2PO4 0.2006 

5.8%P/Mo03 (NH4)6Mo7O24.4H20, 0.8143 
NH4H2PO4 0.1857 

5.8%P/ZSM-5b NH4H2PO4 0.1857 0.8143 
a ZSM-5 (Si/Al ratio = 50) (Zeolyst) 
b ZSM-5 (Si/Al ratio = 40) (Catal) 

Table 2.2-3 Phosphorus containing catalysts prepared by impregnation. 

2.2.4 Non-zeolite supported catalysts 

The catalysts prepared for this work, which use supports other than a zeolite are listed in 

Table 2.2-4. A1203 (Aldrich), Si02 (Aldrich) and Zr(OH)4 (MEL Chemicals) based 

catalysts were prepared using the incipient wetness impregnation technique (for every 1g 

of support ca. 1 ml of deionised water was used) with the same drying and calcination 

conditions as those given in Section 2.2.1. The quantities of materials used in the 

preparation for ca. 1g of each catalyst are given in the table below. 

Catalyst 
Precursors Quantity(g) 

Support 
Typ e (9) 

5%Mo03/ A1203 (NH4)6Mo7024.4H20 0.0610 6-A1203 0.9390 
5%P-5%Mo03/ A1203 (NH4)6Mo7O24.4H20, 0.0610 6-A1203 0.9390 

NH4H2PO4 0.1857 
3%Pd/A12O3 Pd(N03)2. xH2O 0.0650 6-A1203 0.9350 
5%Mo03/ZrO2 (NH4)6Mo7O24.4H20 0.0610 Zr(OH)4 0.9390 
3%Mo03/SiO2 (NH4)6Mo7O24.4H20 0.0368 Si02 0.9632 

Table 2.2-4 Non-zeolite supported catalysts. 
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2.2.5 Externally supplied catalysts 
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The catalysts listed in Table 2.2-5 were kindly prepared and supplied by Dr. Parida 

(Regional Research Laboratories, Bhubaneswar, India). These catalysts were prepared 

using the incipient wetness impregnation technique. The catalysts were dried overnight at 

383 K and calcined at 773 K for 16 h. 

Catalyst Metal Ion 
Precursor 

2%Phosphomolybdic-acid/H-ZSM-5 H3PMo12040. xHZO 
5%Phosphomolybdic-acid/H-ZSM-5 H3PMo 12040. xH2O 
10%Phosphomolybdic-acid/H-ZSM-5 H3PMo12040. xH2O 
15%Phosphomolybdic-acid/H-ZSM-5 H3PMo12O40. xHZO 
5%Silicomolybdic-acid/H-ZSM-5 H4SiMo1204o. xH2O 
5%Sodium-molybdate/H-ZSM-5 Na2MoO4.2H20 
5%Ammonium-heptamolybdate/H-ZSM-5 (NHa)6Mo7O24.4H20 

Table 2.2-5 Catalysts supplied by Dr. Parida, with Si: Al ratio of ZSM-5 = 50: 1 (Zeolyst). 

2.2.6 Preparation of ion-exchanged Ni(II) and Fe(III) LTA zeolites 

Ni(II)/LTA and Fe(III)/LTA zeolites were prepared in conjunction with Dr Prem Pal 

(Indian Institute of Petroleum, Dehradun, India). The classical ion-exchange method was 

used. Initially LTA was protonated by NH4+ ion-exchange and then calcined at 773 K. 

Nickel and iron ion containing solutions were prepared by dissolving a known amount of 

the respective salt, i. e. Ni(N03)2.6H20 or Fe(N03)3.9H20, in deionised water. A known 

amount of protonic zeolite A was then added to either the Ni or Fe ion containing solution 

(1: 10 v/v), followed by stirring for 4-8 hours at 298 K. This step was repeated a number of 

times. The resultant slurry was filtered and dried at 383 K overnight, and then calcined at 

773 K for 16 h. It should be noted that the metal content in the ion-exchanged zeolites was 

not measured. 

2.2.7 Preparation of phosphide precursors 

Binary and ternary transition metal phosphides catalysts were prepared in this work by 

reducing the corresponding phosphate doped oxide in methane. The details of which are 

given in section 2.3. 
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Binary and ternary phosphides that were prepared for this work are listed in Table 2.2-6. 

The materials employed in the preparation of each phosphide precursor material are also 

given. MoP and NiP precursor materials were prepared by using a 1: 1 or 2: 1 molar ratio of 
MoO3 or NiO respectively to NH4H2PO4 (Aldrich, 98+%). The required amount of 
NH4H2PO4 was dissolved in ca. 15m1 of deionised water and was impregnated onto MoO3 

or NiO for the preparation of the MoP or NiP precursors respectively, followed by drying 

at 373 K overnight and then calcined in air at 773 K for 5 hours. 

Phosphide Materials used in preparation of 
phosphide precursor 

mop M003 
NH4H2PO4 

Ni12P5 NiO 
NH4H2PO4 

CoMoP MoO3 
NH4H2PO4 
Co(N03)2.6H20 

NiMoP MoO3 
NH4H2PO4 
Ni(N03)2.6H20 

FeMoP MoO3 
NH4H2PO4 
Fe(N03)3.9H20 

Table 2.2-6 Materials employed in preparation of phosphide precursors. 

The first step in the preparation of the ternary phosphide precursor materials involves 

impregnating the 2 °d metal nitrates i. e. cobalt, iron or nickel nitrate onto MoO3. The 

precursor materials consist of a 1: 1: 1 molar ratio of Fe/Co/Ni: Mo: P Essentially, the 

required amount of Co(N03)2.6H20 or Ni(N03)2.6H20 or Fe(N03)3.9H20 was dissolved in 

deionised water and impregnated onto MoO3. This was followed by drying at 273 K 

overnight and then calcining in air at 773 K for 5 hours. The next step-involved 

impregnation with the required amount of NH4H2PO4 to the material produced in the first 

step. This was followed by drying at 273 K overnight and then calcining in air at 773 K 

for 5 hours. Stuart Hunter (University of Glasgow, 4th year project student 2005-6) kindly 

assisted in the preparation of these phosphide precursor materials. 
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2.3 Catalytic testing 
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To evaluate the activity of the catalysts made for methane dehydroaromatisation for this 
study, a microreactor system was designed, built and commissioned, as shown in Figure 
2-1. 

2.3.1 Reactor design 

The flow-micro quartz reactor was designed to be suitable to carry out methane conversion 
in the absence of a gas-phase oxidant. 

GC 
MFCs 

Vent 

Gas 
cylinders 

Figure 2-1 flow-micro reactor 

The catalyst samples were packed between plugs of silica wool in the quartz reactor vessel. 

The reaction temperature was measured using a K-type thermocouple attached to the 

outside wall of the reactor vessel at the bed of the catalyst. Although ideally the 

temperature within the catalyst bed would be of most interest, the fact that the 

thermocouple would not be inert and the low levels of conversion make measurement of 

the reactor wall temperature an appropriate compromise. 

The outlet line from the end of the quartz reactor was kept at 450 K using Thermolyne 

heating tape to prevent the condensation and strong adsorption of higher hydrocarbons 

produced during reaction. Product analysis was performed on a HP 5890 gas 

chromatograph (GC) using a combination of flame ionisation detection (FID) and thermal 

conductivity detection (TCD) with a Poraplot Q column (25 m) and a Molecular Sieve 13X 

column (12 feet) respectively. The GC carrier gas employed was argon (Pureshield, BOC). 

The GC set-up was not configured to detect carbon oxides. Therefore where applicable, 



Sharon Burns 2006 Chapter 2,32 

CO and CO2 concentrations were monitored by off-line FTIR spectroscopy of the reactor 
effluent stream, which was continuously passed through a flow cell directly attached to the 
reactor exit. The spectra were obtained using an impact 410 Nicolet spectrometer and 

recorded over a range of 600 to 4000 cm-1, using a total of 16 scans at a resolution of 4cm' 
for each spectrum. 

2.3.2 Gas calibrations 

Calibrations were carried out for methane, ethane, ethylene, propane, benzene, hydrogen 

and nitrogen on the flow micro-reactor shown in Figure 2-1. Ethane, ethylene, propane 

and benzene detection was performed using the FID. Hydrogen and nitrogen calibrations 

were performed using the TCD. Methane detection was carried out using both detectors. 

The calibrations were carried out by varying the composition of gas mixtures and by taking 

the mean of six consistent measurements for each data point. In all cases, a line of 

correlation between the gc area counts and concentration was found. The calibrations were 

carried out in order to obtain the response factor for each gas. The response factor of each 

gas was used for the subsequent manipulation of GC data. 

In order to calibrate for benzene, its vapour was injected into the FID inlet using a syringe, 

at 294 K and atmospheric pressure. This was repeated several times in order to obtain an 

average peak area for the GC effluent of benzene (the concentration of benzene was varied 

by dilution in the syringe with air). These conditions along with the Clausius-Clapeyron 

equation were used to obtain a response factor for benzene. Appendix 1 gives the 

calculations used for the benzene calibration. 

To calibrate for CO and C02, an IR cell was flushed then filled with a known 

concentration of CO and C02, using a gas mixture which consisted of 10% H2,10% CH4, 

10% CO, 10% CO2 and 60 % Argon (BOC). The IR spectra obtained was then used as a 

standard reference (since both the intensity of the bands and the concentration of CO and 

CO2 are known). Thus the concentration of CO and CO2 produced during the reaction 

could be calculated. 
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2.3.3 Catalytic testing procedure 

For a typical catalytic test the experimental procedure was as follows: 

0.5g of the catalyst was charged into the reactor between plugs of silica wool. The 

catalytic tests were performed at 973 K and atmospheric pressure. The feed gas mixture of 
8 ml min-' methane (99.9% CP grade, BOC) and 2 ml min-' nitrogen (BOC, OFN) was 
introduced into the reactor through calibrated Brooks mass flow controllers. Typically a 

gas hourly space velocity (GHSV) of 840 hr' was employed. Nitrogen was used as an 

internal standard. The tail gas was sampled periodically and analysed by GC. 

The same conditions as described above were also employed for the reduction of the doped 

metal phosphates by methane to the corresponding phosphide. However for these 

experiments a reaction temperature of 1023 K was used. 

Throughout this work, wherever possible error bars have been employed in reaction data 

profiles. Error bars were calculated from multiple experiments and using the standard 
deviation method. 

2.3.4 Manipulation of GC data 

Reaction data is reported in terms of specific rates of formation of products rather than 

conversion and selectivity data. This approach has been adopted because, at the generally 

low levels of conversion which occur, the measurement of a small difference in the GC 

data may be subject to a relatively large degree of random error. This is a particular 

concern given that the reaction never attains steady state - it is either activating or 

deactivating. Within the literature, expressing data for this reaction as formation rates is 

fairly common practice, egE30' 571. Appendix 2 gives the equations used for the calculation 

of reaction data. 

2.4 Catalyst Characterisation 

2.4.1 X-ray powder diffraction 

X-ray powder diffraction patterns were obtained on a Siemens D5000 diffractometer using 

Cu Ku radiation. Powder diffractograms were recorded over a range of 20 values from 5 
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to 75 ° using a step size of 0.02° and a counting rate of 1.5 s/step. Samples were prepared 
by compaction into silicon sample holders. 

2.4.2 Laser Raman spectroscopy 

Laser Raman spectroscopy was kindly performed by Dr Ann Robin, University of 
Strathclyde. The spectra were recorded on a Renishaw Ramascope 2000 spectrometer 
which consisted of an integral microscope, a notch filter, single grating and a cooled CCD 
detector was used. The spectral range examined was in the region of 400 to 1400 cm-1. 
Excitation at 632.8 nm was delivered by a Spectra Physics 2020 helium-neon laser source 
(40mW). The samples investigated were in the fresh/calcined form. 

2.4.3 Thermal gravimetric analysis 

Thermal gravimetric profiles were recorded on a TA instrument TGA Q 500 series 
instrument. The catalyst charge was typically 0.02g, and the flow rate of air used was 90 

ml min'. The catalysts were heated from room temperature to 1173 K in an air stream at a 
heating rate of 5 Kmin'. 

2.4.4 Elemental analysis 

CHN analysis by combustion was carried out on post reaction samples. This technique 

was kindly performed by Mrs. Kim Wilson, University of Glasgow. A CE-440 elemental 

analyser was used. 

2.4.5 NH3-TPD measurements 

NH3-TPD measurements were carried out using a TPD apparatus. Before adsorption, the 

samples (0.15g) were dried in flowing helium (30m1 mini-') at 873 K for 0.5 h. Pulses of 

ammonia gas of known volume (8.62cm3) and pressure (of ca. 150 Torr), were then 

introduced to the helium carrier gas, (30m1 min'), from the sample loop at 323 K and 

passed over the catalyst until saturation was achieved. Then the catalyst was flushed with 

helium for 0.5 h before being ramped from 323 K to 873 K with a heating rate of 15 Kmin 

1, with He as the carrier gas. The amount of desorbed ammonia as a function of 

temperature was detected by a mass spectrometer. 
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2.4.6 BET 
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To calculate the surface area, pore size and pore volume of each catalyst a Flowprep 060 
Micromeritics Gemini was used. For this technique a known mass of sample (typically ca. 
0.04g), was placed in a tube of known volume and heated under vacuum to 383 K. The 

sample tube of each catalyst was then cooled in liquid nitrogen and a known amount of 
nitrogen gas was introduced into the cooled tube. The pressure was measured and the 
sequence was repeated with successive pulses of nitrogen. As the volume of the system, 
the temperature and the amount of gas added with each pulse was known, the expected 

pressure in the absence of any adsorption was able to be calculated. Due to the difference 

between the calculated pressure and the observed pressure at each point the amount of 
nitrogen adsorbed was determined. 

2.4.7 27 Al and 29Si MASNMR 

27A1 and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of the 

catalysts were recorded at ambient temperature on a Varian Infinity Plus 400 MHz 

spectrometer, operating at resonance frequencies of 104.2 and 79.4 MHz for 27A1 and 29Si 

respectively. Spectra were measured at a spinning rate of 6 and 5 kHz using a pulse width 

of 2.5 and 4.5 µs for 27A1 and 29Si respectively. Kaolin and TMS (tetramethylsilane) were 

used as the external standard references for the aluminium and silicon chemical shifts 

respectively. Samples were allowed to hydrate in ambient conditions. 

2.4.8 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was performed on samples at either the 

University of Glasgow or the University of Reading. At the University of Glasgow TEM 

was performed with an FEI Tecnai G220 T20 and samples were prepared for TEM by 

gently grinding the sample using an agate mortar and pestle before adding a few drops of 

ethanol. Using a drawn pipette, the suspension was deposited onto a 3mm, 300 mesh holey 

carbon copper grid and allowed to dry. Mr. Jim Gallagher, University of Glasgow, kindly 

performed these measurements. 

At the University of Reading, TEM was performed with a JOEL 201 OFX instrument. The 

samples were prepared for TEM by gently grinding the sample using an agate mortar and 

pestle under iso-propyl alcohol, the suspension was deposited onto `lacey' carbon support 
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film and allowed to dry. Dr Peter Harris, University of Reading, kindly performed these 

measurements. 

2.4.9 EXAFS 

Al K-edge EXAFS experiments were performed at Station 3.4, Daresbury Laboratory 

jointly in conjunction with Dr Michael Stockenhuber, Nottingham Trent University. Thin 

disc samples were held in a cell, which achieved a vacuum of ca. 10-5 mbar. Samples were 

degassed for one hour at room temperature under dynamic pumping, heated to the 

activation temperature with a ramp rate of 5 K/min and then cooled to 383 K. EXAFS data 

analysis, predominantly performed by Dr Michael Stockenhuber, used the standard suite of 

Daresbury programs, including EXCURV98. 

2.4.10 In-situ FTIR studies 

Dr Michael Stockenhuber, Nottingham Trent University, kindly performed in-situ FTIR 

studies. The in-situ FTIR studies were performed using an ATI Research Series FTIR 

spectrometer operating in transmission mode. The spectrometer was equipped with an in- 

situ stainless steel cell with calcium fluoride windows, capable of a base pressure <10- 

7mbar. The IR cells containing the samples were degassed for one hour at room 

temperature, heated to the activation temperature with a ramp rate of 5 K/min and then 

cooled to 423 K. 
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3 Catalytic activity of Mo03/H-ZSM-5 

3.1 General introduction 

In recent years the production of benzene by the dehydroaromatisation of methane has 

attracted a lot of interest, for example"' 111. Within the literature most attention has been 

focused towards the production of aromatics. It should be noted that despite the fact that 
hydrogen is expected to be the major product of the reaction, very few studies in the 

literature have reported its quantification. This is very surprising in view of the fact that 

the production of hydrogen is at least comparable, and probably greater, interest to that of 
benzene by this pathway. The MDA reaction could be viewed as a potential alternative 

route to hydrogen production from methane. Direct decomposition of methane to produce 
CO-free sources of hydrogen for use of chemical feedstocks in reactions such as ammonia 

synthesis and/or for fuel cell applications has been the subject of some interest [68,691 and 

the MDA reaction may represent one such CO-free route. 

3.2 Results and discussion 

3.2.1 Influence of reactor material 

Ideally, the material of construction of the reactor employed in MDA should play no role 

in the chemistry/catalysis of the reaction. Experiments employing an empty stainless steel 

reactor demonstrated that stainless steel was not inert under the reaction conditions of 

interest. As well as reacting with methane, it is also expected that benzene would undergo 

secondary reactions on the stainless steel reactor walls. Therefore, quartz, which is known 

to be more inert, was employed as the reactor material in the rest of the work carried out 

for this study. 

On comparing the catalytic activity of the standard catalyst used throughout this work, 

3%Mo03/H-ZSM-5, it was seen that the use of a stainless steel reactor leads to lower 

product formation rates than with a quartz reactor. Figure 3.2-1 and Figure 3.2-2 give the 

hydrogen and benzene formation rates against time on stream for 3%MoO3/H-ZSM-5 

when both a quartz and stainless steel reactor have been employed. 
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Figure 3.2-1 Hydrogen formation rate as function of time on stream for 
3%Mo03/H-ZSM-5 for a quartz and stainless steel reactor. 
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Figure 3.2-2 Benzene formation rate as function of time on stream for 
3%Mo03/H-ZSM-5 for a quartz and stainless steel reactor. 

It is interesting to note that some research groups, for example, Ichikawa and co-workers 

have reported some of their reaction data for MDA when they have employed a stainless 

steel reactor vessel[54' 70] consequently, they cannot be measuring the intrinsic catalytic 

activity over the catalyst in these cases. 
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3.2.2 Reaction data of 3%Mo03/H-ZSM-5 

Figure 3.2-3 reports the hydrogen and benzene formation rates (the two major products of 

the reaction) for the standard catalyst, 3%Mo03/H-ZSM-5, which was run at 973 K for 6.5 

h. The profiles shown are generally similar to those reported in the literature for 

comparable catalysts tested under similar conditions, in that there is an initial induction 

period, after which the rate of formation of products decline with time on stream. The 

gradual deactivation of the catalyst has been attributed to coke formation[291. As is shown 

in Figure 3.2-3 hydrogen production has been determined in this study. As already 

mentioned, within the literature most groups studying this reaction direct the attention 

towards the production of benzene, and it is surprising that apart from a few exceptions, 
[55, s7] e. g. , so little attention has been given towards the production of hydrogen. 
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Figure 3.2-3 Hydrogen and benzene formation rates as a function of time on 
stream for 3%MoO3/H-ZSM-5. 

If hydrogen and benzene were the sole products produced, the ratio of their rates would be 

expected to be 9, i. e. Equation 2-3. However, as shown in Figure 3.2-4, the ratio is closer 

to 21, which is indicative of side reactions occurring. There are a number of possible 

processes, which can occur to produce hydrogen, including methane cracking, Equation 2- 

1, the production of ethylene, Equation 2-2 (believed to be the reaction intermediate), and 

the production of benzene, Equation 2-3. 
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2CH4 -* C2H4 + 2H2 Equation 2-2 

6CH4 C6H6 + 9H2 Equation 2-3 

When the production of C2 hydrocarbons is taken into consideration, the H2: C6H6 ratio 

would be expected to be in the region of 13. The ratio of 21 is indicative of the formation 

of heavier aromatics, as reported by others, e. g. [341 and coke deposition. Since heavier 

aromatics, e. g. naphthalene are generally produced in much lower selectivity than benzene, 

it is likely that the major contribution to the higher ratio is from coke formation. This is in 

agreement with carbon analysis on post-reaction samples where it was observed that, 4.21 

wt. % carbon is deposited on 3%Mo03/H-ZSM-5 after 390 min on stream. If the 

stoichiometry of the Mo containing phase is assumed as Mo2C, as it is most commonly 

reported in the literature, then this means that ca. 4.08 wt. % C is deposited on the catalyst 

as coke. It can also be seen from Figure 3.2-4, that there is a relative constancy of the 

hydrogen to benzene formation rate ratio, which implies that the benzene formation and 

hydrogen producing side reactions decline at similar rates. 
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Figure 3.2-4 The ratio of hydrogen to benzene as a function of time on stream 
for 3%MoO3/H-ZSM-5. 

3.2.3 Isothermal carburisation of MoO3 

It has been well documented in the literature that there is an induction period at the 

beginning of the MDA reaction [39,43], this can be seen from Figure 3.2-3, where there is a 

short delay before the maximum in product formation is achieved. During this process 
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Mov' species are reported to be reduced to Mov and Mole' species, attributed to the 

conversion of molybdenum oxide into molybdenum carbide. The products of the induction 

period are C02, H2O, CO and H2 39] 

Recently Iglesia et al. [711 have investigated the isothermal activation pathways of 

oxomolybdenum species in ZSM-5 using pure methane at a temperature of ca. 953 K. In 

the current study, the isothermal activation of bulk MoO3 has been investigated. The 

formation rates of the products formed during this study on the isothermal carburisation of 
bulk MoO3 are presented in Figure 3.2-5. It should be noted that the analysis set-up is not 

equipped to detect water, however, this is also an expected product of the reaction. 
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Figure 3.2-5 Products formed during the isothermal carburisation of MoO3. 

It can be seen from Figure 3.2-5 that the burst in H2 formation is associated with a 

simultaneous burst of CO (although this product is slightly delayed compared to that of 

hydrogen). The maximum in hydrogen formation is achieved at ca. 320 min on stream. 

The evolution of these products is associated with the carbiding of MoO3. The resultant 

XRD pattern following the carburisation of MoO3 is shown in Figure 3.2-6. The pattern 

was checked using the database of the Joint Committee on Powder Diffraction Standards 

(JCPDS). The pattern shows reflections at 34.3,37.3 and 39.4 020, these reflections are 

indicative of a ß-Mo2C phase. This pattern agrees well with the reference pattern of 13- 

Mo2C (PDF 35-787). 
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Figure 3.2-6 XRD pattern of MoO3 following the isothermal 
carburisation in methane. 

From reviewing the literature, there does not appear to be many studies regarding the 
isothermal carbiding of MoO3 with methane. Most studied have followed the process 

using temperature programmed routes with H2/CH4 mixtures [72-74] 
. 

However, as previously 

mentioned, Iglesia et al. have investigated the isothermal activation pathways of 

oxomolybdenum species in ZSM-5 using pure methane. In general terms, relative 

concentrations and evolution times of H2, CO and CO2 are markedly comparable to those 

evident in Figure 3.2-5. However, in their work the maxima were obtained after ca. 10 min 

on stream, in contrast to the ca 320 min observed in Figure 3.2-5. This shows that there is 

a massive enhancement of the carbiding rate on dispersion of MoO3 on the ZSM-5 matrix. 

The nature of the phase transition with time on stream reported in Figure 3.2-5 is consistent 

with reports that the isothermal reduction of bulk MoO3 involves an induction period which 
[751 has been ascribed to rate determining nucleation or autocatalytic effects. 

3.3 Introduction - influence of zeolite support 

In recent years, there has been immense interest in zeolite-supported catalysts e. g. [76], 

since their frameworks can stabilise TMI (transition metal ions), especially when TMI 

migrate into intra-crystalline zeolite cavities and/or channels. Moreover, by combining 

acid sites with TMI, bi and/or multi-functional catalysts with unique catalytic properties 

can be produced. The direct conversion of methane into aromatics and hydrogen over 

Mo03/H-ZSM-5 based catalysts is a typical example of these bi-functional catalytic 

properties. Mo/H-ZSM-5 is a bi-functional catalyst since both the molybdenum species 

and the Bronsted acid sites are necessary components of an active catalyst. 

15 25 35 45 55 65 75 
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In this work, a short study on supporting MoO3 onto A1203 and Zr02 supports has been 

investigated. From reviewing the literature, it does not appear that MoO3 supported on 
Zr02 has been previously tested for MDA. 

Recently, zirconia has received much interest because of its potential use as a catalyst 

support. Some important properties of zirconia include its high thermal stability and both 

acid and base functions. Zirconia has been employed as a support in reactions such as 

hydroprocessing and oxidation of alcohols [771. Brown et al. [781 reported work where 

zirconia- supported molybdenum oxide catalysts were prepared using conditions reported 

to generate " superacidity". This Mo03/ZrO2 superacidic system could possibly have some 

similarities in behaviour with the acidic Mo03/H-ZSM-5 catalyst employed in MDA. 

Therefore, the use of zirconia as a support for MoO3 in MDA appears to be a suitable 

choice. Alumina has also been chosen as an alternative support, as it has previously been 

examined in the literature as a catalyst for MDA. 

3.4 Results and discussion - influence of zeolite support 

3.4.1 Reaction data 

The hydrogen formation rates as function of time on stream for 3%Mo03/H-ZSM-5, 

5%MoO3/S-Al2O3 and "superacidic" 5%Mo03/ZrO2 (where Zr02 is a mixed phase of 

monoclinic and tetragonal) are given in Figure 3.4-1. It should be noted that it would be 

best if the loading of molybdenum oxide on the A1203 and Zr02 materials were exactly the 

same as the loading of molybdenum oxide on the ZSM-5 supported catalyst. However, 

general comparisons between the materials can still be made. 
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Figure 3.4-1 Hydrogen formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5,5%Mo03/ZrO2 and 5%Mo03/ö-AI203. 

Similar to the standard methane aromatisation catalyst, Mo03/H-ZSM-5, hydrogen is 

continuously obtained for the 5%Mo03/6-Al203 catalyst. There is an initial induction 

period in the formation of products and the catalytic performance slowly deteriorates with 

time on stream. It is clear to see that at longer times on stream i. e. after 100 min, that 

5%MoO3/6-Al2O3 exhibits a lower activity for hydrogen formation than the standard 

methane aromatisation catalyst. 

There does not appear to be an induction period before the maximum in the hydrogen 

formation for the Zr02 supported catalyst, initially, the hydrogen formation rate is at its 

maximum and declines throughout the remaining time on stream. Apart from at its 

maximum, the H2 produced for the Zr02 supported catalyst is lower than that of the 

standard catalyst. 

The benzene formation rate against time on stream for the 5%MoO3/b-Al2O3 catalyst is 

given in Figure 3.4-2 and the profile for the standard catalyst, 3%Mo03/H-ZSM-5 is also 

given for comparison. The alumina supported sample, which although produces benzene 

to a much lesser extent than the standard sample, does follow the same general benzene 

formation profile over the first 200 minutes of the reaction. However, beyond this length 

of time on stream benzene is no longer produced. Xu et al. [241 report a benzene selectivity 

of 61% for their MoO3/b-Al2O3 catalyst, hydrogen production was not mentioned or 

discussed in their work. No benzene was detected for the 5%Mo03/ZrO2 catalyst. 
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Figure 3.4-2 Benzene formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5 and 5%Mo03/S-AI203. 

Therefore, it has been shown that alumina supported molybdenum oxide is active for 

MDA, in that both hydrogen and benzene are produced, although to a lesser extent than the 

standard catalyst, 3%Mo03/H-ZSM-5 and with a limited lifetime. Hydrogen production 

for zirconia supported molybdenum oxide is less than that of the standard catalyst. No 

benzene was produced for the zirconia supported sample. 

From reviewing the literature and the work presented here on comparing supports for 

MoO3 in MDA, it is evident that the zeolite support in particular, H-ZSM-5, is an 

important component of an active MDA catalyst. Hence, the best catalytic activity of 

MDA is observed when a Mo03/H-ZSM-5 based catalyst is employed. 

3.4.2 XRD patterns 

The XRD pattern of 5%Mo03/ZrO2 in the calcined and post reaction form is given in 

Figure 3.4-3. Both fresh and post reaction patterns show no evidence of discrete 

molybdenum-containing phases, this reveals that the molybdenum species in the catalyst 

must be highly dispersed. The reflections at 28 and 31.5 °20 are characteristic of the 

monoclinic phase of Zr02 and the reflection at 30 °20 is characteristic of the tetragonal 

phase. It is clear to see from the patterns that the monoclinic phase increases by about 10% 

and the tetragonal phase decreases by about 10% on the post reaction catalyst compared to 

the fresh/calcined catalyst, this was confirmed by quantitatively calculating the phase 

compositions in the fresh and post reaction samples, using Toraya's method [79]. Therefore, 
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it is apparent from these patterns that reaction of Mo03/Zr02 with methane under non- 
oxidative conditions adjusts the proportion of monoclinic to tetragonal phases in zirconia. 
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Figure 3.4-3 XRD pattern of 5%Mo03/ZrO2 in the calcined and post reaction form. 

3.5 Introduction - Pd/H-ZSM-5 as a catalyst for MDA 

It has been reported in the literature as early as the 1970's, that transition metal carbides 

display some catalytic properties characteristic of the noble metals. In particular, Levy and 

Boudart [801 demonstrated that tungsten carbide exhibits catalytic behaviour which is typical 

of platinum. For example, they showed that tungsten carbide catalyses the formation of 

water from hydrogen and oxygen at room temperature. They suggested that the surface 

electronic properties of tungsten are modified by carbon in such a way that it resembles 

those of platinum. 

The noble metals are expensive, so in some reactions where they are employed as a 

component of a catalyst there is a possibility for them to be replaced by the relatively 

abundant Group 6 metals. For example, Lee et al? '' have reported that unsupported and 

alumina supported Mo2C have similar turnover rates for n-butane hydrogenolysis to Ru/y- 

A1203. 

Since it is believed that during reaction conditions in MDA the active phase of 

molybdenum is the carbide[36' 40] it appears to be appropriate to compare the catalytic 

activity of Mo03/H-ZSM-5 with Pd/H-ZSM-5 in MDA. By analogy with the situation 

5 15 25 35 45 55 65 75 
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described above for tungsten carbide, it could be anticipated that the electronic properties 

of molybdenum carbide may resemble those of palladium. 

From reviewing the literature, it does not appear that there have been any reports on Pd/H- 
ZSM-5 as a comparison of Mo03/H-ZSM-5 for MDA. However, Pt/H-ZSM-5 has been 

tested for MDA by Xu et a1[24]. Xu and co-workers reported that under the conditions they 

employed, no benzene was produced over the Pt/H-ZSM-5 catalyst and that methane 

conversion was 0.03% at a loading of 2wt. %Pt. Hydrogen production was not reported or 

even mentioned in their work. 

At this point it should be noted that throughout the literature it is commonly stated that the 
formation of metal carbides is extensive throughout the periodic table, with the exception 

of Pd (along with Rh, Ir and Pt) which does not form a carbide, for example [731. However, 

there are also reports in the literature, which states that Pd does form a carbide, it was 

reported in 1978 that during ethylene hydrogenation at moderate temperature (373 K) that 

carbon atoms penetrated into the palladium lattice, and that a solid solution of carbon in 

palladium was formed (PdCX where 0<x<0.13) [821 

3.6 Results and discussion - Pd/H-ZSM-5 

3.6.1 Reaction data 

The hydrogen formation rate against time on stream for 3%Pd/H-ZSM-5 is given in Figure 

3.6-1, the data for the standard catalyst, 3%Mo03/H-ZSM-5 is also given for comparison. 

It is very clear to see from the profiles that Pd/H-ZSM-5 does not behave like Mo03/H- 

ZSM-5. The Pd catalyst after 50 minutes on stream produces approximately 5 times more 

hydrogen than the standard catalyst. The palladium catalyst produced its maximum 

amount of hydrogen initially then slowly declined for the rest of the run. This is most 

likely due to catalyst deactivation due to carbon deposition. However, the standard 

catalyst has an induction period before the maximum in hydrogen formation is obtained. 

The Pd/H-ZSM-5 catalyst under the conditions employed is much more active for 

hydrogen production than the standard catalyst. 
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Figure 3.6-1 Hydrogen formation rates as a function of time on stream for 
3%Pd/H-ZSM-5 and 3%Mo03/H-ZSM-5. 

No benzene was produced for the Pd loaded H-ZSM-5 catalyst. Periodic off-line gas- 

phase FTIR analysis of the effluent revealed that no carbon oxides were produced during 

the reaction. So it appears, that Pd/H-ZSM-5 is an active catalyst for producing pure 

hydrogen i. e with no carbon oxides produced as by-products. However, a lot of carbon 

was deposited on the catalyst. Post reaction CHN analysis given in Table 3.6-1 shows that 

30%wt of the Pd/H-ZSM-5 catalyst after reaction was coke compared to only 4.08%wt 

coke for the standard catalyst. In view of the earlier contrasting comments on palladium 

being able to form a carbide, it has not been possible to elucidate if it does or does not in 

this study, the XRD pattern of the post reaction Pd/H-ZSM-5 catalyst, given in Section 

3.6.2, shows no reflections indicative of any palladium phases. The wt% of coke based 

carbon given for the standard catalyst is the weight after the subtraction of the carbon 

which is carbidic. 

The current study shows that there is little similarity in the behaviour of Mo03/H-ZSM-5 

compared to Pd/H-ZSM-5 despite the fact that molybdenum carbide is proposed as an 

active phase in the former. This observation puts uncertainties to the comparisons that can 

be drawn between Mo2C and Pd within this system. Whether this is due to the possibility 

that Mo2C is not in fact formed in Mo03/H-ZSM-5, requires further investigation. 

It should be noted that if molybdenum carbide, in particular, ß-Mo2C is indeed the active 

phase of the molybdenum species in MDA, then when taking into consideration the unit 

cell parameters of ß-Mo2C, which are, a=3.0124A b=3.0124A c=4.7352A (these 
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parameters have been taken from the reference pattern of ß-Mo2C from the JCPDS 

(reference file PDF- 35-787)) then it is apparent that only a single unit cell of ß-Mo2C can 
form in the channels of the zeolite (providing the ZSM-5 structure stays intact). As stated 
in Chapter 1, the linear pores of ZSM-5 have dimensions of 5.1 x 5.6A and the zigzag 

pores have dimensions of 5.4 x 5.6A. If only a single unit cell were formed it would be 

electronically very different from the bulk phase. In addition, the spacings of the channel 
intersections are longer at ca. 13A but this still only equates to a couple of unit cells. 

Therefore it is unlikely that any comparison can be made with the bulk electronic structure. 

Due to the superior H2 production that the Pd/H-ZSM-5 catalyst exhibits compared to the 

standard MDA catalyst another supported palladium catalyst was prepared and tested for 

hydrogen production. The hydrogen formation rate against time on stream for 3%Pd/ 6- 

A1203 is given in Figure 3.6-2. The profile for 3%Pd/H-ZSM-5 is also given for 

comparison. It can be seen that the hydrogen formation for the alumina supported Pd 

catalyst is greater than that for the zeolite supported Pd catalyst. From this comparison it 

can be seen that the support of the catalyst does effect the hydrogen production, i. e. 

alumina is a better support for hydrogen production than the zeolite, under the conditions 

employed. Again no benzene was produced for the 3%PdI 5-A12O3 catalyst. 
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Figure 3.6-2 Hydrogen formation rates as a function of time on stream for 
3%Pd/H-ZSM-5 and3%Pd/ö-AI203. 
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3.6.2 XRD patterns of Pd/H-ZSM-5 

The XRD patterns of 3%Pd/H-ZSM-5 in both the calcined and post reaction form are 
presented in Figure 3.6-3. The pattern of the calcined 3%Pd/H-ZSM-5 shows the 

characteristic reflections of H-ZSM-5 with the main 20 values of ca. 8,9 and 23-25°. No 

palladium containing crystallites could be detected (reflections indicative of palladium 

would be visible at 41,46.5 and 68). This suggests that Pd crystallites are highly 

dispersed on the surface or in the channels of the H-ZSM-5 zeolite and have a particle size 

too small as to be detected by the XRD technique. 
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Figure 3.6-3 XRD pattern of 3%Pd/H-ZSM-5 in the calcined and post reaction form. 

Only reflections indicative of H-ZSM-5 are visible in the XRD pattern of the post reaction 

catalyst. The only apparent visible change between the two patterns is that the post 

reaction catalyst appears less crystalline as the peaks are slightly less intense. 

3.6.3 Post reaction TGA, CHN and TEM analysis 

TGA studies of the oxidation of post-reaction carbon species have been undertaken. The 

TGA profiles recorded for the Pd1H-ZSM-5 and standard catalyst, 3%Mo03/H-ZSM-5 are 

shown in Figure 3.6-4. The first derivative weight changes for the standard catalyst are 

also given, Figure 3.6-5. 
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The profile for the standard catalyst has been assigned on the basis of the study by Liu at 

a1r441. Any weight loss before ca. 250°C is attributed to desorption of adsorbed water. A 

weight increase around about 450°C results from the reaction between Mo2C and/or 
Mo2CXOY with oxygen in the air stream. Burning off coke causes the decrease in the 

weight from 450°C to 750°C. So, the total amount of carbon on the post reaction catalysts 

consists of two parts, the first is carbon in molybdenum carbide and the second is coke, 

which, as detailed in the introduction, can be further subdivided [26]. Any weight loss 

between 750°C to 900°C may be due to the sublimation of molybdenum oxidet83 1, as M003 

melts at 795°C and MoO3 is known to sublime and the sublimation process should occur 

around this temperature. The vapour pressure of MoO3 at 800°C is 1.7 Paf. 841 

As can be seen from Figure 3.6-4 for the standard catalyst, there is no obvious weight 
increase in the region where molybdenum carbide, would be expected to be oxidised to 

molybdenum oxide, i. e. ca. 450°C. If the stoichiometry of the Mo containing phase is 

assumed as Mo2C, then using the post reaction carbon analysis of the 3%Mo03/H-ZSM-5 

catalyst, the carbon content associated with the carbide can be calculated. This means that 

4.08%C is deposited on the catalyst as coke, while 0.13%C is carbidic carbon. At higher 

loadings of molybdenum oxide catalysts, the weight increase in this region should become 

apparent. This is shown in Chapter 4, where higher loadings of molybdenum oxide post 

reaction catalysts have been analysed by TGA. 

The first derivative weight changes for the standard catalyst, Figure 3.6-5, show that there 

are two peaks in the burning off coke region, at ca. 460 and 590°C, these can be attributed 

to low and high temperature coke combustion respectively. 

As can be seen from Figure 3.6-4 the post reaction Pd/H-ZSM-5 catalyst has undergone a 

weight loss of ca. 32% upon being heated up to 900°C. The weight loss from room 

temperature to ca. 100°C can be attributed to water elimination. From Figure 3.6-4 it can 

be seen that the Pd/H-ZSM-5 catalyst contains significantly less water than the Mo03/H- 

ZSM-5 catalyst as the weight change for the standard catalyst is noticeably far greater than 

that of the Pd1H-ZSM-5 catalyst in the region of room temperature to 100°C. 

It should be noted that the anomaly in the profile of Pd/H-ZSM-5 at ca. 600°C in Figure 

3.6-4 is due to sensitivity effects in the experimental apparatus. This feature does not 

represent true changes in the weight of the sample. The weight loss between 500 and 

700°C is due to burning off coke that has been deposited on the catalyst, this weight loss of 

about 30% agrees very well with the CHN analysis results which show that 30.24% of the 
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sample after the MDA reaction was carbon, Table 3.6-1. The post reaction 3%Pd/H-ZSM- 

5 carbon content is not a surprising finding as Pd is an active catalyst for methane 

decomposition, (where the products are essentially hydrogen and carbon)[851. 
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Table 3.6-1 Post reaction C analysis of catalysts after 390 min on stream. 
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Figure 3.6-5 TGA profile for the post reaction 3%Mo03/H-ZSM-5. 
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Figure 3.6-4 TGA profiles for the post reaction 3%Pd/H-ZSM-5 and 
3%Mo03/H-ZSM-5. 
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Post reaction TEM images of Pd/H-ZSM-5 are given in Figure 3.6-6. From the images it is 

clear that carbon nanotube (CNT) formation has occurred over the catalyst during the 

conditions employed in MDA. Several groups have reported on the synthesis of CNTs 
through decomposition of hydrocarbons over metal catalysts (often termed chemical 
vapour deposition or CVD), though other routes of synthesising carbon nanotubes are 
available, such as, arc-discharge and laser vapourisationý86-891. 

;: 4 

Zhao et alJ90' have reported that CNT formation occurs over a plasma reduced Pd/H-ZSM- 

5 catalyst, they conducted methane decomposition over the plasma reduced Pd/H-ZSM-5 

catalyst at 700°C. Many authors propose the `tip growth' and `base growth' mechanisms 

for the formation of CNTs through decomposition of hydrocarbons over metal catalysts [86- 

88] Zhao et al report that the CNTs produced over their Pd/H-ZSM-5 catalyst are of the tip 

growth kind, i. e. a dense dark region (metal particle) at the tip of the CNT is observed. 

From the TEM images presented in Figure 3.6-6, it is difficult to say if the nanotubes were 

synthesised by the `tip growth' or `base growth' mechanism. However due to the visible 

ends being free from any metal particles it is likely that the CNTs were grown via a `base 

growth' mechanism. It can be seen that the nanotubes are closed and not open-ended, this 

differs to nanotubes of the standard catalyst, 3%Mo03/H-ZSM-5, which are open-ended 

(although the standard catalyst has been doped with small quantities of additional metals in 

this case) TEM images of these post reaction materials are given in Chapter 4. 

The nanotube in the TEM image on the left hand side of Figure 3.6-6 is ca. 40 nm in 

diameter. This CNT has a `stacked-cup' or `herring bone' like structure. In the literature it 
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has been proposed that for CNTs with a `herring-bone' structure, graphene sheets do not 

connect but surround a hollow core. 

This short investigation on examining the activity of Pd/H-ZSM-5 in MDA was carried out 
due to the apparent analogous behaviour reported between transition metal carbides and 

noble metals. It has clearly been shown that the catalytic behaviour of Pd/H-ZSM-5 is 

very different to that of the standard MDA catalyst. Firstly the H2 formation rate for the 

PdJH-ZSM-5 catalyst is noticeably greater than that of the standard catalyst, and secondly 

no benzene was produced for the Pd based catalyst. The absence of benzene production 
for the Pd based catalysts may be due to the reaction intermediate ethylene not being 

created by these systems. These results show that either there are uncertainties in the 

analogous behaviour of palladium and molybdenum carbide or that molybdenum carbide is 

not in fact the active phase that it is thought to be in the MDA reaction. 

Along with the interesting catalytic activity of Pd/H-ZSM-5 that was observed in this 

study, it has also been shown that CNTs are produced by the decomposition of methane 

over the Pd/H-ZSM-5 catalyst at 700°C. 

3.7 Introduction - H2 additive in Feed gas 

In the literature it has been reported that co-reactants such as 02, CO, CO2 and H2 can 

suppress deactivation processes and improve catalytic activity [56,57,91-94] The findings 

based on literature reports for 02, CO and CO2 co-reactants are discussed in following 

chapters. 

Iglesia and co-workers [921 reported that when 3 kPa of H2 was added into 85 kPa of CH4, 

both methane conversion and benzene formation rate decreased. Overall, they reported 

that the selectivity of products was not strongly influenced by H2 being added into the feed 

gas. Osawa et al. 1911 report that H2 addition (10%) barely affects the conversion of 

methane, but prevents deactivation of the catalyst i. e., benzene formation remained 

constant during a6h test. They suggested that, in view of equilibrium of the aromatisation 

of methane, the addition of hydrogen is unfavourable for the formation of aromatic 

compounds. They also suggested that H2 addition may decrease catalyst deactivation by 

reducing the surface carbon deposits. Consequently, adding hydrogen into the feed gas 

may contribute to increasing the total amount of aromatic compounds. 

In this study addition of H2 into the methane feed gas has been re-examined. 
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3.8 Results and discussion - H2 additive in Feed gas 

3.8.1 Reaction data 

The hydrogen and benzene formation rates against time on stream for 3%Mo03/H-ZSM-5 

where the feed gas comprises of 82% CH4 and 1.8% H2 with the balance being Ar is given 

in Figure 3.8-1 and Figure 3.8-2 respectively, the profiles for 3%Mo03/H-ZSM-5 under 

the normal reaction conditions i. e. where no hydrogen is added to the feed gas are also 

given for comparison. It can be seen from Figure 3.8-1, that the shape of the profiles for 

hydrogen formation for 3%Mo03/H-ZSM-5 with H2 added to the feed and under standard 

reaction conditions are identical. The hydrogen formation is greater for the catalyst where 

hydrogen was added into the feed. 
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Figure 3.8-1 Hydrogen formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5 with H2 added into feed gas and under standard reaction 
conditions. 
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Figure 3.8-2 Benzene formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5 with H2 added into feed gas and under standard reaction 
conditions. 

Again, the profiles for the benzene formation rate for the standard catalyst under standard 

reaction conditions and where H2 has been added into the feed are similar in shape, Figure 

3.8-2. It appears that benzene formation has been slightly suppressed upon addition of 

hydrogen, more noticeable at the first point in the profile. Therefore, H2 as a co-reactant is 

unfavourable for the production of benzene compared to the standard reaction conditions. 

To access whether hydrogen addition reduces the overall amount of coke deposited on the 

catalyst, post reaction carbon analysis was conducted and the results are given in the 

following section. 

3.8.2 Post reaction carbon analysis 

The post reaction carbon analysis of 3%Mo03/H-ZSM-5 under standard reaction 

conditions and where H2 has been added into the feed is given in Table 3.8-1. The post 

reaction carbon analysis confirms that H2 addition into the feed does in fact reduce the 

carbon that is deposited on the catalyst compared to when no H2 is added i. e., 3.49%C with 

H2 in feed and 4.21 %C with no H2 in feed. 
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Catalyst wt%C 
3%Mo03/HZSM-5 - standard conditions 4.21 
3%Mo03/HZSM-5 - H2 in feed gas 3.49 

Table 3.8-1 Post reaction C analysis of 3%MoO3/H-ZSM-5 catalysts after 390 min on stream. 

Addition of H2 to the methane feed gas has been shown to result in a slight decrease in the 
benzene formation rate. The carbon content in the post reaction catalyst has also decreased 

compared to when no H2 is added into the feed gas. Although coke formation has 
decreased it does not appear to have a promotional effect on the production of benzene. 

3.9 Introduction - 
27 AI and 29Si MAS NMR study of 

Mo03/H-ZSM-5 

27A1 and 29Si MAS NMR are both very useful techniques in giving information about the 

structure of aluminium and silicon atoms in zeolites. In particular, 27A1 MAS NMR gives 

direct information relating to the local environment of aluminium nuclei in zeolite 

structures[95,96], whereas 29Si MAS NMR provides a direct measurement of the way in 
[97] which aluminium atoms are coordinated to silicon atoms in the framework of zeolites. 

Moreover 29Si MAS NMR can be used to determine the framework Si/Al in a zeolite using 

the following equation, as reported by Liu et al. [50]: 

4 4 

Si/Al =[I Si(nAl)] 

/[Y 
1/4n1 Si(nAl)] 

N=O N=O 

In this study 27A1 and 29Si MAS NMR measurements of Mo03/H-ZSM-5 catalysts with 

different molybdenum loadings and starting materials of molybdenum are examined. 

3.10 Results and discussion - 
27 AI and 29Si MAS NMR 

study of Mo03/H-ZSM-5 

27Al MAS NMR spectra of 3,8.7 and 14.2% wt. Mo03/H-ZSM-5 catalysts, where 

ammonium heptamolybdate was used as the starting material of the molybdenum 

component, together with H-ZSM-5 are given in Figure 3.10-1. As expected there are two 

main peaks. The peak at ca. 53 ppm, is typical of tetrahedrally coordinated framework 
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aluminium in ZSM-5 and the peak at ca. -2 ppm can be attributed to octahedral non- 
framework aluminium[50,53,98,99] Quantification of the NMR spectra was not attempted 

because of uncertainty about the NMR visibility of aluminium species in distorted 

coordination. 

The 27A1 MAS NMR spectra of H-ZSM-5 and 3%Mo03/H-ZSM-5 are comparatively 

similar. This shows the high stability of the ZSM-5 framework upon incorporation of 

molybdenum species into H-ZSM-5. Although, it can be seen that there is an increase in 

the peak associated with non-framework Al (i. e. -2 ppm peak) in the spectrum of 

3%Mo03/H-ZSM-5 compared to the spectrum of H-ZSM-5. This indicates that extraction 

of framework Al occurs upon incorporation of molybdenum species into H-ZSM-5, 

however, it should be noted that upon hydration for some zeolites it is possible to make 

tetrahedral framework Al octahedral Al. The interaction between molybdenum species and 

framework aluminium in this system has been extensively reported in the literature [53,99, 

100] 

200 100 0 -100 -200 200 100 0 -100 -200 
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200 100 0 -100 -200 200 100 0 -100 -200 

PPM 
PPM 

Figure 3.10-1 27AI MAS NMR spectra of calcined (a) H-ZSM-5 (b) 3%Mo03/H-ZSM-5(c) 

8.7%MOO3/H-ZSM-5 (d) 14.2%Mo03/H-ZSM-5 (with ammonium heptamolybdate as the source 

of Mo). 
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On comparing the relative intensity of the peak at -2 ppm with that of the 53 ppm peak of 

the 3wt%. MoO3 sample, with the higher loaded samples of MoO3 i. e. 8.7 and 14.2%Mo03, 

it can be seen that it has decreased. This may be due to the evolution of an aluminium 

molybdate phase for the higher loaded MoO3 samples. The signal at ca. -15 ppm in the 

spectra of 8.7 and 14.2%MoO3/H-ZSM-5 has been assigned to octahedral aluminium in 

crystalline A12(MoO4)3 on the basis of the study by Liu et alJ50'. They reported that Mo 

species interact with the framework Al of H-ZSM-5 and that this interaction increases with 

increasing Mo loading and calcination temperature. The strong interaction finally leads to 

the extraction of framework aluminium and the formation of a new A12(Mo04)3 phase. If 

the Mo loading and calcination temperature are high enough, then all of the framework 

aluminium in the zeolite can be extracted and the framework of ZSM-5 collapses. Liu and 

co-workers reported that the formation of Al2(Mo04)3 is a detrimental feature for MDA. 

It should be noted that the signal at ca. -2 ppm for the 3%Mo03/H-ZSM-5 catalyst in Figure 

3.10-1 has a "liquid-like" NMR appearance. This signal rather than being due to the 

conventional octahedral non-framework aluminium may be due to some form of 

"disordered" octahedral aluminium. For example, it would be consistent with [Al(H2O)6]3+ 

wherein deprotonation was suppressed by the inherit acidity of the zeolite host. However, 

further 27A1 MAS NMR studies would be required to elucidate this further. This "liquid- 

like" signal occurs again in Figure 3.10-2 and again in more Mo03/H-ZSM-5 based 

catalysts which are presented and discussed in Chapter 4. 

An 27A1 MAS NMR study on Mo03/H-ZSM-5 based catalysts carried out by Zhang et 

alJ100 reports the presence of a peak at ca. 30 ppm, which was assigned to penta- 

coordinated non-framework aluminium. The absence of this peak in this work implies that 

either no penta-coordinated non-framework aluminium species are present in these samples 

or that these species are "invisible". In the latter regard, it has been reported that second- 

order quadrupole interactions are not completely removed by MASE961. Moreover, it has 

been reported that the second-order quadrupole interaction, which is only partially 

averaged by MAS, can lead to sufficient broadening that makes some 27Al signals 

"invisible" in a normal single-pulse MAS NMR experiment E1011. 

In Figure 3.10-1 there appears to be a slight increase in the line width of the octahedral 

non-framework aluminium peak with increasing loading of Mo. This implies an increase 

in the quadrupolar interaction between the octahedral coordinated aluminium and water 

molecules, as magic angle spinning cannot eliminate the quadrupole interaction [501. 

Overall for these samples the interaction between Mo species and H-ZSM-5 is not strong 
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enough to structurally damage the zeolite as it can be seen that a large proportion of the 

framework aluminium of ZSM-5 has remained. 

27A1 MAS NMR spectra of 3,8.7 and 14.2% wt. Mo03/H-ZSM-5 catalysts, where 

molybdenum trioxide was used as the starting material of the molybdenum component are 

given in Figure 3.10-2. On comparing these spectra with that of the parent zeolite, ZSM-5, 

shown in Figure 3.10-1, it can be seen that there is an increase in the non-framework 

aluminium peak upon incorporation of Mo species into H-ZSM-5. 

It is interesting to note that for the catalysts prepared using molybdenum trioxide as the 

starting material of the molybdenum component there does not appear to be a signal at ca. 

-15 ppm in the spectra, Figure 3.10-2, which was present in the 27A1 NMR spectra of the 

samples prepared by ammonium heptamolybdate, Figure 3.10-1. Therefore, it appears that 

the appearance of a A12(Mo04)3 phase depends on the starting material of the molybdenum 

component. 

200 100 0 -100 -200 200 100 0 -100 -200 

PPM PPM 

-100 -200 200 100 0 

ppm 

Figure 3.10-2 27Al MAS NMR spectra of calcined (a) 3%Mo03/H-ZSM-5(b) 8.7%MoO3/H-ZSM-5 

(c) 14.2%M003/H-ZSM-5 (with molybdenum trioxide as the source of Mo). 
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On closer analysis of the 27A1 MAS NMR spectra in Figure 3.10-1 and Figure 3.10-2, it 

can be seen that there is a very small peak at ca. 12 ppm. This signal occurs in all of the 

spectra apart from that of the parent zeolite, H-ZSM-5. Zhang et a1. t1001 report a signal at 

13 ppm in their 27Al MAS NMR spectra of Mo/H-ZSM-5 based catalysts. They attribute 

the signal - to octahedral non-framework Al in Mo03. A1203. nH2O (where n is the 

coordination number of H20, n>1). 

The 29Si MAS NMR spectra of 3,8.7 and 14.2% wt. Mo03/H-ZSM-5 catalysts, where 

ammonium heptamolybdate was used as the starting material of the molybdenum 

component, together with H-ZSM-5 are given in Figure 3.10-3, the corresponding 

chemical shifts and Si/Al ratio for each sample are given in Table 3.10-1. It should be 

noted that according to Loewenstien's rule, Al-O-Al linkage cannot exist in zcolites. Ii- 

ZSM-5 generally only exhibits Si(OA1) and Si(1AI) configurations due to its high Si/AI 

ratio. 
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40 

PPM PPM 

.o -0o -wo -1zo -1ý0 -eo ao -fao .1o -14o 
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Figure 3.10-329 SI MAS NMR spectra of calcined (a) H-ZSM-5 (b) 3%MoO3/H-ZSM-5(c) 
8.7%MoO3/H-ZSM-5 (d) 14.2%Mo03/H-ZSM-5 (with ammonium heptamolybdate as the source 
of Mo). 
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Sample Mo precursor Si nAl b(PPM) Si/Al 

HZSM-5 - Si(IAL) -108 
Si(OA1) -115 39 

3%MoO3/H-ZSM-5 AHMa Si(1AI) -108 
Si(OA1) -115 50 

8.7%MoO3/H-ZSM-5 AHMa Si(1AI) -108 
Si(OAI) -115 60 

14.2%MoO3/H-ZSM-5 AHM° Si(1Al) -108 
Si(OA1) -115 63 

3%MoO3/H-ZSM-5 MoO3 Si(1AI) -108 
Si(OA1) -115 52 

8.7%Mo03/H-ZSM-5 MoO3 Si(1A1) -108 
Si(OA1) -115 59 

14.2%Mo03/H-ZSM-5 MoO3 Si(1Al) -108 
Si(OAI) -115 67 

a ammonium heptamolybdate 
Table 3.10-1 The results of 29S1 MAS NMR. 
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It can be seen from Figure 3.10-3 that there are two peaks in the 29Si MAS NMR spectra 

with chemical shifts at ca. -108 ppm and -115 ppm. The first peak can be attributed to 

Si(IA1) and the second peak can be attributed to Si(OAl). These peaks have been assigned 

based on NMR studies of these types on materials reported in the literature[ss, 98,99,1O2] 

The shoulder peak at ca -117 ppm is commonly attributed to the crystallographically 

inequivalent sites of Si(0Al)t103). The Si/Al ratios were calculated using the intensities of 

the Si(OA1) and Si(1AI) peaks. 

It can be seen from Table 3.10-1, that upon addition of molybdenum species to Il-ZSM-5 

that the Si/Al ratio increases, this ratio increases with increasing molybdenum loading. 

The increase in the ratio reveals that dealumination increases with increasing Mo content. 

The 29Si MAS NMR spectra of 3,8.7 and 14.2% Wt. Mo03/H-ZSM-5 catalysts, where 

molybdenum trioxide was used to prepare the catalysts are given in Figure 3.10-4, the 

corresponding chemical shifts and Si/A1 ratio for each sample are given in Table 3.10-1. 

Again the peaks at ca. -108 ppm and -115 ppm can be assigned to Si(! Al) and Si(OAl) 

respectively. Similar to the catalysts prepared by AHM, the catalysts prepared by 

molybdenum trioxide also show an increase in Si/A1 ratio with increasing molybdenum 

loading. It can be seen from Table 3.10-1, that the ratios of the 3,8.7 and 14.2%Mo03/H- 

ZSM-5 catalysts are almost identical when prepared by both AHM and MoO3. 
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Figure 3.10-429 Si MAS NMR spectra of calcined (a) 3%Mo03/H-ZSM-5(b) 8.7%Mo03/H-ZSM-5 
(c) 14.2%Mo03/H-ZSM-5 (with molybdenum trioxide as the source of Mo). 

3.11 N2 adsorption isotherms 

The N2 adsorption isotherms of the parent zeolite, H-ZSM-5 and the standard catalyst, 

3%Mo03/H-ZSM-5 are given in Figure 3.11-1 and Figure 3.11-2 respectively. It can be 

seen that the N2 adsorption isotherm of H-ZSM-5 represents a combination of Type I and 

IV isotherms, with a slight hysteresis loop. This is typical for microporous materials with 

a very small degree of mesoporosity. It can also be observed for the standard catalyst, 

3%Mo03/H-ZSM-5, which is also a combination of Type I and IV isotherms, that although 

the hysteresis loop, resulting from capillary condensation in mesoporesý1041, is still small it 

is more prominent than that of the parent zeolite. The difference in the hysteresis indicates 

that mesopores were developed during the incorporation of molybdenum species into H- 

ZSM-5. 
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Figure 3.11-1 N2 adsorption isotherm of H-ZSM-5. 
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Figure 3.11-2 N2 adsorption isotherm of 3%Mo03/H-ZSM-5. 
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3.12 Al EXAFS study of Mo03/H-ZSM-5 

As previously mentioned in the introduction chapter and shown in Section 3.10 of this 

chapter, there is an interaction between Mo species and the framework Al of ZSM-5. The 

powder XRD pattern of Mo/H-ZSM-5 in the calcined form, shown in Chapter 4, only 

shows reflections, which are indicative of ZSM-5. This agrees well with the literature. 

The XRD pattern does not show any evidence of destruction of the zeolite framework upon 

activation. However, it is of interest to investigate the effect of activation on the local 

structure of the zeolite framework. Therefore Al K-edge EXAFS studies have been 

conducted. 

The experimental and best fit calculated EXAFS spectra for activated Mo03/H-ZSM-5 is 

shown in Figure 3.12-1. Ten spectra were recorded over ca. 8 hours following the pre- 

treatment outlined in the experimental section. The quality of the fit, which was performed 
by Dr. M. Stockenhuber is good with the R factor being 21.9. The structural parameters of 

the average local Al environment, which have been extracted from the spectra, are given in 

Table 3.12-1. 

It was found that during fitting, the inclusion of a molybdenum scatterer significantly 

improved the fit. However, as can be seen from the data in Table 3.12-1 the Al-Mo 

interatomic distance is comparatively long, at 4.97 A. This displays the absence of a direct 

Mo-Al binding interaction and is consistent with the presence of a light scattering element, 

for example oxygen, lying between the two atomic centres. This proposal, which requires 

further confirmation, is consistent with the literature describing the presence of 

molybdenum oxo clusters within the zeolite channels [42,105 109] 
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Figure 3.12-1 Experimental and calculated best fit Al K-edge EXAFS spectra for the activated 
Mo03/H-ZSM-5 catalyst precursor. 

Mo/H-ZSM-5 I r/ A DW/ AL 
Al-O 1.77 0.001 
Al-O 1.64 0.001 
Al-O 1.77 0.001 
Al-O 1.88 0.006 
Al-Mo 4.97 0.012 
Al-Si average 3.09 0.006 

Table 3.12-1 Structural parameters for the activated Mo03/ZSM-5 zeolite (r corresponds to 
interatomic distances and DW to the Debye-Waller factors). The data was calculated from 
EXAFS multiple scattering calculations. For these calculations four oxygen next nearest and 
four silicon neighbours were used. 



Sharon Burns 2006 Chapter 3,67 

A schematic of the local Al environment, including the presence of Mo is given in Figure 

3.12-2, for comparison an idealised tetrahedral framework Al species for NH4-ZSM-5 is 

also given. 

Mo-ZSM5 3% NH4-ZSM-5 

Figure 3.12-2 The average local environment of framework Al in activated 
Mo03/H-ZSM-5 and NH4-ZSM-5. 

From this schematic, it appears like the average framework structure of the zeolite is 

strongly perturbed by the presence of Mo species, with the Al species being drawn out 

towards them. This is in agreement with observations, which suggest that aluminium can 

be directly extracted from the ZSM-5 framework either by increasing the Mo loading 

and/or the severity of thermal pre-treatment, for example [42,50] This phenomenon was 

also observed in the 27Al MAS NMR spectra of Mo03/H-ZSM-5 catalysts shown in 

Section 3.10. It is interesting to note that the degree of perturbation of the framework Al in 

the catalysts activated under standard conditions has not been widely discussed, although 

Figure 3.12-2 shows it to be potentially significant. However, It should be noted that the 

information extracted from the Al EXAFS is a weighted average. 

The 27A1 MAS NMR spectra of the Mo03/H-ZSM-5 catalysts given in Section 3.10 were 

activated under the conditions employed in the MDA catalysis experiments. Whilst this 

activation is conducted at a similar temperature to that employed in the EXAFS study, the 

duration of calcination (16 hours) is much longer. Consequently, the NMR studies can be 

seen as giving an upper limit on the fraction of non-tetrahedral Al. It was seen in Section 

3.10 that the tetrahedral framework Al in the 27 Al MAS NMR spectra of 3%Mo03/H- 

ZSM-5 constitutes the vast majority of the Al species observed, which gives confidence 

that the contribution to the EXAFS is dominated by the framework species. As previously 

mentioned, there is a sharp resonance at 0 ppm in the 27Al MAS NMR spectra of 
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3%Mo03/H-ZSM-5, suggesting that the species are "liquid-like" in nature and may be 

present either as highly disordered species or possibly hydrated cations. Even though this 

resonance is really strong, it is narrow resulting in a comparatively low relative area and 

therefore a small contribution to the average Al environment. 

Given that MoO3 is known to reduce under relatively mild conditions via the formation of 

shear planes, it is important to show that pre-treatment at elevated temperature in vacuo, 

which is required in these EXAFS experiments, does not result in any reduction in the 

molybdenum oxidation state. Such changes would be expected to lead to modifications in 

the interactions between the zeolite framework and extra-lattice molybdenum oxo clusters. 

Consequently, FTIR studies were undertaken in collaboration with Dr. M. Stockenhuber 

and the results are given in the following section. 

3.13 IR activation study of Mo03/H-ZSM-5 

Figure 3.13-1 shows the effect of activation on the Mo03/H-ZSM-5 precursor. In both 

spectra, stretches of 3610 and 3745 cm-I can be seen in the hydroxyl region, which 

corresponds to the presence of bridging Si-OH-Al and terminal Si-OH groups respectively 
[1101. The intensity of the background within the ca. 3000 to 3800 cm-1 region is also 

noteworthy and is consistent with the presence of hydroxyl nests of hydrogen bonded 

bridging groups. 
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Figure 3.13-1 In-situ FTIR spectra of 3%MoO3/H-ZSM-5(a) before and (b) after 
activation in-vacuo at 450°C. 
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Upon activation, it can be seen that there are significant changes to the hydroxyl region. 

The intensity of the background is considerably lowered and the bridging Si-OH-Al 

intensity is increased while the terminal Si-OH group intensity remains unchanged. This 

reveals, that there is no, or little, interaction between molybdenum oxo species with 

terminal Si-OH groups, while the apparent increase in intensity of the bridging Si-OH-Al is 

contrary to work reported in the literature ý42' 1051 However, it is possible to reconcile this 

difference by taking the difference in the general background in the OH stretching region 

into account. Taking this into account, it suggests that activation leads to a disruption of 

hydrogen bonded bridging groups, which leads to the apparent small increase in intensity 

of the 3745 cm-' feature. 

In in-situ FTIR studies by Dr. M. Stockenhuber, no adsorption of NO, a useful probe 

molecule for the determination of molybdenum oxidation state" was observed. This is 

consistent with the Mo(VI) oxidation state, revealing that activation in-vacuo does not lead 

to reduction of molybdenum oxo species. Therefore, it is most likely that the EXAFS 

experiments shown in this work reflect the activated form of the catalyst. 

The modification of the average framework Al local structure has interesting implications, 

since it would be anticipated that any changes to the Al-OH-Si bond angles would 

influence the acidity' 121. In view of this, it is of interest to probe the acid characteristics of 

the system. Using NH3 adsorption, the acidity of the activated samples has been probed by 

in-situ FTIR and the resultant spectra are shown in Figure 3.13-2. 
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Figure 3.13-2 In-situ FTIR spectra of 3%Mo03/H-ZSM-5. 
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From this figure, it can be seen that there is a progressive loss of the hydroxyl features at 

3610 and 3745 cm- '' together with the development of N-H stretching modes and the 

associated development of the band at 1500 cm' which can be attributed to NH4+ species. 

It is important to note the absence of any feature at 1620 cm', which demonstrates the 

absence of Lewis acid sites in this system. This is especially important considering the 

presence of the octahedral feature in the 27A1 MAS NMR spectrum presented in Section 

3.10. As a result, NH3-TPD experiments on the precursors activated by heating in air for 

16 hours were carried out, these results are presented and will be discussed in greater 

detail, in Chapter 4. The NH3-TPD experiments show that, as expected, ammonia interacts 

with the Bronsted acid sites of the zeolite. In this study it is noticeable that the inclusion of 

molybdenum species into HZSM-5 results in the temperature of the high temperature peak, 

which has been ascribed to ammonia adsorbed on the bridging hydroxyl group Si-OH-Al, 

exhibiting a lower temperature maxima for the Mo03/H-ZSM-5 material compared to H- 

ZSM-5, which demonstrates that upon loading Mo species into HZSM-5 that the strength 

of the Bronsted acid sites decreases. 
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3.14 Summary 

Chapter 3,71 

In this study the influence of the material of the reactor employed in MDA has been 

investigated. It has been shown that stainless steel reactors are not inert to reaction with 

methane, however quartz reactors play no role in the catalysis of the reaction. It is 

surprising that some catalytic data reported in the literature for this reaction has been 

reported when a stainless steel reactor has been employed. 

From preliminary studies on MDA using a Mo03/H-ZSM-5 catalyst, hydrogen production 
has been quantified and it has been shown to be the dominant product of the reaction. The 

actual ratio of H2: C6H6 produced when using Mo03/H-ZSM-5 in MDA was shown to be 

ca. 21, indicating that significant side reactions occur in MDA. 

A short study on the importance of the zeolite support in MDA demonstrated that H-ZSM- 

5 is a substantially superior support for MoO3 in MDA compared to mixed phase Zr02 or 

S-A12O3. 

On comparing the catalytic activity of Mo03/H-ZSM-5 with Pd/H-ZSM-5, it was seen that 

these two catalysts exhibited little similarity in behaviour. This implies that either Mo2C is 

not the active phase of molybdenum in MoO3/H-ZSM-5 or that there are uncertainties in 

the comparisons that can be drawn between Mo2C and Pd within this system. Pd/H-ZSM- 

5 was found to be an active methane decomposition catalyst, where the hydrogen produced 

was free from any COx co-products. The carbon deposited on the catalyst during the 

reaction was shown to be in the form of carbon nanotubes with a "herring-bone" structure. 

27A1 and 29Si MAS NMR experiments conducted on H-ZSM-5 and Mo03/H-ZSM-5 

catalysts revealed that there is an extraction of framework Al upon incorporation of Mo 

species into H-ZSM-5. The appearance of a sharp signal in the 27A1 MAS NMR spectra of 

Mo03/H-ZSM-5 catalysts is noteworthy. This suggests that such species are "liquid-like" 

in nature and may be present as either highly disordered species or possibly as hydrated 

cations. The interaction between Mo species and HZSM-5 was also demonstrated through 

the N2 adsorption isotherms of the parent zeolite, H-ZSM-5 and the standard catalyst, 

3%Mo03/H-ZSM-5, it was shown that mesopores were developed during the incorporation 

of molybdenum species into H-ZSM-5. 

A study on the activation of Mo03/H-ZSM-5 catalyst precursors for MDA using Al K- 

edge EXAFS has shown that there is a significant distortion of the tetrahedral framework 
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Al environment, with Al species being drawn towards molybdenum centres. In-situ FTIR 

studies demonstrated that molybdenum remains in the +VI oxidation state under the 

conditions employed in the EXAFS experiments, and that the acidity displayed by such 

precursors is exclusively of Bronsted type. 
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4 The effect of dopants and molybdenum 

precursors on the activity of Mo03/H-ZSM-5 

catalysts 

4.1 Introduction 

4.1.1 Dopants 

As shown in Chapter 3 and reported in the literature [26,43,44] carbonaceous deposits are 

formed during MDA. Lunsford and co-workers observed three different types of surface 

carbon using XPS. They reported that the first type was mainly present in the zeolite 

channels and was due to graphite-like carbon. The second type was observed on the outer 

surface of the zeolite and was carbidic like carbon in Mo2C. However alternative locations 

for molybdenum carbide species have been reported, studies carried out by Zhang et al. [53] 

have reported the migration of molybdenum species into the zeolite pores. They showed 

using Mo EXAFS experiments, that calcination causes re-dispersion of molybdenum into 

the zeolite pores. The last type of surface carbon reported by Lunsford and co-workers is 

also present on the outer surface of the zeolite and is hydrogen poor. They suggested that 

this last type of carbon is responsible for gradual deactivation of the catalyst and a greater 

amount is seen as the length of time of stream increases [261. Consequently, the conversion 

of methane rapidly reduces after a couple of hours due to the coke deposits on the catalyst. 

To suppress this deactivation process modifications of the reaction conditions and/or the 

catalyst have been tested. Optimisation of reaction conditions has been extensively 

studied. Addition of other gases, such as CO, CO2 and H2 into the methane feedstock have 

been tested [34,56,91,92,113] These additives have been shown to increase the stability of the 

catalyst. There have been many suggested mechanisms relating to CO addition. For 

example, Ohnishi et al. [343 reported that the improvement in aromatisation by CO addition 

is due to the formation of minute amounts of C02, formed via the Bouduard reaction 

(Equation 4-1). These CO2 species are proposed to remove surface carbon species on 

Mo/H-ZSM-5 and regenerate CO. 

2CO CO2 +C Equation 4-1 
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They also suggested that the active oxygen species derived from CO reacts with the surface 

carbon, which otherwise forms inactive coke, (Equations 4-2 and 4-3). 

CO [C] + [0] Equation 4-2 

[O] + Coke ý- CO or CO2 Equation 4-3 

On the other hand, the results reported by Liu et al. [921 showed that CO addition did not 
display any beneficial effects. Ohnishi et al. [34] reported that adding a few percent of CO2 

to the methane feed results in improving the stability of the catalyst via the formation of 

CO by the reforming reaction, and/or the reverse Bouduard reaction at 973 K on the 

catalysts, (Equations 4-4 and 4-5 respectively). 

CO2 + CH4 2CO +2H2 Equation 4-4 

CO2 +C 2CO Equation 4-5 

However, it was reported that excess addition of CO2 (-'*10%) inhibits the formation of 

benzene. Au and co-workers also attributed the beneficial effect of CO2 addition to the 

reforming of methane [94] 

Studies carried out on experimental conditions such as temperature[25], pressure and 

methane space velocity [241 have also shown that experimental parameters exert influence 

on the catalytic performance. 

Ichikawa et al. have shown that the reaction can be optimised by the addition of a second 

metal component to the Mo03/H-ZSM-5 based catalyst. They reported that doping with 

cobalt or iron [34.55] retards deactivation and enhances catalytic activity. They found that 

the maximum yield of aromatics was attained in low concentrations of Fe and Co in Mo/H- 

ZSM-5.1% Co loaded into Mo/H-ZSM-5 resulted in an increase in benzene, which was 

attributed to an increase in conversion compared to Mo/H-ZSM-5, whereas they reported 

the enhancement in benzene upon Fe addition to Mo/H-ZSM-5 was due to suppressed 

coking. They suggested that the binary FeMo and CoMo oxide/carbides formed on the 

ZSM-5 support are active for methane dehydroaromatisation. 

The loading of other metal ions into the Mo03/H-ZSM-5 catalyst has also been reported to 

improve catalytic activity. Incorporation of Ru, W and Zr was found to improve the 
[25, 

and/or stability of the Mo03/H-ZSM-5 catalysts ' 52] 
. However, the loading of 
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Li and P has an negative effect on the catalytic activity [351. It has been reported that when 

introducing a second metal component, the molybdenum species should be impregnated 

first 0j. [1 

In this study, the effect of Co2+ and Fe 3+ dopants have been re-examined and the range has 

been extended to include A13+, Ga 3+ and Nie+. The use of metal ion dopants as a means of 

obtaining promotional effects was chosen over that of employing gas phase oxidants, such 

as, CO,, due to the potential application of systems to the production of CO-free hydrogen. 

The varying performance of methane dehydroaromatisation catalysts prepared via the 

impregnation of H-ZSM-5 with ammonium heptamolybdate, phosphomolybdic acid, 

silicomolybdic-acid and sodium-molybdate as the molybdenum oxide precursor has also 

been investigated. 

4.2 Results and discussion - dopant study 

4.2.1 Reaction data 

Continuing on from work reported by Ichikawa and co-workers [34,55], the effect of the 

addition of Co and Fe dopants have been re-investigated. The level of dopant added 

corresponds to that reported to have the maximum effect. In the case of cobalt, no 

significant promotional effect has been observed aside from an initial burst of activity 

where hydrogen was observed, as shown in Figure 4.2-1. This feature is due to the 

reduction and/or carbiding of the molybdenum and cobalt components. A similar high 

initial, and rapidly declining, hydrogen profile has been observed for a Ni 2+ doped 

3%Mo03/H-ZSM-5 catalyst also shown in Figure 4.2-1. The presence of cobalt or nickel 

in the current study appears to have little effect on benzene formation, as shown in Figure 

4.2-2. 
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Figure 4.2-1 Hydrogen formation rates as a function of time on stream for the 
parent 3%MoO3/H-ZSM-5 catalyst, and those doped with Co2+ and Ni2+ 
(dopant metal ion/Mo atomic ratio of 0.25). 
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Figure 4.2-2 Benzene formation rates as a function of time on stream for the 
parent 3%Mo03/H-ZSM-5 catalyst, and those doped with Co2+ and Ni2+ 
(dopant metal ion/Mo atomic ratio of 0.25). 

This study has shown that upon doping with cobalt or nickel, apart from the initial 

enhancement in benzene production at earlier times on stream, no pronounced promotional 

effect can be observed, although the induction period has been removed by the addition of 

cobalt and nickel. These results conflict with the findings by Ichikawa and co-workers, 

who reported that a Co-modified Mo/H-ZSM-5 catalyst results in a remarkably enhanced 

production of benzene. 
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In order to investigate the lack of promotional effect of cobalt addition on catalyst 

behaviour at longer times on stream, a number of variables such as calcination procedure 
have been investigated, but have not been found to produce significant differences. 

40.00 

35.00 

30.00 

`0 25.00 
c 

C _o 
oc 

20.00 
Eo 
o 

15.00 

10.00 

5.00 

0.00 

f 3%Mo/H-ZSM-5 
3%Mo-Co/H-ZSM-5 

-* 3%Mo-Fe/H-ZSM-5 
-0-3%Mo-Ni/H-ZSM-5 
-*-3%Mo-Ga/H-ZSM-5 

0 50 100 150 200 250 300 350 

time on stream / min 

Figure 4.2-3 The ratio of H2 to C6H6 formation rates as a function of time on 
stream for the parent 3%Mo03/H-ZSM-5 catalyst and those doped with Coe+, 
Fei+, Ni2+ and Ga3+(dopant metal ion/Mo atomic ratio of 0.25). 

Figure 4.2-3 shows that both Co and Ni doped Mo03/H-ZSM-5 catalysts have a slightly 

larger H2: C6H6 formation rate ratio than the undoped catalyst. The higher ratio is an 

indication that upon addition of cobalt or nickel the relative coke formation increases 

compared to that of the standard catalyst. This is consistent with the CHN analysis given 

in section 4.2.6. 

Unlike cobalt and nickel, the use of an iron dopant does enhance activity at longer times on 

stream. At the start, the benzene formation rate profile for the iron doped catalyst is 

similar to the parent 3%Mo03/H-ZSM-5 catalyst as shown in Figure 4.2-5. However, as 

can be seen, the addition of iron displays beneficial effects in terms of benzene formation 

at longer times on stream. This may be due to delayed deactivation or the slow evolution 

of additional active phases with time on stream. 

In addition, the H2: C6H6 formation rate ratio shown in Figure 4.2-3, shows a much more 

pronounced maximum compared to the standard catalyst, 3%Mo03/ZSM-5, with a sharper 

and more continual decline. This is an indication that hydrogen producing side reactions, 

such as coke formation, decline at a faster rate than for benzene production. The generally 

higher ratio for the Fe 3+ doped 3%Mo03/H-ZSM-5 catalyst compared to the standard 
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catalyst also shown in Figure 4.2-3 indicates that the relative formation of coke is in fact 

higher on the addition of iron, this is consistent with the CHN analysis given in section 
4.2.6. Contrary to these observations, Ichikawa and co-workers claim that their Fe 

modified Mo/H-ZSM-5 catalyst enhances benzene production through reduced coking [55] 

Weckhuysen et al. have shown that, iron oxide impregnated onto ZSM-5 (with no 

molybdenum oxide species present) is an active MDA catalyst [27,28,114]. It was suggested 

that the active form of the catalyst consisted of dispersed Fe304 entities on the ZSM-5 

matrix. Methane activation is reported to occur on the supported iron oxide clusters, once 

the catalyst is partially reduced from Fe203 to Fe304. They reported that in another 

experiment where the Fe/H-ZSM-5 catalyst had been prepared by solid-state ion exchange, 

that the catalyst was completely inactive for methane activation. 

In the results reported in this work there are at least a couple of effects which may explain 

any promotional effect of iron doping, for example, there may be segregated phases of Mo 

and Fe. In this case the activity of the Mo component may cause activation of the Fe 

species by providing the CO and/or H2 required to reduce them by reaction with methane. 

Another possibility may be that there is the formation of a mixed phase i. e. Fe-Mo, which 

exhibits different behaviour from the Mo containing phase alone. From XRD 

measurements of the catalysts given in section 4.2.2, it has not been possible to observe 

any molybdenum or iron segregated or mixed phases, as only reflections indicative of the 

zeolite framework are visible. However, future studies using EXAFS experiments may 

resolve this issue. 

Another dopant, which has been investigated in this work, is gallium. Ga/ZSM-5 is an 

active catalyst in the Cyclar Process [115,116], where aromatics are formed from C3 and C4 

alkanes. The role/nature of the gallium phase is presently not well understood, one 

suggestion being facilitated hydrogen desorption. There have also been reports of 

synergistic effects between Ga203 and Mo03 in alkane oxidation [117,118] Therefore, it is 

possible that Ga doping may have promotional effects when used as a dopant in this 

system. 

The data for the Ga 3+ doped Mo03/H-ZSM-5 catalyst is shown in Figure 4.2-3 to Figure 

4.2-5. It is clear to see that the Ga 3+ doped MoO3/H-ZSM-5 catalyst has an improved 

benzene production rate. Figure 4.2-3 indicates that there is a slight decrease in the H2: 

C6H6 ratio on gallium addition, which indicates that there is a relative reduction in the 

hydrogen producing side reactions, such as coke formation. This is consistent with the 
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CHN analysis, which shows that gallium doping does reduce coking of the Mo03/H-ZSM- 

5 catalyst. In addition, as was seen before there is a constant H2: C6H6 ratio, indicating that 

both benzene and hydrogen producing side reactions decrease at a similar rate with time on 
stream. 
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Figure 4.2-4 Hydrogen formation rates as a function of time on stream for the 
parent 3%Mo03/H-ZSM-5 catalyst, and those doped with Fe 3+ and Ga 3+ 
(dopant metal ion/Mo atomic ratio of 0.25). 
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Figure 4.2-5 Benzene formation rates as a function of time on stream for the 
parent 3%Mo03/H-ZSM-5 catalyst, and those doped with Fe 3+ and Ga 3+ 

(dopant metal ion/Mo atomic ratio of 0.25). 

It should be noted that there is a difference between the pH of the impregnation solutions 

of the dopants, for example, ca. pH 3 for iron, pH 4 for gallium versus pH 7 for cobalt. 
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Iron and gallium give acidic impregnation solutions. Acidic impregnation may lead to 

dealumination of the zeolite framework. However, the XRD patterns show that the zeolite 

structure remains intact, so if dealumination does occur it is only to a limited extent. It is 

interesting that the doped catalysts, which have had a beneficial effect, have all been 

prepared from acidic precursor solutions. 

In view of the possibility that dopants display a beneficial effect due to acidic 
impregnation, another dopant, aluminium, which also gives a relatively acidic 

impregnation solution (pH=5), has been tested in this work. From reviewing the literature 

it does not appear that aluminium doping of Mo03/H-ZSM-5 aromatisation catalysts has 

been carried out before. Promotional effects have been observed with the use of an 

aluminium dopant, Figure 4.2-6 and Figure 4.2-7, in that benzene production was 

enhanced. However the Al3+ doped Mo03/H-ZSM-5 catalyst does not display reproducible 

results between reaction runs of the same or different batches of the catalyst, this is shown 

using the hydrogen and benzene formation rate profiles of the catalyst in Figure 4.2-6 and 

Figure 4.2-7. From studying the catalysts' preparation procedure there appears to be no 

correlation between the lengths of time the catalyst is in the fresh/calcined form and 

catalytic activity i. e. any ageing effects. 
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Figure 4.2-6 Hydrogen formation rate as a function of time on stream for AI3+ 
doped 3%Mo03/H-ZSM-5 (AI/Mo atomic ratio of 0.25). 
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Figure 4.2-7 Benzene formation rate as a function of time on stream for AI3+ 
doped 3%Mo03/H-ZSM-5 (AI/Mo atomic ratio of 0.25). 

The characterisation analysis given in the following sections has been focused on the Fe 3+ 

doped 3%Mo03/H-ZSM-5 catalyst. Characterisation has been concentrated on the iron 

doped catalyst, since, iron addition to Mo/H-ZSM-5 has previously been reported in the 

literature. As already mentioned, Fe addition to Mo/H-ZSM-5 was shown to enhance 

benzene, which was attributed to reduced coking [55] Furthermore, iron addition to 

Mo03/H-ZSM-5 in this work has also shown promotional effects regarding benzene 

production. In this case addition of iron was seen to enhance coking. Therefore, it is an 

interesting investigation to attempt to elucidate the promotional effect of iron. 

4.2.2 XRD patterns 

X-ray powder diffraction studies were performed on calcined and post reaction catalysts, 

the patterns are given in Figure 4.2-8 and Figure 4.2-9 respectively. The patterns of the 

calcined catalysts show the characteristic reflections of H-ZSM-5 with the main 26 values 

of ca. 8,9 and 23-25°. No molybdenum or dopant metal containing crystallites could be 

detected. This suggests that MoO3 crystallites are highly dispersed on the surface or in the 

channels of the H-ZSM-5 zeolite and have a particle size too small to be detected by the 

XRD technique. 

It is noticeable that there are differences between the relative intensities of the reflections 

Chapter 4,81 

at 8-9 and 23-25 °26 between the different catalysts. In patterns where the reflections at 8- 
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9 °20 are comparably lower in intensity, there may be material occluded within the channel 

structure resulting from dealumination. 

As the XRD patterns of the calcined standard catalyst and doped catalysts all only show 

reflections indicative of the zeolite, it is not possible to verify any active phases of the 

catalysts. As stated previously, it may be that the dopants interact directly with the 

molybdenum containing phases or that they form some sort of isolated phase having a 

more indirect effect. 
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Figure 4.2-8 XRD pattern of calcined 3%Mo03/H-ZSM-5, and those doped with 
Coe+, Fei+, Nie+, Ga3+ and A13+ (dopant metal ion/Mo atomic ratio of 0.25). 

The XRD patterns of the post reaction catalysts, Figure 4.2-9, show no reflections 

indicative of molybdenum oxide or carbide species. This was to be expected, as no MoO3 

reflections were visible in the patterns of the calcined catalysts. Reflections indicative of 

the formation of ß-Mo2C would appear at 34.3,37.3 and 39.4 °26 and for a-MoCI_X at 36.8 

and 41.2 °26. Reflections indicative of H-ZSM-5 i. e. main 20 values of ca. 8,9 and 23-25° 

are still visible. In general the reflections are much less intense than those of the calcined 

patterns, indicating that the crystallinity of ZSM-5 has decreased, and that there is 

deposition of coke on the catalyst. 

It has been reported in the literature, that coke formation occurs both externally and 

internally, i. e. within the channels of ZSM-5, on Mo03/H-ZSM-5 based catalysts. It has 
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been suggested that coke formation within the zeolite can lead to blockage of channels and 
[3s] the covering of the acid sites, leading to catalyst deactivation 

Evidence of internal coke is given by the post reaction XRD patterns. It has been reported 

that ZSM-5 undergoes a displacive transformation from monoclinic to orthorhombic when 

it occludes organic molecules [1191. This effect results in the loss of a shoulder on the 

reflection at 23 °20. On closer examination of this reflection, it is noticeable that in the 

XRD pattern of the calcined catalysts, Figure 4.2-8, that there is a shoulder on this 

reflection, however, this shoulder has diminished on the reflection in the XRD patterns of 

the post reaction catalysts, Figure 4.2-9. Therefore it can be said that ZSM-5 has 

undergone a phase transformation of monoclinic to orthorhombic due to the deposition of 

coke. 
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Figure 4.2-9 post reaction XRD patterns of 3%Mo03/H-ZSM-5, and those doped with 
Coe+, Fei+, Nie+, Ga3+ and A13+ (dopant metal ion/Mo atomic ratio of 0.25). 

The XRD patterns of the calcined and post reaction A13+ doped 3%Mo03/H-ZSM-5 

catalyst are given in Figure 4.2-8 and Figure 4.2-9. In the calcined pattern of Al doped 

3%Mo03/H-ZSM-5 catalyst the molybdenum species are highly dispersed and the 

characteristic peaks of H-ZSM-5, main 20 values of ca. 8,9 and 23-25°, are visible. 

The post reaction XRD pattern of the Al-doped catalyst, exhibits in general less intense 

peaks, indicating a decrease in crystallinity of the sample compared to the pattern of the 
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catalyst prior to methane aromatisation. However, the zeolite structure does remain intact, 

as all the main reflections indicative of H-ZSM-5 are still visible 

4.2.3 27 AI and 29Si MAS NMR spectra 

In order to gain a greater insight into the origin of the promotional effects observed upon 
Fe 3+ addition a MAS NMR investigation was undertaken. The 27A1 MAS NMR spectra of 

the calcined 3%Mo03/H-ZSM-5 catalyst together with the Fe 3+ doped 3%Mo03/H-ZSM-5 

catalyst are shown in Figure 4.2-10. Quantification of the NMR spectra was not attempted 
because of uncertainty about the NMR visibility of aluminium species in distorted 

coordination. Referring to previously published 27A1 MAS NMR studies relating to 

Mo03/H-ZSM-5 based catalysts published in the literature as described in Chapter 3, the 

peak at ca. 53 ppm in the spectra is typical for tetrahedrally coordinated framework 

aluminium in the ZSM-5 zeolite and the peak at ca. -1.5 ppm is typical of octahedral non- 
framework aluminium, Le extra framework aluminium , 53,98,99] 

The 27A1 MAS NMR spectra of the Fe 3+ doped 3%Mo03/H-ZSM-5 catalyst is similar to 

that of the standard catalyst, 3%Mo03/H-ZSM-5, indicating a high stability of the ZSM-5 

framework upon incorporation of the dopant. These spectra agree well with the XRD 

patterns of the catalysts previously shown, which indicate that the zeolite structure remains 

intact upon incorporation of the molybdenum and the dopant species. 

On comparing the peak at -1.5 ppm for the standard catalyst with the Fe 3+ doped catalyst, 

it can be seen that the relative intensity is greater for the Fe doped catalyst. This implies 

that there is a greater degree of non-framework aluminium for the Fe 3+ doped 3%Mo03/H- 

ZSM-5 catalyst. The greater degree of non-framework aluminium is confirmed by the 

Si/Al ratios of these catalysts given in the next section. Therefore doping with iron causes 

an increase in the extractability of the framework Al compared to that of the standard 

catalyst. 

It is interesting to observe that the signal at ca -1.5 ppm for the both the iron doped 

catalyst and the standard catalyst has a "liquid-like" NMR appearance, this "liquid-like" 

signal is more pronounced for the Fe doped catalyst. As discussed in Chapter 3, this signal 

rather than being due to the conventional octahedral non-framework aluminium may be 

due to some form of "disordered" octahedral aluminium. For example, it would be 

consistent with [Al(H2O)6]3+ wherein deprotonation was suppressed by the inherit acidity 
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of the zeolite host. However, additional 27A1 MAS NMR studies would be required to 

elucidate this remark any further. 

An 27A1 NMR study by Masierak et al. ý1201 found that exchange with divalent (or greater) 
cations leads to distortions of the zeolite framework and the formation of an extra- 
framework aluminium species. Although their study was conducted on type A zeolites, it 
is possible that the same effect occurs for other zeolites, such as ZSM-5. 

200 100 0 -100 -200 
ppm 

Figure 4.2-10 27 MAS NMR spectra of calcined: (a) 3%MoO3/H-ZSM-5 (b) Fe3+ doped 
3%Mo03/H-ZSM-5 

As previously mentioned in Chapter 3, the framework Si/Al ratio of zeolites can be 

determined from the 29Si MAS NMR spectra. The 29Si MAS NMR spectra are shown in 

Figure 4.2-11 for calcined 3%Mo03/H-ZSM-5, and for those doped with Fe 3+ and A13+ 

The corresponding chemical shifts and Si/Al ratio for each sample are given in Table 

4.2.3-1. From Figure 4.2-11, it can be seen that there are two peaks in the 29Si MAS NMR 

200 100 0 -100 -200 
ppm 
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spectra with chemical shifts at ca. -106 ppm and -113 ppm. The first peak can be 

attributed to Si(1 Al) and the second peak can be attributed to Si(OA1). 

From visual inspection, it appears that incorporation of iron and alluminium dopants 

causes a slight diminution in the low field shoulder (-106 ppm), due to Si(1 Al), compared 
to the standard catalyst, 3%Mo03/H-ZSM-5, implying a loss of aluminium from the zeolite 

lattice upon incorporating Fe and Al dopants. A similar effect to this signal was reported 

by Zhang et al [531 upon calcination. 

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 

ppm ppm 
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Figure 4.2-11 29Si MAS NMR spectra of calcined: (a) 3%Mo03/H-ZSM-5 (b) Fe 3+ doped 
3%Mo03/H-ZSM-5 (c) Al3+ doped 3%Mo03/H-ZSM-5. 

Sample Si nAl b (Ppm) Si/Al 

3%Mo03/HZSM-5 Si(1Al) -109.0 
Si(0A1) -116.0 50 

3%Mo03-Fe/HZSM-5 Si(1A1) -106.0 
Si(OA1) -113.0 70 

3%Mo03-Al/HZSM-5 Si(1A1) -105.9 
Si(OA1) -112.9 57 

Table 4.2.3-1 The results of 29Si MAS NMR 
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Moreover, it can be seen that the framework ratio of Si/Al increases sharply when Fe3+ is 

doped onto 3%Mo03/H-ZSM-5 i. e. Si/A1 of 70 for Fe 3+ doped 3%Mo03/H-ZSM-5 

compared to a Si/Al ratio of 50 for the standard catalyst. As already mentioned the Fe 3+ 

doped catalyst was prepared by acidic impregnation. A13+ doped 3%Mo03/H-ZSM-5 was 

also prepared by acidic impregnation, this catalyst also exhibited an increase in the Si/Al 

framework ratio compared to the standard catalyst. Therefore, it appears that doped 

catalysts prepared by acidic impregnation cause an increase in the framework Si/Al ratio of 

the Mo03/H-ZSM-5 catalyst. 

It was proposed in Chapter 3 through Al EXAFS studies that incorporation of Mo species 
into H-ZSM-5 causes significant distortion of the framework aluminium, which is drawn 

from the framework towards the molybdenum oxo species. Evidence for the extraction of 

framework aluminium from the zeolite was given by the N2 adsorption isotherms of the 

parent zeolite, H-ZSM-5 and the standard catalyst, 3%Mo03/H-ZSM-5, through the 

increase in mesoporosity upon molybdenum incorporation. It was believed that by 

addition of extra aluminium in the form of a dopant, that some of the lost framework 

aluminium might be replaced, or else the concentration of active extra-framework Al 

species would be increased. The NMR studies have shown that the Al doped catalyst has a 

greater degree of dealumination than the standard catalyst, as a higher Si/Al ratio is seen 

for the Al doped catalyst. A higher Si/Al ratio indicates that the acid site strength has 

increased upon doping with Fe or Al compared to that of the standard catalyst. 

The interaction between the framework aluminium of the zeolite and molybdenum species 

has also been reported in the literature. Xu et al. have also shown using 27 Al and 29S, - MAS 

NMR studies, that framework aluminium in the zeolite can be extracted by the introduction 

of molybdenum species. The extractability of framework aluminium was shown to 

increase with increasing molybdenum loading. The process leads to the formation of non- 

framework aluminium species at first and then a crystalline phase of A12(Mo04)3. In the 

literature it has been reported that A12(Mo04)3 phases form for standard methane 

aromatisation catalysts such as Mo03/H-ZSM-5, this type of phase has been associated 

with low catalytic activity [501, this effect may also be likely when employing an aluminium 

dopant. However, the XRD patterns shown earlier, Figure 4.2-8 indicate that the 

A12(Mo04)3. phase was not produced for any of the catalysts. 

From reviewing the literature, there does not appear to be many 27 Al and 29Si MAS NMR 

studies on post reaction Mo03/H-ZSM-5 based catalysts. However, Zhang at al. I"J have 

presented, but not discussed, post reaction 27A1 and 29Si MAS NMR spectra of their Mo/H- 
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ZSM-5 catalyst. Figure 4.2-12 and Figure 4.2-13 give the post reaction 27A1 and 29Si MAS 

NMR spectra of 3%Mo03/H-ZSM-5 and those doped with Fe3+ and A13+. Generally, all 

the peaks in the 27A1 spectra of the post reaction catalysts are less intense than the peaks in 

the 27A1 spectra of the calcined catalysts, Figure 4.2-10. 

On comparing the intensity of the signals ascribed to octahedral non-framework aluminium 

with tetrahedrally coordinated framework aluminium for the post reaction 3%Mo03/H- 

ZSM-5 catalyst compared to the intensities of these signals in the spectra of the catalyst in 

the calcined form, Figure 4.2-10, it is clear to see that the relative intensity of octahedral 

non-framework aluminium is much greater in the post reaction 27A1 MAS NMR spectra. 
This result indicates that during the MDA reaction framework aluminium from the zeolite 
is extracted. Again, XRD patterns of the post reaction catalysts, shown earlier, revealed 

that the zeolite structure remains intact after the MDA reaction. Therefore, the 

dealumination that occurs during the reaction does not occur to a great enough extent to 

structurally damage the ZSM-5 zeolite. 

It can be seen from Figure 4.2-13 that the shoulder peak (which was attributed to SKIM)) 

which was present in the 29Si MAS NMR spectra of the catalysts when they were in the 

calcined form (Figure 4.2-11) is no longer clearly visible in the post reaction spectra. This 

may imply a loss of Al from the zeolite. However, from the 27Al MAS NMR of the post 

reaction catalysts it is evident that all the Al has not been extracted. Furthermore, post 

reaction XRD patterns confirm that the zeolite structure remains intact after the reaction. 

In general on comparing the spectra of the post reaction catalysts with the spectra of the 

catalysts in the calcined form, it appears that the Si(OAl) peaks of the post reaction 

catalysts are less intense but slightly broader. 
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Figure 4.2-12 27 MAS NMR spectra of post reaction: (a) 3%Mo03/H-ZSM-5 (b) Fe3+ doped 
3%Mo03/H-ZSM-5 
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Figure 4.2-13 29Si MAS NMR spectra of post reaction: (a) 3%Mo03/H-ZSM-5 (b) Fe3+ doped 
3%Mo03/H-ZSM-5 (c) AI3+ doped 3%Mo03/H-ZSM-5. 

4.2.4 NH3-TPD profiles 

NH3-TPD experiments were conducted on the Fe doped 3%Mo03/H-ZSM-5 catalyst prior 

to reaction, to examine any differences in acidity between this catalyst and the standard 

catalyst, 3%Mo03/H-ZSM-5. NH3-TPD experiments may also help elucidate the origin of 

the "liquid like" 27A1 MAS NMR signals shown in the previous section, Figure 4.2-10. 

Changes in acidity between the two catalysts may help explain the differences in their 

catalytic activity, since in the currently accepted mechanism, acid catalysed reaction of 

C2H4 intermediates is proposed to yield the C6H6 product. It should be noted that FTIR 

activation studies conducted on 3%Mo03/H-ZSM-5, which were presented in Chapter 3, 

demonstrated that all the acidity relating to this type of catalyst is of the Bronsted type and 

not Lewis. 

The NH3-TPD profile of the Fe 3+ doped Mo03/H-ZSM-5 catalyst is shown in Figure 

4.2-14, the profiles for H-ZSM-5 and 3%Mo03/H-ZSM-5 are also given for comparison 

(the TPD profiles were deconvoluted by the Gaussian curve fitting method. The numerical 



Sharon Burns 2006 Chapter 4,91 

data of the fittings are listed in Table 4.2.4-1). It should be noted that direct area 

comparisons cannot be made between samples. The profile of H-ZSM-5, exhibits the 

double-peak characteristic of zeolites with the MFI structure [12'J. The two fairly well 

resolved peaks are centered at ca. 237 and 444 T. However, on closer analysis in view of 

the data apparent for Mo03/H-ZSM-5, it actually appears that the low temperature peak 

may be fitted into two peaks when using the Gaussian curve fitting method. 
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Figure 4.2-14 NH3-TPD profile (ramp rate 15°C/min) of (a) H-ZSM-5 (b) 3%Mo03/H- 
ZSM-5 (c) Al3+ doped 3%Mo03/H-ZSM-5 (d) Fe 3+ doped 3%Mo03/H-ZSM-5. The 
deconvoluted curves are also shown. 

Catalyst Peak position ("C) Relative peak area 
Ti T2 T3 

A, A2 A3 

H-ZSM-5 193 250 444 18 21 61 

3%Mo03/H-ZSM-5 196 250 430 12 37 51 

3%Mo03-Al/H-ZSM-5 184 245 405 14 33 53 
3%Mo03-Fe/H-ZSM-5 230 430 55 44 

Table 4.2.4-1 Numerical results of the NH3-TPD profiles by the Gaussian curve fitting 

method. 

100 200 300 400 500 600 

Temperature /C 

100 200 300 400 



Sharon Burns 2006 Chapter 4,92 

In measurement studies of acidity of zeolites, Hidaglo et al. have reported that the peak 
desorbed at high temperature is always associated with the ammonia adsorbed on the 

bridging hydroxyl group =Si-OH-Al=. However, the assignment of the low temperature 

peak is not clear, possibilities include, physisorbed ammonia, chemisorbed ammonia or 
from Si-OH groups 211 [1 

. 

The ascription of the moderate temperature peak in the NH3-TPD profiles is also still not 

well understood. For example, it may be ascribed to the desorbed ammonia on extra- 
framework Al or Si-OH [102]. It may also be possible to attribute it to the ammonia 

adsorbed on the medium acid sites, which are created from the interaction of Mo species 

and the strong acid sites. 

The temperature of a TPD peak is used as a rough measure of the acid strength of the 

sorption sites. Caution must be applied in this analysis as, it is generally assumed that 

acid-base interactions dominate the adsorption of NH3 on acidic materials and that the 

strength of interaction relates to the acid strength. However, it should be noted that other 

interactions may be occurring and that these may be as strong as the conventionally 

assumed acid-base interactions. For instance, ammonia dissociation on adsorption of CaO 

[1 has been reported, resulting in high TPD temperatures 2zß. 

It can be seen in Figure 4.2-14 that there is an apparent decrease in acidity when Mo 

species have been loaded onto H-ZSM-5, as there is a decrease in the desorption 

temperature of A3, which relates to the strongest acid sites of the zeolite i. e the Bronsted 

acid sites. Bao et al. have also reported a decrease in the area and temperature of the high 

temperature peak after the incorporation of molybdenum species in ZSM-5 [1021. The 

decrease in the relative area of the high temperature peak has been reported to be due to the 

interaction of Mo species with the Brensted acid sites of the zeolite. 

The results of the Al EXAFS experiments of the standard catalyst, 3%Mo03/H-ZSM-5, 

given in Chapter 3, reveal that a distortion of framework aluminium does occur when 

molybdenum oxide is loaded onto H-ZSM-5. This distortion would be expected to 

influence the strength of the framework Bronsted acid sites. 

In the case of the results reported here, it is probable that the decrease in the high 

temperature peak is due to the lowering of the amount of Bronsted acid sites, which result 

from a modification/interaction with Mo species. This agrees well with results reported by 

Bao et al. that have shown using ESR studies that Mo species do migrate into the zeolite 
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channels and interact with and replace some Bronsted acid sites I'll, compared to the 

findings by Lunsford and co-workers that claim molybdenum oxide species are on the 

external surface and there is no discussion of migration. 

The Fe-modified catalyst has an even lower relative area of high temperature peak than the 

standard catalyst, 3%Mo03/H-ZSM-5, indicating that doping with iron lowers the amount 

of Brensted acid sites compared to that of the standard catalyst. There may be a few 

possible explanations for this, firstly, the molybdenum and iron species on the iron doped 

catalyst interact/modify the strongest acid sites to a greater extent than the Mo species 

alone on the parent catalyst. Alternatively, another explanation may be dealumination by 

Fe 3+ ions, as evidenced in the NMR studies outlined previously. Therefore, the difference 

in acidity may be explained through the dealumination of ZSM-5 caused by the presence of 

iron species. 

To compare the acidity of the A13+ doped catalyst with that of the standard catalyst, NH3- 

TPD experiments were carried out and the results are given in Figure 4.2-14. For the 

aluminium doped catalyst the ammonia adsorbed on the Brr nsted acid sites i. e. A3, desorbs 

at lower temperatures compared to that of the standard catalyst. This implies that the 

strength of acid site, A3, has decreased. Therefore it appears that doping Al into 

3%Mo03/H-ZSM-5 does in fact lower the strength of the Brensted acid sites in the 

catalyst. 

Moreover, all desorption peaks in the Al doped sample are at a lower temperature than the 

corresponding peaks in the standard catalyst, indicating that the strength of all the types of 

sites have been lowered upon Al doping. 

Although the NH3-TPD experiments suggest that addition of Fe and Al dopants to 

3%Mo03/H-ZSM-5 lowers the strength of Bronsted acid sites compared to that of the 

standard catalyst, the 29Si MAS NMR studies shown previously, Table 4.2.3-1, show that 

the acidity of the 3%Mo03/H-ZSM-5 catalyst increases upon addition of Fe and Al, as the 

Si/Al ratio of the doped catalysts is greater than that of the standard catalyst. 

4.2.5 N2 adsorption isotherms 

The N2 adsorption isotherm of the parent zeolite, H-ZSM-5 and the standard catalyst, 

3%Mo03/H-ZSM-5, were discussed in Chapter 3. It was shown that the N2 adsorption of 

H-ZSM-5 represented a combination of Type I and IV isotherms, with a slight hysteresis 
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loop, typical for microporous materials with a very small degree of mesoporosity. Upon 
incorporation of molybdenum species it was seen that the isotherm developed a more 

pronounced but still small hysteresis loop, resulting from capillary condensation in 

[104] mesopores 

The N2 adsorption isotherms of the cobalt, nickel, iron, gallium and aluminium doped 

3%Mo03/H-ZSM-5 catalysts are shown in Figure 4.2-15 to Figure 4.2-19. It should be 

noted that direct comparisons between isotherms should not be made as the batch of ZSM- 

5 (although the same Si: AI ratio) used varied between the preparation of the catalysts, i. e 

the mesopore structure of ZSM-5 may be different from batch to batch. All doped 

catalysts show a N2 isotherm with a pronounced hysteresis loop, indicating that mesopores 

along with micropores are present on all doped catalysts, a combination of Type I and IV 

isotherms. 

The catalysts prepared via acidic impregnation i. e. Fei+, Ga 3+ and A13+ doped 3%Mo03/H- 

ZSM-5 have a greater size of hysteresis loop than the Co2+ and Niz+ doped 3%Mo03/H- 

ZSM-5 catalysts, indicating a greater degree of mesoporosity for the catalysts prepared via 

acidic impregnation. A greater degree of mesoporosity suggests that these materials are 

more dealuminated. It should be noted that, a significant degree of dealumination can 

occur before it becomes apparent on the powder diffraction patterns of ZSM-5. 

Dealumination is not occurring to a great extent, as the XRD patterns, of the catalysts 

reveal that the zeolites structure remains intact after the incorporation of the molybdenum 

and/or dopant species. 

In all isotherms, the increase in sorption is gradual until at approaching P/P0 , =1, where the 

isotherms exhibit a steep increase in sorption, which is characteristic of liquid-phase 

condensation in macropores 
[1231 
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Figure 4.2-15 Adsorption isotherm plot for calcined Coz+ doped 3%Mo03/H-ZSM-5. 
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Figure 4.2-16 Adsorption isotherm plot for calcined Nie+doped 3%Mo03/H-ZSM-5. 
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Figure 4.2-17 Adsorption isotherm plot for calcined Fe 3+ doped 3%Mo03/H-ZSM-5. 
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Figure 4.2-18 Adsorption isotherm plot for calcined Ga 3+ doped 3%Mo03/H-ZSM-5. 
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Figure 4.2-19 Adsorption isotherm plot for calcined Als+ doped 3%Mo03/H-ZSM-5. 

4.2.6 Post reaction CHN, TGA analysis and TEM images 

The post reaction CHN analysis of the doped catalysts and the 3%Mo03/H-ZSM-5 catalyst 

are shown in Table 4.2.6-1. Aside from the gallium-doped catalyst, all doped catalysts 

have more carbon deposited on them after reaction (duration of 390 min on stream) 

compared to the non-doped standard catalyst, 3%MoO3/H-ZSM-5. The Ga 3+ doped 

catalyst has a significantly lower amount of carbon than the standard catalyst. The reduced 

coking of the gallium doped catalyst may explain the enhanced hydrogen and benzene 

production of this catalyst. The higher carbon content in the Fe doped catalyst compared 

to that of the standard, is in conflict with the work reported by Ichikawa and co-workers, 

where they attribute the beneficial effect of iron to reduced coking [55], but is consistent 

with the enhanced H2: C6H6 ratio reported in Figure 4.2-3. 

Catalyst %C %H %N 
3%Mo03/H-ZSM-5 4.21 0.14 - 
CO 2+ doped 3%Mo03/H-ZSM-5 5.50 0.15 - 
Fe 3+ doped 3%Mo03/H-ZSM-5 5.69 0.15 - 
Ga 3+ doped 3%Mo03/H-ZSM-5 3.09 -- 
Ni 2+ doped 3%Mo03/H-ZSM-5 5.26 0.27 - 

Table 4.2.6-1 Post-reaction CHN analysis of catalysts after 390 min on stream. 
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The TGA profiles of the post reaction catalysts are given in Figure 4.2-20 to Figure 4.2-22. 

The TGA results are consistent with the post reaction CHN analysis. The post reaction 

iron doped 3%Mo03/H-ZSM-5 catalyst has the greatest amount of carbon deposited on it 

after the reaction i. e. the highest value of carbon content from CHN analysis, 5.69% and 

the largest decrease in weight in the burning off coke region in Figure 4.2-20. It should be 

noted that the general trend in the amount of carbon deposited on the different catalysts is 

the same for the post reaction CHN analysis and TGA profiles. However, exact wt. % for 

the two techniques are not the same. This is most likely due to the small amount of 

material required to perform these post reaction techniques. This indicates that there is a 

degree of inhomogeneity on the dispersion of carbon on the catalysts. 

The first derivative weight changes are also given for the post reaction catalysts (Figure 

4.2-21 and Figure 4.2-22) as any differences between the samples will be more apparent 

than those in Figure 4.2-20. From Figure 4.2-22 by looking at the areas under the peaks, it 

appears that the much of the coke in the gallium-modified catalyst appears to be of the low 

temperature kind, whereas, the majority of coke in the iron-modified catalyst appears to be 

of the high temperature kind. 
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Figure 4.2-20 TGA profiles for the post reaction parent 3%Mo03/H-ZSM-5 

catalyst, and those doped with Coe+, Fei+, Ni2+ and Ga3+(with dopant metal 
ion/Mo molar ratio of 0.25) after 390 min on stream. 
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Figure 4.2-21 TGA profiles for the post reaction parent 3%Mo03/H-ZSM-5 
catalyst, and those doped with Coe+and Ni2+ (with dopant metal ion/Mo molar 
ratio of 0.25) after 390 min on stream. 
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Figure 4.2-22 TGA profiles for the post reaction parent 3%Mo03/H-ZSM-5 
catalyst, and those doped with Fe + and Ga3+(with dopant metal ion/Mo molar 
ratio of 0.25) after 390 min on stream. 

From reviewing the literature there does not appear to be any studies on the analysis of the 

post reaction MDA catalysts by TEM, with the exception of [37], for which microscopy was 

performed on non-conventionally prepared samples. TEM analysis reveals that some of 

the carbon deposition of the Fe 3+ doped 3%Mo03/H-ZSM-5 catalyst has the form of carbon 

nanotubes after the reaction, as shown in Figure 4.2-23. The micrograph image shows a 

cluster of nanotubes. It appears that one end of the carbon nanotube is attached to the 
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catalyst and the other end is open and detached from the catalyst. It appears that the 

nanotubes are in the form of multi walled carbon nanotubes (MWNT). 

Figure 4.2-23 post reaction TEM image of (a) Fe 3+ doped 3%MO03/H-ZSM-5 and (b) A] 3+ doped 
3%Mo03/H-ZSM-5. 

The diameter of the nanotubes range from approximately 17 to 78 nm, this is a much 

greater value than that of the channel diameter of ZSM-5 (0.55nm). This implies that the 

nanotubes do not originate from within the zeolite channels. If this was the case it would 

be expected that there would be some sort of structural collapse of the zeolite, however, the 

post-reaction XRD patterns given in section 4.2.2 reveal that the zeolite structure remains 

intact after the reaction, as all the main reflections indicative of ZSM-5 are apparent. 

However, further TEM images on these types of systems are desirable to fully elucidate 

their route of formation and final structure, as it this point that is currently not well 

understood. These observations are consistent with the earlier proposals of Lunsford et 

al. [261, that one form of carbon originates from molybdenum carbide dispersed on the 

external surface of ZSM-5. The dense phases apparent in Figure 4.2-23 are related to the 

zeolite component. 

Yang et al reported a similar TEM micrograph to that shown in Figure 4.2-23 for a Mo/H- 

ZSM-5 catalyst prepared by microwave heating after the methane aromatisation reaction 

[37] 

A recent study by Serp et al. has shown that Fe203/A1203 and FeMo/Al203 catalysts when 

used in the methane decomposition reaction selectively produce single wall carbon 

nanotubes (SWNT) [124]. In this case, it was reported that the selective production of the 
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SWNT is linked with the creation of small iron clusters during the reduction step of an 
oxide phase, which would not appear to be applicable here. 

A post reaction TEM image of the A13+ doped 3%Mo03/H-ZSM-5 catalyst is given in 

Figure 4.2-23. The nanotube displayed is generally similar to the one produced for the 

Fe 3+ doped 3%Mo03/H-ZSM-5 catalyst also shown in Figure 4.2-23. 

4.3 Results and discussion - molybdenum precursors 

4.3.1 Reaction data 

Figure 4.3-1 and Figure 4.3-2 give the formation rate data for hydrogen and benzene 

production for 2,5,10 and 15wt. %Mo03/H-ZSM-5 catalysts prepared from a 

phosphomolybdic acid precursor (the P/Mo molar ratio is dictated by the formula of the 

Keggin unit, [PMo]2O40]3" 
, and is therefore 0.08). The data for the standard catalyst, 

5%Mo03/H-ZSM-5, prepared from ammonium heptamolybdate is also given for 

comparison. It should be noted that this is a different standard catalyst to the one used in 

section 4.2. The reason being that phosphomolybdic acid, silicomolybdic acid (SMA) and 

sodium molybdate were all prepared via impregnation onto a different ZSM-5 from the one 

used in the previous section. These catalysts were prepared by Dr. K. M. Parida, using a 

ZSM-5 (Zeolyst) zeolite with a Si/Al ratio of 50: 1, whereas all of the catalysts discussed in 

section 4.2 were prepared using a ZSM-5 (Catal) zeolite with a Si/Al of 40: 1. It should be 

noted that the percentages refer to wt% of MoO3 i. e. 5wt%Mo03/H-ZSM-5 and 

5%phosphomolybdic-acid/H-ZSM-5 are comparable. 

It is clear from the data that the inclusion of very low levels of phosphorus dopant has 

produced a decrease in both the hydrogen and benzene formation rates. This can be seen 

clearly when comparing the 5%Mo03/H-ZSM-5 standard catalyst and the 5%Mo03/H- 

ZSM-5 catalyst prepared from a phosphomolybdic acid precursor. The effect is more 

prominent for benzene than it is for hydrogen. 

On comparing the catalysts prepared by phosphomolybdic acid, the lower loadings of 2 

and 5wt. % have a greater hydrogen and benzene formation rate compared to the catalysts 

with the higher loadings of 10 and l5wt. %. This is not unexpected, as it has been reported 

in the literature that metal loading does exhibit an effect on catalytic activity [2a, 35], and that 

the most favourable loading of molybdenum on ZSM-5 for methane dehydroaromatisation 
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is in the range of 2-6wt. %. Molybdenum loadings greater than 6wt. % are reported to lead 

to blockage of zeolite channels and therefore a loss in catalytic activity. 

The relative constancy of the H2: C6H6 formation rate ratio for all catalysts, shown in 

Figure 4.3-3 suggests that both hydrogen and benzene formation decline at similar rates, as 

was observed for the standard catalyst previously. The H2: C6H6 formation rate ratio 

appears to be slightly higher for the 5%wt catalyst prepared from phosphomolybdic acid 

compared to the standard 5%Mo03/H-ZSM-5 catalyst, as shown in Figure 4.3-3. This 

suggests that the selectivity towards benzene is lowered with respect to that for hydrogen. 

A possible explanation for this effect may be the enhanced coking for the catalyst prepared 

by phosphomolybdic acid, as a result of the modified acidity of the catalyst. 
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Figure 4.3-1 Hydrogen formation rates as a function of time on stream for 
5%Mo03/H-ZSM-5 and 2,5,10 and 15 % Mo03/H-ZSM-5 prepared from 

phosphomolybdic acid. 
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Figure 4.3-2 Benzene formation rates as a function of time on stream for 
5%Mo03/H-ZSM-5 and 2,5,10 and 15 % Mo03/H-ZSM-5 prepared from 
phosphomolybdic acid. 
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Figure 4.3-3 The ratio of H2 to C6H6 formation rates as a function of time on 
stream for 5%Mo03/H-ZSM-5 and 2,5,10 and 15 % Mo03/H-ZSM-5 prepared 
from phosphomolybdic acid. 

The ways in which phosphorus affects the acidity are most likely to be dependent upon the 

level of phosphorus added and the nature of the phase with which it is associated. For 

instance, it has been shown that phosphorus modification of MoO3 enhances acidity [125], 

but on the other hand, phosphorus modification of ZSM-5 has been reported to decrease 

total acidity due to the removal of the strongest acid sites [126]. In this work it was not 

possible to conduct NH3-TPD experiments on the phosphomolybdic acid prepared 
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catalysts, due to a limited supply of these materials. This was unfortunate, as these 

experiments would have most likely helped to explain their catalytic behaviour. 

Considering that the levels of phosphorus addition are so low, in that they are governed by 

the stoichiometric ratio of P: Mo in phosphomolybdic acid, the effects on catalytic 

performance are comparatively dramatic. There are many potential explanations for this. 

For instance, the dispersion of the molybdenum active phase may be different for the 

phosphomolybdic acid precursor prepared catalyst compared to that of the standard 

catalyst. This may be likely as in one case the impregnating ion is Mo70246- and 
[PMo12O40]3- in the other. Re-dispersion of oxomolybdenum species has been reported to 

occur on calcination [291 and so this may be expected to have little or no implication. 

The thermal decomposition of phosphomolybdic acid supported on silica proceeds via the 

metastable ß-M003 phase [127], however, this phase has only been observed to be stable at 

temperatures lower than the calcinations and reaction procedures used in this study. When 

silica was used as a support, calcination at 500°C was reported to completely transform ß- 

M003 into a-MoO3. 

From the results reported in this work it is not possible to fully propose the form of the 

active precursor. 

4.3.2 XRD patterns 

X-ray powder diffraction studies were performed on calcined and post reaction catalysts, 

the patterns are given in Figure 4.3-4 and Figure 4.3-5. The patterns of the calcined 

catalysts show the characteristic reflections of H-ZSM-5 with the main 20 values of ca. 8,9 

and 23-25°. The pattern for 15%wt Mo03/H-ZSM-5 prepared from phosphomolybdic acid 

has an intense reflection at 27.4°, this is indicative of a-MoO3 crystallites, as ca. 27° is the 

dominant reflection observed for a-MoO3, therefore the ß-M003 phase can be discounted. 

This reflection is consistent with the post reaction TGA profile given in Figure 4.3-9 and 

discussed later, which shows a weight increase in the region where molybdenum carbide is 

oxidised to molybdenum oxide for the 10 and 15%wt Mo03/H-ZSM-5 catalysts (this 

increase was not observed for all the lower loading samples). 

The reflection indicative of MoO3 crystallites is not visible in the other patterns. This 

suggests that for the catalysts prepared with lower loadings of molybdenum (<15%MoO3), 
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MoO3 crystallites are highly dispersed on the surface or in the channels of the H-ZSM-5 

zeolite and have a particle size too small as to be detected by XRD technique. 

The XRD patterns of the post reaction catalysts, Figure 4.3-5, show no reflections 
indicative of molybdenum oxide or carbide species. The reflection indicative of MoO3 in 

the 15%wt catalyst in the pattern prior to reaction with methane has now disappeared. 

Reflections indicative of H-ZSM-5 are still visible. In general the reflections are much less 

intense than that of the calcined patterns. 
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Figure 4.3-4 XRD pattern of calcined 2,5,10 and 15 % Mo03/H-ZSM-5 
prepared from phosphomolybdic acid. 
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Figure 4.3-5 post reaction XRD pattern of calcined 2,5,10 and 15 % Mo03/H- 
ZSM-5 prepared from phosphomolybdic acid. 
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4.3.3 Raman spectroscopy 

Chapter 4,106 

Since no direct observation of molybdenum based compounds could be detected by XRD, 

due to its high sensitivity to surface molybdenum oxide species, the pre-reaction catalysts 

were investigated using laser Raman spectroscopy. For all samples tested there were five 

spot analyses taken, this was done to survey how homogeneous the samples were. The 

results of the 5 and 15wt. % Mo03/H-ZSM-5 catalysts prepared from a phosphomolybdic 

acid precursor are shown in Figure 4.3-6. It is clear that the bands at ca. 820 and 995 cm -1 

which would be expected for the Mo-O-Mo and M=O stretches of a-Mo03 (1281 do not 

occur for the 5 wt. % catalyst, and it is only at much higher loading such as 15 wt. % that 

these features appear; however it should be noted that that this occurs inhomogeneously as 

they were not observed in every sampling point. The ratio of the intensity of the Mo-O- 

Mo band to the M=O band is ca. 4: 1. M=O species are associated with the side planes and 
[1 Mo-O-Mo with the basal planes of MoO3 29], and so this value indicates that such MoO3 

species are relatively highly dispersed. 

Throughout this work, the samples mentioned above are the only ones to be analysed by 

this technique. This was due to restrictions on the number of materials that could be 

analysed on the single session that was kindly offered by Strathclyde University, where Dr 

Ann Robin carried out the laser Raman spectroscopy analysis. 
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Figure 4.3-6 Raman spectra of calcined Mo03/H-ZM-5 prepared from 

phosphomolybdic-acid (a) 5 wt. % (b) 15 wt. %. 
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4.3.4 N2 adsorption Isotherms 
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The N2 adsorption isotherm of the standard 5%Mo03/H-ZSM-5 catalyst and the 

5%Mo03/H-ZSM-5 catalyst prepared from phosphomolybdic-acid are given in Figure 

4.3-7 and Figure 4.3-8 respectively. On comparing the isotherm of the standard catalyst, 

5%Mo03/H-ZSM-5, with the isotherm of the catalyst prepared from phosphomolybdic- 

acid, it can be seen that the overall N2 uptake is lower for the catalyst prepared from the 

phosphomolybdic-acid precursor. Both isotherms display a hysteresis loop, indicating that 

mesopores along with micropores are present, indicating a combination of Type I and IV 

isotherms. The hysteresis is more pronounced for the catalyst prepared using 

phosphomolybdic-acid than the standard catalyst. Therefore, the phosphomolybdic-acid 

prepared catalyst has a greater degree of mesoporosity, and therefore may be dealuminated 

to a greater extent than 5%MoO3/H-ZSM-5. 

It can be seen that the overall uptake is lower for the phosphomolybdic-acid prepared 

catalyst (ca. 90 cm3/g) compared to the standard catalyst (ca. 100 cm3/g), this may suggest 

that the overall adsorption capacity is reduced for the phosphomolybdic-acid prepared 

catalyst. 
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Figure 4.3-7 Adsorption isotherm plot for 5%Mo03/H-ZSM-5. 
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Figure 4.3-8 Adsorption isotherm plot for 5%Mo03/H-ZSM-5 prepared from 
phosphomolybdic-acid precursor. 

4.3.5 Post reaction CHN and TGA analysis 

Chapter 4,108 

The post reaction CHN analysis of the phosphomolybdic acid precursor prepared catalysts 

are given in Table 4.3.5-1, the data for the standard catalyst, 5%Mo03/H-ZSM-5 prepared 
from ammonium heptamolybdate is also given for comparison. It was shown in Figure 

4.3-1 and Figure 4.3-2 that the 5%phosphomolybdic-acid/H-ZSM-5 catalyst has a lowered 

activity compared to that of the standard catalyst, however as can be seen from the CHN 

data a comparable amount of carbon was deposited on this catalyst compared to the 

standard. 

It is noticeable that the catalysts with a higher loading of molybdenum i. e. 10 and 15wt 

%Mo03, have a lower amount of carbon, this is due to their lower reaction rates. 

Catalyst %C %H %N 
2%Phosphomolybdic-acid/H-ZSM-5 4.57 0.20 - 
5%Phosphomolybdic-acid/H-ZSM-5 5.67 0.22 - 
10%Phosphomolybdic-acid/H-ZSM-5 4.37 0.19 - 
15%Phosphomolybdic-acid/H-ZSM-5 4.19 -- 
5%Silicomolybdic-acid/H-ZSM-5 - -- 
5%Sodium-molybdate/H-ZSM-5 - -- 
5%Ammonium-heptamolybdate/H-ZSM-S 5.70 0.11 - 
Table 4.3.5-1 Post-reaction CHN analysis of catalysts after 390 min on stream 
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Again, the TGA profiles have been assigned on the basis of the study by Liu at al ý44J. The 

TGA profiles of the post reaction catalysts are given in Figure 4.3-9 and Figure 4.3-10. In 

Figure 4.3-9, the weight increase in the region of 450°C resulting from the oxidation of the 

carbide is only visible for the higher loaded MoO3 catalysts i. e 10 and 15. wt%Mo03. 
Apart from the 2wt%Mo03 catalyst, all other catalysts lose weight in the 750-900°C 

region, indicating sublimation of MoO3. 
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Figure 4.3-9 TGA profile for the post reaction 5%Mo03/H-ZSM-5 and 2,5,10 
and 15% Mo03/H-ZSM-5 prepared from phosphomolybdic acid after 390 min 
on stream. 
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Figure 4.3-10 TGA profile for the post reaction 5%Mo03/H-ZSM-5 and 2,5,10 
and 15% Mo03/H-ZSM-5 prepared from phosphomolybdic acid after 390 min 
on stream. 
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The first derivative weight changes for the post reaction catalysts are shown in Figure 

4.3-10. In these profiles the differences between the catalysts become more apparent. For 

example, the weight increase for the 10 and 15wt%Mo03 catalysts can clearly be seen. It 

appears that much of the coke on the 15wt%Mo03 catalyst is of the high temperature kind. 

The profiles for the 5%Mo03/H-ZSM-5 catalysts prepared from AHM and 

phosphomolybdic-acid precursors are very similar, indicating that the types of coke on 

these catalysts are similar. 

4.3.6 Reaction data - silicomolybdic acid and sodium molybdate 

An additional study has been carried out on investigating the catalytic behaviour of 

catalysts that were supplied, by Dr. K. M. Parida, using silicomolybdic acid (SMA) and 

sodium molybdate as the molybdenum precursors. 

The hydrogen formation rate profiles of the catalysts are shown in Figure 4.3-11, it is clear 

that neither the silicomolybdic acid or sodium molybdate precursor prepared catalysts are 

as active for hydrogen formation as the standard catalyst. The sodium molybdate precursor 

prepared catalyst has the same shape of profile as the standard catalyst, in that there is an 
induction period observed before the maximum in hydrogen production. 

The hydrogen formation rate for H-ZSM-5 is also given in Figure 4.3-11, however a direct 

comparison between activity of the H-ZSM-5 zeolite shown and the catalysts should not be 

made as the Si/Al ratio of the ZSM-5 is 40: 1 whereas, the Si/Al of the ZSM-5 in the three 

other materials is 50: 1. Ideally it would be best if H-ZSM-5 with a Si/Al ratio of 50: 1 was 

tested under the same conditions as that used on the catalysts in Figure 4.3-11 so that a 

direct comparison between the parent zeolite and the catalysts could be made. 
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Figure 4.3-11 Hydrogen formation rates as a function of time on stream for 
5%Mo03/H-ZSM-5 and 5%Mo03/H-ZSM-5 prepared from both silicomolybdic 
acid and sodium molybdate. 
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Figure 4.3-12 Benzene formation rate as a function of time on stream for 
5%Mo03/H-ZSM-5 and 5%Mo03/H-ZSM-5 prepared from both silicomolybdic 
acid. 

No benzene was detected for the sodium molybdate precursor prepared catalyst. This may 

be an indication that sodium may possibly be destroying/poisoning or altering the acidity 

of the Bronsted acid sites that are required for the production of benzene. 

Some benzene was detected for the catalyst prepared from the SMA precursor. However, 

to a far lesser extent than the catalyst prepared from the standard AHM precursor and it 

was only detected on the first analysis point. It has been reported in the literature that at 

high temperature SMA decomposes to Si02 and molybdenum oxide. However, in the 
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presence of water, SMA regenerates [1301 
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However, due to the high calcination and 

reaction temperatures this is probably not an issue in this system. It is more likely that the 

active molybdenum carbide phase cannot be made from this precursor. 

CHN analysis of post reaction 5%Mo03/H-ZSM-5 prepared from both sodium molybdate 

and silicomolybdic acid, Table 4.3.5-1, reveal that no carbon at all was deposited on these 

catalysts during the 390 minute run time. One possible explanation for the absence of 

carbon lay down may be that these two catalysts may be resistant to forming a carbide. 
Molybdenum carbide has been suggested to be the active species in the formation of 

ethylene and ethylene is subsequently aromatised to benzene [291, therefore without the 
formation of molybdenum carbide benzene cannot be produced under this proposed 

mechanism. From reviewing the literature there appear to be no studies based on the 

carbiding characteristics of silicomolybdic acid. Alternatively, in the case of 5%Mo03/H- 

ZSM-5 prepared from sodium molybdate, it may be that Na+ poisons the acidity, so 

molybdenum carbide could form but C2H4 and H2 could be the reaction products. 

It should be noted that there was a slight colour change of white to grey/white upon 

calcination of 5%Mo03/H-ZSM-5 prepared from both sodium molybdate and 

silicomolybdic acid, compared to no colour change on calcination of H-ZSM-5. This is 

direct evidence that there are molybdenum species present in these materials. 

Consequently from this work, it is clear to see that the starting material of the molybdenum 

component strongly influences catalytic performance in methane aromatisation. 

4.3.7 N2 adsorption isotherm 

The N2 adsorption isotherm of the 5%Mo03/H-ZSM-5 catalyst prepared from SMA is 

given in Figure 4.3-13. The overall N2 uptake is lower for the 5%Mo03/H-ZSM-5 catalyst 

prepared from SMA compared to the standard catalyst, but it is similar to that of the 

catalyst prepared by phosphomolybdic acid. The isotherm displays a hysteresis loop, 

indicating that mesopores along with micropores are present, indicating a combination of 

Type I and IV isotherms. The hysteresis is distinctly more pronounced for this catalyst 

compared to the standard catalyst, 5%Mo03/H-ZSM-5, prepared from ammonium 

heptamolybdate as the starting material of the molybdenum component (Figure 4.3-7). 

Therefore, preparing the Mo03/H-ZSM-5 catalyst with silicomolybdic-acid as the 

precursor creates more mesoporosity compared to when ammonium heptamolybdate is 

used as the starting material of the molybdenum component. 
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Figure 4.3-13 Adsorption isotherm plot for 5%Mo03/H-ZSM-5 prepared from 
silicomolybdic-acid precursor. 

4.4 Silver doping of Mo03/H-ZSM-5 

An additional investigation on doping the standard MDA catalyst, Mo03/H-ZSM-5, with 

silver has been carried out. It was proposed that by adding a small amount of silver to the 

standard catalyst, (Ag/Mo atomic ratio = 0.25), that the induction period would be 

shortened. It was hoped that the addition of silver would improve the reducibility of the 

catalysts by forming the following redox couple: 

Ag° + Mo6+ Ag+ + Mo5+ 

In the MDA reaction, Ma et al. [1311 reported that, Mob+species are partially reduced during 

the induction period. They showed that during the induction period, reduction of Mo 6+ to 

Mo5+ and Mo4+ takes place. Since Mo 6+ species are reduced into Mo2C, which has been 

proposed as an active phase of MDA, then if the process of reduction of molybdenum 

could be accelerated, then the activity of the catalyst at the early stages of reaction could 

possibly be enhanced. Consequently the addition of silver as a promoter on redox 

properties to the standard MDA catalyst was carried out. 
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4.4.1 Reaction data 

Chapter 4,1 14 

Figure 4.4-1 shows the hydrogen formation rate versus time on stream for the silver doped 

3%Mo03/H-ZSM-5 catalyst, the profile for the standard catalyst, 3%Mo03/H-ZSM-5, is 

given for comparison. It should be noted that the ZSM-5 employed in this study was 

prepared using a ZSM-5 (Catal) zeolite with a Si/Al of 40: 1. The hydrogen produced for 

the two catalysts is very similar, although initially the silver doped catalyst clearly 

produces more hydrogen. It appears that the induction period is similar for the two 

catalysts. Overall there appears to be no significant promotional effect on hydrogen 

formation when silver is doped onto the standard 3%Mo03/H-ZSM-5 catalyst at longer 

times on stream. 
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Figure 4.4-1 Hydrogen formation rates as a function of time on stream for 
3%Mo03/H-ZSM-5 and Ag doped 3%Mo03/H-ZSM-5. 

Figure 4.4-2 gives the benzene formation rate for the Ag doped 3%Mo03/H-ZSM-5 and 

standard 3%Mo03/H-ZSM-5 catalysts. The silver doped catalyst has a noticeably greater 

benzene formation rate than the standard catalyst. Clearly doping silver onto the standard 

catalyst results in a prominent increase in the benzene production. Further investigations 

are required to help explain why the Ag doped 3%Mo03/H-ZSM-5 catalyst exhibits a 

greater benzene formation compared to the standard catalyst. 
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Figure 4.4-2 Benzene formation rates as a function of time on stream for 
3%Mo03/H-ZSM-5 and Ag doped 3%Mo03/H-ZSM-5. 

Figure 4.4-3 shows the H2: C6H6 formation rate ratio for Ag doped 3%Mo03/H-ZSM-5 

catalyst, the profile for the standard catalyst is also given. The lower ratio for the Ag 

doped 3%Mo03/H-ZSM-5 catalyst (after ca. 50 minutes on stream) implies that the 

relative coke formation decreases compared to that of the standard catalyst. Therefore it 

appears that loading silver onto 3%Mo03/H-ZSM-5 not only increases the benzene 

formation rate but also reduces the amount of coke produced compared to that of the 

standard catalyst. 
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Figure 4.4-3 The ratio of hydrogen to benzene formation rates for 3%Mo03/H- 
ZSM-5 and Ag doped 3%MoO3/H-ZSM-5. 
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4.4.2 XRD Patterns of 3%Mo-Ag/H-ZSM-5 

The XRD patterns of 3%Mo-Ag/H-ZSM-5 in the fresh/calcined and post reaction form are 

shown in Figure 4.4-4. The patterns of 3%Mo-Ag/H-ZSM-5 in both states are similar. In 

both patterns there are no isolated molybdenum or silver species i. e. only the H-ZSM-5 

phase is observed. This suggests that the Mo/Ag species are finely dispersed on the 

surface or locate in the channels of the H-ZSM-5 zeolite. 

As the silver was added to the ready prepared Mo03/H-ZSM-5 catalyst, it is difficult to say 

if silver interacts with any molybdenum containing phases, or if it forms an isolated phase 

having a more indirect effect. As the XRD patterns only show reflections indicative of the 

zeolite, it is not possible to verify any active phases of the Ag doped 3%Mo03/H-ZSM-5 

catalyst. 
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Figure 4.4-4 XRD pattern of calcined and post reaction Ag doped 3%Mo03/H- 
ZSM-5. 
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4.5 Summary 

Chapter 4,117 

In this study, the effect of a number of different dopants on the activity of Mo03/H-ZSM-5 

dehydroaromatisation catalysts has been investigated. Promotional effects were observed 

for Fei+, A13+ and Ga3+, the impregnation solutions of these dopants were all acidic. No 

promotional effect was seen for the Co2+ and Ni2+ doped catalysts, apart from an initial 

high conversion and burst of hydrogen at the beginning of the reaction. This work has 

been found to contradict previous observations, which claim Co2+ doping of Mo03/H- 

ZSM-5 does produce promotional effects. The use of an iron dopant leads to an increase in 

the benzene formation rate at longer times on stream, which again contradict previous 

observations, where the promotional effect was attributed to reduced coking, but as can be 

seen from this study the coking in fact increases upon iron addition. The use of an 

aluminium dopant leads to an increase in benzene formation rate, however there were 

reproducibility issues with this catalyst. Gallium doping was also found to have a 

beneficial effect, with an increase in methane conversion and reduced coking observed for 

this catalyst. 

In all of the doped catalysts, the molybdenum and dopant metal were found to be highly 

dispersed, as only reflections indicative of the ZSM-5 framework are visible in the XRD 

patterns. TEM images of both Fe and Al doped catalysts reveal that some of the 

carbonaceous deposition on these catalysts is in the form of carbon nanotubes. 

NH3-TPD experiments carried out on the Fe and Al doped catalysts indicate that in both 

cases the amount of Bronsted acid sites has been altered when compared to the standard 

catalyst. In the case of Fe doping, the amount of Brensted acid sites has been lowered 

compared to that of the standard catalyst, however, Al doping appears to replace some of 

the lost Bronsted acid sites that occurs when Mo is loaded onto H-ZSM-5. 

27A1 MAS NMR of the Fe 3+ doped Mo03/H-ZSM-5 catalyst reveals this catalyst has a 

greater degree of non-framework Al than the standard catalyst. Thus doping with iron 

causes an increase in the extractability of framework Al compared to that of the standard 

catalyst. 29Si MAS NMR of the A13+ and Fe 3+ doped 3%Mo03/H-ZSM-5 catalyst shows 

that the framework ratio of Si/Al increases when A13+ or Fe 3+ is added to the standard 

catalyst. Since both Fe 3+ and A13+ doped Mo03/H-ZSM-5 catalysts were prepared by 

acidic impregnation it appears that catalysts prepared by acidic impregnation cause an 

increase in the framework Si/Al ratio of Mo03/H-ZSM-5. 
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The co-impregnation of phosphorus and molybdenum through impregnation using a 

phosphomolybdic-acid precursor leads to a catalyst of lowered catalytic activity. In that 

the observed hydrogen to benzene formation rate ratio is increased, which has been 

attributed to enhanced coking. 

Catalysts prepared using both silicomolybdic acid and sodium molybdate as the 

molybdenum precursors have been shown to have very poor activity as methane 

aromatisation catalysts. 

Doping the standard catalyst, 3%Mo03/H-ZSM-5, with silver was seen to increase the 

benzene formation rate and reduce the coke formation compared to the standard catalyst. 
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5 Phosphorus doping of Mo03/H-ZSM-5 and the 

preparation of phosphide catalysts 

5.1 Introduction 

5.1.1 Phosphorus doping of Mo03/H-ZSM-5 

As was shown in Chapter 4, very low levels of phosphorus addition in the form of a 

phosphomolybdic acid precursor leads to lower catalytic activity. At that level of 

phosphorus addition, benzene is suppressed with respect to hydrogen, so it may be 

expected that are higher levels of P addition that benzene may be fully eliminated while 
hydrogen production is maintained. In this Chapter the effect of higher loadings of 

phosphorus doping on the activity of Mo03/H-ZSM-5 based dehydroaromatisation 

catalysts has been investigated. In the study in Chapter 4, phosphorus was incorporated 

simultaneously with the molybdenum component. In this chapter, phosphorus has been 

added via impregnation using ammonium dihydrogen phosphate to the ready prepared 

Mo03/H-ZSM-5 catalyst precursor. 

From reviewing the literature, it is clear that the addition of phosphorus in different 

dehydroaromatisation catalysts has been shown to cause different effects dependent upon 

its form. For example, when phosphate is added as a framework species in the zeolite host, 

it has been reported to enhance the production of aromatics [132,133] In this work, Shu et al. 

reported that high calcination temperature and high molybdenum loading enhanced the 

replacement of framework silicon atoms by phosphorus atoms, which subsequently lead to 

altering the environment of the aluminium nuclei in the zeolite framework, resulting in a 

modification of the acidic property of the catalyst. However, when added to Mo03/H- 

ZSM-5 as a dopant via impregnation with phosphoric acid, it was shown to lower but not 

eliminate the benzene production (35]. In that work, Chen et al. reported that the decrease 

in catalytic activity was due to poisoning effects. They suggested that phosphorus 

modification of Mo03/H-ZSM-5 decreased the acidity of the catalyst. Elsewhere, it has 

[ 
been reported that phosphorus modification of MoO3 enhances acidity lzs] 
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5.2 Results and discussion - phosphorus dopant study 

5.2.1 Reaction data 

Figure 5.2.1-2 displays the hydrogen formation rate against time on stream for a 
5wt. %P/5%wt. Mo03/H-ZSM-5 catalyst. The results for the non-doped standard catalyst, 
5%Mo03/H-ZSM-5 are also given for comparison in Figure 5.2.1-1. At this level of 

phosphorus addition, benzene formation was completely suppressed. As can be seen from 

Figure 5.2.1-2 initially there was a very low level of hydrogen production for this catalyst. 
However, the hydrogen production was found to increase gradually with time on stream. 

To evaluate the maximum hydrogen production for this catalyst it was tested over a longer 

run time. The hydrogen production was found to pass through a maximum, which 

corresponds to >5% of the exit product stream at about 510 min on stream. Off-line gas- 

phase FTIR analysis of the effluent indicated that only very small traces of carbon oxides 

were formed during reaction. However, past this maximum traces of benzene and higher 

hydrocarbons could be seen from the gc analysis, but these were present in concentrations 

estimated to be < 0.02%. This is a very interesting observation in that it could possibly 

indicate a potential CO-free route to hydrogen. This maximum in hydrogen formation was 

associated with the emergence of a pungent-smelling orange deposit from the catalyst on 

the reactor wall. Dr. David Rycroft, University of Glasgow, kindly analysed this solid 

following dissolution in DCM (dichloromethane), using 31P NMR, it was found to be a 

phosphite. In addition, the absence of any signals in the 13C NMR spectrum confirmed it 

to be an inorganic phosphite. 

Subsequently, a 5%P/H-ZSM-5 sample was prepared and tested under the same conditions 

as those used for the 5%P5%Mo03/H-ZSM-5 catalyst. It was found that no benzene or 

hydrogen was produced at all in this case. Therefore, the inclusion of molybdenum is 

crucial for this behaviour. It should also be noted that the parent ZSM-5 material was 

tested and that hydrogen was produced for this material, albeit at very low quantities, as 

shown in Figure 5.2.1-2. Therefore, doping phosphorus on ZSM-5 hinders any hydrogen 

formation that is produced for the parent zeolite alone. 
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Figure 5.2.1-1 Hydrogen and benzene formation rates of 5wt. %MoO3/H-ZSM-5 
as a function of time on stream. 
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Figure 5.2.1-2 Hydrogen formation rate of 5wt. %P/5wt. %MoO3/H-ZSM-5 and 
H-ZSM-5 as a function of time on stream. 

The XRD patterns of both the calcined/fresh and post reaction 5wt. %P/5wt. %Mo03/H- 

ZSM-5 materials are shown in Figure 5.2.1-3. In both patterns, reflections of H-ZSM-5 are 

visible. However, there is no evidence for any other phase other than H-ZSM-5. This 

suggests that any molybdenum and/or phosphorus containing species are either highly 

dispersed and/or amorphous. Therefore, it is difficult to say if binary phases are formed, if 

there are additive effects on activity between isolated Mo and P containing phases or if the 

addition of the phosphorus dopant is having an effect on the dispersion or distribution of 

the molybdenum containing species. 
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Figure 5.2.1-3 XRD pattern of calcined and post reaction 5wt%P5%Mo03/H-ZSM-5 

These results led on to the investigation of a 5wt. %P doped bulk MoO3 sample. The 

results for this material are shown in Figure 5.2.1-4. It can be seen, that in terms of the 

production of hydrogen, the overall activity pattern with time on stream appears similar to 

that reported in Figure 5.2.1-2, which may imply a similar formation route. However, 

unlike the zeolite system, the burst in hydrogen formation rate was found to be associated 

with simultaneous bursts of CO and CO2 as determined by of-line FTIR analysis of the 

reactor effluent gas. Moreover, an inorganic phosphite phase was not evolved for this 

system. 
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Figure 5.2.1-4 Products formed from the isothermal carburisation of 
5%P/Mo03. 

5.2.2 XRD patterns 

Figure 5.2.2-1 and Figure 5.2.2-2 show the XRD patterns of the bulk 5%P/Mo03 material 

in the calcined form and following reaction. The patterns were checked using the database 

of the Joint Committee on Powder Diffraction Standards (JCPDS). Prior to reaction the 

bulk P/MoO3 material can be indexed to molybdenum trioxide, with no reflections 

indicative of any P containing phases visible. Following reaction, the bulk P/MoO3 

material can be indexed to a mixture of molybdenum phosphide and eta-molybdenum 

carbide phases. This suggests that the evolution of hydrogen and carbon oxides as shown 

in Figure 5.2.1-4, is associated with the carbiding and/or phosphi1ding of the M003 

component, i. e. oxygen from the molybdenum oxide is removed as CO and CO2. Water is 

also likely to be produced however the set up used is not optimised to analyse this product. 

However, the carbide formed in Figure 5.2.2-2 is not the usual ß-Mo2C phase, which is 

expected. For example, when Choi et al. [134], prepared a series of molybdenum carbides 

by the temperature-programmed carburisation of bulk MoO3 with pure methane, the 

resultant carbide was in the P-Mo2C phase. 
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Figure 5.2.2-1 XRD pattern of calcined bulk 5%P/Mo03. 
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Figure 5.2.2-2 XRD pattern of 5%P/Mo03 following carburisation. 



Sharon Bums 2006 Chapter 5,125 

From reviewing the literature, there appears to be very few studies regarding the isothermal 

carbiding of MoO3 with methane. Most studies have followed the process using 
temperature-programmed routes with H2/CH4 mixtures, e. g. [72 74]. Using temperature 

programming, Xiao et al. reported a complete phase transition of MoO3 to molybdenum 
carbide, in which the carbide produced has mainly the hcp structure, i. e. the ß-Mo2C 

phase. They reported that the phase transition of molybdenum oxide to molybdenum 
carbide is topotactic. 

The nature of the phase transition with time on stream shown in Figure 5.2.1-4 is 

consistent with reports that the isothermal reduction of the bulk MoO3 phase involves an 
induction period which has been ascribed to rate-determining nucleation or autocatalytic 

effects [751. Lacheen and Iglesia ["1 have reported that the carburisation process in 

Mo03/H-ZSM-5 methane aromatisation catalysts is autocatalytic, with intermediate olefins 
being formed which enhance the rate of carburisation. 

Due to the similarity of the general evolution/burst of hydrogen between 5%P5%Mo03/H- 

ZSM-5 and 5%P/MoO3 it may seem credible that the formation of hydrogen is due to 

carbiding or phosphiding in the case of 5%P5%Mo03/H-ZSM-5. However the lack of 

carbon oxides throws uncertainty over this suggestion. An additional feature, which 

requires thought, is the evolution of the phosphite co-product. Its formation requires the 

reduction of phosphate, which would result in an oxidised co-product. Whilst this may be 

water, the alternative of an oxidised organic product being formed by, e. g., a Mars-van 

Krevelen type process, which has not been detected, cannot be discounted. 

5.2.3 NH3-TPD Profiles 

In view of the previous literature, NH3-TPD measurements have been conducted to 

examine the effect which phosphorus has on the acidity of the catalyst. Changes in acidity 

between the two catalysts may help explain the differences in their catalytic activity. The 

NH3-TPD profile of the 5%P5%Mo03/H-ZSM-5 catalyst is shown in Figure 5.2.3-1. The 

profile for the 5%Mo03/H-ZSM-5 catalyst is also given for comparison (the TPD profiles 

were deconvoluted by the Gaussian curve fitting method and numerical data of the fittings 

are listed in Table 5.2.3-1). It should be noted that in these experiments, the thermocouple 

at the catalyst bed, was not linked/connected to the mass spectrometer, the temperature was 

recorded manually. Ideally, it is best if the thermocouple is linked to the mass 

spectrometer, as more data points would be recorded in this way and thus the profiles 

would be more precise. 
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b \ 

Figure 5.2.3-1 NH3-TPD profile (ramp rate 15°C/min) of (a) 5%Mo03/H-ZSM-5 (b) 
5%P5%Mo03/H-ZSM-5, the deconvoluted curves are also shown. 

Catalyst Peak position ("C) Peak area (%) 
T1 T2 T3 A, A2 A3 

5%Mo03/H-ZSM-5 151 232 404 24 29 47 
5%P5%Mo03/H-ZSM-5 190 268 388 15 40 45 

Table 5.2.3-1 Numerical results of the NH3-TPD profiles by the Gaussian curve fitting 
method. 

As mentioned in Chapter 4, the temperature of an NH3-TPD peak can be used as a rough 

measure of the acid strength of the sorption site. It can be seen that there is a decrease in 

the temperature of the peak maximum of the strongest acid site, A3 i. e. Bronsted acid site, 

when P is loaded onto 5%Mo03/H-ZSM-5. 

The relative area of A3 upon incorporation of phosphorus into 5%Mo03/H-ZSM-5 is 

roughly the same as it is for the undoped 5%Mo03/H-ZSM-5 catalyst, while the relative 

area of A2 is enhanced with respect to that of A, upon P addition to the 5%Mo03/H-ZSM-5 

catalyst. 

The low temperature peak, A,, may be ascribed to physisorbed ammonia or ammonia 

bonded to Si-OH groups. Whereas, the ascription of the moderate temperature peak, A--,, is 

not clear, it may be ascribed to ammonia desorbed on extra-framework Al or it may be due 

to the ammonia adsorbed on a new type of acid site that was created by the interaction 

between Mo and possibly also P species with the strongest acid sites. 
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There is an increase in the desorption temperature maxima of A, and A2, indicating that P 

modification of 5%Mo03/H-ZSM-5 increases the strength of both A, and A2 interactions. 

The increase in the relative area of A2, if this peak is due to extra-framework Al, suggests 

that modification of Mo03/H-ZSM-5 with phosphorus actually increases the extractability 

of framework Al of the catalyst. 

Chen et al J351 have reported that phosphorus addition to Mo/H-ZSM-5 catalysts results in a 
decrease in the ammonia uptake of the catalyst. Consistent with the observations reported 
here, they also reported that the maximum desorption temperature decreased upon 

phosphorus modification, suggesting a decrease in the acidity of the catalyst upon P 

modification. 

5.2.4 Post reaction carbon and TGA analysis 

The post-reaction carbon analysis and TGA profiles of the 5%P5%Mo03/H-ZSM-5, 

5%P/Mo03 and 5%P/H-ZSM-5 materials are given in Table 5.2.4-1 and Figure 5.2.4-1 to 

Figure 5.2.4-3 respectively. It should be noted that these materials were not on stream for 

the same length of time, therefore, direct comparisons of the degree of coking should not 

be made between them. As discussed in Chapter 3, if the stoichiometry of the 

molybdenum-containing phase is assumed as Mo2C, as it is often proposed in the literature, 

e. g. [531 then the amount of contribution of carbidic carbon can be calculated. For the 

5%P5%Mo03/H-ZSM-5 sample, from the table it is apparent that the overall carbon 

content is close to that which would be expected if indeed the Mo2C phase formed. 

However from this we cannot confirm that it is in fact formed, although future studies 

using EXAFS experiments may help clarify this. 

Sample %C 
5%P5%Mo03/HZSM-5 0.22 
5%P/HZSM-5 0.24 
5 %P/Mo03 5.71 
5%Mo03/HZSM-5 5.70 

Table 5.2.4-1 Carbon analysis of post-reactor materials. 

Figure 5.2.4-1 and Figure 5.2.4-2 display the TGA profiles for the post reaction 

5%Mo03/H-ZSM-5 and 5%P5%Mo03/H-ZSM-5 catalysts. The TGA profiles are assigned 

as described in previous chapters. It can be seen in Figure 5.2.4-1 that the shape of the 
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weight loss profiles of the two catalysts are relatively similar, however there is a greater 

weight loss for the undoped catalyst compared to the P doped catalyst. The first derivative 

weight changes are also given for the post reaction catalysts, Figure 5.2.4-2. In this profile, 

we can see that for the standard catalyst, 5%Mo03/H-ZSM-5, that there are two weight 
loss regions i. e. low and high temperature combustion of carbon, at ca. 450 and 550°C 

respectively. However, for the P modified catalyst, there is only one region where there is 

a weight loss, in this region the weight loss is ca. 4%. All of this weight loss is not due to 

burnt off carbon alone as the post reaction carbon analysis results show that only 0.22% of 

the catalyst after the reaction is carbon, therefore this higher value of weight loss can be 

attributed to the burning off of both carbon and phosphorus. 
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Figure 5.2.4-2 TGA profiles for the post reaction 5%Mo03/H-ZSM-5 and 
5%P5%MoO3/H-ZSM-5 catalysts. 

100 200 300 400 500 600 700 800 900 

Temperature / °C 

Figure 5.2.4-1 TGA profiles for the post reaction 5%Mo03/H-ZSM-5 and 
5%P5%Mo03/H-ZSM-5 catalysts. 
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Figure 5.2.4-3 displays the TGA profile after the isothermal carburisation of 5%P/Mo03 at 
the reaction conditions employed in Figure 5.2.1-4. The increase in weight is due to the 

oxidation of the molybdenum carbide and/or molybdenum phosphide into molybdenum 

oxide. The decrease in weight after ca. 750°C is likely to be due to the sublimation of 
MoO3. 
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Figure 5.2.4-3 TGA profile after the isothermal carburisation of 5%P/Mo03 at 
the reaction conditions employed in Figure 5.2.1-4. 

5.3 Results and discussion - Molybdenum phosphide 

catalysts 

There have been many methods reported for the preparation of phosphides [1353. The most 

frequent being combination of the elements (Equation 5-1), which can be carried out in 

various ways such as ampoule techniques and arc melting. Other routes include, reaction 
[13sß 

with phosphine (Equation 5-2) and reduction of phosphates with H2 (Equation 5-3) 

M° + XP°(red) MPX Equation 5-1 

MCIx + PH3 ---> MP + HC1 + H2 Equation 5-2 

MPO4 +4H2 -ý MP + 4H20 Equation 5-3 

For catalytic applications many preparation routes are impractical, due to the high 

temperatures required and the use of expensive starting materials or other species which 

can contaminate the phosphide are produced. The synthesis route of phosphides most 
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frequently used in catalytic systems is reduction of phosphates. In this process bulk or 

supported phosphides are produced by reduction of the phosphate precursors in a flow of 
hydrogen [135-139] 

Recently, much attention has been paid towards transition metal phosphide catalysts as 

these types of materials have been found to be stable and sulfur resistant with a high 

performance in hydrodenitrogenation (HDN) and hydrodesulfurisation (HDS) [136' 137] 

Both HDS and HDN are very important industrial processes, which aim to improve the 

quality of rapidly declining feedstocks and meet increasingly strict environmental 

regulations. Transition metal phosphides may be the next generation of hydroprocessing 

catalysts. 

The main binary transition metal phosphides, which have recently been synthesised to be 

tested as hydroprocessing catalysts are MoP, Ni2P, WP and CoP. Ternary phosphides such 

as NiMoP and CoMoP have also been synthesised and tested as hydroprocessing catalysts 
[138] Prins and co-workers have recently shown that the intrinsic HDN activity of surface 

Mo atoms of MoP is 6 times higher than that of the conventional supported MoS2 catalyst 
[1371 

From reviewing the literature there does not appear to be any publications regarding the 

preparation of phosphides from phosphates via reduction in methane as opposed to 

hydrogen. It appears that the method reported here has not been investigated before. It 

potentially permits for a more economic method of getting to the phosphide without using 

hydrogen to pre-reduce the sample. It should be noted that the hydrogen required to 

produce the phosphides is synthesised from methane anyhow (steam reforming of methane 

is the main route of hydrogen production). The advantage of using methane to reduce the 

phosphate as opposed to hydrogen is that hydrogen is produced in the former as shown in 

section 5.3.2. 

Stuart Hunter (University of Glasgow, 4th year project student) kindly assisted with some 

of the phosphide work presented in this chapter. 
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5.3.1 XRD Patterns 
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Following on from section 5.2.2, where it was shown that the isothermal carburisation of 

5%P/Mo03 using methane produces a mixed phase of molybdenum phosphide and 

molybdenum carbide, the preparation of molybdenum phosphide catalysts using methane 

has been examined. The preparation of nickel phosphide using methane as the reducing 

agent has also been investigated. Nickel phosphide is also of interest as a potential 

hydroprocessing catalyst. The preparation of phosphides using methane (and 

hydrocarbons in general) as the reductant has previously not been reported. 

The materials discussed in this section were prepared using the precursors and procedures 

outlined in Chapter 2. The phosphide precursors were prepared by a similar method to that 

reported by Green and co-workers [1361. Essentially, the molybdenum phosphide and nickel 

phosphide precursor materials were prepared by using a 1: 1 and 2: 1 molar ratio of MoO3 or 

NiO to NH4H2PO4 (Aldrich, 98+%) for molybdenum phosphide and nickel phosphide 

respectively. The required amount of NH4H2PO4 was dissolved in ca. 15m1 of deionised 

water and was impregnated onto MoO3 or NiO for the preparation of the MoP or NiP 

precursors respectively, followed by drying at 100°C overnight and then calcined in air at 

500°C for 5 hours. 

The phosphide precursors were then reacted with methane at 750°C (as described in the 

experimental section). The resultant XRD patterns of the materials after reaction with 

methane were checked using the database of the Joint Committee on Powder Diffraction 

Standards (JCPDS). 

The XRD pattern of the synthesised molybdenum phosphide is given in Figure 5.3.1-1, the 

pattern reveals that the phosphate precursor material following its reduction in methane is 

transformed into molybdenum phosphide. The pattern shows that the material is very 

crystalline with little amorphous material. The XRD pattern of MoP shows reflections at 

28.0,32.2,43.2,57.3,64.9,67.4 and 74.0 020. 
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Figure 5.3.1-1 XRD pattern of MoP 
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This pattern agrees very well with the reference pattern of MoP, (PDF 24-0771) and the 

recent report by Green and co-workers [1361. Molybdenum phosphide crystallises in the 

form of the hexagonal tungsten carbide structure (WC) [1391. The surface area of the MoP 

in Figure 5.3.1-1, as determined by N2 adsorption, is 15 m2g' which compares favourably 

to the 2 m2g-' reported by Prins and co-workers for their synthesised MoP, which was 
[1 prepared via reducing the metal oxide/phosphate precursors in a flow of H2 3gß. 

From Figure 5.3.1-1 it has been shown that molybdenum phosphide can be synthesised 

through the in-situ reduction under methane at 750°C from the doped metal oxide 

phosphate, to yield the XRD pattern shown. Typically, it has been reported that when 

phosphides are produced via the reduction of phosphates, hydrogen is used as the reducing 

agent [135-139 

The XRD pattern given in Figure 5.3.1-2 was yielded after the reduction under methane at 

750°C of a mixture of nickel oxide and ammonium dihydrogen phosphate. This material 

was prepared using a Ni: P ratio of 2: 1. 
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Figure 5.3.1-2 XRD pattern of Ni12P5. 

Chapter 5,133 

The pattern shows that a nickel phosphide with a Ni12P5 stoichiometry has been produced 
(PDF 22-1190), all the main reflections indicative of this phase are visible, i. e. 38.3,41.6, 

44.4,46.9 and 48.9 020. However, there are some low angle reflections indicative of nickel 

phosphate (PDF 19-0835), this implies that the material yielded is not a pure phosphide. It 

should be noted that the "bump" in the baseline at ca. 35 °20 is not a true feature/reflection 

of the sample, it occurrence is due to a fault in the XRD equipment. 

The material produced in Figure 5.3.1-2 was not the expected phosphide phase. Based on 

the work by Green and co-workers it was expected that the phosphide would have the Ni2P 

stoichiometry as opposed to Ni12P5. It is possible that the Ni2P phase was not produced, as 

some loss of P may have occurred. 

The preparation of ternary transition metal phosphides via the corresponding metal 

phosphates using methane as the reducing agent, as opposed to hydrogen has also been 

investigated. It was hoped that NiMoP, FeMoP and CoMoP could all be prepared by this 

way. The precursor materials consisted of a 1: 1: 1 molar ratio of Ni/Fe/Co: Mo: P. In the 

preparation of the ternary phosphides the first step involved impregnation of the 2"d metal 

nitrates i. e cobalt, nickel or iron onto molybdenum trioxide, followed by calcination and 

then impregnation with ammonium dihydrogen phosphate followed by calcination. The 

XRD patterns given in Figure 5.3.1-3 were yielded after the reduction of the precursor 

materials in methane at 750°C. 
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The XRD patterns of the NiMoP, CoMoP and FeMoP materials all consist of mixed 

phases. All materials exhibit reflections indicative of MoP, i. e. 32.2,44.2, and 53.7 °20. 

The NiMoP and CoMoP materials both have an intense reflection at 39.7 020, which is 

indicative of Mo2C. They also have reflections indicative of Ni2P (PDF 03-0953) and 
Co2P (PDF 06-0595) for the NiMoP and CoMoP materials respectively. 

The FeMoP material produced a mixed carbide phase. Reflections indicative of Fe2MoC 

(PDF 17-0911) are visible, with main 26 values of 39.6,43.2 and 57.5°. This material also 

consisted of phases indicative of Fe2P (PDF 33-0670). 

In the case of the binary phosphides i. e. MoP, it has been shown that the in-situ reduction 

of phosphates to phosphides is successful when methane is used as the reducing agent at 

750°C. In view of this, it was hoped that phosphides could be prepared from phosphates 

using a more reactive hydrocarbon source such as, propane or propene, as the reducing 

agent. If a more reactive hydrocarbon is employed as the reducing agent it may allow for 

the temperature of reduction to be lowered, in turn facilitating preparation of high surface 

area phosphides, which could be a technologically important route to phosphide catalysts. 

Therefore, the initial stage of this study was to attempt to prepare a phosphide using the 

same precursor materials and reduction temperature (750°C) as that used for the Mop 

material prepared by reduction of the phosphate under methane as shown in Figure 5.3.1-1, 

however with propane being employed as the reducing agent rather than methane. It 
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Figure 5.3.1-3 XRD pattern of NiMoP, FeMoP and CoMoP. 
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should be noted that both methane and propane reactions were carried out for the same 
length of time on stream (i. e. 390 min). 

The resultant XRD pattern when using propane as a reductant at 750°C, is shown in Figure 

5.3.1-4. The pattern has an amorphous appearance, although it does exhibit reflections 
indicative of MoP, i. e. 32.2,43.2,57.3,64.9 and 76.4 020. When comparing Figure 5.3.1-4 

with Figure 5.3.1-1 it is clear to see that the MoP material prepared using propane has less 

intense peaks, this is an indication that the material is less crystalline, than when methane 
is used as a reductant. 

An attempt to prepare molybdenum phosphide using an alkene (propene) rather than an 

alkane as the reducing agent, was also investigated. The resultant XRD pattern is shown in 

Figure 5.3.1-5. There are no reflections indicating that MoP has been produced. There are 

reflections, although not very intense, which can be indexed to molybdenum (IV) oxide, 

MoO2. This implies that under the reducing conditions employed, MoP cannot be prepared 

from reduction of the corresponding phosphate under propene. It is, however, possible that 

amorphous MoP has been prepared using the propene as the reductant. 
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Figure 5.3.1-4 XRD pattern of a mixture of molybdenum oxide and ammonium 
dihydrogen phosphate reduced at 750°C under propane. 
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Figure 5.3.1-5 XRD pattern of a mixture of molybdenum oxide and ammonium dihydrogen phosphate reduced at 750°C under propene. 

5.3.2 Reaction data 

The hydrogen and carbon oxides formed during the synthesis of the phosphide materials 

are presented in Figure 5.3.2-1 to Figure 5.3.2-5. The evolution of the hydrogen and carbon 

oxides is associated with the phase transition. 

It can be seen in Figure 5.3.2-1 that the products formed during the transformation to the 

molybdenum phosphide phase all undergo a similar shape in their formation rate profile, 

with the maximum in formation of products at ca. 200 min on stream. At the maximum in 

formation of products 15 times more CO is produced compared to C02- Carbon oxides 

still being evolved when the reaction is stopped indicates an incomplete transformation, yet 

a good quality diffraction pattern was obtained and this sounds caution for sole reliance on 

diffraction pattern as an indication of total phase transformation. 

The profile for the products formed during the transformation to the nickel phosphide is 

shown in Figure 5.3.2-2. It can be seen that the maximum in the formation of products is 

seen at a shorter time on stream for the synthesis of nickel phosphide compared to 

molybdenum phosphide. This result is somewhat similar to the one reported in Chapter 4, 

where a Ni doped Mo03/H-ZSM-5 catalyst displayed a similar burst of hydrogen 

formation at the beginning of the reaction when methane was flowed over the catalyst at 

high temperature. It appears that the nickel phosphide is produced faster than the 

molybdenum phosphide. 
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Figure 5.3.2-1 Products formed during the synthesis of MoP in methane at 750°C. 
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Figure 5.3.2-2 Products formed during the synthesis of Ni12P5 in methane at 750°C. 

Although the maximum in the formation of products comes at an earlier time on stream for 

the synthesis of the nickel phosphide catalyst compared to the synthesis of the 

molybdenum phosphide catalyst, in the reduction of the NiMoP precursor material, Figure 

5.3.2-3, nickel actually delayed the burst in hydrogen formation until longer times on 

stream compared to the MoP catalyst. It can be seen that in some respects the profile for 

this mixed phase looks like the profiles in Figure 5.3.2-1 and Figure 5.3.2-2 added 

together. 
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Figure 5.3.2-3 Products formed during the reduction of the NiMoP 
precursor material in methane at 750°C. 

The maximum in hydrogen and carbon oxide formation in the reduction of the FeMoP 

precursor material, Figure 5.3.2-4, comes around the same time for that of the MoP 

material. It is unfortunate that there are only a few data points in Figure 5.3.2-4, it would 

be better if more points were taken for a more accurate analysis of the phase 

transformation. 
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Figure 5.3.2-4 Products formed during the reduction of the FeMoP 

precursor material in methane at 750°C. 
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Figure 5.3.2-5 Products formed during the reduction of the CoMoP precursor 
material in methane at 750°C. 

Figure 5.3.2-5 gives the formation rates of products formed during the reduction of the 

CoMoP precursor material. It can be seen that the maximum hydrogen production comes 

around the same time as it did for the MoP material. The addition of cobalt to the 

precursor material results in a burst of hydrogen formation at the beginning of the 

reduction process. Again this is similar to results reported in Chapter 4, where addition of 

a divalent metal, results in a burst of hydrogen at early times on stream. 

Generally, it can be seen from Figure 5.3.2-1 to Figure 5.3.2-5, that there is a critical stage 

of the reaction that results in a "burst" of activity. This burst in activity is associated with 

the transformation of the phosphate to phosphide and its appearance with time on stream 

varies depending on the precursor material employed i. e. the burst in activity is seen at ca. 

200 min in the preparation of MoP compared to ca. 50 min for the preparation of Ni12P5. 

It is interesting to note that in the preparation of these phosphides and mixed phosphide 

materials via reduction of the corresponding phosphates in methane, CO is the major 

product of the reaction, with only low levels of CO2 being observed and the H2 formation 

rate being lower than the CO formation rate. In the isothermal carburisation of 

5%P/Mo03, where a mixed phase of molybdenum phosphide and molybdenum carbide is 

produced, H2 is the major product of the transformation, with the formation rate of CO 

being lower than that of H2, Figure 5.2.1-4. Therefore, these results demonstrate that the 
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product distribution of CO to H2 can vary depending upon the amount of phosphorus in the 

starting material compared to molybdenum, i. e. 5%P loaded onto MoO3 gives different 

product distributions of CO to H2 when reduced under methane, compared to when the 

molar ratio of Mo: P is 1: 1. It is a noteworthy observation that the formation of CO has not 

completely ceased by the end of each synthesis, although by this stage the hydrogen 

production has peaked and decreased. This along with Figure 5.3.1-1 suggests incomplete 

reduction, which is associated with a well defined diffraction pattern. It is interesting to 

note that incomplete phase transformations have been proposed in other catalytic and solid- 

state systems. For example, some "nitrides" may be more correctly described as 
40] [140] 

It was shown in Chapter 3 that the hydrogen formation rate is greater than the CO 

formation rate in the isothermal carburisation of MoO3 to molybdenum carbide, whereas in 

this chapter, it has been shown that the CO formation rate is greater than the H2 formation 

rate during the preparation of MoP using methane as the reductant. Therefore it has been 

shown that the product distribution of H2 to CO is different in phosphiding as it is in 

carbiding of molybdenum using methane at high temperatures. 

The general observations reported in this work are interesting in that methane may be 

utilised as a reductant for phosphide synthesis yielding CO and H2 as significant reaction 

products. Studies on the preparation of phosphides via reduction of phosphates using more 

reactive hydrocarbons i. e. propane and propene, as the reducing agents have proved more 

difficult. 
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In this study, higher levels of phosphorus doping of Mo03/H-ZSM-5 catalysts have been 
investigated. It was shown that when 5wt. % phosphorus (in the form of ammonium 
dihydrogen phosphate) was doped onto 5%Mo03/H-ZSM-5, initially hydrocarbon 
formation was completely suppressed and hydrogen was the sole gas phase product. 
Although the hydrogen formation rate is low, it increased throughout the run and reached a 
maximum of >5% of the exit stream concentration. The appearance of this maximum is 

associated with the evolution of an inorganic phosphite phase from the catalyst. The 
decrease in hydrogen formation from this maximum is associated with the production of 
trace levels of benzene (<0.02%) and carbon oxides. Further studies on 5%P/Mo03 

showed that this material exhibits a similar pattern of hydrogen evolution. But, in this 

case, carbon oxides are formed in greater quantities and the relative ratios of the products 

are similar to recent reports of the carburisation of oxomolybdenum ZSM-5 catalysts, 

although the timescales are much greater. 

This chapter has also reported a novel method for the production of phosphides from the 

corresponding phosphate doped oxide through reduction using methane. The gas phase 

products evolved during the transformation process demonstrate that CO and H2 are major 

components, indicating the involvement of secondary reactions pathways in the process. 

In addition, CO is still evolved at the end of the synthesis which coupled with powder 

diffraction patterns, illustrates that good quality diffraction patterns can be obtained with 

materials where the transformation is not totally complete. 

In the production of high surface area carbides and nitrides, phase transformations are 

carried out using high flow rates of the corresponding reductants applying controlled low 

temperature ramp rates. These considerations are important for the generation of high 

surface area materials. The high flow rates result in low partial pressure of water being 

produced in the transformation, minimising hydrothermal sintering. By analogy, it can be 

considered that high methane space velocities and controlled temperature ramp rates could 

yield very high surface area phosphides, which is an area of current significant interest. 

Studies on the preparation of phosphides via reduction of phosphates using more reactive 

hydrocarbons i. e. propane and propene, as the reducing agents were met with less success. 

Future studies could try and prepare phosphides using these gases but using a lower 

temperature with longer times on stream. 
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From reviewing the literature, it does not appear that this method of phosphide preparation 

has been carried out before. Generally, for catalysis applications, it has been reported that 

phosphides are prepared via reduction of phosphates under a hydrogen flow. The 

advantage of the method shown in this work is that, along with producing the phosphide, 

hydrogen is also produced. 
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6 Hydrogen scavenging study 

6.1 Introduction - LTA study 

Zeolite A exhibits the LTA (Linde type A) structure, Figure 6.1-1. This zeolite has a 3- 
dimensional pore structure with pores running perpendicular to each other in the x, y, and z 
planes, and is made up of secondary building units. The pore diameter is defined by an 
eight-membered oxygen ring and is small at 4.1 A. This leads into a larger cavity of 11.4 
A in diameter. This cavity is surrounded by eight sodalite cages, which are connected by 

their square faces in a cubic structure. 

Figure 6.1-1 framework structure of LTA, Viewed along [100] taken from [1411 

Although the inner cavity of LTA is larger than the molecular diameter of benzene (5.9 A), 

benzene cannot travel into the cavity due to the small pores. However, the small entry 

pores will permit hydrogen to travel into the cavity. Figure 6.1-2, taken from reference 

, shows the kinetic diameters for selected molecular species contrasted with the [141] 

effective pore size of selected zeolites (the darker shadings in the figure indicate increases 

that accompany a temperature rise). It can be seen that H2 is within the range to enter the 

pores of all the types of zeolites given in Figure 6.1-2. It should be noted that the pore size 

of zeolite A is different depending on the cation employed, the differences between 

potassium (3A), sodium (4A) and calcium (5A) zeolite A reflect the presence of non- 

framework cations in partially blocking window sites. 
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By incorporating a 50: 50 mixture of 3%Mo03/H-ZSM-5 with a reducible cation dispersed 

within the pore structure of H-LTA as a catalyst in a methane aromatisation reaction run, it 

could be expected that the transition metal exchanged LTA zeolite, with its small pore 
dimensions, may act as a hydrogen storage vessel as it could capture the hydrogen that is 

produced from methane reacting with the standard methane aromatisation catalyst. As a 

result of the LTA component capturing the hydrogen produced from the methane 
dehydroaromatisation reaction, the product distribution could possibly move towards 
benzene as the main product were the reaction catalysed to equilibrium. This possibility is 

dependent upon the LTA system being inert with respect to reaction with methane. 
However, as shown in Figure 6.1-2 the pore size of zeolite A and molecular diameter of 

methane are close. 

As previously mentioned in the Chapter 1, the MDA reaction is equilibrium limited with 

the limit of conversion being 11.5% at atmospheric pressure and 700°C [251. The MDA 

reactions presented in this project using Mo03/H-ZSM-5 based catalysts have a maximum 

methane conversion of ca. 6% then the conversion declines to ca. 3% for the remaining 

time the catalysts are kept on stream. Thus the experiments shown in this work do not 

reach equilibrium conversions, but the effects of selective H2 removal are still worthy of 

investigation. 
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Figure 6.1-2 Kinetic diameter of selected molecular species contrasted with the pore size of 
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some zeolites, taken from. 
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6.2 Results and discussion - LTA study 

6.2.1 Reaction data 

The hydrogen formation rate for a physical mixture of 3%Mo03/H-ZSM-5 and Ni(II)/H- 

LTA is given in Figure 6.2-1. The hydrogen formation rate for the standard catalyst, 
3%Mo03/H-ZSM-5 is also given for comparison. It should be noted that the formation 

rates in this chapter are calculated based on the total mass employed i. e. the hydrogen 

formation rate is based on the total mass of the combined bed. As can be seen from Figure 

6.2-1 the hydrogen production is greater for the combined catalyst than it is for the 

standard catalyst, 3%Mo03/H-ZSM-5. 

It can be seen that for this combined material that there is a burst in hydrogen at the 

beginning of the reaction. This is most likely due to the Ni 2+ feature of the LTA catalyst, 

which is being reduced. To investigate this further, the activity of Ni(II)/H-LTA was 

investigated (Figure 6.2-1). As can be seen, there is also a burst in hydrogen formation at 

the beginning of the reaction, which is associated with the reduction of Ni`+. Aside from 

the initial burst in hydrogen formation, the standard catalyst, 3%Mo03/H-ZSM-5 is more 

active for hydrogen formation than the Ni(II)/H-LTA catalyst. 
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Figure 6.2-1 Hydrogen formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5, Ni(II)/H-LTA and 3%Mo03/H-ZSM-5 and Ni(II)/H-LTA 

combined. 
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The benzene formation rate for the physical mixture of 3%Mo03/H-ZSM-5 and Ni(II)/H- 

LTA is given in Figure 6.2-2. The benzene formation rate for the standard catalyst, 
3%Mo03/H-ZSM-5 is also given for comparison. The benzene formation rate for the 

combined catalyst increases throughout the length of time it was on stream and did not 

reach its maximum in benzene formation during the time it was kept on stream. At ca. 225 

minutes on stream its benzene formation was greater than that of the standard catalyst. It 

would be interesting to run this sample for a greater length of time to see where in fact 
benzene production would reach its maximum and where the catalyst would begin to 
deactivate. No benzene was detected for Ni(II)/H-LTA. 
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Figure 6.2-2 Benzene formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5 and 3%Mo03/H-ZSM-5 and Ni(II)/H-LTA combined. 

The combined reaction bed of 3%Mo03/H-ZSM-5 and Ni(II)/H-LTA, results in an 

increase in the hydrogen and benzene (at longer times on stream) formation rates compared 

to the standard methane aromatisation catalyst, 3%Mo03/H-ZSM-5. It does not appear 

that using this combined catalyst, that the LTA system acts as a hydrogen trap, as more 

hydrogen was produced for the combined catalyst compared to that of the standard catalyst 

alone. One possible explanation for this may be that ethylene, which is commonly agreed 

to be the reactive intermediate in the MDA reaction [29], is produced by the Mo03/ZSM-5 

catalyst and then goes on to further react in the LTA system and a kinetic coupling effect 

occurs. Alternatively, a catalytically active form of carbon, which increases with time on 

stream, may be formed with the mixed-bed. 
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Therefore, due to the interesting results that combining Mo03/H-ZSM-5 with Ni(II)/H- 

LTA gave, another transition metal containing LTA system was investigated, this time 

3%Mo03/H-ZSM-5 was combined with Fe(III)/H-LTA. 

The hydrogen formation rate for a physical mixture of 3%Mo03/H-ZSM-5 and Fe(III)/H- 

LTA is shown in Figure 6.2-3. The hydrogen formation rate for the standard catalyst, 
3%Mo03/H-ZSM-5 is also given for comparison. It can be seen that the combined catalyst 
has a much greater hydrogen formation rate than the 3%Mo03/H-ZSM-5 catalyst alone. 
There appears to be an induction period in the hydrogen formation for the combined 

catalyst, and then the hydrogen formation increases gradually throughout the remaining 

time on stream. The combined catalyst did not reach its maximum in hydrogen production 
during the time it was tested. 

To determine the hydrogen produced from only Fe(III)/H-LTA, this material was tested 

under the same conditions as that of the combined catalyst. Initially, no hydrogen was 

detected for this material then only trace amounts were detected after 200 minutes on 

stream. 
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Figure 6.2-3 Hydrogen formation rate as a function of time on stream for 

3%Mo03/H-ZSM-5, Fe(III)/H-LTA and 3%Mo03/H-ZSM-5 + Fe(III)/H-LTA 

combined. 

The benzene formation rate for the 3%Mo03/H-ZSM-5 and Fe(III)/H-LTA combined 

catalyst is given in Figure 6.2-4. The combined catalyst has a considerably smaller 
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benzene formation rate compared to the standard catalyst alone, 3%Mo03/H-ZSM-5. No 
benzene was detected for Fe(III)/H-LTA. 
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Figure 6.2-4 Benzene formation rate as a function of time on stream for 
3%Mo03/H-ZSM-5 and 3%Mo03/H-ZSM-5 and Fe(III)/LTA combined. 

These combined catalysts appear to be behaving differently from each other. The 

3%Mo03/H-ZSM-5 and Ni(II)/H-LTA combined sample increases the hydrogen formation 

rate compared to the standard catalyst. Initially there is no benzene for the 3%Mo03/H- 

ZSM-5 and Ni(II)/H-LTA combined sample then the benzene starts to increase throughout 

the time on stream. However, the 3%Mo03/H-ZSM-5 and Fe(III)/H-LTA combined 

sample increases the hydrogen formation rate but decreases the benzene formation rate 

compared to the standard catalyst, 3%Mo03/H-ZSM-5. 

As already mentioned, it can be seen from Figure 6.1-2 that the pore size of zeolite A and 

the molecular diameter of methane are close. Furthermore, when taking into consideration 

the ionic radii of Ni`+ and Fei+, which are as follows: 0.69 and 0.64 Ä for 4 co-ordinated 

Ni 2+ in tetrahedral and square planar geometry, 0.63,0.69 and 0.79 A for Fe 3+ in 4 co- 

ordinated (high spin), 6 co-ordinate (low spin) and 6 co-ordinate (high spin) geometryý'421, 

the pore mouth would be expected to be wider in the case of the transition metal exchanged 

zeolites, in comparison, the atomic radius of 6 co-ordinated Ca 2+ is 1.14 Ä. It may well be 

that the pore size of the Ni(II) and Fe(III)/H-LTA catalysts are in fact too large for 

selective H2 scavenging. 
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Due to the promotional effects in terms of an increase in both hydrogen and benzene 

formation for the Ni(II)/H-LTA and Mo03/H-ZSM-5 combined sample, the next stage in 

this investigation was to examine the effect of combining nickel with the standard catalyst 
in the absence of the LTA system. For this study a 50: 50 mixture of NiO and 3%Mo03/H- 
ZSM-5 was employed. The results of this investigation are given in the following section. 

6.3 Results and discussion - NiO study 

6.3.1 Reaction data 

The hydrogen formation rate versus time on stream for 3%Mo03/H-ZSM-5, NiO and 
3%Mo03/H-ZSM-5 combined and NiO and H-ZSM-5 combined systems are given in 

Figure 6.3-1. As can be seen from the profiles the hydrogen formation for the standard 

catalyst mixed with nickel oxide i. e. NiO and 3%Mo03/H-ZSM-5 combined, is very 
different to that of the standard catalyst alone, 3%Mo03/H-ZSM-5. 

The NiO and 3%Mo03/H-ZSM-5 combined sample exhibits a much greater hydrogen 

formation rate than the standard catalyst, 3%Mo03/H-ZSM-5. In actual fact, after 

approximately 100 minutes on stream the NiO and 3%Mo03/H-ZSM-5 combined sample 

shows a gradual increase in hydrogen formation. At no point during the standard length of 

reaction time, i. e. 390 minutes, did the hydrogen formation rate reach its maximum. So 

this sample was left on stream for a longer period of time to assess its activity further. The 

sample was tested for >800 minutes and still did not reach its maximum in hydrogen 

production. If possible it would have been interesting to run these samples on stream for a 

longer period of time. However, time constraints on the length of hours that experiments 

can be conducted prevented this. 
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Figure 6.3-1 Hydrogen formation rates as a function of time on stream for 
3%Mo03/H-ZSM-5, NiO+3%Mo03/H-ZSM-5 combined and NiO+H-ZSM-5 
combined. 

Similarly, a NiO and ZSM-5 combined sample was tested and the general activity pattern 

is very similar to the NiO and 3%Mo03/H-ZSM-5 combined sample. The NiO and ZSM-5 

combined sample, has an even greater hydrogen production rate than the NiO and 

3%Mo03/H-ZSM-5 combined sample. 

Both the NiO and 3%Mo03/H-ZSM-5 and NiO and ZSM-5 combined materials display a 

high initial hydrogen formation, which rapidly decreases over time then begins to increase 

gradually for the remaining time that these materials are left on stream. This sharp initial 

H2 activity is associated with the reduction of the nickel oxide species. A similar burst in 

activity in hydrogen formation was demonstrated in Chapter 4 when N, 2+ was doped into 

3%Mo03/H-ZSM-5 and reacted under the same conditions as those used in Figure 6.3-1. 

The benzene formation rate versus time on stream for 3%Mo03/H-ZSM-5 and NiO and 

3%Mo03/H-ZSM-5 combined are given in Figure 6.3-2. The NiO and 3%Mo03/H-ZSM-5 

combined sample only produced a low benzene formation rate for the first 100 minutes on 

stream then the benzene formation was completely inhibited. 
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Figure 6.3-2 Benzene formation rate as a function of time on stream for 
3MoO3/H-ZSM-5 and NiO+3%Mo03/H-ZSM-5 combined. 

No benzene was detected for the NiO and ZSM-5 combined sample. 

Li et al. [143 have demonstrated that NiO samples can be reduced to metallic nickel by 

reduction in hydrogen, which is then able to carry out methane decomposition. 

From Figure 6.3-1 it appears that, as expected, the nickel oxide part of the combined 

catalysts is acting as a highly active methane decomposition catalyst, where the products of 

decomposition are hydrogen and carbon. It can be seen that more hydrogen is produced 

for the NiO and ZSM-5 combined sample than from the NiO and 3%Mo03/H-ZSM-5 

combined sample. As can be seen from the profiles benzene was only produced initially 

for the NiO and 3%Mo03/H-ZSM-5 combined sample. One reasonable explanation may 

be that the inherent acidity of the two ZSM-5 materials are different. 

It is clear from the profiles that hydrogen is produced to a far greater extent for these NiO 

combined catalysts than for the standard catalyst alone, 3%Mo03/H-ZSM-5. From CHN 

analysis it is evident that carbon is a product of this reaction. The post reaction XRD 

patterns show that NiO has been reduced into nickel metal, Figure 6.3-3. 

6.3.2 Post reaction XRD patterns 

The post reaction XRD patterns of the NiO+3%Mo03/H-ZSM-5 and NiO-, ZSM-5 

combined materials are shown in Figure 6.3-3. It is clear that in both patterns there are low 
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intensity reflections that are indicative of ZSM-5, implying that the zeolite structure is still 
intact. The three dominant peaks in both patterns can be indexed to nickel and carbon. 
The reflections at 44.5 and 51.9 °20 can be indexed to nickel (PDF 03-1051), while the 
reflection at 26.6 026 can be indexed to graphite (PDF 26-1080). There are no reflections 
indicative of a NiO phase in either diffraction pattern, reflections indicative of nickel oxide 
would be visible at 37.2,43.3 and 62.88 °26. 
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Figure 6.3-3 post reaction XRD pattern of 3%Mo03/H-ZSM-5 + NiO 
combined and H-ZSM-5 + NiO combined. 

6.3.3 Post reaction carbon analysis 

The post reaction XRD patterns of the NiO and 3%Mo03/H-ZSM-5 and NiO and ZSM-5 

combined materials shown in Figure 6.3-3 both display a carbon phase. This is consistent 

with the post reaction carbon analysis of these materials, which is given in Table 6.3.3-1, 

which reveals that for both materials, more than 50% of the materials are carbon after 

exposure to methane under the given conditions i. e. 52.8% and 67.4% for NiO and 

3%Mo03/H-ZSM-5 and NiO and ZSM-5 combined respectively. 

Sample %C 

3%Mo03/H-ZSM-5 + NiO 52.8 

combined 
H-ZSM-5 + NiO combined 67.4 

Table 6.3.3-1 Carbon analysis of post-reactor materials. 
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It should be noted that a direct comparison on the amount of carbon that has been 

deposited on these materials cannot be made as these material although tested under the 

same conditions were not on stream for the exact same length of time. The NiO and 
3%Mo03/H-ZSM-5 combined material was on stream for ca. 840 minutes whereas the 
NiO and ZSM-5 combined material was on stream for ca. 800 minutes. 

However it can be noted that the NiO and 3%Mo03/H-ZSM-5 combined material is more 

resistant to the deposition of carbon as this material was on stream for a greater length of 
time than the NiO and ZSM-5 combined material yet has less carbon deposited on it than 

the NiO and ZSM-5 combined material. Therefore, the NiO and ZSM-5 sample is much 

more active for methane decomposition than the NiO and 3%Mo03/H-ZSM-5 combined 

material. As already mentioned it may be that MoO3 sublimes and slightly covers the NiO 

surface in the case of the NiO and 3%Mo03/H-ZSM-5 combined material. 

It is probable that the form of carbon on these post reaction materials is in the form of 

carbon nanotubes, since it has been shown that methane decomposition over nickel 

produces carbon nanotubes [143,144, however, future TEM studies on the materials used in 

this work would be required to clarify this. 

6.4 Summary 

This short study on attempting to elucidate the effect of a reduction in the H2 partial 

pressure by adding a H2 storage material in the form of Ni(II) or Fe(III)/H-LTA has 

demonstrated that although the benzene concentration did increase for the Ni(II)/H-LTA 

and 3%Mo03/H-ZSM-5 combined material so did the hydrogen formation. In this 

combined system it does not appear that the LTA catalyst acts as a H2 storage vessel. One 

reasonable explanation for these results may be that ethylene which is formed by the 

Mo03/ZSM-5 catalyst, goes on to further react with the LTA system. Alternatively, there 

may be a gradual build up of an active carbonaceous phase in the Ni/LTA and 3%MoO3/H- 

ZSM-5 materials, which leads to a gradual increase in benzene formation rate with time on 

stream i. e. carbonaceous phase partially comes from ethylene hence no benzene was 

observed at first and then benzene increases beyond that expected. 

Similarly, the Fe(III)/H-LTA combined catalyst also exhibited a greater hydrogen 

formation than the standard MDA catalyst, 3%MoO3/H-ZSM-5, but in this case benzene 

formation was suppressed. 
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7 Conclusion 

Throughout this project, the experimental work undertaken has been focused on two main 
objectives. Firstly, trying to understand more fundamental aspects of the MoO3/H-ZSM-5 

catalyst, for example, through Al K-edge EXAFS experiments of the catalyst upon 

activation, and secondly, attempting to improve the stability and reactivity of the Mo03/H- 

ZSM-5 catalyst in methane dehydroaromatisation, such as, through the use of dopants. 

Beneficial insights into both matters were obtained and are summarised below: 

" On comparing the catalytic activity of MoO3/H-ZSM-5 with Pd/H-ZSM-5, it has 

been shown that these two catalysts exhibit little similarity in behaviour in MDA. 

This suggests that either Mo2C is not the active phase of molybdenum in Mo03/H- 

ZSM-5 or that there are uncertainties in the comparisons that can be drawn between 

Mo2C and Pd within this system. 

0 27A1 and 29Si MAS NMR experiments conducted on H-ZSM-5 and Mo03/H-ZSM- 

5 catalysts showed that there is an extraction of framework Al upon incorporation 

of Mo species into H-ZSM-5. The appearance of a sharp signal in the 27Al MAS 

NMR spectra of Mo03/H-ZSM-5 catalysts is noteworthy. This suggests that such 

species are "liquid-like" in nature and may be present as either highly disordered 

species or possibly as hydrated cations. 

" It has been shown through Al K-edge EXAFS experiments that the average local 

environment of framework Al species in activated Mo03/H-ZSM-5 catalyst 

precursors is significantly distorted, with Al species being drawn towards 

molybdenum centres. Subsequent FTIR studies revealed that molybdenum remains 

in the +VI oxidation state under the conditions employed in the EXAFS 

experiments, and that the acidity displayed by such precursors is exclusively of 

Bronsted type. 

" The effect of a number of dopants on the activity of Mo03/H-ZSM-5 

dehydroaromatisation catalysts has been investigated. Following previous reports 

by Ichikawa, Co and Fe dopants have been investigated. Contrary to previous 

observations, the addition of cobalt has not been observed to produce any 

promotional effect, other that an initial short burst of activity (which was also 

observed for the nickel doped MoO3/H-ZSM-5 catalyst). However, promotional 
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effects were observed with the use of iron dopants at longer times on stream, yet 

these do not relate to suppression of coke as previously reported. The use of novel 
Al containing dopants, was seen to result in the enhancement of the benzene 

formation rate. However, reproducibility issues were observed for this doped 

catalyst. Gallium doping was also seen to have promotional effects, with reduced 

coking observed. In all of the doped catalysts, the molybdenum and dopant metal 
were found to be highly dispersed, as only reflections indicative to the ZSM-5 
framework are visible in the XRD patterns. TEM images of both Fe and Al doped 

catalysts reveal that some of the carbonaceous deposition on these catalysts is in the 
form of carbon nanotubes. Doping the standard catalyst, 3%Mo03/H-ZSM-5, with 
silver was seen to increase the benzene formation rate and reduce the coke 
formation compared to the standard catalyst. 

The co-impregnation of phosphorus and molybdenum through impregnation using 

a phosphomolybdic acid precursor results in a catalyst with lower catalytic activity. 
In that the observed hydrogen to benzene formation rate ratio is increased, which 
has been attributed to enhanced coking. Catalysts prepared using both 

silicomolybdic acid and sodium molybdate as the molybdenum precursors have 

been shown to have very poor activity as methane aromatisation catalysts. 

Higher levels of phosphorus doping of Mo03/H-ZSM-5 catalysts have been 

investigated. It was shown that when 5wt. % phosphorus (in the form of 

ammonium dihydrogen phosphate) was doped onto 5%Mo03/H-ZSM-5, 

hydrocarbon formation was completely suppressed initially and hydrogen was the 

sole gas phase product. The hydrogen formation rate was seen to increase 

throughout the run and reached a maximum of >5% of the exit stream 

concentration. The appearance of this maximum is linked with the evolution of an 

inorganic phosphite phase from the catalyst. The decrease in hydrogen formation 

from this maximum is associated with the production of trace levels of benzene and 

carbon oxides. Further studies on 5%P/Mo03 showed that this material exhibits a 

similar pattern of hydrogen evolution. But, for this material, carbon oxides are 

formed in greater quantities and the relative ratios of the products are similar to 

recent reports of the carburisation of oxomolybdenum ZSM-5 catalysts, although 

the timescales are much greater. 

"A novel method for the production of phosphides through the reduction under 

methane from the corresponding phosphate doped oxide has been demonstrated. 
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However, the preparation of phosphides via reduction of phosphates using more 

reactive hydrocarbons i. e. propane and propene, as the reducing agents have proved 

more difficult. From reviewing the literature, it does not appear that this method of 

phosphide preparation has been previously reported. Normally, for catalysis 

applications, it has been reported that phosphides are prepared via reduction of 

phosphates under a hydrogen flow. The advantage of the method shown in this 

work is that, along with producing the phosphide, hydrogen is also produced. 

9 The inclusion of dispersed reducible cations to LTA, in particular, Ni(II)/H-LTA or 

Fe(III)/H-LTA was investigated. In all cases, benzene production was generally 

suppressed, although the Ni (II) system showed interesting effects with time on 

stream. The increase in the benzene formation rate for the Ni(II)/H-LTA combined 

catalyst may be due to ethylene which is produced by the Mo03/H-ZSM-5 catalyst 

going onto further react with the LTA based catalyst. 

7.1 Future work 

This work has generated many novel and interesting findings related to methane 

conversion under non-oxidative conditions. Future studies relating to this work could 

possibly include: 

" Mo EXAFS studies on the Fe/Al/Ga doped Mo03/H-ZSM-5 materials to see if 

molybdenum species and dopant species are segregated from one another or if the 

catalysts consist of mixed phases. This type of study may help determine the active 

phases in these doped catalysts. 

" In-situ XRD studies to follow the phase transformations, which occur during the 

production of phosphides from the corresponding phosphate doped oxide through 

reduction using methane. 

" The preparation of phosphides using more reactive hydrocarbons such as propene 

and propane while using a lower temperature with longer times on stream than was 

employed while using methane as the reductant in the preparation of phosphides. 
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8 Appendices 

8.1 Appendix 1: Benzene gas calibration 

Together with the experimental conditions given in Section 2.3.2, the Clausius-Clapeyron 

equation can be used so that the gc calibration for benzene can be performed. 

The Clausius-Clapeyron equation given below as equation (1), allows the estimation of 

vapour pressure as a function of temperature, if the enthalpy of vapourisation is known. 

P= P* exp 
{ 

-OH (1 - 1) 
} 

eqn (1). 

RT T* 

The enthalpy of evaporation of benzene is 30.8 kJmol-l and the boiling point (760mm1g) 

is Tb/K is 353.25 K [data taken from, Atkins, Physical Chemistry, 2 "d edition]. 

For example, if the temperature is 294.15 K, then the vapour pressure can be determined as 

follows: 

P= exp {- 30800 (1-1 )} 
760 8.314 294.15 353.25 

Thus, P= 92.0 mmHg 
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8.2 Appendix 2: Equations for the calculation of reaction 

data 

Using the N2 internal standard, where applicable, appropriate account was taken of the 

change in volume on reaction and then data was calculated according to the following: 

Methane Conversion (%) = CH4 (In) - CH4 (Outs x 100 

CH4 (In) 

Hydrogen formation rate (mo1H2g-'s1) = H2 (Out) molmiri 1/ mass catalyst (g) 

60 

Benzene formation rate (mo1C6H6g's-' ) = C6H6 (Out) molmiri' / mass catalyst (g) 

60 



159 

9 References 

[1] T. V. Choudhary, E. Aksoylu and D. W. Goodman, Catalysis Reviews-Science and 
Engineering 2003,45,151-203. 
[2] J. H. Lunsford, Catalysis Today 2000,63,165-174. 
[3] J. R. Rostrup-Nielsen, Catalysis Today 2002,71,243-247. 
[4] H. A. Zaidi and K. K. Pant, Catalysis Today 
Materials Design in Catalysis - Symposium C of ICMAT 2003 2004,96,155-160. 
[5] H. Schulz, Applied Catalysis A: General 1999,186,3-12. 
[6] G. A. Olah, Y. Halpern, J. Shen and Y. K. Mo, Journal of the American Chemical 
Society 1971,93,1251. 
[7] G. E. Keller and M. M. Bhasin, Journal of Catalysis 1982,73,9-19. 
[8] W. Kiatkittipong, T. Tagawa, S. Goto, S. Assabumrungrat, K. Silpasup and P. 
Praserthdam, Chemical Engineering Journal 2005,115,63-71. 
[9] W. Wang and Y. S. Lin, Journal of Membrane Science 1995,103,219-233. 
[10] Y. D. Xu and L. W. Lin, Applied Catalysis A-General 1999,188,53-67. 
[ 11 ] Y. D. Xu, X. H. Bao and L. W. Lin, Journal of Catalysis 2003,216,386-395. 
[ 12] H. Amariglio, J. Saint-Just and A. Amariglio, Fuel Processing Technology 1995,42, 
291-323. 
[13] M. Belgued, P. Pareja, A. Amariglio and H. Amariglio, Nature 1991,352,789-790. 
[14] T. Koerts and R. A. Vansanten, Journal of the Chemical Society-Chemical 
Communications 1991,1281-1283. 
[15] H. Amariglio, P. Pareja and A. Amariglio, Catalysis Today 1995,25,113-125. 
[16] M. Belgued, A. Amariglio, P. Pareja and H. Amariglio, Journal of Catalysis 1996, 
159,441-448. 
[17] M. Belgued, A. Amariglio, P. Pareja and H. Amariglio, Journal of Catalysis 1996, 
159,449-457. 
[18] M. Belgued, A. Amariglio, L. Lefort, P. Pareja and H. Amariglio, Journal of Catalysis 
1996,161,282-291. 
[ 19] L. Guczi, K. V. Sarma and L. Borko, Catalysis Letters 1996,39,43-47. 
[20] L. Guczi, K. V. Sarma and L. Borko, Journal of Catalysis 1997,167,495-502. 
[21] F. Solymosi and J. Cserenyi, Catalysis Letters 1995,34,343-350. 
[22] H. L. Mitchell and R. H. Waghorne, US patent 4239658 1980. 
[23] T. Kurosaka, H. Matsuhashi and K. Arata, Journal of Catalysis 1998,179,28-35. 
[24] Y. D. Xu, S. T. Liu, L. S. Wang, M. S. Xie and X. X. Guo, Catalysis Letters 1995,30, 
135-149. 
[25] Y. Y. Shu, Y. D. Xu, S. T. Wong, L. S. Wang and X. X. Guo, Journal of Catalysis 
1997,170,11-19. 
[26] B. M. Weckhuysen, M. P. Rosynek and J. H. Lunsford, Catalysis Letters 1998,52, 
31-36. 
[27] B. M. Weckhuysen, D. J. Wang, M. P. Rosynek and J. H. Lunsford, Journal of 
Catalysis 1998,175,338-346. 
[28] B. M. Weckhuysen, D. J. Wang, M. P. Rosynek and J. H. Lunsford, Journal of 
Catalysis 1998,175,347-351. 
[29] D. J. Wang, J. H. Lunsford and M. P. Rosynek, Journal of Catalysis 1997,169,347- 

358. 
[30] Y. Y. Shu, R. Ohnishi and M. Ichikawa, Journal of Catalysis 2002,206,134-142. 

[31 ] Y. Y. Shu and M. Ichikawa, Catalysis Today 2001,71,55-67. 
[32] F. Solymosi, A. Erdohelyi and A. Szoke, Catalysis Letters 1995,32,43-53. 

[33] W. P. Ding, S. Z. Li, G. D. Meitzner and E. Iglesia, Journal of Physical Chemistry B 

2001,105,506-513. 
[34] R. Ohnishi, S. T. Liu, Q. Dong, L. Wang and M. Ichikawa, Journal of Catalysis 1999, 

182,92-103. 



160 

[35] L. Y. Chen, L. W. Lin, Z. S. Xu, X. S. Li and T. Zhang, Journal of Catalysis 1995, 
157,190-200. 
[36] S. T. Liu, L. Wang, R. Ohnishi and M. Ichikawa, Journal of Catalysis 1999,181,175- 
188. 
[37] S. T. Qi and B. L. Yang, Catalysis Today 2004,98,639-645. 
[38] C. L. Zhang, S. A. Li, Y. Yuan, W. X. Zhang, T. H. Wu and L. W. Lin, Catalysis 
Letters 1998,56,207-213. 
[39] D. Ma, Y. Y. Shu, M. J. Cheng, Y. D. Xu and X. H. Bao, Journal of Catalysis 2000, 
194,105-114. 
[40] F. Solymosi, J. Cserenyi, A. Szoke, T. Bansagi and A. Oszko, Journal of Catalysis 
1997,165,150-161. 
[41 ] D. Ma, Y. Y. Shu, W. P. Zhang, X. W. Han, Y. D. Xu and X. H. Bao, Angewandte 
Chemie-International Edition 2000,39,2928-2931. 
[42] R. W. Borry, Y. H. Kim, A. Huffsmith, J. A. Reimer and E. Iglesia, Journal of 
Physical Chemistry B 1999,103,5787-5796. 
[43] H. Jiang, L. S. Wang, W. Cui and Y. D. Xu, Catalysis Letters 1999,57,95-102. 
[44] H. M. Liu, T. Li, B. L. Tian and Y. D. Xu, Applied Catalysis A-General 2001,213, 
103-112. 
[45] D. Ma, D. Z. Wang, L. L. Su, Y. Y. Shu, Y. Xu and X. H. Bao, Journal of Catalysis 
2002,208,260-269. 
[46] H. M. Liu, L. L. Su, H. X. Wang, W. J. Shen, X. H. Bao and Y. D. Xu, Applied 
Catalysis A-General 2002,236,263-280. 
[47] K. Honda, X. Chen and Z. G. Zhang, Catalysis Communications 2004,5,557-561. 
[48] Y. B. Song, C. Y. Sun, W. J. Shen and L. W. Lin, Catalysis Letters 2006,109,21-24. 
[49] H. Ma, R. Kojima, R. Ohnishi and M. Ichikawa, Applied Catalysis A-General 2004, 
275,183-187. 
[50] W. Liu, Y. Xu, S. T. Wong, L. Wang, J. Qiu and N. Yang, Journal of Molecular 
Catalysis A-Chemical 1997,120,257-265. 
[51 ] Y. Xu, W. Liu, S. T. Wong, L. S. Wang and X. X. Guo, Catalysis Letters 1996,40, 
207-214. 
[52] L. S. Wang, Y. D. Xu, S. T. Wong, W. Cui and X. X. Guo, Applied Catalysis A- 
General 1997,152,173-182. 
[53] J. Z. Zhang, M. A. Long and R. F. Howe, Catalysis Today 1998,44,293-300. 
[54] H. T. Ma, R. Kojima, S. Kikuchi and M. Ichikawa, Catalysis Letters 2005,104,63-66. 
[55] S. T. Liu, Q. Dong, R. Ohnishi and M. Ichikawa, Chemical Communications 1997, 
1455-1456. 
[56] S. T. Liu, Q. Dong, R. Ohnishi and M. Ichikawa, Chemical Communications 1998, 
1217-1218. 
[57] H. S. Lacheen and E. Iglesia, Journal of Catalysis 2005,230,173-185. 
[58] A. Szoke and F. Solymosi, Applied Catalysis A-General 1996,142,361-374. 

[59] L. B. Pierella, L. S. Wang and O. A. Anunziata, Reaction Kinetics and Catalysis 

Letters 1997,60,101-106. 
[60] S. T. Liu, L. S. Wang, Q. Dong, R. Ohnishi and M. Ichikawa, Natural Gas 
Conversion V 1998,119,241-246. 
[61] H. v. Bekkum, E. M. Flanigen and J. C. Jansen, Introduction to zeolite science and 

practice, Elsevier, 1991, p. 754. 
[62] http"//www. chemmacl., usc. edu, (August 2006). 

[63] http: //www. iza-str-ucture-orv, /databases/, (August 2006). 

[64] B. C. Gates, Catalytic chemistry, Wiley, 1992, p. 458. 

[65] R. J. Argauer and G. R. Landolt, US Patent 3 702886 1972. 

[66] http"//www. uni-leipzig. de, (August 2006). 

[67] Y. G. Li and H. Jun, Applied Catalysis A-General 1996,142,123-137. 

[68] R. A. Couttenye, M. H. De Vila and S. L. Suib, Journal of Catalysis 2005,233,317- 

326. 



161 

[69] R. Aiello, J. E. Fiscus, H. -C. zur Loye and M. D. Amiridis, Applied Catalysis AGeneral 
2000,192,227-234. 

[70] H. T. Ma, R. Ohnishi and M. Ichikawa, Catalysis Letters 2003,89,143-146. 
[71] H. S. Lacheen and E. Iglesia, Physical Chemistry Chemical Physics 2005,7,538-547. 
[72] P. Perez-Romo, C. Potvin, J. M. Manoli, M. M. Chehimi and G. Djega-Mariadassou, 
Journal of Catalysis 2002,208,187-196. 
[73] K. T. Jung, W. B. Kim, C. H. Rhee and J. S. Lee, Chemistry of Materials 2004,16, 
307-314. 
[74] T. Xiao, A. P. E. York, K. S. Coleman, J. B. Claridge, J. Sloan, J. Chamock and M. L. 
H. Green, Journal of Materials Chemistry 2001,11,3094-3098. 
[75] P. Arnoldy, J. C. M. Dejonge and J. A. Moulijn, Journal of Physical Chemistry 1985, 
89,4517-4526. 
[76] A. L. Agudo, A. Benitez, J. L. G. Fierro, J. M. Palacios, J. Neira and R. Cid, Journal 
of the Chemical Society-Faraday Transactions 1992,88,385-390. 
[77] K. V. R. Chary, K. R. Reddy, G. Kishan, J. W. Niemantsverdriet and G. Mestl, 
Journal of Catalysis 2004,226,283-291. 
[78] A. S. C. Brown, J. S. J. Hargreaves and S. H. Taylor, Catalysis Letters 1999,57,109- 
113. 
[79] H. Toraya, M. Yoshimura and S. Somiya, Journal of the American Ceramic Society 
1984,67, C 119-C 121. 
[80] R. B. Levy and M. Boudart, Science 1973,181,547-549. 
[81] J. S. Lee, S. Locatelli, S. T. Oyama and M. Boudart, Journal of Catalysis 1990,125, 
157-170. 
[82] A. Borodzinki, Catalysis Reviews-Science and Engineering 2006,48,91-144. 
[83] S. B. Derouane-Abd Hamid, J. R. Anderson, I. Schmidt, C. Bouchy, C. J. H. Jacobsen 
and E. G. Derouane, Catalysis Today 2000,63,461-469. 
[84] http: //fiz-chemie. de/infotherm/servlet/infotherrnSearch, January 2007. 
[85] N. Shah, D. Panjala and G. P. Huffman, Energy & Fuels 2001,15,1528-1534. 
[86] J. Gavillet, A. Loiseau, F. Ducastelle, S. Thair, P. Bernier, O. Stephan, J. Thibault and 
J. -C. Charlier, Carbon 2002,40,1649-1663. 
[87] J. Kong, A. M. Cassell and H. Dai, Chemical Physics Letters 1998,292,567-574. 
[88] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey and F. 
Derbyshire, Chemical Physics Letters 1999,315,25-30. 
[89] W. Z. Qian, T. Liu, F. Wei, Z. W. Wang and Y. D. Li, Applied Catalysis A-General 
2004,258,121-124. 
[90] Y. Zhao, Y. -x. Pan, L. Cui and C. -j. Liu, Diamond and Related Materials In Press, 
Corrected Proof. 
[91 ] T. Osawa, I. Nakano and O. Takayasu, Catalysis Letters 2003,86,57-62. 
[92] Z. Liu, M. A. Nutt and E. Iglesia, Catalysis Letters 2002,81,271-279. 
[93] W. Chu and F. L. Qiu, Topics in Catalysis 2003,22,131-134. 

[94] P. L. Tan, K. W. Wong, C. T. Au and S. Y. Lai, Applied Catalysis A-General 2003, 
253,305-316. 
[95] F. Deng, Y. R. Du, C. H. Ye, J. Z. Wang, T. T. Ding and H. X. Li, Journal of Physical 
Chemistry 1995,99,15208-15214. 
[96] D. Muller, W. Gessner, H. J. Behrens and G. Scheler, Chemical Physics Letters 1981, 

79,59-62. 
[97] Q. Li, L. Dai, J. Xiong, L. Zhu and Z. Xue, Zeolites 1994,14,367-373. 
[98] S. M. Campbell, D. M. Bibby, J. M. Coddington, R. F. Howe and R. H. Meinhold, 

Journal of Catalysis 1996,161,338-349. 
[99] J. Yang, F. Deng, M. J. Zhang, Q. Luo and C. H. Ye, Journal of Molecular Catalysis 

A-Chemical 2003,202,239-246. 
[100] W. P. Zhang, D. Ma, X. W. Han, X. M. Liu, X. H. Bao, X. W. Guo and X. S. Wang, 

Journal of Catalysis 1999,188,393-402. 



162 

[101] D. Feng, Y. Yong and Y. Chaohui, Solid State Nuclear Magnetic Resonance 1998, 
10,151-160. 
[102] D. Ma, W. P. Zhang, Y. Y. Shu, X. M. Liu, Y. D. Xu and X. H. Bao, Catalysis 
Letters 2000,66,155-160. 
[103] E. Brunner, H. Ernst, D. Freude, T. Frohlich, M. Hunger and H. Pfeifer, Journal of 
Catalysis 1991,127,34-41. 
[ 104] P. Hudec, A. Smieskova, Z. Zidek, M. Zubek, P. Schneider, M. Kocirik and J. 
Kozankova, Collection of Czechoslovak Chemical Communications 1998,63,141-154. 
[ 105] W. Li, G. D. Meitzner, I. Borry, Richard W. and E. Iglesia, Journal of Catalysis 
2000,191,373-383. 
[ 106] V. T. T. Ha, L. V. Tiep, P. Meriaudeau and C. Naccache, Journal of Molecular 
Catalysis A: Chemical 2002,181,283-290. 
[ 107] B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao and B. Lin, Microporous and 
Mesoporous Materials 2006,88,244-253. 
[108] D. Zhou, D. Ma, X. Liu and X. Bao, Journal of Molecular Catalysis A: Chemical 
2001,168,225-232. 
[ 109] H. M. Liu, X. H. Bao and Y. D. Xu, Journal of Catalysis 2006,239,441-450. 
[I 10] S. Kotrel, J. H. Lunsford and H. Knozinger, Journal of Physical Chemistry B 2001, 
105,3917-3921. 
[I II]N. -Y. Topsoe and H. Topsoe, Journal of Catalysis 1982,75,354-374. 
[ 112] A. Redondo and P. J. Hay, Journal of Physical Chemistry 1993,97,11754-11761. 
[113] L. S. Wang, R. Ohnishi and M. Ichikawa, Journal of Catalysis 2000,190,276-283. 
[ 114] B. M. Weckhuysen, D. J. Wang, M. P. Rosynek and J. H. Lunsford, Angewandte 
Chemie-International Edition in English 1997,36,2374-2376. 
[ 115] K. M. Dooley, G. L. Price, V. I. Kanazirev and V. I. Hart, Catalysis Today 1996,31, 
305-315. 
[116] G. J. Buckles and G. J. Hutchings, Catalysis Today 1996,31,233-246. 
[ 117] J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner and S. H. Taylor, Chemical 
Communications 1996,523-524. 
[ 118] T. Davies and S. H. Taylor, Journal of Molecular Catalysis A: Chemical 
Selective Oxidation of Hydrocarbons 2004,220,77-84. 
[119] E. L. Wu, S. L. Lawton, D. H. Olson, A. C. Rohruran and G. T. Kokotailo, Journal 

of Physical Chemistry 1979,83,2777-2781. 
[ 120] W. Masierak, T. Emmler, G. Buntkowsky and A. Gutsze, Zeitschrift Fur 
Physikalische Chemie-International Journal of Research in Physical Chemistry & 

Chemical Physics 2003,217,1613-1626. 
[ 121 ] C. V. Hidalgo, H. Itoh, T. Hattori, M. Niwa and Y. Murakami, Journal of Catalysis 

1984,85,362-369. 
[ 122] M. V. Juskelis, J. P. Slanga, T. G. Roberie and A. W. Peters, Journal of Catalysis 
1992,138,391-394. 
[123] J. K. M. Rozwadowski, J. Wloch, K. Erdmann, R. Golembiewski, Applied Surface 

Science 2002,191,352-361. 
[ 124] E. Lamouroux, P. Serp, Y. Kihn and P. Kalck, Catalysis Communications 2006,7, 

604-609. 
[125] M. Ai, Polyhedron 1986,5,103-105. 
[ 126] H. deLasa, L. Hagey, S. Rong and A. Pekediz, Chemical Engineering Science 1996, 

51,2885-2890. 
[ 127] M. Fournier, A. Aouissi and C. Rocchicciolideltcheff, Journal of the Chemical 

Society-Chemical Communications 1994,307-308. 
[ 12811. R. Beattie and T. R. Gilson, Journal of the Chemical Society. A 1969,2322. 

[ 129] M. R. Smith and U. S. Ozkan, Journal of Catalysis 1993,141,124-139. 

[ 130] T. M. Huong, K. Fukushima, H. Ohkita, T. Mizushima and N. Kakuta, Catalysis 

Communications 2006,7,127-13 1. 
[ 131 ] D. Ma, Y. Y. Shu, X. H. Bao and Y. D. Xu, Journal of Catalysis 2000,189,314-325. 



163 

[132] Y. Y. Shu, D. Ma, X. H. Bao and Y. D. Xu, Catalysis Letters 2000,66,161-167. 
[133] Y. Y. Shu, D. Ma, X. C. Liu, X. W. Han, Y. D. Xu and X. H. Bao, Journal of 
Physical Chemistry B 2000,104,8245-8249. 
[134] J. G. Choi, J. R. Brenner and L. T. Thompson, Journal of Catalysis 1995,154,33- 
40. 
[135] S. T. Oyama, Journal of Catalysis 2003,216,343-352. 
[136] D. Ma, T. C. Xiao, S. H. Xie, W. Z. Zhou, S. L. Gonzalez-Cortes and M. L. H. 
Green, Chemistry of Materials 2004,16,2697-2699. 
[ 137] C. Stinner, R. Prins and T. Weber, Journal of Catalysis 2000,191,438-444. 
[138] C. Stinner, R. Prins and T. Weber, Journal of Catalysis 2001,202,187-194. 
[139] P. A. Clark and S. T. Oyama, Journal of Catalysis 2003,218,78-87. 
[140] D. H. Gregory, J. Chem. Soc., Dalton Trans. 1999,259. 
[141] A. K. Cheetham, Solid State Chemistry, Oxford University Press, 1992, p. 320. 
[ 142] F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, New York ; 
Chichester : John Wiley & Sons, Inc, 1988, p. 
[143] Y. Li, B. Zhang, X. Xie, J. Liu, Y. Xu and W. Shen, Journal of Catalysis 2006,238, 
412-424. 
[144] D. Chen, K. O. Christensen, E. Ochoa-Fernandez, Z. Yu, B. Totdal, N. Latorre, A. 
Monzon and A. Holmen, Journal of Catalysis 2005,229,82-96. 

fTL 
itil Tu" 

AR1" 


