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ABSTRACT 

The original objective of this work was to compare the cellular processes in salt tolerant 

and salt sensitive plants cells to gain insight into the mechanisms that confer 

halotolerance. Halotolerant and salt sensitive cell lines were derived from the model 

glycophyte Arabidopsis thaliana; in addition cell suspension cultures from the dicot 

halophytes Beta vulgaris and Atriplex halimus were also generated. Unfortunately, 

severe disruptions were encountered following a serious fire; persistent power failures, 

and failures of new equipment hampered progress with this work. For this reason, only 

comparisons between the Arabidopsis cell lines were completed. The halotolerant 

(HHS) cell lines survival strategy is to prevent Na accumulation when grown in < 100 

mM NaCl. Wild type (WT) cells grow faster than HHS cells in the absence of NaCl, but 

rapidly take up Na in 50 mM NaCl where their growth is severely affected, and fail to 

grow completely above 100 mM NaCl. No evidence was found to suggest this growth 

impairment arose from osmotic stress or nutrient ion deficiencies. Protein profiling of 

HHS cells identified a number of proteins whose abundance is regulated by salt stress. 

These included proteins involved in ion transport, central metabolism, and general stress 

responses. The implications of these findings are discussed. 

In a separate project, a whole plant approach was taken to establish the physiological 

mechanisms that account for the reported difference in halotolerance between two 

commercially grown barley lines originating from China. Measurements on growth and 

development, plant water status, tissue ion profiling, photosynthesis rates, and 

transpiration rates suggested the tolerant line (Zhou 1) enters the reproductive phase of 

its life cycle approximately one week earlier than the sensitive line (Zhou 85), and this 

critical period allows floral development resulting in improved yields. This early 
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flowering is not associated with the well characterized PpD-H1 locus controlling early 

flowering in cereals. 

The main conclusion from this study is that for glycophytes that do not complete a full 

life cycle above 100 mM NaCl (which includes all of the world’s major crops), it is the 

ionic component of salinity stress that impairs growth and yield. Further research on 

salinity stress in crops should focus on understanding the processes that control ionic 

balance rather than osmoregulation. 
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1 Chapter 1: Introduction. 
Over the last one hundred and fifty years global food production (agriculture 

production) has increased dramatically. This has occurred chiefly through the 

application of irrigation, chemical and organic fertilizers, agrochemicals to control 

weeds, pests and pathogens, genetics and plant breading, and most recently 

bioengineering technology. All of these have increased food production globally 

(Huang et al., 2002), and total cereal crop yield has practically doubled since 1960 

(Kishore and Shewmaker, 1999). In Asia alone the improved crop yield from the Green 

Revolution reduced global hunger to 20% in the 1960s (Toenniessen et al., 2003). 

However, it is likely that both increased yields and the acquisition of new arable land 

will be required to meet the needs of the 21st Century. Whatever technologies are 

developed and used, they must be sustainable in the long term. 

Food production is not uniformly distributed across the globe due to the diversity of 

terrain, local climatic conditions, and the available agricultural expertise. Clearly, there 

is a limit to the amount of land available for food production, and to the theoretical limit 

on the maximum attainable yield of any given crop. At present, global food production 

is unbalanced; 183 nations in the world depend on food from outside their boarders 

(food imports); this food comes from those countries with relatively low populations 

that practice intensive agriculture. Eighty-percent of cereal export is from the United 

States, Canada, Australia, and Argentina (World Resources Institute, 1992; US Census 

Bureau, 2004), but this will not be the case in the next 60 years if U.S. population 

continues to rise (double to 540 million people;(United States Bureau of the Census, 

1996). Overall based on realistic trends in food supply, these countries may no longer 

be in a position to export food by 2050 (Brown, 1995). 
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Salinity affects 7% of the world’s land area, which amounts to 930 million ha 

(Szabolcs, 2004). It has been estimated that 20% of irrigated land suffers from salinity 

which if left untreated can render the land useless. Irrigation is important for agriculture, 

irrigated land which account for 15% of total arable land produces at least double that of 

rain-fed land. In total irrigated arable land produces 1/3 of the world food supply 

(Munns, 2002). 

The world’s population doubled between 1900 and 1960; by 2000, the population had 

reached 6 billion citizens, three-and-a-half times the population of 1900 (US Census 

Bureau, 2004). The World Bank and the United Nations FAO document that 1 to 2 

billion people are now malnourished due to a combination of the inadequate food 

supply, low income, and unfair food distribution (Pimental et al., 1997). Most of these 

live in Developing Countries, and includes one third of the population of sub-Sahara 

African (FAO, 2002). 

An increasing population will result in an increase in environmental problems, to more 

conflict, and to social unrest (Brown and Nielsen, 2000; Carpenter and Watson, 1994; 

Jayne, 1999; Plant et al., 2000). It is clear that an increasing population will require 

more food, and this needs the acquisition of more arable land. However, the practices of 

intensive mechanized agriculture are causing increased soil erosion and salinization, and 

the loss of arable land.  

Globally, food and field crops are grown on 11% of the earth’s inland area of 13 billion 

hectares Fig. 1-1 (Buringh, 1989; World Resources Institute, 1994). The total loss of 

land due to urbanization and highways ranges from 10 to 35 million hectares a year, 

about ½ of this loss coming from crop land (Doos, 1994). 
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Fig. 1-1 Current Use of Potential Agricultural Land from the 13 Billion Hectares 

of Land Area on Earth.  

The percentages in use are:    arable Land = 11%,   Pasture land =26%,   Forest land 

=30%,    Urban = 9%, and     Other = 23%. (Buringh, 1989; WRI, 1994). 

Note, ‘Other’ means unsuitable for agriculture, pasture, or forests because the soil is too 

infertile or shallow to support plant growth, or the climate and land are too dry, cold, 

stony, steep, rocky or wet. 
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1.1 The Effect of Salinity on Agriculture. 

The FAO reported in 1991 that more than 99% of world’s food supply comes from land 

and less than 1% is from seas, oceans, and other aquatic habitats (FAO, 1991). The total 

arable land on the earth is approximately 13 billion ha of which 6 billion ha are located 

in arid and/or semiarid regions, and about 17% of this is severely affected by salt. In 

irrigated areas which constitute 230 million ha world-wide, 33% is affected by salt 

(Ashraf, 1994). Thus, the magnitude and the seriousness of the problem cannot be 

understated. Moreover, 40 x103 ha of land world-wild is being lost every year from 

agriculture due to salinity (Al-Khatib et al., 1993). It is also estimated that 250 x103 ha 

of cultivated area in South Western Australia has become unproductive because of soil 

salinity (Malcolm, 1982). 

The FAO also reported (FAO, 1990) that 2-3 x107 ha of cultivated land is severely 

affected by salinity, and an additional 6-8 x107 ha are affected to some extent. Only 

about 10% of total arable land on the earth can be considered as free from salt stress 

(Ashraf, 1994). In a survey on the distribution of 323 million ha of saline soils 

throughout the world, 54 million ha of the total is located in Africa, 17 million ha in 

Australia, 20 million in Mexico and Central America, 60 million ha in North America, 

69 million ha in South America, 83 million ha in Southern Asia and 20 million ha in 

Southeast Asia (Massoud, 1974). In general, there is strong correlation between global 

agriculture yields and soil salinity. 

1.2 Plants Show a Wide Range of Tolerance of Salinity. 

Plants can be broadly classified into two groups according to their tolerance of salinity: 

(1) the salt sensitive plants, termed as ‘Glycophytes’: (2) the salt tolerant plants, or 

‘Halophytes’. Unfortunately, the major crops of the world are glycophytes that can not 

grow in saline habitats where salt concentrations are above ~100 mM NaCl. These 
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plants do not appear to possess mechanisms for adapting to the harmful effects of 

salinity. These glycophytes have evolved in habitats with very low soil Na+ content, and 

may never have possessed the mechanisms or features to enable them to cope with the 

water deficits and ion levels prevailing in saline habitats (Greenway and Munns, 1980). 

Some classifications categorize plants as follows: tolerant, moderately tolerant, 

moderately sensitive, and sensitive, with respect of their response to salinity (Maas and 

Hoffman, 1977). For instance barley, cotton, and sugar beet are considered tolerant 

because they can grow in the salinity range of 6.9 to 8.0 dS m-1 (77-88 mM NaCl) 

without any apparent loss of yields, whereas most fruit trees, carrot, and onion are 

considered sensitive with yield loss thresholds of less than 2.0 dS m-1 (22 mM NaCl; 

(Maas and Hoffman, 1977). What is required is the development of major crop varieties 

that can grow in saline soils without losing their ability to produce high usable yields. 

The US Laboratory of Salinity define a saline soil as one with a saturation extract (the 

solution extracted from a soil at its saturation water content) electrical conductivity (EC) 

of greater than 4 deciSiemens m-1, (equivalent to ~45 mM NaCl;(Corwin et al., 2003). 

The growth of many glycophytes is significantly limited in concentrations as low as 25-

50 mM NaCl (Lessani and Marschner, 1978). In contrast, many halophytes grow well in 

high concentrations of NaCl, and complete their life cycle in full-strength sea water 

(~560 mM NaCl). Clearly, halophytes have the ability to avoid and/or get rid of toxic 

ions by mechanisms preventing them from accumulating at metabolic sites and 

impairing growth; many have specialized organs such as glands and bladders (Yeo, 

1998). NaCl inhibits the in vitro activity of many enzymes (Blum, 1988; Greenway and 

Munns, 1980; Flower et al., 1977). The cytoplasm of plant cells typically contain about 

100 mM K+, and plant metabolism has, therefore, evolved to work efficiently at this 

concentration. Increased levels of Na+ disrupt the ionic balance of the cytoplasm. As the 
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physicochemical properties of K+ and Na+ are similar, but not identical. As Na+ levels in 

the cytoplasm rise, the ionic interactions within and between proteins, their co-factors, 

and substrates alters so that metabolism is no longer optimized. As a result, the 

activities of many enzymes operating in different pathways are perturbed (Flower et al., 

1977).  

1.3 The Definitions of Soil Salinity. 

Salt stress maybe defined as an excess of ions of soluble salts such as sodium (Na+), 

chloride (Cl-), calcium (Ca+2), magnesium (Mg+2), sulphate ( SO4
-2 ), and bicarbonate 

(HCO3
- ) in soil or in the culture medium that maybe have deleterious effects on plant 

growth (Lewis, 1984). Salinity is often expressed as concentrations (e.g. mM) or in 

electrical conductivities (EC). Salinity can be abbreviated as ECe (electrical 

conductivity of the extract) with units of electrical conductance (e.g. deciSiemens per 

meter, dS m-1), or in the old units of electrical resistance (e.g. millimhos per centimeter, 

mmhos/cm), which is expressed in numerically equivalent units. 

Along with the EC of soil extracts taken from the root zone, the EC of irrigated water, 

the solute (or osmotic) potential (ψs, measured in MPa), the total dissolved solids (TDS, 

mg l-1), and total cation and anion content (TI, mEq l-1) of the solution are also used for 

indices of salinity. The following relationships are often used: ψs = 0.036 EC: TDS = 

640 EC: TI = 10 EC, that is only if certain units are used (Fageria, 1992; United States 

Salinity Laboratory UC Riverside, 1954). The International System of Units (SI) of EC 

is deciSiement per meter (dS m-1). For example, a soil extract with EC of one dS m-1 has 

a concentration of roughly 11mM NaCl, and contains approximately 640 mg L-1 total 

salts (Lewis, 1984). If soil extracts have an EC of greater than 4 dS m-1 (46 mM NaCl) 

then the soil is considered to be saline (Troeh et al., 1980). By definition, pure water at 
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STP (standard temperature and pressure) and air at 100% relative humidity has a water 

potential of zero. 

1.4 The Deleterious Effects of Salinity on Plant. 

Upon exposure, the primary effect of salt on plants is an osmotic stress (Jones, 1992) 

which causes dehydration and loss of turgor (within 1 hr). Subsequently, ingression of 

ions into cells can result in ion toxicity. Munns and co-workers (Munns et al., 1995) 

tested wheat and barley genotypes for salt tolerance and noticed that there were two 

stages of growth response to salt stress. Initially, they identified a large decrease in 

growth rate, which arises from the loss of cell turgor. If the plant can regain turgor there 

is the potential to resume growth but, there is often a second reduction due to salt 

specific responses that originated from the accumulation of salt toxic levels within the 

cell. This may arise through disruption in the normal hormonal signals from roots 

(Munns, 2002). Under salt stress conditions, endogenous levels of a plant hormone, 

abscisic acid (ABA) increase (Gómez et al., 1988), which appears acts as a signal to 

promote tissue acclimation (Chandler and Robertson, 1994). Elevated ABA levels have 

been correlated with increased tolerance to salt (Singh et al., 1987), and exogenous 

application of ABA accelerated the adaptation of cultured tobacco cells to salt (LaRosa 

et al., 1987), which provide further support for a role of ABA in the acclimation of 

plants to salinity and osmotic stress. The correlation between osmotic stress and change 

in the ABA level has been well established at the molecular level (Shinozki and 

Shinozaki-Yamaguchi, 1996). 

In some plants, for example citrus, salt toxicity is due to Cl- instead of Na+ high 

concentration in the soil (Fernandez-Ballester et al., 2003; Moya et al., 2003). In plants 

chloride has two main roles: one as a counter anion for cation transport (Ca+2, K+, Mg+2, 

NH+
4 etc.) for maintaining membrane potential: the second as a major osmotically 
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active solute for maintains both turgor and osmoregulation. Chloride is a micronutrient 

essential for healthy plant growth. A minimal requirement for crop growth of 1g Kg-1 D 

Wt has been suggested, a quantity that can generally be supplied by rainfall (White and 

Broadley, 2001)  

1.5 Plant Strategies for Coping with High Salinity. 

Until recently strategies for solving the salinity problem in agriculture has tended to 

focus on soil reclamation. However, this has proved to be extremely expensive and 

untenable. In practice, land has been cultivated until salinity renders production 

uneconomic, at which point cultivation is switched to new areas. Recently, with the 

development of breeding and bioengineering, the focus has turned more towards 

developing salt-tolerant crops. However, this approach has its own drawbacks 

(Morpurgo, 1991). There is a view that salt tolerance in plants is a polygenic trait 

involving the co-ordinate expression of many genes, and that the prospects for 

bioengineering are therefore remote (Glenn et al., 1999). However, recently this view 

has been challenged: salt resistant tomato (Zhang and Blumwald, 2001) and 

Arabidopsis (Apse et al., 1999) plants have been produced by transformation with a 

single gene. Therefore, the prospects for overcoming salinity stress in crop plants using 

information derived from model system such as Arabidopsis and rice (Oryza sativa), 

may not be as bleak as once thought. 

For example Gaxiola and co-workers (Gaxiola et al., 1999) cloned the A. thaliana 

NHX1 gene (encoding Na+/H+ antiporter) from a phage cDNA library of A. thaliana by 

probing with an EST (expressed sequence tag) (Arabidopsis Biological Resources 

Center, DNA stock Center contains a partial clone). The full length clone (2.1 Kb) is 

longer than the ORF (open reading frame) reported by the Arabidopsis Genome 
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initiative (ATM021B044) and has been deposited in GenBank (accession no 

AF106324).  

Plants exposed to saline environments encounter three basic problems: (1) specific ion 

(Na+, Cl-, etc) toxicity; (2) the need to maintain a favorable cell turgor pressure: (3) the 

need to obtain essential nutrient ions (e.g. K+, NO-) in spite of the predominance of 

other chemically similar, potentially toxic ions (e.g. Na+, Cl-) in the growth medium. 

Salt tolerance in plants not only varies considerably among species, but also depends 

very much on the conditions under which the crop is grown (Maas, 1986). There are 

several factors that influence salt tolerance in plant. These include temperature, the 

composition and levels of salts, the growth phase of the plant, and the Leaching 

Fraction (LF) (Ayers and Westcot, 1976; Bauder, 2001; Fageria, 1992; Hanson et al., 

1999; Rhoades, 1977; USDA, 2002; Western Fertilizer Handbook, 1995). 

Salinity has a negative impact on plant development and seed production. Flowering 

and maturity of rice is delayed by salt stress during both vegetative and reproductive 

growth stages (Castillo et al., 2004). As little as 4g/l NaCl delayed flowering in iris 

plants by up to 3 days, and the delay of flowering continued after the salt stress was 

withdrawn (Zandt and Mopper, 2002) Plant tolerance to salinity is usually judged by 

three criteria: (1) the ability of the plant to survive on saline soils: (2) the growth rates 

and yields in saline habitats: (3) the relative growth rate or yield in saline compared 

with non-saline soils. The third criteria seems to provide the best estimate of plant salt 

tolerance (Mass and Grieve, 1987). 

1.6 K+ & Na+ Uptake Pathways. 

Unlike K+, Na+ is not an essential mineral to plants in spite of its abundance in soil 

solutions. The high concentration of Na+ and Cl- in saline soils will disturb the 

acquisition of K+ and other elements that are essential for plant growth, causing osmotic 
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stress and other problems such as oxidative stress (Zhu, 2001). Sodium inhibits many 

cytosolic enzymes as K+ is normally required as a co-factor (Flower et al., 1977; Wyn 

Jones and Pollard, 1983). Potassium uptake plays a very important role in plant growth 

and development (Ashley et al., 2006; Mengel and Kirkby, 1982). Potassium flux in 

plant cells is essential for several physiological functions including: (1) enzyme 

activation: (2) osmoregulation: (3) control of membrane potential: (4) Turgor-controlled 

whole-leaf movements like heliotropism and stomatal function.  

Not much is known about how plants absorb Na+ from their surroundings but it is 

widely believed that Na+ enters cells through K+ channels and carriers located on the 

root cell plasma membranes (Schachtman et al., 1997). This contention is supported by 

work on HKT1 (high-affinity K+ uptake transporter) and LCT1 (low- affinity cation 

transporter) (Rubio et al., 1995; Schachtman et al., 1997).  

Potassium uptake transporters in plant cells interact with some other metals such as Na+ 

and Al3+ (Greenway and Munns, 1980). The absorption of K+ is induced either by high-

affinity or low-affinity mechanisms or a combination of both. High-affinity pathways 

are activated when the extra-cellular K+ concentration is in the micromolar range and 

probably involves the utilization of a proton gradient and K+/H+ symporters. In contrast, 

the Low-affinity pathways operate when the extra-cellular K+ concentration is in the 

millimolar range and involves ligand or voltage-gated channels (Assmann and 

Haubrick, 1996). The Km values for K+ uptake vary from 15 μM during K+ starvation to 

5 mM in cells growing at low millimolar K+ concentrations (Ramos et al., 1985; 

Rodriguez-Navarro and Ramos, 1984) to values as high as 50 mM in cells growing in 

K+ concentrations exceeding 100 mM (Ramos et al., 1994). 
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1.6.1 High Affinity Potassium Absorption. 

High affinity K+ uptake was first described by (Epstein et al., 1963) and was named 

‘Mechanism 1’. Although plants have an absolute requirement for K+, and Na+ is toxic 

for many biological reactions in the cytoplasm, this is not the case if Na+ is stored in the 

vacuole (Flowers and Lauchli, 1983; Subbarao et al., 2003). High-affinity K+ uptake is 

also essential for K+ transport from the soil into plant roots (Epstein et al., 1963; 

Epstein, 1966; Schroeder et al., 1994). During the last decade many laboratories have 

attempted to identify plant genes encoding High-affinity K+ uptake system that share 

characteristics with the fungal HAK transporters (Rodriguez-Navarro, 2000). Detailed 

analyses of HKT1 expressed in yeast and xenopus oocytes demonstrated two transport 

modes for HKT1, a saturatable high-affinity K+-Na+ symporter activity and a low 

affinity Na+ transport activity (Rubio et al., 1995). High affinity K+ uptake is stimulated 

by micromolar extracellular Na+ concentrations. However, at high toxic extracellular 

Na+ concentrations, K+ uptake mediated by HKT1 is blocked and selective (low 

affinity) channel-like Na+ uptake occurs (Gassmann et al., 1996). HKT1 homologs have 

been isolated or detected from many plant species, including Arabidopsis (Uozumi et 

al., 2000), rice (Fairbairn et al., 2000) and the halophyte Mesembryanthemum 

crystallinum (Su et al., 2003). The first K+ channel was identified in yeast mutants using 

Arabidopsis cDNA libraries which belonged to class of inward-rectifier K+ channels 

(Anderson et al., 1992; Sentenac et al., 1992). Eventually, a putative high-affinity 

barley transporter was identified with homology to the fungal HAK transporters (Santa-

Maria et al., 1997). The plant genes were named AtKT1and At KUP (Fu and Luan, 

1998; Kim et al., 1998; Quintero and Blatt, 1997), or At HAK by (Santa-Maria et al., 

1997). Recently, BLAST searches of the plant genome database and the systematic use 

of the RT-PCR approach has led to the isolation of cDNA for HAK homologues from 

Arabidopsis (Rubio et al., 2000), rice (Bañuelos et al., 2002) and pepper (Martinez-
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Cordero et al., 2005). HKT transporters have two functions: (1) to take up Na+ from the 

soil solution to reduce K+ requirements when K+ is a limiting factor, and (2) to reduce 

Na+ accumulation in leaves by removing Na+ from the xylem sap and loading Na+ into 

the phloem sap (Rodriguez-Navarro and Rubio, 2006). 

1.6.2 K+ Transport within the Plant. 

After entry into the root symplast, K+ must be distributed to the rest of the plant, firstly 

by loading it to the xylem, and later moving it to the surrounding cells. In these 

movements K+ crosses the plasma membranes of several types of cells, depending on 

the plant species. Moreover, fluxes into and out of the vacuole are also involved in cell 

K+ homeostasis. It is obvious that K+ channels mediate many of these fluxes (Véry and 

Sentenac, 2003), even when K+ is taken up from low concentration solutions 

(Brüggemann et al., 1999), but some other transporters are also involved. Interestingly, 

at the xylem/bundle sheath interface in maize leaves, the permeability for Rubidium 

(Rb+) is at least as high as that for K+ (Keunecke et al., 2001), which is a characteristic 

of HAK transporters. This suggests that the function of high-affinity HAK-dependent 

K+ uptake transporters is not restricted to K+ uptake from the soil solution in root 

epidermal and cortical cells. Consistent with this notion is the observation that AtHAK5 

is expressed in shoots (Ahn et al., 2004; Rubio et al., 2000) and in stellar root cells 

(Gierth et al., 2005). In fact, most of the transporters of the KT/HAK/KUP family, 17 in 

rice (Bañuelos et al., 2002) and 13 in Arabidopsis (Mäser et al., 2001), do not belong to 

the cluster of the high-affinity transporters (Bañuelos et al., 2002), and in some cases it 

has been argued that they are in fact low-affinity K+ transporters (Senn et al., 2001; 

Garciadeblas et al., 2002). A remarkable characteristic of KUP/HAK transports is that 

the range of K+ concentrations at which they are active overlays with other types of 

transporters in bacteria, fungi, and plants. In Escherichia coli, the KUP transporters 
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exhibit low affinity transport (Bakker, 1993), whereas in fungi HAK transporters 

mediate high affinity K+ transporters and seem to be redundant with other high-affinity 

K+ transporters (Bañuelos et al., 1995; Bañuelos et al., 2000; Haro et al., 1999). In 

plants, KT-HAK-KUP transporters have been associated with high-affinity K+ uptake in 

root (Rubio et al., 2000; Santa-Maria et al., 1997) 

1.7 The Role of Ca2+ in Plant Salt Tolerance. 

Calcium is an essential macronutrient in plants and the content can be as high as 2.0% 

of the total dry weight (Benton-Jones, 1983). Calcium is generally taken up by the roots 

and travels with the transpiration stream until it reaches the leaves and other plant 

organs. Calcium deficiencies can occur in actively growing parts of the plant, while 

older parts may have an adequate amount. It is also effective in maintaining cell wall 

structure through its cross-linking between pectin polymers (Street and Opik, 2006). 

Calcium is also regarded as a very important second messenger involved in controlling 

many physiological processes and stress responses (e.g. stomatal movements, onset of 

senescence, pathogen attack, pollen tube growth, etc.; (Bush, 1995), and there is very 

good evidence that it directly or indirectly affects salt tolerance (Liu and Zhu, 1998; Shi 

et al., 2000; Zhu et al., 1998). Increased Ca2+ may protect the plants from NaCl toxicity 

by reducing the displacement of membrane associated Ca2+ (Cramer et al., 1985) or by 

reducing Na+ uptake and transport to the shoots (Cramer et al., 1989; LaHaye and 

Epstein, 1971; Mass and Grieve, 1987). Ca2+ also improves K+ uptake by plants exposed 

to high salinity (Cramer et al., 1985; Cramer et al., 1987), effectively increasing the 

K+/Na+ ratio in tissues, an important mechanism in salt tolerance (Greenway and 

Munns, 1980; Rengel, 1992). 
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1.8 Possible Mechanisms Conferring Salt Tolerance. 

In general salinity is considered to be harmful when soil EC readings are greater than 4 

dS m-1, and of little concern at EC less than 2 dS m-1. There are several key 

physiological features that are common in salt tolerant plants. First, the maintenance of 

a high cytoplasmic K+/Na+ ratio: second, the maintenance of a low concentration of Cl- 

in cytoplasm (Fig. 1-2): third, the maintenance of turgor pressure in spite of low 

external water potentials (Blumwald et al., 2000; Glenn et al., 1999). These strategies 

are implemented by several mechanisms. These include the regulation of Na+/Cl- 

transport from the roots to the shoot. Second, maintenance of low Na+ in the cytoplasm 

of cells by compartmentation within the cell (i.e. vacuole sequestration). Third, 

regulation of cytoplasmic net levels by the excretion from the cell and/or from tissues 

by specialized glands or bladders. 

1.9 The Importance of Turgor. 

Soft plant tissues (non-lignified) are supported by the pressure of cell contents against 

the cell walls. This is known as turgor pressure and is induced by the uptake of water 

into cytoplasm of the cells so that pressure is exerted by the plasma membrane on the 

cell wall. Water tends to move into the cell because of the osmotic effect of the low 

molecular weight solutes in the cytoplasm and vacuole. Water movement from the soil, 

through the plant, and into the air can best be understood from the concept of water 

potential, which is measured in pressure units (bars, Pascals etc.). Water always moves 

from high to low water potential whatever the cause of the difference in potential. By 

definition, pure water at S.T.P. (standard temperature and pressure) and air at 100% 

relative humidity have a water potential of zero. Because the growth (expansion) of 

cells of plant depends totally on turgor, decreased turgor is the factor most likely to 

inhibit plant growth when they are exposed to high salt (Ashraf, 1994). As a result, 
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transfer of a salt-sensitive plant from their original habitats to a high salt medium will 

produce a rapid water loss and wilting (Gorham, 1992a). Recently the plant cell vacuole 

has gained a lot of attention because of their multifaceted role in plant metabolism (e.g. 

recycling of cell components, regulation of turgor pressure, detoxification of 

xenobiotics, and accumulation of many storage substances (Maeshima, 2001). 

Moreover, the space-filling function of the vacuole is essential for cell growth, because 

cell growth is driven by the expansion of vacuole rather than that of the cytoplasm 

(Taiz, 1992). Osmotic adjustment by halophytes and other salt-tolerant plants to tolerate 

high saline conditions is a key strategy for survival and this can be achieved by ion 

uptake from the soil solution and sequestration in the vacuole, and by internal synthesis 

of compatible organic solutes in cytoplasm. A desiccated plant cell must reverse the 

water to potential gradient to survive, by forcing water flow back into the cell. 

Therefore, for plant cells to thrive in concentration above ~120 mM NaCl (~to -0.6 

MPa, the water potential of plants in a well watered field), plants must develop a 

strategy to re-establish turgor pressure. Halophytes take advantage of their vacuoles to 

achieve this by accumulating enough osmotically-active solute in their vacuoles, to 

reverse the osmotic gradient so that water can be re-absorbed from the external medium. 

An energetically cheap way of accomplishing this is to take up Na+ and Cl- ions from 

the external medium and sequester them in the vacuole. If the solute potential (Ψs, or 

osmotic potential) of the vacuole (Ψs vac) becomes more negative than that in the soil 

solution, water will flow into the cell and turgor will rise. However, for the cytoplasm to 

absorb water, it is necessary for the solute potential of the cytoplasm (Ψs cyt) to decrease 

in parallel with Ψs vac , and this can be achieved by the accumulation of non-toxic 

compatible solutes (e.g. glycine, betain, proline, and sugars;(Flower et al., 1977). 
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Fig. 1-2 Possible Mechanisms Maintaining Ion Balance across the Plasma 

Membrane and Tonoplast of Salt-Tolerant and Salt-Sensitive Plant Cells. 

When compared with salt-sensitive plants, salt-resistant plants are believed to show 
increased levels of (a) potassium uptake, (b) decreased levels of sodium uptake, and (c) 
more efficient methods of sodium efflux by     Na+-ATPases or   Na+/H+ antiporters. 
(d)       , H+ pumping activity. 
Na+, the major toxic cation found in saline soils, has a similar physiochemical structure 
to K+ and competes for uptake, interfering with K+ nutrition. There are two mechanisms 
of K+ uptake in plants, the high affinity (Km of 10-30μM) to allow uptake at low 
external K+ concentrations, (believed to be unaffected by external Na+), and the low 
affinity mechanism that mediates K+ uptake at high external K+ concentrations (> 300μ
M, Km of >200μM;(Buchanan et al., 2000).  
The mechanism for Na+ uptake into plant cells is unknown, but has been assumed to 
occur through the K+ pathway(s) or non-specific cation channels such as LCT1.  
Na+ efflux might occur through a Na+-ATPase (cf. S. cerevisiae ENA1-4 system) or by a 
Na+/H+ antiporter (e.g. SOS1,(Kamei et al., 2005). 
High K+/Na+ can be maintained by the controlled movement of these ions across the 
plasma membrane. Therefore, it is feasible that salt-resistant cells can discriminate more 
efficiently between K+ and Na+ with a stronger preference for K+ uptake against Na+, or 
also, with effective Na+ expulsion mechanisms. 
The maintenance of favorable ion balance is dependent on the activity if H+ pumps that 
drive active transport processes (d). these include the plasma membrane P-type H+ 
ATPase, and tonoplast V-type H+ ATPase and H+ pyrophosphatrase (Magnotta and 
Gogarten, 2002). Salt tolerance may depend on high densities and/or activities of these 
pumps. 
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1.10 Na+ Requirement and Acquisition. 

1.10.1 Na+ Requirements in Plants. 

The criteria for any element to be essential has been stated by (Arnon and Stout, 1939) 

the following conditions must be met for an element to be considered as “an essential 

nutrient for plants:” (1) the organism cannot complete its life cycle without it; (2) its 

action must be specific and cannot be replaced (completely) by any other element; (3) 

its effect on the organism must be direct, not indirectly through the environment. This 

set of criteria has been expanded by (Epstein, 1965) to include that if an element is part 

of an essential compound it must also be essential. Na+ has been shown to be essential 

for certain C4 plant species, such as Atriplex vesicaria, A. tricolor, Kochia childsii, 

Panicum miliaceum, and Distichlis spicata L. In the absence of Na+, these C4 plants 

grow poorly, showing visible deficiency symptoms such as chlorosis and necrosis, or 

fail to form flowers. Supplying 100 μM Na enhances growth and alleviated visual 

deficiency symptoms (Marschner, 1995; Pessarakli and Marcum, 2000; Pessarakli et al., 

2001; Brownell and Crossland, 1972).  

It is generally considered that all higher plants show two contrasting responses to high 

external salt (NaCl) concentrations. One, is characterized by halophytes and involves 

high salt uptake with no damage within shoot organs, and is sometimes accompanied by 

salt excretion from leaves. The second, is typical of glycophytes; uptake occurs from the 

medium with subsequent upward movement through the shoot, but passage is restricted 

by mechanisms of varying effectiveness (Greenway and Munns, 1980; Läuchli, 1984). 

This second class of response is widespread among non-halophytic dicotyledons, 

particularly legumes, and usually relates specifically to exclusion of Na+, especially 

from leaves (Jacoby, 1964). Most species in this category are relatively sensitive to salt, 
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but others are notably more tolerant, e.g. Lupinus luteus, L. angustifolius, Trifolium 

alexandrinum (Läuchli, 1984). 

1.10.2 Na+ Uptake Mechanisms. 

A high K+/Na+ ratio in the cytosol is a very important and essential feature for normal 

cellular function in plants. Since living cells are not completely impermeable to Na+, the 

low concentration of Na+ in the cytoplasm requires its continuous exclusion normally 

against an electrochemical gradient (Rodriguez-Navarro et al., 1994). Therefore, active 

exclusion of Na+ occurs either by a primary active Na+-pumping ATPase or by a 

secondary active (Na+ /H+ antiporter) mechanisms coupled to an electrochemical proton 

gradient Fig. 1-2 (Serrano and Gaxiola, 1994). Due to the physio-chemical similarity 

between K+ and Na+, it is generally assumed that K+ and Na+ compete for common 

absorption sites in the root. High affinity transporters are effective at very low external 

K+ concentrations and saturate when external K+ concentrations rise to 1 mM (Epstein, 

1961). Sodium, even in 20-fold excess, fails to compete significantly with K+ for 

binding sites on High Affinity transporters. At higher concentrations of K+ (> 1 mM), 

Low Affinity transporters become important (Epstein, 1961; Epstein et al., 1963), and 

some of these transporters do not discriminate well between K+ and Na+, and thus Na+ 

can competitively inhibit the absorption of K+ (Rains and Epstein, 1965). 

Sodium uptake in plants is believed to be primarily through Low Affinity transporters 

(Rains, 1972). Recently Kin (inward rectifying K+ channels) channels have been 

reported in different root cells, including cortical, root hair, stellar and xylem 

parenchyma cells, that can sense external K+ concentrations (Blumwald et al., 2000; 

Findlay et al., 1994; Gassmann and Schroeder, 1994; Kim et al., 1998; Maathuis and 

Sanders, 1995; Roberts and Tester, 1995; Vogelzang and Prins, 1994; Wegner and 

Raschke, 1994). These ion channels transport at rates between 106 and 108 ions per 
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second per channel protein. Transport is ‘passive’, where the diffusion of ions through 

the channel is a function of both the membrane voltage and the concentration difference 

across the membrane; thus uptake is not directly coupled to the input of other forms of 

free energy (Blumwald et al., 2000; Maathuis et al., 1997). Some argue plants should be 

termed according to their ability to absorb Na+ and translocate it freely to the shoot. 

‘Natrophiles’ take up and translocate Na+ freely, whereas ‘Natrophobes’ desire to show 

a strong preference to absorb K+ over Na+ (Whitehead and Jones, 1972; Shone et al., 

1969; Smith et al., 1980). 

1.10.3 The SOS Mechanism and Salt Efflux. 

Arabidopsis salt overly sensitive (SOS) mutants were identified by genetic screening of 

mutagenised seedlings for hypersensitivity to NaCl stress, and were characterized by 

retarded root growth (Liu and Zhu, 1998; Shi et al., 2000; Shi et al., 2002). In 

particular, the SOS1, SOS2, and SOS3 mutants were hypersensitive to Na+ and Li+ ions. 

Genetic and physiological data indicate that SOS1, 2 and 3 function within the same 

stress response pathway and lead to Na+ tolerance (Zhu, 2003). 

Under salt-stress conditions, Arabidopsis SOS mutants show a hypersensitive root 

growth. The SOS gene products are involved in ion transport and signalling processes. 

SOS1 encodes a plasma-membrane-localized Na+/H+ antiporter (Shi et al., 2000) and is 

the principal target of the SOS pathway (Shi et al., 2000; Shi et al., 2003). SOS1 is the 

primary transport system responsible for cellular Na+ efflux (Zhu, 2003) and controls 

Na+ loading into the xylem of the root thereby restricting accumulation of the toxic ion 

in the shoot (Shi et al., 2002). Furthermore, the SOS1 protein is localized in the 

epidermis, particularly in the root tip that are critical for growth and differentiation of 

the root and have an underdeveloped vacuoles so Na+ sequestration is not feasible (Shi 
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et al., 2002). SOS1 has also been suggested to function as a Na+ sensor and is known to 

mediate control of target gene expression (Zhu, 2003). 

SOS2 encodes a Ser/Thr protein (Serine/Threonine) kinase with sequence similarity to 

the catalytic domain of yeast SNF1, sucrose no fermenting 1 (Halfter et al., 2000). 

SOS2 is activated through the repression of autoinhibition (Halfter et al., 2000; Guo et 

al., 2001). Activated SOS2 is then recruited to the plasma membrane where it 

phosphorylates SOS1 leading to activation of its Na+/H+ antiporter activity (Quintero et 

al., 2002). SOS3 encodes a Ca2 + binding protein with three predicted Ca2+ EF-hands 

(Liu and Zhu, 1998). SOS3 physically interacts with and activates SOS2. Thus the 

SOS3–SOS2 complex regulates the activity of SOS1 thereby regulating Na+ efflux from 

the cell (Qiu et al., 2002). Several genes (e.g. At1g2190, At3g500601, At1g29500, and 

At4g37260) in the SOS mutants exhibit alterations in their expression patterns relative 

to those in wild-type plants (Gong et al., 2001). (Kamei et al., 2005)reported that SOS2 

mutants were more sensitive under salt stress condition than those of SOS3 which 

suggests that the SOS pathway is more complicated than first thought (see Fig. 1-3).  

In conclusion, the Salt-Overly-Sensitive (SOS) signalling pathway is a major regulatory 

cascade that controls Na+ homeostasis in response to high salinity. The gene encoding 

tonoplast Na+/H+ antiporter (NHX1) is induced by both salinity and ABA in Arabidopsis 

(Shi and Zhu, 2002), and rice (Fukuda et al., 1999). The AtNHX1 promoter contains a 

putative ABA responsive element (ABRE) between –736 and –728 from the initiation 

codon. AtNHX1 expression under salt stress is partially dependent on ABA biosynthesis 

and ABA signalling through the ABA insensitive (ABI1) pathway. Salt-stress induced 

up-regulation of AtNHX1 expression is lower in ABA deficient mutants (aba2-1 and 

aba3-1) and in the ABA insensitive mutant, abi1-1 (Shi and Zhu, 2002). Comparing 

tonoplast Na+/H+-exchange activity (mainly due to AtNHX1) between wild type and 
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mutant lines (sos1, sos2 and sos3) shows that SOS2 also regulates tonoplast Na+ 

exchange (Chinnusamy et al., 2005) 
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Fig. 1-3 SOS Signalling Pathway for Na+ Homeostasis in Arabidopsis.  

Salt stress-elicited Ca2+ signals are perceived by SOS3, which activates the protein 

kinase SOS2. Activated SOS2 phosphorylates SOS1, a plasma membrane Na+/H+ 

antiporter, which then transports Na+ out of the cytosol. The transcript level of SOS1 is 

also regulated by the SOS3-SOS2 kinase complex. SOS2 also activates the tonoplast 

Na+/H+ antiporter that sequesters Na+ into the vacuole. Na+ entry into the cytosol 

through the Na+ transporter HKT1 may also be restricted by SOS2.  

Abscisic acid (ABA) insensitive 1 (ABI1) regulates the gene expression of NHX1, 

while ABA insensitive 2 (ABI2) interacts with SOS2 and negatively regulates ion 

homeostasis either by inhibiting SOS2 kinase activity or the activities of SOS2 targets. 

Double arrow      indicates SOS-dependent and → indicates ABA-dependent pathways 

(Chinnusamy et al., 2005). 

Activates SOS3 and SOS2

High [NaCl]out  

Phospho SOS2 
phosphorylates 
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1.11 Salt Stress Sensing in Plants. 

Plants sense salt stress through ionic (Na+) and osmotic stress signals. Therefore, excess 

Na+ can be sensed either on the surface of the plasma membrane by a transmembrane 

protein or within the cell by membrane proteins or Na+ sensitive enzymes (Zhu, 2003). 

In addition to its role as an antiporter, the plasma membrane Na+/H+ antiporter SOS1 

(Salt Overly Sensitive 1), having 10 to 12 transmembrane domains and a long 

cytoplasmic tail, may act as a Na+ sensor (Zhu, 2003). This dual role would be 

analogous to the sugar permease BglF in Escherichia coli and the yeast ammonium 

transporter Mep2p. When expressed in Xenopus laevis oocytes Na+–K+ cotransporters 

from Eucalyptus camaldulensis (Dehnh) show an increased ion uptake under 

hypoosmotic conditions while, their Arabidopsis homolog do not show this 

osmosensing capacity (Liu et al., 2001).  

1.12 Na+ Sequestration. 

A positive turgor is very important and essential for the expansion-induced growth of 

cells, and for stomatal functioning in plants. When plants are exposed to high salinity 

they desiccate, resulting in turgor loss. Plants have evolved an osmotic adjustment 

mechanism (active solute accumulation) that maintains water uptake and turgor under 

osmotic stress conditions. For osmotic adjustment, plants use inorganic ions such as Na+ 

and K+ and/or synthesize organic compatible solutes such as proline and soluble sugars. 

Vacuolar sequestration of Na+ is an important and cost-effective strategy for osmotic 

adjustment, which also reduces the Na+ concentration in the cytosol. Na+ sequestration 

into the vacuole depends on expression and activity of Na+/H+ antiporters as well as on 

V-type V-H+-ATPase and V-H+-PPase. These phosphatases generate the necessary 

proton gradient required for activity of the Na+/H+ antiporters. 
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Overexpression of AVP1, a gene that encodes the vacuolar H+-pyrophosphatase in 

Arabidopsis, enhanced sequestration of Na+ into the vacuole and maintained higher 

relative water content in leaves. These plants also show higher salt and drought stress 

tolerance than that of wild type (Gaxiola et al., 2001). The gene encoding tonoplast 

Na+/H+ antiporter (NHX1) is induced by both salinity and ABA in Arabidopsis (Shi and 

Zhu, 2002), and rice (Fukuda et al., 1999). The AtNHX1 promoter contains a putative 

ABA responsive element (ABRE) between –736 and –728 from the initiation codon. 

AtNHX1 expression under salt stress is partially dependent on ABA biosynthesis and 

ABA signalling through ABA insensitive (ABI1). Salt-stress induced up-regulation of 

AtNHX1 expression is lower in ABA deficient mutants (aba2-1 and aba3-1) and in the 

ABA insensitive mutant, abi1-1 (Shi and Zhu, 2002). Comparing tonoplast Na+/H+-

exchange activity (mainly due to AtNHX1) between wild type and mutants (SOS1, 

SOS2 and SOS3) shows that SOS2 also regulates the tonoplast exchange (Chinnusamy 

et al., 2005).  

1.13 Utilizing Model Plants to Study Salt Tolerance. 

Plant biologists have reached the point where the genome sequencing of several higher 

organisms have been completed, including those of the model plant Arabidopsis 

thaliana and the important food crop rice (Oryza sativa). Within the next five years the 

genomes of several other important crop plants will be completed, and over the next 

decade the major challenge for plant biologists will be to make sense of the vast 

amounts of information that will be available. However, the complete genome data 

bases provide only a limited understanding of the biology of higher organisms as a 

whole. 
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First of all, it is clear from the completed genome data bases, (Homo sapiens, 

Drosophila melanogaster, Arabidopsis thalaina, etc.) that the function of only about a 

third of the putative genes is known with some certainty. The function of another third 

can be tentatively assigned using educated guesses based on weak homology with 

sequences from other organisms. The final third seem to be genes unique to the 

particular organism and their biological function is a complete mystery. 

Second, it is believed that the patterns of global gene expression using DNA micro-

array technology will identity components of the signalling pathways and the resulting 

mechanisms that are activated in response to specific environmental stimuli. However, 

recent work suggests that about the third of the genes that are routinely identified as 

differentially regulated do not result in any changes in abundance at the protein level. 

Obviously, consideration of transcriptional regulation only can be very misleading 

(Gygi et al., 2000; Gygi et al., 1999; Mass and Grieve, 1987). 

Third, gene sequence information gives no information at all on regulation of activity 

occurring at the protein level. It is now very well established that modification of 

proteins, such as phosphorylation /dephosphorylation impart on cells very complex and 

critically important mechanisms for the control of biological activity. This control can 

only be determined by direct studies on proteins. Moreover, recent studies have 

suggested that the proteome complexity of eukaryotes, including higher plants, may be 

as much as 10 times greater than the genome complexity (Aebersold et al., 2000; Gygi 

and Aebersold, 2000) which again emphasize the importance of studying proteomes. 

It has already been mentioned that salinity is a major determinant of crop production 

world-wide, and that most of the important field crops are glycophytes that will not 

complete a full life cycle above 100 mM NaCl. However there are wild plants 

(halophytes) which can tolerate full strength seawater (~500 mM NaCl). Understanding 
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the mechanisms that allow halophytes to survive high salinity may provide insights into 

developing salt tolerant crops. A lot of efforts have been focused on the effects of 

salinity on plants, but due to the recent trend of working with model plants (all of which 

are glycophytes including Arabidopsis), it is conceivable we may learn much about salt 

sensitivity and very little about salt tolerance. There is certainly, a great need to assess 

the genetic diversity of plants that occur in our environment, and to take up the more 

difficult challenge of identifying mechanisms in halophytes that cope with high salinity. 

1.14 Project Aims. 

The original objectives of this PhD project were to undertake a comparative study of the 

cellular processes of salt tolerant and salt sensitive plant cells. At Glasgow a salt 

tolerant cell suspension culture of Arabidopsis thaliana has been established. This line, 

named the HHS cell line (Habituated to High Salt) was established from wild type cell 

lines by continued exposure to salinity. Wild type cells grow best in basic nutrient 

media (MSMO media see Chapter 2, Section 2.2.1) but will not survive with the 

addition of 80 mM NaCl. In contrast, the HHS cells will grow vigorously in 300 mM 

NaCl, and survive extended periods at 380 mM NaCl.  

The original plan was to thoroughly characterize the performance of these Arabidopsis 

cell lines exposed to a range of nutrient ions (K, Ca, and pH) and salinity 

concentrations. Parameters such as growth rates, ion profiling, membrane transport 

processes, transcript profiling, and protein profiling were to be measured. In addition, 

cell lines of the dicot halophyte Atriplex halimus were established to allow a 

comparison between the HHS and a genuine halophyte line. Unfortunately, due to the 

Bower Fire in 2001, this project was not completed. Whilst data has been collected on 

the growth rates, ion profiling and protein profiling of the HHS and WT Arabidopsis 

cell lines, repeated and continuous disruptions through 2003 and 2004 (attributable 
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mainly to irregular and frequent power failures in our temporary accommodation and 

the repeated failure of new incubators, there was a persistent loss of experiments, 

cultured cell lines, and harvested material. For this reason, a second whole plant project 

was started in 2005 comparing the physiological properties of two barley lines 

originating from China that were reported to be salt tolerant and salt sensitive. These 

lines were grown in the glasshouse and proved to be more durable than the cell 

suspension experiments. In this thesis, both sets of unrelated experiments are reported in 

their entirety.  
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2 Chapter 2: Comparison of Salt Tolerant and Salt 

Sensitive Arabidopsis Cell Lines. 

2.1 Introduction. 

Despite many decades of intensive research, it is still not clear how salt tolerant plant 

cells maintain ionic balance. There have been advances in our understanding of the 

regulation of ion transport in a few model glycophyte species such as Arabidopsis, rice 

and wheat etc, but the basic cellular mechanisms that maintain favourable ion gradients 

in halophytes exposed to high salinity are still not well known. In part, this is because of 

lack of research focus on halophyte species. Further, advances have been confounded by 

the complexity of the multi-tissue, whole root system; whilst there is an understandable 

desire to work with whole roots, the different age of cells and different tissues present 

generate experimental results that are often difficult to interpret. For instance, there may 

be important transport mechanisms residing on the plasma membrane of endodermal 

cells that are vital for regulating salt balance in the xylem, and therefore the shoot. The 

endodermal cells, however, represent ~1% of the mass of roots and so identifying 

transcripts and proteins that effect essential processes in the endodermis of whole roots 

is difficult. Further, reliable methods for isolating cells from different tissues have not 

been established.  

It is difficult to characterise the kinetic properties of transport processes of specific cell 

types in complex tissues. Consequently, the studies are limited and confined, therefore, 

to reporting long-term changes (i.e. minutes to hours) where tissue specificity is 

uncertain.  

In contrast, studies on cell suspension cultures may offer a major advantage over intact 

tissue for investigating salt tolerance, as the complexities superimposed by higher levels 
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of tissue organisation are not present. To survive in high salinity, unlike the intact root 

system of a plant, each cell in culture must be expressing the required traits for salt 

tolerance. There is a legitimate concern that cell suspension culture will generate results 

that contain artefacts not present in intact roots, but at least they will allow studies on 

single cells that show a range of sensitivities to salinity.  

This chapter reports results form a series of experiments designed to investigate the 

responses of wild type (salt sensitive) and HHS (Habituated to High Salt) Arabidopsis 

cell cultures exposed to a range of salinities. Non-habituated Arabidopsis cell cultures 

will not survive in basic growth media supplemented with ~80 mM NaCl, whereas the 

HHS cells used in this study grow up to 380 mM NaCl. The intention was to use these 

resources to determine the cellular processes, particularly those associated with ion 

transport, that are involved in conferring salinity tolerance on Arabidopsis cells. 

2.2 Materials and Methods. 

2.2.1 Arabidopsis Cell Suspension Cultures. 

Wild type Arabidopsis thaliana (L) Heynh var. Landsberg erecta photomixotrophic cell 

suspension cultures were a gift from Prof. Chris Leaver, University of Oxford and are 

fully described elsewhere (May and Leaver, 1993). Cells were grown in full-strength 

MSMO media (Sigma # M 6899, see Appendix Table A 2-1), supplemented with 0.5 

mg l-1 α-naphthalene acetic acid, 0.05 mg l-1 kinetin, 3% (w/v) sucrose, and the pH 

adjusted to 5.8 using 0.2 M KOH. Throughout this thesis this media is referred to as 

Basic Growth Media (BGM). Arabidopsis cell cultures were grown under continuous 

light (PPFD 20 μmol m-2 s-1) at 20 C°, and continuously shaken at 150 rpm in an 

illuminated / refrigerated orbital incubator (Sanyo Gallenkamp plc, Loughborough, 

U.K). The cultures were subcultured every seven days by transferring under sterile 

conditions 10 to 15 ml into 250 ml flasks containing 80 ml of autoclaved BGM. 
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2.2.1.1 Establishment of the Arabidopsis Habituated to High Salt (HHS) Cell 

Line. 

Wild type Arabidopsis cell suspension cultures do not survive in BGM supplemented 

with 80 mM NaCl. Therefore, HHS cell lines were initiated from wild type cell 

suspensions by sub-culturing into BGM supplemented with 50 mM NaCl (BGM50-0.77). 

The water potential of this media is -0.77 MPa. At this salt level wild type cells survive 

and grow slowly. Every week, two aliquots were removed from the BGM50-0.77 flasks 

and used to inoculate BGM media supplemented with 50 and 70 mM NaCl respectively 

(BGM50-0.77 and BGM70-0.86). Growth was assessed after one week prior to subculture. 

Initially, each week the culture in BGM70-0.86 failed to survive, while those in BGM50-

0.77 grew slowly. After 52 weeks of continuous habituation, however, one culture in 

BGM70-0.86 did survive, and was gradually coaxed over the next year to grow in 

progressively higher concentrations of NaCl (up to 380 mM, ~70% full-strength sea 

water). 

2.2.2 Measurement of Growth Rates of Cell Cultures. 

Growth rates of cell cultures were measured by determining the packed cell volume 

(PCV) of cells per ml of growth media with time. Cell cultures were mixed by gently 

swirling the flasks and quickly removing ~7ml aliquots under aseptic conditions. The 

aliquots were centrifuged at 291g for 3 min at 20°C in graduated 15 ml tubes (0.1 ml 

graduations), and both the total volume and the packed cell volume were noted; the 

volume of cells per ml media was then calculated. 

The relative growth rates (RGR day-1) and their reciprocal (Doubling Time, DT) were 

estimated from the slope of plots of the natural logarithm of PCV (ln PCV) versus days 

in culture. Both Arabidopsis WT and HHS cell lines were grown in Basic Growth 

Media supplemented with 0, 50 and 300 mM NaCl (BGM0-0.55, BGM50-0.77 and 
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BGM300-1.96 respectively); in addition, to study the effect of osmotic stress alone, both 

cultures were grown in BGM supplemented with sorbitol to generate isotonic condition 

(i.e. BGM0-0.77, BGM0-0.1.69). HHS cells were also exposed to salt down shock 

conditions (1 week in BGM300-1.96, and then transferred to BGM50-1.96 for a week), and 

salt up-shock (1 week in BGM300-1.96, transfer to BGM50-1.96 for a week, transfer back 

to BGM300-1.96) see Fig. 3-1. 

2.2.3 Preparation of Cell Culture Material for ICP-OES Analysis. 

Arabidopsis cell culture was mixed by hand swirling and a 7ml aliquot removed under 

aseptic conditions. Samples were harvested at daily intervals during growth (from 

inoculation, through the log phase of growth, to the stationary phase) from HHS cells 

grown in the full range of conditions (BGM300-1.96, BGM50-1.96, BGM50-0.77,  BGM0-

0.55, BGM0-0.77, and BGM0-1.96). Samples were then placed on a filter disc in a Buchner 

funnel connected to a vacuum pump. After briefly draining the growth media (~5s) the 

samples were then washed with 50 ml of ice-cold distilled water (~30s) to remove 

extracellular solution, and then transferred to a pre-weighed 15 ml sterile falcon tubes, 

dried for 72 hours at 75oC, and then re-weighed to determine the dry weight of the 

samples. Five ml (± 0.01 ml) of 10% (v/v) analytical reagent grade nitric acid was 

added to each tube and samples were then treated to three freeze-thaw cycles (-80°) to 

lyse the cells, and then left to digest for 4 days at room temperature on a shaking 

incubator. Ion content (Na, Fe, K, S, P, B, Mn, Mg and Ca) was measured using a 

Perkin Elmer Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 

model optima 4300 DV (Perkin Elmer, Seers Green, Bucks., UK). 

2.2.3.1 Standard Solutions.  

Standard solutions were made in 1.6% HNO3, exactly equivalent to the final 

concentration of HNO3 in the samples after dilution. Ion concentrations in the standard 
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solution were chosen based on the expected concentrations in the plant material and the 

detection limits of the spectrometer. The final concentration of each element in the X1 

Standard Solution is shown in Table 2-1. The standard curve was produced by six 

dilutions of the X1 Standard Solution (0, 0.01, 0.05, 0.10, 0.50 and 1.0). It is important 

to note that to achieve reproducible results, all analyates, both samples and standards, 

were prepared from the same batch of 1.6% HNO3; this improves the resolution of trace 

elements as contaminants in the acid can be subtracted. Further, all dilutions were 

prepared by weighing using +/-1mg resolution, as this is more accurate than pipetting.  

2.2.3.2 Assessment of Ion Concentration in Plant Material. 

Ion content was measured with an Optical Emission Spectrometer (Perkin Elmer 

Optima 4300 DV) controlled by the software package (Win Lab32), Perkin Elmer 

Instruments, MA, USA). The standards were used to create a calibration curve to 

determine ion concentrations. The intensities of the emission at specific wavelengths 

from the diluted liquid samples were measured and the background compared with the 

standard curve, then the concentrations of the corresponding elements were determined. 

These data were then analyzed using Microsoft® EXCEL. 
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Table 2-1 The Final Concentration of Elements in the times 1 (X1) Standard 

Solution for Ion Analysis. 

Element K Na Ca P S Mn Mg Fe B 

Conc. (mg/l) 45.08  59.01 36.59 11.38 4.44 1.39 1.97 3.44 0.18 
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2.3 Results.  

2.3.1 Comparison of WT and HHS Cell Cultures: Morphology.  

2.3.1.1 Fluorescein Diacetate (FDA) Staining. 

Fluorescein diacetate dye is a colorless substance and often utilized to distinguish 

whether the population of cell is living or not. The dye is taken up as the neutral ion 

through the plasma membrane and then is cleaved by cytoplasmic esterases in the cell 

interior into fluorescein and acetate. The fluorescein ion is highly fluorescent and its 

change prevents it from leaving the cell. Under ultraviolet light a bright green 

fluorescence is observed in viable cells with an intact plasma membrane and this is 

easily visualized with a fluorescent microscope. A 0.1% w/v stock of FDA was made up 

in acetone and the stock stored at -20 °C (McCabe and Leaver, 2000). 

2.3.1.2 Imaging Arabidopsis Cell Suspension Cultures.  

Figure 2-1 presents typical image of both wild type cells were grown in Basic Growth 

media (WT cells were grown in BGM0-0.55 Fig. 2-1a, c, e) and habituated to high salt 

(HHS cells were grown in BGM300-1.96 Fig. 2-1b, d, f). Cells were incubated for 2 min 

with 1μM FDA (fluorescein diacetate), and then washed 2 times in the same growth 

media. Cells were visualized with a fluorescence microscope (Zeiss Axioplan) fitted 

with fluorescein filters (panel a and b). Differences between the two cell lines are 

apparent. The WT cells were grown in BGM0-0.55 took up stain into their cytoplasm, but 

not into their large central vacuoles which remained clear of fluorescence (Fig. 2-1a). 

HHS cells habituated to grow in BGM0-0.55 showed a similar morphology (data not 

presented). In contrast, the HHS cells were grown in BGM300-1.96 rapidly accumulated 

FDA (< 2 min) into a large numbers of what appears to be vesicles and/or small 

vacuoles; some staining of the cytoplasm was also apparent, and unstained large central 

vacuoles were also observed (Fig. 2-1b). 
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Figure 2-1 also presents confocal images that confirm these observations (panel c and 

d). In panels c and d the upper fluorescence images were taken from cells dual-labeled 

with the FDA (cationic dye) and LysoTrackerTM (anionic dye). The lower set of images 

in panels c and d are bright field micrographs without (left) and with (right) the merged 

fluorescence images. The merged images from the HHS cells were grown in BGM300-

1.96 clearly show some of the small vacuoles / vesicles fluoresce green (FDA 

accumulation) whilst other fluoresce red (LysoTrackerTM accumulation) indicating the 

interior of these endomembrane compartments are different and that they might have 

different functions. The fact that these vesicles / small vacuoles were largely absent 

from WT cells were grown in BGM0-0.55 could indicate they have a role in conferring 

salinity tolerance on the HHS cells. 

Thin section electron micrographs of WT cells were grown in BGM0-0.55 and HHS cells 

were grown in BGM300-1.96 (Fig. 2-1 panel e and f) clearly show the extensive 

‘vesiculation’ observed under a light microscope. In addition, the nuclei of salt-stressed 

HHS cells appear to be disrupted; fragments of the electron dense nucleoli are observed 

suggesting the HHS cells may be aneuploid (Fig. 2-1e and f). Similar observations have 

been made in cell cultures of all halotolerant plant cells (Atriplex halimus, Beta 

vulgaris, Aster tripolium) and in intact root of Distichlis spicata (saltgrass), but not in 

the salt-sensitive cell cultures studied to date (Arabidopis thaliana, and Oryza sativa). 

This proliferation in intracellular vesicles and small vacuoles may represent an 

important salinity de-toxification response in halotolerant plant cells. 
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Fig. 2-1 Images of Arabidopsis HHS and WT Cells. 

WT cells were grown in BGM0-0.55 media (panel a, c, and e) and HHS cells were grown 

in BGM300-1.96 (panel b, d, and f). For full description of Materials and Methods see 

section 2.2.1 and 2.2.2). 

Fluorescence Light Microscopy: Cells from the WT cells were grown in BGM0-0.55 

media (panel a) and HHS cells were grown in BGM300-1.96 (panel b) Arabidopsis 

cultures incubated with fluorescein diacetate (FDA). Note large central vacuoles in both 

WT and HHS cells, but the appearance of numerous small, brightly fluorescing small 

vacuoles / vesicles only in the HHS cells.  

Confocal Fluorescence Microscopy: Images of WT cells (panel c) and HHS cells 

(panel d) Arabidopsis cells stained with FDA and LysoTrackerTM red dyes. Large, non-

fluorescing central vacuoles were observed in both cell lines, but small highly florescent 

vesicles were only found in salt tolerant cells. Images were taken with a Zeiss LSM 510 

Laser Scanning Microscopes and 3-D images were digitally reconstructed using LSM 5 

software, version 3.0. Note the appearance of small vacuoles / vesicles in the HHS cells 

that take up only FDA or only LysoTrackerTM red. 

Thin Section Electron Microscopy: Thin section E.M. from WT cells (panel e) and 

HHS cells (panel f) Arabidopsis cell lines. Note the high degree of vesiculation near the 

plasma membrane and the appearance of fragmented nucleoli in HHS cells. 

Magnification, 13,000 x. EM micrographs courtesy of Dr P Dominy, University of 

Glasgow. 
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Fig. 2-1 Images of Arabidopsis HHS and WT Cells.

HHS at 50mM NaCl -1.96 MPa 
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2.3.2 Comparison of WT and HHS Cell Cultures. 

2.3.2.1 Effect of Salinity on the Growth of WT Cells.  

Wild type (WT) cells in basic growth media (BGM0-0.55) grew slowly for the first three 

days in culture (pre-log phase) probably because the cells need some time to adapt to or 

condition the fresh growth media. After this period growth increased dramatically (log 

phase, days 3 – 5) and entered the stationary phase by day 7 (see Fig. 2-2). The Relative 

Growth Rate (RGR) constants (k) and their reciprocals, the Doubling Times (DT), were 

estimated from the slope of the natural log of the packed cell volumes (ln PCV) versus 

Days in Culture plot (Fig. 2-2 inset) and are also presented in Table 2-2. To assess the 

effect of NaCl concentration on WT cells, growth was assessed in BGM containing 50 

mM NaCl (ψH2O = -0.77 MPa, i.e. BGM50-0.77). To separate the effects of ionic stress 

from water stress, WT cells were also grown in BGM with 0 mM NaCl but adjusted to a 

ψH2O of -0.77 MPa (BGM0-0.77) and -1.96 MPa (BGM0-1.96) by the addition of sorbitol 

(see Table A2-1). From these data RGR and DT were assessed and are presented in 

Table 2-2. 

When grown in BGM0-0.55, WT cells had a doubling time of 2.45 ± 0.23 days, but this 

increased by to 2.84 ± 0.16 days when grown in BGM50-0.77; clearly salinity decreases 

growth rate. When WT cells were grown in BGM0-0.77 the doubling time increased to 

2.53 ± 0.15 (cf. BGM0-0.55). Under the experimental conditions used here, WT cells 

were grown in BGM0-0.55 would not grow in BGM0-1.96 or in BGM300-1.96. These data 

suggest that when exposed to 50 mM NaCl the observed slower growth rates of WT 

cells grown in BGM0-0.55 are attributable mainly to ionic stress and not to osmotic 

stress. WT cells would not grow when exposed to severe desiccation (BGM0-1.96) 
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suggesting osmotic adjustments to regain turgor was not possible under these conditions 

(Fig. 2.2 and Table 2-2). 



 

 

 

40

Days in Culture

0 2 4 6 8 10

C
el

l D
en

si
ty

 (m
l P

C
V 

/ m
l M

ed
ia

)

0.0

0.1

0.2

0.3

0.4

BGM0-0.55 

BGM50-0.77 

BGM0-0.77 

Days in Culture

0 2 4 6 8 10

ln
 C

el
l D

en
si

ty

-4.0

-3.0

-2.0

-1.0

0.0

 

 

Fig. 2-2 Growth Curves of Wild Type Arabidopsis Cell Suspensions Exposed to 

Osmotic and Ionic Stress. 

Cultures were established as described in Materials and Methods (Section 2.2.1.1) and 

grown in their respective media (● BGM0-0.55, ● BGM50-0.77, ● BGM0-0.77; see sections 

2.2.1 and 2.2.2). Growth was monitored as the Packed Cell Volume (PCV/ml media), as 

described in Section 2.2.2. Data points are the average and standard errors of three 

independent replicate cultures. Inset, natural logarithm of PCV versus days in culture; 

the relative growth rates (RGR) and their standard errors were estimated from the initial 

slopes of each of the three replicate cultures. For details of the media composition, see 

Table A 2-1. 

 



 

 41

When HHS cells (grown in BGM300-1.96) were grown in BGM0-0.55, growth rates were 

always observed to be slower than those of WT cells grown in BGM0-0.55 (DT 3.74 ± 

0.12 days; Table 2-2 and Fig. 2-3), and like WT cells grown in BGM0-0.55 increasing 

salinity to 50 mM NaCl (BGM50-0.77) impaired growth (DT 5.92 ± 0.39 days). Further, 

like WT cells grown in BGM0-0.55, only part of this salinity induced impairment can be 

attributed to water stress as growth in BGM0-0.77 was significantly greater than in 

BGM50-0.77 (Table 2-2). 

When HHS cells were grown in 300 mM NaCl (BGM300-1.96) doubling time increased 

to 5.88 ± 0.48 days, but in isotonic, low salt media (BGM0-1.96) the growth rates were 

even slower (DT of 6.13 ± 0.42 days). These data suggest that the habituation process in 

HHS cells grown in BGM300-1.96 has resulted in slower growth in absence of salt or 

water stress, but the application of moderate salt stress (50 mM NaCl, ψH2O of -0.77 

MPa) reduces growth rates by both ionic and osmotic effects. Under high saline, 

dehydrating conditions (300 mM NaCl, ψH2O of -1.96 MPa), however, HHS cells grown 

in BGM300-1.96 survive well, but their poor growth in isotonic, low salt media (0 mM 

NaCl, ψH2O of -0.55 MPa) suggests that at this low water potential Na+ and / or Cl- are 

required as an intracellular solute to regain turgor for expansion-induced growth. 

Presumably, these ions are stored in the vacuoles of the cell, to reduce their toxic effects 

on metabolism. 
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Fig. 2-3 Growth Curves of HHS Arabidopsis Cell Suspensions Exposed to Osmotic 

and Ionic Stress. 

Cultures were established as described in Material and Methods (Section 2.2.1.1) and 

grown in their respective media (▲ BGM0-0.55, ▲ BGM0-0.77, ▲ BGM50-0.77, ▲ 

BGM300-1.96, and ▲ BGM0-1.96; see sections 2.2.1 and 2.2.2). Growth was monitored as 

the Packed Cell Volume (PCV/ml media), as described in Section 2.2.2. Data points are 

the average and standard errors of three independent replicate cultures. Inset, natural 

logarithm of PCV versus days in culture; the relative growth rates (RGR) and their 

standard errors were estimated from the initial slopes of each of the three replicate 

cultures. For details of the media composition, see Table A 2-1. 
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Table 2-2 The Relative Growth Rates and Doubling Times of Wild Type and HHS 

Arabidopsis Cell Suspension Cultures Exposed to Osmotic and Ionic Stress. 

The Relative Growth Rates (RGR) and their associated standard errors were estimated 

from the plots presented in Figs. 2-2 and 2-3. Doubling Times (DT) are calculated as 

0.693 (ln2)/RGRs; dns = ‘did not survive’. For details of the composition of the media, 

see Table A 2-1. Analysis of variance tests were performed on these data and 

comparison between treatments means were made using Turkey tests. Treatment means 

with different Roman characters shows significant differences within a cell line (WT or 

HHS). Treatment means with different Greek characters show significant differences 

between cell lines (WT vs HHS). Bold characters are significant at p<0.001. 

 
 
Growth 
Media 

WT  HHS 

 
DT 

(Days) 

RGR 

(Day-1) 
 

DT 

(Days) 

RGR 

(Day-1) 

BGM0-0.55 1.70 ± 0.18 0.408 abα ± 0.043  2.60 ± 0.09 0.267 cβ ± 0.009 

BGM50-0.77 1.97 ± 0.12 0.352 aγ ± 0.021  4.10 ± 0.29 0.169 dε ± 0.012 

BGM0-0.77 1.75 ± 0.09 0.395 bδ ± 0.021  3.38 ± 0.21 0.205 eζ ± 0.013 

BGM300-1.96 dns 0  4.08 ± 0.36 0.170 d ± 0.015 

BGM0-1.96 dns 0  4.25 ± 0.31 0.163 d ± 0.012 
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2.3.2.2 Effect of Salinity on the Ion Content of WT and HHS Cells. 

In this study Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 

was used to profile tissue ion content. ICP-OES is powerful and relatively new 

technique for measuring several elements at the same time with low detection limits 

(parts per billion) over a large dynamic range. Liquid organic or aqueous samples in 

dilute acids are fed into ICP-OES through an argon gas nebulizer. The fine spray is then 

fed into the ‘torch’ which consists of microwave source that is tuned (coupled) to the 

sample resulting in intense heating (ca. 6000°C). The extreme temperatures of the torch 

strips all of the electrons from the elements in the sample to produce plasma, and as the 

plasma nuclei subsequently cool they regain their electrons and emit photons at 

wavelengths that are characteristic of each element. The spectrophotometer collects the 

emitted light which is passed to a Fresnel prism that disperses the emission onto a 

silicon detector array thereby allowing an instantaneous and simultaneous measurement 

of several ions in a single sample. By using a set of multi-element standards, calibration 

curves of detector signal versus ion concentration can be constructed for each target 

element, and subsequently used to determine the unknown levels in samples. For most 

cations, ICP-OES has a good dynamic range and low detection limits. For instance, K 

can be detected from at least 0.003 up to 30 mg/l (ppm). Samples were prepared from 

Arabidopsis cell suspensions and the levels of tissue macronutrients (e.g. K, Ca, Mg, P, 

S, and Na) as well as micronutrients (e.g. B and Fe) were measured. 

The ion content of WT and HHS cells grown in BGM0-0.55 were similar and not 

presented. More interesting is a comparison of the ion content of these cell lines 

exposed to salinity stress (Fig. 2-4). The initial reading over the first few days of growth 

showed large variances, presumably due to the low tissue biomass during these early 

phases of growth. During the log phase of growth (days 3-6), however, a clear pattern of 
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difference emerged. Only minor differences in the levels of K+ were observed between 

WT cells grown in BGM50-0.77 and HHS cells grown in BGM50-0.77 (Fig. 2-4 panel a), 

whereas Na+ levels were nearly 3 times higher in WT cells grown in BGM50-0.77 (~5 cf 

~15 mg/g D Wt; Fig. 2-4 panel b). 

As a consequence the K+/Na+ ratio of HHS cells grown in BGM50-0.77 or -1.96 were 3 to 4 

times greater than WT cells grown in BGM50-0.77 or -1.96 during this period (Fig. 2-4 

panel c). Increasing the level of dehydration of WT cells grown in BGM50-1.96 and HHS 

cells grown in BGM50-1.96 exposed to 50 mM NaCl by the addition of sorbitol (i.e. 

growth in BGM50-1.96) had little effect on cell K+ or Na+ levels (Fig. 2-4a and b). These 

results suggest that when exposed to saline media HHS cells can maintain lower levels 

of intracellular Na+ resulting in higher intracellular K+/Na+ ratios (Fig. 2-4 panel c). 

There is no evidence to suggest that HHS cells are better at acquiring K+ than WT cells 

when exposed to salt stress. The intracellular levels of Ca, S, and P were also assessed 

in WT and HHS cells (Fig.2-4 panels d, e, and f) but no major differences were 

observed. Also the intracellular levels of Mn, Mg, Fe, and B were measured but no 

major differences was observed and the data are not presented. 

In conclusion, relatively low levels of salt stress (50 mM NaCl) produce a significant 

decrease in the growth rate of WT cells grown in BGM0-0.55 Arabidopsis cells probably 

due to the accumulation of high intracellular Na+ levels. In contrast, HHS cells grown in 

BGM0-1.96 cells do not grow as well as WT BGM0-0.55 cells in the absence of salt stress; 

increasing salinity to 50 and 300 mM NaCl impairs growth rate but these cells can 

maintain low intracellular levels of Na+ which may account for their survival. 



 

 46

 

Fig. 2-4 Ion Content of WT and HHS Arabidopsis Cell Cultures. 

Samples were harvested daily from WT (●) or HHS (▲) cells grown in BGM50-0.77 or 
WT (●) or HHS (▲) cells grown in BGM50-1.96 (see sections 2.2.1 and 2.2.2). Ion 
content was measured using a Perkin Elmer Optima 4300 series Inductively Coupled 
Plasma-Optical Emission Spectrometer (ICP-OES). Averages and SEs of three 
independent cultures are presented. Two factor analysis of variance (linear model) was 
performed on the data with Bonferroni pair-wise tests between treatment means. 
Different Roman characters signify significant differences (p<0.05, 0.01 or 0.001) 
between treatment means at Day 5 (mid log phase of growth; bold character (p<0.001), 
normal face (p<0.01, italics (p<0.05)). 
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2.3.3 The Effects of Salt-Shock on the Growth and Ion Content of HHS Cells. 

2.3.3.1 Growth Rates of Salt-Shock HHS Cells. 

In section 2.3.2 comparisons were made between WT and HHS cells on the effects of 

relatively low NaCl concentration (i.e. 50 mM NaCl) on growth rate and ion content. 

These comparison are possible only under conditions of low ionic stress as WT cells 

grown in BGM0-0.55 do not survive above 80 mM NaCl.  

To assess the effect of high levels of salinity on the growth of HHS cells grown in 

BGM300-1.96, a series of experiments were conducted where HHS cells grown in 

BGM300-1.96 were exposed to a salt ‘up-shock’ (50 mM to 300 mM NaCl) and a salt 

‘down-shock’ (300 mM to 50 mM NaCl). To separate the effects of ionic and osmotic 

stress, all media were adjusted to the same water potential (ψH2O,-1.96 MPa) by the 

addition of sorbitol. HHS cells grown in BGM300-1.96 were placed in fresh BGM300-1.96 

media and grown to mid log phase (day 6); these cells were then used to seed fresh 

media containing 50 mM NaCl (BGM50-1.96; a high- to- low salt ‘down-shock’) and 300 

mM NaCl (BGM300-1.96). These cultures were grown through to their stationary phase 

and growth was assessed daily. At day 6 (mid log phase) some of the salt down shock 

(HL) cells were used to seed fresh media containing 300 mM NaCl (BGM300-1.96; a 

low-to High (HLH) salt ‘up-shock), and these were also grown to the stationary phase 

whilst growth was assessed daily (see Fig. 3-1). The results from these experiments are 

presented in Fig. 2-5 and summarized in Table 2-3.  

These data suggest that salt down-shock (300-to-50 mM NaCl, HL cells in BGM50-1.96) 

does not greatly affect the growth rate of HHS cells (10% decrease), whereas salt up-

shock (50-to-300 mM NaCl, HLH cells in BGM300-1.96) impairs growth by ~25%. 

These results are somewhat surprising in that a salt down-shock did not result in an 

increase in growth rate; however, as expected, a salt up-shock did impair growth. One 
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explanation for these observations is that HHS cells in BGM300-1.96 were still adjusting 

to the low salt stress conditions during the first 3-5 days after transfer and so growth 

rates had not accelerated. However, by day 6-7 the cells had adjusted enough so that the 

imposition of acute stress upon transfer to high salt (50-to-300 mM NaCl) did result in 

slower growth. Further experiments were conducted to establish the time required for 

HHS cells in BGM300-1.96 to ‘adapt’ to different salt regimes. In these experiments the 

growth rates of HHS cells in BGM300-1.96 were transferred to 50 mM NaCl (HL cells in 

BGM50-1.96) and monitored for 14 days (i.e. two sub cultures), but growth rates were 

not significantly different after the first (1-7 days) and second (7-14 days) sub-culture 

(data not presented). 
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Fig. 2-5 Growth Rates of HHS Cell Suspension Cultures Exposed to Ionic Stress. 

▲ HL50-1.96, salt down-shock (Cells shifted from BGM300-1.96 to BGM50-1.96): 

▲ HLH-1.96, salt up-shock (HL Cells shifted from BGM50-1.96 to BGM300-1.96): 

▲ H300-1.96, cells grown in BGM300-1.96 (see section 2.2.1 and 2.2.2 for details). 

Growth of cell cultures was estimated by removing aliquots and packed cell volume was 

measured (see Section 2.2.2). Each data point represents the average and standard error 

of single reading from three independent cultures. The average and standard errors of 

the doubling times and RGR constant are presented in Table 2-3.  
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Table 2-3 The Relative Growth Rates and Doubling Times of HHS Arabidopsis 

Cell Suspension Cultures Exposed to Ionic Stress. 

The Relative Growth Rates (RGR) and their associated standard errors were estimated 
from the plots presented in Fig. 2-5. Doubling Times (DT) are calculated as 0.693 
(ln2)/RGRs. Analysis of variance tests were performed on these data and comparison 
between treatments means were made using Turkey tests. Treatment means with 
different Roman characters shows significant differences between cell lines (HL, H and 
HLH). Bold characters are significant at p<0.001. For details of the composition of the 
media, see Table A 2-1. 
 
  

Growth 
Media 

 HHS 

 DT  
(Days) 

RGR 
(Day-1) 

BGM50-1.96 
(HL) 
 

4.03 ± 0.14 
 

0.172 b ± 0.006  
 

BGM300-1.96 
(H) 
 

3.63 ± 0.40 
 

0.191 a ± 0.021 
 

BGM300-1.96 
(HLH) 

5.29 ± 0.40 
 

0.131 c ± 0.010 
 

 

Media supplemented with 3% sucrose and the pH adjusted to 5.8 using 0.2 M KOH.
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2.3.3.2 Ion Content of Salt Shocked HHS Cells. 

Figure 2.6 present the effects of salt-shock on the ion content of HHS cells grown in 

BGM300-1.96. The intracellular levels of K+ were not greatly different when HHS cells 

in BGM300-1.96 were exposed to 50 mM or 300 mM NaCl, with concentrations 

maintained at approximately 10 mg K+/g D Wt throughout the culture growth (Fig. 2-

6a). 

In contrast, intracellular Na+ levels were three -to- five times higher (ca. 4-5 mg Na+/g 

D Wt) in HHS cells grown in 300 mM NaCl compared with HHS cells grown in 50 mM 

NaCl (ca. 1 mg Na+/g D Wt). 

These differences in cell Na+ levels resulted in significantly lower K+/Na+ ratios for 

HHS cells grown in 300 mM NaCl (ca. 2 versus 10). Measurements on cell Ca2+ levels 

(Fig. 2-6d) proved to be difficult to assess reliably, and it is unclear why this was so. 

These data, however, do not provide any evidence that Ca2+ levels in cells grown in 50 

and 300 mM NaCl are significantly different. 

The intracellular levels of P (Fig. 2-6f) and Mg (Fig. 2-6e), and Mn, Fe, B (data not 

presented), were also measured but no major differences between HHS cells grown at 

50 and 300 mM NaCl were observed. 

In conclusion, transfer of HHS cells from 300 to 50 mM NaCl results in a small 

decrease in growth rate (Fig 2-5 and Table 2.3) and a concomitant rapid decrease in 

intracellular Na+ content (Fig. 2-6b). During this salt down shock cell K+ levels remain 

unchanged and the K+/Na+ ratio increases accordingly (Fig. 2-6c). It is concluded that 

HHS cells are adapted to growth in saline media due to their ability to maintain low 

levels of intracellular Na+; no evidence was found for adaptations to their ability to 

acquire K+ in saline conditions. When HHS cells are grown near their limit of salt 

tolerance (300 mM NaCl), their ability to maintain low cellular Na+ levels becomes 
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compromised. At this stage, it is unclear whether HHS cells have adapted mechanisms 

that better discriminate against Na+ acquisition, or improved Na+ efflux. Further 

experiments will be required to resolve this question. 

2.3.4 Assessment of Growth Limitation in WT and HHS Cell Cultures. 

One of the questions arising from the growth experiments on HHS cells grown in 

BGM300-1.96 and WT cells grown in BGM0-0.55 presented in Section (2.3.2 and 2.3.3) is 

why the WT appear to attain greater cell densities at stationary phase (cf Fig. 2-2 versus 

2-3 and 2-5). Impairing growth rates will delay the time taken to reach the stationary 

phase but it does not necessarily follow that final cell density will be affected. One 

explanation for the observed differences in the final cell densities of these cultures is 

that HHS cells in BGM300-1.96 run out of essential resource and this affected biomass 

accumulation. Another possibility is that HHS cells in BGM300-1.96 excreted some 

factor into the growth media that affected growth; if this was the case, this compound 

was not toxic as cells remained viable for up to a month without sub-culturing. 

Investigations were undertaken to try to establish why biomass accumulation in HHS 

cells in BGM300-1.96 was lower than form WT cells in BGM0-0.55. These measurements 

included assessment of media sugar levels, nutrient ion content, pH, and nitric oxide 

(Carimi et al., 2005). Figure 2-7 shows the levels of sucrose and its products from 

extracellular invertase action (glucose and fructose) remaining in the media during the 

culture growth phase. In all cases, at least 50% of the initial sucrose remained in 

solution by Day 7, when cultures were near their stationary phase. In addition the 

amount of reducing sugars (glucose plus fructose) was also significant up to Day 7. 

These results suggest that growth arrest was not attributable to exhaustion of the sugar 

supply. 
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The levels of the major nutrient ions remaining in the media are presented in Fig. 2-8. 

levels of K, Ca, Mn, and B remained constant throughout the growth period and were 

approximately equivalent for HHS cells in BGM300-1.96 and WT cells in BGM0-0.55. 

The levels of P and S declined rapidly, with culture age, however, in both HHS cells in 

BGM300-1.96 and WT cells in BGM0-0.55. It is conceivable that the growth of both HHS 

cells in BGM300-1.96 and WT cells in BGM0-0.55 was limited in part by the availability 

of free P or S, but there is no strong evidence to suggest the lower biomass of HHS cells 

in BGM300-1.96 at stationary phase was attributable to the depletion of these two 

nutrient ions in solution. 

Figure 2.9 presents the pH of the media form HHS cells in BGM300-1.96 and WT cells in 

BGM0-0.55 during culture growth. Just prior to inoculation, all media were adjusted to 

pH 5.8. The results from this experiment suggests that whilst culture pH did drift with 

age, there were no dramatic differences between the pH of the media of HHS cells in 

BGM300-1.96 and WT cells in BGM0-0.55 that could account for the differences in final 

culture cell densities. 

Recently reports have appeared to suggest the levels of nitric oxide (NO) in Arabidopsis 

cell cultures increase with time and this eventually impair growth (Carimi et al., 2005). 

Aliquots were removed, therefore, from actively growing cultures and NO levels 

determined using the NO-sensitive fluorescent dye, diaminofluorescein diacetate (DAF-

2DA). 

When NO levels in WT cells in BGM0-0.55 and BGM50-0.77 were assessed, no evidence 

was found for an increase with culture age even if they were left for up to 18 days (Fig. 

2-10 and 2-11). Similarly NO levels in HHS cells in BGM300-1.96 were grown in 

BGM0-0.55 and BGM50-0.77 did not increase significantly with culture age (Fig. 2-12) 
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although the basal levels appeared to be greater than those of WT cells in BGM0-0.55 

cells. 

Figure 2-13 presents images of DAF-2DA stained HHS cells grown in BGM300-1.96; 

again, the levels of NO do not appear to change with culture age but basal level are 

higher than those of WT cultures (Fig. 2-10 and 2-11). It is conceivable, therefore, that 

HHS cells grown in BGM300-1.96 generate higher levels of endogenous NO that 

partially suppresses cell growth but also confers salinity tolerance 
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Fig. 2-6 Ion Content of HHS Arabidopsis Cell Cultures. 

▲ HL50-1.96, salt down-shock (Cells shifted from BGM300-1.96 to BGM50-1.96): 
▲ HLH-1.96, salt up-shock (HL Cells shifted from BGM50-1.96 to BGM300-1.96): 
▲ H300-1.96, cells grown in BGM300-1.96 (see section 2.2.1 and 2.2.2 for details). 
Samples were harvested daily from salt stressed cells (HL50-1.96, HLH-1.96, H300-1.96). 
Minerals content was measured using a Perkin Elmer Optima 4300 series Inductively 
Coupled Plasma-Optical Emission Spectrometer (ICP-OES). Averages and SEs of three 
independent cultures are presented. Two factor analysis of variance (linear model) was 
performed on the data with Bonferroni pair-wise tests between treatment means. 
Different Roman characters signify significant differences (p<0.05, 0.01 or 0.001) 
between treatment means at Day 5 (mid log phase of growth; bold character (p<0.001), 
normal face (p<0.01, italics (p<0.05)). 
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Fig. 2-7 Sucrose Content of Basic Growth Media for Arabidopsis Cell Cultures. 

Samples were harvested daily from WT cells in BGM0-0.55 (circles) and HHS cells in 

BGM300-1.96 (triangles) growth media to measure the reducing sugar ● ▲ (glucose plus 

fructose) and non reducing sucrose ● ▲ (glucose and fructose) for ● ● WT cells in 

BGM0-0.55 and ● ● WT cells in BGM50-0.77 or ▲ ▲ HHS cells in BGM0-0.55 or in 

BGM50-0.77 or in BGM300-1.96. Sugar content was measured using a Perkin Elmer 

Lambda 800 series UV/VIS Spectrometer. Averages and SEs of three independent 

experiments are presented. 
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Fig. 2-8 Ion Content of Basic Growth Media for Arabidopsis Cell Cultures. 

Samples were harvested daily from WT cells (circles) or HHS cells (triangles) in 
BGM50-0.77 (● and ▲) or  BGM50-1.96 (● and ▲); see section 2.2.1 and 2.2.2. Ion 
content was measured using a Perkin Elmer Optima 4300 series Inductively Coupled 
Plasma-Optical Emission Spectrometer (ICP-OES). Averages and SEs of three 
independent cultures are presented. Two factor analysis of variance (linear model) was 
performed on the data with Bonferroni pair-wise tests between treatment means. 
Different Roman characters signify significant differences (p<0.05, 0.01 or 0.001) 
between treatment means at Day 5 (mid log phase of growth; bold character (p<0.001), 
normal face (p<0.01, italics (p<0.05)). 
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Fig. 2-9 pH measurement of Basic Growth Media for WT and HHS Arabidopsis 

thaliana Cell Cultures. 

Samples were harvested daily from WT cells in BGM0-0.55 (●), HHS cells in BGM50-

0.77 (■) and HHS cell in BGM300-1.96 (▲) and the pH was measured using pH meter 

3320 JENWAY. Averages and SEs of three independent experiments are presented. 
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Fig. 2-10 DAF-2DA Stained WT Arabidopsis thaliana Cell Suspension Cultures in 0 

mM NaCl (BGM0-0.55). 

DAF-2DA (4,5-diaminofluoresein diacetate) is a nitric oxide (NO) sensitive fluorescein 
dye.  
Cultures were grown for up to 18 days in Basic Growth Media (BGM0-0.55; see section 

2.2.1) and aliquots were removed and stained with the cell-permeable NO-sensitive dye 

DAF-2DA (see section 2.3.4) . Red fluorescence is autofluorescence from the sample. 

Green fluorescence indicates the presence of NO. 
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Fig. 2-11 DAF-2DA Stained WT Arabidopsis thaliana Cell Suspension Cultures in 

50 mM NaCl. 

DAF-2DA (4,5-diaminofluoresein diacetate) is a nitric oxide (NO) sensitive fluorescein 
dye.  
Cultures were grown for up to 18 days in Basic Growth Media supplied with 50 mM 

NaCl (BGM50-0.77) and aliquots were removed and stained with the cell-permeable NO-

fluorescent sensitive dye DAF-2DA (see section 2.2.1 and 2.3.4) . Red fluorescence is 

autofluorescence shows red, green fluorescence indicates the presence of NO (see 

section 2.3.4). 
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Fig. 2-12 DAF-2DA Stained HHS Arabidopsis thaliana Cell Suspension Cultures. 

DAF-2DA (4,5-diaminofluoresein diacetate) is a nitric oxide (NO) sensitive fluorescein 
dye.  
Cultures were grown for up to 14 days in Basic Growth Media (BGM0-0.55, left panel a, 

b and c) and cells were grown in Basic Growth Media supplied with 50 mM NaCl 

(BGM50-0.77) (right panel d, e and f). Aliquots were removed and stained with the cell-

permeable NO-fluorescent sensitive dye DAF-2DA (see section 2.3.4). Red 

fluorescence is autofluorescence shows red, green fluorescence indicates the presence of 

NO. 
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300 mM NaCl 

 

Fig. 2-13 DAF-2DA Stained HHS Arabidopsis thaliana Cell Suspension Cultures.in 

300 NaCl. 

DAF-2DA (4,5-diaminofluoresein diacetate) is a nitric oxide (NO) sensitive fluorescein 
dye.  
The Culture was grown for 18 days in Basic Growth Media supplied with 300 mM 

NaCl (BGM300-1.96; (see section 2.2.2). Aliquots were removed and stained with the 

cell-permeable NO-fluorescent sensitive dye DAF-2DA (see section 2.3.4). Red 

fluorescence is autofluorescence shows red, green fluorescence indicates the presence of 

NO. 

Day 1 

Day 4 

Day 18 

a 

b 

c 

Day 18 



 

 63

2.4 Discussion. 

Salinity limits the growth and yield of crop plants. Salt stress results from a number of 

harmful cellular processes including Na+ and Cl− toxicity, the impairment of mineral 

nutrition, modification of the water status of plant tissues, and secondary stresses such 

as an oxidative stress linked to the production of toxic reactive oxygen intermediates. 

Since salt tolerance is a complex trait involving several interacting factors, there is an 

increasing interest in studying the physiological behaviour of halotolerant plant cells 

and tissues in order to identify and better understand salt tolerance mechanisms. 

In this chapter, plant cell cultures were used to investigate mechanisms involved in 

plant salt tolerance. Plant cell cultures offer a major advantage for investigating salt 

tolerance as the complexities of higher levels of tissue organisation are not present. To 

survive in high salinity, unlike the intact root system of a plant, each cell in the culture 

must be expressing the required traits for salt tolerance and so important proteins and 

genes involved in tolerance should be enriched. The plant cell lines investigated in this 

study included wild type Arabidopsis (salt sensitive), HHS Arabidopsis (salt tolerant). 

The development of the HHS cell line suggests that Arabidopsis cells have the genetic 

potential to tolerate high levels of salinity, and perhaps it is the inability of intact plants 

to coordinate the expression of the appropriate genes in the appropriate tissues that 

limits the plants ability to grow in the presence of NaCl. 

When WT and HHS cells were incubated with fluorescein diacetate (FDA) and Lyso 

TrackerTM the dyes moved rapidly into small vacuoles/vesicles that appear in the 

cytoplasm of the latter but not the former. These vesicular bodies were less prevalent in 

the wild type Arabidopsis cells. The mechanism(s) that accumulate these dyes in the 

vesicles is not known. In many of these vesicles both the anionic dye Lyso Tracker and 

the cationic dye fluorescein co-localized suggesting an active transport process. 
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However in some cases, vesicles clearly fluoresced red only (Lysotracker accumulation) 

or green only (fluorescein accumulation), and this suggests that there is some separation 

of function within the vesicle population. The co-localization of both dyes in some 

vesicles suggests the dyes maybe treated as xenobiotics and are conjugated in the 

cytoplasm with glutathione and transported into the vesicles by ATP-binding cassette 

(ABC) transporters (Theodoulou, 2000). 

Regardless of the mechanisms of dye sequestration, the presence of large numbers of 

these vesicles in salt-resistant cell lines is an interesting and novel observation and may 

reflect a key strategy for survival in high salinity. Whether they are involved in cellular 

detoxification or in vesicle trafficking (exocytosis), is unclear, but during a four hour 

tracking period using a confocal microscope, no vesicle movement was detected. It 

appears therefore, these vesicles/vacuoles act merely as a store for intracellular 

electrolyte. 

When WT cells were grown in BGM0-0.55 they had a doubling time of 2.45 ± 0.23 days, 

but this increased by to 2.84 ± 0.16 days when grown in BGM50-0.77; clearly salinity 

decreases growth rate. When WT cells were grown in BGM0-0.77 the doubling time 

increased (by only ~3%) to 2.53 ± 0.15 (cf. BGM0-0.55). Under the experimental 

conditions used here, WT cells would not grow in BGM0-1.96 or in BGM300-1.96. These 

data suggest that when exposed to 50 mM NaCl the observed slower growth rates of 

WT cells are attributable mainly to ionic stress and not to the loss of cell turgor. WT 

cells would not grow when exposed to severe desiccation (BGM0-1.96) suggesting 

osmotic adjustments to regain turgor was not possible under these conditions (Fig. 2-2 

and Table 2-2). 

On the other hand when HHS cells were grown in 300 mM NaCl (BGM300-1.96) growth 

slowed to 64% of controls (BGM0-0.55), but in isotonic, low salt media (BGM0-1.96) the 



 

 65

growth rates were even slower ~60% of controls. These data suggest that the habituation 

process in HHS cells has resulted in slower growth in the absence of salt or water stress, 

but the application of moderate salt stress (50 mM NaCl, ψH2O of -0.77 MPa ) reduces 

growth rates by both ionic and osmotic effects. Under high saline, dehydrating 

conditions (300 mM NaCl, ψH2O of -1.96 MPa), however, HHS cells survive well, but 

their poor growth in isotonic, low salt media (0 mM NaCl, ψH2O of -1.96 MPa) suggest 

that at this low water potential Na+ and / or Cl- are required as an intracellular solute to 

regain turgor for expansion-induced growth. Presumably, these ions are stored in the 

vacuoles of the cell, to reduce their toxic effects on metabolism. 

Sodium chloride can exert its toxic effect on plants by interfering with the uptake of 

other nutrient ions, especially K+, leading to nutrient ion deficiency. The ion content (K, 

Na, S, P, Mn, Mg, Fe and Ca) of Arabidopsis HHS (salt tolerant) and WT (salt 

sensitive) cells was assessed in 50 mM NaCl, but only Na+ levels differed between the 

two lines. The levels of K, Ca, S, and P were found not to be significantly different. 

Phosphate levels declined with culture age in both cell lines and in the media. However, 

even at stationary phase intracellular phosphate levels were 50% of those at day 1 (Fig. 

2-6f) and were probably sufficient to maintain growth whereas extracellular phosphate 

levels were almost undetectable (Fig. 2-8f).. It is conceivable that the growth of both 

above cultures were limited in part by the availability of free P, but more work is 

needed to clarify the role of P in these cultures. 

At all times the K+/Na+ ratio measured in HHS cell was higher than salt stressed wild 

type cells. Most interestingly, the HHS cells contained considerably less Na than the salt 

stressed wild type cells, suggesting that the HHS cell lines have mechanisms for 

minimizing Na+ content that are not present in the wild type cells. These may be 

mechanisms that reduce Na+ uptake or increase Na+ efflux. 
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Further experiments are required using radio active tracers (22Na+) to resolve how HHS 

cells maintain low intracellular Na+ levels. 

The lower final biomass of HHS cells at stationary phase does not appear to arise from 

the depletion of the energy (sugar) source, nutrient ions, or pH shift in the media. One 

difference between WT and HHS cells that could account for the different biomass at 

stationary phase was the cellular levels of NO. Nitric oxide has been reported to 

suppress cell growth and eventually cause cell death (Carimi et al., 2005), but it has also 

been implicated in salinity tolerance (Maathuis and Sanders, 2001; Price, 2005; Zhang 

et al., 2006; Zhao et al., 2004). It is conceivable, therefore, that HHS cells generate 

higher levels of endogenous NO that partially suppresses cell growth but also confers 

salinity tolerance. 
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3 Chapter 3: Comparison the Proteome of Salt Tolerant 
and Salt Sensitive Arabidopsis Cell Lines. 

3.1 Introduction. 

3.1.1 Expression Profiling.  

By studying the changes in protein and transcript abundance that results from exposure 

of plants to any treatment, it is possible to gain an insight into the processes that become 

stressed, and the stress responses that are activated. One of the challenges for these 

kinds of studies is to differentiate between the effect of stress (pathology) from the 

stress response (attempts to ameliorate stress). 

DNA micro-arrays have become established as the routine method for exploring global 

transcription patterns in eukaryotes. Although the first application of DNA micro-arrays 

was to study the pattern of gene expression (de Saizieu et al., 1998; Schena et al., 

1995), other uses have been found. For example hybridisation-based assays for mutation 

detection (Chee et al., 1996; Hacia et al., 1998), polymorphism analysis (Wang et al., 

1998), mapping (Sapolsky and Lipshutz, 1996), evolutionary studies (Hacia et al., 

1998), and other applications have been documented (Cheung et al., 1998; Shoemaker 

et al., 1996). In general the applications of DNA micro-arrays fall into two categories: 

(1) Genomic studies: (2) Gene expression studies. 

The advantages of using DNA micro-arrays are that it allows gene expression to be 

studied on a massive scale, and that the procedures are relatively simple compared with 

protein profiling. However, DNA micro-arrays also have disadvantages; changes in 

transcription abundance does not always result in a change in protein abundance: the 

quality of data generated is highly dependent on the design of the micro-arrays: subtle 

modifications in protein structure can have profound effects on cell metabolism and 

these are rarely reflected in changes at the transcript level. An argument could be made, 
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therefore, that studies on changes in protein profile will be more revealing than studies 

on transcript profile. Furthermore, protein profiling gives not only information the 

relative amounts (abundance) of proteins, but also indicates post-translational 

modification that could affect specific processes. Moreover, studies at the protein level 

can be extended to provide information on the interaction of proteins with each other 

and with other molecules of different types. The disadvantages, however, are the 

complexity of the protein samples in the extracts, and the time and expense involved 

with the analysis. 

3.1.2 General Aspects of Proteomics 

A large-scale study of proteins and their properties (such as post-translational 

modification, expression levels, and interaction with other molecules) to gain a global 

view of cellular processes at the protein level are termed “proteomics” (Abbott, 1999). 

Although transcriptional analyses are relatively quick and inexpensive, transcript 

abundance does not necessarily indicate protein abundance because of post-translational 

modification (PTM) of proteins, splicing, and RNA editing (Graveley, 2001).  

The study of gene expression using microarrays allows for whole cell profiling of the 

transcriptional response to a certain stimulus. However, because of the numerous levels 

of possible gene expression control, the transcriptional profile does not always provide 

précis representation of the cellular protein expression. For example, it has been 

estimated that each protein encoded by human genome can exist in five or more 

isoforms due to post-translational modification (PTM) and each of these protein 

isoforms may have different biological activities in cellular metabolism (Cash, 2002). 

PTM of proteins is important for biological process, for example in cellular signalling 

where the phosphorylation state of a protein can induce either activation or inactivation 

of signalling cascade. Also poor levels of correlation exist between mRNA and protein 
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levels (generally less than 0.5) due to different degradation rate of individual mRNA 

and proteins (Gygi et al., 1999; Le Roch et al., 2004). Furthermore, even in one of the 

simplest self-replicating organism, Mycoplsma genitalium, there are 24% more proteins 

than genes (Teichmann et al., 1998). In humans it has been estimated that there are at 

least three times as many protein species as there are genes (Abbott, 1999).  

To analyse the proteome of cell, three key processes are involved. First, the proteins in 

the sample have to be separated into a large number of sub-samples to reduce the 

complexity for analysis. Second, the abundance of each protein within the sample has to 

be assessed. Finally, the identity of each protein has to be established. 

Separation is usually achieved by two dimensional gel electrophoresis (2-DE) or liquid 

chromatography (2D-LC), and protein identification by mass spectrometry (MS). 

Protein abundance is usually determined after separation, but in some cases it can be 

determined by MS. 

In this study, a proteome analysis of HHS cells exposed to salinity was assessed using a 

2D-gel electrophoresis/MS method called Differential Gel Electrophoresis, or DiGE. A 

brief description of the method follows. 

3.1.3 Two-Dimensional Electrophoresis. 

Two-Dimensional Electrophoresis (2-DE) was introduced by O'Farrell (O'Farrell, 

1975). In general 2-DE separate proteins firstly by charge using isoelectric focussing 

(IEF) and secondly by molecular mass using sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE). Two dimensional Electrophoresis has the ability to 

separate and profile thousands of proteins (Wu et al., 2002). In brief, samples (e.g. cells, 

tissue extract) are solubilized either chemically and/or mechanically, and proteins are 

denatured into their polypeptide subunits. The solubilisation methods have to be 

compatible with the IEF step and should not introduce modifications to proteins that 
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could affect MS (Chambers et al., 2000). The extract should be incubated with 

nucleases to remove DNA or RNA that could interfere with protein migration during 

electrophoresis. Isoelectric focusing (IEF) separates the mixture based on the protein 

isoelectric point (pI). Proteins are amphoteric molecules, having positive, negative or 

zero charge depending on the pH of suspension buffer. The pI is the pH at which the 

protein carries no net electric charge. 

When 2-DE was first introduced proteins were separated in the first dimension using 

polyacrylamide gels contains a mixture of hundreds of carrier ampholytes (CA) when 

placed in an electric field the CA separate proteins according to their pI and induce a 

continues pH gradient. The disadvantage using CA is that the pH gradients produced 

were unstable and proteins could diffuse across the gradient. 

3.1.3.1 First Dimension Immobilized pH Gradient Gels. 

In recent years the introduction of immobilised pH gradient (IPG) to replace the CA 

technique has improved the resolution of separation and reproducibility of 2-DE (Gorg 

et al., 2000). A pH gradient is generated by the co-polymerisation of 6 to 8 well-defined 

chemicals (the immobilines) combined with an acrylamide matrix fixed to a plastic-

backed strip. An immobilised pH gradient is produced by covalently incorporating a 

gradient of small basic and acidic buffering peptides (desired pH range is between 3-11) 

into a polyacrylamide gel at the time it is cast. The advantages of IPG are increasing 

loading capacity and reproducibility compared with CA system. The resolution can be 

adjusted further by changing the range of the pH gradient (e.g. to look specifically at 

basic proteins [pH 7-11] or acidic proteins [pH 3-4]). High protein loads are essential if 

less abundant proteins components are to be identified using mass spectrometry 

(Molloy, 2000). Disadvantages of IGPs are poor representation of hydrophobic and 
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membrane proteins in the 2-DE gels as the method relies on solubilisation in aqueous 

buffers. 

3.1.3.2 Second Dimension SDS-PAGE. 

The second stage of 2-DE is to separate proteins based on molecular weight using SDS-

PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis). The 

isoelectrically focussed proteins on the IPG strip are applied to the top of a 

polyacrylamide gel and the polypeptides then migrate in an electric current into the 

second dimension gel and are separated on the basis of molecular size. Individual 

proteins are then visualised with an appropriate stain (e.g. coomassie blue or silver dye). 

Several thousand spots may be resolved on single 2-DE gel and initial choice of sample 

solubilisation conditions and pH range of gel strip used for the first dimension will 

determine which particular subset of proteins from the proteome are profiled. 

The main obstacles in visualisation of total cell or tissue extracted proteins are the 

highly dynamic range and chemical diversity of proteins reflected in their range of 

molecular weights, pIs, and solubility. Even though, 2-DE is a powerful technique to 

profile thousands of proteins from a single sample, there are still some limitations and 

these included: (1) difficulties in gel reproducibility: (2) limited range of detection (e.g. 

proteins > 100 thousand Daltons and pI values > 9 or < 4; (Yanagida, 2002b): (3) Poor 

staining of some proteins: (4) under representation of hydrophobic proteins: (5) Failure 

to detect low abundance proteins that may play a key role in cell function (Abbott, 

1999).  

3.1.4 Mass Spectrometry. 

Protein identification by mass spectrometry (MS) is a high throughput method which 

can provide extremely accurate measurements of the mass of molecules. The data 

generated can be used to search protein and translated nucleotide databases directly to 
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identify a protein. Mass spectrometers consist of three essential parts: (1) an ionisation 

source that converts molecules into gas phase ions: (2) a mass separator that separates 

the ion anylates based on their mass/charge (m/z) ratio, and (3) an ion detector that 

detects the ions resolved by the mass separator. 

Essentially, there are two types of MS used for protein identification, Matrix Assisted 

Laser Desorption Ionisation Time of Flight (MALDI-TOF), which is useful for 

identifying proteins from organisms with sequenced genomes, and Electro Spray 

Ionisation tandem MS (ESI-MS/MS). In both cases, the instrument can analyse only 

small peptide fragments (2000-300 Da), and so the protein samples have to be 

fragmented. In the case of MALDI-TOF this is achieved by peptide digestion; with a 

tandem MS, fragmentation can be accomplished in the instrument. 

3.1.4.1 MALDI-TOF. 

MALDI-TOF is an MS technique that is used to calculate the mass of an ionised 

peptide, and the result is then compared with a library of peptide masses for 

identification. The method is restricted therefore, to organisms with significant protein 

data bases. The molecules to be ionised are dried in an energy absorbing crystalline 

matrix and a laser pulse is then used to exciting the matrix and generate ions which are 

evaporated. The ions are then swept into an evacuated tube and accelerated by an 

electromagnetic field, before colliding with a detector positioned at the far end wall. 

The ‘time of flight’ of the ion, from laser pulse ionization to end wall collision, is 

accurately measured and will be a function of the mass/charge ratio (m/z) of the ion. 

MALDI-TOF is a quick and reliable method of protein identification that relies on 

comparing peptide mass fingerprints from analysis digested protein to computer 

generated theoretical fingerprint profiles from protein or translated cDNA databases. 

Matched proteins are sorted according to algorithms that take into account protein 
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properties such as species of origin and expected mass range, sequence coverage, and 

mass accuracy, to calculate the probability of a correct identification. 

3.1.4.2 Tandem MS.  

As stated by Wu and co-workers (Wu et al., 2002) tandem MS (MS/MS) can perform 

two stage mass analysis of ions. Electro-spray ionization MS/MS (ESI-MS/MS) can be 

coupled to different types of mass analyser such as, an ion trap, TOF, or quadrupole. 

The samples are introduced to the mass spectrometer as a liquid. Every peptide analysed 

is subjected to further fragmentation to give partial information about the peptide 

sequence. In a collision cell the fragmentation take place and the molecular masses of 

the resultant fragment ions are compared with the theoretical masses of fragments from 

each protein sequence in the databases. This technique will adequately identify protein 

fragments and is particularly applicable to short sequence data such as those of 

expression sequence tags (ESTs) (Yanagida, 2002a). MS/MS can provide actual 

sequence data and can identify large proteins. A good strategy that is often adopted is to 

first analyse all samples initially by MALDI-TOF MS as it is rapid. Then for proteins 

that cannot identified by this method, (due to low amounts or to the presence of several 

proteins in the spot, or if the protein is not present in any of the public domain 

databases) tandem MS can be used.  

The identification of proteins from MS data is simplified by the use of specialised 

software that compares actual peptide mass fingerprinting data or peptide fragmentation 

data with theoretical patterns generated from databases.  

Post-Translational Modification (PTM) of proteins has a profound effect on protein 

function and so the identification of PTMs is an important goal of proteomics. 

Phosphorylation, glycosylation, ubiquitination, sumoylation, sulphonylation, 

palmitoylation, and ADP ribosylation are all examples of PTM that can affect protein 
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function. Such modifications are vital for the correct functioning of many proteins. Even 

though PTMs are determined to some extent by the protein amino acids, it is not 

currently possible to predict reliably which modifications occur for any particular 

protein (Cash, 2002). MALDI-TOF can identify when a protein is phosphorylated 

(Palzkill, 2002) as the expected fragment sizes with and without a phosphate can 

calculated. More commonly tandem MS is used to investigate PTMs by searching 

against theoretical PTM databases.  

3.1.4.3 Quantitative Proteomics. 

Quantitative proteomics is a very important and necessary to evaluate differences 

between protein abundance in two samples. There are several quantitative proteomic 

techniques used. These include: SILAC (Stable Isotope Labelling by Amino acids in 

cell Culture) which allows for the differential in vivo incorporation of a stable isotope 

(e.g. 14N/15N or 12C/13C) into two samples which are subsequently pooled for MS based 

quantitative proteomics. The resolved individual proteins, which consist of sample from 

both treatments, are then fed into the tandem MS and the relative abundance from each 

treatment assessed by the ratio of the isotope signatures. 

Another method is Isotope-Coded Affinity Tags (ICAT) technique. In this approach, 

two cysteines in samples of interest are labelled with the thiol reagent 1H4NiCNHS 

(light isotope containing hydrogen) and 2H4NiCNHS (heavy isotope containing 

deuterium) respectively. The samples are then pooled and resolved into their individual 

polypeptides. MS analysis of the combined digest then provides information on the 

expression levels of those proteins by comparison of 1H4/2H4 ratios of individual 

peptides. 

Another commonly used method is Difference Gel Electrophoresis (DiGE). Two 

samples of interest are labelled with different flourophores (CyDyes), mixed together, 
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and run on the same gel. The ratio of fluorescent signal intensity of matching spots 

between samples is determined (Unlu et al., 1997). For protein identification by MS, 

spots are selected and then excised from a preparative gel.  

Jiang and co-workers (Jiang et al., 2005) compared the DiGE and ICAT techniques and 

found that DIGE could separate proteins in certain low molecular mass ranges and also 

identified cysteine-free proteins that were not detected by ICAT analysis, whereas ICAT 

analysis quantifies the sum of the protein species of one gene product while DiGE 

quantifies at the level of resolved domains and protein localisation. The web site of the 

Human Protein Reference Database (HPRD) (www.hprd.org) gives information on 

protein domain architecture, interaction net works, posttranslational modification, and 

disease association for each protein in the human proteome. There is also web site on 

gene ontology project (http://www.geneontology) which is a collaborative effort to 

address the need for consistent descriptions of gene products in different databases.  

3.1.5 Integration of Genomic, Proteomics, and Bio-Informatics.  

To understand the complex behaviour of a biological system several approaches are 

needed, and future studies will involve a mix of genomics, proteomics, bioinformatics 

and maybe other new technologies and methods (Russell, 2002).  

Le Naour and co-workers (Le Naour et al., 2001) combined oligonucleotide microarray 

and proteomic approaches to reveal genes associated with dendritical cell differentiation 

and maturation and this then allowed analysis of posttranslational modification (PTM) 

of specific proteins as part of these processes. Novel genes and proteins were identified 

in this study, but the conclusion was that the proteomics part of the study was 

paramount as it provided information that was unavailable at the RNA level (Le Naour 

et al., 2001). Therefore genomic studies in combination with proteomic analyses of 
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host-pathogen interactions are essential to fully understand virulence and pathogenesis 

mechanisms (Zhang et al., 2005). 

3.2 Materials and Methods. 

3.2.1 Plant Material. 

Wild type (WT cells grown in BGM0-0.55) and Habituated to High Salt (HHS cells 

grown in BGM300-1.96) cell lines were established, maintained and grown as described 

in Materials and Methods (Chapter 2 Section 2.2.1). 

3.2.2  Reagents and Apparatus. 

All equipment for 2-DE (e.g. IPGphor, DALT 6 & 12 gel tanks, Typhoon 9400 gel 

scanner, etc.) were supplied by Amersham Biosciences, Little Chalfont, 

Buckinghamshire. In addition, Immobiline gel strips, all buffers, reagents and dyes were 

also supplied by Amersham Biosciences apart from the following: phenol, pH sticks, 

polyacrylamide and bis-acrylamide, and TEMED (Sigma): lysine and sucrose (Fisher): 

Sypro Ruby (Bio-Rad): lint-free wipes (Canford Audio Kimwipes). 

3.2.3 Experiment Setup.  

The starter cultures for these experiments were HHS cells that had been sub-cultured 

every seven days into Basic Growth Media supplemented with 300 mM NaCl 

(BGM300, solute potential of -1.96 MPa; see Materials and Methods, Chapter 2.2). 

These cultures had been maintained in this growth media for several months before the 

experiment commenced. Ten ml aliquots of media (containing approximately 3 ml of 

cells) were removed after 6 days (log phase grow period) and transferred under sterile 

conditions into 80 ml of BGM300-1.96 in 250 ml conical flasks; these were then sealed 

with a sterile cotton wool bung and an aluminium foil cover taped in place. Twelve 

replicate flasks were prepared and placed in an illuminated orbital shaker (see Section 
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3.2.1 for details). After a further 6 days, 4 flasks were randomly selected and the cells 

harvested and stored -20°C for subsequent protein extraction; the remaining 8 flasks 

were used to seed 8 fresh cultures containing BGM50-1.96 (Basic Growth Media 

supplemented with 50 mM NaCl and 398 mM sorbitol; solute potential -1.96 MPa). 

These cultures were returned to the orbital shakers, and after a further 6 days 4 flasks 

were randomly selected and the cells harvested and stored at -20°C for subsequent 

protein extraction; the remaining 4 cultures were used to seed 4 fresh flasks containing 

80 ml BGM300. After a further 6-day growth period the cells from these 4 flasks were 

also harvested and stored at -20°C. This procedure produced 4 replicate samples of log 

phase cells grown in isotonic conditions (-1.96 MPa) and exposed to each of the 

following ionic conditions (see Fig 3.1 for a diagrammatic representation), cells grown 

in 300 mM NaCl (1): cells grown in 300 mM NaCl and shifted to 50 mM NaCl (2, 

representing a ‘salt down-shock’), cells transferred up from 50 mM to 300 mM (3, 

representing a ‘salt up-shock’). 
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Fig. 3-1 Schematic Diagram of the Three Different Growth Conditions of HHS 

Cells Used for Proteome Analysis. 

▲ H300-1.96, cells grown in BGM300-1.96: 

▲ HL50-1.96, salt down-shock (Cells shifted from BGM300-1.96 to BGM50 + Sor.-1.96): 

▲ HLH300-1.96, salt up-shock (HL Cells shifted from BGM50-1.96 to BGM300-1.96): 

Samples were harvested at mid-log phase of growth (6 days) and used for analysis or to 

seed fresh cultures, (see section 2.2.1, 2.2.2, and 3.2.4 for details). 
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3.2.4  Sample Preparation. 

3.2.4.1 Harvesting Arabidopsis Cells. 

The cells were harvested by transferring to 50 ml falcon tubes and allowing them to 

settle for 5 minutes. The supernatant was discarded and the pellet washed with 50 ml of 

the appropriate isotonic ice cold BGM media, inverted gently several times to re-

suspend the cells, and again allowed to settle. The pellets were then placed on a 

Whatman filter (47 mm Glass micro-fibre filter cat # 1821-047), and dried with a 

vacuum pump for approximately 20 seconds. The samples were then scrapped off the 

filters with a spatula into 50 ml Falcon tubes and stored at -20 C° until required. 

3.2.4.2 Protein Extraction.  

Approximately 500 mg of Arabidopsis cells were ground in liquid nitrogen using a 

mortar and pestle, and the powder transferred to 50 ml Falcon tubes. In a fume hood 2.5 

ml of extraction buffer (0.1 M Tris pH 8.4, 20 mM KCl, 10 mM EDTA, 40% (w/v) 

sucrose) and 2.5 ml of Tris pH 8.8 buffered phenol TE (Sigma # p-4557) per sample 

were added, the tubes gently inverted to re-suspend the pellet, and then left gently 

shaking (~2 rpm.) at 4ºC for 30 minutes. After incubation, the samples were centrifuged 

for 15 min at 4400 g (4 °C), and the upper phenol phase carefully removed with a short 

Pasteur pipette. Another 2.5 ml phenol was added to the tube, the content shaken 

vigorously, and a second extraction performed, as described above. The two phenol 

phases were pooled and protein precipitated overnight at -20ºC by the addition of 5 

volume of cold 0.1 M ammonium acetate in methanol. The protein samples were then 

collected by centrifugation, as described above, and the pellets were resuspended with a 

plastic streaker in 1.5 ml cold ammonium acetate/methanol, and sonicated at 0ºC for 15 

minutes using a water bath sonicater, Grant Ultrasonic Bath XB2 (Grant Instruments, 
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Cambridge Ltd.). This washing procedure was repeated a further three times; the first 

two washes were in ammonium acetate/methanol, the second two washes in cold 80% 

acetone. Pellets were stored in 80% acetone at -20°C until required. 

3.2.5 Determination of Protein Concentration.  

The samples were centrifuged for 15 min at 4400 g (4°C) and the supernatant decanted; 

pellets were partially dried using a vacuum desiccators for half hour at room 

temperature. Approximately 30 mg of sample pellet was weighed in a 1.5 ml Eppendorf 

tube and resuspended in 600 μl of IEF buffer A (7 M urea, 2 M thiourea, 4% (w/v) 

CHAPS, 30 mM Tris-HCl, pH 8.5) using a plastic inoculation loop followed by a 

sonicating water bath for 10 minutes at 0ºC (Grant XBZ Ultrasonic Bath). The samples 

were then centrifuged at 13,400 g for 5 minutes at room temperature, and the 

supernatant removed to clean Eppendorf tubes. Three µl of samples was removed for 

protein quantification using the 2D-Quant-kit (Amersham Biosciences, catalog # 80-

6483-56); the manufacturer’s protocols were followed throughout and Bovine Serum 

Albumin (BSA) was used as protein standards.  

3.2.6 CyDye Labelling of Proteins. 

The stored protein samples were thawed and protein extracted and quantified as 

described in (Sections 3.2.4.2 and 3.2.5 respectively).  

3.2.6.1 Minimal Labelling.  

For optimal CyDye labelling the pH of samples must be alkaline (pH 8-9). Samples 

were tested on pH strips (Sigma # P 4536) but the pH was always found to lie between 

pH 8-9. Adjustments can be made, however, by adding 1.0 or 0.1 M NaOH, or 1.0 or 

0.1 M HCl. Aliquots of the twelve protein samples (in IEF Buffer) containing 50 µg 

protein were placed in 500 µl Eppendorf tubes and placed on ice in the dark for 30 
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minutes with 1 µl (400 pmoles/μl) of the appropriate Cy3 or Cy 5 dye. In addition, a 

Pooled Standard Sample was prepared by placing 25 µg of each of the 12 samples in a 

500 µl Eppendorf tube (a total of 300 µg protein), and labelled for 30 minutes with 1 µl 

Cy 2 dye (400 pmoles/μl). After the incubation period, the reactions (Fig. 3-2) were 

stopped by the addition of 1µl of 10 mM lysine. IEF Loading Sample was then prepared 

for each of the six gels by mixing together 50 µg of a Cy 3 labelled sample, 50 µg of a 

Cy 5 labelled sample, and 50 µg of the Cy 2 labelled Pooled Sample (i.e.150 μg total 

protein per gel). The volumes of each of these six IEF Loading Samples (~150 μl ) were 

made up to 350 μl using 150 μl IEF Buffer B (7M urea, 2M thiourea, 2% ( w/v) Amido 

Sulfo betaine (ASB-14), 1% (v/v) IPG buffer (pH 6-11 or 4-7), 2.4% (v/v) DeStreak) 

and 50 μl of Rehydration Buffer (7M urea, 2M thiourea, 1% (w/v) ASB-14, 2% (w/v) 

CHAPS, 0.002 % bromophenol blue, 0.28 % (w/v) DTT, 0.5% (v/v) IPG Buffer, 1.2% 

(v/v) DeStreak). For both buffers, IPG Buffer and DeStreak were added just prior to 

use. A scheme for the design of this experiment is presented in Table A.3-1 (see 

Appendix). 

3.2.6.2 1st Dimension Separation by Isoelectric Focussing. 

Each IEF Loading Sample mixture was then pipetted along the bottom of an 18 cm 

ceramic IEF strip holder, and then a single dehydrated pre-cast IPG strip was placed gel 

face down onto the sample mixture. Two ml of cover fluid was then carefully layered on 

top of the IPG strip to prevent evaporation. The strip holder plastic cover was then 

replaced and positioned on the IPGphor platform (Amersham Bioscience, Amersham, 

UK). The following program was used for isoelectric focussing 20°C, 50 UA/strip: Step 

1 (Rehydration), 30 Volts for 13 hours: Step 2, 500 Volts for 1 hour: Step 3, 1000 Volts 

for 1 hour: Step 4, 8,000 Volts for 13 hours or until 60,000 Volt-hours was exceeded: 

Step 5 (if necessary), 100 Volts for 9 hours or until 60,000 Volt-hours was exceeded. 
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After electro-focussing, the strips were removed using clean forceps, and placed into an 

equilibration tube, the plastic back should be in contact with the side of the tube with 10 

ml of equilibration Buffer, 25% (v/v) 4x Resolving gel buffer, 6 M Urea, 30% (v/v) 

Glycerol, 2% (w/v) Sodium dodecy sulphate (SDS), 0.002% (v/v) Bromophenol blue. 

The 4x resolving gel buffer, 1.5 M Tris base and HCl pH 8.8. The strips were first 

equilibrated with 0.5% (w/v) DTT for 15 minutes, followed by a 15 minute wash in 

4.5% (w/v) iodoacetamide. The IPG strips were then ready for the 2nd dimension 

separation. 
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Fig. 3-2 Schematic diagram of CyDye protein labeling reaction. 

CyDye fluors containing  N-hydroxysuccinimide (NHS) ester active group covalently 

bound to lysine residues of the protein via an amide linkage (Amersham Ettan User 

Manual). 
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3.2.6.3 2nd Dimension SDS Page Gel. 

3.2.6.3.1 Preparation of Large Format Gels. 

As pre-cast plastic backed gels are incompatible with DiGE due to the plastic backing 

fluorescing during scanning, these gels were poured manually. 

3.2.6.3.1.1  Preparation of Gel Plates. 

Plates were soaked in 10 % SDS to remove old bounded acrylamide. Back plates should 

not be immersed for more than an hour as it ruins the gel spacers over time. A soft 

sponge was used to wipe the acrylamide off carefully to avoid scratches which show up 

in gel scans. Then the plates were dried off and checked for any bits of acrylamide were 

missed and these removed with the soft side of the sponge until the plates were 

completely clean. The plates were rinsed in tap water followed by distilled water, dried 

with lint-free (Kim Wipes, Canford Audio # 55-179) and finished off with the Reusable 

lint-free wipes (Wypall wipes # 55-186). 

In the fume hood the back plates were laid flat and 1 ml of bind-silane mix (80% (v/v) 

Ethanol, 0.2% (v/v) Glacial acetic acid, 0.01% (v/v) Bind-silane (Plus One Amersham), 

18% ddH2O) was pipetted onto each back plate and spreadded over the plate using a 

Kim Wipe lint free tissue and then was rubbed in until completely dry using a new 

tissue to ensure there were no streaks. The plates were put in the plate rack in the fume 

hood to dry for at least half an hour, with the bind-silane faces towards each other to 

prevent bind-silane evaporating onto the outside face of the back plates which can cause 

problems when casting.  

Before assembling the cast, a little dH2O was squirted onto each bind-silane surface and 

wiped until completely dry and smear-free making sure there were no dust particles or 

streaks. This step removes excess bind-silane and the ethanol that was present in the 

bind-silane mixture. Reference fluoresce markers were applied, not too near to edges 
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but not so far into the gel that it will interfere with the spot pattern (see Fig. 3-3). Then 

the plates were assembled, making sure the bottom of the front and back plates were 

levelled and that the spacers had been well sealed. The cassettes were placed in the 

caster starting with a separator sheet and then a gel cassette; a separator was placed 

between each cassette. When assembled the plates in the gel caster should not be scaled 

too tightly as this affects the quality of the gel. 

3.2.6.3.1.2  Gel Casting. 

Large format (20 cm x 26 cm) 12.5% acrylamide gels were cast with, 41.7% (v/v) 

acrylamide stock solution (30% (w/v) 37.5:1 acrylamide: bis-acrylamide, N,N-

methylene-bi-sacrylamide from Sigma # D-89555), 25% (v/v) 4x resolving buffer, 1% 

(v/v) SDS 10% stock, 1% (v/v) of APS (Ammonium Pyrosulphate) 10% stock, 

0.00138% (v/v) of TEMED (N,N,N',N'-tetramethylethylenediamine) 10% stock, 31.2% 

ddH2O. Seventy five ml per gel plus extra 100 ml were used to fill caster spaces. The 

acrylamide, resolving buffer and water were filtered (Nalgene reusable bottle top filter 

holders catalogue # 320-2533, with 0.22 μm Millipore, Durapore membrane filter 

catalogue # GVWP04700) then degassed using desiccator and vacuum pump in a cold 

room for at least an hour. Afterward SDS, TEMED and APS were added in this order 

with a few seconds of gently stirring between each addition. 

The gel filling channel at the back of the Dalt 6 gel caste was not used as manual 

pouring was quicker and prevented premature polymerization (<10s). The final level 

was ~1 cm from the top of the front plate. Each gel was overlaid immediately with 2 ml 

of 30% of isopropanol and the gels were left overnight to polymerise. 

After overnight polymerization the gels were removed from the caster, rinsed 

thoroughly with water followed by distilled water. Gels were also checked for bubbles 

within the gel matrix. The tops of acceptable gels were rinsed with distilled water and 
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were racked up side down to prevent the top surface from drying out. Gels that were not 

used immediately were wrapped in Cling film with approximately 5 ml of storage 

solution (25% (v/v) 4x resolving gel buffer, 0.1% (v/v) SDS) and kept in fridge. 

Separation in the second dimension is based on protein molecular mass. The proteins 

had previously been separated according to their pI during IEF, in an immobilised pH 

gradient set onto a polyacrylamide gel strip. After the focusing was completed the strips 

were equilibrated, which prepares the proteins for the second dimension separation, 

(See Section 3.2.6.2). 

The equilibrated Immobiline pH gradient strips were removed from the equilibration 

tubes with clean forceps, rinsed briefly with electrophoresis SDS-running buffer and 

placed on top of a pre-poured 12.5% SDS-PAGE gel. Once the strip was put in the place 

making sure no bubbles were trapped, then it was sealed with 0.5% agrose on top for 

more details (See Section 3.2.6.3.2). 

3.2.6.3.2 Running the Second Dimension Gel. 

Isoelectric focusing (IEF) strips were rinsed briefly in electrophoresis SDS-running 

buffer (25 mM tris-base, 192 mM glycine; and 0.1% (w/v) SDS). The top of the gel and 

the top back plates were wetted with electrophoresis running buffer and the IEF strips 

placed on the top of the SDS-PAGE, with the plastic back towards the back plate and an 

anode towards the left hand side of the gel. The strip was slid down along the back plate 

using a 1 mm plastic spacer taking care not to disrupt the gel matrix. 

The strip was pushed down until one end of the strip is in contact with the SDS gel and 

then worked into place until it was flush. Care was taken to ensure contact with the gel 

and that no bubbles were trapped between the gels. The strip was sealed by pipetting 

agrose sealing solution on top, 100% (v/v) of electrophoresis running buffer , 0.5% 
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(w/v) agarose NA (Normal melting agarose; Plus One Amersham), and 0.002% (v/v) 

bromophenol blue (BPB). 

When all gels were sealed (~1 min) the lower chamber of Dalt 6 tank was filled with 1x 

SDS-running buffer to the appropriate level. Then the upper buffer chamber was pushed 

into place over the gels and filled with 2x SDS-running buffer. A funnel was used to 

add more 1x SDS-running buffer until the both chamber solutions were levelled. The 

circulating cooler was set at 21°C and started to run. Then the lid of Dalt 6 tank was 

placed on. There are two phases to run the electrophoresis, first slow entry phase where 

proteins are transferred from the strip to the gel; this was achieved using a power of 2.5 

W per gel for 30 min. The second was the separating phase, and the power applied 

depends on the length of time the gel is run. A fast daytime run was  done at 18 W per 

gel and took 3.5 and 4 hrs for a full set of six gels. An overnight run was done at 3 W 

per gel. Fast runs give better resolution and produce higher temperature. The running 

limits were set at maximum voltage 600 V and max current 400 mA, the cooling 

circulater to 21°C as mentioned above. The run was stopped when the bromophenol 

blue run off the bottom of the gels. 

3.2.7 Gel Scanning. 

When the second dimension run was finished, the gels and platen were inspected and if 

the surface of the plates were contaminated, they were washed using distilled water and 

dried with lint-free cloths. If the platen needed more thorough cleaning then 70% (v/v) 

ethanol followed by ddH2O was used, if further cleaning was needed 10% hydrogen 

peroxide was used). The gels were then scanned while still between the two low 

fluorescence glass plates using the settings in Table 3-1, which are recommended by 

Amersham in the Ettan DiGE user manual. The Image Quant V 5.2 and Typhoon 
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Variable Mode 9400 were used for cropping the images and scanning the gels 

respectively. 

The Typhoon 9400 scanner and Image Quant software scan three CyDye channels 

(wave lengths) on each gel (see Table 3-1). For each channel the photomultiplier 

detector (PMT) voltage was initially set at 550 V and prescans of the gel taken; the 

PMT voltage was the manually adjusted until the spot with the maximum intensity was 

~80,000 counts. The PMT voltage for this channel was then noted and used 

subsequently for the same channels on all gels. A final gel scan was then under taken 

and the emission of the spot with the highest intensity usually rose to ~100,000 counts. 

This process was repeated for all channels. The output for each gel scan will be 4 gel 

images (see Fig. 3-3). 

3.2.8 Sypro Orange Staining. 

For spot picking and to detect total protein present on the preparative gel, the total 

protein stain (with 380 µg total protein lauded) Sypro Orange. was used. When 1st and 

2nd dimension are finished as described in sections 3.2.6.2 and 3.2.6.3.2 respectively. 

The gel was fixed in 7% (v/v) acetic acid, 10% (v/v) methanol for 1:30 hr, then washed 

briefly (~2 min) in 7% (v/v) acetic acid. The gel was stained with Sypro Orange, 

1:10,000 in 7% acetic acid for ~1:30 hr. the gel then was washed briefly in 7% acetic 

acid and scanned using green laser Cy 3 (532 nm, 580 BP, excitation band-pass filter 

30) see Table 3-1.
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Table 3-1 The Appropriate Laser and Wavelength Settings for Each Dye Scan. 

Typhoon 9400 imager was used for scanning 2-DE . 
 
Fluorophore Emission Filter(nm) Laser and wavelength 

Cy2 520 BP 40 Blue2 (488) 

Cy3 580 BP 30 Green (532) 

Cy5 670 BP 30 Red (633) 

Sypro Ruby 610 BP 30 Blue1 (457) 

Sypro Orange 580 BP 30 Green (532) 
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3.2.9 Spot Excision, Digestion, and Preparation for MS. 

The Ettan Spot Handling Work Station 2.1 (Amersham Biosciences) was used to excise 

protein spots from 2D gels and digest the proteins using Trypsin (Procine sequencing 

Grade Modified Trypsin, Promega, Cat. # V3021) to cleave at the carboxylic acid gruop 

of lysine and arginine. The work station was also use to spot peptides and matrix (α-

cyano-4-hydroxy-cinnaminic acid, Amersham or Sigma-Aldrich) on the MALDI target 

grids. The protocol used in the workstation is as follows. 

3.2.9.1 Spot Excision. 

Spot excision was performed with a picking head of 1.4 mm diameter. The gel plug was 

removed using a 40 µl aliquot and expelled from the picking head into a 96-well 

microplate using a 150 µl aliquot of distilled water. Finally the excess water was 

removed from the microplate using 200 µl aliquot. 

3.2.9.2 Trypsin Digestion of Protein Samples. 

The gel plug preparation was preformed by washing twice with 100 µl 50 mM 

ammonium bicarbonate in 50% (v/v) methanol, each time incubating at room 

temperature for 30 minutes before aspiration. The solution was then removed and the 

gel plug dehydrated by the addition of 100 µl of 75% acetonitrile (ACN) for 10 minutes 

at room temperature. After aspiration, the gel plug was allowed to air-dry for 22 

minutes.  

The protein in the gel plugs was then digested by the addition of 10 µl digester solution 

(10 µg ml-1 trypsin in 20 mM ammonium bicarbonate, NH4HCO3) and incubated at 

37°C for 4 hours. After trypsin treatment the resulting peptides were extracted from the 

gel plugs by 60 µl of peptide elution buffer (50% (v/v) acetonitrile (ACN) / 0.1% (v/v) 

TFA (trifluoroacetic acid) treatment for 20 minutes at room temperature. Aliquots of 80 
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µl were then removed from each sample well and dispensed into a clean second 96-well 

plate. The gel plug was then treated again with 40 µl aliquot of 50% (v/v) ACN/0.1 

(v/v) TFA for another 20 minutes at room temperature and the aspirated samples 

pooled. After the processing of the final sample the second microplate was dried for 90 

minutes to allow complete drying of the peptides. The dried peptide spots were 

resolubilized in 3 µl spotter solution (50% (v/v) ACN/0.5% (v/v) TFA). Of each triptic 

digest, 0.3 µl was mixed with 0.3 µl matrix solution (α-cyano-4-hydroxy cinnamic acid 

(90% saturated in 50% (v/v) ACN, 0.5% (v/v) TFA)). The dissolved peptides were then 

spotted onto the target MALDI plate. 

3.2.10 Mass Spectrometry. 

3.2.10.1 MALDI-TOF. 

The Voyager DE PRO MALDI-TOF from PerSeptive Biosciences (Voyager) was used 

to conduct matrix assisted laser desorption ionisation, time-of- flight mass- 

spectrometry (MALDI-TOF-MS). The Voyager consists of several main parts namely; 

the target, a laser, an accelerating source, a low mass gate, a guide wire, reflector, and 

multi-channel plate detector. Here, briefly are the function of each of these parts and the 

parameters that were used to operate them. The peptide and matrix were spotted on to 

target, which was then loaded into Voyager. The laser intensity was optimised to give 

the greatest signal-to-noise ratio and 200 shots per spectrum were acquired. During each 

shot that was fired at the spot to be analysed and after a short delay of 200 n-1 the 

desorbed ions were accelerated through two grids of 15,200 V (76%) and 20,000 V 

(100%). 

These two grids create a non-linear field that ensures equal kinetic energy is given to 

every ion, no matter what its starting position in the field. The low mass gate is a 

deflector timed to deflect the smaller ions, below a mass of 750 Da, using an electric 
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field, thus only ions of 750 Da or more are allowed to travel along the flight tube. Along 

the centre of the flight tube there is a wire, set at 10 V (0.05%), so that it attracts the 

ions into the centre of the flight tube instead of travelling towards the side. The reflector 

or mirror is a set of grids and rings at a total voltage of 22,400 V (ratio 1.12 of 20,000 

V) that reflects and focuses the ions back down the flight-tube, thus giving the ions 

longer flight and the system more resolution. Finally a multi-channel plate (MCP) 

detector senses voltage changes induced by individual ions. The relative mass of the 

ions is calculated from the time of flight and calibrated against three trypsin fragment 

peaks (842.5100 Da, 1045.5642 Da and 2211.104 Da. Masses between 800 and 3500 

were recorded. Three spectra, each from a different place on the spot were accumulated 

to create the final spectrum. An automatic acquisition was attempted using a spiral 

search, rejecting any spectra with a signal to noise ratio of less than 10. Acquisition was 

absorbed for any spots yielding 5 consecutive rejected spectra. 

3.3 Analyses of Gel Images. 

3.3.1 Preparation of Gel Imaging. 

To perform analytical scan, a 100 µm pixel size was selected for quantitative scans. 

When all the gels were scanned each gel image was cropped in Image Quant (V 5.2). 

Landmarks’ were used to cut gels to a similar size and any blank area at the top or 

bottom of the gel were cropped. Gels that were used for protein spot picking the 

reference markers were included in the cropped image. The cropped images were saved 

onto a CD for analysis by DeCyder software.  

3.3.2 Spot Detection, Spot Matching and Generation of a Spot Map Using the 

Decyder V 5.01 DIA Module. 

After image cropping, gel pair images were analyzed by the DeCyder V 5.01 

Differential In-gel Analysis (DIA) Module. This module automatically identifies spots, 
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performs background subtractions, generates estimates of spot intensity (protein 

abundance), and allows manual editing of the processed data. The main output from this 

module is a ‘Spot Map’, a template containing information on the relative position of 

each spot that can be used to identify matching spots on all gel image pairs; this then 

allows between-gel spot matching. 

A typical screen output from the DIA module is shown in Fig. A 3-3 (appendix). The 

screen is divided into four quadrants; the upper left shows the gel pair images and the 

upper right presents basic information on the number of spots matched between the two 

images, estimates of their abundance, etc. For the example shown, 2143 spots were 

matched between the two images. The DIA module calculates the Log10 Volume Ratio, 

which is the log of a standardized abundance ratio (secondary/primary image); values of 

+0.301 represent a doubling and -0.301 a halving of spot intensity. A graphical 

representation is also provided in the upper right quadrant showing spots with 

significantly different (2 standard deviations) intensities; blue representing an increase 

and red a decrease in the secondary image compared with the primary image. For the 

example shown in Fig. A 3-3 (appendix), ~76% of spots are unchanged, whilst 11% 

show a decrease (red) and ~13% an increase in the secondary image. Another feature of 

the DIA module is manual editing of the processed data. If spot boundaries differ 

between the two images, or if spots appear in only one image (a possible artifact), the 

software alerts the user thereby allowing manual corrections to be applied. 
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Fig. 3-3 Images from a 2-D analysis showing two different samples plus the pooled 

Sample Image. 

Equal amounts (50µg) of salt up shock D (HLH300-1.96, salt up-shock, HL Cells shifted 

from BGM50-1.96 to BGM300-1.96, Cy3), salt down shock F (HL50-1.96, cells shifted from 

BGM300-1.96 to BGM50-1.96, Cy5), and Pool of 12 samples labeled with Cy2 C. Panel A 

shows the merged image for three Cy images. B, magnification of selected spot area; 

note the three different types of spot (green, red and white). 

Samples were harvested at mid-log phase of growth (6 days) from three different salt 

stressed cells (H300-1.96, HL50-1.96, HLH-1.96, and used for protein analysis (see section 

2.2.1, 2.2.2, and 3.2.4 for details). 
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3.3.3 Between-Gel Spot Matching, Determination of Protein Abundance, and 

Statistical Analysis Using the DeCyder V5.01 BVA Module. 

The Spot Map output from the DIA module was then used to spot match across all gels 

using the Batch Processor Module. Gel images from all gels were cropped using Image 

Quant V 5.2 software, and then processed by the Batch Processor, and the output fed to 

the Biological Variation Analysis (BVA) module. It is an automated process and does 

not introduce any further processing and analyzing to the spot map data. All of the gel 

images in the experiment to be matched were loaded into the processor and the number 

of spots detected entered. The processor then links each Cy3 and Cy5 spot on a gel to 

the corresponding Cy2 spot on the same gel. The output file is in xml format ready for 

use in the BVA module. 

The BVA module performs spot matching between gels and allows quantitative 

comparison of protein expression across multiple gels. The software processes the gel 

image pairs (Cy3 and Cy5), and one gel image is assigned a Master Gel Image status, 

and all other CyDye images are then matched to the Master image; in this way common 

protein spots are identified across all gels. The raw output from the BVA Module 

consists of four panels Fig A 3-4 (appendix), and data can be viewed in one of four 

tabular forms; the Spot Map Table (SP), the Match Table (MT), the Protein Table (PT), 

and the Appearance Table (AT). 

The spot Match Table was used to set up spot matching for matching and statistical 

analysis. then consulted to identify protein spots that were not found on all gels. Each of 

these inconsistencies were examined by consulting Image View. In practice, many of 

these spots arise from particles of dust in the gels. 

Spot Map Table Fig A 3-4 (appendix) was used to set up spot matching for matching 

and statistical analysis. The table lists all data related to the spot maps in the experiment 
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imported from DIA Fig A 3-4 (Appendix), including which group each gel belongs to, 

the number of spots detected on the gel and the number of spots matched to the master 

gel. The Match Table Fig A 3-5 (Appendix) was used for the processes associated with 

inter gel matching. To aid the matching algorithm, a few spots were matched manually, 

a process called land-marking, and the automated matching algorithm were carried out 

which matched all spots maps in the workspace. The Protein Table Fig A 3-6 

(Appendix) demonstrates and processes data associated with the protein identified 

across the gels. Every row of the table corresponds to one protein spot that may be 

present in several Spot Maps. The Graph View at the top right shows the average ratio 

trend of the volume of this spot in the 6 gel sets in salt shock cells experiment. The 

Appearance Table (see Fig A 3-7 Appendix) was used to show data associated with a 

single selected spot across gels. 

3.3.4 BVA Protein Table.  

From the experiment set of 6 gels (18 images), the DeCyder module BVA (Biological 

Variance Analysis) generates a Protein Table that reports a number of important 

parameters. These include a unique spot identity number, or Master Number, 

confirmation that the protein appears on all images (19, the 18 sample gel images plus 

the Prep-Gel, an indication of statistical confidence that abundance changes are 

consistent (T-test and ANOVA), and confirmation that the protein spot has been 

selected or not for sequencing Fig A 3-6 (Appendix). From the Protein Table proteins 

that showed a high ANOVA probability of differential abundance were selected 

(‘Picked’) for further analysis. The DeCyder BVA module also provides the facility to 

view any of the sample images, or any of the individual protein spots on the gels. Fig A 

3-6 (Appendix) shows two images of protein 917 on two gels where the abundance of 

this protein changes. The BVA module also provides a pseudo 3-D image of protein 
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abundance, as well as a graph from the ANOVA analysis showing how the abundance 

of this protein varies across the 12 samples Fig A 3-6 (Appendix). 

The Prep-gel was then loaded into the Amersham Robot Spot Handling Workstation 2.1 

‘Picker’, and from the Spot Pick List in the Protein Table, the corresponding proteins 

were excised from the Prep-Gel and placed into 96-well plates. The co-ordinates of each 

protein are determined from the positioning of the reference spot markers. When all 

selected protein spots had been excised, 10 µl of a Trypsin digestion medium was added 

to digest the protein; incubation was carried out for 4 hours at 37 °C. After completion, 

the samples were air dried at ambient conditions. The mass of extracted peptides were 

carried out by MALDI-TOF (The Voyager Depro from Perseptive Biosciences 

(Voyager)). The resulting peptide fingerprint was searched against the NCBInr database 

restricted to plants using program MASCOT (Modular Approach to Software 

Construction Operation and Test) software version 2.1 (http://www.matrixscience.com). 

Proteins that were not unambiguously identified by MALDI TOF were subjected to de 

novo protein sequencing methods using an electrospary ionization tandem mass 

spectrometer (ESI-MS/MS System; Applied Biosystems/MDS Sciex, API QSTAR® 

Pulsar and running MASCOT V 2.1). 

From the pH range 6-11 Immobiline gels, 38 spots were selected for sequencing. Of 

these, the identity of only 17 were established with any degree of certainty Table A 3-2 

(Appendix) From the pH range 4-7 Immobiline gels, 48 spots were selected for 

sequencing.  

3.3.5 Results.  

The DeCyder version 5.01 software threshold detection limit was set to identify 

approximately 2,500 protein spots on the 2D-gels. Further quantitative analysis revealed 

the abundance of 86 proteins that differed significantly between the salt treatments (p < 
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0.05). Of these 86 proteins, 45 were found to be up-regulated in high salt Table A 3-2 

(Appendix), and 9 were down-regulated Table A 3-3 (Appendix). The remaining 32 

spots showed consistent salt-induced changes but were unrelated to NaCl concentration 

Table A 3-4 (appendix). Twelve were found to be down regulated where cells were 

shifted from 300 to 50 mM NaCl, and further down regulated when shifted back from 

50 to 300 mM NaCl. Twenty proteins showed the opposite response; they were up 

regulated when shifted from 300 to 50 mM NaCl, and further up regulated when shifted 

back to 300 mM. 

3.3.6 Spot Picking, MS and Protein Identification. 

The use of minimal labeling procedure creates two populations (labeled and non 

labeled) for each protein in a lysate. For every protein spot on 2-DE gel, the labeled 

species will be slightly shifted from the unlabeled due to the single dye molecule that 

was added. This phenomenal is more marked for smaller than larger molecular weight 

proteins. When protein was picked using the centre of the spot detected from the CyDye 

flour fluorescent image (i.e. labeled protein), this may not correspond to the area of 

highest protein concentration. To solve this problem the total protein was visualized by 

post-staining using Sypro Orange dye and the position of spots for picking based on this 

new image. 

This will maximize the amount of protein available for MS. However it means that 

another matching analysis is needed between the master gel and the preparative gel. The 

preparative gel contains large amount of protein (380 μg in total) representing all the 

samples in the study. The gel was used to pick spots for MS analysis. All spots present 

on the preparative gel were detected using the DIA module, then was loaded into the 

BVA module and the ‘proteins of interest’ (P<0.05) from the CyDye labeled master gel 

matched to the preparative gel. Eighty six protein spots were matched to the preparative 
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gel. Of these 86 proteins, 45 were found to be up-regulated in high salt (H) Table A 3-2 

(Appendix), 9 were down regulated Table A 3-3 (Appendix). The remaining 32 spots 

showed consistent salt induced changes not related to salt shock treatments Table A 3-4 

(Appendix). 

Spots of interest were picked from preparative gels using the Amersham Ettan Spot 

Handling WorkStation 2.1. Protein spots were digested using trypsin, mixed with α-

cyano-4-hydroxy cinnamic acid (α CHCA) matrix and plated onto MALDI targets. All 

spots were analyzed by MALDI-TOF and some spots which not identified by MALDI 

were then analyzed by MS/MS. 

The MS spectra were searched using the MASCOT search engine. All MALDI and 

MS/MS (Application Program Interface, API Q star) identified proteins with MOWSE 

(molecular weight search) score >40 (P<0.05) were significant hits. 

In salt shock experiment protein identification were gained from 86 spots using MS or 

MS/MS. Many of these spots contained mixtures of proteins. Therefore, the actual 

number of proteins species identified from 86 was 133. Often several isoforms of the 

same protein were detected on the same gel. The expression of the modulated proteins 

was up-regulated, down-regulated or modulated. Modulated means that the protein was 

identified as both up and down regulated and its expression in high salt cells is not clear 

cut. Of the 86 identified proteins, 9 were down regulated, 45 were up regulated and 32 

were modulated due to salt down shock or up shock treatment. Figure A 3-1(Appendix) 

shows a MASCOT search result for protein spot ID 566 against the NCBInr (National 

Center for Biotechnology Information) Arabidopsis thaliana database. The protein was 

identified as 2-oxoglutarate dehydrogenase E2 subunit and was up regulated in high salt 

treatments. The protein has significant MALDI score of 106 and P<0.05. 
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Many of the spots identified using tandem MS turned out to be a mixture of proteins. 

Figure A 3-2 (Appendix) is the MASCOT result page of a MS/MS search. Ten proteins 

were identified from this one spot (spot ID 897) on the high salt gel. The mitochondrial 

F1 ATP synthase beta subunit has the highest score (445) therefore it is likely that this 

protein is contributing to the abundance change seen between the different salt shock 

treatments, mixed spots may potentially cause problems in determining which proteins 

are up or down regulated in abundance in different salt shock cell treatment, as it is not 

always possible to determine which protein or proteins in the mixed spot are responsible 

for the change in abundance. There some ways to get around this problem including 

identification of all the proteins present in the mixed spots followed by fractionation of 

the sample or fractionation of the gel (e.g. using narrow pH ranges) to allow for 

increased spot resolution. This will allow for accurate quantitation of individual protein 

spots. However this technique is not very practical and as yet, no one has attempted this 

approach. The problem of mixed spots has not received much attention in the literature. 

The output of the protein profiling according to the protein abundance was classified to 

three main categories, these are Up-regulated, Down-regulated, Modulated proteins. 

3.3.7 Salt Stress Up-Regulated Proteins. 

For clarity, the peptides in Table A 3-2 (Appendix) has been sorted into six functional 

groups; these are Transport, Signalling, Metabolism, Stress-Related, 

Senescence/Autophagy, and DNA/RNA binding proteins. Proteins that have not been 

unambiguously identified (MASCOT Score <40) are listed at the end of Table A 3-2 

(Appendix). 

Table A 3-2 (Appendix) presents a description of the 45 proteins that show elevated 

abundance in high salt. Each of these proteins was analyzed by MALDI-TOF mass 

spectrometry using the MASCOT (version 2.1) software for 17 of the 45 peptides, with 
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MALDI MASCOT score values ranging from 40 to 645. Of the remaining 28 

unidentified peptides, de novo protein sequencing was undertaken on 12 proteins using 

a Q Star tandem mass spectrometer and MASCOT (version 2.1) software. The criteria 

for selecting these 12 proteins for identification was based on their fold change in 

abundance and the ANOVA statistical probability (p-value) that these observed changes 

were not random events .Ideally, all of these proteins should have been sequenced, but 

this was cost-prohibitive. 

Compared with the levels at 50 mM NaCl high salt induced an increase of just a few 

percent (e. g. spot ID 1715 and 330) to nearly a 4-fold change (e. g. spot ID 586 and 

731); it is emphasized, however, that in all cases, these changes were consistent across 

four completely independent replicates. 

3.3.8 Salt Stress Down-Regulated Proteins. 

Table A 3-3 (Appendix) presents a description of the 9 proteins that showed lower 

abundance in high salt. Each of these proteins was analyzed by MALDI-TOF mass 

spectrometry using the MASCOT (version 2.1) software for 4 of the 9 peptides, with 

MALDI MASCOT score values were 80,74, 67 and 60. The remaining 5 unidentified 

peptides, de novo protein sequencing was undertaken on them using a Q Star tandem 

mass spectrometer and MASCOT (version 2.1) software. Of the 5 protein spot, 18 

proteins were identified from these mixed spot (see Section 3.3.6). Criteria for selecting 

these 5 proteins for identification was based on their fold change in abundance and the 

ANOVA statistical probability (p-value) that these observed changes were not random 

events. 

3.3.9 Salt Stress Modulated Proteins (up and down-regulated). 

Table A 3-4 (appendix) presents a description of the 32 proteins that showed either an 

increase or decrease in abundance when exposed to a salt shock, regardless of whether it 
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was an up or down shock. Each of these proteins was analyzed by MALDI-TOF mass 

spectrometry using the MASCOT (version 2.1) software. Nine of the 32 peptides were 

unambiguously identified from MALDI-TOF analysis and the remaining 23 

unidentified peptides, were subjected to de novo protein sequencing using a Q Star 

tandem mass spectrometer and MASCOT (version 2.1) software (for more details see 

Table A 3-4, Appendix).  
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3.4 Discussion. 

The aim of the work reported in this chapter was to identify proteins in Arabidopsis 

cells that may be involved in salt tolerance. To achieve this an Arabidopsis HHS 

(Habituated to High Salt) culture grows in 300 mM NaCl was used. Comparison of 

proteomic profiles were not feasible with WT cells lines because cell cultures were very 

different, even in absence of NaCl stress. Consequently, it is difficult to identify 

proteins involved in salt stress against a background of many changes. Moreover, an 

Affymatrix 8000 gene microarray experiment by our group showed over 800 changes in 

transcript occurred when WT (0 mM NaCl) cells were compared with HHS (300 mM 

NaCL). The ultimate goal was to identify protein spots in the 2-D gels that change in 

abundance in a way that correlates with salt stress. Therefore, proteins were extracted 

from salt up and salt down shocked Arabidopsis HHS cells in their mid-log phase of 

growth (6 days), and were subsequently analyzed using 2D DiGE. Several hundred 

spots were identified whose volume (abundance) changed significantly (P< 0.05) and 

reproducibly in the salt stressed cells. Of these spots, 86 were selected on statistical 

criteria for protein sequencing by MS. 

These sequenced proteins fell into three categories as follows: (1) forty-five were found 

to be up-regulated in high salt: (2) nine were down-regulated in high salt: and (3) thirty 

two showed consistent salt-induced changes on salt shock, but it was immaterial 

whether it was a salt up or down shock. Twelve of the later were found to be down 

regulated 6 days after transfer from 300 to 50 mM NaCl, and further down regulated six 

days after transfer back to 300 mM. Twenty proteins showed the opposite response; 

these were up regulated six days after transfer from 300 to 50 mM NaCl, and further up 

regulated six days after transfer back to 300 mM NaCl. These proteins probably 
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represent general stress responses that arise when ever the cells are stressed and not 

related to salt stress per se. 

3.4.1 Up-Regulated Proteins. 

The forty-five up-regulated proteins Table A 3-2 (Appendix) can be broadly classed 

according to their function. These classes were Transport (5 proteins), Signalling (6 

proteins), Stress-related (1 protein), DNA/RNA binding (4 proteins), Metabolism (10 

proteins). The identify of the remaining proteins were ambiguous with MALDI/Q star 

MASCOT scores of <40; further work will be required to determine the function of 

these proteins.  

3.4.1.1 Transport proteins.  

Of particular interest in this group of up-regulated proteins are the two voltage-

dependent anion-selective channels. Although these two proteins were identified at two 

different locations on the gel (Spot ID 917 and 979), de-novo protein sequencing by the 

Q-star MS identified the protein product arose from the same gene (At5g15090). 

According to the entries on the TAIR database, this gene encodes a 29.2 KDa 

mitochondrial membrane anion channel that is involved in oxidative stress (Sweetlove 

et al., 2002). It is unclear what this anion channel conducts, or why it responds to NaCl 

stress. One possibility is that it conducts Cl- across the mitochondrial membrane, but it 

is unlikely that Cl- influx into the mitochondria will be a useful strategy in salt tolerant 

plant cells. Another possibility is that under stress conditions, mitochondrial activity is 

impaired by salt-induced inhibition of an essential anion transport process. Thus, to 

alleviate the stress, the abundance of the inhibited anion channel is increased. 

It is well established that the steady state mitochondrial inner membrane potential for 

driving ATP biosynthesis (Δψ) is regulated at around -200 mV and controlled by cation 

influx and anion efflux transporters. It is conceivable that in HHS cells, respiration rate 
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increases dramatically and Δψ increases to high levels (> -200 mV), and to dissipate this 

high potential, the density of these anion transporters increase. Another possibility is 

that these transporters are involved in ion homeostasis in the mitochondria, not 

associated with the bioenergetics of respiration. These channels could, therefore, be 

involved in Cl- efflux from the mitochondria into cytoplasm. 

The appearance of two separate spots on the gel encoded by the gene At5g15090 

suggests the proteins were modified in some way. It is conceivable that one of the 

products has a different phosphorylation pattern, or some other post-translational 

modification. Alternatively, it is possible that the two proteins are splice variants. 

Further work will be required to resolve this. 

Another up-regulated protein of interest was spot ID 940 Table A 3-2, Appendix). The 

TAIR database reports the gene (At5g67500) encodes a 29.6 KDa mitochondrion 

membrane porin (Heazlewood et al., 2004). Porins are membrane proteins that act as a 

pore through which solute can diffuse. Unlike other membrane transport proteins, porins 

are large enough to allow passive diffusion (i.e. they act as channels which are specific 

to different types of solute). They are prevalent in the outer membrane of the 

mitochondria and gram-negative bacteria. Porins typically control the diffusion of small 

metabolites like sugars, ions, and amino acids. The term ‘nucleoporin’ refers to porins 

facilitating transport through nuclear pores in the nuclear envelope. The outer bacterial 

membrane protein F (OmpF) porin functions to regulate osmotic potential between the 

cell and its surroundings. Many factors affect OmpF porin regulation, however, two of 

the better known are the inner membrane osmosensor, EnvZ and OmpR. In the 

experiments described here, however, no osmotic stress was imposed by the salt 

treatments. 
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A protein identified as PEX14 was up-regulated in high salt stressed cells (spot ID 528, 

Table A 3-2, Appendix). According to the entries in the TAIR database, the gene 

At5g62810 encodes a 55.6 KDa protein located in the cytosol and peroxisome that is 

involved in the peroxin-peroxisomal protein import machinery. This complex 

constitutes a major peroxisome protein import pathway and is found in all tissues in 

Arabidopsis, there are some other PEXs that produce sever phenotype change like pex5-

knockdown (pex5i) and pex7-knockdown (pex7i). Pex5i and pex7i knockdown lines 

show reduced levels of germination unless grown on sucrose, implicating a dysfunction 

in fatty acids mobilization. In addition, mature pex5i knockdown lines appear to have 

accelerated levels of photorespiration as their growth in normal air (but not CO2-

enriched air) is impaired when compared with WT lines (Nito et al., 2002; Hayashi and 

Nishimura, 2006; Nito et al., 2007). An up-regulation of pex14 might suppress 

photorespiration thereby providing more carbon for cell growth. 

The question arises why is PEX14 protein up-regulated in the salt-stressed HHS cells?  

Peroxisome have three major functions in plants. They are involved in the mobilization 

of lipid reserves by β-oxidation during germination. They also play a central role in the 

conversion of glycollate to glycine during photorespiration. Finally, peroxisomes are the 

site of many de-toxifying oxidation reaction in plants; for example alcohol is reported to 

be metabolized in the peroxisomes. The resolution of this question will require further 

investigation. 

3.4.1.2 Signalling Proteins.  

There were 6 up-regulated proteins that were assigned to the signalling class. Two of 

these were identified as arising from the same gene (At1g 56340 spot ID 740 and 741). 

Both of them had high scores (398 MALDI MOWSE score and 371 Q-star MOWSE 

score for spots 740 and 741 respectively). According to the TAIR database, this gene 
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encodes a 48.5 KDa mitochondrial membrane protein that is involved in responses to 

oxidative stress (Heazlewood et al., 2004). The At1g 56340 gene encodes Calreticulin 

(CRT 1) protein; calreticulin 1 is a high-capacity calcium-binding protein which is 

present in most tissues and located at the periphery of the endoplasmic (ER) and 

sarcoplasmic reticulum (SR) membranes. It probably plays a role in the storage of 

calcium in the lumen of the ER and SR. Calreticulin is a protein of about 400 amino 

acid residues consisting of three domains, 180 amino acid residue (N-domain): the 

central domain of ~70 residues (p-domains); that binds calcium with a low-capacity, but 

a high-affinity: the C-terminal domain which is rich in acidic residues and lysine and 

binds calcium with a high-capacity but a low-affinity. 

Another up-regulated protein is encoded by a 25.3 KDa SNF7 family protein (At2g 

06530). This family consists of a group of SNF-7 homologues involved in protein 

sorting and transport from the endosome to the vacuole/lysosome in eukaryotic cells. 

3.4.1.3 Stress Proteins. 

One major stress protein (At1g 02920) was up-regulated in high salt with a MASCOT 

identity score of 107 from MALDI-MS; spot ID 1028. According to the entries on the 

TAIR database, this gene encodes a 23.6 KDa cytoplasmic Glutathione S-transferase 

protein belonging to the phi class of GSTs. It has been reported to be involved in toxin 

catabolism (Wagner et al., 2002), but it is unclear why its abundance increases in 

response to salt stress. 

3.4.1.4 Senescence/Autophagy Proteins. 

The product of gene At4g11320 was up-regulated in high salt (MASCOT identity score 

from Q-star of 486, spot ID number 590). According to the entries on the TAIR 

database this gene encodes a 40.7 KDa endomembrane protein. The main components 

of the endomembrane system are endoplasmic reticulum, Golgi bodies, vesicles, cell 
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membrane and nuclear envelope. Members of the endomembrane system pass materials 

through the system and then to vesicles (vesicle trafficking). It is involved in the 

hydrolysis of cycteine linkages in oligopeptides or polypeptides (Tournaire et al., 1996).  

3.4.2 Down-Regulated Proteins.  

3.4.2.1 GST proteins (stress proteins). 

Surprisingly the same gene product (At1g02920), which was up-regulated (Spot ID 

1028; Table A 3-2 (appendix), was down-regulated (spot ID 1918; Table A 3-3 

(appendix) for more details see Section 3.4.1.3. Also spot ID 1945 according to the 

entries on the TAIR database is a 23.4 KDa cytoplasmic Glutathione S- transferase 

protein belonging to the phi class of GST. It is involved in toxin catabolism (Frova, 

2003). Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins that 

constitute a large gene family. In some plant species this gene family is comprised of 

25–60 members, which can be grouped into six classes on the basis of sequence 

identity, gene organization, and active site residues in the protein. The Phi and Tau 

classes are the most represented and are plant specific, while Zeta and Theta GSTs are 

found also in animals. Despite pronounced sequence and functional diversification, 

GSTs have maintained a highly conserved three-dimensional structure through 

evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as 

well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative 

damage, and endogenous metabolism. 

3.4.2.2 Ambiguous Ferritin proteins. 

Two different spot ID (1939 and 1972; MASCOT score 74 and 67 respectively) were 

reported to encode Ferritin proteins. These proteins are encoded by genes At3g56090 

and At5g01600; they are 28.8 and 28.2 KDa proteins respectively and located in 

chloroplast. They are involved in binding up to 4500 iron atoms, and are expressed in 
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the leaf, flower and root, but not in the seed (Harrison and Arosio, 1996; Petit et al., 

2001). 

3.4.3 Modulated (Down & up-regulated) proteins. 

3.4.3.1 Transport proteins. 

An interesting vacuolar H+-ATPase subunit B protein had come up in spot ID 807 (gene 

At1g76030). According to the entries on the TAIR database, this gene encodes a 54.1 

KDa located in cytoplasm, hydrogen-transporting two-sector ATPase complex and 

involved in ATP biosynthesis, energy coupled proton transport, hydrogen transport and 

glucose mediated signalling (Cho et al., 2006). 

Also a porin family protein (spot ID 1519, gene At3g20000) was identified. According 

to entries in the TAIR database, this gene encodes a 34.3 KDa protein located in the 

mitochondrial inner and outer membranes and involved in protein targeting to 

mitochondrion (Lister et al., 2004). 

3.4.3.2 Stress proteins. 

 Three interesting proteins encoded Heat Shock Protein were identified from the same 

spot ID (567). The genes were At4g37910, At5g09590 and At1g80030. According to 

entries in the TAIR database, these genes encode a 73.1, 72.99 and 53.8 KDa protein 

respectively. They are located in mitochondrial and thylakoid membrane and involved 

in response to heat stress and virus infection (Sung et al., 2001). 

A SHEPHERD (At4g24190) protein was also identified (spot ID 193). According to 

entries in the TAIR database, this gene encodes a 94.2 KDa protein, located in the 

endoplasmic reticulum and mitochondrion, and is involved in response to cold, protein 

folding and secretion, and regulation of meristem development (Klein et al., 2006).  

One way to take this work forward would be to use a genetic approach. There are now 

several collections available of Arabidopsis knockout lines where individual genes have 
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been deleted. It would be interesting to procure knockout lines for carrying deletions in 

some of the genes identified from proteomics studies in this chapter and to assess their 

phenotypes. Also, transgenic lines could be made where some of the sequences 

identified are over expressed in a wild type background. Together these approaches 

should help to assess the function of some of these sequences. 
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4 Chapter 4: Comparison of Salt Tolerant and Salt 

Sensitive Barley Lines. 

4.1 Introduction. 

Barley (Hordeum vulgare L.) is a small grain cereal belonging to the Poaceae family 

(alternative name, Gramineae) and to the Triticeae (alt. Hordeae) tribe. Barley has many 

different varieties. The most common is Hordeum vulgare, which is a six-rowed type of 

barley that has a spike notched on opposite sides with three spikelets on each notch. At 

each notch there is a flower or floret that later develops into a kernel. Hordeum 

distichum is a two-rowed type of barley that has central florets producing kernels and it 

has lateral florets that are sterile. Lastly there is Hordeum irregulare which has fertile 

central florets and different arrangements of sterile and fertile lateral florets. This is the 

least cultivated species of the three main forms (Berrie, 1977). Barley is a major world 

crop and is the most important field crop after rice, wheat and maize (Bengtsson, 1992). 

Barley is an annual grass that has two growing seasons, winter and spring. It does best 

in the spring in a temperate zone with a 90 day growing season, it can also be found 

growing in sub-arctic regions, like in Alaska or in Norway, with very short growing 

seasons (Berrie, 1977). Barley is grown and cultivated widely and extensively in 

Mediterranean areas, Europe, Ethiopia, Russia, China, India and North America 

(Harlan, 1995). In Great Britain, barley has been cultivated on a large area of land for 

considerable period of time and along with wheat still represents one of the major crops. 

It has been claimed that barley originated from wild barley (Hordeum spontaneum C. 

Koch), that has its centre of origin in the Fertile Crescent of the middle East (Zohary, 

1969), with scattered stands over a much wider area from west of Tunisia to east of 

Afghanistan (Clarke, 1967; Harlan and Zohary, 1966). Barley is known to be one of the 
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most salt-tolerant crops and can grow in soils with elevated salt contents (Maas and 

Hoffman, 1977; Shannon, 1984; Gorham, 1992b), there is a high level of variability in 

tolerance among cultivars (Ayers, 1953; Donovan and Day, 1969; Schaller et al., 1981; 

Srivastava and Jana, 1984). H. vulgare is recognized as being more salt-tolerant than 

wheat (Bole and Wells, 1979; Heakal et al., 1981; Rawson et al., 1988; Richard et al., 

1987). However, the search for reliable salt-tolerant germplasm requires not only quick 

and accurate methods of screening (Shannon, 1984), but also a correct evaluation of its 

salt-tolerance. 

4.1.1 The Barley Genotype Lines Used in This Study. 

Two different genotypes of Barley (Hordeum vulgare L.) were used in this study (Zhou 

1 and Zhou 85). These were donated by Pro. Guoping Zhang, Agronomy Department, 

Huajia Chi Campus, Zhejiang University, Hangzhou 310029, China. These lines were 

identified from a salt-tolerance screen of over 100 varieties that are commercially grown 

in China and out of these, 16 barley genotypes with different salt tolerance was 

investigated by Huang and co-workers (Huang et al., 2006). These two genotypes were 

used to investigate the effect of salt stress on photosynthesis, growth, and ion content 

(see Fig. 4.1). Hydroponic experiments were carried out to assess how the tolerant 

(Zhou 1) and salt-sensitive (Zhou 85) lines respond to salt treatments (0, 50, 100, 150 

and 200 mM NaCl). When seedlings reached 19 days post germination they were 

stressed with salt. Seven days (26 days old) after the application of salt, photosynthesis 

rates were measured in fully expanded fourth leaves using Infra Red Gas Analyzers 

(IRGAs) see section 4.2.4.1 and basic growth parameters were assessed. At this time, 

estimates were also made of the water status of the shoot using the pressure chamber 

method (P.M.S. Instruments, Corvallis, Oregon, USA; (Pardossi et al., 1991), and 

relative water content. At harvest, various measurements were also made on grain yield. 
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4.2 Materials and Methods.  

4.2.1 Plant Material.  

Two hundred Seeds of each barley line were germinated for 6 days in the dark on moist 

filter paper. One hundred and twenty seedlings were selected for uniformity and then 

transplanted into aerated hydroponic culture (¼ Hoagland solutions; see Appendix 

Table A 4-1). The solution pH was adjusted to 5.8 with KOH or HCl and was renewed 

weekly until the seedling reached the 4th leaf stage, and then replaced every three days. 

Plants were grown in 2 liter capacity ceramic pots filled with 1.8 liter of.¼ strength 

Hoagland solutions. The medium was aerated (~100 ml/min) through small plastic tubes 

submerged in each pot that connected to an air pump. The plants were grown in 

controlled environment growth chambers with 14 hr light and 10 hr dark period, with 

light intensity of ~180 μmol m−2 s−1 at the bench surface, and 22/18 °C day/night 

temperature. The relative humidity was held between 60 - 70%. Twenty-six days post 

germination photosynthesis rates were measured by collecting CO2 response curves and 

light response curves (see sections 4.2.4.1.1 and 4.2.4.1.2). On day 37 when floral spike 

emergence completed, shoot water potential (ψHO2) was determined with a pressure 

chamber (P.M.S. Instruments, Corvallis, Oregon, USA) on the fourth leaf. Roots were 

briefly washed three times in ice cold 10 mM MgCl2, and then shoot and root were 

separated and basic growth parameters were measured. These included shoot and root 

length, and shoot and root fresh and dry weights (± 0.1 mg). In addition, the ion content 

of samples was measured by Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES) using an Optima 4300 DV (Perkin Elmer Instruments, 

Beaconsfield, Bucks, UK) see Section 4.2.3. 



 

  114

4.2.2 Experimental Design. 

The experiment was laid out as a factorial completely randomized design with four 

replications, 5 Salt treatments and 2 barley genotypes. Pots were re-randomized weekly 

to ensure even growth. 
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Fig. 4-1 The Effect of Salinity on the Growth of Sixteen Commercial Barley Lines. 

The effect of NaCl on the growth of sixteen Chinese barley lines. Plants were 

germinated in Hoagland’s solution and after 6 days transferred to hydroponics (¼ 

Hoagland’s) containing 0 mM or 300 mM NaCl. By day 18 no significant difference 

was found between the growths of any of the lines at 0 mM NaCl (data not presented), 

but between genotype differences were apparent when plants were grown in 300 mM 

NaCl (photograph courtesy of Pro. G. Zhang). Line Zhou 1 (top panel, far right, Z 1, 8) 

was selected as a salt tolerant line and Zhou 85 (lower panel, far right, Z 85, 16) was 

selected as a salt-sensitive line (Huang et al., 2006). 

Z1

Z85

1 2 43 51 

10 

6 7 

9 11 12 13 14 15 
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4.2.3 Preparation Barley Material for ICP-OES Analysis. 

Barley shoot and root were dried in the oven for 7 days at 75oC and ground to a fine 

powder in liquid nitrogen using a pestle and mortar. The powder was transferred to a 

pre-weighed 15ml sterile falcon tube, and then reweighed and the dry weight of the 

samples calculated. Five ml of 10% (v/v) analytical reagent grade nitric acid was added 

to each tube and left to digest for 7 days on a shaking incubator. Ion content (Na, Fe, K, 

S, P, B, Mn, Mg and Ca) was measured using Perkin Elmer Inductively Coupled 

Plasma-Optical Emission Spectrometer (ICP-OES) model optima 4300 DV (Perkin 

Elmer, Warrington, UK) see Chapter 2 Section 2.2.3. 

4.2.4 Photosynthesis. 

Photosynthesis and transpiration are two basic processes underpinning crop 

productivity. Accurate estimations of photosynthesis rate and water consumption is 

important not only in directing irrigation and improving water use efficiency of field 

crops, but also in studying the interactions between plants and the atmosphere. 

Photosynthesis has been intensively studied over the past few decades at all levels, from 

the chloroplast to the canopy level. Salt tolerance in many plant species is reported to be 

associated with the ability to exclude Na+ so that high Na+ concentrations do not occur 

in leaves, particularly in the leaf blade (Läuchli, 1984; Munns, 2005). High leaf Na+ 

concentrations can cause premature leaf senescence and loss of photosynthetic activity 

(James et al., 2002), which reduces the rate of carbon assimilation and ultimately grain 

yield (Husain et al., 2003). 

4.2.4.1 Photosynthesis Measurements. 

Photosynthesis rates were determined using Infra Red Gas Analyzers (IRGA), LCpro+ 

portable photosynthesis system (LCpro+, ADC Bioscientific Ltd., Hoddeston, Herts., 

UK) fitted with a rectangular narrow leaf chamber (window area of 5.8 cm2). The 



 

  117

LCpro+ instruments are fully programmable IRGAs that control ambient temperature, 

incident light levels, humidity, and CO2 concentration. These features allow automated 

measurement of CO2 response and light response curves (see sections 4.2.4.1.1 and 

4.2.4.1.2). A portion of the fully expanded fourth leaf was enclosed in the LCpro+ 

ensuring the leaf completely filled the chamber area. The chamber was illuminated with 

the adjustable LCpro+ LED unit, and chamber CO2 (i.e. Cair or Ca), chamber humidity, 

and temperature (i.e. Tch) were controlled by the LCpro+ console. In all cases, once 

sealed in the chamber, each leaf sample was subjected to a CO2-response experiment 

followed immediately by a light response experiment. This was possible using the 

programmable features of the LCpro+ instrument. The flow rate of air through the 

chamber was adjusted to 200 μmol s-1 (~ 4.5 ml s-1); the chamber area was 5.8 cm2, and 

the boundary layer resistance set to 0.3 m2 s mol-1. Leaf temperature was calculated 

using the protocols in the LCpro+ hand book. 

Three LCpro+ instruments were used simultaneously to provide replication (for more 

details see sections 4.2.4.1.1 and 4.2.4.1.2). 

4.2.4.1.1 CO2 Response Curve. 

Carbon uptake is reduced by environmental stresses that lower transpiration rates, 

triggered by lowering leaf water potential (Kramer and Boyer, 1995). This is 

particularly so for water stress (Lawlor, 1995) and also for salinity stress (Munns, 

1993), which firstly induce the so-called osmotic or water deficit effect of salinity, and 

thus impairs the ability of plants to take up water. There have been many recent 

advances in our understanding of the mechanisms by which photosynthesis responds to 

environmental factors. However, conflicts still arise in the debate on the relative 

importance of CO2 diffusive (Cornic, 2000) and metabolic (Tezara et al., 1999) factors 
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to the overall control of photosynthesis rates even under mild environmental stress 

(Flexas and Medrano, 2002). 

A rapid rate of CO2 assimilation (A) requires correspondingly large amounts of many 

components of the chloroplasts, particularly the light harvesting chlorophyll–protein 

complexes (LHCP), electron transport and NADP+-reducing (nicotinamide adenine 

dinucleotide phosphate) components of thylakoids, and the CO2 assimilating enzyme 

ribulose 1-5 bisphosphate carboxylase-oxygenase (Rubisco), plus other enzymes of the 

C3 cycle for CO2 assimilation in the stroma. 

Only a limited amount of information can be derived directly from an A/Ca curve. But 

Farquhar et al., 1980 and Farquhar and Sharkey, 1982 have shown how to extract useful 

photosynthetic parameters by plotting assimilation rate (A) against the CO2 

concentration inside the leaf (Ci). A/Ci plots can be constructed from A/Ca plots using 

simple calculations (Farquhar et al., 1980). Simply put, the A/Ci plot of a sample 

represents the CO2 response when stomatal and boundary layer resistance to CO2 

diffusion have been removed, and thus assimilation rate is limited by the kinetics of the 

carboxylation processes only; the small ‘mesophyll’ resistance that impairs CO2 

diffusion into the chloroplast from the intra cellular spaces is ignored. At low Ci the 

A/Ci curve is linear and the slope is an estimate of the carboxylation efficiency (vrubisco), 

and the intercept estimates photorespiration (Farquhar et al. 1980; Fig. 4-3).  

A perpendicular extrapolation through the A/Ca and A/Ci plots at ambient CO2 levels 

(360 ppmv), therefore, shows the relative impairment that the stomata and boundary 

layer resistance impose on assimilation rate. Farquhar and co-workers (Farquhar and 

Sharkey, 1982) have shown the simple parameter L can be used to estimate the 

importance of stomatal resistance on assimilation (Fig. 4-3). 
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Fig. 4-2 Profile of Leaf Chamber Conditions Used to Collect CO2- Response 

Curves. 

(●), chamber CO2 (Ca) controlled by the LCpro+ consol. Ca levels increased 

incrementally every 15 minutes as follows (0, 10, 20, 50, ppmv). After this period, the 

Ca levels were increased every 7 minutes (100, 200, 300, 400, 500, 600, 700 and 1000 

ppmv). 

(●), chamber humidity controlled by the LCpro+ consol and was set to10 mmol/mol. 

(●), chamber temperature controlled by the LCpro+ consol and was set to 25°C. 

(●), leaf temperature controlled by the LCpro+ consol and was ~27-28°C. 

See Section 4.2.4.1.1 for details. Readings were taken every one minute. 

During the course of these experiments light levels were maintained at 487 μmol 

photons m-2 s-1 (PPFD)using the LCpro+ light emitting diode unit. 
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Fig. 4-3 Carbon Dioxide Response Curve (CRC) of a Barley Leaf. 

Leaves were carefully sealed in the LCpro+ Narrow Leaf Chamber taking care to avoid 

damage; leaves were chosen that completely filled the chamber area (5.8 cm2). Samples 

were dark adapted in conditioned air (0 ppmv CO2, 10 mmol/mol humidity, and 26°C) 

for 10 minutes to adapt prior to running the program shown in Fig. 4-2. 

Blue solid line () is the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () is the relationship between net 

photosynthesis (An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco 

(carboxylation efficiency) from initial slope of the A/Ci curve. Red vertical dashed line 

(¦) ambient CO2 (360 ppmv). Extrapolation of the initial slope of the A/Ci curve to the 

abscissa gives the total respiration rate (photorespiration, Rl, and dark respiration, Rd). 

The chamber light level was 487 μmol photons m-2 s-1 (PPFD). L can be used to 

estimate the importance of stomatal resistance on assimilation rate.Values of L that tend 

to zero indicate small stomatal limitation, whilst values that tend to1 suggest large 

stomatal control; L = (a–b)/a (see section 4.2.4.1.1 for details). Raw data for both barley 

lines (Z1 and Z85) at each level of NaCl (0, 50, 100, 150, and 200 mM) are presented in 

appendix Figs. A 4-1, 2, 3, 4,and 5). The data above were collected from a Z 1 barley 

leaf growing in 0 mM NaCl. 
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In these experiments the LCpro+ instruments were programmed to collect CO2 

responses using the following protocols. An area of leaf blade from the 4th emergent leaf 

(fully expanded by day 26) was sealed in the leaf chamber and the data logger started. 

The sample was illuminated at 487 μmol photons m-2 s-1 (PPFD) and exposed to 0 ppmv 

Ca, 10 mmol/mol humidity for 15 minutes. After this period, the leaf samples had 

attained steady state and the Ca levels increased incrementally every 15 minutes as 

follows (0, 10, 20, 50, ppmv). After this period, the Ca levels were increased every 7 

minutes (100, 200, 300, 400, 500, 600, 700 and 1000 ppmv). A profile of the chamber 

conditions is presented in (Fig. 4-2). 

Values of L that tend to zero indicate small stomatal limitation, whilst values that tend 

to1 suggest large stomatal control. 

4.2.4.1.2 Light Response Curve. 

Photosynthesis or Assimilation rates (A) can be measured as a function of incident light 

intensity (I or Photosynthetic Photon Flux Density, PPFD). To generate a light response 

curve (LRC; A versus I), the LCpro+ was programmed to collect data using the 

following protocols. Samples were placed in the dark and Ca adjusted to ambient levels 

(360 ppmv); chamber humidity was set to 10 mmol/mol, and chamber temperature to 25 

°C (measured Tch was 27-28 °C). The LCpro+ data logger was started and the samples 

left for 10 minutes to dark adapt. After this period the incident light intensity (I) was 

increased sequentially to provide 10 minutes illumination at each of the following levels 

(0, 9, 17, 44, 87, 174, 261, 358, 435, 522, 696 and 870 μmol m-2 s-1, PPFD). A profile of 

the chamber conditions used for collect LRC is shown in (Fig. 4-4). Figure 4-5 present a 

typical light response curve from barley. From this curve several important 

photosynthetic parameters can be extracted, such as the apparent quantum yield of 

photosynthesis (α), the maximum photosynthesis rate (Amax), the dark respiration rate 

(Rd), and the convexity term (θ). Linear hyperbolic relationships between A and I are 

often assumed (Rabinowich, 1951). Alpha (α) is estimated by forcing a linear regression 
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line through the first few low-light data points (Fig. 4-5). Amax is also estimated by 

forcing a line parallel to the I axis through a few data points considered to lie on the 

asymptote (Fig. 4-5). Estimation of both α and Amax by these methods can incur large 

errors as only a few data points are used. The initial curve may not be truly linear, 

values of A and I associated with these data points are small (and hence errors of 

measurement proportionally large. Therefore, an alternative approach that is often used 

relies on the transformation of the linear hyperbolic data to a linear function (e.g. plots 

of I/A versus I; α = 1/intercept, Amax = 1/gradient). Using this method it is believed that 

errors are reduced as all of the data points are used for estimating α and Amax. 
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Fig. 4-4 Profile of Leaf Chamber Conditions Used to Collect Light Response 

Curves. 

Leaves were carefully sealed in the LCpro+ Narrow Leaf Chamber taking care to avoid 

damage; leaves were chosen that completely filled the chamber area (5.8 cm2). Samples 

were first exposed to a CO2-response regime (see Fig 4-2 and 4-3). Before being 

subjected to the light response regime here (Fig 4-5). 

(●), chamber incident light intensity (Photosynthetic Photon Flux Density, PPFD). It 

was increased sequentially to provide 10 minutes illumination at each of the following 

levels (0, 9, 17, 44, 87, 174, 261, 358, 435, 522, 696 and 870 μmol m-2 s-1, PPFD). 

(●), chamber humidity controlled by the LCpro+ consol was set to10 mmol/mol. 

(●), chamber temperature controlled by the LCpro+ consol and was set to 25°C. 

(●), leaf temperature was measured by the LCpro+ consol. 

(●), chamber air CO2 concentration (Ca) was set at ambient (360 ppmv). 

See Section 4.2.4.1.2 for details. Readings were taken every one minute. Leaf 

temperature was calculated using the protocols in the LCpro+ hand book. 
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Fig. 4-5 Light Response Curve of Barley Leaf. 

Leaves were carefully sealed in the LCpro+ Narrow Leaf Chamber taking care to avoid 

damage; leaves were chosen that completely filled the chamber area (5.8 cm2). Samples 

were first exposed to a CO2-response regime (see Fig 4-2 and 4-3). Before being 

subjected to the light response regime here. 

Carbon dioxide assimilation rate (A) versus incident Light Intensity (PPFD). A typical 

response is shown from barley line (Zhou 85), actual data points are shown as sold 

circles (●). Grey line (), fitted Blackman response. Blue line (), fitted hyperbolic 

response (Rabinowich 1951). Black line (), fitted non-linear quadratic response 

(Thornley 1976). The fitted lines were obtained by an iterative method (Excel Solver) 

for minimization of errors (Akhkha et al., 2001). Estimations of Amax from the three 

models are color coded. The quantum efficiency, α (---); was estimated from the non-

linear model. For full details, see Sections 4.2.4.1.2 and 4.2.4.2. 
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4.2.4.2 Modeling Photosynthetic Light Response. 

Several models have been proposed to describe the photosynthesis light response curve 

(LRC). In 1905 Blackman derived one of the earliest models which describes a response 

of photosynthesis which increases linearly with irradiance (light limited) until the CO2 

supply becomes limiting (equation I). This model is inadequate, because the LRC shows 

no sharp discontinuity between the light limited and CO2 limited regions (Fig. 4-5). 

Also, the true value of Amax tends to be under-estimated. For these reasons, this simple 

model is now rarely used. 

sI
IAA max=   when I < Is, and maxAA =  when I > Is.   (I) 

A is the net assimilation rate, I is the light intensity, Amax is the maximum assimilation 

rate under the given conditions, and Is is the light saturation constant (Blackman, 1905). 

 

4.2.4.2.1 Rectangular Hyperbola Model (Linear). 

One popular version of this model was proposed by (Rabinowich, 1951) and describes 

the relationship between photosynthesis and light in term of a rectangular hyperbola 

(Fig. 4-5). This model is a linear hyperbolic model and is related to the Michaelis-

Menten formulation between the rate of an enzyme-catalyzed reaction (photosynthesis) 

and the concentration of its substrate (light). Mainly it defines two parameters, Amax the 

maximum (gross or net) photosynthesis rate, and the quantum efficiency (α) as 

illustrated in Equation (II). 

IA
IAA
α

α
+

=
max

max         (II) 
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Where A is the net assimilation rate, I is the light intensity, Amax is the maximum 

assimilation rate under the given conditions, α is the quantum efficiency (initial slope) 

of the A vs. I plot (Rabinowich, 1951). Figure 4-5 present a best-fit Rabinowich model 

to observed data from barley. Clearly the model does not describe well the data in this 

case; α is underestimated, Amax is over-estimated, and generally the curve 

underestimates the observed assimilation rates (Chartier, 1970; Thornley, 1976). 

4.2.4.2.2 Non Linear Model. 

This model was developed by Thornley (1976) who realized that the LRC was better 

described using a quadratic model with three parameters, Agmax, α and θ see equation 

(III). 

( ) ( ) 2
maxmax0 AAIAIA θαα ++−=      (III) 

Where A is the gross assimilation rate, and θ  is the convexity term. The terms I, Amax, 

and α; have the same meaning as equation (II). The Convexity term controls the 

sharpness of transition between the initial slope and the asymptote of the A vs. I plot 

(Fig. 4-5). When θ is 0 equation (I) degenerates into equation (II), when θ is 1 equation 

(II) can be simplified to equation (I). 

This model combines a simple description of the biochemical reactions in the 

chloroplasts. (Marshall and Biscoe, 1980) have extended this model to include estimates 

of dark respiration and net photosynthesis assimilation (An) rates.  
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4.2.5 Assessment of Development. 

Sixteen plants of each line (Zhou 1 and Zhou 85) were placed in 1 liter pots containing 

potting compost and thoroughly watered. The pots were then placed in a glasshouse 

(22°C/18°C day/night temperature) and supplemented with artificial light to provide a 

14/10 light and dark respectively of 180 to 250 μmol m-2 s-1 PPFD. Plants were watered 

regularly to ensure 1 cm of standing water in the drip trays. The developmental stage of 

each individual plant was assessed to the Zadok’s Scale (see Fig. A 4-7 and Table A 4-

3). 

4.2.6 Assessment of Ppd-H1 Flowering Locus. 

4.2.6.1 Isolating of Zhou 1 and Zhou 85 Genomic DNA for PCR Analysis. 

A modified protocol for the preparation of plant genomic DNA (gDNA) for PCR 

analysis was used (Edwards et al., 1991). The top two-thirds of a single second 

emergent leaves of 14 day old barley seedling (leaves were cut ~100 mm from the base, 

and approximately 170 mm in length and ~13 mm in width) was harvested and 

grounded to a fine powder under liquid nitrogen using a mortal and pestle. The powder 

was then transferred into 1.5 ml Eppendorf tube and 400 μl of extraction buffer (200 

mM Tris HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) were added and the 

sample vortexed for 5 seconds. The extracts were then centrifuged at 12,000 g for 30 

sec and 300 μl of the supernatant transferred to a fresh Eppendorf tube. The supernatant 

was mixed with 300 μl isopropanol and left at room temperature for 2 minutes. 

Following this, the sample was then centrifuged at 12,000 g for 8 minutes, rinsed in 

75% ice cold ethanol, and the pellet air dried before dissolving in 100 μl 1xTE buffer 

(10 mM Tris-HCl pH 8.0, 1 mM EDTA).  
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The genomic PCR reaction contained 15 μl 2x ReddyMix (ABgene, AB-0575-DC-LD), 

4 μl template genomic DNA from Zhou 1 or Zhou 85, 2 μl (50 pmol) of either the 

control (CF and CR) or test (TF and CR) primers (Table 4-1), and 7 μl dH2O. 

Amplification was preformed in 30 μl volumes using PCR, MJ Research DYAD, and 

the conditions were 94°C for 2 min followed by 30 cycles of 94 °C for 1 min, 50°C for 

40 sec and 72°C for 90 sec. The resulting PCR products were visualized on 1% agarose 

gels stained with 1 μl (10 μg/ml) ethidium bromide. The gels (11 cm width x 6 cm 

height x 1 cm thick) were run in TBE buffer (45 mM Tris-borate, 1 mM EDTA) at RT 

using Embi Tec, RunOne Electrophoresis cell (www/embitec.com). DNA visualized 

under UV illumination using Bio RAD Gel Doc 2000. The 1 K ladder from Promega 

was used as marker (Fig. 4-26) (Sambrook and Russell, 2001). 
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Table 4-1 Primers Used to Amplify SNP 22 of the Ppd-H1 Flowering Gene. 

Primer Sequence GC Content Tm MW Length 
bp 

HvCF GAT GAA CAT GAA ACG GG 0.47 50.4 5293 17 

HvCR TAT AGC TAG GTG CGT GGC G 0.58 58.8 5900 19 

HvTF ATG CGA ATG GTG GAT CGG C 0.58 58.8 5909 19 

 

Note: Primers and PCR reactions were designed by Turner et al, 2005. 
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4.3 Results. 

4.3.1 Growth Parameters. 

4.3.1.1 Shoot and Root length. 

The primary shoot length at day 37 of both barley lines, Zhou 1 and Zhou 85, decreased 

with increasing NaCl concentration in the media (Fig. 4-7a). The primary shoot length 

was 50% shorter in the Zhou 85 line even at 0 mM NaCl (see Figures 4-6 and 4-7a). 

Similarly root length decreased from ~55 cm to ~40 cm in both barley lines with 

increasing salt (from 0 to 200 mM NaCl) in the media, but at all concentrations the roots 

of Zhou 85 were longer than those of Zhou 1 (Fig. 4-7b). 

4.3.1.2 Shoot and Root Fresh Weight. 

Shoot fresh weight significantly decreased from ~13 g to ~4 g and also root fresh weight 

was declined from ~5.5 g to ~1.5 g in both Zhou 85 and Zhou 1 with increasing salt 

concentration (from 0 to 200 mM NaCl) as shown in Figs. 4-6 and 4-8ab. However, no 

significant changes between the two lines were observed. 

4.3.1.3 Shoot and Root Dry Weight. 

Shoot and root dry weights for both lines declined from ~2.2 g to ~0.5 g in Zhou 1 and 

from ~1.2 g to ~0.5 g in Zhou 85 with increasing salt concentration NaCl (from 0 to 200 

mM NaCl) in growth media (see Fig. 4-9ab). The shoot dry weight of line Zhou 1 was 

significantly greater than that of Zhou 85 at 0 and 50 mM NaCl confirming the 

observations in Figs. 4-6 and 4-9a. 

4.3.1.4 Number of Tillers per Plant. 

In all treatments (100, 150, 200 mM NaCl) Zhou 85 produced more tillers than Zhou 1, 

but the number of tillers was decreased from ~3.5 to ~2 tillers for Zhou 85 and from 

~2.75 to ~1 for Zhou 1 with increasing salt concentration (from 0 to 200 mM NaCl) (see 

Fig. 4-10). 
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Fig. 4-6 Zhou 1 and Zhou 85 Barley Lines Exposed to NaCl. 

Plants were germinated and grown for 19 days in ¼- strength Hoagland’s solution and 

then transferred into media containing NaCl (0, 50, 100, 150, and 200 mM NaCl). The 

plants shown are 37 days old. 

Top panel (a), shoot growth. Bottom panel (b) root growth. In all pots, Zhou 85 is on the 

left and Zhou 1 on the right.  
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Fig. 4-6 Zhou 1 and Zhou 85 Barley Lines Exposed to NaCl. 
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Fig. 4-7 The Effects of Salt Treatments on Primary Shoot and Root Length of Two 

Barley Lines (Zhou 1 and Zhou 85). 

Top panel, shoot length (a); bottom panel, root length (b). , Zhou 1;, Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 37 days after germination (18 days after salt treatment). See Section 4.2.1 
for experimental details. Two factor analysis of variance (linear model) was performed 
on the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means. 
Asterisks identify significant differences (p<0.05) between Zhou 1 and Zhou 85 means 
at each given salt concentration. 
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Fig. 4-8 The Effects of Salt Treatments on Shoot and Root Fresh Weight of Two 

Barley Lines (Zhou 1 and Zhou 85). 

Top panel, shoot fresh weight (a); bottom panel, root fresh weight (b). , Zhou 1; , 
Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 37 days after germination (18 days after salt treatment). See section 4.2.1 for 
experimental details. Two factor analysis of variance (linear model) was performed on 
the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means. 
Asterisks identify significant differences (p<0.05) between Zhou 1 and Zhou 85 means 
at each given salt concentration. 
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Fig. 4-9 The Effects of Salt Treatments on Shoot and Root Dry Weight of Two 

Barley Lines (Zhou 1 and Zhou 85). 

Top panel, shoot dry weight (a); bottom panel, root dry weight (b). , Zhou 1; , 
Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 37 days after germination (18 days after salt treatment). See section 4.2.1 for 
experimental details. Two factor analysis of variance (linear model) was performed on 
the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means. 
Asterisks identify significant differences (p<0.05) between Zhou 1 and Zhou 85 means 
at each given salt concentration. 
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Fig. 4-10 The Effects of Salt Treatments on Number of Tillers of Two Barley 

Lines(Zhou 1 and Zhou 85). 

 , Zhou 1; , Zhou 85. 

Each data point presents the mean and standard error of four replicates for the number 
of tillers. Measurements were made 37 days after germination (18 days after salt 
treatment). See section 4.2.1 for experimental details. For the number of floral spikes 
per plant, measurements were made at harvest (day 70). Two factor analysis of variance 
(linear model) was performed on the data with Bonferroni pair-wise tests between 
treatment means. Different Roman characters signify significant differences (p<0.05) 
between Zhou 1 treatment means; Greek characters, significant difference (p<0.05) for 
Zhou 85 treatment means.  
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4.3.2 Grain Yield. 

4.3.2.1 Spikes and Seeds per Plant.   

Zhou 85 has significantly fewer spike/plant at 100, 150 and 200mM NaCl. For both 

lines there was a salt-induced decrease in number of spikes per plant (see Fig. 4-11a). 

The number of seeds per plant was always greater for Zhou 1 regardless of salt 

concentration (Fig. 4-11b). 

4.3.2.2 Grain Yield and % Grain Yield. 

Zhou 85 showed a 40% lower grain yield than Zhou 1 at 0 mM NaCl (Fig. 4-12a). 

Increased salinity severely reduced grain yield of both lines but Zhou 85 failed to 

produce any significant yield above 100 mM NaCl, whereas Zhou 1 still managed to 

produce a small yield at 200 mM NaCl, albeit ~ 5% of the value at 0 mM NaCl. When 

the relative grain yields are plotted for the two lines (Zhou 85 / Zhou 1) as a function of 

NaCl concentration, it is clear that Zhou 85 does not yield as well as Zhou1 above 100 

mM NaCl (Fig. 4-12b) 

4.3.2.3 Thousand Grain Yield. 

Thousand Grain Yield is a good parameter used to measure yield. Between two lines 

there was not significant different observed (see Fig 4-13). 
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Fig. 4-11 The Effects of Salt Treatments on Spikes and Seeds per Plant of Two 

Barley Lines (Zhou 1 and Zhou 85). 

Top panel, number of spikes per plant (a); bottom panel, number of seeds per plant (b). 
, Zhou 1; Zhou 85. 
Note that Z 1 had managed to produce one spike and ~10 seeds (seeds not tested for 
viability).Each data point presents the mean and standard error of four replicates. 
Measurements were made at harvest, day 70 (52 days after salt treatment). See Section 
4.2.1 for experimental details. Two factor analysis of variance (linear model) was 
performed on the data with Bonferroni pair-wise tests between treatment means. 
Different Roman characters signify significant differences (p<0.05) between Zhou 1 
treatment means; Greek characters, significant difference (p<0.05) for Zhou 85 
treatment means. Asterisks identify significant differences (p<0.05) between Zhou 1 
and Zhou 85 means at each given salt concentration. 
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Fig. 4-12 The effects of salt treatments on the Grain Yield and % Grain Yields of 

two barley lines. 

Top panel, Grain Yield (a); bottom panel, Relative Grain Yield (b), calculated as yield 
of Zhou 85/yieyld of Zhou 1. values for Zhou 85 and Zhou 1 yield were ranked before 
relative yield averages and standard errors were calculated. , Zhou 1; , Zhou 85; 
, Zhou 85/Zhou 1 Relative Grain yield. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made at harvest (day 70). See Section 4.2.1 for experimental details. Two factor 
analysis of variance (linear model) was  performed on the data with Bonferroni pair-
wise tests between treatment means. Different Roman characters signify significant 
differences (p<0.05) between Zhou 1 treatment means; Greek characters, significant 
difference (p<0.05) for Zhou 85 treatment means. Asterisks identify significant 
differences (p<0.05) between Zhou 1 and Zhou 85 means at each given salt 
concentration. 
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Fig. 4-13 The Effects of Salt Treatments on 1000-Grain Weight (g) of Two Barley 

Lines. 

, Zhou 1; , Zhou. 85. 

Each data point presents the mean and standard error of four replicates. Measurements 

were made at harvest (day 70). See Section 4.2.1 for experimental details. Two factor 

analysis of variance (linear model) was performed on the data with Bonferroni pair-wise 

tests between treatment means. Different Roman characters signify significant 

differences (p<0.05) between Zhou 1 treatment means; Greek characters, significant 

difference (p<0.05) for Zhou 85 treatment means. 
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4.3.3 Plant Water Status. 

4.3.3.1 Relative Water Content and Water Potential. 
The water status of plants can be estimated from their relative water content (RWC) or 

their water potential (ψH2O). The RWC is simply estimated as the ratio of the hydration 

state of the treated plant compared with control plants (RWC = ([g H2O/g D Wt] treated / 

[g H2O/g D Wt] control) x100%).  

Measurements of shoot RWC showed that Zhou 1 retains control level hydration state 

up to 100 mM external NaCl levels, whereas Zhou 85 shows a steady decline from 0 

mM NaCl (Fig. 4-14a). Measurements of plant water status (ψH2O) using a pressure 

chamber did not follow the same pattern as RWC measurements (Fig. 4-14b). 

Increasing NaCl concentration produced a significant decrease in ψH2O, and there was 

some evidence that, unlike Zhou 85, Zhou 1 maintains shoot ψH2O at control levels up to 

100 mM NaCl. The values for ψH2O were consistently low, however, in the range of -1.0 

to -2.5 MPa. Under control conditions, shoot water potentials of -0.5 to -1.0 MPa are 

expected; the values observed (>-1.0 MPa) are usually considered to be indicative of 

moderate desiccation. Similar values for ψH2O were obtained for both experiments 

(February and June 2005). Further subsequence measurements of barley plants growing 

in soil and in hydroponics have generated values consistently within this range (-1.0 to -

2.0 range). 

4.3.3.2 Water Use Efficiency (WUE).  

From simultaneous measurements on carbon assimilation and transpiration the water 

use efficiency (WUE) can be calculated. These measurements express the moles of 

carbon dioxide fixed for each mole of water lost by transpiration. Drought tolerant 

plants may show improved stomatal responses when exposed to dehydrating conditions, 

and therefore loose less water. The WUE of both lines increased from 0.27% to 0.33% 

as external NaCl increased from 0 to 100 mM, suggesting that over this range stomatal 
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conductance declined, thereby reducing transpiration, but assimilation did not change. 

The experiments performed here, however, suggest no significant difference in the 

WUE of Zhou 1 and Zhou 85 (Fig. 4-15).  
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Fig. 4-14 The Effects of Salt Treatments on Relative Water Content (RWC) and 

Water Potential (ψH2O) of Two Barley Lines. 

Top panel, shoot Relative Water Content (a) see section 4.3.3.1 for details and bottom 
panel, Water Potential (b). , Zhou 1; , Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 26 days after germination (7 days after salt treatment) on fully expanded 4th 
emergent leaves, see Section 4.2.1. Two factor analysis of variance (linear model) was 
performed on the data with Bonferroni pair-wise tests between treatment means. 
Different Roman characters signify significant differences (p<0.05) between Zhou 1 
treatment means; Greek characters, significant difference (p<0.05) for Zhou 85 
treatment means. Asterisks identify significant differences (p<0.05) between Zhou 1 
and Zhou 85 means at each given salt concentration. 
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Fig. 4-15 The Effect of Salt Treatment on the Water Use Efficiency of Two Barley 

Lines. 

, Zhou 1; , Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 26 days after germination (7 days after salt treatment) on fully extended 4th 
emergent leaves. See section 4.2.1 for experimental details. These data were taken from 
steady transpiration rates (E) versus light intensity (I) and assimilation rates (A) versus I 
curves at 180 μmol m-2 s-1 PPFD (see Section 4.2.4.1.2). Two factor analysis of variance 
(linear model) was performed on the data with Bonferroni pair-wise tests between 
treatment means. Different Roman characters signify significant differences (p<0.05) 
between Zhou 1 treatment means; Greek characters, significant difference (p<0.05) for 
Zhou 85 treatment means. Asterisks identify significant differences (p<0.05) between 
Zhou 1 and Zhou 85 means at each given salt concentration. 
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4.3.4 Ion Content Assessment.  

Nutrient ion profile of shoot and root tissues were determined by an Inductively 

Coupled Plasma-Optical Emission Spectrometer; see Chapter 2 and 4, Sections 2.2.3 

and 4.2.3 respectively. Data were collected for the following elements: K, Na, Ca, P, S, 

Mg, Mn, Fe, and B. No major differences were observed for any of the micronutrients 

and therefore only data for K, Na and Ca will be presented. 

4.3.4.1 K+ Content of Barley Shoot and Root.  
Increasing NaCl concentration to 50 mM produced a 30-50% decline in shoot K+ levels, 

but at higher concentrations the levels maintained at ~15 mg/g D Wt (Zhou 1) and 28 

mg/g D Wt (Zhou 85; Fig. 4-16a). In contrast, in both lines root K+ levels did not 

change over the 0-50 mM NaCl range, but above this root K+ concentration steadily 

declined (Fig. 4-16b). The data presented here suggest line Zhou 85 partitions 

proportionately more K+ in the shoot than Zhou 1. 

4.3.4.2 Na+ Content of Barley Shoot and Root.  

Increasing external NaCl concentration from 0 to 200 mM NaCl produced a ten-fold 

increase in shoot Na+ levels (Fig. 4-17a). The data show that shoot Na+ levels increase 

sharply when external NaCl is increased to 50 mM NaCl, but that between 50 and 150 

mM both lines then appear to adopt a strategy that maintains shoot Na+ levels at ~30 

mg/g D Wt. Beyond 150 mM external NaCl concentrations, this mechanism may break 

down as shoot Na+ levels begin to rise again. No major differences were observed 

between the two lines with respect to the response of shoot Na+ levels to salinity. 

Root Na+ levels in both lines increased with salinity up to 100 mM; at higher NaCl 

concentrations, root Na+ levels did not change markedly (Fig. 4-17b). 
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4.3.4.3 K+/Na+ Ratio of Barley Shoot and Root.  

The relationship between tissue Na+ and K+ content can be revealed by plotting K/Na 

ratio as a function of external salinity (Fig. 4-18). A large decline (from ~8 to ~1) in the 

shoot ratio was observed when external NaCl was increased from 0 to 50 mM NaCl. In 

the shoot the ratio was maintained at ~0.5-1.0 at all higher concentrations. It appears 

that line Zhou 85 maintains a significantly higher K+/Na+ ratio than Zhou 1 at all 

concentrations except at 0 mM (Fig. 4-18a). Root K+/Na+ levels showed a progressive 

decline in both lines as external NaCl was increased to 100 mM NaCl (from ~ 1.5 to ~ 

0.4); at higher concentration root K+/Na+ ratio did not change dramatically. The data 

show that over the 50 to 150 mM NaCl range, Zhou 1 maintains a significantly higher 

K+/Na+ ratio than Zhou 85 (Fig. 4-18b). 

4.3.4.4 Ca+2 Content of Barley Shoot and Root.  

 Measurements were also made on shoot and root Ca+2 content. Increasing external 

NaCl concentration from 0 to 50 mM produced a large decline in both shoot and root 

Ca+2 levels, but no further decrease was observed at higher concentrations. No clear 

differences were observed between the two lines at any external NaCl concentration 

(Fig. 4-19a and b). 
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Fig. 4-16 K Content of Salt Stressed Barley Shoots and Roots. 

Top panel, Shoot K+ Content (a) and bottom panel, Root K+ Content (b). , Zhou 1; 
, Zhou 85. 
Samples were harvested at day 37 after germination (18 days after NaCl treatment) and 
prepared as described in Chapter 2 and 4 in Sections 2.2.3 and 4.2.3 respectively. The 
data points are the Averages and SEs of four independent samples. Two factor analysis 
of variance (linear model) was performed on the data with Bonferroni pair-wise tests 
between treatment means. Different Roman characters signify significant differences 
(p<0.05) between Zhou 1 treatment means; Greek characters, significant difference 
(p<0.05) for Zhou 85 treatment means. Asterisks identify significant differences 
(p<0.05) between Zhou 1 and Zhou 85 means at each given salt concentration. 
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Fig. 4-17 Na Content of Salt Stressed Barley Shoot and Root. 

Top panel, Shoot Na+ Content (a) and bottom panel, Root Na+ Content (b). , Zhou 
1;, Zhou 85. 
Samples were harvested and prepared as described in Chapter 2 and 4 in Sections 2.2.3 
and 4.2.3 respectively. The data points are the Averages and SEs of four independent 
samples. Two factor analysis of variance (linear model) was performed on the data with 
Bonferroni pair-wise tests between treatment means. Different Roman characters signify 
significant differences (p<0.05) between Zhou 1 treatment means; Greek characters, 
significant difference (p<0.05) for Zhou 85 treatment means. 
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Fig. 4-18 K+/Na+ Ratios of Salt Stressed Barley Shoot and Root Tissue. 

Top panel, Shoot K+/Na+ Ratio (a) and bottom panel, Root K+/Na+ Ratio (b). , Zhou 
1; , Zhou 85. 
Samples were harvested and prepared as described in Chapter 2 and 4 in Sections 2.2.3 
and 4.2.3 respectively. The data points are the Averages and SEs of four independent 
samples. Two factor analysis of variance (linear model) was performed on the data with 
Bonferroni pair-wise tests between treatment means. Different Roman characters signify 
significant differences (p<0.05) between Zhou 1 treatment means; Greek characters, 
significant difference (p<0.05) for Zhou 85 treatment means. 
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Fig. 4-19 Calcium Content of Salt Stressed Barley Shoot and Root. 

Top panel, Shoot Ca+2 Content (a) and bottom panel, Root Ca+2 Content (b). , Zhou 
1; , Zhou 85. 
Samples were harvested and prepared as described in Chapter 2 and 4 in Sections 2.2.3 
and 4.2.3 respectively. The data points are the Averages and SEs of four independent 
samples. Two factor analysis of variance (linear model) was performed on the data with 
Bonferroni pair-wise tests between treatment means. Different Roman characters signify 
significant differences (p<0.05) between Zhou 1 treatment means; Greek characters, 
significant difference (p<0.05) for Zhou 85 treatment means. Asterisks identify 
significant differences (p<0.05) between Zhou 1 and Zhou 85 means at each given salt 
concentration. 
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4.3.5 Photosynthesis Measurements. 

4.3.5.1 Photosynthesis Rates. 
Several important parameters relating to the efficiency of the photosynthesis can be 

derived from the CO2 and Light Response Curves (see Section 4.2.4).  

4.3.5.1.1 Amax and Alpha (α).  

The effect of salinity on the light-saturated maximum assimilation rate (Amax) obtained 

at 360 (ppmv) CO2 for Zhou 1 and Zhou 85 are presented in Fig. 4-20a. These data 

indicate Amax values are maintained at near control levels (~25-30 μmol CO2 m-2 s-1); 

only when exposed to salt levels above 150 mM NaCl does Amax decline significantly. 

No major differences in Amax were observed between the two lines. 

The quantum efficiency (α) of both lines decreased with increasing salinity, from ~ 

0.090 at 0 mM NaCl to ~0.075 at 200 mM NaCl. These data indicate the capacity of 

leaves to capture and process light energy is not severely impaired by the concentrations 

of salinity used here, and that no major differences were observed between the two lines 

(see Fig. 4-20b).
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Fig. 4-20 The Effects of Salt Treatments on CO2 Assimilation and Quantum 

Efficiency, α of Two Barley Lines. 

Top panel (a),  Zhou 1 light saturated assimilation rate (Amax, saturated):  Zhou 1 

assimilation rate at growth room light levels (180 μmol m-2 s-1 PAR).  Zhou 85 light 

saturated assimilation rate:  Zhou 85 assimilation rate at 180 μmol m-2 s-1 PAR. 

Bottom panel (b). Zhou 1 () and Zhou 85 () quantum efficiency.  

Other chamber conditions were; Ca, 360 ppmv: chamber temperature (~26°C): 

humidity, 10 mmol/mol: flow rate, 200 mmol s-1. 

Each data point presents the mean and standard error of four replicates. Measurements 

were made 26 days after germination (7 days after salt treatment) on fully expanded 4th 

emergent leaves. Assimilation rates and α values were determined from light response 

curves, as described in Section 4.2.4.1.2. Two factor analysis of variance (linear model) 

was performed on the data with Bonferroni pair-wise tests between treatment means. 

Different Roman characters signify significant differences (p<0.05) between Zhou 1 

treatment means; Greek characters, significant difference (p<0.05) for Zhou 85 

treatment means. 
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Fig. 4-20 The Effects of Salt Treatments on CO2 Assimilation and Quantum 

Efficiency, α of Two Barley Lines. 
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4.3.5.1.2 Photorespiration (Rl) and Dark Respiration (Rd). 

For both barley lines photorespiration (Rl) values remained constant at ~ -4.5 (μmmol 

CO2 m-2 s-1) with increasing salinity up to 100 mM NaCl and then decreased to ~ -3.0 

(μmol CO2 m-2 s-1) see Fig. 4-21a. Dark respiration increased progressively with 

increasing NaCl concentration, from values of ~ -1.0 (μmmol CO2 m-2 s-1) at 0 mM to ~ 

- 2.0 (μmol CO2 m-2 s-1) at 200 mM NaCl see Fig. 4-21b. No major differences were 

observed between the two lines either Rl or Rd. 

4.3.5.1.3 Vrubisco. 

The efficiency of the C3 cycle in vivo can be estimated from the parameter Vrubisco; as 

rubisco is usually the rate limiting step in the C3 cycle, the values of Vrubisco are 

routinely used to estimate the kinetic properties of rubisco in vivo (Yeo et al., 1994). 

Increasing NaCl concentration up to 100 mM had no major effect on Vrubisco although it 

appears to decline over this concentration range. For both lines values of ~ 0.12 mol 

CO2 m-2 s-1 were recorded and these declined to ~ 0.10 mol CO2 m-2 s-1 at 200 mM NaCl 

(see Fig. 4-22). The conclusion is that for both lines high levels of salinity at the roots 

do not result in an impairment line of the kinetics of the carboxylation processes in the 

chloroplast. 
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Fig. 4-21 The Effects of Salt Treatments on Photorespiration, Rl and Dark 

Respiration, Rd of Two Barley Lines. 

Top panel, photorespiration (a); bottom panel, dark respiration (b). , Zhou 1; , 
Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 26 days after germination (7 days after salt treatment). Values of total 
respiration (Rl + Rd) were estimated from CO2 response curves (see Section 4.2.4.1.1) 
and values of Rd from light response curves (see Section 4.2.4.1.2). Rl was then 
determined by difference. Two factor analysis of variance (linear model) was performed 
on the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means. 
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Fig. 4-22 The Effect of Salt Treatments on Vrubisco of Two Barley Lines. 

Vrubisco for Zhou 1 () and Zhou 85 (). 

Each data point presents the mean and standard error of four replicates. Measurements 
were made 26 days after germination (7 days after salt treatment). See section 4.2.4.1.1 
for experimental details. Vrubisco was determined from the initial slope of the A/Ci 
response curve (Fig. 4-3). Two factor analysis of variance (linear model) was performed 
on the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means. 
Asterisks identify significant differences (p<0.05) between Zhou 1 and Zhou 85 means 
at each given salt concentration. 
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4.3.5.2 Carbon Dioxide Supply. 

Net photosynthesis rate can be affected by the efficiency of light capture, the efficiency 

of photosynthetic electron transport, the kinetic properties of the C3 cycle and 

respiration, and by the supply of CO2 to the chloroplast (see Section 4.2.4.1). In this 

section the effect of salinity on CO2 supply to the chloroplast is considered. 

4.3.5.2.1 Stomatal Conductance (gs) and Stomatal Control of Photosynthesis (L). 

Stomatal conductance (gs) decreased rapidly in both lines (from ~0.5 to ~0.25 mol m-2 s-

1) as external NaCl increased from 0 to 50 mM NaCl (Fig. 4.23a). Higher salt 

concentrations produced only a minor decrease in both lines. No significant differences 

in gs were observed between the two lines.  

A large reduction in gs might be expected to cause a reduction in Assimilation rate, but 

this is not observed when Amax values are considered (Fig. 4-20a); over the 0 – 50 mM 

NaCl range Amax does not change for either line. One explanation for this observation is 

that at high stomatal conductance (above 0.3 mol m-2 s-1), it is the kinetic properties of 

the C3 cycle that limits Assimilation, not the supply of CO2 to the chloroplast. This 

hypothesis can be tested by studying changes in the parameter L with external NaCl 

concentrations. The parameter L is a measure of the relative importance of gs on 

Assimilation rate; values near 0 suggest a minimal effect, values near 1, a major 

dominant effect (see Section 4.2.4.1.1 for full discussion). 

Figure 4-23b presents the response of the parameter L to increasing NaCl concentration. 

Generally, L increases (from 0.23 to 0.35) over the 0 to 200 mM NaCl concentration 

range, suggesting increased stomatal limitation on Assimilation rate as external salinity 

increases. 

The plot of Assimilation versus stomatal conductance (A versus gs) shows sharp 

discontinuity at gs values of ~0.3 mol m-2 s-1  confirming the observation that only when 
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gs is lower than 0.3 mol m-2 s-1 , is photosynthesis impaired significantly by the CO2 

supply to the chloroplast (Fig. 4-24).  

From the light response curves, another parameter, theta (θ), can be determined that is 

reported to reflect the relative contribution of CO2 supply and C3 cycle kinetics to 

Assimilation rate (see Section 4.2.4.1.2). Values of θ approaching 1 are reported to 

reflect strong limitation through reduced CO2 supply, whilst values approaching 0 are 

believed to show limitations impaired at the enzyme level (Akhkha et al., 2001; 

Thornley, 1976). In the experiments reported here θ remained at values of ~0.5 

regardless of external NaCl concentration of barley line see Appendix (Fig. A 4-6). The 

observation that θ did not vary with gs suggests that θ is not related to the relative 

limitations on assimilation rate, but may reflect developmental changes in leaf 

architecture (Leverenze, 1987; Leverenze, 1988; Ogren, 1993; Ogren and Evans, 1993; 

Terashima and Saeki, 1983). 
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Fig. 4-23 The Effects of Salt Treatments on Stomatal Conductance, (gs) and 

Stomatal Control of Photosynthesis, (L) of Two Barley Lines. 

Top panel, stomatal conductance, gs (a); bottom panel, stomatal control of 
photosynthesis, L (b). , Zhou 1  Zhou 85. 
Each data point presents the mean and standard error of four replicates. Measurements 
were made 26 days after germination (7 days after salt treatment) on fully expanded 4th 
emergent leaves. See section 4.2.4.1 for experimental details. Average values for L are 
presented (panel b). Two factor analysis of variance (linear model) was performed on 
the data with Bonferroni pair-wise tests between treatment means. Different Roman 
characters signify significant differences (p<0.05) between Zhou 1 treatment means; 
Greek characters, significant difference (p<0.05) for Zhou 85 treatment means.  
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Fig. 4-24 Assimilation rate (A) Versus Stomatal Conductance (gs) of two barley 

lines.  

Assimilation rates (A) were plotted against the corresponding values for stomatal 

conductance (gs); both values were estimated from light response curves at 180 μmol m-

2 s-1 light intensity, the level at plant height in the growth room (see section 4.2.4.1.2 for 

experimental details). No differences were found between lines Zhou 1 and Zhou 85 and 

so data (●) were pooled. Linear regression lines (---) were fitted to the data to 

emphasize the apparent disjunction at the gs value of 0.3 mmol m-2 s-1 (¦). At gs values 

below 0.3 mmol m-2 s-1, A appears to be linear dependant on gs; above this value A 

appears to be largely independent of gs. 
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4.3.6 Development Measurements. 

The observation reported in Section 4.3.1 and 4.3.2 suggest that line Zhou 1 undergoes 

the transition from vegetative growth to reproductive growth earlier than Zhou 85, and 

this may reduce the exposure time of the reproductive structures to salinity, resulting in 

improved yields. To establish the developmental delay between Zhou 1 and Zhou 85, 

sixteen plants of each line were placed in soil, germinated and grown to maturity in a 

glass house as described in Section 4.2.5. At least every second day their development 

was assessed using the Zadoks’ Scale (Zadoks et al., 1974). The Zadoks’ scale extends 

from 0 (dry seed), through germination (1-9), seedling growth (10-19), tillering (20-29), 

stem elongation (30-39), booting (40-49), inflorescence emergence (50-59), anthesis 

(60-69), milk stage (70-77), and ripening (80-99); see Appendix (Fig. A 4-2 and Table 

A 4-2). Once individual plant scores were allocated at each day, the average delay in 

development (in days) was calculated and plotted (Fig. 4-25). It is clear that in the 

absence of NaCl, Zhou 1 enters the reproductive phase of the life cycle (day 39, 

anthesis) approximately 6 days earlier than Zhou 85, and by the milk stage (day 44) is 

fully a week ahead of Zhou 85. The implication is that ten days of exposure to high 

salinity (day 19-29) does not result in a sufficient level of stress to prevent the 

development of the gametes or embryo. However, the longer periods of exposure (up to 

17 days), as experienced by Zhou 85 before anthesis, may result in sufficient shoot 

stress that severely impair seed development. 

4.3.7 Assessment of Ppd-H1 Flowering Locus. 

Commercially grown barley is available as winter barley (delayed flowering) and spring 

barley (early flowering) lines. The locus controlling flowering in barley has been known 

for many years and named the photoperiod-H1 locus (Ppd-H1) but other loci (e.g. VRN 

1-3) in cereals have also been implicated (Yan et al., 2004; Yan et al., 2003). Early 
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flowering lines carry a dominant allele, Ppd-H1, whilst delayed flowering lines carry a 

recessive allele ppd-H1. The identify of the Ppd-H1 gene was revealed by positional 

cloning and found to encode a ‘Pseudo-Response’ regulator protein with homology to 

the Arabidopsis clock gene CONTANS (CO) (Turner et al., 2005). Further extensive 

Single Nucleotide Polymorphism (SNP) analysis with an extensive collection of early 

and delayed flowering lines identified SNP 22, a G to T (glycine to tryptophan) 

substitution (Turner et al., 2005) as the critical SNP causing the observed difference in 

flowering time. 

To assess whether the observed delayed flowering in Zhou 85 line was attributable to a 

similar substitution, PCR primers were designed to amplify this region of barley 

genomic DNA. The test interval containing the putative SNP 22 variant was amplified 

using test primers (HvTF; ATG CGA ATG GTG GAT CGG C and HvCR; TAT AGC 

TAG GTG CGT GGC G) and the 506 bp PCR product digested with BstU 1 restriction 

site (ppd-H1) whereas the dominant allele (Ppd-H1) is cut to produce a 432 and 74 bp 

product. Figure 4-26 shows the digested and undigested PCR products for Zhou 1 and 

Zhou 85; clearly, in both cases the 506 bp PCR fragment has been restricted indicating 

both Zhou 1 and Zhou 85 contain the Ppd-H1 (early flowering allele). 

It is well established that the barley locus Ppd-H1 has a profound influence on flowering 

in cereals. Dominant forms of the locus (Ppd-H1) flower early, and is associated with 

spring barley. In contrast, homozygous lines carrying the recessive ppd-H1 locus, 

require a longer period to flower and constitute the winter barleys (Turner et al., 2005; 

Laurie et al., 1995). 

In conclusion, it appears the delayed flowering response of Zhou 85 is not associated 

with the Ppd-H1 locus. 
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Fig. 4-25 Comparison of the Rate of Development of Zhou 1 and Zhou 85 Barley 

Lines. 

Plants were germinated and grown in soil as described in Section 4.2.5. The 

development of both lines was scored according to the Zadok’s scale (see Appendix Fig. 

A 4-7 and Table A 4-3). The development of Zhou 85 compared with Zhou 1 is 

presented (n=16 plants) for each line.  

Panel (a), modal Zadok’s score (n=16) for Zhou 1 and Zhou 85. note, early and late 

development are in phase, but reproductive development in Zhou 1 up to one week 

earlier than in Zhou 85. panel (b), Days Zhou 85 Developmental Delay. Zhou 1 and 

Zhou 85 plants were randomly ascribed an index number (1-16) at germination and for 

each Z 85/Z 1 pair the time difference (days) for Z 85 (cf Z 1) to enter each of the 

Zadoks stages (1-99) was determined. From these values, the average delay (in dayz) 

was calculated. Plants were not treated with NaCl, but in the experiments reported in 

Sections 4.3.1 to 4.3.5, exposure was given at Day 19 (orange arrow). Significant 

developmental stages are presented as Tillering (1), Inflorescence Emergence (2), 

Anthesis (3), and Kernel Hardening (4). See Appendix Table A 4-2 for raw data. 
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Fig. 4-25 Comparison of the Rate of Development of Zhou 1 and Zhou 85 Barley 

Lines. 
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Fig. 4-26 Genotyping Zhou 1 and Zhou 85 Barley Lines for the Early Flowering 

Locus Ppd-H1. 

Panel (a); PCR for Ppd-H1 (dominant) and ppd-H1 (recessive) alleles of the early 

flowering locus in barley. PCR primers were used that amplifies a 506 bp product 

containing SNP 22 (a G/T substitution giving rise to a Glycine/ Tyrosine substitution). 

Restriction digests of this 506 bp fragment with BstU1 will generate a 432 bp fragment 

if the Ppd-H1 locus is present, but remains uncut if the ppb-H1 it appears that both the 

Zhou 1 and Zhou 85 506 bp PCR fragment (lanes 2 and 4) are cut on BstU1 treatment 

(lane 3 and 5), and therefore both lines carry the dominant early flowering locus, Ppd-

H1. Lane 1, molecular weight markers: lanes 6 and 7 controls for BstU1 activity. 

Panel (b), schematic diagram showing location of Ppd-H1 locus on barley chromosome 

3 taken from (Turner et al., 2005). 

Panel (c), schematic diagram showing all 23 SNPs between early (Ppd-H1) and late 

(ppd-H1) flowering lines of barley. SNP 22 has been identified as that associated with 

the Ppd-H1 locus (Turner et al., 2005). 

 
 



 

  166

`  
 
 

 
 

Fig. 4-26 Genotyping Zhou 1 and Zhou 85 Barley Lines for the Early Flowering 

Locus Ppd-H1. 
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4.3.8 Discussion.  

In this chapter the claim that barley line Zhou 1 is more salt tolerant than Zhou 85 was 

investigated. Other groups (Pro. Zhang, G, Zhejiang University, China; Fig. 4-1), 

suggested this was so, and therefore experiments were designed and undertaken to 

establish the effects of salinity on a number of parameters in these two lines. These 

parameters included those relating to vegetative growth, yield, water status, ionic status, 

assimilation and respiration rates, and stomatal function. The results are summarized 

below. 

Clear and significant differences between the two lines were observed in the 

development of the shoot and root. At the time of measurement (day 37) line Zhou 1 

was significantly taller than Zhou 85 (Fig. 4-7a), and at low external NaCl 

concentrations attained more fresh (Fig. 4-8) and dry weight (Fig. 4-9). 

Interestingly, the longer shoots of Zhou 1 were accompanied by shorter roots (Fig. 4-7a) 

although no difference in root biomass was observed (Fig. 4-8b and 4-9b). Zhou 1 

produces fewer tillers than Zhou 85, a feature that was retained at all external NaCl 

concentrations (Fig. 4-10). Taken together, these results suggest that at the time of 

measurement (day 37) line Zhou 1 had diverted more of its resource away from 

producing tillers and put more into flower development (Fig. 4-6). The question that 

should now be addressed is whether this strategy affects yield.  

Measurements on yield parameters suggested Zhou 1 does yield better than Zhou 85 at 

all external NaCl concentrations, but particularly above 100 mM NaCl (Fig. 4-12a and 

b). Line Zhou 85 failed to produce seed at 150 mM NaCl and above; in contrast, 

although the yields of Zhou 1 in 200 mM NaCl were only ~8% of those at 0 mM NaCl, 

seed was produced (viability of the seeds was not tested). Other yield parameters 

indicated that in high salinity Zhou 1 produced larger seed (Fig. 4-13), and more seed 
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per plant (Fig. 4-11), the latter arising from the ability of Zhou 1 to produce 1 floral 

spike per plant. The conclusions are that the early transition of Zhou 1 into flowering 

may be responsible for partly offsetting the salinity-induced losses in or experienced by 

Zhou 85 (Fig. 4-12b). 

It is conceivable the modest improvement in yield observed with line Zhou 1 is 

attributable to the early floral development. Gamete and/or embryo development may be 

very sensitive to high salinity, and so early development before the levels of salinity in 

the developing flower become toxic may offer a significant advantage. 
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5 Chapter 5: General Discussion  

At the outset of this study the intention was to compare and contrast the response of 

salt-sensitive and salt-tolerant cell cultures of higher plants to high salinity. It was 

hoped that this approach would identify cellular processes that contribute to salt 

tolerance in whole plants. For this purpose two cell suspension cultures of Arabidopsis 

thaliana were available; one was salt-sensitive (WT) and would not survive above 80 

mM NaCl, the other was salt-tolerant (HHS) and survives in up to 380 mM NaCl. 

These two cell lines should allow an investigation into potential salt tolerance 

mechanisms in cells from the glycophyte Arabidopsis thaliana. To determine whether 

the mechanisms identified in the HHS cells are typical of those found in the cells of 

halophytes, cell suspension cultures were also prepared from the leaves of the dicots 

sugar beet (Beta vulgaris) and Atriplex halimus, and from the monocots Distichlis 

spicata (all halotolerant) and rice (Oryza sativa). It was hoped that physiological, 

biochemical, and molecular comparisons between these cell lines would provide a 

consensus view on salt tolerance mechanisms in higher plants, at least at the cellular 

level. 

Unfortunately, although these cell lines were produced, continuous failures of the 

growth facilities were encountered over a period of eighteen months and this prevented 

completion of these experiments. Consequently, only a full set of experiments for 

comparisons between WT and HHS cells from Arabidopsis thaliana are presented. To 

augment these experiments on cell suspension cultures, a whole plant study was 

undertaken to investigate salt tolerance mechanisms in barley (Hordeum vulgare). Two 

varieties of spring barley that are widely grown in China were donated by Professor 

Guoping Zhang (University of Zhejiang, China) that are reported to differ in their 
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sensitivity to NaCl. The origin of these two lines is unclear; they may have originated 

from European lineages that have been selected and bred mainly for malting quality, or 

from Tibetan (Asian) lineages that have been selected for stress tolerance, or they may 

be hybrids of European and Asian lines. These two spring barley lines were grown in 

hydroponic solutions containing a range of NaCl concentrations, and their performance 

assessed at the physiological and biochemical level. 

5.1 Assessment of the Halotolerance of WT and HHS Arabidopsis 

thaliana Cell Suspension Cultures. 

The growth rates of WT cell cultures were impaired by increasing levels of NaCl in the 

culture medium. The doubling time of cultures containing 50 mM NaCl was reduced to 

75% of that of controls (0 mM NaCl) and growth ceased completely if NaCl 

concentrations were raised above 80 mM NaCl. It appears this salinity-induced 

suppression of growth is mainly attributable to ionic effects as growth in isotonic 

media containing low (0 mM) NaCl (i.e. BGM0-0.77) suppressed growth to only 96% of 

controls. In contrast, the growth of HHS cells in 0 mM NaCl (BGM0-0.55) was 

consistently slower than that of WT cells (~65%). The growth rates of HHS cells in 

300 mM NaCl were approximately the same as those in 50 mM NaCl. All of this 

decrease appears to have arisen from osmotic stress as a similar decline was observed 

in low salt isotonic media (BGM0-1.96). When grown in 50 mM NaCl a similar decline 

(~60% of control) in growth rates were observed but only approximately half of this 

was attributable to osmotic stress. It appears that moderate levels of salinity stress (50 

mM NaCl) induces ionic and osmotic stress, but growth reduction in severe stress (300 

mM NaCl) may be mainly attributable to osmotic stress. 

From these results it can be concluded that relatively low levels of NaCl (i.e. 50 mM) 

impairs the growth of WT Arabidopsis cells mainly by the toxic effects of Na+ and/or 
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Cl-. This conclusion is supported by measurements of the ion content of cells during 

their growth phase. Intracellular Na+ levels were approximately five times higher in 

WT cells than HHS cells when they were grown in identical cultures of 50 mM NaCl. 

Halotolerance of higher plant cells has been attributed to any one or combination of 

three physiological strategies: the ability to prevent the accumulation in the cytoplasm 

of toxic levels of Na+ and Cl-: the ability to acquire and maintain normal levels of 

nutrient ions when exposed to saline media: the ability to offset the dehydrating effects 

of the external saline media. 

Taken together the results from the experiments on cell suspension cultures suggest 

that the sensitivity of WT Arabidopsis cells to salinity is largely attributable to their 

inability to prevent the accumulation of toxic intracellular levels of Na+ (and possibly 

Cl-). In contrast, HHS cells prevent this accumulation and are therefore able to survive 

media containing much higher levels of NaCl (up to 380 mM). No evidence was found 

to support the contention that HHS cells are better adapted that WT cells at acquiring 

or maintaining nutrient ions when exposed to salinity. Some evidence was found to 

suggest that in moderately low levels of salinity (50 mM NaCl) the growth of both WT 

and HHS cells is impaired partly by osmotic effects, but any conclusions should be 

treated with caution. First, dehydration of cells is likely to increase intracellular 

concentrations of ions in the cytoplasm so growth impairment may be caused directly 

by ionic effects that arise indirectly from water loss from the cell. Second, in the 

experiments reported here, the osmotic stress induced by shifting cells from media 

containing 0 mM to 50 mM NaCl is trivial. The solute potential (ΨS, here, at 

atmospheric pressure, equivalent to the water potential, ΨH2O) of BGM0-0.55 is -0.55 

MPa and that of BGM50-0.77 is -0.77 MPa. These values compare favorably with the 

range of ΨH2O of the shoots of well hydrated plants growing in soils with high field 
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capacities (typically -0.7 to -1.2 MPa); most plants begin to show signs of wilting (loss 

of turgor pressure, ΨP) only when shoot ΨH2O fall below -1.2 MPa. 

Unfortunately, it was not possible to measure the components of the ΨH2O (i.e. ΨS and 

ΨP) of WT and HHS cells in different conditions, but it is possible to speculate on what 

these might be. If the cells were not capable of osmoregulation, in BGM50-0.77 they 

would adopt the ΨH2O of the growth media (i.e. -0.77 MPa). Typical values for shoot 

cell ΨS is in the range -1.5 to -2.5; therefore, without any attempt to osmoregulate ΨP 

values of at least 0.73 and 1.73 MPa would be expected (0.73 = -1.5 + 0.77, and 1.73 = 

-2.5 + 0.77), and these are well within the range of turgor pressures found in well-

hydrated plant cells and of sufficient magnitude to support cell expansion. If we now 

superimpose the effect of osmoregulation on this situation (i.e. a decrease in cell ΨS 

through the acquisition of compatible and incompatible solutes), even greater turgor 

pressures and/ or higher (less negative) cell water potentials would occur further 

decreasing the effect of any osmotic stress. Both the experimental evidence from these 

results, and theoretical considerations, therefore, strongly indicate that it is only the 

ionic component that impairs the growth of WT Arabidopsis cells in culture. Following 

the same reasoning, it seems likely that the inability of Arabidopsis plants to grow in 

media containing physiologically significant levels of nutrient ions supplemented with 

100 mM NaCl is attributable entirely to the ionic component of the salinity stress as 

even without the beneficial effects of osmoregulation, tissue water potentials and 

turgor pressures of < -0.6 MPa and ~0.9 MPa, respectively, would arise (assuming a 

cell ΨS of -1.5MPa)1. On this basis salt concentrations of 200 mM NaCl would at 

worst reduce ΨH2O
 to -1.0 MPa and ΨP to 0.5 MPa, again levels that are consistently 

                                                 
1 Conversion from Concentration to Pressure units using the Vant Hoff relationship, P = (n/v) R T with R 
= 8.314 10-3 MPa M-1. K-1.  The osMolar concentration of physiologically significant growth media plus 
100 mM NaCl is taken as 0.25 osM. 
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found in well-watered plants. Perhaps a research focus on manipulating cellular 

components associated with osmoregulation to offset salt stress in glycophytes is not of 

the highest priority.  

There is clear evidence that HHS cells maintain low intracellular levels of Na+ when 

compared with WT cells. This observation also supports the contention that 

osmoregulation is not a critical response for the survival of Arabidopsis cells at low 

levels of NaCl (i.e. 50 mM); if it were, one would expect the halotolerant HHS cells to 

take up and sequester more Na+ in their vacuoles than WT cells in an attempt to regain 

turgor (osmoregulate) and this does not appear to be the case. Instead, it is WT cells 

that accumulate high levels of Na+, and presumably they cannot sequester it all in their 

vacuoles, hence cellular metabolism is compromised and growth and survival are 

affected. At this stage it is not clear whether HHS cells maintain low intracellular 

levels of Na+ by showing reduced rates of Na+ uptake, increased rates of Na+ efflux, or 

both. To address this question the kinetics of Na+ exchange between both cell lines and 

the growth media will have to be determined. These investigations are currently 

underway using 22Na+ uptake and efflux experiments by our group. 

One of the interesting morphological differences between HHS and WT Arabidopsis 

cells was the appearance of a large number of small vacuoles / vesicles in the 

halotolerant line when they were exposed to a salt stress. These vesicles / vacuoles 

were greatly reduced in number in WT cells although a few did appear when cells were 

shifted to 50 mM NaCl. In HHS cells it was noted that the number of these vesicles 

appeared to increase when cells were given a shock, by either transferring them from 

higher to lower salinity, or vice versa. The steady state number of vesicles, however, 

always seemed greater when growth conditions were harshest. Cell lines from the 

halophytes sugar beet and Atriplex halimus were established in this study, and these 
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cell lines also appeared to show an enhanced level of vesicle proliferation when 

exposed to salt stress although the evidence for this is anecdotal. It might be that 

intracellular vesicle proliferation is a general response of halotolerant plant cells to 

salinity stress, a property that is not well developed in the cells of glycophytes. Further 

experiments using a range of plants and confocal imaging techniques will be required 

to confirm this observation. 

It is unclear what function these intracellular vesicles perform. Although there was a 

proliferation of these vesicles in HHS cells grown in 50 mM NaCl, the accompanying 

low levels of intracellular Na+ suggest that they do not accumulate large quantities of 

this ion, at least not at this external NaCl concentration. It is conceivable, however, that 

as external levels of Na+ rise (> 100 mM) the damaging effect of increased Na+ influx 

is offset by rapid sequestration into these vesicles. From a kinetic perspective, 

sequestration of Na+ into intracellular vesicles/vacuoles would be achieved more 

rapidly with a large number of small vacuoles than a single large central vacuole as this 

would offer a larger membrane surface area-to-volume ratio. Once fully loaded with 

Na+ these vesicles / vacuoles may migrate to the central vacuole or plasma membrane 

and eject their contents. Alternatively, they may be static organelles that are Na+ stores. 

The dynamics of these vesicles was studied in HHS cells for up to 5 hours using 

confocal imaging, but no evidence was found for trafficking, and their function, 

therefore, is not clear. One approach that could determine the function of these vesicles 

would be to attempt to fractionate the cells and purify the population of vesicles. This 

would allow biochemical analysis of the vesicles with respect to their associated 

enzyme activities and protein content and from this information their function might be 

inferred. 
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5.2 Proteome Analysis of Arabidopsis HHS Cell Suspension Cultures 

Exposed to Salt Shock. 

A proteome approach was used in this study to identify Arabidopsis sequences that 

might confer halotolerance upon HHS cells. Previously others in our laboratory had 

used Affymetrix DNA microarray chips to assess the transcriptome profile of WT and 

HHS cells. In their first experiments over 10% of the transcripts changed significantly 

when the profiles of cells grown in BGM0-0.55 and BGM50-0.77 were compared. In an 

attempt to reduce these changes to a manageable level, the subsequent microarray 

experiments were conducted under isotonic conditions (i.e. BGM0-0.77 and BGM50-

0.77). 

Over one hundred proteins were identified by DiGE to change their abundance upon 

salt shock. Due to the high cost of protein sequencing, eighty-six were selected for 

identification by mass spectrometry. Approximately half of these were up regulated in 

high salt, nine were down regulated in high salt, and thirty two showed a consistent 

change (either up or down regulation only) regardless of whether they were exposed to 

a high or low salt shock. There is a general consensus that the regulation of ion balance 

is the major physiological trait for the attainment of halotolerance in plants. The 

precise regulation of ion content in salt stressed cells and tissues will prevent the 

accumulation of toxic levels of Na+ and Cl-, allow normal levels of nutrient ions to 

occur, and enable osmoregulation for the development of an appropriate turgor 

pressure. 

The 2-dimensional DiGE proteome analysis of salt-shock HHS cells did not identify 

any difference in the abundance of major ion transporters of the plasma membrane or 

tonoplast that might account for improved halotolerance by Na+ and/or Cl- export from 

the cytoplasm. There are several reasons that might explain this deficiency. First, it is 
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well known that DiGE is not particularly well suited to resolving hydrophobic proteins 

residing in membranes. Although several transporters associated with organelle 

membranes were detected, separation of hydrophobic proteins is reported to be more 

efficient using 2-dimensional liquid chromatography methods; these facilities were not 

available at Glasgow University at the time. Second, it is not at all clear that Na+ (or 

Cl-) flux through transporters on the plasma membrane (e.g. AtSOS-1) or tonoplast 

(e.g. AtNHX1) is ever near the Vmax for these transporters, as it is only if this is the 

case that increasing the density of transporters will increase flux. To view this another 

way, the rate of transport is dependent upon the driving force and the conductance 

pathway. The driving force for coupled Na+ and/or Cl- efflux from the cytoplasm is 

supplied by the pH and ion gradients, and the membrane proteins across the respective 

membrane. Therefore, if efflux is limited by the driving force, increasing the number 

of ion transporters will have no effect on cytoplasmic ion concentration. Indeed work 

by Gaxiola and colleagues showed that halotolerance was improved only if the 

vacuolar Na+/H+ antiporter AtNHX1 and an energizing H+ pump (AtPPiase) were co-

expressed (Gaxiola et al., 1999). Further, it is clear that the activity of all transporters 

(channels, carriers, and pumps) are subject to regulation through a variety of means 

(oligomeization, phosphorylation, ubiquituation/sumoylation, 14-3-3 protein binding, 

etc.) and it follows that manipulating these regulatory processes is perhaps more likely 

to confer a benefit than altering the abundance of the transporters per se. 

It was anticipated that the proteome analysis of salt-shocked HHS cells would identify 

proteins that are involved with halotolerance. From the lists of consistent changes, 

however no clear picture has emerged on what cellular and metabolic processes may be 

associated with salt tolerance. None-the-less, significant and reproducible changes in 
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over one-hundred proteins were catalogued and it remains to be established whether 

these changes have a biological meaning. 

Experiments were undertaken in our laboratory to determine the changes in transcript 

profile of HHS cells salt-shock under similar conditions (Dr. J. Price, University of 

Glasgow), but the recorded changes from Arabidopsis gene chip analysis were not 

consistent with those reported here from proteome profiling. There are several 

possibilities to explain this discrepancy. First, it is clear that changes in transcriptional 

activity are not always reflected by commensurate changes in protein abundance. 

Second, as already mentioned, hydrophobic proteins not well resolved by 2-

dimensional DiGE. Another possibility is that both transcript and proteome provide a 

reliable assessment of stress-induced changes in cell responses to salinity, but as these 

experiments were not performed in parallel, temporal changes in the cell cultures 

generated spurious artifacts. On reflection, it will be more useful to perform these 

experiments on the same cultures, and in addition, attempt to resolve changes in the 

metabolome of these cells. If these experiments were undertaken in parallel on the 

same samples a better understanding of the general applicability of transcriptome, 

proteome, and metabolome profiling of plant tissues should emerge. In addition, it may 

be possible to establish which cellular processes are damaged by salt stress, and which 

are involved in the amelioration of stress. 

5.3 Comparison of Salt Stress in Two Barley Lines. 

The overall conclusion from the experiments on the barley lines is that Zhou-1 is 

marginally more salt-tolerant than Zhou-85, but neither can be considered salt-tolerant. 

For most growth and yield parameters, Zhou-1 was less affected by increasing salinity 

than Zhou-85 but neither line yielded well when grown in concentration above 100 mM 



 

  178

NaCl. Zhou-1 appears to establish a higher K+ shoot/root ratio than Zhou-85, but Na+ 

levels in root and shoots were similar for both lines. 

None of the instantaneous photosynthetic parameters measured showed a major decline 

that paralleled the decline in growth or yield parameters. Assimilation rates measured at 

growth cabinet light levels (180 μmol m-2 s-1) declined only 40% and VRubisco (a measure 

of the apparent Vmax of the C3 cycle) declined only 20%, whereas shoot dry weigh 

decreased by 60-80%. These photosynthetic parameters, however, were measured on 

living green tissues and are expressed on a unit leaf area basis. They do not, therefore, 

reflect the cumulative effect of salt stress on the proportion of living green tissues that 

contribute to plant growth. It is recommended that some attention is paid to estimating 

the amount of living and dead tissues in further studies. The results presented here do 

not show major effects of salinity on many photosynthetic parameters expressed on a 

per unit leaf area basis but this does not preclude the possibility that the amount of 

living, photosynthetically active material differed between the lines with the application 

of salt stress. 

Perhaps the most interesting observations on these two barley lines was the relatively 

small level of dehydration imposed by salinity. After seven days exposure to salinity (up 

to 200 mM NaCl) shoot tissues did not appear to loose more than 20% of their tissue 

water. Growth and yields were severely impaired when plants were exposed to 100 mM 

NaCl and this produced only a ~10% loss of shoot water content in both lines. The 

question arises, is this loss of water large enough to account for direct effects on growth 

and yield or are these losses attributable to ionic stress? 

As shoot RWC decreases from 100% (0 mM NaCl) to 80% (200 mM NaCl) several 

important physiological processes change. First the water potential (ψH2O) of the tissue 

declines (becomes more negative) and this is considered to impair metabolism. 
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However, in this study estimates in the apparent Vmax of the C3 (Calvin) cycle enzymes 

(VRubisco), a value dependent on the activities of many enzymes, showed no change up to 

100 mM NaCl (RWC of 90%), and only relative small changes above this concentration 

(RWC of 80%). Second, turgor pressure will decline in parallel with tissue water loss 

and this will result in a decline stomatal conductance (gs), and therefore an impairment 

in CO2 uptake and transpiration. For both barley lines it appears that only when gs 

declines below a critical value (~0.30 mol m-2 s-1) is Assimilation affected (Fig. 4-24). 

For both lines this occurs when plants are exposed to concentrations of 50 mM NaCl 

and above (Fig. 4-24 and Fig. 4-23a), commensurate with a tissue RWC of 95% and a 

ψH2O -1.5 MPa (Fig. 4-14). Taken together, these two observations suggest that the 

dehydration imposed on leaves by exposure of their roots to NaCl solutions does not 

directly affect metabolism though a decrease in water concentration, but stomatal 

conductance is affected. The decrease in gs does not affect Assimilation rate greatly, but 

does significantly reduces transpiration rate and evaporation cooling. In the temperature 

controlled, low light growth rooms used in this study, reducing evaporative cooling may 

have no consequence, but for plants growing in the field where light levels (heat loads) 

are much higher, this may not be so. 

5.4 General Summary. 

The effect of high salinity on salt-tolerant and salt-sensitive Arabidopsis cells, and on 

barley plants are reported to arise through three stress factors. The toxic effects of Na+ 

(and Cl-) on intracellular metabolism: the impairment of normal nutrient ion acquisition: 

osmotic effects (dehydration) that impairs metabolism, reduces CO2 assimilation, and 

decreases transpiration. 

The result of experiments reported here do not support the notion that osmotic effects 

are responsible for growth impairment. In salt-stressed cells nutrient ion content 
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appeared to be normal although in whole barley plants shoot K+ did decline with 

increasing salinity and it is not certain whether this affected plant performance. 

Intracellular Na+ levels appear to correlate well with necrosis and growth impairment 

and do not appear to be involved in an osmotic response to salinity. The main 

conclusion from this study is that for glycophytes that do not complete a full life cycle 

above 100 mM NaCl (which includes all of the world’s major crops), it is the ionic 

component of salinity stress that impairs growth and yield. Further research on salinity 

stress in crops should focus on understanding the processes that control ionic balance 

rather than osmoregulation. 

One way to take this work forward would be to use a genetic approach. There are now 

several collections available of Arabidopsis knockout lines where individual genes have 

been deleted. It would be interesting to procure knockout lines for carrying deletions in 

some of the genes identified from the proteomics studies presented in this thesis and to 

assess their phenotypes. Also, transgenic lines could be made where some of the 

sequences identified are over expressed in a wild type background. Together these 

approaches should help to assess the function of some of these sequences. 
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Appendix. 

Table A 2-1 Linsmaier & Skoog Basal Medium (MSMO) is Components.  

Source http://www.phytotechlab.com/TABSTYLE/webdocs/MediaFormulations.pdf 
 
Component 
 

formula FW mg.l-1 

Potassium Iodide  
 

KI 166.003 0.83 

Potassium Nitrate 
 

KNO3 101.11 1900 

Potassium Phosphate, Monobasic 
 

KH2PO4 136.09 170 

Ammonium Nitrate 
 

NH4NO3 80.04 1650 

Calcium Chloride, Anhydrous 
 

CaCl2 110.98 332.2 

Magnesium Sulfate, Anhydrous 
 

MgSO4 120.36 180.7 

Myo-Inositol 
 

C6H12O6 180.2 100 

Na2EDTA.2H2O ) 
 

C10H14O8N2Na2.2H2O 372.24 37.26 

Ferrous Sulfate.7H2O 
 

FeSO4*7H2O 278.02 27.8 

Manganese Sulfate.H2O 
 

MnSO4*H2O 169 16.9 

Zinc Sulfate.7H2O 
 

ZnSO4*7H2O 287.54 8.6 

Boric Acid 
 

H3BO3 61.83 6.2 

Thiamine.HCl 
 

C10H16N2O3S 337.3 0.4 

Cobalt Chloride.6H2O 
 

CoCl2.6H2O 237.93 0.025 

Cupric Sulfate.5H2O 
 

CuSO4*5H2O 249.68 0.025 

Molybdic Acid (Sodium Salt).2H2O
 

H2MoO4*2H2O 241.9 0.25 

Grams of powder to prepare 1L 
 

  4.43 
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Table A 3-1 Experimental Design of 2-D DiGE. 

Six experimental gels run, each contains two different samples labeled CyDye3 and 

CyDye5 plus CyDye2 labeled pooled. There are 12 samples with three different 

populations and four replications each. H (cells grown at 300 mM NaCl), HL (cells 

shifted down from 300 to 50 mM NaCl) and HLH (cells shifted up from 50 to 300 mM 

NaCl). 

Gel Number Label Group ID Group Description 
1 Cy2 Standard Pool of all 12 samples 

1 Cy3 H High salt ( 300mM ) 

1 Cy5 HL Down shock ( 300 → 50 mM ) 

2 Cy2 Standard Pool of all 12 samples 

2 Cy3 H Down shock ( 300 → 50 mM ) 

2 Cy5 HLH Up shock ( 50 → 300mM ) 

3 Cy2 Standard Pool of all 12 samples 

3 Cy3 HL High salt ( 300mM ) 

3 Cy5 H Up shock ( 50 → 300mM ) 

4 Cy2 Standard Pool of all 12 samples 

4 Cy3 HLH High salt ( 300mM ) 

4 Cy5 H Up shock ( 50 → 300mM ) 

5 Cy2 Standard Pool of all 12 samples 

5 Cy3 HLH High salt ( 300mM ) 

5 Cy5 HL Down shock ( 300 → 50 mM ) 

6 Cy2 Standard Pool of all 12 samples 

6 Cy3 HL Down shock ( 300 → 50 mM ) 

6 Cy5 HLH Up shock ( 50 → 300mM ) 
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Table A 3-2 Up-regulated Proteins in HHS Arabisopsis Cells Grown in High Salt. 
Spot ID, arbitrary protein spot identification number assigned by DeCyder software. Protein ID, the unique AGI gene identification number for 
sequenced protein. MALDI Score, confidence of correct protein identification by MASCOT (V 2.1) software from MALDI-ToF sequencing. Q-
Star Score, confidence of correct protein identification by MASCOT (V 2.1) software from electrospray/tandem MS sequencing. Description, 
AGI entry for protein function. Down Shock Fold Change, fold higher levels of protein in 6 day-old cultures of HHS cells grown at 300 mM 
NaCl compared with those in 6 day-old cultures grown in isotonic media at 50 mM NaCl. Up Shock Fold Change, fold increase in proteins in 
HHS cells after transfer from isotonic media containing 50 mM NaCl to 300 mM NaCl; in both cases protein was harvested from 6 day-old 
cultures. 
 

Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Transport 
917 At5g15090  596 Voltage-dependent anion-selective 

channel protein hsr2. 
 

3.268 3.521 0.000 8.6789 29211 

979 At5g15090  322 Voltage-dependent anion-selective 
channel protein. 
 

2.366 2.455 0.001 8.6789 29211 

528 At5g62810   285 PEX14 (peroxin - peroxisomal 
protein import and peroxisome 
biogenesis. PEX14 - membrane 
associated, protein import). 
 

1.390 1.150 0.000 5.7727 55595 

330 At5g11710 645  Clathrin binding protein-like 
(clathrin: molecular scaffold that 
drives formation of transport 
vesicles).  
 

1.070 1.280 0.002 4.6975  60634 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

940 At5g67500 200  Porin / VDAC Mitochondria outer 
membrane. 
 

1.991 2.451 0.001 9.3022 29595 

Signalling 
At1g56340 398  Calreticulin 1 (CRT1) (ubiquitous 

ER Ca2+ binding lectin-like 
chaperone).  
 

1.560 2.800 0.000 4.2038 48527 740 

At2g19480 77  Nucleosome assembly protein 
(NAP).  
 

1.560 2.800 0.000 4.0584 43543 

741 At1g56340  317 Calreticulin 1 (CRT1) (ubiquitous 
ER Ca2+ binding lectin-like 
chaperone).  
 

1.150 2.850 0.000 4.2038 48527 

At3g52570  276 Expressed protein, contains interpro 
enter IPR000379.  
 

1.040 1.270 0.003 6.5235 37527 1715 

At2g06530  173 SNF7 family protein (This family 
consists of a group of SNF-7 
homologues involved in protein 
sorting and transport from the 
endosome to the vacuole/lysosome 
in eukaryotic cells.  
 

1.040 1.270 0.003 5.287 25293 

891 At5g57050 41  Protein phosphatase 2C (abscisic 
acid-insensitive) (ABI2). 
  

1.588 1.796 0.000 6.2578 46307 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

829 At1g66340 41  ETR1, Chain A, of Arabidopsis 
Ethylene Receptor. 
 

1.540 1.665 0.036 7.8274 82567 

922 At1g66340 40  Ethylene receptor 1 (ETR1). 
 

2.055 2.105 0.006 7.8274 82567 

Stress 
1028 At1g02920 107  Glutathione S-transferase.  

 
2.649 2.159 0.006 6.6102 23580 

Senescence / Autophagy 
590 At4g11320  486 Similarity to cysteine proteinase. 

 
1.622 2.184 0.039 5.6606 40711 

928 At2g32730 42  26S proteasome regulatory subunit. 
 

1.660 1.469 0.010 5.0475 108978 

DNA / RNA Binding Proteins 
598 At5g47210 68  Nuclear RNA binding protein. 

 
2.034 2.399 0.027 9.3527 38000 

622 At5g47201 86  Nuclear RNA binding protein. 
 

1.961 2.366 0.016 9.3527 38000 

609 At5g47210 77  Nuclear RNA binding protein. 
 

1.926 2.173 0.010 9.3527 38000 

At4g16830  269 Nuclear antigen homolog 
(Hyaluronan / mRNA binding 
protein (pfam pf04774). 
 

1.320 1.450 0.007 8.6278  37468 1097 

At1g65930  122 Isocitrate dehydrogenase, putative / 
NADP+ isocitrate dehydrogenase, 
putative (TCA cycle). 
 

1.320 1.450 0.007 6.5224  45747 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Metabolism 
731 At1g13440  897 Glyceraldehyde 3-phosphate 

dehydrogenase, cytosolic. 
 

3.676 3.669 0.000 7.2154 36914 

765 At1g13440  483 Glyceraldehyde 3-phosphate 
dehydrogenase NAD binding 
domain.  
 

1.640 1.610 0.004 7.2154 36914 

At3g04120  318 Cytosolic glyceraldehyde-3-
phosphate dehydrogenase; responds 
to ROS signals during stress. 
 

2.841 2.717 0.000 7.1467 36915 

At3g15000  231 Expressed protein, similar to DAG 
protein. 
 

2.841 2.717 0.000 9.6063 42870 

At2g20360  176 Expressed protein. 
 

2.841 2.717 0.000 9.6501 43936 

729 

At1g53260  79 Similar to expressed protein  
(TAIR: At3g15000). 
 

2.841 2.717 0.000 9.6249 30114 

869 At5g40770 126  Prohibitin. 
 

2.111 1.969 0.001 7.8895 30400 

566 At5g55070 106  2- oxoglutrate dehydrogenase E2 
subunit 
 

2.147 2.579 0.000 9.6694 50134.0 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Metabolism/ cont. 
At5g43960  167 Rubisco subunit binding-protein 

alpha subunit, chloroplast. 
 

1.320 1.090 0.001 4.6451 50123 650 

At2g28000  104 Rubisco subunit binding-protein 
alpha subunit, chloroplast / 60 kda 
chaperonin alpha subunit / CPN-60 
(groel) alpha rubisco folding. 
 

1.320 1.090 0.001 4.8154 62073 

At3g55440  106 Triose-phosphate isomerase (EC 
5.3.1.1), cytosolic [imported] 
(Glycolysis / Gluconeogenesis, 
Inositol. 
 

1.440 1.020 0.043 5.1668 27169 1917 

At1g44790  80 Chac-like family protein (The chac 
protein is thought to be associated 
with the putative chaa Ca2+ /H+ 
cation transport protein in. 
 

1.440 1.020 0.043 4.9621 22229 

1146 At4g03950 42  Glucose-6-phosphate/phosphate 
translocator. 
 

1.630 2.143 0.002 10.1134 30603 

548 At2g46040 44  ELM2 domain-containing protein. 
 

2.012 2.138 0.003 7.5964 63315 

903 At1g62810 42  Copper amine oxidase. 
 

1.753 2.118 0.013 6.3891 80139 

Ambiguous Function 
952 At1g66340 39  Ethylene receptor 1 (ETR1) 

 
2.056 2.175 0.005 7.8274 82567 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Ambiguous Function/ cont. 
1029 At1g55480 38  Expressed protein. 

 
2.139 1.981 0.001 8.3697 37410 

879 At3g55290 37  Short-chain dehydrogenase/ 
reductase (SDR) family protein. 
 

1.933 2.130 0.029 8.3682 30204 

1026 At5g46150 32  LEM3 (ligand-effect modulator 3). 
 

2.317 1.989 0.034 9.6623 39546 

1038 At3g60880 37  Dihydrodipico-linate synthase 1 
(DHDPS1). 
 

1.705 1.927 0.000 6.9578 40465 

1016 At2g33570 36  Expressed protein. 
 

1.695 1.874 0.072 9.1097 56865 

1132 At3g27530 35  Vesicle tethering family protein. 
 

1.262 1.730 0.066 4.5774 101836 

1140 At3g51070 35  Dehydration-responsive protein-
related. 
 

2.175 1.691 0.019 5.2092 101445 

At3g27430 34  20S proteasome beta subunit B 
(PBB1. 
 

1.521 1.598 0.010 8.9501 28812 661 

At5g40580 34  20S proteasome beta subunit B 
(PBB1). 

1.521 1.598 0.010 7.2026 29617 

133 At1g29710 39  Pentotricopeptide (PPR). 
 

1.184 1.499 0.040 6.77 53814 

1278 At3g27430 36  20S proteasome beta subunit B 
(PBB1). 

1.193 1.472 0.003 8.9501 28812 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Ambiguous Function/ cont. 
586 At1g69170 38  Squamosa promoter-binding 

protein-like6 (SPL6). 
 

3.987 1.499 0.040 7.7384 45953 

526 At4g23160 37  Protein kinase family protein. 
 

2.430 1.472 0.003 7.1501 141387 

726 At5g28750 37  Thylakoid assembly protein. 
 

2.889 3.601 0.000 9.8186 15713 

888 At2g28680 36  Cupin family protein. 
 

2.424 2.714 0.002 6.6805 38465 

576 At2g26210 22  Ankyrin repeat family protein. 
 

2.480 2.892 0.000 5.8252 20324 

715 At2g22640 20  WAVE protein. 
 

2.392 3.211 0.000 5.8265 9481 
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Table A 3-3 Down-regulated Proteins in HHS Arabisopsis Cells Grown in High Salt. 
Spot ID, arbitrary protein spot identification number assigned by DeCyder software. Protein ID, the unique AGI gene identification number for 
sequenced protein. MALDI Score, confidence of correct protein identification by MASCOT (v 2.1) software from MALDI-ToF sequencing. Q-
Star Score, confidence of correct protein identification by MASCOT (v 2.1) software from electrospray/tandem MS sequencing. Description, 
AGI entry for protein function. Down Shock Fold Change, fold higher levels of protein in 6 day-old cultures of HHS cells grown at 300 mM 
NaCl compared with those in 6 day-old cultures grown in isotonic media at 50 mM NaCl. Up Shock Fold Change, fold increase in proteins in 
HHS cells after transfer from isotonic media containing 50 mM NaCl to 300 mM NaCl; in both cases protein was harvested from 6 day-old 
cultures. 
 
Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Stress 
At1g02920   165 Glutathione S-transferase(GST) bits 

or putative Arabidopsis has 48 GST 
genes.GST11.  

0.952 0.735 0.011 6.6102 23598 

At2g02930   142 GST16  
 

0.952 0.735 0.011 6.7317 24121 

At4g02520  137 GST2.  0.952 0.735 0.011 6.315 24129 

1918 

At2g30860  102 ATGSTF9.  
 

0.952 0.735 0.011 6.6378 24146 

At1g75270  187  GSH dependent dehydroascorbate 
reductase, putative (Ascorbate and 
aldarate metabolism, Glutamate 
metabolism, Glutathione 
metabolism).  

0.990 0.813 0.014 6.0387 23407 

At4g02520  178 GST2.  
 

0.990 0.813 0.014 6.3150 24129 

1945 

At1g02920 
 

 156 GST11; supported by cDNA 
G|443697.  

0.990 0.813 0.014 6.6102 23598 

Spot Protein ID MALDI Q Star Description Down Shock Up Shock P PI Mr 
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ID Score Score Fold 
Change 
(300  50) 

Fold 
Change    
(50  300) 

DNA / RNA Binding Proteins 
1523 At1g09760 60   U2 small nuclear ribonucleoprotein 

A, putative (snRNPs are involved 
in RNA synthesis, processing, 
transportation, translation and 
degradation).  

0.926 0.840 0.014 5.8558 28042 

Metabolism 
At1g75280  571 Isoflavone reductase, putative 

(biosynthesis of phytoalexin 
medicarpin, fungicide). 

0.885 0.943 0.012 5.7348 33737 1582 

At2g05990  186 Enoyl-ACP reductase (Fatty acid 
biosynthesis (path 1).  

0.885 0.943 0.012 9.3608 41214 

1475 At1g74020  536 Strictosidine synthase (Terpenoid 
biosynthesis Indole and ipecac 
alkaloid biosynthesis).  

0.714 0.885 0.000 5.4345 35293 

At4g10340  217 Chlorophyll A-B binding protein 
CP26, chloroplast / light-harvesting 
complex II protein 5 / LHCIIc 
(LHCB5).  

0.704 0.840 0.000 6.2942 30157 

At3g55440  161 Triose-phosphate isomerase.  0.704 0.840 0.000 5.1668 27169 
At3g10410  149 Serine carboxypeptidase III, 

putative all of these serine 
carboxypeptidase-like (SCPL) 
metabolism is unknown).  

0.704 0.840 0.000 5.0271 57302 

1920 

At5g01600  136 Ferritin 1 (FER1) (4 ferritin genes 
in arabidopsis – atfer1 involved in 
response to excess iron, expressed 
in veg tissue, not seeds. Iron 
homeostasis). 

0.704 0.840 0.000 6.0408 28178 

Spot Protein ID MALDI Q Star Description Down Shock Up Shock P PI Mr 
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ID Score Score Fold 
Change 
(300  50) 

Fold 
Change    
(50  300) 

Metabolism/ cont. 
1367 At3g04120 

 
80   Glyceraldehyde-3-phosphate 

dehydrogenase, cytosolic (GAPC) / 
NAD-dependent glyceraldehyde-3-
phospha (Glycolysis / 
Gluconeogenesis.).  
 

0.847 0.952 0.002 7.1467 36915 

Ambiguous Function  
1939 At3g56090 74  Ferritin, putative 

 
0.667 0.763 0.000 5.6186 28837 

1972 At5g01600 67  Ferritin 1 (FER1). 
 

0.521 0.671 0.000 6.0408 28178 
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Table A 3-4 Modulated (Down & Up-regulated) Proteins in HHS Arabisopsis Cells Grown in High Salt. 
Spot ID, arbitrary protein spot identification number assigned by DeCyder software. Protein ID, the unique AGI gene identification number for 
sequenced protein. MALDI Score, confidence of correct protein identification by MASCOT (v 2.1) software from MALDI-ToF sequencing. Q-
Star Score, confidence of correct protein identification by MASCOT (v 2.1) software from electrospray / tandem MS sequencing. Description, 
AGI entry for protein function. Down Shock Fold Change, fold higher levels of protein in 6 day-old cultures of HHS cells grown at 300 mM 
NaCl compared with those in 6 day-old cultures grown in isotonic media at 50 mM NaCl. Up Shock Fold Change, fold increase in proteins in 
HHS cells after transfer from isotonic media containing 50 mM NaCl to 300 mM NaCl; in both cases protein was harvested from 6 day-old 
cultures. 
 

Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Transport 
At3g23400  124 Plastid-lipid associated protein 

(fibrillin).  
 

1.150 0.735 0.002 5.903 30455 

At3g58010  105 Expressed protein. 
 

1.150 0.735 0.002 5.0774 34091 

1822 

At2g37410  82 Inner mitochondrial membrane 
protein importer (TIM17). 
 

1.150 0.735 0.002 4.985 25571 

At1g76030  815 Vacuolar H+-ATPase subunit B.  
 

1.030 0.901 0.004 4.7287 54108 807 

At5g55220  72 Trigger factor-like protein 
(chaperone). 
 

1.030 0.901 0.004 4.9767 61734 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Transporters / cont. 
At3g20000  221 Porin family protein (ubiquitous 

eukaryote voltage-gated diffusion 
pore).  
 

0.901 1.140 0.001 6.8102 34250 1519 

At1g53240  128 Mitochondrial NAD-dependent 
malate dehydrogenase.  
 

0.901 1.140 0.001 8.5824 35805 

At5g08670 
 

 445 Mitochondrial F1 ATP synthase 
beta-subunit.  
 

0.917 1.040 0.006 6.5979 59672 

At5g08690  445 Mitochondrial F1 ATP synthase 
beta subunit. 

0.917 1.040 0.006 6.5979 59714 

At5g08680  445 Mitochondrial F1 ATP synthase 
beta subunit. 
 

0.917 1.040 0.006 6.4527 59860 

At2g36530  
 

167 Enolase 2-phosphoglycerate 
dehydratase. 

0.917 1.040 0.006 5.5147 47720 

AtCg00480  142 Chloroplast ATP synthase CF1 beta 
chain. 

0.917 1.040 0.006 5.1528 53935 

AtCg00490  119 RUBISCO large subunit. 
 

0.917 1.040 0.006 6.2395 52956 

897 
 

At3g48000  78 Mitochondrial aldehyde 
dehydrogenase (ALDH2) 
(detoxification of acetaldehyde). 

0.917 1.040 0.006 7.5221 58589 

842 At5g17010 41  Sugar transporter family protein. 
 

0.939 1.556 0.052 6.7421 53539 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Signalling 
1432 At1g35720 80  Annexin 1 (ANN1); Ca2+-

dependent phospholipid binding 
protein, involved in cytoskeletal 
interactions, phospholipase 
inhibition, intracellular signalling, 
anticoagulation, and membrane 
fusion).  

0.935 1.090 0.002 5.0181 36204 

Stress 
At5g42270  661 FtsH metalloprotease, putative 

(Filamentation temperature 
sensitive H).  
 

1.300 0.901 0.000 5.1291 75233 

At4g37910  538 heat shock protein 70, 
mitochondrial, putative  
 

1.300 0.901 0.000 5.2535 73076 

At5g09590  538 Heat shock protein 70 / HSP70 
(HSC70-5).  
 

1.300 0.901 0.000 5.4467 72991 

567 

At1g78900  432 Vacuolar H+ ATPase alpha subunit. 
 

1.300 0.901 0.000 4.8641 68813 

2062 At4g11600  291 Phospholipid-hydroperoxide 
glutathione peroxidise. 
 

1.110 0.787 0.021 9.8566 25584 

1133 At5g03630 152   Monodehydroascorbate reductase, 
putative (K+ transport).  
 

1.100 0.820 0.002 4.9701 47480 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Stress/ cont. 
At1g02920  176 GST11. 

 
1.110 0.775 0.007 6.6102 23598 

At1g20225  130 Contains domain of protein-
disulfide isomerase 
[Posttranslational modification, 
protein turnover, chaperones]. 
 

1.110 0.775 0.007 7.1423 26052 

At4g02520  121 GST2. 
 

1.110 0.775 0.007 6.315 24129 

1936 

At2g30860  108 ATGSTF7. 
 

1.110 0.775 0.007 6.6378 24146 

193 At4g24190 258  SHEPHERD (ER-resident HSP90-
like protein possibly required for 
folding CLV (clavata) proteins).  
 

0.909 1.570 0.000 4.6612 94205 

941 At1g80030  124 DNAJ heat shock protein, putative. 
 

0.893 1.210 0.005 7.6466 53821 

1018 At1g63940 121  Monodehydroascorbate reductase, 
putative (K+ transport).  
 

0.800 1.250 0.005 7.5265 52502 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Senescence / Autophagy 
973 At1g11910  245 Aspartyl protease (senescence, 

stress responses, programmed cell 
death and reproduction).  
 

1.190 0.794 0.002 5.2041 54614 

At3g27310  114 Contains UBX domain. Domain 
present in ubiquitin-regulatory 
proteins). 
 

1.040 0.909 0.047 6.7016 28502 1615 

At1g65260  103 Poss: PspA/IM30 family protein 
(PspA - phage shock protein A - 
transcription factor).  
 

1.040 0.909 0.047 9.7025 36393 

DNA / RNA Binding Proteins 
At4g17720  317 RNA recognition motif (RRM)-

containing protein.  
 

1.030 0.781 0.004 5.902 33548 1387 

At1g07750  117 Cupin family protein (functionally 
diverse enzyme superfamily with 
barrel structure). 

1.030 0.0.781 0.004 6.0615 38311 

619 At1g15340  552 5’ Methyl-CpG-binding domain- 
(transcriptional repression). 

0.935 1.180 0.007 4.336 42358 

At1g15340  387 5’ Methyl-CpG-binding domain- 
(transcriptional repression).  
 

0.893 1.200 0.010 4.336 42358 618 

At2g15860  176 Expressed protein. 
 

0.893 1.200 0.010 4.3778 55575 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Metabolism 
At1g13440  149 Cytosolic Glyceraldehyde-3-

phosphate dehydrogenase.  
 

1.100 0.787 0.004 7.2154 36914 

At2g01140  91 Fructose-bisphosphate aldolase, 
putative.  
 

1.100 0.787 0.004 8.2763 42327 

1422 

At1g12900  76 Chloroplast Glyceraldehyde 3-
phosphate dehydrogenase.  
 

1.100 0.787 0.004 8.2028 42847 

At5g55070  392 Mitochondrial 2-oxoglutarate 
dehydrogenase E2 subunit. 
 

0.901 1.110 0.000 9.6694 50134 1123 

At3g52880  140 Monodehydroascorbate reductase, 
putative (Ascorbate and aldarate 
metabolism).  
 

0.901 1.110 0.000 6.8015 46487 

924 At3g03250  654 UTP--glucose-1-phosphate 
uridylyltransferase, putative / UDP-
glucose pyrophosphorylase, 
putative.  
 

0.709 1.470 0.001 5.9815 51739 

At5g54770  252 Thiazole biosynthetic enzyme, 
chloroplast (ARA6) (THI1) 
(THI4)thiamin (vitB1).  
 

0.787 1.080 0.001 6.1651 36665 1685 

At5g24490  77 30S ribosomal protein, putative. 
 

0.787 1.080 0.001 6.7427 34857 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Metabolism/ cont. 
At2g20420  172 Succinyl-CoA ligase beta subunit 

(TCA cycle).  
0.709 1.250 0.001 6.6863 45346 

At2g39730  101 RuBisCO activase .  0.709 1.140 0.001 5.9289 51982 

1261 

At4g13360  68 Enoyl-CoA hydratase/isomerase 
(Fatty acid metabolism). 
 

0.709 1.140 0.001 6.639 46251 

376 At2g38040 755  Acetyl co-enzyme A carboxylase 
carboxyltransferase alpha subunit 
(Fatty acid and phospholipid 
metabolism).  

0.926 1.170 0.002 5.5794 85307 

At3g55800 418  Chloroplast Sedoheptulose-1,7-
bisphosphatase, (Carbon fixation). 
 

0.714 1.420 0.002 6.5221 42415 1383 

At1g62380 140  Putative ACC oxidase, (Final step 
in ethylene biosynthesis) 
 

0.714 1.420 0.002 4.7436 36183 

At1g70730  648 Putative cytoplasmic 
Phosphoglucomutase, / glucose 
phosphomutase. 

0.909 1.110 0.003 5.5658 63482 602 

At5g60980  68 Nuclear transport factor 2 (NTF2) 
with RNA recognition motif 
(RRM). 

0.909 1.110 0.003 5.8109 49416 

1511 At3g47520  217 Chloroplast Malate Dehydrogenase 
[NAD].  

0.800 1.280 0.004 8.8111 42406 

874 AtCg00490 74  RuBisCO large subunit.  
 

0.847 1.240 0.000 6.2395 52956 
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Spot 
ID 

Protein ID MALDI 
Score 

Q Star 
Score 

Description Down Shock 
Fold 
Change 
(300  50) 

Up Shock 
Fold 
Change    
(50  300) 

P PI Mr 

Metabolism/ cont. 
925 At3g03250  67 UTP--glucose-1-phosphate 

uridylyltransferase, putative / UDP-
glucose pyrophosphorylase, 
putative (Pentose and glucuronate 
interconversions, Galactose 
metabolism, Starch and sucrose 
metabolism, Nucleotide sugars 
metabolism).  

0.862 1.310 0.002 5.9815 51739 

Ambiguous Function  
1990 At4g01050  144 Hydroxyproline-rich glycoprotein 

family protein (HRGPs are known 
as constituents of extracellular 
matrix of HPs – seem to function as 
structural barriers in defense 
responses). 

1.090 0.806 0.021 4.9351 49387 

1882 At3g55440 74  Triose-phosphate isomerase (EC 
5.3.1.1), cytosolic [imported]. 
 

1.000 0.870 0.006 5.1668 27169 

At3g58010  415 Expressed protein (PAP_fibrillin 
domain.) 

0.901 1.050 0.003 5.0774 34091 

At4g37200  244 Thioredoxin family protein. 
 

0.901 1.050 0.003 5.0364 28745 

At1g64520  237 26S proteasome subunit RPN12 
(Protein degradation). 

0.901 1.050 0.003 4.538 30706 

1806 

At3g07410  116 Ras-related GTP-binding family 
protein (Vesicle trafficking, 
signalling, salt stress. 

0.901 1.050 0.003 4.4622 24320 
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Mascot Search Results 

User            : Attumi 
Email           : 0108932a@student.gla.ac.uk 
Search title    : poonam 55029 - 08-04-05-plate 2_54_0001.dat 
Database        : NCBInr 20050416 (2440425 sequences; 825931499 
residues) 
Taxonomy        : Arabidopsis thaliana (thale cress) (49672 sequences) 
Timestamp       : 21 Apr 2005 at 09:45:40 GMT 
Top Score       : 106 for gi|22136096, 2-oxoglutarate dehydrogenase E2 
subunit [Arabidopsis thaliana] 
Probability Based Mowse Score 
Ions score is -10*Log(P), where P is the probability that the observed match is a random 
event. 
Protein scores greater than 59 are significant (p<0.05).  

 

 
Concise Protein Summary Report 

Format As
 

Concise Protein Summary  Help  

  Significance threshold p< 0.05 Max. number of hits 20  

Re-Search All
    

1. gi|22136096 -    Mass: 50273-    Score: 106-        

Expect:1.2e-06-      Queries matched:11 
 2-oxoglutarate dehydrogenase E2 subunit [Arabidopsis thaliana] 

 

Fig. A 3-1MASCOT Protein Identity Output. 

This protein was identified as 2-oxoglutarate dehydrogenase E2 subunit and was up 

regulated in high salt Arabidopsis thaliana cells. The protein identification has 

significant. Score of 106, (p<0.05). 
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Mascot Search Results 

User            : Attumi 
Email           :0108932a@student..gla.ac.uk 
Search title    : h4 
MS data file    : C:\Attumi\May 04 MSMS\10_07_04 Attumi Plate 
11450.wiff 
Database        : NCBInr 20040612 (1846720 sequences; 611532004 
residues) 
Taxonomy        : Arabidopsis thaliana (thale cress) (49702 sequences) 
Timestamp       : 12 Jul 2004 at 14:09:25 GMT 
Significant hits: gi|17939849  mitochondrial F1 ATP synthase beta subunit [Arabidopsis thaliana] 
                  gi|15227987  enolase [Arabidopsis thaliana] 
                  gi|7525040   ATP synthase CF1 beta chain [Arabidopsis thaliana] 
                  gi|15809970  At2g36530/F1O11.16 [Arabidopsis thaliana] 
                  gi|1944432   ribulosebisphosphate carboxylase [Arabidopsis thaliana] 
                  gi|15226092  ATP synthase alpha chain, mitochondrial, putative [Arabidopsis thaliana] 
                  gi|15228319  aldehyde dehydrogenase (ALDH2) [Arabidopsis thaliana] 
                  gi|15241460  polygalacturonase, putative / pectinase, putative [Arabidopsis thaliana] 
                  gi|18399468  expressed protein [Arabidopsis thaliana] 
                  gi|7525018   ATPase alpha subunit [Arabidopsis thaliana] 
Probability Based Mowse Score 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 35 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. 

 

 
Concise Protein Summary Report 

Format As
 

Concise Protein Summary  Help  

  Significance threshold p< 0.05 Max. number of hits 20  

Re-Search All
    

Fig. A 3-2 MASCOT Result Page of a Mixed Spot. 

Ten different proteins were identified using tandem MS from one spot on the 2-DE gel. 
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Fig. A 3-3 Example of DeCyder DIA Screen Print. 

The DIA window has four sections. Upper left is the Image View that shows both the 
primary (Cy3, salt down shock cells (HL) and secondary (Cy5, salt up shock cells 
(HLH) gel images. Spots shown in red are down regulated in HL cells; spots shown in 
blue are up regulated salt HLH. Spots shown in green are similar. Upper right is the 
Histogram View, which displays data associated with all detected spots in the primary 
and secondary images. The left y axis displays the spot frequency. The red curve 
represents the frequency distribution of the log volume ratio. The blue curve represents 
a normalized model frequency fitted to the spot ratio so that the modal peak is zero. The 
right y axis represents the scatter parameter selected in the histogram selection box 
(right of the histogram). A plotted single data point on the histogram represents an 
individual protein spot. At the bottom left is the 3D view of a selected spot on the 
primary and secondary image. Bottom right is the Table View that displays data 
associated with selected co-detected spots, including volume ratio and whether the spot 
volume is increased / decreased or unchanged. 
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Fig. A 3-4 Screen-Print of the BVA Analysis Software in the Spot Map Table Mode 

Used to Analyze the Salt Shock Experiment. 

The Screen is split into four sections. The upper left is the image view that demonstrates 
a high salt Cy3 labeled image on the left and the corresponding salt down shock Cy5 
labeled image on the right. The spots detected by the DIA/Batch Processor module are 
shown in green. The second section of the screen top right contains information on all of 
the groups and gels in the experiment, including the group type and which CyDye they 
are labeled with. The bottom right section is the Table View which contains more 
details about all of the gels in the experiment, including the number of image, gel 
number, type of labeling, CyDye label, the number of spots detected on the gel, the 
number of spots matched to the master, which gel has been assigned master status (M) 
and which group the gel belongs to; salt down shock (HL), salt up shock (HLH), High 
salt (H) or standard. The Cy2 labeled standard gel was assigned master status in salt 
shock experiment. 
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Fig. A 3-5 Screen-Print of the BVA Analysis Software in the Match Table Mode. 

This mode gives lists of all data associated with inner-gel matching in salt shock 

experiment. This figure displays spot number 917 matched between two gel images 

from different two gels (High salt (H) Cy3 on the left and salt down shock (HL) Cy5 on 

the right). The image View can be magnified to show the area of interest of gel in 

details. Bottom left is 3D View showing the abundance of the matched protein in the 

two images from gel 2 on the left and gel 1 on the right. 
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Fig. A 3-6 Screen-Print of the BVA Analysis Software in the Protein Table Mode. 

The protein match table shows spot specific information including the serial number, 

master number of the spot, the status of the spot (confirmed or unconfirmed), how many 

gel images the spot has been detected in, the (t-test and ANOVA) values and the 

average ratio of spot volume. This screenshot shows spot number 917 from gel number 

1. The graph in the top right section illustrates that the volume of this spot is 

consistently higher in Arabidopsis thaliana high salt cells than salt down shock cells (as 

measured by standardized log abundance). 
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Fig. A 3-7 Screen-Print of the BVA Analysis Software in the Appearance Table 

Mode.  

This table is used to show and process data associated with a single protein spot 

identified across the gels. Here we can see master spot number 917 which is present on 

all 19 gel images (18 CyDye images and the one SYPRO Orange stained preparative gel 

image) in salt shock experiment. The table view contains information about this one 

particular spot including the volume and abundance in all images.
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Table A 4-1 Composition of 1/4 Strength Hoagland’s Nutrient Solution (SHNS) 

Ingredients. 

Source (Hoagland and Arnon, 1950). *Applied concentration. 

http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi  
 

Macronutrient 
Compound’s name 

Formula and Stock solution ¼ SHNS to 
use*, ml/l 

Mono-potassium phosphate 1 M K H2 PO4 (fw 136.09) 0.25 

Potassium nitrate 1 M K NO3 (fw 101.11) 1.25 

Calcium nitrate 1 M Ca (NO3)2  (fw 236.2) 1.25 

Magnesium sulphate 1 M Mg SO4 x 7H2O 0.5 

Micronutrient  
Compound’s name 

Formula g/l 
¼ SHNS 
to use* 

Boric acid H3BO3 (fw 61.83) 2.86 0.25 ml/l 

Manganese chloride-4 hydrate MnCl2 x 4H2O (fw 197.9) 1.81       ..... 

Zinc sulphate - 7 hydrate ZnSO4 x 7H2O (fw 287.5) 0.22      ..... 

Cupric sulphate 5 hydrate CuSO4 x 5H2O (fw 249.7) 0.08      ..... 

Sodium molybdate Na2MoO4 x 2H2O (fw 241.9)  0.12      ..... 

FeNa-EDTA, ferric monosodium
Ethylenediaminetetra acetic acid 

Fe Na EDTA (fw 367.05) 42.5 mM ..... 
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Fig. A 4- 1 Raw Data of Carbon Dioxide Response Curve (CRC) of Barley Leaves 

(Control, 0 mM NaCl). 

Upper panel (a) shows Zhou 1 CRC and lower panel (b) shows Zhou 85 CRC. 

Blue solid line () the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () the relationship between net photosynthesis 

(An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco (carboxylation 

efficiency) from initial slope of the A/Ci curve. Red vertical dashed line (¦) ambient CO2 

(360 ppmv). The chamber light level was 487 μmol photons m-2 s-1 (PPFD). 
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Fig. A 4- 2 Raw Data of Carbon Dioxide Response Curve (CRC) of Barley Leaves 

treated with (50 mM NaCl). 

Upper panel (a) shows Zhou 1 CRC and lower panel (b) shows Zhou 85 CRC. 

Blue solid line () the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () the relationship between net photosynthesis 

(An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco (carboxylation 

efficiency) from initial slope of the A/Ci curve. Red vertical dashed line (¦) ambient CO2 

(360 ppmv). The chamber light level was 487 μmol photons m-2 s-1 (PPFD). 
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Fig. A 4- 3 Raw Data of Carbon Dioxide Response Curve (CRC) of Barley Leaf 

treated with (100 mM NaCl). 

Upper panel (a) shows Zhou 1 CRC and lower panel (b) shows Zhou 85 CRC. 

Blue solid line () the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () the relationship between net photosynthesis 

(An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco (carboxylation 

efficiency) from initial slope of the A/Ci curve. Red vertical dashed line (¦) ambient CO2 

(360 ppmv). The chamber light level was 487 μmol photons m-2 s-1 (PPFD). 
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Fig. A 4- 4 Raw Data of Carbon Dioxide Response Curve (CRC) of Barley Leaf 

treated with (150 mM NaCl). 

Upper panel (a) shows Zhou 1 CRC and lower panel (b) shows Zhou 85 CRC. 

Blue solid line () the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () the relationship between net photosynthesis 

(An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco (carboxylation 

efficiency) from initial slope of the A/Ci curve. Red vertical dashed line (¦) ambient CO2 

(360 ppmv). The chamber light level was 487 μmol photons m-2 s-1 (PPFD). 
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Fig. A 4- 5 Raw Data of Carbon Dioxide Response Curve (CRC) of Barley Leaf 

treated with (200 mM NaCl). 

Upper panel (a) shows Zhou 1 CRC and lower panel (b) shows Zhou 85 CRC. 

Blue solid line () the relationship between net photosynthesis (An) and the internal 

CO2 concentration (Ci). Black solid line () the relationship between net photosynthesis 

(An) and the air CO2 concentration (Ca). Blue dashed line (---) Vrubisco (carboxylation 

efficiency) from initial slope of the A/Ci curve. Red vertical dashed line (¦) ambient CO2 

(360 ppmv). The chamber light level was 487 μmol photons m-2 s-1 (PPFD). 
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Fig. A 4-6 The Effects of Salt Treatments on Theta (θ) of two barley lines. 

, Zhou 1; , Zhou. 85 

Each data point presents the mean and standard error of four replicates. Measurements 

were made 26 days after germination (7 days after salt treatment). Two factor analysis 

of variance (linear model) was performed on the data with Bonferroni pair-wise tests 

between treatment means. No significant differences (p<0.05) were found between 

Zhou 1 and Zhou 85 treatment means. 
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Table A 4-2 Raw Data of Two Barley Lines Development According to Zadok’s 

Scale. 

 
 Z1  Z85  Z85 Development Day 

day Average 
(n=16) St Error Average 

(n=16) St Error Average Days Delay 

5 10.00 0.00 10.00 0.00 5.00 0.00 
8 11.94 0.14 11.75 0.26 7.87 0.13 
12 13.00 0.00 12.69 0.28 11.71 0.29 
15 13.75 0.26 13.44 0.30 14.66 0.34 
17 14.00 0.00 14.00 0.00 17.00 0.00 
19 14.94 0.14 14.38 0.29 18.28 0.72 
22 15.50 0.30 15.38 0.29 21.82 0.18 
26 16.56 0.30 16.38 0.29 25.71 0.29 
29 17.81 0.23 17.06 0.14 27.78 1.22 
31 41.00 0.00 37.00 0.00 27.98 3.02 
33 45.00 0.00 39.00 0.00 28.60 4.40 
36 50.00 0.00 45.00 0.00 32.40 3.60 
38 58.38 1.44 49.00 0.00 31.90 6.10 
40 59.94 0.14 53.31 2.34 35.58 4.42 
43 70.38 0.29 59.00 0.00 36.05 6.95 
45 73.00 0.84 62.50 1.49 38.53 6.47 
47 75.00 0.00 65.00 0.00 40.73 6.27 
50 77.00 0.00 69.00 0.00 44.81 5.19 
52 85.00 0.00 71.00 0.00 43.44 8.56 
54 85.00 0.00 77.00 0.00 48.92 5.08 
57 87.00 0.00 85.00 0.00 55.69 1.31 
59 87.00 0.00 87.00 0.00 59.00 0.00 
61 90.00 0.00 87.00 0.00 58.97 2.03 
64 91.00 0.00 90.00 0.00 63.30 0.70 
67 92.00 0.00 91.00 0.00 66.27 0.73 
69 93.00 0.00 92.00 0.00 68.26 0.74 
71 94.00 0.00 93.00 0.00 70.24 0.76 
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Fig. A 4-7 Cereal grain development stages by Zadoks, Feekes and Haun codes. 

Source: http://plantsci.missouri.edu/cropsys/growth.html#Field_staging_form 
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Table A 4-3 Cereal Grain Development Stages by Zadoks, Feekes and Haun. 

Source: http://plantsci.missouri.edu/cropsys/growth.html#Field_staging_form 

------------------------------------------------------------------------------------------------------ 

   Zadoks Scale      Feekes Scale       Haun Scale      Description    

------------------------------------------------------------------------------------------------------ 

                                                                                  Germination 

      00                                  -                       -               Dry Seed 

      01                                  -                       -               Start of imbibition 

      03                                  -                       -               Imbibition complete 

      05                                  -                       -               Radicle emerged from seed 

      07                                  -                       -               Coleoptile emerged from seed 

      09                                  -                       0.0             Leaf just at coleoptile tip 

 

                                                                                    Seedling Growth 

      10                                  1                       -               First leaf through coleoptile 

      11                                  -                       1.0            First leaf extended 

      12                                  -                       1.+            Second leaf extending 

      13                                  -                       2.+            Third leaf extending 

      14                                  -                       3.+            Fourth leaf extending 

      15                                  -                       4.+            Fifth leaf extending 

      16                                  -                       5.+            Sixth leaf extending 

      17                                  -                       6.+            Seventh leaf extending 

      18                                  -                       7.+            Eighth leaf extending 

      19                                  -                       -               Nine or more leaves extended 

 

                                                                                     Tillering 

      20                                  -                       -                Main shoot only 

      21                                  2                      -                 Main shoot and one tiller 

      22                                  -                       -                Main shoot and two tillers 

      23                                  -                       -                Main shoot and three tillers 

      24                                  -                       -                Main shoot and four tillers 

      25                                  -                       -               Main shoot and five tillers 

      26                                  3                      -               Main shoot and six tillers 
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      27                                  -                       -              Main shoot and seven tillers 

      28                                  -                       -              Main shoot and eight tillers 

      29                                  -                       -              Main shoot and nine tillers 

 

                                                                                      Stem Elongation 

      30                                  4-5                   -               Psuedo stem erection 

      31                                  6                      -              First node detectable 

      32                                  7                      -              Second node detectable 

      33                                  -                       -             Third node detectable 

      34                                  -                       -             Fourth node detectable 

      35                                  -                       -             Fifth node detectable 

      36                                  -                       -             Sixth node detectable 

      37                                  8                      -             Flag leaf just visible 

      39                                  9                      -            Flag leaf ligule/collar just visible                           

                                                                                     Booting 

      40                                  -                       -                    --- 

      41                                  -                       8-9         Flag leaf sheath extending 

      45                                  10                     9.2         Boot just swollen 

      47                                  -                        -            Flag leaf sheath opening 

      49                                  -                       10.1       First awns visible 

 

                                                                                    Inflorescence Emergence 

      50                                  10.1                 10.2        First spikelet of inflorescence  

                                                                                  visible                                                                   

      53                                  10.2                 -             1/4 of inflorescence emerged 

      55                                  10.3                10.5        1/2 of inflorescence emerged 

      57                                  10.4                10.7        3/4 of inflorescence emerged 

      59                                  10.5                11.0        Emergence of inflorescence  

                                                                                   completed 

                                    

                                                                                         Anthesis 

      60                                  10.51              11.4         Beginning of anthesis 

      65                                  -                      11.5         Anthesis 1/2 completed 
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      69                                  -                      11.6         Anthesis completed 

 

 

                                                                                  Milk Development 

      70                                  -                      -             --- 

      71                                  10.54             12.1        Kernel watery-ripe 

      73                                  -                     13.0        Early milk 

      75                                  11.1                -             Medium milk 

      77                                  -                      -            Late milk 

 

                                                                                   Dough Development 

      80                                  -                      -               --- 

      83                                  -                     14.0         Early dough 

      85                                  11.2                -              Soft dough 

      87                                  -                     15.0        Hard dough 

 

                                                                                    Ripening 

      90                                  -                       -              --- 

      91                                  11.3                 -            Kernel hard (difficult to 

                                                                                 divide by thumbnail) 

      92                                  11.4               16.0        Kernel hard (can no longer 

                                                                                 be dented by thumbnail) 

      93                                  -                     -            Kernel loosening in daytime 

      94                                  -                     -            Overripe, straw dead and collapsing 

      95                                  -                     -            Seed dormant 

      96                                  -                     -           Viable seed giving 50% germination 

      97                                  -                     -           Seed not dormant 

      98                                  -                     -           Secondary dormancy induced 

      99                                  -                     -           Secondary dormancy lost 

--------------------------------------------------------------------------------------------------------- 
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