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Abstract 

This thesis presents new aspects of bond graph modelling in control, where established control 

theory is used for closed loop bond graph representations. In particular, the physical model 

based framework of bond graph modelling addresses Backstepping Control, Model Matching 

Control and Energy Shaping in Stabilisation Control. Even though these control design 

methodologies are quite different on analytical levels, it is shown that the feedback designs 

allow for closed loop bond graph models. Concepts of passivity and the port-Hamiltonian 

structure of bond graphs play a leading role throughout the thesis. Various detailed examples 

impart the essential results. 



Summary 

The bond graph modelling language has proven to offer a systematic framework for the 

modelling of lumped parameter multidisciplinary physical systems. Bond graph research and 

applications have witnessed tremendous advancement in open loop modelling ever since the 

inception of this graphical modelling technique by Professor Henry Paynter in 1968. On the 

other hand, bond graphs in control, or closed loop bond graph models, have not received the 

same level of research commitment compared to aspects of open loop systems modelling. 

This thesis contributes new aspects of bond graphs in control design by focusing on closed 

loop representations, where the idea of applying bond graphs for closed loop modelling is 

novel and virtually non-existent in the current bond graph literature. The thesis does not 

present new control theoretical results in any way but applies well-known control concepts to 

find closed loop bond graph representations for stabilisation problems. The physical model 

based character of general bond graph models is shown to be suitable for the control strate- 

gies of Backstepping Control, Model Matching Control and Energy Shaping in Stabilisation 

Control. 

Backstepping control within the bond graph framework is shown to be a case of exact back- 

stepping by which the closed loop dynamics is put into port-Hamiltonian form through a 

suitable choice of variables. Consequently, a bond graph representation of the closed loop 

dynamics can be expected to exist. The physical modelling arguments come into play by 

means of additive bond graph elements to specify the stabilising function, where the overall 

additive bond graph is referred to as the virtual actuator. It is known that backstepping con- 

trol is a recursive design technique to obtain a closed loop Lyapunov function; however, the 

geometric structure of the closed loop itself is generally not an immediate design goal. This 

thesis, on the other hand, aims at closed loop bond graph representations by having closed 

loop port-Hamiltonian dynamics as an explicit backstepping design goal. As a result, the 

well-known Lyapunov arguments are implicitly contained in the procedure and depend on 

the original plant energy function. 
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Model matching control addresses the (asymptotic) tracking of prescribed trajectories of 

some desired dynamic model. This thesis shows that such prescribed models can be chosen 

as bond graph models that are structurally "close" to the plant to satisfy certain solvability 

requirements of the Model Matching Problem (MMP). Tracking control through (bi)causal 

bond graph inversion has previously been reported in the bond graph literature, but the 

underlying mechanism of such feedback designs has not appeared in the current literature. 

This thesis argues that the bond graph based MIM is linked with various ideas of center 

manifold theory and output regulation problems. For certain cases, the MMP is shown to 

yield tracking error dynamics that "inherit" the plant dynamics. The conclusion drawn from 

this is that the closed loop error dynamics can be described by the plant bond graph such 

that additive bond graph elements can be used for closed loop stabilisation. 

Energy shaping in stabilisation control, as considered in this thesis, addresses feedback designs 

that modify the energy function and possibly the junction structure and resistive elements of 

the plant. It is shown that bond graphs can be used to find the closed loop energy function 

that attains feedback passivation with respect to the natural output. Most importantly, the 

closed loop energy function need not be known beforehand but follows from a "power bal- 

ance" of some suitable bond graph subsystem. Furthermore, instead of modifying the energy 

by means of the power balancing method alone, the Interconnection and Damping Assign- 

ment Passivity Based Control (IDA-PBC) is considered from a bond graph viewpoint. The 

interconnection and damping assignment is shown to allow for bond graph representations 

by modifying the junction structure and the dissipative elements of the plant bond graph. 

The desired closed loop interconnection and damping structures are therefore guided by bond 

graph topological considerations. Since IDA-PBC designs generally require the solution of 

first order partial differential equations, the solution to such designs must be dealt with 

analytically. 
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Preface 

When I learned about bond graphs, in the year 1998, someone once said to me that bond graph 

modelling looked like a "black art": A collection of arcane, unpublished, and mostly ad-hoc 

techniques developed for a particular application or systems area. ' At that moment, I was 

quite surprised by this remark; but now, in the year 2005, I do not believe this description 

of bond graph modelling is completely unjustified... 

Bond graphs look intriguing when seen for the first time, because the graphical topology 

is radically different from the ubiquitous block diagrams used in academia and industry. 

The graphical causal assignment procedures to derive the dynamic equations is devilishly 

clever, for it reinforces ones confidence in the modelling process, where aspects of constraint 

dynamics and algebraic loops have virtually no obscurities. Furthermore, bond graphs are 

based on energy concepts to specifically accommodate the systematic modelling of multidis- 

ciplinary physical systems. However, even though bond graph modelling is well-known by 

the systems modelling community, it is safe to say that bond graphs are used by a relatively 

small group of professionals only. Also, instead of being a collection of ad-hoc techniques, the 

bond graph language is highly structured and rich in literature. 

Now that my three years of graduate research have come to an end, I can say that bond 

graphs do embody certain elements of a "black art" after all: The graphical topology of bond 

graph models appears mystical at first, but a closer look reveals a spellbinding structure and 

cleverness. By writing this thesis, I have tried to uncover some new secrets of bond graph 

modelling in control design, hoping that what captivated my thoughts has been put in clear 

writing for everyone to read. 

Dustin Vink 

'Free On-Line Dictionary of Computing 

Groningen, The Netherlands. 
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Part I. 

Preliminaries on Bond Graphs and Control 



1. The Art of Bond Graph Modelling 

1.1. Introduction 

In 1959, Henry Paynter introduced bond graph modelling at the Massachusetts Institute of 

Technology (MIT) in Cambridge, Massachusetts, USA, and this lead to the first book [Pay6l] 

published on bond graphs. In addition to Henry Paynter's own work, his former Ph. D. 

students D. C. Karnopp, D. L. Margolis and R. C. Rosenberg subsequently accelerated 

bond graph research and have greatly contributed to bond graph fundamentals [Kar00]. 

But others, too, picked up bond graph modelling and published a wide variety of textbooks 

[B1u82], [Bor00], [Bor04], [Bre92b], [Ce191], [Dix74], [Gaw96], [Tho99] that describe both bond 

graph theory and various applications. In parallel to the ongoing bond graph research, it be- 

came clear that the systematic modelling approach offered by bond graphs rendered software 

implementation possible, where bond graph simulation packages [Ros74] started to emerge 

that were capable of numerical simulation by adhering to the strict bond graph topolog- 

ical rules. Today, a variety of software solutions are available that offer graphical design 

environments with advanced symbolical and numerical simulation engines for complex mul- 

tidisciplinary systems [Dyn04], [MTT04], [BV04]. 

It is safe to say that the art of bond graph modelling has been subjected to extensive research 

on a wide variety of topics over the last four decades. However, it is relatively difficult to 

compile a compact list of bond graph references that provide an adequate overview of bond 

graph theory and its applications. This can be partially attributed to the fact that bond 

graph research is somewhat scattered throughout the journals, conference proceedings and 

communications on systems modelling and simulation. Nevertheless, the reader may wish to 

consult the International Conference proceedings on Bond Graph Modelling and Simulation 

(ICBGM) for contemporary views and bundled research topics [ICBO3]. Furthermore, special 

issues [Bre9l], [Gaw02] on bond graphs have appeared that present various states of affairs. 

Regardless of the topic, the reader is simply referred to the above literature and references 

therein on past and current research pertaining to the bond graph language. 
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1. The Art of Bond Graph Modelling 

This chapter is organised as follows. First, fundamental notions on bond graph modelling are 

briefly recalled and can be found in the standard literature [Gaw96], where the author seizes 

the opportunity to present some small modifications with respect to standard bond graph 

notations and conventions. It has been attempted to keep the bond graph reproductions to 

a minimum. 

Second, there has been a relatively recent interest in port-Hamiltonian systems [Da197] and 

their connection with bond graph models [Go102], [Go103]. These developments cannot be 

called standard by any means and the identification of bond graph models as a class of 

port-Hamiltonian systems has not made it to university textbooks at this time of writing. 

Because the notion of port-Hamiltonian systems will prove to be instrumental for various 

considerations in this thesis, some important results on bond graphs and port-Hamiltonian 

systems will be recalled to provide a more self-contained exposition of bond graph induced 

dynamics. 

Finally, having presented the various modelling aspects of bond graphs, the thesis rationale 

and objective can be outlined constructively. It can be argued, for example, that certain 

aspects of physical model based control can be assisted by means of the closed loop bond graph 

representation, where further unification of modelling and control methods in the physical 

domain with a systematic modelling framework may lead to an improved understanding of 

physical model based control problems. 

1.2. Bond Graphs and Block Diagrams 

In a nutshell, block diagrams graphically depict signals connected to summation blocks, mul- 

tiplication blocks, integrator blocks and other specialised blocks that operate on signals. This 

modelling framework can be argued to be the standard graphical modelling tool for systems 

and control in both academia and industry. 

For example, consider the block diagram in Figure 1.1 with states xi, X2 and x3, some 

constants a, C, ml, m2 and r to be multiplied, and where f integrates the ingoing signal. 

Even though block diagrams are straightforward, it is required that causal relations are known 

before the block diagram can be drawn. Hence block diagrams do not provide additional 

causal information, showing that the modeller must actively derive all causal relations for 

block diagram modelling to be applicable. 
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1. The Art of Bond Graph Modelling 

/1 

Y2 

Figure 1.1.: Block diagram of electrical-mechanical system. 

1.2.1. Non-Causal Bond Graphs 

The bond graph language, on the other hand, is a graphical representation that does not 

identify system signals as completely separate entities but uses generalised energy and power 

considerations instead. More precisely, the bond graph identifies a natural pairing of two 

signals denoted as e and f, called the "effort" and "flow" respectively, such that P=ef 

yields generalised power. Therefore, bond graph modelling focuses on systems for which 

notions of energy and power are meaningful, such as multidisciplinary engineering systems. 

Furthermore, and this is important, bond graphs incorporate the notion of computational 

causality, which is absent in the block diagram framework. More precisely, bond graphs 

make a clear distinction between a :=b and b :=a, which are referred to as causal assign- 

ment statements. Moreover, the causal assignment is graphically depicted and subjected to 

strict rules that provide information on variable dependencies without actively putting such 

knowledge into the model. - 

To elaborate the most basic aspects of bond graphs in more detail, consider the non-causal 

bond graph in Figure 1.2 that represents the same electrical-mechanical system of Figure 1.1. 

The efforts and flows of a bond graph, e1 and flows fj, are always associated with a "bond" 

that is drawn as a harpoon shaped arrow, hence the name bond graph. When ejf3 > 0, the 

power flow is in the direction of the bond arrow. 

4 



1. The Art of Bond Graph Modelling 

I1 

i 
a 

ul m2 
x2 

SS1 11 
ml 

mlxl mlxl 

R 

12 

ý2 
m2 

X2 

XI 

GY M1 SS2 
M2 2 

Vx3 Lth3 
C 

Figure 1.2.: Non-causal bond graph of electrical-mechanical system. 

ei e2 
GY M fi g(X) 12 

e3 e4 
TFZ 

fs t(x) fa 

Figure 1.3.: Power continuous elements. 

In this thesis, efforts are drawn to the left or above the vertical and horizontal bonds respec- 

tively, whereas flows are drawn to the right or below the bonds. 

The power variables ej and fj of each bond can be collected into the pair (ej, fj) and are 

readily derived from Figure 1.2 as (ui, yl), (th1, x1/ml), (x2i x2/m2) and so forth. Efforts and 

flows contained in such pairs are referred to as conjugate power variables. Now, suppose that 

all bonds connected to a1 or 0 element point outward or inward, then the power balance 

associated with these 0-junctions and 1 -junctions is defined as 

Zejfj =0. 
i 

(1.1) 

The relation (1.1) expresses power continuity of 0-junctions and 1junctions, but correct 

signs must be accounted for when subsets of bonds have alternate directions. That is to say 

that either the inward or outward bond direction must be designated as being positive when 

evaluating the power balance (1.1). 

In addition to 0-junctions and 1junctions, the power continuous gyrator, GY, and the 

power continuous transformer, TF, as depicted in Figure 1.3 are frequently encountered in 

bond graph models. The gyrator maps efforts into flows and flows into efforts, whereas the 

transformer is defined as mapping efforts into efforts and flows into flows. These elements 

allow for various important relationships in multidisciplinary engineering systems. 
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1. The Art of Bond Graph Modelling 

Contrary to standard bond graph notation found in the literature [KarOO], this thesis does 

not use the notation of the modulated gyrator, MGY, and modulated transformer, MTF. 

Nonetheless, the standard non-causal definitions for gyrators and transformers in Figure 1.3 

are adopted and given by 

e2 - 9(x)fi = 0, 

e4 - t(x)e3 = 0, 

el - g(x)f2 = 

f3-t(x)f4=0, 
(1.2) 

where the modulations g(x) and t(x) may depend on state space coordinates xEXC RI. 

Hence, the notation in Figure 1.3 is sufficient for (non)-constant gyrators and transform- 

ers, because a graphical distinction between such modulations is not strictly necessary and 

does not induce a loss of generality in any way. Power continuity of the GY and TF elements 

is indeed guaranteed, regardless of the modulation, since by (1.2) it follows that 

e1f1 = 9(x)f2f1 = e2f2 

e3f3 = e3t(x)f4 = e4 f4" 
(1.3) 

Now, standard bond graph literature shows that the power balance (1.1) not only holds 

for single junctions, but the power balance is likewise satisfied for all outer bond pairs of 

a junction structure, which represents an arbitrary network interconnection of bonds, junc- 

tions, gyrators and transformers. 

The O -junctions and 1 -junctions do not only induce the power balance (1.1) with respect 

to all those bonds connected to them, but these junctions have some additional rules. For 

instance, by taking (1.1) into account, a single I -junction is defined to induce the relations 

1 ==: > 

whereas a single 0-junction induces 

0= 

fj = fz Eej = O, 
J 

ej =ei Eft=0. 

Therefore, the bond graph in Figure 1.2 shows that 

ul+Xi+ 
a 

X2 +T X1 =0 
m2 ml 

U2+X2-m1X1+ 
X3=0, 

(1.4) 

(1.5) 

(1.6) 

which are non-causal relationships from which the equations of motion can be derived. It 

is readily observed that the minus sign in the second relation of (1.6) is the result of an 

alternate bond direction. 
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1. The Art of Bond Graph Modelling 

It can be argued that the relations (1.1), (1.5) and (1.6) are corner stones of bond graph 

modelling, since they incorporate power continuity and generalised Kirchoff's laws that play 

crucial roles in many physical models [Bus98]. 

Now that basic notions of bonds, 0-junctions, 1junctions, TF and GY components have 

been briefly recalled, the definitions of the SS, C, I and R components that are to terminate 

the outer bonds of bond graphs are given as follows. First, the source sensor, SS, component 

as described in [Gaw96] represents an element that is associated with power supply; how- 

ever, the reader should note that the conventional effort source, Se, and flow source, Sf, often 

found in the literature will not be used in this thesis. Instead, the Se and Sf source elements 

are collected into the single SS element without losing generality of bond graph modelling 

features. 

Second, the C and I elements are storage elements and represent the storage of physical 

energy, such as kinetic and potential in the mechanical domain. These elements are usually 

associated with real-valued functions defined on some state space manifold X, so that one 

defines the maps C: X -º l and I: X -> R. The bond graph framework uses these energy 

functions to define the states of the system, where the bonds terminated with such C or I 

elements have constitutive relationships for their effort and flow pairs. Now, the non-causal 

constitutive relationships for efforts and flows associated with storage elements are typically 

defined as 
t 

C= e(t) - e(0) -Jf (s) ds =0 

°t (1.7) 

If (t) -f (0) -J e(s) ds = 0. 

0 
The bond graph in Figure 1.2, for example, shows that one could write ej(t) = ij(t)/mj with 

jE {1,2}, so that the constitutive relations of the I elements take the form 

ff (t) -fj (0) - xi (t)/mj +x (O)/mj = 0. (1.8) 

But instead of defining constitutive relations as in (1.7), one often defines an energy function 

for the storage elements from which the constitutive relations are derived. For example, in 

Figure 1.2 one would define the functions Ij(x) = xjý/(2mß) with fj = dIj(x)/dxj = xj/mj. 

Therefore, the constitutive relationships of bond graph storage elements are typically defined 

through the derivative of the overall energy function. 
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Figure 1.4.: Causal bond graph 

Finally, energy dissipation phenomena are implemented through R elements that represent 

various resistive effects, where the associated signal pairs (ej, fj) have constitutive relation- 

ships that are to satisfy ej(t) fj(t) >0 for all t>0, thereby ensuring that energy is extracted 

since the power flow is positive and outgoing. Dissipative R elements are therefore typically 

associated with asymptotic stabilising effects, and this will prove to be quite valuable for 

stabilisation control purposes. 

1.2.2. Causal Bond Graphs 

The block diagram in Figure 1.1 shows the causality of variables by means of ingoing and 

outgoing arrows, where the causality had already been established before the block diagram 

was drawn. However, modelling may require alternative causal patterns with respect to 

system inputs, thereby rendering the block diagram of limited interest for causal analysis. 

Now, the bond graph in Figure 1.2 offers 'a non-causal representation of the system from 

which the causal dynamics can be derived. In order to turn the various non-causal rela- 

tionships into assignment statements, the bond graph uses causal strokes and their junction 

causality to propagate computational causality of all power variables throughout the bond 

graph. To that end, consider the system in Figure 1.4 of which each bond has been aug- 

mented with a small perpendicular stroke, which induce assignment statements that lead to 

the equations of motion; see Figure 1.5 for the graphical rules of these strokes in terms of 

strong causality on 0-junctions and 1 -junctions. It should be noted that the small arrows 

indicate the computational direction of the efforts and flows: The flow is always directed away 

from the stroke whereas the effort is always directed towards the stroke, thereby offering a 

systematic, graphical mechanism for causal computation. 
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0 
f 

Figure 1.5.: Basic causal propagation through causal strokes. 

f/ CI 

Figure 1.6.: Integral causality for storage elements 

To arrive at the equations of motion, the non-causal bond graph is first assigned the causality 

of source elements for which the causality is propagated using the rules depicted in Figure 1.5. 

Subsequently, the preferred integral causality as depicted in Figure 1.6 is imposed and prop- 

agated, where the relations (1.7) evidently become 

t 
C e(t) = e(0) +Jf (s) ds 

0 (1.9) 
t 

I=f (t) =f (0) +J e(s) ds. 

0 
The opposite of integral causality is referred to as derivative causality and is associated with 

the reversal of causal strokes in Figure 1.6, leading to f (t) = e(t) for C components and 

e(t) =j (t) for I components. So by taking the above considerations into account, it is seen 

that the bond graph in Figure 1.5 yields the equations of motion 

ar xl = --x2 - xl - Ul 
m2 ml 

a1 th2 = ml X1 - cx3 - U2 1.10) 

1 
X3 = -X2, m2 

which are indeed identical to the dynamics derived from the block diagram in Figure 1.1. 

Causal assignment is systematic but may require additional attention in some cases, since 

causal propagation need not terminate for all bonds in case of algebraic loops [Gaw92J. 

Also, structural properties of the bond graph may induce derivative causalities of storage 

elements [Kar92]. The reader is referred to the literature for further details. 
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The causality assignment as briefly described is sometimes referred to as the Sequential 

Causality Assignment Procedure (SCAP) [Ros87], [van94]. This procedure implies that 

SS elements are given their preferred causality and where a largest set of C and I ele- 

ments are to have the preferred integral causality. It must be remembered that the stan- 

dard bond graph language imposes state variables defined by C and I elements, but these 

states may not yield efficient models in certain cases. Indeed, alternative causal assign- 

ment procedures, such as the Lagrangian Causality Assignment Procedure (LCAP), have 

shown to be capable of offering additional freedom to manipulate the structure of bond 

graph induced dynamics [Kar83], [Mar02]. Detailed accounts on causality can be found in 

[Bir9O], [Dij91], [Gaw95a], [Gaw92], [Hog87], [Jos74], [Lam97] and references therein. 

Bicausal Bond Graphs 

The concept of a single causal stroke to propagate the computational direction of effort and 

flows associated with bonds has proven to be unnecessarily restrictive in some cases [Gaw95a]. 

This can be attributed to the fact that propagation of causality with the single causal stroke 

mechanism implies opposite conjugate effort and flow directions. So by setting the causality 

of one bond signal fixes the propagation direction of the conjugate bond variable. On the 

other hand, power continuity of bond graphs is independent of causality, which implies that 

the causal stroke mechanism can be generalised to the cases where the conjugate effort and 

flow have identical computational directions. 

Causality of efforts on 0-junctions and flows on 1 -junctions need not be compromised when 

the single causal stroke is abandoned and where the conjugate efforts and flows attain in- 

dividual causal strokes instead. Doing so increases the number of causal configurations for 

bond graph models and has shown to offer an additional tool for causal analysis and mod- 

elling purposes [Gaw00], [Gaw03]. In particular, the notion of (bi)causality has proven to be 

quite useful for "causal inversion" problems [Ngw96] whereby the input/output dynamics are 

inverted through the (bi)causal stroke mechanism, if possible. 

Figure 1.7 shows the possible bicausal propagation of conjugate effort and flow pairs, where it 

is seen that the computational direction of both the effort and flows are rendered independent 

in a bicausal context. The rules for causal assignment with respect to junctions remains 

unchanged, and Figure 1.8 shows that efforts retain strong causality on 0 -junctions and that 

flows retain strong causality on 1 -junctions. 

10 
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Te e 
f 

yf 

Figure 1.7.: Bicausal propagation of effort and flow. 

Figure 1.8.: Examples of bicausal propagation on junctions. 

Bicausality for causal inversion problems is particularly instructive when bond graph input 

and output variables are chosen as non-conjugate pairs. To elaborate this point, from Fig- 

ure 1.4 it is seen that the single causal stroke mechanism selects the bond signal yj as the 

output of SS elements. Now, provided no causal conflict occurs, causal inversion is then 

achieved by moving some or all causal strokes to the other end of the bond. On the other 

hand, such input/output inversion is not suitable for non-conjugate input/output pairs. To 

see this, consider Figure 1.4 once again and suppose one defines the input/output pair (UI) Y2) 

by setting u2 =0 and by ignoring the output yl, but it is readily understood that the single 

stroke mechanism cannot be used to causally invert the pair (Ui, y2) in such a scenario. The 

reader is referred to [Ngw99a], [Ngw0la], [NgwOlb] for further accounts on causal inversion 

in physical systems modelling. 

1.3. Bond Graphs as Port-Hamiltonian Systems 

Even though the bond graph language offers a structured framework to derive equations of 

motion, the underlying mathematical structure of bond graph induced dynamics are relatively 

non-trivial. In [Ros7l], the mathematical representation of a class of bond graph models is 

addressed from a generic state space standpoint, whereas notions of Hamiltonian dynam- 

ics [Mar94] of bond graphs was recognised at a later stage later [Mas92], [Mas95]. Also, the 

port-Hamiltonian framework presented in [Dal97], [Sch96] offers a detailed geometric frame- 

work for bond graph induced dynamics [Go102], [Gol03]. 
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1.3.1. Basic Facts on Port-Hamiltonian Systems 

In [Da197], [Sch96], concepts of port-Hamiltonian systems are introduced in the context of 

energy conserving physical systems that have input and output ports by which they connect 

to the external environment. The authors then show that the coordinate representation of 

an important subclass of port-Hamiltonian systems takes the form 

x= {J(x) - R(x)JK(x) - 9(x)u (1.11) 

y= gT (x)K(x), 

where x= (xl,... 
, x0) EX are independent coordinates and where KT (x) = DH(x) is 

the row vector of partial derivatives of the smooth energy function H: X -+ R. The func- 

tion H(x) is called the Hamiltonian and represents the physical energy stored by the system. 

The matrix J(x) = -JT (x) is the structure matrix and defines power continuous network 

interconnections, whereas the positive (semi)-definite matrix R(x) = RT (x) is the dissipation 

structure that incorporates resistive effects. The port space of the system is represented by 

the matrix g(x) and where uE IR' are inputs and where yE 1R' are outputs. Clearly, the 

port-Hamiltonian system (1.11) satisfies 

H(x) = -KT(x)R(x)K(x) - yTU < -yTU, (1.12) 

which shows that the product yTu expresses the power injected into or extracted from the 

system (1.11). 

As argued in [Da197], the system (1.11) is called port-Hamiltonian by considering the fol- 

lowing. It is possible to define a bilinear, 'anti-symmetric bracket operation on real-valued 

functions defined as 

{F, G} (x) = JZ; (x) 
8x xi 

(x) äx j 
(x), (1.13) 

with F, G: X -> R. This bracket operation is recognised to be a Poisson bracket when 

Jacobi's identity is satisfied [Mar94], but this is not required. Then by following the argu- 

ments of [Mar94], one can use the structure matrix J(x) of (1.11) to define the "classical" 

Hamiltonian system 

th = J(x)K(x). (1.14) 

Therefore, the port-Hamiltonian system (1.11) can be said to generalise the system (1.14) 

by including the dissipation matrix R(x) and the input/output port interaction by means of 

the input matrix g(x). 

12 
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Figure 1.9.: Vector bond graph without dissipation. 

1.3.2. Network Interconnections, Dissipation and Ports 

The link between bond graph models and the port-Hamiltonian framework as presented 

in [Da197], [Sch96], [SchOOb], [Go102] is achieved by briefly considering the following. Fig- 

ure 1.9 shows the vector bond notation [Bre92a], [Bre95] of a system without dissipative 

elements, where it is seen that systems inputs can be any combination of efforts and flows. 

Define the respective inputs and outputs u= (ul) u2) and y= (yi, y2), the state space coordi- 

nates x= (xl, x2), the tangent vector x= (xl, x2), and the derivative K(x) = (Kl (x), K2 (x)) 

of the Hamiltonian H(x). Note that K, (x) and K2 (x) are column vectors of partial derivatives 

with respect to xl and x2 respectively. 

It can be shown that the network interconnections of power continuous bond graph ele- 

ments, denoted as JS(x), is itself power continuous [KarOO]. Furthermore, in [Ros7l] it was 

recognised that a junction structure JS(x) represents a linear map. These considerations 

then imply that the causal assigned bond graph in Figure 1.9 leads to the relation 

x_ 
B(x) 

K(x) 
= 

J(x) -g(x) K(x) 
(1.15) 

Iyu gT (x) D(x) 

for some matrices J(x), D(x) and some input matrix g(x) of suitable dimensions. Next 

observe that power continuity of JS(x) implies that 

KT(x)x+uTy= [KT(X) 
uT 

] B(x) 
K(x) 

= 0. (1.16) 

Since power continuity holds for all energy functions H(x) and all system inputs u, it fol- 

lows that (1.16) must satisfy B(x) = -BT(X), hence J(x) = -JT (x) and D(x) = -DT (x). 

Note that by (1.16) an arbitrary function H(x) remains constant along system trajectories 

compatible with the constraints u=0 or y=0. 

The system (1.15) represents an energy conserving port-Hamiltonian system, where for a 

relatively large class of systems it will be the case that D(x) = 0. 
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Figure 1.10.: Vector bond graph with dissipation. 

To include dissipation phenomena to arrive at a larger class of bond graph induced port-Hamiltonian 

dynamics requires the following considerations. Define the vectors of inputs and outputs as- 

sociated with the Rl and Rz elements as u, = (fl, e2) and y,. = (el, f2). Then suppose the 

vector bond graph in Figure 1.10 yields the dynamics 

x J(x) -g(x) -gr(x) K(x) 

y= gT (x) D(x) -b(x) u (1.17) 

Yr gr (x) bT (x) 0 ur 

which defines an anti-symmetric mapping associated with the power continuous junction 

structure. 

In many practical cases it is possible to model dissipation phenomena by considering the 

simple linear relation ur = Sy, - with S= ST > 0; this implies that yTUr >0 and energy 

is therefore extracted from the system. From (1.17) it follows that the port-Hamiltonian 

dynamics (1.17) can be rewritten as 

x J(x) - R(x) -g(x) - A(x) K(x) 
(1.18) 

y gT (x) - AT(x) D(x) - U(x) u 

with A(x) = gr(x)SbT (x), R(x) = gr(x)Sgr (x) and U(x) = b(x)SbT (x), and observe that 

R(x) = RT(x) >0 and U(x) = UT (x) > 0. 

The port-Hamiltonian dynamics (1.11) are seen to be contained in the bond graph induced 

dynamics (1.18), where it should be noted that a relatively large class of multidisciplinary 

engineering system can be adequately modelled with A(x) = 0, D(x) =0 and U(x) = 0. As 

will be seen in the thesis, models of the form (1.11) allow for a relatively new physical model 

based control framework [Ort02b]. 
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Nov, the general bond graph induced dynamics (1.18) can be written in a more compact 

form, being 

xI([ J(x) -9(x)) R(x) 

y gT(x) D(x) AT (x) 

._ 
[J(x) 

_ 
R(x)1 K(x) 

LJ 
u 

A(x)) K(x) 

U(x) u 
(1.19) 

where the junction structure JS(x) induces the structure matrix Y(x) 
= -JT(x) and where 

the resistive elements induce the dissipation matrix R(x) = RT (x) > 0. Then by equating 

the power flow of all bonds in Figure 1.10 one finally obtains 

dH(x)_-[KT(x) 
uT 

] R(x) 
K(x) 

u 
-y 

Tu < -YT U, (1.20) 

which clearly shows that the stored energy depends on the supply rate yT u. 

The following final remark is in order. Section 1.2.2 pointed out that it may not be possible to 

have all C and I elements in the preferred integral causality without inducing causal conflicts 

in the junction structure JS(x). To overcome such causal problems, it is always possible to 

insert additional SS elements to remove any causal conflicts from occurring; however, doing 

so implies that the outputs of such source element are to be zero [Mar02]. In the case where 

such additional SS elements are necessary, the bond graph can be shown to induce implicit 

port-Hamiltonian dynamics [SchOOa]. This will not be further elaborated. 

1.4. Thesis Rationale and Objective 

It is safe to say that the open loop modelling capabilities of bond graphs are well-understood. 

Indeed, as briefly presented in Section 1.2, the graphical aspects of bond graphs have been 

subjected to significant research efforts, where the more geometric port-Hamiltonian descrip- 

tion of Section 1.3 can be argued to have contributed to a further understanding of the 

network modelling of physical systems. 

On the other hand, bond graph modelling in control cannot claim to have reached the level of 

research commitment and sophistication comparable to the modelling aspects of bond graphs. 

Nonetheless, a wide variety of compelling bond graph considerations in various control designs 

have appeared over the years [Kar79], [Bar77], [Gaw95b], [Hog85], [Jun01], [Rob95], [Yeh99]. 
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Modern (robust) control theory (e. g. [Zho981) is analytical in nature and can be argued to 

be quite successful in addressing a myriad of control problems. But in contrast to a sole 

analytic approach, there are valuable notions of "Control in the Physical Domain" [Sha9l] 

that attempt to use certain properties of the physical system to aid the controller design. For 

example, the property of physical stored energy can often be used to derive certain feedback 

laws [OrtOlj. 

Therefore, instead of analytical approaches, the objective of this thesis is to use established 

control methods for closed loop bond graphs. More precisely, this thesis is primarily con- 

cerned with closed loop bond graph representations to facilitate physical model arguments 

for control purposes. Most importantly, the port-Hamiltonian dynamics associated with 

bond graphs will prove to be an important fact for the various feedback designs. The 

reader should note, however, that the application of bond graphs in control is certainly 

not new [Gaw95b], [NgwOla], but this thesis "rebundles" established control theory for the 

modelling of closed loop dynamics. 

The main control methods considered in this thesis are (1) Backstepping Control, (2) Model 

Matching Control and (3) Energy Shaping in Stabilisation Control. Each of these topics 

are described in separate chapters that present new views and developments. The following 

paragraphs summarise the rationale behind these feedback designs in further detail. 

Backstepping Control The backstepping method uses virtual control variables and recursive 

Lyapunov functions for stabilisation purposes and is thoroughly documented in the nonlinear 

control literature [Kri95], [Isi99], [Kha92]. In [Yeh99] it is recognised that bond graphs can be 

used to design backstepping controllers by defining additive elements that impose the virtual 

control law. Furthermore, in [Gaw0l] it is even recognised that certain exact backstepping 

designs can be achieved through the sole application of (bi)causal inversion as outlined in 

Section 1.2.2. 

In contrast to the existing works on bond graph based backstepping, this thesis shows that 

backstepping can be used to design a closed loop port-Hamiltonian system that is "close" to 

the plant port-Hamiltonian system. As a result, the feedback design has an intrinsic physical 

model interpretation. 
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Model Matching Control The concept that system outputs are to follow a prescribed tra- 

jectory of some desired model or exosystem can be said to have a long history in the control 

literature, where the reader is referred to [Hui94] for a summary of the topic. Two impor- 

tant characteristics of model matching are (1) the application of input/output inversion, and 

(2) concepts of dynamic disturbance decoupling. As argued in Section 1.2.2, the bond graph 

language can be used to invert the input/output map by means of the (bi)causal assignment 

mechanism [Gaw95a], such that the application of a causal bond graph tool is available for 

certain Model Matching Problems (MMP). 

This thesis explores the bond graph based MMP by prescribing closed loop input/output dy- 

namics with a bond graph model. In particular, ideas of center manifold theory [Nij90], [Isi95] 

will be shown to allow for additional closed loop bond graph representations in certain cases. 

This result offers a more fundamental understanding of what the underlying principles are 

of the MMP as considered in this thesis. Such developments have been absent in the current 

bond graph literature. 

Energy Shaping in Stabilisation Control Feedback passivation is a control strategy that 

concerns itself with feedback laws that induce closed loop passivity with respect to some 

energy function and supply rate [Byr9l]. It can be of interest to see whether the bond graph 

language provides any tools that render the passive feedback design constructive to some 

degree. This thesis shows that the junction structure can indeed be used to derive closed 

loop energy functions that induce feedback passivity with respect to the natural output. The 

relevance of this result can be attributed to the fact that the energy function need not be 

"guessed" but that it follows from power continuity considerations. 

The port-Hamiltonian framework allows for a control methodology generally referred to as 

Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) as presented 

in [OrtO2a], [OrtO2b]. This control method addresses feedback designs that can be associated 

with the shaping of the Hamiltonian and the modification of structure and damping matrices. 

The solvability of an IDA-PBC design, however, is dependent on first order partial differential 

equations. It is shown that the closed loop representation of basic IDA-PBC designs can be 

depicted with the bond graph language, where the modification of the structure matrices is 

prescribed by the desired junction structure and resistive components. 

17 



1. The Art of Bond Graph Modelling 

Concluding Remarks The above control methods may initially seem unrelated, but they 

have the common goal of using the closed loop bond graph for stabilisation purposes. Put 

differently, the presented control strategies are certainly different on the analytical level, but 

the closed loop dynamics obtained with those methods will allow for bond graph models. 

It must be noted that aspects of bond graphs in control as presented in the thesis are not 

meant to define rigid procedures. Instead, the (non)linear systems framework and the vari- 

ous control methods render generalisations difficult, so that flexibility should be retained to 

facilitate unforeseen problems. In conclusion, this thesis shows that the above three control 

strategies have proven to allow for valuable physical interpretations that can aid the control 

design of multidisciplinary systems modelled with bond graphs. 
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2.1. Introduction 

Various generic control strategies exist, such as H,, control [Zho98] for example, that do not 

have explicit design goals in terms of physical interpretations of controlled dynamics. That 

is to say that generic feedback strategies generally apply signal theoretic techniques through 

considerable collections of abstract mathematical methods without concerning itself with 

physical interpretations of controlled dynamics. Even though such analytic control designs 

can be very effective and systematic for a wide variety of (robust) control problems, in order 

to explore bond graph representations for closed loop dynamics it can be argued that more 

structural approaches are to be addressed first. 

By focusing on closed loop bond graph representations, it is intuitively plausible that feedback 

designs should impose closed loop dynamics that allows for an associated bond graph model. 

For example, as outlined in Section 1.3, in case the closed loop is to be represented by means 

of a bond graph, this would imply that closed loop port-Hamiltonian dynamics should be an 

explicit design goal. Therefore, the aim of this chapter is to address feedback design methods 

that allow for structural and physical considerations in order to attain closed loop dynamics 

with an associated bond graph model for stabilisation purposes. 

The chapter is organised as follows. Backstepping control [Kri95] is recalled and shown 

to be able to impose closed loop port-Hamiltonian dynamics by judiciously chosen vir- 

tual control laws; consequently, closed loop bond graph representations are possible. Sec- 

ond, model matching control as presented in [Hui94] is shown to allow for closed loop bond 

graph models by borrowing certain ideas of center manifold theory in output regulation 

problems. Finally, stabilisation control through energy shaping is presented in terms of 

feedback passivation control [Byr9l] and the interconnection and damping assignment proce- 

dure [OrtO2b], which explicitly defines the closed loop interconnection and damping structures 

and hence closed loop port-Hamiltonian dynamics. 
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2.2. Backstepping Control 

Physical systems modelling is often managed through an object-oriented approach by which 

smaller subsystems, the objects, are connected to obtain larger, complex models. In view 

of such decomposition into subsystems, suppose that some particular subsystem can be sta- 

bilised by placing a virtual actuator at some desired location but for which no regular control 

is available. Then, intuitively, one could try to find suitable feedback control that imposes 

the virtual actuator dynamics and further stabilises the subsystems "between" the actual 

control input and the virtually actuated subsystem. 

The above conceptual control problem can be addressed by means of a systematic backstep- 

ping design, where a suitable variable is designated as the virtual control that represents the 

physical location at which the virtual actuator is to be connected. By imposing a suitable 

feedback law for the virtual control variable, backstepping is then applied to "step back" 

through the subsystem dynamics that connects the virtual control and the regular control. 

Most importantly, each recursive design step uses Lyapunov arguments to guarantee (global) 

stability and asymptotic convergence of trajectories. Interested readers are referred to the 

works [Kri95], [Isi99], [Kha92], [Sep97] and references therein for a comprehensive treatment 

on backstepping control designs. 

2.2.1. Recursive Lyapunov Design 

The backstepping methodology is readily explained by means of the following lemma that 

can be found in [Isi95] and which will be referenced in the sequel. 

Lemma 2.1. ([Isi95]) Consider a system of the form 

th = f(x, ý) 
e= u 

(2.1) 

where (x, ý) E 1R2 x IR and f (0,0) = 0. Let V (x) be a smooth real-valued function, which is 

positive definite and proper, and suppose there exists a static feedback law ý= v*(x), with 

v*(O) = 0, such that 

llxil >0= DV(x) f (x, v*(x)) < 0. (2.2) 
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Then there exists a smooth feedback u(x, ý), with u(0,0) = 0, and a smooth real-valued 

function W (x, ý), which is positive definite and proper, such that 

IIxII + KI >0 ==> dtW(x, 
ý) = DxW (x, e)f (x, ý) + DEW (x, ý)u(x, ý) < 0. (2.3) 

Proof. The point of departure is to recognise that ý can be viewed as a virtual control for 

which a stabilising function v*(x) exists such that (2.2) is satisfied. Then to "step back" 

through ý towards u, define the global change of variable z=ý- v*(x), giving 

= f(x, v*(x) + z) (2.4) 

z=u- v*(x). (2.5) 

Observe that the feedback u= v*(x) +µ yields the system 

x= f(X, v*(x) + z) (2.6) 
z=µ, 

implying that passive stabilisation can now be used to stabilise the z-dynamics. To this 

end, system (2.6) can be rewritten in the form 

_ f(x, v*(x)) +p(x, z)z (2.7) 
µ, 

where p(x, z) is a smooth function. Then take the positive definite and proper Lyapunov 

function 

W(x, Z) = V(x) +1 z2 = V(x) +1 [e - v*(x)]2, (2.8) 

and observe that 

dtW 
(x, z) = DV (x) f (x, v*(x)) + DV(x)p(x, z)z + zp. (2.9) 

Thus, by taking the control 

p= -cz - DV(x)p(x, z), (2.10) 

for some c>0, it follows that 

IIXII + Izl >0d W(x, z) = DV(x) f(x, v*(x)) - cz2 < 0. (2.11) 

The control that globally asymptotically stabilises (2.1) is therefore given as 

= v*(x) - c(e - v*(x)) - DV(x)p(x, e - v*(x)). (2.12) 

0 
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The recursive application of Lemma 2.1 is briefly explained by considering a system in the 

lower-triangular form 

i= fo(x, ei) 

i=fi (x, ei) + 9i (x, ei )Z2 

2= f2(x)Zl, 2) + 92(x, Z1, e2)e3 (2.13) 

n= fn(X, e1l... 
' n) +9n(X, 1)... 'en)u 

where xER and ýj E IR for 1<i<n [Isi99]. The triangular structure shows that 

Lemma 2.1 can be applied to the upper two systems by viewing fi as the virtual control and 

by identifying 6 as a regular control. Note that both f, (x, ý, ) and g, (x, ý1) can be eliminated 

by feedback provided gi(x, ei) is nonzero on the domain of interest. Define for each step i 

the change of variables 

zi = e: - vz i(X, i,..., ei-i) (2.14) 

and observe that the recursive application of Lemma 2.1 terminates when the control u is 

reached. At step i the closed loop Lyapunov function is given by 

z 
Wi(x, zi,..., Zi) =V(X)+ 2 

Ezk. (2.15) 
k=1 

Note that the control (2.12) is based on exact cancellations to render (2.11) fulfilled, so that 

Lemma 2.1 is commonly referred to as exact back-stepping [Isi95]. However, when model pa- 

rameters are not precisely known, but known to exist within certain bounds, it is readily seen 

that exact backstepping cannot be applied. In case of parameter uncertainties, the control 

problem is then to be addressed from an alternative standpoint, where one can use notions of 

input-to-state stability and small-gain theorems [Isi99]. Further details on parameter uncer- 

tainties will not be elaborated and all developments in the thesis are in the context of exact 

backstepping designs. 

2.2.2. Closed Loop Port-Hamiltonian Dynamics 

This section shows that closed loop port-Hamiltonian dynamics is attainable through a back- 

stepping design, and this will proof to be quite valuable for bond graph based backstep- 

ping as presented in the thesis. It is interesting to note that [Kri95] mentions the possible 

anti-symmetry of the closed loop in backstepping designs, but the author has not found 

references that explicitly refer to port-Hamiltonian dynamics. 
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Example 2.1. Consider the system 

th _- sin(x +) 
(2.16) 

= u. 

Suppose the equilibrium (x, )_ (0,0) is to be globally asymptotically stabilised. Towards 

that end, define the change of variables 

z=- v*(x) =e- arctan(x) + x, (2.17) 

and observe that (2.16) can be written as 

x+ Ix -x cos(z) - sin(z) lz 

x +1 
IL 

z +1 (2.18) 

z=u- v*(x). 

Choose the Lyapunov function (2.8) as W (x, z) = (1/2) (x2 +Z2 ) and write 

wt (x, z) 
x2 +1+z 

ýx2 - x2z cos(X2 
+ lx 

sin(z) +u- v*(x)J , 
(2.19) W 

which implies the control 

u= v*(x) - cz - 
x2 - x2z Cos (Z + lx sin (Z) 

+ v, (2.20) 

for some c> 1/2 and where v is the new control. Set d= min{1, c- (1/2)} and write 

2dtW 
(x, z) _-x 72 +1- 

cz2 + zv < -- 
x 

x2 t1- 
(c 

2 
)z2 +2 v2 

(2.21) 

< -a(II(x, Z) 11) + a(IvI), 
where a(r) = -dr2/ r+1 and a (r) = (1/2)r2 are class )C,, functions [Isi99]. Thus, the 

controller (2.20) yields input-to-state closed loop stability [Son95], which implies that for 

v=0 the equilibrium (x, ý) = (0,0) is globally asymptotically stable. 

The following is of great importance for bond graph based backstepping: apply control (2.20) 

to (2.18) and conclude that the closed loop system can be written as 

1x-x cos(z) - sin(n) 
- 

x +1 z G- T +1 x 
_+ 101 v, (2.22) 

x-x cos(z) - sin(z) 
-C z1 

zx -TI 

which is of port-Hamiltonian form. 
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In view of robust control, it is generally preferred to majorise nonlinearities in (2.19), which 

implies that the control (2.20) is to be robustified by avoiding exact cancellations in (2.19) 

as much as possible [Kri95], [Kha92]. To that end, write 

dtu'(x, )<-x 
-F 1+ 

Izl 
IX2z 

x2 -I- 

COS(Z) I+ 
Izlly*(x)I z 

lu 

VI-XT 

sin(z) 
-_1 

I 

1-1 
x2 +3+ 

a(x) 
z2 +zu-x sill (Z) 

:5-[x 
+1 25-(x)] 2[zx }-1] 

(2.23) 

for some function b(x) > (1/2)'x2 +1 for all x. Take 5(x) = '. /x2 +1 to obtain the smooth 

control 

u=-L2+2 x2+l+cJz+zx 
n(+)l +v. (2.24) 

Global asymptotic stability of the equilibrium (x, ý) = (0,0) is immediate from the inequality 

2x+1- 
(c -2 )z2 +2 v2, (2.25) 

dt 
W (x' z) -z 

where c> 1/2. 0 
The important point of the above example is that backstepping designs offer flexibility to 

render (2.9) negative, such that robustness can be addressed quite systematically for systems 

of the form (2.1). However, this flexibility will not be used in the thesis since the closed loop 

is required to have a specific structure. More precisely, the following corollary shows that 

exact backstepping can be used to yield port-Hamiltonian dynamics. 

Corollary 2.2. Consider the system (2.1) and suppose the virtual control v*(x) yields the 

relation 

f (x, v*(x)) = [J(x) - R(x)]K(x), (2.26) 

with KT (x) = DV(x) for some real-valued, positive and proper function V (x), and where 

J(x) = -JT (x) and R(x) = RT (x) >0 are nxn matrices. Then in view of Lemma 2.1 there 

exists a control u(x, 6), with u(0,0), such that the closed loop takes the port-Hamiltonian form 

J(x) - R(x) p(x, z) 
= S(x, z), (2.27) 

-pT (x, z) -c 

where W(x, z) = V(x) + (1/2)z2, ST (x, z) = DW(x, z) and z=ý- v*(x). 

Proof. In view of (2.7), take the control 

u= v*(x) - pT (x, z)K(x) - cz, (2.28) 
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and observe that the closed loop dynamics takes the form (2.27). Note that (2.2) does not 

hold, since 

llxll> 0= KT (x) f (x, v*(x)) = -KT (x)R(x)K(x) < 0, (2.29) 

which is merely non-positive. Q 

Thus, going back to the system (2.18) of Example 2.1, observe that the interconnection 

structure J(x) =0 and the damping structure R(x) = 1// x -+1 yields 

IlxiI DV(x) f(x, v*(x)) =-11 
(aV\2 

+i<o. 
(2.30) 2 ax 7= - 

Therefore, the fact that port-Hamiltonian dynamics can be obtained through an exact back- 

steppping design would seem to have favorable consequences for bond graph considerations. 

In particular, bond graphs have been shown to represent a class of port-Hamiltonian sys- 

tems [Go102], [Go103], so that closed loop dynamics attained through exact backstepping can 

indeed be given an associated bond graph model. 

2.3. Model Matching Control 

This section recalls relevant facts on the (non)linear Model Matching Problem (MMP). In 

addition to the existing MMP theory of [Hui94], this section shows that various concepts of 

center manifold considerations in output regulation [Isi95] are valuable for an understanding 

of closed loop dynamics in the MMP. For example, if the tracking error is asymptotically 

regulated to zero then this implies the existence of a maximal (locally) controlled invariant 

submanifold on which output matching is fulfilled. This invariant manifold provides the basic 

characterisation of the underlying mechanism with regards to the physical model based MMP 

as considered in the thesis, where this mechanism has not been explicitly addressed in the 

current bond graph literature. 

2.3.1. Some Facts on Model Matching Problems 

The following developments can be found in the works [Hui94], [Hui92]. Consider the plant 

P of the form 

P: th = f(x) + gj(x)ui (2.31) 
y= h(x). 
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Here xE l[8', uE R' and yE 1Rp. The vector fields f (x) and gj (x) and the function h(x) 

are assumed to be real analytic. Then consider the model M of the form 

M: x fG-) + 9k (x) k 2.32 

where xE l[8'ß, is E R'n and yEW. Likewise, the vector fields 1(.; v-) and gk(x), and the 

function /a(te) are assumed to be real analytic. Notice, in particular, that rn <m and that 

both y and y are of equal dimension. 

Then consider the controller Q described by 

Qz= 
(x, z) +, 6 (x, z) (2.33) 

u= 'y(x, z)+b(x, z) , 

where zE' and where a, 3, -y, 8 are real analytic. Having defined the plant P, model 

M and the controller Q, the nonlinear MMP can now be described as follows. 

Definition 2.1 (Model Matching Problem). ([Hui92]) Consider the plant P, model M 

and a point (xp, -o) E Rn x IRf. 
. 

Find neighborhoods X of xo and X of moo, an integer v, an 

open subset V of ', and a map F: XxX -ý V, such that the compensator Q, defined on 

VxU, renders the difference 

y(x, F(x, J5), t) - y(: i5, t) (2.34) 

independent of zi for all t>0 and all (x, Jý) EXxX. The output y(x, F(x, : f), t) denotes 

the trajectory of y(t) initialised at (x, F(x, : t)) and where y(. 7r-, t) is the trajectory of y(t) 

initialised at x. 0 

In view of (2.34), define the extended system E of the form 

1th1=11(x)l+Ii(x)]u _+0 11k 

E: x 
. 
f(x) 0L 9k(ß) (2.35) 

e= h(x) - h(am). 

The extended output e will be referred to as the tracking error and is to be asymptotically 

regulated to zero. Now, if the model inputs ii are now seen as measurable disturbances then 

solvability of the MMP is readily formulated. 

Theorem 2.3. ([Hui92]) The MMP is solvable for (M, P) if and only if the nonregular 

dynamic disturbance decoupling problem with measurable disturbances is solvable for E. 
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The proof of this theorem is omitted here, but its implications will become clear through the 

upcoming developments. In short, the nonregular Dynamic Disturbance Decoupling Prob- 

lem (DDDP) with disturbance measurement has the property that the compensator Q with 

input za and output u need not be invertible, whereas the regular DDDP with disturbance 

measurement implies invertibility of the compensator [Hui92]. 

Let M>0 and observe that output matching would imply 11h(x(t)) - h(x(t))Il <M for 

all t>N and for some N>0. As a result, the MMP can be addressed by applying a 

constrained dynamics algorithm to h(x) - h(Jr) =0 that, in loose sense, yields a maximal 

(locally) controlled invariant submanifold on which the output matching is fulfilled. 

Even though the solvability of the MMP is expressed in terms of a nonregular DDDP with 

disturbance measurement, the following lemma summarises a relative degree condition that 

characterises a class of systems that can be encountered in the MMP. 

Lemma 2.4. [Hui94] Consider a square plant P and a square model M. Let xo EX and 

x0 EX be given. If the decouplings matrix A(x) of P has full rank for x= xo, then the MMP 

is solvable around (x0, xo) if and only if ri < r2 (i = 1, ... , m). 

The relevance of this lemma can be explained by the following. In [Hui92], the nonregular 

DDDP with disturbance measurement is addressed through an algorithm that is capable of 

handling cases where an intrinsic disturbance dependence exists. In terms of the MMP, this 

intrinsic u-dependence can be described by the appearance of model inputs "before" the 

plant inputs in the time derivative 

dr 
ät-[h(x) - h(x)] =0 (2.36) 

for some r>0. Such an intrinsic ii-dependence is generally remedied by the expense of certain 

controls, meaning that some controls are set to zero in order for this intrinsic ii-dependence 

to be removed. However, this chapter addresses MMPs that have a physical model based 

character of which the prescribed models will be structurally "close" to the plant. As a 

result, the relative degree condition ri < ri, where ri and rz are the relative degrees of 

the plant and model respectively, is readily satisfied. Furthermore, and this is important, the 

thesis does not explicitly assume that both the plant and model are square as per Lemma 2.4. 

Nonetheless, the relative degree condition r= < rj will be in effect for all physical systems 

considered in the thesis. 
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Since bond graph representations are the main theme, the affine plant (2.31) is now specialised 

to the system 

x= [J(x) - R(x)]K(x) + gj(x)uj 

yj = hj (x), 
(2.37) 

which is not port-Hamiltonian due to the output definition jib (x). The reason for choosing 

more general outputs, and not the collocated outputs yj = gj(x)K(x), allows a larger class 

of systems to be considered. This will become clear later in the thesis. 

There are some key aspects of the MMP and its associated nonregular DDDP that are of 

significant importance. First, the constrained dynamics algorithm found in [Nij90] and [Isi95] 

can be used to solve the nonregular DDDP [Hui92], where it must be noted that disturbance 

decoupling does not address stability of possible internal dynamics. Second, if output match- 

ing is to be achieved then the controller imposes attractivity of the submanifold on which 

output matching is fulfilled. These aspects of an MMP design are readily clarified through 

the following example. 

Example 2.2. Consider the linear plant P of the form 

XI 0010 (1 + pi)xi -10 
ý2 00 -1 1 (1 + /12)x2 0 -1 _+ ul + U2 

x3 -1 1 -1 0 (1 + 1-13)x3 10 

±4 0 -1 00 (1 + fc4)X4 00 (2.38) 

Yi 
1 1 

X3 

Y2 X4 

Observe that P is not port-Hamiltonian due to the non-collocated output y= (x31 x4). The 

vector u= (µl, 
... , µ4) represents small physical parameters with nominal value a=0. Next 

consider the model M described by the Brunovsky canonical form 

P 

0 

0 
0 
0 

1 

=ä, yj 

where 1<j<2 and _ (viý x4ý ýiý ý4) 

(2.39) 
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The definition of M is seen to address a conventional tracking design, because the input iij 

can be used to generate "any" desired trajectories for gj [Nij90]. Let rZ and rz denote the 

relative degrees of y;, and yj respectively, so that a dimensionality argument yields ri < rZ for 

1<i<2. The appearance of model inputs can therefore be "intercepted" by plant inputs. 

The MMP for the extended system (2.35) can now be constructively addressed by means of 

the constrained dynamics algorithm of [Nij90] and/or the zero dynamics algorithm presented 

in [Isi95]. Towards this end, write the output matching constraint 

h(x) - h(x) := So(x, x) _ 
x3 - ill 

= 0, (2.40) 
X4 .1 

where So(x, ±) has constant rank so =2 for all (x, jý). Define the submanifold 

Zo =1 (x, 
.; c-) E R4 x R8 So(x, 

. ýü) = 01, (2.41) 

so that 

dt 
So (x, x) = Bo (x, x) + Ao (x, x) Eu =0 (2.42) 

ü 

for all (x, x) E Zo. This yields 

Bo (x, x) = 
xl + X2 - '5511 - x2 

AO(x, x) =1000 (2.43) 

-x2 - i2 0000 

It is seen that Ao(x, jý) has constant rank ro =1 on Zo, which implies the existence of a 

(so - ro) x so matrix Ro(x, : t) satisfying Ro(x, -)Ao(x, ý) = 0. From (2.43) write 

Ro(x, x) =[01], (2.44) 

giving 

d)o(x, ý) = Ro(x, ý)Bo(x, ý) = -x2 - ýZ = 0. (2.45) 

Now use -I)o(x, lý) to extend the constraint (2.40) as 

1X3 xi 

Si(x, )= 
So (X, ý) 

_ X4 - xi . 
(2.46) 

X2 -i- i2 

Observe that Si(x, jý) has constant rank so + Si =3 with sl = so - ro =1. Define the new 

constraint submanifold 

Zl = {(x, x) E I[84 x R8 : Sl (x, ä5) = 0}. (2.47) 
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This yields 

dt 
Si (x, x) = Bi (x, x) + Ai (x, x) 

u=0 (2.48) 

for (x, . ýT) E Zl, and write 

-XI - Xi - --2 - X2 1000 

Bi (x, 
. i) =07 Ai (x, 

. 7c) =0000. (2.49) 

-mai -i- i1 -f- ý3 0 -1 00 

The constrained dynamics algorithm terminates since rank A, (x, : iý) =m=2, hence Z* = Zl 

and the feedback 
ul = Xi+xi+x2+x2 

(2.50) 

u2 = -xi +. t2 + ý3 

solves the nonregular DDDP with disturbance measurement. Therefore, as per Theorem 2.3, the 

MMP is solvable and (2.50) renders Z* controlled invariant for (x(0), : T(0)) E Z*. 

Looking back on the steps taken, it is clear that the decoupling process does not address 

the behavior for (x(0), : t(O)) 0 Z*, so that the attractivity of Z* is to be further analysed. 

Doing so leads to the conclusion that the decoupling control (2.50) does in fact regulate the 

difference h(x) - h(x) to zero. To see this, define the "error" variables 

e2=X2+x2, e3=X3-Xi, e4=X4-xi' (2.51 

and conclude that attractivity of Z* is confirmed by writing the dynamics 

th1=-xl+e3-ý2-X2 

e2 0 -1 1 e2 (2.52) 
e3 =1 -1 0 e3 

e4 -1 00 e4 

On Z* there exists the dynamics 

12 xl = -xl - x2 - x21 (2.53) 

which is seen to be input-to-state stable [Son95] with respect toi and ±Z. Let w= (wl, w2) 

be new control inputs, then the feedback (2.50) can now be written as 

i2 7) _ -7)-ý2-X2 

ul = r) +. ti + ý2 + ý2 + Wi (2.54) 

u2 = -Xi -t- X1 -t- X3 + W2. 
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Next defining the error variable el = x1-r7, so that by applying (2.54) one obtains the closed 

loop port-Hamiltonian dynamics 

ei 00 

e2 00 

e3 -1 1 

e4 0 -1 

'bi e3-el 
/2 -e2 

10 el -1 0 

-1 1 e2 0 -1 + Wl+ W2 
-1 0 e3 10 

00 e4 00 
(2.55) 

where H(e) = (1/2)IJeJ12 and where = (01,02) are new collocated outputs for feedback 

purposes. Observe that the closed loop interconnection and damping structures as well as 

the input vector fields are identical to those of the plant. 

Finally, note that the stability of the closed loop is not compromised by small parameter 

perturbations in some ball JJpJJ < 5, since by continuity it follows that the nominal stabilising 

controller is stabilising in a neighborhood of the nominal system [Mai03]. However, the 

convergence property limt, 0 e(t) =0 will generally not hold in such case and the tracking 

objective will therefore not be attained. 0 

Stability of the zero-dynamics is an important requirement for the MMP considered here. 

Indeed, it is readily seen that (2.53) is asymptotically stable, but it is certainly not obvious 

whether systems of the form (2.37) have intrinsic stable internal dynamics that is compatible 

with the constraint hj(x) = 0. The following proposition shows that internal stability for 

such systems is not implied. 

Proposition 2.5. Consider the system 

th = [J(x) - R(x)]K(x) + 9j (x)uj 
(2.56) 

yj = he(x), 

where DTH(x) = K(x) for some smooth, positive definite function H(x). Let J(x) be 

anti-symmetric and let R(x) be positive (semi)-definite, then the dynamics compatible with 

hj(x) =0 need not be stable. 

Proof. First consider the collocated output yj = gjT(x)K(x) such that 

dtH(x) 
< yjuj. (2.57) 
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This implies that the dynamics compatible with yj(x) =0 is stable since ft(x) < 0. On the 

other hand, in case the output functions hj(x) are not collocated, it follows that 

dtH(x) 
< K(x)Tgj(x)uj. (2.58) 

Hence, stability of the dynamics compatible with hj(x) =0 cannot be inferred. Indeed, con- 

sider the linear system 

1ý1 -Im Qlxl -Im 
ý2 Im 0 jQ2x2 Im (2.59 

y= X2, 

where x1i x2 E R', and where Q1 and Q2 are symmetric positive definite. The system is of 

the form (2.56) but does not have collocated outputs. It is readily checked that the control 

u= -Qixi renders the submanifold x2 =0 controlled invariant. The internal dynamics is 

given by xl = Qlxl and the Hamiltonian H*(x) = (1/2)xi Qlxl satisfies 

d H*(x) =x QiQixl >0 (2.60) 

for all nonzero x j. Instability is thus immediate. 0 

The above proposition on unstable zero-dynamics with non-collocated outputs is not unim- 

portant: Collocated outputs of port-Hamiltonian systems are often not the quantities to be 

controlled, so that output redefinition is justifiable from a control point of view. For exam- 

ple, in the mechanical domain it is often the case that positions are to be controlled, whereas 

velocities are the collocated outputs in the port-Hamiltonian framework. It is therefore log- 

ical to define positions as the outputs for control purposes. In bond graph modelling, for 

example, such non-collocated outputs are typically associated with SS elements of which the 

input variables are identically zero. 

Model Inversion 

Instead of going through the constrained dynamics algorithm to find the feedback (2.54), con- 

sider the nominal plant inverse of (2.38) given as 

ý= yl -ul 

U1 = 77 +yi+yi+y2+V1 (2.61) 

U2 = -yl+y2+y2+v2. 
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Next observe that the feedback (2.54) can be obtained by enforcing the relations yl =ü and 

y2 = ýi. Therefore, in terms of bond graphs, if the (bi)causal plant inverse exists and the 

relative degree condition rti < ri is fulfilled, then the disturbance decoupling feedback can be 

found by enforcing the relation h(s) = h(x). However, such (bi)causal inversion mechanism 

will not compute Z*, so that the constrained dynamics algorithm remains an important tool 

in the search for this constrained manifold. 

2.3.2. Remarks on Output Regulation and Center Manifold Theory 

The MMP is closely linked with the output regulation problem as presented in [Isi9O], where 

regulation is achieved when trajectories converge to a center manifold containing the origin. 

More precisely, consider the system 

x=f (x, ý, u) 

= s(ue) 

e= 

(2.62) 

where xEX, E X, uE II8t and f (0,0,0) = 0, s(0) =0 and h(0,0) = 0. The model 

x= s(x) is assumed to be neutrally stable in the sense that the Jacobian Ds(0) merely 

has eigenvalues on the imaginary axis. In [Isi95], the "Full Information Output Regulation 

Problem" is formulated as follows. 

Definition 2.2 (Full Information Output Regulation). ([Isi95]) Given the nonlinear 

system (2.62), find, if possible, a mapping a(x, .; ý) such that 

1. the equilibrium x=0 of 

x=f (x, 0, a(x, 0)) (2.63) 

is asymptotically stable in the first approximation. 

2. there exists a neighborhood VCXx9 of (0,0) such that for each initial condition 

(x(0), x(0)) EV the solution of (2.62) with u= a(x,. t) satisfies 

tl 
mh(x(t), Wi(t)) = 0. (2.64) 

ýOO 

0 
Define A= Dy f (0,0,0) and B=D. f (0,0,0), then the solvability requirement of the above 

regulation problem is given by the following theorem. 
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Theorem 2.6. ([Isi95]) The Full Information Output Regulation Problem is solvable if and 

only if the pair (A, B) is stabilisable and there exists mappings x= co(x) and u= c(am), with 

V(O) =0 and c(0) = 0, both defined in a neighborhood 9 of the origin, satisfying the conditions 

d 
d ýP(ý) =f (co(w), ý, c(am)) (2.65) 

0_h 

for all EX. 

The feedback that solves the regulation problem is then given as 

u= a(x,. 7c) = c(x) + K[x - W(Jc)], (2.66) 

where K is a suitable gain. Indeed, the gain K renders the origin of (2.63) asymptotically 

stable in the first approximation, thereby guaranteeing the existence of a center manifold since 

Ds(O) merely has eigenvalues on the imaginary axis. Thus, on the center manifold, x= cp(x) 

and the relation (2.65) is satisfied since u= a(co(x), x) = c(x). 

Now, to demonstrate the similarities between MMP objectives and the condition (2.65), con- 

sider Example 2.2 and observe that from (2.54) and (2.55) one can define 

Wi (n, X; -) 'q 

ýP2 (rl 
ý ý) -msz 

X_ ýP(rl, ý) _ (2.67) 
'P3(Th ) ý1 

74(777) ý1 

and 
ýl (iý ý) % xi + -z +2 

u= c(rý, x) (2.68) 

C2(i)x) -x1 +. t2 -i-x3 

Then, evidently, the nominal system (2.38) satisfies 

0010 cpl(i, ý) -1 0 

dT 
ýP(7l, x) =00 

-1 1 <p2(7lýx) 
+0 ci(7l, ý)+ -1 

C2(77)-t)- (2.69) 

-1 1 -1 0 W3 (71 
, x) 10 

0 -1 00 W4(1), X) 00 

From (2.67), define the "error" e=x- cp(rj, x) and observe that (2.55) can be stabilised with 

the feedback wl = -dl(e3 - el) and w2 = d2e2, with dl >0 and d2 > 0, giving the control 

u= c(ii, -1) + 
dl 0 -dl 0 

[x - cp(71, -; 0]. (2.70) 
0 d2 00 
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In conclusion, the 1VIINIP has been shown to be closely related to the Full Information Output 

Regulation Problem found in [Isi95], and this fact is used to characterise the bond graph 

based MMP designs. 

2.4. Stabilisation Control through Energy Shaping 

The concept of passivity can be safely argued to be a pillar of systems theory and con- 

trol [Wi172], [Des75], [Byr9l], where the notion of rendering the system passive through 

feedback has shown to be effective [Ort89], [Ort98], [Str98]. The idea that control can be 

associated with energy storage and dissipation phenomena possibly explains the appeal of 

the passivity framework to the subject of physical systems modelling. 

This section recalls some basic aspects of control through feedback passivation that will 

subsequently be explored in the second part of the thesis. Feedback passivation requires 

the knowledge of some suitable closed loop storage function, where this thesis shows that 

the bond graph junction structure can be used to select such storage function in certain 

cases. In addition, port-Hamiltonian systems in control have received significant atten- 

tion [OrtOOc], [B1a02], [OrtO2b], and this type of feedback is generally referred to as Intercon- 

nection and Damping Assignment Passivity Based Control (IDA-PBC). Fundamental facts 

on IDA-PBC are recalled, showing that this feedback methodology is based on structural 

considerations of closed loop port-Hamiltonian dynamics. 

2.5. Feedback Passivation 

Consider the affine control system 

th =f (x) + 9(x)'ß (2.71) 
y= h(x), 

where xEX and u, yE IRt, and where f (0) =0 and h(0) = 0. 

Definition 2.3 ([SchOOb]). The system (2.71) is said to be passive if there exists a function 

V: X -+ R, referred to as the storage function, such that 

V (X(t)) -V (X(0)) <J yT (s)u(s) ds (2.72) 

0 
for all x(O) E X, all u(t) with t>0. 
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There are two properties of passive systems that are of interest. Let (2.71) be passive with a 

smooth positive definite storage function V (x), then 

1. for u=0 the point x=0 is stable by V (x) = DV(x)f(x) < 0, 

2. for y(x) =0 the point x=0 is stable by V (x) = DV (x) [f (x) + g(x)u*] <0 for u*(x) 

compatible with y(x) = 0. 

Therefore, passivity with respect to a positive definite storage function implies zero-input 

and zero-dynamics stability of the system (2.71). 

Since stability of the zero-input system is somewhat restrictive, it can be of interest to 

establish what the conditions are to render an unstable system (2.71) passive by means 

of feedback, hence feedback passivation. Towards that end, consider the smooth feedback 

u= cx(x) +, ß(x)v, with , 6(x) invertible and a(O) = 0, yielding the closed loop 

x=f (x) + 9(x)a(x) + 9(x)ß(x)v (2.73) 
y= h(x). 

Suppose the above closed loop system is passive with smooth positive definite V (x), then 

from the above two properties it follows that the zero-dynamics are stable, where 

i= f(x) + g(x)u*(x) = f(x) + g(x)a(x) + g(x)/3(x)v*(x) (2.74) 

for v*(x) = , ß-1(x)[u*(x) - a(x)] compatible with y(x) =0 [SchOOb]. Hence, if the sys- 

tem (2.71) is to be rendered passive by means of feedback passivation then the zero-dynamics 

must be stable since it is invariant under feedback. 

In case the system has been rendered passive with respect to the positive definite storage 

function V (x), it is readily seen that with v= -ry, for some r>0, the asymptotic stability 

can be achieved provided the system is zero-state detectible [Sep97]. 

2.6. Interconnection and Damping Assignment 

The notion that an open loop port-Hamiltonian systems can be turned into a closed loop 

port-Hamiltonian system has been studied in various papers [OrtO2b], [OrtO2a], [OrtOOc]. 

Because closed loop bond graph representations are a main theme of the thesis seems to 

indicate possible bond graph interpretations in IDA-PBC. 
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By following the exposition of [OrtO2b], consider a port-Hamiltonian system of the form 

x= [J(x) - R(x)]K(x) - g(x)u 

y= 9T (x)K(x), 
(2.75) 

where xEX and u, yE R', and KT (x) = DH(x) for some smooth Hamiltonian H: X -- R. 

Define the shaped Hamiltonian 

Hs(ýý = H(x) +Ha(x)e (2.76) 

where Ha(x) is the assigned or additive Hamiltonian. Then define the shaped interconnection 

and damping matrices 

JS(x) = J(x) + ,, (x), R5(x) = R(x) + Ra(x), (2.77) 

where Ja(r) = -Ji (x) and R0(x) = Rä (s) >0 are the assigned interconnection and damping 

matrices. Now, let u= a(x) +w be a smooth feedback such that 

[Ja(x) - Ra, (x)]K(x) + [J3(x) - Rs(x)]Ifa(x) = -g(x)a(x). (2.78) 

It is readily verified that the closed loop has the port-Hamiltonian form 

= [J8(x) - R3(x)]K3(x) - g(x)w 
(2.79) 

Ys = 9T (x)Ks(x), 

showing that the feedback a(x) yields a port-Hamiltonian closed loop with modified inter- 

connection and damping structures. In order for such IDA-PBC design to be possible it must 

hold that 

91(x)[Jd(x) - Ra(x)]K(x) +91(x)[Js(x) - Rs(x)]Ka(x) = 0, (2.80) 

where g -(x) is a full rank left annihilator of g(x). The relation (2.80) represents a set of first 

order Partial Differential Equations (PDE's) that are to be satisfied simultaneously by the 

function Ka, (x). Clearly, when (2.80) can be solved for some function Ha, (x) then the control 

is given as 

(2.81) -[gT (x)s(x)]-'gT (x) [[Ja(x) 
- Ra(x)]K(x) + [J5(x) - Rs(x)]Ka(x)] = U. 

The effectiveness of IDA-PBC can be described by the fact that the closed loop energy 

function H3(x) need not be "guessed" but follows from (2.80). That is to say that the 

IDA-PBC method characterises all possible energy function Ha(x) that can be assigned. 
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Let Xe be an admissible equilibrium of (2.75), then for this equilibrium to be assigned it must 

hold that 

Ka(xe) = -K(xe), (2.82 

ensuring K3 (xe) = 0. In addition, one must have 

D2Hs(xe) > 0, (2.83 

so that xe is a strict (local) minimum of the energy function H5(x). In this way it is possible 

to assign a non-zero equilibrium or "forced" equilibrium to the system (2.75). 

Even though IDA-PBC would appear to be conceptually straightforward, this design method 

can be said to be difficult. For example, there are no clear guidelines in regard to the choice 

of interconnection matrices J,,, (x) and R,, (x) to judge the attainability of the stabilisation 

objective. Furthermore, as the authors of [OrtO2b] point out, no explicit conditions can 

be offered for the solvability of (2.80) for choices of Ja(x) and Ra, (x). In the second part 

of the thesis, an instructive example of bond graph representations of IDA-PBC designs 

is presented, where the bond graph topology is used to represent the choices of desired 

interconnection and damping structures. 

2.7. Concluding Remarks 

Three control methods have been presented that are largely based on structural considerations 

to allow for closed loop bond graph considerations. However, this chapter is by no means 

exhaustive and other control strategies may well exist that allow for structural closed loop 

design goals. Furthermore, the presented theory is fully contained in the existing literature 

and the interested reader is referred to the various citations and references therein for further 

details. 

It is interesting to note that backstepping, model matching and energy shaping have major 

differences on the analytical level, yet all three control methods allow for structural design 

goals, such as port-Hamiltonian dynamics for example. This has not been addressed in the 

bond graph literature, so that the identification of a particular set of control methods for 

closed loop bond graphs is an appreciable contribution to the current literature. 
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3. Backstepping Control 

3.1. Introduction 

The concept of virtual control can be found in authoritative literature on backstepping con- 

trol design [Kri95], [Isi99], where the fundamentals of backstepping have been recalled in 

Section 2.2. The main contribution of this chapter is the detailed presentation of bond graph 

based backstepping in relation to port-Hamiltonian dynamics. Some results on bond graphs 

in backstepping control have appeared in [Yeh99] and in the works of [Gaw0l], [Gaw04] on 

virtual actuators. However, these papers do not address the port-Hamiltonian framework and 

do not address certain nonlinear cases. In addition, multi-input systems have not received 

considerable attention in the bond graph literature. As a result, it can be safely argued that 

a sufficient number of open questions remain on bond graph based backstepping to justify 

the various results in this chapter. 

3.2. Backstepping Control in the Physical Domain 

This section explores the application of bond graphs for physical model based backstepping 

control. Bond graph tools in backstepping as introduced by [Yeh99] will be addressed through 

detailed examples and subjected to port-Hamiltonian considerations. Furthermore, the novel 

(bi)causal approach to backstepping in [Gaw01] will be presented in more detail and offers 

a "shortcut" method to a backstepping design in certain cases. See [Yeh0l] and [Yeh02] for 

further developments on backstepping control in the physical domain. 

The explicit association of port-Hamiltonian dynamics with the closed loop through a back- 

stepping design is an important contribution of the chapter. Backstepping theory of Sec- 

tion 2.2 is self-contained and forms the basis for the all developments, showing the clear 

parallels between existing theory and the closed loop bond graph considerations. 
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Figure 3.1.: Virtual resistive Rl element of Example 3.1. 

3.2.1. Single-Input Systems: Examples 

To build a foundation for further generalisations and formalisations, three instructive exam- 

ples are used to introduce fundamental bond graph arguments in the context of physical model 

based backstepping. The first example shows a simplest backstepping design conceivable, lay- 

ing out key ideas of virtual actuators and stabilising functions in a bond graph context. The 

second example can be found in [Gaw0l], which addresses a set-point control problem that 

is can be addressed with bicausal bond graphs; the actual bicausal bond graph approach 

will not be addressed until later sections. Nov, because the first two examples are one-step 

designs, the third example addresses a multiple-step design taken from [Yeh99], which will 

be presented in considerable detail here. 

Example 3.1. Consider the bond graph of a mass-spring system in Figure 3.1 with the 

element definitions 

I(x) _( x2 +1- 1), C(ý) =2 ký2. (3.1) 

Then consider the smooth function yo(x) as the output of the virtual actuator defined as a 

resistive Rl element. 

The control objective is to impose the effect of yo(x) on the 1 -junction through a backstepping 

control design. By ignoring the dashed region in Figure 3.1, causal analysis of the bond graph 

yields the system 
th = ký 

x 
(3.2) 

7n +1 
Next introduce the change of variable 

ký = -yo(x) + kz, (3.3) 
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C 

SS k01 R1 

Figure 3.2.: Dynamics (3.7) of Example 3.1. 

yielding the x-dynamics 

t =f (x, Z) =f (x, -1 go (x) + z) = -go (x) + kz. (3.4) 

Hence the desired effect of the virtual Rl element is now imposed. Then choose the smooth 

and proper Lyapunov function 

V (X) =m( x2 +1 - 1), (3.5) 

such that 
d 

V(x) xyo(x) +x kz. (3.6) 
dt mx +1 mx +1 

Since Rl is assumed to be globally resistive implies that xyo(x) >0 for all x 0, rendering 

the x-dynamics globally asymptotically stable for z=0. To stabilise the z-dynamics, choose 

the control u= (1/k)yo(x) +µ such that (3.2) takes the form 

x= -yo(x) + kz 

x 
(3.7) 

Z=--µ. 
mx +1 

Now, the following conveys a key aspect of the ideas of this chapter: Observe that (3.7) has 

the bond graph representation depicted in Figure 3.2, which is seen to be identical to the 

plant bond graph with the virtual resistive element, where u and ý are to be interchanged 

with It and z respectively. 

Further stabilisation of (3.7) is readily achieved by replacing the SS element with a linear 

resistive R2 element, where one can choose the control p= (k/f)z for some positive damping 

constant r, for example. Doing so yields the closed loop bond graph in Figure 3.3 of which 

the elements are defined as 

I(x) =1( x2 +1- 1), C(z) =1 kz2. (3.8) 
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Figure 3.3.: Closed loop bond graph of Example 3.1. 

Finally, take W(x, z) = V(x) + (1/2)ß; z2 and conclude that 

z 
XI } Izl >0 

dtW(x, 
z) _ -m 

yx2 +1-Tz<0, 
(3.9) 

which shows that the origin (x, z) = (0,0) is globally asymptotically stable because W (x, z) 

is positive definite and proper. 0 

Some important observations on behalf of Example 3.1 can now be made. First, the bond 

graph in Figure 3.1 has the required interlaced structure as mentioned in [Yeh99], which is a 

consequence of the fact that systems need to be in a lower-triangular form if backstepping is 

to be possible. Second, the C element is linear, which is one of the requirements expressed 

in [Yeh99] for the backstepping design. Third, the change of variable (3.3) is not written in 

the conventional form as defined in Lemma 2.1, but it can be derived naturally from the bond 

graph in Figure 3.1 by considering that go cannot be placed at the 1 -junction by means of 

the control variable u. So, it is intuitively plausible that ký should "carry" the term -yo + kz 

and where kz is to replicate ký, which is the virtual control. Finally, observe that the closed 

loop is structurally identical to the plant with the added resistive Rl and R2 components. 

This emphasises the idea that the controller should induce physical, closed loop dynamics by 

emulating plant interaction with another physical system [Sha9l]. 

Remark 3.1. From now on, all bond graph elements that are part of the backstepping design 

are overlined as demonstrated in Figure 3.3. This should separate and clarify those parts of 

the bond graph that belong to the open loop plant. 

The main point so far is that backstepping in the physical domain can be facilitated by viewing 

the stabilising control as the output of another physical system connected at some desired 

location, where it should be noted that single bond graph components are the simplest virtual 

actuators that can be defined. However, there is no reason to restrict the virtual actuator 

solely to single bond graph components, so that the stabilising function may depend on 

controller states and controller inputs. 
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kr 
umd 

Figure 3.4.: Simple mass-spring-damper system of Example 3.2. 

In [Gaw0l], the authors address a set-point control problem by specifying a virtual actuator 

with a single control input. As a result, the backstepping design is shown to yield a dynamic 

compensator through relatively simple modelling arguments. 

Example 3.2. ([Gaw01]) Consider the physical system depicted in Figure 3.4 and its bond 

graph representation in Figure 3.5. The element definitions are given by 

CO = 2ký2, 
I(x) 

21x2, 
R=r. (3.10) 

The control objective is to find the velocity u such that the closed loop dynamics behaves 

like the system depicted in Figure 3.6, where it is a velocity input to the virtual actuator 

and where d is a constant disturbance force acting on the mass m; the velocity of mass m is 

the system output w conjugate to d. The dashed region in Figure 3.6 represents the virtual 

actuator of which the bond graph is depicted in Figure 3.7, where the virtual bond graph 

elements have the definitions 

1- 2 12 1- 
-2 

,R=r. 
(3.11) Ci(Jýi) =2 ixi(1 + 2-xi), C2(; -2) = 2k2x2 

It should be noted that the C1 storage element has the characteristic of a hardening spring 

instead of the linear characteristic deployed in [GawOl]; using such a hardening spring allows 

the restoring force to increase rapidly for larger excursions. Since the junction structure 

topology is independent of the bond graph element definitions [Kar00], this shows that the 

bond graph based virtual actuator offers some design flexibility through the use of different 

storage and dissipation functions. 

Without any further analysis, it is plausible that the closed loop system will meet the set-point 

control objective, for consider a step velocity p to the right such that the virtual actuator 

increases the pulling force until the step velocity is reached. Next observe that the closed 

loop is intended to have the physical representation of Figure 3.6, where the R element 

elongates continuously when the mass travels to the right. It is therefore possible to confirm 

the set-point objective through the physical closed loop representation. 
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Figure 3.5.: Mass-spring-damper bond graph of Example 3.2. 
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Figure 3.6.: Target closed loop system of Example 3.2. 

The backstepping design starts with the simple causal analysis of Figures 3.5 and 3.7, yielding 

the model 

= ke-d 
k 

e- 
1x-u (3.12) 

rm 
1 

yo =-X. 
m 

The virtual actuator dynamics is given by 

Xi = üo -µ 

X2 = -=2x2 + üo 
r 

yo = 1x1 + ý1) + K'2-; ý2) 

where yo can be seen as the bond graph stabilising function. Notice that the virtual control v* 

as defined in Section 2.2.1 is not a function of the states x. To see this, observe that the bond 

graphs in Figures 3.5 and 3.7 are interconnected to satisfy the constraint iio = yo such that 

the backstepping method gives the virtual control 

k_ -yo + kz v* 90 011 -7V 2) - 
(3.14) 
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Figure 3.7.: Bond graph virtual actuator of Example 3.2. 

The dynamic nature of the virtual actuator can be confusing with respect to the theory 

of Section 2.2.1, since the virtual control is generally taken to be a static function of the 

plant states, but where the backstepping design can still be applied unmodified where the 

appearance of controllers states Jý1 and x2 does not alter the backstepping procedure. 

Next use (3.14), (3.12) and (3.13) to write 

10010 
X2 0 -1/r 10 

th -1 -1 01 

z00 -10 

l(xl -- xlý 

k2x2 

x/m 

kz 

0 
0 
0 

-kýlr + yo/k 

100 
it 

100 
u 

001 
d 

010 
(3.15) 

By considering the damper r in the target system of Figure 3.6, choose the feedback 

U=- e+! yo+-z, (3.16) 

which induces the closed loop 

0010 kl(xl + xi) 10 

x2 0 -1/r 10 k2-t2 10 jc (3.17) 
th -1 -1 01 x/m 01d 

z00 -1 -1/r kz 00 

Clearly, the closed loop dynamics allows for the bond graph representation of Figure 3.8. 

Take the Lyapunov function 

W(x, z,! ) = 2mx 
+ 2kz2+ 

2kixi(1+ 
2xi)+ 2k2x2 (3.18) 
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Figure 3.8.: Closed loop mass-spring-damper of Example 3.2. 

and write 
2 k2 dW 

(X, z, x) _ -2 ý2 -- z2 -ý - wd. (3.19) 
dt rr 

Thus, the closed loop is passive with respect to the supply rates V)p and wd. The feedback 

is found by reversing the change of coordinates (3.14). Q 

It must be noted that Lyapunov arguments have not been used to obtain the control in the 

Examples 3.1 and 3.2. Instead, the closed loop Lyapunov function is implicitly contained in 

the bond graph based backstepping design by retaining the form of the Hamiltonian. 

Even though Examples 3.1 and 3.2 are one-step designs, multi-step designs are realised in an 

analogous manner. The example found in [Yeh99] will now be presented to show a two-step 

design in detail, where the causal path between the virtual actuator and control readily shows 

the bond signals that are to be transformed. 

Example 3.3. ([Yeh99], adapted) Consider the mass-spring-damper system depicted in 

Figure 3.9 and its bond graph representation in Figure 3.10, where the element definitions 

are given as 
I1(c2) 

_- 
c21 12(X3) 

-1 X3, I3(S1) =1 X2 
2ml 2m2 23 (3.20) 

cl(ef) =I2, C2(x2) = 
Ik2xz. 

R=r. 

It is emphasised that this examples considers the control u and disturbance d to be forces 

instead of velocities. 
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Figure 3.9.: Mass-spring-damper of Example 3.3. 
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Figure 3.10.: Bond graph system of Example 3.3. 

Suppose the system in Figure 3.9 is to attain a particular disturbance attenuation level 

through feedback on u. Instead of addressing the disturbance attenuation problem in an 

analytical fashion, the context of the chapter demands that the closed loop dynamics is 

specified in terms of some "physical equivalent" system [Sha9l]. 

Consider the physical system in Figure 3.11, where the control objective is to find an appro- 

priate (dynamic) feedback u such that the closed loop dynamics from d to w is associated 

with this system. Clearly, the controller is to induce closed loop dynamics with the bond 

graph representation of Figure 3.12, where the virtual elements are defined as 

1- 
_z 

1 
_z Ciýxi) =2 iý1ý Czýýz) = 2kztz, Ri = r1, R2 = rz, R3 = f3 - 

(3.21) 

The most characteristic step of the backstepping design considered here is the choice of virtual 

controls klýl and e2/ml depicted in Figure 3.10. Thus, without any further analysis, the 

backstepping design requires two steps to be completed. By inspection of the target bond 

graph in Figure 3.12 it is readily seen that the efforts of the virtual Rl and -Cl elements 

cannot be imposed by the regular control u, so that a backstepping design seems necessary. 

Thus, as a first step in the design, the reasoning from the first two examples would suggest 

that the bond signal kill should "carry" the effort imposed by the virtual actuator composed 

of the R. 1 and C1 elements. 
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Figure 3.11.: Target closed loop of Example 3.3. 
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Figure 3.12.: Target closed loop bond graph of Example 3.3. 

Now, the backstepping design starts with the causal analysis of Figure 3.10 to obtain the 

system 

X1 010 xl/m3 01 

±2 = -1 -1/r 1 k2x2 +0 kjý1 -0d 

Lx3 0 -1 0 
[x3/m2] 

10 (3.22) 
11 

m2 ml 

2= -loci - u. 

Note that the x-dynamics are written in the port-Hamiltonian form, thereby making the 

application of Corollary 2.2 possible. Then, in accordance with Figure 3.12, the first change 

of variable is found to be 

11 =- 
rl 

x3- klýi + klzi = vö = 
m2 

so that the (Jý1i x)-dynamics is port-Hamiltonian with the 

By invoking LaSalle's theorem [Kha92], the point (t1, x) _ 

stable. In view of (3.23), write 

rl k-1 
- k1M2 X3 - k1 X13 

dissipative R and Rl elements. 

(0,0) is globally asymptotically 

11* 
il =-- 

m2 
X3 +- 

ml 
Z2 - voi (3.24) 
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and define the second change of variable 

1 kl 1 mlkl 
ml 2=-- zl + vo + ml z2 = vl =- 

TZ -. L + mlvo. (3.25) 

The last step is given by 

12 = -klzl + 
T1 

x3 + , "1x1 -u- vi) (3.26) 
m2 

which clearly suggests the control 

u= k2ý2 +T3 Z2 + k1 1+1 Xs -VV. (3.27) 
mi m2 

The backstepping design is completed by evaluating the time derivatives vö and vi and by 

substituting the definitions for zl and z2. Collecting the results, it is now readily verified that 

the closed loop takes the form 

xl 0 0 0 0 1 0 0 klxl 0 

X2 0 0 0. 0 0 0 1 k2x2 0 

-1 0 0 0 1 0 0 0 x1/m3 1 

X2 =0 0 -1 -1/r 1 0 0 k2x2 -0d. 
X3 -1 0 0 -1 -rl 1 0 x3/m2 0 

zl 0 0 0 0 -1 -1/r2 1 klzl 0 

z2 0 -1 0 0 0 -1 -r3 z2/ml 0 

w = xl/m3. 

(3.28) 

Just as in the first two examples, the above backstepping design relies on the derivation 

of the virtual controls vö and vi through the bond signals klpl and C'2/ml. One would 

normally choose the states f1 and C2 as virtual controls in view of Lemma 2.1, but these 

virtual controls are counter intuitive to some extent. Instead, it is more intuitive to take 

the bond signals ajCj as virtual control, since they are to "carry" the dynamic effects of the 

virtual elements. Furthermore, these bond signals a;, C are readily selected from the causal 

path connecting the control u. 

The following important observation can be made on the influence of the disturbance d 

depicted in Figure 3.12. Even though it would seem obvious that the target closed loop can 

be attained through a backstepping design, the relative degrees of the virtual controls with 

respect to the disturbance d may pose problems that render the closed loop representation 

more difficult to address. 
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The relative degree problem can be loosely explained by observing that vQ in (3.23) depends 

on x3 and so that vi depends on x2, x3 and ý1 by (3.25). In turn, the control u has a 

dependency on xi because of (3.27). It can now be concluded that the closed loop does take 

the form (3.28), but this will not be the case when the R element in Figure 3.10 is virtual as 

well. In such a scenario the backstepping design would require an additional step, rendering u 

directly dependent on d. But disturbances are generally assumed to be unknown, so that the 

disturbance cannot be removed by feedback. In such case, the closed loop will not allow for 

the bond graph representation of Figure 3.12 and the disturbance would feed through at the 

location of mass ml. 

To clarify this problem with a simple counter example, consider the system 

JE = ý-d 
(3.29) 

ý= -X-U. 

It is readily seen that for z=ý+x and u= -x +z the closed loop becomes 

= -x+z-d (3.30) 
z= -x - d. 

Hence, the z-dynamics has an unanticipated dependency on d, which can be attributed to 

the relative degree of vö with respect to d. The following section will address this point in 

further detail. 

3.2.2. Results on Single-Input Systems 

Having seen three introductory examples on backstepping in the physical domain, this section 

addresses various observations and conditions for such designs to be applicable. While the 

material to be presented has certainly been inspired by the work of [Yeh99] and [Gaw0l], the 

results presented here explicitly uses the port-Hamiltonian formulation to define the control 

objective and to give the closed loop an associated bond graph representation. One-step and 

multi-step designs are considered. 

Proposition 3.1. Consider the single-input system in Figure 3.13, where the dashed region 

represents the virtual actuator to be connected to the 1 -junction. Let the real-valued functions 

H(x) and H°(x°) be smooth, positive definite and proper, where xE 1R and . 7r° E R7,0. Define 

the cascaded element as C(ý) = (1/2)ae2 for some a>0. 
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C E: H(x) 

1 

uloy 0 

o 

--------------------- 

Figure 3.13.: Cascaded C element of Proposition 3.1. 

CE: H(x) 

u° y° 

11 k01 ho 
/ E°: H°(x°) 

Figure 3.14.: Closed loop C-cascaded system of Proposition 3.1. 

Suppose the systems E and 2° are explicit bond graph models with the input-output pairs 

(uo, yo), (moo, yo) E IR XR respectively, where y= y(x) and go = yo(. t°, ico). Then there exists 

a smooth (dynamic) feedback law u(x, ý, °) such that the closed loop allows the bond graph 

representation of Figure 3.14, where C(z) = (1/2)az2 and R=r. 

The closed loop Lypanov function is given as 

and satisfies 

W (x, z, x°) = H(x) + H°(. t°) +2 az2 (3.31) 

z dtW 
(x, z, °) = -U(x, x°) -a z2 < 0, (3.32) 

for all nonzero (x, z, . t°) and positive (semi)-definite U(x, x°) 

Proof. Since the systems E and Eo are explicit bond graph systems, it follows that E can be 

given the form 

x= [J(x) - R(x)]K(x) +g(x)uo 
(3.33) 

Yo =9T (x)K(x), 

where KT (x) = DH(x). Likewise, Eo admits the port-Hamiltonian representation 

x° _ [JA(1ý°) - Ro(5ý°)JKo(-: t(l) +90(ý°) o (3.34) 

yo = 9ö (x°)Iý°(ý°) + bo(x°)üo. 
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The interconnection of E and Eo is then achieved by considering the change of variable of 

the form 

ae = -yo(xo, Jo(x)) +az v* _ -190 (xo, yo(x))" (3.35) 

The system in Figure 3.13 then becomes 

t J(x) - R(x) - g(x)bo(x°)gT (x) -g(x)9ö (x°) K(x) 
I- 

g(x) 
az 

x° 90(ý°)9T (x) Jo(ä5°) - Ro(J-5°) Ko(ý°) 0 

,= -9T 
(x)Ic(x) 

-u- 11*. 

(3.36) 

Hence the control 

u= 
1_az-v 
T 

induces the closed loop of the form 

J(x) - R(x) - g(x)bo(.; ý°)gT(x) -9(x)9ö (. t°) 

°= 9o(. t°)gT (x) Jo(2°) - Ro(t°) 

-gT (x) 0 

In view of (3.32) and (3.38), it is seen that 

(3.37) 

g(x) K(x) 
0 Ko(iýo) 

az 
(3.38) 

U(x, x°) = KT (x)[R(x) +9(x)600°)9T (x)]K(x) +Kö (3.39) 

Because W (x, ý, Wie) is positive definite and proper, the origin is globally stable since U(x, xe) 

is assumed to be positive (semi)-definite. To investigate the global asymptotic stability of 

the origin, consider the set 

P= {(x, z, i°) : U(x, x°) =a z2 = 0}. (3.40) 

Let Po be the largest subset of P that is invariant under the dynamics (3.38), then by LaSalle's 

Theorem [Kha92] the origin is globally asymptotically stable if Po = {0}. Q 

It should be noted that the class of systems E can be enlarged by observing that both 

J(x) and R(x) in (3.33) can be smoothly modulated with ý. Observe that the structure 

matrix J(x, ý) remains trivially anti-symmetric and where U(x, ý, 
. t°) positive (semi)-definite. 

However, observe that if the change of variables (3.35) is to remain valid then it must hold 

that go = yo(x°, yo(x)) does not depend on e, thus dg0/dd = 0, which is clearly satisfied 

for the relation g(x, ý) = g(x). From now it will be assumed that J(x, ý) = J(x) and 

R(x, e) = R(x). 
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TE: H(x) 

Yo uo 
----------------------- i 

lo 
SS 0' Po : Ho(.; V-°) 

Figure 3.15.: Cascaded I element of Corollary 3.2. 

I 

z 

R--ý 1 Ij 0 

E: H(x) 

Yo uo 
ü 

) 
y-ý 

20 : Ho (.; C- 0 

Figure 3.16.: Closed loop I-cascaded system of Corollary 3.2. 

Corollary 3.2. The I-cascaded system depicted in Figure 3.15 allows for the bond graph 

representation of Figure 3.16 by some smooth feedback u(x, ý, a°). 

Proof. Entirely analogues to Proposition 3.1, but (3.32) evidently reads 

dt 
W (X, z, °) = -U(x, xO) - ra2z2 G 0, (3.41) 

for all nonzero (x, z, x°) and positive (semi)-definite U(x,. t°). Q 

The following corollary recognises that for stabilisation purposes the simple R elements in 

Figures 3.14 and 3.16 can be generalised to more complicated systems. 

Corollary 3.3. Consider the systems in Figures 3.13 and 3.15. Then there exists a smooth 

(dynamic) feedback u(x, , ý), with -= such that the respective closed loops in Fig- 

ures 3.17 and 3.18 are attained. The explicit bond graph model El: H'(xl) has the states 

xl E II8"1 and the input/output pair (ill, gl) E JR x JR with yl = y2 (.: i1, ül). 

Proof. From Figures 3.17 and 3.18 define the control in (3.36) as 

u= yl(.: i1, az) - v* = 9i (xl)Ki (: ýTI) + bl (J1)az - v*. (3.42) 
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CE: H(x) 

UO y° 

El : Hl(ý1) 01 
Yo 

/ 
2° : H°(x°) 

Figure 3.17.: Closed loop C-cascaded system of Corollary 3.3. 

I E: H(x) 
T 

yo uo 

El : Hl(: iý 1) 
ý 

Y1 I1ý/0 UO 1 20 : Ho(x°) 
iij go /I 

Figure 3.18.: Closed loop I-cascaded system of Corollary 3.3. 

Then rewrite the port-Hamiltonian dynamics (3.36) as 

**0 g(x) K(x) 

°**00 If°(ý°) 
(3.43) 

x1 00 J1(ý1) - R1(xl) 9i(x1) Ki(ý1) 

zjL -9T 
(x) 0 -91 

( 1) 41 (i') JL 
az 

0 

So far, the C and I elements are taken as simple quadratic elements. The reason for doing 

so can be attributed to the fact that one-step backstepping designs as defined by Lemma 2.1 

induce a closed loop Lyapunov function of the form W(x) = V(x) + (1/2)z2. From this 

standpoint, if the plant dynamics already has the simple quadratic storage (1/2)ae2 associated 

with aC or I element, then the change of variable (3.35) simply interchanges the role of 6 

with z. Thus, such a backstepping design renders the closed loop Lyapunov function identical 

to the plant Hamiltonian; however, due to the change of variables, one must be aware that it is 

not possible to associate physical energy with the closed loop Hamiltonian. Furthermore, the 

closed loop bond graph represents a physical system in conceptual sense. 

Now, it would seem that Proposition 3.1 and Corollaries 3.2 and 3.3 are restricted to the 

change of variable z=ý- v*, but the following proposition shows that the relationship 

z= (1/a). (ý) - v*(x) can be used for certain nonlinear C or I elements, where A(ý) is a 

smooth function and where a>0. 
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Proposition 3.4. Consider Proposition 3.1 and Corollaries 3.2 and 3.3. Suppose all con- 
ditions apply except that C(6) = F(6) or I(6) = F(ý) for some smooth, positive definite 

function F(t; ) satisfying F"(6) >0 for all 6. Then the closed loops in Figures 3.17 and 3.18 

are attainable by smooth feedback u(x, Jý, 6). 

Proof. Put )(ý) = F'(ý) and observe that the plant has the form 

[J(x) - R(x)]K(x) +g(x)A(ý) 
(3.44) 

_ -gT (x)K(x) - u. 

Now, in the same fashion as (3.35), define the change of variable 

A(e) = -yo(-o, yo(x)) + az, (3.45) 

which reflects the idea that the bond signal A(ý) is to "carry" the virtual actuator output go 

and where az renders the C element into a simple quadratic storage function. Because F(e) 

is positive definite and satisfies F"(ý) >0 for all ý, it follows that A(ý) =0 implies = 0. 

The change of variable (3.45) is seen to yield the system 

[J(x) - R(x)]K(x) - 9(x)yo(. 7co, yo(x)) +9(x)az 

1. t - 
(3.46) 

aA/(e)[-9T 
(ý)K(ý) - uý + ýyo(xo, yo(x)), 

from which to derive the control 

u= -gT(x)K(x) + () 
[gT(x)Ic(x)+o(O, 

Yo(x))+i(1, az)] . 
(3.47) 

Hence (3.43) holds with C(z) _ (1/2)az2 or I(z) = (1/2)az2.0 

The main result at this stage is that one-step bond graph based backstepping need not be 

restricted to linear C and I elements as in [Yeh99]. This enlarges the class of systems suitable 

for Proposition 3.1 and Corollaries 3.2 and 3.3. The following example demonstrates such 

nonlinear case. 

Example 3.4. Consider Example 3.1 but suppose the C element in (3.1) is defined as 

C() = F( )= ae arctan(e) -a ln(E2 + 1), (3.48) 

which is smooth, positive definite and satisfies F"(ý) >0 for all ý and a>0. The plant is 

readily given as 
a arctan(C) 

(3.49) 
x 

U. 
rra x -+I 
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It is instructive to briefly consider a conventional backstepping design first, which would 

view the state e as the virtual control. In this case, observe that the change of variable 
ý= -x +z stabilises the x-dynamics, because the dynamics x= -a arctan(x) is readily 

seen to be globally asymptotically stable. Although the system (3.49) is relatively simple, a 

conventional backstepping design can become quite involved since the x-dynamics must be 

written as 

1 

a arctan(-x + z) = -a arctan(x) +zJ- arctan(-x + s) 
Ltz 

dt 

0 
(3.50) 

_ -a arctan(x) + p(x, z)z, 

where p(x, z) is smooth. This procedure will induce port-Hamiltonian as per Corollary 2.2 

but not with the structure of Figure 3.3. So instead of focusing on the state variable ý 

as the virtual control, identify the bond signal a arctan(x) as the virtual control, where it 

can be argued that such a choice is somewhat unconventional. Nonetheless, the change of 

variable (3.45) is a logical choice within the bond graph context and yields the virtual control 

a arctan() 
__+ 

1+ az, (3.51) 

where the resistive Rl element in Figure 3.2 is chosen to be linear. Then (3.47) reads 

U=-x+ (ý2 + 1) x ri 
- 

rlx 2+1 
az (3.52) 

m x2 1m x2 -F 1 am x2 +1 am(x2 + 1)3/2 F2 

] 

which induces the closed loop 

-rl 1 x/(m x+ 1) 
(3.53) 

az -1 -1/r2 

Global asymptotic stability follows immediately. 

The recursive application of Proposition 3.1 and Corollaries 3.2 and 3.3 is readily possible for 

systems having a cascading sequence of C and I elements. The following proposition shows 

the recursive application of Corollary 3.3 that encompasses Proposition 3.1 and Corollary 3.3. 

Just as in the one-step design, the closed loop retains the plant structure to which additional 

bond graph elements are added that represent stabilising dynamics. More precisely, for each 

step a new coordinate is introduced such that the plant bond graph topology is retained to 

provide arguments for stabilising elements. 
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Il C1 E: H(x) 

ý2T 
1ý1 

Uo Yo 
------------------------ 

u ... 
a1 ýý 01 f-yý 20 : Ho(. to) 

Figure 3.19.: Repeated linear cascaded elements of Proposition 3.5. 
Ii C1 E: H(x) 

z2 1zi uo yo 

aý 
1p1 ý7 

20 : Ho(xo) 

92 2 'Li 91 

E2 : H2(x2) El : Hl(. t1) 

Figure 3.20.: Target cascaded closed loop of Proposition 3.5. 

Proposition 3.5. Consider the cascaded system depicted in Figure 3.19, where E and Eo are 

explicit bond graph systems defined on ][8n and IR'O respectively. The input/output pairs are 

(no, u°), (üo, go) E II8 x IR with yo = yo(x) and y0 = y0(. t°, ü°). Let the real-valued functions 

H(x) and H°(x°) be smooth, positive definite and define quadratic storage elements as 

Cj(2j-i) = 2a2j-izj-i, Ik(e2k) = 2a2ke2k, (3.54) 

for appropriate j, kEN, where aZ >0 for all i. Then there exists a feedback u(x, .: t, t; ), with 

= (xo, i' .. 
) and = (ei, Ca,. .. 

), such that the closed loop admits the bond graph represen- 

tation of Figure 3.20. The explicit bond graph systems Ei are defined on l[8"=, for i>1, and 

have the input/output pairs (icy, g) E ]R x IR with yz = yj(Jýz, Uz). 

Proof. Depending upon which element terminates the sequence, the control u in Figure 3.19 

is either an effort or a flow. Now, the first step of the design is analogue to Proposition 3.1 

and the first change"of variable is therefore defined as 

a1 1= -Yo(xo, yo(x)) + alzl = vo =-1 go(xo, yo(x)), (3.55) 
al 

thus 

zi = -yo(x) + a2ý2 - vö. (3.56) 
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By considering the target dynamics of Figure 3.20, it is seen that the second change of variable 

becomes 

a26 = -yi (Jý 1, alzl) +, &0 -I- azzz = vi =-2 [yi (.; v- 1, aizl) - vö] (3.57) 

Then, for j>2, define the recursive relation 

where 

zi = -aj-izj-i - aj-1vß-2 + aj+1eß+1 - (3.58) 

ai+1ý. 7+1 = aj-1vj-2 +'Uj-1 - y. Y(xj, ajz7) + a. 9+1zj+1 

1 (3.59) 
vj* = aj+l 

[aj-ivy-2 +v)-1- yi(. t', ajzj)]- 

It is readily seen that Proposition 3.5 holds for the the cascaded pattern of elements in 

Figures 3.19 and 3.20 for which the C and I elements are swapped. 

Corollary 3.6. Let the elements in Proposition 3.5 be defined as 

C~'j(6j-1) = Fj(aj-i), Ik(ak) = Gk(6k)i (3.60) 

for positive definite functions Fj(e2j_1) and Gk(e2k), satisfying the conditions Fj'(62j_1) >0 

and G'k(e2k) >0 for all l; Z. Then the closed loop in Figure 3.20 can be attained by smooth 

feedback. 

Proof. The first step of the design starts with the relation 

Ai (ei) _ -9(x°, yo (x)) +alzi, (3.61) 

yielding the z1-dynamics 

zl =i Ai(ei)[-yo(x) + A2(6)] + i-Yo(xoiYO(x)). (3.62) 

To further enforce the target dynamics in Figure 3.20, define the virtual control 

A2( 2) = Jo(x) + (i) 
[_Yo(x) 

- iyo(-o, yo(x)) - yi(xl, aizi) + a2z2] , 
(3.63) 

AI- 

so that the z2-dynamics becomes 

z2 
al 2ýi(ýi)[ý2( 

2)[-ill l) +)%3(e3)1 - Üo(x)] + 
ai 2Ai(Zi)[A2(e2) 

- yo(x)] 

+2 Eo(x) + 
al1 

+ yi(xl, alzl)] . 
(3.64) 1 
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Select the expression for X3(3) that "cancels" the right-hand side of (3.64) and that imposes 

the proper target dynamics. Unfortunately, the expressions become too complex for presen- 

tational purposes, but it is readily seen that the recursive process does yield the closed loop 

port-Hamiltonian dynamics of Figure 3.20.0 

The recursive scheme for nonlinear elements can be clarified by considering Example 3.3, but 

assume that the C1 and Il elements are nonlinear elements that satisfy the conditions of 

Proposition 3.5. 

Example 3.5. Consider Figure 3.10 and define C1(ý1) = F1(ý1) and I1(e2) = Gl(ý2), where 

the actual definitions of C1(e1) and I1(62) will be omitted to avoid some algebra, but observe 

that (3.22) now reads 

x1 010 x1/m3 01 

: ý2 = -1 -1/r 1 k2x2 +0 Al (ei) -0d 

X3 0 -1 0 x3/m2 10 (3.65) 

1= -y0(x) +, \2(e2) 

ý2 = -A1(ei) - u. 

The design can now be based on (3.61) and (3.63) for which al = kl, a2 = 1/ml and 

A(b) _ -u. 0 

As mentioned earlier, the class of systems depicted in Figure 3.19 of Proposition 3.5 are 

relatively small, so that the application of the presented backstepping procedure is somewhat 

limited. However, it is possible to enlarge this class of systems by allowing explicit bond graph 

systems to be connected to the junctions of the cascaded pattern of C and I elements. For 

simplicity, the following corollary explains this process for a single quadratic C element, but 

it is understood that the same arguments equally holds for a quadratic I element. 

Corollary 3.7. Let E, 7 : 
., (q) be an explicit bond graph model with the input/output pair 

(u,,, yn) E IR x JR with y,, = yq(ii, u, ). Suppose E,, is connected to aO -junction of some 

quadratic Ci element as depicted in Figure 3.21. Then the recursive back-stepping procedure 

of Proposition 3.5 can be applied if Eq is input-to-state stable. 
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Ci 
ibi 

ai F ai 

u17 y, 1 

E, 7 : H, 7(71) 

Figure 3.21.: Extended backstepping junction of Corollary 3.7. 

Proof. First observe that the bond graph in Figure 3.21 yields the system 

ýz = -a2-iýz-i + ai+let+i - y, 7(i, ajez) 

ý= [In(k) - Rn(i)]Kn(ij) +9n(ii)ajej. (3.66) 

yT/ = 9,7 (77)Kn(7l) + bn(il)aLe=. 

The target dynamics of Figure 3.20 are attainable by amending the relation (3.59) to 

ai+16i+1 = ai-1v 2+ vi 1- ji(xZ, aizi) + y, 7(i, aiSi) + ai+lzi+l 

1 (3.67) 
vi - 

[ai-1vi-2 + Uz 1- vi (xi a{zi) + y1(7], aji j)], 
ai+l 

thereby removing the influence of y, 7 from the target dynamics. However, this implies that 

the internal rq-dynamics must remain stable for arbitrary bounded input u, 7. 

Take the usual change of variable ýj = zi + vz 1, so that (3.66) with (3.67) reads 

zi = -ai-lzi-i - yi(x2, aizi) + az+lzi+1 
(3.68) 

ýl = [I,, (? ) -R , 1(71)]K, 7(77) +s, 7(11)ai[v= 1 +z=]. 

The target dynamics are therefore attained, but the 77-dynamics are driven by arbitrary, bounded 

inputs vz 1+ zi. To guarantee that 71-trajectories remain stable, it is desirable that there 

exists a smooth, real-valued function V(r1), which is positive definite and proper, such that 

dV(, q) s -a(1171tJ) +a(IuaI), (3.69) 

where a and a are class K- functions [Son95], [Isi99]. So if the 77-dynamics are input-to-state 

stable then the backstepping procedure can be applied. 0 

Example 3.6. Consider the physical system depicted in Figure 3.22 and its bond graph 

representation in Figure 3.23, where the various elements are defined as 

I(x) = 21x2, 
Ci(f) =1 k1 2, Ca(ll) = 

1k27]2, 
R= r. (3.70) 

22 
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k2 
kl 

md 

Figure 3.22.: Compound element backstepping of Example 3.6. 
Ci I 

SS11 01Id SS2 
uw 

Rk 1 jC2 

11 

Figure 3.23.: Compound backstepping bond graph of Example 3.6. 

As in example 3.2, suppose that the virtual actuator in Figure 3.7 is to be connected to the 

mass m with the connection constraint zi = w, then by Corollary 3.7 it is still possible to 

attain the closed loop of Figure 3.6 through a backstepping design. 

The point of departure is straightforward causal analysis to obtain the system 

th = klý -d 
11 kl k2 

_ '- X- T -u+ T77 (3.71) 

i=- 
k2 

i+ 
ki 

, rr 

where the dynamics (3.66) are clearly recognised. Then by recalling Example 3.2, take the 

change of variable 

1 kie _ -yo(ý°, x2) + klz = vo =-1 yo(x°,. i)ý (3.72) 

where yo is the output of the virtual actuator in Figure 3.7. In view of (3.67), the closed loop 

in Figure 3.8 is attainable by choosing the control 

1L=- 
1+ 27J-v�+ klz. 

(3.73) 
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This yields the dynamics 

x= -go(x°, x2) + klz -d 
1 kl 

z=--x-z (3.74) 
mr 

7=- 
k277+ ki 

It is clearly seen that the linear 71-dynamics are driven by vö + z, so that the input-to-state 

stability property it trivially fulfilled. More precisely, observe that u,, = ki (vö + z) and that 

the Lyapunov function V(71) _ (1/2)rj2 yields 

d V(77): 5 - 
x2772 +r 17711 U171 

--(r2 2r)i2+2bru77 
(3.75) 

= -Cc GO + cr(I unl ), 
with S< 2k2 , and where a and a are class k,, functions. Consequently, the it-dynamics 

remains stable if I vö (t) + z(t) remains bounded. 0 

The presented results on bond graph based backstepping did not yet address possible distur- 

bances entering the subsystem E: H(x); however, it has been shown by Examples 3.2 and 3.3 

that backstepping can be used for disturbance attenuation problems. Now, the presented 

theory can "in principle" be applied unmodified, but caution must be taken if the closed loop 

is to have a particular desired representation. The following proposition shows that relative 

degrees are instrumental to address disturbances. 

Proposition 3.8. Consider the recursive procedure of Proposition 3.5, but where the system 

E: H(x) in Figure 3.19 has an additional input/output pair (d, w) E l[8 x R. The disturbance 

is denoted as d and the conjugate output as w. Suppose that the cascaded pattern of quadratic 

C and I elements define the state variables (ý1i 
... , k). Then the closed loop in Figure 3.20 

can be attained if yo(x) has a relative degree ro >k with respect to d. 

Proof. Recall that each system Ej : Hj (x1) with j>0 is an explicit port-Hamiltonian system 

of the form 

(3.76) 

Set j=0 and üo = yo(x), then it follows that 

ätr"° 
dtryo(ýoýJo(x)) (3.77) 
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This implies that (3.77) does not depend on d for 0<r<k. Now, the proposition is readily 

seen to be true for k=1 since 

zi = -yo(x) + a2e2 - vö, (3.78) 

which does not depend on d by (3.77). To apply (3.59) in the following steps, set k=2 and 

write 

vi =2 
[t- 

9101, aizi)I ' (3.79) 

so that by taking z2 = ý2 - vi it readily follows that 

1 d2 d 11 za =. e2 - a2 

f 
dt2v0 - dtyl(: , alzi)J . 

(3.80) 

Continuing this scheme with k=3 yields the virtual control 

d2l 
' 

(3.81) V2 
3 

[alv0 
+ 

a2 

[dt 

ät 2v0 yl(ý1, aiz1)] - 92(7-2a 2Z2) 

so that with z3 = ý3 - v2 this gives 

1`d (d3 
* d2 11 d_ 2 ýj 

zs = ýs - a3 I aidtv0 + Q2 I at3v0 - dt2yi(x , alzl)J - dty2(ý , a2Z2)J . 
(3.82) 

It is clear that z2 depends on at most d2vö/dt2 and that . z3 depends on at most d3vö/dt3. The 

above procedure can be continued by back-substitution of previously defined virtual controls 

and their time derivatives. In addition, the various time derivatives of Pj(xi, ajzz) can be 

resolved through (3.76) and the relations zi = ýz - vz 1. Then, by (3.77) and ro > k, it is seen 

that the closed loop in Figure 3.20 is attainable since , zk depends on at most dkvo/dtk, proving 

that the disturbance d does not enter the z-dynamics. Q 

Various techniques for bond graph based backstepping have been presented, but this section 

is by no means exhaustive and further extensions of the various developments are readily 

conceivable. For example, the class of systems suitable for bond graph based backstepping 

can be further enlarged by certain modulations of the systems Ej: Hj(xi). In any case, it 

is safe to say that valuable problems have been presented to allow for such extensions to be 

developed in the future. 

Bond graph based backstepping as considered here addresses the case in which no derivative 

causalities are induced by the bond graph topology. It can be argued that such bond graph 

models belong to a relatively small subset of models, rendering the backstepping method 

somewhat limited. Future research could look into bond graph based backstepping in case of 

dependent storage elements, but this can be expected to be more complex. 
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3.2.3. Multi-Input Systems 

This section briefly shows how the results of the previous sections can be applied to multi-input 

systems, but no attempt is made to develop additional results since the techniques for the 

single-input case readily transfer to the multi-input case. 

For simplicity, consider a multi-input bond graph model as the port-Hamiltonian system 

[J(x) - R(x)JK(x) + 9j(x)ai6i 
i= -gj (x)K(x) + a2ýz 
2= -ai 1 +a3 3 (3.83) 

3j= 
-anj-1Snj-1 - UJ, 

where xE Rh and ýi = (ai..... nj). Observe that Proposition 3.4 can be applied to each 
branch ýj c IP"i, where the application of Proposition 3.5 is possible also. Towards that 

end, the design starts with the relations 

aiei = -yon (Jo-1, yon (x)) + aizi, (3.84) 

where the recursive scheme applies to all relation (3.84) in parallel fashion. Depending on 

the various values nj, the backstepping design may lead to certain controls uj to depend on 

other controls ui, hence the lowest dimensional branch ý3 is to be resolved first. 

Example 3.7. Consider the two-input system in Figure 3.24 with the element definitions 

C1( i) =1 i(ýi)2, C2(ýi) =1k (ßi)2, I1( z) =1 (2)2' 12 (X) =1 x2. (3.85) 
22 2m2 2m 

The control objective is to impose the closed dynamics with the bond graph representation of 

Figure 3.25. Even though it may seem that the control problem is considerably more complex 

than the single-input case, the backstepping design for single-input systems can be applied 

without modification. 

From Figure 3.25 it follows that the virtual actuator is given as a single resistive R ele- 

ment, where the causal path from this resistive element to both controls emanates from a 

common 1 -junction. In such a scenario it is possible to fictitiously replace the if element with 

two resistive elements and to assign the corresponding virtual actuator outputs gol and 902 
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Il Cl I2 C2 

Uz ix ýl 

SS1 11/0ý1ý/0 
U2 /ISSa 

Figure 3.24.: Two-input system of Exercise 3.7. 
Il Cl IZ C2 

z2 i 

ýTb 11 z2 

0 1ý ý0 R1 

iR 

Figure 3.25.: Target closed loop of Exercise 3.7. 

to the corresponding signals kjQ and ki 1. Now, causal analysis yields the dynamics 

x= k'Z - nisi 

ýi = -mom +m2 
a 

ý2 
= -kiel - ul 

(3.86) 

ý1 =1 x- U2, 

which are of the form (3.83) with J(x) = R(x) = 0, gl(x) =1 and 92(x) = -1. In accordance 

with (3.84), define the change of variables 

r 
kiýi = -2x+kizi 

r 
kg 2 = 2mß 

+ izi 

*r 
2klx v01= 

Im 

v02 = 2k2mX i 

(3.87) 

yielding 
11 

zl = 
'nom 

+'n1 a- v01 
(3.88) 

zl =X- u2 - v02. 
M 

As in the single-input case, the target dynamics in Figure 3.25 shows that one can choose 

the change of variable 

1z=-i 
klzl + vpl + 

11 
z2 = vii = -mi kkzl + m2vö1 (3.89) 

m2 rl m2 rl 
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and the regular control 

The z2-dynamics takes the form 

I 2Z2 U2 = Tiklz1 -1102. (3.90) 

z2 =- kizi +-x- ul - vi (3.91) 

from which to choose the control 
1 

ul = -kivol -1511 + 
m2 
-i 

z2. (3.92) 

The design technique considered so far is identical to the procedure for single-input systems 

except that two branches must considered instead. Also, it is readily checked that the expan- 

sion of the control ul requires the definition for u2. This is readily explained by observing 

that nl =2 and n2 = 1. By applying both controls to the plant in Figure 3.24, the target 

closed loop allows for the port-Hamiltonian representation 

th -r 10 -1 x/m 

zi -1 -1/Fi 10 kizi 
- (3.93) 

20 
-1 -r2 0 z2/m2 

zi 100 -1/r2 kizi 

which is globally asymptotically stable. 

Note that simple quadratic C1, C2, I, elements have been considered so far, but the structure 

of the port-Hamiltonian dynamics (3.83) shows that Proposition 3.4 can be used for branches 

having nonlinear elements. In such cases, the relationships (3.87) read 

All (ai) r2mx+kizi 

J_x 
(3.94) 

=+ kiz1, 

so that 

(3.95) 

zi =i(, \2)1(E2) 
[mx 

- u21 - 2-rnx. 

Next enforce the relation 

1 

'\z( 
z) = mx + 

Zmx - 
mx 

-i 
O1 

1+ 
m2z2J (3.96) 

and the control 
k21 

U2 = 
mx 

+ (Ai) (ei) 
1X- 

mx 
+r kiziJ (3.97) 
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The Z21-dynamics; is now given as 

z2 =i 
[(Ai)'( i)] 

ý'ýW2 

-mom] 
1 i)ý( i) [(x)'(ei)[_kef -ul] -m x] 

rT11] 

I- m2 2m+ m+ T1 kl i11 (3.98) 
i 

Finally, choose the control ul that cancels the right-hand side of (3.98), where the desired 

target dynamics is imposed by further control. Note that u2 is needed to do so. 0 

3.3. Bicausal Bond Graphs in Backstepping Control 

The previous sections primarily used the bond graph to define the plant and the closed loop 

target dynamics, which comprised the explicit bond graph models Ej: i (xi) for j>0. In 

particular, the characteristic step of the backstepping procedure was shown to be a proper 

change of coordinates to induce a closed loop bond graph identical to the plant with additional 

elements. It can be shown that some of the design steps can be performed through the sole 

application of bicausality [GawOl]. More precisely, instead of manually going through the 

various changes of variables, bicausal assignment can be used to immediately derive the 

backstepping controller without the explicit introduction of new variables. 

Most of the material presented will use the examples of Section 3.2.1 and the various results 

of Section 3.2.2, thereby facilitating comparisons with the bicausal approach. It should be 

noted that in [Gaw0l] the connection between the "Bond Graph Based Control with Vir- 

tual Actuators" and bond graph based backstepping is recognised. This section intends to 

complement that paper by showing a different account on bicausality in bond graph based 

backstepping. 

In [Gaw0l], it is shown that bond graph based backstepping is possible through the (bi)causal 

inversion mechanism, but the paper does not address these ideas in great detail other than 

through the motivational Example 3.2 in Section 3.2.1. The main impetus of this section is 

therefore to complement [Gaw0l] by showing that the bicausal approach does indeed yield 

certain exact backstepping controllers for particular problems. Furthermore, it will be shown 

that the bicausal approach is applicable when no stabilising dynamics Ej: F[ (.: iýj) is to be 

imposed, where the C and I elements are assumed to be quadratic. The following proposition 

structures these ideas. 
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Figure 3.26.: Extended cascaded bond graph of Proposition 3.9. 
11 Cl 

a33 y0 
U """ 1 

a2 
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E712 : Hg2(n2) Eiji : H. 7, 
(i71) 

Figure 3.27.: Bicausal extended cascaded C and I pattern of Proposition 3.9. 

Proposition 3.9. Consider the bond graph in Figure 3.26 and the bicausal bond graph in 

Figure 3.27. Suppose that the cascaded elements have the definitions (3.54) and that 

Yni (Ti, U71. 11 
+ uni = yr,, (7ý 

1 uni +y (T?, u, i ) (3.99) 

Then the bicausal bond graph yields a smooth feedback u(x, ý, rte) that induces the closed loop 

dynamics of Figure 3.28. 

Proof. Consider the change of variable 

aiel = -yo + alzl = alvo + alzl, (3.100) 

giving the z1-dynamics 

zi = -yo - y7'(n', aiýi) + a26 - vö 
(3.101) 

_ -yo - y,, l(7)1, aizi) + a2ý2 - y, i(7)l, aiv0*) - i? * 0. 
Suppose that the original port-Hamiltonian structure is to be retained and that no stabilising 

dynamics E1: Hl(.; v1) are imposed. The virtual control a22 then becomes 

a2ý2 = vo + yni(71I, alv0*) + a2z2 = a2vi + a2z2. (3.102) 
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Figure 3.28.: Closed loop dynamics with bicausal approach of Proposition 3.9. 

Ci 

a2 vZ 1 0 
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(77') 

Figure 3.29.: Generic Ci backstepping junction of Proposition 3.9. 

Recall that alvö = -Jo and consider the bicausal bond graph in Figure 3.27. Bicausal anal- 

ysis then shows that the bond signal a2ý2 coincides with (3.102) for z2 = 0. Thus, for a 

one-step design it follows that the bicausal approach coincides with the backstepping con- 

troller. Continuing with (3.102) yields the z2-dynamics 

z2 = -aiei - y, 72 
(712, a2e2) + a3e3 - vl 

(3.103) 

= -alzi - y, 12(7)2, a2Z2) - alvö - yn2li2, a2v1) + a36 - v1, 

therefore 

a3 3= alvÖ + y, 72(q2, a2v1) + vi + a3z3. (3.104) 

Set z3 =0 and observe that bicausal analysis yields the virtual control (3.104). The recursive 

process continues for j>2 as 

zj = -aj-lýj-1 - yrli (, 
/ , ajýj) + a3e3 - vj-1 

(3.105) 

= -aj-izj-i - ynj (r, ajzj) - aj-ivy-2 - ynj (i, ajvj-i) + aj+iej+l - vj-1" 

The virtual controls are of the form 

aj+lej+l = aj-1vß-2 + y,, j W, aivv-1) + vj-i + aj+izj+i. (3.106) 
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SS1 
U0 

R 

Figure 3.30.: Backstepping with bicausal assignment; Example 3.8. 

Now, the bicausal bond graph does not introduce new variables, so that it follows that (3.106) 

must impose zj+l =0 if the virtual controls aj+iýj+l are to coincide with the bicausal 

mechanism. Further causal analysis of Figure 3.27 yields the generic C2 backstepping junc- 

tions depicted in Figure 3.29, where it should be noted that the indexing does not conform 

to (3.60) but merely reflects the relationships between the various bond signals incident to 

the 0 -junctions. Of course, the generic I2 has the same bond signal relationships. 

Finally, the virtual control ai+lýj+l is now seen to coincide with (3.106) for zj+l = 0, but 

is must be noted that the obtained closed loop port-Hamiltonian dynamics by means of the 

bicausal approach still require the variables zj for their definition. Q 

It can be concluded that the exposition in [Gaw0l] does indeed produce a class of exact 

backstepping controllers; however, the bicausal bond graph does not introduce new variables 

to define the dynamics Ej: Hj(x3), thereby restricting the class of systems. That is to say 

that the bicausal inversion mechanism retains the plant structure but does not provide tools 

to define further stabilising dynamics without resorting to the new variables zj. 

Example 3.8. The controller (3.16) of Example 3.2 is obtained by means of the bicausal 

bond graph in Figure 3.30. To see this, observe that y7(, q, u,, ) = u,, /r and therefore the 

condition (3.99) is satisfied. Bicausal analysis then yields the control 

1 1. 
ryo+ kyo, (3.107) 

where Proposition 3.9 confirms the closed loop in Figure 3.8. It can be concluded that the 

bicausal bond graph provides a "shortcut" for the backstepping design but for which the 

closed loop bond graph representation requires the variables zj. 0 
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Figure 3.31.: Bicausal backstepping towards u2i Example 3.9. 
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Figure 3.32.: Bicausal backstepping towards ul; Example 3.9. 

In [Gaw0l], only the single-input case is considered, however, the multi-input system (3.83) 

shows that bicausality can be applied for such multi-input scenarios. The following example 

complements [Gaw0l] by applying Proposition 3.9 to a multi-input case and shows that 

the closed loop does not comprise any stabilising dynamics, thereby retaining the original 

structure of the system. 

Example 3.9. Consider, once again, the system in Figure 3.24 and the associated bicausal 

bond graphs in Figures 3.31 and 3.32. Clearly, u2 must be found first since and 
2=1. The control u2 is immediate from Figure 3.31, being 

U2 = -'602, (3.108) 

which coincides with (3.90) for z1 = 0. Then, from Figure 3.32, the control ul becomes 

ul = -klvol - vil1 (3.109) 

so that ul coincides with (3.92) for z2 = 0. 

3.4. Conclusions 

0 

This chapter contributes certain results on bond graph based backstepping control that were 

inspired by the works [Yeh99], [YehOl], [Yeh02], [GawOl] and references therein. The novelty 

of the presented results are the applications of judiciously chosen virtual control laws to allow 

for closed loop bond graph representations. 
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Crucial to all developments is that backstepping control is capable of inducing bond graph 
based dynamics provided that the virtually actuated subsystem has certain port-Hamiltonian 

properties. More precisely, the fact that bond graphs have intrinsic port-Hamiltonian proper- 

ties [Go102] clearly shows the connections between backstepping and bond graph modelling. 

This observation readily materialises by taking the virtually actuated system as a bond 

graph so that the backstepping design can be made to retain the original port-Hamiltonian 

structure of the dynamics through which to "step back". These ideas show that such an 

approach is both pragmatic and effective; however, as with all backstepping designs, new 

variables for the states "between" the virtual control and regular control have to be intro- 

duced. Consequently, the closed loop is port-Hamiltonian with respect to the states of the 

virtually actuated subsystem and the new coordinates. This last point is important, because 

the states of the virtually actuated trajectories can be made to emulate the trajectories of 

another physical system. 

The bond graph based backstepping method shows to allow for certain disturbances to enter 

the virtually actuated subsystem, provided a relative degree condition is fulfilled. If such 

relative degree conditions are not satisfied, then the backstepping controller may depend on 

the disturbance and its time derivatives. This would be problematic since disturbances are 

generally assumed not to be measurable. 

Multi-input systems show to be solvable by means of the single-input case, but no further 

results have been elaborated since the single-input case readily transfers to multi-input sys- 

tems. Even though such extensions to multi-input systems are relatively straightforward, it 

should be observed that the regular controls are likely to have different relative degrees with 

respect to the virtual controls. This implies that regular controls with the lowest relative 

degrees have to be resolved first. 

Finally, the bicausal approach does indeed yield a class of backstepping controllers, but the 

approach only works on a smaller class of systems since new variables are not part of the 

controller design. Consequently, stabilising dynamics remain somewhat difficult to define 

from within the bicausal approach. Like the single-input case, multi-input backstepping 

problems can be solved through (bi)causal assignment, but it also suffers from the lack of 

further stabilisation. 
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4.1. Introduction 

The (non)linear Model Matching Problem (MMP) addressed in Section 2.3 applies to the 

affine plant (2.31) and model (2.32). However, it can be of interest to specialise these affine 

systems to certain physical models, where both P and M describe physical behavior such 

that the MMP incorporates a form of "physical equivalence" as outlined in [Sha9l]. Put 

differently, the plant is to be controlled in way that attaches explicit physical behavior to 

the input/output dynamics associated with the prescribed physical model M. Such control 

method would represent the physical design objective by means of modelling arguments 

instead of a sole signal theoretic approach. 

This section presents applications of the bond graph based MMP for which the control objec- 

tive has a physical interpretation. The main ingredients of a typical application considered 

here is as follows. It is intended to specify the MMP through bond graph representations 

of the plant and model, so that P and M belong to a class of port-Hamiltonian systems. 

Then, once P and M are defined, the natural passive outputs of the bond graphs are often 

not to be controlled as mentioned in Section 2.3.1. Consequently, redefinition of such passive 

outputs may be required, where the model M will be defined to contain a copy of the plant 

and be "close" to the plant in structural sense. This will allow a necessary relative degree 

condition to be satisfied. 

The key aspects of this chapter are not about strict design steps such as bond graph based 

backstepping. This chapter shows that the closed loop bond graph representation may be 

inferred, in some cases, from the plant in accordance with the MMP theory presented in Sec- 

tion 2.3. Furthermore, bicausal bond graphs are used whenever possible to find the decoupling 

controller through (bi)causal inversion, where the constrained dynamics that describes the 

matching of the plant and model outputs must be found in a conventional manner. 
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There may exist certain MMP scenarios that need not be efficiently solved through a bicausal 

inversion mechanism. Indeed, the problem that could hinder such application of bicausality 

is that the Standard Causality Assignment Procedure (SCAP) does not efficiently model the 

plant bond graph, or that plant outputs are difficult to define through SS components. More 

precisely, it is known that SCAP can yield unnecessary complex dynamics due to the "ineffi- 

cient" selection of state variables. To remedy such problems, alternative causality assignment 

procedures can be used to simplify the dynamics significantly [Mar02]. For example, in the 

mechanical domain it is often the case that the Lagrangian Causality Assignment Proce- 

dure (LCAP) provides a more efficient method to obtain second order dynamics, which can 

be readily transformed into first order form. However, LCAP is difficult to use in the bi- 

causal context, mainly because bicausal assignment is typically applied to bond graphs that 

are causally assigned with SCAP. Also, there are no available results on this matter in the 

current literature. This chapter will address the above considerations in more detail. 

Even though the bicausal bond graph mechanism will be used for inversion purposes whenever 

possible, certain outputs may not be readily modelled with SS components such that the 

bicausal mechanism becomes problematic. This can occur when outputs appear nonlinearly 

in the model or when they are functions of state variables. As a result, the SS component 

is not a suitable solution for extracting the output of the bond graph, rendering bicausal 

inversion not applicable due to the absence of suitable SS components that define the required 

output. These issues will be elaborated in later sections. 

Bond graphs that contain nonlinear modulations often restrict the applicability of feedback 

linearising designs, since the dynamics need not have a well-defined relative degree on some 

domain of interest. To render the MMP solvable, it is quite natural to address the linearised 

MMP instead. The bond graphs for P and M do not change, but their induced dynamics is 

linearised around some point of interest. It will be shown that the closed loop bond graph is 

then merely associated with input/output dynamics of the prescribed model. 

It must be acknowledged that the MMP considered here is nothing new in itself, but the 

specific application of physical considerations through bond graph modelling can be seen as a 

novel contribution. Furthermore, and this holds for all bond graph based MMPs, the output 

regulation problem addressed in Section 2.3.2 provides control theoretical foundations that 

were previously non-existent in the bond graph literature. 
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Figure 4.1.: Plant input/output configuration. 

4.2. Virtual Actuation of Input/Output Dynamics 

This section addresses virtual actuation in input/output sense, which is different from the 

virtual actuation concept in backstepping. The input/output dynamics of the plant is to be 

controlled in a manner that emulates the input/output dynamics of the plant with external 

dynamics. Such control objective can be specified with a model that comprises an exact copy 

of the plant, where additive dynamics represents the external dynamics. The plant is a bond 

graph model with a subset of passive outputs ignored. The model, on the other hand, is a 

standard bond graph model. 

Consider the plant P in Figure 4.1, where u= (ul, u2), y= (yl, y2) and v= (vl, v2). The 

input and output variables have the dimensions 

1 ý il 
... 'v 

1 
1), 

11 
2= (v 2'... 

'v 
2 

2) 

ul = (ui,..., uP, ), y1 = (yi,..., y2 (4.1) 

u2 = (ui,..., ul), y2 = (yi,..., yP2) 

with ml + m2 =m and pl + P2 = m. The superscript (. )l associates its variables with 

flow sources whereas the superscript (. )2 associates its variables with effort sources. The 

Hamiltonian is denoted as the smooth, real-valued function H: X -º R. Bond graph storage 

and dissipative elements are contained in Ep. 

Next consider the model M depicted in Figure 4.2, where zi = (ii1, ice) and (yl, 92). The 

dimensions of the model inputs and outputs are 

ü1 = (üi, 
... ý1 1), y1 = (yi' 

... , YP1) 
(4.2) 

ü2 = (üi, 
... üp2), y2 = (yi 

'... , y2). 

The model Hamiltonian is denoted as the smooth, real-valued function fl: X 
-* R. Bond 

graph storage and dissipative elements are contained in EM. 
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Figure 4.2.: Model input/output configuration. 

The bond graph based MMP objective considered in this section can be clarified as follows. 

Suppose that the plant P has dynamics of the form 

th _ [J(x, I-i) - R(x,. u)]K(x, u) - 9i(x, lu)uj- 4i(x, fi)v= (4.3) 
yj = 9jT(x, p)K(x, ! z), 

where xE 1R" are the states associated with the storage elements, and where the system inputs 

and outputs are u, yE 1f and vE R'. Physical parameters of the plant are µ= (p1, 
... , /-tk) 

for some k. Then consider a model M described by 

x2 sT (x2) 

-S(. t2) K1P) gj(x1, IL) 
ii j 

J(jýZ) - R(. t2) k(jý2) 0 

(4.4) 

where xl E I[8'ß, x2 E R" and ü, 9E I[871. 

The above definitions of P and M show that the plant x'-dynamics can be seen to be 

"actuated" by the x2-dynamics of the model. To implement the idea that the (u, y)-dynamics 

matches the (ü, y)-dynamics should be the result of imposing the condition u=ü as a partial 

solution to the nonregular DDDP with disturbance measurement. Note that the plant (4.3) 

is derivable from explicit port-Hamiltonian dynamics associated with the bond graphs in 

Figure 4.1. So, for the following developments, it is assumed that the bond graph of P yields 

explicit port-Hamiltonian dynamics that take the form (4.3) when the conjugate outputs to 

v are ignored. Such explicit systems are typically obtained from bond graphs that have no 

storage elements in derivative causality. 

By definition of P and M it follows that the relative degree condition rZ < rt is fulfilled. The 

solvability of the MMP considered here now depends on whether the bicausal bond graph in 

Figure 4.3 exists and that it = is is fulfilled to render the difference y-9 independent of U. 

The following example shows the basic concept on how the bond graph based MIM can be 

defined to have virtual actuation in an input/output sense. 
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Figure 4.3.: Causal inversion of P. 

Example 4.1. Consider the linear plant P, with all parameters unity, of the form 

X1 0 -1 0 x1 10 

x2 =10 -1 XZ -0U0v 
x3 010 X3 01 

y=Xl, 

and let the model be defined as 

xl 0 

X2 1 

X3 0 

X4 d 

y= xi, 

-1 0 -a X1 1 

0 -1 0 x2 0 
-ü 

100 x3 0 

000 bx4 0 

(4.5) 

(4.6) 

where a and b are model parameters. It is seen that M contains an exact copy of the plant 

and that the xl-dynamics is virtually actuated by the x4-dynamics. 

In view of the associated disturbance decoupling problem, the difference xl -Jý1 is now to be 

rendered independent of U. To that end, consider the plant inverse of (4.5) given by 

v= -2y(' - y(3) -u- u(2) + w, (4.7) 

where dry/dtr = y(') and where w is a new control. By enforcing y=9 it is found that the 

relation u= is is indeed required to attain decoupling, giving the control 

v= c(: t, ü) +w= abt4 + alb(-x2 - abt4 - ü) + w. (4.8) 

To address the stabilisation of the the difference y-y, the ideas of the Full Information 

Output Regulation Problem are used. Furthermore, the constrained dynamics algorithm 

yields the maximal (locally) controlled invariant submanifold Z*, which is described by 

X1 äý1 

Z* _ {(x, x) :x- cp(i) = X2 - X2 + abi4 = 0}. (4.9) 

2g x3 -a 2bil 
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The similarities between the MMP and Theorem 2.6 become apparent by noting that 

d`ý(ý) = Du(x)[f(ý) -9 ]= f(ý(ý)) -9ý - qc(x, ), (4.10) 

where the plant (4.5) and model (4.6) have been written in affine form for convenience. It is 

now readily seen that the error e=x- cp(x) leads to the dynamics 

Fel 0 -1 0 Fe1l 0 

e2 =10 -1 e2 -0w, (4.11) 

Le3 010 e3 1 

and observe that this system has the structure of the plant (4.5). Closed loop stabilisation 

is now achieved through the passive feedback 

u= c(x, zi) + re3 

for some damping constant r>0. 

(4.12) 

0 
The general setup of the MMP considered in this section is to consider bond graphs that 

induce systems of the form (4.3), after which the plant bond graph is copied and extended 

with additional storage and dissipative elements to define the MMP objective. To solve the 

MMP then requires that the bicausal inverse exists and that it is well defined. If the causal 

inverse exists, then the virtual actuation should be achieved when u= is is imposed and the 

relation y=y is substituted into the plant inverse. 

Decoupling ü from the difference y-y is the first step in all bond graph based MMPs in 

this section. The second step requires the application of the constrained dynamics algo- 

rithm, which is often sufficient in finding the map cp(x), or cp(, q, x) in case of internal dynam- 

ics rj. These maps are used for the feedback control with the structure of (2.66) to stabilise 

Z* if possible. It is interesting to note that the bicausal bond graph is not a requirement in 

the bond graph based MMP, because the constrained dynamics algorithm yields Z*, which, in 

turn, leads to the decoupling control. 

The following example extends the basic Example 4.1 by using bond graph modelling argu- 

ments to define the MMP. 

Example 4.2. Consider the simple mass-spring system in Figure 4.4 and its associated 

model in Figure 4.5. Note that all input variables u, v and is denote forces and that all 

output variables are the conjugate velocities. 
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'--l 

V 

Figure 4.4.: Simple mass-spring plant of Example 4.2. 

9 

Figure 4.5.: Simple mass-spring model of Example 4.2. 

The bond graphs of both system are depicted in Figure 4.6 and Figure 4.7. From causal 

analysis it immediately follows that the plant P has the form 

XI 0 -1 0 xl/ml 10 

x2 =10 -1 kx2 -0 u- 0v 

ý3 010 x3/m2 01 
(4.13) 

y_ xi/mi 

and where the model M is described by 

: t1 0 -1 
X2 10 

x3 01 

X4 10 

9= ý1ými 

0 -1 ý1/ml 1 

-1 0 kJV 20 
-ü 

00 -1ý3/m2 0 

QQ kx4 0 

(4.14) 

The MMP objective is now seen to have a straightforward physical interpretation: Feedback 

on v should impose convergence of the plant and model outputs, thus Iy(t) - y(t)l -j 0, and 

the influence of model inputs on the extended output y-y is removed by the relation u=U. 

Since the relative degree condition r<f is fulfilled by construction, the bicausal bond graph 

in Figure 4.8 yields the inverse plant 

v= -u - (ml + m2)y(l) - 
k2 

u(2) -mý2 y(3). (4.15) 
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xl 2 x3 

SS1 \ -I 1 ý---/ 0 -ý 17 SS2 

Figure 4.6.: Plant bond graph of Example 4.2. 

Il C1 I2 

ý1 

1x2 

x3 

-s- U 
---j 1 I--7 01 

4 

C2 

Figure 4.7.: Model bond graph of Example 4.2. 

The decoupling control is found by setting y=y and u=ü, yielding 

m2k 
_ 

m2k21 m2k 
_ 

m, 
(4.16) + w. v= c(ý, ü) +w=- X2 +k- km /) 

X4 km l iii 

As mentioned in Section 2.3.1 on model inversion, the bicausal bond graph does not yield the 

output matching submanifold Z*, so that the constrained dynamics algorithm remains to be 

an important tool in the search for this submanifold for all MMP problems. The constrained 

dynamics can be found to take the form 

x1 

XI 

_ 0}) (4.17) Zx- cpGx) = x2 Jý2 + Ix4 

X3 m2k 
_ X3 - 

mlkxl 

so that by setting e=x- co(. ) this allows the closed loop dynamics to be written as the 

port-Hamiltonian system 

ei 0 -1 

e2 =10 

e3 01 

= e3/m2" 

0 el/m1 0 

-1 keg -0w 

0 e3/m2 1 
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I--, 

Ii C I2 

ý1 T x2 x3 

SS1 NI 1l /1 01)1r) SSZ 

Figure 4.8.: Bicausal inversion of the plant of Example 4.2. 

Observe that this systems has the bond graph topology of Figure 4.6 for which SS1 is removed. 

Passive stabilisation of the origin e=0 is possible by terminating the SS2 with a linear 

resistive element that yields the control w= re3 for some r>0. Q 

In [Vin03], the bond graph based MMP and its virtual actuation interpretation is presented 

but no clear answer is given on how the attractivity of Z* is verified and controlled. The 

answer to this question is readily found by the various considerations in Section 2.3.1, be- 

ing that no bond graph operations exists that "automatically" yields some map x= cp(x) 

or x= cp(rý, ý), and considerable analysis remains necessary regarding the description and 

stabilisation of Z*. 

The multi-input case is not intrinsically different from a single-input scenario and the follow- 

ing example taken from [Vin03] presents such a multi-input scenario. Note, in particular, that 

the considerations of Section 2.3.2 on the Full Information Output Regulation Problem are 

not mentioned in that paper. 

Example 4.3. Consider the mechanical system depicted in Figure 4.9 and its associated 

model in Figure 4.10. The plant inputs ul and u2 are forces applied to the masses ml and 

m2 respectively, and where the controls v are velocities. By passivity, the plant outputs 

are the velocities of ml and m2 in accordance with (4.3). In view of (4.4), the model in 

Figure 4.10 incorporates a copy of the plant and adds further dynamics through a nonlinear 

spring characteristic k(x) to be defined later. The bond graphs of the plant P and model M 

are depicted in Figure 4.11 and 4.12. 

The control v imposes the desired dynamics whereas the inputs ü are known and the condition 

u=ü should render the difference y-y independent of ü. In particular, to implement virtual 

actuation in an input/output sense, observe that the physical plant parameters have been 

copied to the prescribed model in Figure 4.10. 
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ki u1i yl 'u2, Y2 

2 

eý ml ý-Q m2 

vl v2 
r 

Figure 4.9.: Multi-input mechanical plant of Example 4.3. 

k1 ui, yÄ u2$ 

t vv k2 

mi _V* mz 

r 

Figure 4.10.: Model with nonlinear spring element of Example 4.3. 

The design proceeds with the causal analysis of the plant bond graph in Figure 4.11, giving 

the dynamics 

X1 0010 klxl 0010 

: ý2 00 -1 1 k2x2 00 ui 01 vl 

th3 -1 1 -r 0 x3/ml 10 U2 -r 0 V2 

X4 0 -1 00 x4/m2 0100 

Yi x3/m1 

Y2 L x4/m2 

(4.19) 

The model bond graph in Figure 4.12 then induces the system 

00100 k1 100 

X2 00 -1 10 k2X2 00 
üi 

X3 = -1 1 -r 00 x3/m1 -10 
R2 

X4 0 -1 00 -1 ý4/m2 01 (4.20) 

X5 00010 sinh(-Jý-5) 00 

yi x3/m1 

92 x4/% 2 

To solve the disturbance decoupling problem, observe that the relative degree condition rz < ri 

is satisfied and that the bicausal bond graph in Figure 4.13 shows no causal conflicts. 
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R I1 c2 I2 

x3 x2 X4 

1o 1k o 

x1 V1 u1 y1 

11)2 

U2 Y2 

cl ss3 ss1 Ss4 
. 
552 

Figure 4.11.: Plant bond graph of Example 4.3. 

1 C2 12 

x3 
1ý2 

x4 

11k 0ý C3 

U1 �1 ii2 92 

C1 SS1 SS2 

Figure 4.12.: Model bond graph of Example 4.3. 

The inverse is readily found to be 

rý _ -- (mlyil) + m2y21) + kii + ui + u2) 

vi = yi + (miyil) + m2y21ý + ki? l + ui + u2) +W1 

V2 = y2-yl+ 
2y22'+ 

21 
U21'+W2, 

(4.21) 

where wl and w2 are new controls for stabilisation purposes. It can now be verified that the 

relations y=y and u= is yield the control 

kl kl 
_1 TJ =-qr x1 +1 sinh(x5) +1m X3 

M1 

= 
ki ki 1 

v1 -Ti 7- x1 - sinh(. 5) + w1 (4.22) 
rrr 

V2 =-1 k2m2 X4 cos(Jý5) + w2. 

Even though the bicausal approach gives the decoupling controller in straightforward man- 

ner, the submanifold Z* is needed to derive the feedback of the form 

u= c(Ti, dý, zi) + K[x - cp(rj, x)]. (4.23) 
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R Ii C2 I2 

T x3 
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1 k--- o Lý 1k oý 1 
ILIth1 
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u2 Y2 

C1 Ss3 ssl SS4 SS2 

Figure 4.13.: Bicausal plant inversion of Example 4.3. 

The constrained dynamics algorithm now yields 

z*_{(77, x, x): x-w(77, ß)= 

x1 

X2 -t2 + sinh(X5) 
2 =0} 

X3 x3 

X4 x4 

(4.24) 

It is important to note that Z* in (4.24) is not the maximal (locally) controlled invariant 

submanifold in the usual sense, because it has been "extended" with the internal dynamics q 

for convenience. 

Next define the error e=x- cp(rl, x) and write the closed loop as the port-Hamiltonian 

system of the form 

e1 0010 k1e1 10 

e2 00 =1 1 k2e2 01 W1 

e3 -1 1 -r 0 e3/m1 -r 0 W2 

e4 0 -1 00 e4/m2 00 
(4.25) 

01 klel + re3/m1 r01[ W1 

02 k2e2 00 W2 

Observe that the closed loop has the bond graph topology of Figure 4.14: The e-dynamics 

allows for a bond graph topology that is identical to the plant with u=0. Furthermore, the 

closed loop passive outputs are those which are ignored in the plant definition but can be 

readily included from the bond graph in Figure 4.14. The submanifold Z* is therefore seen 

to be attractive for w=0 due to the dissipative element of the plant. Further stabilisation 

of Z* is possible through w= K[x - cp(rl, x)] for some suitable gain K. 0 
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R Ii C2 12 
T3 

C2 eq 

100 

el O1 wl 'tI2 w2 

C1 S53 SS4 

Figure 4.14.: Induced closed loop bond graph of Example 4.3. 

So far it has been shown that the physical model based MMP can be defined in a manner 

that can be represented through bond graphs. To that end, the system is assumed to be of 

the form (4.3), which represents an explicit port-Hamiltonian system of which a subset of 

passive outputs are ignored. The question rises whether a class of implicit port-Hamiltonian 

systems can be used in the MMP scenario considered in this section. More precisely, can 

the MMP of this section be applied to the input/output configuration of the bond graphs in 

Figures 4.1 and 4.2 for which P and M have derivative causalities? 

It is intuitively plausible that bond graph models with derivative causalities can "in principle" 

be used in the same MMP setup as depicted in Figure 4.1 and 4.2. That is to say that the 

bond graphs in Figure 4.1 and 4.2 merely depict a certain input/output configuration but 

do not show the bond graph topology itself, which may or may not have dependent storage 

elements. However, the presence of derivative causalities poses additional difficulties in regard 

the associated implicit dynamics of the bond graph. Furthermore, it can be argued that the 

closed loop bond graph representation will be more difficult to derive. 

In view of the above considerations, the MMP scenario of this section requires further research 

on the topic of derivative causalities. It is expected that the scenario can be applied to 

bond graph models with derivative causalities provided the causal inverse exists and that 

the relative degree conditions are satisfied. However, the closed loop error dynamics can 

be expected not to be comparable to the explicit systems context. These issues will not be 

elaborated any further and a more general bond graph based MMP with dependent storage 

elements will considered in later sections. 
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yl 
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ul 
Ep: H(x) 

uZ ýSS 

y2 

Figure 4.15.: Plant bond graph with collocated input/output pairs. 

J1 
SS 

U 
EPl : H(x) 

SS 
y2 

Figure 4.16.: Inverse plant bond graph. 

4.3. Specification Based Inversion 

In [Ngw99b], a technique called "specification based inversion" is introduced. This bond 

graph approach is very closely related to the bond graph based IMP design and the MMP 

theory considered in this chapter. Note, however, that the paper is not about controller 

design but addresses a (bi)causal inversion process for which certain aspects can be extended 

to controller design in terms of the MMP. 

Specification based inversion can be outlined briefly by considering the collocated plant bond 

graph and its causal inverse in Figures 4.15 and 4.16. The model is equipped with a copy 

of the plant and has the same input/output configurations, so its bond graph need not 

be depicted. Causal plant inversion is used to find the control that achieves the required 

model input/output dynamics by imposing the constraint y=y, provided the relative degree 

condition is satisfied. The model need not add further model dynamics, so that the control 

objective can be solely expressed in terms of these parametric modifications alone. 

Now, for more generality, the MMP scenario in this section need not stay with the collocated 

case of specification based inversion in [Ngw99b], because the non-collocated case is concep- 

tually identical to the collocated case. More precisely, the model is equipped with an exact 

copy of the plant and has the same input/output configuration. Figure 4.17 and 4.18 depict 

the bond graphs of the non-collocated MMP scenario, where u= (u', u2) and y= (y1, y2). 

By imposing the constraint y=g it becomes possible to find the required decoupling control 

that solves the MMP, provided relative degree conditions on model inputs are satisfied. 
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\1 -1 
SS 

yz 

Figure 4.17.: Plant bond graph with non-collocated input/output pairs. 

yl 
SSý i 
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Figure 4.18.: Bicausal bond graph with non-collocated input/output pairs. 

To show a possible class of dynamics suitable for specification based inversion, consider the 

plant P described by 

i= [J(x, fi) - R(x, JL)]K(x, µ) - 9i (x, u)uj- qi (x, µ)vß 

wj = 9jT(x, M)K(x, µ), (4.26) 

yj =q (x, fi)K(x, li), 

where xE R' and u, y, v, wE lR'. The k-tuple It = (ti, 
... , Ick) denotes the physical 

parameters of the plant. Then to follow the non-collocated scenario based on Figure 4.17, for 

example, let the outputs w be ignored and let v=0. Next consider the the model 

x1 J(: iý1, ji) - R(-1, ü) -S(, 
2) 

9j(: f1, p) 
üi 

2 ST (ý2) J(ý2) - R(x2) K(ýz) 0 

(4.27) 

where t1 E I[8'ß, , t2 E I[8'ß and ü, zv E R'. The p-tuple µ= (µl, 
... , fu) denotes the prescribed 

plant parameters. Lemma 2.4 can, but need not, be invoked in this particular case. 

The following example is taken from [Ngw99b] and shows the bond graph based MMP of a 

non-collocated system using specification based inversion. 

Example 4.4. [Ngw99b] Consider the bond graph of an RC-circuit depicted in Figure 4.19. 

Suppose the model has been chosen to comprise an exact copy of the plant only, implying 

that the control objective is solely based on parametric modifications. As a result, the bond 

graph topology of the model is identical to the plant and need not be depicted here. 
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R1 C1 R2 C2 
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Figure 4.19.: Simple RC-circuit of Example 4.4. 

R1 C1 R2 C2 
T. 

-ý 1 

Tý2 

SS2 SS1 ýý 1A0 Lý 1 ýý 00 

Figure 4.20.: Bicausal RC-circuit of Example 4.4. 

Causal analysis of Figure 4.19 yields the system of the form 

11 
W1 -- -- 

_ 
rl r2 

1 
x2 

r2 

1 
y=-X2, 

C2 

1 
- 

1 
-xl 

1 
- r2 

_1 

Cl 
1x2 

rl 
p 

u 

r2 c2 
(4.28) 

which is of the form (4.26). The passive output w= xi/(rlcl) has been ignored and v=0. 

Suppose the model is chosen with the parameters 

11 

_ 
T1 r2 

1 
X2 

T2 

1 
C2 

which conforms to (4.27) with x2 = 0. 

1 
- 

1_ 
-xl 

1 
r2 

1 
cl 

1 
x2 

_ 
rl 

0 
,u 

r2 C2 
(4.29) 

Clearly, the plant is not dynamically extended through the model M and the control objective 

is solely expressed in terms of parametric modifications. 

The relative degree condition r<r is trivially satisfied and the bicausal inverse in Figure 4.20 

has no causal conflict. Bicausal analysis yields the inverse of the plant of the form 

u= -y - (c1r1 + c2r1 + c2r2)y(l) - clc2rlr2y(2) + w, (4.30) 
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where w is a new control for stabilisation purposes. The decoupling control is found by 
imposing y=Y. 

To show that specification based inversion is equivalent to an MMP design, the application 

of the constrained dynamics algorithm yields 

Cl 
- 

C1C2r2 
- 

C1C2r2 
- xl [__x2_ 

2- x2 +- --- X1 

x- cp(x) _- 
C2 C2r22 

- 

c1c2r2 
= 0}. (4.31) 

x2 -x2 
C2 

The decoupling control is then found to be 

E2 f2 
+2 

JE f2 -2 -xl ClC2r2 ClC2T2 ClC2r2 Clc2r2 C1C2r2 C1C2r2 C1C2Tif2/ 

C C1C2rlr2 C2r1 Clrl C1C2rlr2 C1C2rlr2 C2r2 C1C2r1T2 

Ccirl 
C2rl 

- 
ClC2rlT2 C2T2 clc2rlr2\ 

_ + 
C2r2 C2 + 

C2f2 C22 
+ 

C2T2 
+ 

C1C2f2 
ý2 

ccr1r 
+ 

_1_2__2+w, 
(4.32) 

ClC2rlr2 

where w is a new control. As expected, (4.32) is identical to (4.30) by substituting y=y. 

Stability of Z* is addressed by defining the error e=x- V(x) and by writing its dynamics 

1111 
ei e1 

1 

- 
rl r2 r2 Cl 

- rl w, (4.33) 
-11 

e2 
l0 

r2 r2 C2 e2 

showing that Z* is attractive for w=0. Further stabilisation is possible through the control 

w= K(x - cp(x)) with some suitable gain K. Note that the closed loop has the bond graph 

topology of Figure 4.19.0 

It has been shown, by means of an example, that the ideas of specification based inversion 

of [Ngw99b] can be extended to an MMP design. Even though the methodology has been 

presented through a explicit SISO system, it is readily argued that for VIIMO bond graphs 

this MIM scenario is conceptually possible provided no causal conflicts occur. However, as 

argued in Section 4.2, the inclusion of dependent storage elements renders the design of 

the IMP more complicated with respect to the bond graph representation of the closed 

loop error dynamics, because the implicit dynamics is to be reduced into explicit form for 

analysis, thereby rendering bond graph considerations difficult. Future research could address 

the MIMO and implicit case in greater detail. 
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4.4. General Cases of Model Matching 

Sections 4.2 and 4.3 presented some basic specialisations of bond graph modelling for the 

MMP, where it was shown that for certain MMP setups it is possible to use the bicausal 

approach to find the control that renders the difference y-g independent of U. Furthermore, it 

was seen that the closed loop error dynamics allowed for a bond graph representation by 

means of output regulation arguments such that closed loop stabilisation could be based on 

passivity arguments. 

Even though the previously presented MMP scenarios represent a relevant class of systems, it 

can be argued that their applicability can be limited due to the specialised input/output 

configuration. To provide more flexibility of bond graph models for the definition of the 

MMP, a larger class of systems that bond graphs can generate should be considered. For 

example, bond graph models with derivative causalities can be considered, leading to a large 

class of implicit systems. Also, less specialised input/output configurations of the plant P 

and model M can further enlarge the class of MMPs considerably. 

Because derivative causalities often occur in a wide variety of bond graph models, it can be 

argued that such systems represent an important set of dynamic systems. Therefore, this 

section addresses bond graph models that are allowed to have storage element in deriva- 

tive causality. However, in view of Theorem 2.6, the implicit systems context renders the 

closed loop bond graph representations of the error dynamics of limited interest. This can be 

explained by the fact that implicit dynamics must be reduced to explicit dynamics. Nonethe- 

less, even though the closed loop bond graph representation of the error dynamics may not be 

available, the closed loop input/output dynamics remain to have a bond graph representation 

by construction. 

As already mentioned, the following sections address a more general bond graph based MMP 

with no specific input/output configuration. In addition, the model IVI need not contain a 

copy of the plant, but the model will be chosen to be structurally "close" to the plant in order 

to satisfy the relative degree condition ri < rj. Furthermore, the application of bicausal bond 

graphs will not be considered for system inversion purposes due to various difficulties with 

respect to non-standard output definitions. Also, the application of alternative causal assign- 

ment procedures to deal with derivative causalities renders the application of the (bi)causal 

mechanism rather difficult. 
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Characteristic difficulties of more general classes of bond graph models can be summarised 

by the following: 

First, the Standard Causality Assignment Procedure (SCAP) may yield unnecessary complex 

dynamics due to the "automated" selection of state variables. To remedy such problems, it 

is possible to consider alternative causality assignment procedures, such as the Lagrangian 

Causality Assignment Procedure with multipliers denoted as ALCAP [Mar02]. However, it 

should be noted that (bi)causal bond graphs have not been developed for such alternative 

causal assignment procedures. 

Second, it must be recognised that general bond graph models need not be feedback lin- 

earisable on the domain of interest. Therefore, if feedback linearisability is not suitable or 

applicable for the system at hand, one could consider the linearised MMP instead. This 

scenario will be demonstrated in detail later on. 

Third, if non-standard input/output configurations are considered, the use of SS components 

to extract the desired output variable need not be possible without "contrived" bond graph 

modelling. In these cases it is readily seen that bicausal assignment becomes difficult, mainly 

because the bond graph does not define the output variable through the SS source component. 

As a result, such non-standard output definitions should not be modelled with bond graphs 

but manually appended to the derived dynamics. 

4.4.1. A Class of Implicit Systems 

Consider the implicit port-Hamiltonian plant P of the form 

xl J(x', p) - R(x', it) 

x2 0 

y 9T(xl, IL) 

0 4T(x1, IL) 

0 -9(xl, p) -q(xl, li) K' (x 1, /j, ) 

00 I�z K2 (X2, p) (4.34) 
00 -b(xl, µ) u 

-I112 bT (xl, µ) 0A 

where x1 E IR711, x2 E 1[ßn2, AE R"2 and u, yE Rm. Let tC be a vector of physical parameters. 

This type of system is typically obtained from a bond graph in which each dependent storage 

element is forced into integral causality through a Lagrange multiplier directly at the depen- 

dent storage element. Note, in particular, that the output y generally requires redefinition in 

order to select the proper output variable that needs to be controlled. 
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4.4.2. Examples 

The full generality of (4.34) renders it difficult to define constructive bond graph based VIA/1P 

scenarios for which, for example, bicausal bond graphs can be used and for which feedback 

linearisation is feasible. The approach taken here is to consider procedures similar to ALCAP 

found in [Mar02] in case SCAP becomes difficult. The model will be defined to be structurally 

"close" to the the plant such that relative degree conditions are fulfilled. In case feedback 

linearisation is not feasible, it will be shown that the linearised MMP can be attempted, where 

the bond graph definition of the plant and model remain unmodified. The following examples 

show instructive MMPs, but it is not attempted to present formalised procedures for implicit 

systems of the form (4.34). 

Example 4.5. Consider a pendulum mounted on a horizontally moving, massless cart de- 

picted in Figure 4.21. Let the Hamiltonian be given by 

H(x) = 
1X2 

-{- 2m 
1 (x -}- x4) + mgl sin(xl). (4.35) 

The moment of inertia about its centre of mass G is denoted as I, the mass of the pendulum 

is in, the distance from the hinge to G is denoted as 1. The variable xl =0 denotes the 

angular position counter clockwise from the horizontal, x2 is the angular momentum, x3 and 

x4 are the respective vertical and horizontal momenta of G. Note that the control input 

u is a velocity. The bond graph representation is given in Figure 4.22 with modulations 

tl(xl) =I cos(xi) and t2(xl) = -1 sin(xl). To force all elements into integral causality, La- 

grange multipliers are inserted under the condition that the constraint forces al and A2 are 

to be "workless", implying that their conjugate velocities are to be nullified accordingly. 

Next observe that the plant bond graph does not show a simple SS element that extracts 

the pendulum angle xi as a system output. In view of (4.35), the reason for doing so is that 

the output of the C element is a nonlinear function in xl, so that the angle xl cannot be 

simply extracted by the inclusion of such SS element. Consequently, the bicausal approach 

is not readily applicable for this system due to the absence of this SS element. This is not 

believed to be a great problem, since the MIM is solved analytically once the plant and 

model have been defined, where the desired outputs are simply added to the plant and model 

definitions once the causal analysis is completed. So, bicausal assignment can add a certain 

convenience and systematic bond graph approach to the design, but it is not a crucial aspect 

of the physical model based MNIP considered here. 
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Figure 4.21.: Inverted pendulum of Example 4.5. 

From Figure 4.22 it is a straightforward exercise to find the implicit port-Hamiltonian rep- 

resentation 

X1 0 1 0 0 0 0 0 

4-2 -1 -r 0 0 0 -l cos(xi) l sin(xi) 

x3 0 0 0 0 0 1 0 

X4 = 0 0 0 0 0 0 1 

y 0 0 0 0 0 0 1 

0 0 l cos(xl) -1 0 0 0 0 

0 0 -1 sin(xi) 0 -1 -1 0 0 

mgl Cos (xi) 

x2/I 

x3/m 

x4/m 

U 

Al 

A2 
(4.36) 

where r is the friction coefficient of the hinge, and where Al and A2 are Lagrange multipliers 

that are to render the dynamics tangent to the constraint manifold defined by the last two 

equations of (4.36). Clearly, the above system is of the form (4.34). 

The implicit representation of the plant can be turned into an explicit system by eliminating 

the multipliers Al and A2. Doing so yields the reduced constraint plant 

1 
x1 = Ixt 

xZ I+ ml2x2 I+ ml2 
(g cos(x1) + sin(x1)A) (4.37) 

Y= xi, 

where y has now been redefined to be the controlled angle x1. Note that the implicit sys- 

tem (4.36) is readily reducible to the explicit system (4.37), but it cannot be guaranteed that 

the reduction of the implicit system (4.34) yields an explicit port-Hamiltonian model. 
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Figure 4.22.: Pendulum bond graph with A-multipliers of Example 4.5. 

The next step in the design is the definition of the control objective: stabilisation of the 

pendulum at the angle x1 = it/2, which is the upright position. To this end, it is recognised 

that the pendulum on the moving cart is structurally "close" to a simple pendulum that 

pivots around a fixed point. This observation is entirely subjective but suggests a suitable 

model that produces angle trajectories that can be associated with the moving pendulum. 

The bond graph topology of the simple pendulum is depicted in Figure 4.23 and is seen to 

be similar to the plant, where the modulations are tl (. t1) =l cos(Jý1) and t2(t1) = -l sin(: t1). 

No SS element is used to extract an output variable since the pendulum angle :f1 does not 

appear conveniently in the model. 

Causal analysis of Figure 4.23 yields the implicit port-Hamiltonian system 

X1 0 10000 0 Ifl(t) 

x2 -1 -r 00 -1 -l cos(x-1) l sin(. t1) K2(ß) 

X3 0 00001 0 K3(x) 

X4 = 0 00000 1 K4(x) 
, 

(4.38) 

9 0 10000 1 ü 

0 0 l cos(: Tc1) -1 000 0 

0 0 -l sin(.; v1) 0 -1 00 0 a2 

where KT (: y) = DH(x) and where fl: X -+ R is given by 

H(x) = mgl sin(: Tc1) + k(Jý1 - 
17c)2 

+1 ;ý2+ 2 
2+ 2). (4.39) 
34 22 2I 2m 
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II 
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11 k1I/ TF ý-ý 0I --ý SS2 

tl(x) 0 

SS1 TF ý-ý 0 9S3 
i2(x) 

x4 
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Figure 4.23.: Simple pendulum model bond graph with , \-multipliers of Example 4.5. 

The upright equilibrium position x= (ir/2,0,0,0) can be rendered a global minimum by 

choosing k> mgl. This will guarantee the the simple pendulum has the upright position as 

an attractive equilibrium point. 

Reduction of the constrained dynamics yields the model 

1 
XI = I-xt 

X2 I+ ml2 
x2 I+ ml2 

(mgl cos(. ti) + k(x1 -2 n) + ii) (4.40) 

y= ý1. 

Before the MMP can be addressed, observe that the absence of a relative degree for sin(xi) =0 

is an important characteristic of the plant and implies that all control authority is lost when- 

ever the moving pendulum is in a horizontal position. Consequently, feedback linearisation 

is possible only for points bounded away from xi = nir, which implies that it is possible to 

asymptotically track the angle of the simple pendulum around the upright position. 

On a side note, the absence of a relative degree is something that is difficult to observe from 

general bond graphs of arbitrary complexity and dimension, so that the structural properties 

of bond graph models is better facilitated through analytical means. That is to say that 

bond graph modelling offers a systematic procedure for obtaining the system dynamics, but 

standard control theory should be applied to establish the relative degree property. 
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Now, to render the disturbance decoupling problem simple, consider the linearising control 

1u 

mll s in(xi) 
[rx2 + gmll cos(xi)] -2 I in(xl) 

(4.41) 

which is defined for x0 nir and where w is a new control. This control yields the simplest 

dynamics possible, being 
1 

Si = Ixt (4.42) 
x2 = w. 

The submanifold Z* on which output matching occurs is simply 

Z* = {(x, i): x- cp(x) = 
xl 

- 
: 7", 

= 0}. (4.43) 
Lx2] -7£2 

Then take kl, k2 >0 and define e=x- cp(s), so that Z* can be made attractive with 

w=c(; t, ü)+K[x-co(w)] 
(4.44) 

rI+ 
m12 

X2 I+ ml2 
(mgl cos(xl) + k(ý1 - 21 

2 
7r) + ü) -keel - k2e2. 

Some observations on behalf of the above example can be made. For instance, the inverted 

pendulum shows that the absence of a well-defined relative degree need not compromise the 

MMP objective, provided that the relative degree exists on the domain of interest. However, it 

is certainly conceivable that the structure of the system does not sustain a well-defined 

relative degree on the domain of interest, so that the MIM cannot be addressed in a manner 

that has been portrayed so far. The upcoming example shows that the linearised MMP can 

be considered if the nonlinear plant dynamics are not suitable for feedback linearisation. 

Furthermore, the implicit port-Hamiltonian dynamics (4.34) shows to be a suitable rep- 

resentation of the inverted pendulum problem for which the elimination of the Lagrange 

multiplier is readily possible. On the other hand, the upcoming example shows that such im- 

plicit dynamics can yield unnecessary complex dynamics and that the Lagrangian causality 

assignment procedure LCAP [Mar02] is preferable instead. However, in view of such alter- 

native causality procedures, the bicausal bond graph mechanism is of limited interest since 

it is mainly applied to bond graphs that are causally completed with SCAP. In fact, bicausal 

assignment has not yet been reported for LCAP or other alternative causality assignment 

procedures. 

97 



4. Model Matching Control 

Example 4.6. Consider a sliding mass along a straight, slender rod that pivots around its 

non-moving centre of mass depicted in Figure 4.24. The control input u is a torque around 

its centre of mass. Let the plant energy function be defined as 

H(x) = mgx3 sin(xi) + 
2I x2 + 

2m 
(x4 + x5), - (4.45) 

where xl =0 and x3 = r. The angular momentum is given as the coordinate x2 and the 

linear momenta, denoted as x4 and x5i are in the x and y directions respectively. Elementary 

kinematic analysis based on x= X3 cos(xi) and y= X3 sin(xi) explains the modulations in 

the plant bond graph of Figure 4.25, where 

tl(x1) = sin(xl), t2(xl) = x3 COS(XI) 
(4.46) 

t3(x1) = -x3 sin(xl), t4(xi) = COS(x1). 

Causal analysis yields the implicit port-Hamiltonian system 

XI 0 1 00000 K, (x) 

x2 -1 0 t3/t4 00 -1 
(t1t3 

- t2t4)/t4 K2 (T) 

x3 0 -t3/t4 0 1/t4 000 1f3(X) 

X4 = 0 0 -1/t4 000 -tl/t4 K4(x) 

X5 0 0 00001 K5(X) 

y 0 1 00000 u 
0 0 (t2t4 - tit3)/t4 0 tl/t4 -1 00 A 

(4.47) 

The A-multiplier has a nullified conjugate velocity, imposing the requirement that it is to 

be "workless". Even though the above implicit system can be reduced into explicit form 

systematically, the structure of (4.47) yields a model of unnecessary complexity: the horizontal 

momentum x4 is a state variable while the physical structure of the system is better suited 

for polar coordinates. 

The occasions where implicit port-Hamiltonian dynamics (4.34) yield complex reduced dy- 

namics can sometimes be remedied by considering ALCAP instead, where multipliers are 

introduced if one is not able to find a minimal set of of generalised coordinates [Mar02]. 

Towards this end, the bond graph in Figure 4.25 is slightly modified to the bond graph in 

Figure 4.26, where the source elements SS1 and SS2 define the generalised coordinates. 

It is important to note that ALCAP considered here reduces to LCAP since a minimal set 

of generalised coordinates has been found, which are xl =B and x2 = r, so that Lagrange 

multipliers are not needed. 
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y 

x 

Figure 4.24.: Frictionless slider of Example 4.6. 

13 

x5 

SS2 C2 TF 0A 
tl(Xi) 

II TF t4(xl) TF t2(xl) 

I2 0 \I TF ý-ý 1I7 SS1 
t3(xl) 

X2 
Cý 1 Ii 

i 

Figure 4.25.: Frictionless slider with A-multiplier of Example 4.6. 

The modulations in Figure 4.26 are defined as 

ta(xi) = sin(xi), t2(xi) = x2cos(x1), 
(4.48) 

t3(xl) = -x2 sin(xl), t4(x1) = cos(x1), 

which should not be confused with the modulations (4.46). 
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SS2 
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C2 ý-- 11 TF 13 
ti (x, ) 

TF t4(xl) TF t2(x1) 

I2 l0 ý--ý TF \-- 
I1 SS1 

ta(xi) 

Cl \I1 
ý----ý 11 

Figure 4.26.: Frictionless slider with LCAP of Example 4.6. 

By applying LCAP, the equations of motions are obtained through the summation of efforts 

at the one-junctions to which SS1 and SS2 are connected. This yields the dynamics 

xl I+ mx2 
(2mx2x thl + mgx2 cos(xl) + u) 

a (4.49) 
x2 = x2xi -g sin(xl). 

By defining zi = xi, z2 =& 1) z3 = x2 and z4 =d 2i the plant takes the first order form 

Z1 = Z2 

z2 =-1 (2mz2z3z4 + mgz3 cos(zl) + u) I +mz3 

z3 = Z4 
(4.50) 

z4 = z3z2 -g sin(zl) 

ý� =Z3, 

where the output y= z3 has been added to incorporate the requirement that the distance of 

the slider with respect to the hinge point is to be controlled. On a side note, observe that 

it is by no means trivial how y= Z3 can be used in a bicausal assignment scheme for the 

system (4.50). 
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Now that the plant has been derived through LCAP, the lack of feedback linearisability of 

the plant is readily verified. To see this, consider 

yýlý = Z4 

y(2) = Z34 -gsin(zl) 
(4.51) 

y(3) = z4 z2 -9 cos(zl)z2 + 2z2z3v, 

where dry/dtr = y() and by having applied the linearising control 

u= -2mz2z3z4 - mgz3 COs(zl) - (I + mz3)v. (4.52) 

Observe that the structure of the system strongly impedes feedback linearisation at the points 

z2 = Z3 = 0, thereby rendering the tracking of prescribed trajectories around the point z3 =0 

very difficult. More precisely, the condition z2 =0 implies that the angular velocity cannot 

be zero, which is very restrictive. In addition, the condition z3 =0 shows that the slider is at 

the hinge, meaning that the slider is to be positioned away from the hinge point for tracking 

purposes. In conclusion, the feedback linearisation of the full nonlinear case is abandoned 

and a linearised MMP design around the origin is considered instead. 

Towards that end, let A= Dz f (0,0) and B= Dj (0,0), where (4.50) is written as z=f (z, u) 

and satisfies f (0,0) = 0. The linear system is then written as .z= 
Az + Bu, thus 

zl = Z2 

gin Z2 =-I zgu 

z3 = Z4 (4.53) 

z4 = -9Z1 

y= Z3. 

Note that (A, B) is stabilisable so that Theorem 2.6 can be invoked to show that the Full 

Information Output Regulation Problem is solvable whenever (2.65) can be fulfilled. 

Next consider the bond graph representation of M in Figure 4.27. It is now attempted to 

stabilise of the origin by assigning an energy function and suitable dissipation. Hence, the 

closed loop input/output dynamics is effectively modelled with the model bond graph. 

To stabilise the origin z=0, let the Hamiltonian of the model lvi be defined as 

H(am) = mgý3 sin(ý1) + 21x1 22+ 
21 x2 +2 ýZx3 + 

2m -(: t4+-; V5), 2-2 (4.54) 

which is guaranteed to have a global minimum at =0 for the gains klk2 >9 2m2. 

101 



4. Model Matching Control 

0 R. 2\ 1 -02 ý2 

C2\ 1 -ý TF ý--ý 0 -/I3 
l(-, ý 1) 

TF t4(xl) TF t2(xl) 
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\0 TF\ 1 SS 

t3 (-t 1) xi 

Clý I1ý/ 11 
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Figure 4.27.: Model slider with LCAP of Example 4.6. 

By following the causal configuration of Figure 4.27 one obtains the system 

xi = -I + 

rrt-2 
(2mx2x1x2 + Mg-t2 cos(ý1) + klxi + rlxl + ü) 

2 (4.55) 
2 k2 

_ 
r2 _ X2 = X2X1 -g sin(x1) - m-X2 - -X2. 

Let zl = X1 1, z2 = xl z3 = x2 and z4 = x2i so that the model takes the first order form 

Z1 = z2 

z2 =-12 (2m22z3z4 + mgz3 cos(z1) + k1z1 + riz2 + R) 
I -ý mz3 

z3 = Z4 
(4.56) 

k2_ r2_ 2 Z4 = z3z2 -g sin(z1) - m-z3 - m-z4 

=z3i 
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4. Model Matching Control 

Define A= D2; 1(0,0) and B= Du f (0,0), where 1(0,0) = 0. Then z= Az + Bü and write 

Z2 zl Z2 I 

Z3 = Z4 

_ 
%2_ T2_ 

z4 = -9Z1 ` -Z3 - mZ4 
m 

/= z3. 

Z1 = Z2 

k1- rl- gm 1- z2 = -IZ1- Iz2- I z3-Iu 

(4.57) 

At this stage both the plant and model have been linearised and the linear MMP can now 

be addressed, where the constrained dynamics algorithm is used to find the submanifold Z*. 

Doing so yields 

zl 

Z*={(z, z): z-(p(, z)= 
Z2 

- 
zg 

Z4 

Z4 

z1+ 
2z3`ß- rZ4 

mg mg 

- 
r2 

_ 
r2k2 

z_ 
k2 r2 

il ý- z2 - mzgs -I- 
ýmg 

- 
m2gý 

z4 =: 0}. 

13 

Z4 

(4.58) 

In view of (2.65), the control c(z, ü) is readily found by considering the relationship 

Dcp(z) f (z, ü) =f (v (F), u), (4.59) 

where the control u= c(z, ü) +w takes the form 

k21 r2I r2I k2I k2r2I 
u= 

Cki 
+m- m2 / 'el + 

(fl 
+m/ zZ + 

C9m2 

gm3) 
53 

3\ 

+ 
(22f2I g- gm3 

J E4 +ü+W. (4.60) 

Finally, the convergence of the tracking error can be assessed through the error variable 

e=z- cp(z), which has the dynamics 

el = e2 

gm 1 
e2 =-I e3 - -w (4.61) 
e3 = e4 

e4 = -gel. 

Most importantly, observe that (4.61) has the same structure as the plant (4.53). Stabilisation 

through spectral assignment readily solves the linear IMP for w= K[z - cp(2)] = Ke and 

some suitable gain K. 0 
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The inverted pendulum and frictionless slider examples have demonstrated some important 

characteristics and difficulties of more generalised bond graph based MMPs that can be briefly 

summarised as' follows. 

Example 4.5 shows that the model can be chosen to be structurally "close" to the plant in 

the implicit context, but it is believed that such model definitions are difficult to formalise 

because they are highly dependent on the plant. Furthermore, the bicausal approach to 

solve the MMP through an inversion process showed not to be possible, since the output 

variable was difficult to extract by means of an SS component. As a result, it can be 

argued that non-standard output definitions must be added to the plant dynamics outside 

the bond graph framework, thereby avoiding certain "contrived" bond graph modelling steps 

that would increase the complexity. 

Example 4.6 touches on the issue of alternative causal assignment procedures and the solution 

to a linearised VIVIP due to the lack of feedback linearisability. It followed that the frictionless 

slider proved not to be particularly suitable for SCAP, but where LCAP yielded a more 

efficient model that simplified the MMP. The choice of the causal assignment procedure 

can be said to be highly dependent on the plant, so that any explicit guidelines on the 

selection of such procedures will not be further formalised or elaborated here. Also, the 

lack of feedback linearisability of the slider did lead to the linearised MMP, where the bond 

graph representations of the plant and model remained unaltered. Therefore, the closed loop 

input/output dynamics remains to have a bond graph representation as prescribed by the 

model even in the linearised MIM. 

4.5. Concluding Remarks 

This chapter showed that bond graph modelling can be used for the definition of certain 

physical model based MMPs. The following control theoretical concepts formed the basis of 

the controller design in this chapter: 

1. The nonregular Dynamic Disturbance Decoupling Problem with disturbance measure- 

ment [Hui92], [Hui94] 
. 

2. The Full Information Output Regulation Problem [Isi9O], [Isi95]. 
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4. Model Matching Control 

The explicit identification of the bond graph based MMP with the above fundamental con- 

cepts is valuable, since it formalises controller design steps that were not documented in the 

bond graph literature. 

Because the model bond graph is based on the plant bond graph, this produces control 

designs that moderately alter the plant input/output dynamics. Thus, instead of a complete 

redefinition of plant input/output dynamics through some arbitrary model, a physical model 

similar to the plant can be used in the control design and to render the solvability of the 

MMP more likely. 

The MMP for explicit systems can be based on the ideas of Theorem 2.6 for closed loop 

stabilisation purposes, where the closed loop error dynamics "inherit" the plant bond graph. 

The closed input/output dynamics remains to have the model bond graph representation. 

However, the closed loop error dynamics and its associated bond graph representation is far 

more difficult to find for implicit systems, since, depending on the method used, the reduc- 

tion of implicit dynamics to explicit dynamics need not yield port-Hamiltonian dynamics. 

Nonetheless, the closed loop input/output dynamics for reduced implicit systems remains to 

have the bond graph representation of the model. 

Feedback linearisation may not be feasible for certain nonlinear MMP designs, so that a 

linearised MMP can be considered on the domain of interest instead. The model bond 

graph, on the other hand, need not change for the linear model since the linearised dynamics 

is derived from the nonlinear bond graph dynamics. 

105 



5. Energy Shaping in Stabilisation Control 

5.1. Introduction 

As mentioned in Section 2.5, the notion of feedback passivation can be loosely referred to as 

the process of rendering the closed loop passive with respect to some energy function and 

output function through feedback [Byr9l]. It can be argued that passivation techniques form 

a vast field in control and that they have shown to be quite successful in various (non)linear 

control problems. For example, the widely used backstepping approach provides a relatively 

systematic framework for both stabilisation and tracking control through the recursive ap- 

plication of feedback passivation laws [Sep97], [Isi99], [Zha98]. Other interesting examples 

of feedback passivation techniques are related to port-Hamiltonian systems that have ap- 

peared in authoritative works such as [Ort98], [Ort00c], [OrtO2a] and [OrtO2b]. These papers 

show that a port-Hamiltonian plant can be transformed into another port-Hamiltonian sys- 

tem, thereby rendering the closed loop passive by construction. Now, it should be noted that 

the above examples of feedback passivation belong to a small subset of control problems that 

can be addressed in terms of passivation theory. However, the sheer volume of literature on 

passivity techniques in control renders it virtually impossible to even begin to cite certain 

works that provide a concise overview of the topic. The reader is therefore referred to the 

above cited papers and references therein for further details on feedback passivation. 

It is well-known that bond graph modelling is based on energy concepts [KarOO]. In- 

deed, the C and I elements represent energy storage, the R elements denotes energy dissi- 

pation, and SS elements represent energy supply/extraction. Bond graphs have been shown 

to generate a class of port-Hamiltonian systems [Go103] but are also capable of producing 

the second order Euler-Lagrange (EL) dynamics through an alternative causal assignment 

scheme [Kar77], [Kar83], [Bre94], [Mar02]. In view of such fundamental bond graph charac- 

teristics, this chapter explores bond graph modelling in stabilisation control through feedback 

passivation. Some developments and ideas on energy shaping and Interconnection and Damp- 

ing Assignment (IDA-PBC) [Ort00a], [OrtO2b] are also considered. 
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This chapter is organised as follows. The first part of the chapter addresses the notion of 

power balancing from a bond graph perspective, where connections with the work presented 

in [OrtOOa], [OrtOOb] are pointed out. It will be shown that power balancing through bond 

graph considerations is applicable to a class of bond graphs that can produce explicit and 

implicit port-Hamiltonian dynamics. The particular advantage of power balancing is that 

a closed loop storage function need not be known beforehand. Put differently, it is often 

the case that some desired closed loop storage function is "guessed" for feedback passivation 

purposes [Ort98]. Examples of power balancing control will be presented to show that the 

passivation controller is solely based on bond graph junction structure considerations. 

The latter part of the chapter explores bond graph modelling in Interconnection and Damping 

Assignment Passivity Based Control (IDA-PBC) of port-Hamiltonian systems as presented 

in [OrtO2b]. The main feature of energy shaping and IDA-PBC is that the plant remains 

an explicit port-Hamiltonian system in closed loop, where the interconnection and damping 

structures of the system can be modified through feedback control. However, IDA-PBC 

designs inherently lead to a set of PDEs that are difficult to solve in general, particularly 

for high-dimensional systems. Even though it does not belong to the overall objective of 

the thesis, a proposition is presented that provides a necessary condition for these first order 

PDEs to be solvable at all. A detailed example shows the bond graph interpretation of a 

basic IDA-PBC design, where the bond graph topology is shown to aid the choice of desired 

closed loop interconnection and damping structures. 

It is important to note that passivation techniques such as the IDA-PBC methodology cannot 

be addressed through bond graph considerations alone. More precisely, this chapter shows 

that bond graph modelling can be used to define IDA-PBC designs on a more conceptual 

level by means of the graphical representation of the closed loop. However, the complexity 

of IDA-PBC designs requires conventional analytical techniques to find the control. 

This chapter is by no means exhaustive and the various developments merely present a subset 

of bond graph aspects in feedback passivation control. In particular, considerable analysis 

remains necessary for all feedback passivation designs considered here. In addition, bicausal 

assignment will not be used since feedback passivation designs do not have the feedback 

linearisation of input/output behavior as a design goal. 
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5.2. Stabilisation through Power Balancing 

This section addresses control through power balancing, where it is shown that this control 

strategy can be characterised by the junction structure topology. Closed loop energy functions 

are shown to be almost immediately derivable when the bond graph allows for a certain 

decomposition. It should be noted, however, that the applicability of power balancing can 

be impeded by the natural dissipation of the system, which is readily identified from the 

junction structure. 

Bond graphs do not provide any analytical information on the associated energy function; for 

example, it is impossible to tell whether the energy function is positive definite based on 

the bond graph alone. Of course, the I and C storage components distinguish between the 

types of energy considered, but no analytical information on the storage function is given 

whatsoever. As a result, aspects of bond graph modelling in any sort of energy shaping are 

more analytical in nature. This section, on the other hand, shows that the junction structure 

can provide qualitative information on attainable energy shaping whenever the closed loop is 

to remain passive with respect to the natural output. 

The bond graph based power balancing method is a special case in which the junction struc- 

ture topology provides information on the type of energy function that can be associated 

with feedback. Nov, if the plant energy is known, and the bond graph can be decomposed 

into two subsystems, then it may be the case that the energy function of one subsystem is 

a suitable energy function for stabilisation purposes. The graphical identification of ingoing 

and outgoing power flows of some subsystems is shown to be crucial for the power balancing 

method. Various examples are presented that impart the results. 

5.2.1. Introducing Power Balancing 

Consider the explicit port-Hamiltonian system 

±= [J(x) - R(x)]K(x) - g(x)u (5.1) 

y= 9T (x)K(x), 

where KT(x) = DH(x) for some Hamiltonian H: X -4 R. Next define the "shaped" Hamil- 

tonian 

H5(x) = H(x) + Ha(x), (5.2) 
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where Ha :X -f IR is the assigned or additive Hamiltonian to be associated with the feedback 

law. Suppose there exists an HQ(x) such that 

H[(x) = H(x) + HQ(x) < -yT (x)u + yT (x)a(x), (5.3) 

where a(x) is smooth. Then in view of feedback passivation it is seen that the control 

u= a(x) +w yields 
H8(x) < -yT(x)w. (5.4) 

Hence, the control u= a(x) +w renders the system feedback passive with respect to the 

shaped Hamiltonian H3(x). 

Standard passivity theory can be invoked to assess stability, for example, if H8(x) is positive 

definite at the equilibrium xe then the control w= Sy, with S= ST > 0, asymptotically 

stabilises the equilibrium xe if trajectories contained in the set B= {x : y(x) = 0} can only 

be xe [Sep97]. 

The following elementary example shows how a power rate of the form (5.3) can be derived 

by using the bond graph junction structure. 

Example 5.1. Consider the bond graph in Figure 5.1, which is causally assigned with 

SCAP, and let the Hamiltonian H: X --f R be simply given as 

H(x) =1 x1 +1 kx2 +1 x3. (5.5) 
2m1 2 2m2 

By power continuity of the bond graph junction structure it must follow that 

cry = kx2x2 +1 
m2 

X3x3. (5.6) 

But this clearly suggests that one can choose 

HQ(x) =2 
Ixe 

ý-- 
m 

x3J Ü. (x) = coy, (5.7) 
M2 

for some gain c>0. Now, since the shaped Hamiltonian is defined by (5.2), an (in)equality of 

the form (5.3) can be derived from Figure 5.2 by simply considering all power flows through 

external bonds. Doing so yields 

H5(x) = -y(u - co'), (5.8) 

so that the passive control is of the form u= cu +w= ckx2 + w, which is seen to be 

immediately derivable from Figure 5.1 by means of the bond signal u. 
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Figure 5.1.: Power flow ay for passive feedback with SCAP of Example 5.1. 
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Figure 5.2.: Power flow cry for passive feedback with LCAP of Example 5.1. 

The important step so far is the isolation of the bond graph subsystem associated with the 

C and 12, which allows for the factorisation of the form 1YQ(x) = y'(x)a(x). 

If one prefers the Lagrangian approach in bond graph modelling, consider the bond graph 

causally assigned with LCAP in Figure 5.2. Note that the passive output remains conjugate 

to u, thus y= -bi. To make the design more explicit this time, write the Lagrangian as 

(5.9) L(x, x) = 
2mlthi 

+ 2m2t2 - 
2k(xl 

- X2)2, 

so that by causal analysis of Figure 5.2 one will find the simple EL-dynamics 

1=-k (x1 - x2) -1u 
M1 M1 (5.10) 

k 
x2 = (X1 X2)- 

M2 

As usual, by setting zl = Xl, z2 = b1 and z3 = x2, Z4 = x2 the system turns into the first 

order form 

Z1 = Z2 

k i2 = -(zl - zg) - -u 
'nl 'nl (5.11) 

13 = Z4 
k 

. 
Z4 = (zl - Z3)- 

M2 
Then if power balancing is to be applicable, the associated energy function E(z) of the 

Lagrangian is needed and takes the form 

E(z) = 2miz2 -t 2m2z4 -f Zk(zl - z3)2. (5.12) 
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Completely analogous to (5.2), define the shaped energy as E3(z) = E(z) + E,, (z). Then, as 

in the SCAP case, the relevant power balance can be derived directly from the bond graph 

and is found to be 

6y = k(zl - Z3)(Z2 - Z4) + m2z44 (5.13) 

This clearly suggests to choose 

Ea(z) =C [m2Z4 + k(zi - z3)2] = Ea(z) = c. Qy, (5.14) 

which shows that the shaped associated energy must satisfy 

E3(z) = -y(u - ca). (5.15) 

The control is therefore u= co, +w= ck(zl - z3) + w. 

It is important to note that the application of LCAP does not change the power balance 

method itself: Power continuity of bond graph junction structures is independent of the 

causality. So, this examples appears to hint at the possibility to use LCAP in cases where 

the bond graph would induce implicit port-Hamiltonian dynamics due to dependent storage 

elements. Possible applications of LCAP will be seen in a later section. 0 

Some remarks can be made on behalf of the above example. First, consider Figure 5.1 and 

suppose that the bond graph subsystem comprising the C and 12 elements has a resistive 

element connected to the 1 -junction of the I2 element. In this scenario it is readily seen that 

an additional power flow associated with the resistive element will be imposed on HQ(x). 

Second, the storage functions associated with the 11, I2 and C elements are not coupled. As 

will be seen in the following section, the storage elements cannot be arbitrarily coupled if 

power balancing is to be possible. 

5.2.2. Defining the Power Balance Method 

Having presented an instructive example of bond graph based power balancing, a more general 

case of power balancing can now be considered. To that end, consider the explicit MIMO sys- 

tem depicted in Figure 5.3, where bond graph storage and dissipative elements are contained 

within the block Eo but where Ei has bond graph storage elements only. The Hamiltonians 

Ho(x) and Hl(ý) denote the associated energy functions of the bond graph subsystems Eo 

and El. 
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Figure 5.3.: Conceptual bond graph based power balancing with SCAP. 

Now, for convenience, define ui = (ui, 
... , uni ), yj = (VI, 

... , yýn, ) and ai = (o', ', 
... , 0.3 ) 

with jE {1,2}, and set u= (ul, u2), y= (yl, y2) and o= (Q1, Q2). Even though power 

continuity of bond graph junction structures is independent of causality, the power balance 

method considered here is readily defined in terms of standard causal assignment. 

The point of departure is the definition of the plant Hamiltonian in Figure 5.3, given by 

H(X, e) = Ho(x) + Hi(e). (5.16) 

Defining the plant energy in this way readily yields the relationship 

Hi (e) = Y, (x, e) 0, (x, ), (5.17) 

where the junction structure can be modulated by all variables. As in (5.2), define the shaped 

Hamiltonian function H8(x, )= H(x, ý) + H,, (x, and observe that from (5.17) it follows 

that one can choose Ha (x, ý) = cHl (e) for some c>0. This yields the (in)equality 

HS (X, ý) = H(x, ý) + Ha. (x, e) < -yT (x, ý) [u - ca (x, e)]. (5.18) 

Note that power balancing considered here assumes that the subsystems Eo and El do not 

have coupled Hamiltonians. Thus, the factorisation Hl() = yTO. is obtained when the power 

flow yT5 is external to the system El. 

Some important conditions for power balancing must be mentioned at this stage. First, sup- 

pose (xe, fie) is an admissible equilibrium that is (locally) globally asymptotically stable 

through the control u= a(x, ý) +w, where w= Sy(x, ý) and S= ST > 0. Since the stabilisa- 

tion problem is to regulate y(z, ý) to y(ze, fie) =0 implies that y(ze, ýe)a(ze, fie) = 0. It follows 

that the power flow associated with the control must be zero at the equilibrium (xe, fie). The 

energy balancing method of [OrtOOa] also mentions this particular restriction that there can 

be no power flow at the equilibrium. 
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Therefore, the above considerations show that the class of systems suitable for power balanc- 

ing is limited, since various stabilisation problems exist that cannot be solved by asymptotic 

regulation of the natural passive output y to zero [OrtOOa]. In addition, since the systems 

are assumed to be passive with respect to the output y and should remain so in closed 

loop, it must hold that the systems are (weakly) minimum phase if stabilisation is to be pos- 

sible [Sep97], [Byr9l]. Thus, as mentioned earlier, power balancing can address passivation 

problems with respect to the natural output, but the class of systems suitable for this type 

of control is limited. 

The following example clarifies the conceptually defined MIMO power balancing as depicted 

in Figure 5.3. 

Example 5.2. Consider the 2-input bond graph model depicted in Figure 5.4. The point 

of departure is to recognise that the system can be decomposed into the form as depicted 

in Figure 5.3. Suppose the components Ii and Cj for ij do not share coordinates and 

suppose that the plant Hamiltonian takes the form 

H(x, )=Ho(x)+H1()= 1xTPx+26TQ6, 

where p= PT and Q= QT. Straightforward causal analysis yields the dynamics 

±1 00 -1 0 pllxl +p12X2 10 

Jý2 0001 P12X1 + p22X2 01 ul 

100 -1 q111 + g12e2 00 U2 
ý2 0 -1 10 g12e1 + g222 00 

I Yi p11x1 +p12X2 

Y2 jL p12X 1+ p22X2 

(5.19) 

(5.20) 

By means of the junction structure in Figure 5.4 it follows that the power balancing control 

is given as ul = cal + wl and u2 = -cv2 + w2 for c>0. This control can be verified by 

taking HQ (e) = cHl (ý) such that the shaped energy is given as 

H8 (x, e) =1 xT Px +1 ZT [Q + cQ]e, (5.21) 

which satisfies ft,, (x, ý) = -yTw. Note that the power balance method does not provide a 

lot of room to modify the properties of the energy function by means of the gain c in this 

case. More precisely, since the gain is assumed to satisfy c>0 shows that P and Q are to 

be positive definite if Hs is to be positive definite. 
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Figure 5.4.: Basic MIMO bond graph based power balancing of Example 5.2. 

By assuming that P and Q are positive definite, the feedback w= Sy, with S= ST > 0, can 
be used to control the asymptotic convergence. Finally, the requirement to have passivity 

with respect to the natural output limits the coordinate dependency of the additive energy, for 

it is seen that 

DHa(x, e)9j =0y= 9T Ids (x, e) = 9T K(x), (5.22) 

where gj are the columns of the input matrix of (5.20). The x-coordinates can therefore not 

be used in the definition of Ho,. 0 

Provided the system can be decomposed properly, it is seen that MIMO designs can be 

addressed within the power balancing framework. However, it may be difficult, if at all 

possible, to find the bond graph subsystems Eo and E1 with the added assumption that El 

has no dissipation. In practice, the general way to proceed is by identifying the junctions 

where the control input u appears and to identify the bond signals aj(x, ý). Assuming this 

step can be completed, it should be checked whether the plant Hamiltonian allows for the 

representation of Figure 5.3, which may or may not be possible. Suppose the Hamiltonian 

can be written as the sum of two suitable functions, then the MIMO design can be completed 

provided the system is (weakly) minimum phase. 

Implicit Systems: Dependent Storage Elements 

Figure 5.3 is a conceptual bond graph representation that is causally assigned with SCAP. 

Since the interconnection of bond graph subsystems are likely to induce dependencies between 

various storage elements, it can be argued that not allowing dependent storage elements is 

rather restrictive in bond graph modelling. As a result, it is of great importance to address 

derivative causalities in the context of power balancing if this method is to be applicable to 

a larger, relevant class of systems. 
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It is intuitively plausible that alternative causality assignment procedures can possibly be 

used to deal with constraint storage elements that are manifested as derivative causalities. 

The insertion of Lagrange multipliers to eliminate the dependent storage elements is possible 

within the power balancing method. Indeed, multipliers are "workless" by definition, which 

implies that the associated power flow is zero such that it cannot have any contribution. 

However, with standard causality, the insertion of various multipliers may yield complicated 

dynamics since the state variables selected by SCAP may not be suitable for the problem at 

hand. 

Even though multipliers are capable of effectively addressing certain constraint dynamics, the 

Lagrangian causality assignment without multipliers, denoted as LCAP, appears to be the 

best option for power balancing as considered here. It must be recalled, however, that LCAP is 

applicable if and only if a minimal set of generalised coordinates are available [Mar02]. In case 

this minimal set of coordinates has been found, the dependent storage elements are readily 

circumvented with LCAP. The second order dynamics obtained with LCAP are subsequently 

transformed into first order form, where the associated energy E of the Lagrangian is used 

as a storage function. Power balancing is achieved through the additive energy function Ea, 

which is to be derived from the bond graph by means of the junction structure. Similar to the 

SCAP case, the power flow yTQ is found at the 1 -junctions that are identified as generalised 

velocities. 

The Lagrangian approach is quite effective in addressing the derivative causalities of bond 

graph models; however, the next example shows that the inequality (5.18) requires further 

generalisation. More precisely, as in. (5.2), define the shaped energy of the Lagrangian as 

E3(z) = E(z) + Ea, (z) and suppose there exists an additive energy E3(z) such that 

ES(z) < -yTp(z, u), (5.23) 

where p(x, u) is smooth. Then by invoking the Implicit Function Theorem [Abr88] it is 

possible, in principle, to solve for a control u= a(x, w) such that 

Es(z) ý -yTP(z, a(z, w)) = -yTw. (5.24) 

Thus, as per (5.23), general bond graph based power balancing can be said to address passi- 

vation problems for which a suitable factorisation with respect to the natural output can be 

attained by means of an additive energy function. 
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Figure 5.5.: TORA physical configuration of Example 5.3. 

The following non-trivial example has been taken from [Jan96] and shows how the Lagrangian 

approach in bond graph modelling can be a tool in power balancing control. In particular, the 

additive associated energy function need not be "guessed" as such, but the junction structure 

hints at a candidate additive energy function. 

Example 5.3. In [Jan96], the authors consider the problem of controlling the Translational 

Oscillations of a Rotational Actuator (TORA) as depicted in Figure 5.5; see [Wan94] for 

another account of the system. Now, the authors of [Jan96] present the design of various 

cascade and feedback passivation controllers for the TORA that are shown to stabilise the 

system globally. It is pointed out by [Jan96] that the passivation control designs cannot be 

said to be constructive since the closed loop storage function is to be "guessed" in some way. 

This example shows that bond graph based power balancing control can provide a way of 

designing a passivation controller in a relatively constructive fashion. 

The structure of the TORA in Figure 5.5 consists of a platform that can oscillate without 

damping in a horizontal plane, thus the effect of gravity is not considered. On the platform, a 

rotating eccentric mass is actuated by a DC motor and its motion applies a force to the 

platform that can be used to control the translational oscillations, where the control input u 

is the torque applied to the eccentric mass to stabilise the system globally at a desired 

equilibrium. 

Since the kinematic relations of the system will certainly induce dependent storage ele- 

ments, the Lagrangian approach is considered to obtain an efficient model. It should be 

noted that AHCAP of [Mar02] can be applied, but the dynamics tend to become more com- 

plex. The generalised coordinates in Figure 5.5 are designated as xl = x, which represents 

the position of the platform, and where the pendulum angle is designated as x2 = 0. 
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Figure 5.6.: TORA Lagrangian assigned bond graph of Example 5.3. 

Figure 5.6 depicts the bond graph of the TORA with LCAP, where tl (x2) =1 cos(x2) and 

t2(x2) =l sin(x2). The Lagrangian is given as the kinetic energy T(x, th) minus the potential 

energy V (x), thus 

L(x, x) =T(x, x) -V(x) = 
2aý1 

+ßcos(x2)xix2+ 
2ryý2 

- 
2kxi, (5.25) 

where a= ml + m2i /3 = m21 and ry = m212. By following the depicted causality yields the 

second order equations 

aß cos(x2)1 -/3 sin(x2)x2 + kxl 
+=0. (5.26) 

ß cos(x2) ly X2 U 

Next set zl = xl, Z2 = ±1 and z3 = x2i Z4 = x2, and write the first order dynamics 

z1 = Z2 

'y(/3sin(z3)z4 -kzl) 
8COS(z3) 

z2 
'82 cost (z3) - ay ß2 cost 

u (z3) - ay (5.27) 

z3 = Z4 

Z4 _R 
Cos(z3)(ß sin(z3)z4 - kzl) 

+a 
Q2 COS2(z3) - a7 Q2 COS2(z3) - a'yu 

The associated energy E(x, . -ý) in the z-coordinates takes the form 

E(z) = 
2az2 

+Qcos(z3)zzz4 +2I+ 
2kzi, (5.28) 

24 

which, as expected, is a storage function satisfying E(z) _ -Z4U = -yu. 
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In [Jan96], the first passivation controller, denoted by the authors as "P2", is chosen to be 

u= Cz3 + rz3 for some gains c>0 and r>0. This control is shown to achieve global 

stabilisation of z= (0,0,0,0). From a power balancing perspective, it is seen that this 

controller can be obtained by considering the power balance for 0-2y only, which represents 

the contribution of additive potential energy with respect to the angle of the pendulum. The 

power flow v2y implies that one can (but need not) choose the additive associated energy 

E,, (z) = (c/2)z3. Even though this controller achieves stability of the origin, the authors 

show that the P2 controller cannot lower the settling time of xl beyond a certain limit. 

They argue that the energy can be shaped in the x1-coordinates to improve the settling 

time; however, the authors do not disclose how the additive energy function is chosen to 

attain the x1-dependency of the feedback passivation controller. 

In view of power balancing, observe that the dependence of the controller on the xl-coordinate 

can be achieved constructively by considering the power flow uly. More precisely, consider 

the power balance equations induced by the junction structure as 

"W = m244 + mixlxi + kx1±1 

av U2Y __ ax-2 Y 

(5.29) 

where q is the horizontal velocity of the mass m2. Identifying these power flows is an important 

step in the design, because it becomes possible to select a candidate additive energy function 

yielding a factorisation in the natural output y of the form (5.23). In particular, the above 

power balance equations lead to the choice 

Ea(z) =2 [kzi + m2(z2 +l cos(z3)z4)2 + mizi] + C2 
z3 

(5.30) 
=2 [kzi + 2b cos(z3)z2z4 + az2 + Cz4 COS2 (z3)] +2 z3, 

where Cl >0 and c2 > 0, and where the relation 4 Z2 +l cos(z3)z4 has been used. From 

the bond graph it now follows that this additive energy must satisfy 

E. = z4(a l+ Qz), (5.31) 

which, in turn, implies that 

E5(z) _ -z4p(z, u). (5.32) 

By invoking implicit function arguments, it is readily seen that there exists the control 

u= a(z, w) giving 

Es(z) _ -z4p(z, a(z, w)) _ -z4W. (5.33) 
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Indeed, the control satisfying (5.33) takes the form 

u= a(z, w) (ß2 QZC1 - [k^yc1) COS2(z3) - a-Y 
- 3-tclkzl COS3(z3) +Q2C2z3 COS2(z3) 

-F [Qycikzl + ay2clz4 sin(z3) - , 
g2yclz4 sin(z3)] Cos(z3) 

- ayc2Z3 + [ß2 cos2(z3) - a^yIw . 
(5.34 

The design objective to obtain the xl-dependency has been attained with u= a(z, w) and 

the system (5.27) is feedback passive with storage function E5(z). Global asymptotic stability 

of z=0 is achieved by the further control w= ry with r>0. 

It is important to note that the potential energy can be arbitrary since Qty = (öV/äx2)y. 

Consequently, the "winding problem" as described in [Jan96] can be addressed by means of 

an alternative choice of potential energy, which does not compromise the factorisation (5.32). 

0 
As mentioned earlier, power balancing cannot be used for systems that are not (weakly) 

minimum phase [Byr9l]. For instance, there are occasions where a proper bond graph de- 

composition exists, but where the additive energy function cannot render the shaped energy 

function positive definite at the desired equilibrium. The following example addresses such a 

system. 

Example 5.4. Consider the bond graph in Figure 5.7 of the frictionless slider. Since the 

junction structure of this system is seen to induces derivative causalities when SCAP is 

used, the application of LCAP is expected to yield a more efficient model. 

As usual, the Lagrangian is the kinetic energy minus the potential energy and takes the form 

L(x, x) = 
2mx2 

+ 
2mx22 

th1 + 
2Ithi 

- mgx2 sin(xl). (5.35 

With zl = xl, Z2 = xl and z3 = x21 Z4 = x2 the associated energy E(z) of the Lagrangian 

readily follows to be 

E(z) = 
2mz4 

+ 
2mz3z2 

2+ 
2Iz2 

+mgz3sin(zl). (5.36) 

Set y= th and identify the power flow 

Ea = y(Qi + ca + 73). (5.37) 
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Figure 5.7.: Power balancing not applicable to slider of Example 5.4. 

At this stage it must be noted that the C1 and C2 storage elements are coupled, so that the 

power flow my must be taken into account. The additive energy can be described by 

EQ(z) = 
[mz4 

+ 2mz3z2 + mgzgsin(zl)J +2 zi, (5.38) 

for some controller gains cl >0 and c2 > 0. However, it is of no use continuing the design since 

the shaped energy E3(z) cannot be rendered positive definite at z=0. Furthermore, since 

the minimum phase property cannot be changed by feedback control, it is concluded that 

the frictionless slider cannot be stabilised by feedback passivation with respect to the natural 

passive output y. 0 

The above example shows that the power balancing precludes systems with unstable internal 

dynamics. But, as mentioned earlier, the bond graph does not provide any information on the 

energy function to assess internal stability. Therefore, the existence of the factorisation (5.23) 

does not guarantee that asymptotic stabilisation can be attained by bond graph arguments 

alone. Future research could address bond graph based power balancing that allows for 

alternative passive output factorisations for certain non-minimum phase systems. 
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Some Concluding Remarks 

It has been shown that bond graph based power balancing can be used to obtain passivation 

controllers with respect to the natural output. Most importantly, the junction structure 

has shown to provide information on how the natural output passivity is retained when 

selecting the additive energy function associated with suitable power flows. This method is 

novel in the bond graph literature and provides a graphical means to obtain natural output 

passivity in closed loop. Moreover, power balancing is applicable regardless of the bond graph 

complexity, but the proper decomposition may be difficult to find, if possible at all. 

Natural output passivation is applicable to a limited class of control problems. For exam- 

ple, admissible equilibria that can be stabilised are limited due to the fact that such equilibria 

are to be compatible with the zero output, thus y=0. Furthermore, natural output passivity 

implies that the systems must be (weakly) minimum phase if stabilisation is to be possible. 

In other words, natural output passivity in closed loop requires that the internal dynamics is 

at least marginally stable. 

Power balancing as presented here can be applied to bond graph models with dependent 

storage elements. For example, the Lagrangian approach has shown to circumvent the ex- 

istence of dependent storage elements without compromising the power balancing method. 

Indeed, power continuity of the junction structure is independent of causality by defini- 

tion, so any causal configuration is to satisfy power continuity by construction. In order to 

use LCAP, it is required that a minimal set of generalised coordinates can be found. Future 

research could address other causal assignment schemes in power balancing control, such as 

)HCAP or )LCAP, since the application of Lagrange multipliers does not require a minimal 

set of generalised coordinates, thereby avoiding the search for such coordinates for complex 

systems of interconnected bond graph submodels. 

Finally, it may be of interest to see whether power balancing can be extended to include 

closed loop passivity with respect to different outputs, so that the class of systems suitable 

for bond graph based power balancing can be enlarged to include certain non-minimum phase 

systems. For example, the stabilisation of the frictionless slider was shown not to be possible 

with respect to the natural output, but by modifying the closed loop passive output this 

problem may be solved. 
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5.3. Control by Interconnection and Damping Assignment 

In the previous section it has been shown that bond graph based power balancing can be 

used to derive an additive energy function for control purposes, and where the natural output 

remains the closed loop passive output. In particular, the controller design is solely based on 

power flow considerations, where it is important to realise that the closed loop bond graph 

representation does not change. 

This section explores bond graph modelling aspects and interpretations of a novel technique 

called Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) of 

explicit port-Hamiltonian systems as developed in [OrtO2b]. The main feature of a IDA-PBC 

design is that the closed loop remains port-Hamiltonian with respect to some shaped energy 

function. But, in addition, IDA-PBC designs also consider possible modifications of the 

interconnection and damping structures through suitable feedback. 

It will be shown that basic IDA-PBC design allow for bond graph representations, but the 

bond graph modelling aspects considered here are more conceptual and do not yield the 

solution to the PDEs associated with IDA-PBC designs. Nonetheless, it can be expected that 

such conceptual representations have merit and are helpful for bond graph models for which 

an IDA-PBC design is considered. Even though bond graph models have been identified as a 

class of port-Hamiltonian systems [Gol02j, the aspects of bond graphs in IDA-PBC designs 

has hardly been addressed. This section presents an introductory account on IDA-PBC 

control design in terms of bond graph models. 

5.3.1. Energy Shaping with Junction Structure Compatibility 

The power balancing method in Section 5.2 shapes the energy of systems in way that renders 

the closed loop passive with respect to the natural system output. Indeed, the sole purpose 

of power balancing is to render the time derivative of the shaped energy non-positive. But 

instead of finding additive energy functions that retain passivity with respect to the natural 

output, it can be of interest to characterise all additive storage functions that are compatible 

with the original bond graph topology. This section follows the various arguments found in 

Section 2.6 but where interconnection and damping structure assignment is not considered 

at this stage. As will be seen, energy shaping that is compatible with the junction structure 

often leads to passivity with respect to a different output. 
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Following the arguments of [OrtO2b] and Section 2.6, consider an explicit port-Hamiltonian 

system of the form 

x= [J(x) - R(x)]K(x) - g(x)u 

y= 9T (x)K(x), 
(5.39) 

where DH(x) = KT (x) for some smooth Hamiltonian H: X -f R. Define the shaped energy 

function 

H8(x) = H(x) + Ha(r), (5.40) 

where Ha(x) is the additive Hamiltonian to be associated with feedback control. To that 

end, suppose there exists a smooth state feedback u= a(x) +v such that 

[J(x) - R(x)]Ka(x) = -g(x)a(x) (5.41) 

and observe that in such case the closed loop can be written as 

x= [J(x) - R(x)]K, (x) - g(x)v 
(5.42) 

Ys = 9T (x)KK(x)" 

The additive function Ha, (x) can therefore be used, in principle, to assign some desired (local) 

minimum to the shaped energy H3(x), so that stabilisation is possible by rendering xe the 

strict minimum. More precisely, take the standard feedback v= Sys for S= ST >0 and 

define the set 

Z= {x EX: I<(x)[R(x) +9(x)SYT(x)]K3(x) = 0}. (5.43) 

Now, suppose H5(x) is positive definite at the desired equilibrium xe, then by invoking a 

LaSalle argument [Kha92] it can be shown that asymptotic stabilisation is attained when the 

only trajectory contained in Z is the equilibrium xe. 

If (5.41) is to hold for all Ha, (x) then is must also hold that 

91(x)[J(x) - R(X)]IiCa(X) = 0, (5.44) 

where g1(x) is a full rank left annihilator of g(x). This condition characterises the property 

that systems can be underactuated, which implies that the additive energy Ha, (x) cannot 

be chosen arbitrarily but is to simultaneously satisfy the set of first order PDEs (5.44). 

Suppose (5.44) can be solved for some H,,, (x), then the control is obtained with 

-[9T (x)9(x)]-19T (x)[J(x) - R(x)]Ka(x) = u. (5.45) 
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Even though the above energy shaping method is conceptually straightforward, the solution 

to (5.44) is a crucial step in the design. The following proposition provides a necessary 

condition for a set of first order PDEs to be simultaneously satisfied by one single function. 

Proposition 5.1. Let X be a smooth manifold with local coordinates (xl...... x8) and con- 

sider the maps Fj: T*X --> IR with j=1, ... , m. Suppose the function H: X --4R simulta- 

neously satisfies the first order PDEs 

Fi (xi, pi) = 0, 

with pi = alllax i. Then the maps Fj must then satisfy 

{Fi, Fj} = 0, 

where {", "} is the standard Poisson bracket on T*X. 

Proof. Let F, G: T*X -> R and suppose H(xi) satisfies 

(5.46) 

(5.47) 

F(xi, Pi) = 0, G(xz, pi) = 0, (5.48) 

with pi = aH/äxi. Taking partial derivatives with respect to xi yields the relationships 

o9F 
ax +p ax = o, äx + ap oxi =a (5.49) 

Multiplying the first relation with aG/äpß, the second relation with äF/öpi, and subtracting 

the second relation from the first yields 

aF BG 8F 8G 
_0. (5.50) IF, G} - axi Opi -5 Pz äx-, 

0 

It is interesting to note that the above proposition is merely implicitly contained in the work 

of [Car65] and gives a necessary condition that is to be satisfied if (5.46) is to be at all solvable 

for some function H(x=). Note that no explicit conditions on the solvability of (5.46) can be 

given [OrtO2b], but Proposition 5.1 is reported here for maximum clarity. 

Corollary 5.2. In case Fj (x, p) = Fj (0, p) for all j then {FF, Fk} = 0. 

The following example shows that energy shaping as per (5.41) implies compatibility with 

the plant bond graph topology. 
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Figure 5.8.: Dissipative system of Example 5.5. 
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Figure 5.9.: Energy shaping compatible with bond graph topology; Example 5.5. 

Example 5.5. Consider the bond graph of a dissipative system depicted Figure 5.8. For 

simplicity, suppose the Hamiltonian of the system is given as 

H(x) 
2XT 

Qx 
2I xz + 

2Cxz 
+ 

2I x37 (5.51) 
iz 

where the constants Il and 12 are inductances and where C is a capacitor. Causal analysis 

yields the simple linear dynamics 

x1 0 -1 0 xl/Il 1 

x2 =10 -1 x2/C -0u 

X3 01 -rl x3/I2 0 
(5.52) 

y= xl/Il, 

where rl >0 is a resistive constant associated with the R element. The admissible equilibria 

of (5.52) take the form 

xe = (4, x 23 ,x)= 
(-Ilue/ri, -Cu', -I2ue/r1), (5.53) 

where ue is a constant input. Then to find all additive energy functions Ha (x) that are 

attainable through feedback, observe that the condition (5.41) can be represented as the bond 

graph in Figure 5.9. Thus for energy shaping to be compatible with the plant bond graph, the 

contribution of the additive energy is to "cancel" internally due to underactuation, which can 

be represented by nullifying the tangent vector in Figure 5.9. 
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The PDEs to be simultaneously satisfied by Ha(x) are given by (5.44) or can be derived from 

Figure 5.9, and doing so yields 

aHa aHQ 
axl 8X3 

(5.54) 
OHa 

- rl 
öHa 

= 0. 
49x2 49X3 

To assess whether (5.54) is at all solvable, set pi = 8Hd/8xi and define the functions 

Fl(x)p) = pl - p3 and F2(x, p) = P2 - rlp3, so that Corollary 5.2 can now be used to 

confirm that {F1, F2} = 0. In fact, observe that the solution to (5.54) does exist and takes 

the form 

Ha(ýý _ O(xi +r1X2 +x3)ß (5.55 

where 0 is any differentiable function that assigns a strict minimum at xe to the shaped 

energy, if possible. 

For linear systems one can often consider a function H3(x) that is quadratic in x- xe. To 

that end, define 0 as 

1 
¢(xl + rlx2 + X3) = 2c1 [xl + rlx2 + x3 - (xi + rlxz + x3))2 

+1 -(xi + rlx2 + x2)Zte 
ri 

x1)2 (x2)2 x3)2 
+ 2I1 + 2C + 212 ' 

(5.56) 

where Cl >0 is a controller gain. Observe that with the above choice of 0 it follows that the 

shaped Hamiltonian takes the form 

H5(x) = H(x) + Ha(x) 

cl + 1/Il 

=1 (x - xe) T 
rid 

Cl 

rlci Cl 

rice + 1/C rici (x - xe) 

rlcl Cl + 1/12 

(5.57) 

Finally, the control that attains the desired energy shaping is obtained from (5.45), or from 

the bond graph in Figure 5.9 as u= aHa/äx2 + v. Standard output feedback of the form 

v= r2ys with r2 >0 can be used to impose asymptotic convergence. 0 

As shown by the above example, energy shaping that is compatible with the junction structure 

induces first order PDEs by considering the summations of zero- and one-junctions. The 

property of underactuation can be imposed by nullifying the tangent vector x. 
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Figure 5.10.: Energy shaping impeded by modulation of Example 5.6. 
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Figure 5.11.: Underactuated bond graph of Example 5.6. 

In case the junction structure is smoothly modulated by x, the relation (5.47) readily provides 

a necessary condition for such modulations to be admissible, and this argument will also be 

used when interconnection and damping structures are modified through feedback control. 

The following example clarifies possible problems with junction structure modulations in 

energy shaping. 

Example 5.6. Consider the bond graph depicted in Figure 5.10, where a(x) is a smooth 

modulation to be defined such that (5.47) is satisfied. It is not needed to evaluate (5.44) 

explicitly, but by following causality in Figure 5.11 it readily follows that 

8HaaHa 
_0 äx1 Öx3 (5.58) 

Ua äH" 
a(x) +=0. 

axl 0X2 
By introducing the functions F, (x, p) = p1 - p3 and F2 (x, p) =a (x)pl + p2 it follows that 

8a_aal 
{Fl, F2} 

öýl äý3 J pl = 0. (5.59) 
R 

Therefore, if energy shaping is to be at all solvable for this particular example, it must hold 

that a=a(xl+x3). 0 
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Figure 5.12.: Conceptual representation of energy shaping. 

Examples 5.5 and 5.6 show that energy shaping for explicit port-Hamiltonian dynamics can be 

conceptually represented within the bond graph framework, but the solution is to be obtained 

through analytical considerations. Generalising the above examples, sole energy shaping can 

be conceptually depicted by Figure 5.12, where certain modulations of the junction structure 

JS(x) may impede energy shaping, however. 

5.4. Control through Interconnection and Damping Assignment 

Instead of energy shaping alone, the IDA-PBC methodology presented in Section 2.6 allows 

for the modification of interconnection and damping structures of explicit port-Hamiltonian 

systems through feedback control. Some instructive applications of this theory have been 

reported in [OrtO2a] and [OrtOOc]. Even though the general IDA-PBC method enlarges the 

class of port-Hamiltonian systems for stabilisation problems, IDA-PBC designs often lead to 

a set of first order PDEs that need to be solved. However, solving the associated PDEs of an 

IDA-PBC design need not imply that the control problem can be attained [OrtO2a]. More 

precisely, finding a mere solution to the PDEs does not guarantee the control objective can 

be attained. Extensive theoretical research on the solvability of IDA-PBC type designs and 

the associated PDEs is still ongoing, see [B1a02] and references therein for an authoritative 

treatment of the topic. 

The energy shaping method as described in Section 5.3.1 is completely based on [OrtO2b] 

and is equivalent to the case for which no additive interconnection or damping structures are 

considered. In this section, on the other hand, mere energy shaping is complemented with 

possible modifications of the interconnection and damping structures through feedback. 
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5.4.1. Bond Graph Representations of Basic IDA-PBC Designs 

This section explores basic IDA-PBC aspects from a bond graph perspective, where it is 

shown that IDA-PBC control can be represented through additive bond graph elements such 

TF, GY and R components. The insertion of such additive elements induces the Ja, (x) and 

R,, (x) matrices of (2.77). 

It must be noted that it is by no means attempted to define formal procedures and formalisa- 

tions. Instead, the applicability of bond graph aspects in IDA-PBC designs is presented by 

means of a detailed example, which readily allows for formalisations and generalisations that 

can be committed to further research. The following example shows how an IDA-PBC design 

can be used effectively for certain stabilisation problems in which the bond graph defines the 

closed loop interconnection and damping structures. 

Example 5.7. In [OrtOl], the authors consider a magnetic levitated ball depicted in Fig- 

ure 5.13. The Hamiltonian of this system is given as 

H(x) 
2I(x2)xl 

+ 
2m x3 +m9x2, (5.60) 

where xl is the flux linkage of the coil, and where x2 and x3 are the vertical displacement and 

momentum of the ball respectively. The inductance of the coil is given by I(x2) _ 'yl/(72 -x2) 

for some physical constants -y' >0 and rye > 0. It is readily understood that this system 

can be modelled with a bond graph depicted in Figure 5.14, which shows a complete lack of 

structural interconnection between the electrical and mechanical energy domains. 

The control objective is to stabilise the ball at some desired vertical position through voltage 

control on u. To this end, causal analysis yields the explicit port-Hamiltonian dynamics 

xl -r 00 

x2 =001 
x3 0 -1 0 

y 
71xi(72 - X2)- 

xi (Y2 - x2)/'Yl 1 

gm - xl/(27i) -0u 

x3/m 0 

Clearly, a set of admissible equilibria can be described by 

12 
ýe = (xi, xä, xs) 

(V'2m9'i1-Y2 
+ 

2r m1 
ue ý) 

9 

with ue as a constant input. 
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u 

l9 x 

Figure 5.13.: Magnetic levitating ball of Example 5.7. 

IC 
xi x2 

SS \I11 
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R1 

Figure 5.14.: Magnetic levitating ball bond graph of Example 5.7. 

The point of departure for stabilisation is to consider mere energy shaping first, so that the 

additive energy is to be compatible with the bond graph topology of Figure 5.15. In case 

mere energy shaping is possible, it can be expected that the induced PDEs are less complex 

than a more general IDA-PBC design. 

From (2.80), or from the bond graph in Figure 5.15, it is readily found that 

( Ha 

r 
19X1 

=u 

c7Ha, 
=0 (5.63) 

99x3 
äH19 
äXZ = 0, 

which shows that energy shaping is possible for the x1-coordinate only. However, when 

the Hessian D2H3(x) is evaluated, it becomes clear that the shaped energy H, (x) cannot 

be render positive definite at xe by any function Ho, = Ha, (xl). Hence, it appears that an 

IDA-PBC design can be considered to address the stabilisation problem. 
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Figure 5.15.: Energy shaping compatible with bond graph topology; Example 5.7. 
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Figure 5.16.: Gyration and damping assignment; Example 5.7. 

The IDA-PBC design commences by considering the plant bond graph with added gyration 

and damping as depicted in Figure 5.16. Observe that the gyrator and damping element R2 

are a natural choice from a bond graph perspective: The lack of coupling is resolved through a 

(constant) gyrator and where linear damping in the mechanical domain may improve asymp- 

totic convergence. Note that the resistance R2 is not considered in [Ort0l]. 

At this point the IDA-PBC design is conceptually clear, but it remains to be verified whether 

the closed loop can be attained through feedback. To that end, take 

00 -a rl 00 

Ja(x) =000, Ra(X) =000, (5.64) 

a0000 r2 

where a>0, rl >0 and r2 > 0. Then by (2.80) one obtains the PDEs 

OH4 
=0 äx3 (5.65) 

äHa äHa 5Ha r2 a 
aaXl - 

99x2 
-r2Öx3 

mx3-{-IYlxl(72-x2) 
= 0. 
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In view of Proposition 5.1, define the functions 

Fi (x, p) = Pa 

r2 
. x1('(2 - x2), 

(5.66) 
F2(x)P) = aPi - P2 - r2P3 - -x3 +a 

m 7i 

from which it follows that {F1, F2} = r2/m. Thus r2 =0 must hold if the current IDA-PBC 

setup is to be at all solvable. 

Consequently, the PDEs (5.65) reduce to the single PDE 

aaHa _ 

aHa 
+ 

ax1(y2 - x2) 
a 8x2 Iyi O 

(5.67) 

which is readily solved using the method of characteristics described in [Eva98]. To do this 

explicitly, define the initial data 

r={(x1, x2, Ha)IXI =0, x2=T, Ha=0(T)}y (5.68) 

and verify that the additive energy function Ha(x) takes the form 

Ha(m) _f X2l - 
X21(72 - X2) +1 1 (5.69) (2: xi 

a/ 277 6a'Yi 

where 0 is an arbitrary differentiable function. It is important to note that the choice of the 

initial data IF can yield solutions of variable complexity. For example, it is possible to take 

r= {(xl, x2) Ha) 1 xl ='r, x2 = 0) Ha = 0(7")}i (5.70) 

which would yield the additive energy 

Ha(x) _ (xi + ax2) + aYzxixz +az 72x2 
-a xlx2 - 

a2 
x2. (5.71) 

'71 271 27 67i 

Clearly, the simplest solution is (5.69) and seen to yield the shaped energy 

HS(x) = H(x) + Ha(x) _ 
(aXl+X2' 

+ 
6a-y1 x31 + 

2mx3 
+ mgx2) (5.72) 

where q5(xl/a+x2) can be chosen to assign a strict minimum to H3(x) at xe. For example, let 

q be defined as 

ci 11e211ee ýa 
xi +x2) =2 

(=x1 
+ X2 - -xl - x2) - mg (-xl + x2 -'xl - x2ý (5.73) 

so that the shaped Hamiltonian H5(x) = H(x) + Ha(x) satisfies 

DH, (x') = 0. (5.74) 
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Figure 5.17.: Non-obvious additive damping; Example 5.7. 

This proves the extremal assignment at xe. Moreover, for all cl > 0, the Hessian satisfies 

I ci/a2 + xi/(a'Yi) cl/a 0 

D2H5(xe) = ci/a Cl 0>0, (5.75) 

00 1/m 

which show that xe is a strict minimum of H5(x). Finally, the control is then found from (2.81) 

and takes the form 

U= 
ax3+(r+ri)-i9Ha +rlxl('Y2-x2)+w. 
m 8x1 -yi 

(5.76) 

Now, the IDA-PBC design shows that the bond graph in Figure 5.16 offers a relatively natural 

way of defining the closed loop port-Hamiltonian system. However, as mentioned before, the 

bond graph can only be used conceptually to represent the control objective, which may 

or may not be attainable. Indeed, the R2 in Figure 5.16 turned out not to be assignable 

even though its appearance is a natural choice. To further explore choices of additive damp- 

ing, consider the bond graph in Figure 5.17 and observe that the R2 element has been moved 

to a 0-junction. The interconnection and damping structures are now given by 

00 -a rl 00 

Ja(x) =000, Ra(X) =0 1/r2 0, (5.77) 

a00000 

where a>0, ri >0 and r2 > 0. The induced PDEs that need to be solved are 

aHQ 
- 

aHQ gm 12 
ax-3 r2 ax2 r2 

+ 
2r2y1 xl =0 

(5.78) 
aHQ aHQ a a+ -xl 

(y2 - X2) = 0. 
axl aX2 ryl 
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Invoking Proposition 5.1, define the functions 

1 gm 12 
Fi (x, p) = P3 - r2p2 

+ 
2r271 xi 

a 
r2 (5.79) 

F2(x, p) = aPl - p2 + -xl('Y2 - x2), 

and observe that {F1, F2} = 0, implying that solutions to (5.78) may exist. The second PDE 

of (5.78) admits the solution (5.69), which then leads to the additive energy 

1 xi (y2 - X2) x3 m 
H,, (x) _ q5 

(ixi 
Q+x2 + 

rx3) 2+ 6a1 
+ rgX3. (5.80) 

r2 -Yl -'1 

Then entirely analogue to (5.73), define 0 to be the quadratic function 

12 
( X1 + X2 + X3) =2 

(X 

1+ X2 x3 - Xe 1- x2 - 
2x3 2a r2 a 

Mg 
(lx 111l 

-ý 1ý-x2 i- ý x3-axi-xz-2x3). (5.81) 
2 

It is readily verified that xe is an extremum for H8(x), thus DH3(xe) = 0, and that the 

Hessian satisfies D2H3(xe) >0 for all values of cl > 0. The control now reads 

u= (r+r1)ýýi +aýH3 + aX3+ixl('y2-x2)+w. (5.82) 

0 

The above example shows an introductory deployment of bond graph representations for a 

basic IDA-PBC design, where the following observations can be made. First, it is seen that 

conceptual bond graph representations can be used to choose interconnection and damping 

structures. For instance, the lack of structural coupling in bond graph topological sense 

may hint at possible additive interconnections, such as TF and GY components. This is 

clearly demonstrated by Figure 5.14 in which there is no structural coupling between the 

electrical and mechanical domains. The insertion of a GY component remedies this shortage 

of coupling and a allows a force to be applied to the ball. 

Second, in view of damping structures, additive damping can be based on available junctions 

within the bond graph, where Figure 5.16 shows that it is quite natural to place a resistive 

elements at the 1 -junction in the mechanical domain. On the other hand, as depicted in 

Figure 5.17, the 'addition of resistive elements by explicit insertion of a new junction is 

certainly possible, but such choice does not immediately follow from "intuitive" bond graph 

arguments. 
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A final remark is in order, namely, it must be remembered that IDA-PBC control of [Ort02b] 

applies to explicit port-Hamiltonian dynamics, so that the associated bond graph should 

not induce derivative causalities. For example, the bond graph of the frictionless slider in 

Figure 5.7 cannot be used to represent a IDA-PBC problem in accordance with the theory 

of Section 2.6. As a result, bond graphs representations for IDA-PBC designs are limited to 

a small class of systems that do not produce derivative causalities in bond graphs. 

5.5. Conclusion 

The first half of the chapter introduced a novel method for bond graph based power balancing 

control, which addresses stabilisation through feedback that retains passivity with respect to 

the natural output. The class of systems suitable for this stabilisation technique must meet 

well-known detectability requirements commonly found in passive systems literature. Crucial 

to the power balancing method has been shown to be a proper decomposition of the plant 

bond graph into two subsystems with uncoupled Hamiltonians, where the subsystem having 

the natural outputs as system inputs is assumed to have no resistive elements. In case such 

bond graph decomposition can be found, it has been shown that the additive energy function 

can be based on the Hamiltonian associated with the subsystem that has the natural output 

as an input. 

Power balancing as presented in this chapter can be scaled and allows for bond graphs that 

will either induce explicit or implicit dynamics when causally assigned with SCAP. This broad 

applicability can be attributed to the fact that bond graph junction structures remain power 

continuous regardless of the causal configuration. For example, it has been shown that the 

application of the Lagrangian assignment procedure circumvented derivative causalities with- 

out changing the power continuity property. In any case, however, system requirements such 

as detectability and internal stability remain in effect for all bond graph models, irrespective 

of the causal configuration. 

The latter part of the chapter addressed basic bond graph interpretations of IDA-PBC de- 

signs. Unlike power balancing, the closed loop bond graph representation of an IDA-PBC 

design has been shown to be more conceptual in nature and does not provide a means to find 

the control. This can be attributed to the fact that IDA-PBC designs often lead to a set of 

first order PDEs that need to be solved. 
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Even though the bond graph aspects of IDA-PBC designs are mostly conceptual, it has been 

shown that the control objective can be graphically depicted, thereby increasing insight into 

the design to some degree. In particular, interconnection and damping structures have been 

shown to be represented by the insertion and modification of GY, TF and R components. 

However, the shaped interconnection and damping structures for any IDA-PBC design re- 

mains to be chosen by the designer, thereby rendering the IDA-PBC methodology quite 

flexible but less constructive. 
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6.1. Review 

This thesis presented the following control design methodologies for bond graph based control 

purposes: (1) Backstepping Control, (2) Model Matching Control, and (3) Energy Shaping 

in Stabilisation Control. Even though these topics have virtually no similarities on analytical 

levels, it has been shown that these methods are capable of addressing closed loop bond graph 

representations. More precisely, it has been argued that open loop bond graph modelling is 

well-understood, whereas closed loop bond graph modelling is not. Therefore, the impetus of 

this thesis was to collect and explore particular control design methods capable of addressing 

structural design goals in terms of closed loop bond graph representations. Important aspects 

of these structural considerations have been existing concepts of port-Hamiltonian systems 

in relation to bond graph models. In conclusion, this thesis has shown that the above control 

design methods allow for structural design goals such that associated bond graphs can be 

found, thereby contributing new modelling aspects in the field of physical model based control 

with bond graphs. 

6.2. Backstepping Control 

Backstepping control design has been addressed from a bond graph perspective, where the 

stabilising functions were defined as additive bond graph models and referred to as virtual 

actuators. Most importantly, this thesis showed that explicit port-Hamiltonian closed loop 

dynamics can be obtained through an exact backstepping design to ensure an associated 

bond graph representation. Through judiciously chosen virtual control laws, it has been 

shown that the plant bond graph topology can be retained such that passive stabilisation 

can be interpreted by means of the plant bond graph. Furthermore, the bond graph based 

backstepping approach readily showed to be applicable in a nonlinear context with suitable 

virtual control laws, thereby complementing the existing literature on the mere linear case. 
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Backstepping is known for its use of new coordinates that are introduced recursively at 

each step of the design. This thesis, on the other hand, has clarified that the bicausal 

inversion mechanism yields a class of exact backstepping controllers without the explicit 

introduction of new variables. However, these new coordinates remain necessary for the 

closed loop dynamics, hence for the closed loop bond graph representation. In addition, the 

bicausal inversion mechanism has been shown not to facilitate the further stabilisation at 

each step due to the absence of these new coordinates. 

Most of the existing literature on bond graph based backstepping addresses single-input 

systems. This thesis has shown that the single-input case is readily applicable to a class 

of multi-input systems having the required interlaced structure for which the bond graph 

based backstepping can be applied. The multi-input case considered here has shown to 

include systems with single-input "branches", where the recursive backstepping scheme can 

be applied to each branch. The (bi)causal inversion mechanism has shown to be applicable 

to such multi-input systems. 

6.3. Model Matching Control 

The design of trajectory tracking controllers by means of bicausal bond graphs has previously 

appeared in the literature. This thesis complemented some known results by means of the 

Model Matching Problem (MMP) of prescribed model trajectories instead of the common 

framework of "arbitrary" reference trajectories. It has been shown that bond graphs can 

be used to define prescribed reference models, where the closed loop input/output behavior 

should match the input/output behavior of the prescribed model. 

The main result of the bond graph based MMP has shown to be the underlying mechanism of 

the MMP design. Indeed, this thesis has shown that bond graph modelling for the physical 

model based MMP implicitly relies on the theory of dynamic disturbance decoupling and 

concepts of output regulation. 

For certain MMP scenarios it has been shown that the "error dynamics" allows for an associ- 

ated bond graph representation, so that passive stabilisation becomes possible through bond 

graph arguments. In particular, the error dynamics has readily been associated with center 

manifold considerations whereby the tracking error of state variables can be found by means 

of a submanifold on which output matching occurs. 
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On the other hand, more general MMP scenarios have been shown to merely allow for the 

closed loop input/output dynamics as prescribed by the model bond graph. The lack of 

bond graph representations for the actual error dynamics has been attributed to additional 

modelling difficulties, such as derivative causalities and non-preferred state variables. In 

order to circumvent such difficulties, reduction from implicit to explicit dynamics showed to 

be preferable for the MMP design. Towards that end, the Lagrangian causality assignment 

procedure did not yield explicit port-Hamiltonian dynamics, so that an associated bond 

graph representation for the error dynamics could not be found. 

For certain nonlinear scenarios, the bond graph based MMP has shown not to be solvable 

by means of the feedback linearisation mechanism. As a result, the linearised MMP was 

attempted instead, requiring the linearisation of the plant and model dynamics about some 

operating point. The linearised plant retained its nonlinear bond graph representation and 

the prescribed linearised input/output dynamics retained its nonlinear model bond graph. 

6.4. Energy Shaping in Stabilisation Control 

Feedback passivation has been presented from a bond graph perspective, where the bond 

graph junction structures has shown to be capable of identifying feedback passive control 

laws with respect to the original plant output. This method has been referred to as "power 

balancing" and was used to derive the closed loop storage function from the junction structure 

instead of a predefined storage function. However, the power balancing method requires stable 

zero-dynamics, which is a general requirement for all feedback passivation design with respect 

to the original plant output. Power balancing has been shown to be suitable for multi-input 

bond graphs and for bond graphs having derivative causalities. 

Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) has been 

briefly shown to allow for conceptual bond graph representations. That is, bond graphs 

can be used to depict prescribed closed loop port-Hamiltonian dynamics by redefining the 

junction structure and the dissipative elements in accordance with IDA-PBC theory. The 

solution of IDA-PBC designs, however, is known to depend on first order partial differential 

equations, so that bond graph representations in IDA-PBC are applicable on conceptual 

level. Thus, basic IDA-PBC designs can be defined through bond graph representations, but 

the solutions to the design must be obtained through conventional means. 
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6.5. Future Research 

The thesis has identified three control methods that allow for structural design goals in terms 

of closed loop bond graph representations. However, it is often argued that mere structural 

or "geometric" feedback designs often lack certain robustness margins with respect to model 

uncertainties. In particular, the robustness of exact backstepping and model matching con- 

trollers can be expected to be relatively low due to the linearisations performed in these 

designs. For example, recall that this thesis focused on exact backstepping, which is based 

on exact cancellations. Furthermore, the robustness margins of iMMP designs can likewise be 

expected to be relatively low due to the explicit feedback linearisation of plant input/output 

dynamics. 

Even though it can be argued that linearisation based designs are perfectly admissible in a 

mathematical context, real physical dynamics will generally deviate from prescribed model 

dynamics. As a result, controller performance often deteriorates significantly or may even 

cause instability in presence of model uncertainty. In view of controller commissioning and 

implementation, robust control of bond graph based feedback designs is the most important 

next step in future research. Towards that end, the significant advances of modern robust 

control theory for linear systems suggest that future work on bond graph based controllers 

should be restricted to linear systems first. 

140 



Bibliography 

[Abr88] Abraham, R., J. E. Marsden. Manifolds, Tensor Analysis, and Applications, vol- 

ume 75 of Applied mathematical sciences. Springer-Verlag, 2 edition, 1988. 

[Bar77] Barnard, B. W., and P. D. Dransfield. Predicting response of a proposed hy- 

draulic control system using bond graphs. ASME Journal of Dynamics Systems, 

Measurement and Control, 99(1): 1-8,1977. 

[Bir9O] Birkett, S. H., and P. Roe. The mathematical foundations of bond graphs - iv. 

matrix representations and causality. Journal of the Franklin Institute, 327(1): 109- 

128,1990. 

[B1a02] Blankenstein, G., R. Ortega, and A. J. Van Der Schaft. The matching conditions 

of controlled lagrangians and ida-passivity based control. International Journal of 

Control, 75(9), 2002. 

[B1u82] Blundell, A. Bond Graphs for Modelling Engineering Systems. Ellis Horwood 

Publishers, 1982. 

[Bor00] Borutzky, W. Bondgraphen - Eine Methodologie zur Modellierung multidisziplin- 

rer Systeme, volume 6 of Fortschritte in der Simulationstechnik. SCS European 

Publishing House, 2000. 

[BorO4] Borutzky, W. Bond Graphs -A Methodology for Modelling Multidisciplinary Dy- 

namic Systems, volume FS14 of Frontiers in Simulation. SCS Publishing House, 

San Diego, 2004. 

[Bre9l] Breedveld, P. Editorial: Special issue on current topics in bond graph related 

research. Journal of Systems and Control Engineering 328(5-6), 1991. 

[Bre92a] Breedveld, P. Proposition for an unambiguous vector bond graph notation. ASME 

Journal of Dynamics Systems, Measurement and Control, 104(3): 267-270,1992. 

141 



Bibliography 

[Bre92b] Breedveld, P., and G. Dauphin-Tanguy. Bond Graphs for Engineers. Elsevier 

Science Publisher, 1992. 

[Bre95] Breedveld, P. Multibond graph elements in physical systems theory. Journal of 

the Franklin Institute, 319(1/2): 1-36,1995. 

[Bre94] Breedveld, P. Multibond graph representation of Lagrangian mechanics: The 

elimination of the euler junction structure. In Proceedings of the MATHMOD, 

pages 24-28,94. 

[Bus98] Bush-Vishniac, I. J. Electromechanical Sensors and Actuators. Springer-Verlag, 

New York, 1998. 

[BV04] Control Lab Products By. 20-Sim. URL: http: //wNvw. 20sim. com/, 2004. 

[Byr9l] Byrnes, C. I., A. Isidori, and J. C. Willems. Passivity, feedback equivalence, and 

the global stabilization of miminum phase nonlinear systems. IEEE Transactions 

on Automatic Control, 36: 1228-1240,1991. 

[Car65] Caratheodory, C. Calculus of Variations and Partial Differential Equations of the 

First Order. Holden-Day series in mathematical physics. Holden-Day, 1965. 

[Ce191] Cellier, F. E. Continuous System Modeling. Springer-Verlag, 1991. 

[Da197] Dalsmo, M., and A. J. van der Schaft. A Hamiltonian framework for interconnected 

physical systems. Technical report, Universiteit Twente, 1997. 

[Des75] Desoer, C. A., and M. Vidyasagar. Feedback Systems: Input-Output Properties. 

Academic Press, New York, 1975. 

[Dij9l] Dijk, J. van, and P. Breedveld. Simulation of System Models Containing Zero- 

Order Causal Paths - I. Classification of Zero-Order Causal Paths. Journal of the 

Franklin Institute, 328(5/6): 959-979,1991. 

[Dix74] Dixhoorn, J. van, and F. Evans. Physical Structure in Systems Theory: Network 

Approaches to Engineering and Economics. Acadamic Press, 1974. 

[Dyn04] Dynasim. Dymola. URL: http: //www. dynasim. se/, 2004. 

[Eva98] Evans, L. C. Partial Differential Equations, volume 19 of Graduate Studies in 

Mathematics. American Mathematical Society, 1998. 

142 



Bibliography 

[Gaw92] Gawthrop, P. J., and L. Smith. Causal augmentation of bond graphs with algebraic 

loops. Journal of the Franklin Institute, 329(2): 291-303,1992. 

[Gaw95a] Gawvthrop, P. J. Bicausal bond graphs. In Cellier and Granda, pages 83-88,1995. 

[Gaw95b] Gawthrop, P. J. Physical model based control: A bond graph approach. Journal 

of the Franklin Institute, 332B(3): 285-305,1995. 

[Gaw96] Gawvthrop, P. J., and L. Smith. Metamodelling: Bond Graphs and Dynamic Sys- 

terns. Prentice Hall, 1996. 

[Gaw00] Gawthrop, P. J. Physical interpretation of inverse dynamics using bicausal bond 

graphs. Journal of the Franklin Institute, 337: 743-769,2000. 

[Gaw01] Gawthrop, P. J., D. Ballance, and D. Vink. Bond graph based control with virtual 

actuators. In Simulation in Industry. ESS, 2001. 

[Gaw021 Gawvthrop, P., and S. Scavarda. Editorial: Special issue on bond graphs. Proceed- 

ings of the Institution of Mechanical Engineers Part I, Journal of Systems and 

Control Engineering 216(1), 2002. 

[GawO3] Gawthrop, P., and D. Palmer. A bicausal bond graph representation of operational 

amplifiers. Proceedings of the IMechE Part I: Journal of Systems and Control 

Engineering, 217: 49-58,2003. 

[GaNv04] Gawtrop, P. Bond graph based control using virtual actuators. Proceedings of the 

IMechE Part I: Journal of Systems and Control Engineering, 218: 251-268,2004. 

[Go102] Colo, G. Interconnection Structures in Port-Based Modelling: Tools for Analyisis 

and Simulation. PhD thesis, Twente University, 2002. 

[Go103] Colo G., A. J. van der Schaft, P. Breedveld, and B. M. Maschke. Hamiltonian for- 

rnulation of bond graphs, pages 1-2. Lecture Notes for the Euro/Geoplex Summer 

School. Springer-Verlag, 2003. 

[Hog85] Hogan, N. Impedance control: An approach to manipulation: Part i- theory. 

ASME Journal of Dynamics Systems, Measurement and Control, (1): 1-7,1985. 

[Hog87] Hogan, N. Modularity and causality in physical systems modelling. ASME Journal 

of Dynamics Systems, Measurement, and Control, 109: 384-391,1987. 

143 



Bibliography 

[Hui92] Huijberts, H. J. C. A nonregular solution of the nonlinear dynamic disturbance 

decoupling problem with an application to a complete solution of the nonlinear 

model matching problem. SIAM Journal on Control and Optimization, 30: 336- 

349,1992. 

[Hui94] Huijberts, H. J. C. Dynamic Feedback in Nonlinear Synthesis Problems. Centrum 

voor Wiskunde en Informatica, 1994. 

[ICB03] International Conference on Bond Graph Modeling and Simulation (ICBGM), 

2003. 

[Isi90] Isidori, A., and C. I. Byrnes. Output regulation of nonlinear systems. In IEEE 

Transactions on Automatic Control, volume 35, pages 131-140,1990. 

[Isi95] Isidori, A. Nonlinear Control Systems. Springer-Verlag, 3 edition, 1995. 

[Isi99] Isidori, A. Nonlinear Control Systems II. Springer-Verlag, London, 1999. 

[Jan96] Jankovic, M., D. Fontaine, P. V. Kokotovic. TORA Example: Cascade- and 

passivity-based control designs. IEEE Transactions on Control Systems Technol- 

ogy, 4(3): 292-297,1996. 

[Jos74] Joseph, B. J., and H. R. Martens. The method of relaxed causality in the bond 

graph analysis of nonlinear systems. ASME Journal of Dynamics Systems, Mea- 

surement and Control, 96(1): 95-99,1974. 

[Jun01] Junco, S. Lyapunov second method and feedback stabilization directly on bond 

graphs. In Proceedings of the ICBGM, 2001. 

[Kar77] Karnopp, D. C. Lagrange's equations for complex bond graph systems. ASME 

Journal of Dynamics Systems, Measurement and Control, 99(4): 300-306,1977. 

[Kar79] Karnopp, D. C. Bond graphs in control: Physical state variables and observers. 

Journal of the Franklin Institute, 308(3): 219-234,1979. 

[Kar83] Karnopp, D. C. Alternative bond graph causal patterns and equation formulata- 

tions for dynamic systems. ASME Journal of Dynamics Systems, Measurement 

and Control, 105: 58-63,1983. 

[Kar92] Karnopp, D. C. An approach to derivative causality in bond graph models of 

mechanical systems. Journal of the Franklin Institute, 329(1): 65-75,1992. 

144 



Bibliography 

[KarOO] Karnopp, D. C., D. L. Margolis., and R. C. Rosenberg. System Dynamics: Modeling 

and Simulation of Mechatronic Systems. John Wiley, 3nd edition, 2000. 

[Kha92] Khalil, H. K. Nonlinear Systems. MacMillan, New Jersey, 2 edition, 1992. 

[Kri95] Kristic, M., I. Kanellakopoulos, and P. Kokotovic. Nonlinear and Adaptive Control 

Design. Wiley-Interscience, 1995. 

[Lam97] Lamb, J. D., D. R. Woodall, and G. M. Asher. Bond graphs ii: Causality and 

singularity. Discrete Applied Mathematics, 73(2): 143-173,1997. 

[Mai03] Maithripala, D. H. D., Berg, Jordan M., and W. P. Dayawvansa. Loss of structurally 

stable regulation implies loss of stability. In IEEE Transactions on Automatic 

Control, volume 38, pages 483-487,2003. 

[Mar94] Marsden, J. E., and T. S. Ratiu. Introduction to Mechanics and Symmetry, vol- 

ume 17 of Texts in applied mathematics. Springer-Verlag, New York, 1994. 

[Mar02] Marquis-Favre, W., and S. Scavarda. Alternative causality assignment procedures 

in bond graphs for mechanical systems. ASME Journal of Dynamics Systems, 

Measurement and Control, 124: 457-463,2002. 

[Mas92] Maschke, B. M., A. J. van der Schaft, P. C. Breedveld. An intrinsic Hamiltonian 

formulation of network dynamics: Non-standard Poisson structures and gyrators. 

Journal of the Franklin Institute, 329(5): 923-966,1992. 

[Mas95] Maschke, B. M., A. J. van der Schaft, P. C. Breedveld. An intrinsic Hamiltonian 

formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and 

Systems I: Fundamental Theory and Applications, 42(2): 73-82,1995. 

[MTT04] MTT. IGITT: Model Transformation Tools. Online WWW Homepage. URL: 

http: //mtt. sourceforge. net, 2004. 

[Ngw96] Ngtivompo, R. F., S. Scavarda, and D. Thomasset. Inversion of linear time- 

invariant siso systems modelled by bond graph. Journal of the Franklin Institute, 

333B(2): 157-174,1996. 

[Ngw99a] Ngwompo, R. F., and S. Scavarda. Dimensioning problems in system design using 

bicausal bond graphs. Journal of Simulation Theory and Practice, 7(5-6): 577-587, 

1999. 

145 



Bibliography 

[Ngwv99b] Ngwompo, R. F., F. Roger, and P. J. Gawthrop. Bond graph based simulation 

of nonlinear inverse systems using physical performance specifications. Journal of 

the Franklin Institute, 336: 1225-1247,1999. 

[NgwOla] Ngwompo, R. F., S. Scavarda, and D. Thomasset. Physical model-based inversion 

in control systems design using bond graph representation - part 1. Proceedings of 

the IMechE, Part I: Journal of Systems and Control Engineering, 215(12): 95-103, 

2001. 

[NgwOlb] Ngwompo, R. F., S. Scavarda, and D. Thomasset. Physical model-based inversion 

in control systems design using bond graph representation - part 2: applications. 

Proceedings of the IMechE, Part I: Journal of Systems and Control Engineering, 

215(12): 105-112,2001. 

[Nij90] Nijmeijer, H., and A. J. van der Schaft. Nonlinear Dynamical Control Systems. 

Springer-Verlag, 1990. 

[Ort89] Ortega, R. Passivity properties for stabilization of cascaded nonlinear systems. 

Automatica, 27: 423-424,1989. 

[Ort98] Ortega, R., Loria, A., Nicklasson, and P. J., Sira-Ramirez, H. Passivity-Based 

Control of Euler-Lagrange Systems. Springer-Verlag, 1998. 

(Ort00a] Ortega, R., and A. J. van der Schaft. Energy shaping revisited. In IEEE Conference 

on Control Applications, pages 123-126,2000. 

[Ort00b] Ortega, R., and I. Mareels. Energy-balancing passivity-based control. In Proceed- 

ings of the American Control Conference, volume 2, pages 1265-1270,2000. 

[OrtOOc] Ortega, R., and M. Spong. Stabilisation of underactuated mechanical systems using 

interconnection and damping assignment. In IFAC Workshop on Lagrangian and 

Hamiltonian Methods in Nonlinear control problems, pages 74-79, Princeton, NJ, 

2000. 

[Ort01] Ortega, R., A. van der Schaft, I. Mareels, and B. Maschke. Putting energy back 

in control. IEEE Control Systems Magazine, 21(2): 18-33,2001. 

[OrtO2a] Ortage, R., M. Spong, F. Gomez-Estern, and G. Blankenstein. Stabilisation of a 

class of underactuated mechanical systems via interconnection and damping as- 

signment. IEEE Transactions on Automatic Control, 47(8): 1218-1233,2002. 

146 



Bibliography 

[Ort02b] Ortega, R., A. J. van der Schaft, and B. Maschke. Interconnection and damp- 

ing assignment passivity-based control of port-controlled Hamiltonian systems. 

Automatica, 38(4): 585-596,2002. 

[Pay6l] Paytner, H. M. Analysis and Design of Engineering Systems. MIT Press, Cam- 

bridge, Massachusetts, USA, 1961. 

[Rob95] Roberts, D. W., D. Ballance, and P. J. Gawvthrop. Design and implementation of a 

bond graph observer for robot control. Control Engineering Practise, 3(10): 1447- 

1457,1995. 

[Ros7l] Rosenberg, R. C. State-space formulation for bond graph models of multiport sys- 

tems. ASME Journal of Dynamics Systems, Measurement and Control, 93(1): 35- 

40,1971. 

[Ros74] Rosenburg, L. C. A User's Guide to ENPORT-/j. John Wiley, 1974. 

[Ros87] Rosenberg, R. C. Exploiting bond graph causality in physical systems modelling. 

ASME Journal of Dynamic Systems, Measurement, and Control, 109: 378-383, 

1987. 

[Sch96] Schaft, A. J. van der, M. Dalsmo, and B. Maschke. Mathematical structures in 

the network representation of energy-conserving physical systems. In Conference 

on Decision and Control, pages 201-206. IEEE, 1996. 

[Sch00a] Schaft, A. J. van der. Implicit port-controlled Hamiltonian systems. SICE, 39: 410- 

418,2000. 

[SchOOb] Schaft, A. J. van der. L2-gain and Passivity Techniques in Nonlinear Control. 

Springer-Verlag, 2000. 

[Sep97] Sepulchre, R., M. Jankovic, and P. Kokotovic. Constructive Nonlinear control. 

Springer-Verlag, 1997. 

[Sha9l] Sharon, A., N. Hogan, and D. E. Hardt. Controller design in the physical domain. 

Journal of the Franklin Institute, 328(5/6): 697-721,1991. 

[Son95] Sontag, E. D. On characterizations of the input-to-state stability property. Sys- 

tems & Control Letters, 24: 351-359,1995. 

147 



Bibliography 

[Str98] Stramigioli, S., B. Maschke, and A. J. van der Schaft. Passive output feedback 

and port interconnection. In Proc. 4th IFAC NOLCOS, pages 613-618, Enschede, 

1998. 

[Tho99] Thoma, Jean U., and 0. Bouamama. Modeling and Simulation in Thermal and 

Chemical Engineering :A Bond Graph Approach. Springer Engineering, 1999. 

[van94] van Dijk, J. On the role of bond graph causality in modelling mechatronic systems. 

PhD thesis, University of Torente, The Netherlands, 1994. 

[Vin03] Vink, D., D. Ballance, and P. J. Gawthrop. Bond graphs in model matching 

control. In Proceedings of the 4th MATHMOD, Vienna, 2003. 

[Wan94] Wan, C. J., D. S. Bernstein, and V. T. Coppola. Global stabilization of the 

oscillating eccentric rotor. In Proc. 33rd IEEE Conference on Decision and Control, 

pages 4024-4029,1994. 

[Wi172] Willems, J. C. Dissipative dynamical systems, parts I and II. Archive for Rational 

Mechanics and Analysis, 45: 321-393,1972. 

[Yeh99] Yeh, T. Backstepping control in the physical domain. In Proceedings of the Amer- 

ican Control Conference, 1999. 

[Yeh0l] Yeh, T. J. Controller synthesis using bond-graphs. In Proceedings of the American 

Control Conference, pages 4765-4770, Arlington, 2001. 

[Yeh02] Yeh, T. J. Controller synthesis for cascade systems using bond graphs. Interna- 

tional Journal of Systems Science, 33: 1161-1177,2002. 

[Zha98] Zhao, J., and K. Kanellakopoulos. Flexible backstepping design for tracking and 

disturbance attenuation. International Journal of Robust and Nonlinear Control, 

8: 331-348, April 1998. 

[Zho98] Zhou, K., and J. Doyle. Essentials of Robust Control. Prentice-Hall, 1998. 

148 


